Final Exam Paper: - Bio Statistics

Submitted by
Student IDSubmitted To
Paper Instructor
DepartmentDegreeSemester

Nadir Ahmad
6957
Sir. Anwar Shamim
Sir. Anwar Shamim
Allied Health Sciences BS (MLT)
$6^{\text {th }}$
(a) Calculate the correlation coefficient between X and Y .

Price (X)	3	4	5	6	7	8	9	10	11	13
Demand(Y)	25	24	20	20	19	17	16	13	10	8

Solution:-
Q No: 1 part (a)

$$
\text { Lets } \begin{aligned}
\because u & \because x-n / 2 \Rightarrow u=x-7 \\
& \Rightarrow v=y-n / 2 \Rightarrow v=y-19
\end{aligned}
$$

x	y^{\prime}	u	v	u^{2}	v^{2}	$u v$
3	25	-4	6	16	36	-24
4	24	-3	5	9	25	-15
5	20	-2	1	4	1	-2
6	20	-1	1	1	1	-1
7	19	0	0	0	0	0
8	17	1	-2	9	4	-2
9	16	2	-3	4	9	-6
10	1.3	3	-6	9	36	-18
11	10	4	-9	16	81	-36
13	8	6	-11	36	121	-66
76	172	6	-18	96	314	-170

: Formula : Hor

$$
\begin{aligned}
& \text { 60. To. Fondly? }
\end{aligned}
$$

Now:

Putting the value oo table

$$
\begin{aligned}
& \gamma=-170-\frac{6 \times-18}{10} \\
& \sqrt{\left[96-\frac{96}{10}\right]\left[314-\frac{314}{10}\right]} . \\
& \gamma=\frac{-1700+108}{10} \\
& \sqrt{\left[\frac{960-96}{10}\right]\left[\frac{3140-314}{10}\right]} \\
& \gamma=\frac{-1,592}{\sqrt{\left[\frac{864}{10}\right]\left[\frac{2826}{10}\right]}} \\
& r=\frac{\frac{-1592}{10}}{\sqrt{\left[\frac{2841}{100}\right]}} \\
& \gamma=\frac{-\frac{1592}{10}}{\frac{1562.58}{10}}=\frac{-1592 \times 10}{1562.58 \times 10} \\
& \gamma=\frac{-15.920}{15625.8}=|-1.01| \rightarrow \text { Ane }
\end{aligned}
$$

(b) Given the following set of values.

X	20	11	15	10	17	18	21	25	28
Y	5	15	14	17	8	9	12	16	18

(a) Determine the equation of the least squares regression line of Y on X and X on Y .
(b) Find the predicted values of Y for $\mathrm{X}=20,11,15,25,28$ and X for $\mathrm{Y}=5,15,9,12,16,18$.

Solution:-

x	y	$x y$	x^{2}	y^{2}
20	1	100	400	25
11	15	165	121	325
15	14	210	225	196
10	17	170	100	289
17	8	306	288	64
18	9	162	324	81
21	12	252	441	144
25	16	400	625	258
28	18	504	784	324
165	114	2269	3309	1604

\therefore The regression equation of y on

$$
\begin{array}{ll}
& \begin{array}{r}
\hat{y}=a+b x \\
\Rightarrow
\end{array} \quad b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-(\Sigma x)^{2}} \\
\Rightarrow & b=\frac{9(2269)-(165)(114)}{9(3309)-(165)^{2}} \\
\Rightarrow & b=\frac{20421-18810}{29781-27225}=\frac{1611}{2556} \\
\Rightarrow \quad b & b=0.63
\end{array}
$$

$$
\begin{aligned}
& a=\frac{\sum y}{n}-b\left(\frac{\sum x}{n}\right) \\
& a=\frac{114}{9}-0.63(165) \\
& a=18.66-0.63(18.33) \\
& a=12.66-11.55 \\
& a=1.11
\end{aligned}
$$

\because Thus regressim Ev x on y

$$
\begin{align*}
& \hat{x}=a+b \cdot y \\
& b=n \frac{\sum x y-\sum x \sum y}{n \sum y^{2}-\left(\sum y\right)^{2}} \\
& b=\frac{9(2269)-(165)(114)}{9(1604)-(114)^{2}} \\
& b=\frac{20421-18810}{14436-12396} \\
& b=\frac{1611}{1440} \\
& b=1.12 \tag{13}
\end{align*}
$$

Thus the cetromated regression nc of x on y (

$$
\begin{aligned}
& \hat{x}=a+b y \\
& \hat{x}=4.15+1.12 y \\
& x=5.27 \rightarrow \text { part (a) }
\end{aligned}
$$

QNo1 pant (B). (h)
predicted v alues of y for

$$
\begin{aligned}
x & =20,11,15,25,28 \\
\hat{y} & =a+b x \\
& =1.11+0.63(20) \quad x=20 \\
\hat{y} & =1.11+12.6 \\
\hat{y} & =13.71
\end{aligned}
$$

$$
\begin{align*}
& \hat{y}=1.11+0.63(11) \quad x=11 \\
& y=10.56 \tag{11}
\end{align*}
$$

$$
\hat{y}=1.11+0.63(15)
$$

$$
\begin{equation*}
\hat{y}=10.5-6 \tag{III}
\end{equation*}
$$

$$
\begin{aligned}
& \hat{y}=1.11+0.63(25) \\
& \hat{y}=16.86 \\
& \hat{y}=1.11+0.63(28) \\
& \hat{y}=18.75 \rightarrow 25
\end{aligned}
$$

QNO. 02

Find the following

(a) A fair coin is tossed 5 times. Find the probabilities of obtaining various numbers of heads.

Answer:-

Lets us regard the tossing of a coin as exporimcency then we observe that

- Each toss of coin has two possible outcomes head and fail.
- The probability of a head (success) is $\mathrm{P}=1 / 2$ and the teamaker the some for successive tosses
- The successive tosses of the coin independent.
- The coin is tossed 5 times.

Therefore the r.v.x which denote the member of head (success) has a binomial probability destruction with $\mathrm{P}=1 / 2$ and $\mathrm{n}=5$ the possible value of as are $0,2,3,4$ and 5 hence.
(b) A and B play a game in which A, s probability of winning is $2 / 3$. In a series of 10 games, what is the probability that A will win(i) at least 4 games,(ii) Exactly equal to $4 / 10$ games.
(iii) Exactly equals to 11 games (iv) 6 or more games.

$$
P(\operatorname{aic} \quad k+a d)=p(x=0)=
$$

$$
\left[\frac{5^{5}}{0}\right)^{1}(x=0)=1 \times\left(\frac{1}{2}\right]^{5}=1 \times\left(\frac{1}{2}\right]^{5}=1 / 3 j
$$

$p(1 \quad$ head $)=p(x=1)$:

$$
\begin{aligned}
& a d)=p(x=1): \\
& \left.\left[\frac{5}{1}\right]\left[\frac{1}{2}\right]^{2}\right]^{5}=5^{5-1} \times\left[\frac{1}{2}\right]^{52}=\frac{1}{3}
\end{aligned}
$$

$\Rightarrow P(2$ heads)+p(x-2)=

$$
\left[\frac{5}{2}\right]\left[\frac{1}{2}\right]^{2}\left[\frac{1}{2}\right]^{5-2}=10 x\left(\frac{1}{2}\right]^{5}=\frac{10}{32}
$$

-) $p(s$ Leads $)=p(\mu=3)=$

$$
\left[\frac{5}{3}\right]\left[\frac{1}{2}\right]^{3}(1 / 2)^{5.3}=10 \times\left(\frac{1}{2}\right)^{5}=\frac{10}{32}
$$

$\Rightarrow \quad P(4 a+d d s)=P(x=4)$

$$
\left[\frac{5}{4}\right]\left[\frac{1}{2}\right]^{4}\left[\frac{1}{2}\right]^{5-4}=\left(0 x 5 x(1 / 2)^{5}-\frac{5}{32}\right.
$$

probability can also be obtain by (pap ell) expounding the binomial $(1 / 2+1 / 2)^{5}$.
The bireosital $P, d^{l} f^{-1}$ numbers of bead obtain in 5 fosses of fair coir is.

x	0	1	2	3	4	5
$f(x)$	$1 / 32$	$5 / 32$	$10 / 32$	$10 / 32$	$5 / 32$	$1 / 32$

$$
\begin{aligned}
& \text { Q.e (5) } \\
& \text { paper } 10 \\
& \text { Fns (b) } \\
& \text { A Two possible outcome ive: } \\
& \Rightarrow \text { probability. A witsyy } p=1 / 3 \\
& =10 \text { games } \\
& =m=p, 213 \\
& \Rightarrow \text { Seressine farce won \& last } \\
& \text { indeperady } \\
& \text { (1) } p(x-4)=\frac{10}{4}\left(\frac{2}{3}\right)^{4}(1 / 3)^{4}=\frac{1128}{5651}=0.19996 \\
& \text { (ii) } P(x>4)=1-p \quad(x<4) \text { : Marean hormoxe } \\
& =1=\sum_{x=0}^{3}\left(\frac{10}{x}\right)\left(\frac{2}{3}\right)^{x}(1 / 3)^{8-x} \\
& =1(1 / 3)+10\left[\frac{2}{3}\right][1 / 3]+28(2 / 3)^{2} \\
& (1 / 3)^{2}+56[2 / 3]^{3}(1 / 5)^{3} \\
& 1-\frac{1}{65.61} \quad(10+16+28+448) \\
& \text { TON OPPO }-\frac{577}{6561}=\frac{5984}{6561}=0.9121
\end{aligned}
$$

Q.No. (03)

The following figures give the number of children born to 50 women

2	6	1	5	4	3	3	8	10	1

4	3	3	0	5	2	1	4	10	3
5	3	3	6	3	3	2	2	7	4
1	4	2	4	4	4	6	8	10	7
7	5	6	5	3	2	3	9	2	2

(a) Construct the ungrouped frequency distribution of these data.
(b) Construct the grouped frequency distribution of these data

Solution:-

2 No 3 part (a):.

2	6	1	5	4	3	3	8	10	1
4	3	3	0	5	2	1	4	10	3
5	3	3	6	3	3	2	2	7	4
1	4	1	4	4	8	6	8	10	7
7	5	6	5	1	2	3	9	2	2

Con compled Frequency distribution

No 3: 5
Give information of children bros A. So women.

2	6	1	5	4	3	3	8	10	1
4	3	3	0	5	2	1	4	10	3
5	3	3	6	3	3	2	2	7	4
1	4	2	4	4	4	6	8	10	2
7	5	6	5	3	2	3	9	2	2

frey freq give data distribution 8 oo

$$
\begin{aligned}
N= & S_{0}^{\prime} \text { data } \\
N= & S_{0}^{\prime} x \cdot=1 \quad x-10 \\
& \text { Range. } x-x_{0} \\
& R=10-1[9 \\
K & =1+3.3 \text { lory } \\
= & 1+3.310 \times y(50) \\
& =1+3.3(1.698) .
\end{aligned}
$$

$$
\begin{align*}
& k=1+5.6066 \\
& k=6.606 \Rightarrow k=6 \\
& h=\text { Class internvil }=\frac{\text { Rang. }}{k} . \\
& h=\frac{9}{7}=1.285=2 \tag{41}
\end{align*}
$$

we Find out the informalution boom data.

$$
N=50, R=9, k=6, h=2
$$

Classes	Frequeney	doesb bondim	Main poid
$0-1$	5	$0.5-1.5$	1
$2-3$	19	$1.5-3.5$	2.5
$4-5$	13	$35-5.5$	4.5
$0-7$	7	$5.5-7.5$	6.5
$8-9$	3	$7.5-9.5$	8.5
$10-11$	3	$10.5-11.5$.	11

$$
\text { Total }=5
$$

R.Frequanay	R. Frency	C.F	R.C.F
$5=/ 50$	$5 / 50 \times 100=0$	5	$5 / 50=0$
$19 / 50$	$17 / 50 \times 100=38$	24	$2 / 50=0$
$13 / 50$	$13 / 50100=26$	37	$37 / 50=0$
$7 / 50$	$7 / 50 \times 100=14$	44	$44 / 50=0$
$3 / 50$	$3 / 50 \times 100=6$	47	$47 / 50=0$
$3 / 50$	$3 / 50 \times 100=6$	50	$50 / 50=0$

