

Mid Semester Assignment

Course Name: Data Sciences

Submitted By:

Inzamam (12998)

BS (SE-8) Section: A

Submitted To:

Sir M.Ayub Khan

Dated: 19th August 2020

Department of Computer Science,

IQRA National University, Peshawar Pakistan

Subject: Data Sciences Time: 90 mins

BS (CS,SE) Instructor: M.Ayub Khan

There are total 3 questions in this paper. Max Marks: 30

Note:

At the top of the answer sheet there must be the ID, Name and semester of the
concerned Student.

Students must have to provide the output of their respective programs. Students
have same answers or programs will be considered fail. Programs in Python and
codes should be explained clearly.

Each question carry equal marks.
Please answer briefly.

Q1. What type of errors do occur in Python, write the a program with different
 types of errors as well as write separate correction code?

Q2. What are Boolean String test, write the code for each Boolean string test
 code?

Q3. What is formatting string input mean in Python, write a program in which
 formatting string input is used?

Department of Computer Science

Mid Semester Assignment Summer 2020

Q1

Answer:

Errors:

Errors or mistakes in a program are often referred to as bugs. They are almost always the fault of

the programmer. The process of finding and eliminating errors is called debugging. Errors can be

classified into three major groups:

 Syntax errors

 Runtime errors

 Logical errors

Syntax errors:

Python can find these sorts of errors once it tries to dissect your program, and exit with an error

message while not running anything. Syntax errors are mistakes within the use of the Python

language, and are analogous to spelling or synchronic linguistics mistakes in a language like

English: for instance, the sentence Would you some tea? doesn't make sense – it's missing a verb.

Common Python syntax errors include:

• leaving out a keyword

• putting a keyword in the wrong place

• leaving out a symbol, like a colon, comma or brackets

• misspelling a keyword

• Incorrect indentation

• Empty block

Python can do its best to inform you wherever the error is found, however generally its messages

are often misleading: for instance, if you forget to escape a quotation mark within a string you will

get a syntax error referring to a place later in your code, even supposing that's not the real source

of the problem. If you can’t see anything wrong on the line laid out in the error message, attempt

backtracking through the last few lines. As you program more, you'll improve at distinctive and

fixing errors.

Examples of syntax errors in Python are as follows:

myfunction(x, y):

return x + y

else:

print("Hello!")

if mark >= 50

print("You passed!")

if arriving:

print("Hi!")

esle:

print("Bye!")

if flag:

print("Flag is set!")

Runtime errors:

If a program is syntactically correct – that's, free of syntax errors – it'll be run by the Python

interpreter. However, the program could exit unexpectedly throughout execution if it encounters a

run-time error – a problem that wasn't detected when the program was parsed, however is simply

unconcealed once a specific line is executed. Once a program comes to a halt due to a run-time

error, we say that it's crashed.

Consider the English instruction flap your arms and fly to Australia. Whereas the instruction is

structurally correct and you'll perceive its meaning perfectly, it's not possible for you to follow it.

Examples of Python runtime errors are as follows:

• Division by zero

• performing an operation on incompatible varieties

• using an identifier that has not been outlined

• accessing an inventory element, dictionary value or object attribute that doesn’t exist

• trying to access a file that doesn’t exist

Runtime errors typically sneak in if you don’t think about all attainable values that a variable may

contain, particularly when you are processing user input. You ought to continuously attempt to

add checks to your code to create positive that it will manage bad input and edge cases graciously.

We can solve these types of error by using exception handlings. In exception handling we can tell

python what to do when an error occurs instead if crashing the app

Logical errors:

Logical errors are the foremost tough to fix. They occur once the program runs while not crashing,

however produces an incorrect result. The error is caused by a mistake within the program’s logic.

You won’t get an error message, because no syntax or run-time error has occurred. You’ll have to

be compelled to realize the matter on your own by reviewing all the relevant elements of your code

– though some tools will flag suspicious code that seems like it may cause surprising behavior.

Sometimes there are often absolutely nothing wrong along with your Python implementation of an

algorithm – the algorithm itself are often incorrect. However, more often these sorts of errors are

caused by coder carelessness. Here are some examples of mistakes that result in logical errors:

• using the incorrect variable name

• indenting a block to the incorrect level

• using integer division rather than floating-point division

• getting operator precedence wrong

• making an error in a mathematician expression

• Off-by-one, and different numerical errors

If you misspell an identifier name, you will get a run-time error or a logical error, depending on

whether or not the misspelled name is outlined.

A common source of variable name mix-ups and incorrect indentation is frequent repetition and

pasting of enormous blocks of code. If you've got several duplicate lines with minor variations,

it’s terribly straightforward to miss a necessary change after you are editing your pasted lines. You

ought to continuously try and factor out excessive duplication using functions and loops.

Q2

Answer:

Booleans:

Boolean values are the 2 constant objects False and True.

They are accustomed to represent truth values (other values also can be considered false or true).

In numeric contexts (for instance, when used as the argument to an arithmetic operator), they

behave just like the integers 0 and 1, severally.

The built-in function bool() is used to cast any value to a Boolean, if the value is taken as a truth

value. They are written as False and True, severally.

Boolean Strings:

A string in Python can be tested for truth value.

The return type will be in Boolean value (True or False)

Let’s make an example, by first create a new variable and give it a value.

my_string = "Hello World"

my_string.isalnum() #check if all char are numbers

my_string.isalpha() #check if all char in the string are alphabetic

my_string.isdigit() #test if string contains digits

my_string.istitle() #test if string contains title words

my_string.isupper() #test if string contains upper case

my_string.islower() #test if string contains lower case

my_string.isspace() #test if string contains spaces

my_string.endswith('d') #test if string endswith a d

my_string.startswith('H') #test if string startswith H

To see what the return value (True or False) will be, simply print it out.

my_string="Hello World"

print my_string.isalnum() #False

print my_string.isalpha() #False

print my_string.isdigit() #False

print my_string.istitle() #True

print my_string.isupper() #False

print my_string.islower() #False

print my_string.isspace() #False

print my_string.endswith('d') #True

print my_string.startswith('H') #True

Boolean string tests:

Methods

 .isalpha()

 .isalnum()

 .istitle()

 .isdigit()

 .islower()

 .isupper()

 .startswith()

type str has methods that return a Boolean (True or False) for different tests on the properties of

stings. >python "Hello".isapha() out:[] True

.isalpha() returns True if all characters in the string ("Hello") are alphabetical, otherwise returns

False

Examples:

In [4]:

"Python".isalpha()

Out[4]:

True

In [17]:

"3rd".isalnum()

Out[17]:

True

In [6]:

"A Cold Stromy Night".istitle()

Out[6]:

True

In [7]:

"1003".isdigit()

Out[7]:

True

In [8]:

cm_height = "176"

print("cm height:",cm_height, "is all digits =",cm_height.isdigit())

cm height: 176 is all digits = True

In [9]:

print("SAVE".islower())

print("SAVE".isupper())

False

True

In [10]:

"Boolean".startswith("B")

Out[10]:

True

test stings with .isalpha()

In [13]:

[] Use .isalpha() on the string "alphabetical"

string = "alphabetical"

print('string', string, 'is alphabetical?', string.isalpha())

string alphabetical is alphabetical? True

In [14]:

[] Use .isalpha() on the string: "Are spaces and punctuation Alphabetical?"

"Are spaces and punctuation Alphabetical?".isalpha()

Out[14]:

False

In [15]:

[] initailize variable alpha_test with input

alpha_test = input()

[] use .isalpha() on string variable alpha_test

alpha_test.isalpha()

some

Out[15]:

True

Q3

Answer:

String Formatting:

Python uses C-style string formatting to create new, formatted strings. The "%" operator is used

to format a set of variables enclosed in a "tuple" (a fixed size list), together with a format string,

which contains normal text together with "argument specifiers", special symbols like "%s" and

"%d".

Here are some basic argument specifiers:

%s - String (or any object with a string representation, like numbers)

%d - Integers

%f - Floating point numbers

%.<number of digits>f - Floating point numbers with a fixed amount of digits to the right of the

dot.

%x/%X - Integers in hex representation (lowercase/uppercase)

Example

We write a format string which prints out the data using the following syntax:

Hello John Doe. Your current balance is $53.44.

Input code:

data = ("John", "Doe", 53.44)

format_string = "Hello %s %s. Your current balance is $%s."

print(format_string % data)

Output: Hello John Doe. Your current balance is $53.44.

