
Name: Miandad Khan
ID: 14130
Subject: Visual Programming
Program BS CS

Q1. a. What is decision making in C # explain with the help of flow charts?

ANS:-

Decision making structures requires the programmer to specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages −

 b. Write a program in C # in which different genders are to be separated
 based on user input? (Hint: Like M for Male)

 Ans:-

Q2.
a):-

What is the role of “If else if” in decision making explain with the help of a flow
chart ?

Ans:-

An if statement can be followed by an optional else statement, which executes when the boolean

expression is false.

Syntax

The syntax of an if...else statement in C# is −

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

} else {

 /* statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true, then the if block of code is executed, otherwise else

block of code is executed.

Flow Diagram

b. Write a program in C # in which different weather conditions are mentioned?
(Hint: 48 C is too hot).

Ans:-

Q3. a. What is the role of Loops in C# explain with the help of a flow chart?

Ans:-

There may be a situation, when you need to execute a block of code several number of times. In

general, the statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or a group of statements multiple times and

following is the general from of a loop statement in most of the programming languages −

 b. How many loops are supported by C #, give separate example for each
 loop?
Ans:- These are the loops supported by the C#:-

A while loop statement in C# repeatedly executes a target statement as long as a given condition

is true.

Syntax

The syntax of a while loop in C# is −

while(condition) {

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements. The condition may be

any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the loop.

Example:-

For loop:-

A loop is used for executing a block of statements repeatedly until a particular
condition is satisfied. For example, when you are displaying number from 1 to
100 you may want set the value of a variable to 1 and display it 100 times,
increasing its value by 1 on each loop iteration.

In C++ we have three types of basic loops: for, while and do-while. In this tutorial
we will learn how to use “for loop” in C++.

Syntax for for-loop

for(initialization; condition ; increment/decrement)
{
 C++ statement(s);
}

Example:-

https://beginnersbook.com/2017/08/cpp-while-loop/
https://beginnersbook.com/2017/08/cpp-do-while-loop/

#include <iostream>
using namespace std;
int main(){
 for(int i=1; i<=6; i++){
 /* This statement would be executed
 * repeatedly until the condition
 * i<=6 returns false.
 */
 cout<<"Value of variable i is: "<<i<<endl;
 }
 return 0;
}
Output:

Value of variable i is: 1
Value of variable i is: 2
Value of variable i is: 3
Value of variable i is: 4
Value of variable i is: 5
Value of variable i is: 6

While loop:-

A loop is used for executing a block of statements repeatedly until a given
condition returns false. In the previous tutorial we learned for loop In this guide
we will learn while loop in C.

Syntax of while loop:

while (condition test)
{
 //Statements to be executed repeatedly
 // Increment (++) or Decrement (--) Operation
}

Example of while loop

#include <stdio.h>
int main()
{
 int count=1;
 while (count <= 4)
 {

 printf("%d ", count);
 count++;
 }
 return 0;
}

Output:

1 2 3 4

Do while:-

The do-while loop is a variant of the while loop with one important difference:

the body of do-while loop is executed once before the condition is checked.

Its syntax is:

do {
 // body of loop;

}
while (condition);

Example 3: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {

 int i = 1;

 // do...while loop from 1 to 5
 do {

 cout << i << " ";
 ++i;

 }
 while (i <= 5);

 return 0;

}

Output

1 2 3 4 5

Q4. Why do the developers prefer for loops instead other loops justify your
answer with the help of an C # coded program ?

Ans:-

This C-style for-loop is commonly the source of an infinite loop since the fundamental
steps of iteration are completely in the control of the Programmers. In fact, when
infinite loops are intended, this type of for-loop can be used (with empty expressions),
such as:

for (;;)

 //loop body

This style is used instead of infinite while (1) loops to avoid a type conversion

warning in some C/C++ compilers.[4] Some programmers prefer the more succinct for

(;;) form over the semantically equivalent but more verbose while (true) form.

Example:-

Implementation in interpreted programming languages

In interpreted programming languages, for-loops can be implemented in many ways.
Oftentimes, the for-loops are directly translated to assembly-like compare instructions
and conditional jump instructions. However, this is not always so. In some interpreted
programming languages, for-loops are simply translated to while-loops.[8] For instance,
take the following Mint/Horchata code:

for i = 0; i < 100; i++

 print i

end

for each item of sequence

 print item

end

https://en.wikipedia.org/wiki/Infinite_loop
https://en.wikipedia.org/wiki/For_loop#cite_note-4
https://en.wikipedia.org/wiki/For_loop#cite_note-8

/* 'Translated traditional for-loop' */

i = 0

while i < 100

 print i

 i++

end

/* 'Translated for each loop' */

SYSTEM_VAR_0000 = 0

while SYSTEM_VAR_0000 < sequence.length()

 item = sequence[SYSTEM_VAR_0000]

 print item

 SYSTEM_VAR_0000++

end

Q5. a. What is encapsulation and its role in object oriented programming ?

Ans:-

In object-oriented computer programming languages, the notion of encapsulation refers

to the bundling of data, along with the methods that operate on that data, into a single

unit. Many programming languages use encapsulation frequently in the form of classes.

A class is a program-code-template that allows developers to create an object that has

both variables (data) and behaviors (functions or methods). A class is an example of

encapsulation in that it consists of data and methods that have been bundled into a single

unit. Encapsulation may also refer to a mechanism of restricting the direct access to some

components of an object, such that users cannot access state values for all of the variables

of a particular object. Encapsulation can be used to hide both data members and data

functions or methods associated with an instantiated class or object

Role of Encapsulation:-

1. Encapsulation and Sumo Logic Help to Prevent Cyber Attacks

IT organizations can implement encapsulation as a way to protect sensitive data and maintain

compliance with industry-specific data security and privacy requirements such as HIPAA and

PCI DDS. The encapsulation process helps to compartmentalize data, limiting vulnerabilities by

providing users with information on code implementations exclusively on a need-to-know basis.

Sumo Logic complements your existing cyber security measure with cutting-edge threat

detection and security analytics powered by artificial intelligence.

2. Information Hidden via Encapsulation?

As we mentioned earlier, encapsulation allows developers to bundle data and methods together

but it can also be used to hide sensitive data that should not be exposed to users. In the Java

programming language, and in many other languages, information hiding is controlled

using getter/setter methods for data attributes that will be readable or that may be updated by

other classes.

A getter method is used to retrieve the value of a specific variable within a class.

A setter method is used to set or update the value of a specific variable within a class.

Programmers can use access modifiers to define the visibility and accessibility of classes, along

with the data and methods that they contain. In the Java programming language, there are four

types of access modifiers to choose from:

 Private - When the private access modifier is applied to an attribute or method, it can

only be accessed by code within the same class. As a result, the class will likely need to

include getter and setter methods that can be used to access information about the

attribute or to change its value. Variables that can only be accessed through getter and

setter calls are encapsulated.

 Protected - A variable or method that is protected can be accessed by code within the

same class, by any classes that are in the same package and by all sub-classes in the same

or other packages.

 Public - The public access modifier is the least restrictive of all. Methods, attributes, and

classes that are coded with this access modifier can be viewed and accessed by code

within the same class and within all other classes.

 No Modifier - When a variable has no access modifier, it can be accessed or viewed

from within the same class or from all other classes in the same package.

There are many benefits to hiding information about attributes and methods using encapsulation.

One is that it prevents other developers from writing scripts or APIs that use your code. With

encapsulation, users of a class do not learn how a class stores its data and the developer can

change the data type of a field without forcing developers and users of the class to change their

code.

 b. Why access specifiers are used in encapsulation justify your answer with
the help C# coded example?

Ans:-

Encapsulation is implemented by using access specifiers. An access
specifier defines the scope and visibility of a class member. C# supports the following

access specifiers −

 Public

 Private

 Protected

 Internal

 Protected internal

Public Access Specifier

Public access specifier allows a class to expose its member variables and member
functions to other functions and objects. Any public member can be accessed from
outside the class.

The following example illustrates this −

Live Demo

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 public double length;

 public double width;

 public double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

Length: 4.5

Width: 3.5

http://tpcg.io/K4GlIi

Area: 15.75

In the preceding example, the member variables length and width are declared public,

so they can be accessed from the function Main() using an instance of the Rectangle
class, named r.

The member function Display() and GetArea() can also access these variables directly
without using any instance of the class.

The member functions Display() is also declared public, so it can also be accessed
from Main() using an instance of the Rectangle class, named r.

Private Access Specifier

Private access specifier allows a class to hide its member variables and member
functions from other functions and objects. Only functions of the same class can
access its private members. Even an instance of a class cannot access its private
members.

The following example illustrates this −

Live Demo

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 private double length;

 private double width;

 public void Acceptdetails() {

 Console.WriteLine("Enter Length: ");

 length = Convert.ToDouble(Console.ReadLine());

 Console.WriteLine("Enter Width: ");

 width = Convert.ToDouble(Console.ReadLine());

 }

 public double GetArea() {

 return length * width;

 }

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.Acceptdetails();

http://tpcg.io/rIUpfp

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

Enter Length:

4.4

Enter Width:

3.3

Length: 4.4

Width: 3.3

Area: 14.52

In the preceding example, the member variables length and width are
declared private, so they cannot be accessed from the function Main(). The member

functions AcceptDetails() and Display() can access these variables. Since the member
functions AcceptDetails() and Display() are declared public, they can be accessed
from Main() using an instance of the Rectangle class, named r.

Protected Access Specifier

Protected access specifier allows a child class to access the member variables and
member functions of its base class. This way it helps in implementing inheritance. We
will discuss this in more details in the inheritance chapter.

Internal Access Specifier

Internal access specifier allows a class to expose its member variables and member
functions to other functions and objects in the current assembly. In other words, any
member with internal access specifier can be accessed from any class or method
defined within the application in which the member is defined.

The following program illustrates this −

Live Demo

using System;

namespace RectangleApplication {

 class Rectangle {

 //member variables

 internal double length;

 internal double width;

 double GetArea() {

 return length * width;

 }

http://tpcg.io/m3ixfT

 public void Display() {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle {

 static void Main(string[] args) {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

Length: 4.5

Width: 3.5

Area: 15.75

In the preceding example, notice that the member function GetArea() is not declared
with any access specifier. Then what would be the default access specifier of a class
member if we don't mention any? It is private.

