

Iqra National University, Peshawar Department of Electrical Engineering

Final – Term Examination summer2020 Date:24/9/2020

Course Code:	MTH 10	01		Course	e Title:	Linear Algebra	
Prerequisite:	NA			Instru	ctor:	HIMAYTULLAH	
Module:	1	Program:	BEE	Total Marks:	50	Time Allowed:	

Note: Attempt all questions.PLO: program learning outcome C:Cognitive

Q1.	(a)	. Express the equation of plane passing through the points A(2,-2,1) , B(-1,0,3), C(5,-3,-1) , B(-1,0,2), C(5,-3,-1) , B(-1,0,2), C(5,-3,-1) , B(-1,0)				
			PLO2 C2			
	(b)	Express a pair of planes whose intersection is the given line, x = 2 - 3t, $y = 3 + t$, $z = 2 - 4t$	Marks 5 PLO2 C2			
Q2		L(x, y) = (x + 1, y, x + y) illustrate that <i>L</i> is linear transformation?	Marks 10			
			PLO1 C3			
Q3		Using the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ then interpret to decode the message 77 54 38 71 49 29 68 51 33 76 48 40 86 53 52	Marks 10 PLO1 C3			
Q4		Find an equation of the plane passing through the point (-1, 3, 2) and perpendicular to the vector $n = (0, 1, -3)$	Marks 10 C3 PLO1			
Q5		Find an Eigen values and Eigen vectors of matrix $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$.	Mark10 c3 plo1			

FAWAD AHMAD (13204)

FAWAD AHMAD (13204)

Ques # 01 (A)
Sol:-
The Non Patallel Vectors

$$\overrightarrow{AB} = (-3, 2, 2)$$

 $\overrightarrow{AC} = (3, -1, 3)$
 $n = \overrightarrow{AB} \times \overrightarrow{AC}$
 $n = \overrightarrow{AB} \times \overrightarrow{AC}$
 $n = \overrightarrow{AB} \times \overrightarrow{AC}$
 $n = (6+3) - j(-9-6) + k(3-6)$
 $n = 8i + 15j - 3k$
 $n = (8, 15, -3)$
 $\overrightarrow{AC} = (3, -3, -3)$
 $\overrightarrow{AC} = (3, -3, -3)$
 $n(9, -5, -3) = (3, -3, -3)$

3 So Solution Plane $a(x-x_{0})+b(y-y_{0})+c(z-z_{0})$ 8(2-2)+15(j+2)-3(Z-1)=0 8x +15j-3z-16+30+3=0 8x+15J-3Z+17=0

$$\Rightarrow \chi - \gamma = -\gamma + 9 \Rightarrow \chi + 3\gamma - 11 = 0$$

$$For \exists de Plane Take 1st \xi 3d \xir = -$$

$$\frac{\chi - 2}{-3} = \frac{Z - 2}{-9}$$

$$-4\chi + 8 = -3Z + 6$$

$$\delta 7$$

$$T = \frac{\chi - 2}{-3Z - 7} = 0$$

Ques # 2 Sol :-L(x,y) = (x+1, y, x+y)Let $U = (\chi_1, \chi_1) \quad V = (\chi_2, \chi_2)$ U+V = (x1, y1)+(x2, y2) U+V= (x1+22, J1+ J2) $L(u+v) = L(\chi_1+\chi_2, J_1+J_2)$ L(U+v)=(x1+22+1, j1+j2, x1+22+ j1+j2) given That U= (2+271) $L(u) = L(x_1, y_1) = (x_1 + 1, y_1, x_1 + y_1)$ $L(V) = L(\pi_{2}, J_{2}) = (\pi_{2} + 1, J_{2}, \pi_{2} + J_{2})$ $L(u) + L(v) = (x_1 + x_2 + 2, y_1 + y_2, x_1 + x_2 + y_1 + y_2)$ Since 1 ≠ 2 So this is Not L.T

Ques #03

$$\int A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

$$F7, 54, 38, 71, 49, 29$$

$$68, 51, 33, 76, 48, 8040$$

$$86, 53, 53$$

Sol:- $A^{-1} = \frac{1}{|A|} A dj A$ $A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \end{bmatrix}$ $\mathcal{H}_{1} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 77 \\ 54 \\ 38 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \\ 15 \end{pmatrix}$ $\mathcal{X}_{2} = \begin{cases} 0 & 2 & -\frac{1}{2} \\ 2 & -2 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{cases} \begin{bmatrix} 71 \\ 49 \\ 29 \end{bmatrix} = \begin{bmatrix} 20 \\ 15 \\ 7 \end{bmatrix}$ $\mathcal{R}_{3} = \begin{cases} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{cases} \begin{cases} 68 \\ 51 \\ 33 \\ 1 \\ 1 \\ 1 \end{cases} = \begin{cases} 18 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{cases}$

$$\mathcal{X}_{48} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 76 \\ 48 \\ 40 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 12 \end{pmatrix}$$
$$\mathcal{X}_{5} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 86 \\ 53 \\ 52 \end{pmatrix} = \begin{pmatrix} 1 \\ 14 \\ 19 \end{pmatrix}$$

50

16 8 15 20 15 7 18 1 16 8 16 12 PHOTOGRAPHPL 1 14 19 ANS

PHOTOGRAPH PLANS

Que # 04 Sol :-(-1,3,2) n=(0,1,-3)Exuction of the Plane $\alpha(\chi-\chi_{0})+b(\gamma-\gamma_{0})+c(Z-Z_{0})=0$ Griven That P(xo, yo, Zo) = (-1,3,2) h(a,b,c) = (0,1,-3)Putting Values in Sr ($O(\chi - (-1)) + 1(J - 3) + (-3)(Z - 2)$ = 0 + 1 (y-3) - 3 z + 6 = 0+J-3-3Z+6 = 0x+J-3Z+3

Que # 05 Sal:-We Know That Ax = Xx $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = J \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$ $\begin{pmatrix} \chi_1 + \chi_2 \\ \chi_1 + \chi_2 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$ Then $\mathcal{H}_1 + \mathcal{H}_2 = \int \mathcal{H}_1 \to (\hat{j})$ $-\partial \chi_1 + 4\chi_2 = 1\chi_2 \rightarrow (i)$ So x1-1 x1+x2=0 $= (1-1)x_1+x_2 = 0$ ≤ -∂x1+0x2=0 = - 221+ (4-1) 22=0 $\begin{pmatrix} 1 - 1 & 1 \\ -2 & 4 - 1 \end{pmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = 0$ charactivistic Exam. $\begin{bmatrix} 1 - \lambda & 1 \\ - \lambda & 4 \\ - \lambda & 4 \\ \end{bmatrix} = 0$

$$(4-\lambda)(4-\lambda)+\gamma = 0$$

$$4-\lambda-4\lambda+\lambda^{2}+\gamma = 0$$

$$\lambda^{2}-5\lambda+6=0$$

$$\lambda^{2}-3\lambda-2\lambda+6=0$$

$$\lambda(\lambda-3)-\gamma(\lambda-3)=0$$

$$(\lambda-3)(\lambda-\gamma)=0$$

$$\lambda-3=0, \lambda-\gamma=0$$

$$\lambda=3, \lambda=\gamma \quad ase \quad (iffen \ Values)$$

$$\lambda con \quad Find \quad Eiffen \quad Vectors \quad of \quad A=3 \quad patim$$

$$E_{V} \bigcirc f \textcircled{O}$$

$$T_{con} \quad \chi_{1}+\chi_{2}=3\chi_{1} \longrightarrow \bigcirc$$

$$z - \Im\chi_{1}+\chi_{2}=0$$

$$\Rightarrow \Im\chi_{1}+\chi_{2}=0$$

$$\Rightarrow \Im\chi_{1}+\chi_{2}=0$$

$$\Rightarrow \Im\chi_{1}+\chi_{2}=0$$

$$\Rightarrow \Im\chi_{1}+\chi_{2}=0$$

h

$$\chi_{1} = \frac{1}{2}\chi_{2} \qquad \chi_{2}$$

$$let \ \chi_{2} = 4 \qquad \text{Where } \forall \neq 0$$
So $\chi = \left(\begin{array}{c} \chi_{1} \\ \chi_{2} \end{array} \right) = \left(\begin{array}{c} \frac{1}{2}\chi \\ 8 \end{array} \right)$
Eigen Vector for $\eta_{2} = 2 \ \rho_{1}T \quad \text{in } (0) \quad \leq \eta \leq 0$

$$\chi_{1} + \chi_{2} = 2\chi_{2} \rightarrow (0)$$

$$= -\chi_{1} + \chi_{2} = 0 \rightarrow (0)$$

$$= -\chi_{1} + \chi_{2} = 0 \rightarrow (0)$$

$$= -\chi_{1} + \chi_{2} = 2\chi_{2} \rightarrow (0)$$

$$= -2\chi_{1} + 2\chi_{2} = 0$$

$$\Rightarrow \chi_{1} = \chi_{2}$$

$$\chi_{1} = \chi \quad \text{Then } \chi_{2} = \chi$$

$$So \quad \chi_{1} = \left(\begin{array}{c} \chi_{1} \\ \chi_{1} \end{array} \right) = \left(\begin{array}{c} \chi \\ \chi \end{array} \right)$$