Iqra National University, Peshawar Department of Electrical Engineering

Final - Term Examination summer2020
Date:24/9/2020

Note: Attempt all questions.PLO: program learning outcome
C:Cognitive

| Q1. | (a) | Express the equation of plane passing through the points $\mathrm{A}(2,-2,1), \mathrm{B}(-1,0,3), \mathrm{C}(5,-3,4)$ | Marks 5 |
| :--- | :--- | :--- | :--- | :--- |

FAWAD AHMAD (13204)
Ques \# 01 (A)
Sol:-
The Non Parallel Vectors

$$
\begin{aligned}
& \overrightarrow{A B}=(-3,2,2) \\
& \overrightarrow{A C}=(3,-1,3)
\end{aligned}
$$

the Perpendicular vector is

$$
\begin{aligned}
& n=\overrightarrow{A B} \times \overrightarrow{A C} \\
& n=\left|\begin{array}{ccc}
i & j & k \\
-3 & 2 & 2 \\
3 & -1 & 3
\end{array}\right| \\
& n=i(6+2)-j(-9-6)+k(3-6) \\
& n=8 i+15 j-3 k \\
& n=(8,15,-3)
\end{aligned}
$$

How

$$
\begin{aligned}
& A(x, y, z)=(2,-2,1) \\
& n(a, b, c)=(8,15,-3)
\end{aligned}
$$

So Solution Plame

$$
\begin{gathered}
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) \\
8(x-2)+15(y+2)-3(z-1)=0 \\
8 x+15 y-3 z-16+30+3=0 \\
8 x+15 y-3 z+17=0
\end{gathered}
$$

Solution:-

$$
\begin{aligned}
& x=2-3 t \\
& y=3+t \\
& z=2-4 t \\
& \Rightarrow \quad x-2=-3 t \\
& t=\frac{x-2}{-3} \\
& y-3=t \\
& t=\frac{y-3}{1} \\
& z-2=-4 t \\
& t=\frac{z-2}{-4}
\end{aligned}
$$

So $\frac{x-2}{-3}=\frac{y-3}{1}=\frac{z-2}{-4}$
for 1 st Plane Take $1^{\text {st }} \xi 2^{\text {nd }}$

$$
\frac{x-2}{-3}=\frac{y-3}{1}
$$

$$
\begin{aligned}
& \rightarrow \quad x-2=-y+9 \\
& \rightarrow \quad x+3 y-11=0
\end{aligned}
$$

For $2^{\text {nd }}$ Plane Take $1^{\text {t }} \& 3^{\text {rd }}$ Er..

$$
\begin{gathered}
\frac{x-2}{-3}=\frac{z-2}{-4} \\
-4 x+8=-3 z+6 \\
\text { or } \\
4 x-3 z-2=0
\end{gathered}
$$

Ques \# 2
Sol:-

$$
L(x, y)=(x+1, y, x+y)
$$

Let $U=\left(x_{1}, y_{1}\right) \quad V=\left(x_{2}, y_{2}\right)$

$$
\begin{gathered}
u+v=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) \\
u+v=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
L(u+v)=L\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
L(u+v)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}, x_{1}+x_{2}+y_{1}+y_{2}\right)
\end{gathered}
$$

given that $u=\left(x+2 y_{1}\right)$

$$
\begin{aligned}
& L(u)=L\left(x_{1}, y_{1}\right)=\left(x_{1}+1, y_{1}, x_{1}+y_{1}\right) \\
& L(v)=L\left(x_{2}, y_{2}\right)=\left(x_{2}+1, y_{2}, x_{2}+y_{2}\right) \\
& L(u)+L(v)=\left(x_{1}+x_{2}+2, y_{1}+y_{2}, x_{1}+x_{2}+y_{1}+y_{2}\right) \\
& L \text { iii }
\end{aligned}
$$

Since $1 \neq 2$
So this is Not L.T

Ques \# 03

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \begin{gathered}
77,54,38,71,49,29 \\
68,51,33,76,48,40 \\
86,53,52
\end{gathered}
$$

Sal:-

$$
A^{-1}=\frac{1}{|A|} \operatorname{Adj} A
$$

So

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right] \\
& x_{1}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
77 \\
54 \\
38
\end{array}\right]=\left[\begin{array}{c}
16 \\
8 \\
15
\end{array}\right] \\
& x_{2}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
71 \\
49 \\
29
\end{array}\right]=\left[\begin{array}{c}
20 \\
15 \\
7
\end{array}\right] \\
& x_{3}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
68 \\
51 \\
33
\end{array}\right]=\left[\begin{array}{l}
18 \\
1 \\
16
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& x_{48}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
76 \\
48 \\
40
\end{array}\right]=\left[\begin{array}{c}
8 \\
16 \\
12
\end{array}\right] \\
& x_{5}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & -2 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
86 \\
53 \\
52
\end{array}\right]=\left[\begin{array}{c}
1 \\
14 \\
19
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{array}{llllllllllll}
16 & 8 & 15 & 20 & 15 & 7 & 18 & 1 & 16 & 8 & 16 & 12 \\
P & H & O & T & O & G & R & A & P & H & P & L \\
& & & & & & & & & 1 & 14 & 19 \\
& & & & & & & & A & N & S
\end{array}
$$

PHOTOGRAPH PLANS

Que \# 04
Sol:-

$$
(-1,3,2) \quad n=(0,1,-3)
$$

Equation of the Plane

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Given That $p\left(x_{0}, y_{0}, z_{0}\right)=(-1,3,2)$

$$
n(a, b, c)=(0,1,-3)
$$

Putting values in for (1)

$$
\begin{aligned}
& 0(x-(-1))+1(y-3)+(-3)(z-2) \\
& =0+1(y-3)-3 z+6 \\
& =0+y-3-3 z+6 \\
& =0 x+y-3 z+3
\end{aligned}
$$

Que \# 05
Sal:-
We know That $A_{x}=\lambda_{x}$

$$
\begin{gather*}
{\left[\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
{\left[\begin{array}{c}
x_{1}+x_{2} \\
2 x_{1}+4 x_{2}
\end{array}\right]=\left[\begin{array}{l}
\lambda x_{1} \\
1 x_{2}
\end{array}\right]} \\
\text { Then } \\
x_{1}+x_{2}=\lambda x_{1} \rightarrow \text { (i) } \tag{1}\\
-2 x_{1}+4 x_{2}=\lambda x_{2} \rightarrow \text { (i) } \tag{i}\\
\text { So } x_{1}-\lambda x_{1}+x_{2}=0 \\
=(1-\lambda) x_{1}+x_{2}=0 \\
\xi-2 x_{1}+\frac{1}{2} x_{2}=0 \\
=-2 x_{1}+(4-\lambda) x_{2}=0 \\
{\left[\begin{array}{cc}
1-1 & 1 \\
-2 & 4-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0}
\end{gather*}
$$

charactiristic Erem.

$$
\left[\begin{array}{cc}
1-\lambda & 1 \\
-2 & 41
\end{array}\right]=0
$$

$$
\begin{gathered}
(1-\lambda)(4-\lambda)+2=0 \\
4-\lambda-4 \lambda+\lambda^{2}+2=0 \\
\lambda^{2}-5 \lambda+6=0 \\
\lambda^{2}-3 \lambda-2 \lambda+6=0 \\
\lambda(\lambda-3)-2(\lambda-3)=0 \\
(\lambda-3)(\lambda-2)=0 \\
\lambda-3=0, \lambda-2=0
\end{gathered}
$$

$\lambda=3, \lambda=2$ are Eigen values Mow Find Eiger Vectors of $\lambda_{1}=3$ put in Kv (1) ξ (2)

Then $x_{1}+x_{2}=3 x_{1}$

$$
\begin{align*}
& 2-2 x_{1}+x_{2}=0 \tag{1}\\
& \Rightarrow 2 x_{1}+x_{2}=0 \\
& \Rightarrow-2 x_{1}+4 x_{2}=3 x_{2} \tag{ii}\\
& \Rightarrow-2 x_{1}+x_{2}=0 \\
& \Rightarrow 2 x_{1}-x_{2}=0
\end{align*}
$$

$$
x_{1}=1 / 2 x_{2}
$$

let $x_{2}=\gamma \quad$ Where $\gamma \neq 0$
So $\quad x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 / 2 v \\ \gamma\end{array}\right]$
Eigen Vector for $1_{2}=2$ Put in (i) \& (2)

$$
\begin{aligned}
& x_{1}+x_{2}=\partial x_{1} \rightarrow(1) \\
&-\partial x_{1}+4 x_{2}=\partial x_{2} \rightarrow \text { iii } \\
&=-x_{1}+x_{2}=0 \rightarrow 1 \\
& \Rightarrow x_{1}-x_{2}=0 \\
& \Rightarrow x_{1}=x_{2} \\
&=-2 x_{1}+4 x_{2}=\partial x_{2} \rightarrow \text { (ii) } \\
&=-2 x_{1}+2 x_{2}=0 \\
& \Rightarrow x_{1}-x_{2}=0 \\
& \Rightarrow x_{1}=x_{2} \\
& x_{1}=\gamma \text { Then } x_{2}=\gamma \\
& \delta_{0}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
v \\
V
\end{array}\right]
\end{aligned}
$$

