

Final-Term – Semester Assignment

 Subject : Software Design and Architecture

 Submitted To : Ma’am Aasma khan

 Submitted by : Muhammad Sohail

 Degree : BS(SE)

 ID # 14071

 Semester : 6th

 Date : 23/06/2020

Question No: 01

a) What is Software Architecture? Why is software architecture design
so important?

 b) Explain any four tasks of architect.

Answer a):

Software Architecture:

Software architecture refers to the fundamental structures of a software

system and the discipline of creating such structures and systems. Each

structure comprises software elements, relations among them, and

properties of both elements and relations. The architecture of a software

system is a metaphor, analogous to the architecture of a building. It

functions as a blueprint for the system and the developing project, laying

out the tasks necessary to be executed by the design teams.

Importance:

We focus on why architecture matters from a technical perspective. In
this context, there are fundamentally three reasons for software
architecture's importantance.

1. Communication among stakeholders. Software architecture
represents a common abstraction of a system that most if not all of
the system's stakeholders can use as a basis for mutual
understanding, negotiation, consensus, and communication.

2. Early design decisions. Software architecture manifests the earliest
design decisions about a system, and these early bindings carry
weight far out of proportion to their individual gravity with respect
to the system's remaining development, its deployment, and its

https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Architecture

maintenance life. It is also the earliest point at which design
decisions governing the system to be built can be analyzed.

3. Transferable abstraction of a system. Software architecture
constitutes a relatively small, intellectually graspable model for
how a system is structured and how its elements work together,
and this model is transferable across systems. In particular, it can
be applied to other systems exhibiting similar quality attribute and
functional requirements and can promote large-scale re-use.

b) Explain any four tasks of architect.

Answer:

• Perform static partition and decomposition of a system into

subsystems and communications among subsystems.

 A software element can be configured, delivered, developed,

and deployed, and is replaceable in the future.

 Each element's interface encapsulates details and provides

loose coupling with other elements or subsystems.

 Establish dynamic control relationships among different

subsystems in terms of data flow, control flow orchestration,

or message dispatching.

 Consider and evaluate alternative architecture styles that suit

the problem domain at hand.

– For example, in order to increase a distributed system's

extensibility, portability, or maintainability, software

components and Web services may be the best choice of

element types, and a loose connection among these elements

may be most appropriate.

Question No: 02

Explain Architecture Business Cycle (ABC) in detail with figure.

Answer:

Architecture Business Cycle (ABC):

Software architecture is a result of technical, business, and social

influences. Its existence in turn affects the technical, business, and social

environments that subsequently influence future architectures. We call

this cycle of influences, from the environment to the architecture and

back to the environment, the Architecture Business Cycle (ABC).

The organization goals of Architecture Business Cycle are beget
requirements, which beget an architecture, which begets a system. The
architecture flows from the architect's experience and the technical
environment of the day.

2. Three things required for ABC are as follows:

i. Case studies of successful architectures crafted to satisfy demanding
requirements, so as to help set the technical playing field of the day.

ii. Methods to assess an architecture before any system is built from it,
so as to mitigate the risks associated with launching unprecedented
designs.

iii. Techniques for incremental architecture-based development, so as to
uncover design flaws before it is too late to correct them.

The architecture affects the –

 Structure of the developing organization.

 Goals of the developing of the organization.

 Customer requirements with reusability.

 The process of the system building will affect the architect’s
experience with subsequent systems.

Architecture business cycle changes- ◦

 Org. goals to req.

 Req. to arch.

 Arch. to systems.

 Systems to org

Influences

 Technical, business, social.

 Stakeholders, other source.

ABC activities include

 Create the business case.

 Understand the requirement.

 Create the architecture.

 Document & communicate the architecture.

 Analyse the architecture.

 Implement the system based on architecture

 Confirms the implementation.

Question No: 03

Explain ABC Activities?

Answer:

ABC includes the following activities

a. Create the business case.
b. Understand the requirement.
c. Create the architecture.
d. Document & communicate the architecture.
e. Analyse the architecture.
f. Implement the system based on architecture
g. Confirms the implementation.

Creating the business case for the system

It is simple to create a business case than understanding the needs of
market How much should be the product cost? What is the Targeted
market? What is the targeted time to market? Will it need to interface
other system? Are there system limitations

Understanding the requirements

There are variety of techniques to understand requirements from
stakeholders. Object oriented analysis: use cases & scenarios Safety
Critical Systems: Finite state machine models Formal specification
languages Quality attributes Prototypes Regardless of technique used, -

- the desired qualities of the system to be constructed determine the
shape of architecture. | Website for Students

Creating the architecture

Conceptual integrity A small no. of minds coming together to design the
system’s architecture.

Communicating the architecture

For effective architecture It must be communicated clearly and
unambiguously to all stakeholders. Developers must understand work
assignments. Testers must understand the task structures Management
must understand the scheduling implications

Analyzing the architecture

Out of multiple designs, after analyzing, some design will be accepted
or some are rejected. Evaluating an architecture for the qualities it
supports is essential to ensure the stakeholders satisfaction (needs).
Scenario- based techniques are for evaluation of architecture. |
Website for Students

Implementing based on the architecture

Concerned with keeping the developers faithful to the structures.
Should have an environment that assists developers in creating the
architecture. Ensuring conformance to an architecture Finally, when an
architecture is created and used, it goes into maintenance phase.
Constant vigilance is required to ensure that actual architecture and its
implementations remain faithful to each other.

Confirming the implementations

The final step in the cycle is to confirm the implementations and
reviewed by a single architect or small group of architects. gather both

the functional requirements and a well specified, prioritized list of
quality attributes. be well documented, with at least one static view
and one dynamic view. be reviewed by the system’s stakeholders. be
analyzed for applicable quantitative measures and formally evaluated
for quality measures.

Question No 04: (20)

Pair programming is an agile software development technique in which two

programmers work together at one work station. One types in code while the other

reviews each line of code as it is typed in. The person typing is called the driver. The

person reviewing the code is called the observer. The two programmers switch

roles frequently (possibly every 30 minutes or less).

Suppose that you are asked to build a system that allows Remote Pair

Programming. That is, the system should allow the driver and the observer to be in

remote locations, but both can view a single desktop in real-time. The driver should

be able to edit code and the observer should be able to “point” to objects on the

driver’s desktop. In addition, there should be a video chat facility to allow the

programmers to communicate. The system should allow the programmers to easily

swap roles and record rationale in the form of video chats. In addition, the driver

should be able to issue the system to backup old work.

 Draw a use case diagram to show all the functionality of the system.

 Describe in detail four non-functional requirements for the system.

 Give a prioritized list of design constraints for the system and justify your list

and the ordering.

 Propose a set of classes that could be used in your system and present them

in a class diagram

Answer:

Use-Case Diagram

PointToObjects

ChatOnVideo

View Desktop

SwapRole

Edit Code

RecordRationale

IssueBackup

Driver

Observer

Assumptions: when the Driver edits code, we assume that the Observer

can see the changes in realtime through the ViewDesktop use case, thus

there is no arrow pointing back to the Observer for the EditCode use

case. A similar assumption is made for the PointToObjects use case, so

no arrow points back to the Driver.

we assume that both the Driver and Observer can initiate the

ViewDesktop, ChatVideo, SwapRole, and RecordRationale use cases.

Nonfunctional:

 Ease of use - the front-end interface must be simple and easy to

use.

 Real-time performance - the Observer should be able to see the

changes made by the Driver immediately without delay; the video

chat should be smooth without delay also.

 Availability - the system should be available to both programmers

all the time.

 Portability - the programmers should be able to use the system

regardless of what computer and operating system used by the

programmers.

Give a prioritized list of design constraints for the system and justify

your list and the ordering.

Answer:

Example 1: "Portability- the system should be portable" is a NFR. This

NFR may lead to a constraint on the programming language used for the

implementation of the system (e.g., the programming language Java

(rather than C and C++) might be preferred in order to meet this NFR).

Example 2: "security - the system must be secured" is a NFR. The design

constraints could be a user authentication must be in place, the

communication protocol must be encrypted, and/or the data must be

stored on a server behind firewall.

Propose a set of classes that could be used in your system and present

them in a class diagram

Answer is on next page….

Class Diagram

The sample class diagram above captures most of the classes and

relationships. I have inserted an UnknownDesktop class for future

extension of RPP. Obviously when I designed this class diagram I already

have the AbstractaFactory design pattern in my mind.

In your class diagram you don't need to mention attributes and

operations except for those really important ones. Some of the

Programmer

SwapRole()

Driver

Editcode()

Observer

Pointatobject()

Desktop

Applecomputer PC

Deskt

op

unknown

GUImanager

DataManager

Code

Version:nostring

Video

Date:string

Rationale

Refvideo:video

A
cc

es
s

an
d

u
p

d
at

e

operations can be extracted from the use case diagram (Q11a)). For

instance, you can probably spot very quickly that, under the Driver class,

I should have the issueBackup() operation. Also, under the Programmer

class, I should have the viewDesktop(), chatOnVideo(), and

recordRationale() operations. Maybe we should have Session as a class

as well and associated with DataManager? I left it out because it is not

explicitly mentioned in the description. Note that since AppleComputer

and PC are not explicitly mentioned in the description, if you don't have

any subclasses under Desktop it is fine as well.

A second version is to have the Programmer class associated with the

Desktop class instead. However, in this second version we cannot label

the association whether it is 'edit' or 'point at objects'.

The GUIManager class and the DataManager class (both can be

interfaces) are inserted to help manage the display and the access of

data. The model-view-controller (MVC) software architecture pattern is

adopted here: DataManager takes care of the 'model', the GUIManager,

which interacts with DataManager and Desktop, takes care of the 'view',

and the operations carried out by the two programmer compose the

'controller' part.

 THE END

