

Each question carry equal marks.
Please answer briefly.

NAME: M OMAR MASOOD
ID: 14305
SUBJECT: Object Oriented Programming
SUMMITTED TO: Sir Ayub

Q1. How many variables are being supported by java justify your answer with
 the help java coded example for each variable?

ANSWER: There are three kinds of variables in Java.

 Local variables

 Instance variables

 Class/Static variables

Local Variables

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered and the

variable will be destroyed once it exits the method, constructor, or block.

 Access modifiers cannot be used for local variables.

 Local variables are visible only within the declared method, constructor, or block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables, so local variables should be declared and an

initial value should be assigned before the first use.

EXAMPLE:

 Here, age is a local variable. This is defined inside pupAge() method and its scope is

limited to only this method.

CODE:

public class Test {

 public void pupAge() {

 int age = 0;

 age = age + 7;

 System.out.println("Puppy age is : " + age);

 }

 public static void main(String args[]) {

 Test test = new Test();

 test.pupAge();

 }

}

This will produce the following result −

Output

Puppy age is: 7

CODE WITH OUTPUT:

Instance Variables

 Instance variables are declared in a class, but outside a method, constructor or any block.

 When a space is allocated for an object in the heap, a slot for each instance variable value

is created.

 Instance variables are created when an object is created with the use of the keyword 'new'

and destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one method,

constructor or block, or essential parts of an object's state that must be present throughout

the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in the class.

Normally, it is recommended to make these variables private (access level). However,

visibility for subclasses can be given for these variables with the use of access modifiers.

 Instance variables have default values. For numbers, the default value is 0, for Booleans

it is false, and for object references it is null. Values can be assigned during the

declaration or within the constructor.

 Instance variables can be accessed directly by calling the variable name inside the class.

However, within static methods (when instance variables are given accessibility), they

should be called using the fully qualified name. ObjectReference.VariableName.

Example

CODE:

import java.io.*;

public class Employee {

 // this instance variable is visible for any child class.

 public String name;

 // salary variable is visible in Employee class only.

 private double salary;

 // The name variable is assigned in the constructor.

 public Employee (String empName) {

 name = empName;

 }

 // The salary variable is assigned a value.

 public void setSalary(double empSal) {

 salary = empSal;

 }

 // This method prints the employee details.

 public void printEmp() {

 System.out.println("name : " + name);

 System.out.println("salary :" + salary);

 }

 public static void main(String args[]) {

 Employee empOne = new Employee("Ransika");

 empOne.setSalary(1000);

 empOne.printEmp();

 }

}

This will produce the following result −

Output

name : Ransika

salary :1000.0

CODE WITH OUTPUT:

Class/Static Variables

 Class variables also known as static variables are declared with the static keyword in a

class, but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of how many

objects are created from it.

 Static variables are rarely used other than being declared as constants. Constants are

variables that are declared as public/private, final, and static. Constant variables never

change from their initial value.

 Static variables are stored in the static memory. It is rare to use static variables other than

declared final and used as either public or private constants.

 Static variables are created when the program starts and destroyed when the program

stops.

 Visibility is similar to instance variables. However, most static variables are declared

public since they must be available for users of the class.

 Default values are same as instance variables. For numbers, the default value is 0; for

Booleans, it is false; and for object references, it is null. Values can be assigned during

the declaration or within the constructor. Additionally, values can be assigned in special

static initializer blocks.

 Static variables can be accessed by calling with the class name

ClassName.VariableName.

 When declaring class variables as public static final, then variable names (constants) are

all in upper case. If the static variables are not public and final, the naming syntax is the

same as instance and local variables.

Example

CODE:

import java.io.*;

public class Employee {

 // salary variable is a private static variable

 private static double salary;

 // DEPARTMENT is a constant

 public static final String DEPARTMENT = "Development ";

 public static void main(String args[]) {

 salary = 1000;

 System.out.println(DEPARTMENT + "average salary:" + salary);

 }

}

This will produce the following result −

Output

Development average salary:1000

CODE WITH OUTPUT:

Q2. Why “If” is used in java justify your answer with the help java coded
 example and explain in detail?
ANSWER:
 The Java if statement is the most simple decision-making statement. It is used to
decide whether a certain statement or block of statements will be executed or not i.e if a certain
condition is true then a block of statement is executed otherwise not.

Syntax:

If condition
{
 // statement ton execute if
 // condition is true
}

Working of if statement

1. Control falls into the if block.
2. The flow jumps to Condition.
3. Condition is tested.

a. If Condition yields true, goto Step 4.
b. If Condition yields false, goto Step 5.

4. The if-block or the body inside the if is executed.
5. Flow steps out of the if block.

Operation:

The condition after evaluation of if-statement will be either true or false. The if
statement in Java accepts boolean values and if the value is true then it will execute
the block of statements under it.

Note: If we do not provide the curly braces ‘{‘ and ‘}’ after if(condition) then by default if
statement will consider the immediate one statement to be inside its block. For example,

if(condition)

 statement1;

 statement2;

// Here if the condition is true, if block

// will consider only statement1 to be inside

// its block.

CODE:

// Java program to illustrate If statement

class IfDemo {
 public static void main(String args[])
 {
 int i = 10;

 if (i < 15)
 System.out.println("10 is less than 15");

 // This statement will be executed
 // as if considers one statement by default
 System.out.println("Outside if-block");
 }
}

Output:

10 is less than 15
Outside if - block

Explanation:

1. Program starts.
2. i is initialized to 10.

3. if-condition is checked. 10<15, yields true.
 3.a) "10 is less than 15" gets printed.
4. "Outside if-block" is printed

Q3. Why “if else if” is used in java justify your answer with the help java coded
 example and explain in detail?
ANSWER:

Java if-else-if ladder is used to decide among multiple options. The if statements are executed
from the top down. As soon as one of the conditions controlling the if is true, the statement
associated with that if is executed, and the rest of the ladder is bypassed. If none of the
conditions is true, then the final else statement will be executed.

Syntax:

if (condition)
 statement 1;
else if (condition)
 statement 2;
.
.
else
 statement;

Working of the if-else-if ladder:

1. Control falls into the if block.
2. The flow jumps to Condition 1.
3. Condition is tested.

a. If Condition yields true, goto Step 4.
b. If Condition yields false, goto Step 5.

4. The present block is executed. Goto Step 7.
5. The flow jumps to Condition 2.

a. If Condition yields true, goto step 4.
b. If Condition yields false, goto Step 6.

6. The flow jumps to Condition 3.
a. If Condition yields true, goto step 4.
b. If Condition yields false, execute else block.

Goto Step 7.
7. Exit the if-else-if ladder.

Flowchart if-else-if ladder:

CODE:
// Java program to illustrate if-else-if ladder

import java.io.*;

class GFG {
 public static void main(String[] args)
 {
 // initializing expression
 int i = 20;

 // condition 1
 if (i == 10)
 System.out.println("i is 10\n");

 // condition 2
 else if (i == 15)
 System.out.println("i is 15\n");

 // condition 3
 else if (i == 20)
 System.out.println("i is 20\n");

 else
 System.out.println("i is not present\n");

 System.out.println("Outside if-else-if");
 }
}

Output:
i is 20

Outside if-else-if
EXPLANATION:

1. Program starts.
2. i is initialized to 20.
3. condition 1 is checked. 20 == 10, yields false.
4. condition 2 is checked. 20 == 15, yields false.
5. condition 3 is checked. 20 == 20, yields true.
 5.a) "i is 20" gets printed.
6. "Outside if-else-if" gets printed.
7. Program ends.

 Q4. What are loops, why they are used in java and how many types of loops are
 being supported by java explain in detail?
ANSWER:

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages Java
programming language provides the following types of loop to handle looping requirements.
Click the following links to check their detail.
There are three types of loop;
WHILE LOOP:
Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.
FOR LOOP:
Execute a sequence of statements multiple times and abbreviates the code that manages the
loop variable.
DO WHILE LOOP:
Like a while statement, except that it tests the condition at the end of the loop body.

While loop:
1. while(condition){

 2. //code to be executed
 3. }

For Loop:

1. for(initialization;condition;incr/decr){
2. //statement or code to be executed
3. }

Q5. Write 3’s table in decremented form in java which takes input from user write
 java coded program and explain in detail?
ANSWER:

EXPLANATION:

In this program we take input from user.
The number n will be that user input number.The I will be counter.The i will start from 10.and
ends at 1.
Here the counter will go in reverse order.fisrt the number n will be multiplu from I values.(N*I).
After that the number n will be same and the(i-1.10-1=9) .and the loop run until the value of i
comes to 1.

