

Student: Hayat ahmad khan

Assignment:01

ID#<u>14486</u>

Dept: <u>BS (CS)</u>

Subject: Basic Electronic

Q1: -

- a. Explain how JFET works, including the pinchoff and gate-source cutoff voltage?
- b. Draw the drain curves and the transconductance curve for a JFET?
- c. Compare the JFET and the bipolar junction transistor. Also explain the advantages and disadvantages of each?

Answer:-

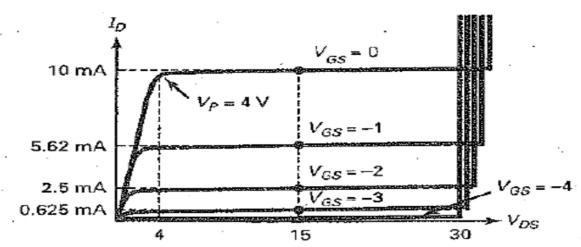
(a):

Working of JFET:-

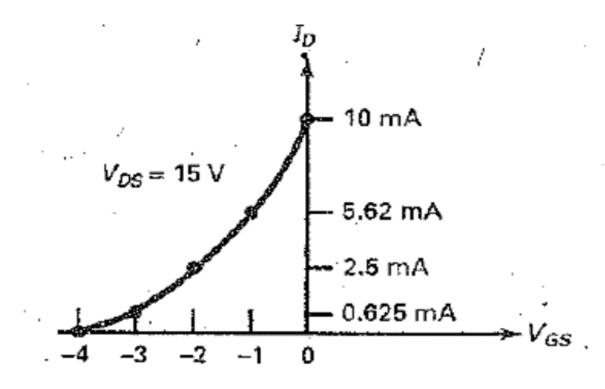
A typical JFET has an input resistance in the hundreds of megohms. This is the big advantage that a JFET has over a bipolar transistor. It is the reason that JFETs excel in applications in which a high. input impedance is required. One of the most Important applications of the JFET is the *source follower*, a circuit like the emitter follower, except that the input impedance is in the hundreds of megohms for lower frequencies.

Pinchoff Voltage:-

The pinchoff voltage *Vp* is the point at which further increases in *VDS* are offset by a proportional increase in the channel's resistariee. This means that if the channel resistance is increasing in direct proportion to *VDS* above *Vp*, *ID* must remain- the same above *Vp*.


Gate Source Voltage:-

In a JFET, the gate-to-source voltage *VGS* determines how much current flows between the source and the drain. When *VGS* is zero, maximum drain current flows through the JFET. This is why a JFET is referred to as a normally on device. On- the other hand, if *VGS* .is negative enough, the depletion layers touch and the drain current is cut off.



Drain curve of JFET:-

Transconductance Curve of JFET:-

	Phase II,Hayatabad pesl	nawer
Student: <u>Hayat ahmad khan</u>		ID# <u>14486</u>
Dept: <u>BS (CS)</u>	Assignment:01	Subject: Basic Electronic
(c):		
Comparison:-		
PARAMETER	ВЈТ	JFET
Carrier	Bipolar (majority and minority)	Unipolar (majority)
Symbol	B o C	Good
Device type	Current controlled device.	Voltage controlled device.
Input impedance	Low	High
Gain	High gain	Low - medium gain
Power consumption	It consumes more power.	It consumes less power.
Noise level	High	Low
Thermal stability	Low	High
Size	Large	Small

Student: <u>Hayat ahmad khan</u>		ID# <u>14486</u>
Dept: <u>BS (CS)</u>	Assignment:01	Subject: <u>Basic Electronic</u>
PARAMETER	ВЈТ	JFET
Application preference	It is preferred in low current application.	It is preferred in low voltage application.

Advantages and Disadvantages of JFET:-

Advantages of JFET:-

- 1. It is a unipolar device. The current conduction through the device is only through majority carriers either holes in P channel or electrons in N channel.
- 2. It is simpler to fabricate and occupies less space in integrated form.
- 3. It is an excellent signal chopper as it exhibits no offset voltage at zero drain current.
- 4. It is relatively more immune to radiation.

Disadvantages of JFET:-

- 1. The main disadvantage of the junction field effect transistor (JFET) is the relatively low gain bandwidth product.
- 2. The performance of JFET go downs as frequency increases due to feedback by internal capacitance.

Advantages and Disadvantages of Bipolar Junction Transistor:-

Advantages of BJT:-

- 1. The bipolar junction transistor (BJT) has a large gain bandwidth.
- 2. The BJT shows better performance at high frequency.
- 3. The BJT has a better voltage gain.
- 4. The BJT can be operated in low or high power applications.
- 5. The BJT has high current density.
- 6. There is low forward voltage drop.

Student: <u>Hayat ahmad khan</u>

ID#<u>14486</u>

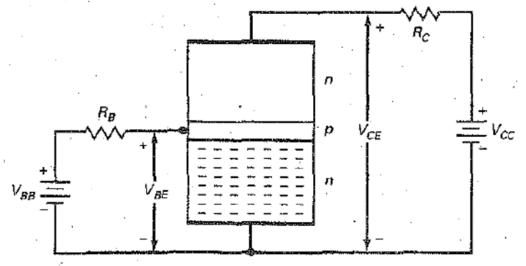
Dept: <u>BS (CS)</u>

Assignment:01

Subject: Basic Electronic

Disadvantages of BJT:-

- 1. The bipolar junction transistor (BJT) more noise produced.
- 2. The BJT are more effect by radiation.
- 3. BJT has a low thermal stability.
- 4. The switching frequency of BJT is low.
- 5. It has a very complex base control. So it may lead to confusion and requires a skilful handling.


Q2:-

- a. Draw an npn transistor showing the n and p regions. And then bias the transistor properly and explain how it works?
- b. Draw a set of collector curves. Then, using these curves show how the four operating regions of a transistor?

Answer:-

(a):

NPN Transistor:-

Student: Hayat ahmad khan

Dept: <u>BS (CS)</u>

Assignment:01

ID#<u>14486</u>

Subject: Basic Electronic

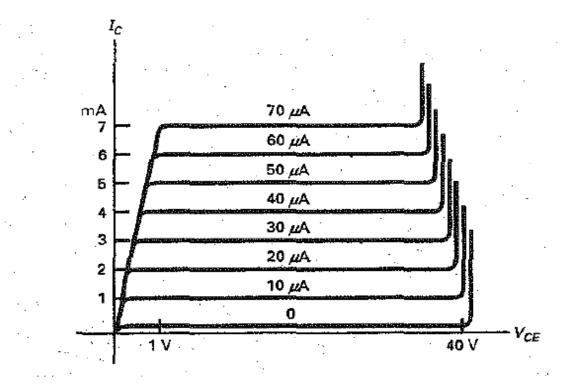

Bias the Transistor and Working:-

Figure above shows a biased transistor. The minus signs represent free electrons. The heavily doped emitter has the following job: to ernit or inject its free electrons into the base. The lightly doped base also has a .well-defined purpose: to pass emitter-injected electrons on to the collector. The collector is so named because it collects or gathers most of the electrons from the base.

Figure is the usual Way to bias a transistor. The left source *V*_{BB} of Figure forward-biases the emitter diode, and the right source *V*_{CC} reverse-biases the collector diode. Although other biasing methods are possible, forward-biasing the emitter diode and reverse-biasing the collector diode produce the most useful results.

(b):

Set of Collector Curves:-

Student: Hayat ahmad khan

ID#<u>14486</u>

Dept: <u>BS (CS)</u>

Assignment:01

Subject: Basic Electronic

Operating Region of Transistor:-

1. Active Region:-

Transistors operate in the active region when V_{CE} is between 1 and 40 V.

2. Breakdown Region:-

The transistor should never operate in this region because it will be destroyed.

3. Saturation Region:-

Transistors operate in the this region when V_{CE} is between 0 V and a few tenths of a volt.

4. Cutoff Region:-

Transistors operate in the this region when base current is zero that we cannot see it. This small current is called collector cutoff current.