

Final Exam Summer

Course Name: Linear Algebra

Submitted By:
Muhammad Safeer (13033)
BS (SE-8) Section: A

Submitted To:
Mam Mansoor Qadir

Dated: $\mathbf{2 5}^{\text {h }}$ September 2020

Department of Computer Science, IQRA National University, Peshawar Pakistan

Q1

Answer:
Q1) $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8\end{array}\right]$

Solution:

$$
|A-A 1|=0
$$

$\left|\begin{array}{ccc}(-1) & 1 & 0 \\ 0 & (-1) & 1 \\ 4 & -17 & (8-1)\end{array}\right|=0$
$\therefore(-\lambda)((-\lambda) \times(8-\lambda)-1 \times(-17))-1(0 \times(8-\lambda)-1 \times 4)+$ $0(0 \times(-17)-(-1) \times 4)=0$
$\therefore(-\lambda)\left(\left(-8 \lambda+\lambda^{2}\right)-(-17)\right)-1(0-4)+0(0-(-4 \lambda)=$
$(-\lambda)\left(17-8 \lambda+\lambda^{2}\right)-1(-4)+0(4 \lambda)=0$
$\therefore\left(-17 \lambda+8 \lambda^{2}-\lambda^{3}\right)-(-4)+0=0$
$\therefore \quad\left(-\lambda^{3}+8 \lambda^{2}-17 \lambda+4\right)=0$
$-(\lambda-4)(\lambda-0.26794919)\left(\lambda-3.7320^{5081}\right)=$
$(\lambda-4)=0$ or $(\lambda-0.26794919)=0$ or $(\lambda-3.732050 .81)=0$

The eigenvalues of the matrix A ace given
by $\lambda=$ 0.2679491

Q2
Answer:

Q3

Answer:

Q4

Part (A)

Answer:

A vector is a set V on which two operation + and - are defined, called vector addition and scalar multiplication.

The operation + (vector addition) must satisfy the following conditions:
Closure: if u and v are any vectors in V , then the sum $\mathrm{u}+\mathrm{v}$ belongs to V .
1.

Commutative law: For all
vectors u and v in $V, u+v=v+u$.
2.

Associative law: For all vectors
u, v, w in $V, u+(v+w)=(u+v)+w$.
3.

Additive identity: The set V
contains an additive identity element, denote by 0 , such that for any vector v in $\mathrm{V}, 0+\mathrm{v}=\mathrm{v}$ and v $+0=\mathrm{v}$.
4.

Additive inverses: for each vector v in V , the equations $\mathrm{v}+\mathrm{x}=0$ and $\mathrm{x}+\mathrm{v}=0$ have a solution x in V , called an additive inverse of v, and denoted by $-v$.

The set $\operatorname{Pn}(\mathrm{x})$ of all the polynomials over R in variable x of degree $<=\mathrm{n}$ forms a vector space over R.

If $\operatorname{Fn}(x)=a 0+a 1 x+\ldots . .+$ anxn
And $\mathrm{gn}(\mathrm{x})=\mathrm{b} 0+\mathrm{b} 1 \mathrm{x}+\ldots \ldots .+\mathrm{bn} \mathrm{xn}$, ai, bi E R
Then $\operatorname{Fn}(\mathrm{x})+\mathrm{gn}(\mathrm{x})=(\mathrm{a} 0+\mathrm{b} 0)+(\mathrm{a} 1+\mathrm{b} 1) \mathrm{x}+\ldots \ldots(\mathrm{an}+\mathrm{bn}) \mathrm{xn}$

The associative additive property is included from the additive associative property of R .
The zero polynomial $f(x)=0$ of degree 0 acts as the additive identity of $P(x)$ and $-f(x)=-a 0+(-$ a1) $x+\ldots .+(-a n) x n$ additive inverse of $f n(x)$.

Commutative property follows from the commutative property of R . Hence $\operatorname{Pn}(x)$ is an additive abelian group.

The scalar multiplication of a E R by fn $(x)=a a 0+(a a 1) x+(a a 2) x 2 \ldots+(a a n) x n E \operatorname{Pn}(x)$.
it observes properties of scalar multiplication which can easily be verified. So that $\mathrm{pn}(\mathrm{x})$ forms a vector space over R.

$\operatorname{Part}(B)$

Answer:

