
 

 Iqra National University Peshawar Pakistan 

Department of Computer Science 

Spring Semester Final Term Exam , June 2020 

 

Subject: Software Design Issue Date: 24/June/2020 

Program: MS (CS) Submission Date: 24/June/2020 

Teacher Name: Dr. Fazal-e-Malik   

Student Name Rooh Ullah Jan ID 6611 

Q.1  Is there any relationship among Client (Customer, sponsor), 

Developer and End User? If yes then explain. 

Yes they all have strong relation with each other and sometimes known as 

stack holders. further explanation are given below. 

A stakeholder is a person or organization that has rights, shares, claims, or 

interests concerning the system or its properties meeting their needs and 

expectations. 

To put it more simply, the interests of stakeholders have some influence on 

the project, so their opinion should always be taken into account. If you do 

not do this and overlook one of the key stakeholders, you can ruin the 

whole project, and it will be much more expensive than just letting a 

development bug in the project. Stakeholders provide opportunities and 

limitations for the system and are the source of requirements. 

The interesting point is that often, stakeholders are not defined before the 

decision-making stage. But as soon as the decision is designed, announced, 

or implemented, everyone affected by this decision will express their 

https://www.iso.org/standard/63711.html


opinion. To save the project from potential harm, you are recommended to 

first answer the questions why and to whom, and only then how. 

○ Customers. Customers are one of the key stakeholders. If you are an 

architect, then there is only one question. How could you forget to discuss 

your decision with the people who pay the money for the project 

development? I will answer myself. It’s easy. In my practice, there was 

one example when a fantastic technical solution for real-time data 

processing and synchronization was created. This decision was one of the 

most advanced on the market, taking into account the latest technological 

trends. Furthermore, it was competently designed, correctly tested, and 

shown to the customer. And then it turned out that the customer wanted 

something different. More precisely, a completely different solution. And 

they did not need super synchronization at all. 

○ Developer. Imagine that you have developed a solution that uses the 

.NET technology stack. But there is one problem. You have twenty 

available Java developers in the company and no one who knows .NET. I 

suppose after you remember this, there will be no need in explaining why 

the designed solution is terrible. And this is the simplest example. You 

need to know the team to understand what technologies they know well 

and which of them should not be used just because they are trending. 

○ End users. So, we finally got to them. I hope they always had a 

key influence on the project, but in practice, this is not true. 

 



● Those who are not involved in the project, but because of their position 

or activities can influence it. 

 

 

   
Q.2  Explain the design “Trades-Offs” between the following: 

a) Cost vs. Robustness 

b) Cost vs. Reusability 

c) Backward compatibility vs. Readability 

 

 

 

a)Cost vs Robustness: Cost is the main driving factor for all 

projects. When it is done correctly, it helps in the successful 

completion of the project. In this research we have discussed 

various factors that affect the estimation procedure. These include 

team structure, team culture, managerial style, project type (Core 

application or integrated application), client’s working 

environment. Accurate estimation is far difficult in developing 

countries where most of the organizations follow local standards. 

These inaccurate estimations lead to late delivery, less profit or in 

worst case complete failure. Software requirement gathering, 

development, maintenance, quality assurance and cost of poor 

quality are major groups responsible for overall cost in software 

production process. The exact proportion among them varies 

significantly in consecutive software releases, which is caused by 

many factors. The ever increasing need for the reliability of the 

software systems, especially mission critical applications in the 

public safety domain, raises the bar for the accuracy of prediction 

and estimation techniques. 

Robustness is the ability of a computer system to cope with errors 

during execution and cope with erroneous input. Robustness can 

encompass many areas of computer science, such as robust 

programming, robust machine learning, and Robust Security 



Network. 

b)Cost vs Reusability: 

Reusability is the use of existing assets in some form within the 

software product development process; these assets are products 

and by-products of the software development life cycle and include 

code, software components, test suites, designs and documentation. 

Software reusability more specifically refers to design features of a 

software element (or collection of software elements) that enhance 

its suitability for reuse. Many reuse design principles were 

developed at the WISR workshops 

 

Candidate design features for software reuse include: 

•Adaptable 

•Brief: small size 

•Consistency 

•Correctness 

•Extensibility 

•Fast 

•Flexible 

•Generic 

•Localization of volatile (changeable) design assumptions 

•Modularity 

•Orthogonality 

•Parameterization 

•Simple: low complexity 

•Stability under changing requirements 

Cost is the main driving factor for all projects. When it is done 

correctly, it helps in the successful completion of the project. In this 

research we have discussed various factors that affect the 

estimation procedure. These include team structure, team culture, 

managerial style, project type (Core application or integrated 

application), client’s working environment. Accurate estimation is 

far difficult in developing countries where most of the 

organizations follow local standards. These inaccurate estimations 

lead to late delivery, less profit or in worst case complete failure. 

Software requirement gathering, development, maintenance, quality 

assurance and cost of poor quality are major groups responsible for 

overall cost in software production process. The exact proportion 

among them varies significantly in consecutive software releases, 

which is caused by many factors. The ever increasing need for the 



reliability of the software systems, especially mission critical 

applications in the public safety domain, raises the bar for the 

accuracy of prediction and estimation techniques. 

 

C) Backward compatibility vs. Readability: 

Backward Compatibility: A new version of a program is said to be 

backward compatible if it can use files and data created with an 

older version of the same program. A computer is said to be 

backward compatible if it can run the same software as the previous 

model of the computer. Backward compatibility is important 

because it eliminates the need to start over when you upgrade to a 

newer product. A backward-compatible word processor, for 

instance, allows you to edit documents created with a previous 

version of the program. In general, manufacturers try to keep all 

their products backward compatible. Sometimes, however, it is 

necessary to sacrifice backward compatibility to take advantage of 

a new technology. 

Software readability is a property that influences how easily a given 

piece of code can be read and understood. Since readability can 

affect maintainability, quality, etc., programmers are very 

concerned about the readability of code 

   

Q.3  What is the outcome of the software design? Explain in detail. 

There’re many benefits/outcomes of designing and developing software 

exactly as per your requirements. 

1. Optimized business process 

Each organization has its own business model and in-house processes. It 

is very difficult for organizations to change their processes to suit a 

particular software package or application, however efficient and 

powerful it may be. Therefore, software needs to be designed and 

developed in a manner such that it can align with the business model and 

follow the organization’s unique in-house processes. Custom software 

development helps to optimize your business processes rather than 

replacing them. 

 



2. Invention 

Since the software is totally customized, you have the option to decide 

what kind of software development technology to use to design your own 

app. You have the power to decide and opt for trend-setting disruptive 

technologies to design you customized app and make it work the way you 

want it to. 

3. Emphasize your business acumen 

The very fact that you are keen to develop software as per your business 

needs sends out a strong message that you value your in-house processes 

and take your work seriously. It emphasizes your commitment towards 

your business as you streamline your process flows and your working 

model so it can function smoothly. 

4. Reliability 

The ability to upkeep and follow your business processes over time helps 

you to succeed eventually. Reliability is a major factor that defines 

success. Proper testing of your custom software ensures you have a 

reliable IT tool that can grow your business. 

5. Uniqueness 

Each business is unique. There’s no one-size-fits-all solution as far as 

business processes are concerned. Having a software tailor-made to suit 

your unique requirements can complement your working model. Custom 

software development also helps to support your “unique” identity in the 

market. 

6. Adaptability 

Organizational processes change with time, and as the market dynamics 

change, it becomes necessary to adapt to new processes and technologies 

to maintain your marketing stronghold. Customized software can be easily 

changed – New processes and technologies can be integrated into your 

existing software as and when marketing trends change, so you can 

remain abreast of your competitors. 

https://www.thesunflowerlab.com/client-reviews/
https://www.thesunflowerlab.com/client-reviews/
https://www.thesunflowerlab.com/custom-software-development/
https://www.thesunflowerlab.com/custom-software-development/


7. Compatibility 

Most organizations have an architecture model in which the outputs 

generated by a particular process (software app or module) function as an 

input for another process. A smooth flow of information is vital while 

streamlining your business model. Using different “packaged” software 

for different processes can disrupt your data flow since a hybrid software 

infrastructure often has to depend upon third party gadgets and apps to 

facilitate the communication between varied processes and systems. 

Building a custom software environment can resolve many types of issues 

concerning the flow of information between successive processes. 

8. Exclusiveness 

What works best for one business doesn’t necessary work for another. 

You may be following certain processes which others don’t. Software that 

is developed exclusively for you ensures that all of your activities and 

processes are properly addressed to and automated exactly as per your 

requirements. 

9. Flexibility 

You don’t have to mold your working to suit a particular software – Your 

software can be changed easily to suit your requirements as and when 

required provided it is custom made. 

10. Security 

A major concern for many B2B and B2C companies, data access and 

security concerns affect many end-users in the market today. People 

transacting online want to ensure their transactions are safe and secure at 

all times. Supporting expensive security protocols can make you pass on 

added costs to the services you offer to your customers. This can make 

you lose your competitive edge in the market. Moreover, the flow of data 

within internal processes of the organization also needs to be regulated by 

implementing strict security standards. With customized software 

development, you have the power to decide which data-security 

technology or protocol is ideally suited for your business and integrate 

that in your software. 



11. Cost effectiveness 

With customized development, you can plan and phase the development 

process. You’re not required to invest a huge sum of money first on 

to reap the benefits of automation. Based upon you budget and funds 

availability, you can start automating individual process flows in an 

organized and timed manner over time to make development affordable 

through affordable software development services. 

The takeaway for organizations and businesses is even though you’re 

required to spend some time to define your exact automation needs and 

wait while your software is developed, it’s worthwhile to opt for 

customized software development since you can benefit from an 

automation process that is tailor made to suit your unique needs and 

business-centric requirements. 
 

   

   
   

   

 

 

Q.4  What is ADL (Architectural Descriptive Language)? How many ADLs are 
there? Explain one of them. 

 

Architecture description languages (ADLs) are formal languages that can be used 

to represent the architecture of a software-intensive system. As architecture 

becomes a dominating theme in large system development, methods for 

unambiguously specifying architecture will become indispensable. 

The Architecture Analysis & Design Language (AADL) is an architecture 

description language standardized by SAE. AADL was first developed in the field 

of avionics, and was known formerly as the Avionics Architecture Description 

Language. 

https://www.thesunflowerlab.com/ourwork/


The Architecture Analysis & Design Language is derived from MetaH, an 

architecture description language made by the Advanced Technology Center of 

Honeywell. AADL is used to model the software and hardware architecture of an 

embedded, real-time system. Due to its emphasis on the embedded domain, AADL 

contains constructs for modeling both software and hardware components (with the 

hardware components named "execution platform" components within the 

standard). This architecture model can then be used either as a design 

documentation, for analyses (such as schedulability and flow control) or for code 

generation (of the software portion), like UML. 

 

Types Of ADLs: 

There are many types Architecture Description Language. Which are given 

below. 

 

 ACME 

Rapide 

Wright 

 Unicon 

 Aesop 

 MetaH 

 Lileanna 

 

ACME 

•      ACME was developed  jointly by Monroe, Garlan (CMU) and Wile (USC) 

•      ACME is a general purpose ADL originally designed to be a lowest 

common denominator interchange language 

•      ACME as a language is extremely simple (befitting its origin as an 

interchange language) 

•      ACME has no native behavioral specification facility so only syntactic 

linguistic analysis is possible 



–     there are currently efforts under consideration to define a behavioral 

semantics for ACME, possibly along the Wright/CSP line 

•      ACME has no native generation capability 

•      ACME has seen some native tool development, and there are indications of 

more, as well as use of other language tools via interchange 

 

             ACME Overview 

•      Provides constructs for describing systems as graphs of 

components interacting via connectors, a representation mechanism for 

hierarchical decomposition of components and connectors into subsystems. 

•       Does not provide a specific model for describing system behaviour, 

instead elements may be annotated with properties that represent this 

Information. 

•       Rather than providing a fixed set of models for formulating solutions, 

Acme provides general, domain-neutral foundation for developing new tools 

and notations. 

•       Structures provided by Acme are based on the informal box and line 

diagrams traditionally used to depict the architecture of the system. Acme 

helps a designer document design decisions and reason about the 

implications of those decisions. 

 

 

   

 

 

 

 

 

 

 

 



 

Q.5  What is the Architectural Style? Explain components of a 
style? 

 

   

An architecture style (also known as an “architecture pattern”) abstracts the 

common properties of a family of similar designs. 

In software engineering, an Architectural Pattern is a general and reusable solution 

to an occurring problem in a particular context. It is a recurring solution to a 

recurring problem. 

The purpose of Architectural Patterns is to understand how the major parts of the 

system fit together and how messages and data flow through the system. 

 

An architectural style defines a family of systems in terms of a pattern of structural 

organization; a vocabulary of components and connectors, with constraints on how 

they can be combined.  

Architectural styles are reusable 'packages' of design decisions and constraints that 

are applied to an architecture to induce chosen desirable qualities. 

A software designer or architect may identify a design problem which has been 

visited and perhaps even solved by others in the past. A template or pattern 

describing a solution to a common problem is known as a design pattern. The reuse 

of such patterns can help speed up the software development process 

 

 

https://en.wikipedia.org/wiki/Design_pattern_(computer_science)


Each style will describe a system category that consists of : 

 A set of components (eg: a database, computational modules) that will 

perform a function required by the system. 

 The set of connectors will help in coordination, communication, and 

cooperation between the components. 

 Conditions that how components can be integrated to form the system. 

 Semantic models that help the designer to understand the overall properties of 

the system. 

The use of architectural styles is to establish a structure for all the components of 

the system. 

The key components of an architecture style are: 

 Elements/components 

 that perform functions required by a system 

 connectors  

 that enable communication, coordination, and cooperation among 

elements 

 constraints  

 that define how elements can be integrated to form the system 

 attributes  

 that describe the advantages and disadvantages of the chosen 

structure. 

******************************************* 

 

 

 

 


