Department of Electrical Engineering Assignment Date: 25/06/2020

Course Details

Course Title: Instructor:	Signals & Systems Engr Mujtaba Ihsan	Module: Total Marks:	04 50
	Student Details		
Name:	Irshad khan	Student ID:	12403

Q1.	(a)	Show with a help of an equation that the differentiation of a function in time domain	Marks
		results in the multiplication by jw in frequency domain.	06+08
			CLO 3
	(b)	$\text{If} \qquad x[n] = 2\delta[n] - 4\delta[n-2] + 2\delta[n-3]$	
		$h[n] = 3\delta[n] + \delta[n-1] + 2\delta[n-2]$	
		Produce Y(z) and y[n]	
Q2.		$f(\mathbf{x}) = \begin{pmatrix} -\pi/2 & -\pi \leq x \leq 0 \end{pmatrix}$	Marks
		$\pi(x) = (\pi/2)$ $0 \le x \le \pi$	10
		Retrieve the Fourier series for the given function.	CLO 3
Q3.		$ f_{x(z)} = 2z^{2} + 2z/2$	Marks
		$/(z^2+2z-3)$	10
		But the set of the second Theory of the set of the set	CLO 3
		Retrieve x[n] using inverse 2-transform method.	
Q4.		Express the transfer function using the given data.	Marks
		$A = \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 2 \end{bmatrix}$ $D = \begin{bmatrix} 0 \end{bmatrix}$	09
			CLO 3
Q5.		Apply Fourier transform on the signal, x (t) = $e^{-a t } u(t)$ where u (t) is a unit step	Marks
		function.	07
			CLO 3

Names Itshad Khan # 12403 page (1) show with a help of an equation 21 that the differentiation of a function (a) in time domain lesults in the multiplication by jw in flequency domain Ans: Let x(1) be a continuous - time signal with a fourier transform of X (JW). So, $\chi(t) = \frac{1}{2\pi} \int \chi(j\omega) e^{j\omega t} d\omega$ Differentiating both sides with "t" $\frac{dx(t)}{dt} = \frac{1}{2\pi} \int x(j\omega) \frac{d}{dt} \left\{ e^{j\omega t} \right\} d\omega$ $\frac{du(t)}{dt} = \frac{1}{2\pi} \int \chi(jw) \{ e^{ijwt}, jw\} dw$ $\frac{dn(t)}{dt} = \frac{1}{2\pi} \int_{D}^{\infty} \{j w \times (jw)\} e^{jwt} dw$ so, in F- domain. F { d x(t)}= jw x(jw).

Ishad Khan # 12403 Paje (2) If a function is differential in time. domain it is multiplied by ju in frequency domain, and also differentieted in time & domain it is multiplied with jw in flequency domain. we know that differentiation in time domain corresponds to multiplication by jw in frequency domain. we might suspect that multiplication by jto in the time domain corresponds toughly to differentiation in frequency domain. As we know that. X (jw) = f x (t) = jwt - w Differentiate both sides with "w" $\frac{dx}{dw}(jw) = \int -jt x(t) e^{jwt} dt$ $\frac{dx}{dw}(jw) = -jt \int \pi(t) e^{-jwt} dt.$ $s_{i} = \frac{dx}{dw} (jw) = -jt f \{x(t)\}.$ $s_{i} = \frac{dw}{dw} (jw) = -jt \frac{dy}{dt} (jw).$

Itshad Khom # 12403 page (3) Q1 9f ×[n]= 26[m]-46[n-2]+25[n-3] (6) h[m]= 35(m]+S(m-]+ 28(m-2] brodure y(2) and y(n). 50/0-Y(2)= H(2)X(2) Find y[m]. X(2)= 2- 42+ 97-3 H(2)= 3+ 12'+ 22 Now. Y(2) = H(2) + x(2) $Y(2) = (2 - 42^{-2} + 22^{-3})(3 + 2' + 22^{2})$ = 6+22 + 42 - 122 - 42 - 3-82 - 4 + 62 + 22 + 425 => 6+ 22'-82-22+62+42 To Find Y[n] use the delay property. y[n]= 65[n]+ 28[n-1]-88[n-2]-25[n-3] + 68[n-4]+ 48[n-5].

Irshad Khan #12403 Qu page (4) $\frac{Q_2}{m} = \begin{cases} -\pi/2 & -\pi \leq \chi \leq 0 \\ \pi/2 & 0 \leq \chi \leq \pi \end{cases}$ Retainer the Jourier Series of the following do as r $= \frac{1}{\pi} \left(\frac{-\pi}{2} dx + \frac{\pi}{2} dx \right)$ $\frac{1}{x} = \frac{1}{2} \int dx + \frac{\pi}{2} \int dx$ $= \frac{1}{\pi} \left(\frac{-\pi}{2} (\chi) \right)^{\circ} + \frac{\pi}{2} (\chi) \left| \frac{\chi}{2} \right|^{\gamma}$ $= \frac{1}{\pi} \left[\frac{-\pi}{2} (0)^{-} (-\pi) + \frac{\pi}{2} (\pi) - (0) \right]$ $= \frac{1}{\pi} \begin{vmatrix} -\pi \\ -\pi \\ 2 \end{vmatrix} + \frac{\pi}{2}$ e 1 0 An esti- 1 (f(n) cosna da $= \frac{1}{\pi} \int \frac{-\pi}{2} \cosh n \, dn + \int \frac{\pi}{2} \cosh n \, dn$ $= \frac{1}{\pi} \left(\frac{-\pi}{2} \left(\cosh n dn + \frac{\pi}{2} \right) \left(\cosh n dn \right) \right)$

Irshad Khan# 12403) page (5) $= \frac{1}{n\pi} \frac{-\pi}{2} (\sin n\pi) \frac{1}{-\pi} \frac{1}{2} \frac{1}{-\pi} \frac{1}{2} \frac{1}{2} \frac{1}{-\pi} \frac{1}{2} \frac{1}{2$ $= \frac{1}{n\pi} \left(-\frac{\pi}{sin(0)} - sinn(-\pi) + \frac{\pi}{2} (sinn(\pi) - sinn(0)) \right)$ $= \frac{1}{n\pi} \left| \frac{-7}{2}(0) + \frac{7}{2}(0) \right|$ Now for bn. $bn = \frac{1}{\pi} (-\frac{1}{2}(a))$ Sinnia da. $\frac{z}{\pi} \int \frac{-\pi}{2} \sin \pi dx + \left(\frac{\pi}{2} \sin \pi dx\right)$ $= \frac{1}{\pi} \left(\frac{-\pi}{2} \left(-\cos(\pi x) \right) + \frac{\pi}{2} \left(-\cos(\pi x) \right) \right)^{2}$ $\frac{1}{n\pi} \left[\frac{-\pi}{2} \left(-\cos(\alpha) - \left(-\cos(\pi) + \frac{\pi}{2} \left(\cos(\pi) - \left(-\cos(\alpha) + \frac{\pi}{2} \right) \right) \right) \right]$ $\frac{2}{n\pi} \frac{1}{2} - \frac{7}{2} \left(-2\right) + \frac{9\pi}{2}$ $= \frac{1}{\pi} \left(\frac{2\pi}{2} + \frac{3\pi}{2} \right)$ $= \frac{1}{n\pi} \left(\frac{4\pi}{2} \right) = \frac{4\pi}{n2\pi} \frac{1}{2n}$

Irshad Khan # 1240) page (6) 0 n is even. if n is odd. dn = $8 + 8 + 0 + \cdots + 1$ sing $\frac{1}{2}$ sing $\frac{1}{4}$ sing $\frac{1}{4}$

Itshad Khan # 12403 page (7) 23. X22) = 222 + 22 22+22-3 Retsieve the fourier scries for the given, function soln X(2)= 22+22 (2-1)(2+3) $x(2) = 22^2 + 22 = A + B$ (2) $\overline{2^2+3^2-3}$ (2-1) (2+3) 22+2= A(2+3)+B(2-1)-> (B) put Z= -3 in ez (B) 2 (-3)2+2 = (-3)= A (-3+3)+ +B(-3-1) => 2(9)-6= B(-4) 18-6= B(-4) B= 12 13=-31

Mame: Itshad Khan + 12403 page =(8) NOW put Z=1 in ez B 2(1)2+2(1) = A (1+3)+B (1-1) 2+2= A(4) $A = \frac{4}{4}$ A= 27 (All Now putting the values of A und B in e2 A 22²+22 = 1 (2-1) (2+3) (2-1) + (2+3) $X(2) = 1 \frac{2}{2-1} - 3 \frac{2}{2+3}$ Taking Inverse Z- Transform. x[n]= 1 u[n]-3 (-3)t.

Mame: Itshad Khan # 12403 page (9) Express the Hansfer function using the given data. $A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 2 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}$ $\frac{Y(s)}{x(s)} = H(s)$ sop. H(S) = C(SI-A) B+D H[s] = [12] [S[0 7]-[-2 -1] -1[/7] + 0 $H(s) = [1 2] \int \frac{s+2}{-1} + \frac{1}{5} \int \frac{1}{5$ Adj = (S+2) S+1 = S2+2S+1 $H[s]=\left[1 \ 2\right] \left[\begin{array}{c} 5 \ -1 \end{array}\right] + \frac{1}{s^2 + \vartheta s + 1} \left[\begin{array}{c} 0 \end{array}\right]$ $H(s) = [1 2] \times \frac{1}{s^2 + 2s + 1} [1 + 0]$ $H(s) = [1 2] [1] = 5 [H(s) = \frac{s+2}{s^2+2s+1}$

Irshad Khan # 12403 Page (10) APPly fourier transform on the signal x(t)= ett u(t) is a unit step function The fourier transform of the given function x(1) is given by. so/m: $x(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$ $x(j\omega) = \int_{-\infty}^{\infty} e^{-\alpha/tt} - j\omega t dt$ $X(jw) = \int_{-\infty}^{\infty} e^{at} - jwt dt + \int_{-\infty}^{\infty} e^{at} - jwt dt$ $\chi(j\omega) = \int_{e}^{b} (a-j\omega)t dt + \int_{e}^{b} (a+j\omega)t dt$ $\frac{(a-j\omega)t}{e} \int + \frac{e^{(a+j\omega)t}}{e} \int -(a+j\omega) \int$

Fished Ichan # 12403 page (11) $= \overline{(a-j\omega)} \left[e^{2} - e^{2} \right] - \frac{1}{(a+j\omega)} \left[e^{2} - e^{2} \right]$: 0=0 $\frac{1}{(a-j\omega)} \left[1-0] - \frac{1}{(a+j\omega)} \left[0 - 1 \right] : e = 1$ $\frac{1}{a-j\omega} + \frac{1}{a+j\omega}$ x (jw) = a+ jw + a- jw Va $a^2 - (jw)^2$ × (jw) = 29 $a^2 + \omega^2$