

Name : Ubaid Ali

ID No: 6840

Assignment: Lab 01

Submitted To: Mr Fahim Ullah khattak

CHAPTER: 03

Introduction to Lists

Task 01

Code:

def print_invitation(guest_list):

 for guest in guest_list:

 print("Hello " +guest+ ". I would like to

invite you to dinner.")

guest_list = ['Artistotle','Sartre','Epictetus']

print_invitation(guest_list)

print("Oh no! Epictetus was enslaved by the

Epaphroditus. He can't come to diner!")

guest_list.remove('Epictetus')

guest_list.append('Senecea')

print_invitation(guest_list)

Output:

Task 02

Code:

def p(guest):

 print("Hello " +guest+ ". I would like to invite you to

dinner.")

def sorry(guest):

 print("Sorry "+guest+ ". Sadly you can't come since we won't

have enough room for all of you.")

guest_list = ['Aristotle','Sartre','Epictetus']

list(map(p,guest_list))

print(len(guest_list))

print("Oh no! Epictetus was enslaved by the Epaphroditus. He

can't come to diner!")

guest_list.remove('Epictetus')

guest_list.append('Senecea')

list(map(p,guest_list))

print(len(guest_list))

print("Ordered a bigger table! More guests!")

guest_list.insert(0,'Kant')

guest_list.insert(2,'Gautama')

guest_list.append('Confucius')

list(map(p,guest_list))

print(len(guest_list))

print("Oh no! The table won't arrive in time!")

white_list = ['Aristotle','Confucius']

#Side effects and parenthesis almost as bad as in lisp...

print(len(list(map(p,filter(lambda guest: guest in

white_list,guest_list)))))

print(len(list(map(sorry,filter(lambda guest: guest not in

white_list,guest_list)))))

Output:

Task 03

Code:

Phillip Ryan Alfred Odling Cohan Gardner

Bradley Fisher Jenny Marshall Meredith Connolly Cassia

Simons

Maegan Terrell Fox Branch Nichola Hale Saskia Allison

Calista Brennan Petra Naylor Anita Lane Patrik Guy

Lillia Salgado Hadiya Mcbride Ashton Mcdonnell Rex Chambers

Sama Rios Jarrad Sweet Jokubas Davenport Kathy Cooke Alison

Duke

Aneesa Garner Dalia Bartlettb Yisroel Griffiths

Yara Redfern Wiktoria Kearney Alex Cooley Sylvie Todd Eren

Moon

Aya Pitt Lynda Banks Lola Lucas Eve Shah

""".split()

for i in range(int(len(friends)/2)):

print("Hello " + friends[2*i] + " " + friends[2*i+1]+ "!

How are you?")

Output:

Task 04

Code:

guest_list = ['Artistotle','Sartre','Epictetus']

for guest in guest_list:

 print("Hello " +guest+ ". I would like to invite you to

dinner.")

Output:

Task 05

Code:

def print_invitation(guest_list):

 for guest in guest_list:

 print("Hello " +guest+ ". I would like to

invite you to dinner.")

guest_list = ['Artistotle','Sartre','Epictetus']

print_invitation(guest_list)

print("Oh no! Epictetus was enslaved by the

Epaphroditus. He can't come to diner!")

guest_list.remove('Epictetus')

guest_list.append('Senecea')

print_invitation(guest_list)

print("Found a bigger table! More guests!")

guest_list.insert(0,'Kant')

guest_list.insert(2,'Gautama')

guest_list.append('Confucius')

print_invitation(guest_list)

Output:

Task 06

Code:

Patrik Guy Lillia Salgado Hadiya Mcbride Ashton

Mcdonnell Rex Chambers Sama Rios Jarrad Sweet

Jokubas Davenport Kathy Cooke Alison Duke

Aneesa Garner Dalia Bartlett Yisroel Griffiths

Yara Redfern Wiktoria Kearney Alex Cooley Sylvie

Todd Eren Moon Aya

""".split()

for i in range(int(len(friends)/2)):

 print(friends[2*i] +" "+ friends[2*i+1])

Output:

Task 07

Code:

transportation = ['car','train','bike']

print("If it's hot and sunny, I like to ride the "

+ transportation[2] +".")

print("If I need to transport something heavy and

big I use the" + transportation[0]+".")

print("Using the " +transportation[1]+ " instead of

the " +transportation[0] + " saves the

environment.")

Output:

Task 08

Code:

nice_places =

["NYC","Seattle","London","Berlin","Rome","Shanghai

"]

print(nice_places)

print(sorted(nice_places))

print(nice_places)

print(sorted(nice_places,reverse=True))

print(nice_places)

nice_places.reverse()

print(nice_places)

nice_places.reverse()

print(nice_places)

nice_places.sort()

print(nice_places)

nice_places.sort(reverse=True)

print(nice_places)

Output:

Task 09

Code:

def p(guest):

 print("Hello " +guest+ ". I would like to

invite you to dinner.")

def sorry(guest):

 print("Sorry "+guest+ ". Sadly you can't come

since we won't have enough room for all of you.")

guest_list = ['Aristotle','Sartre','Epictetus']

list(map(p,guest_list))

print("Oh no! Epictetus was enslaved by the

Epaphroditus. He can't come to diner!")

guest_list.remove('Epictetus')

guest_list.append('Senecea')

list(map(p,guest_list))

print("Ordered a bigger table! More guests!")

guest_list.insert(0,'Kant')

guest_list.insert(2,'Gautama')

guest_list.append('Confucius')

list(map(p,guest_list))

print("Oh no! The table won't arrive in time!")

white_list = ['Aristotle','Confucius']

list(map(p,filter(lambda guest: guest in

white_list,guest_list)))

list(map(sorry,filter(lambda guest: guest not in

white_list,guest_list)))

print(guest_list.clear())

Output:

CHAPTER: 04

Tasks: Working on Lists

Task 01

Code:

animals = ['termites','bees','ants']

for animal in animals:

 print(animal + " build nests.")

print("Don't mess with those!")

Output:

Task 02

Code:

food = ('potatoe salad','noodles','turkey','caesar

salad','pork')

for f in food:

 print(f)

food = ('potatoe salad','soup','lasagna','caesar

salad','pork')

for f in food:

 print(f)

Output:

Task 03

Code:

numbers = [i for i in range(1,1000001)]

for x in numbers:

 print(x)

Output:

Task 04

Code:

numbers = [i for i in range(1,21)]

for number in numbers:

 print(number)

Output:

Task 05

Code:

cubes = list(map(lambda x:

x*x*x,list(range(1,11))))

for cube in cubes:

 print(cube)

Output:

Task 06

Code:

pizzas = ['salami','peperoni','pineapple']

other_pizzas = pizzas[:]

other_pizzas.append('tuna')

print("My favourite pizzas are:")

list(map(print,pizzas))

print("My friends favourite pizzas are:")

list(map(print,other_pizzas))

Output:

Task 07

Code:

my_foods = ['pizza', 'falafel', 'carrot cake']

friend_foods = my_foods[:]

friend_foods.append('beef')

print("My favorite foods are:")

list(map(print,my_foods))

print("\nMy friend's favorite foods are:")

list(map(print,friend_foods))

Output:

Task 08

Code:

mulitple_three = [i*3 for i in range(1,11)]

for number in mulitple_three:

 print(number)

Output:

Task 09

Code:

numbers = list(filter(lambda x: x % 2

==1,list(range(1,21))))

#numbers = list(range(1,21,2))

for number in numbers:

 print(number)

Output:

Task 10

Code:

pizzas = ['salami','peperoni','pineapple']

for pizza in pizzas:

 print(pizza)

Output:

Task 11

Code:

numbers = [i for i in range(1,120001)]

print(min(numbers))

print(max(numbers))

print(sum(numbers))

Output:

CHAPTER: 06

Task 1

Code:

 person = {

 'first_name': 'eric',

 'last_name': 'matthes',

 'age': 43,

 'city': 'sitka',

 }

print(person['first_name'])

print(person['last_name'])

print(person['age'])

print(person['city'])

Output:

eric

matthes

43

sitka

Task 2

Code:

favorite_numbers = {

 'mandy': 42,

 'micah': 23,

 'gus': 7,

 'hank': 1000000,

 'maggie': 0,

 }

num = favorite_numbers['mandy']

print("Mandy's favorite number is " + str(num) + ".")

num = favorite_numbers['micah']

print("Micah's favorite number is " + str(num) + ".")

num = favorite_numbers['gus']

print("Gus's favorite number is " + str(num) + ".")

num = favorite_numbers['hank']

print("Hank's favorite number is " + str(num) + ".")

num = favorite_numbers['maggie']

print("Maggie's favorite number is " + str(num) + ".")

Output:

Mandy's favorite number is 42.

Micah's favorite number is 23.

Gus's favorite number is 7.

Hank's favorite number is 1000000.

Maggie's favorite number is 0.

Task 3

Code:

glossary = {

 'string': 'A series of characters.',

 'comment': 'A note in a program that the Python interpreter ignores.',

 'list': 'A collection of items in a particular order.',

 'loop': 'Work through a collection of items, one at a time.',

 'dictionary': "A collection of key-value pairs.",

 }

word = 'string'

print("\n" + word.title() + ": " + glossary[word])

word = 'comment'

print("\n" + word.title() + ": " + glossary[word])

word = 'list'

print("\n" + word.title() + ": " + glossary[word])

word = 'loop'

print("\n" + word.title() + ": " + glossary[word])

word = 'dictionary'

print("\n" + word.title() + ": " + glossary[word])

Output:

String: A series of characters.

Comment: A note in a program that the Python interpreter ignores.

List: A collection of items in a particular order.

Loop: Work through a collection of items, one at a time.

Dictionary: A collection of key-value pairs.

Task 4

Code:

glossary = {

 'string': 'A series of characters.',

 'comment': 'A note in a program that the Python interpreter ignores.',

 'list': 'A collection of items in a particular order.',

 'loop': 'Work through a collection of items, one at a time.',

 'dictionary': "A collection of key-value pairs.",

 'key': 'The first item in a key-value pair in a dictionary.',

 'value': 'An item associated with a key in a dictionary.',

 'conditional test': 'A comparison between two values.',

 'float': 'A numerical value with a decimal component.',

 'boolean expression': 'An expression that evaluates to True or False.',

 }

for word, definition in glossary.items():

 print("\n" + word.title() + ": " + definition)

Output:

Dictionary: A collection of key-value pairs.

String: A series of characters.

Boolean Expression: An expression that evaluates to True or False.

Comment: A note in a program that the Python interpreter ignores.

Value: An item associated with a key in a dictionary.

Loop: Work through a collection of items, one at a time.

List: A collection of items in a particular order.

Conditional Test: A comparison between two values.

Key: The first item in a key-value pair in a dictionary.

Float: A numerical value with a decimal component.

Task 5

Code:

rivers = {

 'nile': 'egypt',

 'mississippi': 'united states',

 'fraser': 'canada',

 'kuskokwim': 'alaska',

 'yangtze': 'china',

 }

for river, country in rivers.items():

 print("The " + river.title() + " flows through " + country.title() + ".")

print("\nThe following rivers are included in this data set:")

for river in rivers.keys():

 print("- " + river.title())

print("\nThe following countries are included in this data set:")

for country in rivers.values():

 print("- " + country.title())

Output*:

The Mississippi flows through United States.

The Yangtze flows through China.

The Fraser flows through Canada.

The Nile flows through Egypt.

The Kuskokwim flows through Alaska.

The following rivers are included in this data set:

- Mississippi

- Yangtze

- Fraser

- Nile

- Kuskokwim

The following countries are included in this data set:

- United States

- China

- Canada

- Egypt

- Alaska

*Sometimes we like to think of Alaska as our own separate country.

Task 6

Code:

favorite_languages = {

 'jen': 'python',

 'sarah': 'c',

 'edward': 'ruby',

 'phil': 'python',

 }

for name, language in favorite_languages.items():

 print(name.title() + "'s favorite language is " +

 language.title() + ".")

print("\n")

coders = ['phil', 'josh', 'david', 'becca', 'sarah', 'matt', 'danielle']

for coder in coders:

 if coder in favorite_languages.keys():

 print("Thank you for taking the poll, " + coder.title() + "!")

 else:

 print(coder.title() + ", what's your favorite programming

language?")

Output:

Jen's favorite language is Python.

Sarah's favorite language is C.

Phil's favorite language is Python.

Edward's favorite language is Ruby.

Thank you for taking the poll, Phil!

Josh, what's your favorite programming language?

David, what's your favorite programming language?

Becca, what's your favorite programming language?

Thank you for taking the poll, Sarah!

Matt, what's your favorite programming language?

Danielle, what's your favorite programming language?

Task 6

Code:

Make an empty list to store people in.

people = []

Define some people, and add them to the list.

person = {

 'first_name': 'eric',

 'last_name': 'matthes',

 'age': 43,

 'city': 'sitka',

 }

people.append(person)

person = {

 'first_name': 'ever',

 'last_name': 'matthes',

 'age': 5,

 'city': 'sitka',

 }

people.append(person)

person = {

 'first_name': 'willie',

 'last_name': 'matthes',

 'age': 8,

 'city': 'sitka',

 }

people.append(person)

Display all of the information in the dictionary.

for person in people:

 name = person['first_name'].title() + " " + person['last_name'].title()

 age = str(person['age'])

 city = person['city'].title()

 print(name + ", of " + city + ", is " + age + " years old.")

Output:

Eric Matthes, of Sitka, is 43 years old.

Ever Matthes, of Sitka, is 5 years old.

Willie Matthes, of Sitka, is 8 years old.

Task 7

Code:

Make an empty list to store the pets in.

pets = []

Make individual pets, and store each one in the list.

pet = {

 'animal type': 'python',

 'name': 'john',

 'owner': 'guido',

 'weight': 43,

 'eats': 'bugs',

}

pets.append(pet)

pet = {

 'animal type': 'chicken',

 'name': 'clarence',

 'owner': 'tiffany',

 'weight': 2,

 'eats': 'seeds',

}

pets.append(pet)

pet = {

 'animal type': 'dog',

 'name': 'peso',

 'owner': 'eric',

 'weight': 37,

 'eats': 'shoes',

}

pets.append(pet)

Display information about each pet.

for pet in pets:

 print("\nHere's what I know about " + pet['name'].title() + ":")

 for key, value in pet.items():

 print("\t" + key + ": " + str(value))

Output:

Here's what I know about John:

 weight: 43

 animal type: python

 name: john

 owner: guido

 eats: bugs

Here's what I know about Clarence:

 weight: 2

 animal type: chicken

 name: clarence

 owner: tiffany

 eats: seeds

Here's what I know about Peso:

 weight: 37

 animal type: dog

 name: peso

 owner: eric

 eats: shoes

Task 8

Code:

favorite_places = {

 'eric': ['bear mountain', 'death valley', 'tierra del fuego'],

 'erin': ['hawaii', 'iceland'],

 'ever': ['mt. verstovia', 'the playground', 'south carolina']

 }

for name, places in favorite_places.items():

 print("\n" + name.title() + " likes the following places:")

 for place in places:

 print("- " + place.title())

Output:

Ever likes the following places:

- Mt. Verstovia

- The Playground

- South Carolina

Erin likes the following places:

- Hawaii

- Iceland

Eric likes the following places:

- Bear Mountain

- Death Valley

- Tierra Del Fuego

Task 8

Code:

favorite_numbers = {

 'mandy': [42, 17],

 'micah': [42, 39, 56],

 'gus': [7, 12],

 }

for name, numbers in favorite_numbers.items():

 print("\n" + name.title() + " likes the following numbers:")

 for number in numbers:

 print(" " + str(number))

Output:

Micah likes the following numbers:

 42

 39

 56

Mandy likes the following numbers:

 42

 17

Gus likes the following numbers:

 7

 12

Task 9

Code:

cities = {

 'santiago': {

 'country': 'chile',

 'population': 6158080,

 'nearby mountains': 'andes',

 },

 'talkeetna': {

 'country': 'alaska',

 'population': 876,

 'nearby mountains': 'alaska range',

 },

 'kathmandu': {

 'country': 'nepal',

 'population': 1003285,

 'nearby mountains': 'himilaya',

 }

 }

for city, city_info in cities.items():

 country = city_info['country'].title()

 population = city_info['population']

 mountains = city_info['nearby mountains'].title()

 print("\n" + city.title() + " is in " + country + ".")

 print(" It has a population of about " + str(population) + ".")

 print(" The " + mountains + " mountains are nearby.")

Output:

Santiago is in Chile.

 It has a population of about 6158080.

 The Andes mountains are nearby.

Kathmandu is in Nepal.

 It has a population of about 1003285.

 The Himilaya mountains are nearby.

Talkeetna is in Alaska.

 It has a population of about 876.

 The Alaska Range mountains are nearb

CHAPTER: 07

Task 1

Code:

car = input("What kind of car would you like? ")

print("Let me see if I can find you a " + car.title() + ".")

Output:

What kind of car would you like? Toyota Tacoma

Let me see if I can find you a Toyota Tacoma.

Task 2

Code:

party_size = input("How many people are in your dinner party tonight?

")

party_size = int(party_size)

if party_size > 8:

 print("I'm sorry, you'll have to wait for a table.")

else:

 print("Your table is ready.")

Output:

How many people are in your dinner party tonight? 12

I'm sorry, you'll have to wait for a table.

or:

How many people are in your dinner party tonight? 6

Your table is ready.

Task 3

Code:

number = input("Give me a number, please: ")

number = int(number)

if number % 10 == 0:

 print(str(number) + " is a multiple of 10.")

else:

 print(str(number) + " is not a multiple of 10.")

Output:

Give me a number, please: 23

23 is not a multiple of 10.

or:

Give me a number, please: 90

90 is a multiple of 10.

Task 4

Code:

prompt = "\nWhat topping would you like on your pizza?"

prompt += "\nEnter 'quit' when you are finished: "

while True:

 topping = input(prompt)

 if topping != 'quit':

 print(" I'll add " + topping + " to your pizza.")

 else:

 break

Output:

What topping would you like on your pizza?

Enter 'quit' when you are finished: pepperoni

 I'll add pepperoni to your pizza.

What topping would you like on your pizza?

Enter 'quit' when you are finished: sausage

 I'll add sausage to your pizza.

What topping would you like on your pizza?

Enter 'quit' when you are finished: bacon

 I'll add bacon to your pizza.

What topping would you like on your pizza?

Enter 'quit' when you are finished: quit

Task 5

Code:

prompt = "How old are you?"

prompt += "\nEnter 'quit' when you are finished. "

while True:

 age = input(prompt)

 if age == 'quit':

 break

 age = int(age)

 if age < 3:

 print(" You get in free!")

 elif age < 13:

 print(" Your ticket is $10.")

 else:

 print(" Your ticket is $15.")

Output:

How old are you?

Enter 'quit' when you are finished. 2

 You get in free!

How old are you?

Enter 'quit' when you are finished. 3

 Your ticket is $10.

How old are you?

Enter 'quit' when you are finished. 12

 Your ticket is $10.

How old are you?

Enter 'quit' when you are finished. 18

 Your ticket is $15.

How old are you?

Enter 'quit' when you are finished. quit

Task 7

Code:

sandwich_orders = ['veggie', 'grilled cheese', 'turkey', 'roast beef']

finished_sandwiches = []

while sandwich_orders:

 current_sandwich = sandwich_orders.pop()

 print("I'm working on your " + current_sandwich + " sandwich.")

 finished_sandwiches.append(current_sandwich)

print("\n")

for sandwich in finished_sandwiches:

 print("I made a " + sandwich + " sandwich.")

Output:

I'm working on your roast beef sandwich.

I'm working on your turkey sandwich.

I'm working on your grilled cheese sandwich.

I'm working on your veggie sandwich.

I made a roast beef sandwich.

I made a turkey sandwich.

I made a grilled cheese sandwich.

I made a veggie sandwich.

Task 8

Code:

sandwich_orders = [

 'pastrami', 'veggie', 'grilled cheese', 'pastrami',

 'turkey', 'roast beef', 'pastrami']

finished_sandwiches = []

print("I'm sorry, we're all out of pastrami today.")

while 'pastrami' in sandwich_orders:

 sandwich_orders.remove('pastrami')

print("\n")

while sandwich_orders:

 current_sandwich = sandwich_orders.pop()

 print("I'm working on your " + current_sandwich + " sandwich.")

 finished_sandwiches.append(current_sandwich)

print("\n")

for sandwich in finished_sandwiches:

 print("I made a " + sandwich + " sandwich.")

Output:

I'm sorry, we're all out of pastrami today.

I'm working on your roast beef sandwich.

I'm working on your turkey sandwich.

I'm working on your grilled cheese sandwich.

I'm working on your veggie sandwich.

I made a roast beef sandwich.

I made a turkey sandwich.

I made a grilled cheese sandwich.

I made a veggie sandwich.

Task 10

Code:

name_prompt = "\nWhat's your name? "

place_prompt = "If you could visit one place in the world, where would

it be? "

continue_prompt = "\nWould you like to let someone else respond?

(yes/no) "

Responses will be stored in the form {name: place}.

responses = {}

while True:

 # Ask the user where they'd like to go.

 name = input(name_prompt)

 place = input(place_prompt)

 # Store the response.

 responses[name] = place

 # Ask if there's anyone else responding.

 repeat = input(continue_prompt)

 if repeat != 'yes':

 break

Show results of the survey.

print("\n--- Results ---")

for name, place in responses.items():

 print(name.title() + " would like to visit " + place.title() + ".")

Output:

What's your name? eric

If you could visit one place in the world, where would it be? tierra del

fuego

Would you like to let someone else respond? (yes/no) yes

What's your name? erin

If you could visit one place in the world, where would it be? iceland

Would you like to let someone else respond? (yes/no) yes

What's your name? ever

If you could visit one place in the world, where would it be? death valley

Would you like to let someone else respond? (yes/no) no

CHAPTER: 08

Task 1

Code:

def display_message():

 """Display a message about what I'm learning."""

 msg = "I'm learning to store code in functions."

 print(msg)

display_message()

Output:

I'm learning to store code in functions.

top

Task 2

Code:

.

def favorite_book(title):

 """Display a message about someone's favorite book."""

 print(title + " is one of my favorite books.")

favorite_book('The Abstract Wild')

Output:

The Abstract Wild is one of my favorite books.

Task 3

Code:

Call the function once using positional arguments to make a shirt. Call

the function a second time using keyword arguments.

def make_shirt(size, message):

 """Summarize the shirt that's going to be made."""

 print("\nI'm going to make a " + size + " t-shirt.")

 print('It will say, "' + message + '"')

make_shirt('large', 'I love Python!')

make_shirt(message="Readability counts.", size='medium')

Output:

I'm going to make a large t-shirt.

It will say, "I love Python!"

I'm going to make a medium t-shirt.

It will say, "Readability counts."

Task 4

Code:

def make_shirt(size='large', message='I love Python!'):

 """Summarize the shirt that's going to be made."""

 print("\nI'm going to make a " + size + " t-shirt.")

 print('It will say, "' + message + '"')

make_shirt()

make_shirt(size='medium')

make_shirt('small', 'Programmers are loopy.')

Output:

I'm going to make a large t-shirt.

It will say, "I love Python!"

I'm going to make a medium t-shirt.

It will say, "I love Python!"

I'm going to make a small t-shirt.

It will say, "Programmers are loopy."

Task 5

Code:

def describe_city(city, country='chile'):

 """Describe a city."""

 msg = city.title() + " is in " + country.title() + "."

 print(msg)

describe_city('santiago')

describe_city('reykjavik', 'iceland')

describe_city('punta arenas')

Output:

Santiago is in Chile.

Reykjavik is in Iceland.

Punta Arenas is in Chile.

Task 6

Code:

“Santiago, Chile”

Call your function with at least three city-country pairs, and print the

value that’s returned.

def city_country(city, country):

 """Return a string like 'Santiago, Chile'."""

 return(city.title() + ", " + country.title())

city = city_country('santiago', 'chile')

print(city)

city = city_country('ushuaia', 'argentina')

print(city)

city = city_country('longyearbyen', 'svalbard')

print(city)

Output:

Santiago, Chile

Ushuaia, Argentina

Longyearbyen, Svalbard

Task 7

Code:

Simple version:

def make_album(artist, title):

 """Build a dictionary containing information about an album."""

 album_dict = {

 'artist': artist.title(),

 'title': title.title(),

 }

 return album_dict

album = make_album('metallica', 'ride the lightning')

print(album)

album = make_album('beethoven', 'ninth symphony')

print(album)

album = make_album('willie nelson', 'red-headed stranger')

print(album)

Output:

{'title': 'Ride The Lightning', 'artist': 'Metallica'}

{'title': 'Ninth Symphony', 'artist': 'Beethoven'}

{'title': 'Red-Headed Stranger', 'artist': 'Willie Nelson'}

With tracks:

def make_album(artist, title, tracks=0):

 """Build a dictionary containing information about an album."""

 album_dict = {

 'artist': artist.title(),

 'title': title.title(),

 }

 if tracks:

 album_dict['tracks'] = tracks

 return album_dict

album = make_album('metallica', 'ride the lightning')

print(album)

album = make_album('beethoven', 'ninth symphony')

print(album)

album = make_album('willie nelson', 'red-headed stranger')

print(album)

album = make_album('iron maiden', 'piece of mind', tracks=8)

print(album)

Output:

{'artist': 'Metallica', 'title': 'Ride The Lightning'}

{'artist': 'Beethoven', 'title': 'Ninth Symphony'}

{'artist': 'Willie Nelson', 'title': 'Red-Headed Stranger'}

{'tracks': 8, 'artist': 'Iron Maiden', 'title': 'Piece Of Mind'}

top

Task 8

Code:

def make_album(artist, title, tracks=0):

 """Build a dictionary containing information about an album."""

 album_dict = {

 'artist': artist.title(),

 'title': title.title(),

 }

 if tracks:

 album_dict['tracks'] = tracks

 return album_dict

Prepare the prompts.

title_prompt = "\nWhat album are you thinking of? "

artist_prompt = "Who's the artist? "

Let the user know how to quit.

print("Enter 'quit' at any time to stop.")

while True:

 title = input(title_prompt)

 if title == 'quit':

 break

 artist = input(artist_prompt)

 if artist == 'quit':

 break

 album = make_album(artist, title)

 print(album)

print("\nThanks for responding!")

Output:

Enter 'quit' at any time to stop.

What album are you thinking of? number of the beast

Who's the artist? iron maiden

{'artist': 'Iron Maiden', 'title': 'Number Of The Beast'}

What album are you thinking of? touch of class

Who's the artist? angel romero

{'artist': 'Angel Romero', 'title': 'Touch Of Class'}

What album are you thinking of? rust in peace

Who's the artist? megadeth

{'artist': 'Megadeth', 'title': 'Rust In Peace'}

What album are you thinking of? quit

Thanks for responding!

Task 9

Code:

def show_magicians(magicians):

 """Print the name of each magician in the list."""

 for magician in magicians:

 print(magician)

def make_great(magicians):

 """Add 'the Great!' to each magician's name."""

 # Build a new list to hold the great musicians.

 great_magicians = []

 # Make each magician great, and add it to great_magicians.

 while magicians:

 magician = magicians.pop()

 great_magician = magician + ' the Great'

 great_magicians.append(great_magician)

 # Add the great magicians back into magicians.

 for great_magician in great_magicians:

 magicians.append(great_magician)

magicians = ['Harry Houdini', 'David Blaine', 'Teller']

show_magicians(magicians)

print("\n")

make_great(magicians)

show_magicians(magicians)

Output:

Harry Houdini

David Blaine

Teller

Teller the Great

David Blaine the Great

Harry Houdini the Great

CHAPTER: 09

class Restaurant():

 """A class representing a restaurant."""

 def __init__(self, name, cuisine_type):

 """Initialize the restaurant."""

 self.name = name.title()

 self.cuisine_type = cuisine_type

 def describe_restaurant(self):

 """Display a summary of the restaurant."""

 msg = self.name + " serves wonderful " + self.cuisine_type + "."

 print("\n" + msg)

 def open_restaurant(self):

 """Display a message that the restaurant is open."""

 msg = self.name + " is open. Come on in!"

 print("\n" + msg)

restaurant = Restaurant('the mean queen', 'pizza')

print(restaurant.name)

print(restaurant.cuisine_type)

restaurant.describe_restaurant()

restaurant.open_restaurant()

Output:

The Mean Queen

pizza

The Mean Queen serves wonderful pizza.

The Mean Queen is open. Come on in!

top

9-2: Three Restaurants

Start with your class from Exercise 9-1. Create three different

instances from the class, and call describe_restaurant() for each

instance.

class Restaurant():

 """A class representing a restaurant."""

 def __init__(self, name, cuisine_type):

 """Initialize the restaurant."""

 self.name = name.title()

 self.cuisine_type = cuisine_type

 def describe_restaurant(self):

 """Display a summary of the restaurant."""

 msg = self.name + " serves wonderful " + self.cuisine_type + "."

 print("\n" + msg)

 def open_restaurant(self):

 """Display a message that the restaurant is open."""

 msg = self.name + " is open. Come on in!"

 print("\n" + msg)

mean_queen = Restaurant('the mean queen', 'pizza')

mean_queen.describe_restaurant()

ludvigs = Restaurant("ludvig's bistro", 'seafood')

ludvigs.describe_restaurant()

mango_thai = Restaurant('mango thai', 'thai food')

mango_thai.describe_restaurant()

Output:

The Mean Queen serves wonderful pizza.

Ludvig'S Bistro serves wonderful seafood.

Mango Thai serves wonderful thai food.

top

9-3: Users

Make a class called User. Create two attributes called first_name

and last_name, and then create several other attributes that are

typically stored in a user profile. Make a method called

describe_user() that prints a summary of the user’s information.

Make another method called greet_user() that prints a personalized

greeting to the user.

Create several instances representing different users, and call both

methods for each user.

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

eric = User('eric', 'matthes', 'e_matthes', 'e_matthes@example.com',

'alaska')

eric.describe_user()

eric.greet_user()

willie = User('willie', 'burger', 'willieburger', 'wb@example.com',

'alaska')

willie.describe_user()

willie.greet_user()

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

Welcome back, e_matthes!

Willie Burger

 Username: willieburger

 Email: wb@example.com

 Location: Alaska

Welcome back, willieburger!

top

9-4: Number Served

Start with your program from Exercise 9-1 (page 166). Add an

attribute called number_served with a default value of 0. Create an

instance called restaurant from this class. Print the number of

customers the restaurant has served, and then change this value and

print it again.

Add a method called set_number_served() that lets you set the

number of customers that have been served. Call this method with a

new number and print the value again.

Add a method called increment_number_served() that lets you

increment the number of customers who’ve been served. Call this

method with any number you like that could represent how many

customers were served in, say, a day of business.

class Restaurant():

 """A class representing a restaurant."""

 def __init__(self, name, cuisine_type):

 """Initialize the restaurant."""

 self.name = name.title()

 self.cuisine_type = cuisine_type

 self.number_served = 0

 def describe_restaurant(self):

 """Display a summary of the restaurant."""

 msg = self.name + " serves wonderful " + self.cuisine_type + "."

 print("\n" + msg)

 def open_restaurant(self):

 """Display a message that the restaurant is open."""

 msg = self.name + " is open. Come on in!"

 print("\n" + msg)

 def set_number_served(self, number_served):

 """Allow user to set the number of customers that have been

served."""

 self.number_served = number_served

 def increment_number_served(self, additional_served):

 """Allow user to increment the number of customers

served."""

 self.number_served += additional_served

restaurant = Restaurant('the mean queen', 'pizza')

restaurant.describe_restaurant()

print("\nNumber served: " + str(restaurant.number_served))

restaurant.number_served = 430

print("Number served: " + str(restaurant.number_served))

restaurant.set_number_served(1257)

print("Number served: " + str(restaurant.number_served))

restaurant.increment_number_served(239)

print("Number served: " + str(restaurant.number_served))

Output:

The Mean Queen serves wonderful pizza.

Number served: 0

Number served: 430

Number served: 1257

Number served: 1496

top

9-5: Login Attempts

Add an attribute called login_attempts to your User class from

Exercise 9-3 (page 166). Write amehtod called

increment_login_attempts() that increments the value of

login_attempts by 1. Write another method called

reset_login_attempts() that resets the value of login_attempts to 0.

Make an instance of the User class and call

increment_login_attempts() several times. Print the value of

login_attempts to make sure it was incremented properly, and then

call reset_login_attempts(). Print login_attempts again to make sure

it was reset to 0.

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 self.login_attempts = 0

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

 def increment_login_attempts(self):

 """Increment the value of login_attempts."""

 self.login_attempts += 1

 def reset_login_attempts(self):

 """Reset login_attempts to 0."""

 self.login_attempts = 0

eric = User('eric', 'matthes', 'e_matthes', 'e_matthes@example.com',

'alaska')

eric.describe_user()

eric.greet_user()

print("\nMaking 3 login attempts...")

eric.increment_login_attempts()

eric.increment_login_attempts()

eric.increment_login_attempts()

print(" Login attempts: " + str(eric.login_attempts))

print("Resetting login attempts...")

eric.reset_login_attempts()

print(" Login attempts: " + str(eric.login_attempts))

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

Welcome back, e_matthes!

Making 3 login attempts...

 Login attempts: 3

Resetting login attempts...

 Login attempts: 0

top

9-6: Ice Cream Stand

An ice cream stand is a specific kind of restaurant. Write a class

called IceCreamStand that inherits from the Restaurant class you

wrote in Exercise 9-1 (page 166) or Exercise 9-4 (page 171). Eitehr

version of the class will work; just pick the one you like better. Add

an attribute called flavors that stores a list of ice cream flavors.

Write a method that displays theese flavors. Create an instance of

IceCreamStand, and call this method.

class Restaurant():

 """A class representing a restaurant."""

 def __init__(self, name, cuisine_type):

 """Initialize the restaurant."""

 self.name = name.title()

 self.cuisine_type = cuisine_type

 self.number_served = 0

 def describe_restaurant(self):

 """Display a summary of the restaurant."""

 msg = self.name + " serves wonderful " + self.cuisine_type + "."

 print("\n" + msg)

 def open_restaurant(self):

 """Display a message that the restaurant is open."""

 msg = self.name + " is open. Come on in!"

 print("\n" + msg)

 def set_number_served(self, number_served):

 """Allow user to set the number of customers that have been

served."""

 self.number_served = number_served

 def increment_number_served(self, additional_served):

 """Allow user to increment the number of customers

served."""

 self.number_served += additional_served

class IceCreamStand(Restaurant):

 """Represent an ice cream stand."""

 def __init__(self, name, cuisine_type='ice_cream'):

 """Initialize an ice cream stand."""

 super().__init__(name, cuisine_type)

 self.flavors = []

 def show_flavors(self):

 """Display the flavors available."""

 print("\nWe have the following flavors available:")

 for flavor in self.flavors:

 print("- " + flavor.title())

big_one = IceCreamStand('The Big One')

big_one.flavors = ['vanilla', 'chocolate', 'black cherry']

big_one.describe_restaurant()

big_one.show_flavors()

Output:

The Big One serves wonderful ice_cream.

We have the following flavors available:

- Vanilla

- Chocolate

- Black Cherry

top

9-7: Admin

An administrator is a special kind of user. Write a class called

Admin that inherits from the User class you wrote in Exercise 9-3

(page 166) or Exercise 9-5 (page 171). Add an attribute, privileges,

that stores a list of strings like "can add post", "can delete post",

"can ban user", and so on. WRite a method called show_privileges()

that lists the administrator’s set of privileges. Create an instance of

Admin, and call your method.

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 self.login_attempts = 0

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

 def increment_login_attempts(self):

 """Increment the value of login_attempts."""

 self.login_attempts += 1

 def reset_login_attempts(self):

 """Reset login_attempts to 0."""

 self.login_attempts = 0

class Admin(User):

 """A user with administrative privileges."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the admin."""

 super().__init__(first_name, last_name, username, email,

location)

 self.privileges = []

 def show_privileges(self):

 """Display the privileges this administrator has."""

 print("\nPrivileges:")

 for privilege in self.privileges:

 print("- " + privilege)

eric = Admin('eric', 'matthes', 'e_matthes',

'e_matthes@example.com', 'alaska')

eric.describe_user()

eric.privileges = [

 'can reset passwords',

 'can moderate discussions',

 'can suspend accounts',

]

eric.show_privileges()

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

Privileges:

- can reset passwords

- can moderate discussions

- can suspend accounts

top

9-8: Privileges

Write a separate Privileges class. The class should have one

attribute, privileges, that stores a list of strings as described in

Exercise 9-7. Move the show_privileges() method to this class. Make

a Privileges instance as an attribute in the Admin class. Create a

new instance of Admin and use your method to show its privileges.

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 self.login_attempts = 0

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

 def increment_login_attempts(self):

 """Increment the value of login_attempts."""

 self.login_attempts += 1

 def reset_login_attempts(self):

 """Reset login_attempts to 0."""

 self.login_attempts = 0

class Admin(User):

 """A user with administrative privileges."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the admin."""

 super().__init__(first_name, last_name, username, email,

location)

 # Initialize an empty set of privileges.

 self.privileges = Privileges()

class Privileges():

 """A class to store an admin's privileges."""

 def __init__(self, privileges=[]):

 self.privileges = privileges

 def show_privileges(self):

 print("\nPrivileges:")

 if self.privileges:

 for privilege in self.privileges:

 print("- " + privilege)

 else:

 print("- This user has no privileges.")

eric = Admin('eric', 'matthes', 'e_matthes',

'e_matthes@example.com', 'alaska')

eric.describe_user()

eric.privileges.show_privileges()

print("\nAdding privileges...")

eric_privileges = [

 'can reset passwords',

 'can moderate discussions',

 'can suspend accounts',

]

eric.privileges.privileges = eric_privileges

eric.privileges.show_privileges()

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

Privileges:

- This user has no privileges.

Adding privileges...

Privileges:

- can reset passwords

- can moderate discussions

- can suspend accounts

top

9-9: Battery Upgrade

Use the final version of electric_car.py from this section. Add a

method to the Battery class called upgrade_battery(). This method

should check the battery size and set the capacity to 85 if it isn’t

already. Make an electric car with a default battery size, call

get_range() once, and then call get_range() a second time after

upgrading the battery. You should see an increase in the car’s range.

class Car():

 """A simple attempt to represent a car."""

 def __init__(self, manufacturer, model, year):

 """Initialize attributes to describe a car."""

 self.manufacturer = manufacturer

 self.model = model

 self.year = year

 self.odometer_reading = 0

 def get_descriptive_name(self):

 """Return a neatly formatted descriptive name."""

 long_name = str(self.year) + ' ' + self.manufacturer + ' ' +

self.model

 return long_name.title()

 def read_odometer(self):

 """Print a statement showing the car's mileage."""

 print("This car has " + str(self.odometer_reading) + " miles on

it.")

 def update_odometer(self, mileage):

 """

 Set the odometer reading to the given value.

 Reject the change if it attempts to roll the odometer back.

 """

 if mileage >= self.odometer_reading:

 self.odometer_reading = mileage

 else:

 print("You can't roll back an odometer!")

 def increment_odometer(self, miles):

 """Add the given amount to the odometer reading."""

 self.odometer_reading += miles

class Battery():

 """A simple attempt to model a battery for an electric car."""

 def __init__(self, battery_size=60):

 """Initialize the batteery's attributes."""

 self.battery_size = battery_size

 def describe_battery(self):

 """Print a statement describing the battery size."""

 print("This car has a " + str(self.battery_size) + "-kWh

battery.")

 def get_range(self):

 """Print a statement about the range this battery provides."""

 if self.battery_size == 60:

 range = 140

 elif self.battery_size == 85:

 range = 185

 message = "This car can go approximately " + str(range)

 message += " miles on a full charge."

 print(message)

 def upgrade_battery(self):

 """Upgrade the battery if possible."""

 if self.battery_size == 60:

 self.battery_size = 85

 print("Upgraded the battery to 85 kWh.")

 else:

 print("The battery is already upgraded.")

class ElectricCar(Car):

 """Models aspects of a car, specific to electric vehicles."""

 def __init__(self, manufacturer, model, year):

 """

 Initialize attributes of the parent class.

 Then initialize attributes specific to an electric car.

 """

 super().__init__(manufacturer, model, year)

 self.battery = Battery()

print("Make an electric car, and check the battery:")

my_tesla = ElectricCar('tesla', 'model s', 2016)

my_tesla.battery.describe_battery()

print("\nUpgrade the battery, and check it again:")

my_tesla.battery.upgrade_battery()

my_tesla.battery.describe_battery()

print("\nTry upgrading the battery a second time.")

my_tesla.battery.upgrade_battery()

my_tesla.battery.describe_battery()

Output:

Make an electric car, and check the battery:

This car has a 60-kWh battery.

Upgrade the battery, and check it again:

Upgraded the battery to 85 kWh.

This car has a 85-kWh battery.

Try upgrading the battery a second time.

The battery is already upgraded.

This car has a 85-kWh battery.

top

9-10: Imported Restaurant

Using your latest Restaurant class, store it in a module. Make a

separate file that imports Restaurant. Make a Restaurant instance,

and call one of Restaurant’s methods to show that the import

statement is working properly.

restaurant.py:

"""A class representing a restaurant."""

class Restaurant():

 """A class representing a restaurant."""

 def __init__(self, name, cuisine_type):

 """Initialize the restaurant."""

 self.name = name.title()

 self.cuisine_type = cuisine_type

 self.number_served = 0

 def describe_restaurant(self):

 """Display a summary of the restaurant."""

 msg = self.name + " serves wonderful " + self.cuisine_type + "."

 print("\n" + msg)

 def open_restaurant(self):

 """Display a message that the restaurant is open."""

 msg = self.name + " is open. Come on in!"

 print("\n" + msg)

 def set_number_served(self, number_served):

 """Allow user to set the number of customers that have been

served."""

 self.number_served = number_served

 def increment_number_served(self, additional_served):

 """Allow user to increment the number of customers

served."""

 self.number_served += additional_served

my_restaurant.py:

from restaurant import Restaurant

channel_club = Restaurant('the channel club', 'steak and seafood')

channel_club.describe_restaurant()

channel_club.open_restaurant()

Output:

The Channel Club serves wonderful steak and seafood.

The Channel Club is open. Come on in!

top

9-11: Imported Admin

Start with your work from Exercise 9-8 (page 178). Store the classes

User, Privileges and Admin in one module. Create a separate file,

make an Admin instance, and call show_priveleges() to show that

everything is working correctly.

user.py:

"""A collection of classes for modeling users."""

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 self.login_attempts = 0

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

 def increment_login_attempts(self):

 """Increment the value of login_attempts."""

 self.login_attempts += 1

 def reset_login_attempts(self):

 """Reset login_attempts to 0."""

 self.login_attempts = 0

class Admin(User):

 """A user with administrative privileges."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the admin."""

 super().__init__(first_name, last_name, username, email,

location)

 # Initialize an empty set of privileges.

 self.privileges = Privileges([])

class Privileges():

 """Stores privileges associated with an Admin account."""

 def __init__(self, privileges):

 """Initialize the privileges object."""

 self.privilege = privileges

 def show_privileges(self):

 """Display the privileges this administrator has."""

 for privilege in self.privileges:

 print("- " + privilege)

my_user.py:

from user import Admin

eric = Admin('eric', 'matthes', 'e_matthes',

'e_matthes@example.com', 'alaska')

eric.describe_user()

eric_privileges = [

 'can reset passwords',

 'can moderate discussions',

 'can suspend accounts',

]

eric.privileges.privileges = eric_privileges

print("\nThe admin " + eric.username + " has these privileges: ")

eric.privileges.show_privileges()

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

The admin e_matthes has these privileges:

- can reset passwords

- can moderate discussions

- can suspend accounts

top

9-12: Multiple Modules

Store the User class in one module, and store the Privileges and

Admin classes in a separate module. In a separate file, create an

Admin instance and call show_privileges() to show that everything is

still working correctly.

user.py:

"""A class for modeling users."""

class User():

 """Represent a simple user profile."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the user."""

 self.first_name = first_name.title()

 self.last_name = last_name.title()

 self.username = username

 self.email = email

 self.location = location.title()

 self.login_attempts = 0

 def describe_user(self):

 """Display a summary of the user's information."""

 print("\n" + self.first_name + " " + self.last_name)

 print(" Username: " + self.username)

 print(" Email: " + self.email)

 print(" Location: " + self.location)

 def greet_user(self):

 """Display a personalized greeting to the user."""

 print("\nWelcome back, " + self.username + "!")

 def increment_login_attempts(self):

 """Increment the value of login_attempts."""

 self.login_attempts += 1

 def reset_login_attempts(self):

 """Reset login_attempts to 0."""

 self.login_attempts = 0

admin.py:

"""A collection of classes for modeling an admin user account."""

from user import User

class Admin(User):

 """A user with administrative privileges."""

 def __init__(self, first_name, last_name, username, email,

location):

 """Initialize the admin."""

 super().__init__(first_name, last_name, username, email,

location)

 # Initialize an empty set of privileges.

 self.privileges = Privileges([])

class Privileges():

 """Stores privileges associated with an Admin account."""

 def __init__(self, privileges):

 """Initialize the privileges object."""

 self.privilege = privileges

 def show_privileges(self):

 """Display the privileges this administrator has."""

 for privilege in self.privileges:

 print("- " + privilege)

my_admin.py

from admin import Admin

eric = Admin('eric', 'matthes', 'e_matthes',

'e_matthes@example.com', 'alaska')

eric.describe_user()

eric_privileges = [

 'can reset passwords',

 'can moderate discussions',

 'can suspend accounts',

]

eric.privileges.privileges = eric_privileges

print("\nThe admin " + eric.username + " has these privileges: ")

eric.privileges.show_privileges()

Output:

Eric Matthes

 Username: e_matthes

 Email: e_matthes@example.com

 Location: Alaska

The admin e_matthes has these privileges:

- can reset passwords

- can moderate discussions

- can suspend accounts

top

9-13: OrderedDict Rewrite

Start with Exercise 6-4 (page 108), where you used a standard

dictionary to represent a glossary. Rewrite the program using the

OrderedDict class and make sure the order of the output matches

the order in which key-value pairs were added to the dictionary.

Note: In Python 3.6, dictionaries store keys in order. However, this is

not guaranteed to work in all versions of Python, so you should still

use an OrderedDict when you need key-value pairs to be stored in a

particular order.

from collections import OrderedDict

glossary = OrderedDict()

glossary['string'] = 'A series of characters.'

glossary['comment'] = 'A note in a program that the Python

interpreter ignores.'

glossary['list'] = 'A collection of items in a particular order.'

glossary['loop'] = 'Work through a collection of items, one at a time.'

glossary['dictionary'] = "A collection of key-value pairs."

glossary['key'] = 'The first item in a key-value pair in a dictionary.'

glossary['value'] = 'An item associated with a key in a dictionary.'

glossary['conditional test'] = 'A comparison between two values.'

glossary['float'] = 'A numerical value with a decimal component.'

glossary['boolean expression'] = 'An expression that evaluates to

True or False.'

for word, definition in glossary.items():

 print("\n" + word.title() + ": " + definition)

Output:

String: A series of characters.

Comment: A note in a program that the Python interpreter ignores.

List: A collection of items in a particular order.

Loop: Work through a collection of items, one at a time.

Dictionary: A collection of key-value pairs.

Key: The first item in a key-value pair in a dictionary.

Value: An item associated with a key in a dictionary.

Conditional Test: A comparison between two values.

Float: A numerical value with a decimal component.

Boolean Expression: An expression that evaluates to True or False.

top

9-14: Dice

The module random contains functions that generate random

numbers in a variety of ways. The function randint() returns an

integer in the range you provide. the following code returns a

number between 1 and 6:

from random import randint

x = randint(1, 6)

Make a class Die with one attribute called sides, which has a default

value of 6. Write a method called roll_die() that prints a random

number between 1 and the number of sides the die has. Make a 6-

sided die and roll it 10 times.

Make a 10-sided die and a 20-sided die. Roll each die 10 times.

from random import randint

class Die():

 """Represent a die, which can be rolled."""

 def __init__(self, sides=6):

 """Initialize the die."""

 self.sides = sides

 def roll_die(self):

 """Return a number between 1 and the number of sides."""

 return randint(1, self.sides)

Make a 6-sided die, and show the results of 10 rolls.

d6 = Die()

results = []

for roll_num in range(10):

 result = d6.roll_die()

 results.append(result)

print("10 rolls of a 6-sided die:")

print(results)

Make a 10-sided die, and show the results of 10 rolls.

d10 = Die(sides=10)

results = []

for roll_num in range(10):

 result = d10.roll_die()

 results.append(result)

print("\n10 rolls of a 10-sided die:")

print(results)

Make a 20-sided die, and show the results of 10 rolls.

d20 = Die(sides=20)

results = []

for roll_num in range(10):

 result = d20.roll_die()

 results.append(result)

print("\n10 rolls of a 20-sided die:")

print(results)

Output:

10 rolls of a 6-sided die:

[5, 5, 6, 3, 6, 4, 2, 2, 1, 1]

10 rolls of a 10-sided die:

[8, 9, 8, 10, 7, 1, 3, 5, 3, 4]

10 rolls of a 20-sided die:

[4, 3, 18, 17, 3, 1, 13, 12, 5, 14]

