

PROGRAMMING

FUNDAMENTALS

NAME: MUZAMIL AHMAD KHAN

STUDENT ID: 16941

DEPARTMENT: BS-SE

FINAL TERM ASSIGNMENT

Iqra National University Peshawar Pakistan

Department of Computer Science
Spring Semester, Final Term Exam, June 2020

Paper:
Programming
Fundamentals

Date and Starting
Time: 26/June/2020, 9:00 am

Program: BS (CS & SE) Uploading Date
and End Time: 26/June/2020, 3:00 pm

Teacher Name: Dr. Fazal-e-Malik Marks 50

Note: Attempt all Questions. Help can be taken from net where ever
is required.

Q1).

 A). What is the purpose of if statement? Discuss its two different
forms with examples.

 Ans). The if/else statement

The if/else statement extends the if statement by specifying an action if
the if (true/false expression) is false.

if (condition){ // do this if condition is true // if
true statements}else{ // do this is condition is false
// if false statements}

With the if statement, a program will execute the true code block or do
nothing. With the if/else statement, the program will execute either the
true code block or the false code block so something is always executed
with an if/else statement.

Flow chart view of if/else

Where to use two statements versus one if/else statement

Use two if statements if both if statement conditions could be true at the
same time.

In this example, both conditions can be true. You can pass and do great
at the same time.

Use an if/else statement if the two conditions are mutually exclusive
meaning if one condition is true the other condition must be false.

if (testScore > 60) cout << "You pass" << endl;if
(testScore > 90) cout << "You did great" << endl;

For example, before noon (AM) and after noon (PM) are mutually
exclusive. It is either one or the other. Using a 24-hour time system (12 is

noon and 24 is midnight), if the time of day is >=12 it is PM, else it is
AM.

if (timeOfDay >=12) cout << "PM" << endl;else // it must
be AM cout << "AM" << endl;

Curly brackets with if/else statements

The else part of the if/else statement follows the same rules as the if
part. If you want to execute multiple statements for the else condition,
enclose the code in curly brackets. If you only need to execute a single
statement for the else condition, you do not need to use curly brackets.

if (condition){ multiple statements}else single
statementif (condition) { multiple statements}else
{ multiple statements}

The if/else if statement

The if/else if statement allows you to create a chain of if statements. The
if statements are evaluated in order until one of the if expressions is true
or the end of the if/else if chain is reached. If the end of the if/else if
chain is reached without a true expression, no code blocks are executed.

if (condition1){ // do this if condition1 is true //
condition 1 statements // then exit if/else if}else if
(condition2){ // do this if condition2 is true //
condition 2 statements // then exit if/else if}else if
(condition3) { // do this if condition3 is true //
condition3 statements // then exit if/else if }//
continuation point after if/else if is complete

Flow chart view

if/else if flow control

Note: It is very important to understand that once a condition is found
to be true, no other if statements are evaluated and once the code block
for the true statement is completed, the program continues from the end
of the if/else if statement.

Let's look at an example of this.

Where to use if/else if

Use the “if/else if” if you need to choose either one or none of a series
of options. You could write the above program using separate if
statements such as show below but the if/else if approach is cleaner and
better indicates that the program should choose either one or none of
the options.

Add a trailing else to the
if/else if statement

You can add a trailing else statement to the if/else if statement if you
want to execute code if none of the if statements are true.

Menu driven programs

The C++ Early Objects book contains a discussion (p. 181) of menu
driven programs. In a menu driven program, the user is presented with
a menu or series of options. The user then selects an option and the
program proceeds with execution based on the menu selection. if/else if
statements are often used to control program flow in menu driven
programs.

Q1).

B). Write a C++ program to read two numbers from

keyboard and then find the
LARGEST number of them.

Ans). #include <iostream>

using namespace std;

int main()

{

 int num1, num2;

 cout<<"Enter first number:";

 cin>>num1;

 cout<<"Enter second number:";

 cin>>num2;

 if(num1>num2)

 {

cout<<"First number "<<num1<<" is the largest";

 }

 Else

 {

cout<<"Second number "<<num2<<" is the largest";

 }

 return 0;

}

Q2).

 A). What are the Logical Operators? Explain them.

ANS). LOGICAL OPERATORS

Kenneth Leroy Busbee and Dave Braunschweig

Overview

A logical operator is a symbol or word used to connect two
or more expressions such that the value of the compound
expression produced depends only on that of the original
expressions and on the meaning of the operator.[1] Common

logical operators include AND, OR, and NOT.

Discussion

Within most languages, expressions that yield Boolean data
type values are divided into two groups. One group uses the

relational operators within their expressions and the other
group uses logical operators within their expressions.

The logical operators are often used to help create a test
expression that controls program flow. This type of expression
is also known as a Boolean expression because they create a

Boolean answer or value when evaluated. There are three
common logical operators that give a Boolean value by
manipulating other Boolean operand(s). Operator symbols
and/or names vary with different programming languages:

Language AND OR NOT

C++ && || !

C# && || !

Java && || !

JavaScript && || !

Python and or not

Swift && || !

The vertical dashes or piping symbol is found on the same key

as the backslash \. You use the SHIFT key to get it. It is just
above the Enter key on most keyboards. It may be a solid
vertical line on some keyboards and show as a solid vertical
line on some print fonts.

In most languages there are strict rules for forming proper

logical expressions. An example is:

https://press.rebus.community/programmingfundamentals/chapter/logical-operators/#footnote-215-1

6 > 4 && 2 <= 14

6 > 4 and 2 <= 14

This expression has two relational operators and one logical
operator. Using the precedence of operator rules the two
“relational comparison” operators will be done before the
“logical and” operator. Thus:

true && true

True and True

The final evaluation of the expression is: true.

We can say this in English as: It is true that six is greater than

four and that two is less than or equal to fourteen.

When forming logical expressions programmers often use
parentheses (even when not technically needed) to make the
logic of the expression very clear. Consider the above complex
Boolean expression rewritten:

(6 > 4) && (2 <= 14)

(6 > 4) and (2 <= 14)

Most programming languages recognize any non-zero value as
true. This makes the following a valid expression:

6 > 4 && 8

6 > 4 and 8

But remember the order of operations. In English, this is six is

greater than four and eight is not zero. Thus,

true && true

True and True

To compare 6 to both 4 and 8 would instead be written as:

6 > 4 && 6 > 8

6 > 4 and 6 > 8

This would evaluate to false as:

true && false

True and False

Truth Tables

A common way to show logical relationships is in truth tables.

Logical and (&&)

x y x and y

false false false

false true false

true false false

true true true

Logical or (||)

x y x or y

false false false

false true true

true false true

true true true

Logical not (!)

x not x

false true

true false

Examples

I call this example of why I hate “and” and love “or”.

Every day as I came home from school on Monday through

Thursday; I would ask my mother, “May I go outside and
play?” She would answer, “If your room is clean and your
homework is done then you may go outside and play.” I
learned to hate the word “and”. I could manage to get one of
the tasks done and have some time to play before dinner, but
both of them… well, I hated “and”.

On Friday my mother took a more relaxed viewpoint and when
asked if I could go outside and play she responded, “If your
room is clean or your homework is done then you may go
outside and play.” I learned to clean my room quickly on

Friday afternoon. Well, needless to say, I loved “or”.

For the next example, just imagine a teenager talking to their
mother. During the conversation, mom says, “After all, your
Dad is reasonable!” The teenager says, “Reasonable. (short
pause) Not.”

Maybe college professors will think that all their students
studied for the exam. Ha ha! Not. Well, I hope you get the
point.

Examples:

 25 < 7 || 15 > 36

 15 > 36 || 3 < 7

 14 > 7 && 5 <= 5

 4 > 3 && 17 <= 7

 ! false

 ! (13 != 7)

 9 != 7 && ! 0

 5 > 1 && 7

More examples:

 25 < 7 or 15 > 36

 15 > 36 or 3 < 7

 14 > 7 and 5 <= 5

 4 > 3 and 17 <= 7

 not False

 not (13 != 7)

 9 != 7 and not 0

 5 > 1 and 7

Key Terms

logical operator

An operator used to create complex Boolean expressions.

truth tables

A common way to show logical relationships

|| (OR)

https://javascript.info/logical-operators#or

The “OR” operator is represented with two vertical line
symbols:
result = a || b;

In classical programming, the logical OR is meant to

manipulate boolean values only. If any of its arguments are
true, it returns true, otherwise it returns false.

In JavaScript, the operator is a little bit trickier and more
powerful. But first, let’s see what happens with boolean values.

There are four possible logical combinations:
alert(true || true); // truealert(false || true);
// truealert(true || false); // truealert(false ||
false); // false

As we can see, the result is always true except for the case

when both operands are false.

If an operand is not a boolean, it’s converted to a boolean for
the evaluation.

For instance, the number 1 is treated as true, the number 0 as

false:
if (1 || 0) { // works just like if(true || false)
alert('truthy!');}

Most of the time, OR || is used in an if statement to test if

any of the given conditions is true.

For example:
let hour = 9;if (hour < 10 || hour > 18) { alert('The
office is closed.');}

We can pass more conditions:
let hour = 12;let isWeekend = true;if (hour < 10 || hour >
18 || isWeekend) { alert('The office is closed.'); //
it is the weekend}

OR “||” finds the first

truthy value

The logic described above is somewhat classical. Now, let’s
bring in the “extra” features of JavaScript.

The extended algorithm works as follows.

https://javascript.info/logical-operators#or-finds-the-first-truthy-value
https://javascript.info/logical-operators#or-finds-the-first-truthy-value

Given multiple OR’ed values:
result = value1 || value2 || value3;

The OR || operator does the following:

 Evaluates operands from left to right.
 For each operand, converts it to boolean. If the result is
true, stops and returns the original value of that operand.

 If all operands have been evaluated (i.e. all were false),

returns the last operand.

A value is returned in its original form, without the conversion.

In other words, a chain of OR "||" returns the first truthy

value or the last one if no truthy value is found.

For instance:
alert(1 || 0); // 1 (1 is truthy)alert(null || 1); //
1 (1 is the first truthy value)alert(null || 0 || 1); //
1 (the first truthy value)alert(undefined || null || 0);
// 0 (all falsy, returns the last value)

This leads to some interesting usage compared to a “pure,
classical, boolean-only OR”.

1. Getting the first truthy value from a list of variables
or expressions.

2. For instance, we have firstName, lastName and nickName

variables, all optional.

3. Let’s use OR || to choose the one that has the data and

show it (or anonymous if nothing set):
4. let firstName = "";let lastName = "";let nickName =
"SuperCoder";alert(firstName || lastName || nickName
|| "Anonymous"); // SuperCoder

5. If all variables were falsy, Anonymous would show up.

6. Short-circuit evaluation.

7. Another feature of OR || operator is the so-called “short-

circuit” evaluation.

8. It means that || processes its arguments until the first

truthy value is reached, and then the value is returned
immediately, without even touching the other argument.

9. That importance of this feature becomes obvious if an
operand isn’t just a value, but an expression with a side
effect, such as a variable assignment or a function call.

10. In the example below, only the second message is
printed:

11. true || alert("not printed");false ||
alert("printed");

12. In the first line, the OR || operator stops the

evaluation immediately upon seeing true, so the alert

isn’t run.

13. Sometimes, people use this feature to execute
commands only if the condition on the left part is falsy.

&& (AND)

The AND operator is represented with two ampersands &&:
result = a && b;

In classical programming, AND returns true if both operands

are truthy and false otherwise:
alert(true && true); // truealert(false && true);
// falsealert(true && false); // falsealert(false &&
false); // false

An example with if:
let hour = 12;let minute = 30;if (hour == 12 && minute ==
30) { alert('The time is 12:30');}

Just as with OR, any value is allowed as an operand of AND:
if (1 && 0) { // evaluated as true && false alert("won't
work, because the result is falsy");}

AND “&&” finds the first
falsy value

Given multiple AND’ed values:
result = value1 && value2 && value3;

The AND && operator does the following:

 Evaluates operands from left to right.

https://javascript.info/logical-operators#and
https://javascript.info/logical-operators#and-finds-the-first-falsy-value
https://javascript.info/logical-operators#and-finds-the-first-falsy-value

 For each operand, converts it to a boolean. If the result is
false, stops and returns the original value of that operand.

 If all operands have been evaluated (i.e. all were truthy),

returns the last operand.

In other words, AND returns the first falsy value or the last
value if none were found.

The rules above are similar to OR. The difference is that AND

returns the first falsy value while OR returns the first truthy
one.

Examples:
// if the first operand is truthy,// AND returns the
second operand:alert(1 && 0); // 0alert(1 && 5); //
5// if the first operand is falsy,// AND returns it. The
second operand is ignoredalert(null && 5); //
nullalert(0 && "no matter what"); // 0

We can also pass several values in a row. See how the first

falsy one is returned:
alert(1 && 2 && null && 3); // null

When all values are truthy, the last value is returned:
alert(1 && 2 && 3); // 3, the last one

Precedence of AND && is higher than OR ||

The precedence of AND && operator is higher than OR ||.

So the code a && b || c && d is essentially the same as if the

&& expressions were in parentheses: (a && b) || (c && d).

Don’t replace if with || or &&

Sometimes, people use the AND && operator as a "shorter to

write if".

For instance:
let x = 1;(x > 0) && alert('Greater than zero!');

The action in the right part of && would execute only if the

evaluation reaches it. That is, only if (x > 0) is true.

So we basically have an analogue for:
let x = 1;if (x > 0) alert('Greater than zero!');

Although, the variant with && appears shorter, if is more

obvious and tends to be a little bit more readable. So we

recommend using every construct for its purpose: use if if we

want if and use && if we want AND.

! (NOT)

The boolean NOT operator is represented with an exclamation
sign !.

The syntax is pretty simple:
result = !value;

The operator accepts a single argument and does the
following:

14. Converts the operand to boolean type: true/false.

15. Returns the inverse value.

For instance:
alert(!true); // falsealert(!0); // true

A double NOT !! is sometimes used for converting a value to

boolean type:
alert(!!"non-empty string"); // truealert(!!null); //
false

That is, the first NOT converts the value to boolean and

returns the inverse, and the second NOT inverses it again. In
the end, we have a plain value-to-boolean conversion.

There’s a little more verbose way to do the same thing – a
built-in Boolean function:
alert(Boolean("non-empty string")); //
truealert(Boolean(null)); // false

Q2).

 B). Write a C++ program to get Temperature in

Fahrenheit F and then find the Atmosphere according to

the below rules:

 If temperature F is above 40 degree Fahrenheit then

display…………………..Very Hot.

https://javascript.info/logical-operators#not

 If temperature F is between 35 & 40 degree

Fahrenheit then display………Tolerable.

 If temperature F is between 30 & 35 degree

Fahrenheit then display………Warm.

If temperature F is less than 30 degree Fahrenheit then

display………….……Cool.

Ans). #include <iostream>

 using namespace std;

 int main()

 {

 int f;

 cout<<"Enter temperature in fahrenheit";

 cin>>f;

 if(f > 40)

 {

 cout<<"Very hot. "<<f<<" is the temperature";

 }

 else if(f>=35 && f<=40)

 {

 cout<<"tolerable. "<<f<<" is the temperature";

 }else if(f >=30 && f<35){

 cout<<"warm. "<<f<<" is the temperature";

 }else if(f <30){

 cout<<"Cool. "<<f<<" is the temperature";

 }

 return 0;

 }

Q3).

A). What does looping mean? Explain different loops in c++.

Ans). In this tutorial, we will learn about the C++ for loop and its

working with the help of some examples.

In computer programming, loops are used to repeat a block of

code.

For example, let's say we want to show a message 100 times. Then

instead of writing the print statement 100 times, we can use a

loop.

That was just a simple example; we can achieve much more

efficiency and sophistication in our programs by making effective

use of loops.

There are 3 types of loops in C++.
 for loop
 while loop
 do...while loop

This tutorial focuses on C++ for loop. We will learn about the other

type of loops in the upcoming tutorials.

C++ for loop

The syntax of for-loop is:
for (initialization; condition; update) { // body of-
loop }

Here,
 initialization - initializes variables and is executed only

once
 condition - if true, the body of for loop is executed

if false, the for loop is terminated
 update - updates the value of initialized variables and again

checks the condition

To learn more about conditions, check out our tutorial on C++

Relational and Logical Operators.

Flowchart of for Loop in C++

Flowchart of for loop in C++

Example 1: Printing Numbers From 1 to 5

https://www.programiz.com/cpp-programming/relational-logical-operators
https://www.programiz.com/cpp-programming/relational-logical-operators

#include <iostream>using namespace std;int main()
{ for (int i = 1; i <= 5; ++i) { cout << i
<< " "; } return 0;}

Run Code

Output
1 2 3 4 5

Here is how this program works

Iteration Variable i <= 5 Action

1st i = 1 true 1 is printed. i is
increased to 2.

2nd i = 2 true 2 is printed. i is
increased to 3.

3rd i = 3 true 3 is printed. i is
increased to 4.

4th i = 4 true 4 is printed. i is
increased to 5.

5th i = 5 true 5 is printed. i is
increased to 6.

6th i = 6 false The loop is

terminated

Example 2: Display a text 5 times
// C++ Program to display a text 5 times#include
<iostream>using namespace std;int main() { for (int i =
1; i <= 5; ++i) { cout << "Hello World! " <<
endl; } return 0;}

Run Code

Output
Hello World!Hello World!Hello World!Hello World!Hello
World!

Here is how this program works

Iteration Variable i <= 5 Action

1st i = 1 true
Hello World!
is printed and
i is increased

to 2.

2nd i = 2 true

Hello World!
is printed and
i is increased

to 3.

3rd i = 3 true

Hello World!
is printed and
i is increased

to 4.

4th i = 4 true

Hello World!
is printed and
i is increased

to 5.

5th i = 5 true

Hello World!
is printed and
i is increased

to 6.

6th i = 6 false The loop is

terminated

Example 3: Find the sum of first n Natural Numbers
// C++ program to find the sum of first n natural
numbers// positive integers such as 1,2,3,...n are known
as natural numbers#include <iostream>using namespace
std;int main() { int num, sum; sum = 0; cout <<
"Enter a positive integer: "; cin >> num; for (int
count = 1; count <= num; ++count) { sum +=
count; } cout << "Sum = " << sum << endl; return
0;}

Run Code

Output
Enter a positive integer: 10Sum = 55

In the above example, we have two variables num and sum. The

sum variable is assigned with 0 and the num variable is assigned

with the value provided by the user.

Note that we have used a for loop.
for(int count = 1; count <= num; ++count)

Here,
 int count = 1: initializes the count variable
 count <= num: runs the loop as long as count is less than or

equal to num
 ++count: increase the count variable by 1 in each iteration

When count becomes 11, the condition is false and sum will be

equal to 0 + 1 + 2 + ... + 10.

Ranged Based for Loop

In C++11, a new range-based for loop was introduced to work

with collections such as arrays and vectors. Its syntax is:
for (variable : collection) { // body of loop}

Here, for every value in the collection, the for loop is executed

and the value is assigned to the variable.

Example 4: Range Based for Loop
#include <iostream>using namespace std;int main()
{ int num_array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (int n : num_array) { cout << n << " "; }
return 0;}

Run Code

Output
1 2 3 4 5 6 7 8 9 10

In the above program, we have declared and initialized an int

array named num_array. It has 10 items.

Here, we have used a range-based for loop to access all the

items in the array.

C++ Infinite for loop

If the condition in a for loop is always true, it runs forever (until

memory is full). For example,
// infinite for loopfor(int i = 1; i > 0; i++) { //
block of code}

In the above program, the condition is always true which will

then run the code for infinite times.

Check out these examples to learn more:

 C++ Program to Calculate Sum of Natural Numbers

 C++ Program to Find Factorial

https://www.programiz.com/cpp-programming/examples/sum-natural-number
https://www.programiz.com/cpp-programming/examples/factorial

 C++ Program to Generate Multiplication Table

C++ WHILE AND DO...WHILE LOOP

In this tutorial, we will learn the use of while and do...while loops in

C++ programming with the help of some examples.

In computer programming, loops are used to repeat a block of

code.

For example, let's say we want to show a message 100 times. Then

instead of writing the print statement 100 times, we can use a

loop.

That was just a simple example; we can achieve much more

efficiency and sophistication in our programs by making effective

use of loops.

There are 3 types of loops in C++.
16. for loop
17. while loop
18. do...while loop

In the previous tutorial, we learned about the C++ for loop. Here,

we are going to learn about while and do...while loops.

C++ while Loop

The syntax of the while loop is:
while (condition) { // body of the loop}

Here,

 A while loop evaluates the condition

 If the condition evaluates to true, the code inside the while

loop is executed.

 The condition is evaluated again.

 This process continues until the condition is false.

 When the condition evaluates to false, the loop terminates.

To learn more about the conditions, visit C++ Relational and

Logical Operators.

https://www.programiz.com/cpp-programming/examples/multiplication-table
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/relational-logical-operators
https://www.programiz.com/cpp-programming/relational-logical-operators

Flowchart of while Loop

Flowchart of C++ while loop

Example 1: Display Numbers from 1 to 5
// C++ Program to print numbers from 1 to 5#include
<iostream>using namespace std;int main() { int i = 1;
// while loop from 1 to 5 while (i <= 5) { cout
<< i << " "; ++i; } return 0;}

Run Code

Output
1 2 3 4 5

Here is how the program works.

Iteration Variable i <= 5 Action

1st i = 1 true
1 is printed

and i is
increased to 2.

2nd i = 2 true
2 is printed

and i is
increased to 3.

3rd i = 3 true
3 is printed

and i is
increased to 4

4th i = 4 true
4 is printed

and i is
increased to 5.

5th i = 5 true
5 is printed

and i is
increased to 6.

6th i = 6 false The loop is

terminated

Example 2: Sum of Positive Numbers Only
// program to find the sum of positive numbers// if the
user enters a negative number, the loop ends// the
negative number entered is not added to the sum#include
<iostream>using namespace std;int main() { int number;
int sum = 0; // take input from the user cout <<
"Enter a number: "; cin >> number; while (number >=
0) { // add all positive numbers sum +=
number; // take input again if the number is
positive cout << "Enter a number: "; cin >>
number; } // display the sum cout << "\nThe sum
is " << sum << endl; return 0;}

Run Code

Output
Enter a number: 6Enter a number: 12Enter a number: 7Enter
a number: 0Enter a number: -2The sum is 25

In this program, the user is prompted to enter a number, which is

stored in the variable number.

In order to store the sum of the numbers, we declare a variable

sum and initialize it to the value of 0.

The while loop continues until the user enters a negative number.

During each iteration, the number entered by the user is added

to the sum variable.

When the user enters a negative number, the loop terminates.

Finally, the total sum is displayed.

C++ do...while Loop

The do...while loop is a variant of the while loop with one

important difference: the body of do...while loop is executed

once before the condition is checked.

Its syntax is:
do { // body of loop;}while (condition);

Here,

 The body of the loop is executed at first. Then the condition is

evaluated.

 If the condition evaluates to true, the body of the loop

inside the do statement is executed again.

 The condition is evaluated once again.

 If the condition evaluates to true, the body of the loop

inside the do statement is executed again.

 This process continues until the condition evaluates to false.

Then the loop stops.

Flowchart of do...while Loop

Flowchart of C++ do...while loop

Example 3: Display Numbers from 1 to 5
// C++ Program to print numbers from 1 to 5#include
<iostream>using namespace std;int main() { int i = 1;

// do...while loop from 1 to 5 do { cout << i <<
" "; ++i; } while (i <= 5); return 0;}

Run Code

Output
1 2 3 4 5

Here is how the program works.

Iteration Variable i <= 5 Action

 i = 1 not checked
1 is printed

and i is
increased to 2

1st i = 2 true
2 is printed

and i is
increased to 3

2nd i = 3 true
3 is printed

and i is
increased to 4

3rd i = 4 true
4 is printed

and i is
increased to 5

4th i = 5 true
5 is printed

and i is
increased to 6

5th i = 6 false The loop is

terminated

Example 4: Sum of Positive Numbers Only
// program to find the sum of positive numbers// If the
user enters a negative number, the loop ends// the
negative number entered is not added to the sum#include
<iostream>using namespace std;int main() { int number =
0; int sum = 0; do { sum += number; //
take input from the user cout << "Enter a number:
"; cin >> number; } while (number >= 0);
// display the sum cout << "\nThe sum is " << sum <<
endl; return 0;}

Run Code

Output 1
Enter a number: 6Enter a number: 12Enter a number: 7Enter
a number: 0Enter a number: -2The sum is 25

Here, the do...while loop continues until the user enters a

negative number. When the number is negative, the loop

terminates; the negative number is not added to the sum variable.

Output 2
Enter a number: -6The sum is 0.

The body of the do...while loop runs only once if the user enters

a negative number.

Infinite while loop

If the condition of a loop is always true, the loop runs for infinite

times (until the memory is full). For example,
// infinite while loopwhile(true) { // body of the
loop}

Here is an example of an infinite do...while loop.
// infinite do...while loopint count = 1;do { // body of
loop} while(count == 1);

In the above programs, the condition is always true. Hence, the

loop body will run for infinite times.

for vs while loops

A for loop is usually used when the number of iterations is known.

For example,
// This loop is iterated 5 timesfor (int i = 1; i <=5;
++i) { // body of the loop}

Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the

number of iterations is unknown. For example,
while (condition) { // body of the loop}

Check out these examples to learn more:

 C++ Program to Display Fibonacci Series

 C++ Program to Find GCD

 C++ Program to Find LCM

C++ BREAK STATEMENT

In this tutorial, we will learn about the break statement and its

working in loops with the help of examples.

In computer programming, the break statement is used to

terminate the loop in which it is used.

The syntax of the break statement is:
break;

Before you learn about the break statement, make sure you know

about:

 C++ for loop

 C++ if...else

 C++ while loop

Working of C++ break

Statement

https://www.programiz.com/cpp-programming/examples/fibonacci-series
https://www.geeksforgeeks.org/c-program-find-gcd-hcf-two-numbers/
https://www.programiz.com/cpp-programming/examples/lcm
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/do-while-loop

Working of break statement in C++

Example 1: break with for

loop

// program to print the value of i#include <iostream>using
namespace std;int main() { for (int i = 1; i <= 5; i++)
{ // break condition if (i == 3)
{ break; } cout << i <<
endl; }return 0;}

Run Code

Output
12

In the above program, the for loop is used to print the value of i

in each iteration. Here, notice the code:
if (i == 3) { break;}

This means, when i is equal to 3, the break statement terminates

the loop. Hence, the output doesn't include values greater than

or equal to 3.

Note: The break statement is usually used with decision-making

statements.

Example 2: break with while

loop

// program to find the sum of positive numbers// if the
user enters a negative numbers, break ends the loop// the
negative number entered is not added to sum#include
<iostream>using namespace std;int main() { int number;
int sum = 0; while (true) { // take input from
the user cout << "Enter a number: "; cin >>
number; // break condition if (number < 0)
{ break; } // add all positive
numbers sum += number; } // display the sum
cout << "The sum is " << sum << endl; return 0;}

Run Code

Output
Enter a number: 1Enter a number: 2Enter a number: 3Enter a
number: -5The sum is 6.

In the above program, the user enters a number. The while loop is

used to print the total sum of numbers entered by the user. Here,

notice the code,
if(number < 0) { break;}

This means, when the user enters a negative number, the break

statement terminates the loop and codes outside the loop are

executed.

The while loop continues until the user enters a negative number.

break with Nested loop

When break is used with nested loops, break terminates the inner

loop. For example,
// using break statement inside// nested for loop#include
<iostream>using namespace std;int main() { int number;
int sum = 0; // nested for loops // first loop
for (int i = 1; i <= 3; i++) { // second loop
for (int j = 1; j <= 3; j++) { if (i == 2)
{ break; } cout << "i
= " << i << ", j = " << j << endl; } } return
0;}

Run Code

Output
i = 1, j = 1i = 1, j = 2i = 1, j = 3i = 3, j = 1i = 3, j =
2i = 3, j = 3

In the above program, the break statement is executed when i

== 2. It terminates the inner loop, and the control flow of the

program moves to the outer loop.

Hence, the value of i = 2 is never displayed in the output.

Q3).

B). Write a C++ Program to read a number from keyboard and

then determine whether it is even or odd number?

Ans). #include <iostream>

using namespace std;

int main()

{

 int n;

 cout << "Enter an integer:

 "; cin >> n;

 if (n % 2 == 0)

 cout << n << " is even.";

 Else

 cout << n << " is odd.";

 return 0;

}

Q4).

A). What is the purpose of using break and continue

statements?

Ans). The major difference between break and continue statements in
C language is that a break causes the innermost enclosing loop or switch

to be exited immediately. Whereas, the continue statement causes the
next iteration of the enclosing for, while, or do loop to begin. The
continue statement in while and do loops takes the control to the loop's
test-condition immediately, whereas in the for loop it takes the control
to the increment step of the loop.

The continue statement applies only to loops, not to switch. A
continue inside a switch inside a loop causes the next loop iteration.

Practically, break is used in switch, when we want to exit after a
particular case is executed; and in loops, when it becomes desirable to
leave the loop as soon as a certain condition occurs (for instance, you
detect an error condition, or you reach the end of your data prematurely).

The continue statement is used when we want to skip one or more
statements in loop's body and to transfer the control to the next iteration.

Difference Between break
and continue

Difference Between break and continue

break continue

A break can appear in both
switch and loop (for,
while, do) statements.

A continue can appear
only in loop (for, while,
do) statements.

A break causes the switch
or loop statements to
terminate the moment it is
executed. Loop or switch
ends abruptly when break
is encountered.

A continue doesn't
terminate the loop, it
causes the loop to go to the
next iteration. All
iterations of the loop are
executed even if continue
is encountered. The
continue statement is
used to skip statements in
the loop that appear after
the continue.

The break statement can
be used in both switch
and loop statements.

The continue statement
can appear only in loops.
You will get an error if this
appears in switch
statement.

When a break statement is
encountered, it terminates
the block and gets the
control out of the switch
or loop.

When a continue
statement is encountered,
it gets the control to the
next iteration of the loop.

A break causes the
innermost enclosing loop
or switch to be exited
immediately.

A continue inside a loop
nested within a switch
causes the next loop
iteration.

Similarities Between break
and continue

Both break and continue statements in C programming language have
been provided to alter the normal flow of program.

Example using break

The following function, trim, removes trailing blanks, tabs and newlines
from the end of a string, using a break to exit from a loop when the
rightmost non-blank, non-tab, non-newline is found.

/* trim: remove trailing blanks, tabs, newlines */int
trim(char s[]){ int n; for (n = strlen(s)-1; n >= 0; n-
-) if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n')
break; s[n+1] = '\0'; return n;}

strlen returns the length of the string. The for loop starts at the end
and scans backwards looking for the first character that is not a blank or

tab or newline. The loop is broken when one is found, or when n
becomes negative (that is, when the entire string has been scanned).

How does break statement works?

http://www.opengroup.org/onlinepubs/009695399/functions/strlen.html

Example using continue

As an example, the following piece of code sums up the non-negative
elements in the array a; negative values are skipped.

/* sum up non-negative elements of an array */ #include
<stdio.h> int main(){ int a[10] = {-1, 2, -3, 4, -5, 6, -
7, 8, -9, 10}; int i, sum = 0; for (i = 0; i < 10; i++)
{ if (a[i] < 0) /* skip negative elements */ continue;
sum += a[i]; /* sum positive elements */ } printf("Sum
of positive elements: %d\n", sum);} OUTPUT======Sum of
positive elements: 30

How continue statement work?

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Q4).

B). Write a C++ program to find the sum of the following

numbers:

1+2+3+………+10

Ans). #include <iostream>

 using namespace std;

 int main()

 {

 int i,sum=0;

 cout << "\n\n Find the first 10 natural numbers:\n";

 cout << "---------------------------------------\n";

 cout << " The natural numbers are: \n";

 for (i = 1; i <= 10; i++)

 {

 cout << i << " ";

 sum=sum+i;

 }

 cout << "\n The sum of first 10 natural numbers: "<<sum
<< endl;

 }

 Q5). What is an array? Explain on-Dimensional and Two-

dimensional Arrays with examples.

Ans). What is an Array?

An array is a collection of one or more values of the same type.

Each value is called an element of the array. The elements of the

array share the same variable name but each element has its

own unique index number (also known as a subscript). An array

can be of any type, For example: int, float, char etc. If an array

is of type int then it’s elements must be of type int only.

To store roll no. of 100 students, we have to declare an array of

size 100 i.e roll_no[100]. Here size of the array is 100 , so it is

capable of storing 100 values. In C, index or subscript starts from 0,

so roll_no[0] is the first element, roll_no[1] is the second

element and so on. Note that the last element of the array will be

at roll_no[99] not at roll_no[100] because the index starts at 0.

Arrays can be single or multidimensional. The number of subscript

or index determines the dimensions of the array. An array of one

dimension is known as a one-dimensional array or 1-D array, while

an array of two dimensions is known as a two-dimensional array or

2-D array.

Let’s start with a one-dimensional array.

One-dimensional array

Conceptually you can think of a one-dimensional array as a row,

where elements are stored one after another.

Syntax: datatype array_name[size];

datatype: It denotes the type of the elements in the array.

array_name: Name of the array. It must be a valid identifier.

size: Number of elements an array can hold.

here are some example of array declarations:
1
2
3

int num[100];
float temp[20];
char ch[50];

num is an array of type int, which can only store 100 elements of

type int.

temp is an array of type float, which can only store 20 elements

of type float.

ch is an array of type char, which can only store 50 elements of

type char.

Note: When an array is declared it contains garbage values.

The individual elements in the array:
1
2
3

num[0], num[1], num[2],,
num[99]
temp[0], temp[1], temp[2],,
temp[19]
ch[0], ch[1], ch[2],, ch[49]

We can also use variables and symbolic constants to specify the

size of the array.
1
2
3
4
5
6
7
8
9
10

#define SIZE 10

int main()
{
 int size = 10;

 int my_arr1[SIZE]; // ok
 int my_arr2[size]; // not
allowed until C99
 // ...
}

Note: Until C99 standard, we were not allowed to use variables to

specify the size of the array. If you are using a compiler which

supports C99 standard, the above code would compile

successfully. However, If you’re using an older version of C

compiler like Turbo C++, then you will get an error.

The use of symbolic constants makes the program maintainable,

because later if you want to change the size of the array you

need to modify it at once place only i.e in the #define directive.

Accessing elements of an

array

The elements of an array can be accessed by specifying array

name followed by subscript or index inside square brackets (i.e

[]). Array subscript or index starts at 0. If the size of an array is 10

then the first element is at index 0, while the last element is at

index 9. The first valid subscript (i.e 0) is known as the lower bound,

while last valid subscript is known as the upper bound.
1 int my_arr[5];

then elements of this array are;

First element – my_arr[0]

Second element – my_arr[1]

Third element – my_arr[2]

Fourth element – my_arr[3]

Fifth element – my_arr[4]

Array subscript or index can be any expression that yields an

integer value. For example:
1
2
3
4

int i = 0, j = 2;
my_arr[i]; // 1st element
my_arr[i+1]; // 2nd element
my_arr[i+j]; // 3rd element

In the array my_arr, the last element is at my_arr[4], What if you

try to access elements beyond the last valid index of the array?
1
2
3

printf("%d", my_arr[5]); // 6th
element
printf("%d", my_arr[10]); // 11th
element
printf("%d", my_arr[-1]); //
element just before 0

Sure indexes 5, 10 and -1 are not valid but C compiler will not

show any error message instead some garbage value will be

printed. The C language doesn’t check bounds of the array. It is

the responsibility of the programmer to check array bounds

whenever required.

Processing 1-D arrays

The following program uses for loop to take input and print

elements of a 1-D array.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include<stdio.h>

int main()
{
 int arr[5], i;

 for(i = 0; i < 5; i++)
 {
 printf("Enter a[%d]: ", i);
 scanf("%d", &arr[i]);
 }

 printf("\nPrinting elements of
the array: \n\n");

 for(i = 0; i < 5; i++)
 {
 printf("%d ", arr[i]);
 }

 // signal to operating system
program ran fine
 return 0;
}

Expected Output:
1
2
3
4
5
6
7
8
9

Enter a[0]: 11
Enter a[1]: 22
Enter a[2]: 34
Enter a[3]: 4
Enter a[4]: 34

Printing elements of the array:

11 22 34 4 34

How it works:

In Line 5, we have declared an array of 5 integers and variable i

of type int. Then a for loop is used to enter five elements into an

array. In scanf() we have used & operator (also known as the

address of operator) on element arr[i] of an array, just like we

had done with variables of type int, float, char etc. Line 13

prints "Printing elements of the array" to the console. The

second for loop prints all the elements of an array one by one.

The following program prints the sum of elements of an array.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include<stdio.h>

int main()
{
 int arr[5], i, s = 0;

 for(i = 0; i < 5; i++)
 {
 printf("Enter a[%d]: ", i);
 scanf("%d", &arr[i]);
 }

 for(i = 0; i < 5; i++)
 {
 s += arr[i];
 }

 printf("\nSum of elements
= %d ", s);

 // signal to operating system
program ran fine
 return 0;
}

Expected Output:
1
2
3
4
5
6
7

Enter a[0]: 22
Enter a[1]: 33
Enter a[2]: 56
Enter a[3]: 73
Enter a[4]: 23

Sum of elements = 207

How it works:

The first for loop asks the user to enter five elements into the array.

The second for loop reads all the elements of an array one by

one and accumulate the sum of all the elements in the variable

s. Note that it is necessary to initialize the variable s to 0,

otherwise, we will get the wrong answer because of the garbage

value of s.

Initializing Array

When an array is declared inside a function the elements of the

array have garbage value. If an array is global or static, then its

elements are automatically initialized to 0. We can explicitly

initialize elements of an array at the time of declaration using the

following syntax:

Syntax: datatype array_name[size] = { val1, val2,
val3, valN };

datatype is the type of elements of an array.

array_name is the variable name, which must be any valid

identifier.

size is the size of the array.

val1, val2 … are the constants known as initializers. Each value is

separated by a comma(,) and then there is a semi-colon (;)

after the closing curly brace (}).

Here is are some examples:
1
2
3

float temp[5] = {12.3, 4.1, 3.8,
9.5, 4.5}; // an array of 5 floats

int arr[9] = {11, 22, 33, 44, 55, 66,
77, 88, 99}; // an array of 9 ints

While initializing 1-D array it is optional to specify the size of the

array, so you can also write the above statements as:
1
2
3

float temp[] = {12.3, 4.1, 3.8, 9.5,
4.5}; // an array of 5 floats

int arr[] = {11, 22, 33, 44, 55, 66,
77, 88, 99}; // an array of 9 ints

If the number of initializers is less than the specified size then the

remaining elements of the array are assigned a value of 0.
1 float temp[5] = {12.3, 4.1};

here the size of temp array is 5 but there are only two initializers.

After this initialization the elements of the array are as follows:

temp[0] is 12.3

temp[1] is 4.1

temp[2] is 0

temp[3] is 0

temp[4] is 0

If the number of initializers is greater than the size of the array

then, the compiler will report an error. For example:
1 int num[5] = {1, 2, 3, 4, 5, 6, 7, 8}

// error

The following program finds the highest and lowest elements in an

array.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include<stdio.h>
#define SIZE 10

int main()
{
 int my_arr[SIZE] =
{34,56,78,15,43,71,89,34,70,91};
 int i, max, min;

 max = min = my_arr[0];

 for(i = 0; i < SIZE; i++)
 {
 // if value of current
element is greater than
previous value
 // then assign new value
to max
 if(my_arr[i] > max)
 {
 max = my_arr[i];
 }

 // if the value of current
element is less than previous
element
 // then assign new value
to min

28
29
30
31
32
33

 if(my_arr[i] < min)
 {
 min = my_arr[i];
 }
 }

 printf("Lowest value = %d\n",
min);
 printf("Highest value = %d",
max);

 // signal to operating system
everything works fine
 return 0;
}

Expected Output:
1
2

Lowest value = 15
Highest value = 91

How it works:

In line 6, first, we have declared and initialized an array of 10

integers. In the next line, we have declared three more variables

of type int namely: i, max and min. In line 9, we have assigned

the value of the first element of my_arr to max and min. A for loop

is used to iterate through all the elements of an array. Inside the

for loop, the first if condition (my_arr[i] > max) checks whether

the current element is greater than max, if it is, we assign the value

of the current element to max.

The second if statement checks whether the value of the current

element is smaller than the value of min. If it is, we assign the value

of the current element to min. This process continues until there

are elements in the array left to iterate.

When the process is finished, max and min variables will have

maximum and minimum values respectively.

Passing 1-D array elements to

a function

We can pass elements of 1-D array just like any normal variables.

The following example demonstrates the same.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include<stdio.h>
void odd_or_even(int a);

int main()
{
 int my_arr[] = {13,56,71,38,93},
i;

 for(i = 0; i < 5; i++)
 {
 // passing one element at
a time to odd_or_even()
function
 odd_or_even(my_arr[i]);
 }

 // signal to operating system
program ran fine
 return 0;
}

void odd_or_even(int a)
{
 if(a % 2 == 0)
 {
 printf("%d is even\n", a);
 }

 else
 {
 printf("%d is odd\n", a);
 }
}

Expected Output:
1
2
3
4
5

13 is odd
56 is even
71 is odd
38 is even
93 is odd

Passing the whole Array to a

Function

Just like normal variables you can pass an array variable to a

function. But before you do so, make sure the formal arguments is

declared as an array variable of same data type. For example:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

int main()
{
 ...
 int a[10];
 ...
 function_1(a);
 ...
 return 0;
}

void function_1(int arr[10])
{
 ...
 statement ;1
 ...
}

Here we are passing an array of 10 integers to function_1(),

that’s why the formal argument of function_1() is also declared

as an array of 10 integers.

It is optional to specify the size of the array in the formal

arguments. This means you can also declare formal argument of

function_1() as follows:
1
2
3
4
5
6

void function_1(int arr[])
{
 ...
 statement 1;
 ...
}

While learning about formal and actual arguments, we have

learned that changes made in the formal arguments do not

affect the actual arguments. This is not the case with arrays. When

an array is passed as an actual argument, the function gets

access to the original array, so any changes made inside the

function will affect the original array.
1
2

#include<stdio.h>
void new_array(int a[]);

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

int main()
{
 int my_arr[] = {13,56,71,38,93},
i;

 printf("Original array: \n\n");

 for(i = 0; i < 5; i++)
 {
 printf("%d ", my_arr[i]);
 }

 new_array(my_arr);

 printf("\n\nModified array :
\n\n");

 for(i = 0; i < 5; i++)
 {
 printf("%d ", my_arr[i]);
 }

 // signal to operating system
program ran fine
 return 0;
}

void new_array(int a[])
{
 int i;

 // multiply original elements
by 2

 for(i = 0; i < 5; i++)
 {
 a[i] = 2 * a[i];
 }
}

Expected Output:
1
2
3

Original Array:

13 56 71 38 93

4
5
6
7

Modified array:

26 112 142 76 186

How it works:

The first for loop in main() function prints the initial values of the

elements of an array. In line 15, new_array() function is called

with an actual argument of my_arr. The Control is transferred to

function new_array(). The function multiplies each element of the

array by 2 and assigns back this new value to the current index.

Since new_array() is working on the original array, not on a copy

of the original array, any changes made by new_array() function

affect the original array. When the function finishes, control again

passes back to main() function, where second for loop prints the

elements of the array.

Two-dimensional Array

The syntax declaration of 2-D array is not much different from 1-D

array. In 2-D array, to declare and access elements of a 2-D array

we use 2 subscripts instead of 1.

Syntax: datatype array_name[ROW][COL];

The total number of elements in a 2-D array is ROW*COL. Let’s take

an example.
1 int arr[2][3];

This array can store 2*3=6 elements. You can visualize this 2-D

array as a matrix of 2 rows and 3 columns.

The individual elements of the above array can be accessed by

using two subscript instead of one. The first subscript denotes row

number and second denotes column number. As we can see in

the above image both rows and columns are indexed from 0. So

the first element of this array is at arr[0][0] and the last element

is at arr[1][2]. Here are how you can access all the other

elements:

arr[0][0] – refers to the first element

arr[0][1] – refers to the second element

arr[0][2] – refers to the third element

arr[1][0] – refers to the fourth element

arr[1][1] – refers to the fifth element

arr[1][2] – refers to the sixth element

If you try to access an element beyond valid ROW and COL , C

compiler will not display any kind of error message, instead, a

garbage value will be printed. It is the responsibility of the

programmer to handle the bounds.

arr[1][3] – a garbage value will be printed, because the last

valid index of COL is 2

arr[2][3] – a garbage value will be printed, because the last

valid index of ROW and COL is 1 and 2 respectively

Just like 1-D arrays, we can only also use constants and symbolic

constants to specify the size of a 2-D array.
1 #define ROW 2

2
3
4
5
6

#define COL 3

int i = 4, j = 6;
int arr[ROW][COL]; // OK
int new_arr[i][j]; // ERROR

Processing elements of a 2-D

array

To process elements of a 2-D array, we use two nested loop. The

outer for loop to loop through all the rows and inner for loop to

loop through all the columns. The following program will clear

everything.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include<stdio.h>
#define ROW 3
#define COL 4

int main()
{
 int arr[ROW][COL], i, j;

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 printf("Enter arr[%d][%d]:
", i, j);
 scanf("%d", &arr[i][j]);
 }
 }

 printf("\nEntered 2-D array is:
\n\n");

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 printf("%3d ", arr[i][j]);
 }
 printf("\n");
 }

30 // signal to operating system
everything works fine
 return 0;
}

Expected Output:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Enter arr[0][0]: 11
Enter arr[0][1]: 35
Enter arr[0][2]: 73
Enter arr[0][3]: 831
Enter arr[1][0]: 3
Enter arr[1][1]: 40
Enter arr[1][2]: 31
Enter arr[1][3]: 93
Enter arr[2][0]: 35
Enter arr[2][1]: 10
Enter arr[2][2]: 52
Enter arr[2][3]: 81

Entered 2-D array is:

11 35 73 831
3 40 31 93
35 10 52 81

How it works:

There is nothing new in this previous program that deserves any

explanation. We are just using two nested for loops. The first

nested for loop takes input from the user. And the second for loop

prints the elements of a 2-D array like a matrix.

Initializing 2-D array

Initialization of 2-D array is similar to a 1-D array. For e.g:
1
2
3
4

int temp[2][3] = {
 { 1, 2, 3 }, // row 0
 {11, 22, 33} // row 1
};

After this initialization, each element is as follows:

1
2
3
4
5
6

temp[0][0] : 1
temp[0][1] : 2
temp[0][2] : 3
temp[1][0] : 11
temp[1][1] : 22
temp[1][2] : 33

Consider another initialization.
1
2
3
4
5
6

int my_arr[4][3] = {
 {10},
 {77, 92},
 {33, 89, 44},
 {12, 11}
 };

The size of my_arr is 4*3=12 , but in the initialization, we have only

specified the value of 8 elements. In such cases, the remaining

elements will be given the value of 0.

The individual elements are as follows:
1
2
3
4
5
6
7
8
9
10

my_arr[0][0] : 10
my_arr[0][1] : 0
my_arr[0][2] : 0

my_arr[1][0] : 77
my_arr[1][1] : 92
my_arr[1][2] : 0

my_arr[2][0] : 33
my_arr[2][1] : 89

11
12
13
14
15

my_arr[2][2] : 44

my_arr[3][0] : 12
my_arr[3][1] : 11
my_arr[4][2] : 0

In 2-D arrays, it is optional to specify the first dimension but the

second dimension must always be present. This works only when

you are declaring and initializing the array at the same time. For

example:
1
2
3
4

int two_d[][3] = {
 {13,23,34},
 {15,27,35}
 };

is same as
1
2
3
4

int two_d[2][3] = {
 {13, 23, 34},
 {15, 27, 35}
 };

As discussed earlier you can visualize a 2-D array as a matrix. The

following program demonstrates the addition of two matrices.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include<stdio.h>
#define ROW 2
#define COL 3

int main()
{
 int mat1[ROW][COL],
mat2[ROW][COL],
mat3[ROW][COL];
 int i, j;

 printf("Enter first matrix:
\n\n");

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 printf("Enter a[%d][%d]: ",
i, j);
 scanf("%d", &mat1[i][j]);
 }

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 }

 printf("\nEnter Second matrix:
\n\n");

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 printf("Enter a[%d][%d]: ",
i, j);
 scanf("%d", &mat2[i][j]);
 }
 }

 // add mat1 and mat2

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 mat3[i][j] = mat1[i][j] +
mat2[i][j] ;
 }
 }

 printf("\nResultant array:
\n\n");

 // print resultant array

 for(i = 0; i < ROW; i++)
 {
 for(j = 0; j < COL; j++)
 {
 printf("%5d ", mat3[i][j]);
 }
 printf("\n");
 }

 // signal to operating system
program ran fine
 return 0;
}

Expected Output:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Enter first matrix:

Enter a[0][0]: 12
Enter a[0][1]: 32
Enter a[0][2]: 13
Enter a[1][0]: 35
Enter a[1][1]: 54
Enter a[1][2]: 35

Enter Second matrix:

Enter a[0][0]: 57
Enter a[0][1]: 64
Enter a[0][2]: 58
Enter a[1][0]: 72
Enter a[1][1]: 84
Enter a[1][2]: 29

Resultant array:

mat1 + mat2 =

69 96 71
107 138 64

How it works:

Two matrices can be added or subtracted, only if they have the

same dimension. In other words, a matrix of size 2*3 can be

added to another matrix of 2*3, but you can’t add or subtract it

to a matrix of 2*4 or 3*2. The resultant array will be a matrix of the

same dimension as the original two. First two for loops asks the

user to enter two matrices. The third for loop adds corresponding

elements of mat1 and mat2 in a new array mat3. Fourth for loop

prints the elements of array mat3.

Arrays of more than two

dimension

You can even create an array of 3 or more dimensions or more,

but generally, you will never need to do so. Therefore, we will

restrict ourself to 3-D arrays only.

Here is how you can declare an array of 3 dimensions.
1 int arr[2][3][2];

3-D array uses three indexes or subscript. This array can store

2*3*2=12 elements.

Here is how to initialize a 3-D array.
1
2
3
4
5
6
7
8
9
10
11
12
13

int three_d[2][3][4] = {
 {
 {12,34,56,12},
 {57,44,62,14},
 {64,36,91,16},
 },

 {
 {87,11,42,82},
 {93,44,12,99},
 {96,34,33,26},
 }
 };

You can think of this array as 2 2-D arrays and each of these 2-D

array has 3 rows and 4 columns;

Here are individual elements of the array:

First Row
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

three_d[0][0][0] : 12
three_d[0][0][1] : 34
three_d[0][0][2] : 56

three_d[0][0][3] : 12
three_d[0][1][0] : 57
three_d[0][1][1] : 44

three_d[0][1][2] : 62
three_d[0][1][3] : 14
three_d[0][2][0] : 64

three_d[0][2][1] : 36
three_d[0][2][2] : 91
three_d[0][2][3] : 16

Second Row
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

three_d[1][0][0] : 87
three_d[1][0][1] : 11
three_d[1][0][2] : 42

three_d[1][0][3] : 82
three_d[1][1][0] : 93
three_d[1][1][1] : 44

three_d[1][1][2] : 12
three_d[1][1][3] : 99
three_d[1][2][0] : 96

three_d[1][2][1] : 34
three_d[1][2][2] : 33
three_d[1][2][3] : 26

Passing Multidimensional

Arrays to Functions

You can pass multi-dimensional arrays to functions just like a 1-D

array, but you need to specify the size of the all other dimensions

except the first one. For e.g:

If you need to pass arr[2][3] to a function called func_1(), then

you need to declare the func_1() like this:
1
2
3
4

void func_1(int my_arr[2][3]) //
OK
{
 //...
}

or like this:
1
2
3
4

void func_1(int my_arr[][3]) //
OK
{
 //...
}

It would be invalid to declare formal argument as follows:
1
2
3
4

void func_1(int my_arr[][]) //
error
{
 //...

}

Similarly to pass a 3-D array you need to declare the function as

follows:
1
2
3
4
5
6

int arr[2][3][4];

void func_1(int my_arr[][3][4])
{
 //...
}

	Ans). The if/else statement
	Flow chart view of if/else
	Where to use two statements versus one if/else statement
	Curly brackets with if/else statements

	The if/else if statement
	Flow chart view
	if/else if flow control
	Where to use if/else if

	Add a trailing else to the if/else if statement
	Menu driven programs
	Ans). Logical Operators
	Overview
	Discussion
	Truth Tables
	Examples

	Key Terms
	|| (OR)
	OR “||” finds the first truthy value
	&& (AND)
	AND “&&” finds the first falsy value
	! (NOT)
	A). What does looping mean? Explain different loops in c++. Ans). In this tutorial, we will learn about the C++ for loop and its working with the help of some examples.

	C++ for loop
	Flowchart of for Loop in C++
	Example 1: Printing Numbers From 1 to 5
	Example 2: Display a text 5 times
	Example 3: Find the sum of first n Natural Numbers

	Ranged Based for Loop
	Example 4: Range Based for Loop
	C++ Infinite for loop

	C++ while and do...while Loop
	In this tutorial, we will learn the use of while and do...while loops in C++ programming with the help of some examples.
	C++ while Loop
	Flowchart of while Loop
	Example 1: Display Numbers from 1 to 5
	Example 2: Sum of Positive Numbers Only

	C++ do...while Loop
	Flowchart of do...while Loop
	Example 3: Display Numbers from 1 to 5
	Example 4: Sum of Positive Numbers Only

	Infinite while loop
	for vs while loops

	C++ break Statement
	In this tutorial, we will learn about the break statement and its working in loops with the help of examples.
	Working of C++ break Statement
	Example 1: break with for loop
	Example 2: break with while loop
	break with Nested loop
	Difference Between break and continue
	Similarities Between break and continue
	Example using break
	strlen returns the length of the string. The for loop starts at the end and scans backwards looking for the first character that is not a blank or tab or newline. The loop is broken when one is found, or when n becomes negative (that is, when the enti...

	Example using continue
	How continue statement work?

	Ans). What is an Array?
	One-dimensional array
	Accessing elements of an array
	Processing 1-D arrays
	Initializing Array
	Passing 1-D array elements to a function
	Passing the whole Array to a Function
	Two-dimensional Array
	Processing elements of a 2-D array
	Initializing 2-D array
	Arrays of more than two dimension
	Passing Multidimensional Arrays to Functions

