IQRA NATIONAL UNIVERSITY

NAME: M OMAR MASOOD

ID: 14305

SUBJECT: BUSINESS PROCESSING ENGINEERING

DEPT: BS(SE) $5^{\text {TH }}$ SEMESTER
 SUBMITTED TO: MAM AASMA

Question No: 01
$(4+3+8)$
a) Define General Process Chart and how it characterizes the process?

ANS(a):

General Process Chart:

The charting of work flows, working processes, systems and procedures is a useful way of recording the essential features of a work situation for subsequent analysis. Process Charts are one of the simpler forms of workflow charting and are still in regular usage.

Summarizes the current process the redesigned process and the expected improvements

- Characterizes the process by
- The number of activities per category
- The amount of time spent in each activity category
- The percentage of the total processing time spent on each category.
- Clearly indicates
- Major problems with the existing process
- How the redesigned process remedies these problems
- Theses problems measured are in terms of the time and the percentage of time spent on value and non-value adding activities.
b) List disadvantages of Process Activity Chart.

ANS(b):

- Disadvantages
- Only considers average activity times
- If the process includes several variants with different paths (i.e. multiple paths through the process) each variant needs its own activity chart
- Cannot depict parallel activities.
c) Compute Load Distance (LD) scores for the below given current and proposed designs and identify which design is the better one;

Current design

Proposed design

Figure 1 Two Designs

	A	B	C	D	E	F
\mathbf{A}		20		20		80
B			10		75	
C				15		90
D					70	

'Figure 2 Load Matrix

ANS(c):

$$
\operatorname{LDscore}(\mathrm{i}, \mathrm{j})=\operatorname{Load}(\mathrm{i}, \mathrm{j}) \times \operatorname{Distance}(\mathrm{i}, \mathrm{j})
$$

LD Calculation for Two Designs

		Current Design			Proposed Design	
Centers	Load	Distance	LD Score		Distance	LD Score
(A,B)	20	2	40		1	20
(A,D)	20	1	20		1	20
(A,F)	80	3	240		3	240
(B,C)	10	2	20		1	10
(B,E)	75	3	225		1	75
(C,D)	15	1	15		3	45
(C,F)	90	1	90		1	90
(D,E)	70	2	140		1	70
Total			790			570

Question No: 02

(5+10)
a. The observation periods for $3,6,5$, and 2 jobs are $10,20,20$, and 10 min , respectively. In other words, the WIP was 3 jobs for $10 \mathrm{~min}, 6$ jobs for 20 $\mathrm{min}, 5$ jobs for 20 min , and 2 jobs for 10 min . Then, calculate the average WIP?

ANS(a):
The average WIP is calculated as follows:

Average WIP =

$$
3 \times 10+6 \times 20+5 \times 20+2 \times 10 \backslash 10+20+20+10=
$$

4.5 jobs.
b. A process management team has studied a process and has developed the flowchart in Figure 3. The team also has determined that the expected waiting and processing times (in minutes) corresponding to each activity in the process are as shown in Table 1.
i. Calculate the average CT for this process.
ii. Calculate the CT efficiency.

Activity	Waiting Time (Min)	Processing Time (Min)
A	20	12
B	15	18
C	5	30
D	12	17
E	3	12
F	5	25
G	8	7
H	5	10
I	15	25
J	5	20
K	4	10

Figure 3 Process Flow Chart
ANS(b):

Calculate the average CT for this process

$$
\text { Average } C T=10+0.1 \times(20+25)+0.9 \times 24+1.15 \times(12+23+35)+15=131.6
$$

ii. Calculate the CT efficiency.

CT efficiency $=$ Process Time / CT

Process time $=12+0.1(18+17)+0.9 \times 30+1.15 \times(12+25+7)+10=103.1 \mathrm{~min}$

CT efficiency $=103.1 / 131.6=0.78$.

Question No: 03

Analyse capacity needs and utilization with the help of below given data and fill the given table using respective formulas;

Activity	Processing Time (Min)	Resource Requirements	Number of Jobs
A	2	R1	1
B	5	R1	0.3
C	8	R2	1
D	3	R2	1.1
E	4	R2	1.1
Inspection	4	-	1.1
F	2	R1	1
G	4	R3	1
H	2	R3	1

ANS:

Resource	Unit Load(Min)	Unit Capacity Jobs/min	Available Resources	Pool Capacity Jobs/min
R1	$2+5^{*} 0.3+2=5.5$	$1 / 5.5$	2	$2 / 5.5=0.36$
R2	$8+1.1^{*}(3+4)=15.7$	$1 / 15.7$	2	$2 / 15.7=0.13$
R3	$4+2=6$	$1 / 6$	1	$1 / 6=0.17$

Question No 04:

 (10)List the steps for TOC Methodology.

ANS: TOC Methodology

1. Identify the system's constraints
2. Determine how to exploit the constraints

- Choose decision/ranking rules for processing jobs in bottleneck

3. Subordinate everything to the decisions in step 2
4. Elevate the constraints to improve performance

- For example, increasing bottleneck capacity through investments in new equipment or labor

5. If the current constraints are eliminated return to step 1

- Don't loose inertia, continuous improvement is necessary!

