
Name Mehran Ali Shah

Id No 13943

Paper Visual Programming

Date-23-09-2020

Question No 1:

(a)

Answer:

Decision Making:

 As we all make decisions in our real life, similarly in the logical

world of programming, decisions are an essential part of executing a

specific block of code based on the fulfillment of the condition. The

control statements control the flow of statements, and based on certain

conditions; different logical blocks are executed. The programming

language provides all these things as a form of conditional statements or

decision-making statements.

These types of statements are used by programmers to determine one or

more conditions evaluated by the program at run-time. Specific blocks

of code associated with these statements will be executed only when the

condition is determined.

Flow Chart:

(b)

Answer:

 using System;

class Program

{

 static void Main(string[] args)

 {

 char gender;

 //Reading gender from user

 Console.WriteLine("Enter gender (M/m or F/f): ");

 gender = Convert.ToChar(Console.ReadLine());

 // checking vowel and consonant

 switch (gender)

 {

 case 'M':

 case 'm': Console.WriteLine("MALE");

 break;

 case 'F':

 case 'f': Console.WriteLine("FEMALE");

 break;

 default: Console.WriteLine("Unspecified Gender");

 break;

 }

 Console.ReadLine();

 }

}

Output:

Question No 2:

(a)

Answer:

If-else-if:

In c#, if-else-if statement or condition is used to define multiple

conditions and execute only one matched condition based on our

requirements. Generally, in c# if statement or if-else statement is useful

when we have one condition to validate and execute the required block

of statements. In case, if we have multiple conditions to validate and

execute only one block of code, then the if-else-if statement is useful in

our application.

Syntax:

if(first-condition) {

// when first condition becomes true

}

else if(second-condition)

{

// when second condition becomes true

}

else if(third-condition)

{

// when third condition becomes true

}

else

{

// when all the conditions are false

}

Flow Chart:

(b)

Answer:

Temp < 0 then Freezing weather

Temp 0-10 then Very Cold weather

Temp 10-20 then Cold weather

Temp 20-30 then Normal in Temp

Temp 30-40 then Its Hot

Temp >=40 then Its Very Hot

Program

using System;

public class Exercise13

{

 public static void Main()

{

 int tmp;

 Console.Write("\n\n");

 Console.Write("Accept a temperature in centigrade and display a

suitable message:\n");

 Console.Write("---

---");

 Console.Write("\n\n");

 Console.Write("Input days temperature : ");

 tmp= Convert.ToInt32(Console.ReadLine());

 if(tmp<0)

 Console.Write("Freezing weather.\n");

 else if(tmp<10)

 Console.Write("Very cold weather.\n");

 else if(tmp<20)

 Console.Write("Cold weather.\n");

 else if(tmp<30)

 Console.Write("Normal in temp.\n");

 else if(tmp<40)

 Console.Write("Its Hot.\n");

 else

 Console.Write("Its very hot.\n");

}

}

Sample Output:

Accept a temperature in centigrade and display a suitable message:

--

Input days temperature : 35

Its Hot.

Question No 3:

(a)

Answer:

Loops:

Looping in a programming language is a way to execute a statement or a

set of statements multiple times depending on the result of the condition

to be evaluated to execute statements. The result condition should be

true to execute statements within loops.

Loops are mainly divided into two categories:

Entry Controlled Loops: The loops in which condition to be tested is

present in beginning of loop body are known as Entry Controlled Loops.

while loop and for loop are entry controlled loops.

Flow Chart:

(b)

Answer:

while loop:

 The test condition is given in the beginning of the loop and all

statements are executed till the given boolean condition satisfies when

the condition becomes false, the control will be out from the while loop.

Syntax:

while (boolean condition)

{

 loop statements...

}

Flow Chart:

Program:

// C# program to illustrate while loop

using System;

class whileLoopDemo

{

 public static void Main()

 {

 int x = 1;

 // Exit when x becomes greater than 4

 while (x <= 4)

 {

 Console.WriteLine("Visual Programming");

 // Increment the value of x for

 // next iteration

 x++;

 }

 }

}

Output:

Visual Programming

Visual Programming

Visual Programming

Visual Programming

for loop:

for loop has similar functionality as while loop but with different

syntax. for loops are preferred when the number of times loop

statements are to be executed is known beforehand. The loop variable

initialization, condition to be tested, and increment/decrement of the

loop variable is done in one line in for loop thereby providing a shorter,

easy to debug structure of looping.

Initialization of loop variable: The expression / variable controlling the

loop is initialized here. It is the starting point of for loop. An already

declared variable can be used or a variable can be declared, local to loop

only.

Testing Condition: The testing condition to execute statements of loop.

It is used for testing the exit condition for a loop. It must return a

boolean value true or false. When the condition became false the control

will be out from the loop and for loop ends.

Increment / Decrement: The loop variable is incremented/decremented

according to the requirement and the control then shifts to the testing

condition again.

Syntax:

for (loop variable initialization ; testing condition;

 increment / decrement)

{

 // statements to be executed

}

Flow Chart:

Program:

// C# program to illustrate for loop.

using System;

class forLoopDemo

{

 public static void Main()

 {

 // for loop begins when x=1

 // and runs till x <=4

 for (int x = 1; x <= 4; x++)

 Console.WriteLine("Visual Programming");

 }

}

Output:

Visual Programming

Visual Programming

Visual Programming

Visual Programming

do-while loop:

do while loop is similar to while loop with the only difference that

it checks the condition after executing the statements, i.e it will execute

the loop body one time for sure because it checks the condition after

executing the statements.

Syntax:

do

{

 statements..

}while (condition);

Flow Chart:

Program:

// C# program to illustrate do-while loop

using System;

class dowhileloopDemo

{

 public static void Main()

 {

 int x = 21;

 do

 {

 // The line will be printed even

 // if the condition is false

 Console.WriteLine("Visual Programming");

 x++;

 }

 while (x < 20);

 }

}

Output:

Visual Programming

Infinite Loops:

The loops in which the test condition does not evaluate false ever tend to

execute statements forever until an external force is used to end it and

thus they are known as infinite loops.

Program:

// C# program to demonstrate infinite loop

using System;

class infiniteLoop

{

 public static void Main()

 {

 // The statement will be printed

 // infinite times

 for(;;)

 Console.WriteLine("This is printed infinite times");

 }

}

Output:

This is printed infinite times

This is printed infinite times

This is printed infinite times

This is printed infinite times

This is printed infinite times

This is printed infinite times

This is printed infinite times

…………………

Question No 4:

Answer:

Because programmers used counting, or indexing variables like this so

often, the for loop was created to simplify the process. Essentially a for

loop is used to iterate through a block of code a specified number of

times, with the use of an iterative variable

Program:

class Program

 {

 static void Main(string[] args)

 {

 for(int k =0; k <= 10; k++)

 {

 Console.WriteLine("Print Number : {0}",k);

 }

 }

 }

Output:

Question No 5:

(a)

Answer:

Encapsulation is defined 'as the process of enclosing one or more items

within a physical or logical package'. Encapsulation, in object oriented

programming methodology, prevents access to implementation details.

Abstraction and encapsulation are related features in object oriented

programming. Abstraction allows making relevant information visible

and encapsulation enables a programmer to implement the desired level

of abstraction. Encapsulation is implemented by using access specifiers.

An access specifier defines the scope and visibility of a class member.

C# supports the following access specifiers −

Public

Private

Protected

Internal

Protected internal

(b)

Answer:

In C#, you can manage encapsulation with access modifiers. For

example, the public access modifier allows access to any code but the

privateaccess modifier restricts access to only members of a type. Other

access modifiers restrict access in the range somewhere between

publicand private.

Program:

using System;

namespace AccessModifiers

{

 class Program

 {

 class AccessMod

 {

 public int num1;

 }

 static void Main(string[] args)

 {

 AccessMod ob1 = new AccessMod();

 //Direct access to public members

 ob1.num1 = 100;

 Console.WriteLine("Number one value in main {0}",

ob1.num1);

 Console.ReadLine();

 }

 }

}

Output:

Number one value in main 100

