Name : ZARAK SALEEM GUL

Subject: Discrete Structure

ID: 16264

Class: 2nd semester SE

Section: (B)

Q.1

Which of the following are propositions?

- a) Buy Premium Bonds!
- b) The Apple Macintosh is a 16 bit computer.
- c) There is a largest even number.d) Why are we here?
- e) 8 + 7 = 13
- f) a + b = 13

Answer: **b** and **c** are both prepositions.

Q.2

p is "x < 50"; q is "x > 40".

Write as simply as you can: (a) ¬p

(b) $\neg q$ (c) $p \land q$ (d) $p \lor q$ (e) $\neg p \land q$ (f) $\neg p \land \neg q$

Answer: (d) x < 50 or x > 40. This is true for all values of x.

Q.3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg p$? (There may be more than one correct answer.)

(a)

p is "Some people like Maths".

(a) "Some people dislike Maths"

(b) "Everybody dislikes Maths"

(c) "Everybody likes Maths"

b)

- p is "The answer is either 2 or 3".
- (a) "Neither 2 nor 3 is the answer"
- (b) "The answer is not 2 or it is not 3"
- (c) "The answer is not 2 and it is not 3"

c)

- p is "All people in my class are tall and thin".
- (a) "Someone in my class is short and fat"
- (b) "No-one in my class is tall and thin"
- (c) "Someone in my class is short or fat"

Answer: In A part the definition correspond to the proposition $\neg p$ is .

a) "Everybody dislikes Maths"

In B parrt the definition correspond to the proposition ¬p is

a)"Neither 2 nor 3 is the answer"

b) "The answer is not 2 and it is not 3"

In C parrt the definition correspond to the proposition ¬p is

a) "Someone in my class is short or fat

Q.4

Construct truth tables for:

- a) $\neg p \lor \neg q$
- b) $q \land (\neg p \lor q)$
- c) $p \land (q \lor r)$
- d) $(p \land q) \lor r$

Answer:

Р	q	¬p	V	¬q
Т	Т	F	F	Т
Т	F	F	Т	F
F	F	Т	Т	F
F	F	Т	Т	Т

Q.5

Use truth tables to show that:

 $\neg ((p \lor \neg q) \lor (r \land (p \lor \neg q))) \equiv \neg p \land q$

Answer: In each case, the result is F,F,F,F,T,T,F,F

Q.6

Use the laws of logical propositions to prove that:

 $(z \land w) \lor (\neg z w) \lor (z \land \neg w) \equiv z \lor w$

State carefully which law you are using at each stage.

Answer:

$$(z \wedge w) \vee (\neg z \wedge w) \vee (z \wedge \neg w) = (z \wedge w) \vee (z \wedge \neg w) \vee (\neg z w)$$
Commutative Law
$$= (z \wedge (w \vee \neg w)) \vee (\neg z w)$$
Distributive Law
$$= (z \wedge T) \vee (\neg z \wedge w)$$
Complement Law
$$= z \vee (\neg z \wedge w)$$
Identity Law
$$= (z \vee \neg z) \wedge (z \vee w)$$
Distributive Law

$=$ T ^ ($z \lor w$)		Complement Law	
$= (z \lor w)$	Т	Commutative Law	
$= z \vee w$		Identity Law	