Name : ZARAK SALEEM GUL

Subject: Discrete Structure

ID: 16264
Class: $\mathbf{2}^{\text {nd }}$ semester SE
Section: (B)
Q. 1

Which of the following are propositions?
a) Buy Premium Bonds!
b) The Apple Macintosh is a 16 bit computer.
c) There is a largest even number.
d) Why are we here?
e) $8+7=13$
f) $a+b=13$

Answer: \mathbf{b} and \mathbf{C} are both prepositions.
Q. 2
p is " $\mathrm{x}<50$ "; q is " $\mathrm{x}>40$ ".
Write as simply as you can:
(a) $\neg p$
(b) $\neg q$
(c) $\mathrm{p} \wedge \mathrm{q}$
(d) $p \vee q$
(e) $\neg p \wedge q$
(f) $\neg p \wedge \neg q$

Answer: (d) $x<50$ or $x>40$. This is true for all values of x.

Q. 3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg \mathrm{p}$? (There may be more than one correct answer.)
(a)
p is "Some people like Maths".
(a) "Some people dislike Maths"
(b) "Everybody dislikes Maths"
(c) "Everybody likes Maths"
b)
p is "The answer is either 2 or 3 ".
(a) "Neither 2 nor 3 is the answer"
(b) "The answer is not 2 or it is not 3 "
(c) "The answer is not 2 and it is not 3 "
c)
p is "All people in my class are tall and thin".
(a) "Someone in my class is short and fat"
(b) "No-one in my class is tall and thin"
(c) "Someone in my class is short or fat"

Answer: In A part the definition correspond to the proposition $\neg \mathrm{p}$ is .
a) "Everybody dislikes Maths"

In B parrt the definition correspond to the proposition $\neg p$ is
a)"Neither 2 nor 3 is the answer"
b) "The answer is not 2 and it is not 3"

In C parrt the definition correspond to the proposition $\neg p$ is
a) "Someone in my class is short or fat

Q. 4

Construct truth tables for:
a) $\neg p \vee \neg q$
b) $q \wedge(\neg p \vee q)$
c) $p \wedge(q \vee r)$
d) $(p \wedge q) \vee r$

Answer:

P	q	$\neg p$	v	$\neg q$
T	T	F	F	T
T	F	F	T	F
F	F	T	T	F
F	T	T	T	

Q. 5

Use truth tables to show that:
$\neg((\mathrm{p} \vee \neg \mathrm{q}) \vee(\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q}))) \equiv \neg \mathrm{p} \wedge \mathrm{q}$
Answer: In each case, the result is F,F,F,F,T,T,F,F
Q. 6

Use the laws of logical propositions to prove that:
$(\mathrm{z} \wedge \mathrm{w}) \vee(\neg \mathrm{z} \mathrm{w}) \vee(\mathrm{z} \wedge \neg \mathrm{w}) \equiv \mathrm{z} \vee \mathrm{w}$
State carefully which law you are using at each stage.

Answer:

$$
\begin{aligned}
\left(z^{\wedge} w\right) \vee(\neg z \wedge w) \vee\left(z^{\wedge} \neg w\right) & =\left(z^{\wedge} w\right) \vee\left(z^{\wedge} \neg w\right) \vee(\neg z w) & & \text { Commutative Law } \\
& =\left(z^{\wedge}(\mathrm{w} \vee \neg w)\right) \vee(\neg z w) & & \text { Distributive Law } \\
& =\left(z^{\wedge} \mathrm{T}\right) \vee\left(\neg z^{\wedge} w\right) & & \text { Complement Law } \\
& =z \vee\left(\neg z^{\wedge} w\right) & & \text { Identity Law } \\
& =(z \vee \neg z)^{\wedge}(z \vee w) & & \text { Distributive Law }
\end{aligned}
$$

$=\mathrm{T}^{\wedge}(z \vee w)$		Complement Law
$=(z \vee w)$	T	Commutative Law
$=z \vee w$		Identity Law

