Graph Theory

Muhammad Adil Asst: Prof: Iqra National University

1. Graph

- A graph is defined as a set of vertices called "Nodes" and set of Arcs called "Edges".
- A graph is denoted by G and is given as $G(V, E)$.
- The graph G is a combination of vertices " v " and Edges "E". E.g.

* In fig we have a graph with vertices " x " and " y " and an edge " e " between x and y .

Graph Terminologies

1. Vertex

* A set of elements is called a vertex Or
- It is a junction where something takes place
- It is also called a Node or Point usually represented by V1, V2, V3 ,......, Vn

2. Edge

* The line that joins two nodes or vertices, and some times it is attached to one node is called an Edge.
* The edges are usually represented by e1, e2 e3,...,en

3. Adjacent Vertices / Nodes

- Two vertices are said to be Adjacent to each other if they are the end points of the same Edge.

- Here x and y are adjacent to each other as they are the end points of the same edge e

4. Adjacent Edges

- Two edges are said to be adjacent to each other if they are incident on a single vertex.

- e1 and e2 are adjacent edges as they share the same vertex i.e. " y "

5. Isolated Vertex

- A vertex that is not connected to any other vertex in the given graph.

- V4 is the Isolated Vertex

6. Path

- A set of consecutive edges from one node to any node is a Path.
- A path of length " n " from node " u " to " v " is defined as a sequence of $n+1$ nodes i.e.

Here the length of path is 1 and it is defined between two nodes u and v

7. Simple Path

- A path from node " u " to " v ", covering minimum number of edges is a simple path.

- Here the Simple Path between V1 and V3 is the diagonal V1V3

8. Closed Path

- A path whose initial and final vertices are same is called a Closed Path

9. Loop / Self Loop

* It is a type of an edge that starts and end at the same vertex. E.g.

10. Cycle

* A closed path with numerically more than three edges e.g.

11. Open Path

- A path whose starting and ending vertices are different e.g.

12. Multiple / Parallel Edges

- When a graph has two or more edges joining the same pair of vertices, then the edges are called Multiple / Parallel edges.

- Here e2, e3 and e4 are parallel edges.

13. Degree of a Node

- It is the number of edges belonging to the node
- For a node " v ", its degree is given by $d(v)$ e.g.

$$
\begin{aligned}
& d(v 1)=1 \\
& d(v 2)=2 \\
& d(v 3)=2 \\
& d(v 4)=1
\end{aligned}
$$

14. In-Degree of a Node / Vertex

- It is the number of edges ending on a node
- It is denoted by $\mathrm{d}(-\mathrm{v})$
- Here in the graph given above
$d(-v 1)=0$
$d(-v 2)=1$
$d(-v 2)=2$
$d(-v 3)=0$

15. Out-Degree of a Node

- It is the number of edges starting from a node " v " OR
- The number of edges leaving a node " v "
- It is defined as d (+v)
- In the graph given above

$$
\begin{aligned}
& d(+v 1)=1 \\
& d(+v 2)=1 \\
& d(+v 3)=0 \\
& d(+v 4)=1
\end{aligned}
$$

16. Total Degree of a Node

- Sum of In-Degree and Out-Degree of a node i.e.

$$
d(v)=d(-v)+d(+v)
$$

Therefore, from above given graph

$$
\begin{aligned}
& d(v 1)=0+1=1 \\
& d(v 2)=1+1=2 \\
& d(v 3)=2+0=2 \\
& d(v 4)=0+1=1
\end{aligned}
$$

17. Source Node

- A node " v " is called source if it has +ve Out-Degree and zero In -Degree, e.g. in above graph

$$
d(-v 1)=0 \quad \text { and } \quad d(+v 1)=1
$$

So v1 is a source node
18. Sink

* A node " v " is called Sink if it has +ve In-Degree and Zero Out-Degree, e.g. in above graph

$$
d(-v 3)=2 \quad \text { and } \quad d(+v 3)=0
$$

So v3 is a Sink

