Department of Electrical Engineering
 Assignment
 Date: 07/05/2020

Course Details

Course Title:	Electrical Network Analysis		Module: Total	4th
Instructor:	$\underline{\text { Dr shehryar sir }}$Totar			
Submission Deadline	$05 / 06 / 2020$			

Student Details

Name: M.Salman shahid \quad Student ID: 15006

Student Signature:

| Q1. | For the circuit in Fig. 1, if $\mathrm{v}=10 \mathrm{e}^{-4 \mathrm{t}} \mathrm{V}$ and $\mathrm{I}=0.2 \mathrm{e}^{-4 \mathrm{t}}, \mathrm{t}>0$
 (a) Find R and C.
 (b) Determine the time constant.
 (c) Calculate the initial energy in the capacitor.
 (d) Obtain the time it takes to dissipate 50 percent of the initial energy. | Marks
 02 |
| :--- | :--- | :--- | :--- |

	Circuit breaker Figure 2	
Q3.	The responses of a series $R L C$ circuit are $\begin{aligned} & v_{c}(t)=-3010 e^{-20 t}+30 e^{-10 t} V \\ & i_{L}(t)=40 e^{-20 t}-60 e^{-10 t} m A \end{aligned}$ where v_{c} and i_{L} are the capacitor voltage and inductor current respectively. Determine the values of R, L, C	$\begin{array}{\|l\|} \hline \text { Marks } \\ 02 \\ \hline \text { CLO } 01 \\ \hline \end{array}$
Q4.	The circuit in Fig. 3 is the electrical analog of body functions used in medical schools to study convulsions. The analog is as follows: $C_{1}=$ Volume of fluid in a drug $C_{2}=$ Volume of blood stream in a specified region $R_{1}=$ Resistance in the passage of the drug from the input to the blood stream $R_{2}=$ Resistance of the excretion mechanism, such as kidney, etc. $\nu 0=$ Initial concentration of the drug dosage $v(t)=$ Percentage of the drug in the blood stream Find $\mathrm{v}(\mathrm{t})$ for $\mathrm{t}>0$ given that $\mathrm{C}_{1}=0.5 \mu \mathrm{~F}, \mathrm{C}_{2}=5 \mu \mathrm{~F}, \mathrm{R}_{1}=5 \mathrm{M} \Omega, \mathrm{R}_{2}=2.5 \mathrm{M} \Omega$ and $v_{0}=60 u(t) V$ Figure 3	$\begin{array}{\|l\|} \hline \text { Marks } \\ 03 \\ \hline \text { CLO } 03 \\ \hline \end{array}$
Q5.	A power transmission system is modeled as shown in Fig. 4. Given the source voltage and circuit elements Source voltage Vs $=115 \angle 0 \mathrm{~V}$, Source impedance $Z s=1+j 0.5 \Omega$, Line impedance $\mathrm{Z}_{\mathrm{I}}=0.4+j 0.3 \Omega$, Load impedance $\mathrm{Z}_{\mathrm{L}}=23.2+j 18.9 \Omega$, find the load current I_{L}	Marks 02 CLO 03

Q 6		For the circuit in Fig. 5, find the average, reactive, and complex power delivered by the dependent current source. Figure 5	Marks 03 CLO 03
Q 7		A balanced Y-load is connected to a $60-\mathrm{Hz}$ three-phase source with $\mathrm{V}_{a b}=240$ $\angle 0^{\circ} \mathrm{V}$. The load has $\mathrm{pf}=0.5$ lagging and each phase draws 5 kW . (a) Determine the load impedance Z_{Y}. (b) Find $\mathrm{I}_{a,} \mathrm{I}_{b}$, and I_{c}.	Marks 5 CLO02

