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PREFACE

Opver the years, I have developed a familiarity with this book in its various
editions, having learned from it, referred to it, and taught from it. The second
edition was used in my first electromagnetics course as a junior during the early
70’s. Its simple and easy-to-read style convinced me that this material could be
learned, and it helped to confirm my latent belief at the time that my specialty
would lie in this direction. Later, it was not surprising to see my own students
coming to me with heavily-marked copies, asking for help on the drill problems,
and taking a more active interest in the subject than I usually observed. So, when
approached to be the new co-author, and asked what I would do to change the
book, my initial feeling was—nothing. Further reflection brought to mind earlier
wishes for more material on waves and transmission lines. As a result, Chapters 1
to 10 are original, while 11 to 14 have been revised, and contain new material.
A conversation with Bill Hayt at the project’s beginning promised the start
of what I thought would be a good working relationship. The rapport was
immediate. His declining health prevented his active participation, but we
seemed to be in general agreement on the approach to a revision. Although I
barely knew him, his death, occurring a short time later, deeply affected me in the
sense that someone that I greatly respected was gone, along with the promise of a
good friendship. My approach to the revision has been as if he were still here. In
the front of my mind was the wish to write and incorporate the new material in a
manner that he would have approved, and which would have been consistent
with the original objectives and theme of the text. Much more could have been
done, but at the risk of losing the book’s identity and possibly its appeal.
Before their deaths, Bill Hayt and Jack Kemmerly completed an entirely
new set of drill problems and end-of-chapter problems for the existing material at
that time, up to and including the transmission lines chapter. These have been
incorporated, along with my own problems that pertain to the new topics. The
other revisions are summarized as follows: The original chapter on plane waves
has now become two. The first (Chapter 11) is concerned with the development
of the uniform plane wave and the treatment wave propagation in various media.
These include lossy materials, where propagation and loss are now modeled in a
general way using the complex permittivity. Conductive media are presented as
special cases, as are materials that exhibit electronic or molecular resonances. A
new appendix provides background on resonant media. A new section on wave
polarization is also included. Chapter 12 deals with wave reflection at single and
multiple interfaces, and at oblique incidence angles. An additional section on
dispersive media has been added, which introduces the concepts of group velo-
city and group dispersion. The effect of pulse broadening arising from group
dispersion is treated at an elementary level. Chapter 13 is essentially the old
transmission lines chapter, but with a new section on transients. Chapter 14 is
intended as an introduction to waveguides and antennas, in which the underlying
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PREFACE

physical concepts are emphasized. The waveguide sections are all new, but the
antennas treatment is that of the previous editions.

The approach taken in the new material, as was true in the original work, is
to emphasize physical understanding and problem-solving skills. I have also
moved the work more in the direction of communications-oriented material,
as this seemed a logical way in which the book could evolve, given the material
that was already there. The perspective has been broadened by an expanded
emphasis toward optics concepts and applications, which are presented along
with the more traditional lower-frequency discussions. This again seemed to be a
logical step, as the importance of optics and optical communications has
increased significantly since the earlier editions were published.

The theme of the text has not changed since the first edition of 1958. An
inductive approach is used that is consistent with the historical development. In
it, the experimental laws are presented as individual concepts that are later
unified in Maxwell’s equations. Apart from the first chapter on vector analysis,
the mathematical tools are introduced in the text on an as-needed basis.
Throughout every edition, as well as this one, the primary goal has been to
enable students to learn independently. Numerous examples, drill problems
(usually having multiple parts), and end-of-chapter problems are provided to
facilitate this. Answers to the drill problems are given below each problem.
Answers to selected end-of-chapter problems can be found on the internet at

A solutions manual is also available.

The book contains more than enough material for a one-semester course.
As is evident, statics concepts are emphasized and occur first in the presentation.
In a course that places more emphasis on dynamics, the later chapters can be
reached earlier by omitting some or all of the material in Chapters 6 and 7, as
well as the later sections of Chapter 8. The transmission line treatment (Chapter
13) relies heavily on the plane wave development in Chapters 11 and 12. A more
streamlined presentation of plane waves, leading to an earlier arrival at transmis-
sion lines, can be accomplished by omitting sections 11.5, 12.5, and 12.6. Chapter
14 is intended as an “advanced topics™ chapter, in which the development of
waveguide and antenna concepts occurs through the application of the methods
learned in earlier chapters, thus helping to solidify that knowledge. It may also
serve as a bridge between the basic course and more advanced courses that
follow it.

I am deeply indebted to several people who provided much-needed feed-
back and assistance on the work. Glenn S. Smith, Georgia Tech, reviewed parts
of the manuscript and had many suggestions on the content and the philosophy
of the revision. Several outside reviewers pointed out errors and had excellent
suggestions for improving the presentation, most of which, within time limita-
tions, were taken. These include Madeleine Andrawis, South Dakota State
University, M. Yousif El-Ibiary, University of Oklahoma, Joel T. Johnson,
Ohio State University, David Kelley, Pennsylvania State University, Sharad R.
Laxpati, University of Illinois at Chicago, Masoud Mostafavi, San Jose State
University, Vladimir A. Rakov, University of Florida, Hussain Al-Rizzo, Sultan

4| p | eTextMainMenu | Textbook Table of Contents


http://www.mhhe.com/engcs/electrical/haytbuck

PREFACE Xiii

Qaboos University, Juri Silmberg, Ryerson Polytechnic University and Robert
M. Weikle II, University of Virginia. My editors at McGraw-Hill, Catherine
Fields, Michelle Flomenhoft, and Betsy Jones, provided excellent expertise and
support—particularly Michelle, who was almost in daily contact, and provided
immediate and knowledgeable answers to all questions and concerns. My see-
mingly odd conception of the cover illustration was brought into reality through
the graphics talents of Ms Diana Fouts at Georgia Tech. Finally, much is owed
to my wife and daughters for putting up with a part-time husband and father for
many a weekend.

John A. Buck
Atlanta, 2000
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CHAPTER

1

VECTOR
ANALYSIS

Vector analysis is a mathematical subject which is much better taught by math-
ematicians than by engineers. Most junior and senior engineering students, how-
ever, have not had the time (or perhaps the inclination) to take a course in vector
analysis, although it is likely that many elementary vector concepts and opera-
tions were introduced in the calculus sequence. These fundamental concepts and
operations are covered in this chapter, and the time devoted to them now should
depend on past exposure.

The viewpoint here is also that of the engineer or physicist and not that of
the mathematician in that proofs are indicated rather than rigorously expounded
and the physical interpretation is stressed. It is easier for engineers to take a more
rigorous and complete course in the mathematics department after they have
been presented with a few physical pictures and applications.

It is possible to study electricity and magnetism without the use of vector
analysis, and some engineering students may have done so in a previous electrical
engineering or basic physics course. Carrying this elementary work a bit further,
however, soon leads to line-filling equations often composed of terms which all
look about the same. A quick glance at one of these long equations discloses little
of the physical nature of the equation and may even lead to slighting an old
friend.

Vector analysis is a mathematical shorthand. It has some new symbols,
some new rules, and a pitfall here and there like most new fields, and it demands
concentration, attention, and practice. The drill problems, first met at the end of
Sec. 1.4, should be considered an integral part of the text and should all be
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ENGINEERING ELECTROMAGNETICS

worked. They should not prove to be difficult if the material in the accompany-
ing section of the text has been thoroughly understood. It take a little longer to
“read” the chapter this way, but the investment in time will produce a surprising
interest.

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single
(positive or negative) real number. The x, y, and z we used in basic algebra are
scalars, and the quantities they represent are scalars. If we speak of a body falling
a distance L in a time ¢, or the temperature 7 at any point in a bowl of soup
whose coordinates are x, y, and z, then L, ¢, T, x, y, and z are all scalars. Other
scalar quantities are mass, density, pressure (but not force), volume, and volume
resistivity. Voltage is also a scalar quantity, although the complex representation
of a sinusoidal voltage, an artificial procedure, produces a complex scalar, or
phasor, which requires two real numbers for its representation, such as amplitude
and phase angle, or real part and imaginary part.

A vector quantity has both a magnitude' and a direction in space. We shall
be concerned with two- and three-dimensional spaces only, but vectors may be
defined in n-dimensional space in more advanced applications. Force, velocity,
acceleration, and a straight line from the positive to the negative terminal of a
storage battery are examples of vectors. Each quantity is characterized by both a
magnitude and a direction.

We shall be mostly concerned with scalar and vector fields. A field (scalar
or vector) may be defined mathematically as some function of that vector which
connects an arbitrary origin to a general point in space. We usually find it
possible to associate some physical effect with a field, such as the force on a
compass needle in the earth’s magnetic field, or the movement of smoke particles
in the field defined by the vector velocity of air in some region of space. Note that
the field concept invariably is related to a region. Some quantity is defined at
every point in a region. Both scalar fields and vector fields exist. The temperature
throughout the bowl of soup and the density at any point in the earth are
examples of scalar fields. The gravitational and magnetic fields of the earth,
the voltage gradient in a cable, and the temperature gradient in a soldering-
iron tip are examples of vector fields. The value of a field varies in general
with both position and time.

In this book, as in most others using vector notation, vectors will be indi-
cated by boldface type, for example, A. Scalars are printed in italic type, for
example, 4. When writing longhand or using a typewriter, it is customary to
draw a line or an arrow over a vector quantity to show its vector character.
(Caution: This is the first pitfall. Sloppy notation, such as the omission of the
line or arrow symbol for a vector, is the major cause of errors in vector analysis.)

I We adopt the convention that “magnitude” infers “absolute value”; the magnitude of any quantity is
therefore always positive.
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VECTOR ANALYSIS

1.2 VECTOR ALGEBRA

With the definitions of vectors and vector fields now accomplished, we may
proceed to define the rules of vector arithmetic, vector algebra, and (later) of
vector calculus. Some of the rules will be similar to those of scalar algebra, some
will differ slightly, and some will be entirely new and strange. This is to be
expected, for a vector represents more information than does a scalar, and the
multiplication of two vectors, for example, will be more involved than the multi-
plication of two scalars.

The rules are those of a branch of mathematics which is firmly established.
Everyone “‘plays by the same rules,” and we, of course, are merely going to look
at and interpret these rules. However, it is enlightening to consider ourselves
pioneers in the field. We are making our own rules, and we can make any rules
we wish. The only requirement is that the rules be self-consistent. Of course, it
would be nice if the rules agreed with those of scalar algebra where possible, and
it would be even nicer if the rules enabled us to solve a few practical problems.

One should not fall into the trap of ““algebra worship’ and believe that the
rules of college algebra were delivered unto man at the Creation. These rules are
merely self-consistent and extremely useful. There are other less familiar alge-
bras, however, with very different rules. In Boolean algebra the product AB can
be only unity or zero. Vector algebra has its own set of rules, and we must be
constantly on guard against the mental forces exerted by the more familiar rules
or scalar algebra.

Vectorial addition follows the parallelogram law, and this is easily, if inac-
curately, accomplished graphically. Fig. 1.1 shows the sum of two vectors, A and
B. It is easily seen that A + B = B + A, or that vector addition obeys the com-
mutative law. Vector addition also obeys the associative law,

A+(B+C)=(A+B)+C

Note that when a vector is drawn as an arrow of finite length, its location is
defined to be at the tail end of the arrow.

Coplanar vectors, or vectors lying in a common plane, such as those shown
in Fig. 1.1, which both lie in the plane of the paper, may also be added by
expressing each vector in terms of “horizontal” and ‘‘vertical” components
and adding the corresponding components.

Vectors in three dimensions may likewise be added by expressing the vec-
tors in terms of three components and adding the corresponding components.
Examples of this process of addition will be given after vector components are
discussed in Sec. 1.4.

The rule for the subtraction of vectors follows easily from that for addition,
for we may always express A — B as A + (—B); the sign, or direction, of the
second vector is reversed, and this vector is then added to the first by the rule
for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes,
but its direction does not when the scalar is positive, although it reverses direc-
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FIGURE 1.1

Two vectors may be added graphically either by drawing both vectors from a common origin and
completing the parallelogram or by beginning the second vector from the head of the first and completing
the triangle; either method is easily extended to three or more vectors.

tion when multiplied by a negative scalar. Multiplication of a vector by a scalar
also obeys the associative and distributive laws of algebra, leading to

r+s)A+B)=rA+B)+s(A+B)=rA+rB+sA+sB

Division of a vector by a scalar is merely multiplication by the reciprocal of
that scalar.

The multiplication of a vector by a vector is discussed in Secs. 1.6 and 1.7.

Two vectors are said to be equal if their difference is zero, or A = B if
A—-B=0.

In our use of vector fields we shall always add and subtract vectors which
are defined at the same point. For example, the toral magnetic field about a small
horseshoe magnet will be shown to be the sum of the fields produced by the earth
and the permanent magnet; the total field at any point is the sum of the indivi-
dual fields at that point.

If we are not considering a vector field, however, we may add or subtract
vectors which are not defined at the same point. For example, the sum of the
gravitational force acting on a 150-lbs (pound-force) man at the North Pole and
that acting on a 175-1b, man at the South Pole may be obtained by shifting each
force vector to the South Pole before addition. The resultant is a force of 251b,
directed toward the center of the earth at the South Pole; if we wanted to be
difficult, we could just as well describe the force as 251b, directed away from the
center of the earth (or “‘upward”) at the North Pole.”

1.3 THE CARTESIAN COORDINATE SYSTEM

In order to describe a vector accurately, some specific lengths, directions, angles,
projections, or components must be given. There are three simple methods of
doing this, and about eight or ten other methods which are useful in very special
cases. We are going to use only the three simple methods, and the simplest of
these is the cartesian, or rectangular, coordinate system.

2 A few students have argued that the force might be described at the equator as being in a “northerly”
direction. They are right, but enough is enough.
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VECTOR ANALYSIS

In the cartesian coordinate system we set up three coordinate axes mutually
at right angles to each other, and call them the x, y, and z axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smal-
ler angle) of the x axis into the y axis would cause a right-handed screw to
progress in the direction of the z axis. If the right hand is used, then the
thumb, forefinger, and middle finger may then be identified, respectively, as
the x, y, and z axes. Fig. 1.2a shows a right-handed cartesian coordinate system.

A point is located by giving its x, y, and z coordinates. These are, respec-
tively, the distances from the origin to the intersection of a perpendicular
dropped from the point to the x, y, and z axes. An alternative method of inter-
preting coordinate values, and a method corresponding to that which must be
used in all other coordinate systems, is to consider the point as being at the

x =0 plane
= 0 plany
YZUPEE | Origin
-~ i
z=0plane
(a)
i A
Volume = dx dy dz
i dxdy dz
= p(123)
| P g
: dy dz A dx dz
il |
o@.-21) 7 | &
\‘ ¥ I -
l
|
|
(b) ()

FIGURE 1.2

(a) A right-handed cartesian coordinate system. If the curved fingers of the right hand indicate the
direction through which the x axis is turned into coincidence with the y axis, the thumb shows the direction
of the z axis. (b) The location of points P(1,2,3) and Q(2, -2, 1). (¢) The differential volume element in
cartesian coordinates; dx, dy, and dz are, in general, independent differentials.
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common intersection of three surfaces, the planes x = constant, y = constant,
and z = constant, the constants being the coordinate values of the point.

Fig. 1.2h shows the points P and Q whose coordinates are (1,2, 3) and
(2, =2, 1), respectively. Point P is therefore located at the common point of
intersection of the planes x =1, y = 2, and z = 3, while point Q is located at
the intersection of the planes x =2, y = -2, z = 1.

As we encounter other coordinate systems in Secs. 1.8 and 1.9, we should
expect points to be located at the common intersection of three surfaces, not
necessarily planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coor-
dinates are x, y, and z, we may increase each coordinate value by a differential
amount and obtain three slightly displaced planes intersecting at point P’, whose
coordinates are x + dx, y + dy, and z 4 dz. The six planes define a rectangular
parallelepiped whose volume is dv = dxdydz; the surfaces have differential areas
dS of dxdy, dydz, and dzdx. Finally, the distance dL from P to P’ is the diagonal

of the parallelepiped and has a length of \/ (dx)* + (dy)* + (dz)*. The volume
element is shown in Fig. 1.2¢; point P’ is indicated, but point P is located at
the only invisible corner.

All this is familiar from trigonometry or solid geometry and as yet involves
only scalar quantities. We shall begin to describe vectors in terms of a coordinate
system in the next section.

1.4 VECTOR COMPONENTS AND UNIT
VECTORS

To describe a vector in the cartesian coordinate system, let us first consider a
vector r extending outward from the origin. A logical way to identify this vector
is by giving the three component vectors, lying along the three coordinate axes,
whose vector sum must be the given vector. If the component vectors of the
vector r are X, y, and z, then r = x +y + z. The component vectors are shown in
Fig. 1.3a. Instead of one vector, we now have three, but this is a step forward,
because the three vectors are of a very simple nature; each is always directed
along one of the coordinate axes.

In other words, the component vectors have magnitudes which depend on
the given vector (such as r above), but they each have a known and constant
direction. This suggests the use of unit vectors having unit magnitude, by defini-
tion, and directed along the coordinate axes in the direction of the increasing
coordinate values. We shall reserve the symbol a for a unit vector and identify
the direction of the unit vector by an appropriate subscript. Thus a,, a,, and a.
are the unit vectors in the cartesian coordinate system.? They are directed along
the x, y, and z axes, respectively, as shown in Fig. 1.3b.

3The symbols i, j, and k are also commonly used for the unit vectors in cartesian coordinates.
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' (a) (®)

FIGURE 1.3

(a) The component vectors x, y, and z of vector r. (b) The unit vectors of the cartesian coordinate system
have unit magnitude and are directed toward increasing values of their respective variables. (¢) The vector
Rpp is equal to the vector difference rg —rp.

If the component vector y happens to be two units in magnitude and
directed toward increasing values of y, we should then write y = 2a,. A vector
rp pointing from the origin to point P(1, 2, 3) is written rp = a, + 2a, + 3a.. The
vector from P to Q may be obtained by applying the rule of vector addition. This
rule shows that the vector from the origin to P plus the vector from P to Q is
equal to the vector from the origin to Q. The desired vector from P(1, 2, 3) to
02, -2, 1) is therefore

Rpp =190 —1p=(2—Da, + (-2 —2)a, + (I — 3)a.
=a, —4a, —2a.

The vectors rp, rg, and Rpp are shown in Fig. 1.3c.
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This last vector does not extend outward from the origin, as did the vector r
we initially considered. However, we have already learned that vectors having the
same magnitude and pointing in the same direction are equal, so we see that to
help our visualization processes we are at liberty to slide any vector over to the
origin before determining its component vectors. Parallelism must, of course, be
maintained during the sliding process.

If we are discussing a force vector F, or indeed any vector other than a
displacement-type vector such as r, the problem arises of providing suitable
letters for the three component vectors. It would not do to call them x,y, and
z, for these are displacements, or directed distances, and are measured in meters
(abbreviated m) or some other unit of length. The problem is most often avoided
by using component scalars, simply called components, F\, F,, and F.. The com-
ponents are the signed magnitudes of the component vectors. We may then write
F = F.a, + Fya, + F.a.. The component vectors are Fya,, F,a,, and F.a..

Any vector B then may be described by B = B,a, + B,a, + B.a.. The mag-
nitude of B written |B| or simply B, is given by

B| = /B2 + B2 + B (1)

Each of the three coordinate systems we discuss will have its three funda-
mental and mutually perpendicular unit vectors which are used to resolve any
vector into its component vectors. However, unit vectors are not limited to this
application. It is often helpful to be able to write a unit vector having a specified
direction. This is simply done, for a unit vector in a given direction is merely a
vector in that direction divided by its magnitude. A unit vector in the r direction
is r/y/x? + »? + z2, and a unit vector in the direction of the vector B is

B B

—_——
/B2 + B2+ B2 Bl

)

ap =

||II»Example 1.1

Specify the unit vector extending from the origin toward the point G(2, —2, —1).

Solution. We first construct the vector extending from the origin to point G,
G =2a,—2a, —a.
We continue by finding the magnitude of G,

Gl = P + (=27 +(—1)* =3
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and finally expressing the desired unit vector as the quotient,

a G
‘7G|

A special identifying symbol is desirable for a unit vector so that its character is
immediately apparent. Symbols which have been used are ug, ag, 1, or even b. We shall
consistently use the lowercase a with an appropriate subscript.

[Note: Throughout the text, drill problems appear following sections in which a
new principle is introduced in order to allow students to test their understanding of the
basic fact itself. The problems are useful in gaining familiarization with new terms and
ideas and should all be worked. More general problems appear at the ends of the
chapters. The answers to the drill problems are given in the same order as the parts
of the problem.]

2a, —2a, —la. = 0.667a, — 0.667a, — 0.333a.

¢/ DLL Given points M(—1,2,1), N(3,—3,0), and P(=2, =3, —4), find: () Ryw: (b)
Ryv + Rugp; (¢) [ral; (d) app; (e) [2rp — 3ry].

Ans. 4a, — 5a, —a.; 3a, — 10a, — 6a.; 2.45; —0.1400a, — 0.700a, — 0.700a.; 15.56

1.5 THE VECTOR FIELD

We have already defined a vector field as a vector function of a position vector.
In general, the magnitude and direction of the function will change as we move
throughout the region, and the value of the vector function must be determined
using the coordinate values of the point in question. Since we have considered
only the cartesian coordinate system, we should expect the vector to be a func-
tion of the variables x, y, and z.

If we again represent the position vector as r, then a vector field G can be
expressed in functional notation as G(r); a scalar field 7T is written as 7(r).

If we inspect the velocity of the water in the ocean in some region near the
surface where tides and currents are important, we might decide to represent it by
a velocity vector which is in any direction, even up or down. If the z axis is taken
as upward, the x axis in a northerly direction, the y axis to the west, and the
origin at the surface, we have a right-handed coordinate system and may write
the velocity vector as v = v a, + v,a, + v.a., or v(r) = v.(r)a, + v,(r)a, + v-(r)a;
each of the components v, v,, and v- may be a function of the three variables
x, y, and z. If the problem is simplified by assuming that we are in some portion
of the Gulf Stream where the water is moving only to the north, then v,, and v.
are zero. Further simplifying assumptions might be made if the velocity falls off
with depth and changes very slowly as we move north, south, east, or west. A
suitable expression could be v = 2¢7/1%a . We have a velocity of 2m/s (meters
per second) at the surface and a velocity of 0.368 x 2, or 0.736 m/s, at a depth of
100m (z = —100), and the velocity continues to decrease with depth; in this
example the vector velocity has a constant direction.

While the example given above is fairly simple and only a rough approx-
imation to a physical situation, a more exact expression would be correspond-
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ingly more complex and difficult to interpret. We shall come across many fields
in our study of electricity and magnetism which are simpler than the velocity
example, an example in which only the component and one variable were
involved (the x component and the variable z). We shall also study more com-
plicated fields, and methods of interpreting these expressions physically will be
discussed then.

v/ DIL2 A vector field S is expressed in cartesian coordinates as S =
{125/[(x = D> + (» = 2> + (z + D*DH(x — Da, + (v — 2)a, + (z + Da.}. (a) Evaluate S
at P(2,4,3). (b) Determine a unit vector that gives the direction of S at P. (¢) Specify
the surface f(x, y, z) on which |S| = 1.

Ans. 5.95a, 4+ 11.90a, 4-23.8a.; 0.218a, 4 0.436a, 4- 0.873a_;
\/(x — 1)+ -2+ (E+1)* =125

1.6 THE DOT PRODUCT

We now consider the first of two types of vector multiplication. The second type
will be discussed in the following section.

Given two vectors A and B, the dot product, or scalar product, is defined as
the product of the magnitude of A, the magnitude of B, and the cosine of the
smaller angle between them,

A-B=|A||B|cosO,p 3)

The dot appears between the two vectors and should be made heavy for empha-
sis. The dot, or scalar, product is a scalar, as one of the names implies, and it
obeys the commutative law,

A-B=B-A (4)

for the sign of the angle does not affect the cosine term. The expression A - B is
read “A dot B.”

Perhaps the most common application of the dot product is in mechanics,
where a constant force F applied over a straight displacement L does an amount
of work FL cos#@, which is more easily written F - L. We might anticipate one of
the results of Chap. 4 by pointing out that if the force varies along the path,
integration is necessary to find the total work, and the result becomes

Work = JF-dL

Another example might be taken from magnetic fields, a subject about
which we shall have a lot more to say later. The total flux @ crossing a surface
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of area S is given by BS if the magnetic flux density B is perpendicular to the
surface and uniform over it. We define a vector surface S as having the usual area
for its magnitude and having a direction normal to the surface (avoiding for the
moment the problem of which of the two possible normals to take). The flux
crossing the surface is then B+ S. This expression is valid for any direction of the
uniform magnetic flux density. However, if the flux density is not constant over
the surface, the total flux is & = [ B-dS. Integrals of this general form appear in
Chap. 3 when we study electric flux density.

Finding the angle between two vectors in three-dimensional space is often a
job we would prefer to avoid, and for that reason the definition of the dot
product is usually not used in its basic form. A more helpful result is obtained
by considering two vectors whose cartesian components are given, such as
A=A4.a.+A4a,+ A.a. and B= B.a, + Bya, + B.a.. The dot product also
obeys the distributive law, and, therefore, A -B yields the sum of nine scalar
terms, each involving the dot product of two unit vectors. Since the angle
between two different unit vectors of the cartesian coordinate system is 90°,
we then have

a,-a,=2a,-a, =2,+2,=2a,-2,=2,-2, =2.-a, =0

The remaining three terms involve the dot product of a unit vector with itself,
which is unity, giving finally

A-B=AB, +A,B, + A.B. (5)

which is an expression involving no angles.
A vector dotted with itself yields the magnitude squared, or

A-A=A4"=|A) (6)

and any unit vector dotted with itself is unity,
Ay-ay = 1

One of the most important applications of the dot product is that of finding
the component of a vector in a given direction. Referring to Fig. 1.4a, we can
obtain the component (scalar) of B in the direction specified by the unit vector a
as

B-.a = |B||a|cosfp, = |B|cosbp,
The sign of the component is positive if 0 < 0, < 90° and negative whenever
90° < Op, < 180°.
In order to obtain the component vector of B in the direction of a, we

simply multiply the component (scalar) by a, as illustrated by Fig. 1.4b. For
example, the component of B in the direction of a, is B-a, = By, and the
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B-a | ' (B a)a
(@ ®)

FIGURE 1.4
(a) The scalar component of B in the direction of the unit vector a is B - a. (b) The vector component of B
in the direction of the unit vector a is (B - a)a.

component vector is Bya,, or (B-a,)a,. Hence, the problem of finding the com-
ponent of a vector in any desired direction becomes the problem of finding a unit
vector in that direction, and that we can do.

The geometrical term projection is also used with the dot product. Thus,
B - a is the projection of B in the a direction.

IIII*Example 1.2

In order to illustrate these definitions and operations, let us consider the vector field
G = ya, — 2.5xa, + 3a. and the point Q(4,5,2). We wish to find: G at Q; the scalar
component of G at Q in the direction of ay = %(Zax +a, — 2a.); the vector component
of G at Q in the direction of ay; and finally, the angle 65, between G(rp) and ay.

Solution. Substituting the coordinates of point Q into the expression for G, we have
G(rp) = 5a, — 10a, + 3a.
Next we find the scalar component. Using the dot product, we have
G-ay = (5a, — 10a, + 3a.)- {(2a, +a, —2a.) = (10— 10 — 6) = -2

The vector component is obtained by multiplying the scalar component by the unit
vector in the direction of ay,

(G-ay)ay = —(2)%(2ax +a, —2a.) = —1.333a, — 0.667a, + 1.333a.
The angle between G(rp) and ay is found from

G-ay = |G|cosbg,

—2=+/25+100 4+ 9cosbg,

and

-2
06a = cos I ——— = 99.9°

V134
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¢/ DL3. The three vertices of a triangle are located at A4(6, —1,2), B(-2,3, —4), and
C(—3,1,5). Find: (a) R4p; (b) Ryc; (¢) the angle 6p4c at vertex A; (d) the (vector)
projection of R4z on Ryc.

Ans. —8a, +4a, — 6a.; —9a, — 2a, + 3a.; 53.6°; —5.94a, + 1.319a, 4 1.979a.

1.7 THE CROSS PRODUCT

Given two vectors A and B, we shall now define the cross product, or vector
product, of A and B, written with a cross between the two vectors as A x B and
read ““A cross B.”” The cross product A x B is a vector; the magnitude of A x Bis
equal to the product of the magnitudes of A, B, and the sine of the smaller angle
between A and B; the direction of A x B is perpendicular to the plane containing
A and B and is along that one of the two possible perpendiculars which is in the
direction of advance of a right-handed screw as A is turned into B. This direction
is illustrated in Fig. 1.5. Remember that either vector may be moved about at
will, maintaining its direction constant, until the two vectors have a “‘common
origin.” This determines the plane containing both. However, in most of our
applications we shall be concerned with vectors defined at the same point.
As an equation we can write

A x B = ay|A| |B|sin 6.z (7)

where an additional statement, such as that given above, is still required to
explain the direction of the unit vector ay. The subscript stands for “normal.”

Reversing the order of the vectors A and B results in a unit vector in the
opposite direction, and we see that the cross product is not commutative, for
B x A = —(A x B). If the definition of the cross product is applied to the unit

FIGURE 1.5
The direction of A x B is in the direction of advance
of a right-handed screw as A is turned into B.
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vectors a, and a,, we find a, x a, = a., for each vector has unit magnitude, the
two vectors are perpendicular, and the rotation of a, into a, indicates the posi-
tive z direction by the definition of a right-handed coordinate system. In a similar
way a, X a. = a,, and a. x a, = a,. Note the alphabetic symmetry. As long as
the three vectors ay, a,, and a. are written in order (and assuming that a, follows
a_, like three elephants in a circle holding tails, so that we could also write a,, a.,
a, or a, a,, a,), then the cross and equal sign may be placed in either of the two
vacant spaces. As a matter of fact, it is now simpler to define a right-handed
cartesian coordinate system by saying that a, x a, = a..

A simple example of the use of the cross product may be taken from
geometry or trigonometry. To find the area of a parallelogram, the product of
the lengths of two adjacent sides is multiplied by the sine of the angle between
them. Using vector notation for the two sides, we then may express the (scalar)
area as the magnitude of A x B, or |A x Bj.

The cross product may be used to replace the right-hand rule familiar to all
electrical engineers. Consider the force on a straight conductor of length L,
where the direction assigned to L corresponds to the direction of the steady
current /, and a uniform magnetic field of flux density B is present. Using vector
notation, we may write the result neatly as F = /L x B. This relationship will be
obtained later in Chap. 9.

The evaluation of a cross product by means of its definition turns out to be
more work than the evaluation of the dot product from its definition, for not
only must we find the angle between the vectors, but we must find an expression
for the unit vector ay. This work may be avoided by using cartesian components
for the two vectors A and B and expanding the cross product as a sum of nine
simpler cross products, each involving two unit vectors,

AxB=A4Ba,xa,+ABja, xa,+A.B.a, xa.
+ A,B,a, xa,+ A,B,a, xa, + A,B.a, x a;
+ A:Bea. xa,+ A.Bja. xa, + A.B.a; x a;
We have already found that a, xa, =a., a, xa. =a,, and a. x a, = a,.

The three remaining terms are zero, for the cross product of any vector with itself
is zero, since the included angle is zero. These results may be combined to give

A x B =(4,B. — A-B,)a, + (A-B, — A,B-)a, + (4. B, — A,BJa.  (8)

or written as a determinant in a more easily remembered form,

a, a, a.
AxB=|d, A, A. 9)
B. B, B

Thus, if A =2a, —3a, +a. and B= —4a, — 2a, + 5a., we have
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a, a, a.
AxB=|2 -3 1
-4 -2 5

= [(=3)(5) = (1(=2D)]ax — [(2)(5) — (D)(=D]a, + [(2)(=2) — (=3)(—4)]a:
= —13a, — 14a, — 16a.

V D1.4. The three vertices of a triangle are located at A(6, —1,2), B(—2,3,—4) and
C(—3,1,5). Find: (a) R4p x Ry¢; (b) the area of the triangle; (¢) a unit vector perpen-
dicular to the plane in which the triangle is located.

Ans. 24a, + 78a, + 20a.; 42.0; 0.286a, 4 0.928a, + 0.238a.

1.8 OTHER COORDINATE SYSTEMS:
CIRCULAR CYLINDRICAL COORDINATES

The cartesian coordinate system is generally the one in which students prefer to
work every problem. This often means a lot more work for the student, because
many problems possess a type of symmetry which pleads for a more logical
treatment. It is easier to do now, once and for all, the work required to become
familiar with cylindrical and spherical coordinates, instead of applying an equal
or greater effort to every problem involving cylindrical or spherical symmetry
later. With this future saving of labor in mind, we shall take a careful and
unhurried look at cylindrical and spherical coordinates.

The circular cylindrical coordinate system is the three-dimensional version
of the polar coordinates of analytic geometry. In the two-dimensional polar
coordinates, a point was located in a plane by giving its distance p from the
origin, and the angle ¢ between the line from the point to the origin and an
arbitrary radial line, taken as ¢ = 0.* A three-dimensional coordinate system,
circular cylindrical coordinates, is obtained by also specifying the distance z of
the point from an arbitrary z = 0 reference plane which is perpendicular to the
line p = 0. For simplicity, we usually refer to circular cylindrical coordinates
simply as cylindrical coordinates. This will not cause any confusion in reading
this book, but it is only fair to point out that there are such systems as elliptic
cylindrical coordinates, hyperbolic cylindrical coordinates, parabolic cylindrical
coordinates, and others.

We no longer set up three axes as in cartesian coordinates, but must instead
consider any point as the intersection of three mutually perpendicular surfaces.
These surfaces are a circular cylinder (o = constant), a plane (¢ = constant), and

4 The two variables of polar coordinates are commonly called » and 6. With three coordinates, however, it
is more common to use p for the radius variable of cylindrical coordinates and r for the (different) radius
variable of spherical coordinates. Also, the angle variable of cylindrical coordinates is customarily called ¢
because everyone uses 6 for a different angle in spherical coordinates. The angle ¢ is common to both
cylindrical and spherical coordinates. See?
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another plane (z = constant). This corresponds to the location of a point in a
cartesian coordinate system by the intersection of three planes (x = constant, y =
constant, and z = constant). The three surfaces of circular cylindrical coordi-
nates are shown in Fig. 1.6a. Note that three such surfaces may be passed
through any point, unless it lies on the z axis, in which case one plane suffices.

Three unit vectors must also be defined, but we may no longer direct them
along the “coordinate axes,” for such axes exist only in cartesian coordinates.
Instead, we take a broader view of the unit vectors in cartesian coordinates and
realize that they are directed toward increasing coordinate values and are per-
pendicular to the surface on which that coordinate value is constant (i.e., the unit
vector a, is normal to the plane x = constant and points toward larger values of
x). In a corresponding way we may now define three unit vectors in cylindrical
coordinates, a,, a5, and a..

(P191,21)

®)

FIGURE 1.6

(aa) The three mutually perpendicular surfaces of the circular cylindrical coordinate system. (b) The three
unit vectors of the circular cylindrical coordinate system. (¢) The differential volume unit in the circular
cylindrical coordinate system; dp, pd¢, and dz are all elements of length.
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The unit vector a, at a point P(pi, ¢1,z1) is directed radially outward,
normal to the cylindrical surface p = p;. It lies in the planes ¢ = ¢; and
z = z;. The unit vector ay4 is normal to the plane ¢ = ¢;, points in the direction
of increasing ¢, lies in the plane z = z|, and is tangent to the cylindrical surface
p = p1. The unit vector a, is the same as the unit vector a, of the cartesian
coordinate system. Fig. 1.65 shows the three vectors in cylindrical coordinates.

In cartesian coordinates, the unit vectors are not functions of the coordi-
nates. Two of the unit vectors in cylindrical coordinates, a, and a4, however, do
vary with the coordinate ¢, since their directions change. In integration or dif-
ferentiation with respect to ¢, then, a, and a, must not be treated as constants.

The unit vectors are again mutually perpendicular, for each is normal to
one of the three mutually perpendicular surfaces, and we may define a right-
handed cylindrical coordinate system as one in which a, x as = a., or (for those
who have flexible fingers) as one in which the thumb, forefinger, and middle
finger point in the direction of increasing p, ¢, and z, respectively.

A differential volume element in cylindrical coordinates may be obtained
by increasing p, ¢, and z by the differential increments dp, d¢, and dz. The two
cylinders of radius p and p + dp, the two radial planes at angles ¢ and ¢ + d¢,
and the two “horizontal” planes at “‘elevations” z and z 4+ dz now enclose a small
volume, as shown in Fig. 1.6¢, having the shape of a truncated wedge. As the
volume element becomes very small, its shape approaches that of a rectangular
parallelepiped having sides of length dp, pd¢ and dz. Note that dp and dz are
dimensionally lengths, but d¢ is not; pd¢ is the length. The surfaces have areas of
pdpde, dp dz, and pd¢pdz, and the volume becomes pdp deg dz.

The variables of the rectangular and cylindrical coordinate systems are
easily related to each other. With reference to Fig. 1.7, we see that

X = pcos¢
y = psing (10)
zZ =7z

FIGURE 1.7

The relationship between the cartesian variables x, y, z
5 and the cylindrical coordinate variables p, ¢, z. There
e is no change in the variable z between the two systems.
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From the other viewpoint, we may express the cylindrical variables in terms of
x,y, and z:

p=vx*+y* (p=0)
¢:tan_1£ (11
=7z

We shall consider the variable p to be positive or zero, thus using only the
positive sign for the radical in (11). The proper value of the angle ¢ is determined
by inspecting the signs of x and y. Thus, if x = —3 and y = 4, we find that the
point lies in the second quadrant so that p =5 and ¢ = 126.9°. For x = 3 and
y = —4, we have ¢ = —53.1° or 306.9°, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are
easily transformed into the other system.

A vector function in one coordinate system, however, requires two steps in
order to transform it to another coordinate system, because a different set of
component vectors is generally required. That is, we may be given a cartesian
vector

A=A4.a,+A4a,+ A.a.

where each component is given as a function of x, y, and z, and we need a vector
in cylindrical coordinates

A=Aya,+ Apas + A.a.

where each component is given as a function of p, ¢, and z.

To find any desired component of a vector, we recall from the discussion of
the dot product that a component in a desired direction may be obtained by
taking the dot product of the vector and a unit vector in the desired direction.
Hence,

A,=A-a, and Ay =A-ay

Expanding these dot products, we have

A, =(Aa,+Aa, +A.a.)-a,=A.a.-a,+4,a,-a, (12)

Ay =(Avac+Aya, + A.a.)-a, = Aa,-a5+ A,a, -2, (13)
and

A.=(Aac+A4a, +A4.a.)-a. =A.a.-a. = A. (14)

since a.-a, and a. - a, are zero.

In order to complete the transformation of the components, it is necessary
to know the dot products a,-a,, a,-a,, a,-ag, and a, -a,. Applying the defini-
tion of the dot product, we see that since we are concerned with unit vectors, the
result is merely the cosine of the angle between the two unit vectors in question.
Referring to Fig. 1.7 and thinking mightily, we identify the angle between a, and

4| p | eTextMainMenu | Textbook Table of Contents



VECTOR ANALYSIS

TABLE 1.1
Dot products of unit vectors in cylindrical and cartesian

coordinate systems

a, a, a,
a,- cos ¢ —sin¢ 0
a,- sin ¢ cos ¢ 0
a. 0 0 1

a, as ¢, and thus a, -a, = cos ¢, but the angle between a, and a, is 90° — ¢, and
a,-a, = cos (90° — ¢) = sin ¢. The remaining dot products of the unit vectors are
found in a similar manner, and the results are tabulated as functions of ¢ in
Table 1.1

Transforming vectors from cartesian to cylindrical coordinates or vice versa

is therefore accomplished by using (10) or (11) to change variables, and by using
the dot products of the unit vectors given in Table 1.1 to change components.
The two steps may be taken in either order.

IIII»Example 1.3

Transform the vector B = ya, — xa, + za. into cylindrical coordinates.

Solution. The new components are
B,=B-a, =y(a,-a,) —x(a,-a,)
= ycos¢ — xsing = psingcosp — pcospsing =0
By =B-a; =y(a,-a,) — x(a, - ay)
= —ysing — xcos¢p = —psin’ ¢ — pcos’p = —p
Thus,
B = —pay + za.

D1.5. (a) Give the cartesian coordinates of the point C(p = 4.4, ¢ = —115°, z = 2). (b)
Give the cylindrical coordinates of the point D(x = —3.1, y = 2.6, z = —3). (¢) Specify
the distance from C to D.

Ans. C(x = —1.860, y = —3.99, z = 2); D(p = 4.05, ¢ = 140.0°, z = —3); 8.36

D1.6. Transform to cylindrical coordinates: (a) F = 10a, —8a, +6a. at point
P(10, =8, 6); (b)) G = (2x +y)a, — (y — 4x)a, at point Q(p, ¢, z). (¢) Give the cartesian
components of the vector H = 20a, — 10a, + 3a. at P(x =5,y =2,z = —1).

Ans. 12.81a, + 6a.; (2pcos® ¢ — psin® ¢ + Spsin ¢ cos p)a, + (4pcos® ¢ — psin’ p—
3psingcosg)ay; H, =223, H,=—1857, H. =3
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1.9 THE SPHERICAL COORDINATE SYSTEM

We have no two-dimensional coordinate system to help us understand the three-
dimensional spherical coordinate system, as we have for the circular cylindrical
coordinate system. In certain respects we can draw on our knowledge of the
latitude-and-longitude system of locating a place on the surface of the earth,
but usually we consider only points on the surface and not those below or above
ground.

Let us start by building a spherical coordinate system on the three cartesian
axes (Fig. 1.8a). We first define the distance from the origin to any point as r.
The surface » = constant is a sphere.

7 v N @ = a constant
N (cone)

\ S

— ¢ =a constant

(plane)

| < : y /

! / \v\ i // | / ‘

II P

| /'
r = a constant

/ AN Y .‘5’
N
4
X (sphere)

(@) (b)

(@)

FIGURE 1.8
(a) The three spherical coordinates. (b) The three mutually perpendicular surfaces of the spherical coordi-

nate system. (¢) The three unit vectors of spherical coordinates: a, x a5 = a4. (d) The differential volume
element in the spherical coordinate system.
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The second coordinate is an angle 6 between the z axis and the line drawn
from the origin to the point in question. The surface 6 = constant is a cone, and
the two surfaces, cone and sphere, are everywhere perpendicular along their
intersection, which is a circle of radius rsin 6. The coordinate 6 corresponds to
latitude, except that latitude is measured from the equator and 6 is measured
from the “North Pole.”

The third coordinate ¢ is also an angle and is exactly the same as the angle
¢ of cylindrical coordinates. It is the angle between the x axis and the projection
in the z = 0 plane of the line drawn from the origin to the point. It corresponds
to the angle of longitude, but the angle ¢ increases to the “‘east.” The surface ¢ =
constant is a plane passing through the 6 = 0 line (or the z axis).

We should again consider any point as the intersection of three mutually
perpendicular surfaces—a sphere, a cone, and a plane—each oriented in the
manner described above. The three surfaces are shown in Fig. 1.85.

Three unit vectors may again be defined at any point. Each unit vector is
perpendicular to one of the three mutually perpendicular surfaces and oriented in
that direction in which the coordinate increases. The unit vector a, is directed
radially outward, normal to the sphere r = constant, and lies in the cone 6 =
constant and the plane ¢ = constant. The unit vector ay is normal to the conical
surface, lies in the plane, and is tangent to the sphere. It is directed along a line of
“longitude” and points “south.” The third unit vector a, is the same as in
cylindrical coordinates, being normal to the plane and tangent to both the
cone and sphere. It is directed to the “east.”

The three unit vectors are shown in Fig. 1.8¢. They are, of course, mutually
perpendicular, and a right-handed coordinate system is defined by causing
a, X ag = a5. Our system is right-handed, as an inspection of Fig. 1.8¢ will
show, on application of the definition of the cross product. The right-hand
rule serves to identify the thumb, forefinger, and middle finger with the direction
of increasing r, 6, and ¢, respectively. (Note that the identification in cylindrical
coordinates was with p, ¢, and z, and in cartesian coordinates with x, y, and z). A
differential volume element may be constructed in spherical coordinates by
increasing r, 6, and ¢ by dr, df, and d¢, as shown in Fig. 1.84. The distance
between the two spherical surfaces of radius r and r+ dr is dr; the distance
between the two cones having generating angles of 6 and 6 + d6 is rd6; and
the distance between the two radial planes at angles ¢ and ¢ + d¢ is found to
be rsinOd¢, after a few moments of trigonometric thought. The surfaces have
areas of rdrd@, rsin 0 dr d¢p, and r*sin 0 d0 d¢, and the volume is > sin 0 dr d6 d¢.

The transformation of scalars from the cartesian to the spherical coordinate
system is easily made by using Fig. 1.8a to relate the two sets of variables:

X =rsinfcos¢
y =rsinfsing (15)

z=rcosf
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TABLE 1.2
Dot products of unit vectors in spherical and cartesian

coordinate systems

a, Ay ap
a,- sin 6 cos ¢ cos 6 cos ¢ —sing¢
a,- sin 0'sin ¢ cosfsin ¢ cos ¢
a- cost —sin6 0

The transformation in the reverse direction is achieved with the help of

r=+/x*+y?+ 22 (r>0)

_ -z o o
6 = cos e (0° <06 < 180°% (16)
¢=tan_1)—;
X

The radius variable r is nonnegative, and 6 is restricted to the range from 0° to
180°, inclusive. The angles are placed in the proper quadrants by inspecting the
signs of x, y, and z.

The transformation of vectors requires the determination of the products of
the unit vectors in cartesian and spherical coordinates. We work out these prod-
ucts from Fig. 1.8¢ and a pinch of trigonometry. Since the dot product of any
spherical unit vector with any cartesian unit vector is the component of the
spherical vector in the direction of the cartesian vector, the dot products with
a. are found to be

a.-a, = cosb
a.-ay = —sinf
a.-a,=0
The dot products involving a, and a, require first the projection of the
spherical unit vector on the xy plane and then the projection onto the desired
axis. For example, a, - a, is obtained by projecting a, onto the xy plane, giving

sin#, and then projecting sin 6 on the x axis, which yields sin 6 cos ¢. The other
dot products are found in a like manner, and all are shown in Table 1.2.

IIII»Example 1.4

We illustrate this transformation procedure by transforming the vector field
G = (xz/y)a, into spherical components and variables.

Solution. We find the three spherical components by dotting G with the appropriate
unit vectors, and we change variables during the procedure:
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Xz Xz .
G, =G-a,=—a,-a, =—sinfcos¢
y Y
. cos? ¢
= rsinfcosf—
sin ¢
Xz Xz
Gy =G-a9g=—a,-a9g =—Ccos6cos ¢
y y
2
cos” ¢
= rcos’ 60—
n ¢
Xz

= —rcosfcos¢

Collecting these results, we have

G =rcosfcos¢g(sinfcotpa, + cosbcotpag — ay)

Appendix A describes the general curvilinear coordinate system of which
the cartesian, circular cylindrical, and spherical coordinate systems are special
cases. The first section of this appendix could well be scanned now.

‘/ D1.7. Given the two points, C(—3,2,1) and D(r = 5,0 = 20°, ¢ = —70°), find: (a) the
spherical coordinates of C; (b) the cartesian coordinates of D; (¢) the distance from C to
D.

Ans. C(r = 3.74, 0 = 74.5°, ¢ = 146.3°); D(x = 0.585, y = —1.607, z = 4.70); 6.29

G/ D1.8. Transform the following vectors to spherical coordinates at the points given: (a)
10a, at P(x=-=3, y =2, z=4); (b) 10a, at Q(p=15,¢=30°, z=4); (c) 10a. at
M(r=4,0=110°, ¢ = 120°).

Ans. —5.57a, — 6.18a9 — 5.55a4; 3.90a, + 3.12a, + 8.66ay; —3.42a, — 9.40a,

SUGGESTED REFERENCES

1. Grossman, S. I.: “Calculus,” 3d ed., Academic Press and Harcourt Brace
Jovanovich, Publishers, Orlando, 1984. Vector algebra and cylindrical and
spherical coordinates appear in chap. 17, and vector calculus is introduced in
chap. 20.

2. Spiegel, M. R.: “Vector Analysis,” Schaum Outline Series, McGraw-Hill
Book Company, New York, 1959. A large number of examples and
problems with answers are provided in this concise, inexpensive member
of an outline series.

3. Swokowski, E. W.: “Calculus with Analytic Geometry,” 3d ed., Prindle,
Weber, & Schmidt, Boston, 1984. Vector algebra and the cylindrical and
spherical coordinate systems are discussed in chap. 14, and vector calculus
appears in chap. 18.
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4. Thomas, G. B., Jr., and R. L. Finney: “Calculus and Analytic Geometry,”
6th ed., Addison-Wesley Publishing Company, Reading, Mass., 1984. Vector
algebra and the three coordinate systems we use are discussed in chap. 13.
Other vector operations are discussed in chaps. 15 and 17.

PROBLEMS

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

Given the vectors M = —10a, +4a, —8a. and N = 8a, + 7a, — 2a_,
find: (a) a unit vector in the direction of —M + 2N; (b) the magnitude
of 5a, + N — 3M; (¢) [M||2N|(M + N).

Given three points, 4(4, 3, 2), B(—2,0,5), and C(7, =2, 1): (a) specify the
vector A extending from the origin to point A4; (b) give a unit vector
extending from the origin toward the midpoint of line 4B; (c) calculate
the length of the perimeter of triangle ABC.

The vector from the origin to point 4 is given as 6a, — 2a, — 4a., and the
unit vector directed from the origin toward point Bis (3, —2,1). If points

A and B are 10 units apart, find the coordinates of point B.

Given points A(8, —5, 4) and B(-2, 3, 2), find: (@) the distance from 4 to
B; (b) a unit vector directed from A towards B; (¢) a unit vector directed
from the origin toward the midpoint of the line AB; (d) the coordinates
of the point on the line connecting 4 to B at which the line intersects the
plane z = 3.

A vector field is specified as G = 24xya, + 12(x* + 2)a, + 18z%a.. Given
two points, P(1,2, —1) and Q(-2, 1, 3), find: («) G at P; (b) a unit vector
in the direction of G at Q; (¢) a unit vector directed from Q toward P; (d)
the equation of the surface on which |G| = 60.

For the G field given in Prob. 1.5 above, make sketches of G G,, G- and
|G| along the line y=1,z=1, for 0 < x <2.

Given the vector field E = 4zy?cos2xa, + 2zysin 2xa, + y?sin 2xa.,
find, for the region |x|, |y|, and |z] < 2: (a) the surfaces on which
E, = 0; (b) the region in which E, = E.; (c) the region for which E = 0.
Two vector fields are F = —10a, 4 20x(y —1)a, and G = 2x%ya,—
4a, + za.. For the point P(2, 3, —4), find: (a) [F|; (b) |G[; (c) a unit vector
in the direction of F — G; (d) a unit vector in the direction of F 4+ G.

25
A field is given as G = 162—4—2(an + ya,). Find: (a) a unit vector in the
direction of G at P(3, 4, —2); (b) the angle between G and a, at P; (¢) the

value of the double integral ﬁ:o Lzzo G -dxdza, on the plane y =7.
Use the definition of the dot product to find the interior angles at 4 and
B of the triangle defined by the three points: 4A(1, 3, —2), B(—2, 4, 5), and
C(0, =2, 1).

Given the points M(0.1, —0.2, —0.1), N(—0.2, 0.1, 0.3), and P(0.4,0, 0.1),
find: (a) the vector Ry y; (b) the dot product Ry, - Ryp; (¢) the scalar
projection of R,y on Ryp; (d) the angle between R,y and Ryyp.
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1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23
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Given points A(10, 12, —6), B(16,8, =2), C(8,1,4), and D(-2, -5, 8),
determine: (a) the vector projection of Rz + Rpc on R p; (b) the vector
projection of R, g + Rpc on Rpc; (¢) the angle between Rp, and Rpc.
(a) Find the vector component of F = 10a, — 6a, + 5a. that is parallel to
G =0.1a, +0.2a, 4 0.3a.. (b) Find the vector component of F that is
perpendicular to G. (¢) Find the vector component of G that is perpen-
dicular to F.

The three vertices of a regular tetrahedron are located at O(0, 0, 0),
A(0,1,0), B(0.54/3,0.5,0), and C(+/3/6, 0.5, v/2/3). (a) Find a unit vec-
tor perpendicular (outward) to face ABC:; (b) Find the area of face ABC.
Three vectors extending from the origin are given as r; =
7a, +3a, —2a., 1, =-2a,+7a,—3a,, and r3;=2a,—2a,+ 3a..
Find: (a) a unit vector perpendicular to both r; and r;; (b) a unit vector
perpendicular to the vectors r; —r, and r, —r3; (¢) the area of the tri-
angle defined by r; and ry; (d) the area of the triangle defined by the
heads of r, ry, and rs.

Describe the surface defined by the equation: (a) r-a, =2, where
r=xa,+ya, +za; (b) [r xa,| =2.

Point 4(—4,2,5) and the two vectors, R,y = 20a, 4 18a, — 10a. and
R,y = —10a, 4 8a, + 15a., define a triangle. (a) Find a unit vector per-
pendicular to the triangle. (b) Find a unit vector in the plane of the
triangle and perpendicular to R,y. (¢) Find a unit vector in the plane
of the triangle that bisects the interior angle at A.

Given points A(p =5, ¢ =70°, z=—-3)and B(p =2, ¢ = =30°, z=1),
find: (a) a unit vector in cartesian coordinates at A directed toward B; (b)
a unit vector in cylindrical coordinates at 4 directed toward B; (¢) a unit
vector in cylindrical coordinates at B directed toward A.

(a) Express the vector field D = (x? + %)~ (xa, + ya,) in cylindrical
components and cylindrical variables. (b) Evaluate D at the point
where p = 2, ¢ = 0.27 (rad), and z = 5. Express the result in both cylind-
rical and cartesian components.

Express in cartesian components: (@) the vector at A(p =4, ¢ = 40°,
z = —2) that extends to B(p =5, ¢ = —110°, z=2); (b) a unit vector
at B directed toward A; (¢) a unit vector at B directed toward the origin.
Express in cylindrical components: (a) the vector from C(3,2,—7) to
D(—1, —4,2); (b) a unit vector at D directed toward C; (¢) a unit vector
at D directed toward the origin. 40

A field is given in cylindrical coordinates as F = [m—l- 3(cos ¢+

sin ¢)] a, + 3(cos ¢ — sing)a, — 2a.. Prepare simple sketches of |F|: (a)

vs ¢ with p = 3; (b) vs p with ¢ = 0; (¢) vs p with ¢ = 45°.

The surfaces p = 3 and 5, ¢ = 100° and 130°, and z = 3 and 4.5 identify a
closed surface. (a) Find the volume enclosed. (b) Find the total area of
the enclosing surface. (¢) Find the total length of the twelve edges of the

4| p | eTextMainMenu | Textbook Table of Contents

25



26

ENGINEERING ELECTROMAGNETICS

1.24

1.25

1.26

1.28

1.29

1.30

surface. (d) Find the length of the longest straight line that lies entirely
within the volume.

At point P(-3, —4,5), express that vector that extends from P to
0(2,0,—1) in: (a) rectangular coordinates; (b) cylindrical coordinates;
(c¢) spherical coordinates. (d) Show that each of these vectors has the
same magnitude.

Let E= lz cos¢a, + Sl.ﬂbag/,). Given point P(r=0.8, 6=30°
r sinf

¢ = 45°), determine: («) E at P; (b) |E| at P; (¢) a unit vector in the

direction of E at P.

(a) Determine an expression for a, in spherical coordinates at P(r = 4,

0 =0.2m, ¢ = 0.87). (b) Express a, in cartesian components at P.

The surfaces r =2 and 4, 6 = 30° and 50°, and ¢ = 20° and 60° identify a

closed surface. (¢) Find the enclosed volume. (b) Find the total area of

the enclosing surface. (¢) Find the total length of the twelve edges of the

surface. (d) Find the length of the longest straight line that lies entirely

within the volume.

(a) Determine the cartesian components of the vector from A(r =5,

6 =110°, ¢ = 200°) to B(r =7, 8 = 30°, ¢ = 70°). (b) Find the spherical

components of the vector at P(2, —3, 4) extending to Q(-3, 2, 5). (¢) If

D = 5a, — 3a, + 4a,, find D-a, at M(1,2,3).

Express the unit vector a, in spherical components at the point: (a) r = 2,

0=1rad, ¢ =0.8rad; (b)) x=3,y=2,z=—1;(c) p=2.5, ¢ =0.7rad,

z=1.5.

Given A(r =20, 6 = 30°, ¢ =45°) and B(r =30, 6 = 115°, ¢ = 160°),

find: (a) |R4pl; (b) |IR4c|, given C(r = 20, 6 = 90°, ¢ = 45°); (c) the dis-

tance from 4 to C on a great circle path.
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CHAPTER

2

COULOMB’S
LAW AND
ELECTRIC

FIELD
INTENSITY

Now that we have formulated a new language in the first chapter, we shall
establish a few basic principles of electricity and attempt to describe them in
terms of it. If we had used vector calculus for several years and already had a few
correct ideas about electricity and magnetism, we might jump in now with both
feet and present a handful of equations, including Maxwell’s equations and a few
other auxiliary equations, and proceed to describe them physically by virtue of
our knowledge of vector analysis. This is perhaps the ideal way, starting with
the most general results and then showing that Ohm’s, Gauss’s, Coulomb’s,
Faraday’s, Ampere’s, Biot-Savart’s, Kirchhoff’s, and a few less familiar laws
are all special cases of these equations. It is philosophically satisfying to have
the most general result and to feel that we are able to obtain the results for any
special case at will. However, such a jump would lead to many frantic cries of
“Help” and not a few drowned students.

Instead we shall present at decent intervals the experimental laws men-
tioned above, expressing each in vector notation, and use these laws to solve a
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number of simple problems. In this way our familiarity with both vector analysis
and electric and magnetic fields will gradually increase, and by the time we have
finally reached our handful of general equations, little additional explanation
will be required. The entire field of electromagnetic theory is then open to us, and
we may use Maxwell’s equations to describe wave propagation, radiation from
antennas, skin effect, waveguides and transmission lines, and travelling-wave
tubes, and even to obtain a new insight into the ordinary power transformer.

In this chapter we shall restrict our attention to static electric fields in
vacuum or free space. Such fields, for example, are found in the focusing and
deflection systems of electrostatic cathode-ray tubes. For all practical purposes,
our results will also be applicable to air and other gases. Other materials will be
introduced in Chap. 5, and time-varying fields will be introduced in Chap. 10.

We shall begin by describing a quantitative experiment performed in the
seventeenth century.

2.1 THE EXPERIMENTAL LAW OF
COULOMB

Records from at least 600 B.c. show evidence of the knowledge of static electri-
city. The Greeks were responsible for the term “‘electricity,” derived from their
word for amber, and they spent many leisure hours rubbing a small piece of
amber on their sleeves and observing how it would then attract pieces of fluff and
stuff. However, their main interest lay in philosophy and logic, not in experi-
mental science, and it was many centuries before the attracting effect was con-
sidered to be anything other than magic or a “life force.”

Dr. Gilbert, physician to Her Majesty the Queen of England, was the first
to do any true experimental work with this effect and in 1600 stated that glass,
sulfur, amber, and other materials which he named would “not only draw to
themselves straws and chaff, but all metals, wood, leaves, stone, earths, even
water and oil.”

Shortly thereafter a colonel in the French Army Engineers, Colonel Charles
Coulomb, a precise and orderly minded officer, performed an elaborate series of
experiments using a delicate torsion balance, invented by himself, to determine
quantitatively the force exerted between two objects, each having a static charge
of electricity. His published result is now known to many high school students
and bears a great similarity to Newton’s gravitational law (discovered about a
hundred years earlier). Coulomb stated that the force between two very small
objects separated in a vacuum or free space by a distance which is large com-
pared to their size is proportional to the charge on each and inversely propor-
tional to the square of the distance between them, or

010>

R2
where Q) and Q, are the positive or negative quantities of charge, R is the
separation, and k is a proportionality constant. If the International System of

F=k
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Units! (SI) is used, Q is measured in coulombs (C), R is in meters (m), and the
force should be newtons (IN). This will be achieved if the constant of proportion-
ality k is written as

B 1
" 47e

The factor 47 will appear in the denominator of Coulomb’s law but will not
appear in the more useful equations (including Maxwell’s equations) which we
shall obtain with the help of Coulomb’s law. The new constant €, is called the
permittivity of free space and has the magnitude, measured in farads per meter
(F/m),

1
—12_ -9
€ =8.854 x 10 =36 10 F/m @)

The quantity € is not dimensionless, for Coulomb’s law shows that it has
the label C>/N - m2. We shall later define the farad and show that it has the
dimensions C?/N - m; we have anticipated this definition by using the unit F/m
in (1) above.

Coulomb’s law is now

010,
F =
4meg R?

2

Not all SI units are as familiar as the English units we use daily, but they
are now standard in electrical engineering and physics. The newton is a unit of
force that is equal to 0.22481b,, and is the force required to give a 1-kilogram
(kg) mass an acceleration of 1 meter per second per second (m/s?). The coulomb
is an extremely large unit of charge, for the smallest known quantity of charge is
that of the electron (negative) or proton (positive), given in mks units as
1.602 x 107! C; hence a negative charge of one coulomb represents about
6 x 10" electrons.> Coulomb’s law shows that the force between two charges
of one coulomb each, separated by one meter, is 9 x 10° N, or about one million
tons. The electron has a rest mass of 9.109 x 103! kg and has a radius of the
order of magnitude of 3.8 x 10~ m. This does not mean that the electron is
spherical in shape, but merely serves to describe the size of the region in which a
slowly moving electron has the greatest probability of being found. All other

! The International System of Units (an mks system) is described in Appendix B. Abbreviations for the
units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the
prefixes designating powers of ten in S1 appear in Table B.3.

2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of App-
endix C.
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Rpp=r; -

: FIGURE 2.1
i ' . If O and Q; have like signs, the vector force F, on Q5 is in
Origin the same direction as the vector Ry;.

r

known charged particles, including the proton, have larger masses, and larger
radii, and occupy a probabilistic volume larger than does the electron.

In order to write the vector form of (2), we need the additional fact (furn-
ished also by Colonel Coulomb) that the force acts along the line joining the two
charges and is repulsive if the charges are alike in sign and attractive if they are of
opposite sign. Let the vector r; locate Q; while r, locates Q,. Then the vector
Rj» = r; —r; represents the directed line segment from Q; to Q,, as shown in
Fig. 2.1. The vector F; is the force on O, and is shown for the case where Q; and
0> have the same sign. The vector form of Coulomb’s law is

010>

F,=—=-"- 3
2 4neOR%2 a2 3)

where aj, = a unit vector in the direction of Rj,, or

R Rp n-n
IRl Rip [rp—r

4)

a2

||II»Example 2.1

Let us illustrate the use of the vector form of Coulomb’s law by locating a charge of
01 =3 x107* C at M(1,2,3) and a charge of 0, = —10~* C at N(2,0, 5) in a vacuum.
We desire the force exerted on Q; by Q.

Solution. We shall make use of (3) and (4) to obtain the vector force. The vector Ry; is
Ro=rn—-1rn=Q2-1a,+(0—-2)a,+(5—3)a. =a, —2a, + 2a.
leading to |Rj2| = 3, and the unit vector, aj;, =1(a, — 2a, + 2a.). Thus,
_ 3x 1074(=107%) (ax —2a, + 2a;>
47(1/36m)10~9 x 32 3

=30 (7% - 2“3}' * 232) N

2

The magnitude of the force is 30 N (or about 71by), and the direction is specified
by the unit vector, which has been left in parentheses to display the magnitude of the
force. The force on Q, may also be considered as three component forces,

4| p | eTextMainMenu | Textbook Table of Contents



COULOMB’S LAW AND ELECTRIC FIELD INTENSITY

F> = —10a, + 20a, — 20a.

The force expressed by Coulomb’s law is a mutual force, for each of the two
charges experiences a force of the same magnitude, although of opposite direction. We
might equally well have written

_ 010, 01O

Fi=—F, = -
1 > dmeoR2, ! 4reg R2,

ap Q)

Coulomb’s law is linear, for if we multiply Q, by a factor #n, the force on Q is also
multiplied by the same factor . It is also true that the force on a charge in the presence
of several other charges is the sum of the forces on that charge due to each of the other
charges acting alone.

G/ D2.1. A charge Q4 = —20uC is located at A(—6,4,7), and a charge Qg = 50 uC is at
B(5,8,—=2) in free space. If distances are given in meters, find: (a) Ryp; (b) Rup.
Determine the vector force exerted on Q4 by Qp if € =: (¢) 107°/(367) F/m; (d)
8.854 x 1072 F/m.

Ans. 1la,+4a, —9a. m; 14.76m; 30.76a, + 11.184a, —25.16a. mN; 30.72a,+
11.169a, — 25.13a. mN

2.2 ELECTRIC FIELD INTENSITY

If we now consider one charge fixed in position, say Q;, and move a second
charge slowly around, we note that there exists everywhere a force on this second
charge; in other words, this second charge is displaying the existence of a force
field. Call this second charge a test charge Q,. The force on it is given by
Coulomb’s law,

o Qle

- ay;
2
dmeg Ry,

t

Writing this force as a force per unit charge gives

F; 01

= 6
Q[ 47T60R%t Al ( )

The quantity on the right side of (6) is a function only of Q; and the directed line
segment from Q; to the position of the test charge. This describes a vector field
and is called the electric field intensity.

We define the electric field intensity as the vector force on a unit positive
test charge. We would not measure it experimentally by finding the force on a
1-C test charge, however, for this would probably cause such a force on Q; as
to change the position of that charge.

4| p | eTextMainMenu | Textbook Table of Contents

31



32

ENGINEERING ELECTROMAGNETICS

Electric field intensity must be measured by the unit newtons per cou-
lomb—the force per unit charge. Again anticipating a new dimensional quantity,
the volt (V'), to be presented in Chap. 4 and having the label of joules per
coulomb (J/C) or newton-meters per coulomb (N-m/C), we shall at once mea-
sure electric field intensity in the practical units of volts per meter (V/m). Using a
capital letter E for electric field intensity, we have finally

F,
E=— 7
o @
0
—__ = 8
471€0R%,a“ ®)

Equation (7) is the defining expression for electric field intensity, and (8) is
the expression for the electric field intensity due to a single point charge Q; in a
vacuum. In the succeeding sections we shall obtain and interpret expressions for
the electric field intensity due to more complicated arrangements of charge, but
now let us see what information we can obtain from (8), the field of a single point
charge.

First, let us dispense with most of the subscripts in (8), reserving the right to
use them again any time there is a possibility of misunderstanding:

0

= — aR
4reg R?

)

We should remember that R is the magnitude of the vector R, the directed
line segment from the point at which the point charge Q is located to the point at
which E is desired, and ag is a unit vector in the R direction.?

Let us arbitrarily locate Q; at the center of a spherical coordinate system.
The unit vector ap then becomes the radial unit vector a,, and R is r. Hence

O

"~ 4dmegr?

a, (10)

or

01

" 4megr?

The field has a single radial component, and its inverse-square-law relationship is
quite obvious.

3 We firmly intend to avoid confusing r and a, with R and ag. The first two refer specifically to the
spherical coordinate system, whereas R and ag do not refer to any coordinate system—the choice is still
available to us.
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Writing these expressions in cartesian coordinates for a charge Q at
the origin, we have R =r = xa, + ya, +za. and ag = a, = (xa, + ya, +za.)/

VX% + 2 + z2; therefore,

E = Q il a
Cdme(P 4+ + A\ 222

+ 4 a, + - a (1)

This expression no longer shows immediately the simple nature of the field,
and its complexity is the price we pay for solving a problem having spherical
symmetry in a coordinate system with which we may (temporarily) have more
familiarity.

Without using vector analysis, the information contained in (11) would
have to be expressed in three equations, one for each component, and in order
to obtain the equation we would have to break up the magnitude of the electric
field intensity into the three components by finding the projection on each coor-
dinate axis. Using vector notation, this is done automatically when we write
the unit vector.

If we consider a charge which is not at the origin of our coordinate system,
the field no longer possesses spherical symmetry (nor cylindrical symmetry,
unless the charge lies on the z axis), and we might as well use cartesian co-
ordinates. For a charge O located at the source point r’ = x’a, + y’a, +z'a.,
as illustrated in Fig. 2.2, we find the field at a general field point r = xa,+
ya, + za. by expressing R as r —r’, and then

B 0 r—r’° QO —r')
E() = dreplr — /> v — 1/ dmeglr — /|
Ol(x = x"a, + (v —y)a, + (z —z)a]

- 4mep[(x — x’)2 +( - y/)Z +(z— z’)2]3/2 (12)
E

A P(x, y,z)

FIGURE 2.2

The vector r’ locates the point charge Q, the
vector r identifies the general point in space
P(x, y, z), and the vector R from Q to P(x,y, z)
isthen R=r—r".

Origin
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FIGURE 2.3
E(r) The vector addition of the total elec-
y tric field intensity at P due to Q; and
¥ 0, is made possible by the linearity of
X Coulomb’s law.

Earlier, we defined a vector field as a vector function of a position vector, and
this is emphasized by letting E be symbolized in functional notation by E(r).
Equation (11) is merely a special case of (12), where x’ =y’ =z’ = 0.
Since the coulomb forces are linear, the electric field intensity due to two
point charges, Q; at r; and Q> at ry, is the sum of the forces on Q, caused by Q;
and Q, acting alone, or

o 0>

E(r) = a; + a
47‘L’€()|l‘—l'1|2 47‘[6()|l‘—l‘2|2

where a; and a, are unit vectors in the direction of (r —r) and (r — ry), respec-
tively. The vectors r,ry,r,, r —r;, r —I», a;, and a; are shown in Fig. 2.3.
If we add more charges at other positions, the field due to n point charges is

E(r) = 0O, 0> On a (13)

a; + QL+
4reolr — 1y | 4rep|r — 1o | 4reolr — 1, !

This expression takes up less space when we use a summation sign »_ and a
summing integer m which takes on all integral values between 1 and n,

E(r) = Z# (14)

a,
A 29m
=1 31€0|l lm|

When expanded, (14) is identical with (13), and students unfamiliar with summa-
tion signs should check that result.
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r-— II‘B
Pye1,-1,0) 3 ALY “aEhi)
/ A
. r-r,
r-r,
P,-,00 P, (1,1,0)
FIGURE 2.4

A symmetrical distribution of four identical 3-nC point charges produces a field at P, E=
6.82a, 4+ 6.82a, 4+ 32.8a. V/m.

IIII»Example 2.2

In order to illustrate the application of (13) or (14), let us find E at P(1, 1, 1) caused by
four identical 3-nC (nanocoulomb) charges located at P;(1,1,0), P»(—1,1,0),
P3(—1,—1,0), and P4(1, —1,0), as shown in Fig. 2.4.

Solution. We find that r = a, +a, +a., r; = a, + a,, and thus r —r; = a.. The magni-
tudes are: [r—r| =1, [r—12| =+/5, [r —r3] =3, and |r —r4| = /5. Since Q/4mey =
3 x 1070 /(47 x 8.854 x 10712) = 26.96 V - m, we may now use (13) or (14) to obtain
1 2a.+a. 1
TRV IV
2a,+2a,+a. 1 2a,+a. |1
3 ¥ 5 (ﬁ)z]

E_2696|:

or
E = 6.82a, + 6.82a, + 32.8a. V/m

v D22 A charge of —0.3 uC is located at A(25, —30, 15) (in cm), and a second charge of
0.5uC is at B(—10, 8, 12) cm. Find E at: («) the origin; (b) P(15, 20, 50) cm.

Ans. 92.3a, — 77.6a, — 105.3a.kV/m; 32.9a, + 5.94a, + 19.69a. kV/m

l)m (01)n1+1
¢/ D2.3. Evaluate th 1+
valuate the sums: (a)z PR ()Z(4+

m=0 m=1

Ans. 2.52; 0.1948
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2.3 FIELD DUE TO A CONTINUOUS
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges
separated by minute distances, such as the space between the control grid and the
cathode in the electron-gun assembly of a cathode-ray tube operating with space
charge, we see that we can replace this distribution of very small particles with a
smooth continuous distribution described by a volume charge density, just as we
describe water as having a density of 1g/cm? (gram per cubic centimeter) even
though it consists of atomic- and molecular-sized particles. We are able to do this
only if we are uninterested in the small irregularities (or ripples) in the field as we
move from electron to electron or if we care little that the mass of the water
actually increases in small but finite steps as each new molecule is added.

This is really no limitation at all, because the end results for electrical
engineers are almost always in terms of a current in a receiving antenna, a
voltage in an electronic circuit, or a charge on a capacitor, or in general in
terms of some large-scale macroscopic phenomenon. It is very seldom that we
must know a current electron by electron.*

We denote volume charge density by p,, having the units of coulombs per
cubic meter (C/m?).

The small amount of charge AQ in a small volume Aw is

AQ = p,Av (15)

and we may define p, mathematically by using a limiting process on (15),

A
py = lim == (16)

The total charge within some finite volume is obtained by integrating throughout
that volume,

sz lpvafv (17)

Only one integral sign is customarily indicated, but the differential dv signifies
integration throughout a volume, and hence a triple integration. Fortunately, we
may be content for the most part with no more than the indicated integration, for
multiple integrals are very difficult to evaluate in all but the most symmetrical
problems.

4 A study of the noise generated by electrons or ions in transistors, vacuum tubes, and resistors, however,
requires just such an examination of the charge.
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I Example 2.3

As an example of the evaluation of a volume integral, we shall find the total charge
contained in a 2-cm length of the electron beam shown in Fig. 2.5.

Solution. From the illustration, we see that the charge density is
Py = —5 x 10707102 C/m?

The volume differential in cylindrical coordinates is given in Sec. 1.8; therefore,

0.04 (27 £0.01 s
0= JO . L JO —5x 107% 1" pdpdg dz

We integrate first with respect to ¢ since it is so easy,
004 )
0= J . —10we" ' pdpdz
0.02

and then with respect to z, because this will simplify the last integration with respect to

P>
z=0.04

001 /1073 45
Q = J <7(’710 ,():’pdp>
0 —105p 2=0.02

0.01
— J _ 10—571,(6—2000/) _ e—4000p)dp
0

z=4cm

- p,=—35€ m%"z,u(lfm"

-

:x/' T\ z=2cm

FIGURE 2.5
¥ : The total charge contained within the right circular
: cylinder may be obtained by evaluating

o= na
Jvol
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Finally,
~2000p  ,—4000p\ 001
— _10-10 € e
Q ”(—2000 —4000/,
1 1 —7T
— -1 LI D Y
¢=-10 ”(2000 4000) a0 ~ 00785pC

where pC indicates picocoulombs.

Incidentally, we may use this result to make a rough estimate of the electron-beam
current. If we assume these electrons are moving at a constant velocity of 10 percent of
the velocity of light, this 2-cm-long packet will have moved 2 cm in %ns, and the current
is about equal to the product,

AQ —(7/40)10~"2
At~ (2/3)107°
or approximately 118 pA.
The incremental contribution to the electric field intensity at r produced by an
incremental charge AQ atr’ is
AQ r—r’ PuAv r—r’

AE(r) = =
dreglr — /> [t —1/|  dmeglr —rv/ Ir—r1/|

If we sum the contributions of all the volume charge in a given region and let the volume
element Av approach zero as the number of these elements becomes infinite, the sum-
mation becomes an integral,

E(r) = J

vol dmegr — 1/ |r — 1’|

po(®Ndv’  r—1’

(18)

This is again a triple integral, and (except in the drill problem that follows) we shall do
our best to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (18) might
stand a little review. The vector r from the origin locates the field point where E is being
determined, while the vector r’ extends from the origin to the source point where
pu(r")dv’ is located. The scalar distance between the source point and the field point
is [r — r’|, and the fraction (r —r’)/|r — r’| is a unit vector directed from source point to
field point. The variables of integration are x’, y’, and z’ in cartesian coordinates.

¢/ D24. Calculate the total charge within each of the indicated volumes: («a)

1
:W; b)) 0=p=<0l, 0=<¢=<m 2=<z=4

Py = p2z2sin 0.6¢; (¢) universe: p, = e~ /1.

0.1 < x|, Iy, 12| £0.2:  p,

Ans. 27pC; 1.778 mC; 6.28 C

2.4 FIELD OF A LINE CHARGE

Up to this point we have considered two types of charge distribution, the point
charge and charge distributed throughout a volume with a density p, C/m?>. If we
now consider a filamentlike distribution of volume charge density, such as a very
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fine, sharp beam in a cathode-ray tube or a charged conductor of very small
radius, we find it convenient to treat the charge as a line charge of density
pr C/m. In the case of the electron beam the charges are in motion and it is
true that we do not have an electrostatic problem. However, if the electron
motion is steady and uniform (a dc beam) and if we ignore for the moment
the magnetic field which is produced, the electron beam may be considered as
composed of stationary electrons, for snapshots taken at any time will show the
same charge distribution.

Let us assume a straight line charge extending along the z axis in a cylind-
rical coordinate system from —oo to oo, as shown in Fig. 2.6. We desire the
electric field intensity E at any and every point resulting from a wuniform line
charge density py.

Symmetry should always be considered first in order to determine two
specific factors: (1) with which coordinates the field does not vary, and (2)
which components of the field are not present. The answers to these questions
then tell us which components are present and with which coordinates they do
vary.

Referring to Fig. 2.6, we realize that as we move around the line charge,
varying ¢ while keeping p and z constant, the line charge appears the same from
every angle. In other words, azimuthal symmetry is present, and no field com-
ponent may vary with ¢.

Again, if we maintain p and ¢ constant while moving up and down the line
charge by changing z, the line charge still recedes into infinite distance in both
directions and the problem is unchanged. This is axial symmetry and leads to
fields which are not functions of z.

(0,0,2") ©

FIGURE 2.6

The contribution dE =dE,a, + dE.a. to the
electric field intensity produced by an element
of charge dQ = p;dz’ located a distance z’
from the origin. The linear charge density is uni-
form and extends along the entire z axis.
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If we maintain ¢ and z constant and vary p, the problem changes, and
Coulomb’s law leads us to expect the field to become weaker as p increases.
Hence, by a process of elimination we are led to the fact that the field varies
only with p.

Now, which components are present? Each incremental length of line charge
acts as a point charge and produces an incremental contribution to the electric
field intensity which is directed away from the bit of charge (assuming a positive
line charge). No element of charge produces a ¢ component of electric intensity;
Ey is zero. However, each element does produce an £, and an E. component, but
the contribution to E. by elements of charge which are equal distances above and
below the point at which we are determining the field will cancel.

We therefore have found that we have only an £, component and it varies
only with p. Now to find this component.

We choose a point P(0, y, 0) on the y axis at which to determine the field.
This is a perfectly general point in view of the lack of variation of the field with ¢
and z. Applying (12) to find the incremental field at P due to the incremental
charge dQ = prdz’, we have

/ A
rdz'(r —r
JE = L)
4rep|r — 1’|
where
r=ya, = pa,
r' =z'a.
and
/ /
r—r' =pa,—z'a.
Therefore,

_ prdz'(pa, —z'a;)
" dmeg(p? + 22)Y?

Since only the E, component is present, we may simplify:

dE

pLpdz’
dE, = 2 4 -'2)3/2
4meg(p? +2%)

and

B J“ pLpdz’
=

oo deg(p* + 22)

Integrating by integral tables or change of variable, z’ = pcot6, we have

I o\
PL z

E ="'t |—_=

r 4neop<p2 02 +Z'2>

—00
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and

_PL
2megp

(19)

E,

This is the desired answer, but there are many other ways of obtaining it.
We might have used the angle 6 as our variable of integration, for z’ = pcotf

from Fig. 2.6 and dz’ = —pcsc?0d6. Since R = pcscf, our integral becomes,
simply,
prdz' . oL sin6do
dE, = 0= ————
P 4wy R? S 4regp
0 0
E,=— PL J sinfdo =L coso
4renp ), 4megp .
_PL
T 2meyp

Here the integration was simpler, but some experience with problems of this
type is necessary before we can unerringly choose the simplest variable of inte-
gration at the beginning of the problem.

We might also have considered (18) as our starting point,

E_J p,,,dv’(r—r’)
- vol 47'[60|l' - rll3
letting p, dv’ = p; dz’ and integrating along the line which is now our “volume”
containing all the charge. Suppose we do this and forget everything we have
learned from the symmetry of the problem. Choose point P now at a general
location (p, ¢, z) (Fig. 2.7) and write

r=pa, -+ za;

r' =z'a.

R=r—r'"=pa,+(z—2z')a;

R=\p+( -z

pa, +(z —z)a;
ap=—H————

Jor -y
E— J“’ prdz'[pa, +(z — z)a.]
oo Ameg[p? + (z = 22
pL {J"O pdz'a, ro (z—1z")dz'a, }
Cdweg | ) [P+ =20 [0+ (2 — 2) T
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(0, 0, z‘)l

Pp. ¢.2)

FIGURE 2.7

The geometry of the problem for the
field about an infinite line charge
leads to more difficult integrations
when symmetry is ignored.

Before integrating a vector expression, we must know whether or not a
vector under the integral sign (here the unit vectors a, and a.) varies with the
variable of integration (here dz’). If it does not, then it is a constant and may be
removed from within the integral, leaving a scalar which may be integrated by
normal methods. Our unit vectors, of course, cannot change in magnitude, but a
change in direction is just as troublesome. Fortunately, the direction of a, does
not change with z’ (nor with p, but it does change with ¢), and a. is constant
always.

Hence we remove the unit vectors from the integrals and again integrate
with tables or by changing variables,

[ [ e )
= 47‘[6() 4 . [p2 + (Z _ Z/)2]3/2 z . [p2 + (Z o 21)2]3/2
o0
1 —(z—2z2' 1
__pr (z—2) v a
e

Ap— —F——
UNVCEN R

Vo + =)

oL 2 oL
= — J(0)| =
4meg |:ap 0 - a:( )] 27reopap

Again we obtain the same answer, as we should, for there is nothing wrong
with the method except that the integration was harder and there were two
integrations to perform. This is the price we pay for neglecting the consideration
of symmetry and plunging doggedly ahead with mathematics. Look before you
integrate.

Other methods for solving this basic problem will be discussed later after we
introduce Gauss’s law and the concept of potential.
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Now let us consider the answer itself,

PL
2megp

ap (20)

We note that the field falls off inversely with the distance to the charged line, as
compared with the point charge, where the field decreased with the square of the
distance. Moving ten times as far from a point charge leads to a field only 1
percent the previous strength, but moving ten times as far from a line charge only
reduces the field to 10 percent of its former value. An analogy can be drawn with
a source of illumination, for the light intensity from a point source of light also
falls off inversely as the square of the distance to the source. The field of an
infinitely long fluorescent tube thus decays inversely as the first power of the
radial distance to the tube, and we should expect the light intensity about a finite-
length tube to obey this law near the tube. As our point recedes farther and
farther from a finite-length tube, however, it eventually looks like a point source
and the field obeys the inverse-square relationship.

Before leaving this introductory look at the field of the infinite line charge,
we should recognize the fact that not all line charges are located along the z axis.
As an example, let us consider an infinite line charge parallel to the z axis at
x =06, y =38, Fig. 2.8. We wish to find E at the general field point P(x, y, z).

(6,8,2)
\R;' P(x! 5 z)

(0,8,0)
AL
L e S =l FIGURE 2.8
/ * O R (x, 7, 0) A point P(x, y, z) is identified near an
¥ infinite uniform line charge located at

x=06,y=28.
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We replace p in (20) by the radial distance between the line charge and
point, P, R = /(x— 6)’ + (y — 8)’, and let a, be ag. Thus,
PL

E = apr
27T€0\/(x —6)* 4 (v — 8)*
where
R (x—6)a,+(y—98)a,
arp = E =
R -6+ -87
Therefore,

_pL (x=6)a +(—8a,
2mé) (x —6)" +(y —8)°
We again note that the field is not a function of z.

In Sec. 2.6 we shall describe how fields may be sketched and use the field of
the line charge as one example.

¢/ D2.5. Infinite uniform line charges of 5nC/m lie along the (positive and negative) x and
y axes in free space. Find E at: (a) P4(0, 0, 4); (b) Pp(0, 3,4).

Ans. 45a. V/m; 10.8a, + 36.9a. V/m

2.5 FIELD OF A SHEET OF CHARGE

Another basic charge configuration is the infinite sheet of charge having a uni-
form density of psC/m?. Such a charge distribution may often be used to
approximate that found on the conductors of a strip transmission line or a
parallel-plate capacitor. As we shall see in Chap. 5, static charge resides on
conductor surfaces and not in their interiors; for this reason, pg is commonly
known as surface charge density. The charge-distribution family now is com-
plete—point, line, surface, and volume, or Q, p;r, ps, and p,.

Let us place a sheet of charge in the yz plane and again consider symmetry
(Fig. 2.9). We see first that the field cannot vary with y or with z, and then that
the y and z components arising from differential elements of charge symmetri-
cally located with respect to the point at which we wish the field will cancel.
Hence only E, is present, and this component is a function of x alone. We are
again faced with a choice of many methods by which to evauate this component,
and this time we shall use but one method and leave the others as exercises for a
quiet Sunday afternoon.

Let us use the field of the infinite line charge (19) by dividing the infinite
sheet into differential-width strips. One such strip is shown in Fig. 2.9. The line
charge density, or charge per unit length, is p, = psdy’, and the distance from

4| p | eTextMainMenu | Textbook Table of Contents



COULOMB’S LAW AND ELECTRIC FIELD INTENSITY

FIGURE 2.9

An infinite sheet of charge in the yz plane, a
general point P on the x axis, and the differ-
ential-width line charge used as the element in
determining the field at P by dJdE=
ps dy'ag/(2meyR).

this line charge to our general point P on the x axis is R = /x2 + y"2. The
contribution to £, at P from this differential-width strip is then

ps dy’ ps  xdy'
dE, = ——————cos=—" ———
T 2megy/xE+ 2 2meg X2 +y2
Adding the effects of all the strips,

Y 2mey ) _ oo X2 412 2me X 2¢q

—00
If the point P were chosen on the negative x axis, then

__Ps
¥ 260

for the field is always directed away from the positive charge. This difficulty in
sign is usually overcome by specifying a unit vector ay, which is normal to the
sheet and directed outward, or away from it. Then

E="5a, 1)
260

This is a startling answer, for the field is constant in magnitude and direc-
tion. It is just as strong a million miles away from the sheet as it is right off the
surface. Returning to our light analogy, we see that a uniform source of light on
the ceiling of a very large room leads to just as much illumination on a square
foot on the floor as it does on a square foot a few inches below the ceiling. If you
desire greater illumination on this subject, it will do you no good to hold the
book closer to such a light source.
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If a second infinite sheet of charge, having a negative charge density —ps, is
located in the plane x = ¢, we may find the total field by adding the contribution
of each sheet. In the region x > «q,

Ps
E, =—"a, =
+ 260 X 260 )

and for x <0,

E+=—&3x E_:ﬁa_\, E=E++E_=O
2¢ 2¢

and when 0 < x < q,

PS Ps
= — E_ = —
* 260 A 260 v
and
E=E, +E_ =a, (22)
€0

This is an important practical answer, for it is the field between the parallel
plates of an air capacitor, provided the linear dimensions of the plates are very
much greater than their separation and provided also that we are considering a
point well removed from the edges. The field outside the capacitor, while not
zero, as we found for the ideal case above, is usually negligible.

V D2.6. Three infinite uniform sheets of charge are located in free space as follows: 3nC/
m? at z=—4, 6nC/m? at z=1, and —8nC/m? at z=4. Find E at the point: (a)
P4(2,5,-5); (b) Pp4,2,=3); (c) Pc(—1,=5,2); (d) Pp(—2,4,5).

Ans. —56.5a;; 283a.; 961a.; 56.5a, all V/m

2.6 STREAMLINES AND SKETCHES OF
FIELDS

We now have vector equations for the electric field intensity resulting from
several different charge configurations, and we have had little difficulty in inter-
preting the magnitude and direction of the field from the equations.
Unfortunately, this simplicity cannot last much longer, for we have solved
most of the simple cases and our new charge distributions must lead to more
complicated expressions for the fields and more difficulty in visualizing the fields
through the equations. However, it is true that one picture would be worth about
a thousand words, if we just knew what picture to draw.

Consider the field about the line charge,
oL
E =
2menp A

4| p | eTextMainMenu | Textbook Table of Contents



COULOMB’S LAW AND ELECTRIC FIELD INTENSITY

Fig. 2.10a shows a cross-sectional view of the line charge and presents what
might be our first effort at picturing the field—short line segments drawn here
and there having lengths proportional to the magnitude of E and pointing in the
direction of E. The figure fails to show the symmetry with respect to ¢, so we try
again in Fig. 2.10b with a symmetrical location of the line segments. The real
trouble now appears—the longest lines must be drawn in the most crowded
region, and this also plagues us if we use line segments of equal length but of
a thickness which is proportional to E (Fig. 2.10c). Other schemes which have
been suggested include drawing shorter lines to represent stronger fields (inher-
ently misleading) and using intensity of color to represent stronger fields (diffi-
cult and expensive).

For the present, then, let us be content to show only the direction of E by
drawing continuous lines from the charge which are everywhere tangent to E.
Fig. 2.10d shows this compromise. A symmetrical distribution of lines (one every
45°) indicates azimuthal symmetry, and arrowheads should be used to show
direction.

These lines are usually called streamlines, although other terms such as flux
lines and direction lines are also used. A small positive test charge placed at any

A
- | ”
— T/ RN
\

RN AN

¥
(a) (b)
A
X T / '
e l /
rd | N
rd N Y
(c) (d)
FIGURE 2.10

(a) One very poor sketch, (b) and (c¢) two fair sketches, and () the usual form of streamline sketch. In the
last form, the arrows show the direction of the field at every point along the line, and the spacing of the
lines is inversely proportional to the strength of the field.
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point in this field and free to move would accelerate in the direction of the
streamline passing through that point. If the field represented the velocity of a
liquid or a gas (which, incidentally, would have to have a source at p = 0), small
suspended particles in the liquid or gas would trace out the streamlines.

We shall find out later that a bonus accompanies this streamline sketch, for
the magnitude of the field can be shown to be inversely proportional to the
spacing of the streamlines for some important special cases. The closer they
are together, the stronger is the field. At that time we shall also find an easier,
more accurate method of making that type of streamline sketch.

If we attempted to sketch the field of the point charge, the variation of the
field into and away from the page would cause essentially insurmountable diffi-
culties; for this reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field let us arbitrarily set E. = 0. The
streamlines are thus confined to planes for which z is constant, and the sketch is
the same for any such plane. Several streamlines are shown in Fig. 2.11, and the
E, and E, components are indicated at a general point. Since it is apparent from
the geometry that

E, dy

— = 2
E, dx 23)

a knowledge of the functional form of E, and E, (and the ability to solve the
resultant differential equation) will enable us to obtain the equations of the
streamlines.

As an illustration of this method, consider the field of the uniform line
charge with p; = 2me,

FIGURE 2.11

The equation of a streamline is obtained by
solving the differential equation E,/E, =
- X dy/dx.
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In cartesian coordinates,

- a, + J a
T2 242
Thus we form the differential equation
dy E, 'y or dy dx
dx  E. x y X

Therefore,
Iny=Inx+ C or Iny=Inx+InC
from which the equations of the streamlines are obtained,
y=0Cx

If we want to find the equation of one particular streamline, say that one
passing through P(—2, 7, 10), we merely substitute the coordinates of that point
into our equation and evaluate C. Here, 7= C(-2), and C = —3.5, so that
y = —3.5x.

Each streamline is associated with a specific value of C, and the radial lines
shown in Fig. 2.10d are obtained when C =0, 1, —1, and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or
spherical coordinates. A spherical coordinate example will be examined in Sec.
4.7.

¢/ D27. Find the equation of that streamline that passes through the point P(1, 4, —2) in

. —8x 4x? Sy
the field E =: (a) Tax —+ 73},; (b) 2e>*[y(5x + 1)a, + xa,].

Ans. x* +2)? =33; 32 = 15.6 + 0.4x — 0.08 In(x + 0.2)/1.2]

SUGGESTED REFERENCES

1. Boast, W. B.: “Vector Fields,” Harper and Row, Publishers, Incorporated,
New York, 1964. This book contains numerous examples and sketches of
fields.

2. Della Torre, E., and Longo, C. L.: “The Electromagnetic Field,” Allyn and
Bacon, Inc., Boston, 1969. The authors introduce all of electromagnetic
theory with a careful and rigorous development based on a single experi-
mental law—that of Coulomb. It begins in chap. 1.

3. Schelkunoff, S. A.: “Electromagnetic Fields,” Blaisdell Publishing
Company, New York, 1963. Many of the physical aspects of fields are dis-
cussed early in this text without advanced mathematics.
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PROBLEMS

2.1

2.2

2.3

24

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Four 10-nC positive charges are located in the z = 0 plane at the corners
of a square 8 cm on a side. A fifth 10-nC positive charge is located at a
point 8 cm distant from each of the other charges. Calculate the magni-
tude of the total force on this fifth charge for € = ¢.

A charge Q; =0.1pC is located at the origin in free space, while
0, =0.2uC 1s at A4(0.8, —0.6, 0). Find the locus of points in the z =0
plane at which the x-component of the force on a third positive charge is
Zero.

Point charges of 50nC each are located at A(1,0,0), B(—1,0,0),
C(0,1,0), and D(0,—1,0) in free space. Find the total force on the
charge at A.

Let QO =8uC be located at P;(2,5,8) while O, = —-5uC is at
P5(6,15,8). Let € = €. (a) Find F,, the force on Q. (b) Find the coor-
dinates of Pj if a charge Q3 experiences a total force F3 = 0 at Ps.

Let a point charge Q1 = 25nC be located at Py(4, —2,7) and a charge
0, = 60nC be at Pr(—3,4, =2). (a) If € = €, find E at P(1, 2, 3). (b) At
what point on the y axis is £, = 0?

Point charges of 120 nC are located at 4(0,0, 1) and B(0, 0, —1) in free
space. (@) Find E at P(0.5,0,0). (b) What single charge at the origin
would provide the identical field strength?

A 2-uC point charge is located at A(4, 3, 5) in free space. Find E,, E,
and E. at P(8,12,2).

Given point charges of —1 uC at P(0,0,0.5) and P,(0,0, —0.5), and a
charge of 2 uC at the origin, find E at P(0, 2, 1) in spherical components.
Assume € = ¢.

A 100-nC point charge is located at A(—1, 1, 3) in free space. (a) Find the
locus of all points P(x,y,z) at which E, =500V/m. (b) Find y; if
P(=2, y1, 3) lies on that locus.

Charges of 20 and —20nC are located at (3, 0, 0) and (-3, 0, 0), respec-
tively. Let € = €. (a) Determine |E| at P(0, y, 0). (b) Sketch |E| vs y at P.
A charge Qy, located at the origin in free space, produces a field for
which E. =1kV/m at point P(-2,1,—1). («) Find Qy. Find E at
M(1,6,5) in: (b) cartesian coordinates; (¢) cylindrical coordinates; (d)
spherical coordinates.

The volume charge density p, = ppe”M~PI1=I7l exists over all free space.
Calculate the total charge present.

A uniform volume charge density of 0.2 nC/m? is present throughout the
spherical shell extending from r = 3cm to r = Scm. If p, = 0 elsewhere,
find: (a) the total charge present within the shell, and (b) r| if half the
total charge is located in the region 3cm < r < ry.

Let p, = Se 017 (m — puC/m® in the region 0 < p < 10,

1
(REFST
—m < ¢ < m, all z, and p, = 0 elsewhere. (a) Determine the total charge
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present. (b) Calculate the charge within the region 0 < p <4,
—%n<¢)<%n,—10<z< 10.

A spherical volume having a 2-um radius contains a uniform volume
charge density of 10> C/m3. (¢) What total charge is enclosed in the
spherical volume? () Now assume that a large region contains one of
these little spheres at every corner of a cubical grid 3mm on a side, and
that there is no charge between the spheres. What is the average volume
charge density throughout this large region?

The region in which 4 <r < 5,0 <6 < 25° and 0.97 < ¢ < 1.17, con-
tains the volume charge density p, = 10(r — 4)(r — 5)sin 6 sin%q&. Outside
that region p, = 0. Find the charge within the region.

A uniform line charge of 16 nC/m is located along the line defined by
y=-2,z=5.1f e = ¢y: (a) find E at P(1, 2, 3); (b) find E at that point in
the z = 0 plane where the direction of E is given by %ay — %az.
Uniform line charges of 0.4uC/m and —0.4puC/m are located in the
x =0 plane at y = —0.6 and y = 0.6 m, respectively. Let € = ¢;. Find
E at: (@) P(x,0,2); (b) O(2,3,4).

A uniform line charge of 2uC/m is located on the z axis. Find E in
cartesian coordinates at P(1,2,3) if the charge extends from: (a)
z=—-00toz=00;(h) z=—-4toz=4.

Uniform line charges of 120 nC/m lie along the entire extent of the three
coordinate axes. Assuming free space conditions, find E at P(—3, 2, —1).
Two identical uniform line charges, with p;, = 75nC/m, are located in
free space at x =0, y = 0.4 m. What force per unit length does each
line charge exert on the other?

A uniform surface charge density of 5nC/m? is present in the region
x=0, -2<y<?2, all z. If e=¢p, find E at: (a) P4(3,0,0); (b)
Pg(0,3,0).

Given the surface charge density, ps = 2 pC/m? in the region p < 0.2m,
z=0, and is zero elsewhere, find E at: (a) Py(p=0,z=0.5); (b)
Pg(p=0,z=-0.5).

Surface charge density is positioned in free space as follows: 20 nC/m? at
x = -3, =30nC/m? at y =4, and 40nC/m? at z = 2. Find the magni-
tude of E at: (a) P4(4, 3, —2); (b) Pp(—2,5,—1); (¢) Pc(0,0,0).

Find E at the origin if the following charge distributions are present in
free space: point charge, 12nC, at P(2, 0, 6); uniform line charge density,

3nC/m, at x = —2, y = 3; uniform surface charge density, 0.2nC/m?, at
x=2.

A uniform line charge density of 5nC/m is at y =0, z=2m in free
space, while —5nC/m is located at y =0, z = —2m. A uniform surface

charge density of 0.3nC/m? is at y =0.2m, and —0.3nC/m? is at
y = —0.2m. Find |E| at the origin.

Given the electric field E = (4x — 2y)a, — (2x + 4y)a,, find: (a) the equa-
tion of that streamline passing through the point P(2, 3, —4); (b) a unit
vector ag specifying the direction of E at Q(3, =2, 5).
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2.28

2.29

2.30

2.31

Let E = 5x%a, — 15x?pa,, and find: (a) the equation of the streamline
that passes through P(4, 2, 1); (b) a unit vector ag specifying the direction
of E at Q(3, —2, 5); (¢) a unit vector ay = (/, m, 0) that is perpendicular
to ag at Q.

If E = 20e>(cos 5xa, — sin 5xa,), find: (@) |E| at P(r/6,0.1,2); (b) a
unit vector in the direction of E at P; (¢) the equation of the direction
line passing through P.

Given the electric field intensity, E = 400ya, + 400xa, V/m, find: (a) the
equation of the streamline passing through point A(2, 1, —2); (b) the
equation of the surface on which |E| = 800 V. (c¢) Sketch the streamline
of part a. (d) Sketch the trace produced by the intersection of the z =0
plane and the surface of part b.

In cylindrical coordinates with E(p, ¢) = E,(p, ¢)a, + Ey4(p, ¢)ay, the dif-
ferential equation describing the direction lines is E,/E, = dp/(pd¢)
in any z = constant plane. Derive the equation of the line passing
through point P(p =4,¢ = 10°,z =2) in the field E = 2p? cos 3¢a,+
2p% sin 3¢ay,.
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CHAPTER

3

ELECTRIC
FLUX
DENSITY,
GAUSS’S
LAW, AND
DIVERGENCE

After drawing a few of the fields described in the previous chapter and becoming
familiar with the concept of the streamlines which show the direction of the force
on a test charge at every point, it is difficult to avoid giving these lines a physical
significance and thinking of them as flux lines. No physical particle is projected
radially outward from the point charge, and there are no steel tentacles reaching
out to attract or repel an unwary test charge, but as soon as the streamlines are
drawn on paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flux which streams away symmetri-
cally from a point charge and is coincident with the streamlines and to visualize
this flux wherever an electric field is present.

This chapter introduces and uses the concept of electric flux and electric
flux density to solve again several of the problems presented in the last chapter.
The work here turns out to be much easier, and this is due to the extremely
symmetrical problems which we are solving.
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3.1 ELECTRIC FLUX DENSITY

About 1837 the Director of the Royal Society in London, Michael Faraday,
became very interested in static electric fields and the effect of various insulating
materials on these fields. This problem had been bothering him during the past
ten years when he was experimenting in his now famous work on induced elec-
tromotive force, which we shall discuss in Chap. 10. With that subject completed,
he had a pair of concentric metallic spheres constructed, the outer one consisting
of two hemispheres that could be firmly clamped together. He also prepared
shells of insulating material (or dielectric material, or simply dielectric) which
would occupy the entire volume between the concentric spheres. We shall not
make immediate use of his findings about dielectric materials, for we are restrict-
ing our attention to fields in free space until Chap. 5. At that time we shall see
that the materials he used will be classified as ideal dielectrics.
His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive
charge.

2. The hemispheres were then clamped together around the charged sphere with
about 2cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating
material in order not to disturb the induced charge on it, and the negative
induced charge on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in
magnitude to the original charge placed on the inner sphere and that this was
true regardless of the dielectric material separating the two spheres. He con-
cluded that there was some sort of “‘displacement” from the inner sphere to
the outer which was independent of the medium, and we now refer to this flux
as displacement, displacement flux, or simply electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge
on the inner sphere induced a correspondingly larger negative charge on the
outer sphere, leading to a direct proportionality between the electric flux and
the charge on the inner sphere. The constant of proportionality is dependent on
the system of units involved, and we are fortunate in our use of SI units, because
the constant is unity. If electric flux is denoted by W (psi) and the total charge on
the inner sphere by Q, then for Faraday’s experiment

v=0

and the electric flux ¥ is measured in coulombs.
We can obtain more quantitative information by considering an inner
sphere of radius a and an outer sphere of radius b, with charges of Q and —Q,
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respectively (Fig. 3.1). The paths of electric flux W extending from the inner
sphere to the outer sphere are indicated by the symmetrically distributed stream-
lines drawn radially from one sphere to the other.

At the surface of the inner sphere, W coulombs of electric flux are produced
by the charge Q(= W) coulombs distributed uniformly over a surface having
an area of 4ma’m?. The density of the flux at this surface is W/4mwa® or
Q/4ma> C/m?, and this is an important new quantity.

Electric flux density, measured in coulombs per square meter (sometimes
described as ““lines per square meter,” for each line is due to one coulomb), is
given the letter D, which was originally chosen because of the alternate names of
displacement flux density or displacement density. Electric flux density is more
descriptive, however, and we shall use the term consistently.

The electric flux density D is a vector field and is a member of the “flux
density” class of vector fields, as opposed to the “force fields” class, which
includes the electric field intensity E. The direction of D at a point is the direction
of the flux lines at that point, and the magnitude is given by the number of flux
lines crossing a surface normal to the lines divided by the surface area.

Referring again to Fig. 3.1, the electric flux density is in the radial direction
and has a value of

D = 2 a, (inner sphere)
ey Amad?

D = o a, (outer sphere)
p  Amh?

and at a radial distance r, where a < r < b,

Y

=—=_a
42"

If we now let the inner sphere become smaller and smaller, while still retaining a
charge of Q, it becomes a point charge in the limit, but the electric flux density at
a point r meters from the point charge is still given by

Metal
conducting

spheres ~_ /7
N é

Insulating or
. dielectric
material

FIGURE 3.1

The electric flux in the region between a
pair of charged concentric spheres. The
direction and magnitude of D are not
functions of the dielectric between the
spheres.
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Y

=  —7Fa,
Ap2 ™

()

for Q lines of flux are symmetrically directed outward from the point and pass
through an imaginary spherical surface of area 412

This result should be compared with Sec. 2.2, Eq. (10), the radial electric
field intensity of a point charge in free space,

0

= ——:a,
dmeqr? "

In free space, therefore,

D = ¢E (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field
of a point charge. For a general volume charge distribution in free space

pudv
E = , f 1
JVOI o a (free space only) 3)

where this relationship was developed from the field of a single point charge. In a
similar manner, (1) leads to

pv dv
D= r 4
Jvol 47[R2 ? ( )

and (2) is therefore true for any free-space charge configuration; we shall con-
sider (2) as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point
out now that, for a point charge embedded in an infinite ideal dielectric medium,
Faraday’s results show that (1) is still applicable, and thus so is (4). Equation (3)
is not applicable, however, and so the relationship between D and E will be
slightly more complicated than (2).

Since D is directly proportional to E in free space, it does not seem that it
should really be necessary to introduce a new symbol. We do so for several
reasons. First, D is associated with the flux concept, which is an important
new idea. Second, the D fields we obtain will be a little simpler than the corre-
sponding E fields, since €y does not appear. And, finally, it helps to become a
little familiar with D before it is applied to dielectric materials in Chap. 5.
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Let us consider a simple numerical example to illustrate these new quan-
tities and units.

IIII»Example 3.1

We wish to find D in the region about a uniform line charge of § nC/m lying along the z
axis in free space.

Solution. The E field is
oL 8 x 107? 14338

E= = =
Sreop ™ T (8854 x 10-0)p 0 =, M V/m
At p=3m, E=479a,V/m.
Associated with the E field, we find
_opr . 8x107 1273 x107° 5
D= ana” = "2 a, = » a, C/m

The value at p =3m is D = 0.424a,nC/m.
The total flux leaving a 5-m length of the line charge is equal to the total charge
on that length, or ¥ = 40nC.

¢/ D3.1. Given a 60-uC point charge located at the origin, find the total electric flux
passing through: (a) that portion of the sphere r = 26 cm bounded by 0 < 6 <g and
0<o¢< g; (b) the closed surface defined by p = 26cm and z = 26 cm; (¢) the plane

z=26cm.
Ans. 7.5nC; 60 puC; 30 pC

V D3.2. Calculate D in rectangular coordinates at point P(2, —3, 6) produced by: (a) a
point charge Q4 = 55mC at Q(—2, 3, —6); (b) a uniform line charge p; 3 = 20 mC/m on
the x axis; (¢) a uniform surface charge density psc = 120 pC/m? on the plane z = —5m.

Ans. 6.38a, — 9.57a, + 19.14a, uC/m?; —212a, + 424a, pC/m?; 60a, pC/m>

3.2 GAUSS’S LAW

The results of Faraday’s experiments with the concentric spheres could be
summed up as an experimental law by stating that the electric flux passing
through any imaginary spherical surface lying between the two conducting
spheres is equal to the charge enclosed within that imaginary surface. This
enclosed charge is distributed on the surface of the inner sphere, or it might be
concentrated as a point charge at the center of the imaginary sphere. However,
since one coulomb of electric flux is produced by one coulomb of charge, the
inner conductor might just as well have been a cube or a brass door key and the
total induced charge on the outer sphere would still be the same. Certainly the
flux density would change from its previous symmetrical distribution to some
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unknown configuration, but +Q coulombs on any inner conductor would pro-
duce an induced charge of —Q coulombs on the surrounding sphere. Going one
step further, we could now replace the two outer hemispheres by an empty (but
completely closed) soup can. Q coulombs on the brass door key would produce
W = Q lines of electric flux and would induce —Q coulombs on the tin can.!

These generalizations of Faraday’s experiment lead to the following state-
ment, which is known as Gauss’s law:

The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world
has ever produced, was actually not in stating the law as we have above, but in
providing a mathematical form for this statement, which we shall now obtain.

Let us imagine a distribution of charge, shown as a cloud of point charges
in Fig. 3.2, surrounded by a closed surface of any shape. The closed surface may
be the surface of some real material, but more generally it is any closed surface
we wish to visualize. If the total charge is Q, then Q coulombs of electric flux will
pass through the enclosing surface. At every point on the surface the electric-
flux-density vector D will have some value Dg, where the subscript S merely
reminds us that D must be evaluated at the surface, and Dg will in general vary in
magnitude and direction from one point on the surface to another.

We must now consider the nature of an incremental element of the surface.
An incremental element of area AS is very nearly a portion of a plane surface,
and the complete description of this surface element requires not only a state-
ment of its magnitude AS but also of its orientation in space. In other words, the
incremental surface element is a vector quantity. The only unique direction
which may be associated with AS is the direction of the normal to that plane
which is tangent to the surface at the point in question. There are, of course, two

FIGURE 3.2

The electric flux density Dg at P due to
charge Q. The total flux passing through
AS is DS - AS.

UIf it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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such normals, and the ambiguity is removed by specifying the outward normal
whenever the surface is closed and “outward” has a specific meaning.

At any point P consider an incremental element of surface AS and let Dg
make an angle 6 with AS, as shown in Fig. 3.2. The flux crossing AS is then the
product of the normal component of Dg and AS,

AWV = flux crossing AS = Dy oymA = DsScosOAS = Dg - AS

where we are able to apply the definition of the dot product developed in
Chap. 1.

The total flux passing through the closed surface is obtained by adding the
differential contributions crossing each surface element AS,

W:Jd\llz Dg - dS

closed
surface

The resultant integral is a closed surface integral, and since the surface
element dS always involves the differentials of two coordinates, such as dx dy,
pd¢ dp, or r’sinfdode, the integral is a double integral. Usually only one
integral sign is used for brevity, and we shall always place an S below the integral
sign to indicate a surface integral, although this is not actually necessary since the
differential dS is automatically the signal for a surface integral. One last con-
vention is to place a small circle on the integral sign itself to indicate that the
integration is to be performed over a closed surface. Such a surface is often called
a gaussian surface. We then have the mathematical formulation of Gauss’s law,

VS jg Dgs - dS = charge enclosed = Q 5
s

The charge enclosed might be several point charges, in which case
Q0 =3X0n

or a line charge,
0= J/OL dL
or a surface charge,
0= L posdS (not necessarily a closed surface)

or a volume charge distribution,

0= J pu dv
vol
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The last form is usually used, and we should agree now that it represents
any or all of the other forms. With this understanding Gauss’s law may be
written in terms of the charge distribution as

fh Ds - dS = J po dv (6)

vol

a mathematical statement meaning simply that the total electric flux through any
closed surface is equal to the charge enclosed.

To illustrate the application of Gauss’s law, let us check the results of
Faraday’s experiment by placing a point charge Q at the origin of a spherical
coordinate system (Fig. 3.3) and by choosing our closed surface as a sphere of
radius a. The electric field intensity of the point charge has been found to be

0

" 4megr?

a,

and since
D= GQE

we have, as before,

At the surface of the sphere,

o\ 734a ds
g \ FIGURE 3.3
Q T Application of Gauss’s law to the field of a point
/o > ! | charge Q on a spherical closed surface of radius a.
e T o The electric flux density D is everywhere normal to
i X the spherical surface and has a constant magnitude at
every point on it.
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The differential element of area on a spherical surface is, in spherical coordinates
from Chap. 1,

dS = r*sin0dbde = a’sin 0 do de
or
dS = a*sin6dod¢
The integrand is

0
4ra?

leading to the closed surface integral
¢=2m (O=m
J J sin6do d¢
¢=0 Jo=0

where the limits on the integrals have been chosen so that the integration is
carried over the entire surface of the sphere once.” Integrating gives

2 Q . B 21 Q B
L E(—cos@)od(p_Jo ﬂd¢—Q

a*sin0dodea, - a, = gsinQdQ do

Dg .- dS =
§ 4

and we obtain a result showing that Q coulombs of electric flux are crossing the
surface, as we should since the enclosed charge is Q coulombs.

The following section contains examples of the application of Gauss’s law
to problems of a simple symmetrical geometry with the object of finding the
elelctric field intensity.

G/ D3.3. Given the electric flux density, D = 0.3r%a, nC/m? in free space: («) find E at
point P(r =2,0 = 25° ¢ =90°); (b) find the total charge within the sphere r = 3; (¢)
find the total electric flux leaving the sphere r = 4.

Ans. 135.5a, V/m; 305nC; 965nC

¢/ D3.4. Calculate the total electric flux leaving the cubical surface formed by the six
planes x,y,z =45 if the charge distribution is: (¢) two point charges, 0.1 pC at
(1,-2,3) and %pC at (—1,2,—-2); (b) a uniform line charge of 7 uC/m at x = =2,
¥ = 3; (¢) a uniform surface charge of 0.1 uC/m? on the plane y = 3x.

Ans. 0.243 uC; 31.4 uC; 10.54 uC

2 Note that if # and ¢ both cover the range from 0 to 27, the spherical surface is covered twice.
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

Let us now consider how we may use Gauss’s law,

Q:iDde

to determine Dy if the charge distribution is known. This is an example of an
integral equation in which the unknown quantity to be determined appears inside
the integral.

The solution is easy if we are able to choose a closed surface which satisfies
two conditions:

1. Dy is everywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. On that portion of the closed surface for which Dg-dS is not zero, Dg =
constant.

This allows us to replace the dot product with the product of the scalars Dg
and dS and then to bring Dy outside the integral sign. The remaining integral is
then [, dS over that portion of the closed surface which Dg crosses normally, and
this is simply the area of this section of that surface.

Only a knowledge of the symmetry of the problem enables us to choose
such a closed surface, and this knowledge is obtained easily by remembering that
the electric field intensity due to a positive point charge is directed radially out-
ward from the point charge.

Let us again consider a point charge Q at the origin of a spherical coordi-
nate system and decide on a suitable closed surface which will meet the two
requirements listed above. The surface in question is obviously a spherical sur-
face, centered at the origin and of any radius r. Dg is everywhere normal to the
surface; Dg has the same value at all points on the surface.

Then we have, in order,

Q:% DS-dS:i; DsdS
S sph

p=2m (0=
=DS§ dS=DSJ J > sin@do d¢
sph ¢=0 JO=0

= 47r*D s
_0
4rr?

Since r may have any value and since Dy is directed radially outward,

and hence Dg
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o 0

=——a E
42" 4regr?

a,

which agrees with the results of Chap. 2. The example is a trivial one, and the
objection could be raised that we had to know that the field was symmetrical and
directed radially outward before we could obtain an answer. This is true, and
that leaves the inverse-square-law relationship as the only check obtained from
Gauss’s law. The example does, however, serve to illustrate a method which we
may apply to other problems, including several to which Coulomb’s law is
almost incapable of supplying an answer.

Are there any other surfaces which would have satisfied our two condi-
tions? The student should determine that such simple surfaces as a cube or a
cylinder do not meet the requirements.

As a second example, let us reconsider the uniform line charge distribution
pr lying along the z axis and extending from —oo to +00. We must first obtain a
knowledge of the symmetry of the field, and we may consider this knowledge
complete when the answers to these two questions are known:

1. With which coodinates does the field vary (or of what variables is D a
function)?

2. Which components of D are present?

These same questions were asked when we used Coulomb’s law to solve this
problem in Sec. 2.5. We found then that the knowledge obtained from answering
them enabled us to make a much simpler integration. The problem could have
been (and was) worked without any consideration of symmetry, but it was more
difficult.

In using Gauss’s law, however, it is not a question of using symmetry to
simplify the solution, for the application of Gauss’s law depends on symmetry,
and if we cannot show that symmetry exists then we cannot use Gauss’s law to
obtain a solution. The two questions above now become ‘“‘musts.”

From our previous discussion of the uniform line charge, it is evident that
only the radial component of D is present, or

D=D,a,
and this component is a function of p only.
D, =f(p)

The choice of a closed surface is now simple, for a cylindrical surface is the
only surface to which D, is everywhere normal and it may be closed by plane
surfaces normal to the z axis. A closed right circular cylindrical of radius p
extending from z = 0 to z = L is shown in Fig. 3.4.

We apply Gauss’s law,
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Line charge @ —
Pr

FIGURE 3.4

The gaussian surface for an infinite uniform line charge is a right
circular cylinder of length L and radius p. D is constant in
magnitude and everywhere perpendicular to the cylindrical sur-
face; D is parallel to the end faces.

Q:% Ds - dS = DSJ dS+0J dS—i-OJ ds
cyl sides top bottom

L 2
= Dg J J pdpdz = Dg2npl
z=0 J¢=0

Y

and Obtaln DS = Dp = m
P

In terms of the charge density p;, the total charge enclosed is

O=np.L
- PL
1vin D,=——
g g 14 27_[0
or _ PL
P 2megp

Comparison with Sec. 2.4, Eq. (20), shows that the correct result has been
obtained and with much less work. Once the appropriate surface has been
chosen, the integration usually amounts only to writing down the area of the
surface at which D is normal.

The problem of a coaxial cable is almost identical with that of the line
charge and is an example which is extremely difficult to solve from the stand-
point of Coulomb’s law. Suppose that we have two coaxial cylindrical conduc-
tors, the inner of radius a and the outer of radius b, each infinite in extent (Fig.
3.5). We shall assume a charge distribution of pg on the outer surface of the inner
conductor.

Symmetry considerations show us that only the D, component is present
and that it can be a function only of p. A right circular cylinder of length L and
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__Conducting
cylinders

FIGURE 3.5

p=b The two coaxial cylindrical conductors forming a coaxial cable

p=23 provide an electric flux density within the cylinders, given by
D, = aps/p.

radius p, where a < p < b, is necessarily chosen as the gaussian surface, and we
quickly have

Q = Dg2npL

The total charge on a length L of the inner conductor is

L 2w

0= J J psadpdz = 2malps

z=0 J¢p=0

from which we have
Dszﬁ D=%ap (a<p<b)
P P

This result might be expressed in terms of charge per unit length, because the
inner conductor has 2maps coulombs on a meter length, and hence, letting

pL = 2maps,

D_,OL

=—a
2mp "

and the solution has a form identical with that of the infinite line charge.

Since every line of electric flux starting from the charge on the inner cylin-
der must terminate on a negative charge on the inner surface of the outer
cylinder, the total charge on that surface must be

Oouter cyl = —2malps inner cyl

and the surface charge on the outer cylinder is found as

27b Lps outer cyl = —2raLps inner cyl
a
or PS,outer cyl = — Z PS8 inner cyl
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What would happen if we should use a cylinder of radius p, p > b, for the
gaussian surface? The total charge enclosed would then be zero, for there are
equal and opposite charges on each conducting cylinder. Hence

0= Dg2npL (o> b)
Ds=0 (p > b)

An identical result would be obtained for p < a. Thus the coaxial cable or
capacitor has no external field (we have proved that the outer conductor is a
“shield”), and there is no field within the center conductor.

Our result is also useful for a finite length of coaxial cable, open at both
ends, provided the length L is many times greater than the radius b so that the
unsymmetrical conditions at the two ends do not appreciably affect the solution.
Such a device is also termed a coaxial capacitor. Both the coaxial cable and the
coaxial capacitor will appear frequently in the work that follows.

Perhaps a numerical example can illuminate some of these results.

IIII»Example 3.2

Let us select a 50-cm length of coaxial cable having an inner radius of I mm and an
outer radius of 4 mm. The space between conductors is assumed to be filled with air. The
total charge on the inner conductor is 30 nC. We wish to know the charge density on
each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

. N Qinner cyl 30 x 1072
PS5, inner cyl = dwal, 2(10-3)(0.5)

The negative charge density on the inner surface of the outer cylinder is

Qouter eyl —30 x 107

=9.55 uC/m?

A = =-239 uC/m’
PSouter eyl =5 b1 T 2n(d x 10-3)(0.5) pwC/m
The internal fields may therefore be calculated easily:
1073(9.55 x 107)  9.55
p,=4Ps J 1070551070 955 o
o p
D : 107° 1
nd g =D 9.55x 1077 1079 V/m

= T 8.854 x 10-2p "~ p
Both of these expressions apply to the region where 1 < p < 4mm. For p < 1mm or

p > 4mm, E and D are zero.

V D3.5. A point charge of 0.25uC is located at r = 0, and uniform surface charge den-
sities are located as follows: 2mC/m? at r = lcm, and —0.6mC/m? at r = 1.8 cm.
Calculate D at: (@) r = 0.5cm; (b) r = 1.5cm; (¢) r = 2.5cm. (d) What uniform surface
charge density should be established at r = 3c¢m to cause D =0 at r = 3.5¢cm?

Ans. 796a, nC/m?; 977a, uC/m?; 40.8a, pC/m?; —28.3 nC/m?>
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3.4 APPLICATION OF GAUSS’S LAW:
DIFFERENTIAL VOLUME ELEMENT

We are now going to apply the methods of Guass’s law to a slightly different type
of problem—one which does not possess any symmetry at all. At first glance it
might seem that our case is hopeless, for without symmetry a simple gaussian
surface cannot be chosen such that the normal component of D is constant or
zero everywhere on the surface. Without such a surface, the integral cannot be
evaluated. There is only one way to circumvent these difficulties, and that is to
choose such a very small closed surface that D is almost constant over the sur-
face, and the small change in D may be adequately represented by using the first
two terms of the Taylor’s-series expansion for D. The result will become more
nearly correct as the volume enclosed by the gaussian surface decreases, and we
intend eventually to allow this volume to approach zero.

This example also differs from the preceding ones in that we shall not
obtain the value of D as our answer, but instead receive some extremely valuable
information about the way D varies in the region of our small surface. This leads
directly to one of Maxwell’s four equations, which are basic to all electromag-
netic theory.

Let us consider any point P, shown in Fig. 3.6, located by a cartesian
coordinate system. The value of D at the point P may be expressed in cartesian
components, Dy = Dya, + D,oa, + D-oa.. We choose as our closed surface the
small rectangular box, centered at P, having sides of lengths Ax, Ay, and Az,
and apply Gauss’s law,

jQSD.dS=Q

P(x, y,z)
D= DO = Dxﬂ le/P' D_vﬁ a,+ Dzl} a

2

y /
L]

|
|
|
|
Az /[

// Ax

Ve
Ay

FIGURE 3.6
A differential-sized gaussian surface
7 about the point P is used to investigate
,"’ the space rate of change of D in the
neighborhood of P.
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In order to evaluate the integral over the closed surface, the integral must
be broken up into six integrals, one over each face,

fooas=| | 4| #f 4] 4]
S front back left right top bottom

Consider the first of these in detail. Since the surface element is very small,
D is essentially constant (over this portion of the entire closed surface) and

J = Dfront : ASfronl
front

= Dfront ° Ay Az Ay
= Dx,frontAy Az

where we have only to approximate the value of D, at this front face. The front
face is at a distance of Ax/2 from P, and hence

AXx
2
Ax 0D,

=D -
x0 2 ox

Dy front=Dyo + x rate of change of D, with x

where D, is the value of D, at P, and where a partial derivative must be used to
express the rate of change of D, with x, since D, in general also varies with y and
z. This expression could have been obtained more formally by using the constant
term and the term involving the first derivative in the Taylor’s-series expansion
for D, in the neighborhood of P.

We have now
Ax daD,
J - (on+—x “)AyAZ
front 2 ox

Consider now the integral over the back surface,

J = Dback ° ASback
back

= Dback ° (_Ay Az ax)

= — Dx,back Ay Az
. Ax 0D,
and Dx,back = Dy — 7 axx
giving J = ( Dy + Ax 8DX)A A
= —_ X0 _— y Z
back : 2 ox

If we combine these two integrals, we have
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. 0D,
+ = Ax Ay Az
front back ox

By exactly the same process we find that

. oD,
+ | = —AxAyAz
right left ay
aD
and J + J = —“AxAyAz
top bottom 0z

and these results may be collected to yield

D, 9D, aD.
{)Ddsi(a “+h+3 ‘)AxAyAz
S

ox ay oz

or

3D, aD, aD.
- )Av (7

D-dS=0 = —
Fj;s Q <8x+8y+82

The expression is an approximation which becomes better as Av becomes
smaller, and in the following section we shall let the volume Av approach zero.
For the moment, we have applied Gauss’s law to the closed surface surrounding
the volume element Av and have as a result the approximation (7) stating that

oD, n oD, n oD,
ox ay 0z

Charge enclosed in volume Av = ( ) x volume Av  [(8)

[lI>Example 3.3

Find an approximate value for the total charge enclosed in an incremental volume of
1072 m? located at the origin, if D = ¢ *siny a, — e~“cosy a, + 2za, C/m?.

Solution. We first evaluate the three partial derivatives in (8):
oD,

— _p Yy }
o = ¢ siny
oD, .
= siny
ay
oD.
9z

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that the
charge enclosed in a small volume element there must be approximately 2Av. If Av is
10~ m?, then we have enclosed about 2nC.
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v D3.6. In free space, let D = 8xyz*a, + 4x?z%a, + 16x%yz* pC/m?. (a) Find the total elec-
tric flux passing through the rectangular surface z=2,0 < x <2, 1 <y < 3, in the a,
direction. (b) Find E at P(2, —1, 3). (¢) Find an approximate value for the total charge
contained in an incremental sphere located at P(2, —1,3) and having a volume of
10~12m?.

Ans. 1365pC; —146.4a, + 146.4a, — 195.2a. V/m; —2.38 x 102! C

3.5 DIVERGENCE

We shall now obtain an exact relationship from (7), by allowing the volume
element Aw to shrink to zero. We write this equation as

<an+aD}, BDZ) . §sD-dS_ 0

ax E—i_ 0z Av Av

or, as a limit

D-.dS
= lim L = lim g
Av—0 Av Av—0 Av

ox ay oz

aD, D, aD.
+ 24

where the approximation has been replaced by an equality. It is evident that the
last term is the volume charge density p,, and hence that

oD, oD, aD.\ . ¢ D-dS
_— = 1 =y
( ox Ty T 82) a0 Aw P ©

This equation contains too much information to discuss all at once, and we
shall write it as two separate equations,

: B D-dS
Dy Dy D\ _ i $g (10)
ox ay oz Av—0  Av
oD, 0D, 0D.
- — = v 11
and <8x+8y+8z> o (11

where we shall save (11) for consideration in the next section.

Equation (10) does not involve charge density, and the methods of the
previous section could have been used on any vector A to find §¢ A -dS for a
small closed surface, leading to

04, 04, 04 . $gA-dS
+—24+ = lim *——
ax ay az Av—0  Av

where A could represent velocity, temperature gradient, force, or any other
vector field.

This operation appeared so many times in physical investigations in the last
century that it received a descriptive name, divergence. The divergence of A is
defined as

(12)
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A-dS
Divergence of A =div A = lim L
Av—0 Av

(13)

and is usually abbreviated div A. The physical interpretation of the divergence of
a vector is obtained by describing carefully the operations implied by the right-
hand side of (13), where we shall consider A as a member of the flux-density
family of vectors in order to aid the physical interpretation.

The divergence of the vector flux density A is the outflow of flux from a small closed
surface per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often
useful in obtaining qualitative information about the divergence of a vector field
without resorting to a mathematical investigation. For instance, let us consider
the divergence of the velocity of water in a bathtub after the drain has been
opened. The net outflow of water through any closed surface lying entirely within
the water must be zero, for water is essentially incompressible and the water
entering and leaving different regions of the closed surface must be equal. Hence
the divergence of this velocity is zero.

If, however, we consider the velocity of the air in a tire which has just been
punctured by a nail, we realize that the air is expanding as the pressure drops,
and that consequently there is a net outflow from any closed surface lying within
the tire. The divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that
vector quantity at that point. Similarly, a negative divergence indicates a sink.
Since the divergence of the water velocity above is zero, no source or sink exists.?
The expanding air, however, produces a positive divergence of the velocity, and
each interior point may be considered a source.

Writing (10) with our new term, we have

(14)

D, D, D.
diVD:<a x 9Dy 9 ‘)

0x W 0z

This expression is again of a form which does not involve the charge density. It is
the result of applying the definition of divergence (13) to a differential volume
element in cartesian coordinates.

If a differential volume unit pdpd¢dz in cylindrical coordinates, or
r?sin @ dr d0 d¢ in spherical coordinates, had been chosen, expressions for diver-

3 Having chosen a differential element of volume within the water, the gradual decrease in water level with
time will eventually cause the volume element to lie above the surface of the water. At the instant the
surface of the water intersects the volume element, the divergence is positive and the small volume is a
source. This complication is avoided above by specifying an integral point.
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gence involving the components of the vector in the particular coordinate system
and involving partial derivatives with respect to the variables of that system
would have been obtained. These expressions are obtained in Appendix A and
are given here for convenience:

D. aD, aD. .
divD = 0D 9Dy , 9 (cartesian) | (15)
ox ay oz
. 1 0 1 oD oD, o
divD = FEr (pD,) —I—;) T; + azA (cylindrical) (16)
10 1 0 1 aD
ivD=— —(’D, — (sinfD = herical 1
divD =550 D)+ 5g 56 (0D + g 55 (spherical) 1 (17)

These relationships are also shown inside the back cover for easy reference.

It should be noted that the divergence is an operation which is performed
on a vector, but that the result is a scalar. We should recall that, in a somewhat
similar way, the dot, or scalar, product was a multiplication of two vectors which
yielded a scalar product.

For some reason it is a common mistake on meeting divergence for the first
time to impart a vector quality to the operation by scattering unit vectors around
in the partial derivatives. Divergence merely tells us how much flux is leaving a
small volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example
at the end of the previous section.

I Example 3.4

Find div D at the origin if D =e™*sinya, —e *cosya, 4 2za..

Solution. We use (14) or (15) to obtain
D, N oD, n aD.
ox ay dz

=—e'siny+etsiny+2=2

div D =

The value is the constant 2, regardless of location.

If the units of D are C/m?, then the units of div D are C/m?3. This is a volume
charge density, a concept discussed in the next section.
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V D3.7. In each of the following parts, find a numerical value for div D at the point
specified: (a) D = (2xyz — yHa, + (x*z — 2xp)a, + x*ya, C/m? at Py(2,3,—1); (b)
D = 2pz%sin’ pa, + pz*sin 2¢as 4+ 2p%zsin® pa. C/m> at Py(p=2,¢ = 110°, z = —1);
(¢) D =2rsinfcos ¢pa, +rcosfcospag —rsinga, at Pc(r =1.5, 6 = 30°, ¢ = 50°).

Ans. —10.00; 9.06; 2.18

3.6 MAXWELL’S FIRST EQUATION
(ELECTROSTATICS)

We now wish to consolidate the gains of the last two sections and to provide an
interpretation of the divergence operation as it relates to electric flux density. The
expressions developed there may be written as

) . $;D-dS
divD= lim 25—~ (18)
Av—0 Av
aD, aD, dD.
divD= "4 24— 19
v ax oy oz (19
and div D = p, (20)

The first equation is the definition of divergence, the second is the result of
applying the definition to a differential volume element in cartesian coordinates,
giving us an equation by which the divergence of a vector expressed in cartesian
coordinates may be evaluated, and the third is merely (11) written using the new
term div D. Equation (20) is almost an obvious result if we have achieved any
familiarity at all with the concept of divergence as defined by (18), for given
Gauss’s law,

j£ A-dS=0
s
per unit volume
fA-dS_ Q
Av Av

As the volume shrinks to zero,

A-dS
lim L lim 0

Av—0 Av - Av—0 Av

we should see div D on the left and volume charge density on the right,

divD = p, (20)

This is the first of Maxwell’s four equations as they apply to electrostatics
and steady magnetic fields, and it states that the electric flux per unit volume
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leaving a vanishingly small volume unit is exactly equal to the volume charge
density there. This equation is aptly called the point form of Gauss’s law. Gauss’s
law relates the flux leaving any closed surface to the charge enclosed, and
Maxwell’s first equation makes an identical statement on a per-unit-volume
basis for a vanishingly small volume, or at a point. Remembering that the
divergence may be expressed as the sum of three partial derviatves, Maxwell’s
first equation is also described as the differential-equation form of Gauss’s law,
and conversely, Gauss’s law is recognized as the integral form of Maxwell’s first
equation.

As a specific illustration, let us consider the divergence of D in the region
about a point charge Q located at the origin. We have the field

2
4rr?

and make use of (17), the expression for divergence in spherical coordinates given
in the previous section:

1 0
divD == —(’D,
v r? Br(r )

D= a,

9 1 oD,
— %(Du,sin® b4
tsing o6 DO TG e

Since Dy and Dy are zero, we have

. 1 d 0 .
divD==—(r—=)=0 fr#0
v ¥ dr (r 4nr2> (if r#0)

Thus, p, = 0 everywhere except at the origin where it is infinite.

The divergence operation is not limited to electric flux density; it can be
applied to any vector field. We shall apply it to several other electromagnetic
fields in the coming chapters.

V D3.8. Determine an expression for the volume charge density associated with each

. 4x 2x? 2x?
D field following: (a¢) D = jax + iay _a)
z z

- a.; (b)) D=zsinga,+zcospa,+

psinga:; (¢) D =sinfsin¢ga, 4+ cosfsinpay + cospay.

4y
Ans. Z—g(x2 + 22); 0; 0.

3.7 THE VECTOR OPERATOR V AND THE
DIVERGENCE THEOREM

If we remind ourselves again that divergence is an operation on a vector yielding
a scalar result, just as the dot product of two vectors gives a scalar result, it seems
possible that we can find something which may be dotted formally with D to
yield the scalar

aD, D, aD.

ax B—y dz
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Obviously, this cannot be accomplished by using a dot product; the process must
be a dot operation.
With this in mind, we define the del operator V as a vector operator,

0 0 0
V=— —a, +—a, 21
axa“‘ + 8ya}' +E)za' 1)

Similar scalar operators appear in several methods of solving differential equa-
tions where we often let D replace d/dx, D* replace d*/dx?, and so forth.* We
agree on defining V (pronounced ““del”) that it shall be treated in every way as an
ordinary vector with the one important exception that partial derivatives result
instead of products of scalars.

Consider V- D, signifying

] 0 0
V-D=|—a,+_—-a,+_—a.|-(D,a,+Da, + D.a.)
ox ay oz .

We first consider the dot products of the unit vectors, discarding the six zero
terms and having left

d
8z
where the parentheses are now removed by operating or differentiating:
oD, 9D, D.

ax ay 0z

This is recognized as the divergence of D, so that we have

9 9
V-D= 5(0*) + 5(Dy) +—(D:)

V-D=

. oD, aD, 09D.
divD=V.:D=—+—2 4+
ox ay oz

The use of V- D is much more prevalent than that of div D, although both
usages have their advantages. Writing V-D allows us to obtain simply and
quickly the correct partial derivatives, but only in cartesian coordinates, as we
shall see below. On the other hand, div D is an excellent reminder of the physical
interpretation of divergence. We shall use the operator notation VD from now
on to indicate the divergence operation.

The vector operator V is used not only with divergence, but willl appear in
several other very important operations later. One of these is Vu, where u is any
scalar field, and leads to

4 This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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o a a a ou ou u
“= (axax T azaz)” BE R T

The V operator does not have a specific form in other coordinate systems.
If we are considering D in cylindrical coordinates, then V- D still indicates the
divergence of D, or

V-D :13(pr)+1@+8D:
p Ip p 0¢ 0z
where this expression has been taken from Sec. 3.5. We have no form for V itself
to help us obtain this sum of partial derivatives. This means that Vu, as yet
unnamed but easily written above in cartesian coordinates, cannot be expressed
by us at this time in cylindrical coordinates. Such an expression will be obtained
when Vu is defined in Chap. 4.

We shall close our discussion of divergence by presenting a theorem which
will be needed several times in later chapters, the divergence theorem. This the-
orem applies to any vector field for which the appropriate partial derivatives
exist, although it is easiest for us to develop it for the electric flux density. We
have actually obtained it already and now have little more to do than point it out
and name it, for starting from Gauss’s law,

% D-dS=0
s
and letting

0= J pudv

vol
and then replacing p, by its equal,
V-D= Pv
we have fFD-dS:Q:J pvdv:J V-Ddv
S vol vol

The first and last expressions constitute the divergence theorem,

%D-dszj V-Ddv 22)
S vol

which may be stated as follows:

The integral of the normal component of any vector field over a closed surface is equal
to the integral of the divergence of this vector field throughout the volume enclosed by
the closed surface.
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/ - Closed surface S

-‘1—7— o _’?/

*_ / [ [ I FIGURE 3.7
L . The divergence theorem states that the
» total flux crossing the closed surface is

equal to the integral of the divergence
of the flux density throughout the
enclosed volume. The volume is

Volume v shown here in cross section.

Again, we emphasize that the divergence theorem is true for any vector
field, although we have obtained it specifically for the electric flux density D, and
we shall have occasion later to apply it to several different fields. Its benefits
derive from the fact that it relates a triple integration throughout some volume to
a double integration over the surface of that volume. For example, it is much
easier to look for leaks in a bottle full of some agitated liquid by an inspection of
the surface than by calculating the velocity at every internal point.

The divergence theorem becomes obvious physically if we consider a
volume v, shown in cross section in Fig. 3.7, which is surrounded by a closed
surface S. Division of the volume into a number of small compartments of
differential size and consideration of one cell show that the flux diverging
from such a cell enters, or converges on, the adjacent cells unless the cell contains
a portion of the outer surface. In summary, the divergence of the flux density
throughout a volume leads, then, to the same result as determining the net flux
crossing the enclosing surface.

Let us consider an example to illustrate the divergence theorem.

IIII»Example 3.5

Evaluate both sides of the divergence theorem for the field D = 2xya, + x*a, C/m? and
the rectangular parellelepiped formed by the planes x =0 and 1,y =0and 2, and z =0
and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the surfaces
at z=0 and z = 3, so D-dS = 0 there. For the remaining four surfaces we have

£ D-ds = J: Jj(mx:o (—dydzay) + E E(D)x:l (dyd=a,)

+ ’ I(D)y:o (—dxdza,) + ' I(D)y:2 -(dxdza,)
0Jo

0J0
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3 2 3 2
= —J J (Dy)y—ody dz+J J (Dy)y_dy dz
0Jo 0Jo

_ J: J; (Dy),—odx dz + E J; (Dy)y—pdx dz

However, (Dy),_g =0, and (D,),_y = (D,),_,, which leaves only

3 (2 3 (2
% D-dS:[ J(Dx)ledde:J J 2y dy dz
s 0Jo 0Jo

3
:[ 4dz=12
0

. d d
Since V-D=_—Q2xy)+-(") =2y
ox ay

the volume integral becomes

302 ¢l 3 (2
J V-de:J J J 2ydxdydz:j J 2y dy dz
vol 0JolJo 0Jo

3
= J 4dz=12
0
and the check is accomplished. Remembering Gauss’s law, we see that we have also
determined that a total charge of 12 C lies within this parallelepiped.

¢/ D3.9. Given the field D = 6psiniga, + 1.5pcosipa, C/m?, evaluate both sides of the
divergence theorem for the region bounded by p =2, ¢ =0, ¢ =7, z=0, and z = 5.

Ans. 225; 225

SUGGESTED REFERENCES

1. Kraus, J. D. and D. A. Fleisch: “Electromagnetics,”” 5th ed., McGraw-Hill
Book Company, New York, 1999. The static electric field in free space is
introduced in chap. 2.

2. Plonsey, R., and R. E. Collin: “Principles and Applications of
Electromagnetic Fields,” McGraw-Hill Book Company, New York, 1961.
The level of this text is somewhat higher than the one we are reading now,
but it is an excellent text to read next. Gauss’s law appears in the second
chapter.

3. Plonus, M. A.: “Applied Electromagnetics,” McGraw-Hill Book Company,
New York, 1978. This book contains rather detailed descriptions of many
practical devices that illustrate electromagnetic applications. For example,
see the discussion of xerography on pp. 95-98 as an electrostatics applica-
tion.

4. Skilling, H. H.: “Fundamentals of Electric Waves,” 2d ed., John Wiley &
Sons, Inc., New York, 1948. The operations of vector calculus are well

4| p | eTextMainMenu | Textbook Table of Contents



ELECTRIC FLUX DENSITY, GAUSS’S LAW, AND DIVERGENCE

illustrated. Divergence is discussed on pp. 22 and 38. Chapter 1 is interesting
reading.

5. Thomas, G. B., Jr., and R. L. Finney: (see Suggested References for Chap.
1). The divergence theorem is developed and illustrated from several differ-
ent points of vew on pp. 976-980.

PROBLEMS

3.1 An empty metal paint can is placed on a marble table, the lid is removed,
and both parts are discharged (honorably) by touching them to ground.
An insulating nylon thread is glued to the center of the lid, and a penny,
a nickel, and a dime are glued to the thread so that they are not touching
each other. The penny is given a charge of +5nC, and the nickel and
dime are discharged. The assembly is lowered into the can so that the
coins hang clear of all walls, and the lid is secured. The outside of the can
is again touched momentarily to ground. The device is carefully disas-
sembled with insulating gloves and tools. (a) What charges are found on
each of the five metallic pieces? (b) If the penny had been given a charge
of +5nC, the dime a charge of —2nC, and the nickel a charge of —1nC,
what would the final charge arrangement have been?

3.2 A point charge of 12nC is located at the origin. Four uniform line
charges are located in the x = 0 plane as follows: 80 nC/m at y = —1
and —5m, —50nC/m at y = —2 and —4 m. («) Find D at P(0, —3, 2). (b)
How much electric flux crosses the plane y = —3, and in what direction?
(¢) How much electric flux leaves the surface of a sphere, 4 m in radius,
centered at C(0, —3, 0)?

3.3 The cylindrical surface p = 8cm contains the surface charge density,
ps = 5S¢ ¥ nC/m?. (¢) What is the total amount of charge present?
() How much electric flux leaves the surface p=8cm, lcm
<z<5cm, 30° < ¢ <907

3.4 The cylindrical surfaces p = 1, 2, and 3 cm carry uniform surface charge
densities of 20, —8, and 5nC/m?, respectively. (@) How much electric flux
passes through the closed surface p = 5cm, 0 <z < 1m? (b) Find D at
P(lcm, 2cm, 3cm).

Let D = 4xya, + 2(x? + z*)a, + 4yza. C/m? and evaluate surface inte-
grals to find the total charge enclosed in the rectangular parallelepiped
0<x<2,0<y<30<z<5m.

3.6 Two uniform line charges, each 20 nC/m, are located at y = 1, z = £1m.
Find the total electric flux leaving the surface of a sphere having a radius
of 2m, if it is centered at: («) 4(3,1,0); (b) B(3, 2,0).

3.7 Volume charge density is located in free space as p, = 2¢~ %" nC/m? for
0 <r < 1mm, and p, = 0 elsewhere. (a) Find the total charge enclosed
by the spherical surface » = 1 mm. (b) By using Gauss’s law, calculate the
value of D, on the surface r = 1 mm.

4| p | eTextMainMenu | Textbook Table of Contents

79



80

ENGINEERING ELECTROMAGNETICS

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

Uniform line charges of 5SnC/m are located in free space at x =1, z =1,
and at y = 1, z = 0. (a) Obtain an expression for D in cartesian coordi-
nates at P(0, 0, z). (b) Plot |D| versus z at P, =3 < z < 10.
A uniform volume charge density of 80 uC/m? is present throughout the
region §mm < r < 10mm. Let p, =0 for 0 <r < 8mm. (a) Find the
total charge inside the spherical surface r = 10mm. (b) Find D, at
r = 10mm. (c¢) If there is no charge for r > 10 mm, find D, at r = 20 mm.
Let ps = 8 uC/m? in the region where x = 0 and —4 < z < 4m, and let
ps = 0 elsewhere. Find D at P(x, 0, z), where x > 0.
In cylindrical coordinates, let p, =0 for p < lmm, p, =2sin2000
7pnC/m? for Imm < p < 1.5mm, and p, =0 for p > 1.5mm. Find D
everywhere.
A nonuniform volume charge density, p, = 120r C/m?, lies within the
spherical surface r = 1 m, and p, = 0 elsewhere. (¢) Find D, everywhere.
(b) What surface charge density ps» should be on the surface r =2 so
that D,,—r- = 2D,,—+? (c) Make a sketch of D, vs r for 0 r < 5 with both
distributions present.
Spherical surfaces at r =2, 4, and 6 m carry uniform surface charge
densities of 20nC/m?, —4nC/m?, and pg, respectively. (¢) Find D at
r=1, 3, and Sm. (b) Determine pgo such that D =0 at r = 7m.
If p, = 5nC/m? for 0 < p < I mm and no other charges are present: (a)
find D, for p < 1 mm; () find D, for p > I mm. (¢) What line charge p;.
at p = 0 would give the same result for part b?
Volume charge density is located as follows: p, = 0 for p < 1 mm and for
p>2mm, p,=4ppuC/m? for 1 < p <2mm. (¢) Calculate the total
charge in the region, 0 < p < p;, 0 <z < L, where 1 < p; < 2mm. (b)
Use Gauss’s law to determine D, at p= p;. (¢) Evaluate D, at
o =0.8mm, 1.6mm, and 2.4 mm.
Given the electric flux density, D = 2xya, + x?a, + 6z°a, C/m’: (a) use
Gauss’s law to evaluate the total charge enclosed in the volume
0 <x,y,z<a; (b) use Eq. (8) to find an approximate value for the
above charge. Evaluate the derivatives at P(a/2,a/2,a/2). (¢) Show
that the results of parts ¢ and b agree in the limit as a — 0.
A cube is defined by 1 < x,y,z < 1.2. If D = 2x%ya, + 3x%)%a, C/m>: ()
apply Gauss’s law to find the total flux leaving the closed surface of the
oD, 0D, 9D.
ox ay + 0z
the total charge enclosed within the cube by using Eq. (8).
Let a vector field be given by G = 5x%y*z%a,. Evaluate both sides of Eq.
(8) for this G field and the volume defined by x = 3 and 3.1, y = 1 and
1.1, and z = 2 and 2.1. Evaluate the partial derivatives at the center of

the volume.

cube; (b) evaluate at the center of the cube. (¢) Estimate
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3.23

3.24

3.25

3.26

3.28

3.29
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A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space.
Let D = xa, C/m?. Use the results of Sec. 3.4 to estimate the net electric
flux leaving the spherical surface.

A cube of volume & has its faces parallel to the cartesian coordinate
surfaces. It is centered at P(3, —2,4). Given the field D = 2x3’a, C/m?:
(a) calculate div D at P; (b) evaluate the fraction in the rightmost side of
Eq. (13) for a = 1m, 0.1 m, and 1 mm.

Calculate the divergence of D at the point specified if D =: (a)
%[IOxyzax + 5x%za, + (220 — 5x%p)] at P(=2,3,5); (b) 5z%a,+ 10pza,
at P(3,—45°,5); (c) 2rsinfsin¢a, 4+ rcosé@singag +rcosgay at P(3,
45°, —45°).

Let D = 8psinga, +4pcospay,C/m?. (a) Find div D. (b) Find the
volume charge density at P(2.6,38°, —6.1). (¢) How much charge is
located inside the region defined by 0 < p < 1.8, 20° < ¢ < 70°,
24 <z <3.1?

(a) A point charge Q lies at the origin. Show that div D = 0 everywhere
except at the origin. (b) Replace the point charge with a uniform volume
charge density p,0 for 0 < r < a. Relate p,o to Q and «a so that the total
charge is the same. Find div D everywhere.

Inside the cylindrical shell, 3 < p < 4m, the electric flux density is given
as 5(p — 3)3ap C/m?. (a) What is the volume charge density at p = 4m?
() What is the electric flux density at p = 4m? (¢) How much electric
flux leaves the closed surface: 3 < p <4, 0 <¢p <2m, —2.5<z<2.5?
(d) How much charge is contained within the volume 3 < p <4,
0<¢p<2m, —25<z<2.5?

Within the spherical shell, 3 < r < 4m, the electric flux density is given
as D = 5(r — 3)*a, C/m2. (a) What is the volume charge density at r = 4?
(h) What is the electric flux density at » = 4? (¢) How much electric flux
leaves the sphere r = 4? (d) How much charge is contained within the

sphere r = 47 .
Given the field, D = Mar C/m°, find: (a) the volume charge
r

density; (b) the total charge contained in the region r <2m; (¢) the
value of D at the surface r = 2; (d) the total electric flux leaving the
surface r = 2.

Let D =5ra,mC/m> for r<0.08m, and D =0.la./r>?C/m?> for
r> 0.08m. (a) Find p, for » =0.06m. (b) Find p, for r =0.1m. (¢)
What surface charge density could be located at r = 0.08 m to cause
D =0 for r > 0.08 m?

The electric flux density is given as D = 20p%a, C/m? for p < 100 um,
and ka,/p for p> 100um. (¢) Find k so that D is continuous at
p =100 um. (b) Find and sketch p, as a function of p.

In the region of free space that includes the volume, 2 < x,y,z < 3,

2 .
D = — (yza, + xza, — 2xya;) C/m’. (a) Evaluate the volume-integral
z
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3.30

3.31

3.32

side of the divergence theorem for the volume defined by 2 < x, y, z < 3.
(b) Evaluate the surface-integral side for the corresponding closed
surface.

If D= 15p°sin2¢a, + 10p* cos 2¢a, C/m?, evaluate both sides of the
divergence theorem for the region: 1 <p<2m, | <¢ <2rad,
l <z<2m. 16

Given the flux density, D = 7cos 20a, C /mz, use two different methods

to find the total charge within the region 1 <r <2m, 1 <6 < 2rad,
I <¢ <2rad.

If D =2ra, C/m?, find the total electric flux leaving the surface of the
cube, 0 < x,y,z<0.4.
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CHAPTER

4

ENERGY
AND
POTENTIAL

In the previous two chapters we became acquainted with Coulomb’s law and its
use in finding the electric field about several simple distributions of charge, and
also with Gauss’s law and its application in determining the field about some
symmetrical charge arrangements. The use of Gauss’s law was invariably easier
for these highly symmetrical distributions, because the problem of integration
always disappeared when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field,
such as that of two unlike point charges separated by a small distance, we would
have found it impossible to choose a suitable gaussian surface and obtain an
answer. Coulomb’s law, however, is more powerful and enables us to solve
problems for which Gauss’s law is not applicable. The application of
Coulomb’s law is laborious, detailed, and often quite complex, the reason for
this being precisely the fact that the electric field intensity, a vector field, must be
found directly from the charge distribution. Three different integrations are
needed in general, one for each component, and the resolution of the vector
into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with a single integration and then determine the electric field from this
scalar by some simple straightforward procedure, such as differentiation.
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This scalar function does exist and is known as the potential or potential

field. We shall find that it has a very real physical interpretation and is more

familiar to most of us than is the electric field which it will be used to find.
We should expect, then, to be equipped soon with a third method of finding
electric fields—a single scalar integration, although not always as simple as we
might wish, followed by a pleasant differentiation.
The remaining difficult portion of the task, the integration, we intend to
remove in Chap. 7.

4.1 ENERGY EXPENDED IN MOVING A
POINT CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that
point at which we wish to find the value of this vector field. If we attempt to
move the test charge against the electric field, we have to exert a force equal and
opposite to that exerted by the field, and this requires us to expend energy, or do
work. If we wish to move the charge in the direction of the field, our energy
expenditure turns out to be negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E.
The force on Q due to the electric field is

Fp=QE ()

where the subscript reminds us that this force is due to the field. The component
of this force in the direction dL. which we must overcome is

Fgp =F-a, =QFE-a;

where a; = a unit vector in the direction of dL.
The force which we must apply is equal and opposite to the force due to the
field,

Fappl =—QE-a,
and our expenditure of energy is the product of the force and distance. That is,

Differential work done by external source moving Q
= —QE-a;dL = —QFE-dL

or dW = —QE-dL (2)

where we have replaced a;dL by the simpler expression dL.

This differential amount of work required may be zero under several con-
ditions determined easily from (2). There are the trivial conditions for which E,
Q, or dL is zero, and a much more important case in which E and dL are
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perpendicular. Here the charge is moved always in a direction at right angles to
the electric field. We can draw on a good analogy between the electric field and
the gravitational field, where, again, energy must be expended to move against
the field. Sliding a mass around with constant velocity on a frictionless surface is
an effortless process if the mass is moved along a constant elevation contour;
positive or negative work must be done in moving it to a higher or lower eleva-
tion, respectively.

Returning to the charge in the electric field, the work required to move the
charge a finite distance must be determined by integrating,

final
W= —QJ E-dL 3)

init

where the path must be specified before the integral can be evaluated. The charge
is assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the follow-
ing section to its interpretation and evaluation.

1
‘/ D4.1. Given the electric field E = —2(8xyzax + 4xzzay — 4y? va;) V/m, find the differen-
VA

tial amount of work done in moving a 6-nC charge a distance of 2 pum, starting at
P(2,-2,3) and proceeding in the direction a,=: (a) —S$a.+3a,+3a; (b)

6 3 20 . (346
Zay —za, —5a; (¢) 5 +3a,.

Ans. —149.3; 149.3; 0]

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one
position to another, Eq. (3), is an example of a line integral, which in vector-
analysis notation always takes the form of the integral along some prescribed
path of the dot product of a vector field and a differential vector path length dL.
Without using vector analysis we should have to write

final

W= —QJ EpdL

mit
where E; = component of E along dL.

A line integral is like many other integrals which appear in advanced ana-
lysis, including the surface integral appearing in Gauss’s law, in that it is essen-
tially descriptive. We like to look at it much more than we like to work it out. It
tells us to choose a path, break it up into a large number of very small segments,
multiply the component of the field along each segment by the length of the
segment, and then add the results for all the segments. This is a summation, of
course, and the integral is obtained exactly only when the number of segments
becomes infinite.
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This procedure is indicated in Fig. 4.1, where a path has been chosen from
an initial position B to a final position! A and a uniform electric field selected for
simplicity. The path is divided into six segments, AL, AL,, ..., AL, and the
components of E along each segment denoted by E;|, Ef», ..., Erg. The work
involved in moving a charge Q from B to 4 is then approximately

W =—-Q(ELAL + EnAL + ...+ Er6ALg)
or, using vector notation,
W=—-0QE;-AL + E;- AL, +... + E¢- ALy)
and since we have assumed a uniform field,
E =E,=...=FE
W =—QE-(AL; + AL, + ... + ALy)

What is this sum of vector segments in the parentheses above? Vectors add
by the parallelogram law, and the sum is just the vector directed from the initial
point B to the final point A4, Lp,. Therefore

W =—QE-Lgy (uniform E) 4)

Final position

Initial position

FIGURE 4.1

A graphical interpretation of a line integral in a uniform field. The line integral of E between points B and
A is independent of the path selected, even in a nonuniform field; this result is not, in general, true for time-
varying fields.

! The final position is given the designation A to correspond with the convention for potential difference,
as discussed in the following section.
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Remembering the summation interpretation of the line integral, this result
for the uniform field can be obtained rapidly now from the integral expression

A

W =-0 J E-dL (5)
B
as applied to a uniform field
A
W =—-QE. J dL
B

where the last integral becomes Lp,4 and
W = —QE-Lgy (uniform E)

For this special case of a uniform electric field intensity, we should note
that the work involved in moving the charge depends only on Q, E, and Lp,, a
vector drawn from the initial to the final point of the path chosen. It does not
depend on the particular path we have selected along which to carry the charge.
We may proceed from B to 4 on a straight line or via the Old Chisholm Trail; the
answer is the same. We shall show in Sec. 4.5 that an identical statement may be
made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in (5).

|||I»Example 4.1
We are given the nonuniform field
E =ya, + xa, + 2a.

and we are asked to determine the work expended in carrying 2C from B(1,0, 1) to
A(0.8,0.6, 1) along the shorter arc of the circle

N 4+yP=1 z=1

Solution. We use W = —-Q f: E - dL, where E is not necessarily constant. Working in
cartesian coordinates, the differential path dL is dxa, + dya, 4+ dza., and the integral
becomes

A
W=-0 [ E-dL
JB
A
= —ZJ (vay +xa, +2a.)-(dxa, +dya, +dza.)
B

0.8 0.6 1
:—2J ydx—2j xdy—4j dz
1 0 1

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular path
(and selecting the sign of the radical which is correct for the quadrant involved), we have
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0.8 0.6
W=— J «/1—x2dx—2j V1—=3%dy -0
1

0

0.8 0.6
= —[x«/l — x2 +sin”! x]l —[y\/l — 32 +sin”! y]o
= —(0.48 4 0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)
=-0.96J

IIII»Example 4.2

Again find the work required to carry 2 C from B to 4 in the same field, but this time use
the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define the

line:

y=yp =22 ()
B i —xp XB

A —ZB
z—zp= v —y8)

—JVB

by
X—Xp= 4 B(Z—ZB)

Zy—Z

From the first equation above we have
y=-3(x-1
and from the second we obtain
z=1

Thus,

0.8 0.6 1
W =- J ydx—2J xdy—4j dz
1 0 1

0.8 0.6
_ 1y N
_611 (x — 1)dx 2L (1 3) dy

=—-0.96]

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work
done is independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that
dy = =3 dx and dx = —3 dy. These substitutions may be made in the first two
integrals above, along with a change in limits, and the answer may be obtained
by evaluating the new integrals. This method is often simpler if the integrand is a
function of only one variable.
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Note that the expressions for dL in our three coordinate systems utilize the
differential lengths obtained in the first chapter (cartesian in Sec. 1.3, cylindrical
in Sec. 1.8, and spherical in Sec. 1.9):

dL =dxa,+dya, +dza. (cartesian) (6)
dL =dpap+ pdpas+dza. (cylindrical) (7)
dL=dra, +rdfayg+rsind doay (spherical) (8)

The interrelationships among the several variables in each expression are deter-
mined from the specific equations for the path.

As a final example illustrating the evaluation of the line integral, let us
investigate several paths which we might take near an infinite line charge. The
field has been obtained several times and is entirely in the radial direction,

PL

E = Epap =map

Let us first find the work done in carrying the positive charge Q about a
circular path of radius p, centered at the line charge, as illustrated in Fig. 4.2a.
Without lifting a pencil, we see that the work must be nil, for the path is always
perpendicular to the electric field intensity, or the force on the charge is always
exerted at right angles to the direction in which we are moving it. For practice,
however, let us set up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the
circular path selected demands that dp and dz be zero, so dL = pid¢a,. The
work is then

W _Q J-ﬁna] oL 2o d¢ 2
init 27€0 01

n PL
= — d . = 0
Q JO 27eg Pa,-ay

Let us now carry the charge from p = a to p = b along a radial path (Fig.
4.2b). Here dL = dpa, and

final b
PL pL dp
W = — a -dloa = — J _
QJinit 2mepp " ! ¢ a2mey P

. OpL lné
2mey  a

or W =

Since b is larger than a, In (b/a) is positive, and we see that the work done is
negative, indicating that the external source that is moving the charge receives
energy.
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Infinite line
charge p;.

~

\_ dL:Pl“"P%

(a) (&)

FIGURE 4.2
(a) A circular path and (b) a radial path along which a charge of Q is carried in the field of an infinite line
charge. No work is expected in the former case.

One of the pitfalls in evaluating line integrals is a tendency to use too many
minus signs when a charge is moved in the direction of a decreasing coordinate
value. This is taken care of completely by the limits on the integral, and no
misguided attempt should be made to change the sign of dL. Suppose we
carry Q from b to a (Fig. 4.2b). We still have dL = dpa, and show the different
direction by recognizing p = b as the initial point and p = « as the final point,

a
pr dp Qpr. b
QL 2wey p  27en na

This is the negative of the previous answer and is obviously correct.

‘/ D4.2. Calculate the work done in moving a 4-C charge from B(1,0,0) to A(0,2,0)
along the path y =2 —2x, z=0 in the field E =: (a) 5a,V/m; (b) 5xa, V/m; (¢)
Sxa, + Sya, V/m.

Ans. 20J; 10J; =307

V D4.3. We shall see later that a time-varying E field need not be conservative. (If it is not
conservative, the work expressed by Eq. (3) may be a function of the path used.) Let
E = ya, V/m at a certain instant of time, and calculate the work required to move a 3-C
charge from (1, 3,5) to (2,0, 3) along the straight line segments joining: (a) (1, 3, 5) to
(2,3,5) to (2,0,5) to (2,0,3); (b) (1,3,5) to (1, 3,3) to (1,0, 3) to (2,0, 3).

Ans. —97J; 0
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4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge Q from one point to another in an
electric field E,

final
W:—QJ E-dL

init

In much the same way as we defined the electric field intensity as the force
on a unit test charge, we now define potential difference V as the work done (by
an external source) in moving a unit positive charge from one point to another in
an electric field,

final

Potential difference =V = —J E-dL 9)

init

We shall have to agree on the direction of movement, as implied by our
language, and we do this by stating that Vg signifies the potential difference
between points 4 and B and is the work done in moving the unit charge from B
(last named) to A4 (first named). Thus, in determining V45, B is the initial point
and A is the final point. The reason for this somewhat peculiar definition will
become clearer shortly, when it is seen that the initial point B is often taken at
infinity, whereas the final point 4 represents the fixed position of the charge;
point A4 is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points 4 and B is

A
VAB:—J E-dL V (10)
B

and V45 is positive if work is done in carrying the positive charge from B to A.
From the line-charge example of the last section we found that the work
done in taking a charge Q from p = b to p = a was

_ Opr lné

W =
2mey  a
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Thus, the potential difference between points at p = a and p = b is

w PL b
Vip =— = In— 11
ab Q 270 na ( )

We can try out this definition by finding the potential difference between
points A and B at radial distances r4 and r from a point charge Q. Choosing an
origin at Q,

0
E = Er r= 3 5
a 4rreqr? A
and dL = dra,
A T4 1 1
we have VAB:_J E.dL:_J Q2dr: Q <___> (12)
B s Aeqr dweg \rs 13

If rg > r4, the potential difference V45 is positive, indicating that energy is
expended by the external source in bringing the positive charge from rp to r4.
This agrees with the physical picture showing the two like charges repelling each
other.

It is often convenient to speak of the potential, or absolute potential, of a
point, rather than the potential difference between two points, but this means
only that we agree to measure every potential difference with respect to a speci-
fied reference point which we consider to have zero potential. Common agree-
ment must be reached on the zero reference before a statement of the potential
has any significance. A person having one hand on the deflection plates of a
cathode-ray tube which are ““at a potential of 50 V” and the other hand on the
cathode terminal would probably be too shaken up to understand that the
cathode is not the zero reference, but that all potentials in that circuit are cus-
tomarily measured with respect to the metallic shield about the tube. The cath-
ode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical
potential measurements is ““‘ground,” by which we mean the potential of the
surface region of the earth itself. Theoretically, we usually represent this surface
by an infinite plane at zero potential, although some large-scale problems, such
as those involving propagation across the Atlantic Ocean, require a spherical
surface at zero potential.

Another widely used reference ““point” is infinity. This usually appears in
theoretical problems approximating a physical situation in which the earth is
relatively far removed from the region in which we are interested, such as the
static field near the wing tip of an airplane that has acquired a charge in flying
through a thunderhead, or the field inside an atom. Working with the gravita-
tional potential field on earth, the zero reference is normally taken at sea level;
for an interplanetary mission, however, the zero reference is more conveniently
selected at infinity.
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A cylindrical surface of some definite radius may occasionally be used as a
zero reference when cylindrical symmetry is present and infinity proves incon-
venient. In a coaxial cable the outer conductor is selected as the zero reference for
potential. And, of course, there are numerous special problems, such as those for
which a two-sheeted hyperboloid or an oblate spheroid must be selected as the
zero-potential reference, but these need not concern us immediately.

If the potential at point A4 is V4 and that at B is Vg, then

Vap=V4—Vp (13)

where we necessarily agree that V4, and Vp shall have the same zero reference
point.

V' D44 An electric field is expressed in cartesian coordinates by E =
6xzax+6ya},+4a_7V/m. Find: (@) Vyy if points M and N are specified by
M(2,6,—1) and N(=3,=3,2); (b) Vy if V=0 at Q4, =2, =35); (¢) Vy if V=2 at
P(1,2,—4).

Ans. —139.0V; —120.0V; 19.00V

4.4 THE POTENTIAL FIELD OF A POINT CHARGE

In the previous section we found an expression (12) for the potential difference
between two points located at r = r4 and r = rp in the field of a point charge Q
placed at the origin,

Vin =g (=) = Va= Vi (14)
I'4 rp

It was assumed that the two points lay on the same radial line or had the
same 6 and ¢ coordinate values, allowing us to set up a simple path on this radial
line along which to carry our positive charge. We now should ask whether
different 6 and ¢ coordinate values for the initial and final position will affect
our answer and whether we could choose more complicated paths between the
two points without changing the results. Let us answer both questions at once by
choosing two general points 4 and B (Fig. 4.3) at radial distances of r4 and r,
and any values for the other coordinates.

The differential path length dL has r, 6, and ¢ components, and the electric
field has only a radial component. Taking the dot product then leaves us only

F 4 F 4 Q Q 1 1
Vip=—| E.dr=— dr = ———
= J ! J,,B 4regr? d dreg \rq r13p

'

We obtain the same answer and see, therefore, that the potential difference
between two points in the field of a point charge depends only on the distance of
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Alry, 64, 94)

_—dL=dra +rdfag+rsinfdpa,

é 72 * B(rg. Ug. ¢5)

FIGURE 4.3
A general path between general points B and 4 in the field of a point charge Q at the origin. The potential
difference V45 is independent of the path selected.

each point from the charge and does not depend on the particular path used to
carry our unit charge from one point to the other.

How might we conveniently define a zero reference for potential? The
simplest possibility is to let ' = 0 at infinity. If we let the point at r = rp recede
to infinity the potential at r4 becomes

Y

" Amegry

V4

or, since there is no reason to identify this point with the 4 subscript,

Y

- 47T€0)”

(15)

This expression defines the potential at any point distant r from a point
charge Q at the origin, the potential at infinite radius being taken as the zero
reference. Returning to a physical interpretation, we may say that Q/4megr joules
of work must be done in carrying a 1-C charge from infinity to any point r meters
from the charge Q.

A convenient method to express the potential without selecting a specific
zero reference entails identifying r4 as r once again and letting Q/4megrp be a
constant. Then

0

 4dmegr

+C (16)

and C; may be selected so that I/ = 0 at any desired value of . We could also
select the zero reference indirectly by electing to let V' be Vy at r = ry.

It should be noted that the potential difference between two points is not a
function of Cj.

Equation (15) or (16) represents the potential field of a point charge. The
potential is a scalar field and does not involve any unit vectors.
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Let us now define an equipotential surface as a surface composed of all
those points having the same value of potential. No work is involved in moving
a unit charge around on an equipotential surface, for, by definition, there is no
potential difference between any two points on this surface.

The equipotential surfaces in the potential field of a point charge are
spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that
it is an inverse-distance field, whereas the electric field intensity was found to be
an inverse-square-law relationship. A similar result occurs for the gravitational
force field of a point mass (inverse-square law) and the gravitational potential
field (inverse distance). The gravitational force exerted by the earth on an object
one million miles from it is four times that exerted on the same object two million
miles away. The kinetic energy given to a freely falling object starting from the
end of the universe with zero velocity, however, is only twice as much at one
million miles as it is at two million miles.

t/ D4.5. A 15-nC point charge is at the origin in free space. Calculate V) if point P is
located at P1(—2, 3, —1) and: (@) V" =0 at (6, 5,4); (b) V' =0 at infinity; (¢) ¥V =5V at
(2,0,4)

Ans. 20.7V; 36.0V; 10.89V

4.5 THE POTENTIAL FIELD OF A SYSTEM
OF CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit
positive charge from the zero reference to the point, and we have suspected that
this work, and hence the potential, is independent of the path taken. If it were
not, potential would not be a very useful concept.

Let us now prove our assertion. We shall do so by beginning with the
potential field of the single point charge for which we showed, in the last section,
the independence with regard to the path, noting that the field is linear with
respect to charge so that superposition is applicable. It will then follow that the
potential of a system of charges has a value at any point which is independent of
the path taken in carrying the test charge to that point.

Thus the potential field of a single point charge, which we shall identify as
0, and locate at ry, involves only the distance |r — r{| from Q; to the point at r
where we are establishing the value of the potential. For a zero reference at
infinity, we have

O

V) =-———
(l’) 47T6()|l’—l‘1|

The potential due to two charges, Q; atr; and Q; atr,, is a function only of
[r —r{| and |r — 13|, the distances from Q; and Q5 to the field point, respectively.
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01 0>

Vir) =
® 4rep|r — 1| + 4rreg|r — 17|

Continuing to add charges, we find that the potential due to n point charges is

0 0, On

V(r)= e
r) 4neolr—r1|+4neo|r—r2|+ +4neo|r—rn|
n
Q}’ﬂ
Vir) = — 17
or (r) ; e e— (17)

If each point charge is now represented as a small element of a continuous
volume charge distribution p,Aw, then

_ pu(r1)Av) Pu(12) Avy Pu(Tn) Avy
V(r) = e
dreglr — 11| 4dmeg|r — 1p| 4rreg|r — 1y

As we allow the number of elements to become infinite, we obtain the
integral expression

V(r) = J pur)dv (18)

vol 40T — 1|

We have come quite a distance from the potential field of the single point
charge, and it might be helpful to examine (18) and refresh ourselves as to the
meaning of each term. The potential V' (r) is determined with respect to a zero
reference potential at infinity and is an exact measure of the work done in bring-
ing a unit charge from infinity to the field point at r where we are finding the
potential. The volume charge density p,(r’) and differential volume element dv’
combine to represent a differential amount of charge p,(r’) dv’ located at r’. The
distance |r —r’| is that distance from the source point to the field point. The
integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface
charge, the integration is along the line or over the surface:

~[_peldL’

Vo = J4neolr—r/| (19)
[ _ps()ds’

Vin = L 4reg|r — 1’| (20)

The most general expression for potential is obtained by combining (17),
(18), (19), and (20).

These integral expressions for potential in terms of the charge distribution
should be compared with similar expressions for the electric field intensity, such
as (18) in Sec. 2.3:

o(r)dv'  r—1’
E(r):J pu(t)dv i
vol 4meg|r — /|7 r — 1’
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The potential again is inverse distance, and the electric field intensity,
inverse-square law. The latter, of course, is also a vector field.

To illustrate the use of one of these potential integrals, let us find V" on the z
axis for a uniform line charge p; in the form of a ring, p = a, in the z = 0 plane,
as shown in Fig. 4.4. Working with (19), we have dL" = ad¢’, r = za., v’ = aa,,

r —r'| = Va* + z2, and

- Jzﬂ prade’ pLa
0 dmegva + 22 2megVa? + z2

For a zero reference at infinity, then:

1. The potential due to a single point charge is the work done in carrying a unit
positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential due to a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity
to the point in question along any path we choose.

In other words, the expression for potential (zero reference at infinity),

A
VA:—J E.dL

FIGURE 4.4

The potential field of a ring of uniform
line charge density is easily obtained
from V = [ pp(r')dL’/ (4meo|r —1')).
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or potential difference,

v
Vap=Va4—Vp= —J E-dL
B
is not dependent on the path chosen for the line integral, regardless of the source
of the E field.
This result is often stated concisely by recognizing that no work is done in
carrying the unit charge around any closed path, or

E-dL=0 @2y
J

A small circle is placed on the integral sign to indicate the closed nature of
the path. This symbol also appeared in the formulation of Gauss’s law, where a
closed surface integral was used.

Equation (21) is true for static fields, but we shall see in Chap. 10 that
Faraday demonstrated it was incomplete when time-varying magnetic fields were
present. One of Maxwell’s greatest contributions to electromagnetic theory was
in showing that a time-varying electric field produces a magnetic field, and
therefore we should expect to find later that (21) is not correct when either E
or the magnetic field varies with time.

Restricting our attention to the static case where E does not change with
time, consider the dc circuit shown in Fig. 4.5. Two points, 4 and B, are marked,
and (21) states that no work is involved in carrying a unit charge from 4 through
R, and R; to B and back to 4 through Ry, or that the sum of the potential
differences around any closed path is zero.

Equation (21) is therefore just a more general form of Kirchhoff’s circuital
law for voltages, more general in that we can apply it to any region where an
electric field exists and we are not restricted to a conventional circuit composed
of wires, resistances, and batteries. Equation (21) must be amended before we
can apply it to time-varying fields. We shall take care of this in Chap. 10, and in
Chap. 13 we will then be able to establish the general form of Kirchhoff’s voltage
law for circuits in which currents and voltages vary with time.

@ 05—

|
=
=

R, Ry

' FIGURE 4.5

' | A simple dc-circuit problem which must

S (R = be solved by applying §E - dL = 0 in the

B form of Kirchhoff’s voltage law.
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Any field that satisfies an equation of the form of (21), (i.e., where the
closed line integral of the field is zero) is said to be a conservative field. The
name arises from the fact that no work is done (or that energy is conserved)
around a closed path. The gravitational field is also conservative, for any energy
expended in moving (raising) an object against the field is recovered exactly when
the object is returned (lowered) to its original position. A nonconservative grav-
itational field could solve our energy problems forever.

Given a nonconservative field, it is of course possible that the line integral
may be zero for certain closed paths. For example, consider the force field,
F =sinmpas. Around a circular path of radius p = p;, we have dL = pd¢a,,
and

21 21
i;F -dL = J sinmpiay - prdepa, = J p18in o do
0 0

= 27p; Sin 7Ty

The integral is zero if p; = 1,2, 3, ..., etc., but it is not zero for other values
of p;, or for most other closed paths, and the given field is not conservative. A
conservative field must yield a zero value for the line integral around every
possible closed path.

‘/ D4.6. If we take the zero reference for potential at infinity, find the potential at (0, 0, 2)
caused by this charge configuration in free space: (¢) 12nC/m on the line p = 2.5m,
z = 0; (b) point charge of 18nC at (1,2, —1); (¢) 12nC/m on the line y = 2.5, z = 0.

Ans. 529V; 43.2V; 674V

4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the
electric field intensity by means of a line integral, and another from the basic
charge distribution itself by a volume integral. Neither method is very helpful in
determining the fields in most practical problems, however, for as we shall see
later, neither the electric field intensity nor the charge distribution is very often
known. Preliminary information is much more apt to consist of a description of
two equipotential surfaces, such as the statement that we have two parallel
conductors of circular cross section at potentials of 100 and —100V. Perhaps
we wish to find the capacitance between the conductors, or the charge and
current distribution on the conductors from which losses may be calculated.

These quantities may be easily obtained from the potential field, and our
immediate goal will be a simple method of finding the electric field intensity from
the potential.

We already have the general line-integral relationship between these quan-
tities,
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V:—JE-dL (22)

but this is much easier to use in the reverse direction: given E, find V.

However, (22) may be applied to a very short element of length AL along
which E is essentially constant, leading to an incremental potential difference
AV,

AV=—E.AL (23)

Let us see first if we can determine any new information about the relation
of V' to E from this equation. Consider a general region of space, as shown in
Fig. 4.6, in which E and V both change as we move from point to point.
Equation (23) tells us to choose an incremental vector element of length
AL = AL a; and multiply its magnitude by the component of E in the direction
of a; (one interpretation of the dot product) to obtain the small potential
difference between the final and initial points of VL.

If we designate the angle between AL and E as 6, then

AV=—EALcos0

We now wish to pass to the limit and consider the derivative dV'/dL. To do
this, we need to show that J may be interpreted as a function V(x, y, z). So far, V'
is merely the result of the line integral (22). If we assume a specified starting point
or zero reference and then let our end point be (x, y, z), we know that the result
of the integration is a unique function of the end point (x, y, z) because E is a
conservative field. Therefore V' is a single-valued function V(x, y, z). We may
then pass to the limit and obtain
dv
= Ecos6
In which direction should AL be placed to obtain a maximum value of AV?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of AL. The magnitude AL is also constant, and our

FIGURE 4.6
W A vector incremental element of length AL is
shown making an angle of 6 with an E field,

indicated by its streamlines. The sources of
the field are not shown.
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variable is a;, the unit vector showing the direction of AL. It is obvious that the
maximum positive increment of potential, A V., will occur when cos 6 is —1, or
AL points in the direction opposite to E. For this condition,

dVv

| —E

dL max

This little exercise shows us two characteristics of the relationship between

E and V' at any point:

1. The magnitude of the electric field intensity is given by the maximum value
of the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance incre-
ment is opposite to E or, in other words, the direction of E is opposite to the
direction in which the potential is increasing the most rapidly.

Let us now illustrate these relationships in terms of potential. Fig. 4.7 is
intended to show the information we have been given about some potential field.
It does this by showing the equipotential surfaces (shown as lines in the two-
dimensional sketch). We desire information about the electric field intensity at
point P. Starting at P, we lay off a small incremental distance AL in various
directions, hunting for that direction in which the potential is changing (increas-
ing) the most rapidly. From the sketch, this direction appears to be left and
slightly upward. From our second characteristic above, the electric field intensity
is therefore oppositely directed, or to the right and slightly downward at P.
Its magnitude is given by dividing the small increase in potential by the small
element of length.

It seems likely that the direction in which the potential is increasing the
most rapidly is perpendicular to the equipotentials (in the direction of increasing
potential), and this is correct, for if AL is directed along an equipotential,
AV =0 by our definition of an equipotential surface. But then

+40 +30
+50

+60

+10
+70
+ 80
V=+90 ) FIGURE 4.7
A potential field is shown by its equi-
Pe potential surfaces. At any point the E

field is normal to the equipotential
surface passing through that point
and is directed toward the more
negative surfaces.
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AV =—-E-AL=0

and since neither E nor AL is zero, E must be perpendicular to this AL or
perpendicular to the equipotentials.

Since the potential field information is more likely to be determined first, let
us describe the direction of AL which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field inten-
sity. We do this by letting ay be a unit vector normal to the equipotential surface
and directed toward the higher potentials. The electric field intensity is then
expressed in terms of the potential,

dv

E=-""
dL

ay (24)

max

which shows that the magnitude of E is given by the maximum space rate of
change of V' and the direction of E is normal to the equipotential surface (in the
direction of decreasing potential).

Since dV /dL|, occurs when AL is in the direction of ay, we may remind
ourselves of this fact by letting

v _av
dL max_ dN
dv
and E = —ﬁa;\/ (25)

Equation (24) or (25) serves to provide a physical interpretation of the
process of finding the electric field intensity from the potential. Both are descrip-
tive of a general procedure, and we do not intend to use them directly to obtain
quantitative information. This procedure leading from V" to E is not unique to
this pair of quantities, however, but has appeared as the relationship between a
scalar and a vector field in hydraulics, thermodynamics, and magnetics, and
indeed in almost every field to which vector analysis has been applied.

The operation on V' by which —E is obtained is known as the gradient, and
the gradient of a scalar field 7 is defined as

. dT
Gradient of 7= grad T = N AN (26)

where ay is a unit vector normal to the equipotential surfaces, and that normal is
chosen which points in the direction of increasing values of 7.

Using this new term, we now may write the relationship between V' and E
as

E=—gradV 27
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Since we have shown that J is a unique function of x, y, and z, we may take
its total differential

oV 14 124
dV = —dx+—dy+—dz
ox ay 0z
But we also have
dV =—-E-dL=—FE.dx—E,dy — E. dz

Since both expressions are true for any dx, dy, and dz, then

14

E,=——

' ax

14

E, =——

dy

o W

0z

These results may be combined vectorially to yield
14 av 14
E=—-|—a,+—a, +—a. 2
<8xa,+aya)+aza> (28)

and comparison of (27) and (28) provides us with an expression which may be
used to evaluate the gradient in cartesian coordinates,

14 aV aV
grad V=—a,+—a, + P (29)

8x“5

The gradient of a scalar is a vector, and old quizzes show that the unit
vectors which are often incorrectly added to the divergence expression appear to
be those which were incorrectly removed from the gradient. Once the physical
interpretation of the gradient, expressed by (26), is grasped as showing the
maximum space rate of change of a scalar quantity and the direction in which
this maximum occurs, the vector nature of the gradient should be self-evident.

The vector operator
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from which we see that

VT = grad T

This allows us to use a very compact expression to relate E and V,

E=-VJV

(30)

The gradient may be expressed in terms of partial derivatives in other
coordinate systems through application of its definition (26). These expressions
are derived in Appendix A and repeated below for convenience when dealing
with problems having cylindrical or spherical symmetry. They also appear inside

the back cover.

aV 14 aV

VVzaax-l-@ay"‘g : (cartesian)
aV 1oV 14 C
\va’4 :a_pa” +;£ a ¢+¥az (cylindrical)
oV 1oV 1 Vv
VV:_ r Y A Al h . '1
or a+ r o0 A +rsm@ op A (spherical)

31

(32)

(33)

Note that the denominator of each term has the form of one of the components
of dL in that coordinate system, except that partial differentials replace ordinary

differentials; for example, rsin 6 d¢ becomes r sin 6 d¢.

Let us now hasten to illustrate the gradient concept with an example.

IIII»Example 4.3

Given the potential field, V = 2x?y — 5z, and a point P(—4, 3, 6), we wish to find several
numerical values at point P: the potential V', the electric field intensity E, the direction
of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4, 5, 6) is
Vp=2(—4>3)—56) =66 V

Next, we may use the gradient operation to obtain the electric field intensity,

E=-VV = —4xya, —2x%a, +5a. V/m

41 ) |
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The value of E at point P is
Ep =48a, —32a, + 5a. V/m

and

|Ep| = \/482 +(=32+52=579 V/m
The direction of E at P is given by the unit vector

app = (48a, — 32a, + 5a.)/57.9
— 0.829a, — 0.553a, + 0.086a,

If we assume these fields exist in free space, then
D = E = —35.4xya, — 17.71x%a, + 44.3a. pC/m’

Finally, we may use the divergence relationship to find the volume charge density that is
the source of the given potential field,

oy =V:D=-354y pC/m’
At P, p, = —106.2 pC/m>.
t/ D4.7. A portion of a two-dimensional (E. = 0) potential field is shown in Fig. 4.8. The

grid lines are 1 mm apart in the actual field. Determine approximate values for E in
cartesian coordinates at: (a) a; (b) b; (¢) c.

Ans. —1075a, V/m; —600a, — 700a, V/m; —500a, — 650a, V/m

FIGURE 4.8
See Prob. D4.7.
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1
= —:)l pcos¢V, and

point P at p=3m, ¢ = 60°, z=2m, find values at P for: (a) V; (b) E; (¢) E; (d)
dV /dN; (e) ay; (f) p, in free space.

v/ D438. Given the potential field in cylindrical coordinates, V =

Ans. 30.0V; —10.00a, + 8.66a4 + 24.0a. V/m; 27.4V/m; —0.365a, — 0.316a, — 0.876a_;
27.4V/m; =234 pC/m>.

4.7 THE DIPOLE

The dipole fields which we shall develop in this section are quite important
because they form the basis for the behavior of dielectric materials in electric
fields, as discussed in part of the following chapter, as well as justifying the use of
images, as described in Sec. 5.5 of the next chapter. Moreover, this development
will serve to illustrate the importance of the potential concept presented in this
chapter.

An electric dipole, or simply a dipole, is the name given to two point charges
of equal magnitude and opposite sign, separated by a distance which is small
compared to the distance to the point P at which we want to know the electric
and potential fields. The dipole is shown in Fig. 4.9a. The distant point P is
described by the spherical coordinates r, 6, and ¢ — 90°, in view of the azimuthal
symmetry. The positive and negative point charges have separation d and carte-
sian coordinates (0, 0,3d) and (0, 0, — 1 d), respectively.

So much for the geometry. What would we do next? Should we find the
total electric field intensity by adding the known fields of each point charge?
Would it be easier to find the total potential field first? In either case, having
found one, we shall find the other from it before calling the problem solved.

If we choose to find E first, we shall have two components to keep track of
in spherical coordinates (symmetry shows Ej is zero), and then the only way to
find V' from E is by use of the line integral. This last step includes establishing a
suitable zero reference for potential, since the line integral gives us only the
potential difference between the two points at the ends of the integral path.

0 (1 1)_ 0 R —R

" 47e

R R

o 47‘[60 R1R2

Note that the plane z = 0, midway between the two point charges, is the locus of
points for which R; = R», and is therefore at zero potential, as are all points at
infinity.

For a distant point, R} = R», and the R| R, product in the denominator may
be replaced by r?. The approximation may not be made in the numerator, how-
ever, without obtaining the trivial answer that the potential field approaches zero
as we go very far away from the dipole. Coming back a little closer to the dipole,
we see from Fig. 4.96 that R, — R; may be approximated very easily if R} and R,
are assumed to be parallel,

Ry — Ry =dcosb
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To distant
point P

FIGURE 4.9

(a) The geometry of the problem of an elec-

tric dipole. The dipole moment p = Qd is in

the a. direction. (b) For a distant point
/ P, R, is essentially parallel to R, and we

X find that R, — Ry = d cosf.

The final result is then

Qd cos b
V==——> 34
4regr? (34)
Again we note that the plane z = 0 (6 = 90°) is at zero potential.
Using the gradient relationship in spherical coordinates,
14 1oV | 14
E=-VI'=—|—a, +-— —
(Br 9 T ine o a"’)
we obtain
Qdcosf Qdsin 6
E=—-|- ;= 35
( 4mepr3 A 4mepr3 0 (35)
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or

d .
E= 0 (2cosfa, +sinfay) (36)
4meqrd

These are the desired distant fields of the dipole, obtained with a very small
amount of work. Any student who has several hours to spend may try to work
the problem in the reverse direction—the authors consider the process too long
and detailed to include, even for effect.

To obtain a plot of the potential field, we may choose a dipole such that
0d/(4mep) = 1, and then cos® = V2. The colored lines in Fig. 4.10 indicate
equipotentials for which V' =0,40.2,+0.4,4+0.6, + 0.8, and +1, as indicated.
The dipole axis is vertical, with the positive charge on the top. The streamlines
for the electric field are obtained by applying the methods of Sec. 2.6 in spherical
coordinates,

Ey rdo sin O

E, ~ dr 2cosé

or ﬂ:200‘[06119

from which we obtain
r= C,sin’6

The black streamlines shown in Fig. 4.10 are for C; =1, 1.5,2, and 2.5.

The potential field of the dipole, Eq. (34), may be simplified by making use
of the dipole moment. Let us first identify the vector length directed from —Q to
+Q as d and then define the dipole moment as Qd and assign it the symbol p.
Thus

p=20d (37

The units of p are C - m.

Since d-a, = d cos#, we then have
p-a,
- 4mregr? (38)
This result may be generalized as

1 r—r’
= 2 P l
dmeolr — /|77 [r—1|

(39)

where r locates the field point P, and r’ determines the dipole center. Equation
(39) is independent of any coordinate system.
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FIGURE 4.10
The electrostatic field of a point dipole with its moment in the a. direction. Six equipotential surfaces are
labeled with relative values of V.

The dipole moment p will appear again when we discuss dielectric materi-
als. Since it is equal to the product of the charge and the separation, neither the
dipole moment nor the potential will change as Q increases and d decreases,
provided the product remains constant. The limiting case of a point dipole is
achieved when we let d approach zero and Q approach infinity such that the
product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the
potential field is now proportional to the inverse square of the distance, and the
electric field intensity is proportional to the inverse cube of the distance from the
dipole. Each field falls off faster than the corresponding field for the point
charge, but this is no more than we should expect because the opposite charges
appear to be closer together at greater distances and to act more like a single
point charge of 0 C.
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Symmetrical arrangements of larger numbers of point charges produce
fields proportional to the inverse of higher and higher powers of r. These charge
distributions are called multipoles, and they are used in infinite series to approx-
imate more unwieldy charge configurations.

V D4.9. An celectric dipole located at the origin in free space has a moment
p=3a,—2a,+a.nC-m. (¢) Find V' at P4(2,3,4). (b) Find V at r=2.5, 6 =30°,
¢ = 40°.

Ans. 0.230V; 1.973 V

v D410. A dipole of moment p = 6a. nC - m is located at the origin in free space. (a) Find
Vat Pr=4,0=20° ¢ =0°. (b) Find E at P.

Ans. 3.17V; 1.584a, 4+ 0.288a, V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or
energy expended, in moving a point charge around in an electric field, and
now we must tie up the loose ends of that discussion by tracing the energy
flow one step further.

Bringing a positive charge from infinity into the field of another positive
charge requires work, the work being done by the external source moving the
charge. Let us imagine that the external source carries the charge up to a point
near the fixed charge and then holds it there. Energy must be conserved, and the
energy expended in bringing this charge into position now represents potential
energy, for if the external source released its hold on the charge, it would accel-
erate away from the fixed charge, acquiring kinetic energy of its own and the
capability of doing work.

In order to find the potential energy present in a system of charges, we must
find the work done by an external source in positioning the charges.

We may start by visualizing an empty universe. Bringing a charge Q; from
infinity to any position requires no work, for there is no field present.”> The
positioning of Q, at a point in the field of Q) requires an amount of work
given by the product of the charge O, and the potential at that point due to
Q1. We represent this potential as V> ;, where the first subscript indicates the
location and the second subscript the source. That is, V5 is the potential at the
location of O, due to Q;. Then

Work to position Q> = Q> V5

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the point
charge in the first place! How much energy is required to bring two half-charges into coincidence to make a
unit charge?
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Similarly, we may express the work required to position each additional
charge in the field of all those already present:

Work to position Qs = Q3V3.1 + 03V3,
Work to position Qs = QaVa 1+ QaVar + QaVas

and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field
=Weg=02Va1+03V31+03V3a+ QaVa,y

+Q4Var+ Q4Vas+ ... (40)
Noting the form of a representative term in the above equation,
0 03
V = =
Q3 31 Q3 47'[60R13 Ql 47'[60R31

where Rj; and Rj; each represent the scalar distance between Q; and Q3, we see
that it might equally well have been written as Q V3. If each term of the total
energy expression is replaced by its equal, we have

Wg=01Vip+O1Vizg+0:Vo3+01Via+O2Vou+03V3a+... (41)

Adding the two energy expressions (40) and (41) gives us a chance to simplify the
result a little:

2We=01(Vipa+Vig+Via+..)
+ QZ(VZ,I +Voz+Voa+ .. )
+O:(V31+Vao+Via+..)
+ ...
Each sum of potentials in parentheses is the combined potential due to all the

charges except for the charge at the point where this combined potential is being
found. In other words,

Viao+Vig+Via+...=M

the potential at the location of Q; due to the presence of O, Qs, .... We there-
fore have

m=N

WE=%(Q1V1+Q2V2+Q3V3+):%ZQMVM (42)
m=1

In order to obtain an expression for the energy stored in a region of con-
tinuous charge distribution, each charge is replaced by p,dv, and the summation
becomes an integral,

Wi = %JVOI PV dv (43)
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Equations (42) and (43) allow us to find the total potential energy present in
a system of point charges or distributed volume charge density. Similar expres-
sions may be easily written in terms of line or surface charge density. Usually we
prefer to use (43) and let it represent all the various types of charge which may
have to be considered. This may always be done by considering point charges,
line charge density, or surface charge density as continuous distributions of
volume charge density over very small regions. We shall illustrate such a pro-
cedure with an example shortly.

Before we undertake any interpretation of this result, we should consider a
few lines of more difficult vector analysis and obtain an expression equivalent to
(43) but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first
equation, replace p, by its equal V- D and make use of a vector identity which is
true for any scalar function V' and any vector function D,

V-(VD)= V(V-D)+D-(VV) (44)

This may be proved readily by expansion in cartesian coordinates. We then have,
successively,

Wi :%J poVdv :%J (V-D)V dv
vol vol

_ %JVOI[V (VD)= D-(VV')]dv

Using the divergence theorem from the last chapter, the first volume inte-
gral of the last equation is changed into a closed surface integral, where the
closed surface surrounds the volume considered. This volume, first appearing
in (43), must contain every charge, and there can then be no charges outside of
the volume. We may therefore consider the volume as infinite in extent if we wish.
We have

Wg = %1; (VD) - dS —5J D - (VV)dv
S vol

The surface integral is equal to zero, for over this closed surface surround-
ing the universe we see that V' is approaching zero at least as rapidly as 1/r (the
charges look like a point charge from there), D is approaching zero at least as
rapidly as 1/r2, while the differential element of surface, looking more and more
like a portion of a sphere, is increasing only as 2. The integrand therefore
approaches zero at least as rapidly as 1/r. In the limit the integrand and the
integral are zero. Substituting E = —VJ/ in the remaining volume integral, we
have our answer,

W :%J D.Edv:%JVOI 6()E2 dv (45)
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Let us now use this last expression to calculate the energy stored in the
electrostatic field of a section of a coaxial cable or capacitor of length L. We
found in Sec. 3.3 of the previous chapter that

aps
D,=—=
P
Hence,
a
E= ﬁap
€00

where pg is the surface charge density on the inner conductor, whose radius is a.
Thus,

L 2w b 2.2 2.2
L b
WEZLJ J JEo‘angi)cl,Oahpa’Z:L LS 1n2

2
0Jo Ja €P €0 a

This same result may be obtained from (43). We choose the outer conduc-
tor as our zero-potential reference, and the potential of the inner cylinder is then

a a
b
Va:_J E, dp:_J %dpzﬁln—
b b €0P € d

The surface charge density ps at p = a can be interpreted as a volume charge
density p, = ps/t, extending from p=a—1t to p=a+1%t, where 1 < a. The
integrand in (43) is therefore zero everywhere between the cylinders (where the
volume charge density is zero), as well as at the outer cylinder (where the poten-
tial is zero). The integration is therefore performed only within the thin cylind-
rical shell at p = q,

L 27 pa+t/2
WE:%J vadV:%J J J @a@lngpdpdqbdz
vol

0Jo Ja—ip T €0
from which
2.2
a-psIn(b/a
Wy = Ps (/)7TL
€0
once again.

This expression takes on a more familiar form if we recognize the total
charge on the inner conductor as Q = 2nal ps. Combining this with the potential
difference between the cylinders, V,, we see that

We=10V,

which should be familiar as the energy stored in a capacitor.

The question of where the energy is stored in an electric field has not yet
been answered. Potential energy can never be pinned down precisely in terms of
physical location. Someone lifts a pencil, and the pencil acquires potential
energy. Is the energy stored in the molecules of the pencil, in the gravitational
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field between the pencil and the earth, or in some obscure place? Is the energy in
a capacitor stored in the charges themselves, in the field, or where? No one can
offer any proof for his or her own private opinion, and the matter of deciding
may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an
electric field or a charge distribution is stored in the field itself, for if we take (45),
an exact and rigorously correct expression,

WE:%J D-E dv
vol

and write it on a differential basis,

dWg =1iD-Edv
dWg

or —1iD.E 46
dv 2 (46)

we obtain a quantity %D - E, which has the dimensions of an energy density, or
joules per cubic meter. We know that if we integrate this energy density over the
entire field-containing volume, the result is truly the total energy present, but we
have no more justification for saying that the energy stored in each differential
volume element dv is D - E dv than we have for looking at (43) and saying that the
stored energy is % puVdv. The interpretation afforded by (46), however, is a con-
venient one, and we shall use it until proved wrong.

¢/ D4.11. Find the energy stored in free space for the region 2mm < r < 3mm,

2 3 0
0<6<90° 0 < ¢ < 90° given the potential field V' =: (a) g V; (b) 00cos V.

72

Ans. 1.391pJ; 36.7)

SUGGESTED REFERENCES

1. Attwood, S. S.: “Electric and Magnetic Fields,” 3d ed., John Wiley & Sons,
Inc., New York, 1949. There are a large number of well-drawn field maps of
various charge distributions, including the dipole field. Vector analysis is not

used.
2. Skilling, H. H.: (see Suggested References for Chap. 3). Gradient is described
on pp. 19-21.

3. Thomas, G. B., Jr., and R. L. Finney: (see Suggested References for
Chap. 1). The directional derivative and the gradient are presented on pp.
823-830.
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PROBLEMS

4.1

4.2

4.3

4.4

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

The value of E at P(p=2, ¢=40°, z=3) is given as E =
100a, — 200a4 + 300a.. V/m. Determine the incremental work required
to move a 20-pC charge a distance of 6 pm in the direction of: (@) a,; (b)
ag; (c) a:; (d) E; (e) G =2a, — 3a, + 4a..

Let E =400a, —300a, + 500a. V/m in the neighborhood of point
P(6,2, —3). Find the incremental work done in moving a 4-C charge a
distance of 1mm in the direction specified by: (a) a.+a, +a.; (b)
—2a, + 3a, — a..

If E = 120a, V/m, find the incremental amount of work done in moving
a 50-pC charge a distance of 2mm from: (a) P(1, 2, 3) toward Q(2, 1, 4);
(h) O(2,1,4) toward P(1,2, 3).

Find the amount of energy required to move a 6-C charge from the
origin to P(3, 1, —1) in the field E = 2xa, — 3)ya, +4a. V/m along the
straight-line path x = =3z, y = x 4+ 2z.

Compute the value of Lf G:dL for G =2ya, with A(l,—1,2) and
P(2,1,2) using the path: (a) straight-line segments A(1,—1,2) to
B(1,1,2) to P(2,1,2); (b) straight-line segments A(l,—1,2) to
C2,-1,2) to P(2,1,2).

Let G = 4xa, + 2za, 4 2ya.. Given an initial point P(2, 1, 1) and a final
point Q(4, 3, 1), find [ G- dL using the path: (a) straight line: y = x — 1,
z = 1; (b) parabola: 6y = x> +2,z = 1.

Repeat Prob. 6 for G = 3x)?a, + 2za,.

A point charge Q; is located at the origin in free space. Find the work
done in carrying a charge Q; from: (a) B(rg, 05, ¢p) to C(r4, 0, ¢pp) With
6 and ¢ held constant; (b) C(r4, g, ¢p) to D(r4, 64, ¢pp) with r and ¢ held
constant; (¢) D(r4, 04, ¢p) to A(r4, 64, ¢4) with r and 6 held constant.
A uniform surface charge density of 20 nC/m? is present on the spherical
surface r = 0.6cm in free space. (a) Find the absolute potential at
P(r=1cm, 6=25°, ¢ =50°. (b) Find V,p, given points A(2cm,
0 =30° ¢ = 60°) and B(3cm, 45°, 90°).

Given a surface charge density of 8nC/m? on the plane x =2, a line
charge density of 30nC/m on the line x =1, y =2, and a 1-puC point
charge at P(—1, —1,2), find V45 for points 4(3,4,0) and B(4,0, 1).

Let a uniform surface charge density of 5nC/m? be present at the z =0
plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
and a point charge of 2 uC be present at P(2, 0, 0). If ' = 0 at M(0, 0, 5),
find V" at N(1, 2, 3).

Three point charges, 0.4 uC each, are located at (0, 0, —1), (0, 0, 0), and
(0,0, 1), in free space. (a) Find an expression for the absolute potential as
a function of z along the line x =0, y = 1. (b) Sketch V(z).

Three identical point charges of 4 pC each are located at the corners of
an equilateral triangle 0.5mm on a side in free space. How much work
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4.14

4.15

4.16

4.18

4.19

4.20

must be done to move one charge to a point equidistant from the other
two and on the line joining them?

Two 6-nC point charges are located at (1,0,0) and (—1,0,0) in free
space. (@) Find V' at P(0,0, z). (b) Find Vyax. (¢) Calculate |dV /dz| on
the z axis. (d) Find |dV /dz| -

Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and
at x = —1, y = 2, in free space. If the potential at the origin is 100 V, find
V at P(4,1, 3).

Uniform surface charge distributions of 6, 4, and 2nC/m? are present at
r=2,4, and 6cm, respectively, in free space. (¢) Assume V =0 at in-
finity, and find V(r). (b) Calculate V atr =1, 3, 5, and 7 cm. (¢) Sketch V'
versus r for 1 <r < 10cm.

Uniform surface charge densities of 6 and 2nC/m? are present at p = 2
and 6cm, respectively, in free space. Assume V' =0 at p =4cm, and
calculate V' at p = (a) Scm; (b) 7cm.

The nonuniform linear charge density, p; = 8/(z*> + 1)nC/m, lies along
the z axis. Find the potential at P(p = 1,0, 0) in free space if V' =0 at
p = 00.

The annular surface, 1cm < p < 3cm, z =0, carries the nonuniform
surface charge density ps = 5onC/m?. Find V at P(0,0,2cm) if V' =0
at infinity.

Fig. 4.11 shows three separate charge distributions in the z = 0 plane in
free space. (@) Find the total charge for each distribution. (b) Find the
potential at P(0, 0, 6) caused by each of the three charge distributions
acting alone. (¢) Find Vp.

(0,5,0)

Pra=anC/m-—» 200 z =0 plane
-

(0,3,0)
p=3
- prp=15nC/m

200 FIGURE 4.11
See Prob. 20.
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4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.32

4.33

ENERGY AND POTENTIAL

Let V = 2xy%z* 4+ 3In(x? 4+ 2y 4+ 3z%) V in free space. Evaluate each of
the following quantities at P(3, 2, —1): (a) V; (b) |V]; (¢) E; (d) |E[; (e) ay;
(/) D.

It is known that the potential is given as V' = 80/%° V. Assuming free-
space conditions, find: (@) E; (b) the volume charge density at r = 0.5m;
(c) the total charge lying within the surface r = 0.6.

It is known that the potential is given as V' = 800%° V. Assuming free-
space conditions, find: («) E; (b) the volume charge density at p = 0.5m;
(c) the total charge lying within the closed surface p =0.6,0 <z < 1.
Given the potential field ¥ =80r>cos@ and a point P(2.5,60 = 30°,
¢ = 60°) in free space, find at P: (a) V; (b) E; (¢) D; (d) py; (e) dV/dN;,
(f) an

Within the cylinder p=2,0 < z < 1, the potential is given by V =
100 + 50p + 150psin¢ V. (a) Find V,E,D, and p, at P(1,60°0.5) in
free space. (b) How much charge lies within the cylinder?

A dipole having Qd/(4mey) = 100V - m? is located at the origin in free
space and aligned so that its moment is in the a, direction. (a) Sketch
[V(r=1,0,¢ =0)| versus 6 on polar graph paper (homemade if you
wish). (b) Sketch |E(r =1, 0, ¢ = 0)| versus 6 on polar paper.

Two point charges, 1 nC at (0,0,0.1) and —1nC at (0,0, —0.1), are in
free space. (@) Calculate V' at P(0.3,0,0.4), (b) Calculate |E| at P. (¢)
Now treat the two charges as a dipole at the origin and find V at P.

A dipole located at the origin in free space has a moment p =
2x107%a.C-m. At what points on the line y=z,x=0 is: (a)
|Eg| = 1mV/m? (b) |E,| = 1mV/m?

A dipole having a moment p = 3a, — 5a, + 10a.nC - m is located at
0(1, 2, —4) in free space. Find V' at P(2, 3, 4).

A dipole, having a moment of p = 2a, nC - m, is located at the origin in
free space. Give the magnitude of E and its direction ag in cartesian
components at r = 100m, ¢ = 90°, and 6 =: (a) 0°; (b) 30°; (c¢) 90°.

A potential field in free space is expressed as V' = 20/(xyz) V. (a) Find
the total energy stored within the cube 1 < x, y,z < 2. (b) What value
would be obtained by assuming a uniform energy density equal to the
value at the center of the cube?

In the region of free space where 2 <r < 3,0.47 <6 < 0.6m7,

0 <¢ <m/2, let E=—a,. (a) Find a positive value for k so that the
r

total energy stored is exactly 1J. (b) Show that the surface 6 = 0.6 is
an equipotential surface. (¢) Find Vyp given points A(2,60 = n/2,
¢ = m/3) and B3, /2, /4).

A copper sphere of radius 4cm carries a uniformly distributed total
charge of 5puC on its surface in free space. (¢) Use Gauss’s law to find
D external to the sphere. (b) Calculate the total energy stored in the
electrostatic field. (¢) Use Wy = 0?/(2C) to calculate the capacitance
of the isolated sphere.
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4.34

4.35

Given the potential field in free space, V' = 80¢as V (cyl. coord.), find:
(a) the energy stored in the region 2 <p<4cm, 0< ¢ < 0.27,
0 <z < 1m; (b) the potential difference V45 for ABcm, ¢ =0,z =0)
and B(3cm, 0.27, 1 m); (¢) the maximum value of the energy density in
the specified region.

Four 0.8-nC point charges are located in free space at the corners of a
square 4cm on a side. (@) Find the total potential energy stored. () A
fifth 0.8-pC charge is installed at the center of the square. Again find the
total stored energy.
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CHAPTER

d

CONDUCTORS,
DIELECTRICS,
AND
CAPACITANCE

In this chapter we intend to apply the laws and methods of the previous chapters
to some of the materials with which an engineer must work. After defining
current and current density and developing the fundamental continuity equation,
we shall consider a conducting material and present Ohm’s law in both its
microscopic and macroscopic forms. With these results we may calculate resis-
tance values for a few of the simpler geometrical forms that resistors may
assume. Conditions which must be met at conductor boundaries are next
obtained, and this knowledge enables us to introduce the use of images.

After a brief consideration of a general semiconductor, we shall investigate
the polarization of dielectric materials and define relative permittivity, or the
dielectric constant, an important engineering parameter. Having both conduc-
tors and dielectrics, we may then put them together to form capacitors. Most of
the work of the previous chapters will be required to determine the capacitance
of the several capacitors which we shall construct.

The fundamental electromagnetic principles on which resistors and capaci-
tors depend are really the subject of this chapter; the inductor will not be intro-
duced until Chap. 9.
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5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere
(A), defined as a rate of movement of charge passing a given reference point (or
crossing a given reference plane) of one coulomb per second. Current is symbo-
lized by I, and therefore

_ 49
== (1)

Current is thus defined as the motion of positive charges, even though conduc-
tion in metals takes place through the motion of electrons, as we shall see shortly.

In field theory we are usually interested in events occurring at a point rather
than within some large region, and we shall find the concept of current density,
measured in amperes per square meter (A/m?), more useful. Current density is a
vector! represented by J.

The increment of current A/ crossing an incremental surface AS normal to
the current density is

1

Al = JyAS
and in the case where the current density is not perpendicular to the surface,
Al =J-AS

Total current is obtained by integrating,

IZLJ-dS 2)

Current density may be related to the velocity of volume charge density at a
point. Consider the element of charge AQ = p,Av = p, AS AL, as shown in Fig.
5.1a. To simplify the explanation, let us assume that the charge element is
oriented with its edges parallel to the coordinate axes, and that it possesses
only an x component of velocity. In the time interval A¢, the element of charge
has moved a distance Ax, as indicated in Fig. 5.15. We have therefore moved a
charge AQ = p, AS Ax through a reference plane perpendicular to the direction
of motion in a time increment A¢, and the resultant current is

A AXx
ar=292_ e AS ==
At At
As we take the limit with respect to time, we have
Al = p, AS v,

! Current is not a vector, for it is easy to visualize a problem in which a total current I in a conductor of
nonuniform cross section (such as a sphere) may have a different direction at each point of a given cross
section. Current in an exceedingly fine wire, or a filamentary current, is occasionally defined as a vector,
but we usually prefer to be consistent and give the direction to the filament, or path, and not to the current.
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ﬁQ=vav
: A =p. A -
X LT
N g
_— -
, » / e
AS '_,.,/" AL ; v* A x
; t'/' AS './,_/' AL
? .
(a) ' ()]
FIGURE 5.1

An increment of charge, AQ = p,AS AL, which moves a distance Ax in a time A¢, produces a component
of current density in the limit of J, = p,v,.

where v, represents the x component of the velocity v.> In terms of current
density, we find

Jx = Py Ux

and in general

J = p,v (3)

This last result shows very clearly that charge in motion constitutes a
current. We call this type of current a convention current, and J or p,v is the
convection current density. Note that the convection current density is related
linearly to charge density as well as to velocity. The mass rate of flow of cars
(cars per square foot per second) in the Holland Tunnel could be increased either
by raising the density of cars per cubic foot, or by going to higher speeds, if the
drivers were capable of doing so.

¢/ D5.1. Given the vector current density J = 10p%za, — 4pcos® pay A/m%: (a) find the
current density at P(p =3, ¢ = 30°, z =2); (b) determine the total current flowing
outward through the circular band p=3,0 < ¢ <27, 2 <z < 2.8.

Ans. 180a, — 9a, A/m?; 518 A

2 The lowercase v is used both for volume and velocity. Note, however, that velocity always appears as a
vector v, a component vy, or a magnitude |v|, while volume appears only in differential form as dv or Aw.
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5.2 CONTINUITY OF CURRENT

Although we are supposed to be studying static fields at this time, the introduc-
tion of the concept of current is logically followed by a discussion of the con-
servation of charge and the continuity equation. The principle of conservation of
charge states simply that charges can be neither created nor destroyed, although
equal amounts of positive and negative charge may be simultaneously created,
obtained by separation, destroyed, or lost by recombination.

The continuity equation follows from this principle when we consider any
region bounded by a closed surface. The current through the closed surface is

I:ﬁ; J-dS
s

and this outward flow of positive charge must be balanced by a decrease of
positive charge (or perhaps an increase of negative charge) within the closed
surface. If the charge inside the closed surface is denoted by Q;, then the rate
of decrease is —dQ;/dt and the principle of conservation of charge requires

dQ;
dt

It might be well to answer here an often-asked question. “Isn’t there a sign
error? I thought I = dQ/dt.” The presence or absence of a negative sign depends
on what current and charge we consider. In circuit theory we usually associate
the current flow into one terminal of a capacitor with the time rate of increase of
charge on that plate. The current of (4), however, is an outward-flowing current.

Equation (4) is the integral form of the continuity equation, and the differ-
ential, or point, form is obtained by using the divergence theorem to change the
surface integral into a volume integral:

jESJ -dS = LOI(V J)dv

1:£J-dsz— 4)

We next represent the enclosed charge Q; by the volume integral of the charge
density,

d
(V-J)dv:—J Py dv
Jvol dr vol

If we agree to keep the surface constant, the derivative becomes a partial
derivative and may appear within the integral,

9py
(V-J)dv= J — dv
Jvol vol ot

Since the expression is true for any volume, however small, it is true for an
incremental volume,

9py

VJd)Av = — A
(V-J)Av o AV
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from which we have our point form of the continuity equation,

9py

V- ===

®)

Remembering the physical interpretation of divergence, this equation indi-
cates that the current, or charge per second, diverging from a small volume per
unit volume is equal to the time rate of decrease of charge per unit volume at
every point.

As a numerical example illustrating some of the concepts from the last two
sections, let us consider a current density that is directed radially outward and
decreases exponentially with time,

J= %e"ar A/m?

Selecting an instant of time # = 1 s, we may calculate the total outward current at
r=>5m:

I=J8=(le)dn5) =231 A

At the same instant, but for a slightly larger radius, » = 6 m, we have
I1=7,S=(te ) (4n6) =277 A

Thus, the total current is larger at r = 6 than it is at r = 5.
To see why this happens, we need to look at the volume charge density and
the velocity. We use the continuity equation first:

dp 1 _ 13,1 _ 1 _
— v =V [(-eTa )= —(rP-ec)==¢"
o1 (”e a> Vzar(r Ve) 2

We next seek the volume charge density by integrating with respect to ¢. Since p,
is given by a partial derivative with respect to time, the “‘constant’ of integration
may be a function of r:

1 1
Py = — J—ze_’dt +K(r) = e "+ K(r)
r r

If we assume that p, — 0 as t — oo, then K(r) =0, and

I _
pvzr—ze’ C/m’

We may now use J = p,v to find the velocity,
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The velocity is greater at r =6 than it is at r =5, and we see that some

(unspecified) force is accelerating the charge density in an outward direction.
In summary, we have a current density that is inversely proportional to r, a

charge density that is inversely proportional to r?, and a velocity and total

current that are proportional to r. All quantities vary as e™".

¢/ D5.2. Current density is given in cylindrical coordinates as J = —10°z!a. A/m? in the
region 0 < p <20um; for p > 20pum, J =0. (a) Find the total current crossing the
surface z=0.1m in the a. direction. (b) If the charge velocity is 2 x 10°m/s at
z=0.1m, find p, there. (¢) If the volume charge density at z=0.15m is
—2000 C/m?, find the charge velocity there.

Ans. —39.7mA; —15.81 kC/m?; —2900 m/s

5.3 METALLIC CONDUCTORS

Physicists today describe the behavior of the electrons surrounding the positive
atomic nucleus in terms of the total energy of the electron with respect to a zero
reference level for an electron at an infinite distance from the nucleus. The total
energy is the sum of the kinetic and potential energies, and since energy must be
given to an electron to pull it away from the nucleus, the energy of every electron
in the atom is a negative quantity. Even though the picture has some limitations,
it is convenient to associate these energy values with orbits surrounding the
nucleus, the more negative energies corresponding to orbits of smaller radius.
According to the quantum theory, only certain discrete energy levels, or energy
states, are permissible in a given atom, and an electron must therefore absorb or
emit discrete amounts of energy, or quanta, in passing from one level to another.
A normal atom at absolute zero temperature has an electron occupying every
one of the lower energy shells, starting outward from the nucleus and continuing
until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed
closely together, many more electrons are present, and many more permissible
energy levels are available because of the interaction forces between adjacent
atoms. We find that the energies which may be possessed by electrons are
grouped into broad ranges, or “bands,” each band consisting of very numerous,
closely spaced, discrete levels. At a temperature of absolute zero, the normal
solid also has every level occupied, starting with the lowest and proceeding in
order until all the electrons are located. The electrons with the highest (least
negative) energy levels, the valence electrons, are located in the valence band.
If there are permissible higher-energy levels in the valence band, or if the valence
band merges smoothly into a conduction band, then additional kinetic energy
may be given to the valence electrons by an external field, resulting in an electron
flow. The solid is called a metallic conductor. The filled valence band and the
unfilled conduction band for a conductor at 0 K are suggested by the sketch in
Fig. 5.2a.
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Empty
conduction
band Empty
conduction
Emw].m Energy gap L
Energy band Energy gap
Filled Filled Filled
valence valence valence
band band band
Conductor Insulator Semiconductor
(a) (b) ()

FIGURE 5.2

The energy-band structure in three different types of materials at 0 K. («) The conductor exhibits no energy
gap between the valence and conduction bands. (b) The insulator shows a large energy gap. (¢) The
semiconductor has only a small energy gap.

If, however, the electron with the greatest energy occupies the top level in
the valence band and a gap exists between the valence band and the conduction
band, then the electron cannot accept additional energy in small amounts, and
the material is an insulator. This band structure is indicated in Fig. 5.2b. Note
that if a relatively large amount of energy can be transferred to the electron, it
may be sufficiently excited to jump the gap into the next band where conduction
can occur easily. Here the insulator breaks down.

An intermediate condition occurs when only a small “forbidden region”
separates the two bands, as illustrated by Fig. 5.2¢. Small amounts of energy in
the form of heat, light, or an electric field may raise the energy of the electrons at
the top of the filled band and provide the basis for conduction. These materials
are insulators which display many of the properties of conductors and are called
semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduc-
tion, or free, electrons, move under the influence of an electric field. With a field
E, an electron having a charge Q = —e will experience a force

F=—¢cE

In free space the electron would accelerate and continuously increase its velocity
(and energy); in the crystalline material the progress of the electron is impeded by
continual collisions with the thermally excited crystalline lattice structure, and a
constant average velocity is soon attained. This velocity v, is termed the drift
velocity, and it is linearly related to the electric field intensity by the mobility of
the electron in the given material. We designate mobility by the symbol u (mu),
so that

Va = —1E (6)

where p. is the mobility of an electron and is positive by definition. Note that the
electron velocity is in a direction opposite to the direction of E. Equation (6) also
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shows that mobility is measured in the units of square meters per volt-second;

typical values® are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.
For these good conductors a drift velocity of a few inches per second is

sufficient to produce a noticeable temperature rise and can cause the wire to melt

if the heat cannot be quickly removed by thermal conduction or radiation.
Substituting (6) into Eq. (3) of Sec. 5.1, we obtain

J=—pep.E (7

where p, is the free-electron charge density, a negative value. The total charge
density p, is zero, since equal positive and negative charge is present in the
neutral material. The negative value of p, and the minus sign lead to a current
density J that is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also
specified by the conductivity o (sigma),

J=0E (8)

where o is measured is siemens* per meter (S/m). One siemens (1S) is the basic
unit of conductance in the SI system, and is defined as one ampere per volt.
Formerly, the unit of conductance was called the mho and symbolized by an
inverted Q2. Just as the siemens honors the Siemens brothers, the reciprocal unit
of resistance which we call the ohm (1 2 is one volt per ampere) honors Georg
Simon Ohm, a German physicist who first described the current-voltage relation-
ship implied by (8). We call this equation the point form of Ohm’s law; we shall
look at the more common form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic
conductors; typical values (in siemens per meter) are 3.82 x 107 for aluminum,
5.80 x 107 for copper, and 6.17 x 107 for silver. Data for other conductors may
be found in Appendix C. On seeing data such as these, it is only natural to
assume that we are being presented with constant values; this is essentially
true. Metallic conductors obey Ohm’s law quite faithfully, and it is a linear
relationship; the conductivity is constant over wide ranges of current density
and electric field intensity. Ohm’s law and the metallic conductors are also
described as isotropic, or having the same properties in every direction. A mate-
rial which is not isotropic is called anisotropic, and we shall mention such a
material a few pages from now.

3 Wert and Thomson, p. 238, listed in the Suggested References at the end of this chapter.

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who were
famous engineer-inventors in the nineteenth century. Karl became a British subject and was knighted,
becoming Sir William Siemens.
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The conductivity is a function of temperature, however. The resistivity,
which is the reciprocal of the conductivity, varies almost linearly with tempera-
ture in the region of room temperature, and for aluminum, copper, and silver it
increases about 0.4 percent for a 1 K rise in temperature.® For several metals the
resistivity drops abruptly to zero at a temperature of a few kelvin; this property is
termed superconductivity. Copper and silver are not superconductors, although
aluminum is (for temperatures below 1.14 K).

If we now combine (7) and (8), the conductivity may be expressed in terms
of the charge density and the electron mobility,

0 = —Pelke )

From the definition of mobility (6), it is now satisfying to note that a higher
temperature infers a greater crystalline lattice vibration, more impeded electron
progress for a given electric field strength, lower drift velocity, lower mobility,
lower conductivity from (9), and higher resistivity as stated.

The application of Ohm’s law in point form to a macroscopic (visible to the
naked eye) region leads to a more familiar form. Initially, let us assume that J
and E are uniform, as they are in the cylindrical region shown in Fig. 5.3. Since
they are uniform,

I:JJ-dS:JS (10)
S
and Vab=—J E-dL:—E-JdL:—E-L;,a
b b

—E-Lyg (11)

or
V =EL
Conductivity o

—_—
Area=S§ a
I=Js — “ FIGURE 5.3
—_—

Uniform current density J and elec-

- tric field intensity E in a cylindrical

AR region of length L and cross-sec-

tional area S. Here V = IR, where
L R=L/sS.

5 Copious temperature data for conducting materials are available in the “Standard Handbook for
Electrical Engineers,” listed among the Suggested References at the end of this chapter.
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Thus
1 |4
JZEZUE:UZ
or
L
V=—I
oS

The ratio of the potential difference between the two ends of the cylinder to
the current entering the more positive end, however, is recognized from elemen-
tary circuit theory as the resistance of the cylinder, and therefore

V =1IR (12)
where
L
R=— 13
s (13)

Equation (12) is, of course, known as Ohm’s law, and (13) enables us to compute
the resistance R, measured in ohms (abbreviated as €2), of conducting objects
which possess uniform fields. If the fields are not uniform, the resistance may still
be defined as the ratio of V' to I, where V' is the potential difference between two
specified equipotential surfaces in the material and 7 is the total current crossing
the more positive surface into the material. From the general integral relation-
ships in (10) and (11), and from Ohm’s law (8), we may write this general
expression for resistance when the fields are nonuniform,

Va  —J, E-dL
I JsoE-dS

R= (14)
The line integral is taken between two equipotential surfaces in the conductor,
and the surface integral is evaluated over the more positive of these two equi-
potentials. We cannot solve these nonuniform problems at this time, but we
should be able to solve several of them after perusing Chaps. 6 and 7.

|||I»Example 5.1

As an example of the determination of the resistance of a cylinder, let us find the
resistance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508 x 0.0254 = 1.291 x 10~3 m, the area of the
cross section is 7(1.291 x 1073/2)* = 1.308 x 107°m?, and the length is 1609 m. Using a
conductivity of 5.80 x 107 S/m, the resistance of the wire is therefore
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1609

R= =212 Q
(5.80 x 107)(1.308 x 10-°)

This wire can safely carry about 10 A dc, corresponding to a current density of
10/(1.308 x 107°) = 7.65 x 10° A/m?, or 7.65A/mm?. With this current the
potential difference between the two ends of the wire is 212V, the electric field
intensity is 0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one
furlong a week, and the free-electron charge density is —1.81 x 10'°C/m?, or
about one electron in a cube two angstroms on a side.

¢/ D53 Find the magnitude of the current density in a sample of silver for which
0=06.17 x 10’S/m and p, = 0.0056m?/V -s if: (a) the drift velocity is 1.5um/s; (b)
the electric field intensity is 1 mV/m; (¢) the sample is a cube 2.5mm on a side having
a voltage of 0.4 mV between opposite faces; (d) the sample is a cube 2.5mm on a side
carrying a total current of 0.5 A.

Ans. 16.53kA/m?; 61.7kA/m?; 9.87 MA/m?; 80.0 kA /m>

V D5.4. A copper conductor has a diameter of 0.6in and it is 1200 ft long. Assume that it
carries a total dc current of 50 A. () Find the total resistance of the conductor. (b) What
current density exists in it? (¢) What is the dc voltage between the conductor ends? (d)
How much power is dissipated in the wire?

Ans. 0.0346 Q; 2.74 x 105 A/m?; 1.729 V; 86.4 W

5.4 CONDUCTOR PROPERTIES AND
BOUNDARY CONDITIONS

Once again we must temporarily depart from our assumed static conditions and
let time vary for a few microseconds to see what happens when the charge
distribution is suddenly unbalanced within a conducting material. Let us sup-
pose, for the sake of the argument, that there suddenly appear a number of
electrons in the interior of a conductor. The electric fields set up by these elec-
trons are not counteracted by any positive charges, and the electrons therefore
begin to accelerate away from each other. This continues until the electrons reach
the surface of the conductor or until a number of electrons equal to the number
injected have reached the surface.

Here the outward progress of the electrons is stopped, for the material
surrounding the conductor is an insulator not possessing a convenient conduc-
tion band. No charge may remain within the conductor. If it did, the resulting
electric field would force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a
surface charge density resides on the exterior surface. This is one of the two
characteristics of a good conductor.

The other characteristic, stated for static conditions in which no current
may flow, follows directly from Ohm’s law: the electric field intensity within the
conductor is zero. Physically, we see that if an electric field were present, the
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conduction electrons would move and produce a current, thus leading to a non-
static condition.

Summarizing for electrostatics, no charge and no electric field may exist at
any point within a conducting material. Charge may, however, appear on the
surface as a surface charge density, and our next investigation concerns the fields
external to the conductor.

We wish to relate these external fields to the charge on the surface of the
conductor. The problem is a simple one, and we may first talk our way to the
solution with little mathematics.

If the external electric field intensity is decomposed into two components,
one tangential and one normal to the conductor surface, the tangential compo-
nent is seen to be zero. If it were not zero, a tangential force would be applied to
the elements of the surface charge, resulting in their motion and nonstatic con-
ditions. Since static conditions are assumed, the tangential electric field intensity
and electric flux density are zero.

Gauss’s law answers our questions concerning the normal component. The
electric flux leaving a small increment of surface must be equal to the charge
residing on that incremental surface. The flux cannot penetrate into the conduc-
tor, for the total field there is zero. It must then leave the surface normally.
Quantitatively, we may say that the electric flux density in coulombs per square
meter leaving the surface normally is equal to the surface charge density in
coulombs per square meter, or Dy = ps.

If we use some of our previously derived results in making a more careful
analysis (and incidentally introducing a general method which we must use later),
we should set up a conductor-free space boundary (Fig. 5.4) showing tangential
and normal components of D and E on the free-space side of the boundary. Both
fields are zero in the conductor. The tangential field may be determined by
applying Sec. 4.5, Eq. (21),

%E-dL:O

Free space e E

Conductor

FIGURE 5.4
An appropriate closed path and gaussian surface are used to determine boundary conditions at a con-
ductor-free space boundary; £, =0 and Dy = ps.
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around the small closed path abcda. The integral must be broken up into four

parts
b c d a
o)LL
a b ¢ d
Remembering that E = 0 within the conductor, we let the length from a to b or ¢
to d be Aw and from b to ¢ or d to a be Ah, and obtain

EAW — Eyaip s A+ Eyata 3 A =0

As we allow A#h to approach zero, keeping Aw small but finite, it makes no
difference whether or not the normal fields are equal at @ and b, for Al causes
these products to become negligibly small. Hence

EAw =0
and therefore
Et — O

The condition on the normal field is found most readily by considering Dy
rather than Ey and choosing a small cylinder as the gaussian surface. Let the
height be A/ and the area of the top and bottom faces be AS. Again we shall let
Ah approach zero. Using Gauss’s law,

jESD-dszQ

we integrate over the three distinct surfaces

Lo
top bottom sides

and find that the last two are zero (for different reasons). Then
DyAS = Q = psAS
or
Dy = ps

These are the desired boundary conditions for the conductor-free space
boundary in electrostatics,

D[:E[:O (15)

Dy =€ En = ps (16)
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The electric flux leaves the conductor in a direction normal to the surface, and
the value of the electric flux density is numerically equal to the surface charge
density.

An immediate and important consequence of a zero tangential electric field
intensity is the fact that a conductor surface is an equipotential surface. The
evaluation of the potential difference between any two points on the surface
by the line integral leads to a zero result, because the path may be chosen on
the surface itself where E-dL = 0.

To summarize the principles which apply to conductors in electrostatic
fields, we may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be
calculated at a conductor boundary, given a knowledge of the potential field.

|||I»Example 5.2
Given the potential,
V = 100(x*> —1?)

and a point P(2, —1, 3) that is stipulated to lie on a conductor-free space boundary, let
us find V, E, D, and ps at P, and also the equation of the conductor surface.

Solution. The potential at point P is
Vp=100[2> = (=1)*] =300 V

Since the conductor is an equipotential surface, the potential at the entire surface must
be 300 V. Moreover, if the conductor is a solid object, then the potential everywhere in
and on the conductor is 300V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300V is

300 = 100(x> — ?)
or
x2 _ yz =3

This is therefore the equation of the conductor surface; it happens to be a hyperbolic
cylinder, as shown in Fig. 5.5. Let us assume arbitrarily that the solid conductor lies
above and to the right of the equipotential surface at point P, while free space is down
and to the left.
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1 z=13 plane
1 3
1] = X
x2_y2=3
V=300V
-1 P(2,-1,3)
Ve
/
/
/
-2 /
[/ xy=-2
/ 3 FIGURE 5.5
f Given point P(2, —1, 3) and the potential field,
_3 V= 100(x> — y?), we find the equipotential sur-
face through P is x> —y? =3, and the stream-

line through P is xy = —2.

Next, we find E by the gradient operation,
E = —100V(x* — *) = —200xa, + 200ya,
At point P,
E, = —400a, —200a, V/m
Since D = ¢)E, we have
Dy = 8.854 x 107 °Ep = —3.54a, — 1.771a, nC/m’

The field is directed downward and to the left at P; it is normal to the equipotential
surface. Therefore,

Dy = |Dp| =3.96 nC/m’
Thus, the surface charge density at P is
ps.p =Dy =396 nC/m>

Note that if we had taken the region to the left of the equipotential surface as the
conductor, the E field would terminate on the surface charge and we would let
ps = —3.96nC/m?>.
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[II>Example 5.3

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that
E, 200y y dy

E.  —200x Tx dx

dy d
Thus, & + o 0
y X
and Iny+Inx=C;
Therefore,
xy=GC,

The line (or surface) through P is obtained when C, = (2)(—1) = —2. Thus, the stream-
line is the trace of another hyperbolic cylinder,

xy = -2

This is also shown on Fig. 5.5.

v/ D55 Given the potential field in free space, ¥ = 100sinh Sxsin5y ¥/, and a point
P(0.1,0.2,0.3), find at P: (a) V; (b) E; (¢) |E|; (d) |ps| if it is known that P lies on a
conductor surface.

Ans. 43.8V; —474a, — 140.8a, V/m; 495V/m; 4.38 nC/m?

5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in the last
chapter is the infinite plane at zero potential that exists midway between the two
charges. Such a plane may be represented by a vanishingly thin conducting plane
that is infinite in extent. The conductor is an equipotential surface at a potential
V' =0, and the electric field intensity is therefore normal to the surface. Thus, if
we replace the dipole configuration shown in Fig. 5.6a with the single charge and
conducting plane shown in Fig. 5.6h, the fields in the upper half of each figure
are the same. Below the conducting plane, all fields are zero since we have not
provided any charges in that region. Of course, we might also substitute a single
negative charge below a conducting plane for the dipole arrangement and obtain
equivalence for the fields in the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin
with a single charge above a perfectly conducting plane and then see that we may
maintain the same fields above the plane by removing the plane and locating a
negative charge at a symmetrical location below the plane. This charge is called
the image of the original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus
any charge configuration above an infinite ground plane may be replaced by an
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+Q_l__ _ = +0,
+Qe +Q e
Equipotential surface, V=0 Conducting plane, =0
i Q Y
(@) ()

FIGURE 5.6
(a) Two equal but opposite charges may be replaced by (b) a single charge and a conducting plane without
affecting the fields above the V' = 0 surface.

arrangement composed of the given charge configuration, its image, and no
conducting plane. This is suggested by the two illustrations of Fig. 5.7. In
many cases, the potential field of the new system is much easier to find since it
does not contain the conducting plane with its unknown surface charge distribu-
tion.

As an example of the use of images, let us find the surface charge density at
P(2,5,0) on the conducting plane z = 0 if there is a line charge of 30nC/m
located at x = 0, z = 3, as shown in Fig. 5.8a. We remove the plane and install
an image line charge of —30nC/m at x =0, z = —3, as illustrated in Fig. 5.8b.
The field at P may now be obtained by superposition of the known fields of
the line charges. The radial vector from the positive line charge to P is
R, =2a, — 3a., while R_ = 2a, + 3a.. Thus, the individual fields are

4 g —44
+1® 5 +] @ p
— —
Conducting plane, V=0 - Eq_u@o_tcj]t_iai_sgrfage,_ V_=_U _____
}
-] e 4
+4e

(a) (&)

FIGURE 5.7
(a) A given charge configuration above an infinite conducting plane may be replaced by (b) the given
charge configuration plus the image configuration, without the conducting plane.
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A
30 nC/m ‘
Conducting plane |

_,// P(Z) 5) 0)

(@ ” )

FIGURE 5.8
(a) A line charge above a conducting plane. (b) The conductor is removed, and the image of the line charge
is added.

E, = oL A, = 30 x 107 2a, — 3a.
2meg Ry 2reg/13 W13
30 x 1072 2a, + 3a.
T 2mep/13 VI3
Adding these results, we have

_ —180 x 107,

 2me(13)
This then is the field at (or just above) P in both the configurations of Fig. 5.8,
and it is certainly satisfying to note that the field is normal to the conducting

plane, as it must be. Thus, D = ¢gE = —2.20a. nC/m?, and since this is directed
toward the conducting plane, ps is negative and has a value of —2.20 nC/m? at P.

and

=—-249a, V/m

vV D56 A perfectly conducting plane is located in free space at x =4, and a uniform
infinite line charge of 40 nC/m lies along the line x = 6, y = 3. Let J/ =0 at the con-
ducting plane. At P(7, —1,5) find: (a) V; (b) E.

Ans. —316V; —45.4a, V/m.

5.6 SEMICONDUCTORS

If we now turn our attention to an intrinsic semiconductor material, such as pure
germanium or silicon, two types of current carriers are present, electrons and
holes. The electrons are those from the top of the filled valence band which have
received sufficient energy (usually thermal) to cross the relatively small forbidden
band into the conduction band. The forbidden-band energy gap in typical semi-
conductors is of the order of one electronvolt. The vacancies left by these elec-
trons represent unfilled energy states in the valence band which may also move
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from atom to atom in the crystal. The vacancy is called a hole, and many
semiconductor properties may be described by treating the hole as if it had a
positive charge of ¢, a mobility, uj;, and an effective mass comparable to that of
the electron. Both carriers move in an electric field, and they move in opposite
directions; hence each contributes a component of the total current which is in
the same direction as that provided by the other. The conductivity is therefore a
function of both hole and electron concentrations and mobilities,

0 = —Pelbe + Phibh (17)

For pure, or intrinsic, silicon the electron and hole mobilities are 0.12 and
0.025, respectively, while for germanium, the mobilities are, respectively, 0.36
and 0.17. These values are given in square meters per volt-second and range from
10 to 100 times as large as those for aluminum, copper, silver, and other metallic
conductors.® The mobilities listed above are given for a temperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At
300K the electron and hole volume charge densities are both 0.0024 C/m? in
magnitude in intrinsic silicon and 3.0 C/m? in intrinsic germanium. These values
lead to conductivities of 0.00035S/m in silicon and 1.6 S/m in germanium. As
temperature increases, the mobilities decrease, but the charge densities increase
very rapidly. As a result, the conductivity of silicon increases by a factor of 10 as
the temperature increases from 300 to about 330 K and decreases by a factor of
10 as the temperature drops from 300 to about 275 K. Note that the conductivity
of the intrinsic semiconductor increases with temperature, while that of a metallic
conductor decreases with temperature; this is one of the characteristic differences
between the metallic conductors and the intrinsic semiconductors.

Intrinsic semiconductors also satisfy the point form of Ohm’s law; that is,
the conductivity is reasonably constant with current density and with the direc-
tion of the current density.

The number of charge carriers and the conductivity may both be increased
dramatically by adding very small amounts of impurities. Donor materials pro-
vide additional electrons and form n-type semiconductors, while acceptors fur-
nish extra holes and form p-zype materials. The process is known as doping, and a
donor concentration in silicon as low as one part in 107 causes an increase in
conductivity by a factor of 10°.

The range of value of the conductivity is extreme as we go from the best
insulating materials to semiconductors and the finest conductors. In siemens per
meter, o ranges from 10~ for fused quartz, 10~ for poor plastic insulators, and
roughly unity for semiconductors to almost 10® for metallic conductors at room
temperature. These values cover the remarkably large range of some 25 orders of
magnitude.

% Mobility values for semiconductors are given in Refs. 2, 4, and 7 listed at the end of this chapter.
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V DS5.7. Using the values given in this section for the electron and hole mobilities in silicon
at 300K, and assuming hole and electron charge densities are 0.0029 C/m’ and
—0.0029 C/m?, respectively, find: (a) the component of the conductivity due to holes;
(b) the component of the conductivity due to electrons; (c¢) the conductivity.

Ans. 0.0725S/m; 0.348 S/m; 0.421 S/m

5.7 THE NATURE OF DIELECTRIC MATERIALS

Although we have mentioned insulators and dielectric materials, we do not as yet
have any quantitative relationships in which they are involved. We shall soon see,
however, that a dielectric in an electric field can be viewed as a free-space
arrangement of microscopic electric dipoles which are composed of positive
and negative charges whose centers do not quite coincide.

These are not free charges, and they cannot contribute to the conduction
process. Rather, they are bound in place by atomic and molecular forces and can
only shift positions slightly in response to external fields. They are called bound
charges, in contrast to the free charges that determine conductivity. The bound
charges can be treated as any other sources of the electrostatic field. If we did not
wish to, therefore, we would not need to introduce the dielectric constant as a
new parameter or to deal with permittivities different from the permittivity of
free space; however, the alternative would be to consider every charge within a
piece of dielectric material. This is too great a price to pay for using all our
previous equations in an unmodified form, and we shall therefore spend some
time theorizing about dielectrics in a qualitative way; introducing polarization P,
permittivity €, and relative permittivity €z; and developing some quantitative
relationships involving these new quantities.

The characteristic which all dielectric materials have in common, whether
they are solid, liquid, or gas, and whether or not they are crystalline in nature, is
their ability to store electric energy. This storage takes place by means of a shift
in the relative positions of the internal, bound positive and negative charges
against the normal molecular and atomic forces.

This displacement against a restraining force is analogous to lifting a weight
or stretching a spring and represents potential energy. The source of the energy is
the external field, the motion of the shifting charges resulting perhaps in a
transient current through a battery which is producing the field.

The actual mechanism of the charge displacement differs in the various
dielectric materials. Some molecules, termed polar molecules, have a permanent
displacement existing between the centers of “gravity” of the positive and nega-
tive charges, and each pair of charges acts as a dipole. Normally the dipoles are
oriented in a random way throughout the interior of the material, and the action
of the external field is to align these molecules, to some extent, in the same
direction. A sufficiently strong field may even produce an additional displace-
ment between the positive and negative charges.
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A nonpolar molecule does not have this dipole arrangement until after a
field is applied. The negative and positive charges shift in opposite directions
against their mutual attraction and produce a dipole which is aligned with the
electric field.

Either type of dipole may be described by its dipole moment p, as developed
in Sec. 4.7, Eq. (37),

p=0d (18)

where Q is the positive one of the two bound charges composing the dipole, and
d is the vector from the negative to the positive charge. We note again that the
units of p are coulomb-meters.

If there are n dipoles per unit volume and we deal with a volume Aw, then
there are n Av dipoles, and the total dipole moment is obtained by the vector
sum,

nAv

Piotal = Zpi
i=1

If the dipoles are aligned in the same general direction, p,,,; may have a sig-
nificant value. However, a random orientation may cause p,,, to be essentially
Zero.

We now define the polarization P as the dipole moment per unit volume,

1 nAv

P_Alir—{loAv;pi (19)
with units of coulombs per square meter. We shall treat P as a typical continuous
field, even though it is obvious that it is essentially undefined at points within an
atom or molecule. Instead, we should think of its value at any point as an
average value taken over a sample volume Av—Ilarge enough to contain many
molecules (n Av in number), but yet sufficiently small to be considered incre-
mental in concept.

Our immediate goal is to show that the bound volume charge density acts
like the free volume charge density in producing an external field; we shall obtain
a result similar to Gauss’s law.

To be specific, let us assume that we have a dielectric containing nonpolar
molecules. No molecule has a dipole moment, and P = 0 throughout the mate-
rial. Somewhere in the interior of the dielectric we select an incremental surface
element AS, as shown in Fig. 5.9a, and apply an electric field E. The electric field
produces a moment p = Qd in each molecule, such that p and d make an angle 6
with AS, as indicated in Fig. 5.95.

Now let us inspect the movement of bound charges across AS. Each of the
charges associated with the creation of a dipole must have moved a distance
%d cos 6 in the direction perpendicular to AS. Thus, any positive charges initially
lying below the surface AS and within the distance %d cos 6 of the surface must
have crossed AS going upward. Also, any negative charges initially lying above
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Dielectric

(B)

FIGURE 5.9

(a) An incremental surface element AS is shown in the interior of a dielectric in which an electric field E is
present. (b) The nonpolar molecules form dipole moments p and a polarization P. There is a net transfer of
bound charge across AS.

the surface and within that distance (%dcos 0) from AS must have crossed AS
going downward. Therefore, since there are n molecules/m?, the net total charge
which crosses the elemental surface in an upward direction is equal to
nQd cos OAS, or

AQ, = nQd - AS

where the subscript on Q, reminds us that we are dealing with a bound charge
and not a free charge. In terms of the polarization, we have

AQ, =P-AS

If we interpret AS as an element of a closed surface inside the dielectric material,
then the direction of AS is outward, and the net increase in the bound charge
within the closed surface is obtained through the integral

0y = _j@SP-ds (20)

This last relationship has some resemblance to Gauss’s law, and we may now
generalize our definition of electric flux density so that it applies to media other
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than free space. We first write Gauss’s law in terms of ¢)E and Qr, the fotal
enclosed charge, bound plus free:

05— ieOE-ds e

where

Or=0,+0

and Q is the total free charge enclosed by the surface S. Note that the free charge
appears without subscript since it is the most important type of charge and will
appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free
charge enclosed,

0=0r 05— jlﬁs(eoE +P).dS (22)

We may now define D in more general terms than we did in Chap. 3,

D=¢E+P (23)

There is thus an added term to D which appears when polarizable material is
present. Thus,

Q:§D.ds (24)
S

where Q is the free charge enclosed.
Utilizing the several volume charge densities, we have

Op=| ppdv
0=\ ppdv
Or=| prdv

With the help of the divergence theorem, we may therefore transform (20), (21),
and (24) into the equivalent divergence relationships,

VP =—p
V-¢E = pr
V-D=p, (25)
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We shall emphasize only (24) and (25), the two expressions involving the
free charge, in the work that follows.

In order to make any real use of these new concepts, it is necessary to know
the relationship between the electric field intensity E and the polarization P
which results. This relationship will, of course, be a function of the type of
material, and we shall essentially limit our discussion to those isotropic materials
for which E and P are linearly related. In an isotropic material the vectors E and
P are always parallel, regardless of the orientation of the field. Although most
engineering dielectrics are linear for moderate-to-large field strengths and are
also isotropic, single crystals may be anisotropic. The periodic nature of crystal-
line materials causes dipole moments to be formed most easily along the crystal
axes, and not necessarily in the direction of the applied field.

In ferroelectric materials the relationship between P and E is not only
nonlinear, but also shows hysteresis effects; that is, the polarization produced
by a given electric field intensity depends on the past history of the sample.
Important examples of this type of dielectric are barium titanate, often used in
ceramic capacitors, and Rochelle salt.

The linear relationship between P and E is

P = XeGOE (26)

where y, (chi) is a dimensionless quantity called the electric susceptibility of the
material.
Using this relationship in (23), we have

D = ¢)E + x.60E = (x. + 1)egE
The expression within the parentheses is now defined as
€R = Xe T 1 (27)

This is another dimensionless quantity and it is known as the relative permittivity,
or dielectric constant of the material. Thus,

D = ¢yegE = ¢E (28)

where

€ = €)€R (29)

and € is the permittivity. The dielectric constants are given for some representa-
tive materials in Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple
susceptibility or permittivity parameter. Instead, we find that each component of
D may be a function of every component of E, and D = €E becomes a matrix
equation where D and E are each 3 x 1 column matrices and € is a 3 x 3 square
matrix. Expanding the matrix equation gives
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Dy=¢e E,+eE, +e€E.
Dy = nyEx =+ EnyV + 6yzE‘Z
D.=¢.E.+ EZyEy + e E.

Note that the elements of the matrix depend on the selection of the coordinate
axes in the anisotropic material. Certain choices of axis directions lead to simpler
matrices.’

D and E (and P) are no longer parallel, and although D = ¢)E + P remains
a valid equation for anisotropic materials, we may continue to use D = ¢E only
by interpreting it as a matrix equation. We shall concentrate our attention on
linear isotropic materials and reserve the general case for a more advanced text.

In summary, then, we now have a relationship between D and E which
depends on the dielectric material present,

D=¢E (28)

where € = €)€R (29)

This electric flux density is still related to the free charge by either the point or
integral form of Gauss’s law:

V-D=p, (25)

f{)D-dS:Q (24)
S

The use of the relative permittivity, as indicated by (29) above, makes
consideration of the polarization, dipole moments, and bound charge unneces-
sary. However, when anisotropic or nonlinear materials must be considered, the
relative permittivity, in the simple scalar form that we have discussed, is no
longer applicable.

Let us now illustrate these new concepts with a numerical example.

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer
reference listed at the end of this chapter.
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[II>Example 5.4

We locate a slab of Teflon in the region 0 < x < @, and assume free space where x < 0
and x > a. Outside the Teflon there is a uniform field E,,, = Epa, V/m. We seek values
for D, E, and P everywhere.

Solution. The dielectric constant of Teflon is 2.1, and thus the electric susceptibility is
1.1.

Outside the slab, we have immediately Doy = €9Epay. Also since there is no
dielectric material there, Py, = 0. Now, any of the last four or five equations will enable
us to relate the several fields inside the material to each other. Thus

Din - 2~160Ein (0 =x= a)
Py, =11¢E, (0O=<x=<a

As soon as we establish a value for any of these three fields within the dielectric, the
other two can be found immediately. The difficulty lies in crossing over the boundary
from the known fields external to the dielectric to the unknown ones within it. To do
this we need a boundary condition, and this is the subject of the next exciting section.
We shall complete this example then.

In the remainder of this text we shall describe polarizable materials in terms
of D and € rather than P and yx,. We shall limit our discussion to isotropic
materials.

V D5.8. A slab of dielectric material has a relative dielectric constant of 3.8 and contains a
uniform electric flux density of 8 nC/m?. If the material is lossless; find: (@) E; (b) P; (c)
the average number of dipoles per cubic meter if the average dipole moment is
1072C-m

Ans. 238 V/m; 5.89nC/m?; 5.89 x 10* m—3

5.8 BOUNDARY CONDITIONS FOR PERFECT
DIELECTRIC MATERIALS

How do we attack a problem in which there are two different dielectrics, or a
dielectric and a conductor? This is another example of a boundary condition, such
as the condition at the surface of a conductor whereby the tangential fields are
zero and the normal electric flux density is equal to the surface charge density on
the conductor. Now we take the first step in solving a two-dielectric problem, or
a dielectric-conductor problem, by determining the behavior of the fields at the
dielectric interface.

Let us first consider the interface between two dielectrics having permittiv-
ities €; and €, and occupying regions 1 and 2, as shown in Fig. 5.10. We first
examine the tangential components by using

%Ew’L:O

4| p | eTextMainMenu | Textbook Table of Contents



CONDUCTORS, DIELECTRICS, AND CAPACITANCE 145

Region 1
£ T

FIGURE 5.10

The boundary between perfect dielectrics of permittivities €; and €,. The continuity of Dy is shown by the
gaussian surface on the right, and the continuity of Ey,, by the line integral about the closed path at the
left.

around the small closed path on the left, obtaining
Ean1 Aw — Eqna Aw =0
The small contribution to the line integral by the normal component of E

along the sections of length A/ becomes negligible as A/ decreases and the closed
path crowds the surface. Immediately, then,

Etan 1 = Etan2 (30)

and we might feel that Kirchhoff’s voltage law is still applicable to this case.
Certainly we have shown that the potential difference between any two points on
the boundary that are separated by a distance Aw is the same immediately above
or below the boundary.

If the tangential electric field intensity is continuous across the boundary,
then tangential D is discontinuous, for

D;alnl = Etanl = Etan2 = D:12n2
or
Duant _a (31)
Dun> €

The boundary conditions on the normal components are found by applying
Gauss’s law to the small “pillbox™ shown at the right in Fig. 5.10. The sides are
again very short, and the flux leaving the top and bottom surfaces is the differ-
ence

DNlAS - DNQAS = AQ = psAS
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from which

Dyi — Dyy = ps (32)

What is this surface charge density? It cannot be a bound surface charge
density, because we are taking the polarization of the dielectric into effect by
using a dielectric constant different from unity; that is, instead of considering
bound charges in free space, we are using an increased permittivity. Also, it is
extremely unlikely that any free charge is on the interface, for no free charge is
available in the perfect dielectrics we are considering. This charge must then have
been placed there deliberately, thus unbalancing the total charge in and on this
dielectric body. Except for this special case, then, we may assume pg is zero on
the interface and

Dyi1 = Dy (33)

or the normal component of D is continuous. It follows that
€e1Ey1 = €EN (34)
and normal E is discontinuous.
These conditions may be combined to show the change in the vectors D and

E at the surface. Let D; (and E;) make an angle 6, with a normal to the surface
(Fig. 5.11). Since the normal components of D are continuous,

Dyi1 = Djcost; = Drcosb, = Dys (35)
The ratio of the tangential components is given by (31) as
Duni  Disin®d €
Dtan2 o D2 sin 92 - €

or

€Dy sin6) = €D, sin 6, (36)

FIGURE 5.11

The refraction of D at a dielectric interface. For the
case shown, €; > €;; E; and E, are directed along D,
and Dz, with D] > Dz and E] < Eg.
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and the division of this equation by (35) gives
tan6, €
tan 6, - €

(37)

In Fig. 5.11 we have assumed that €¢; > ¢;, and therefore 6, > 0,.

The direction of E on each side of the boundary is identical with the
direction of D, because D = ¢E.

The magnitude of D in region 2 may be found from (35) and (36),

2
Dy = Dl\/ cos2 6, + C—z) sin? 6, (38)
1
and the magnitude of E, is
2
) €]
E2 = El\/Sll'l 91 + (E_) cos? 91 (39)
2

An inspection of these equations shows that D is larger in the region of larger
permittivity (unless 6; = 6, = 0° where the magnitude is unchanged) and that £
is larger in the region of smaller permittivity (unless 6; = 6, = 90°, where its
magnitude is unchanged).

These boundary conditions, (30), (31), (33), and (34), or the magnitude and
direction relations derived from them, (37) to (39), allow us to find quickly the
field on one side of a boundary if we know the field on the other side. In the
example we began at the end of the previous section, this was the case. Now let’s
finish up that problem.

IIII»Example 5.5

Complete Example 5.4 by finding the fields within the Teflon (egx = 2.1), given the
uniform external field E,, = Epa, in free space.

Solution. We recall that we had a slab of Teflon extending from x =0 to x =a, as
shown in Fig. 5.12, with free space on both sides of it and an external field Eqy = Epay.
We also have Doy = €gEpa, and Py = 0.
Inside, the continuity of Dy at the boundary allows us to find that Dj, =
Dout = €0Epa,. This gives us Ej, = Dy,/e = egEpa,/(erep) = 0.476Epa,. To get the
polarization field in the dielectric, we use D = ¢yE + P and obtain
Pin = Din — GOEin = GOE()aX — 0.476€0anx = 0.52460E03X

Summarizing then gives

D;, = eoEoa, 0<x<a)

Ei, = 0.476Epa, O<x<a

P;, = 0.524¢Epa, (0 <x =< a)
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E=E) o——> — E=E,

D=¢yE) o—> o— D=gk

P=0 e

FIGURE 5.12
A knowledge of the electric field external to the dielectric enables us to find the remaining external fields
first, and then to use the continuity of normal D to begin finding the internal fields.

A practical problem most often does not provide us with a direct knowl-
edge of the field on either side of the boundary. The boundary conditions must
be used to help us determine the fields on both sides of the boundary from the
other information which is given. A simple problem of this type will be consid-
ered in Sec. 5.10.

The boundary conditions existing at the interface between a conductor and
a dielectric are much simpler than those above. First, we know that D and E are
both zero inside the conductor. Second, the tangential E and D field components
must both be zero to satisfy

*E-dL:O

and
D =c¢E

Finally, the application of Gauss’s law,

iD-dS:Q

shows once more that both D and E are normal to the conductor surface and
that Dy = ps and Ey = ps/e. We see, then, that the boundary conditions we
developed previously for the conductor-free space boundary are valid for the
conductor-dielectric boundary if we replace € by €. Thus
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D,=E =0 (40)

Dy =€Ey = ps (41)

It is interesting to spend a moment discovering how any change that is
introduced internally within a conducting material arrives at the surface as a
surface charge. We should understand that this is not a common occurrence,
but it does give us some additional insight into the characteristics of a conductor,

Given Ohm’s law,

J=0E
and the continuity equation,
9py
V.J=—
ot
in which J and p, both involve only free charges, we have
9Py
V.oF = —
7 or
or
v.%p_ _ 9
€ ot

If we assume that the medium is homogeneous, so that o and € are not functions
of position,

Now we may use Maxwell’s first equation to obtain

€ 9py
o ot

pv =

Let us now make the simplifying assumption that o is not a function of p,.
This is probably not a very good assumption, for we found in Sec. 5.3, Eq. (9),
that o depended on both p, and the mobility, but it leads to an easy solution that
at least permits us to compare different conductors. We simply rearrange and
integrate directly, obtaining

po = poe”
where py = charge density at ¢t = 0. This shows an exponential decay of charge
density at every point with a time constant of ¢/o. This time constant, often
called the relaxation time, may be calculated for a relatively poor conductor, such
as distilled water, from the data in Appendix C, giving
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~12
5280x8.854x 10 —354 s
o 2 x 10~4

In 3.54 pus any charge we place in the interior of a body of distilled water has
dropped to about 37 percent of its initial value. This rapid decay is characteristic
of good conductors and we see that, except for an extremely short transient
period, we may safely consider the charge density to be zero within a good
conductor.

With the physical materials with which we must work, no dielectric material
is without some few free electrons; all have conductivities different from zero,
and charge introduced internally in any of them will eventually reach the surface.

With the knowledge we now have of conducting materials, dielectric mate-
rials, and the necessary boundary conditions, we are ready to define and discuss
capacitance.

V D5.9. Let the region z < 0 be composed of a uniform dielectric material for which
eg = 3.2, while the region z>0 is characterized by ex=2. Let D =
—30a, + 50a, + 70a. nC/m? and find: (a) Dyi; (b) Dyi; (¢) Dy (d) Dy; (e) 61; (f) Py.

Ans. 70nC/m?; —30a, + 50a,nC/m?; 58.3nC/m?; 91.1nC/m?; 39.8°; —20.6a,+
34.4a, + 48.1a,nC/m?

l/ D5.10. Continue Prob. D5.9 by finding: (a) Duz; (b) Dp; (¢) Da; (d) Pa; (e) 65

Ans. 70a,nC/m? ~ —18.75a, +31.25a,nC/m?;  —18.75a, + 31.25a, + 70a. nC/m?;
—9.38a, + 15.63a, + 35a. nC/m?; 27.5°

5.9 CAPACITANCE

Now let us consider two conductors embedded in a homogeneous dielectric (Fig.
5.13). Conductor M, carries a total positive charge Q, and M, carries an equal

= M, - FIGURE 5.13
= Two oppositely charged conductors M| and M,
surrounded by a uniform dielectric. The ratio of
= the magnitude of the charge on either conductor
= to the magnitude of the potential difference
between them is the capacitance C.
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negative charge. There are no other charges present, and the total charge of the
system is zero.

We now know that the charge is carried on the surface as a surface charge
density and also that the electric field is normal to the conductor surface. Each
conductor is, moreover, an equipotential surface. Since M, carries the positive
charge, the electric flux is directed from M, to M, and M, is at the more positive
potential. In other words, work must be done to carry a positive charge from M,
to M.

Let us designate the potential difference between M, and M; as V. We
may now define the capacitance of this two-conductor system as the ratio of the
magnitude of the total charge on either conductor to the magnitude of the
potential difference between conductors,

C== (42)

In general terms, we determine Q by a surface integral over the positive con-
ductors, and we find Vy by carrying a unit positive charge from the negative to
the positive surface,

c_ $g€E - dS

T E L )

The capacitance is independent of the potential and total charge, for their
ratio is constant. If the charge density is increased by a factor of N, Gauss’s law
indicates that the electric flux density or electric field intensity also increases by
N, as does the potential difference. The capacitance is a function only of the
physical dimensions of the system of conductors and of the permittivity of the
homogeneous dielectric.

Capacitance is measured in farads (F), where a farad is defined as one
coulomb per volt. Common values of capacitance are apt to be very small frac-
tions of a farad, and consequently more practical units are the microfarad (uF),
the nanofarad (nF), and the picofarad (pF).

We can apply the definition of capacitance to a simple two-conductor
system in which the conductors are identical, infinite parallel planes with separa-
tion d (Fig. 5.14). Choosing the lower conducting plane at z = 0 and the upper
one at z = d, a uniform sheet of surface charge +pg on each conductor leads to
the uniform field [Sec. 2.5, Eq. (22)]

E= Ls a.
€
where the permittivity of the homogeneous dielectric is €, and

D= Psa;
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Conductor surface :1‘ —Py z=d
. / E
Uniform surface (x’
charge density
\
A FIGURE 5.14
Conductor surface \*+Ps " The problem of the parallel-plate capacitor. The

capacitance per square meter of surface area is
€/d.

The charge on the lower plane must then be positive, since D is directed
upward, and the normal value of D,

Dy =D. = ps
is equal to the surface charge density there. On the upper plane,
Dy =—D.

and the surface charge there is the negative of that on the lower plane.
The potential difference between lower and upper planes is

lower 0
w:—J EdL:—J@&:&d
upper d € €

Since the total charge on either plane is infinite, the capacitance is infinite. A
more practical answer is obtained by considering planes, each of area S, whose
linear dimensions are much greater than their separation d. The electric field and
charge distribution are then almost uniform at all points not adjacent to the
edges, and this latter region contributes only a small percentage of the total
capacitance, allowing us to write the familiar result

0 = psS
Ve="%4

C=%== (44)

More rigorously, we might consider (44) as the capacitance of a portion of
the infinite-plane arrangement having a surface area S. Methods of calculating
the effect of the unknown and nonuniform distribution near the edges must wait
until we are able to solve more complicated potential problems.
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|II>Example 5.6

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, €g = 6, a
plate area of 10in?, and a separation of 0.01 in.

Solution. We may find that
S =10 x 0.0254* = 6.45 x 10~ m’
d=0.01x0.0254=254%x10"% m
and therefore

C— 6 x 8.854 x 10712 x 6.45 x 1073

254 % 104 =139 nb

A large plate area is obtained in capacitors of small physical dimensions by
stacking smaller plates in 50- or 100-decker sandwiches, or by rolling up foil
plates separated by a flexible dielectric.

Table C.1 in Appendix C also indicates that materials are available having
dielectric constants greater than 1000.

If more than two conductors are involved, partial capacitances between
each pair of conductors must be defined. This is interestingly discussed in
Maxwell’s works.®

Finally, the total energy stored in the capacitor is

S pd 2 2 2 1
S pod
vol 0Jo € d e

or

(45)

which are all familiar expressions. Equation (45) also indicates that the energy
stored in a capacitor with a fixed potential difference across it increases as the
dielectric constant of the medium increases.

¢/ D5.11. Find the relative permittivity of the dielectric material present in a parallel-plate
capacitor if: (¢) S =0.12m?, d = 80um, ¥, = 12V, and the capacitor contains 1 pJ of
energy; (b) the stored energy density is 100J/m?, V=200V, and d =45um; (c)
E =200kV/m, ps =20 uC/m?, and d = 100 pm.

Ans. 6.27; 1.144; 11.29

8 See the Suggested References at the end of the chapter.
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5.10 SEVERAL CAPACITANCE EXAMPLES

As a first brief example we choose a coaxial cable or coaxial capacitor of inner
radius a, outer radius b, and length L. No great derivational struggle is required,
because the potential difference is given as Eq. (11) in Sec. 4.3, and we find the
capacitance very simply by dividing this by the total charge p; L in the length L.
Thus,

B 2mel
~In(b/a)

(46)

Next we consider a spherical capacitor formed of two concentric spherical
conducting shells of radius ¢ and b, b > a. The expression for the electric field
was obtained previously by Gauss’s law,

0

E =2 _
4rer?

where the region between the spheres is a dielectric with permittivity €. The
expression for potential difference was found from this by the line integral
[Sec. 4.3, Eq. (12)]. Thus,

Here Q represents the total charge on the inner sphere, and the capacitance
becomes

B 0 B dme
C_Vab_l_l 47)
a b

If we allow the outer sphere to become infinitely large, we obtain the
capacitance of an isolated spherical conductor,

C = 4rea (48)

For a diameter of 1cm, or a sphere about the size of a marble,
C =0.556 pF

in free space.
Coating this sphere with a different dielectric layer, for which € = ¢,
extending from r =a to r =ry,
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0
D, ==
47r?
0
"= dmer (a<r<mnr)
0
"t (157
and the potential difference is
r ! r
Vv - “ Qd " d
“ ), At ) dmegr?
o1/ 1 N 1
Tdwle \a €01
Therefore,
4
C= il (49)

1 (1 1) 1
— )+ —
€1 \ad rt €ory

In order to look at the problem of multiple dielectrics a little more thor-
oughly, let us consider a parallel-plate capacitor of area S and spacing d, with the
usual assumption that d is small compared to the linear dimensions of the plates.
The capacitance is €;S/d, using a dielectric of permittivity €,. Now let us replace
a part of this dielectric by another of permittivity €, placing the boundary
between the two dielectrics parallel to the plates (Fig. 5.15).

Some of us may immediately suspect that this combination is effectively
two capacitors in series, yielding a total capacitance of

1

C=1—7

C1+C2

1

C= —_—
d  dy
Y
A
Conducting Yo
plates
B
FIGURE 5.15

A parallel-plate capacitor containing two dielectrics with the dielectric interface parallel to the conducting
plates.
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where C| = €,S/d, and C, = €,5/d,. This is the correct result, but we can obtain
it using less intuition and a more basic approach.

Since our capacitance definition, C = Q/V, involves a charge and a vol-
tage, we may assume either and then find the other in terms of it. The capaci-
tance is not a function of either, but only of the dielectrics and the geometry.
Suppose we assume a potential difference V) between the plates. The electric field
intensities in the two regions, E, and E), are both uniform, and V=
E\d, + E>d>». At the dielectric interface, £ is normal and Dpy; = Dy, or
€1 E\, = eoE,. Eliminating FE, in our V) relation, we have

dy + da(e /€2)
and the surface charge density therefore has the magnitude

Vi
ps1 = Dy =€ E} :a’l—odz
7_,,_7

€ €

E,

Since D = D, the magnitude of the surface charge is the same on each
plate. The capacitance is then

0 psS 1 1
_VO_VO_dl d2_1+1
€1S 62S C1 C2
As an alternate (and slightly simpler) solution, we might assume a charge Q
on one plate, leading to a charge density Q/S and a value of D that is also Q/S.
This is true in both regions, as Dy; = Dy, and D is normal. Then E| =
D/er = Q/(e1S), E; = D/e; = Q/(,5), and the potential differences across the
regions are V| = E\d) = Qd,/(€1S), and V, = E>dr = Qd»/(€2S). The capaci-
tance is

C

0 Q 1

C === =
Vo Vi+1 dl+d2

(50)

€S &S

How would the method of solution or the answer change if there were a
third conducting plane along the interface? We would now expect to find surface
charge on each side of this conductor, and the magnitudes of these charges
should be equal. In other words, we think of the electric lines not as passing
directly from one outer plate to the other, but as terminating on one side of this
interior plane and then continuing on the other side. The capacitance is
unchanged, provided, of course, that the added conductor is of negligible thick-
ness. The addition of a thick conducting plate will increase the capacitance if the
separation of the outer plates is kept constant, and this is an example of a more
general theorem which states that the replacement of any portion of the dielectric
by a conducting body will cause an increase in the capacitance.
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If the dielectric boundary were placed normal to the two conducting plates
and the dielectrics occupied areas of S| and S,, then an assumed potential
difference ¥y would produce field strengths £y, = E, = V/d. These are tangen-
tial fields at the interface, and they must be equal. Then we may find in succes-
sion Dy, D3, psi, ps2, and Q, obtaining a capacitance

61S1 + EzSz

C=" 2=+ G (51)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics
are used in such a way that the interface is not everywhere normal or parallel to
the fields. Certainly we know the boundary conditions at each conductor and at
the dielectric interface; however, we do not know the fields to which to apply the
boundary conditions. Such a problem must be put aside until our knowledge of
field theory has increased and we are willing and able to use more advanced
mathematical techniques.

G/ D5.12. Determine the capacitance of: («) a 1-ft length of 35B/U coaxial cable, which has
an inner conductor 0.1045 in in diameter, a polyethylene dielectric (g = 2.26 from
Table C.1), and an outer conductor which has an inner diameter of 0.680in; (b) a
conducting sphere of radius 2.5mm, covered with a polyethylene layer 2mm thick,
surrounded by a conducting sphere of radius 4.5mm; (¢) two rectangular conducting
plates, 1 cm by 4 cm, with negligible thickness, between which are three sheets of dielec-
tric, each 1 cm by 4cm, and 0.1 mm thick, having dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5pF; 1.414 pF; 28.0 pF

5.11 CAPACITANCE OF A TWO-WIRE LINE

We conclude this chapter with the problem of the two-wire line. The final con-
figuration will consist of two parallel conducting cylinders, each of circular cross
section, and we shall be able to find complete information about the electric field
intensity, the potential field, the surface-charge-density distribution, and the
capacitance. This arrangement is an important type of transmission line, as is
the coaxial cable we have discussed several times before.

We begin by investigating the potential field of two infinite line charges. Fig
5.16 shows a positive line charge in the xz plane at x = ¢ and a negative line
charge at x = —a. The potential of a single line charge with zero reference at a
radius of Ry is

oL, Ry
V =—In—
2me n R

We now write the expression for the combined potential field in terms of the
radial distances from the positive and negative lines, R; and R, respectively,
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=pPr. ¥ +py

FIGURE 5.16

Two parallel infinite line charges carrying opposite charge. The positive line is at x = a, y =0, and the
negative line is at x = —a, y = 0. A general point P(x, y, 0) in the xy plane is radially distant R, and R,
from the positive and negative lines, respectively. The equipotential surfaces are circular cylinders.

PL Rio Ry oL, RioRs
V =— In——-Ihnh—)=—"In——-=-
2me Rl R2 2me R20R1

We choose Rjy = Ry, thus placing the zero reference at equal distances from
each line. This surface is the x = 0 plane. Expressing R; and R; in terms of x and

ya
2 ) 2 2
v P (x+a)2+y =&ln(x+a)2—i-y (52)
2me (x—a) +y2 e (x—a) +y2

In order to recognize the equipotential surfaces and adequately understand
the problem we are going to solve, some algebraic manipulations are necessary.
Choosing an equipotential surface V' = V|, we define K; as a dimensionless
parameter that is a function of the potential V7,

K| = e4ﬂ£’V1/PL (53)
so that

B (x + a)* + )?

Ki="—F5—
(x—a) +y

After multiplying and collecting like powers, we obtain

K +1

2 2
=0
K1_1+y +a

x> — 2ax
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We next work through a couple of lines of algebra and complete the square,

¥ K1+1 2+2_ Za«/Kl 2
“Ki—1) 7 Tk -1
This shows that the V' = V| equipotential surface is independent of z (or is a
cylinder) and intersects the xy plane in a circle of radius b,

,_ 2aVKi
K -1

which is centered at x = &, y = 0, where
Kl +1
K1

Now let us attack a physical problem by considering a zero-potential con-
ducting plane located at x = 0, and a conducting cylinder of radius » and poten-
tial Vy with its axis located a distance /& from the plane. We solve the last two
equations for ¢ and K, in terms of the dimensions b and #,

a=~h>—b? (54)
and

\/—_h+m (55)

But the potential of the cylinder is V), so (53) leads to

/K, = o2Vl

Therefore,

delVy
In K1
Thus, given h, b, and V), we may determine a, p;, and the parameter K;. The

capacitance between the cylinder and plane is now available. For a length L in
the z direction, we have

pL = (56)

prL  4mel  2mel
V() 11’1 K] 11’1 A/ K]

C=

or
B 2mel B 2mel
In[h + vh2 —b2/b]  cosh™'(h/b)

The heavy black circle in Fig. 5.17 shows the cross section of a cylinder of
5-m radius at a potential of 100V in free space, with its axis 13 m distant from a
plane at zero potential. Thus, b =5, h = 13, Vy = 100, and we rapidly find the
location of the equivalent line charge from (54),

(57)
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i i
V=0 4 : \\
7 Equivalent
/ line charge b
/ % \
! \
I \
I . |
! Center, x=13, !
he13 ~ J >
==t y=0,V=100 ,
\ /
o Center,x=18,y=0 Vs
L L L FIGURE 5.17
oy V=50 . A ! .
~o - numerical example of the capacitance,

——

linear charge density, position of an
equivalent line charge, and characteristics
h=13,b=5,. K =25; ".p; =346 X 10°°C/m, . a=12  of the mid-equipotential surface for a
- _ _ _ cylindrical conductor of 5-m radius at a
Sy =otily~o = 18,0 =145 oy vockanged potential of 100V, parallel to and 13 m
i 2mgg L =134.6 oF/m from a conducting plane at zero poten-
Ins OF tial.

a=vnR—-pr=+v132-52=12m
the value of the potential parameter K; from (55),

h+VIE—B5 13412
b 5

K = =5 K =25

the strength of the equivalent line charge from (56)

_A4meV,  4m x 8.854 x 10712 x 100
T InkK; In25

oL =3.46 nC/m

and the capacitance between cylinder and plane from (57),

c_ . 2me _2mx8854x107"
~cosh™!(h/b)  cosh™'(13/5)

=346 pF/m

We may also identify the cylinder representing the 50-V equipotential sur-
face by finding new values for K, i, and b. We first use (53) to obtain

-12 -9
_e4n><8.854><10 x50/3.46x10 —5.00

K, = e4ﬂ€V1 /prL

Then the new radius is

2K 2x 125

b_Kl—l_ 5—1

=13.42
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and the corresponding value of & becomes

K +1 5+1
=12 =
5—1

h_

_ _ 18
K =1

This cylinder is shown in color in Fig. 5.17.

The electric field intensity can be found by taking the gradient of the
potential field, as given by (52),
pL a+af+y1

E=-V|‘n
[4”6 (x—a)’ +)?

Thus,

_pL [Z(x +a)ay +2ya,  2(x —a)a, + 2yay)
drel (x+a) +)? (x—a)’ +)?

and

D =¢E =

_@memfum_u—mm+wq
ol ka4 (x—a 4
If we evaluate Dy at x =h — b, y = 0, we may obtain pg yax
oLl h—b+a h—b—a
Ps.max = —Dx x=h—by=0 = 5= [(h “btay - h—b_ a)2:|

2

For our example,

346xm9[13—5+m 13-5—12
27 (13 =5+12)* (13-5—12)

PS.max = :| =0.1650 IIC/HI2

Similarly, PS8, min = Dx,.x:/z+b,y:0, and

346xm4[n+5+1;_w+5—12

PSmin = ——— 30 e }:mm4nqﬁ
Thus,
Ps.max = 2.2508 min
If we apply (57) to the case of a conductor for which b « 5, then
In[(h + Vh2 — b2/b] = In([h + h)/b]=n(2h/b)
and

_ 2mel
~ In(2h/b)

The capacitance between two circular conductors separated by a distance
2h is one-half the capacitance given by (57) or (58). This last answer is of interest

(b < h) (58)
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because it gives us an expression for the capacitance of a section of two-wire
transmission line, one of the types of transmission lines studied later in Chap. 12.

v

D5.13. A conducting cylinder with a radius of 1 cm and at a potential of 20V is parallel
to a conducting plane which is at zero potential. The plane is 5cm distant from the
cylinder axis. If the conductors are embedded in a perfect dielectric for which ez = 4.5,
find: (a) the capacitance per unit length between cylinder and plane; (b) psmax on the
cylinder.

Ans. 109.2 pF/m; 2.21 nC/m
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PROBLEMS

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Given the current density J = —10%(sin 2x e=>a, + cos 2x e~ >a,) kA/m?*:
(a) find the total current crossing the plane y =1 in the a, direction in
the region 0 < x < 1, 0 < z < 2. Find the total current leaving the region
0 <x,y<1,2 <z <3 by: (b) integrating J - dS over the surface of the
cube; (¢) employing the divergence theorem.

Let the current density be J = 2pcos® pa, — psin 2¢ a, A/m?* within the
region2.1 < p <2.5,0 < ¢ < 0.1 rad, 6 < z < 6.1. Find the total current
I crossing the surface: (a) p=2.2,0<¢ <0.1, 6 <z <6.1 in the a,
direction; (b) ¢ =0.05, 2.2 < p < 2.5, 6 <z < 6.1, in the a, direction.
(¢) Evaluate V-J at P(p =2.4,¢ = 0.08, z = 6.05).

400sin 0
Let J = %A/mz. (a) Find the total current flowing through that
r

portion of the spherical surface r = 0.8 bounded by 6 = 0.1x, 6 = 0.3,
0 < ¢ < 2m. (b) Find the average value of J over the defined area.

The cathode of a planar vacuum tube is at z = 0. Let E = —4 x 10°a.
V/m for z > 0. An electron (e = 1.602 x 1072 C, m = 9.11 x 1073 kg) is
emitted from the cathode with zero initial velocity at 1 = 0. (a) Find v(¢).
(h) Find z(¢), the electron location as a function of time. (¢) Determine
v(z). (d) Make the assumption that electrons are emitted continuously as
a beam with a 0.25-mm radius and a total current of 60 pA. Find J(z)
and p,(z).

a. A/m?, and: (a) find the total current crossing
9py

o (©
Find the total outward current crossing the closed surface defined by
p=0.01, p=0.4, z=0, and z = 0.2. (d) Show that the divergence the-
orem is satisified for J and the surface specified.

Let € = ¢y and V' = 90z*3 in the region z = 0. (a) Obtain expressions for
E, D, and p, as functions of z. (b) If the velocity of the charge density is
given as vy = 5 x 10°2*3m/s, find J. at z =0 and z = 0.1 m.

Assuming that there is no transformation of mass to energy or vice versa,
it is possible to write a continuity equation for mass. (a) If we use the
continuity equation for charge as our model, what quantities correspond
to J and p,? (b) Given a cube 1 cm on a side, experimental data show that
the rates at which mass is leaving each of the six faces are 10.25, —9.85,
1.75, —2.00, —4.05, and 4.45mg/s. If we assume that the cube is an
incremental volume element, determine an approximate value for the
time rate of change of density at its center.

The continuity equation for mass equates the divergence of the mass rate
of flow (mass per second per square meter) to the negative of the density
(mass per cubic meter). After setting up a cartesian coordinate system
inside a star, Captain Kirk and his intrepid crew make measurements
over the faces of a cube centered at the origin with edges 40 km long and

25 20
LetJ=—a, —————
© o T 2100l
the plane z = 0.2 in the a, direction for p < 0.4. (b) Calculate
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5.9

5.10

5.12

5.13

5.14

5.15

5.16

parallel to the coordinate axes. They find the mass rate of flow of mate-
rial outward across the six faces to be —1112, 1183, 201, —196, 1989, and
—1920 kg/km? - s. (a) Estimate the divergence of the mass rate of flow at
the origin. (b) Estimate the rate of change of the density at the origin.
(a) Using data tabulated in Appendix C, calculate the required diameter
for a 2-m long nichrome wire that will dissipate an average power of
450 W when 120-V rms at 60 Hz is applied to it. (b) Calculate the rms
current density in the wire.

A steel wire has a radius of 2mm and a conductivity of 6 x 10°S/m. The
steel wire has an aluminum (o = 3.8 x 107 S/m) coating of 2-mm thick-
ness. Let the total current carried by this hybrid conductor be 80 A dc.
Find: (@) Jg; (b) Jar; (¢) Eg; (d) Eay; (e) the voltage between the ends of
the conductor if it is 1 mi long.

Two perfectly conducting cylindrical surfaces are located at p = 3 and
p = Scm. The total current passing radially outward through the med-
ium between the cylinders is 3 A dc. (¢) Find the voltage and resistance
between the cylinders, and E in the region between the cylinders, if a
conducting material having o = 0.05 S/m is present for 3 < p < 5Scm. (b)
Show that integrating the power dissipated per unit volume over the
volume gives the total dissipated power.

The spherical surfaces » = 3 and r = Scm are perfectly conducting, and
the total current passing radially outward through the medium between
the surfaces is 3 A dc. (a) Find the voltage and resistance between the
spheres, and E in the region between them, if a conducting material
having o =0.05S/m is present for 3 <r < 5cm. (b) Repeat if o =
0.0005/r for 3 < r < Scm. (¢) Show that integrating the power dissipated
per unit volume in part b over the volume gives the total dissipated
power.

A hollow cylindrical tube with a rectangular cross section has external
dimensions of 0.5 in by 1 in and a wall thickness of 0.05 in. Assume that
the material is brass for which o = 1.5 x 107 S/m. A current of 200 A dc
is flowing down the tube. (¢) What voltage drop is present across a 1 m
length of the tube? (») Find the voltage drop if the interior of the tube is
filled with a conducting material for which o = 1.5 x 10° S/m.

Find the magnitude of the electric field intensity in a conductor if: (a) the
current density is SMA/m?, the electron mobility is 3 x 1073 m?/V s,
and the volume charge density is —2.4 x 10'°C/m?; (b) J = 3MA/m?
and the resistivity is 3 x 1078 Q- m.

Let V' =10(p + 1)z>cos ¢ V in free space. (a) Let the equipotential sur-
face V' =20V define a conductor surface. Find the equation of the con-
ductor surface. (b) Find p and E at that point on the conductor surface
where ¢ = 0.2 and z = 1.5. (¢) Find |ps| at that point.

A potential field in free space is given as ¥ = (80 cos@sin ¢)/r* V. Point
P(r=2,0=mn/3,¢=m/2) lies on a conducting surface. (a) Write the
equation of the conducting surface. (b) Find a unit normal directed out-
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5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26
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ward to the surface, assuming the origin is inside the surface. (¢) Find E

at P.
Given the potential field V' = lg Oxz
x*+4
surface z = 0. (b) Show that the z = 0 surface is an equipotential surface.
(¢) Assume that the z = 0 surface is a conductor and find the total charge
on that portion of the conductor defined by 0 < x <2, =3 <y < 0.
Let us assume a field E = 3y°z%a, + 6xyz°a, + 9x)°z%> V/m in free space,
and also assume that point P(2, 1,0) lies on a conducting surface. (a)
Find p, just adjacent to the surface at P. (b) Find pg at P. (¢) Show that
V = —3x3?2* V. (d) Determine Vpg, given O(1, 1, 1).
Let V =20x%yz — 10z?V in free space. (a) Determine the equations of
the equipotential surfaces on which V=0 and 60V. (b) Assume these
are conducting surfaces and find the surface charge density at that point
on the V' =60-V surface where x =2 and z=1. It is known that
0 <V <60V is the field-containing region. (c¢) Give the unit vector at
this point that is normal to the conducting surface and directed toward
the V' = 0 surface.
A conducting plane is located at z = 0 in free space, and a 20-nC point
charge is present at Q(2,4,6). (o) If V=0 at z=0, find V" at P(5, 3, 1).
(b) Find E at P. (¢) Find pg at A(5, 3, 0).
Let the surface y = 0 be a perfect conductor in free space. Two uniform
infinite line charges of 30nC/m each are located at x =0, y =1, and
x=0,y=2.(a) Let ¥ =0 at the plane y = 0, and find V" at P(1, 2, 0).
(b) Find E at P.
Let the plane x = 0 be a perfect conductor in free space. Locate a point
charge of 4nC at P;(7, 1, —2), and a point charge of —3nC at P,(4,2, 1).
(a) Find E at A(5,0,0). (b) Find |ps| at B(3,0,0).
A dipole with p = 0.1a, uC - m is located at A(1, 0, 0) in free space, and
the x = 0 plane is perfectly conducting. () Find V" at P(2,0, 1). (b) Find
the equation of the 200-V equipotential surface in cartesian coordinates.
The mobilities for intrinsic silicon at a certain temperature are
e =0.14m?/V -s and u; = 0.035m?/V -s. The concentration of both
holes and electrons is 2.2 x 10'm™3. Determine both the conductivity
and resistivity of this silicon sample.
Electron and hole concentrations increase with temperature. For pure
silicon suitable expressions are p, = —p, = 62007~ 7997 C/m3. The
functional dependence of the mobilities on temperature is given by
wp =23x10°T">"m?/V-s and p, =2.1 x 10°T">>m?/V -s. Find o
at: (a) 0°C; (b) 40°C; (c) 80° C.
A little donor impurity, such as arsenic, is added to pure silicon so that
the electron concentration is 2 x 10! conduction electrons per cubic
meter while the number of holes per cubic meter is only 1.1 x 10'%. If
e =0.15m?/V s for this sample, and w; = 0.045m?/V-s, determine
the conductivity and resistivity.

V in free space: (a) find D at the
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5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

Atomic hydrogen contains 5.5 x 10%° atoms/m? at a certain temperature
and pressure. When an electric field of 4kV/m is applied, each dipole
formed by the electron and the positive nucleus has an effective length of
7.1 x 107 m. Find: (a) P; (b) €x.

In a certain region where the relative permittivity is 2.4, D=
2a, —4a, + 5a.nC/m’. Find: (a) E; (b) P; (¢) [VV|.

A coaxial conductor has radii ¢ = 0.8 mm and » = 3mm and a polystyr-

2 ) ) )
ene dielectric for which ex =2.56. If P = /—Oap nC/m2 in the dielectric,

find: (@) D and E as functions of p; (b) V. and yx.. (c¢) If there are
4 % 10" molecules per cubic meter in the dielectric, find p(p).

Given the potential field ' = 200 — 50x 4 20y V in a dielectric material
for which egx = 2.1, find: (a) E; (b) D; (¢) P; (d) pu; () pp; (f) pr-

The surface x =0 separates two perfect dielectrics. For x > 0 Ilet
€r = €g1 =3, while egp =5 where x < 0. If E; =80a, —60a, — 30a.
V/m, find: (@) En1; (b) En; (¢) Eji; (d) Ep; (e) the angle 6, between E;
and a normal to the surface; (f') Dy2; (g) Dpo; (h) Da; (i) P; (j) the angle 6,
between E, and a normal to the surface.

In Fig. 5.18 let D; = 3a, — 4a, 4 Sa. nC/m? and find: (a) D»; (b) Dy2; (¢)
Dy;; (d) the energy density in each region; (e) the angle that D, makes
with a;; (f) D2/Dy; (g) P2/Pr.

Two perfect dielectrics have relative permittivities €g; = 2 and €z = 8.
The planar interface between them is the surface x — y+ 2z =5. The
origin lies in region 1. If E; = 100a, 4 200a, — 50a. V/m, find E,.

Let the spherical surfaces r =4cm and r = 9cm be separated by two

perfect dielectric shells, eg =2 for 4 <r <6cm, and €y =5 for

2
6<r<9cm. If E| = @ar V/m, find: (a) E; (b) the total electrostatic
r

energy stored in each region.

Epy =2

FIGURE 5.18
See Prob. 32.
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Let the cylindrical surfaces p =4 cm and p = 9cm enclose two wedges

of perfect dielectrics, ez =2 for 0<¢ <m/2, and er =5 for

2000 , -
w/2 <¢p <2n. IfE|; = Tap V/m, find: (a) E,; () the total electrostatic

energy stored in a 1-m length of each region.

Let S =120cm?, d = 4mm, and ez = 12 for a parallel-plate capacitor.
(a) Calculate the capacitance. (b) After connecting a 40-V battery across
the capacitor, calculate E, D, Q, and the total stored electrostatic energy.
(¢) The source is now removed and the dielectric carefully withdrawn
from between the plates. Again calculate E, D, Q, and the energy. (d)
What is the voltage between the plates?

Capacitors tend to be more expensive as their capacitance and maximum
voltage Viax increase. The voltage Vi, is limited by the field strength at
which the dielectric breaks down, Epp. Which of these dielectrics will
give the largest CVy.x product for equal plate areas: (a) air: €g =1,
Epp = 3MV/m; (b) barium titanate: eg = 1200, Egp = 3MV/m; (c) sili-
con dioxide: eg = 3.78, Epp = 16 MV/m; (d) polyethylene: ex = 2.26,
EBD =47 MV/m

A dielectric circular cylinder used between the plates of a capacitor has a
thickness of 0.2 mm and a radius of 1.4cm. The dielectric properties are
eg =400 and o = 107> S/m. (a) Calculate C. (b) Find the quality factor
0or(Qor = wRC) of the capacitor at /' = 10kHz. (¢) If the maximum
field strength permitted in the dielectric is 2 MV/m, what is the maximum
permissible voltage across the capacitor? (d) What energy is stored when
this voltage is applied?

A parallel-plate capacitor is filled with a nonuniform dielectric charac-
terized by eg = 2 + 2 x 10°x?, where x is the distance from one plate. If
S =0.02m? and d =  mm, find C.

(a) The width of the region containing €g; in Fig. 5.19 is 1.2 m. Find eg;
if egp = 2.5 and the total capacitance is 60 nF. (b) Find the width of each
region (containing €g; and e€gy) if Cioa = 80nF, €gy = 3€g;, and
C) =2C,.

Conducting
2 mm ER1 €R2 plates
- ~
FIGURE 5.19
See Prob. 40.
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5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

Let egy =2.5for 0 <y < 1mm, egp =4 for 1 <y < 3mm, and eg;3 for
3 <y < 5mm. Conducting surfaces are present at y = 0 and y = Smm.
Calculate the capacitance per square meter of surface area if: (a) €g;3 is
air; (b) €r3 = €gry; (¢) €3 = €ga; (d) €gs 1s silver.

Cylindrical conducting surfaces are located at p =0.8cm and 3.6cm.
The region 0.8cm < p < a contains a dielectric for which €z = 4, while
eg =2 for a < p <3.6cm. (a) Find a so that the voltage across each
dielectric layer is the same. (b) Find the total capacitance per meter.
Two coaxial conducting cylinders of radius 2cm and 4 cm have a length
of I m. The region between the cylinders contains a layer of dielectric
from p = ¢ to p = d with €g = 4. Find the capacitance if: (a¢) ¢ = 2cm,
d = 3cm; (b) d = 4cm, and the volume of dielectric is the same as in part
a.
Conducting cylinders lie at p = 3 and 12 mm; both extend from z = 0 to
z = I m. Perfect dielectrics occupy the interior region: eg =1 for 3 <
p<6mm, eg=4 for 6 < p<9mm, and g =8 for 9 < p < 12mm.
(a) Calculate C. (b) If the voltage between the cylinders is 100V, plot
|E,| versus p.

Two conducting spherical shells have radii « = 3cm and b = 6cm. The
interior is a perfect dielectric for which egx = 8. («) Find C. (b) A portion
of the dielectric is now removed so thateg = 1,0 < ¢ < /2, and g = §,
/2 < ¢ < 2x. Again find C.

Conducting cylinders lie at p = 3 and 12 mm; both extend from z = 0 to
z = 1 m. Perfect dielectrics occupy the interior region: e€g =1 for 3 <
p<6mm, eg=4 for 6 < p<9mm, and €g =8 for 9 < p < 12mm.
(a) Calculate C. (b) If the voltage between the cylinders is 100V, plot
|E,| versus p.

With reference to Fig. 5.17, let b = 6m, h = 15m, and the conductor
potential be 250 V. Take € = ¢,. Find values for K, p;, a, and C.

A potential function in free space is given by V =-20+

2 2
lOln(zﬂ}%V. Describe: (a) the 0-V equipotential surface; (b) the
X

10-V equipotential surface.

A 2-cm-diameter conductor is suspended in air with its axis 5cm from a
conducting plane. Let the potential of the cylinder be 100 V and that of
the plane be 0 V. Find the surface charge density on the: («) cylinder at a
point nearest the plane; (b) plane at a point nearest the cylinder.
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CHAPTER

6

EXPERIMENTAL
MAPPING
METHODS

We have seen in the last few chapters that the potential is the gateway to any
information we desire about the electrostatic field at a point. The path is straight,
and travel on it is easy in whichever direction we wish to go. The electric field
intensity may be found from the potential by the gradient operation, which is a
differentiation, and the electric field intensity may then be used to find the
electric flux density by multiplying by the permittivity. The divergence of the
flux density, again a differentiation, gives the volume charge density; and the
surface charge density on any conductors in the field is quickly found by eval-
uating the flux density at the surface. Our boundary conditions show that it must
be normal to such a surface.

Integration is still required if we need more information than the value of a
field or charge density at a point. Finding the total charge on a conductor, the
total energy stored in an electrostatic field, or a capacitance or resistance value
are examples of such problems, each requiring an integration. These integrations
cannot generally be avoided, no matter how extensive our knowledge of field
theory becomes, and indeed, we should find that the greater this knowledge
becomes, the more integrals we should wish to evaluate. Potential can do one
important thing for us, and that is to quickly and easily furnish us with the
quantity we must integrate.

Our goal, then, is to find the potential first. This cannot be done in terms of
a charge configuration in a practical problem, because no one is kind enough to
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tell us exactly how the charges are distributed. Instead, we are usually given
several conducting objects or conducting boundaries and the potential difference
between them. Unless we happen to recognize the boundary surfaces as belong-
ing to a simple problem we have already disposed of, we can do little now and
must wait until Laplace’s equation is discussed in the following chapter.

Although we thus postpone the mathematical solution to this important
type of practical problem, we may acquaint ourselves with several experimental
methods of finding the potential field. Some of these methods involve special
equipment such as an electrolytic trough, a fluid-flow device, resistance paper
and the associated bridge equipment, or rubber sheets; others use only pencil,
paper, and a good supply of erasers. The exact potential can never be deter-
mined, but sufficient accuracy for engineering purposes can usually be attained.
One other method, called the iteration method, does allow us to achieve any
desired accuracy for the potential, but the number of calculations required
increases very rapidly as the desired accuracy increases.

Several of the experimental methods to be described below are based on an
analogy with the electrostatic field, rather than directly on measurements on this
field itself.

Finally, we cannot introduce this subject of experimental methods of find-
ing potential fields without emphasizing the fact that many practical problems
possess such a complicated geometry that no exact method of finding that field is
possible or feasible and experimental techniques are the only ones which can be
used.

6.1 CURVILINEAR SQUARES

Our first mapping method is a graphical one, requiring only pencil and paper.
Besides being economical, it is also capable of yielding good accuracy if used
skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance determi-
nation) may be obtained by a beginner who does no more than follow the few
rules and hints of the art.

The method to be described is applicable only to fields in which no varia-
tion exists in the direction normal to the plane of the sketch. The procedure is
based on several facts we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. The electric field intensity and electric flux density are both perpendicular to
the equipotential surfaces.

3. E and D are therefore perpendicular to the conductor boundaries and pos-
sess zero tangential values.

4. The lines of electric flux, or streamlines, begin and terminate on charge and
hence, in a charge-free, homogeneous dielectric, begin and terminate only on
the conductor boundaries.
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Let us consider the implications of these statements by drawing the stream-
lines on a sketch which already shows the equipotential surfaces. In Fig. 6.1a two
conductor boundaries are shown, and equipotentials are drawn with a constant
potential difference between lines. We should remember that these lines are only
the cross sections of the equipotential surfaces, which are cylinders (although not
circular), since no variation in the direction normal to the surface of the paper is
permitted. We arbitrarily choose to begin a streamline, or flux line, at 4 on the
surface of the more positive conductor. It leaves the surface normally and must
cross at right angles the undrawn but very real equipotential surfaces between the
conductor and the first surface shown. The line is continued to the other con-
ductor, obeying the single rule that the intersection with each equipotential must
be square. Turning the paper from side to side as the line progresses enables us to
maintain perpendicularity more accurately. The line has been completed in Fig.
6.1h.

In a similar manner, we may start at B and sketch another streamline
ending at B’. Before continuing, let us interpret the meaning of this pair of
streamlines. The streamline, by definition, is everywhere tangent to the electric
field intensity or to the electric flux density. Since the streamline is tangent to the
electric flux density, the flux density is tangent to the streamline and no electric
flux may cross any streamline. In other words, if there is a charge of 5puC on the
surface between A4 and B (and extending 1 m into the paper), then 5pC of flux
begins in this region and all must terminate between 4’ and B’. Such a pair of
lines is sometimes called a flux fube, because it physically seems to carry flux
from one conductor to another without losing any.

We now wish to construct a third streamline, and both the mathematical
and visual interpretations we may make from the sketch will be greatly simplified
if we draw this line starting from some point C chosen so that the same amount
of flux is carried in the tube BC as is contained in AB. How do we choose the
position of C?

Equipotentials

Conductor %
boundary

FIGURE 6.1

(a) Sketch of the equipotential surfaces between two conductors. The increment of potential between each
of the two adjacent equipotentials is the same. (b) One flux line has been drawn from 4 to 4’, and a second
from B to B’.
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The electric field intensity at the midpoint of the line joining 4 to B may be
found approximately by assuming a value for the flux in the tube AB, say AW,
which allows us to express the electric flux density by A¥Y/AL,, where the depth
of the tube into the paper is I m and AL, is the length of the line joining 4 to B.
The magnitude of E is then

1 AY
E—=-
€ AL,

However, we may also find the magnitude of the electric field intensity by
dividing the potential difference between points 4 and A, lying on two adjacent
equipotential surfaces, by the distance from A4 to A4,. If this distance is designated
ALy and an increment of potential between equipotentials of AV is assumed,
then

AV

E=——

ALy
This value applies most accurately to the point at the middle of the line
segment from A4 to A;, while the previous value was most accurate at the mid-
point of the line segment from A4 to B. If, however, the equipotentials are close

together (AV small) and the two streamlines are close together (AY small), the
two values found for the electric field intensity must be approximately equal,

LAY AV )

€ AL, ALy

Throughout our sketch we have assumed a homogeneous medium (€ con-
stant), a constant increment of potential between equipotentials (A} constant),

and a constant amount of flux per tube (AY constant). To satisfy all these
conditions, (1) shows that

AL, 1 AY
= constant = —

— —- 2
ALN e AV ( )

A similar argument might be made at any point in our sketch, and we are
therefore led to the conclusion that a constant ratio must be maintained between
the distance between streamlines as measured along an equipotential, and the
distance between equipotentials as measured along a streamline. It is this ratio
which must have the same value at every point, not the individual lengths. Each
length must decrease in regions of greater field strength, because AV is constant.

The simplest ratio we can use is unity, and the streamline from B to B’
shown in Fig. 6.1b was started at a point for which AL, = ALy. Since the ratio
of these distances is kept at unity, the streamlines and equipotentials divide the
field-containing region into curvilinear squares, a term implying a planar geo-
metric figure which differs from a true square in having slightly curved and
slightly unequal sides but which approaches a square as its dimensions decrease.
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Those incremental surface elements in our three coordinate systems which are
planar may also be drawn as curvilinear squares.

We may now rapidly sketch in the remainder of the streamlines by keeping
each small box as square as possible. The complete sketch is shown in Fig. 6.2.

The only difference between this example and the production of a field map
using the method of curvilinear squares is that the intermediate potential surfaces
are not given. The streamlines and equipotentials must both be drawn on an
original sketch which shows only the conductor boundaries. Only one solution is
possible, as we shall prove later by the uniqueness theorem for Laplace’s equa-
tion, and the rules we have outlined above are sufficient. One streamline is
begun, an equipotential line is roughed in, another streamline is added, forming
a curvilinear square, and the map is gradually extended throughout the desired
region. Since none of us can ever expect to be perfect at this, we shall soon find
that we can no longer make squares and also maintain right-angle corners. An
error is accumulating in the drawing, and our present troubles should indicate
the nature of the correction to make on some of the earlier work. It is usually
best to start again on a fresh drawing, with the old one available as a guide.

The construction of a useful field map is an art; the science merely furnishes
the rules. Proficiency in any art requires practice. A good problem for beginners
is the coaxial cable or coaxial capacitor, since all the equipotentials are circles,
while the flux lines are straight lines. The next sketch attempted should be two
parallel circular conductors, where the equipotentials are again circles, but with
different centers. Each of these is given as a problem at the end of the chapter,
and the accuracy of the sketch may be checked by a capacitance calculation as
outlined below.

Fig. 6.3 shows a completed map for a cable containing a square inner
conductor surrounded by a circular conductor. The capacitance is found from
C = Q/V, by replacing Q by NoAQ = NoAY¥, where Ny is the number of flux
tubes joining the two conductors, and letting Vo) = Ny AV, where Ny is the
number of potential increments between conductors,

C— NoAQ
TNy AV
FIGURE 6.2

The remainder of the streamlines have been added to Fig.
6.1h by beginning each new line normally to the conductor
and maintaining curvilinear squares throughout the sketch.
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Conductor
boundazry
hY

FIGURE 6.3

An example of a curvilinear-square field map.

The side of the square is two thirds the radius
of the circle. Ny =4 and Np =8 x 3.25 x 26,

SR and therefore C = ¢9Ng/Ny = 57.6 pF/m.

and then using (2),

_NQ AL[ —6NQ

C = —
Ny ALy SN,

(©)

since AL;,/ALy = 1. The determination of the capacitance from a flux plot
merely consists of counting squares in two directions, between conductors and
around either conductor. From Fig. 6.3 we obtain
8 x 3.25
C= eOXT —57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with exam-
ples of the construction of field maps by curvilinear squares. They offer the
following suggestions:!

1. Plan on making a number of rough sketches, taking only a minute or so
apiece, before starting any plot to be made with care. The use of transparent
paper over the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between eclectrodes into an equal
number of divisions, say four or eight to begin with.

! By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51-52. See Suggested References at
the end of Chap. 5. Curvilinear maps are discussed on pp. 50-52.
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3. Begin the sketch of equipotentials in the region where the field is known best,
as for example in some region where it approaches a uniform field. Extend
the equipotentials according to your best guess throughout the plot. Note
that they should tend to hug acute angles of the conducting boundary and be
spread out in the vicinity of obtuse angles of the boundary.

4. Draw in the orthogonal set of field lines. As these are started, they should
form curvilinear squares, but, as they are extended, the condition of ortho-
gonality should be kept paramount, even though this will result in some
rectangles with ratios other than unity.

5. Look at the regions with poor side ratios and try to see what was wrong with
the first guess of equipotentials. Correct them and repeat the procedure until
reasonable curvilinear squares exist throughout the plot.

6. In regions of low field intensity, there will be large figures, often of five or six
sides. To judge the correctness of the plot in this region, these large units
should be subdivided. The subdivisions should be started back away from
the region needing subdivision, and each time a flux tube is divided in half,
the potential divisions in this region must be divided by the same factor.

V D6.1. Figure 6.4 shows the cross section of two circular cylinders at potentials of 0 and
60V. The axes are parallel and the region between the cylinders is air-filled.

FIGURE 6.4
See Prob. D6.1.
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Equipotentials at 20V and 40V are also shown. Prepare a curvilinear-square map on
the figure and use it to establish suitable values for: (a) the capacitance per meter length;
(b) E at the left side of the 60-V conductor if its true radius is 2 mm; (¢) ps at that point.

Ans. 69 pF/m; 60kV/m; 550 nC/m?>

6.2 THE ITERATION METHOD

In potential problems where the potential is completely specified on the bound-
aries of a given region, particularly problems in which the potential does not vary
in one direction (i.e., two-dimensional potential distributions) there exists a pen-
cil-and-paper repetitive method which is capable of yielding any desired accu-
racy. Digital computers should be used when the value of the potential is
required with high accuracy; otherwise, the time required is prohibitive except
in the simplest problems. The iterative method, to be described below, is well
suited for calculation by any digital computer.

Let us assume a two-dimensional problem in which the potential does not
vary with the z coordinate and divide the interior of a cross section of the region
where the potential is desired into squares of length / on a side. A portion of this
region is shown in Fig. 6.5. The unknown values of the potential at five adjacent
points are indicated as Vy, V1, V>, V3, and V4. If the region is charge-free and
contains a homogeneous dielectric, then V-D = 0 and V- E = 0, from which we
have, in two dimensions,

0E, OE,
4+ — =
ax ay
But the gradient operation gives E, = —dV /dx and E, = —0V/dy, from which
we obtain?

0

YL v
ox2 9y

Approximate values for these partial derivatives may be obtained in terms
of the assumed potentials, or

vy ="

ox |, h
and

% - Vo=V

ox |, h

2 This is Laplace’s equation in two dimensions. The three-dimensional form will be derived in the follow-
ing chapter.
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V.
o2 ,
o b
i o g W@ B -
B o FIGURE 6.5
v A portion of a region containing a two-
L o2 . r dimensional potential field, divided into
squares of side /. The potential Vj is
. approximately equal to the average of
the potentials at the four neighboring
points.
from which
av av
PV . ax|, x| . Vi—=Vo—Vo+ Vs
ax2 |, h N h?
and similarly,
*V Vo=Vo—=Vo+ Vs

Nl h?

Combining, we have

FV PV . Vi+Va+Vi+Ve—4Vy

0
0x2 + 92 h?

or

Vo= i(Vi+ Va+ Vi+ Vy) )

The expression becomes exact as i approaches zero, and we shall write it
without the approximation sign. It is intuitively correct, telling us that the poten-
tial is the average of the potential at the four neighboring points. The iterative
method merely uses (4) to determine the potential at the corner of every square
subdivision in turn, and then the process is repeated over the entire region as
many times as is necessary until the values no longer change. The method is best
shown in detail by an example.

For simplicity, consider a square region with conducting boundaries (Fig.
6.6). The potential of the top is 100 V and that of the sides and bottom is zero.
The problem is two-dimensional, and the sketch is a cross section of the physical
configuration. The region is divided first into 16 squares, and some estimate of
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FIGURE 6.6

Cross section of a square trough with sides and bottom at zero potential and top at 100 V. The cross
section has been divided into 16 squares, with the potential estimated at every corner. More accurate
values may be determined by using the iteration method.

the potential must now be made at every corner before applying the iterative
method. The better the estimate, the shorter the solution, although the final
result is independent of these initial estimates. When the computer is used for
iteration, the initial potentials are usually set equal to zero to simplify the pro-
gram. Reasonably accurate values could be obtained from a rough curvilinear-
square map, or we could apply (4) to the large squares. At the center of the figure
the potential estimate is then }‘(100 +04+04+0)=25.0

The potential may now be estimated at the centers of the four double-sized
squares by taking the average of the potentials at the four corners or applying (4)
along a diagonal set of axes. Use of this “diagonal average” is made only in
preparing initial estimates. For the two upper double squares, we select a poten-
tial of 50V for the gap (the average of 0 and 100), and then V =
1(50 4 100 4 25 + 0) = 43.8 (to the nearest tenth of a volt®), and for the lower
ones,

V=30+25+0+0)=6.2

The potential at the remaining four points may now be obtained by applying (4)
directly. The complete set of estimated values is shown in Fig. 6.6.

The initial traverse is now made to obtain a corrected set of potentials,
beginning in the upper left corner (with the 43.8 value, not with the boundary

3 When rounding off a decimal ending exactly with a five, the preceding digit should be made even (e.g.,
42.75 becomes 42.8 and 6.25 becomes 6.2). This generally ensures a random process leading to better
accuracy than would be obtained by always increasing the previous digit by 1.
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where the potentials are known and fixed), working across the row to the right,
and then dropping down to the second row and proceeding from left to right
again. Thus the 43.8 value changes to %(100 + 53.2 4+ 18.8 4+ 0) = 43.0. The best
or newest potentials are always used when applying (4), so both points marked
43.8 are changed to 43.0, because of the evident symmetry, and the 53.2 value
becomes § (100 + 43.0 4 25.0 4 43.0) = 52.8.

Because of the symmetry, little would be gained by continuing across the
top line. Each point of this line has now been improved once. Dropping down to
the next line, the 18.8 value becomes

V =1(43.04250+6240)=18.6

and the traverse continues in this manner. The values at the end of this traverse
are shown as the top numbers in each column of Fig. 6.7. Additional traverses
must now be made until the value at each corner shows no change. The values for
the successive traverses are usually entered below each other in column form, as
shown in Fig. 6.7, and the final value is shown at the bottom of each column.
Only four traverses are required in this example.
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FIGURE 6.7
The results of each of the four necessary traverses of the problem of Fig. 6.5 are shown in order in the
columns. The final values, unchanged in the last traverse, are at the bottom of each column.
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FIGURE 6.8

The problem of Figs. 6.6 and 6.7 is divided into smaller squares. Values obtained on the nine successive

traverses are listed in order in the columns.
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If each of the nine initial values were set equal to zero, it is interesting to
note that ten traverses would be required. The cost of having a computer do
these additional traverses is probably much less than the cost of the program-
ming necessary to make decent initial estimates.

Since there is a large difference in potential from square to square, we
should not expect our answers to be accurate to the tenth of a volt shown
(and perhaps not to the nearest volt). Increased accuracy comes from dividing
each square into four smaller squares, not from finding the potential to a larger
number of significant figures at each corner.

In Fig. 6.8, which shows only one of the symmetrical halves plus an addi-
tional column, this subdivision is accomplished, and the potential at the newly
created corners is estimated by applying (4) directly where possible and diagon-
ally when necessary. The set of estimated values appears at the top of each
column, and the values produced by the successive traverses appear in order
below. Here nine sets of values are required, and it might be noted that no values
change on the last traverse (a necessary condition for the /ast traverse), and only
one value changes on each of the preceding three traverses. No value in the
bottom four rows changes after the second traverse; this results in a great saving
in time, for if none of the four potentials in (4) changes, the answer is of course
unchanged.

For this problem, it is possible to compare our final values with the exact
potentials, obtained by evaluating some infinite series, as discussed at the end of
the following chapter. At the point for which the original estimate was 53.2, the
final value for the coarse grid was 52.6, the final value for the finer grid was 53.6,
and the final value for a 16 x 16 grid is 53.93V to two decimals, using data
obtained with the following Fortran program:

DIMENSION A {17.17}.B{17.172}
DO b I=2.17

DO 5 d=1.17

A{I-J}=0.

CONTINUE

CONTINUE

DO 9 J=2.1b

A{I.J}=100.

9 CONTINUE

10 A{1.1}=50.

11 A{1L.173}=50.

2 DO 1k I=2.1b

13 DO 15 J=2.1b

4 A{I.J}={A{I-J-1}+A{I-1-J}+A{T-J+D}+A{I+1DAd3}}/4.
15 CONTINUE

1k CONTINUE

1? DO 23 I=2.1b

184 DO 22 J=2.1b

N0t F WU
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19 C={A{I-J-13}+A{I-1-J}+A{I-J+1F+A{I+L-dJ3}}/H4.
20 B{I.J}=A{I.J}-C

2l IF{{ABS{B{I-J}}-.00002}.6T7.0.3} GO TO L2

22 CONTINUE

23 CONTINUE

24 WRITELG.25}{{A{I-J}-J=1117}-I=1.17}

25 FORMAT {1HO0.17?F7.2%}

2k STOP

2? END

Line 21 shows that the iteration is continued until the difference between succes-
sive traverses is less than 107>,

The exact potential obtained by a Fourier expansion is 54.05V to two
decimals. Two other points are also compared in tabular form, as shown in
Table 6.1.

Computer flowcharts and programs for iteration solutions are given in
Chap. 24 of Boast* and in Chap. 2 and the appendix of Silvester.’

Very few electrode configurations have a square or rectangular cross sec-
tion that can be neatly subdivided into a square grid. Curved boundaries, acute-
or obtuse-angled corners, reentrant shapes, and other irregularities require slight
modifications of the basic method. An important one of these is described in
Prob. 10 at the end of this chapter, and other irregular examples appear as Probs.
7,9, and 11.

A refinement of the iteration method is known as the relaxation method. In
general it requires less work but more care in carrying out the arithmetical steps.®

V D6.2. In Fig. 6.9, a square grid is shown within an irregular potential trough. Using the
iteration method to find the potential to the nearest volt, determine the final value at: (a)

point a; (b) point b; (¢) point c.

Ans. 18V;46V; 91V

TABLE 6.1

Original estimate 53.2 25.0 9.4
4 x 4 grid 52.6 25.0 9.8
8 x 8 grid 53.6 25.0 9.7
16 x 16 grid 53.93 25.00 9.56
Exact 54.05 25.00 9.54

4See Suggested References at the end of Chap. 2.
> See Suggested References at the end of this chapter.

% A detailed description appears in Scarborough, and the basic procedure and one example are in an earlier
edition of Hayt. See Suggested References at the end of the chapter.
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FIGURE 6.9

See Prob. D6.2.

6.3 CURRENT ANALOGIES

Several experimental methods depend upon an analogy between current density
in conducting media and electric flux density in dielectric media. The analogy is
easily demonstrated, for in a conducting medium Ohm’s law and the gradient
relationship are, for direct currents only,

J = oE,
E, =-VV,

whereas in a homogeneous dielectric

D =¢E.
E.=-V/I.

The subscripts serve to identify the analogous problems. It is evident that the
potentials V, and V., the electric field intensities E, and E., the conductivity and
permittivity o and €, and the current density and electric flux density J and D are
analogous in pairs. Referring to a curvilinear-square map, we should interpret
flux tubes as current tubes, each tube now carrying an incremental current which
cannot leave the tube.

Finally, we must look at the boundaries. What is analogous to a conducting
boundary which terminates electric flux normally and is an equipotential sur-
face? The analogy furnishes the answer, and we see that the surface must termi-
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nate current density normally and again be an equipotential surface. This is the
surface of a perfect conductor, although in practice it is necessary only to use one
whose conductivity is many times that of the conducting medium.

Therefore, if we wished to find the field within a coaxial capacitor, which,
as we have seen several times before, is a portion of the field of an infinite line
charge, we might take two copper cylinders and fill the region between them
with, for convenience, an electrolytic solution. Applying a potential difference
betwen the cylinders, we may use a probe to establish the potential at any
intermediate point, or to find all those points having the same potential. This
is the essence of the electrolytic trough or tank. The greatest advantage of this
method lies in the fact that it is not limited to two-dimensional problems.
Practical suggestions for the construction and use of the tank are given in
many places.’

The determination of capacitance from electrolytic-trough measurements is
particularly easy. The total current leaving the more positive conductor is

I:% J-dS:afi; E, - dS
s s

where the closed surface integral is taken over the entire conductor surface. The
potential difference is given by the negative line integral from the less to the more
positive plate,

Vo = —JEU~dL

and the total resistance is therefore

R— Voo — JEs - dL
I o $gEo - dS

The capacitance is given by the ratio of the total charge to the potential
difference,
0 ¢ $gEc - dS

C=—==-35_"<""
Vo — |Ec-dL

We now invoke the analogy by letting Ve = V4 and E. = E,. The result is

RC = (5)

€
o

Knowing the conductivity of the electrolyte and the permittivity of the dielectric,
we may determine the capacitance by a simple resistance measurement.

A simpler technique is available for two-dimensional problems. Conducting
paper is used as the base on which the conducting boundaries are drawn with

7 Weber is good. See Suggested References at the end of the chapter.
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silver paint. In the case of the coaxial capacitor, we should draw two circles of
radii p4 and pg, pp > p4, extending the paint a small distance outward from pp
and inward from p,4 to provide sufficient area to make a good contact with wires
to an external potential source. A probe is again used to establish potential
values between the circles.

Conducting paper is described in terms of its sheet resistance Rg. The sheet
resistance is the resistance between opposite edges of a square. Since the fields are
uniform in such a square, we may apply Eq. (13) from Chap. 5,

L
oS

to the case of a square of conducting paper having a width w and a thickness ¢,
where w = L,

L /
Ri=—=— Q
s otlL ot ©)

Thus, if the conductive coating has a thickness of 0.2 mm and a conductivity of
2S/m, its surface resistance is 1/(2 x 0.2 x 1073) = 2500 . The units of Ry are
often given as ““ohms per square” (but never as ohms per square meter).

Fig. 6.10 shows the silver-paint boundaries that would be drawn on the
conducting paper to determine the capacitance of a square-in-a-circle transmis-
sion line like that shown in Fig. 6.3. The generator and detector often operate at
1 kHz to permit use of a more sensitive tuned detector or bridge.

Voltage
source

Probe

e
; e
Silv:’;r paint )

B

Detector

J
i

Unused portion of conducting paper

FIGURE 6.10
A two-dimensional, two-conductor problem similar to that of Fig. 6.3 is drawn on conducting paper. The
probe may be used to trace out an equipotential surface.
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V D6.3. If the conducting paper shown in Fig. 6.10 has a sheet resistance of 1800 Q per
square, find the resistance that would be measured between the opposite edges of: (a) a
square 9 cm on a side; (b) a square 4.5cm on a side; (¢) a rectangle 3 cm by 9 cm, across
the longer dimension; (d) a rectangle 3cm by 9cm, across the shorter dimension. (e)
What resistance would be measured between an inner circle of 0.8-cm radius and an
outer circle of 2-cm radius?

Ans. 1800 €2; 1800 €2; 5400 €2; 600 €2; 397

6.4 PHYSICAL MODELS

The analogy between the electric field and the gravitational field was mentioned
several times previously and may be used to construct physical models which are
capable of yielding solutions to electrostatic problems of complicated geometry.
The basis of the analogy is simply this: in the electrostatic field the potential
difference between two points is the difference in the potential energy of unit
positive charges at these points, and in a uniform gravitational field the differ-
ence in the potential energy of point masses at two points is proportional to their
difference in height. In other words,

AWg=QAV  (electrostatic)
AWs = MgAh (gravitational)

where M is the point mass and g is the acceleration due to gravity, essentially
constant at the surface of the earth. For the same energy difference, then,

AV:%Ah:kAh

where k is the constant of proportionality. This shows the direct analogy between
difference in potential and difference in elevation.

This analogy allows us to construct a physical model of a known two-
dimensional potential field by fabricating a surface, perhaps from wood,
whose elevation # above any point (x, y) located in the zero-elevation zero-
potential plane is proportional to the potential at that point. Note that three-
dimensional fields cannot be handled.

The field of an infinite line charge,

PL , PB
=—In—
2me  p

is shown on such a model in Fig. 6.11, which provides an accurate picture of the
variation of potential with radius between p4 and pp. The potential and elevation
at pp are conveniently set equal to zero.

Such a model may be constructed for any two-dimensional potential field
and enables us to visualize the field a little better. The construction of the models
themselves is enormously simplified, both physically and theoretically, by the use
of rubber sheets. The sheet is placed under moderate tension and approximates
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FIGURE 6.11

A model of the potential field of an infinite line charge. The differ-
ence in potential is proportional to the difference in elevation.
Contour lines indicate equal potential increments.

closely the elastic membrane of applied mechanics. It can be shown® that the
vertical displacement /2 of the membrane satisfies the second-order partial differ-
ential equation

*h  *h

a2 g =0

if the surface slope is small. We shall see in the next chapter that every potential
field in a charge-free region also satisfies this equation, Laplace’s equation in two
dimensions,

PV PV

—+—-—5=0

axz  9y?

We shall also prove a uniqueness theorem which assures us that if a poten-
tial solution in some specified region satisfies the above equation and also gives
the correct potential on the boundaries of this region, then this solution is the
only solution. Hence we need only force the elevation of the sheet to correspond-
ing prescribed potential values on the boundaries, and the elevation at all other
points is proportional to the potential.

For instance, the infinite-line-charge field may be displayed by recognizing
the circular symmetry and fastening the rubber sheet at zero elevation around a
circle by the use of a large clamping ring of radius pg. Since the potential is
constant at p4, we raise that portion of the sheet to a greater elevation by
pushing a cylinder of radius p4 up against the rubber sheet. The analogy breaks
down for large surface slopes, and only a slight displacement at p, is possible.
The surface then represents the potential field, and marbles may be used to
determine particle trajectories, in this case obviously radial lines as viewed
from above.

8 See, for instance, Spangenberg, pp. 75-76, in Suggested References at the end of the chapter.
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There is also an analogy between electrostatics and hydraulics that is par-

ticularly useful in obtaining photographs of the streamlines or flux lines. This
process is described completely by Moore in a number of publications’ which
include many excellent photographs.

v

D6.4. A potential field, V' = 200(x> — 4y + 2) V, is illustrated by a plaster model with a
scale of 1 vertical inch = 400 V; the horizontal dimensions are true. The region shown is
3<x<4m,0 <y <Im. In this region: (¢) What is the maximum height of the model?
(b) What is its minimum height? (¢) What is the difference in height between points
A(x =3.2,y =0.5) and B(3.8, 1)? (d) What angle does the line connecting these two
points make with the horizontal?
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PROBLEMS

6.1

6.2

6.4

6.5

6.6

6.8

6.9

Construct a curvilinear-square map for a coaxial capacitor of 3-cm inner
radius and 8-cm outer radius. These dimensions are suitable for the
drawing. (¢) Use your sketch to calculate the capacitance per meter
length, assuming g = 1. (b) Calculate an exact value for the capacitance
per unit length.

Construct a curvilinear-square map of the potential field about two
parallel circular cylinders, each of 2.5-cm radius, separated a center-to-
center distance of 13cm. These dimensions are suitable for the actual
sketch if symmetry is considered. As a check, compute the capacitance
per meter both from your sketch and from the exact formula. Assume
ER = 1.

Construct a curvilinear-square map of the potential field between two
parallel circular cylinders, one of 4-cm radius inside one of 8-cm radius.
The two axes are displaced by 2.5cm. These dimensions are suitable for
the drawing. As a check on the accuracy, compute the capacitance per
meter from the sketch and from the exact expression:

2me
@+ b* — D?
2ab

cosh™

where @ and b are the conductor radii and D is the axis separation.

A solid conducting cylinder of 4-cm radius is centered within a rectan-
gular conducting cylinder with a 12-cm by 20-cm cross section. (a) Make
a full-size sketch of one quadrant of this configuration and construct a
curvilinear-square map for its interior. (b) Assume € = ¢y and estimate C
per meter length.

The inner conductor of the transmission line shown in Fig. 6.12 has a
square cross section 2a x 2a, while the outer square is 5Sa x 5a. The axes
are displaced as shown. (a) Construct a good-sized drawing of this trans-
mission line, say with @ = 2.5cm, and then prepare a curvilinear-square
plot of the electrostatic field between the conductors. (b) Use your map
to calculate the capacitance per meter length if € = 1.6¢;. (¢) How would
the answer to part b change if « = 0.6 cm?

Let the inner conductor of the transmission line shown in Fig. 6.12 be at
a potential of 100V, while the outer is at zero potential. Construct a grid,
0.5a on a side, and use iteration to find V" at a point that is « units above
the upper right corner of the inner conductor. Work to the nearest volt.
Use the iteration method to estimate the potential at points x and y in
the triangular trough of Fig. 6.13. Work only to the nearest volt.

Use iteration methods to estimate the potential at point x in the trough
shown in Fig. 6.14. Working to the nearest volt is sufficient.

Using the grid indicated in Fig. 6.15, work to the nearest volt to estimate
the potential at point A.
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€R=]k6

2a

a F 2a | a
a
T
 idiiillllllllllidilllliidiilildddd
FIGURE 6.12

See Probs. 5, 6, and 14

6.10 Conductors having boundaries that are curved or skewed usually do not
permit every grid point to coincide with the actual boundary. Figure
6.16a illustrates the situation where the potential at V) is to be estimated
in terms of Vi, V3, V3, V4, and the unequal distances /iy, /iy, hs, and hy.
(a) Show that

Vi " V> " V3
hy hihs hy hohg h3 s
T2 (128 (2 (1 +22) () (422
( +h3)< +h4h2> ( +h4)( +h4h3> ( +h1>( +h2h4)

|2

h4 h4h2
WE)(”M)

6.11 Consider the configuration of conductors and potentials shown in Fig.
6.17. Using the method described in Prob. 10, write an expression for V)

Vo =

+ ; (b) determine V) in Fig. 6.16b.

4| p | eTextMainMenu | Textbook Table of Contents



EXPERIMENTAL MAPPING METHODS
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See Prob. 7.
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FIGURE 6.14
See Prob. 8.
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F=0 Gap Gap ¥=0
» E

#

70 7 AT 7 2
V.

FIGURE 6.15
See Prob. 9.

in terms of V7, V5, V3, and V4 at point: (a) x; (b) y; (¢) z. (d) Use the
iteration method to estimate the potential at point x.

6.12 (a) After estimating potentials for the configuration of Fig. 6.18, use the
iteration method with a square grid 1cm on a side to find better esti-
mates at the seven grid points. Work to the nearest volt. () Construct
0.5-cm grid, establish new rough estimates, and then use the iteration
method on the 0.5-cm grid. Again work to the nearest volt. (¢) Use the
computer to obtain values for a 0.25-cm grid. Work to the nearest 0.1 V.

6.13 Perfectly conducting concentric spheres have radii of 2 and 6cm. The
region 2 < r < 3cm is filled with a solid conducting material for which

A p
[ ] ——‘ E - a
F=10V & — 3¢ -
hy 60 ¥ Center
h h
Ve Kl ! o
3 7 Vi
Radius = 1.54
hy
®
Vy
(a) (b)
FIGURE 6.16
See Prob. 10.
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R

7 e FIGURE 6.17
ov See Prob. 11.

o = 100 S/m, while the portion for which 3 < r < 6cm has o = 25S/m.
The inner sphere is held at 1 V while the outer is at V' = 0. («) Find E and
J everywhere. (b) What resistance would be measured between the two
spheres? (¢) What is V' at r = 3cm?

6.14 The cross section of the transmission line shown in Fig. 6.12 is drawn on
a sheet of conducting paper with metallic paint. The sheet resistance is
2000 2 per square and the dimension « is 2cm. (@) Assuming a result for
Prob. 6b of 110 pF/m, what total resistance would be measured between
the metallic conductors drawn on the conducting paper? (b) What would
the total resistance be if a = 2.cm?

Ga G G
B 50V JoBs 50V S
® L
100 V
oV . . oV
X
L g L ] L 4
40 ¥ FIGURE 6.18
' om ! See Prob. 12.
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FIGURE 6.19
See Prob. 16.

6.15

6.16

6.18

Two concentric annular rings are painted on a sheet of conducting paper
with a highly conducting metallic paint. The four radii are 1, 1.2, 3.5, and
3.7cm. Connections made to the two rings show a resistance of 215 Q
between them. (¢) What is Rg for the conducting paper? (b) If the con-
ductivity of the material used as the surface of the paper is 2 S/m, what is
the thickness of the coating?

The square washer shown in Fig. 6.19 is 2.4 mm thick and has outer
dimensions of 2.5 x 2.5cm and inner dimensions of 1.25 x 1.25cm.
The inside and outside surfaces are perfectly conducting. If the material
has a conductivity of 6 S/m, estimate the resistance offered between the
inner and outer surfaces (shown shaded in Fig. 6.19). A few curvilinear
squares are suggested.

A two-wire transmission line consists of two parallel perfectly conduct-
ing cylinders, each having a radius of 0.2mm, separated a center-to-
center distance of 2mm. The medium surrounding the wires has
€g =3 and o0 = 1.5mS/m. A 100-V battery is connected between the
wires. Calculate: (a) the magnitude of the charge per meter length on
each wire; (b) the battery current.

A coaxial transmission line is modelled by the use of a rubber sheet
having horizontal dimensions that are 100 times those of the actual
line. Let the radial coordinate of the model be p,,. For the line itself,
let the radial dimension be designated by p as usual; also, let ¢ = 0.6 mm
and b = 4.8 mm. The model is 8 cm in height at the inner conductor and
zero at the outer. If the potential of the inner conductor is 100 V: (@) find
the expression for V(p). (b) Write the model height as a function of p.
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CHAPTER

7

POISSON’S AND
LAPLACE’S
EQUATIONS

A study of the previous chapter shows that several of the analogies used to
obtain experimental field maps involved demonstrating that the analogous quan-
tity satisfies Laplace’s equation. This is true for small deflections of an elastic
membrane, and we might have proved the current analogy by showing that the
direct-current density in a conducting medium also satisfies Laplace’s equation.
It appears that this is a fundamental equation in more than one field of science,
and, perhaps without knowing it, we have spent the last chapter obtaining solu-
tions for Laplace’s equation by experimental, graphical, and numerical methods.
Now we are ready to obtain this equation formally and discuss several methods
by which it may be solved analytically.

It may seem that this material properly belongs before that of the previous
chapter; as long as we are solving one equation by so many methods, would it
not be fitting to see the equation first? The disadvantage of this more logical
order lies in the fact that solving Laplace’s equation is an exercise in mathe-
matics, and unless we have the physical problem well in mind, we may easily miss
the physical significance of what we are doing. A rough curvilinear map can tell
us much about a field and then may be used later to check our mathematical
solutions for gross errors or to indicate certain peculiar regions in the field which
require special treatment.

With this explanation let us finally obtain the equations of Laplace and
Poisson.
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7.1 POISSON’S AND LAPLACE’S
EQUATIONS

Obtaining Poisson’s equation is exceedingly simple, for from the point form of
Gauss’s law,

V-D=p, (1)
the definition of D,
D =¢E (2)
and the gradient relationship,
E=-VV 3)

by substitution we have
V-D=V-(E) = —-V-(eVV) = p,

or

V.-V =-= 4
€

for a homogeneous region in which € is constant.

Equation (4) is Poisson’s equation, but the “‘double V’ operation must be
interpreted and expanded, at least in cartesian coordinates, before the equation
can be useful. In cartesian coordinates,

04, 94, | 9A.

V- A=
ax ay 0z
av av aV
VV =— — —a_
8an+ 8yay+ 0z A

and therefore

V-VV:i i —I—3 o -I-3 o
ox \ 0x ay \ dy dz \ 0z

LRV PV PV

SLEALEANLAS 5
0x2 + 9y? + 0z2 )

Usually the operation V- V is abbreviated V? (and pronounced *“del squared™), a
good reminder of the second-order partial derivatives appearing in (5), and we
have
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vy OV PV PV e

6
oxr  9yr  9z2 € ©

in cartesian coordinates.

If p, = 0, indicating zero volume charge density, but allowing point charges,
line charge, and surface charge density to exist at singular locations as sources of
the field, then

ViV =0 (7

which is Laplace’s equation. The V> operation is called the Laplacian of V.
In cartesian coordinates Laplace’s equation is

2y — 32V+82V *V

ER + P 0 (cartesian) ®)

and the form of V2V in cylindrical and spherical coordinates may be obtained by
using the expressions for the divergence and gradient already obtained in those
coordinate systems. For reference, the Laplacian in cylindrical coordinates is

1o v\ 1 [3*V\ &V
5 o
Vi) — ; 8_,0 ( 0 8_,0> 4 F <8T>2) + FEl (cylindrical) )

and in spherical coordinates is

19 R14 1 9 R14 1 8*V
Vi = (ﬂ >+ (sin9—>+ (spherical) |(10)

_I’_25 E r2sin @ % 72 sin29 W

These equations may be expanded by taking the indicated partial derivatives, but
it is usually more helpful to have them in the forms given above; furthermore, it
is much easier to expand them later if necessary than it is to put the broken pieces
back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever
volume charge density is zero, it states that every conceivable configuration of
electrodes or conductors produces a field for which V2V = 0. All these fields are
different, with different potential values and different spatial rates of change, yet
for each of them V2V = 0. Since every field (if p, = 0) satisfies Laplace’s equa-
tion, how can we expect to reverse the procedure and use Laplace’s equation to
find one specific field in which we happen to have an interest? Obviously, more
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information is required, and we shall find that we must solve Laplace’s equation
subject to certain boundary conditions.

Every physical problem must contain at least one conducting boundary and
usually contains two or more. The potentials on these boundaries are assigned
values, perhaps Vy, Vi, ..., or perhaps numerical values. These definite equi-
potential surfaces will provide the boundary conditions for the type of problem
to be solved in this chapter. In other types of problems, the boundary conditions
take the form of specified values of E on an enclosing surface, or a mixture of
known values of V' and E.

Before using Laplace’s equation or Poisson’s equation in several examples,
we must pause to show that if our answer satisfies Laplace’s equation and also
satisfies the boundary conditions, then it is the only possible answer. It would be
very distressing to work a problem by solving Laplace’s equation with two
different approved methods and then to obtain two different answers. We
shall show that the two answers must be identical.

¢/ D7.1. Calculate numerical values for ¥ and p, at point P in free space if:
4

@ V=27 at PUL23E () V=Speos2p at Pp=3.¢=3.2=2) (0
X

_ 2cos¢

2

14 at P(r=0.5,0 = 45°, ¢ = 60°).

Ans. 12V, —106.2pC/m3; 22.5V, 0; 4V, —141.7 pC/m>

7.2 UNIQUENESS THEOREM

Let us assume that we have two solutions of Laplace’s equation, V; and V5, both
general functions of the coordinates used. Therefore

VAV =0
and
V2V, =0
from which
ViV, —V2) =0

Each solution must also satisfy the boundary conditions, and if we repre-
sent the given potential values on the boundaries by V), then the value of V} on
the boundary Vy;, and the value of V, on the boundary V,, must both be
identical to V),

Vie=Vy ="V,
or
Vie—=Vw=0
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In Sec. 4.8, Eq. (44), we made use of a vector identity,
V-(VD)=V(V-D)+D-(V}V)

which holds for any scalar V' and any vector D. For the present application we
shall select V| — V/;, as the scalar and V(V; — V) as the vector, giving

V[V = 1)V = 1)l =V = N)[V-V(V = 1))
+ V(1 =V2)- V(1 = V2)

which we shall integrate throughout the volume enclosed by the boundary
surfaces specified:

JIVKM—%WWrWM@

sjfm—wm%wm—mwm[[wm—nwm (1)

vol

The divergence theorem allows us to replace the volume integral on the left
side of the equation by the closed surface integral over the surface surrounding
the volume. This surface consists of the boundaries already specified on which
Vip = V>, and therefore

J vﬂm—nWvamw=£wu—MWWWJ%»ﬁzo

One of the factors of the first integral on the right side of (11) is
V.-V(Vi = V>), or VX(V| — V>), which is zero by hypothesis, and therefore that
integral is zero. Hence the remaining volume integral must be zero:

J[wm—nﬁw=o
vol

There are two reasons why an integral may be zero: either the integrand
(the quantity under the integral sign) is everywhere zero, or the integrand is
positive in some regions and negative in others, and the contributions cancel
algebraically. In this case the first reason must hold because [V(V, — V5)]* can-
not be negative. Therefore

[V(Vi — V)P =0
and
V(Vy = V) =0

Finally, if the gradient of V| — V5 is everywhere zero, then V'; — V, cannot
change with any coordinates and

V1 — V> = constant

If we can show that this constant is zero, we shall have accomplished our proof.
The constant is easily evaluated by considering a point on the boundary. Here
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Vi—V, ="V, — Vo, =0, and we see that the constant is indeed zero, and there-
fore

Vi="V,

giving two identical solutions.

The uniqueness theorem also applies to Poisson’s equation, for if V2V =
—py/€ and V>V, = —p, /€, then VX(V| — V>) = 0 as before. Boundary conditions
still require that V', — V3, = 0, and the proof is identical from this point.

This constitutes the proof of the uniqueness theorem. Viewed as the answer
to a question, “How do two solutions of Laplace’s or Poisson’s equation com-
pare if they both satisfy the same boundary conditions?”” the uniqueness theorem
should please us by its ensurance that the answers are identical. Once we can find
any method of solving Laplace’s or Poisson’s equation subject to given boundary
conditions, we have solved our problem once and for all. No other method can
ever give a different answer.

¢/ D7.2. Consider the two potential fields ¥} =y and V, = y 4 e¥siny. (a) Is V2V, = 0?
B)YIs V2V, =02 (c)Is V; =0aty=02(d)Is Vo =0aty =0?(e) Is V) = waty = 7?2 (f)
Is V) =maty=mn?(g) Are V|, and V, identical? (1) Why does the uniqueness theorem
not apply?

Ans. Yes; yes; yes; yes; yes; yes; no; boundary conditions not given for a closed surface

7.3 EXAMPLES OF THE SOLUTION OF
LAPLACE’S EQUATION

Several methods have been developed for solving the second-order partial differ-
ential equation known as Laplace’s equation. The first and simplest method is
that of direct integration, and we shall use this technique to work several exam-
ples in various coordinate systems in this section. In Sec. 7.5 one other method
will be used on a more difficult problem. Additional methods, requiring a more
advanced mathematical knowledge, are described in the references given at the
end of the chapter.

The method of direct integration is applicable only to problems which are
“one-dimensional,” or in which the potential field is a function of only one of the
three coordinates. Since we are working with only three coordinate systems, it
might seem, then, that there are nine problems to be solved, but a little reflection
will show that a field which varies only with x is fundamentally the same as a
field which varies only with y. Rotating the physical problem a quarter turn is no
change. Actually, there are only five problems to be solved, one in cartesian
coordinates, two in cylindrical, and two in spherical. We shall enjoy life to the
fullest by solving them all.
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[l Example 7.1

Let us assume that 7 is a function only of x and worry later about which physical
problem we are solving when we have a need for boundary conditions. Laplace’s equa-
tion reduces to

PV

ax?

and the partial derivative may be replaced by an ordinary derivative, since V is not a
function of y or z,

v _
dx?
We integrate twice, obtaining
av
o=
and
V=Ax+B (12)

where 4 and B are constants of integration. Equation (12) contains two such constants,
as we should expect for a second-order differential equation. These constants can be
determined only from the boundary conditions.

What boundary conditions should we supply? They are our choice, since no
physical problem has yet been specified, with the exception of the original hypothesis
that the potential varied only with x. We should now attempt to visualize such a field.
Most of us probably already have the answer, but it may be obtained by exact methods.

Since the field varies only with x and is not a function of y and z, then V is a
constant if x is a constant or, in other words, the equipotential surfaces are described by
setting x constant. These surfaces are parallel planes normal to the x axis. The field is
thus that of a parallel-plate capacitor, and as soon as we specify the potential on any
two planes, we may evaluate our constants of integration.

To be very general, let V' = V| at x = x| and V' = V, at x = x;. These values are
then substituted into (12), giving

V1:A.’C|+B V2:AX2+B

A:VI_V2 B:szl—lez
X — X2 X| — X2
and
Vi(x —x2)— Vo(x — x
- 1(x = x2) = Va(x — x1)

X1 — X2

A simpler answer would have been obtained by choosing simpler boundary
conditions. If we had fixed V=0 at x =0 and VV = V|, at x = d, then

Vo
A=— B=0
d
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and

=2 (13)

Suppose our primary aim is to find the capacitance of a parallel-plate
capacitor. We have solved Laplace’s equation, obtaining (12) with the two
constants 4 and B. Should they be evaluated or left alone? Presumably we
are not interested in the potential field itself, but only in the capacitance, and
we may continue successfully with 4 and B or we may simplify the algebra by
a little foresight. Capacitance is given by the ratio of charge to potential
difference, so we may choose now the potential difference as Vy, which is
equivalent to one boundary condition, and then choose whatever second
boundary condition seems to help the form of the equation the most. This is
the essence of the second set of boundary conditions which produced (13). The
potential difference was fixed as V by choosing the potential of one plate zero
and the other V); the location of these plates was made as simple as possible by
letting V' =0 at x = 0.

Using (13), then, we still need the total charge on either plate before the
capacitance can be found. We should remember that when we first solved this
capacitor problem in Chap. 5, the sheet of charge provided our starting point.
We did not have to work very hard to find the charge, for all the fields were
expressed in terms of it. The work then was spent in finding potential difference.
Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has
been made:

Given V, use E = -V to find E.

Use D = ¢E to find D.

Evaluate D at either capacitor plate, D = Dg = Dyay.

Recognize that pg = Dy.

Find Q by a surface integration over the capacitor plate, Q = [¢ psdS.

AN IR

Here we have

X
V="Vy-
Od
Vi
E:—?Oax
Vi
D:—ej)ax
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Vo
Ds=D| =—e—la,
S - eda
ay = ay
Vo
D = —€— =
N Gd Ps
GVO V()S
= dS = —e——
Q L d “d
and the capacitance is
Q] _ €S
C=—"=— 14
Vo~ d (14)

We shall use this procedure several times in the examples to follow.

[II>Example 7.2

Since no new problems are solved by choosing fields which vary only with y or with z in
cartesian coordinates, we pass on to cylindrical coordinates for our next example.
Variations with respect to z are again nothing new, and we next assume variation
with respect to p only. Laplace’s equation becomes

19 (,oaV)—O
pop\ p

1,0
pdp\"dp)

Noting the p in the denominator, we exclude p = 0 from our solution and then multiply
by p and integrate,

or

av
4
o
rearrange, and integrate again,
V=Alnp+ B (15)

The equipotential surfaces are given by p = constant and are cylinders, and the
problem is that of the coaxial capacitor or coaxial transmission line. We choose a
potential difference of ¥ by letting V' =Vyat p=a, V=0at p=b, b > a, and obtain

_, In(b/p)
V=" In(b/a)

(16)
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from which
O
p In(b/a)
eVy
aln(b/a)
_€Vo2ral
aln(b/a)

ap

Dyp=a) =

0

2mel
~ In(b/a) (an

which agrees with our results in Chap. 5.

I Example 7.3

Now let us assume that V' is a function only of ¢ in cylindrical coordinates. We might

look at the physical problem first for a change and see that equipotential surfaces are

given by ¢ = constant. These are radial planes. Boundary conditions might be ¥ = 0 at

¢ =0and V =TV} at ¢ = «, leading to the physical problem detailed in Fig. 7.1.
Laplace’s equation is now

13V
p* 0¢?
We exclude p = 0 and have
v
de?
The solution is
V =A¢+ B
Insulating
gap {
“ V=0
\ ¢ =0
FIGURE 7.1
‘f Two infinite radial planes with an interior
4 at | angle «. An infinitesimal insulating gap exists
/el v at p = 0. The potential field may be found by
/ applying Laplace’s equation in cylindrical
z coordinates.
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The boundary conditions determine 4 and B, and

V:VO?
o

Taking the gradient of (18) produces the electric field intensity,

V() ay
ap

E =

(18)

(19)

and it is interesting to note that E is a function of p and not of ¢. This does not
contradict our original assumptions, which were restrictions only on the potential

field. Note, however, that the vector field E is a function of ¢.

A problem involving the capacitance of these two radial planes is included at the

end of the chapter.

IIII»Example 7.4

We now turn to spherical coordinates, dispose immediately of variations with respect to

¢ only as having just been solved, and treat first V" = V(r).

The details are left for a problem later, but the final potential field is given by

1 1
=
a b

(20)

where the boundary conditions are evidently V' =0atr=band V =Vyatr=a,b > a.
The problem is that of concentric spheres. The capacitance was found previously in Sec.

5.10 (by a somewhat different method) and is

C— 4me

I Example 7.5

e2))

In spherical coordinates we now restrict the potential function to V' = V/(6), obtaining

1 d (. dv
r2sin6 d6 (sme%) =0

We exclude r = 0 and 8 = 0 or = and have
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. dV
0— =4
siné—
The second integral is then
Ado
V= J— +B
sin 6@

which is not as obvious as the previous ones. From integral tables (or a good memory)
we have

V= Aln(tan%) + B

The equipotential surfaces are cones. Fig. 7.2 illustrates the case where

V=0at6=m/2and V =V at 0 =a, a < /2. We obtain

0
In <tan 5)
V=Vy—~ (22)

In (tan %)

In order to find the capacitance between a conducting cone with its vertex

separated from a conducting plane by an infinitesimal insulating gap and its axis
normal to the plane, let us first find the field strength:

1oV Vi
E=—VV=——a@:——Oag

r 90 rsinfl1n (tan %)

The surface charge density on the cone is then

o T
Vo= Vﬂ
G FIGURE 7.2
el ap For the cone 0 =« at ¥, and the plane
0 =m/2 at V=0, the potential field is
V=0 given by ¥ = Vy[In(tan 6/2)]/[In(tan or/2)].
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—EVO

PS =—"""7 a\
rsinaIn (tan 5)

producing a total charge Q,

0= —eVy J"Or”rsinadqﬁdr
_sin(xln<tang> 0o Jo r
2
- —27‘[6()V0 Joo dr
0

B In (tan %)

This leads to an infinite value of charge and capacitance, and it becomes neces-
sary to consider a cone of finite size. Our answer will now be only an approx-
imation, because the theoretical equipotential surface is = «, a conical surface
extending from r =0 to r = oo, whereas our physical conical surface extends
only from r = 0 to, say, r = r;. The approximate capacitance is

2
c= TN (23)

In (Cot %)

If we desire a more accurate answer, we may make an estimate of the
capacitance of the base of the cone to the zero-potential plane and add this
amount to our answer above. Fringing, or nonuniform, fields in this region
have been neglected and introduce an additional source of error.

V D7.3. Find |E| at P(3,1,2) for the field of: () two coaxial conducting cylinders,
V=50V at p=2m, and V=20V at p=3m; (b) two radial conducting planes,
V=50V at ¢ =10° and V' =20V at ¢ = 30°.

Ans. 23.4V/m; 27.2V/m

7.4 EXAMPLE OF THE SOLUTION OF
POISSON’S EQUATION

To select a reasonably simple problem which might illustrate the application of
Poisson’s equation, we must assume that the volume charge density is specified.
This is not usually the case, however; in fact, it is often the quantity about which
we are seeking further information. The type of problem which we might encoun-
ter later would begin with a knowledge only of the boundary values of the
potential, the electric field intensity, and the current density. From these we
would have to apply Poisson’s equation, the continuity equation, and some
relationship expressing the forces on the charged particles, such as the Lorentz
force equation or the diffusion equation, and solve the whole system of equations
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simultaneously. Such an ordeal is beyond the scope of this text, and we shall
therefore assume a reasonably large amount of information.

As an example, let us select a pn junction between two halves of a semi-
conductor bar extending in the x direction. We shall assume that the region for
x < 0 is doped p type and that the region for x > 0 is n type. The degree of
doping is identical on each side of the junction. To review qualitatively some of
the facts about the semiconductor junction, we note that initially there are excess
holes to the left of the junction and excess electrons to the right. Each diffuses
across the junction until an electric field is built up in such a direction that the
diffusion current drops to zero. Thus, to prevent more holes from moving to the
right, the electric field in the neighborhood of the junction must be directed to
the left; E, is negative there. This field must be produced by a net positive charge
to the right of the junction and a net negative charge to the left. Note that the
layer of positive charge consists of two parts—the holes which have crossed the
junction and the positive donor ions from which the electrons have departed. The
negative layer of charge is constituted in the opposite manner by electrons and
negative acceptor ions.

The type of charge distribution which results is shown in Fig. 7.3a, and the
negative field which it produces is shown in Fig. 7.3b. After looking at these two
figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different
expressions. One of the simpler expressions is

po = 2pwosech  tanh (24)
a a

which has a maximum charge density p, u.x = w0 that occurs at x = 0.881a. The
maximum charge density p, is related to the acceptor and donor concentrations
N, and N, by noting that all the donor and acceptor ions in this region (the
depletion layer) have been stripped of an electron or a hole, and thus

P = eN, = eNy
Let us now solve Poisson’s equation,

€

V2V = —

subject to the charge distribution assumed above,
d2 V _ 2pv0
dx*

in this one-dimensional problem in which variations with y and z are not present.
We integrate once,

X X
sech—tanh —
a a

d_V _ 2101)0(1
dx

and obtain the electric field intensity,

sechf—i—Cl
a

4| p | eTextMainMenu | Textbook Table of Contents



POISSON’S AND LAPLACE’S EQUATIONS

= xla

-5 -4 -3 -2 -1

~ xla

]

eV, —5 —4 3“2 R A I

thihil L xla
2p vod 4

()

FIGURE 7.3

(a) The charge density, (b) the electric field intensity, and (c) the potential are plotted for a pn junction as
functions of distance from the center of the junction. The p-type material is on the left, and the n-type is on
the right.

4| p | eTextMainMenu | Textbook Table of Contents

209



210

ENGINEERING ELECTROMAGNETICS

20000 X
E.=— P coch ™ — C
€ a

To evaluate the constant of integration C;, we note that no net charge density
and no fields can exist far from the junction. Thus, as x — 400, E, must
approach zero. Therefore C; = 0, and

204
E = —P%ecn (25)
€ a
Integrating again,
dp0a’ ;
V= Mtan_l e+ C,y

Let us arbitrarily select our zero reference of potential at the center of the junc-
tion, x = 0,

4p o>
0= P07 + G
€ 4
and finally,
Cdpd g, T
y =P (tan el Z> (26)

Fig. 7.3 shows the charge distribution (), electric field intensity (b), and the
potential (¢), as given by (24), (25), and (26), respectively.

The potential is constant once we are a distance of about 4a or 5a from the
junction. The total potential difference V) across the junction is obtained from
(26),

27 Py
Vo=Vicow = Vi = 70 (27)
This expression suggests the possibility of determining the total charge on one
side of the junction and then using (27) to find a junction capacitance. The total
positive charge is
o X X
0= SJ 2p08ech —tanh —dx = 2p,0aS
0 a a
where S is the area of the junction cross section. If we make use of (27) to
eliminate the distance parameter a, the charge becomes

0=s 12000€Vo (28)
b

Since the total charge is a function of the potential difference, we have to be
careful in defining a capacitance. Thinking in “circuit” terms for a moment,
d dVv

Q0_

[ =—=(C——
dt dt
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and thus

dg
C—T%

By differentiating (28) we therefore have the capacitance,

[ Pvo€ €S
C= S =— 29
27V 2ma 29)

The first form of (29) shows that the capacitance varies inversely as the square
root of the voltage. That is, a higher voltage causes a greater separation of the
charge layers and a smaller capacitance. The second form is interesting in that it
indicates that we may think of the junction as a parallel-plate capacitor with a
“plate” separation of 2wa. In view of the dimensions of the region in which the
charge is concentrated, this is a logical result.

Poisson’s equation enters into any problem involving volume charge den-
sity. Besides semiconductor diode and transistor models, we find that vacuum
tubes, magnetohydrodynamic energy conversion, and ion propulsion require its
use in constructing satisfactory theories.

V' D7.4. In the neighborhood of a certain semiconductor junction the volume charge
density is given by p, = 750 sech 10°7x tanh 7x C/m>. The dielectric constant of the
semiconductor material is 10 and the junction area is 2 x 10~" m?. Find: (@) Vy; (b) C;
(¢) E at the junction.

Ans. 2.70V; 8.85pF; 2.70 MV/m

V D7.5. Given the volume charge density p, = —2 x 107€g/x C/m’ in free space, let
V=0atx=0and V=2V at x =2.5mm. At x = | mm, find: («) V; (b) E,.

Ans. 0.302V; —555V/m

7.5 PRODUCT SOLUTION OF LAPLACE’S
EQUATION

In this section we are confronted with the class of potential fields which vary with
more than one of the three coordinates. Although our examples are taken in the
cartesian coordinate system, the general method is applicable to the other coor-
dinate systems. We shall avoid those applications, however, because the potential
fields are given in terms of more advanced mathematical functions, such as
Bessel functions and spherical and cylindrical harmonics, and our interest now
does not lie with new mathematical functions but with the techniques and meth-
ods of solving electrostatic field problems.

We may give ourselves a general class of problems by specifying merely that
the potential is a function of x and y alone, so that
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B2 2L 7
WJra—yz:O (30)

We now assume that the potential is expressible as the product of a function of x
alone and a function of y alone. It might seem that this prohibits too many
solutions, such as V' = x + y, or any sum of a function of x and a function of
v, but we should realize that Laplace’s equation is linear and the sum of any two
solutions is also a solution. We could treat V' = x + y as the sum of V; = x and
V> = y, where each of these latter potentials is now a (trivial) product solution.

Representing the function of x by X and the function of y by Y, we have

V=XY (31
which is substituted into (30),
yX+ rY _,
0x2 2

Since X does not involve y and Y does not involve x, ordinary derivatives may be
used,

X &Y
ar H X T =0 32)

Equation (32) may be solved by separating the variables through division by XY,
giving
1 d®X 1 d*Y
_—t— — = 0
X dx* Y dy?

or
1d’x  1dY
X d2 Y dy?

Now we need one of the cleverest arguments of mathematics: since
(1/X)d*X /dx? involves no y and —(1/Y)d?Y /dy?> involves no x, and since the
two quantities are equal, then (1/X)d”>X/dx> cannot be a function of x either,
and similarly, —(1/Y)d?Y /dy* cannot be a function of y! In other words, we have

shown that each of these terms must be a constant. For convenience, let us call
this constant o?,

1 d*x
XY (33)
14>y

e (34)
Y dy?

The constant o? is called the separation constant, because its use results in
separating one equation into two simpler equations.
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Equation (33) may be written as

d*X
dx?
and must now be solved. There are several methods by which a solution may be
obtained. The first method is experience, or recognition, which becomes more
powerful with practice. We are just beginning and can barely recognize Laplace’s

equation itself. The second method might be that of direct integration, when
applicable, of course. Applying it here, we should write

d <d—X) = o’ X dx
dx

=o’X (35)

d—X = o’ JX dx
dx
and then pass on to the next method, for X is some unknown function of x, and
the method of integration is not applicable here. The third method we might
describe as intuition, common sense, or inspection. It involves taking a good
look at the equation, perhaps putting the operation into words. This method will
work on (35) for some of us if we ask ourselves, ““What function has a second
derivative which has the same form as the function itself, except for multiplica-
tion by a constant?”” The answer is the exponential function, of course, and we
could go on from here to construct the solution. Instead, let us work with those
of us whose intuition is suffering from exposure and apply a very powerful but
long method, the infinite-power-series substitution.

We assume hopefully that X’ may be represented by

o0
X = Z a,x"
a=0
and substitute into (35), giving
rPx & e
T Zn(n —Dax"?=do* Z apx"
X 0 0

If these two different infinite series are to be equal for all x, they must be
identical, and the coefficients of like powers of x may be equated term by
term. Thus

2x 1 xay =d’a

3x2x a3 =d’a
and in general we have the recurrence relationship

(n+2)(n+ Dayyr = O5251n
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The even coefficients may be expressed in terms of ag as

012
a; = Ao
1 x2
062 Ol4
adg = ———dy) = ——d
3x4 4!
O(6
ae = 6! do

and, in general, for n even, as

n

—ay (n even)

ap = '
n:

For odd values of n, we have

B o’ B o’ ai
B3 T
. (XS a
BTN "
and in general, for n odd,
a, = o (n odd)
n o

o0 n o0 n
ay o

X =aq E —'x"-l—— E —'x”
0,even o l,odd”

or

X = ap i (o) +% i (o)

0,even 1,0dd

Although the sum of these two infinite series is the solution of the differential
equation in x, the form of the solution may be improved immeasurably by
recognizing the first series as the hyperbolic cosine,

o0 n 2 4
B (ax)" (ax)”  (ax)
coshozx_og pr =1+ o + al +...
,even

and the second series as the hyperbolic sine,

P TR

00 n 3 5
sinh ax = Z ()’ _ (@) | @) +.

4| p | eTextMainMenu | Textbook Table of Contents



POISSON’S AND LAPLACE’S EQUATIONS

The solution may therefore be written as
a .
X = agcoshax + D sinh ax
o

or
X = Acoshax + Bsinhax

where the slightly simpler terms 4 and B have replaced ap and a; /«, respectively,
and are the two constants which must be evaluated in terms of the boundary
conditions. The separation constant is not an arbitrary constant as far as the
solution of (35) is concerned, for it appears in that equation.

An alternate form of the solution is obtained by expressing the hyperbolic
functions in terms of exponentials, collecting terms, and selecting new arbitrary
constants, A’ and B’,

X :A/eax +B/e—ax

Turning our attention now to (34), we see the solution proceeds along
similar lines, leading to two power series representing the sine and cosine, and
we have

Y = Ccosay+ Dsinay
from which the potential is
V =XY = (A coshax + B sinh ax)(C cosay + D sinay) (36)

Before describing a physical problem and forcing the constants appearing
in (36) to fit the boundary conditions prescribed, let us consider the physical
nature of the potential field given by a simple choice of these constants. Letting
A=0,C=0,and BD = V|, we have

V' = Vysinh axsinay (37)

The sinh ax factor is zero at x = 0 and increases smoothly with x, soon
becoming nearly exponential in form, since

sinh ax = %(eo‘x —e )

The sin «y term causes the potential to be zero at y =0, y = w/a, y = 2/, and
so forth. We therefore may place zero-potential conducting planes at x =0,
y =0, and y = w/«. Finally, we can describe the V| equipotential surface by
setting V' = V| in (37), obtaining

sinh axsin oy = 1
or

1
sinh ax

ay =sin~

This is not a familiar equation, but a hand calculator or a set of tables can
furnish enough material values to allow us to plot ay as a function of ax. Such a
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1.0
0.8x
0.6
oy
04x
0.2x
0 FIGURE 7.4
0 1 7] 3 A graph of the double-valued function
x ay = sinfl(l/sinh ax),0 < ay < 7.

curve is shown in Fig. 7.4. Note that the curve is double-valued and symmetrical
about the line @y = 7/2 when ay is restricted to the interval between 0 and . The
information of Fig. 7.4 is transferred directly to the V' =0 and V' = V| equipo-
tential conducting surfaces in Fig. 7.5. The surfaces are shown in cross section,
since the potential is not a function of z.

It is very unlikely that we shall ever be asked to find the potential field of
these peculiarly shaped electrodes, but we should bear in mind the possibility of
combining a number of the fields having the form given by (36) or (37) and thus
satisfying the boundary conditions of a more practical problem. We close this
chapter with such an example.

The problem to be solved is that shown in Fig. 7.6. The boundary condi-
tions shown are V' =0atx=0,y=0,and y=b,and V= Vyat x =d forall y

L
FIGURE 7.5

Cross section of the V' = 0 and V' = V| equipotential surfaces for the potential field V' = V| sinh axsinay.
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Insulating gap

y=b
V=0 V=",
\ X
V=0 Insulating gap
x=d
FIGURE 7.6

Potential problem requiring an infinite summation of fields of the form V' = V sinhaxsinay. A similar
configuration was analyzed by the iteration method in Chap. 6.

between 0 and b. It is immediately apparent that the potential field given by(37)
and outlined in Fig. 7.5 satisfies two of the four boundary conditions. A third
condition, V' = 0 at y = b, may be satisfied by the choice of a, for the substitu-
tion of these values of (37) leads to the equation

0 = V| sinh ax sin ab
which may be satisfied by setting
ab = mm m=1,2,3,...)

or
"
b
The potential function
V=r sinh$sm? (38)

thus produces the correct potential at x =0, y =0, and y = b, regardless of the
choice of m or the value of V. It is impossible to choose m or V| in such a way
that V' = Vy at x = d for each and every value of y between 0 and b. We must
combine an infinite number of these fields, each with a different value of m and a
corresponding value of 17,

oo
V= Z V1, sinh mZx sin?

m=0

The subscript on V', indicates that this amplitude factor will have a different
value for each different value of m. Applying the last boundary condition now,
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mmy

o0
d
Vo = Z Vim sinh%sin b

m=0

O<y<bm=12,..)

Since V', sinh (mnd/b) is a function only of m, we may simplify the expression
by replacing this factor by ¢,

V0:Zcmsin$ O<y<bm=1,2,..))
m=0

This is a Fourier sine series, and the ¢, coefficients may be determined by
the standard Fourier-series methods' if we can interpret ¥ as a periodic function
of y. Since our physical problem is bounded by conducting planes at y = 0 and
y = b, and our interest in the potential does not extend outside of this region, we
may define the potential at x = d for y outside of the range 0 to b in any manner
we choose. Probably the simplest periodic expression is obtained by selecting the
interval 0 < y < b as the half-period and choosing V' = — V) in the adjacent half-
period, or

V=" (x=d,0<y<b)
V==V, (x=d,b<y<?2b)

The ¢,, coefficients are then

17 . mm
Cm :E[JO Vo s1nTydy+L

2
(=Vp)sin m_;ry dy:|
leading to

Cn = 4% (m odd)
mm

=0 (m even)

However, ¢,, = Vy,, sinh (mnd/b), and therefore

_— 4v,
Y o sinh (maed /b)

which may be substituted into (38) to give the desired potential function,

(m odd only)

4 > 1 sinh (mnx/b) . mmy

7w Lt m sinh(mrd/b)" b

1% (39)

The map of this field may be obtained by evaluating (39) at a number of
points and drawing equipotentials by interpolation between these points. If we
let b = d and V) = 100, the problem is identical with that used as the example in

! Fourier series are discussed in almost every electrical engineering text on circuit theory. The authors are
partial to the Hayt and Kemmerly reference given in the Suggested References at the end of the chapter.
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the discussion of the iteration method. Checking one of the grid points in that
problem, we let x =d/4 =b/4, y = b/2 =d/2, and Vy = 100 and obtain

%

_ 400 i 1 sinh (mm/4) Gin "

Sqam sinh mm 2

_ 400 (sinh (r/4) 1sinh(37/4) 1sinh(Sw/4) >

T

b4 sinh 7 3 sinh 37 5 sinh 57

_ 400 (0.8687 5.228 n
o \11.549 3 x61958

=9.577-0.036 4 ...
=9.541V

The equipotentials are drawn for increments of 10V in Fig. 7.7, and flux
lines have been added graphically to produce a curvilinear map.

The material covered in this discussion of the product solution was more
difficult than much of the preceding work, and moreover, it presented three new
ideas. The first new technique was the assumption that the potential might be
expressed as the product of a function of x and a function of y, and the resultant
separation of Laplace’s equation into two simpler ordinary differential equa-
tions. The second new approach was employed when an infinite-power-series
solution was assumed as the solution for one of the ordinary differential equa-
tions. Finally, we considered an example which required the combination of an
infinite number of simpler product solutions, each having a different amplitude
and a different variation in one of the coordinate directions. All these techniques

V=0
V=0 V=100
FIGURE 7.7 4y
The field map corresponding to y=2"20
=1 sinh(mmx/b ) o
. 1L sinh(nmx/b) o MY ith b= d and
X eym sinh(mmd /b) b
¥=0 >

Vo =100V.
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are very powerful. They are useful in all coordinate systems, and they can be used
in problems in which the potential varies with all three coordinates.

We have merely introduced the subject here, and more information can be

obtained from the references below, several of which devote hundreds of pages to
the solution of Laplace’s equation.

SUGGESTED REFERENCES

1.
2.

3.

Dekker, A. J.: (see Suggested References for Chap. 95).

Hayt, W. H., Jr., and J. E. Kemmerly: “Engineering Circuit Analysis,” 5th
ed., McGraw-Hill Book Company, New York, 1993.

Push, E. M., and E. W. Pugh: “Principles of Electricity and Magnetism,” 2d
ed., Addison-Wesley Publishing Co., Reading, Mass., 1970. This text pro-
vides the physicist’s view of electricity and magnetism, but electrical engi-
neering students should find it easy to read. The solution to Laplace’s
equation by a number of methods is discussed in chap. 4.

Ramo, S., J. R. Whinnery, and T. Van Duzer: (see Suggested References for
Chap. 6). A more complete and advanced discussion of methods of solving
Laplace’s equation is given in chap. 7.

. Seeley, S., and A. D. Poularikas: “Electromagnetics: Classical and Modern

Theory and Applications,” Marcel Dekker, Inc., New York, 1979. Several
examples of the solution of Laplace’s equation by separation of variables
appear in chap. 4.

Smythe, W. R.: “Static and Dynamic Electricity,” 3d ed., McGraw-Hill
Book Company, New York, 1968. An advanced treatment of potential
theory is given in chap. 4.

Weber, E.: (see Suggested References for Chap. 6). There are a tremendous
number of potential solutions given with the original references.

PROBLEMS

7.1 Let V = 2x)?z3 and € = . Given point P(1,2, —1), find: (a) V at P; (b)
E at P; (¢) p, at P; (d) the equation of the equipotential surface passing
through P; (e) the equation of the streamline passing through P. (f) Does
V satisfy Laplace’s equation?

7.2 A potential field V exists in a region where € = f(x). Find V>V if p, = 0.
Let V(x, y) = 4e** + f(x) — 3)° in a region of free space where p, = 0. It
is known that both E, and V' are zero at the origin. Find f(x) and
V(x,p). 9

7.4 Given the potential field V' = AIn tanzé + B: (a) show that V2V = 0;

(b) select 4 and B so that V=100V and Ey =500V/m at P(r =S5,
0 =60°, ¢ =45°).
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Given the potential field V = (4p* + Bp~*)sin4¢: (a) show that
V2V =0; (b) select A and B so that ¥ =100V and |E| = 500 V/m at
Plp=1,¢=225°2=2).

20sin6 _ .
If V= s;n V in free space, find: (a) p, at P(r = 2,0 = 30°, ¢ = 0); (b)
r
the total charge within the spherical shell 1 <r < 2m.
2 . . .
Let V = cos ¢V in free space. (¢) Find the volume charge density at

0
point A4(},60°, 1). (b) Find the surface charge density on a conductor
surface passing through the point B(2, 30°, 1).

20 4
Let Vy(r, 0, ¢) = — and V,(r, 0, ¢) = " + 4. (a) State whether V| and V;

satisfy Laplace’s equation. (b) Evaluate V; and 7, on the closed surface
r = 4. (¢) Conciliate your results with the uniqueness theorem.

The functions Vi(p, ¢, z) and V>(p, ¢, z) both satisfy Laplace’s equation
in the region a < p < b, 0 < ¢ <2m, —L <z < L; each is zero on the
surfaces p=»5b for —L <z < L; z=—L for a < p < b; and z= L for
a < p < b; and each is 100V on the surface p =a for —L <z < L. (a)
In the region specified above, is Laplace’s equation satisfied by the func-
tions Vi + Vo, Vi — Vo, V1 + 3, and V| V>? (b) On the boundary surfaces
specified, are the potential values given above obtained from the func-
tions Vi+ Vo, Vi—Vo, V143, and VV3,? (¢) Are the functions
Vo, Vi+ Vo, Vi + 3, and V41V, identical with 1,?

Conducting planes at z=2cm and z = 8cm are held at potentials of
—3V and 9V, respectively. The region between the plates is filled with a
perfect dielectric with € = 5¢;. Find and sketch: (a) V(z); (b) E.(2); (c)
D.(z2).

The conducting planes 2x 4+ 3y = 12 and 2x + 3y = 18 are at potentials
of 100 V and 0, respectively. Let € = €y and find: (a) V at P(5, 2, 6); (b) E
at P.

Conducting cylinders at p = 2cm and p = 8cm in free space are held at
potentials of 60mV and —30mV, respectively. (a) Find V(p). (b) Find
E,(p). (¢) Find the surface on which ' =30mV.

Coaxial conducting cylinders are located at p = 0.5cm and p = 1.2cm.
The region between the cylinders is filled with a homogeneous perfect
dielectric. If the inner cylinder is at 100 V and the outer at 0V, find: (@)
the location of the 20-V equipotential surface; (b) Eymax; (¢) €r if the
charge per meter length on the inner cylinder is 20 nC/m.

Two semi-infinite planes are located at ¢ = —a and ¢ = @, where
a < /2. A narrow insulating strip separates them along the z axis.
The potential at ¢ = —a is Vy, while V=0 at ¢ = «. (@) Find V(¢) in
terms of @ and V. (b) Find E, at ¢ =20°, p =2cm, if V) =100 V" and
a = 30°.
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p=12cm
4
p=1mm
'1 0cm
Region 2
p=018% st - -
$=01197= 200V “Region |
i FIGURE 7.8
Gap See Prob. 15.
7.15 The two conducting planes illustrated in Fig. 7.8 are defined by

7.16

7.17

7.18

7.19

7.20

0.001 < p<0.120m, 0 <z <0.1m, » =0.179 and 0.188 rad. The med-
ium surrounding the planes is air. For region 1,0.179 < ¢ < 0.188,
neglect fringing and find: (a) V(¢); (b) E(p); (¢) D(p); (d) ps on the
upper surface of the lower plane; (e¢) Q on the upper surface of the
lower plane. (f) Repeat (a) to (¢) for region 2 by letting the location of
the upper plane be ¢ = 0.188 — 27, and then find pg and Q on the lower
surface of the lower plane. (g) Find the total charge on the lower plane
and the capacitance between the planes.

(a) Solve Laplace’s equation for the potential field in the homogeneous
region between two concentric conducting spheres with radii a and
b,b>a,if V=0atr=hb,and V=V, atr = a. (b) Find the capacitance
between them.

Concentric conducting spheres are located at » = 5Smm and r = 20 mm.
The region between the spheres is filled with a perfect dielectric. If the
inner sphere is at 100 V and the outer at 0 V: (a) find the location of the
20-V equipotential surface; (b) find E;max; (¢) find er if the surface
charge density on the inner sphere is 100 uC/m?.

Concentric conducting spheres have radii of 1 and 5cm. There is a
perfect dielectric for which ez = 3 between them. The potential of the
inner sphere is 2 V and that of the outer is —2 V. Find: (a) V (r); (b) E(r);
(¢) V atr = 3cm; (d) the location of the 0-V equipotential surface; (e) the
capacitance between the spheres.

Two coaxial conducting cones have their vertices at the origin and the z
axis as their axis. Cone A has the point A(1, 0, 2) on its surface, while
cone B has the point B(0, 3,2) on its surface. Let V4, =100V and
Vp =20V. Find: (a) « for each cone; (b) V at P(1,1,1).

A potential field in free space is given as V' = 100 In[tan(6/2)] + 50 V.
(a) Find the maximum value of |E4| on the surface 6 =40° for
0.1 <r<0.8m, 60° < ¢ < 90°. (b) Describe the surface V' =80V.
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7.22

7.23

7.24

7.25

7.26

7.27

7.28

POISSON’S AND LAPLACE’S EQUATIONS

In free space, let p, = 200€y/r*>*. (a) Use Poisson’s equation to find V' (r)
if it is assumed that r*E, — 0 when r — 0, and also that ¥V — 0 as
r — o00. (b) Now find V' (r) by using Gauss’s law and a line integral.
Let the volume charge density in Fig. 7.3¢ be given by p, =
pw0(x/a)e™™4. (a) Determine p,max and p,min and their locations. (b)
Find E, and V(x) if V(0) =0 and E, — 0 as x — o0. (¢) Use a devel-
opment similar to that of Sec. 7.4 to show that C=dQ/dV, =
€0S/(4v2a).

A rectangular trough is formed by four conducting planes located at
x=0and 8cm and y =0 and Scm in air. The surface at y = Scm is
at a potential of 100V, the other three are at zero potential, and the
necessary gaps are placed at two corners. Find the potential at x = 3 cm,
y=4cm.

The four sides of a square trough are held at potentials of 0, 20, —30, and
60 V; the highest and lowest potentials are on opposite sides. Find the
potential at the center of the trough.

In Fig. 7.7 change the right side so that the potential varies linearly from
0 at the bottom of that side to 100 V at the top. Solve for the potential at
the center of the trough.

If X is a function of x and X’ + (x — )X’ — 2X = 0, assume a solution
in the form of an infinite power series and determine numerical values
for ap to ag if ay =1 and a1 = —1.

It is known that J = XY is a solution of Laplace’s equation, where X is
a function of x alone and Y is a function of y alone. Determine which
of the following potential functions are also solutions of Laplace’s
equation: (a) V =100X; (b) V =50XY; (¢) V=2XY +x—3y; (d)
V=xXY;(e) V=XY.

Assume a product solution of Laplace’s equation in cylindrical coordi-
nates, J = PF, where V' is not a function of z, P is a function only of p,
and F is a function only of ¢. («) Obtain the two separated equations if
the separation constant is n°. Select the sign of n? so that the solution of
the ¢ equation leads to trigonometric functions. (b) Show that P =
Ap" + Bp~" satisfies the p equation. (¢) Construct the solution V(p, ¢).
Functions of this form are called circular harmonics.
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CHAPTER

3

THE
STEADY
MAGNETIC
FIELD

At this point the concept of a field should be a familiar one. Since we first
accepted the experimental law of forces existing between two point charges
and defined electric field intensity as the force per unit charge on a test charge
in the presence of a second charge, we have discussed numerous fields. These
fields possess no real physical basis, for physical measurements must always be in
terms of the forces on the charges in the detection equipment. Those charges
which are the source cause measurable forces to be exerted on other charges,
which we may think of as detector charges. The fact that we attribute a field to
the source charges and then determine the effect of this field on the detector
charges amounts merely to a division of the basic problem into two parts for
convenience.

We shall begin our study of the magnetic field with a definition of the
magnetic field itself and show how it arsies from a current distribution. The
effect of this field on other currents, or the second half of the physical problem,
will be discussed in the following chapter. As we did with the electric field, we
shall confine our initial discussion to free-space conditions, and the effect of
material media will also be saved for discussion in the following chapter.

The relation of the steady magnetic field to its source is more complicated
than is the relation of the electrostatic field to its source. We shall find it neces-
sary to accept several laws temporarily on faith alone, relegating their proof to
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the (rather difficult) final section in this chapter. This section may well be
omitted when studying magnetic fields for the first time. It is included to make
acceptance of the laws a little easier; the proof of the laws does exist and is
available for the disbelievers or the more advanced student.

8.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric
field changing linearly with time, or a direct current. We shall largely ignore the
permanent magnet and save the time-varying electric field for a later discussion.
Our present relationships will concern the magnetic field produced by a differ-
ential dc element in free space.

We may think of this differential current element as a vanishingly small
section of a current-carrying filamentary conductor, where a filamentary con-
ductor is the limiting case of a cylindrical conductor of circular cross section as
the radius approaches zero. We assume a current / flowing in a different vector
length of the filament dL. The law of Biot-Savart' then states that at any point P
the magnitude of the magnetic field intensity produced by the differential ele-
ment is proportional to the product of the current, the magnitude of the differ-
ential length, and the sine of the angle lying between the filament and a line
connecting the filament to the point P at which the field is desired; also, the
magnitude of the magnetic field intensity is inversely proportional to the square
of the distance from the differential element to the point P. The direction of the
magnetic field intensity is normal to the plane containing the differential filament
and the line drawn from the filament to the point P. Of the two possible normals,
that one is to be chosen which is in the direction of progress of a right-handed
screw turned from dL through the smaller angle to the line from the filament to
P. Using rationalized mks units, the constant of proportionality is 1/4z.

The Biot-Savart law, described above in some 150 words, may be written
concisely using vector notation as

IdL x ap  IdL xR
aH = 47R?2  4nR3

()

The units of the magnetic field intensity H are evidently amperes per meter (A/m).
The geometry is illustrated in Fig. 8.1. Subscripts may be used to indicate the
point to which each of the quantities in (1) refers. If we locate the current element
at point 1 and describe the point P at which the field is to be determined as point
2, then

! Biot and Savart were colleagues of Ampére, and all three were professors of physics at the Collége de
France at one time or another. The Biot-Savart law was proposed in 1820.
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Free space "
. . Ry,
(Point 1) e P
dLMm 2)
/" BR12
/ FIGURE 8.1
o LdL, Xag;, The law of Biot-Savart expresses the magnetic field inten-
l’| il dHy=——= . s s
4 2 47 an sity dH, produced by a differential current element
I,dL,. The direction of dHj; is into the page.
I] dL] X apr12
dHy = —————= 2
47 Ry,

The law of Biot-Savart is sometimes called Ampeére’s law for the current
element, but we shall retain the former name because of possible confusion with
Ampere’s circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when
that law is written for a differential element of charge,

_dQiagn2

dE, =
? 47T€0R%2

Both show an inverse-square-law dependence on distance, and both show a
linear relationship between source and field. The chief difference appears in
the direction of the field.

It is impossible to check experimentally the law of Biot-Savart as expressed
by (1) or (2) because the differential current element cannot be isolated. We have
restricted our attention to direct currents only, so the charge density is not a
function of time. The continuity equation in Sec. 5.2, Eq. (5),

9Py
V.J=—
ot
therefore shows that
V-J=0
or upon applying the divergence theorem,
% J-dS=0

The total current crossing any closed surface is zero, and this condition may be
satisfied only by assuming a current flow around a closed path. It is this current
flowing in a closed circuit which must be our experimental source, not the
differential element.
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It follows that only the integral form of the Biot-Savart law can be verified
experimentally,

4 R?

H:{)]deaR 3)

Equation (1) or (2), of course leads directly to the integral form (3), but
other differential expressions also yield the same integral formulation. Any term
may be added to (1) whose integral around a closed path is zero. That is, any
conservative field could be added to (1). The gradient of any scalar field always
yields a conservative field, and we could therefore add a term VG to (1), where G
is a general scalar field, without changing (3) in the slightest. This qualification
on (1) or (2) is mentioned to show that if we later ask some foolish questions, not
subject to any experimental check, concerning the force exerted by one differ-
ential current element on another, we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources,
such as current density J and surface current density K. Surface current flows in a
sheet of vanishingly small thickness, and the current density J, measured in
amperes per square meter, is therefore infinite. Surface current density, however,
is measured in amperes per meter width and designated by K. If the surface
current density is uniform, the total current / in any width b is

I =Kb
where we have assumed that the width b is measured perpendicularly to the

direction in which the current is flowing. The geometry is illustrated by Fig.
8.2. For a nonuniform surface current density, integration is necessary:

I= / KdN “4)

where dN is a differential element of the path across which the current is flowing.
Thus the differential current element 7 dL, where dL is in the direction of the

FIGURE 8.2

The total current I within a transverse width b, in
which there is a uniform surface current density
K, is Kb.
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current, may be expressed in terms of surface current density K or current density
J,

1dL=KdS =Jdv ®)
and alternate forms of the Biot-Savart law obtained,
K x aRdS
H= 6
/ 4 R? ©)
and
J x agpdv
H=
/ C47R? )

We may illustrate the application of the Biot-Savart law by considering an
infinitely long straight filament. We shall apply (2) first and then integrate. This,
of course, is the same as using the integral form (3) in the first place.’

Referring to Fig. 8.3, we should recognize the symmetry of this field. No
variation with z or with ¢ can exist. Point 2, at which we shall determine the field,
is therefore chosen in the z = 0 plane. The field point r is therefore r = pa,. The
source point r’ is given by r’ = z'a., and therefore

Rpo=r—r'=pa,—z'a.

(Point 1)

pPa, (Point 2)
FIGURE 8.3
Tf An infinitely long straight filament carrying a
direct current /. The field at point 2 is

= (I/27p)ay.

2 The closed path for the current may be considered to include a return filament parallel to the first
filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical
possibility. Practically, the problem is an impossible one, but we should realize that our answer will be
quite accurate near a very long straight wire having a distant return path for the current.
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so that

pa, —z'a,

aRri2 = \/ﬁ
We take dL = dz'a, and (2) becomes
Idz'a. x (pa, —z'a;)
An(p? + 2z 2)*?

Since the current is directed toward increasing values of z’, the limits are —oo
and oo on the integral, and we have

H _/'Oo Idz'a. x (pa, —z'a;)
T a4z
I (™ pdz'a,
T Ax —oo(,02+2’2)3/2

At this point the unit vector a,, under the integral sign should be investigated, for
it is not always a constant, as are the unit vectors of the cartesian coordinate
system. A vector is constant when its magnitude and direction are both constant.
The unit vector certainly has constant magnitude, but its direction may change.
Here ay changes with the coordinate ¢ but not with p or z. Fortunately, the
integration here is with respect to z’, and a4 is a constant and may be removed
from under the integral sign,

dH, =

Ipay (> dz’
H; = 4 2L 1232
T Jooo(p”+2"?)

/

_ Ipay z ‘00
—00

ANy

and

1
H, =—
2 27p Ay ®)

The magnitude of the field is not a function of ¢ or z and it varies inversely
as the distance from the filament. The direction of the magnetic-field-intensity
vector is circumferential. The streamlines are therefore circles about the filament,
and the field may be mapped in cross section as in Fig. 8.4.

The separation of the streamlines is proportional to the radius, or inversely
proportional to the magnitude of H. To be specific, the streamlines have been
drawn with curvilinear squares in mind. As yet we have no name for the family of
lines® which are perpendicular to these circular streamlines, but the spacing of

3 If you can’t wait, see Sec. 8.6
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_ , FIGURE 8.4
"\ . ),-" The streamlines of the magnetic field intensity about an infi-
) e nitely long straight filament carrying a direct current /. The
~— direction of / is into the page.

the streamlines has been adjusted so that the addition of this second set of lines
will produce an array of curvilinear squares.

A comparison of Fig. 8.4 with the map of the electric field about an infinite
line charge shows that the streamlines of the magnetic field correspond exactly to
the equipotentials of the electric field, and the unnamed (and undrawn) perpen-
dicular family of lines in the magnetic field corresponds to the streamlines of the
electric field. This correspondence is not an accident, but there are several other
concepts which must be mastered before the analogy between electric and mag-
netic fields can be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of
Coulomb’s law to find E. Each requires the determination of a moderately
complicated integrand containing vector quantities, followed by an integration.
When we were concerned with Coulomb’s law we solved a number of examples,
including the fields of the point charge, line charge, and sheet of charge. The law
of Biot-Savart can be used to solve analogous problems in magnetic fields, and
some of these problems now appear as exercises at the end of the chapter rather
than as examples here.

One useful result is the field of the finite-length current element, shown in
Fig. 8.5. It turns out (see Prob. 8 at the end of the chapter) that H is most easily
expressed in terms of the angles & and a», as identified in the figure. The result is

I . .
H=—(sinay —sinay)ay 9
4p

If one or both ends are below point 2, then «;, or both «; and «», are negative.

Equation (9) may be used to find the magnetic field intensity caused by
current filaments arranged as a sequence of straight line segments.
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FIGURE 8.5

The magnetic field intensity caused by a finite-
length current filament on the =z axis is
(I /Amp)(sinas — sinay)ay.

As a numerical example illustrating the use of (9), let us determine H at P»(0.4, 0.3, 0) in
the field of an 8-A filamentary current directed inward from infinity to the origin on the
positive x axis, and then outward to infinity along the y axis. This arrangement is shown

in Figure 8.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the two
angles, a;, = —90° and a,, = tan~'(0.4/0.3) = 53.1°. The radial distance p is measured
from the x axis, and we have p, = 0.3. Thus, this contribution to Hj is

‘ 8A

{ II. ¥
BA, f_ly
ay, 7 I,“\\‘a2y
¢ —g— —1

a.xn.‘ / Py(0.4,0.3, 0)

4| P | eTextMain Menu |

FIGURE 8.6

The individual fields of two semi-infi-
nite current segments are found by (9)
and added to obtain H, at P».
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2 12
HZ(x) - (0 3)(SlI‘l 53.1°+ 1)a¢ = .3]_[(1‘8)3(15 = ;ad,
The unit vector ag, must also be referred to the x axis. We see that it becomes —a..
Therefore,
12
Hyy=——a. A
2(x) . 2 /m
For the current on the y axis, we have o, = — tan—'(0.3/0.4) = —36.9°, o, =90°, and

py = 0.4. Tt follows that

8 8
H,,) = o (04)(1+sm369)( a)——;a~ A/m

Adding these results, we have

20
Hy = Hy) + Hyy) = 8= —6.37a. A/m

l/ D8.1. Given the following values for Py, P,, and I} Ay, calculate AH,: (@) P;(0,0,2),
Py(4,2,0), 2rma.uA-m; (b)) Pi(0,2,0), P2(4,2,0), 2ma.puA-m; () Pi(1,2,3),
Py(=3,-1,2), 2n(—a, +a, + 2a.)uA - m.

Ans. —8.51a, 4+ 17.01a, nA/m; 16a, nA/m; 3.77a, — 6.79a, + 5.28a. nA/m

¢/ D82. A current filament carrying 15 A in the a. direction lies along the entire z axis.
Find H in cartesian coordinates at: (a) P4(+/20,0,4); (b) Pp(2, —4,4).

Ans. 0.534a, A/m; 0.477a, 4 0.239a, A/m

8.2 AMPERE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we
found that the same problems could be solved much more easily by using Gauss’s
law whenever a high degree of symmetry was present. Again, an analogous
procedure exists in magnetic fields. Here, the law that helps us solve problems
more easily is known as Ampére’s circuital® law, sometimes called Ampére’s
work law. This law may be derived from the Biot-Savart law, and the derivation
is accomplished in Sec. 8.7. For the present we might agree to accept Ampere’s
circuital law temporarily as another law capable of experimental proof. As is the
case with Gauss’s law, its use will also require careful consideration of the
symmetry of the problem to determine which variables and components are
present.

Ampeére’s circuital law states that the line integral of H about any closed
path is exactly equal to the direct current enclosed by that path,

4 The preferred pronunciation puts the accent on “circ-.”
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%H.szl (10)

We define positive current as flowing in the direction of advance of a right-
handed screw turned in the direction in which the closed path is traversed.

Referring to Fig. 8.7, which shows a circular wire carrying a direct current
I, the line integral of H about the closed paths lettered ¢ and b results in an
answer of [; the integral about the closed path ¢ which passes through the
conductor gives an answer less than 7/ and is exactly that portion of the total
current which is enclosed by the path ¢. Although paths ¢ and b give the same
answer, the integrands are, of course, different. The line integral directs us to
multiply the component of H in the direction of the path by a small increment of
path length at one point of the path, move along the path to the next incremental
length, and repeat the process, continuing until the path is completely traversed.
Since H will generally vary from point to point, and since paths @ and b are not
alike, the contributions to the integral made by, say, each micrometer of path
length are quite different. Only the final answers are the same.

We should also consider exactly what is meant by the expression ‘“‘current
enclosed by the path.” Suppose we solder a circuit together after passing the
conductor once through a rubber band, which we shall use to represent the
closed path. Some strange and formidable paths can be constructed by twisting
and knotting the rubber band, but if neither the rubber band nor the conducting
circuit is broken, the current enclosed by the path is that carried by the con-
ductor. Now let us replace the rubber band by a circular ring of spring steel
across which is stretched a rubber sheet. The steel loop forms the closed path,
and the current-carrying conductor must pierce the rubber sheet if the current is
to be enclosed by the path. Again, we may twist the steel loop, and we may also
deform the rubber sheet by pushing our fist into it or folding it in any way we
wish. A single current-carrying conductor still pierces the sheet once, and this is
the true measure of the current enclosed by the path. If we should thread the
conductor once through the sheet from front to back and once from back to
front, the total current enclosed by the path is the algebraic sum, which is zero.

FIGURE 8.7
A conductor has a total current /. The
line integral of H about the closed paths
a and b is equal to 7, and the integral
/ around path c¢ is less than 7, since the
1 entire current is not enclosed by the path.

4| p | eTextMainMenu | Textbook Table of Contents

233



234

ENGINEERING ELECTROMAGNETICS

In more general language, given a closed path, we recognize this path as the
perimeter of an infinite number of surfaces (not closed surfaces). Any current-
carrying conductor enclosed by the path must pass through every one of these
surfaces once. Certainly some of the surfaces may be chosen in such a way that
the conductor pierces them twice in one direction and once in the other direction,
but the algebraic total current is still the same.

We shall find that the nature of the closed path is usually extremely simple
and can be drawn on a plane. The simplest surface is, then, that portion of the
plane enclosed by the path. We need merely find the total current passing
through this region of the plane.

The application of Gauss’s law involves finding the total charge enclosed by
a closed surface; the application of Ampere’s circuital law involves finding the
total current enclosed by a closed path.

Let us again find the magnetic field intensity produced by an infinitely long
filament carrying a current /. The filament lies on the z axis in free space (as in
Fig. 8.3), and the current flows in the direction given by a.. Symmetry inspection
comes first, showing that there is no variation with z or ¢. Next we determine
which components of H are present by using the Biot-Savart law. Without
specifically using the cross product, we may say that the direction of dH is
perpendicular to the plane conaining dL and R and therefore is in the direction
of a4;. Hence the only component of H is Hy, and it is a function only of p.

We therefore choose a path to any section of which H is either perpendic-
ular or tangential and along which H is constant. The first requirement (perpen-
dicularity or tangency) allows us to replace the dot product of Ampeére’s circuital
law with the product of the scalar magnitudes, except along that portion of the
path where H is normal to the path and the dot product is zero; the second
requirement (constancy) then permits us to remove the magnetic field intensity
from the integral sign. The integration required is usually trivial and consists of
finding the length of that portion of the path to which H is parallel.

In our example the path must be a circle of radius p and Ampére’s circuital
law becomes

27 27
fH -dL = Hypdep = Hyp dp = Hy2mp =1
0 0

or

1

Hy=—
¢ 27p

as before.

As a second example of the application of Ampeére’s circuital law, consider
an infinitely long coaxial transmission line carrying a uniformly distributed total
current / in the center conductor and —/ in the outer conductor. The line is
shown in Fig. 8.8a. Symmetry shows that H is not a function of ¢ or z. In order
to determine the components present, we may use the results of the previous
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®)

FIGURE 8.8

(a) Cross section of a coaxial cable carrying a uniformly distributed current / in the inner conductor and
—1 in the outer conductor. The magnetic field at any point is most easily determined by applying Ampere’s
circuital law about a circular path. (b) Current filaments at p = p;, ¢ = £¢;, produces H, components
which cancel. For the total field, H = Hya,.

example by considering the solid conductors as being composed of a large num-
ber of filaments. No filament has a z component of H. Furthermore, the H,
component at ¢ = 0°, produced by one filament located at p = p;, ¢ = ¢y, is
canceled by the H, component produced by a symmetrically located filament at
p = p1, ¢ = —¢1. This symmetry is illustrated by Fig. 8.85. Again we find only an
H, component which varies with p.

A circular path of radius p, where p is larger than the radius of the inner
conductor but less than the inner radius of the outer conductor, then leads
immediately to

1
H¢=% (Cl<p<b)

If we choose p smaller than the radius of the inner conductor, the current
enclosed is

2

0
Ienclzlg
and
2
0
2npHy = 1—
oL )
or
Ip
= P9

If the radius p is larger than the outer radius of the outer conductor, no
current is enclosed and

Hy=0 (p>c¢)
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Finally, if the path lies within the outer conductor, we have

2 2
p-—>b

The magnetic-field-strength variation with radius is shown in Fig. 8.9 for a
coaxial cable in which b = 3a, ¢ = 4a. It should be noted that the magnetic field
intensity H is continuous at all the conductor boundaries. In other words, a
slight increase in the radius of the closed path does not result in the enclosure
of a tremendously different current. The value of H, shows no sudden jumps.

The external field is zero. This, we see, results from equal positive and
negative currents enclosed by the path. Each produces an external field of mag-
nitude //2mp, but complete cancellation occurs. This is another example of
“shielding”; such a coaxial cable carrying large currents would not produce
any noticeable effect in an adjacent circuit.

As a final example, let us consider a sheet of current flowing in the positive
y direction and located in the z = 0 plane. We may think of the return current as
equally divided between two distant sheets on either side of the sheet we are
considering. A sheet of uniform surface current density K = K,a, is shown in
Fig. 8.10. H cannot vary with x or y. If the sheet is subdivided into a number of
filaments, it is evident that no filament can produce an H, component.
Moreover, the Biot-Savart law shows that the contributions to H. produced
by a symmetrically located pair of filaments cancel. Thus, H. is zero also; only
an H, component is present. We therefore choose the path 1-1’-2’-2-1 composed
of straight-line segments which are either parallel or perpendicular to Hy.
Ampére’s circuital law gives

HoL+ Ho(—L) =K, L

or
H,—-Hy,= Ky
A
2na
3a
!
R 4a
FIGURE 8.9
The magnetic field intensity as a func-
tion of radius in an infinitely long coax-
0 ial transmission line with the dimensions
0 2a da=b 4a=¢  shown.
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P )
~, \
l } 3’ \_h I
i 1 ' FIGURE 8.10
i K=K A uniform sheet of surface current
¥ it K = K,a, in the z =0 plane. H may
2 be found by applying Ampére’s circuit-
N X al law about the paths 1-1’-2-2-1 and
N2 3-3-2/-2-3.

If the path 3-3/-2’-2-3 is now chosen, the same current is enclosed, and
Hs—-Ho =K,
and therefore
Hgs =Hy

It follows that H. is the same for all positive z. Similarly, H, is the same for all
negative z. Because of the symmetry, then, the magnetic field intensity on one
side of the current sheet is the negative of that on the other. Above the sheet,

H, = %1{1 (Z > O)
while below it
H, = —%Ky (z<0)

Letting ay be a unit vector normal (outward) to the current sheet, the result may
be written in a form correct for all z as

H=1Kxay (11)

If a second sheet of current flowing in the opposite direction, K = —K,a,, is
placed at z = A, (11) shows that the field in the region between the current sheets
is

H=Kxay (0<z<h) (12)

and is zero elsewhere,

H=0 (z<0,z>h) (13)

The most difficult part of the application of Ampere’s circuital law is the
determination of the components of the field which are present. The surest
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method is the logical application of the Biot-Savart law and a knowledge of the
magnetic fields of simple form.

Problem 13 at the end of this chapter outlines the steps involved in applying
Ampere’s circuital law to an infinitely long solenoid of radius ¢ and uniform
current density K,a,, as shown in Fig. 8.11a. For reference, the result is

H=K,a. (p<a) (14a)

H=0 (p>a) (14b)

If the solenoid has a finite length ¢ and consists of N closely wound turns of
a filament that carries a current / (Fig. 8.11b), then the field at points well within
the solenoid is given closely by
NI

H= 721'2 (well within the solenoid) (15)

The approximation is useful it if is not applied closer than two radii to the open
ends, nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Fig. 8.12, it can be shown that the magnetic field
intensity for the ideal case, Fig. 8.12aq, is

pPo—da

H =K, ag (inside toroid) (16a)

H=0 (outside) (16b)

p=a
H=K,a, p<a
H=%p-e (el immide:coi)
(a) (&)
FIGURE 8.11

(a) An ideal solenoid of infinite length with a circular current sheet K = K,a,. (b) An N-turn solenoid of
finite length d.
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K=K,aatp=py—a,z=0

H= % ay (well inside toroid)
" [ P . P
H=K, 4, (inside toroid)
p
H=0 (outside)
(a) (b)

FIGURE 8.12
(a) An ideal toroid carrying a surface current K in the direction shown. () An N-turn toroid carrying a
filamentary current /.

For the N-turn toroid of Figure 8.12h, we have the good approximations,

NI
H=_-—a4 (inside toroid) (17a)
2mp

H=0 (outside) (17b)

as long as we consider points removed from the toroidal surface by several times
the separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as
you can see for yourself by trying Prob. 14.

Accurate formulas for solenoids, toroids, and coils of other shapes are
available in Sec. 2 of the “Standard Handbook for Electrical Engineers” (see
Suggested References for Chap. 5).

‘/ D8.3. Express the value of H in cartesian components at P(0, 0.2, 0) in the field of: (a) a
current filament, 2.5 A in the a. direction at x = 0.1, y = 0.3; (b) a coax, centered on the
z axis, with a = 0.3, 5 =0.5, ¢ = 0.6, I = 2.5 A in a. direction in center conductor; (c¢)
three current sheets, 2.7a, A/m at y = 0.1, —1.4a, A/m at y = 0.15, and —1.3a, A/m at
y =10.25.

Ans. 1.989a, — 1.989a, A/m; —0.884a, A/m; 1.300a. A/m

8.3 CURL

We completed our study of Gauss’s law by applying it to a differential volume
element and were led to the concept of divergence. We now apply Ampeére’s
circuital law to the perimeter of a differential surface element and discuss the
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third and last of the special derivatives of vector analysis, the curl. Our immedi-
ate objective is to obtain the point form of Ampeére’s circuital law.

Again we shall choose cartesian coordinates, and an incremental closed
path of sides Ax and Ay is selected (Fig. 8.13). We assume that some current,
as yet unspecified, produces a reference value for H at the center of this small
rectangle,

Hy = Hya, + Hya, + Ha,

The closed line integral of H about this path is then approximately the sum of the
four values of H- AL on each side. We choose the direction of traverse as 1-2-3-
4-1, which corresponds to a current in the a. direction, and the first contribution
is therefore

The value of H, on this section of the path may be given in terms of the reference

value H, at the center of the rectangle, the rate of change of H, with x, and the
distance Ax/2 from the center to the mldpomt of side 1-2:

H,, »=H, lAX)

Thus

10H,
(H-AL), , = (H»0+2 - x)Ay

Along the next section of the path we have

1 9H,
(H-AL), ;= He s 3(—Ax) = — < 288 >Ax

Continuing for the remaining two segments and adding the results,
H.dL = AxA
f ( ax  dy ) Y

H=Ho=Hyqa, +Hyoa,+Hoa,

Ax

Ay FIGURE 8.13
- ) An incremental closed path in cartesian coordi-
nates is selected for the application of Ampere’s
¥ circuital law to determine the spatial rate of
change of H.
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By Ampere’s circuital law, this result must be equal to the current enclosed by the
path, or the current crossing any surface bounded by the path. If we assume a
general current density J, the enclosed current is then A7 = J.AxAy, and

0H, 0H
?gH-dLi —2 X )AxAy = J.AxAy
ox ay

or

§H-dL . 0H, O0H, .
AxAy — ox ay 7

As we cause the closed path to shrink, the above expression becomes more nearly
exact, and in the limit we have the equality

im fH‘dL_BHy 0H
Ax,Ay—>0 AXAy T dx ay

—J. (18)

After beginning with Ampeére’s circuital law equating the closed line inte-
gral of H to the current enclosed, we have now arrived at a relationship involving
the closed line integral of H per unit area enclosed and the current per unit area
enclosed, or current density. We performed a similar analysis in passing from the
integral form of Gauss’s law, involving flux through a closed surface and charge
enclosed, to the point form, relating flux through a closed surface per unit volume
enclosed and charge per unit volume enclosed, or volume charge density. In each
case a limit is necessary to produce an equality.

If we choose closed paths which are oriented perpendicularly to each of the
remaining two coordinate axes, analogous processes lead to expressions for the y
and z components of the current density,

i §H-dL_9H. 9H,

Ay,lAr?—x) AyAz 3y B BZV = (19
and
. ng-dL oH, 0H.
Az,lAI}}—>0 AzAX 0z ox Iy (20)

Comparing (18), (19), and (20), we see that a component of the current
density is given by the limit of the quotient of the closed line integral of H about
a small path in a plane normal to that component and of the area enclosed as the
path shrinks to zero. This limit has its counterpart in other fields of science and
long ago received the name of curl. The curl of any vector is a vector, and any
component of the curl is given by the limit of the quotient of the closed line
integral of the vector about a small path in a plane normal to that component
desired and the area enclosed, as the path shrinks to zero. It should be noted that
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the above definition of curl does not refer specifically to a particular coordinate
system. The mathematical form of the definition is

. $H-dL
(curl H)y = A}VINIEOTSN

@1

where ASy is the planar area enclosed by the closed line integral. The N sub-
script indicates that the component of the curl is that component which is normal
to the surface enclosed by the closed path. It may represent any component in
any coordinate system.

In cartesian coordinates the definition (21) shows that the x, y, and z
components of the curl H are given by (18), (19), and (20), and therefore

oH. 0H, oH, 0H. oH, 0H,
curl H = a4+ [———")a, + [ a. (22)
ay 0z 0z ax ) - ox ay

This result may be written in the form of a determinant,

a, a, a
curl H= 992 (23)
ox dy oz
H. H, H.
and may also be written in terms of the vector operator,
curlH=V xH (24)

Equation (22) is the result of applying the definition (21) to the cartesian
coordinate system. We obtained the z component of this expression by evaluat-
ing Ampere’s circuital law about an incremental path of sides Ax and Ay, and we
could have obtained the other two components just as easily by choosing the
appropriate paths. Equation (23) is a neat method of storing the cartesian coor-
dinate expression for curl; the form is symmetrical and easily remembered.
Equation (24) is even more concise and leads to (22) upon applying the defini-
tions of the cross product and vector operator.

The expressions for curl H in cylindrical and spherical coordinates are
derived in Appendix A by applying the definition (21). Although they may be
written in determinant form, as explained there, the determinants do not have
one row of unit vectors on top and one row of components on the bottom, and
they are not easily memorized. For this reason, the curl expansions in cylindrical
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and spherical coordinates which appear below and inside the back cover are
usually referred to whenever necessary.

10H, 0H oH, O0H.
VxH:( : ¢)ap+( L— )a¢

p 0 9z 9
’ 1¢a( H, ; 10H ) ’ =
Py P ; ;
4+ |————%L)a. (cylindrical)
(p dp o 3¢) ey
VxHo L (MHsin®) oH, ,~ 1(_L 0H, _3(rHy) a
rsinf a0 ap r\sinf d¢p or (26)
L (%rHy) _3H, ay (spherical)
T ) PP

Although we have described curl as a line integral per unit area, this does
not provide everyone with a satisfactory physical picture of the nature of the curl
operation, for the closed line integral itself requires physical interpretation. This
integral was first met in the electrostatic field, where we saw that f E - dL = 0.
Inasmuch as the integral was zero, we did not belabor the physical picture. More
recently we have discussed the closed line integral of H, § H- dL = I. Either of
these closed line integrals is also known by the name of “‘circulation,” a term
obviously borrowed from the field of fluid dynamics.

The circulation of H, or ¢ H - dL, is obtained by multiplying the component
of H parallel to the specified closed path at each point along it by the differential
path length and summing the results as the differential lengths approach zero
and as their number becomes infinite. We do not require a vanishingly small
path. Ampeére’s circuital law tells us that if H does possess circulation about a
given path, then current passes through this path. In electrostatics we see that the
circulation of E is zero about every path, a direct consequence of the fact that
zero work is required to carry a charge around a closed path.

We may now describe curl as circulation per unit area. The closed path is
vanishingly small, and curl is defined at a point. The curl of E must be zero, for
the circulation is zero. The curl of H is not zero, however; the circulation of H
per unit area is the current density by Ampeére’s circuital law [or (18), (19), and
(20)].

Skilling® suggests the use of a very small paddle wheel as a “curl meter.”
Our vector quantity, then, must be thought of as capable of applying a force to
each blade of the paddle wheel, the force being proportional to the component of
the field normal to the surface of that blade. To test a field for curl we dip our
paddle wheel into the field, with the axis of the paddle wheel lined up with the

3 See the Suggested References at the end of the chapter.
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direction of the component of curl desired, and note the action of the field on the
paddle. No rotation means no curl; larger angular velocities mean greater values
of the curl; a reversal in the direction of spin means a reversal in the sign of the
curl. To find the direction of the vector curl and not merely to establish the
presence of any particular component, we should place our paddle wheel in the
field and hunt around for the orientation which produces the greatest torque.
The direction of the curl is then along the axis of the paddle wheel, as given by
the right-hand rule.

As an example, consider the flow of water in a river. Fig. 8.14a shows the
longitudinal section of a wide river taken at the middle of the river. The water
velocity is zero at the bottom and increases linearly as the surface is approached.
A paddle wheel placed in the position shown, with its axis perpendicular to the
paper, will turn in a clockwise direction, showing the presence of a component of
curl in the direction of an inward normal to the surface of the page. If the
velocity of water does not change as we go up- or downstream and also shows
no variation as we go across the river (or even if it decreases in the same fashion
toward either bank), then this component is the only component present at the
center of the stream, and the curl of the water velocity has a direction into the
page.

In Fig. 8.14b the streamlines of the magnetic field intensity about an infi-
nitely long filamentary conductor are shown. The curl meter placed in this field
of curved lines shows that a larger number of blades have a clockwise force
exerted on them but that this force is in general smaller than the counterclock-
wise force exerted on the smaller number of blades closer to the wire. It seems
possible that if the curvature of the streamlines is correct and also if the variation
of the field strength is just right, the net torque on the paddle wheel may be zero.
Actually, the paddle wheel does not rotate in this case, for since H = (//2mp)ag,
we may substitute into (25) obtaining

8H¢ a 1 8(pH¢)

curl H= — +— -.=0
az " p ap
H
*
Velocity
— Current
ra— into page
—
River bed ?

|
(a) (b)

FIGURE 8.14
(a) The curl meter shows a component of the curl of the water velocity into the page. (b) The curl of the
magnetic field intensity about an infinitely long filament is shown.
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[l Example 8.2

As an example of the evaluation of curl H from the definition and of the evaluation of
another line integral, let us suppose that H = 0.2z%a, for z > 0, and H = 0 elsewhere, as
shown in Fig. 8.15. Calculate { H- dL about a square path with side d, centered at
(0,0, z1) in the y = 0 plane where z; > 2d.

Solution. We evaluate the line integral of H along the four segments, beginning at the
top:

7{H -dL = 0.2(z; +3d)*d + 0 — 0.2(zy — 1d)*d + 0
= 0.4z,d”

In the limit as the area approaches zero, we find

§H-dL . 0.4z d
7 A )
The other components are zero, so V x H = 0.4zja,.

To evaluate the curl without trying to illustrate the definition or the evaluation of a
line integral, we simply take the partial derivative indicated by (23):

= 0.421

VxH), =1
(V> H), =0

a, a, a.

UxH=| 0 0 009 0o, 04,
ox 9y oz| 0z : ’
022 0 0

which checks with the result above when z = z;.

FIGURE 8.15

A square path of side d with its
center on the z axis at z=_z is
- used to evaluate § H - dL and find
. &

; curl H.
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Returning now to complete our original examination of the application of
Ampere’s circuital law to a differential-sized path, we may combine (18), (19),
(20), (22), and (24),

oH., 0H, oH, 0H.
curl H=V xH = —— |a, + a,

dy 0 oz 9
) Z 4 X 27)
(P HY
ax ay )7
and write the point form of Ampere’s circuital law,
VxH=J (28)

This is the second of Maxwell’s four equations as they apply to non-time-
varying conditions. We may also write the third of these equations at this time; it
is the point form of {E-dL =0, or

VxE=0 (29)

The fourth equation appears in Sec. 8.5.

v D84 (a) Evaluate the closed line integral of H about the rectangular path P(2, 3, 4) to
Py(4,3,4) to P3(4,3, 1) to Py(2,3,1) to Py, given H = 3za, — 2x3a. A/m. (b) Determine
the quotient of the closed line integral and the area enclosed by the path as an approx-
imation to (V x H),. (¢) Determine (V x H), at the center of the area.

Ans. 354 A; 59 A/m?*; 57 A/m>

i/ D8.5. Calculate the value of the vector current density: (a) in cartesian coordinates at
P4(2,3,4) if H=x%2a, —)?xa.; (b) in cylindrical coordinates at Pp(1.5,90° 0.5) if
2 . . . . 1
H = —(cos 0.2¢)a,; (c) in spherical coordinates at Pc(2,30°,20°) if H = mag.
P
Ans. —16a, + 9a, + 16a. A/m?; 0.0549a, A/m?; a, A/m?

8.4 STOKES’ THEOREM

Although the last section was devoted primarily to a discussion of the curl
opeation, the contribution to the subject of magnetic fields should not be over-
looked. From Ampére’s circuital law we derived one of Maxwell’s equations,
V x H=J. This latter equation should be considered the point form of
Ampeére’s circuital law and applies on a “‘per-unit-area’ basis. In this section
we shall again devote a major share of the material to the mathematical theorem
known as Stokes’ theorem, but in the process we shall show that we may obtain
Ampeére’s circuital law from V x H = J. In other words, we are then prepared to
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obtain the integral form from the point form or to obtain the point form from
the integral form.

Consider the surface S of Fig. 8.16 which is broken up into incremental
surfaces of area AS. If we apply the definition of the curl to one of these incre-
mental surfaces, then

fH - dLys
AS

where the N subscript again indicates the right-hand normal to the surface. The
subscript on dLag indicates that the closed path is the perimeter of an incre-
mental area AS. This result may also be written

$H - dLys
AS

=(VxH)y

i(VxH)-aN
or
fH.dLASi(VxH-aNAS:(VXH)-As

where ay is a unit vector in the direction of the right-hand normal to AS.

Now let us determine this circulation for every AS comprising S and sum
the results. As we evaluate the closed line integral for each AS, some cancellation
will occur because every interior wall is covered once in each direction. The only
boundaries on which cancellation cannot occur form the outside boundary, the
path enclosing S. Therefore we have

fH-dLE/(VXH)'dS (30)
S

FIGURE 8.16

The sum of the closed line integrals about
Surface 5 the perimeter of every AS is the same as the

closed line integral about the perimeter of S
because of cancellation on every interior
path.
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where dL is taken only on the perimeter of S.
Equation (30) is an identity, holding for any vector field, and is known as
Stokes’ theorem.

IIII»Example 8.3

A numerical example may help to illustrate the geometry involved in Stokes’ theorem.
Consider the portion of a sphere shown in Fig. 8.17. The surface is specified by r = 4,
0<6<0.17, 0 < ¢ <0.37, and the closed path forming its perimeter is composed of
three circular arcs. We are given the field H = 6rsin ¢a, + 18rsin 6 cos ¢a, and are asked
to evaluate each side of Stokes’ theorem.

Solution. The first path segment is described in spherical coordinates by r =4,
0<6<0.17, ¢ =0; the second one by r =4, 6§ = 0.1z, 0 < ¢ < 0.37; and the third
by r=4,0<0<0.lnr, ¢ =0.37. The differential path element dL is the vector sum
of the three differential lengths of the spherical coordinate system first discussed in Sec.
1.9,

dL=dra, +rdbay+rsinOdpa,

The first term is zero on all three segments of the path since r = 4 and dr = 0, the second
is zero on segment 2 since 6 is constant, and the third term is zero on both segments 1
and 3. Thus

fH-dL:/ngd9+/H¢rsin0d¢+/ngdé
1 2 3

FIGURE 8.17
A portion of a spherical cap is used as a surface
¥ and a closed path to illustrate Stokes’ theorem.
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Since Hy = 0, we have only the second integral to evaluate,

0.3
%H -dL = / [18(4)sin 0.1 cos ¢]4 sin 0.1wdp
0

=288sin’0.17sin0.37 = 22.2 A

We next attack the surface integral. First, we use (26) to find

1

VxH=—
rsin 6

1/ 1 .
(36rsinfcosfcosp)a, + — (— 61 cos ¢ — 36rsin b cos ¢>> ag
r \sin 6@
Since dS = r?sin@d0d¢a,, the integral is
0.37  p0.17
/(VxH)«dS:/ / (36cosfcosp)16sin0db deo
s 0 0

0.3 0.17

= / 576(} sin® 6)‘0 cospdg
0

= 288sin%0.17sin 0.37 = 22.2 A

Thus, the results check Stokes’ theorem, and we note in passing that a current of
22.2 A is flowing upward through this section of a spherical cap.

Next, let us see how easy it is to obtain Ampere’s circuital law from
V x H=J. We merely have to dot each side by dS, integrate each side over
the same (open) surface S, and apply Stokes’ theorem:

/S(VXH)~dS:/SJ-dS:%H.dL

The integral of the current density over the surface S is the total current / passing
through the surface, and therefore

%H-dL:I

This short derivation shows clearly that the current /, described as being
“enclosed by the closed path,” is also the current passing through any of the
infinite number of surfaces which have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should
be recalled that the divergence theorem relates a volume integral to a closed
surface integral. Both theorems find their greatest use in general vector proofs.
As an example, let us find another expression for V-V x A, where A represents
any vector field. The result must be a scalar (why?), and we may let this scalar be
T, or

V.VxA=T
Multiplying by dv and integrating throughout any volume v,

/(V-VxA)dv:/ T dv
vol vol
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we first apply the divergence theorem to the left side, obtaining

f(VxA)-dS:/ T dv
S vol

The left side is the surface integral of the curl of A over the closed surface
surrounding the volume v. Stokes’ theorem relates the surface integral of the curl
of A over the open surface enclosed by a given closed path. If we think of the path
as the opening of a laundry bag and the open surface as the surface of the bag
itself, we see that as we gradually approach a closed surface by pulling on the
drawstrings, the closed path becomes smaller and smaller and finally disappears
as the surface becomes closed. Hence the application of Stokes’ theorem to a
closed surface produces a zero result, and we have

/ Tdv=0
vol

Since this is true for any volume, it is true for the differential volume dv,

Tdv=0
and therefore
T=0
or
V-VxA=0 (31)

Equation (31) is a useful identity of vector calculus.® Of course, it may also
be proven easily by direct expansion in cartesian coordinates.
Let us apply the identity to the non-time-varying magnetic field for which

VxH=J
This shows quickly that
V-J=0

which is the same result we obtained earlier in the chapter by using the continuity
equation.

Before introducing several new magnetic field quantities in the following
section, we may review our accomplishments at this point. We initially accepted
the Biot-Savart law as an experimental result,

IdL x ap
H =
% 47 R?

® This and other vector identities are tabulated in Appendix A.3.
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and tentatively accepted Ampere’s circuital law, subject to later proof,

From Ampeére’s circuital law the definition of curl led to the point form of this
same law,

VxH=J

We now see that Stokes’ theorem enables us to obtain the integral form of
Ampeére’s circuital law from the point of form.

¢/  D8.6. Evaluate both sides of Stokes’ theorem for the field H = 6xya, — 3y%*a, A/m and
the rectangular path around the region, 2 < x <5, —1 <y <1, z=0. Let the positive
direction of dS be a..

Ans. —126 A; —126 A

8.5 MAGNETIC FLUX AND MAGNETIC FLUX
DENSITY

In free space, let us define the magnetic flux density B as

B = uoH (free space only) (32)

where B is measured in webers per square meter (Wb/m?) or in a newer unit
adopted in the International System of Units, tesla (T). An older unit that is
often used for magnetic flux density is the gauss (G), where 1 T or 1 Wb/m? is
the same as 10000 G. The constant p is not dimensionless and has the defined
value for free space, in henrys per meter (H/m), of

po = 4m x 1077 H/m (33)

The name given to g is the permeability of free space.

We should note that since H is measured in amperes per meter, the weber is
dimensionally equal to the product of henrys and amperes. Considering the
henry as a new unit, the weber is merely a convenient abbreviation for the
product of henrys and amperes. When time-varying fields are introduced, it
will be shown that a weber is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter
implies, is a member of the flux-density family of vector fields. One of the
possible analogies between electric and magnetic fields’ compares the laws of
Biot-Savart and Coulomb, thus establishing an analogy between H and E. The

7 An alternate analogy is presented in Sec. 10.2.
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relations B = uoH and D = ¢)E then lead to an analogy between B and D. If B is
measured in teslas or webers per square meter, then magnetic flux should be
measured in webers. Let us represent magnetic flux by ® and define ® as the flux
passing through any designated area,

d):/B-dSWb (34)
S

Our analogy should now remind us of the electric flux W, measured in
coulombs, and of Gauss’s law, which states that the total flux passing through
any closed surface is equal to the charge enclosed,

W:?§SD~dS:Q

The charge Q is the source of the lines of electric flux and these lines begin and
terminate on positive and negative charge, respectively.

No such source has ever been discovered for the lines of magnetic flux. In
the example of the infinitely long straight filament carrying a direct current /7, the
H field formed concentric circles about the filament. Since B = uoH, the B field
is of the same form. The magnetic flux lines are closed and do not terminate on a
“magnetic charge.” For this reason Gauss’s law for the magnetic field is

fB-dszo (35)
S

and application of the divergence theorem shows us that

V-B=0 (36)

We have not proved (35) or (36) but have only suggested the truth of these
statements by considering the single field of the infinite filament. It is possible to
show that (35) or (36) follows from the Biot-Savart law and the definition of B,
B = 1oH, but this is another proof which we shall postpone to Sec. 8.7.

Equation (36) is the last of Maxwell’s four equations as they apply to static
electric fields and steady magnetic fields. Collecting these equations, we then
have for static electric fields and steady magnetic fields

V'D:pv
VxE=0
(37)
VxH=J
V-B=0
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To these equations we may add the two expressions relating D to E and B
to H in free space,

D = ¢FE (38)

B = uH (39)

We have also found it helpful to define an electrostatic potential,

E=-VV (40)

and we shall discuss a potential for the steady magnetic field in the following
section. In addition, we have extended our coverage of electric fields to include
conducting materials and dielectrics, and we have introduced the polarization P.
A similar treatment will be applied to magnetic fields in the next chapter.
Returning to (37), it may be noted that these four equations specify the
divergence and curl of an electric and a magnetic field. The corresponding set of
four integral equations that apply to static electric fields and steady magnetic

fields is
fD‘dS:Q:/ Ppdv
S vol

%E-dL:O
fH-dL:I:/J-dS
s
fB.dS:O
N

Our study of electric and magnetic fields would have been much simpler if
we could have begun with either set of equations, (37) or (41). With a good
knowledge of vector analysis, such as we should now have, either set may be
readily obtained from the other by applying the divergence theorem of Stokes’
theorem. The various experimental laws can be obtained easily from these equa-
tions.

As an example of the use of flux and flux density in magnetic fields, let us
find the flux between the conductors of the coaxial line of Fig. 8.8a. The mag-
netic field intensity was found to be

(41)

I
H¢:E (a<p<b)
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and therefore

ol
B =pH= M—
2mp

The magnetic flux contained between the conductors in a length d is the

flux crossing any radial plane extending from p = a to p = b and from, say, z =0

toz=d
CI>:/S //M—Olad) dpdzag
or
@:Mo—ld né (42)
2

This expression will be used later to obtain the inductance of the coaxial
transmission line.

¢/ D8.7. A solid conductor of circular cross section is made of a homogeneous nonmag-
netic material. If the radius « = 1 mm, the conductor axis lies on the z axis, and the total
current in the a. direction is 20 A, find: (a) Hy at p = 0.5 mm; (b) By at p = 0.8 mm; (¢)
the total magnetic flux per unit length inside the conductor; (d) the total flux for
p < 0.5mm; (e) the total magnetic flux outside the conductor.

Ans. 1592 A/m; 3.2 mT; 2uWb; 0.5 uWhb; co

8.6 THE SCALAR AND VECTOR MAGNETIC
POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the
scalar electrostatic potential V. Although this potential possesses a very real
physical significance for us, it is mathematically no more than a stepping-stone
which allows us to solve a problem by several smaller steps. Given a charge
configuration, we may first find the potential and then from it the electric field
intensity.

We should question whether or not such assistance is available in magnetic
fields. Can we define a potential function which may be found from the current
distribution and from which the magnetic fields may be easily determined? Can a
scalar magnetic potential be defined, similar to the scalar electrostatic potential?
We shall show in the next few pages that the answer to the first question is “‘yes,”
but the second must be answered “‘sometimes.”” Let us attack the last question
first by assuming the existence of a scalar magnetic potential, which we designate
V.n, whose negative gradient gives the magnetic field intensity

H= _VVm
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The selection of the negative gradient will provide us with a closer analogy to the
electric potential and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic
field, and therefore

VxH=J=Vx(-VV,)

However, the curl of the gradient of any scalar is identically zero, a vector
identity the proof of which is left for a leisure moment. Therefore we see that
if H is to be defined as the gradient of a scalar magnetic potential, then current
density must be zero throughout the region in which the scalar magnetic poten-
tial is so defined. We then have

H=-VV, J=0) (43)

Since many magnetic problems involve geometries in which the current-carrying
conductors occupy a relatively small fraction of the total region of interest, it is
evident that a scalar magnetic potential can be useful. The scalar magnetic
potential is also applicable in the case of permanent magnets. The dimensions
of V,, are obviously amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

V-B= /,L()V -H=0
and hence
woV - (=VV,)=0

or

V=0 (J=0) (44)

We shall see later that V/,, continues to satisfy Laplace’s equation in homoge-
neous magnetic materials; it is not defined in any region in which current density
is present.

Although we shall consider the scalar magnetic potential to a much greater
extent in the next chapter, when we introduce magnetic materials and discuss the
magnetic circuit, one difference between V' and V,, should be pointed out now:
V., 1s not a single-valued function of position. The electric potential V' is single-
valued; once a zero reference is assigned, there is only one value of V associated
with each point in space. Such is not the case with V,,. Consider the cross section
of the coaxial line shown in Fig. 8.18. In the region ¢ < p < b, J = 0, and we may
establish a scalar magnetic potential. The value of H is

1

H=—
2n,oa¢
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FIGURE 8.18

The scalar magnetic potential V,, is a multi-
valued function of ¢ in the region a < p < b.
The electrostatic potential is always single-
valued.

where [/ is the total current flowing in the a, direction in the inner conductor. Let
us find V, by integrating the appropriate component of the gradient. Applying
(43),

T gy |~ 1V
2rp ¢ p 09
or
W _ _ 1
ap  2m
Thus
I
Vg = ——
271¢

where the constant of integration has been set equal to zero. What value of
potential do we associate with point P, where ¢ = 7r/4? If we let V,, be zero at
¢ = 0 and proceed counterclockwise around the circle, the magnetic potential
goes negative linearly. When we have made one circuit, the potential is —/, but
that was the point at which we said the potential was zero a moment ago. At P,
then, ¢ = /4, 9 /4, 17n/4, ..., or —Tn/4, —15m/4, —237/4, ..., or

I
Vip =5-(Qn=Pm (1=0,%1,£2...)

or

Vap=In—1%) (n=0,%1,£2,...)
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The reason for this multivaluedness may be shown by a comparison with
the electrostatic case. There, we know that

VxE=0

%E‘szo

a
Vab:—/ E.-dL
b

and therefore the line integral

is independent of the path. In the magnetostatic case, however,
VxH=0 (whereverJ=0)

even if J is zero along the path of integration. Every time we make another
complete lap around the current, the result of the integration increases by 7. If
no current / is enclosed by the path, then a single-valued potential function may
be defined. In general, however,

but

Viap = — / H . dL (specified path) (45)
b

where a specific path or type of path must be selected. We should remember that
the electrostatic potential } is a conservative field; the magnetic scalar potential
V., is not a conservative field. In our coaxial problem let us erect a barrier® at
¢ = m; we agree not to select a path which crosses this plane. Therefore we
cannot encircle 7/, and a single-valued potential is possible. The result is seen
to be

Vm:_id) (—7T<¢)<7T)
2w

and

—f (63

The scalar magnetic potential is evidently the quantity whose equipotential
surfaces will form curvilinear squares with the streamlines of H in Fig. 8.4. This
is one more facet of the analogy between electric and magnetic fields about which
we will have more to say in the next chapter.

# This corresponds to the more precise mathematical term “branch cut.”
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Let us temporarily leave the scalar magnetic potential now and investigate a
vector magnetic potential. This vector field is one which is extremely useful in
studying radiation from antennas, from apertures, and radiation leakage from
transmission lines, waveguides, and microwave ovens. The vector magnetic
potential may be used in regions where the current density is zero or nonzero,
and we shall also be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

V-B=0

Next, a vector identity which we proved in Sec. 8.4 shows that the divergence of
the curl of any vector field is zero. Therefore we select

B=VxA (46)

where A signifies a vector magnetic potential, and we automatically satisfy the
condition that the magnetic flux density shall have zero divergence. The H field is

1
H=—VxA
o

and

1
VxH=J=—VXxVxA
Mo

The curl of the curl of a vector field is not zero and is given by a fairly
complicated expression,” which we need not know now in general form. In
specific cases for which the form of A is known, the curl operation may be
applied twice to determine the current density.

Equation (46) serves as a useful definition of the vector magnetic potential
A. Since the curl operation implies differentiation with respect to a length, the
units of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any
previous results. It still remains to show that this particular definition can help us
to determine magnetic fields more easily. We certainly cannot identify A with any
easily measured quantity or history-making experiment.

We shall show in the following section that, given the Biot-Savart law, the
definition of B, and the definition of A, then A may be determined from the
differential current elements by

‘VxVxA=V(V-A)—V2A. In cartesian coordinates, it may be shown that V?A =
V2A,a, + V2 4,a, + V2 4.a.. In other coordinate systems, VA may be found by evaluating the second-
order partial derivatives in VA = V(V-A) =V x V x A.
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ol dL
A= “

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct
current / flows along a filamentary conductor of which any differential length dLL
is distant R from the point at which A is to be found. Since we have defined A
only through specification of its curl, it is possible to add the gradient of any
scalar field to (47) without changing B or H, for the curl of the gradient is
identically zero. In steady magnetic fields, it is customary to set this possible
added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is
compared with the similar expression for the electrostatic potential,

dL
V— / PL
47T€0R
Each expression is the integral along a line source, in one case line charge and in
the other case line current; each integrand is inversely proportional to the dis-
tance from the source to the point of interest; and each involves a characteristic

of the medium (here free space), the permeability or the permittivity.
Equation (47) may be written in differential form,

,bL()I dL
dA =
47 R

if we again agree not to attribute any physical significance to any magnetic fields
we obtain from (48) until the entire closed path in which the current flows is
considered.

With this reservation, let us go right ahead and consider the vector mag-
netic potential field about a differential filament. We locate the filament at the
origin in free space, as shown in Fig. 8.19, and allow it to extend in the positive z
direction so that dL = dza.. We use cylindrical coordinates to find dA at the

point (p, ¢, z):

(48)

JA — ol dza,
4n\//m
or
wol dz

dA, = ———
T A4/ + 2

We note that the direction of dA is the same as that of / dL. Each small
section of a current-carrying conductor produces a contribution to the total
vector magnetic potential which is in the same direction as the current flow in
the conductor. The magnitude of the vector magnetic potential varies inversely as
the distance to the current element, being strongest in the neighborhood of the

ddy=0 dA,=0 (49)
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A Free space

p Plp, p,2)

FIGURE 8.19
The differential current element 7 dza. at the ori-
gin establishes the differential vector magnetic

v ¥ . I dza.
: potential field, dA = Mol aZ8: at P(p, ¢, z).
dry/p? + 22

current and gradually falling off to zero at distant points. Skilling'® describes the
vector magnetic potential field as ““like the current distribution but fuzzy around
the edges, or like a picture of the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in
cylindrical coordinates, leading to

1 1 A,
dH:—deA:—(—ad >a¢
Ko Ko ap

or

dH = 1—0127;0 373 ¢
4 (p? + 22)»/2
which is easily shown to be the same as the value given by the Biot-Savart law.
Expressions for the vector magnetic potential A can also be obtained for a
current source which is distributed. For a current sheet K, the differential current
element becomes

IdL =KdS
In the case of current flow throughout a volume with a density J, we have

IdL =Jdv

In each of these two expressions the vector character is given to the current. For
the filamentary element it is customary, although not necessary, to use I dL
instead of IdL. Since the magnitude of the filamentary element is constant, we
have chosen the form which allows us to remove one quantity from the integral.
The alternative expressions for A are then

10 See the Suggested References at the end of the chapter.
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oK dS
A= 50
/S 4R (50)
and
wod dv
A= 1
'/Vol 47 R (5 )

Equations (47), (50), and (51) express the vector magnetic potential as an
integration over all of its sources. From a comparison of the form of these
integrals with those which yield the electrostatic potential, it is evident that
once again the zero reference for A is at infinity, for no finite current element
can produce any contribution as R — oco. We should remember that we very
seldom used the similar expressions for V'; too often our theoretical problems
included charge distributions which extended to infinity and the result would be
an infinite potential everywhere. Actually, we calculated very few potential fields
until the differential form of the potential equation was obtained, V>V = —p, /e,
or better yet, V> = 0. We were then at liberty to select our own zero reference.

The analogous expressions for A will be derived in the next section, and an
example of the calculation of a vector magnetic potential field will be completed.

‘/ D8.8. A current sheet, K = 2.4a. A/m, is present at the surface p = 1.2 in free space. (a)
Find H for p > 1.2. Find V,, at P(p = 1.5, ¢ = 0.6,z = 1) if: (b) V,, = 0 at ¢ = 0 and
there is a barrier at ¢ =m; (¢) V,, =0 at ¢ =0 and there is a barrier at ¢ = 7/2; (d)
Vi =0 at ¢ = 7 and there is a barrier at ¢ =0; (¢) V,, =5V at ¢ = 7 and there is a
barrier at ¢ = 0.87.

2.88
Ans. 7%; —0.864V; 2.02V; 0.576 V; 2.70 V

‘/ D8.9. The value of A within a solid nonmagnetic conductor of radius a carrying a total
current / in the a. direction may be found easily. Using the known value of H or B for
p < a, then (46) may be solved for A. Select 4 = (ol InS)/27 at p = a (to correspond
with an example in the next section) and find A at p =: (@) 0; (b) 0.25a; (¢) 0.75a; (d) a.

Ans. 0.422 4 Wb/m; 0.416 u Wb/m; 0.366 « Wb/m; 0.322 u Wb/m

8.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We shall now carry out our threat to supply the promised proofs of the several
relationships between the magnetic field quantities. All these relationships may
be obtained from the definitions of H,
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of B (in free space),

B = uoH (32)
and of A,

B=VxA (46)

Let us first assume that we may express A by the last equation of the

preceding section,
wod dv
A= 51
/vol 47 R ( )

and then demonstrate the correctness of (51) by showing that (3) follows. First
we should add subscripts to indicate the point at which the current element is
located (x1, y1, z1) and the point at which A is given (x3, 2, z2). The differential
volume element dv is then written dv; and in cartesian coordinates would be
dxy dy; dz;. The variables of integration are x1, y1, and z;. Using these subscripts,

then,
podidvy
Ay = 52
’ /vol 47 R2 (52)
From (32) and (46) we have
B VxA
H= . (53)
Mo Mo

To show that (3) follows from (52), it is necessary to substitute (52) into (53).
This step involves taking the curl of A,, a quantity expressed in terms of the
variables x,, y,, and z,, and the curl therefore involves partial derivatives with
respect to xj, 12, and z;. We do this, placing a subscript on the del operator to
remind us of the variables involved in the partial differentiation process,

Vox Ay 1 / wodidvy

=—V,
Ko Ko ol 4mTR1>

H, =

The order of partial differentiation and integration is immaterial, and
o/4m is constant, allowing us to write

1 Jldvl
H, =— V
T4 /vol 2 Ri»

The curl operation within the integrand represents partial differentiation
with respect to x,, y», and z. The differential volume element dv; is a scalar and
a function only of xy, y;, and z;. Consequently, it may be factored out of the curl
operation as any other constant, leaving
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I J,
H=— [ (vax=t 4
() 9

The curl of the product of a scalar and a vector is given by an identity which
may be checked by expansion in cartesian coordinates or gratefully accepted
from Appendix A.3,

Vx(SV)=(VS)x V+S(VxV) (55)
This identity is used to expand the integrand of (54),

1 1 1
H, =— V) — J —(V Jy) |d 56
2 47[_/“)1[( 2R12> X 1+R12( ) X 1):| v (56)

The second term of this integrand is zero, because V x J; indicates partial
derivatives of a function of x|, y;, and z;, taken with respect to the variables x»,
2, and z»; the first set of variables is not a function of the second set, and all
partial derivatives are zero.

The first term of the integrand may be determined by expressing Rj; in
terms of the coordinate values,

Ry = \/(Xz —x1)’+ =)+ —a)
and taking the gradient of its reciprocal. Problem 42 shows that the result is

L _ R am
Ry R?z R%z
Substituting this result into (56), we have

1 agp X J
Hy= [ 2exdy,
4 vol R12

or

J
H, — / Jix Ak
vol 4JTR12

which is the equivalent of (3) in terms of current density. Replacing J; dv; by
I, dL;, we may rewrite the volume integral as a closed line integral,

Hz _ %IldLl X23R12
4Ry,

Equation (51) is therefore correct and agrees with the three definitions (3),
(32), and (46).

Next we shall continue with our mathematical orgy and prove Ampeére’s
circuital law in point form,

VxH=1J (28)
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Combining (28), (32), and (46), we obtain

B 1
VXxH=Vx—=—VxVxA (57)
Mo Ko
We now need the expansion in cartesian coordinates for V x V x A. Performing
the indicated partial differentiations and collecting the resulting terms, we may
write the result as

VxVxA=V(V-A) - VA (58)

where

VA = V2 4,a, + VP 4,a, + V2 4.2, (59)

Equation (59) is the definition (in cartesian coordinates) of the Laplacian of a
vector.
Substituting (58) into (57), we have

VxH= i[V(v -A) — V2A] (60)
Mo

and now require expressions for the divergence and the Laplacian of A.
We may find the divergence of A by applying the divergence operation to
(52),

V- Ay = Z_; | Vg (61)
and using the vector identity (44) of Sec. 4.8,
V- (SV)=V-(VS)+S(V-V)
Thus,

Ho 1 1
V- Ay = K0 AV )+ (Vs - J)) | 2
2 Ay = VOl|:Jl ( 2R12>+R12( > Jl)] v (62)

The second part of the integrand is zero, because J; is not a function of x»,
2, and ).

We have already used the result that V,(1/R}2) = —R12/R},, and it is just as
easily shown that

I Rp
1= =—5
IS R?z
or that
1 1
Vi = -V
Ry Ry
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Equation (62) can therefore be written as

7 1
v2'A2 :ﬁ |:—J1 . (Vl R—lz)j|d1)1
vol

and the vector identity applied again,

Mo 1 Ji
Vo Ay =— — (V1 J) =V | =—)|d 63
2 A= vol|:R12( 1-J1) = Vi (Ru)} v (63)

Since we are concerned only with steady magnetic fields, the continuity
equation shows that the first term of (63) is zero. Application of the divergence
theorem to the second term gives

mo [ Jh
Vo Ay = 471?3 R dS,
where the surface S; encloses the volume throughout which we are integrating.
This volume must include all the current, for the original integral expression for
A was an integration such as to include the effect of all the current. Since there is
no current outside this volume (otherwise we should have had to increase the
volume to include it), we may integrate over a slightly larger volume or a slightly
larger enclosing surface without changing A. On this larger surface the current
density J; must be zero, and therefore the closed surface integral is zero, since the
integrand is zero. Hence the divergence of A is zero.
In order to find the Laplacian of the vector A let us compare the x com-
ponent of (51) with the similar expression for electrostatic potential,

Jyd o d
Ax:/ podxdv V:/ pv dv
vol 4mR vol 4meg R
We note that one expression can be obtained from the other by a straightforward
change of variable, J, for p,, uo for 1/¢p, and 4, for V. However, we have
derived some additional information about the electrostatic potential which we

shall not have to repeat now for the x component of the vector magnetic poten-
tial. This takes the form of Poisson’s equation,

Py
€0

ViV = —

which becomes, after the change of variables,

V2A, = —poly
Similarly, we have

V24, = —poly
and

V24, = —poJ-
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or

VA = —pod (64)

Returning to (60), we can now substitute for the divergence and Laplacian
of A and obtain the desired answer,

VxH=1J (28)

We have already shown the use of Stokes’ theorem in obtaining the integral form
of Ampere’s circuital law from (28) and need not repeat that labor here.

We thus have succeeded in showing that every result we have essentially
pulled from thin air'' for magnetic fields follows from the basic definitions of H,
B, and A. The derivations are not simple, but they should be understandable on a
step-by-step basis. It is hoped that the procedure need never be committed to
memory.

Finally, let us return to (64) and make use of this formidable second-order
vector partial differential equation to find the vector magnetic potential in one
simple example. We select the field between conductors of a coaxial cable, with
radii of @ and b as usual, and current / in the a. direction in the inner conductor.
Between the conductors, J = 0, and therefore

VA =0

We have already been told (and Prob. 8.44 gives us the opportunity to check the
results for ourselves) that the vector Laplacian may be expanded as the vector
sum of the scalar Laplacians of the three components in cartesian coordinates,

VA = V2 4,a, + V?4,a, + V* 4.a,

but such a relatively simple result is not possible in other coordinate systems.
That is, in cylindrical coordinates, for example,

VA # VA2, + V2 Ayay + VP A.a,

However, it is not difficult to show for cylindrical coordinates that the z com-
ponent of the vector Laplacian is the scalar Laplacian of the z component of A,
or

VZA| = V?A4. (65)

and since the current is entirely in the z direction in this problem, A has only a z
component. Therefore

V2A. =0

" Free space.
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or

10 [ 4.\ 1 3*A. 8?42__0
pop\"op ) TP e T a2 T

Thinking symmetrical thoughts about (51) shows us that A. is a function only of

p, and thus
1 d ( dAZ)
-~ |p -0
pdp\" dp
We have solved this equation before, and the result is
A.=Cilnp+ C,

If we choose a zero reference at p = b, then

@:amg
In order to relate C; to the sources in our problem, we may take the curl of A,
04. C
VxA=——ay=——a; =B
op P
obtain H,
C
H=- —la¢
Hop
and evaluate the line integral,
2
2nC
%H dL = :/ ——13¢ pd(ﬁﬂ,p—— il
0 Hop I
Thus
ol
C, = 207
: 27
or
I b
4, =172 (66)
27 p
and
I
L 2o

as before. A plot of 4. versus p for b = 5a is shown in Fig. 8.20; the decrease of
|A| with distance from the concentrated current source which the inner conduc-
tor represents is evident. The results of Prob. D8.9 have also been added to the
graph of Fig. 8.20. The extension of the curve into the outer conductor is left as
Prob. 8.43.
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A, (Wb/m)

tol
T
Hol
2n FIGURE 8.20
The vector magnetic potential is
shown within the inner conductor
and in the region between conductors
0 for a coaxial cable with b = Sa carry-
0 1 2 3 4 5 ing I in the a, direction, 4. =0 is

pla arbitrarily selected at p = b.

It is also possible to find A4, between conductors by applying a process some

of us informally call “uncurling.” That is, we know H or B for the coax, and we
may therefore select the ¢ component of V x A = B and integrate to obtain A..
Try it, you’ll like it!

v

D8.10. Equation (66) is obviously also applicable to the exterior of any conductor of
circular cross section carrying a current I in the a. direction in free space. The zero
reference is arbitrarily set at p = b. Now consider two conductors, each of 1-cm radius,
parallel to the z axis with their axes lying in the x = 0 plane. One conductor whose axis
is at (0,4cm, z) carries 12 A in the a, direction; the other axis is at (0, —4cm, z) and
carries 12 A in the —a. direction. Each current has its zero reference for A located 4 cm
from its axis. Find the total A field at: (0,0, z); (b) (0, 8cm, z); (¢) (4cm, 4cm, z); (d)
(2cm, 4cm, z).

Ans. 0; 2.20 £ Wb/m; 0; 8.93 © Wb/m

SUGGESTED REFERENCES

1.

Boast, W. B.: (see Suggested References for Chap. 2). The scalar magnetic
potential is defined on p. 220, and its use in mapping magnetic fields is
discussed on p. 444.

Jordan, E. C., and K. G. Balmain: “Electromagnetic Waves and Radiating
Systems,” 2d ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. Vector
magnetic potential is discussed on pp. 90-96.

Paul, C. R., K. W. Whites, and S. Y. Nasar: “Introduction to Electro-
magnetic Fields,” 3rd ed., McGraw-Hill Book Company, New York, 1998.
The vector magnetic potential is presented on pp. 216-220.

. Skilling, H. H.: (see Suggested References for Chap. 3). The “paddle wheel”

is introduced on pp. 23-25.
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PROBLEMS

8.2

8.3

8.4

8.5

8.6

8.7

8.8

(a) Find H in cartesian components at P(2, 3, 4) if there is a current
filament on the z axis carrying 8 mA in the a. direction. (b) Repeat if
the filament is located at x = —1, y = 2. (¢) Find H if both filaments are
present.

A current filament of 3a, A lies along the x axis. Find H in cartesian
components at P(—1, 3, 2).

Two semi-infinite filaments on the z axis lie in the regions —oo < z < a
and a < z < oo. Each carries a current / in the a, direction. () Calculate
H as a function of p and ¢ at z = 0. (b) What value of a will cause the
magnitude of H at p=1, z =0, to be half the value obtained for an
infinite filament?

(a) A filament is formed into a circle of radius a, centered at the origin in
the plane z = 0. It carries a current / in the ay direction. Find H at the
origin. (b) A filament of the same length is shaped into a square in the
z = 0 plane. The sides are parallel to the coordinate axes and a current /
flows in the general a, direction. Again find H at the origin.

The parallel filamentary conductors shown in Fig. 8.21 lie in free space.
Plot |H| versus y, —4 < y < 4, along the line x =0, z = 2.

(a) A current filament 7 is formed into a circle, p = a, in the z = Z’ plane.
Find H. at P(0, 0, z) if I flows in the a, direction. (b) Find H. at P caused
by a uniform surface current density K = Koa,, flowing on the cylind-
rical surface, p = a, 0 < z < h. The results of part (a) should help.
Given points C(5,-2,3) and P(4,—-1,2), a current -element
IdL = 107%(4, =3, 1) A - m at C produces a field dH at P. (a) Specify
the direction of dH by a unit vector ay. (b) Find |dH|. (¢) What direction
a; should /dL have at C so that dH = 0?

For the finite-length current element on the z axis, as shown in Fig. 8.5,
use the Biot-Savart law to derive Eq. (9) of Sec. 8.1.

(0,-1,0)

(0,1,0)

FIGURE 8.21
See Prob. 8.5.
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8.9

8.10

8.11

8.12

8.13

8.14

8.15

A current sheet K = 8a, A/m flows in the region —2 < y < 2m in the
plane z = 0. Calculate H at P(0, 0, 3).

Let a filamentary current of SmA be directed from infinity to the origin
on the positive z axis and then back out to infinity on the positive x axis.
Find H at P(0, 1, 0).

An infinite filament on the z axis carries 200 mA in the a. direction.
Three uniform cylindrical current sheets are also present: 400 mA/m at
p=1cm, —250mA/m at p=2cm, and —300mA/m at p=3cm.
Calculate Hy at p=0.5,1.5,2.5, and 3.5cm.

In Fig. 8.22, let the regions 0 <z < 0.3m and 0.7 < z < 1.0m be con-
ducting slabs carrying uniform current densities of 10 A/m? in opposite
directions as shown. Find H at z =: (a) —0.2; (b) 0.2 (¢) 0.4; (d) 0.75;
(e)1.2 m.

A hollow cylindrical shell of radius « is centered on the z axis and carries
a uniform surface current density of K,as. (¢) Show that H is not a
function of ¢ or z. (b) Show that H, and H, are everywhere zero. (c)
Show that H. =0 for p > a. (d) Show that H. = K, for p <a. (¢) A
second shell, p = b, carries a current Kpays. Find H everywhere.

A toroid having a cross section of rectangular shape is defined by the
following surfaces: the cylinders p = 2cm and p = 3cm, and the planes
z=1cm and z = 2.5cm. The toroid carries a surface current density of
—50a; A/m on the surface p = 3cm. Find H at the point P(p, ¢, 2): (a)
P4(1.5cm, 0,2cm); (b) Pp(2.1cm, 0,2cm); (¢) Pc(2.7cm, /2,2 cm); (d)
3.5cm, /2, 2cm).

Assume that there is a region with cylindrical symmetry in which the
conductivity is given by o = 1.5¢~'%°kS/m. An electric field of 30a, V/m
is present. (a¢) Find J. (b) Find the total current crossing the surface
0 < po, z=0, all ¢. (c) Make use of Ampere’s circuital law to find H.

Adr
1.0
, - 10AM? |
-. )
0.7
Air
0.3
:
) ~— 10 A/m?
! [ _ ., FIGURE 8.22
Air 0 © See Prob. 8.12.
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8.16

8.17

8.18

8.19
8.20

THE STEADY MAGNETIC FIELD

The cylindrical shell, 2mm < p < 3mm, carries a uniformly distributed
total current of 8 A in the —a. direction, and a filament on the z axis
carries 8 A in the a, direction. Find H everywhere.

A current filament on the z axis carries a current of 7mA in the a,
direction, and current sheets of 0.5a, A/m and —0.2a. A/m are located
at p = lcm and p = 0.5 cm, respectively. Calculate H at p =: (a) 0.5cm;
(h) 1.5¢cm; (¢) 4 cm; (d) What current sheet should be located at p = 4cm
so that H = 0 for all p > 4cm?

Current density is distributed as follows: J =0 for |y| > 2m, J = 8ya,
A/m? for |yl <1m, J =82 —y)a.A/m> for 1 <y <2m, J=—-82+
ya. A/m? for —2 < y < —1m. Use symmetry and Ampere’s law to find
H everywhere.

Calculate V x [V(V - G)] if G = 2x?yza, — 20ya, + (x> — z%)a..

The magnetic field intensity is given in the square region x =0,
05<y<1, 1 <z<15 by H=z%a, +x%, + )*a. A/m. (a) Evaluate
§H-dL about the perimeter of the square region. (b) Find V x H.
(c) Calculate (V x H), at the center of the region. (d) Does (V x H), =
[f H - dL]/Area enclosed?

8.21 Points 4, B, C, D, E, and F are each 2mm from the origin on the
coordinate axis indicated in Fig. 8.23. The value of H at each point is
given. Calculate an approximate value for V x 51 at the origin.

8.22 In the cylindrical region p <0.6mm, Hy = ——{—%)A/m, while H, =
3 . p
—A/m for p> 0.6mm. (¢) Determine J for p < 0.6mm. (b) Deter-
0
mine J for p > 0.6mm. (¢) Is there a filamentary current at p = 0? If
so, what is its value? (d) What is J at p=0?

Given the field H = 20p%as A/m: (a) determine the current density J; (b)
integrate J over the circular surface p =1, 0 < ¢ < 27, z =0, to deter-
mine the total current passing through that surface in the a. direction; (¢)
find the total current once more, this time by a line integral around the
circular path p=1,0 < ¢ < 27, z=0.
Point H (Afm) ;
A 11.34a, -13.78a, +14.21a,
Ee Cdl
B 10.68a, -12.19a, +15.382a, ”
~*B
C | 1049, -1219a, +15.69a, D e )
D | 1149, -1378a, +14.35a, : c '
>
A
E | 1l1l1a, -1388a, +15.10a, Ire :F
F | 10.88a, -13.10a, +14.90a, ¥ :
FIGURE 8.23

See Prob. 8.21.
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8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31

8.32

8.33

8.34

Evaluate both sides of Stokes’ theorem for the field G = 10sinfa, and
the surface r =3, 0 <60 <90°, 0 < ¢ <90°. Let the surface have the a,
direction.

1
Given the field H = Ecosgap - sin%ad) A/m, evaluate both sides of

Stokes’ theorem for the path formed by the intersection of the cylinder
o =23 and the plane z=2, and for the surface defined by p =3,
0<z<2andz=0,0<p<3.

Let G =15ra4. (a) Determine §G-dL for the circular path r=35,
6 =25, 0 <¢ <2 Evaluate [((V x G)-dS over the spherical cap
r=50<60<25,0<¢<2m

The magnetic field intensity is given in a certain region of space as
H :’“Zr#aﬁ%azA/m. (a) Find V x H. (b) Find J. (¢) Use J to
find the total current passing through the surface z=4, 1 <x <2,
3 <z <5, in the a, direction. (d) Show that the same result is obtained
using the other side of Stokes’ theorem.

Given H = (3r/sin@)ag + 54r cos fas A/m in free space: (a) find the total
current in the Ay direction through the conical surface 6 = 20°,
0<¢=<2m 0<r=<S5, by whichever side of Stokes’ theorem you like
the best. () Check the result by using the other side of Stokes’ theorem.
A long straight nonmagnetic conductor of 0.2-mm radius carries a uni-
formly distributed current of 2 A dc. () Find J within the conductor. (b)
Use Ampere’s circuital law to find H and B within the conductor. (¢)
Show that V x H = J within the conductor. (d) Find H and B within the
conductor. (¢) Show that V x H = J outside the conductor.

A solid nonmagnetic conductor of circular cross section has a radius of
2mm. The conductor is inhomogeneous, with o = 10°(1 + 10°p?) S/m. If
the conductor is 1 m in length and has a voltage of 1mV between its
ends, find: (a) H; (b) the total magnetic flux inside the conductor.

The cylindrical shell defined by 1cm < p < 1.4cm consists of a nonmag-
netic conducting material and carries a total current of 50 A in the a,
direction. Find the total magnetic flux crossing the plane ¢ =0,
0<z<l1l: (@) 0<p<l1l2cm; (b) ldcm<p<ldcm; (¢) l4cm
< p<20cm.

The free-space region defined by 1 <z <4cm and 2 <p <3cm is a
toroid of rectangular cross section. Let the surface at p = 3cm carry a
surface current K = 2a. kA/m. (a) Specify the currents on the surfaces at
p=2cm, z=1cm, and z =4 cm. (b) Find H everywhere. (¢) Calculate
the total flux within the toroid.

Use an expansion in cartesian coordinates to show that the curl of the
gradient of any scalar field G is identically equal to zero.

A filamentary conductor on the z axis carries a current of 16 A in the a,
direction, a conducting shell at p = 6 carries a total current of 12 A in the
—a, direction, and another shell at p = 10 carries a total current of 4 A in
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8.35

8.36

8.37

8.38

8.39

8.40

8.42
8.43

8.44

THE STEADY MAGNETIC FIELD

the —a. direction. (a) Find H for 0 < p < 12. (b) Plot Hy versus p. (c)
Find the total flux @ crossing the surface 1 < p < 7,0 <z < 1.

A current sheet, K = 20a, A/m, is located at p = 2, and a second sheet,
K= —10a.A/m, is located at p=4. (a) Let V,,=0 at P(p=3,
¢=0,z=15) and place a barrier at ¢ =x. Find V,(p, ¢,z) for
-1 <¢<m (b) Let A=0 at P and find A(p, ¢, z) for 2 < p < 4.

Let A =(3y—z)a,+2xza, Wb/m in a certain region of free space.
(a) Show that V- A =0. (b) At P(2, —1, 3), find A, B, H, and J.

Let N =1000,7 =0.8A, pp =2cm, and ¢ = 0.8 cm for the toroid shown
in Fig. 8.12h. Find V,, in the interior of the toroid if V,, =0 at
o =2.5cm, ¢ = 0.37. Keep ¢ within the range 0 < ¢ < 2.

The solenoid shown in Fig. 8.115 contains 400 turns, carries a current
I = 5A, has a length of 8cm, and a radius ¢ = 1.2cm. (¢) Find H within
the solenoid. (b) If V,,, = 0 at the origin, specify V,,(p, ¢, z) inside the
solenoid. (¢) Let A =0 at the origin, and specify A(p, ¢, z) inside the
solenoid if the medium is free space.

Planar current sheets of K = 30a, A/m and —30a. A/m are located in free
space at x=0.2 and x=-0.2, respectively. For the region
—0.2 < x <0.2: (@) find H; (b) obtain an expression for V,, if V,, =0
at P(0.1,0.2,0.3); (¢) find B; (d) obtain an expression for A if A = 0 at P.
Let A = (3> —22)a, — 2x?za, + (x + 2y)a, Wb/m in free space. Find
VxVxAat P(-2,3,-1).

Assume that A = 50p%a. Wb/m in a certain region of free space. (a) Find
H and B. (b) Find J. (¢) Use J to find the total current crossing the
surface 0 < p <1,0 < ¢ < 27, z = 0. (d) Use the value of Hyat p =1 to
calculate fH-dL for p=1, z=0.

Show that V,(1/R2) = —Vi(1/Ry2) = Rz]/R%z.

Compute the vector magnetic potential within the outer conductor for
the coaxial line whose vector magnetic potential is shown in Fig. 8.20 if
the outer radius of the outer conductor is 7a. Select the proper zero
reference and sketch the results on the figure.

By expanding Eq. (58), Sec. 8.7, in cartesian coordinates, show that (59)
is correct.
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CHAPTER

9

MAGNETIC
FORCES,
MATERIALS,
AND
INDUCTANCE

The magnetic field quantities H, B, ®, V/,,, and A introduced in the last chapter
were not given much physical significance. Each of these quantities is merely
defined in terms of the distribution of current sources throughout space. If the
current distribution is known, we should feel that H, B, and A are determined at
every point in space, even though we may not be able to evaluate the defining
integrals because of mathematical complexity.

We are now ready to undertake the second half of the magnetic field
problem, that of determining the forces and torques exerted by the magnetic
field on other charges. The electric field causes a force to be exerted on a charge
which may be either stationary or in motion; we shall see that the steady mag-
netic field is capable of exerting a force only on a moving charge. This result
appears reasonable; a magnetic field may be produced by moving charges and
may exert forces on moving charges; a magnetic field cannot arise from station-
ary charges and cannot exert any force on a stationary charge.

This chapter initially considers the forces and torques on current-carrying
conductors which may either be of a filamentary nature or possess a finite cross
section with a known current density distribution. The problems associated with
the motion of particles in a vacuum are largely avoided.

4| p | eTextMainMenu | Textbook Table of Contents



MAGNETIC FORCES, MATERIALS, AND INDUCTANCE

With an understanding of the fundamental effects produced by the mag-
netic field, we may then consider the varied types of magnetic materials, the
analysis of elementary magnetic circuits, the forces on magnetic materials, and
finally, the important electrical circuit concepts of self-inductance and mutual
inductance.

9.1 FORCE ON A MOVING CHARGE

In an electric field the definition of the electric field intensity shows us that the
force on a charged particle is

F = QE (1)

The force is in the same direction as the electric field intensity (for a positive
charge) and is directly proportional to both E and Q. If the charge is in motion,
the force at any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found
experimentally to experience a force whose magnitude is proportional to the
product of the magnitudes of the charge Q, its velocity v, and the flux density
B, and to the sine of the angle between the vectors v and B. The direction of the
force is perpendicular to both v and B and is given by a unit vector in the
direction of v x B. The force may therefore be expressed as

F=0Q0vxB (2)

A fundamental difference in the effect of the electric and magnetic fields on
charged particles is now apparent, for a force which is always applied in a
direction at right angles to the direction in which the particle is proceeding
can never change the magnitude of the particle velocity. In other words, the
acceleration vector is always normal to the velocity vector. The kinetic energy
of the particle remains unchanged, and it follows that the steady magnetic field is
incapable of transferring energy to the moving charge. The electric field, on the
other hand, exerts a force on the particle which is independent of the direction in
which the particle is progressing and therefore effects an energy transfer between
field and particle in general.

The first two problems at the end of this chapter illustrate the different
effects of electric and magnetic fields on the kinetic energy of a charged particle
moving in free space.

The force on a moving particle due to combined electric and magnetic fields
is obtained easily by superposition,

F=QE+vxB) 3)
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This equation is known as the Lorentz force equation, and its solution is required
in determining electron orbits in the magnetron, proton paths in the cyclotron,
plasma characteristics in a magnetohydrodynamic (MHD) generator, or, in
general, charged-particle motion in combined electric and magnetic fields.

V D9.1. The point charge Q = 18nC has a velocity of 5x 10°m/s in the direction
a, = 0.04a, — 0.05a, + 0.2a.. Calculate the magnitude of the force exerted on the charge
by the field: (a) B = —3a, +4a, 4 6a. mT; (b) E = —3a, +4a, + 6a.kV/m; (c) Band E
acting together.

Ans. 124.6 uN; 140.6 uN; 187.8 uN

9.2 FORCE ON A DIFFERENTIAL CURRENT
ELEMENT

The force on a charged particle moving through a steady magnetic field may be
written as the differential force exerted on a differential element of charge,

dF = dOv x B 4)

Physically, the differential element of charge consists of a large number of
very small discrete charges occupying a volume which, although small, is much
larger than the average separation between the charges. The differential force
expressed by (4) is thus merely the sum of the forces on the individual charges.
This sum, or resultant force, is not a force applied to a single object. In an
analogous way, we might consider the differential gravitational force experienced
by a small volume taken in a shower of falling sand. The small volume contains a
large number of sand grains, and the differential force is the sum of the forces on
the individual grains within the small volume.

If our charges are electrons in motion in a conductor, however, we can
show that the force is transferred to the conductor and that the sum of this
extremely large number of extremely small forces is of practical importance.
Within the conductor, electrons are in motion throughout a region of immobile
positive ions which form a crystalline array giving the conductor its solid proper-
ties. A magnetic field which exerts forces on the electrons tends to cause them to
shift position slightly and produces a small displacement between the centers of
“gravity” of the positive and negative charges. The Coulomb forces between
electrons and positive ions, however, tend to resist such a displacement. Any
attempt to move the electrons, therefore, results in an attractive force between
electrons and the positive ions of the crystalline lattice. The magnetic force is
thus transferred to the crystalline lattice, or to the conductor itself. The Coulomb
forces are so much greater than the magnetic forces in good conductors that the
actual displacement of the electrons is almost immeasurable. The charge separa-
tion that does result, however, is disclosed by the presence of a slight potential
difference across the conductor sample in a direction perpendicular to both the
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magnetic field and the velocity of the charges. The voltage is known as the Hall
voltage, and the effect itself is called the Hall effect.

Fig. 9.1 illustrates the direction of the Hall voltage for both positive and
negative charges in motion. In Fig. 9.1q, v is in the —a, direction, v x B is in the
a, direction, and Q is positive, causing Fp to be in the a, direction; thus, the
positive charges move to the right. In Figure 9.15, v is now in the +a, direction,
B is still in the a. direction, v x B is in the —a, direction, and Q is negative; thus
Fo is again in the a, direction. Hence, the negative charges end up at the right
edge. Equal currents provided by holes and electrons in semiconductors can
therefore be differentiated by their Hall voltages. This is one method of deter-
mining whether a given semiconductor is n-type or p-type.

Devices employ the Hall effect to measure the magnetic flux density and, in
some applications where the current through the device can be made propor-
tional to the magnetic field across it, to serve as electronic wattmeters, squaring
elements, and so forth.

Returning to (4), we may therefore say that if we are considering an element
of moving charge in an electron beam, the force is merely the sum of the forces
on the individual electrons in that small volume element, but if we are consider-
ing an element of moving charge within a conductor, the total force is applied to
the solid conductor itself. We shall now limit our attention to the forces on
current-carrying conductors.

In Chap. 5 we defined convection current density in terms of the velocity of
the volume charge density,

J=pyv

_T —,+ ) +| o

- _..FQ I A —yl“g

n
1

o T — 4 / *) | =
/ @/ '

€3]

@ .':;./ = [

(a) (&)

FIGURE 9.1

Equal currents directed into the material are provided by positive charges moving inward in (a) and
negative charges moving outward in (). The two cases can be distinguished by oppositely directed Hall
voltages, as shown.
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The differential element of charge in (4) may also be expressed in terms of
volume charge density,’

dQ = pydv
Thus
dF = p,dvv x B
or
dF =J x Bdv (5)

We saw in the previous chapter that Jdv may be interpreted as a differential
current element; that is,

Jdv=KdS =1dL

and thus the Lorentz force equation may be applied to surface current density,

dF =K x BdS (6)

or to a differential current filament,

dF = IdL x B (7)

Integrating (5), (6), or (7) over a volume, a surface which may be either
open or closed (why?), or a closed path, respectively, leads to the integral
formulations

F:/ Jx Bdv (8)
vol
F:/KdeS 9)
S
and
F:%IdeB:—I%Bde (10)

One simple result is obtained by applying (7) or (10) to a straight conductor
in a uniform magnetic field,

! Remember that dv is a differential volume element and not a differential increase in velocity.
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F=/LxB (11)

The magnitude of the force is given by the familiar equation
F = BILsinf (12)

where 6 is the angle between the vectors representing the direction of the current
flow and the direction of the magnetic flux density. Equation (11) or (12) applies
only to a portion of the closed circuit, and the remainder of the circuit must be
considered in any practical problem.

IIII»Example 9.1

As a numerical example of these equations, consider Fig. 9.2. We have a square loop of
wire in the z = 0 plane carrying 2 mA in the field of an infinite filament on the y axis, as
shown. We desire the total force on the loop.

Solution. The field produced in the plane of the loop by the straight filament is
1 15

= a = . A
2nx ~ 2mx A /m
Therefore,
3x10°°
B=puH=4rx10H="""_"a T
X

We use the integral form (10),

F:—I%Bde

Free space

-~ 15 A

(1,2,0)

FIGURE 9.2
A square loop of wire in the xy plane carrying 2 mA is subjected to a nonuniform B field.
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Let us assume a rigid loop so that the total force is the sum of the forces on the four
sides. Beginning with the left side:

3 2
F:—2><10‘3><3><10‘6[f E><dxax+/ % x dya,
x=1 p

X y=0 3
1
+/ L dxax—i—/O 2 dyav]
x=3 X y=2 1 ’
3 |2 1 0
=—6x107° |:1nx a, +§y (—ay) +1Inx|a, +y (—a,\.)}
1 0 3 2

2 1
=—6x107"? [(ln 3)a, — §a~‘ + (ln§> a, + 2ax:|
= —8a, pN

Thus, the net force on the loop is in the —a, direction.

D9.2. The field B = —2a, 4 3a, + 4a. mT is present in free space. Find the vector force
exerted on a straight wire carrying 12A in the ayp direction, given A(1,1,1) and:
(@) B(2,1,1); (b) B(3, 5, 6).

Ans. —48a, + 36a. mN; 12a, — 216a, 4+ 168a. mN

D9.3. The semiconductor sample shown in Fig. 9.1 is n-type silicon, having a rectan-
gular cross section of 0.9 mm by 1.1 cm, and a length of 1.3 cm. Assume the electron and
hole mobilities are 0.13 and 0.03 m?/ Vs, respectively, at the operating temperature. Let
B =0.07T and the electric field intensity in the direction of the current flow be 800 V/m.
Find the magnitude of: (@) the voltage across the sample length; (b) the drift velocity;
(¢) the transverse force per coulomb of moving charge caused by B; (d) the transverse
electric field intensity; (e) the Hall voltage.

Ans. 10.40V; 104.0m/s; 7.28 N/C; 7.28 V/m; 80.1 mV

9.3 FORCE BETWEEN DIFFERENTIAL
CURRENT ELEMENTS

The concept of the magnetic field was introduced to break into two parts the
problem of finding the interaction of one current distribution on a second cur-
rent distribution. It is possible to express the force on one current element
directly in terms of a second current element without finding the magnetic
field. Since we claimed that the magnetic-field concept simplifies our work, it
then behooves us to show that avoidance of this intermediate step leads to more
complicated expressions.

The magnetic field at point 2 due to a current element at point 1 was found

I,dL
dH, = 1 1X23R12
4Ry,
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Now, the differential force on a differential current element is
dF =1dL x B

and we apply this to our problem by letting B be dB, (the differential flux density
at point 2 caused by current element 1), by identifying I dL as I,dL,, and by
symbolizing the differential amount of our differential force on element 2 as
d(dF,):

d(sz) = ]2dL2 X dB2

Since dB, = nodH,, we obtain the force between two differential current
elements,

I I
d(dF2) = o7 dLy % (dLy % agio) (13)
TRy,

IIII»Example 9.2

As an example that illustrates the use (and misuse) of these results, consider the two
differential current elements shown in Fig. 9.3. We seek the differential force on dL,.

Solution. We have I1dL; =-3a,A-m at Pi(52,1), and hdL, =—4a.A-m at
P>(1,8,5). Thus, Ry = —4a, + 6a, +4a., and we may substitute these data into (13),
471077 (—4a,) x [(—3a,) x (—4a, + 6a, + 4a.)]

4 (16 +36+16)!°
=8.56a, nN

d(dF,) =

Many chapters ago when we discussed the force exerted by one point
charge on another point charge, we found that the force on the first charge
was the negative of that on the second. That is, the total force on the system

LdL,
A ddE)
Free space i
p R ]2/ Poimt?.
/ :
/ |
. o . | -
P 7/__ _______ i
Z FIGURE 9.3
7S Given Pi(5,2,1), P>(1,8.5), IydL, =
Point 1 —3a, A-m, and I, dL, = —4a. A-m, the
force on I, dL, is 8.56nN in the a,
g direction.
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was zero. This is not the case with the differential current elements, and
d(dF;) = —12.84a, nN in the example above. The reason for this different behav-
ior lies with the nonphysical nature of the current element. Whereas point
charges may be approximated quite well by small charges, the continuity of
current demands that a complete circuit be considered. This we shall now do.
The total force between two filamentary circuits is obtained by integrating

twice:
1112 %dLl X aRr12
F, = —= dL _
2 = Mo 4 [ 2 X R%z

1112 ARy X dL1
= o—— _— dL
o 47 [f R%z X 2

(14)

Equation (14) is quite formidable, but the familiarity gained in the last
chapter with the magnetic field should enable us to recognize the inner integral
as the integral necessary to find the magnetic field at point 2 due to the current
element at point 1.

Although we shall only give the result, it is not very difficult to make use of
(14) to find the force of repulsion between two infinitely long, straight, parallel,
filamentary conductors with separation d, and carrying equal but opposite cur-
rents /, as shown in Fig. 9.4. The integrations are simple, and most errors are
made in determining suitable expressions for ag|y, dL;, and dL;. However, since
the magnetic field intensity at either wire caused by the other is already known to
be 1/(27d), it is readily apparent that the answer is a force of oI /(2d) newtons
per meter length.

V D9.4. Two differential current elements, /;AL; =3 x IO*Ga}, A -m at P(1,0,0) and
LALy =3 x 107%(—0.5a, + 0.4a, +0.3a.) A-m at P»(2,2,2), are located in free
space. Find the vector force exerted on: (a) L AL, by I; AL;; (b) I; ALy by LAL;.

Ans. (—1.333a, +0.333a, — 2.672,)1072° N; (4.33a, + 0.6672a,)107 N

FARE BT
Vi

F <-—— —>F
FIGURE 9.4
Two infinite parallel filaments with separation d and equal
I / /1 but opposite currents / experience a repulsive force of
wol?/(2md)N/m.
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9.4 FORCE AND TORQUE ON A CLOSED
CIRCUIT

We have already obtained general expressions for the forces exerted on current
systems. One special case is easily disposed of, for if we take our relationship for
the force on a filamentary closed circuit, as given by Eq. (10), Sec. 9.2,

F:—I%Bde

and assume a wuniform magnetic flux density, then B may be removed from the
integral:

F:—IBdeL

However, we discovered during our investigation of closed line integrals in an
electrostatic potential field that § dL =0, and therefore the force on a closed
filamentary circuit in a uniform magnetic field is zero.

If the field is not uniform, the total force need not be zero.

This result for uniform fields does not have to be restricted to filamentary
circuits only. The circuit may contain surface currents or volume current density
as well. If the total current is divided into filaments, the force on each one is zero,
as we showed above, and the total force is again zero. Therefore any real closed
circuit carrying direct currents experiences a total vector force of zero in a
uniform magnetic field.

Although the force is zero, the torque is generally not equal to zero.

In defining the torque, or moment, of a force, it is necessary to consider both
an origin at or about which the torque is to be calculated, as well as the point at
which the force is applied. In Fig. 9.5a4, we apply a force F at point P, and we

A

(a) L (b)

FIGURE 9.5

(a) Given a lever arm R extending from an origin O to a point P where force F is applied, the torque about
OisT =R x F. (b) If F, = —Fy, then the torque T = Ry; x F; is independent of the choice of origin for R,
and R,.
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establish an origin at O with a rigid lever arm R extending from O to P. The
torque about point O is a vector whose magnitude is the product of the magni-
tudes of R, of F, and of the sine of the angle between these two vectors. The
direction of the vector torque T is normal to both the force F and lever arm R
and is in the direction of progress of a right-handed screw as the lever arm is
rotated into the force vector through the smaller angle. The torque is expressible
as a cross product,

T=RxF

Now let us assume that two forces, F| at P; and F; at P,, having lever arms
R, and R; extending from a common origin O, as shown in Fig. 9.55, are applied
to an object of fixed shape and that the object does not undergo any translation.
Then the torque about the origin is

T=R; xF, +Ry, xF,
where
Fi+F,=0
and therefore
T=(R; —Ry) xF; =Ry x F

The vector Ry; = R} — R; joins the point of application of F; to that of F| and is
independent of the choice of origin for the two vectors Ry and R,. Therefore, the
torque is also independent of the choice of origin, provided that the total force is
zero. This may be extended to any number of forces.

Consider the application of a vertically upward force at the end of a hor-
izontal crank handle on an elderly automobile. This cannot be the only applied
force, for if it were, the entire handle would be accelerated in an upward direc-
tion. A second force, equal in magnitude to that exerted at the end of the handle,
is applied in a downward direction by the bearing surface at the axis of rotation.
For a 40-N force on a crank handle 0.3 m in length, the torque is 12 N-m. This
figure is obtained regardless of whether the origin is considered to be on the axis
of rotation (leading to 12 N-m plus 0 N-m), at the midpoint of the handle (leading
to 6 N-m plus 6 N-m), or at some point not even on the handle or an extension of
the handle.

We may therefore choose the most convenient origin, and this is usually on
the axis of rotation and in the plane containing the applied forces if the several
forces are coplanar.

With this introduction to the concept of torque, let us now consider the
torque on a differential current loop in a magnetic field B. The loop lies in the xy
plane (Fig. 9.6); the sides of the loop are parallel to the x and y axes and are of
length dx and dy. The value of the magnetic field at the center of the loop is taken
as By. Since the loop is of differential size, the value of B at all points on the loop
may be taken as By. (Why was this not possible in the discussion of curl and
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FIGURE 9.6

A differential current loop in a mag-
netic field B. The torque on the loop
is dT = I(dxdya.) x By = 1dS x B.

divergence?) The total force on the loop is therefore zero, and we are free to
choose the origin for the torque at the center of the loop.
The vector force on side 1 is

dFy =1Idxa, x By

or
dF| = I dx(By,a. — By-a,)
For this side of the loop the lever arm R extends from the origin to the
midpoint of the side, R} = — %dy a,, and the contribution to the total torque is
dT, = R, x dF,
= —ddya, x I dx(Byya. — Bo.a,)
= —%dx dy IByya,

The torque contribution on side 3 is found to be the same,

dT; =Rz x dF3 = %dyay x (=1 dxa, x By)
= —1dxdy IBya, = dT,
and
dTy + dT3 = —dx dy IBy,a,
Evaluating the torque on sides 2 and 4, we find

dT2 + dT4 =dx dy ]B()xay

4| p | eTextMainMenu | Textbook Table of Contents

285



286

ENGINEERING ELECTROMAGNETICS

and the total torque is then
dT = I dx dy(By.a, — Bo,ay)
The quantity within the parentheses may be represented by a cross product,
dT = Idxdy(a. x By)

or

dT =1dS x B (15)

where dS is the vector area of the differential current loop and the subscript on
By has been dropped.

We now define the product of the loop current and the vector area of the
loop as the differential magnetic dipole moment dm, with units of A-m”. Thus

dm = IdS (16)

and

dT = dm x B (17)

If we extend the results we obtained in Sect. 4.7 for the differential electric
dipole by determining the torque produced on it by an electric field, we see a
similar result,

dT =dp x E

Equations (15) and (17) are general results which hold for differential loops
of any shape, not just rectangular ones. The torque on a circular or triangular
loop is also given in terms of the vector surface or the moment by (15) or (17).

Since we selected a differential current loop so that we might assume B was
constant throughout it, it follows that the torque on a planar loop of any size or
shape in a uniform magnetic field is given by the same expression,

T=ISxB=mxB (18)

We should note that the torque on the current loop always tends to turn the
loop so as to align the magnetic field produced by the loop with the applied
magnetic field that is causing the torque. This is perhaps the easiest way to
determine the direction of the torque.
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By=-0.6a,+0.82, T

X

FIGURE 9.7
A rectangular loop is located in a uniform magnetic flux density B.

||||»Example 9.3

To illustrate some force and torque calculations, consider the rectangular loop shown in
Fig. 9.7. Calculate the torque by using T = IS x B.

Solution. The loop has dimensions of Im by 2m and lies in the uniform field
By = —0.6a, 4+ 0.8a. T. The loop current is 4mA, a value that is sufficiently small to
avoid causing any magnetic field that might affect By.

We have

T=4x107[()(2)a] x (—0.6a, +0.8a.) =4.8a, mN-m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small
magnetic field produced by the 4-mA loop current tends to line up with By.

I Example 9.4

Now let us find the torque once more, this time by calculating the total force and torque
contribution for each side.

Solution. On side 1 we have
F; = IL; x By = 4 x 1073(1a,) x (—0.6a, + 0.8a.)
= —3.2a,—24a. mN

On side 3 we obtain the negative of this result,
F; =3.2a,+24a. mN
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Next we attack side 2:

F, = IL, x By = 4 x 107°(2a,) x (—0.6a, + 0.8a.)
= 6.4a, mN

with side 4 again providing the negative of this result,
F; = —6.4a, mN

Since these forces are distributed uniformly along each of the sides, we treat each
force as if it were applied at the center of the side. The origin for the torque may be
established anywhere since the sum of the forces is zero, and we choose the center of the
loop. Thus,

T=T+T,+T3+T4=R; xF, +Ry, xF, + R3; x F5 + R4y x F4
= (—1a,) x (~3.2a, — 2.4a.) + (0.5a,) x (6.4a,)
+(1a,) x (3.2a, + 2.42.) + (—0.5a,) x (~6.4a,)
=24a,+24a, =4.8a, mN-m

Crossing the loop moment with the magnetic flux density is certainly easier.

V D9.5. A conducting filamentary triangle joins points 4(3, 1, 1), B(5, 4, 2), and C(1, 2, 4).
The segment AB carries a current of 0.2A in the ayp direction. There is present a
magnetic field B = 0.2a, — 0.1a, + 0.3a. T. Find: (a) the force on segment BC; (b) the
force on the triangular loop; (¢) the torque on the loop about an origin at A4; (d) the
torque on the loop about an origin at C.

Ans. —0.08a, + 0.32a, 4+ 016a. N; 0;—0.16a, — 0.08a, + 0.08a. N-m; —0.16a, — 0.08a,
+0.08a; N-m

9.5 THE NATURE OF MAGNETIC
MATERIALS

We are now in a position to combine our knowledge of the action of a magnetic
field on a current loop with a simple model of an atom and obtain some appre-
ciation of the difference in behavior of various types of materials in magnetic
fields.

Although accurate quantitative results can only be predicted through the
use of quantum theory, the simple atomic model which assumes that there is a
central positive nucleus surrounded by electrons in various circular orbits yields
reasonable quantitative results and provides a satisfactory qualitative theory. An
electron in an orbit is analogous to a small current loop (in which the current is
directed oppositely to the direction of electron travel) and as such experiences a
torque in an external magnetic field, the torque tending to align the magnetic
field produced by the orbiting electron with the external magnetic field. If there
were no other magnetic moments to consider, we would then conclude that all
the orbiting electrons in the material would shift in such a way as to add their
magnetic fields to the applied field, and thus that the resultant magnetic field at
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any point in the material would be greater than it would be at that point if the
material were not present.

A second moment, however, is attributed to electron spin. Although it is
tempting to model this phenomenon by considering the electron as spinning
about its own axis and thus generating a magnetic dipole moment, satisfactory
quantitative results are not obtained from such a theory. Instead, it is necessary
to digest the mathematics of relativistic quantum theory to show that an electron
may have a spin magnetic moment of about +9 x 107>* A - m?; the plus and
minus signs indicate that alignment aiding or opposing an external magnetic
field is possible. In an atom with many electrons present, only the spins of
those electrons in shells which are not completely filled will contribute to a
magnetic moment for the atom.

A third contribution to the moment of an atom is caused by nuclear spin.
Although this factor provides a negligible effect on the overall magnetic proper-
ties of materials, it is the basis of the nuclear magnetic resonance imaging (MRI)
procedure now provided by many of the larger hospitals.

Thus each atom contains many different component moments, and their
combination determines the magnetic characteristics of the material and provides
its general magnetic classification. We shall describe briefly six different types of
material: diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferri-
magnetic, and superparamagnetic.

Let us first consider those atoms in which the small magnetic fields pro-
duced by the motion of the electrons in their orbits and those produced by the
electron spin combine to produce a net field of zero. Note that we are considering
here the fields produced by the electron motion itself in the absence of any
external magnetic field; we might also describe this material as one in which
the permanent magnetic moment my of each atom is zero. Such a material is
termed diamagnetic. 1t would seem, therefore, that an external magnetic field
would produce no torque on the atom, no realignment of the dipole fields, and
consequently an internal magnetic field that is the same as the applied field. With
an error that only amounts to about one part in a hundred thousand, this is
correct.

Let us select an orbiting electron whose moment m is in the same direction
as the applied field By (Fig. 9.8). The magnetic field produces an outward force
on the orbiting electron. Since the orbital radius is quantized and cannot change,
the inward Coulomb force of attraction is also unchanged. The force unbalance
created by the outward magnetic force must therefore be compensated for by a
reduced orbital velocity. Hence, the orbital moment decreases, and a smaller
internal field results.

If we had selected an atom for which m and B; were opposed, the magnetic
force would be inward, the velocity would increase, the orbital moment would
increase, and greater cancellation of By would occur. Again a smaller internal
field would result.

Metallic bismuth shows a greater diamagnetic effect than most other dia-
magnetic materials, among which are hydrogen, helium, the other “inert” gases,

4| p | eTextMainMenu | Textbook Table of Contents

289



290

ENGINEERING ELECTROMAGNETICS

m
[ ) Y )
FIGURE 9.8
An orbiting electron is shown having a mag-
ok ._ netic moment m in the same direction as an
v N~ applied field By.

sodium chloride, copper, gold, silicon, germanium, graphite, and sulfur. We
should also realize that the diamagnetic effect is present in all materials, because
it arises from an interaction of the external magnetic field with every orbiting
electron; however, it is overshadowed by other effects in the materials we shall
consider next.

Now let us discuss an atom in which the effects of the electron spin and
orbital motion do not quite cancel. The atom as a whole has a small magnetic
moment, but the random orientation of the atoms in a larger sample produces an
average magnetic moment of zero. The material shows no magnetic effects in the
absence of an external field. When an external field is applied, however, there is a
small torque on each atomic moment, and these moments tend to become
aligned with the external field. This alignment acts to increase the value of B
within the material over the external value. However, the diamagnetic effect is
still operating on the orbiting electrons and may counteract the above increase. If
the net result is a decrease in B, the material is still called diamagnetic. However,
if there is an increase in B, the material is termed paramagnetic. Potassium,
oxygen, tungsten, and the rare earth elements and many of their salts, such as
erbium chloride, neodymium oxide, and yttrium oxide, one of the materials used
in masers, are examples of paramagnetic substances.

The remaining four classes of material, ferromagnetic, antiferromagnetic,
ferrimagnetic, and superparamagnetic, all have strong atomic moments.
Moreover, the interaction of adjacent atoms causes an alignment of the magnetic
moments of the atoms in either an aiding or exactly opposing manner.

In ferromagnetic materials each atom has a relatively large dipole moment,
caused primarily by uncompensated electron spin moments. Interatomic forces
cause these moments to line up in a parallel fashion over regions containing a
large number of atoms. These regions are called domains, and they may have a
variety of shapes and sizes ranging from one micrometer to several centimeters,
depending on the size, shape, material, and magnetic history of the sample.
Virgin ferromagnetic materials will have domains which each have a strong
magnetic moment; the domain moments, however, vary in direction from
domain to domain. The overall effect is therefore one of cancellation, and the
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material as a whole has no magnetic moment. Upon application of an external
magnetic field, however, those domains which have moments in the direction of
the applied field increase their size at the expense of their neighbors, and the
internal magnetic field increases greatly over that of the external field alone.
When the external field is removed, a completely random domain alignment is
not usually attained, and a residual, or remnant, dipole field remains in the
macroscopic structure. The fact that the magnetic moment of the material is
different after the field has been removed, or that the magnetic state of the
material is a function of its magnetic history, is called hysteresis, a subject
which will be discussed again when magnetic circuits are studied a few pages
from now.

Ferromagnetic materials are not isotropic in single crystals, and we shall
therefore limit our discussion to polycrystalline materials, except for mentioning
that one of the characteristics of anisotropic magnetic materials is magnetostric-
tion, or the change in dimensions of the crystal when a magnetic field is
impressed on it.

The only elements that are ferromagnetic at room temperature are iron,
nickel, and cobalt, and they lose all their ferromagnetic characteristics above a
temperature called the Curie temperature, which is 1043 K (770°C) for iron.
Some alloys of these metals with each other and with other metals are also
ferromagnetic, as for example alnico, an aluminum-nickel-cobalt alloy with a
small amount of copper. At lower temperatures some of the rare earth elements,
such as gadolinium and dysprosium, are ferromagnetic. It is also interesting that
some alloys of nonferromagnetic metals are ferromagnetic, such as bismuth-
manganese and copper-manganese-tin.

In antiferromagnetic materials, the forces between adjacent atoms cause the
atomic moments to line up in an antiparallel fashion. The net magnetic moment
is zero, and antiferromagnetic materials are affected only slightly by the presence
of an external magnetic field. This effect was first discovered in manganese oxide,
but several hundred antiferromagnetic materials have been identified since then.
Many oxides, sulfides, and chlorides are included, such as nickel oxide (NiO),
ferrous sulfide (FeS), and cobalt chloride (CoCl,). Antiferromagnetism is only
present at relatively low temperatures, often well below room temperature. The
effect is not of engineering importance at present.

The ferrimagnetic substances also show an antiparallel alignment of adja-
cent atomic moments, but the moments are not equal. A large response to an
external magnetic field therefore occurs, although not as large as that in ferro-
magnetic materials. The most important group of ferrimagnetic materials are the
ferrites, in which the conductivity is low, several orders of magnitude less than
that of semiconductors. The fact that these substances have greater resistance
than the ferromagnetic materials results in much smaller induced currents in the
material when alternating fields are applied, as for example in transformer cores
which operate at the higher frequencies. The reduced currents (eddy currents)
lead to lower ohmic losses in the transformer core. The iron oxide magnetite
(Fe304), a nickel-zinc ferrite (Nij»Zn;,»,Fe;04), and a nickel ferrite (NiFe;Oy)
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TABLE 9.1
Characteristics of magnetic materials

Classification Magnetic moments B values Comments

Diamagnetic Mo, + Mgpin = 0 Bim < Bappl Bim = Bappl

Paramagnetic Mo, + Mgy = small By > Byppl Bint = Bappl

Ferromagnetic [mgyin| > M| By > Bppi Domains

Antiferromagnetic [mgpin| > (Mg | Bint = Bappl Adjacent moments oppose

Ferrimagnetic [mgpin| > Mgy Bint > Bappl Unequal adjacent moments oppose; low o
Superparamagnetic [mgpin| > Mg | Bint > Bappl Nonmagnetic matrix; recording tapes

are examples of this class of materials. Ferrimagnetism also disappears above the
Curie temperature.

Superparamagnetic materials are composed of an assemblage of ferromag-
netic particles in a nonferromagnetic matrix. Although domains exist within the
individual particles, the domain walls cannot penetrate the intervening matrix
material to the adjacent particle. An important example is the magnetic tape used
in audiotape or videotape recorders.

Table 9.1 summarizes the characteristics of the six types of magnetic mate-
rials discussed above.

9.6 MAGNETIZATION AND PERMEABILITY

To place our description of magnetic materials on a more quantitative basis, we
shall now devote a page or so to showing how the magnetic dipoles act as a
distributed source for the magnetic field. Our result will be an equation that
looks very much like Ampere’s circuital law, 9§ H - dL = I. The current, however,
will be the movement of hound charges (orbital electrons, electron spin, and
nuclear spin), and the field, which has the dimensions of H, will be called the
magnetization M. The current produced by the bound charges is called a bound
current or Amperian current.

Let us begin by defining the magnetization M in terms of the magnetic
dipole moment m. The bound current 7, circulates about a path enclosing a
differential area dS, establishing a dipole moment (A-m?),

m = Ide

If there are n magnetic dipoles per unit volume and we consider a volume Awv,
then the total magnetic dipole moment is found by the vector sum

nAv

Myoa] = Zmi (19)
i=1

Each of the m; may be different. Next, we define the magnetization M as the
magnetic dipole moment per unit volume,
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nAv

Zmz
Av—)O Av 4

and see that its units must be the same as for H, amperes per meter.

Now let us consider the effect of some alignment of the magnetic dipoles as
the result of the application of a magnetic field. We shall investigate this align-
ment along a closed path, a short portion of which is shown in Fig. 9.9. The
figure shows several magnetic moments m that make an angle 6 with the element
of path dL; each moment consists of a bound current 7, circulating about an area
dS. We are therefore considering a small volume, dS cos6dL, or dS - dL, within
which there are ndS - dL. magnetic dipoles. In changing from a random orienta-
tion to this partial alignment, the bound current crossing the surface enclosed by
the path (to our left as we travel in the a; direction in Fig. 9.9) has increased by
I;, for each of the ndS - dL dipoles. Thus

dl, = nldS -dL =M - dL (20)
and within an entire closed contour,
I, = 7€ M - dL 21

Equation (21) merely says that if we go around a closed path and find dipole
moments going our way more often than not, there will be a corresponding
current composed of, for example, orbiting electrons crossing the interior
surface.

This last expression has some resemblance to Ampere’s circuital law, and
we may now generalize the relationship between B and H so that it applies to
media other than free space. Our present discussion is based on the forces and
torques on differential current loops in a B field, and we therefore take B as our
fundamental quantity and seek an improved definition of H. We thus write
Ampere’s circuital law in terms of the rotal current, bound plus free,

B

— .dL=1Ir 22)
o

Surface defined
// by closed path

FIGURE 9.9

A section dL of a closed path along which magnetic dipoles have been partially aligned by some external
magnetic field. The alignment has caused the bound current crossing the surface defined by the closed path
to increase by nlydS - dL amperes.
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where
Ir=10,+1

and [ is the total free current enclosed by the closed path. Note that the free
current appears without subscript since it is the most important type of current
and will be the only current appearing in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free
current enclosed,

B
I:IT—Ib:%<——M>-dL (23)
Mo
We may now define H in terms of B and M,
B
H=—-M (24)
Ho

and we see that B = uoH in free space where the magnetization is zero. This
relationship is usually written in a form that avoids fractions and minus signs:

B = wo(H + M) (25)

We may now use our newly defined H field in (23),
I = ¢ H.dJdL (26)

obtaining Ampére’s circuital law in terms of the free currents.
Utilizing the several current densities, we have

11,:¢.Jb-ds
N

IT:fJT-dS
S

Izng-dS
s

With the help of Stokes’ theorem, we may therefore transform (21), (26), and (22)
into the equivalent curl relationships:

VXM:J};
B
VX—ZJT
o
VxH=1J (27)
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We shall emphasize only (26) and (27), the two expressions involving the
free charge, in the work that follows.

The relationship between B, H, and M expressed by (25) may be simplified
for linear isotropic media where a magnetic susceptibility x,, can be defined:

M= XmH (28)

Thus we have

B= MO(H + XmH)

= nopurH
where
pr =1+ xm (29)
is defined as the relative permeability jug. We next define the permeability u:
M= [LoMR (30)
and this enables us to write the simple relationship between B and H,
B=uH (31)

IIII»Example 9.5

Given a ferrite material which we shall specify to be operating in a linear mode with
B =0.05T, let us assume pug = 50, and calculate values for x,,, M, and H.

Solution. Since up =1+ x,,, we have

Xm://vR_]:49

Also,
B = prpoH
and
- =796 A/m
The magnetization is y,, H, or 39000 A/m. The alternate ways of relating B and H are,
first,
B = po(H + M)
or

0.05 = 47 x 1077(796 + 39 000)

showing that Amperian currents produce 49 times the magnetic field intensity that the
free charges do; and second,
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B = prpmoH
or
0.05 =50 x 47 x 1077 x 796

where we utilize a relative permeability of 50 and let this quantity account completely
for the notion of the bound charges. We shall emphasize the latter interpretation in the
chapters that follow.

The first two laws that we investigated for magnetic fields were the Biot-
Savart law and Ampere’s circuital law. Both were restricted to free space in their
application. We may now extend their use to any homogeneous, linear, isotropic
magnetic material that may be described in terms of a relative permeability wg.

Just as we found for anisotropic dielectric materials, the permeability of an
anisotropic magnetic material must be given as a 3 x 3 matrix, while B and H are
both 3 x 1 matrices. We have

B, = /’LxxHx + MxyI_Iy + szHz
By = wyHy + pyyHy + 1y H:
B. = u.H,+ M:_\/'I_Iy + o H.

For anisotropic materials, then, B=puH is a matrix equation; however
B = wo(H + M) remains valid, although B, H, and M are no longer parallel in
general. The most common anisotropic magnetic material is a single ferromag-
netic crystal, although thin magnetic films also exhibit anisotropy. Most applica-
tions of ferromagnetic materials, however, involve polycrystalline arrays that are
much easier to make.

Our definitions of susceptibility and permeability also depend on the
assumption of linearity. Unfortunately, this is true only in the less interesting
paramagnetic and diamagnetic materials for which the relative permeability
rarely differs from unity by more than one part in a thousand. Some typical
values of the susceptibility for diamagnetic materials are hydrogen, —2 x 107>;
copper, —0.9 x 107; germanium, —0.8 x 107>; silicon, —0.3 x 107°; and
graphite, —12 x 107>, Several representative paramagnetic susceptibilities are
oxygen, 2 x 1079 tungsten, 6.8 x 1075; ferric oxide (Fe,O3), 1.4 x 1073; and
yttrium oxide (Y»03), 0.53 x 107, If we simply take the ratio of B to uoH as
the relative permeability of a ferromagnetic material, typical values of g would
range from 10 to 100000. Diamagnetic, paramagnetic, and antiferromagnetic
materials are commonly said to be nonmagnetic.

¢/ D9.6. Find the magnetization in a magnetic material where: (¢) 1 = 1.8 x 107> H/m
and H = 120 A/m; (b) ug = 22, there are 8.3 x 10 atoms/m>, and each atom has a
dipole moment of 4.5 x 10727 A-m?; (¢) B =300 T and y,, = 15.

Ans. 1599 A/m; 374 A/m; 224 A/m
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V D9.7. The magnetization in a magnetic material for which y,, = 8 is given in a certain
region as 150z%a, A/m. At z = 4cm, find the magnitude of: (a) J7; (b) J; (¢) Jp.

Ans. 108 A/m?; 12 A/m?; 96 A/m>

9.7 MAGNETIC BOUNDARY CONDITIONS

We should have no difficulty in arriving at the proper boundary conditions to
apply to B, H, and M at the interface between two different magnetic materials,
for we have solved similar problems for both conducting materials and dielec-
trics. We need no new techniques.

Fig. 9.10 shows a boundary between two isotropic homogeneous linear
materials with permeabilities p; and u,. The boundary condition on the normal
components is determined by allowing the surface to cut a small cylindrical
gaussian surface. Applying Gauss’s law for the magnetic field from Sec. 8.5,

%B‘dS:O
N

By AS — ByppAS =0

we find that

or

Byy = By (32)

FIGURE 9.10

A gaussian surface and a closed path are constructed at the boundary between media 1 and 2, having
permeabilities of 11 and s, respectively. From this we determine the boundary conditions By; = By, and
H, — H, = K, the component of the surface current density directed into the page.
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Thus

Hy, =X Hy, (33)
142

The normal component of B is continuous, but the normal component of H is
discontinuous by the ratio wui/us.

The relationship between the normal components of M, of course, is fixed
once the relationship between the normal components of H is known. For linear

magnetic materials, the result is written simply as
M1 Xm2H1
Myy = Y — Hy1 = ="=— My, (34)
12%) Xm1 2

Next, Ampere’s circuital law

fHﬂ’L:I

is applied about a small closed path in a plane normal to the boundary surface,
as shown to the right in Fig. 9.10. Taking a clockwise trip around the path, we
find that

HyAL — HoAL = KAL

where we assume that the boundary may carry a surface current K whose com-
ponent normal to the plane of the closed path is K. Thus

Hy—-—Hp=K (35)

The directions are specified more exactly by using the cross product to identify
the tangential components,

(H;y —Hp) x ay;p =K
where ay 5 is the unit normal at the boundary directed from region 1 to region 2.

An equivalent formulation in terms of the vector tangential components may be
more convenient for H:

Hy —Hp =ay;p xK
For tangential B, we have
By Bo_
my o M2

The boundary condition on the tangential component of the magnetization for
linear materials is therefore

K (36)

Xm2

ml

My =

My — xmK (37)
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The last three boundary conditions on the tangential components are much
simpler, of course, if the surface current density is zero. This is a free current
density, and it must be zero if neither material is a conductor.

IIII»Example 9.6

To illustrate these relationships with an example, let us assume that © = u; = 4 uH/m
in region 1 where z > 0, while u, =7 uH/m wherever z < 0. Moreover, let K =
80a, A/m on the surface z = 0. We establish a field, B; = 2a, — 3a, + a. mT, in region
1 and seek the value of B,.

Solution. The normal component of By is
Byi = By -ayp)ayn =[(2a, — 3a, +a.) - (—a.)(—a;) =a. mT
Thus,
By, =By =a. mT
We next determine the tangential components:
B, =B; —By; =2a,—3a, mT

and
H, = % = % = 500a, —750a, A/m

Thus,

H, =H,; —ay;» x K=500a, — 750a, — (—a.) x 80a,

= 500a, — 750a, + 80a, = 500a, — 670a, A/m
and
By = oHp = 7 x 107%(500a, — 670a,) = 3.5a, — 4.69a, mT

Therefore,

B, =By, +Bp =3.5a, —4.69a, +a. mT

V D9.8. Let the permittivity be 5 uH/m in region 4 where x < 0, and 20 xH/m in region
B where x > 0. If there is a surface current density K = 150a, — 200a. A/m at x =0,
and if H, = 300a, — 400a, + 500a. A/m, find: (a) [H,4|; (b) [Hy4l: (¢) |H,zl; (d) [Hysl.

Ans. 640 A/m; 300 A/m; 695 A/m; 75 A/m

9.8 THE MAGNETIC CIRCUIT

In this section we shall digress briefly to discuss the fundamental techniques
involved in solving a class of magnetic problems known as magnetic circuits.
As we shall see shortly, the name arises from the great similarity to the dc-
resistive-circuit analysis with which it is assumed we are all facile. The only
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important difference lies in the nonlinear nature of the ferromagnetic portions of
the magnetic circuit; the methods which must be adopted are similar to those
required in nonlinear electric circuits which contain diodes, thermistors, incan-
descent filaments, and other nonlinear elements.

As a convenient starting point, let us identify those field equations upon
which resistive circuit analysis is based. At the same time we shall point out or
derive the analogous equations for the magnetic circuit. We begin with the
electrostatic potential and its relationship to electric field intensity,

E=-VV (38a)

The scalar magnetic potential has already been defined, and its analogous rela-
tion to the magnetic field intensity is

H=-VV, (38h)

In dealing with magnetic circuits, it is convenient to call V,, the magnetomotive
force, or mmf, and we shall acknowledge the analogy to the electromotive force,
or emf, by doing so. The units of the mmf are, of course, amperes, but it is
customary to recognize that coils with many turns are often employed by using
the term “‘ampere-turns.” Remember that no current may flow in any region in
which V,, is defined.

The electric potential difference between points 4 and B may be written as

B
VAB = / E . dL (396!)
A

and the corresponding relationship between the mmf and the magnetic field
intensity,

B
Vydn = / H-dL (39b)
A

was developed in Chap. 8, where we learned that the path selected must not cross
the chosen barrier surface.
Ohm’s law for the electric circuit has the point form

J=oE (40q)

and we see that the magnetic flux density will be the analog of the current
density,

B = uH (400)
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To find the total current, we must integrate:
I = / J-dS (41a)
s

A corresponding operation is necessary to determine the total magnetic flux
flowing through the cross section of a magnetic circuit:

cb:/SB-ds (41b)

We then defined resistance as the ratio of potential difference and current,
or

V = IR (424)

and we shall now define reluctance as the ratio of the magnetomotive force to the
total flux; thus

V,, = dR (42b)

where reluctance is measured in ampere-turns per weber (A-t/Wb). In resistors
which are made of a linear isotropic homogeneous material of conductivity o and
have a uniform cross section of area S and length d, the total resistance is

_4
T oS

If we are fortunate enough to have such a linear isotropic homogeneous mag-
netic material of length ¢ and uniform cross section S, then the total reluctance is

R (43a)

d
R=— 43b
S (43D)

The only such material to which we shall commonly apply this relationship is air.
Finally, let us consider the analog of the source voltage in an electric circuit.
We know that the closed line integral of E is zero,

%E-dL:O

In other words, Kirchhoff’s voltage law states that the rise in potential through
the source is exactly equal to the fall in potential through the load. The expres-
sion for magnetic phenomena takes on a slightly different form,

%H ~dL = Tiotal
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for the closed line integral is not zero. Since the total current linked by the path is
usually obtained by allowing a current / to flow through an N-turn coil, we may
express this result as

fH-dL:NI (44)

In an electric circuit the voltage source is a part of the closed path; in the
magnetic circuit the current-carrying coil will surround or link the magnetic
circuit. In tracing a magnetic circuit, we shall not be able to identify a pair of
terminals at which the magnetomotive force is applied. The analogy is closer here
to a pair of coupled circuits in which induced voltages exist (and in which we
shall see in Chap. 10 that the closed line integral of E is also not zero).

Let us try out some of these ideas on a simple magnetic circuit. In order to
avoid the complications of ferromagnetic materials at this time, we shall assume
that we have an air-core toroid with 500 turns, a cross-sectional area of 6 cm?, a
mean radius of 15 cm, and a coil current of 4 A. As we already know, the
magnetic field is confined to the interior of the toroid, and if we consider the
closed path of our magnetic circuit along the mean radius, we link 2000 A-t,

Vm, source — 2000 A-t

Although the field in the toroid is not quite uniform, we may assume that it is for
all practical purposes and calculate the total reluctance of the circuit as

_d 27(0.15)

T uS 41077 x 6 x 1074

=125x%x10° A-t/Wb

Thus
Vins 2000
R 1.25x 100

This value of the total flux is in error by less than % percent, in comparison with
the value obtained when the exact distribution of flux over the cross section is

O = 1.6 x 107® Wb

used.
Hence
® 1.6x10°° 3
and finally,
B 2.67x1073
H=—=———=2120 A-t
W 4710-7 0 /m

As a check, we may apply Ampere’s circuital law directly in this symmetrical
problem,

Hy2nr = NI
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and obtain

NI 500 x 4

Hy=—" = 22X% 9120 A
* = omr 628 x0.15 /m

at the mean radius.

Our magnetic circuit in this example does not give us any opportunity to
find the mmf across different elements in the circuit, for there is only one type of
material. The analogous electric circuit is, of course, a single source and a single
resistor. We could make it look just as long as the above analysis, however, if we
found the current density, the electric field intensity, the total current, the resis-
tance, and the source voltage.

More interesting and more practical problems arise when ferromagnetic
materials are present in the circuit. Let us begin by considering the relationship
between B and H in such a material. We may assume that we are establishing a
curve of B versus H for a sample of ferromagnetic material which is completely
demagnetized; both B and H are zero. As we begin to apply an mmf, the flux
density also rises, but not linearly, as the experimental data of Fig. 9.11 show
near the origin. After H reaches a value of about 100 A-t/m, the flux density rises
more slowly and begins to saturate when H is several hundred A-t/m. Having
reached partial saturation, let us now turn to Fig. 9.12, where we may continue
our experiment at point x by reducing H. As we do so, the effects of hysteresis
begin to show, and we do not retrace our original curve. Even after H is zero,
B = B, the remnant flux density. As H is reversed, then brought back to zero,
and the complete cycle traced several times, the hysteresis loop of Fig. 9.12 is
obtained. The mmf required to reduce the flux density to zero is identified as H,,

0 100 300 500 700 900
H (A-t/m)

FIGURE 9.11
Magnetization curve of a sample of silicon sheet steel.
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o

FIGURE 9.12

A hysteresis loop for silicon steel. The
coercive force H, and remnant flux den-
sity B, are indicated.

the coercive “force.” For smaller maximum values of H smaller hysteresis loops
are obtained and the locus of the tips is about the same as the virgin magnetiza-
tion curve of Figure 9.11.

IIII»Example 9.7

Let us make use of the magnetization curve for silicon steel to solve a magnetic circuit
problem that is slightly different from our previous example. We shall use a steel core in
the toroid, except for an air gap of 2 mm. Magnetic circuits with air gaps occur because
gaps are deliberately introduced in some devices, such as inductors, which must carry
large direct currents, because they are unavoidable in other devices such as rotating
machines, or because of unavoidable problems in assembly. There are still 500 turns
about the toroid, and we ask what current is required to establish a flux density of 1 T
everywhere in the core.

Solution. This magnetic circuit is analogous to an electric circuit containing a voltage
source and two resistors, one of which is nonlinear. Since we are given the “‘current,” it
is easy to find the “voltage™ across each series element, and hence the total “emf.” In the
air gap,

dair 2 x 10_3 6
Ri=—-="—————=2. 1 A-
Rair = S = Iml0 7 x 6 x 105 — 262 <107 A-yWb

Knowing the total flux,
d=BS=16x100H=6x10"" Wb
which is the same in both steel and air, we may find the mmf required for the gap,

Vinair = (6 x 107)(2.65 x 10%) = 1590 At
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Referring to Fig. 9.11, a magnetic field strength of 200 A-t/m is required to produce a
flux density of 1T in the steel. Thus

Hsleel =200 A-t
Vinsteel = Hiteeldsteel = 200 x 0.307
=188 A-t

The total mmf is therefore 1778 A-t, and a coil current of 3.56 A is required.

We should realize that we have made several approximations in obtaining
this answer. We have already mentioned the lack of a completely uniform cross
section, or cylindrical symmetry; the path of every flux line is not of the same
length. The choice of a “mean” path length can help compensate for this error in
problems in which it may be more important than it is in our example. Fringing
flux in the air gap is another source of error, and formulas are available by which
we may calculate an effective length and cross-sectional area for the gap which
will yield more accurate results. There is also a leakage flux between the turns of
wire, and in devices containing coils concentrated on one section of the core, a
few flux lines bridge the interior of the toroid. Fringing and leakage are problems
which seldom arise in the electric circuit because the ratio of the conductivities of
air and the conductive or resistive materials used is so high. In contrast, the
magnetization curve for silicon steel shows that the ratio of H to B in the steel
is about 200 up to the “knee” of the magnetization curve; this compares with a
ratio in air of about 800000. Thus, although flux prefers steel to air by the
commanding ratio of 4000 to 1, this is not very close to the ratio of conductivities
of, say, 10" for a good conductor and a fair insulator.

[IIpExample 9.8

As a last example, let us consider the reverse problem. Given a coil current of 4 A in the
previous magnetic circuit, what will the flux density be?

Solution. First let us try to linearize the magnetization curve by a straight line from the
origin to B =1, H = 200. We then have B = H/200 in steel and B = uoH in air. The
two reluctances are found to be 0.314 x 10° for the steel path and 2.65 x 10° for the air
gap, or 2.96 x 10® A-t/Wb total. Since V,, is 2000 A-t, the flux is 6.76 x 10~* Wb, and
B =1.13T. A more accurate solution may be obtained by assuming several values of B
and calculating the necessary mmf. Plotting the results enables us to determine the true
value of B by interpolation. With this method we obtain B = 1.10 T. The good accuracy
of the linear model results from the fact that the reluctance of the air gap in a magnetic
circuit is often much greater than the reluctance of the ferromagnetic portion of the
circuit. A relatively poor approximation for the iron or steel can thus be tolerated.

V D9.9. Given the magnetic circuit of Fig. 9.13, assume B = 0.6 T at the midpoint of the
left leg and find: (@) Vi.air; (b) Vinsieel; (¢) the current required in a 1300-turn coil linking
the left leg.
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Ly=8cm
i L,=16cm
N e R A \ Material: silicon steel
| \
1 1
L | |
1 1
5y 1 ¥
' \
1 ¥
1
S, =3 cm? 0.5 em
s-som: A AT

FIGURE 9.13
See Prob. D9.9.

Ans. 3980 A-t; 72A-t; 3.12A

V D9.10. The magnetization curve for material X under normal operating conditions may
be approximated by the expression B = (H/160)(0.25 + ¢~ #/3%) where H is in A/m and
Bisin T. If a magnetic circuit contains a 12-cm length of material X, as well as a 0.25-
mm air gap, assume a uniform cross section of 2.5cm? and find the total mmf required
to produce a flux of: (a) 10 uWb; (b) 100 uWbh.

Ans. 13.14 A-t; 86.7 A-t

9.9 POTENTIAL ENERGY AND FORCES ON
MAGNETIC MATERIALS

In the electrostatic field we first introduced the point charge and the experimen-
tal law of force between point charges. After defining electric field intensity,
electric flux density, and electric potential, we were able to find an expression
for the energy in an electrostatic field by establishing the work necessary to bring
the prerequisite point charges from infinity to their final resting places. The
general expression for energy is

WEZI/ D -Edv (45)
2 vol
where a linear relationship between D and E is assumed.

This is not as easily done for the steady magnetic field. It would seem that
we might assume two simple sources, perhaps two current sheets, find the force
on one due to the other, move the sheet a differential distance against this force,
and equate the necessary work to the change in energy. If we did, we would be
wrong, because Faraday’s law (coming up in the next chapter) shows that there
will be a voltage induced in the moving current sheet against which the current
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must be maintained. Whatever source is supplying the current sheet turns out to
receive half the energy we are putting into the circuit by moving it.

In other words, energy density in the magnetic field may be determined
more easily after time-varying fields are discussed. We shall develop the appro-
priate expression in discussing Poynting’s theorem in Chap. 11.

An alternate approach would be possible at this time, however, for we
might define a magnetostatic field based on assumed magnetic poles (or “mag-
netic charges”). Using the scalar magnetic potential, we could then develop an
energy expression by methods similar to those used in obtaining the electrostatic
energy relationship. These new magnetostatic quantities we would have to intro-
duce would be too great a price to pay for one simple result, and we shall
therefore merely present the result at this time and show that the same expression
arises in the Poynting theorem later. The total energy stored in a steady magnetic
field in which B is linearly related to H is

1
WH=§/ B-Hdv (46)
vol

Letting B = uH, we have the equivalent formulations

1
Wy == / wH?dv (47)
2 vol
or
1 B?
Wy == / —dv (48)
2 vol M

It is again convenient to think of this energy as being distributed through-
out the volume with an energy density of %B -HJ/m?, although we have no
mathematical justification for such a statement.

In spite of the fact that these results are valid only for linear media, we may
use them to calculate the forces on nonlinear magnetic materials if we focus our
attention on the linear media (usually air) which may surround them. For exam-
ple, suppose that we have a long solenoid with a silicon-steel core. A coil contain-
ing n turns/m with a current / surrounds it. The magnetic field intensity in the
core is therefore n/ A-t/m, and the magnetic flux density can be obtained from
the magnetization curve for silicon steel. Let us call this value Bg. Suppose that
the core is composed of two semi-infinite cylinders® which are just touching. We
now apply a mechanical force to separate these two sections of the core while
keeping the flux density constant. We apply a force F over a distance dL, thus
doing work F dL. Faraday’s law does not apply here, for the fields in the core
have not changed, and we can therefore use the principle of virtual work to

2 A semi-infinite cylinder is a cylinder of infinite length having one end located in finite space.

4| p | eTextMainMenu | Textbook Table of Contents

307



308

ENGINEERING ELECTROMAGNETICS

determine that the work we have done in moving one core appears as stored
energy in the air gap we have created. By (48) above, this increase is

1 B
AWy =FdL =--3SdL
2 po
where S is the core cross-sectional area. Thus
o B2S
210

If, for example, the magnetic field intensity is sufficient to produce saturation in
the steel, approximately 1.4 T, the force is

F=780x10S N
or about 1131bs/in?

v Dol (a) What force is being exerted on the pole faces of the circuit described in Prob.
D9.9 and Figure 9.13? (b) Is the force trying to open or close the air gap?

Ans. 1194 N; as Wilhelm Eduard Weber would put it, ““schliessen”

9.10 INDUCTANCE AND MUTUAL
INDUCTANCE

Inductance is the last of the three familiar parameters from circuit theory which
we are defining in more general terms. Resistance was defined in Chap. 5 as the
ratio of the potential difference between two equipotential surfaces of a conduct-
ing material to the total current crossing either equipotential surface. The resis-
tance is a function of conductor geometry and conductivity only. Capacitance
was defined in the same chapter as the ratio of the total charge on either of two
equipotential conducting surfaces to the potential difference between the sur-
faces. Capacitance is a function only of the geometry of the two conducting
surfaces and the permittivity of the dielectric medium between or surrounding
them. The interpretation of resistance and capacitance as circuit elements will be
inspected more closely in Sec. 13.1.

As a prelude to defining inductance, we first need to introduce the concept
of flux linkage. Let us consider a toroid of N turns in which a current / produces
a total flux ®. We shall assume first that this flux links or encircles each of the N
turns, and we also see that each of the N turns links the total flux ®. The flux
linkage N® is defined as the product of the number of turns N and the flux &
linking each of them.? For a coil having a single turn, the flux linkage is equal to
the total flux.

3 The symbol 2 is commonly used for flux linkages. We shall only occasionally make use of this concept,
however, and we will continue to write it as N®.
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We now define inductance (or self-inductance) as the ratio of the total flux
linkages to the current which they link,

L="+ (49)

The current 7 flowing in the N-turn coil produces the total flux ® and N
flux linkages, where we assume for the moment that the flux @ links each turn.
This definition is applicable only to magnetic media which are linear, so that the
flux is proportional to the current. If ferromagnetic materials are present, there is
no single definition of inductance which is useful in all cases, and we shall restrict
our attention to linear materials.

The unit of inductance is the henry (H), equivalent to one weber-turn per
ampere.

Let us apply (49) in a straightforward way to calculate the inductance per
meter length of a coaxial cable of inner radius ¢ and outer radius b. We may take
the expression for total flux developed as Eq. (42) in Chap. 8,

and obtain the inductance rapidly for a length d,

L= Mlné H
27 a
or, on a per-meter basis,
L=t H/m (50)
27 a

In this case, N =1 turn, and all the flux links all the current.
In the problem of a toroidal coil of N turns and a current /, as shown in
Fig. 8.12b, we have

NI
B¢ Mo

T 2mp
If the dimensions of the cross section are small compared with the mean radius of
the toroid py then the total flux is
NIS
o — Hoiio
2700

where S is the cross-sectional area. Multiplying the total flux by N, we have the
flux linkages, and dividing by /7, we have the inductance
//L()NZS

L="7—— 51
2700 (51
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Once again we have assumed that all the flux links all the turns, and this is a
good assumption for a toroidal coil of many turns packed closely together.
Suppose, however, that our toroid has an appreciable spacing between turns, a
short part of which might look like Fig. 9.14. The flux linkages are no longer the
product of the flux at the mean radius times the total number of turns. In order
to obtain the total flux linkages we must look at the coil on a turn-by-turn basis.

(N(D)totalzcbl+q>2+---—|—d)i+...+q)N

N
-y
i=1

where ®; is the flux linking the ith turn. Rather than doing this, we usually rely
on experience and empirical quantities called winding factors and pitch factors to
adjust the basic formula to apply to the real physical world.

An equivalent definition for inductance may be made using an energy point
of view,

_2Wy

L 2

(52)

where / is the total current flowing in the closed path and Wy is the energy in the
magnetic field produced by the current. After using (52) to obtain several other
general expressions for inductance, we shall show that it is equivalent to (49). We
first express the potential energy Wy in terms of the magnetic fields,

.[VO] B-Hdv
12

L= (53)

FIGURE 9.14

A portion of a coil showing partial flux
linkages. The total flux linkages are
obtained by adding the fluxes linking
each turn.
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and then replace B by V x A,
1
—ﬁ/VOlH-(VxA)dv

The vector identity
V- AxH)=H-(VxA)—A-(VxH) (54)
may be proved by expansion in cartesian coordinates. The inductance is then

1
L:—z[/ V~(A><H)dv+/ A-(VxH)dv} (55)
1 vol vol
After applying the divergence theorem to the first integral and letting Vx H=J
in the second integral, we have

:%{ﬁmx}DdS+£MAJmi

The surface integral is zero, since the surface encloses the volume contain-
ing all the magnetic energy, and this requires that A and H be zero on the
bounding surface. The inductance may therefore be written as

L:i/ A-Jdv (56)
12 vol

Equation (56) expresses the inductance in terms of an integral of the values
of A and J at every point. Since current density exists only within the conductor,
the integrand is zero at all points outside the conductor and the vector magnetic
potential need not be determined there. The vector potential is that which arises
from the current J, and any other current source contributing a vector potential
field in the region of the original current density is to be ignored for the present.
Later we shall see that this leads to a mutual inductance.

The vector magnetic potential A due to J is given by Eq. (51), Chap. 8,

A—/ .

vol 47TR

and the inductance may therefore be expressed more basically as a rather for-
midable double volume integral,

/ (fm "“) v (57)

A slightly simpler integral expression is obtained by restricting our atten-
tion to current filaments of small cross section for which J dv may be replaced by
I dL and the volume integral by a closed line integral along the axis of the
filament,
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1 ul dL
L=— —— ) -1dL
I? (% 471R) d

d
:% (%;)-dL (58)

Our only present interest in Eqgs. (57) and (58) lies in their implication that
the inductance is a function of the distribution of the current in space or the
geometry of the conductor configuration.

To obtain our original definition of inductance (49) let us hypothesize a
uniform current distribution in a filamentary conductor of small cross section so
that J dv in (56) becomes [ dL,

1
L:TfA-dL (59)

For a small cross section, dLL may be taken along the center of the filament. We
now apply Stokes’ theorem and obtain

L:l/(VxA)-dS
IJs

or
L—lfB dsS
-1/
or
®
L=—
: (60)

Retracing the steps by which (60) is obtained, we should see that the flux ®
is that portion of the total flux which passes through any and every open surface
whose perimeter is the filamentary current path.

If we now let the filament make N identical turns about the total flux, an
idealization which may be closely realized in some types of inductors, the closed
line integral must consist of NV laps about this common path and (60) becomes

NO
L= 7 (61)
The flux @ is now the flux crossing any surface whose perimeter is the path
occupied by any one of the N turns. The inductance of an N-turn coil may
still be obtained from (60), however, if we realize that the flux is that which
crosses the complicated surface* whose perimeter consists of all N turns.

Use of any of the inductance expressions for a true filamentary conductor
(having zero radius) leads to an infinite value of inductance, regardless of the
configuration of the filament. Near the conductor Ampére’s circuital law shows

4 Somewhat like a spiral ramp.
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that the magnetic field intensity varies inversely with the distance from the con-
ductor, and a simple integration soon shows that an infinite amount of energy
and an infinite amount of flux are contained within any finite cylinder about the
filament. This difficulty is eliminated by specifying a small but finite filamentary
radius.

The interior of any conductor also contains magnetic flux, and this flux
links a variable fraction of the total current, depending on its location. These flux
linkages lead to an internal inductance, which must be combined with the external
inductance to obtain the total inductance. The internal inductance of a long
straight wire of circular cross section, radius a, and uniform current distribution
is

"n
La,int = o_

H/m (62)
8

a result requested in Prob. 43 at the end of this chapter.

In Chap. 11 it will be seen that the current distribution in a conductor at
high frequencies tends to be concentrated near the surface. The internal flux is
reduced, and it is usually sufficient to consider only the external inductance. At
lower frequencies, however, internal inductance may become an appreciable part
of the total inductance.

We conclude by defining the mutual inductance between circuits 1 and 2,
M,, in terms of mutual flux linkages,

N9y

M
12 T

(63)

where @, signifies the flux produced by /; which links the path of the filamen-
tary current />, and N, is the number of turns in circuit 2. The mutual induc-
tance, therefore, depends on the magnetic interaction between two currents.
With either current alone, the total energy stored in the magnetic field can be
found in terms of a single inductance, or self-inductance; with both currents
having nonzero values, the total energy is a function of the two self-inductances
and the mutual inductance. In terms of a mutual energy, it can be shown that
(63) is equivalent to

My =— | (B;-Hy)dv (64)
1112 vol
or
1
My =—— [ (uH;-Hy)dv (65)
1112 vol
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where B, is the field resulting from /; (with /; = 0) and H; is the field due to I,
(with I; = 0). Interchange of the subscripts does not change the right-hand side
of (65), and therefore

My, = My, (66)

Mutual inductance is also measured in henrys, and we rely on the context to
allow us to differentiate it from magnetization, also represented by M.

IIII»Example 9.9

Calculate the self-inductances of and the mutual inductances between two coaxial sole-
noids of radius Ry and R», R, > Ry, carrying currents I; and I, with n; and n, turns/m,
respectively.

Solution. We first attack the mutual inductances. From Eq. (15), Chap. 8, we let
ny = N/d, and obtain

H, =mhLia. (0O<p<R))
=0 (p>R)
and
H, =mba. (0<p<Ry)
=0 (p>Ry)
Thus, for this uniform field
P = MoﬂlflﬂR%
and
My = ,uonlnan%
Similarly,
@y = pom LR}
M>y = pommnR} = My
If ny = 50 turns/cm, 1, = 80 turns/cm, R; = 2 cm, and R, = 3 cm, then
My = My = 47 x 1077(5000)(8000)7(0.02*) = 63.2 mH/m
The self-inductances are easily found. The flux produced in coil 1 by 1 is
@11 = pom LR
and thus
Ly =uniSid H
The inductance per unit length is therefore

L1 = /J()H%Sl H/m
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or
Ly =39.5mH/m
Similarly,
Ly = pon3Sy = 22.7 mH/m

We see, therefore, that there are many methods available for the calculation
of self-inductance and mutual inductance. Unfortunately, even problems posses-
sing a high degree of symmetry present very challenging integrals for evaluation,
and only a few problems are available for us to try our skill on.

Inductance will be discussed in circuit terms in Chap. 13.

¢/ D9.12. Calculate the self-inductance of: (a) 3.5 m of coaxial cable with ¢ = 0.8 mm and
b =4 mm, filled with a material for which uz = 50; (b) a toroidal coil of 500 turns,
wound on a fiberglass form having a 2.5 x 2.5 cm square cross section and an inner
radius of 2 cm; (¢) a solenoid having 500 turns about a cylindrical core of 2-cm radius in
which ug =50 for 0 < p < 0.5 cm and ug =1 for 0.5 < p < 2 cm; the length of the
solenoid is 50 cm.

Ans. 56.3 nH; 1.014mH; 3.21 mH

l/ D9.13. A solenoid is 50-cm long, 2 cm in diameter, and contains 1500 turns. The
cylindrical core has a diameter of 2 cm and a relative permeability of 75. This coil is
coaxial with a second solenoid, also 50 cm long, but with a 3-cm diameter and 1200
turns. Calculate: (a) L for the inner solenoid; (b) L for the outer solenoid; (¢) M between
the two solenoids.

Ans. 133.2mH; 86.7mH; 106.6 mH

SUGGESTED REFERENCES

1. Kraus, J. D. and D. A. Fleisch: (see Suggested References for Chap. 3).
Examples of the calculation of inductance are given on pp. 99-108.

2. Matsch, L. W.: (see Suggested References for Chap. 5). Chapter 3 is devoted
to magnetic circuits and ferromagnetic materials.

3. Paul, C. R., K. W. Whites, and S. Y. Nasar: (see Suggested References for
Chap. 8). Magnetic circuits, including those with permanent magnets, are
discussed on pp. 263-270.

PROBLEMS

9.1 A point charge, O = —0.3 uC and m = 3 x 10~'®kg, is moving through
the field E = 30a, V/m. Use Eq. (1) and Newton’s laws to develop the
appropriate differential equations and solve them, subject to the initial
conditions at = 0: v=3 x 10°a, m/s at the origin. At t = 3 us, find: (a)
the position P(x, y, z) of the charge; (b) the velocity v; (¢) the kinetic
energy of the charge.
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9.2

9.4

9.5

9.6

9.7

f‘

A point charge, 0 = —0.3 uC and m = 3 x 10~ kg, is moving through
the field B = 30a. mT. Make use of Eq. (2) and Newton’s laws to develop
the appropriate differential equations and solve them, subject to the
initial condition at 7= 0,v =23 x 10°a, m/s at the origin. Solve these
equations (perhaps with the help of an example given in Sec. 7.5) to
evaluate at 1 = 3 us: (a) the position P(x, y, z) of the charge; (b) its velo-
city; (¢) and its kinetic energy.

A point charge for which Q =2 x 107'°C and m =5 x 107 kg is
moving in the combined fields E = 100a, — 200a, + 300a. V/m and
B= —3a,+2a, —a.mT. If the charge velocity at r=0 is v(0) =
(2a, — 3a, —4a.)10° m/s: (a) give the unit vector showing the direction
in which the charge is accelerating at 1 = 0; (b) find the kinetic energy of
the charge at 1 = 0.

An electron (g, = —1.60219 x 1071 C, m = 9.10956 x 1073 kg) is mov-
ing at a constant velocity, v = 4.5 x 107a, m/s, along the negative y axis.
At the origin, it encounters the uniform magnetic field B = 2.5a, mT,
and remains in it up to y = 2.5cm. If we assume (with good accuracy)
that the electron remains on the y axis while it is in the magnetic field,
find its x-, y-, and z-coordinate values when y = 50 cm.

A rectangular loop of wire in free space joins points A(1,0,1) to
B(3,0,1) to C(3,0,4) to D(1,0,4) to A. The wire carries a current of
6 mA, flowing in the a, direction from B to C. A filamentary current of
15 A flows along the entire z axis in the a. direction. («) Find F on side
BC. (b) Find F on side AB. (¢) Find Fy,, on the loop.

The magnetic flux density in a region of free space is given as B =
—3xa, + 5ya, —2za. T. Find the total force on the rectangular loop
shown in Fig. 9.15 if it lies in the plane z =0 and is bounded by
x=1,x=3,y=2, and y = 5, all dimensions in cm.

Uniform current sheets are located in free space as follows: 8a. A/m
at y=0, —4a,A/m at y=1, and —4a.A/m at y=—1. Find the

— 30 A

FIGURE 9.15
See Prob. 9.6.
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vector force per meter length exerted on a current filament carrying
7 mA in the a; direction if the filament is located at: (a) x =0,
y=0.5 and a;=a,; (b)) y=0.5 z=0, and a; =a,; (¢) x=0,
y=1.5, and a; = a,.

Filamentary currents of —25a. and 25a. A are located in the x = 0 plane
in free space at y = —1 and y = 1 m, respectively. A third filamentary
current of 107%a. A is located at x = k, y = 0. Find the vector force on a
1-m length of the 1-mA filament and plot |F| versus k.

A current of —100a, A/m flows on the conducting cylinder p = Smm
and +500a. A/m is present on the conducting cylinder p = 1 mm. Find
the magnitude of the total force per meter length acting to split the outer
cylinder apart along its length.

Two infinitely long parallel filaments each carry 50 A in the a, direction.
If the filaments lie in the plane y = 0 and x = 5mm, find the vector force
per meter length on the filament passing through the origin.

(a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit
length between two filamentary conductors in free space with currents
La,at x=0,y=d/2,and ha, at x =0, y = —d/2, is uol1 [/ 2nd). (b)
Show how a simpler method can be used to check your result.

A conducting current strip carrying K = 12a. A/m lies in the x = 0 plane
between y = 0.5 and y = 1.5m. There is also a current filament of
I = 5A in the a. direction on the z axis. Find the force exerted on the:
(a) filament by the current strip; (b) strip by the filament.

A current of 6 A flows from M (2,0, 5) to N(5,0,5) in a straight solid
conductor in free space. An infinite current filament lies along the z axis
and carries 50 A in the a, direction. Compute the vector torque on the
wire segment using an origin at: (a) (0,0,5); (b) (0,0,0); (¢) (3,0,0).

The rectangular loop of Prob. 6 is now subjected to the B field produced
by two current sheets, K; = 400a, A/m at z = 2, and K, = 300a. A/m at
y =0, in free space. Find the vector torque on the loop, referred to an
origin: (a) at (0,0,0); (b) at the center of the loop.

A solid conducting filament extends from x = —b to x = b along the line
y =2, z=0. This filament carries a current of 3 A in the a, direction.
An infinite filament on the z axis carries 5 A in the a, direction. Obtain
an expression for the torque exerted on the finite conductor about an
origin located at (0,2,0).

Assume that an electron is describing a circular orbit of radius « about a
positively charged nucleus. (a) By selecting an appropriate current and
area, show that the equivalent orbital dipole moment is ea’w/2, where
w 1is the electron’s angular velocity. () Show that the torque produced by
a magnetic field parallel to the plane of the orbit is ea’?wB/2. (¢) By
equating the Coulomb and centrifugal forces, show that w is
(4rreomea® /e*)~'/%, where m, is the electron mass. (d) Find values for
the angular velocity, torque, and the orbital magnetic moment for a
hydrogen atom, where @ is about 6 x 10~ m; let B=0.5T.
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9.17

9.18

9.19

9.20

9.21

9.22

9.23

(2,-2,0)

The hydrogen atom described in Prob. 16 is now subjected to a magnetic
field having the same direction as that of the atom. Show that the forces
caused by B result in a decrease of the angular velocity by eB/(2m,) and
a decrease in the orbital moment by e?a’B/(4m,). What are these
decreases for the hydrogen atom in parts per million for an external
magnetic flux density of 0.5 T?

Calculate the vector torque on the square loop shown in Fig. 9.16 about
an origin at A4 in the field B, given: (a) 4(0,0,0) and B = 100a, mT;
(b) 4(0,0,0) and B =200a,+ 100a, mT; (c¢) A(1,2,3) and B=
200a, + 100a, — 300a. mT; (d) A(1,2,3) and B =200a,-+ 100a, —
300a. mT for x > 2 and B = 0 elsewhere.

Given a material for which y,, = 3.1 and within which B=0.4ya. T,
find: (a) H; (b) w; (¢) ur; (d) M; () J; (f) Jp; () 7.

Find H in a material where (a) ug = 4.2, there are 2.7 x 10* atoms/m?,
and each atom has a dipole moment of 2.6 x 107%a, A - m?; (b)
M =270a.A/m and pu=2pH/m; (¢) xn=0.7 and B=2a.T. (d)
Find M in a material where bound surface current densities of
12a, A/m and —9a, A/m exist at p = 0.3m and 0.4 m, respectively.
Find the magnitude of the magnetization in a material for which: () the
magnetic flux density is 0.02 Wb/m?; (b) the magnetic field intensity is
1200 A/m and the relative permeability is 1.005; (c) there are 7.2 x 10%
atoms per cubic meter, each having a dipole moment of 4 x 1073° A.m?
in the same direction, and the magnetic susceptibility is 0.0003.

Three current sheets are located as follows: 160a, A/m at x = 1cm,
—40a,A/m at x =5cm, and 50a, A/m at x =8cm. Let u = uo for
x<lem and x>8cm; for 1 <x<5cm, wu=3uy, and for
5 <Xx<8cm, u=2u. Find B everywhere.

Calculate values for Hy, By, and M, at p = ¢ for a coaxial cable with
a=2.5mm and b = 6 mm if it carries a current / = 12 A in the center
conductor, and u = 3 uH/m for 2.5mm < p < 3.5mm, u = 5 uH/m for

(2,2,0)

FIGURE 9.16
‘ See Prob. 9.18.
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3.5mm < p<4.5mm, and u = 10 uH/m for 4.5mm < p < 6 mm. Use
¢ =: (a) 3 mm; (b) 4 mm; (¢) 5 mm.
A coaxial transmission line has ¢ = 5mm and » = 20 mm. Let its center
lie on the z axis and let a dc current / flow in the a. direction in the center
conductor. The volume between the conductors contains a magnetic
material for which ug = 2.5, as well as air. Find H, B, and M everywhere

between conductors if Hy = @ A/m at p=10mm, ¢ =z, and the

magnetic material is located where: (a) a < p < 3a; (b) 0 < ¢ < 7.

A conducting filament at z =0 carries 12 A in the a, direction. Let
ur=1 for p<lcm, ur=6 for 1 <p<2cm, and pur=1 for
p > 2cm. Find: (a) H everywhere; (b) B everywhere.
Point P(2, 3, 1) lies on the planar boundary separating region 1 from
region 2. The unit vector ay;» = 0.6a, +0.48a, +0.64a. is directed

from region 1 to region 2. Let ugi =2, ugr, =S8,

100a, — 300a, + 200a. A/m. Find H>.

Let wg; =2 in region 1, defined by 2x+3y —4z > 1, while ugo
Sin  region

the angle between H; and ay;;; (f) 6>, the angle between H, and ay»;.

2 where 2x+4+3y—4z<1. In region 1,
50a, — 30a, +20a. A/m. Find: (@) Hy1; (b) Hyi; (¢) Hp; (d) Hao: (e) 61,

and H;

H;

For values of B below the knee on the magnetization curve for silicon
steel approximate the curve by a straight line with x = SmH/m. The

core shown in Fig. 9.17 has areas of 1.6 cm? and lengths of 10 cm in each

outer leg, and an area of 2.5 cm” and a length of 3 cm in the central leg.
A coil of 1200 turns carrying 12 mA is placed around the central leg.

Find B in the: (a) center leg; (b) center leg, if a 0.3-mm air gap is present

in the center leg.

In Prob. 28, the linear approximation suggested in the statement of the

problem leads to flux density of 0.666 T in the central leg. Using this
value of B and the magnetization curve for silicon steel, what current is
required in the 1200-turn coil?

A toroidal core has a circular cross section of 4 cm? area. The mean
radius of the toroid is 6 cm. The core is composed of two semicircular
segments, one of silicon steel and the other of a linear material with

i

41 )

FIGURE 9.17
See Prob. 9.28.
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9.31

9.32

9.34

9.35

9.36

ur = 200. There is a 0.4-mm air gap at each of the two joints, and the
core is wrapped by a 4000-turn coil carrying a dc current /;. () Find I, if
the flux density in the core is 1.2 T. (b) Find the flux density in the core if
L = —-3A.

A toroid is constructed of a magnetic material having a cross-sectional
area of 2.5 cm” and an effective length of 8 cm. There is also a short air
gap of 0.25-mm length and an effective area of 2.8 cm>. An mmf of
200 A-t is applied to the magnetic circuit. Calculate the total flux in
the toroid if the magnetic material: (a) is assumed to have infinite per-
meability; (b) is assumed to be linear with ugr = 1000; (¢) is silicon steel.
Determine the total energy stored in a spherical region 1 cm in radius,
centered at the origin in free space, in the uniform field:
(a) Hy = —600a, A/m; (b) 600a, + 1200a, A/m; (c) H; = —600a, +
1200a, A/m; (d) Hy = H, + Hj3; (e) 1000a, A/m 4 0.001a, T.

A toroidal core has a square cross section, 2.5cm < p < 3.5cm,
—0.5cm < z < 0.5cm. The upper half of the toroid, 0 < z < 0.5cm, is
constructed of a linear material for which g = 10, while the lower half,
—0.5cm < z <0, has ug = 20. An mmf of 150 A-t establishes a flux in
the a4 direction. For z > 0, find: (a) Hg(p); (b) By(p); (¢) P-~0. (d) Repeat
for z < 0. (e) Find ®y).

Three planar current sheets are located in free space as follows:
—100a, A/m at z=—1, 200a,A/m at z=0, and —100a, A/m at
z=1.Let wy =1B-HJ/m’ and find wy for all z.

The cones 6 = 21° and 6 = 159° are conducting surfaces and carry total
currents of 40 A, as shown in Fig. 9.18. The currents return on a spher-
ical conducting surface of 0.25-m radius. (¢) Find H in the region
0<r<0.25 21°<6<159°, 0 <¢ <2m. (b) How much energy is
stored in this region?

A filament carrying a current / in the a, direction lies on the z axis, and
cylindrical current sheets of 5a, A/m and —2a, A/m are located at p = 3

FIGURE 9.18
See Prob. 9.35.
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and p = 10, respectively. (@) Find I if H= 0 for p > 10. (b) Using this
value of 7, calculate H for all p, 3 < p < 10. (¢) Calculate and plot Wy
versus pg, where Wy is the total energy stored within the volume
0<z<1,0<¢<2m, 3 <p<pp.

Find the inductance of the cone-sphere configuration described in Prob.
35 and Fig. 9.18. The inductance is that offered at the origin between the
vertices of the cone.

A toroidal core has a rectangular cross section defined by the surfaces
p=2cm, p=3cm, z=4cm, and z = 4.5cm. The core material has a
relative permeability of 80. If the core is wound with a coil containing
8000 turns of wire, find its inductance.

Conducting planes in air at z =0 and z = d carry surface currents of
+Kpa, A/m. (a) Find the energy stored in the magnetic field per unit
length (0 < x < 1) in a width w (0 < y < w). (b) Calculate the inductance
per unit length of this transmission line from Wy = %Ll 2, where [ is the
total current in a width w in either conductor. (¢) Calculate the total flux
passing through the rectangle 0 < x < 1, 0 < z < d, in the plane y = 0,
and from this result again find the inductance per unit length.

A coaxial cable has conductor dimensions of 1 and 5 mm. The region

. b4 3
between conductors is air for 0 < ¢ < 5 and 7 < ¢ < 5 and a noncon-

ducting material having pug = 8 for T, ¢ < and 3 < ¢ < 2m. Find
the inductance per meter length. 2 2

A rectangular coil is composed of 150 turns of a filamentary conductor.
Find the mutual inductance in free space between this coil and an infinite
straight filament on the z axis if the four corners of the coil are located
at: (a) (0,1,0), (0,3,0), (0,3,1), and (0,1,1); (b) (1,1,0), (1,3,0), (1,3,1), and
(1,1,1).

Find the mutual inductance of this conductor system in free space: (a)
the solenoid of Fig. 8.115 and a square filamentary loop of side length b
coaxially centered inside the solenoid, if @ > b/+/2; (b) a cylindrical con-
ducting shell of a radius a, axis on the z axis, and a filament at x = 0,
y=d.

(a) Use energy relationships to show that the internal inductance of a
nonmagnetic cylindrical wire of radius « carrying a uniformly distributed
current 1 is wo/(87) H/m. (b) Find the internal inductance if the portion
of the conductor for which p < ¢ < a is removed.
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CHAPTER

10

TIME-VARYING
FIELDS AND
MAXWELL’S
EQUATIONS

The basic relationships of the electrostatic and the steady magnetic field were
obtained in the previous nine chapters, and we are now ready to discuss time-
varying fields. The discussion will be short, for vector analysis and vector calcu-
lus should now be more familiar tools; some of the relationships are unchanged,
and most of the relationships are changed only slightly.

Two new concepts will be introduced: the electric field produced by a
changing magnetic field and the magnetic field produced by a changing electric
field. The first of these concepts resulted from experimental research by Michael
Faraday, and the second from the theoretical efforts of James Clerk Maxwell.

Maxwell actually was inspired by Faraday’s experimental work and by the
mental picture provided through the “lines of force™ that Faraday introduced in
developing his theory of electricity and magnetism. He was 40 years younger
than Faraday, but they knew each other during the 5 years Maxwell spent in
London as a young professor, a few years after Faraday had retired. Maxwell’s
theory was developed subsequent to his holding this university position, while he
was working alone at his home in Scotland. It occupied him for 5 years between
the ages of 35 and 40.

The four basic equations of electromagnetic theory presented in this chap-
ter bear his name.

4| p | eTextMainMenu | Textbook Table of Contents



TIME-VARYING FIELDS AND MAXWELL’S EQUATIONS

10.1 FARADAY’S LAW

After Oersted' demonstrated in 1820 that an electric current affected a compass
needle, Faraday professed his belief that if a current could produce a magnetic
field, then a magnetic field should be able to produce a current. The concept of
the “field” was not available at that time, and Faraday’s goal was to show that a
current could be produced by ‘“magnetism.”

He worked on this problem intermittently over a period of ten years, until
he was finally successful in 1831.> He wound two separate windings on an iron
toroid and placed a galvanometer in one circuit and a battery in the other. Upon
closing the battery circuit, he noted a momentary deflection of the galvanometer;
a similar deflection in the opposite direction occurred when the battery was
disconnected. This, of course, was the first experiment he made involving a
changing magnetic field, and he followed it with a demonstration that either a
moving magnetic field or a moving coil could also produce a galvanometer
deflection.

In terms of fields, we now say that a time-varying magnetic field produces
an electromotive force (emf) which may establish a current in a suitable closed
circuit. An electromotive force is merely a voltage that arises from conductors
moving in a magnetic field or from changing magnetic fields, and we shall define
it below. Faraday’s law is customarily stated as

do
emf = — \Y (1

Equation (1) implies a closed path, although not necessarily a closed conducting
path; the closed path, for example, might include a capacitor, or it might be a
purely imaginary line in space. The magnetic flux is that flux which passes
through any and every surface whose perimeter is the closed path, and d®/dt
is the time rate of change of this flux.

A nonzero value of d®/dt may result from any of the following situations:

1. A time-changing flux linking a stationary closed path
2. Relative motion between a steady flux and a closed