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Preface 

The purpose of this text is to offer a comprehensive and self-contained pre
sentation of some of the most successful and popular domain decomposition 
methods for partial differential equations. Strong emphasis is put on both al
gorithmic and mathematical aspects. In addition, we have wished to present 
a number of methods that have not been treated previously in other mono
graphs and surveys. We believe that this monograph will offer something new 
and that it will complement those of Smith, Bj0rstad, and Gropp [424] and 
Quarteroni and Valli [392]. Our monograph is also more extensive and broader 
than the surveys given in Chan and Mathew [132], Farhat and Roux [201], Le 
Tallec [308], the habilitation thesis by Wohlmuth [469], and the well-known 
SIAM Review articles by Xu [472] and Xu and Zou [476]. 

Domain decomposition generally refers to the splitting of a partial differen
tial equation, or an approximation thereof, into coupled problems on smaller 
subdomains forming a partition of the original domain. This decomposition 
may enter at the continuous level, where different physical models may be 
used in different regions, or at the discretization level, where it may be con
venient to employ different approximation methods in different regions, or in 
the solution of the algebraic systems arising from the approximation of the 
partial differential equation. These three aspects are very often interconnected 
in practice. 

This monograph is entirely devoted to the third aspect of domain decompo
sition. In practical apphcations, finite element or other discretizations reduces 
the problem to the solution of an often huge algebraic system of equations. 
Direct factorization of such systems might then not be a viable option and 
the use of basic iterative methods, such as the conjugate gradient algorithm, 
can result in very slow convergence. The basic idea of domain decomposition 
is that instead of solving one huge problem on a domain, it may be conve
nient (or necessary) to solve many smaller problems on single subdomains a 
certain number of times. Much of the work in domain decomposition relates 
to the selection of subproblems that ensure that the rate of convergence of the 
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new iterative method is fast. In other words, domain decomposition methods 
provide preconditioners that can be accelerated by Krylov space methods. 

The development of the field, and the increased interest in domain decom
position methods, is closely related to the growth of high speed computing. 
We note that in the June 2004 edition of the "Top 500" list, there are no 
fewer than 242 computer systems sustaining at least 1.0 Teraflop/sec. Scien
tific computing is therefore changing very fast and many scientists are now 
developing codes for parallel and distributed systems. 

The development of numerical methods for large algebraic systems is cen
tral in the development of efficient codes for computational fluid dynamics, 
elasticity, and other core problems of continuum mechanics. Many other tasks 
in such codes parallelize relatively easily. The importance of the algebraic 
system solvers is therefore increasing with the appearance of new computing 
systems, with a substantial number of fast processors, each with relatively 
large memory. In addition, robust algebraic solvers for many practical prob
lems and discretizations cannot be constructed by simple algebraic techniques, 
such as approximate inverses or incomplete factorizations, but the partial dif
ferential equation and the discretization must be taken into account. A very 
desirable feature of domain decomposition algorithms is that they respect 
the memory hierarchy of modern parallel and distributed computing systems, 
which is essential for approaching peak floating point performance. The devel
opment of improved methods, together with more powerful computer systems, 
is making it possible to carry out simulations in three dimensions, with quite 
high resolution, relatively easily. This work is now supported by high qual
ity software systems, such as Argonne's PETSc library, which facilitates code 
development as well as the access to a variety of parallel and distributed com
puter systems. In chapters 6 and 9, we will describe numerical experiments 
with codes developed using this library. 

A powerful approach to the analysis and development of domain decompo
sition is to view the procedure in terms of subspaces, of the original solution 
space, and with suitable solvers on these subspaces. Typically these subspaces 
are related to the geometrical objects of the subdomain partition (subdo-
mains, subdomain boundaries, interfaces between subdomains, and vertices, 
edges, and faces of these interfaces). The abstract Schwarz theory, presented 
in Chap. 2, rehes on these ideas and the convergence of the resulting iterative 
method is related to the stability of the decomposition into subspaces, certain 
stability properties of the local solvers, and a measure of the 'orthogonality' 
of these subspaces. The strong connection between stable decompositions of 
discrete functions in terms of Sobolev norms and the performance of the cor
responding domain decomposition algorithm is not a mere way of giving an 
elegant mathematical description of a method that already works well in prac
tice, but it is often the way in which new powerful algorithms are actually 
developed, especially for less standard discretizations such as edge elements 
for electromagnetic problems. 
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The book is addressed to mathematicians, computer scientists, and in 
general to people who are involved in the numerical approximation of partial 
differential equations, and who want to learn the basic ideas of domain de
composition methods both from a mathematical and an algorithmic point of 
view. The mathematical tools needed for the type of analysis essentially con
sist in some basic results on Sobolev spaces, which are reviewed in appendix 
A. The analysis also employs discrete Sobolev-type inequalities valid for finite 
element functions and polynomials. These tools are developed in Chap. 4. A 
basic knowledge of finite element theory and iterative methods is also required 
and two additional appendices summarize the results that are needed for the 
full understanding of the analysis of the algorithms developed in the main 
part of this monograph. 

The literature of the field is now quite extensive and it has developed 
rapidly over the past twenty years. We have been forced to make some impor
tant omissions. The most important one is that we do not consider multilevel 
or multigrid methods, even though many of these algorithms can also be 
viewed, and then analyzed, using similar techniques as domain decomposition 
methods; the decomposition into subspaces is now related to a hierarchy of 
finite element meshes. The inclusion of these methods would have required a 
large effort and many pages and is likely to have duplicated efforts by real 
specialists in that field; the authors fully reahzes the importance of these al
gorithms, which provide efficient and robust algorithms for many very large 
problems. 

Other omissions have also been necessary: 

• As already mentioned, we only consider domain decomposition as a way 
of building iterative methods for the solution of algebraic systems of equa
tions. 

• While we describe a number of algorithms in such a way as to simplify 
their implementation, we do not discuss other practical aspects of the 
development of codes for parallel and distributed computer systems. 

• We only consider linear elliptic scalar and vector problems in full detail. 
Indeed, the methods presented in this monograph can be applied to the 
solution of linear systems arising from implicit time step discretizations 
of time-dependent problems or arising from Newton-type iterations for 
non-linear problems. 

• Our presentation and analysis is mainly confined to low-order finite ele
ment (h version) and spectral element {a particular p version) approxima
tions. Some domain decomposition preconditioners have also been applied 
to other types of p and to certain hp approximations and we only briefly 
comment on some of them in Sect. 7.5. We believe that many important 
issues remain to be addressed in this field. 

• We have not touched the important problems of preconditioning plate and 
shell problems. 
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• Our presentation is restricted to conforming approximations. No precon-
ditioner is presented for, e.g., mortar methods or other approximations on 
nonmatching grids. 

• We have also been unable to cover the recent work on domain decom
position methods in time and space which has originated with work by 
Jacques-Louis Lions and Yvon Maday. 

The authors wish to thank, besides the anonymous referees, the many 
friends that have gone over this monograph or part of it and provided us 
with important and helpful suggestions, references, and material. They are: 
Xiao-Chuan Cai, Maksymihan Dryja, Bernhard Hientzsch, Axel Klawonn, 
Rolf Krause, Frederic Nataf, Luca Pavarino, Alfio Quarteroni, Marcus Sarkis, 
Christoph Schwab, Daniel Szyld, Xavier Vasseur, and last, but not least, 
Barbara Wohlmuth. We would also like to thank Charbel Farhat and Oliver 
Rheinbach for providing us with several figures. 

The authors also wish to thank different funding agencies for their support. 
In particular, the first author acknowledges the partial support of the Swiss 
National Science Foundation under Project 20-63397.00. The second author 
has greatly benefited, over many years, from support from the US Department 
of Energy and the National Science Foundation. Without this support, for 
many students and short term visitors, etc., our progress would undoubtedly 
been much slower. The second author also wishes to thank over a dozen of 
doctoral students, who has contributed extensively to the development of the 
field both in graduate school and in their careers. 

We end this preface by summarizing the contents of the various chapters in 
order to facilitate for the reader and to accommodate his/her specific interests. 

In Chap. 1, Introduction, we present some basic ideas of domain decompo
sition. In particular, we show how matching conditions for traces and fiuxes of 
the differential problems give rise to conditions on the finite element algebraic 
system, how simple subdomain iterations can be devised which contain many 
of the ideas employed by more recent and powerful preconditioners for large 
scale computations on many subdomains, and how some of the ideas employed 
in the discussion of the Schwarz alternating method and block Jacobi precon
ditioners naturally lead up to the abstract Schwarz theory. This is a chapter 
that requires little in terms of mathematical background. We recommend it 
to the reader who would like to understand the basic ideas of domain de
composition without entering the specifics of the more complicated, practical 
algorithms. The last section. Sect. 1.6 contains some less standard and earUer 
results on overlapping methods and can be bypassed initially. 

Chapter 2, Abstract Theory of Schwarz Methods, contains the standard 
abstract theory of additive and multiplicative Schwarz algorithms, together 
with some additional topics, such as coloring arguments and some hybrid algo
rithms. The three basic ideas of stable decompositions, strengthened Cauchy 
inequalities, and stable local solvers contained in three assumptions in Sect. 
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2.3 are central and therefore recommended in order to prepare for the chapters 
that follow. 

Chapter 3, Overlapping Methods, presents overlapping preconditioners in 
a more general way than is normally done, since we allow for general coarse 
meshes and problems. In addition, the chapter contains a section on scaling 
and quotient space arguments, which are routinely employed in the analysis of 
domain decomposition preconditioners. The sections on restricted algorithms 
and alternative coarse problems can be bypassed initially. 

In Chap. 4, Suhstructuring Methods: Introduction, we present the basic 
ideas of iterative substructuring methods, which are based on nonoverlapping 
partitions into subdomains, interior and interface variables, vertex, edge and 
face variables, Schur complement systems, and discrete harmonic extensions. 
These notions, at least at a basic level, are necessary in order to understand 
the iterative substructuring methods developed in the chapters that follow. 
The last section. Sect. 4.6 contains the Sobolev type inequalities necessary to 
fully analyze iterative substructuring methods and is necessary for the reader 
who also wishes to understand the proofs in the chapters that follow. 

Chapter 5 is devoted to Primal Iterative Substructuring Methods for prob
lems in three dimensions. In Sect. 5.3, we first treat the problem of devising 
effective local solvers by decoupling degrees of freedom associated with the 
vertices, edges, and faces of the subdomain partition. In Sect. 5.4, we then 
consider the problems of devising efficient coarse solvers, which are the key and 
a quite delicate part of any successful preconditioners for three-dimensional 
problems. 

Chapter 6 is devoted to Neumann-Neumann and FETI Methods. We have 
decided to present these algorithms and their analysis together; recent re
search has established more and more connections between the two classes of 
methods. A key ingredient of this analysis is the stability of certain average 
and interface jump operators (cf. Sect. 6.2.3 and 6.4.3). One of the purposes 
of this chapter is to present the basics of one-level FETI and the more re
cent FETI-DP algorithms in a self-contained, sufficiently deep manner. For 
the reader who is interested in only the basic ideas of these methods, we rec
ommend Sect. 6.3.1 for one-level FETI and Sect. 6.4.1, where the important 
ideas of FETI-DP can already be appreciated and understood in the more 
intuitive two-dimensional case. 

In Chap. 7, we present generalizations to Spectral Element Methods. A ba
sic knowledge of the corresponding algorithms for the h version in the previous 
chapters is required. The fundamental equivalence between spectral element 
approximations and some finite element approximations on Gauss-Lobatto 
meshes is the key ingredient for the development and analysis of both over
lapping and nonoverlapping methods; this is the idea underlying the Deville-
Mund preconditioners reviewed in Sect. 7.2. Only those parts that are different 
from the proofs of the h version are treated explicitly in this chapter. We have 
also added a brief discussion and review of domain decomposition for more 
general p and hp version finite elements with references to the literature. 
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In Chap. 8, generalizations to Linear Elasticity problems are considered. 
A basic knowledge of the corresponding algorithms for scalar problems in the 
previous chapters is required and only those parts that are different from the 
scalar case are treated explicitly. 

In Chap. 9, some selected topics on Preconditioners for Saddle Point 
Problems are presented. They are: some basic ideas about preconditioning 
saddle-point problems, block-diagonal and block-triangular preconditioners, 
and some overlapping and iterative substructuring methods. We primarily 
consider the Stokes system (and briefly the related problem of incompressible 
elasticity) and flow in porous media. As a general rule, we only review the ba
sic results and refer the reader to the appropriate references for more detailed 
and thorough presentations. 

Chapter 10 is devoted to the field of domain decomposition precondition
ers for Problems in iJ(div; J?) and H{c\irl; J7), which has developed relatively 
recently. This chapter requires a basic knowledge of the corresponding algo
rithms for scalar problems. Here, proofs are presented in full detail and this 
chapter is intended as a self-contained and deep treatment of domain decom
position methods for these problems, the analysis and development of which 
is in general more technically demanding than for more standard scalar and 
vector problems. Sections 10.1.1, 10.1.2, and 10.2.1, in particular, contain the 
technical tools necessary for the analysis and can be bypassed by a reader 
who is only interested in understanding the algorithms. 

Chapter 11 is devoted to Indefinite and Nonsymmetric Problems. We first 
present a generalization of the abstract Schwarz theory to nonsymmetric 
and/or indefinite problems in detail. We also present some selected topics on 
domain decomposition preconditioners which are commonly employed in large 
scale computations but for which very little theory is available. These are al
gorithms for convection-dominated scalar problems, the Helmholtz equations, 
eigenvalue and nonlinear problems. This part is only intended as an overview 
and to provide a collection of relevant references to the literature. 

The volume ends with three appendices, references, and an index. 

Zurich, New York, Andrea Toselli 
July 2004 Olof Widlund 
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Introduct ion 

1.1 Basic Ideas of Domain Decomposition 

The basic ideas of domain decomposition are quite natural and simple. Con
sider the Poisson equation on a region J?, in two or three dimensions, with 
zero Dirichlet data given on dfi, the boundary of Q. Suppose also that Q is 
partitioned into two nonoverlapping subdomains fii : 

J? = r?i u J?2, J7i n J?2 = 0, r = dfii n 002; 

see Fig. 1.1. We also assume that 

measure(5i?i n dQ) > 0, measure(c?J?2 n dQ) > 0, 

and that the boundaries of the subdomains are Lipschitz continuous, and 
consider the following problem: 

-An = / in n 
u = 0 on du. ^ ' 

Under suitable regularity assumptions on / and the boundaries of the subdo
mains, typically / square-summable and the boundaries Lipschitz, problem 
(1.1) is equivalent to the following coupled problem: 

—Aui = / in fii, 
wi = 0 on dfli \ r , 

ui = U2 on r , 
dui du2 ^ (1-2) 
'^~ = ~7r~ <^"^' 
ani an2 

-Au2 = f in O2, 
U2=0 on 5^2 \ r . 
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Here Ui is the restriction of u to i?^ and n^ the outward normal to i?^. This 
equivalence can be proven by considering the corresponding variational prob
lems; see [392, Sect. 1.2]. The conditions on the interface F are called trans
mission conditions and they are also equivalent to the equality of any two 
independent linear combinations of the traces of the functions and their nor
mal derivatives. In the following, we will also refer to the normal derivative 
as the flux. 

Fig. 1.1. Partition into two nonoverlapping subdomains. 

Remark 1.1. The following one-dimensional example shows that some regu
larity beyond / 6 H~^{0) is required. Let u be the weak solution of 

- 5 ^ = - " ' " ( - " ' • (1.3) 

w ( - l ) = ^ { l ) = 0, 

where 5{x) is the delta function. The unique weak solution u € HQ{—1, 1) is 
—1 — a: X < 0, 

u{x) {:;: X x> 0. 

and its derivative has a jump at a; = 0. 
We note that this particular problem is quite relevant to domain decom

position theory. In many algorithms, we will first eliminate all nonzero com
ponents of the right hand side, of a finite element approximation, except those 
on the interface, in this case x = Q. We are then left with an equation for the 
remaining finite element error, which is a direct analog of equation (1.3). 

1.2 Matrix and Vector Representations 

In this section, we consider matrix and vector representations of certain op
erators and hnear functionals; we refer to appendix B for additional details. 
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Starting with any domain decomposition algorithm written in terms of func
tions and operators, we will be able to rewrite it in matrix form as a precon
ditioned iterative method for a certain linear system. 

We now consider a triangulation of the domain J? and a finite element 
approximation of problem (1-1). We always assume that subdomains consist 
of unions of elements or, equivalently, that subdomain boundaries do not cut 
through any elements. Such an approximation gives rise to a linear system 

Au = f (1.4) 

with a symmetric, positive definite matrix which, for a mesh size of h, typically 
has a condition number on the order of 1/h?. Here, 

/4y 0 A«\ fur\ //f>\ 
A= 0 4 ? 4 ? , u= uP , / = / f , (1.5) 

\Af,AP,Arr) \ur ) \ fr ) 

where we have partitioned the degrees of freedom into those internal to i?i, 
and to J?2, and those of the interior of F. 

The stifl̂ ness matrix A and the load vector / can be obtained by subassem-
bling the corresponding components contributed by the two subdomains. In
deed, if 

/«=(|!) , ^"^=(11^1)' ^ = 1'2' (1-6) 
are the right hand sides and the local stifî ness matrices for Poisson problems 
with a Dirichlet condition on di}i\r and a Neumann condition on F, we have 

Arr=Af, + A% fr = fP + fP. 

In view of the transmission conditions in (1.2), we will look for an ap
proximation of the normal derivatives on F. Given the local exact solution Uj, 
its normal derivative can be defined as a linear functional by using Green's 
formula. Thus, if ^j is a nodal basis function for a node on F, we have, using 
(1-2), 

/ ^—^0i ds = (Auicpj + Vwi - V0j) dx = {—f4>j + Vuj • V0j) dx. 

r Qi Qi 

An approximation, A*̂ '̂ , of the functional representing the normal derivative 
can be found by replacing the exact solution Wj in the right hand side with 
its finite element approximation. Letting j run over the nodes on F and using 
the definition of the local stifl^ness matrix, we introduce the expression 

A» = A^'^wf + A%u^p - /}?^. (1.7) 
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This approximation, not surprisingly, coincides with the residual correspond
ing to the nodes on J" of a Poisson problem with a Neumann condition on F; 
see (1.6). We also note that A*̂*̂  is not obtained from the normal derivative of 
the finite element solution but as an approximation of the linear functional of 
the exact solution. 

Using these definitions, we can find an approximation of problem (1.2): 

(1) (2) 

u^' = Up' = ur, 

Af]uf+Afpuf = ff\ 

We note that the first and last equations of (1.8) are discretizations of Poisson 
problems for the interior functions Uj with Dirichlet data which vanishes on 
dfli \ r and is equal to a common value up on F. Alternatively, the first 
and third equations provide a discretization of a Poisson problem in J7i for 
the local function ui with Neumann data equal to Xp and vanishing Dirichlet 
data on dQi \ F. An analogous Neumann problem in i?2 is provided by the 
third and fourth equations. The solution of these local problems with suitable 
Dirichlet and Neumann data provide the building blocks of the nonoverlapping 
methods in section 1.3. 

We note, finally, that while the equivalence of (1.1) and (1.2) might not 
be immediate, the equivalence of (1.4) and (1.8) is trivial. If 4 ^ = 4 = ''^r, 
then the third equation of (1.8), which ensures the equality of the approxima
tions of the finear functionals representing the normal derivatives, coincides 
with the third row of the original linear system (1.4) because of (1.5) and 
(1.6). More importantly, while the continuous problem (1.2) is valid only if 
the right hand side / is sufficiently regular, its discrete counterpart (1.8) is 
always valid, since it can be found directly from the finite element problem. 

If we, in particular, consider the one-dimensional problem of Remark 1.1 
with J?i = (—1,0) and J?2 = (0,1) and a triangulation with a node at a; = 0, 
we see that the right hand side fr cannot be built by summing two local 
components- However, problem (1.8) is still equivalent to the original linear 
system (1.4) since in (1.8) the local components f^ are not needed but only 
their sum fr- A full discussion of the continuous problem in two or more 
dimensions is relatively comphcated. We note that the methods discussed in 
section 1.3 will have nonzero residuals only at nodal points on the interface 
after the completion of the first iteration step and this is the analog of a solu
tion of the continuous problem with a nonzero jump in the normal derivative 
across the interface. However, as we have seen, no genuine technical problems 
remain once we turn to the finite element case. 
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1.3 Nonoverlapping Methods 

We will first consider some simple iterative substructuring methods that rely 
on a partition into nonoverlapping subdomains. We refer to Chap. 4, 5, and 
6 for a systematic presentation and further details and generalizations. As 
we will show, these methods are indeed preconditioned iterative methods for 
the boundary value Ur or for the normal derivative Xr- We start with these 
methods since they are derived directly from the coupled problems (1.2) and 
(1.8). We note that domain decomposition methods based on overlapping par
titions were the first to be devised (namely, the alternating Schwarz method 
on overlapping subdomains); they will be introduced in Sect. 1.4. 

1.3.1 An Equation for ur' the Schiir Complement System 

Let us consider the linear system (1.4) with A, u, and / defined in (1.5). In 
a first step of many iterative domain decomposition methods, the unknowns 
in the interior of the subdomains (uj ) are eliminated. This corresponds to a 
block factorization of the matrix of (1.5): 

A = LR = 
( I 0 0 ' 

0 / 0 
. ( 1 ) , ( 1 ) - 1 ^ ( 2 ) . ( 2 ) - l r 

/ A « 0 Afy 
0 4? 4? 

\ 0 0 5 

(1.9) 

and a resulting linear system 

0 
0 

4r' 
Af]A§ \u = 

0 S 
(1.10) 

Here / is the identity matrix and 5 = Arr -A^^JA^y A^), -A^pjAf) Af). is 
the Schur complement relative to the unknowns on F. By a direct calculation, 
we see that S and gr can be found by subassembling local contributions. In 
particular, recalhng the form of the local matrices (1.6) and defining the local 
Schur complements by 

Sii) iW 4 W _ 4 W A' W dW" 

we find the Schur complement system for ur to be 

1,2, (1.11) 

Sur = gr, (1.12) 

with 

5 = S'« + S'(2), 

g, = ( /« - A^A^-'f^) + ( / f - A^lA^-'fP) =: gP -9^\ 
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We note that once ur is found, by solving (1.12), the internal components can 
be found by using (1.10): 

v^=4r\f^-A^ur); (1.13) 

these are just solutions of two inhoniogeneous Dirichlet problems. 
The Schur complement system, which provides an equation for the ap

proximation of the trace of the exact solution on F, has been derived purely 
algebraically by block Gaussian elimination. It is interesting to note that it 
can also be obtained by using the transmission conditions of the coupled sys
tem. Thus, let us write the internal variables Uj ' and Uj ^ in terms of Ur by 
using the first and last equations of (1.8). Substituting these expressions into 
the third equation of (1.8), we again arrive at equation (1.12). We note that 
in this last step, we use the flux condition expressed in the third equation of 
(1.8). A dual procedure that provides an equation for Xr is given in subsection 
1.3.2. 

We can also obtain an equation for the trace of the exact solution on F 
working directly with the continuous problem (1.2). The corresponding opera
tor is called a Steklov-Poincare operator. The Schur complement system (1.12) 
is an approximation of the Steklov-Poincare equation, determined directly by 
the finite element approximation, particularly, by the approximation of the 
normal derivatives (1.7). (We refer to Chap. 4 for a systematic presentation 
of Schur complement systems.) 

1.3.2 An Equation for the Fltix 

We now derive an equation for the normal derivative Xr on F by employing a 
procedure analogous to that of the previous subsection. We use the unknown 
common boundary value Ar = A^ — — Â -̂  (see the third equation of problem 
(1.8)) and solve local Neumann problems to find û ^̂  and u^^"); 

( | t ) ( | ) = (/4A?>)' ' = '•'• <"̂ ' 
Using a block factorization of the local matrices, we find 

4̂ ) = 5»- i (3«+A«) , 

with Qj^' given as in the previous subsection. Using the second equation of 

problem (1.8), which makes u^^^ and Uj^' the same, we find 

FXr = dr, (1.15) 

with 
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F = ^ ( i ) - ! + S'(2)-i, 

dr = SP + 4'̂  := -S^^^-hP + S(^)-'gP. ^̂ '̂ ^̂  
We note that this is the same hnear system which wih appear as (6.29) in 
section 6.3.1 if we speciahze that formula to the case of two subdomains. 
Once \r is known, we can find the local solutions M̂ -*-) and M^̂ ^ by solving the 
two Neumann problems in (1.14). 

In the rest of this section, we will consider some domain decomposition 
methods of iterative suhstructuring type. We note that many others can be 
defined by replacing Dirichlet and/or Neumann conditions on F by more gen
eral ones involving linear combinations of u and the normal derivative; see, 
e.g, [392, Sect. 1.3] for some of them; our presentation is similar to that of 
that reference. However, we wiU only work with the coupled difi^erential and 
algebraic problems (1.2) and (1.8), respectively. Our purpose is to illustrate 
that many domain decomposition methods derived from (1.2) are indeed pre
conditioned Richardson methods for the Schur complement system (1.12) or 
for the equation (1.15). We note that the methods presented in the follow
ing can be derived purely algebraically using suitable splittings of the system 
(1.8), without any reference to the underlying continuous operator, traces, or 
normal derivatives. However, employing a functional framework does not only 
give an interpretation of these iteration procedures, but will also turn out to 
be crucial as a preparation for the analysis of their convergence rates. For 
many domain decomposition algorithms this will be carried out using equiva
lences between certain discrete and Sobolev norms and certain Sobolev type 
inequalities for finite element functions; the systematic development of this 
theory will begin in Chap. 4. 

All the algorithms to be introduced in the next few subsections involve 
preconditioners in solving equations (1-12) or (1.15). We note that we could 
also solve these equations by using a Richardson or conjugate gradient method 
without preconditioning. The evaluation of S times a vector involves the so
lution of one Dirichlet problem on each subdomain while that of F times a 
vector requires the solution of one Neumann problem on each subdomain. The 
rate of convergence of such algorithms is determined by the condition numbers 
of S and F. However, even if the Schur complement has a smaller condition 
number than the original stiflness matrix, the number of iterations will in
crease in proportion to l/h when the mesh size h decreases; see Sect. 4.3 for 
details. We also note that the conjugate gradient method will be faster than 
the Richardson method and that it requires no a priori spectral information 
while the optimal choice of the parameter 9 of the Richardson method involves 
obtaining estimates of the smallest and largest eigenvalues of the operator; see 
appendix C.3. 



8 1 Introduction 

1.3.3 T h e Dir ichle t -Neumann Algor i thm 

Methods of this type were first considered in [61, 73, 211, 343, 57, 344]. Exten
sions, also including global coarse solvers, were considered in [176, 173, 465]. 

The basic Dirichlet-Neumann algorithm consists of two fractional steps 
corresponding to the two subregions i?j,i = 1,2. Given an initial guess u^, 
we first solve a Dirichlet problem in Hi with Dirichlet data u'^ on F, and 
then a mixed Neumann-Dirichlet problem on /?2 with a Neumann condition 
on r determined by the solution in /?i obtained in the previous step and with 
Dirichlet conditions on the rest of c?i?2. The new iterate wf is chosen as the 
trace of the solution in J?2, or, more generally, as a linear combination of this 
trace and u^^, using a suitably chosen relaxation parameter 0; see appendix 
C-3. In terms of differential operators (see (1-2)), we can write, for n > 0: 

r -z\<+^/^ = / in Oi 
•> 

{D)< <+^/2 = 0 on 50i \ r , 

/ AT\ 

r -Au^+^ = f 
u^+^ = 0 

on r. 

in fl2, 

on 9 ^ 2 \ r 
[N) < du^+^ _ c '<+ ' / ' 

onr . 
dn2 dill 

onr . 

ul+' = 0u^+^ + (1 - S^X on r . 

(1.17) 

with 9 e (0,6*niax) • Using our approximation for the normal derivatives, i.e. 
(1.7), we can derive the corresponding iteration for the discrete problem. If we 
define the vectors of internal degrees of freedom as vi = Uj ' and W2 = Uj, 
cf. (1.7), we find 

(p)A«.r^/v4y^?=/«, 

^̂ ^ 1,4̂ ] A%) W' J - \fP - X-+'/') ' 
u^+i=^w»+i + ( l - ^ ) u » , 

with 
. n + l / 2 _ ,(1) n+1/2 j ( l ) , , n _ /•(!) 

It is clear that (1.18) arises from a splitting of the original system (1.8) and 
thus provides a consistent iterative method for its solution, i.e., the limit of 
any convergent sequence will satisfy the correct set of equations. 

We next eliminate v^ ' from (1.18) and find 
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Using then a block factorization of the local matrix A^'^") and eliminating W2 ̂ ^ 
from (1-18) yields the following equation: 

which shows that the Dirichlet-Neumann algorithm is a preconditioned Richard
son iteration for the Schur complement system (1-12), with the preconditioner 

S'(̂ ) - The preconditioned operator is 

the application of which to a vector involves the solution of a Dirichlet prob
lem, (a multiplication by S^^^), and a multiplication by S^^'> which corre
sponds to solving a problem with Neumann conditions on F and Dirichlet 
conditions of the rest of c?J?2; see section 4-3 for further details-

We note that the spectral equivalence between 5"*̂^̂  and S^^\ and thus 
a uniform bound for the condition number of S^^^ S, is ensured by the 
existence of stable, discrete harmonic, finite element extensions 'HiUr from the 
interface F into the subdomains i?^; these matters are discussed systematically 
in section 4-6, in particular in Lemma 4-10- Here, and in what follows, the 
condition number of the preconditioned operator is the ratio of the largest and 
smallest eigenvalues of the symmetric generalized eigenvalue problem defined 
by the operator and its preconditioner, in the case at hand by S and S^^^; see 
appendix C-5- We employ the following definition: 

Definition 1.2 (Opt imal i ty) . An iterative method for the solution of a 
linear system is said to be optimal, if its rate of convergence to the exact 
solution is independent of the size of the system. 

We note that for the algebraic systems considered in this monograph optimal
ity is ensured if the rate of convergence is independent of the size of the finite 
element spaces employed, and therefore of the meshsize h for h approximations 
or of the polynomial degree for spectral element approximations-

If we denote the appropriate trace seminorm by | • \i_/2,r, we will show in 
Lemma 4-10 that 

\'HiUr\la, = CHiUrfA^'^niUr) < d \ur\i/2,r, 

and thus 

uiS^-'^^r = \n2ur\la, < C2 \ur\l/2,r < C2C1 \niur\ln, = C2C,uiS^'-\r. 

Here we have used the relation between the Schur complement and the energy 
of the discrete harmonic extension given in Lemma 4.9 and the trace estimate 
for J7I given in Lemma 4.10 with a constant Ci. Using similar estimates for 
UpS^^^ur, we find 

file:///n2ur/la
file:///niur/ln
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- C2C1 

We note that this bound only depends on having shape regular, quasi-uniform 
local meshes, and, in particular, on the shape and the relative size of the sub-
domains. In the special case where J7i and J72 have the same shape and size, 
are symmetric with respect to the interface F, and have the same triangula-
tions, then K(S^-^'* S^-^^) = 1- Generally, the Dirichlet-Neumann method for 
two subdomains is optimal since stable extensions can be found: the condition 
number satisfies 

K ( 5 ( 2 ) " ^ 5 ) < C, 

with C a constant independent of the dimension of the finite element problem. 

1.3.4 The Neumann-Neumann Algorithm 

Methods of this type were first considered in [65, 309, 154]; see [163, 226, 227, 
9] for some earlier closely related studies. 

The basic Neumann-Neumann algorithm can be described as follows: we 
start from an initial guess -Uj-. A step of the Neumann-Neumann algorithm 
consists in first solving Dirichlet problems on each i?^ with data u^^ on F, 
and then a problem on each subdomain, with Neumann data, on F, chosen as 
the difference of the normal derivatives of the solutions of the two Dirichlet 
problems. The values on F of the solutions of these Neumann problems are 
then employed to correct the initial wj- and find the new iterate wf. In terms 
of diff"erential operators (see (1.2)), we can write, for n > 0: 

{Di){ 
-Au. n+1/2 

n+1/2 
'•i 

n+1/2 _ 

/ 
0 1,2, 

{Ni) 

-Aip^+^ = 0 

drii dni 

in Oi, 
on d^i \ r , 

n+l/2 Q n+1/2 

(1.19) 

i = l ,2 , 

u n+l = U'f' - ,n+l •V'2"+')onr, 

with a suitable 0 G (0, ̂ max) • Using our approximation for the normal deriva
tives, we can derive an iteration for the discrete problem. If we define the 

= Uj and Wi = 'ipj , we find vectors of internal degrees of freedom as v, 
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m ( J f l 1 ĉ +i ) = (::), =̂1.2 (1.20) 
? ^^ 

where the residual rp is defined as 

see the third equation in (1.8). 
We next eliminate v^ ' and w"̂ "*" from (1.20). Problems [Di) give 

rr = -{gr - Su^), (1.21) 

which shows that the difference rr of the local fluxes is equal to minus the 
residual of the Schur complement system. Using a block factorization of the 
local matrices A^^\ problems (Ni), then give 

Therefore, we find 

tij+i - M? = 0{s^^r^ + S'(2)"')(5p - 5 M ? ) , 

which shows that the Neumann-Neumann algorithm is also a preconditioned 
Richardson iteration for the Schur complement system, with the precondi-
tioner 5*̂ ^̂  + S^^^ . The preconditioned matrix is 

FS = (5(1)"' + 5 ' (2)"V = (5(1)"' + 5(2)"')(5(i) + 5(2)), (1.22) 

the application of which to a vector involves the solution of two Dirichlet 
problems and two problems with Neumann data on F. We note that the 
operator F is the same as that in section 1.3.2. 

The optimality of this method follows easily from the result on the 
Dirichlet-Neumann algorithm by using the spectral mapping theorem; the pre
conditioned matrix in (1.22) can be written as 5(2)~'5(i) +2I+{S^^^~^S^^^)-^ 

where the eigenvalues of 5^ )̂ 5^1) are uniformly bounded from above and 
below-

We note that, given positive weights Sl and Sl with 

4+4 = 1, 
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the residual rr on the right hand side of the Neumann problems in (1.20) can 
be replaced by 6\rr and S^rr for i?i and J?2, respectively. Similarly, when 
finding the new iterate up'^ the sum of the two corrections jy""'"-'- and Tyg"*"̂  
can be replaced by a weighted average: 

This gives rise to the preconditioner 

p(i)S'(i)-^p(i)+l?(2)5'(2)-i_D(2)^ 

where D^"^^ is a diagonal matrix, the diagonal entries of which are equal to 5\. 
Scaling matrices D^^' are commonly employed in practice in order to improve 
the convergence of Neumann-Neumann algorithms for subdomains with cross 
points and, in particular, for problems with large changes in the coefficients; 
see Sect. 6.2. 

Generalizations of the Dirichlet-Neumann and Neumann-Neumann algo
rithms are possible, by using more general Robin conditions. This was already 
proposed in some early work by Agoshkov and Lebedev [10], Agoshkov [9], 
and Lions [321]. We note that the use of more general interface conditions 
is often required for some nonsymmetric or indefinite problems. We refer to 
Sect. 11.5 for more details and further generalizations of these ideas. 

We close this section by introducing an alternative preconditioner for the 
Schur complement system (1-12). We note that it can be shown that the 
Poincare-Steklov operator that corresponds to S" is a bijection from iJgo (J") 

I / O 

to its dual î QQ ' ( r ) , and that the application of this operator therefore 
essentially involves the loss of one derivative; see A.2. It is therefore natural to 
use the inverse of J, the square root of minus an appropriate discrete Laplacian 
on J", as a preconditioner. If the mesh is uniform and has the appropriate 
number of points, this preconditioner can be implemented using the Fast 
Fourier transform; see [61]. This idea appears to originate with Dryja [172] 
and it works quite well. But it also has limitations not shared by the methods 
just discussed. Thus, in three dimensions, the mesh of the interface F must 
have a quite special tensor structure in order to allow use of a two-dimensional 
Fast Fourier transform. 

1.3.5 A Dirichlet-Dirichlet Algorithm or a FETI Method 

We now consider a method dual to the Neumann-Neumann algorithm. We 
start from an initial guess Aj. of the flux on F; cf. Sect. 1.3.2. We first solve 
two Neumann problems on i?j with data Aj' on F, and then a problem on 
each subdomain, with Dirichlet data, on J", chosen as the difference of the 
trace of the solutions of the two Neumann problems on F. The values on F 
of the normal derivatives of the solutions of these Dirichlet problems are then 
employed to correct the initial }Pp and find the new iterate Af. We recall 



1.3 Nonoverlapping Methods 13 

that Xr is an approximation of the normal derivative in the direction n i . In 
order to simphfy the notation, we will drop the subscript F for the normal 
derivatives and set 

\n \n \n \n \n 
A — A p , A i — — A o — A -

In terms of differential operators (see (1.2)), we can write, for n>0: 

m { " ! . , , = " onau,\,,y . ^1^2^ 
dv • "+^/2 

— A " 

in fii, ^ 
on aOi \ r , 1 

onr , J 

-z\V'r+^ = 0 
vr+^ = 0 

in fii, 
on dUi \ V, 

(1.23) 
{Di){ V r ' = 0 ondn,\V,), i = l ,2 . 

A n . . = A » - . ( | ^ " " + ^ " " ) o n r , 
an\_ an2 

with a suitable 9 6 (0, ̂ max) • Using our approximation of the normal deriva
tives, we can derive an iteration for the discrete problem. If we define the 
vectors of internal degrees of freedom by Vi = Uj and «?« = ̂ j , we find 

rj,.(Af,4l\(v7-'''\f fP ] , _ i 2 

(A)4/<+'+4r^r = 0, ^ = 1,2, (1-24) 

where the residual rr is defined by 

n+l/2 n+1/2 
rr = 7i ' -7-2 

and the fluxes r]f~^^ by 

of. Equation (1.7). 
We proceed as in the previous section and eliminate v^ ? T " J ^nd 

y^n+i £j.Qĵ  (1.24). Using a block factorization of the local matrices A^'^^, prob
lems (Ni) give 

r r = - ( r f r - F A " ) , 

which shows that the difference rr of the local solutions is equal to the negative 
of the residual of the system (1.15). Problems (Di) then provide 
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Therefore, we find 

A»+i - A" = 0{S^^^ + S^^'^){dr - FA"), 

which shows that this Dirichlet-Dirichlet algorithm is also a preconditioned 
Richardson iteration for the system (1.15), with the preconditioner S^^^ +S^^'>. 
The preconditioned matrix is 

SF = 5 ( 5 « " ' + 5(2)- ') = ( 5 « + S ( 2 ) ) ( 5 « - ' + 5 ( 2 ) - \ (1.25) 

the application of which to a vector involves the solution of two Neumann 
problems and two problems with Dirichlet data on F. We have called the 
method presented here the Dirichlet-Dirichlet algorithm in analogy to the 
dual Neumann-Neumann one of the previous section. We remark however 
that, in the domain decomposition literature, the term Dirichlet-Dirichlet is 
often used for the Richardson or conjugate gradient method applied to the 
unpreconditioned Schur complement system (1.12), since the application of 
S involves the solution of a Dirichlet problem on each subdomain. We also 
note that the preconditioned operator SF is the same as that of the FETI 
algorithm with the original Dirichlet preconditioner; cf. Equation (6.36) in 
Sect. 6.3.1 for the case of two subdomains. In the following, we will refer to 
the method of this section as the preconditioned FETI method. FETI methods 
will be presented and analyzed systematically in Chap. 6. 

We recall that the preconditioned operator for the Neumann-Neumann al
gorithm is FS. It is a trivial matter to prove that the operators SF and FS 
have the same eigenvalues and thus the same condition number. The condi
tion numbers of the Neumann-Neumann and Dirichlet-Dirichlet methods, and 
indeed the entire spectra, are the same for the case of two subdomains. 

As for Neumann-Neumann algorithms, we can also employ weights. With 
Sl and Sl the weights introduced in Sect. 1.3.4, the residual rr in the Dirich
let problems in (1.24) is often replaced by Slrr and Slrr for i?i and O2, 
respectively. Similarly, when finding the new iterate A"+^ the sum of the two 
corrections ??"+^ and TĴ "̂*" can be replaced by an average: 

This gives rise to the preconditioner 

^ ( 2 ) ^ ( 1 ) ^ ( 2 ) ^ ^ ( 1 ) ^ ( 2 ) ^ ( 1 ) . 

see in particular Sect. 6.3.2 and 6.3.3, for more details, and in particular for
mulas (6.37) and (6.51). Suitable scaling matrices are commonly employed in 
practice in order to improve the convergence of FETI algorithms for partitions 
into subdomains with cross points or for problems with large changes in the 
coefficients; see Sect. 6.3. 
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We note that, by proceeding as in Sect. 1.3.3, we can also design a 
Neumann-Dirichlet algorithm by starting the iteration with an initial guess of 
the Neumann data; see, e.g., [63, 301]. We would then solve a Neumann prob
lem on one subdomain and use the trace of this solution as Dirichlet data for 
the problem on the other subdomain, etc. The corresponding preconditioned 
operator is 

S{2)p = S(2)(5(2)-1 + 5(1)-1) = J + S(2)5(l)-1, 

the condition number of which can be immediately bounded using a bound 
for the Dirichlet-Neumann algorithm in Sect. 1.3.3. 

Finally, we mention that ideas similar to those in this and the previous sub
section were already proposed in some early work by Glowinski and Wheeler 
[226, 227] for mixed approximations of elliptic problems. 

1.3.6 The Case of Many Subdomains 

The methods just introduced can be generalized to the case of more than two 
subdomains. Generalizations of the Neumann-Neumann and FETI methods 
have become widely used. Here we only give a brief introduction and refer to 
Chap. 6 for a much more complete description and analysis. 

The Dirichlet-Neumann method can also be generalized, under certain re
strictions on the partition into subdomains. This method is less widely used 
than Neumann-Neumann and FETI methods since its performance can de
teriorate if the coefficients of the differential equations differ greatly between 
the subdomains. However, some important ideas underlying much more recent 
and popular methods, such as the dual-primal FETI algorithms, can be traced 
back to early work on this family of methods; see Sect. 6.4. In addition, our 
presentation will show the importance of the cross points of the partition. A 
cross point is a point common to the boundaries of three or more subregions. 
If there are no cross points, we essentially have partitioned the region i? into 
strips; that case is in many ways similar to the two subdomain case. We note 
that while we assume that the original region J? has only one connected com
ponent, it is quite natural to consider cases where two subregions J7J have 
several or many components. 

Here we will only consider two-dimensional problems. Before proceeding, 
we need to define some more general operators. We consider problem (1.1) 
and suppose that i7 is partitioned into a family of nonoverlapping subdomains 
{J7i, 1 < i < iV} with 

n = [J'n'i-, /2i n /?j = 0 i^j. 
i 

If Fi = dQi \ 9 J7 , the interface F is defined as 



16 1 Introduction 

We note that F and the J^ are open. A coupled problem as in (1.2) can be 
found with transmission conditions imposed along each edge df^i fl di7j. 

The linear system (1.4) can now be written as 

[An Air\ fui\ ^ f fi 
\AriArrJ \urJ \fr 

(1.26) 

where we have partitioned the degrees of freedom into those interior to the 
subdomains and those on F. The stiffness matrix and the right hand side 
are obtained by subassembling the corresponding components relative to the 
subdomains; see (1.6). 

The unknowns in the interior of the subdomains uj can again be eliminated 
by block Gaussian elimination and the resulting linear system is 

As before the Schur complement S and the vector gr can be found by sub-
assembling local contributions; see Chap. 4 for further details. In order to do 
so, we first define a family of restriction operators. Given a vector of degrees 
of freedom ur on the interface, we define the restriction RiUr as the vector of 
degrees of freedom of ur on J^. Here -R̂  is a rectangular matrix of zeros and 
ones. If for each subdomain the degrees of freedom are partitioned into those 
internal to J?̂  and those on Fi, as in (1.6), we have 

N 

s = Y,Rls^^Ri. 
1 (1.28) 

^ - 1 

9r = Y.RJuf-^fi^Tfh 
i=l 

where the local Schur complements are defined as in (1.11) and Rf is the 
transpose of Ri-

Neumann-Neumann Methods 

By examining the preconditioned Neumann-Neumann operator for two sub-
domains (1.22), we can easily find a generalization to the case of many sub-
domains. We define 

JV 

S]^],S = Y,RlS^'^~^RiS. (1.29) 
2 = 1 

We note that the application of this operator to a vector involves the solution, 
on each subdomain i?^, of a Dirichlet problem and a problem with Neumann 
boundary conditions on dOi D F. We also note that for subdomains that do 
not touch df^, S^^^ is singular and 5**̂ '̂  in (1.29) should be understood as a 
pseudo-inverse or the inverse of a regularized problem. 

file:///AriArrJ
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We note that the Neumann-Neumann algorithm can also be defined at the 
continuous level using (1.19), with i = 1,2,. ..,N, and Neumann conditions 
for the problem Ni given on each edge Fij = dfiindQj. The new iterate vJ^^, 
at a node of the interface, is then built from corrections from all subdomains 
with that node on their boundaries . 

The condition number of the Neumann-Neumann method satisfies a log
arithmic bound. If h is the diameter of the finite elements and H that of a 
typical subdomain, we have 

1 

« ( 5 ' ^ ] v ^ ) < | i ( l + l o g f ) . (1.30) 

The method is not therefore scalable according to the following definition: 

Definition 1.3 (Scalability). A domain decomposition iterative method for 
the solution of a linear system is said to he scalable, if its rate of convergence 
does not deteriorate when the number of subdomains grows. This typically 
means that convergence does not deteriorates when H, the typical subdomain 
size, becomes small. 

The dependence on H~^ in (1.30) is typical of domain decomposition pre
conditioned methods without a coarse solver. Since the Green function for 
elliptic problems does not in general have a compact support, a residual on 
the linear system of modestly low frequency will result in an error which can
not be neglected in any part of the region. Therefore an iterative method for 
the solution of the resulting linear system in which information is only ex
changed between neighboring subregions must necessarily, for certain initial 
errors, require a number of steps which is at least equal to the diameter of the 
dual graph corresponding to the subdomain partition. Here, the dual graph is 
constructed by introducing a vertex for each subregion and an edge between 
two subregions that share a part of their boundaries. The diameter of the 
graph is the maximum distance between pairs of vertices, where the distance 
is defined as the length of the shortest path between the vertices. In case the 
diameter of the original domain is one, the diameter of the graph is typically 
0{H~^). Using an argument of contradiction and the upper bound for the 
error of the conjugate gradient iteration in Lemma CIO, we see that the con
dition number of a domain decomposition preconditioned operator must grow 
at least as H~'^. We note that for the same reason, the condition number 
of the stiffness matrix resulting from the finite element approximation of an 
elliptic problem must grow at least as h~'^; see Theorem B.32. 

Going back to the bound in (1.30), if the partition does not have cross 
points, we have q = 0 and we have to interpret H as the width of the strips. 
Otherwise, q = 3. A quadratic growth, ^ = 2, is obtained if suitable scaling 
matrices are incorporated into the preconditioner; see Sect. 6.2 for further 
details. We note that the Neumann-Neumann method with many subdomains 
is not in general optimal according to Definition 1.2, since its condition number 
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may depend on the nieshsize h. The condition number bound does not however 
involve h alone but only the ratio H/h, which gives a measure of the number of 
unknowns associated with one subdomain. In addition, the condition number 
increases slowly (logarithmically) with H/h. In such a case, the method is 
said to be quasi-optimal. 

We finally note that the preconditioned operator Sjf]^fS has the typical 
form of a Schwarz operator; these operators will be discussed in detail in 
Chap. 2.2. We have 

Each Pi is associated with a subdomain (or, in other words, to a subspace) 
and is a projection-like operator; see Sect. 2.2 for further details. 

Dirichlet-Neumann Methods 

We now assume that there is a red-black partition of the subdomains into 
two sets 7?- and B, such that the intersection between the boundaries of two 
subregions in the same class is either empty or a vertex; see Fig. 1.2. 

• Red D Black 

Fig. 1.2. Red-black coloring of the subdomains. 

We can then decompose the Schur complement as 

and define the preconditioner essentially in terms of Neumann problems on 
the subdomains in the set Tl 

- 1 
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In the particular case where there are no cross points, the matrix SDN is block-
diagonal, since the intersection between the boundaries of two red regions is 
empty and there is therefore no coupling between degrees of freedom on two 
subdomain boundaries in the same class. In particular, for i,j £ TZ, we then 
have 

p r>T _ j 0 i ^ j , 

and thus 
SB'^ = ^RjS('r R., (1.31) 

i€TZ 

The preconditioned Dirichlet-Neumann operator becomes 

SV'NS = 1+ (Y,RJS('^-%) (Y^RJS^'^R) , (1.32) 
\ien J \ieB J 

and its application involves the solution of a Dirichlet problem on the subdo-
mains in the set B and a Neumann problem on those in the set TZ. As for the 
case of two subdomains, bounds for the condition number of the Dirichlet-
Neumann operator rely on finding stable finite element extensions. A uniform 
bound, with q = 0, can be derived for the case of strips while in the general 
case, discussed below in this section, we have a logarithmic bound (1.30) as 
for the Neumann-Neumann algorithm. We note however, that in the strip case 
the algorithm is not scalable and that the bound will contain a factor 1/H'^ 
where H is the width of a typical strip of the decomposition; cf. the discussion 
on the lack of scalability earlier in this subsection. 

If there are cross points, then formula (1.31) is no longer valid. Indeed, 
the inversion of S^N requires the solution of a global problem, which instead 
of creating a problem turns out to be a blessing since it provides a natural 
coarse solve, which makes the algorithm scalable, i.e., convergent at a rate 
independent of the number of subdomains if the subdomains all have good 
aspect ratios. In particular, we have to solve a Neumann problem on the union 
of the subdomains of the set 7?,, i.e., on the set glued together at the cross 
points and given by 

see the shaded region in Fig. 1.2. This can be done in two stages. All the 
degrees of freedom of the subdomains of the set IZ except for those at cross 
points (drawn as small squares in Fig. 1.2) are first eliminated in parallel across 
the subdomains by a step of block Gaussian elimination. All the submatrices 
involved at this stage are invertible. The resulting Schur complement, which 
involves only the nodal values at the cross points (drawn as larger squares in 
Figure 1.2), is sparse since it can be shown that nonzero oif-diagonal elements 
only exist for the pairs of cross points which belong to the boundary of the 
same subregion. This final step of the elimination typically will involve degrees 
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of freedom from all parts the region Q. This mechanism helps explain that 
bounds can be derived for the condition number of this preconditioned matrix 
which are independent of the number of subregions. We remark that a similar 
procedure is employed in FETI-DP methods; see section 6-4. The resulting 
preconditioned operator is 

Vies / 

and its application to a vector requires the solution of Dirichlet problems on 
the black subdomains, and of the special Neumann problem, just introduced, 
on the union of the red subdomains, which involves the low-dimensional coarse 
problem already discussed. The condition number satisfies 

K{Si\,S)<c(l + \ogf^ 
2 

see [176, 465]. We note that the technical tools needed in deriving such bounds 
are developed in Chap. 4. 

Methods Involving the Normal Derivative 

The expression given in (1.7) of the functional representing the normal deriva
tive A(*) on dQi remains valid for the case of many subdomains and in partic
ular when the partition has cross points. We recall that the coupled system 
(1.8) is obtained from the original system (1.4) by introducing the additional 
unknowns A '̂̂ . A coupled system for the case of many subdomains can eas
ily be found. This involves the equality of the trace functions Up at all the 
nodes on the interface F. For the normal derivatives A *̂), conditions similar to 
that of the third equation of (1.8) are a consequence of the fact that the stiff
ness matrix A is obtained by subassembling contributions from neighboring 
subdomains. For every node Xh on F the corresponding condition becomes 

^ A « ( x , ) = 0, 

where the sum is taken over all the subdomains that share the node Xh-
We note that, if Xh is a cross point, the sum is taken over more than two 
subdomains and it appears to be difficult to give a functional meaning to this 
condition. In addition, when trying to generalize Equation (1.15) to the case of 
many subdomains, some of local Neumann problems are not uniquely solvable 
and therefore the corresponding local Schur complements not invertible, if the 
subdomain boundaries do not all intersect dfl-

The generalization of what we have called the Dirichlet-Dirichlet algo
rithm will be carried out systematically in Chap. 6, where we introduce the 
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important FETI family of methods. These methods provide preconditioned 
operators which act on suitable approximations of the normal derivative Xr 
on the interface F. There, following the development of FETI methods, we will 
proceed in a purely algebraic way and approximations of the normal deriva
tive will be given by vectors of Lagrange multipliers of suitable constrained 
systems. As we will show, in Chap. 6, there are more than one way to define 
an approximation of the normal derivative Xr when the partition has cross 
points and the definition will depend on the particular form of the equality 
constraints chosen for the interface values uy,' across F. 

We finally recall that the issue of singular, local Neumann problems was 
already addressed in [226, 227] for mixed approximations of elliptic problems. 

1.4 The Schwarz Alternating Method 

The earliest domain decomposition method known to the authors is the alter
nating method of H.A. Schwarz, [416], published in 1870. Schwarz used the 
algorithm to establish the existence of harmonic functions with prescribed 
boundary values on regions with nonsmooth boundaries. The regions were 
constructed recursively by forming unions of pairs of regions starting with 
regions for which existence could be established by some more elementary 
means. At the core of Schwarz's work is a proof that this iterative method 
converges in the maximum norm at a geometric rate. 

For more than two subregions, we can in fact define a step of the algo
rithm by recursion: i) solve on the first subregion; ii) solve on the union of all 
other subregions, approximately, by recursively invoking a step of the same 
algorithm. 

As pointed out by Pierre-Louis Lions [319], the convergence of this algo
rithm can be established by two different methods, namely, by a maximum 
principle and by using Hilbert spaces. The Hilbert space method is the most 
appropriate here since much of our work relies on the classical calculus of 
variation and finite elements. 

We finally note that between the work of Schwarz, [416], and Lions, [319], 
there was some quite significant work, in particular by Sobolev [425] and 
Babuska [29]; see also [319] for additional references. 

1.4.1 Description of the Method 

The classical Schwarz method, for two subregions, can be described as follows: 
Consider the Poisson problem (1.1) on a bounded Lipschitz region J? with zero 
Dirichlet boundary conditions. There are two fractional steps corresponding 
to two overlapping subregions, /?( and /?2 of the original region D = n[[j n!^; 
see Fig. 1.3. Given an initial guess u^, which vanishes on OH, the iterate •M"+^ 
is determined from the previous iterate u" in two sequential steps in which 
the approximate solution on the two subregions is updated: 
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ill f]']^, 

on cTi'i, 

[ ^i«+l/2 = ^n in ^2 = f̂ 2 \ ^ > 

< 
yn+i- — yn+1/2 

inO^, 
on 80,2, 

yn-\-l _ yn+1 /2 in Oi = n; \ r 

(1.33) 

Thus, the Dirichlet data for these problems are obtained from the original 
data given on dQ n dQ[, and the values from the previous fractional step on 
the remaining part i l = dQ\ \ dfl of the subdomain boundaries. We note that 
this algorithm also can be viewed as a mapping of values on J i (or F-i) onto 
values on the same set; see Sect. 1.6.1. 

Fig. 1.3. Overlapping partition for tlie Scliwarz alternating method with, two sub-
domains 

1.4.2 The Schwarz Alternating Method as a Richardson 
Method 

In order to show that the algorithm is indeed a Richardson iteration, we 
rewrite it in variational form. For the original problem, we use the space 
H}^{JT) and the bilinear form 

a{u^ v) = VM • Vv dx, 
J n 

(1.34) 

which defines the if-'-(J7)—seminorm; see appendix A.l. We also introduce a 
finite element triangulation T, of maximum diameter h, such that the local 
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boundaries dQ[ do not cut through any element in T. The mesh T thus defines 
two local meshes % on Q^, i = 1,2. We next define the spaces of continuous, 
piecewise linear finite elements on T, 7i, and 72, which vanish on dQ, di7[, 
and 5J?2) respectively, and denote them by V, Vi, and V2. We note that there 
are two natural extension operators 

Rj:Vi^V, i = l,2, 

which take local functions on the i^l with zero boundary values and extend 
them by zero to the rest of i? to give global functions in V. We note that the 
restriction operators i?, : V —> Vi take global functions on J7 and give local 
functions in Vi that vanish on 9J7^ and are equal to the original ones at the 
nodes inside J?|. We also need the two local bilinear forms 

ai{u,v) = / Vu-Vv dx, u,v£Vi-

We can now write the Schwarz method in terms of two orthogonal projec
tions Pi, i = 1,2. For i = 1,2, the projections are 

Pi — i?j Pi, 

where Pj : V —> Vi, are defined by 

ai{PiU,Vi) = a{u,Rjvi), Vi^Vi. 

Indeed, if we consider a finite element discretization of the first problem in 
(1.33), we see that M"+^/2 —U^ vanishes in J?2 = 0'2\fi[ and, when restricted 
to Q[, belongs to Vi. With u the exact finite element solution, this function 
satisfies, for f 1 € Fi, 

ai{Ri{u''^^/'^ -vr-),vi) = I fvidx-ai{u^,R[vi) = a{u-vJ',R[vi), 

and thus 

Since {u^^^/^ — w") vanishes in I? \ i?[, we obtain 

^n+1/2 _ ^ , = i?f i ? iK+^/2 _ ^n) =p^(u- «"). 

The error u"+i/2 —uis, then given by 

u^+^/^-u = {I-Pi){u''-u). 

Proceeding in a similar way for the finite element discretization of the second 
problem in (1.33), we find 
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M'^+I -U={I- P2)(M"+^/2 _ ^) = ( J _ p^^^J _ p^^^^^n _ ^)^ 

which shows that the error propagation operator of this multiplicative Schwarz 
method is 

( / - P 2 ) ( J - P i ) = / - ( P 1 + P 2 - P 2 P 1 ) . 

Therefore, the algorithm can be viewed as a simple iterative method for solving 

PmuU := (Pi + P2 - P2PI )M = 9. 

With an appropriate right-hand side g, u & V will be the solution of the 
original finite element problem. We note that the error propagation opera
tor is not symmetric. However, after the first step, the error will belong to 
range{I — P2) and the operator P^u is symmetric on that subspace. The 
algorithm immediately extends to three and more subspaces; in these more 
general cases symmetry cannot be recovered in this way. 

1.5 Block Jacob! Preconditioners 

An important variant of the Schwarz methods is the additive Schwarz method. 
We first consider a very simple example, namely a two-block Jacobi method, 
and try to understand how well it works and how it can be improved. This 
will give a first example of an additive method. 

We will work with the matrix form (1.4) of our finite element problem. 
The stiffness matrix A is positive definite, symmetric, which are properties 
inherited by any conforming finite element method, from the bilinear form 
a(-, -) in (1.34); see appendix B for additional details. Here, and in the fol
lowing, we exploit the one-to-one correspondence between the finite element 
space V and the corresponding space of degrees of freedom consisting of the 
nodal values of a function and use the same notation for finite element spaces 
and spaces of degrees of freedom, and functions and corresponding vectors of 
degrees of freedom. 

We consider the block-Jacobi/conjugate gradient method: the stiffness ma
trix A is preconditioned by a matrix Ay^, where Aj is the a direct sum of 
two diagonal blocks of A. Each block corresponds to a set of degrees of free
dom, which define a subspace V .̂ We write the space F as a direct sum of the 
subspaces Vi,i = 1,2, 

V = RlVi e R^V2, 

where Rj are the natural extension operators 

Rj:Vi^V, i = l,2, 

which take the sets of local degrees of freedom of Vi and extend them by zero 
to the remaining degrees of freedom in Q to give global vectors of nodal values 
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in V. If the block of A related to Vi is denoted by Ai, the preconditioner Aj^ 
can be written as 

, - i - r V o V fo 0 \_(A, 0 
Aj=(k n ) + ( n / - I ) = ( n I ) • (1-35) 

- 1 

The matrix Aj is obtained from A by removing the coupling between the two 
subspaces Vi and Vz- We expect that the weaker the coupling, the better the 
preconditioner. 

We now write Aj in a more compact form. Let the restriction operators 

Ri-.V^Vi, i = l,2, 

be the adjoints of Rf with respect to the Euclidean scalar product; Ri takes 
a vector of global degrees of freedom and extracts the degrees of freedom 
associated with Vi. We immediately see that 

Ai = RiARf, i = l,2, 

and that 
Aj^ = RlA^^Ri + R^A^^Ri. (1.36) 

The choice of the subspaces is a key issue and so is the choice of basis of V, 
in particular in the spectral element case. In order to improve the convergence, 
we can use subspaces that do not form a direct sum of V, e.g., by choosing the 
subspaces Vi and V2 defined in the previous section, consisting of degrees of 
freedom associated with the interior of two overlapping subdomains J?[ and 
I?2- The preconditioner Aj^ can still be written as in (1.36). 

In order to establish a connection with the Schwarz alternating method of 
Sect. 1.4, we will show that the preconditioned additive operator 

Pad = A-/A 

can also be written using two projections, 

Pi := RjAT^RiA -.V ^ V , i = 1,2. 

In Lemma 2.1, we will show that the Pi are the same as those of Sect. 1.4. 
We immediately see that 

Pad = Pl+P2. 

Since this operator is the sum of two projections, which are orthogonal in the 
inner product (1-34), we obtain an upper bound of 2 for the largest eigenvalue. 
If there are N subspaces, we similarly obtain a bound of N. However, this 
bound can be often be improved by using a coloring technique; see section 
2.5.1. 

Before concluding this section, we return to the case of two subspaces that 
form a direct sum decomposition of V, and show how in this simple case the 
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smallest eigenvalue of the block-Jacobi preconditioned system Pad is related 
to the representation properties of the subspace decomposition. This will be 
generalized to more general decompositions in section 2.3; see Assumption 2.2 
and Lemma 2.5. 

Since we now consider a direct sum of two subspaces, there is a unique 
decomposition u = Rjui + R2U2, for every u eV, with 

Ui = RiU, U2 = R2U. 

The corresponding block-Jacobi preconditioner is given by (1.35). Let Co be 
a positive constant such that, for every u £V, 

ujAiUi + U2A2U2 < Co u^Au. 

We note that Cg measures the stability of the splitting and that we use the 
scalar product induced by the original matrix A. Since we work with a direct 
sum, we can write 

u^A(p - / )u = u^{R'[A-[^Ri + RjA2^R2)-^u 

= u^iRjAiRi + RjA2R2)u 

= ufAiui + U2A2U2, 

which, combined with the stability property of the splitting, gives 

u'^A(Pj)u ^ ^2 

uev u^Au 

and thus a lower bound for the smallest eigenvalue of Pad- Thus the condition 
number is bounded from above by 2/Co. 

We conclude this section with some remarks on the two methods presented 
so far. 

Remark 1.4-

1. The additive and multiphcative algorithms can be generalized to the case 
of more than two subspaces in a straightforward way. An additional com
ponent, associated with a coarse space Vo, can also be added to any of 
the algorithms. The latter is often necessary for good convergence, in 
particular, to make the convergence rate independent of the number of 
subproblems; cf. discussion in subsection 1.3.6 and appendix C.5. 

2. Additive and multiplicative algorithms can be determined by the same 
decomposition into subspaces but they are different. They correspond to 
different preconditioned operators, Pad and Pmm determined by different 
polynomial functions of the projections {Pi}. 

3. More generally, instead of the local solvers {A~^} in the definition of the 
preconditioners, we can employ modified operators {A~^}, correspond
ing, for instance, to inexact solvers. We also note that we might consider 
replacing the sum of the values of P\_u and P2U at the nodes of an over
lapping subdomain by a convex combination of the two values. 
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4. For two subspaces and exact solvers, Bj0rstad and Mandel [58] have shown 
that the eigenvalues of the additive operator Pi + P-z can be expressed by 
those of the multiplicative operator Pi + P2 — P2P1, and vice versa. 

1.6 Some Results on Schwarz Alternating Methods 

In this final section, we give two results on the convergence of the Schwarz 
alternating method. They represent early efforts to prove the convergence of 
Schwarz overlapping methods before the Schwarz theory of the next chapter 
was fully developed. While we believe that these results are of interest, this 
section can also be bypassed since it is not necessary for the understanding of 
the main part of this monograph. 

1.6.1 Analysis for the Case of Two Subdomains 

In Chap. 2, we will develop a systematic framework to estimate the rate of 
convergence of the Schwarz alternating method and many other algorithms, 
and we will also devote Chap. 3 to the description and analysis of a number 
of algorithms based on overlapping subdomains. Here, we will show, following 
Bj0rstad and Widlund [62], that a, perhaps surprising, connection can be made 
to the algorithms discussed and analyzed in Sect. 1.3. In this subsection, we 
will consider the case of two subregions; see Fig. 1.3. 

Examining Schwarz's method (1-33), we see that we can view it as a map
ping from J i = dn[ \ dfl onto itself; once the correct value of up^ has been 
found, the iteration has converged. This observation is equally valid for the 
finite element approximation. We note that the values of the iterates on J i 
change only in the second fractional step of the algorithm. 

We also see that as soon as the first full step of the algorithm has been 
completed, the error in (1.33) will be harmonic in the three regions J7i, /?2, 
and J?3 = J?[ n J?2- Similarly, in the finite element case, we see that the 
residuals vanish at all nodes inside these three regions after the first step of 
the algorithm has been completed. We can therefore confine our discussion to 
the case for which the right hand sides diflfer from zero only on the interfaces 
Fi and r2- In fact, after the first fractional step the residual will also vanish 
at all mesh points on J25 and we see that the error ê +'̂ Z^ will satisfy the 
linear system of equations 

( ^ 

where A is the global stifl̂ ness matrix on J? and we have partitioned the degrees 
of freedom into subvectors representing nodal values in the interior of i7(, the 
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interior to i?2, and on the interface Pi- Using a block factorization of A (cf. 
equation (1.12)), we find 

Here, 5^^^ + S]^^ is the Schur complement of A with respect to J i , obtained 
by subassembling the local Schur complements for J7[ and J72. We can express 
the same observation by saying that the restriction of the stiffness matrix for 
the entire region to the space with vanishing residuals on these two subregions 
can be expressed in terms of the sum of these two Schur complements. 

The error on J i will only be partially eliminated in the second fractional 
step, since we are solving a problem on the subregion i?2 rather than on all 
of 0. With vanishing residuals in n[ and J72, we can write the correction in 
the second fractional step as 

where A2 is the stiffness matrix of /?2 ^i^d we have partitioned the degrees of 
freedom of n'2 into those interior to ^2, those interior to H^, and those of the 
interface A- Using a block factorization of A2, we find 

< ' - urt'^' = ( 4 ? + 4 ? ) - ' r ? + ^ / ^ (1.38) 

here Sp^^ + S^^' is the Schur complement of A2 with respect to J i , obtained 
by subassembling the local Schur complements for i?2 and J?3. We note that 
5}?̂  in (1.38) is the same as in (1.37). 

Since ej^ ' = e .̂̂ , a simple computation allows us to find the error 
propagation operator, regarded as a mapping from Fi to itself: 

e-+i = ( j - (S-l?) + 4 ? ) - ' ( 4 ' ^ + 4 ? ) ) e?,. (1.39) 

It is easy to show that Sj^^ > Sp^ , (an inequality in terms of quadratic 
forms), since the minimal extension from Fi to the interior of i?3 necessar
ily has a larger energy than its counterpart for the larger region fl[. Thus, 
the space of possible extensions is larger in the latter case; see Lemma 4.9. 
Therefore, the error propagation operator has only positive eigenvalues. The 
convergence is uniform since we can also show, by arguments quite similar to 
those for the Neumann-Dirichlet and Neumann-Neumann methods, that the 
eigenvalues of 

( 4 ? + 4 y ) - i ( 4 ) + 4 ? ) (1.40) 

are bounded uniformly away from zero. 
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1.6.2 The Case of More than Two Subdomains 

29 

We will now show that the convergence rate of the Schwarz alternating method 
for three and more subdomains can be estimated in terms of the convergence 
rates of certain problems on two subdomains; this result was first given in 
[464]. We note that results of a somewhat different nature for the same problem 
can be based on the abstract theory of Chap. 2 and the results of Chap. 3. In 
particular, several methods with coarse spaces will be introduced and analyzed 
in the latter chapter. 

We will consider the case of three and more subregions and a symmetric 
variant of the algorithm. Exact solvers are employed and the operators Pi are 
thus projections. For the case of three subdomains, as in Fig. 1.4, the error 
propagation operator is given by 

(/ - P i ) ( / - P2){I - P,){I - P2){I - Pi); (1.41) 

see Sect. 1.4.2. 

Fig. 1.4. Three overlapping subdomains. 

This represents an algorithm where we solve Dirichlet problems in /?[, J72, 
and i?3, in that order, prior to returning to solve on the second and first 
subdomains. Since P3 is a projection, we can also write this operator as E^E^, 
where the transpose * is understood in the sense of the bilinear form a(-, •), 
and Es = (I — Ps)(I — P2){I — Pi). This algorithm can clearly be generalized 
to the case of fc > 3 subdomains and we will derive a bound for the condition 
number of the symmetric multiplicative Schwarz operator 
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/ - ElEk where Eh = {I - Pk) •• .{I - Pi) (1.42) 

in terms of the condition numbers of problems on pairs of subdomains for 
which our analysis of subsection 1.6.1 can be used. Since the Pi are orthogo
nal projections, the maximum eigenvalue of J — E^Eh is 1, and the smallest 
eigenvalue of this operator equals 1/K, where K is its condition number. It is 
now easy to show that ||£ f̂c||a < (1 — l/'^)^^^) with || - ||a the norm induced 
by the scalar product a{-, •)- Thus, our bound for the condition number of 
/ — E^Ek, given in Theorem 1.6, will immediately translate into an estimate 
of the rate of convergence of the multiplicative Schwarz method. 

Before we formulate and prove the main result of this subsection, we will 
examine the recursive structure of the algorithm in some detail. We first solve a 
problem in fi[ resulting in a zero residual in that subregion. For the final, {2k— 
l)th, fractional step, we return to the linear system for the same subregion i7(. 
The second through (2fc — 2)th fractional steps provide an updated solution in 
I?\i?[. In the final fractional step, we only need the original right hand side and 
the new values on 5i?[ obtained in the intermediate steps. All the values in J?i 
are overwritten and do not enter the computation in the final fractional step 
in any other way. Similarly, the third through {2k — 3)th step can be viewed 
as solely providing updated values in the set /? \ (/?[ U ^2) including new 
Dirichlet data on part of 5i72. We can therefore view the Schwarz algorithm 
in terms of two regions, i?( and i?2 ^ • • • U i?^ where we obtain approximative 
values in J? \ J?[ by a recursive call of one step of the symmetric, multiplicative 
Schwarz algorithm using the subregions J?2 and J?3 U . . . U J?^, etc. 

We will now give a matrix representation of the process. Given a region 
W" = ^{[J^2^ and associating the subvectors Xi, X2, and X3 with the degrees 
of freedom oi ^[, ^2 •= ̂  \^i =^\^i, and d^[ \ d^, respectively, we can 
write the coefficient matrix for the region ^ as 

/An 0 A i 3 \ 
A=\ 0 A22 A23 ; (1.43) 

\Aj,Al^AsJ 
cf. (1.5). We can make the substitutions ^[ = J?-, ^ = /?-+i U . . . U /?j^, and 
thus !?2 = {^i-^-l U . . . U n'f.) \ J?j, for 1 < » < fc — 1, as suggested by our 
discussion of the recursive formulation of the algorithm. 

We now consider the first step of an exact block Cholesky factorization of 
the matrix (1.43) and obtain 

/ / 0 0 \ M i l 0 0 \ / / O A f i ^ s X 
A= [ 0 J 0 0 A22 A23 0 J 0 . (1.44) 

\AI,A:,'OIJ \O Al4f + 5(1)Ao0 / J 

As in Sect. 1.2, we write the matrix A33 as a sum of ^^3^ and -4̂ 3% which rep
resent the contributions from integrals over ^[ and ^2 =^\^i, respectively. 
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As before, the Schur complement S^^^ = A^J —A'[^A'[^Ai3 is an intermediate 
matrix in a block Gaussian elimination of the matrix 

AT .(1) ) ' (1-45) 

which represents the contribution from !?{to the stiffness matrix of the entire 
problem. We note that solving a linear system of equations with the Schur 
complement 5^^^ as the coefficient matrix gives the same result as solving a 
system with the matrix (1.45), after extending the right hand side by zero, and 
then discarding the components of the solution corresponding to the subvector 
Xi. This can easily be seen by considering a block factorization of the matrix 
(1.45). 

As already shown in subsection 1.6.1, the multiplicative Schwarz algorithm 
for two subregions can be interpreted in terms of the solution of a linear system 
with a modified factored matrix obtained by replacing the Schur complement 
S^^\ which corresponds to the region ^{, by S^^\ which is the Schur com
plement corresponding to ^z = ^[ H ̂ 2- The matrix, which represents the 
preconditioner for the symmetric two-region Schwarz algorithm, is then of the 
form, 

/ / 0 0 \ / A n 0 0 \ / / 0 A r i % 3 \ 
i = 0 J 0 0 A22 A23 0 J 0 . (1.46) 

\AJ,A:,' OIJ \O Al 4f + 5(3) A o 0 / J 

We remark that the second and third factors of the matrix A in (1.46) can be 
modified to obtain a nons3rmmetric factorization 

/ 0 0 \ / / 0 0 \ / A i i O A i s X 
0 J 0 0 A22 A23 0 J 0 . (1.47) 

,Af,A^,'OlJ \OAlA^^+S(')J \0 0 I J 

The three fractional steps, which correspond to the symmetric variant of the 
Schwarz method for the case of two subregions, are given directly by the three 
factors of the matrix (1-47). 

We have now set the stage for using standard techniques to estimate the 
condition number of the two subregion Schwarz method in terms of a gener
alized Rayleigh quotient involving the two matrices (1.44) and (1.46). Since 
these matrices have the same first and third factors, we might as well consider 
the generalized Rayleigh quotient 

^ 2 3 "^33 

An 0 0 
0 A22 A23 

0 A^A^Usi^^ ^23 "^33 

(1.48) 
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As noted in Sect. 1.6.1, it is easy to show, by elementary variational argu
ments, that S^^^ > S^^^K Therefore the upper bound of the Rayleigh quotient 
is 1 and this bound is attained for y-z = 0, ys = 0. The lower right two-by-two 
principal minors determine the lower bound on the spectrum of the relevant 
generalized eigenvalue problem. The relevant bound can then be obtained 
from the reduced generalized Rayleigh quotient 

T 4(2) 
23 ^ 3 3 y,) \Al,A!i^+S(^))\yz 

y2\ I ^ 2 2 A23 \ t y2 
T J (2) 
23 "^33 y,) \ALA!iUs^'))\y, 

(1.49) 

It is important to note that the matrix of the denominator of formula (1.49) 
is the Schur complement obtained by eliminating the variables of !p3 = !?{n!?2 
from the stiffness matrix corresponding to all of ^P .̂ It is equally important 
to note that the changes in the matrix (1.46) when we go from a symmetric 
multiplicative Schwarz method on the two subregions Q[ and Q'^ U i?3 to one 
on three subregions J?i, i?2, and i?3 are confined to the same lower right two-
by-two principal minor since from our discussion of the recursive nature of the 
algorithm, we have learned that the exact solution on the subregion J72 U i73 
should be replaced by a symmetric multiplicative Schwarz step, with three 
fractional steps. In both cases, we will solve a problem with zero residuals 
in •?{ and discard the part of the solution which corresponds to the nodes in 
that region; the resulting matrices are thus Schur complements obtained by 
eliminating the variables in the subregion of J?2 U ^'•i that overlaps Q[. In the 
case of three subdomains, the relevant generalized Rayleigh quotient is of the 
form 

'2/2 A M22 -̂ 23 \ (y2\ 

— , (1.50) 

where the elements of the matrix of the denominator is the Schur complement 
for the three-subdomain case discussed above; we will not need any detailed 
knowledge on the elements of this matrix. 

This generalized Rayleigh quotient can be written as the product of the 
Rayleigh quotient in formula (1.49) and 

2/2 \ M 2 2 ^ 2 3 \ fy2^ 

y,) Ui;4f+^(^vU^_ (,_5,) 

The minimal and maximal values of the generalized Rayleigh quotient (1.49) 
can be estimated as in subsection 1.6.1. We also note that the minimal and 
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maximal values of the generalized Rayleigh quotient (1.50) can be bounded 
from below by the product of the minimal values of those of (1.49) and 
(1.51) and that an upper bound can be obtained similarly. Using the fol
lowing lemma, we can estimate the extremal values of (1-51) by those for the 
two-subregion symmetric multiplicative Schwarz method on the subregions 
I?2 and i?3, i.e., again by using the result of subsection 1.6.1. 

Lemma 1.5 Let two symmetric, positive definite matrices A and A be given 
with the same block structure, 

^ ^ , All A i2 \ 2_= ' ^ ^ " ^12 

and assume that 
cA<A< CA. 

Then, their Schur complements, defined by 

S = A22-Ai2^Aii-^Ai2 

and 
S = A22 - Al^A^^Ai2, 

satisfy 
cS<S< CS. 

Proof. We write the matrix A as a sum of two positive semi-definite ma
trices, 

^-\Al,A,2'A,^-'Ar2)^\0S 

and decompose A in the same way. We note that the first of these matrices is 
semi-definite: this can be seen easily by carrying out a block Cholesky elimi
nation, which results in a zero Schur complement- Rewriting the assumption 
of the lemma, using this decomposition, it follows that 

c.2^s.2<c[r:] (tAi/A^^%.)(::)+-^^-) 

-\x2 \AJ. AjoA,M12 \X2 
If we now select 

xi = -A^i Ai2a;2, 

then the first of the quadratic forms of the right hand side vanishes and we 
obtain one of the inequalities. The other follows in exactly the same way. D 

We have now completed all that is required for a proof of the following 
theorem for the case of three subdomains. 
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Theorem 1.6 The condition number of the symmetric Schwarz operator sat
isfies, 

K(n[,i^!,,...,n',)<K(n[,n'^ij...un',)K(n^,n',ij...\jn',)...K(n',_,,i^',). 
(1.52) 

Here the expression on the left is the condition number of the operator I — 
ElEk- The first factor on the right hand side is the condition number of the 
symmetric multiplicative Schwarz operator for the pair of subregions /?( and 
/?2 U J?3U...U/2j., etc. 

No new ideas axe required for the proof of the general case. Thus, we find for 
the case of four subdomains, by a minor modification of the arguments above 
and by using the notation of the theorem, that 

K{r?[, J?2, i73, ni) < K(j7i, J?2 U J7̂  U J7i)K(J?2, O'r^, J?^). 

We can then use the resuh for three subdomains to replace the final fac
tor of this estimate by a product of two factors that each only involve two 
subdomains. 



Abstract Theory of Schwarz Methods 

2.1 Introduction 

The theory which will be developed in this chapter provides a framework 
which has proven quite helpful in the design and analysis of a number of new 
and old iterative methods. It highlights the requirements necessary to turn 
large and often very ill-conditioned linear systems of algebraic equations into 
much better conditioned preconditioned systems. We note that success in such 
an effort can lead to spectral bounds which are independent of the dimension 
of the problem or which only deteriorate very slowly with decreasing mesh 
parameters. More precisely, we will look for iterative methods that axe scalable 
(see Definition 1.3) and optimal (see Definition 1.2), whenever possible, or at 
least quasi optimal (see the discussion after Definition 1.3). 

2.2 Schwarz Methods 

We consider a finite dimensional Hilbert space V. Given a symmetric, positive 
definite bilinear form, 

c(- ,-) : VxV -^R, 

and an element / G y , we consider the problem of finding u eV, such that 

a(u,v) = f{v), veV. (2.1) 

Given a basis of V, we recall that a function u E. V is uniquely determined 
by a set of degrees of freedom. Here and in the following, we use the same 
notation for functional spaces and spaces of degrees of freedom, and functions 
and corresponding vectors of degrees of freedom. Similarly, we use the same 
notation for a linear functional / £ V and the corresponding vector, the load 
vector, with elements obtained by applying / to the basis functions of V. 

If A is the stiffness matrix relative to the bilinear form a(-, •) and the given 
basis, problem (2.1) is equivalent to the linear system 



36 2 Abstract Theory of Schwarz Methods 

Au = f, (2.2) 

with A symmetric, positive definite; see appendix B. 
We next consider a family of spaces {Vi, i = 0,...,N} and suppose that 

there exist interpolation operators 

Rj: Vi^ V; 

instead one often speaks of prolongation or extension operators. We assume 
that V admits the following decomposition 

V = RSVo + Y,RlVi- (2-3) 

This decomposition will not necessarily be a direct sum of subspaces; in many 
cases, the representation of an element of V in terms of components of the 
Vi is not unique. We note that the Vi do not need to be subspaces of V, but 
that, as is customary, we refer to them as 'subspaces' or 'local spaces' in the 
following. The subspace VQ is usually related to a coarse problem, often built 
on a coarse mesh, while the remaining spaces are related to a partition into 
subdomains and are associated with local triangulations; this is the reason 
they are sometimes referred to as local spaces, as opposed to Vb which is a 
global space. 

We next introduce local symmetric, positive definite, bilinear forms on the 
subspaces, 

ai{;-): ViXVi^R, i = 0,.-.,iV, 

and the local stiffness matrices associated with them, 

Ai-. Vi^ Vi. 

In case we want to use the original bilinear form on the subspaces, we choose 

ai(ui,Vi) = a{Rfui,Rjvi), Ui,Vi £ V (2.4) 

and find that 
Ai = RiARj. (2.5) 

In this case, we say that we use exact local solvers. 

Schwarz operators are defined in terms of projection-like operators 

Pi=RfPi: V-^RjViCV, i = 0,...,N, 

where Pi : V ^ Vi, is defined by 

ai(PiU,Vi) =a{u,Rjvi), Vi e Vi. (2.6) 
We note that Pj is weU defined since the local bilinear forms are coercive and 
that, in the case of exact solvers, 

a{PiU, Rfvi) = a{u, Rfvi), VieVi. 

We have the following lemma. 
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Lemma 2.1 The Pi can he written as 

Pi = RjA-^RiA, 0<i<N. (2.7) 

In addition, the Pi are selfadjoint with respect to the scalar product induced by 
a(-, -) and positive semi-definite. If moreover the local bilinear form is given 
by (2.4), then Pi is a projection, i.e., 

p? = P 

Proof. We first consider the operator Pi defined by (2.6). Writing (2.6) in 
matrix form, we find 

vjAiPiU = (RjvifAu, 

for eillu eV and Vi eVi. We can then write 

which gives 
Pi = A-^RiA 

and (2.7). 
In order to prove that Pi is selfadjoint, let u,v €V. Using (2.7), we easily 

find 

a(PiU,v) = v'^A(RjA-^RiAu) = {RJ A'^ RiAvf Au = a(u,Piv). 

The positive semi-definiteness of Pi is a consequence of the coercivity of the 
local bihnear forms. Indeed, we have 

a{PiU,u) = u^APiU = u^ARjA-^RiAu = vfA'^Vi > 0, 

with Vi = RiAu. 
For the case of exact solvers, we can easily prove that Pi is a projection 

by using (2.5). D 
Once a set of subspaces and local bihnear forms are given, we can define a 

number of different Schwarz operators. Each of them is given by a polynomial 
in the operators [Pi] without a zero order term. We note that we can always 
generate the appropriate right hand side for the resulting operator equation 
since we can compute PjU = RfPiU, with u the finite element solution, by 
noting that ai{PiU,Vi) = a{u,Rjvi) = f{Rfvi). Similarly, we can find PjPiU, 
once that PiU has been computed, etc. 

The additive operator is defined as previously by 

N 

Pad = Y.Pi- (2-

A multiplicative operator has already been given in Sect. 1.4, 



38 2 Abstract Theory of Schwarz Methods 

where the error propagation operator is defined by 

E^^ = {I- PN)(I - PN-I) • • • { / - Po). (2.10) 

More general hybrid operators can also be defined. The operator 

JV 

Phyl =1- Ehyl, Ehyl = (/ - Po)(/ - ^ Pi){I - Po), 

is additive with respect to the local components and multiplicative with re
spect to the levels. We note that in case an exact solver is employed on Vo, 
Lemma 2.1 ensures that 

N 

Phvi=Po + {I-Po)Y.Pi{I-Po)- (2.11) 
i=l 

The operator Phyi is due to Mandel [334] and is considered in more detail in 
subsection 2.5.2; see also Lemma 2.15. 

A hybrid method that is nonsymmetric and multiplicative on the local 
components and additive on the levels is given by 

Phy2 = aPo + ( / - { / - PAT) • • • { / - Pi)), 

with a a relaxation parameter. It exploits the generally more rapid conver
gence of a multiplicative method, while the special coarse problem can be 
solved at the same time as the local problems. Thus, one or several processors 
can work on the coarse problem while the rest of the processors are assigned 
to the local problems. We note that in a standard multiplicative algorithm, 
there is a potential bottleneck with many processors idly waiting for the solu
tion of the coarse problem. The operator Phy2 is considered and analyzed in 
[102] for the more general case of a nonsymmetric problem. 

We note that the operators Pmu and Phyz are not symmetric. Symmetric 
operators can be obtained by visiting all but one of the subspaces twice. For 
the multiplicative algorithm, we have, e.g., 

E,y = (/ - Po) • • • (J - Pjv-i)(I - PN){I - PN-I) • • • ( / - Po)-

We also note that if Po is a projection then we can save one application of 
(/ — Po) per step starting with the second step of the iteration. 

We end this section by noting that all the Schwarz operators introduced 
here are preconditioned operators for the original operator A and can be 
written as the product of a suitable preconditioner and A, where the former 
only involves extensions {Rf}, restrictions {Ri}, local operators {A^^}, and 
A. This is straightforward for the additive method where 
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JV 

i=0 

As it will be shown in Sect. 2.6, it is possible to write simple routines that 
apply a Schwarz preconditioner itself to a vector even in the multiphcative 
and hybrid cases. 

2.3 Convergence Theory 

In this section, we consider the additive and the multiplicative Schwarz op
erators Pad and Pmu and the corresponding preconditioned systems for the 
solution of (2.2). 

The additive operator is symmetric and, as we will show in this section, 
it is also positive definite. We consider then the conjugate gradient algorithm 
for the solution of 

PadU = gad, 

with Qad = ^ ^ i / ) and we will estimate the condition number of Pad 

(Pad) 
K{Pad) = 

where 

(Pad) ' 

A (P.)- ^un "(-^°'^^'^) A (P.)- inf ^^3ti!h^. 
uev a{u,u) uev a{u,u) 

see appendices B and C. Here, and in the rest of the monograph, we implicitly 
assume that, given a rational functional (/!>(w), sup„^(w) and m£y,<t>{u) are 
taken for u such that the denominator of ^(n) does not vanish. 

The multiplicative operator Pmu is not symmetric and we will consider 
a simple Richardson iteration applied to the corresponding preconditioned 
system; this is a generalization of the Schwarz alternating method presented 
in Sect. 1.4. In fact, we will give an upper bound for the norm of the error 
propagation operator 

\\Emu\\i = sup -7—-\ , 
uev a{u,u) 

which is strictly less than one; cf. appendix C. 
In order to prove bounds for these two Schwarz operators, it is enough 

to make three assumptions. We note that it is desirable that the parameters 
be shown to be independent of the dimension of the given problem or to 
deteriorate only slowly with decreasing mesh parameters. 
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Assumption 2.2 (Stable Decomposition) There exists a constant Co, such 
that every u eV admits a decomposition 

N 
Ui, {ui €Vi, 0<i<N} 

= 0 

that satisfies 
N 

'^ai{ui,Ui) < Coa{u,u). 

Assumption 2.2 ensures that a stable splitting can be found for the family 
of subspaces and the corresponding bihnear forms. It will allow us to find a 
strictly positive lower bound for Xmm{Pad) and consequently to ensure that 
Pad is invertible; see Lemma 2.5 and the discussion about block-Jacobi pre-
conditioners in Sect. 1.5. We remark that in order for Assumption 2.2 to be 
satisfied it is enough that the subspaces provide a decomposition of F . In 
other words, since V is finite dimensional, the additive Schwarz operator is 
invertible if the subspaces axe able to represent every function in V. However, 
even if we can find a Co for each space V, we typically consider an entire 
family of finite dimensional spaces and our main concern is to develop uni
form bounds for Co or bounds that only grow slowly with the dimension of 
the problem. We finally remark that, if the subproblems are all scaled so that 
the norms of the Pj equal one, a constant Co close to one is desirable, and 
consequently orthogonal subspaces would be best in the case of exact solvers. 

Assumption 2.3 (Strengthened Cauchy-Schwarz Inequalities) There 
exist constants 0 < ê j < 1, I <i,j < N, such that 

\a(Rjui,Rjuj)\ < eija{Rfui,Rjui)^/'^ a{Rjuj,Rjuj)^/'^, 

for Ui e Vi and Uj e Vj. We will denote the spectral radius of £ = {cij} by 
p{£). 

We note that Assumption 2.3 does not involve the space VQ. We also note 
that the theory easily could be modiiied to accommodate two or any fixed 
number of specially designated coarse subspaces. 

The spectral radius p{£) will appear in an upper bound for \max{Pad)', 
see Lemma 2.6. The inequalities of the Assumption 2.3 are trivially valid with 
Cij = 1. However, in this case, we have p{£) = N, which would give a poor 
upper bound. The best bound is obtained for orthogonal spaces {RfVi} in 
which case Cij = 0, for i ^ j and p(£) is equal to one. 

Assumption 2.4 (Local Stability) There exists w > 0, such that 

a{R'[ui,Rjui) <Loai(ui,Ui), Ui e range{Pi) C Vi, 0<i<N. 
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Assumption 2.4 ensures that the local bihnear forms are coercive and gives 
a one-sided measure of their approximation properties. We note that Assump
tion 2.2 ensures a weak type of continuity for the ai{-,-). The constant to 
provides an upper bound for ||Pi||a; see Lemma 2.6- If exact, unsealed local 
solvers are considered, u> is equal to one. A possible choice for the local bilinear 
forms is 

ai{ui,Ui) = -a{Rjui,Rjui), a e (0,2), 

where a is a relaxation parameter. 
The additive method, accelerated by the conjugate gradient method, is 

insensitive to a common scale factor, but the use of relaxation parameters is 
often desirable or even necessary for multiphcative and hybrid methods. We 
need to assume that to € (0,2) for the case of multiphcative methods. We are 
not free to scale the local bilinear forms arbitrarily in order to decrease Co; a 
small value of to means that corrections of the error are small. In such a case, 
Co of Assumption 2.2 will necessarily be large. 

Lemma 2.5 Let Assumption 2.2 he satisfied. Then, 

a(PadU,u)>Co'^a{u,u), u£V, (2.12) 

and consequently Pad is invertible. In addition, 

N 

a{P~J-u,u)= min V'ai(wj,-Ui). (2.13) 

Proof. By Assumption 2.2 and the definition of the Pj, we have 

N N 

a{u,u) = '^a{u,Rjui) = ^aj{PjW,Wi) 
j=0 i=0 

N N 
< {'^ai{PiU,Piu)y "^{^ai{ui,Ui) 

i=0 i=0 
N 

i=0 

Here we have used the Cauchy-Schwarz inequality in the Vi and £-2, and the 
fact that the local bilinear forms are symmetric and positive definite. Squaring 
and cancelling a common factor and using the definition of the {Pi}, we find 

TV N 

i{u,u) < Cl^ai{PiU,Piu) = Co'^a{u,RjPiu) = Cla{u,Padu), 
j=0 i=0 

which proves (2.12) and thus the invertibility of Pad-
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In order to prove (2.13), we first find a decomposition otu eV, such that 
the equahty between the energies in (2.13) holds. Since Pad is invertible, we 
can choose 

Ui=PiPju, 0<i<N. (2.14) 

We have 

and 

J-* ad "-' 

N 

w = ^ Rjui 
i=0 

N N 

Y,ai{ui,Ui) = ^ai{PiPju,PiPju) 
8=0 j=0 

N 

i=0 

We next consider any decomposition 

N 

j=0 

We can write 
N N 

<Pad'^^''^) = ^0,{P-ju,Rjui) =^ai{PiP-^U,Ui) 
i=0 i=0 

N N 

< {Y,aiiPPju,PPju)f' {Y.aiini,ni)f' 
N N 

= {Y.^{Pj^,RjPP-d'u)f' {Y.a,{u,,u,)f' 
i=0 1=0 

N 

= O-iPadU^uYf^ (^ai{Ui,Ui)f'^. 
i=0 

We have thus shown that for every decomposition of w, we have 

JV 

a{P~J-u,u) < '^ai{ui,Ui). 
i=0 

Therefore, the partition given in (2.14) provides the minimum and the proof 
is complete. D 
The following lemma is also crucial in many cases. 

Lemma 2.6 Let Assumptions 2.4 and 2.3 he satisfied. Then, fori = 0 , . . . , iV, 

\\Pi\\a <<.o. 

In addition, 
a{PadU, u) < oj{p{£) + 1) a(w, u). 
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Proof. We start with the first bound. Using Assumption 2.4, we find 

a{PiU,Piu) = a{RjPiU, Rf Piu) < u)ai{PiU, Piu) 

= u)a{u,RfPiu) = uja(u,Piu), 

i.e., 
a{PiU,PiU) <u>a{u,Piu), (2.15) 

and thus 
a(PiU,Piu) < LO^a{u,u), u E.V, 

which gives the first inequality. 
In order to prove the second inequality, we first consider the operator 

JV 

P = EP-

From Assumption 2.3, we have 

a(Pu,Pu)= ^ a{PiU,Pju)< ^ eija(PiU,Piuy/^a(PjU,PjuY^^. 
l<i,j<N l<i,j<N 

Using (2.15) and the fact that the matrix £ is symmetric, and that therefore 
its ^2—norm is equal to its spectral radius, we can write 

a{Pu,Pu)< ^ eijU)^/'^a{u,Piuy/'^u>^/'^a{u,Pjuy/'^ 
l<i,j<N 

<tjp{£) 2_] ^(^'^i'^) 
l<i<N 

= ujp{£)a{u,Pu) < ujp{e)a{u,uY/^a{Pu,PuYf^. 

We then have 

a{Pu,u) < a{Pu,Pu)^^^a(u,u)^^'^ < ujp(e)a{u,u). (2.16) 

Using this last estimate and the bound for ||Po||a, we finally find 

a{PadU,u) = a{Pou,u) +a{Pu,u) < ijja{u,u) +u)p{€)a{u,u). 

D 
Combining Lemmas 2.5 and 2.6, we find a bound for the condition number 

oiPad. 
Theorem 2.7 Let Assumptions 2.2, 2.3, and 2-4 be satisfied. Then the con
dition number of the additive Schwarz operator satisfies 

<Pad) < cloj{p{e) +1). 
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We now prove a bound for the multiplicative operator. We first need a 
technical lemma. 

Lemma 2.8 Let Assumptions 2.4 and 2.3 he satisfied. Then, for 0 <i,k < N 
and for u,v eV, 

a{PiU,v) < a{PiU,uf/'^a{PiV,vf/'^, 

a{PiU,Pkv) < Loeika{PiU,u)^^^a{PkV,vy/'^. 

Proof For the first inequality, we use the fact that Pi is self-adjoint, the def
inition of Pi, and the Cauchy-Schwarz inequality for the bilinear form aj(-, -) : 

a{PiU,v) = a{u,Piv) = a{u,R[Piv) = ai(PiU,Piv) 

< ai{PiU,Piu)^/-'ai{PiV,Piv)^/^=a{u,Piu)^/-'a{v,Piv)^/-\ 

The second expression can be bounded by using the Cauchy-Schwarz inequal
ity and the definitions of the Pj, w, and £: 

a{Pju,Pkv) < €jka(PjU,Pju)^^^a{PkV,Pkv)^^'^ 

< ucjk aj{PjU,Pjuy^ ak{PkV,Pkv)^^'^ 

= LO€jka{u,Pjuy^^ a(v,Pkvy^^. 

D 

Theorem 2.9 Let Assumptions 2.2, 2.3, and 2.4 he satisfied. Let w he the 
constant defined in Assumption 2.4 and suppose that co G (0,2). Then the 
error propagation operator of the multiplicative Schwarz method satisfies 

IIP | | 2 _ | | 7 - _ p ||2 <- 1 2 — U)  

where a> = inax(l,u!) and the constants Co and p{£) are defined in Assump
tions 2.2 and 2.3. 

Proof. Our task is to estimate the norm of the error propagation operator 
E]s[ = Emu of the multiphcative Schwarz method. We begin by defining 

Ej = {I-Pj)---iI-Po), 0<j<N, E-r=I, 

and 
Qj = 2Pj - P] = (2/ - Pj)Pj, 0<j<N. 

We have 
E*_^Ej_i - E*Ej = E*_^QjEj_i, 0<j<N. 

Here and in what follows, the star * denotes the adjoint with respect to the 
bilinear form a(-, •). Summing over j , we find 
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N 

I - E*^E^ = ^ E*_,QjEj_,. (2.17) 
j=0 

We note that, for u> = max||Pj||a < 2, the operators Qj are positive semi-
definite since 

Qj > (2 - u)Pj 

and the Pj are positive semi-definite. Therefore, 

JV 

I - E*J^EN > (2 - W) ^ E*_^PjEj_i. (2.18) 
j=o 

A satisfactory upper bound for HE'jvlU î  obtained by showing that the op
erator on the right hand side of (2.18) is sufficiently positive definite, i.e., by 
giving a lower bound for its smallest eigenvalue. 

A direct consequence of the definition of the operator Ej is that 

I = Ej_t+Y, PkEk-i = Ej_i + Po + ^ PkEk-i - (2.19) 
k=0 fc=l 

For j > 0, we find 

i - i 
a{PjU,u) = a{PjU,Ej-iu) + a{PjU, PQU) + y ^ a(PjU, PkEk-iu). 

k=l 

This expression can be bounded using Lemma 2.8: 

a{PjU,u) < a{PjU,u) 

i - i 
+ a{PjPou,Pouy/^+uY,€jka{PkEk-iu,Ek_iuy/^). 

k=l 

Let c denote a vector with the components 

Cfc =a{PkEk-iu,Eu-iuf'^, k = l,---,N. 

We note that ejj = 1 and that we can combine the first and third terms. 
Canceling a common factor and using elementary arguments, we find that 

a(PjU,u) < %?•{£(•)] + 2a(PjPow,Pow), 

where CJ = max{l,a;). Summing for j = 1,...,7V, using formula (2.16) and 
Lemma 2.6, and adding the term a(Pou, u) to both sides, we obtain 

a{PadU,u) < 2i:o'^p{£f\\c\\% + (1 + 2oj'^p{e))a{Pou,u), 
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and finally, 

N 

a{PadU,u) < (1 + 2u''p{Sf)J2a{Ej-iPjEj-iu,u). 
3=0 

The proof can now be completed by using (2.18) and the lower bound of 
Lemma 2.5. D 

2.4 Historical Remarks 

Much of the development of the abstract Schwarz theory can be traced back 
to the work of Pierre-Louis Lions [318, 319, 320, 321] on Schwarz alternat
ing methods, where the importance of certain projection operators into local 
spaces and of stable decompositions was pointed out. There was also pioneer
ing work on additive Schwarz methods by Matsokin and Nepomnyaschikh 
[348, 360]. In particular, the importance of Assumption 2.2 was recognized by 
them; cf. also Lions [319]. 

The abstract theory as presented in this chapter is due in part to Dryja 
and Widlund [180, 181]. The development of the theory for multiphcative 
methods is due to Bramble, Pasciak, Wang and Xu [80]. The abstract theory 
is also outlined in Oswald [368, Sect. 4.1] and Xu [472]; cf. also Griebel [234] 
and Griebel and Oswald [235, 236]. Early work using these techniques for 
the analysis of multigrid methods are given by Xu in that paper and also by 
Bramble, Pasciak, Wang and Xu [79] and by Zhang [479, 481]. More recent 
work on the general theory is given by Xu and Zikatanov [475, 474]. 

The hybrid operator Phyi is due to Mandel [334], while Phy2 was intro
duced by Cai [102]. 

More recently, an algebraic theory of Schwarz method has been devel
oped by Frommer and Szyld [209, 210], Frommer and Schwandt [208], Benzi, 
Frommer, Nabben, and Szyld [44] and Nabben [356]. 

2.5 Additional Results 

2.5.1 Coloring Techniques 

We often wish to use many subspaces. To avoid a high degree of the poly
nomials, which define multiplicative and some hybrid Schwarz methods and 
which can make the algorithm quite sequential, we use a simple graph theory 
tool called coloring. Orthogonal subspaces, such as those corresponding to 
disjoint subregions, can be grouped together into classes of subspaces each of 
which can be regarded as one subspace. This is done by coloring an undirected 
graph, with a vertex for each subspace and an edge for each pair of subspaces 
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that are not orthogonal, by a minimal or good coloring. Subspaces of the same 
color can then be merged into one. 

More precisely, given a decomposition of V, we color the subspaces 
{Vi, 1 < i < N} in such a way that if two subspaces Vk and Vj have the 
same color they are orthogonal, i.e., 

a{Rluk,Rjuj) = 0, UkeVk, Uj eVj. 

A coloring thus provides a partition of the set of subspaces C = {Cj, 1 < j < 
N"^} into N"^ classes. We note that, if Vk and Vj have the same color, then the 
corresponding operators satisfy 

PkPj = PjPk = 0. 

Consequently, after a possible reordering of the subspaces, the error propaga
tion operator of the multiplicative method can be written as 

reducing the number of sequential steps from Â" + 1 to A'''' + 1. 
The next lemma relates the spectral radius of S to the number of colors. 

Lemma 2.10 Let £ = {etj} be given as in Assumption 2.3. Suppose that are 
at most N'^ nonzeros in each row of S. Then, 

p{£) < N'. 

Proof. This result follows by estimating the spectral radius of £ by its 
^oo-norm and noting that 0 < ejj < 1. D 
We note that upper bounds for one- and two-level methods axe often found 
without using Assumption 2.3 and Lemma 2.10 by a direct coloring argument. 
In this case a somewhat weaker assumption can be employed on the coloring 
of the subspaces; see Sect. 3.6. 

2.5.2 A Hybrid Method 

We now consider the hybrid operator Phyi given in (2.11), which plays an 
important role in certain iterative substructuring methods of Neumann-
Neumann type. This will also give us the opportunity of presenting an ex
ample of a projected conjugate gradient algorithm, which is also employed in 
the implementation of certain Neumann-Neumann and FETI methods; see 
Chap. 6. Throughout, we require that an exact solver be used on the coarse 
space Vo- Then, PQ is an orthogonal projection. By defining 

Ti = {I-Po)Pi{I-Po), l<i<N, 
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we can write 
N 

Phyi = Po + J2^i = Aj;^,A. 
i=l 

We will consider the solution of the preconditioned system 

Phyiu = g, g = A^^J, 

in detail. By decomposing the exact solution u as 

u = uo +v, uo = PQU, V e range{I — PQ), (2.20) 

we obtain the following operator equation for v € range(I — PQ) 
N 

Y,TiV = g-uo, (2.21) 

with 
N N 

Y,Ti = {I-Po)^Pi{I-Po) 
i=l 

N 

{I-Po)Y,RjAfRi{I-P^) 
(2.22) 

A. 

We note that MQ can easily be computed by solving a coarse problem. Indeed, 
according to Lemma 2.1, 

This element is a suitable initial approximation for the conjugate gradient 
computation but it can equally well be replaced by WQ + w in (2.20), with w 
an arbitrary vector in range{I — PQ)- We also note that the application of the 
preconditioner defined by the preconditioned operator given in (2.22) involves 
three operations, namely, the applications of (/ — PQ'), (/ — PQ), and the local 
components JZiPf-^T^Pi- We will soon show that, because of the choice of 
Uo, the first step can be omitted and consequently the action of P^f is not 
required in practice. 

We consider the conjugate gradient method applied to problem (2.21). We 
have written the algorithm in Fig. 2.1; here (-, •) denotes the Euclidean scalar 
product. Because of the choice of the initial vector u^, we can easily prove the 
following lemma. 

Lemma 2.11 The following properties hold 

w^ = q'', for fc > 0, 

w' — u^ £ range{I — Po). 
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1. Initialize 

u^ = R^AQ^RO/ + w, w £ range{I — Po) 

q'^f-Au' 

2. Iterate fc = 1, 2, • • • until convergence 

Project: w'^"^ = {I - P^)q^-^ 

N 
Precondition: z'"'^ = ^RfA~^Riw''~^ 

Project: 2/*=-̂  = (/-Po)^*~^ 

/3' = (?/ '- ' ,«'- '>/<?/*-' ,? '- ') U3' = 0] 

/ = / - i + ; 3 V - i [ p i = / ] 

«' = (/-\«'-')/(p*,V) 
u = u ~ + a p 
^k ^ ^k-i _Q,fc^pft 

Fig. 2.1. Implementation of the projected preconditioned conjugate gradient algo
rithm involving the hybrid operator Puyi-

We note that, because of Lemma 2.11, the action of J — P^f need not be 
calculated in practice. 

We next prove a bound for the condition number of the hybrid opera
tor Phyi- In order to do so, we employ Assumptions 2.4 and 2.3, but it is 
convenient to replace Assumption 2.2. 

Assumption 2.12 (Stable Decomposition) There exists a constant Co, 
such that every u € range{I — PQ) admits a decomposition 

N 

U 

-1 

that satisfies 
N 

^ai{ui,Ui) < Cla{u,u). 
i=l 

Assumptions 2.12 and 2.2 are essentially the same. By specializing to elements 
in range(I — PQ), Assumption 2.2 implies 2.12. We also see that 

N 

W = PnW + > RJU = Pow + ^ R •i " • « 

=1 
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provides a good decomposition for an arbitrary w G V, with u = {I — Po)w, 
in the case when an exact solver is used for the coarse space and PQ is thus 
an orthogonal projection. 

We have the following theorem; see also [334]. 

Theorem 2.13 Let Assumptions 2.12, 2.3, and 2.4 he satisfied. Then the 
condition number of the hybrid operator satisfies 

max{l,Co}~'^ a{u,u) < a(Phyiu,u) < m.eix.{l,cop(£)} a(u,u), u £V. 

The projected additive operator satisfies 

( ^ \ 
CQ ^ a(w, w) < a I Y^ TjW, u j < (jJp{£) a{u, u), u e range{I — PQ). 

Proof We first give a bound for the largest eigenvalue of Phyi- By pro
ceeding as in the proof of Lemma 2.6, we can prove 

/ N \ 
a y^P^M, w I < uip{S)a(u,u), u e range{I — PQ), (2.23) 

and thus, since PQ is selfadjoint, 

a({I-Po)Y^ Pi(I - Po)%u\ < wp{£) a ((J - Po)u, (/ - Po)u), ueV. 

Since PQ is an orthogonal projection, we have for w G V 

a(Phyiu, u) 

= a(Pou,u) + a ({I - Po) E Pi{I - Po)u,u) 
\ i=i J (2.24) 

< a(Pon, POM) + wp(<f) a ( ( / - PO)M, (/ - PO)M) 

< max{l, iop{£)^ a(u, u). 

We next prove a lower bound. By proceeding as in the proof of Lemma 2.5, 
we find for u £ range{I — PQ) that 

a ( M , « ) < C ^ o ( ^ P i W , M j , (2.25) 

and thus 

a{{I-Po)%{I-Po)u)<CiaUl-Po)f2Pi(^-Po)u,u], ueV. 
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As before, we easily obtain 

max{l, CgjaiPhyiu, u) 

> a{Pou, Pou) + Cia ({I - Po) £ Pii^ " Po)u, u^ (2.26) 

> a(Pou, PQU) + O {(/ - Po)u, (I - Po)u) = a{u, u). 

The bound for ^ ^ T j is a consequence of (2.23) and (2.25). D 

2.5.3 Comparison Results 

The following trivial result ensures that whenever a subspace with a corre
sponding (properly scaled) local solver is added to a multiphcative method, 
convergence cannot deteriorate in the positive definite, symmetric case. This 
is consistent with the idea that introducing an additional correction of the 
error can only improve the convergence. We remark that this property may 
no longer be true for nonsymmetric or indefinite problems. 

Lemma 2.14 Let E^ be the error propagation operator of a multiplicative 
Schwarz method. Suppose that an additional subspace VN+I is employed with a 
local solver satisfying Assumption 2.4 with to G (0,2). Then the error operator 
EN+I of the modified method satisfies 

ll-Ê JV+ilU < II^JvlU-

Proof. The proof is trivial and results from the fact that, since from Lemma 
2.6, 

ll-PjV+illa < W < 2, 

and PN+1 is positive semi-definite, we have 

| | I - P j V + l | | a < l . 

D 

The following lemma compares the condition number of the additive and 
the hybrid operators; see [334]. 

Lemma 2.15 In case an exact solver is employed on the coarse space Vo, the 
condition numbers of the additive operator and the projected additive operator 
defined in the previous section built from the same subspaces and the same 
local solvers satisfy 

^ff^Tj <K{Pad), 

where Ti is the restriction ofTi to range{I — Po)-
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Proof. The proof is immediate and follows from the extremal properties of 
the eigenvalues and the following equality 

Vi=i J _ Vi=i J _ a{PadU, u) 

a{u,u) a{u,u) a{u,u) 
u e range{I — PQ) C V. 

2.6 Remarks on the Implementation 

As already pointed out in Sect. 2.2, all the Schwarz operators introduced in 
this chapter are preconditioned operators for the original operator A and can 
be written as the product of a suitable preconditioner and A. The former only 
involve extensions {Rj}, restrictions {Ri], local operators {A~^}, and A. 

A program implementing an accelerator, like Richardson, conjugate gradi
ents, or generalized minimal residuals, usually requires a routine that applies 
a preconditioner to a generic vector; see appendix C. This is straightforward 
for the additive method, but not so obvious for multiplicative and hybrid 
methods. We recall that 

P „ „ = J - (/ - Pjv) • • - (/ - Po) = A-^A. 

mu 
The following function applies the multiplicative Schwarz preconditioner yl^^ 
to a vector x. Similar routines can be written for the hybrid preconditioners 

J=PrauA-^{x) 

y := E^AQ^ROX 

for i = l,...,N 

y.^y + RfA-'-Riix-Ay) 

end 

We note that while the application of the additive preconditioner does not 
involve any product with the original matrix A, the application of each local 
component of the multiplicative preconditioner involves a product with A. 
We can reduce the cost by noting that we often do not need all the compo
nents of the residual vector in each step and also that the residual often can 
be updated only locally where a correction has actually just occurred. This 
will complicate the algorithm and if the application of the original matrix A 
to a vector is costly, then fully multiplicative preconditioners might not be 
competitive with additive or hybrid methods. We note that when a Schur 
complement system is solved (see Chap. 4, 5, and 6) each application of the 
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Schur complement to a vector involves the solution of a Dirichlet problem 
on the subdomains of a nonoverlapping partition, which makes a multiplica
tive preconditioner potentially expensive. However, a coloring technique as 
described in subsection 2.5.1 reduces the number of sequential steps and can 
greatly reduce the number of local Dirichlet problems that need to be solved. 



Two-Level Overlapping Methods 

3.1 Introduction 

In this chapter, we consider some quite general two-level overlapping methods. 
They are generalizations of the Schwarz alternating method which was first 
introduced in Sect. 1.4 for two subdomains. These methods are given in terms 
of overlapping partitions of fl into subdomains fi[ which themselves are unions 
of finite elements and have diameters of order iJj, and by a coarse shape-
regular mesh. Any element of this coarse mesh should have a diameter on the 
order of Hi if it intersects fi[. This coarse mesh can otherwise be completely 
independent of the fine triangulation; towards the end of Sect. 3.6, we will 
outline some particular design choices employed in practice. We also briefiy 
introduce the restricted Schwarz methods and, in the last section, we discuss 
alternative coarse solvers, in particular, those defined by aggregation. 

We will consider additive methods only, but note that any proof based on 
Theorem 2.7 also immediately provides proofs for multiplicative and hybrid 
methods based on Theorems 2.9 and 2.13. 

One level additive overlapping preconditioners were originally introduced 
by Matsokin and Nepomnyaschikh [348] and Nepomnyaschikh [360]. They 
were further developed in the more powerful two-level form in [179, 174, 180, 
181]; these methods have been used extensively. For related work, see also 
Bj0rstad, Moe, and Skogen [54, 59, 60], Cai [99, 100, 101], Mathew [345, 346], 
Skogen [419], and Zhang [479, 480]. The basic theory presented, in Sect. 3.2-
3.6, was originally given in [182] for the case of nested meshes and in [134] for 
more general coarse meshes. 

For a given bounded polygonal or polyhedral domain J?, we consider the 
Poisson problem (1.1) with homogeneous Dirichlet boundary conditions. As 
in subsection 1.4.2, the variational formulation of the problem involves the 
bilinear form 

J Q 
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We will consider a shape-regular triangulation T of i? and the space V of 
continuous, piecewise linear functions on T that vanish on dH; see appendix 
B. We note that we do not assume that T is quasi uniform. A denotes the 
corresponding stiffness matrix. 

We study additive preconditioned operators of the form 

N N 

Paa = Y.Pi = Yl RJ^T^Ri^^ (3-1) 

see Sect. 2.2, where PQ is associated with a problem on the coarse mesh and 
the remaining Pi with local problems on the subdomains {O'^}. These two 
components will be introduced in the next two sections. 

3.2 Local Solvers 

We first consider an initial partition of f2 into nonoverlapping subdomains 
(substructures) {J?i, 1 < i < N} with diameters Hi. We will always re
gard the subregions of any partition as open sets and assume that they are 
shape regular. The maximum diameter of the substructures is H. We now 
extend each substructure J?, to a larger region Q[, such that 5i?| does not cut 
through any fine elements. This can be done by repeatedly adding a layer of 
elements. We carry out the same construction for the substructures that meet 
the boundary except that we do not add any elements outside of i?. The fine 
mesh T gives rise to N local meshes {%] on the subdomains i?|. 

We make the following assumptions; see also Assumption 3.15. 

Assumption 3.1 Fori = 1,... ,N, there exists6i > 0, such that, ifx belongs 
to Q\, then 

<\ist{x,dQ'j\d^) >5i, 

for a suitable j = j{x), possibly equal to i, with x E. fij. The maximum of the 
ratios Hi/Si is denoted by 

H (Hi\ 
— = max i -— } 
S l<i<N [ Si } 

Here, the distance parameters Si measure the width of the regions Q[\Qi. 
We note that the special case where there exists a constant c > 0, independent 
of J, such that Si > cHi, is referred to as generous overlap. In this case, 

H 1 

To simplify the notations, we will, in what follows, also refer to the diameter 
of the extended J7| as Hi. 

We also need to make some hypotheses on the intersections between the 
subdomains. 
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Assumption 3.2 (Finite Covering) The partition {Q'^] can he colored us
ing at most N"^ colors, in such a way that subregions with the same color are 

Remark 3.3. We note that Assumptions 3.1 and 3.2 only involve the overlap
ping partition {Q'^} and do not require that the latter be obtained from a 
nonoverlapping one. In addition, one can prove that if x G i?, then it belongs 
to at most N'' subdomains in {fi'j}. One can easily find partitions for which 
the converse is not true; see also Lemma 3.11. 

The following lemma associates a family of functions with the overlapping 
partition. We refer to [93, Lem. 2.4] for a proof in the case of generous overlap. 

Lemma 3.4 (Partition of Unity) Let {/?|} he an overlapping partition 
satisfying Assumptions 3.1 and 3.2. Then, there exists a family of functions 
in T7i'~(i?), {9i, 1 < i < AT}, such that 

0 < di{x) < i , 

supp(^i) c7?|, 
N 

T.^iix) = 1, 

X £ n. 

X e n, 

(3.2) 

and 

llVfi'ilU < C/6i, l<i<N, (3.3) 

where C is a constant independent of the 5i and the Hi. 

Proof For i = 1 , . . . , A ,̂ we define 

(l.(x)- f ^̂ *̂ ^^' ^^'i \dO),xe n[, 
*̂  ^ ~ \ 0, otherwise. 

Let 
Q.(x\ - '̂̂ ^^  

A simple inspection shows that these functions are well defined and continuous 
in fl. In addition conditions (3.2) hold. 

We now consider an arbitrary but fixed i and x G i?,'. Since Oi is continuous 
in fl and is identically zero in i? \ i?|, in order to prove (3.3), it is enough to 
show that |V^j(a;)| < C/Jj, or, equivalently 

\Ux)-Uy)\<{Clh)\x-y\. 

for y G i?j', sufficiently close to x. 
We first show that, with dk{x,y) := dk{x) — dk{y), k = 1 , . . . ,iV, and y 

sufficiently close to x 
Mx,y)\<\x-y\. (3.4) 
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If X € i?j^, we can then choose y £ J?^, and, ii z e dQ'f, \ dQ is such that 

d:ist{y,dQ'^\dQ) = \y-zl 

then, using the triangle inequahty, we find 

dk{x) <\x- z\<\x-y\ + \y- z\ = \x-y\-\- dk{y), 

or 6k{x,y) <\x — y\. Exchanging the role of x and y, we obtain (3.4). 
T£ X Q. Ol \ n'f,, for an i 7̂  fc, then we can choose y e J?| \ i?^ and (3.4) 

trivially holds. Finally, in case x £ 5i?j^, we can prove (3.4) by combining the 
last two arguments. This concludes the proof of (3.4). 

We next note that 
N 

Y,dk{x)>dj{x)>Si, (3.5) 
fc=i 

with j = j{x) the index in Assumption 3.1. 
We set 

N 

Sr,i(^,y) = ^6k(x,y), 

N 

^dk(x) 
fe=i 

er,i{x) = 1 - Oi{x) = ^ e [0,1], 
^dfc(a;) 
k=l 

and note that it follows from Assumption 3.2 and (3.4) that 

N 

\Ki{x-,y)\ = \'^Sk{x,y)\ < C\x-y\, (3.6) 
k-i 

with a constant C that depends on N'^. 
Using (3.4), (3.5), and simple algebra, we obtain 

\Oiix) -Oi{y)\ = — Oi{x)Sr,iiy,x) + 0r,iix)6i{x,y) 

Y^dkiy) 
k=l 

<{C/Si)\x-y\, 

for X e 01 and y sufficiently close to x. U 
In the following, we will employ a modified partition of unity, obtained 

from that of Lemma 3.4 by interpolating the local functions on the fine mesh. 
We define 

Oi = I\9i), l<i<N, (3.7) 

file:///Oiix
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where J'* is the nodal piecewise hnear interpolant on the fine mesh. We note 
that since 

||VJ''(6'i)|U < llV^ilU, 

the family {6i} also satisfies (3.2) and (3.3). 
The local spaces of our Schwarz methods are the finite element spaces 

of functions that are piecewise linear on the local meshes and vanish on the 
subdomain boundaries: 

Vi = {ueH^{ni)\ u\^e¥uKe%}, i<i<N. 

We note that these subspaces are contained in the original space V, in the 
sense that local functions extended by zero to the whole of i? belong to V. 
Let 

Rj :Vi-^V, l<i<N, 

represent these zero extensions. 

3.3 A Coarse Problem 

We introduce a shape-regular coarse mesh TH on the domain i? and the finite 
element space VQ = VH of continuous, piecewise linear functions on TH, which 
vanish on dH. Let HK be the diameter oi K e TH- We stress that the fine 
mesh T need not be a refinement of TH- Bilinear or trilinear finite element 
spaces could also be considered on quadrilateral or hexagonal coarse meshes. 

We define an interpolation operator 

Rl:Vo^ V, 

obtained by interpolating the coarse functions onto the fine mesh. For M € VQ, 
we define 

R^u = I^u. 

The coarse mesh does not need to be quasi uniform, but a coarse element 
should not be large in comparison to the subdomains which it intersects. We 
formulate this condition as an assumption. 

Assumption 3.5 There exists a constant C independent of TH and the Q[, 
such that, for i = 1,.. .,N, 

HK < CHi, 

for any K eTn, such that Kn^l ^ 0. Eere HK is the diameter of the coarse 
element K and Hi the diameter of Q[. 

We note that an even more general situation can be considered, such as 
when the union of the coarse elements does not coincide with Q. In this case, 
we need to require that any part of dQ where Neumann boundary conditions 
are imposed be contained in the union of the coarse elements. In addition, we 
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must assume that no coarse element lies completely outside i? and that TH 
covers a significant part of i?. We do not consider this more general situation 
here but refer to [134] for a complete analysis. We only point out that this 
more general situation is quite important in practice, e.g., where the domain 
J7 is not a polyhedron and if isoparametric elements are employed. 

3.4 Scaling and Quotient Space Arguments 

Two tools that are routinely employed in the analysis of domain decomposition 
algorithms and that will be used throughout this monograph axe scaling and 
quotient space arguments. We present them here, where they are about to be 
used for the first time in this monograph. 

Scaling arguments rely on the fact that Sobolev norms are expressed as 
integrals over a region. Whenever a bound involving certain Sobolev norms is 
available, it is therefore possible to find an expficit dependence of the constants 
on the diameter of the region. We show this with an example. Let V C M" be 
a bounded Lipschitz domain of diameter H < 1. Suppose that there are two 
functions in u,v G H^(V) that satisfy the bound 

H%i{v) < C\MHHV)^ 

where C is independent of u and v but may depend on V. Let x = Hx be the 
transformation that maps the domain V, with the same shape as V and with 
unit diameter, into V. The bound for u and v is certainly valid for V, with a 
constant C that only depends on V and thus only on the shape of V. We can 
therefore write 

\V\HHI>) = f \^v\^dx = f | W p F - 2 i J » d x < CH"-^\\u\ 2 

where v{x) = v{Hx) and u{x) = u{Hx) are the transformed functions. Chang
ing variables a second time, we obtain 

\u\? = f \WufH'^H-''dx+ I lufH-^'dx, 
> Jv Jv 

and finally 

\v\Hiiv}<c(^l^\Vu\Ux + ^ l^\u\'dx^ <-^\\ufHHv)- (3-8) 

We note the factors i J~" and iJ" , arising from Jacobians, cancel because the 
variables are changed twice. However, additional factors, involving H, remain 
because of the different scaling of the different terms in the full norm. 

Bounds as in (3.8) are commonly taken over single subdomains and there
fore involve H, the typical diameter of the subdomains. Since the number of 
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subdomains can be measured by (1/iJ)", the presence of 1/iJ factors would 
then give bounds that depend on the number of subdomains and are not 
acceptable. 

We note that the presence of the 1/iJ^ factor in (3.8) stems from the fact 
that different terms in Sobolev norms scale differently under dilation; the L? 
term in the full H^ norm brings in the offending factor. This leads to the need 
of bounding the L^-norm with the appropriate seminorm {H^, in this case). 
Such bounds are not valid for arbitrary functions since seminorms vanish for 
certain special nonzero functions. This is reviewed in appendix A.4. However, 
if w € H^(V) vanishes on part of 5 P , a Friedrichs inequality holds: 

\\ufmv)<C2H''\ufHHvv (3-9) 

cf. Corollary A.15. We note that this factor H^ also arises from a scahng argu
ment. We also note that the inequality (3.9) can be viewed as an estimate of 
the eigenvalues of the Laplace operator on the region and with a homogeneous 
Dirichlet condition on part of the boundary. Combining the bound (3.8) with 
the last inequality, we find 

ifi(»)) (3.10) 

where the constants involved are now independent of H. An analogous bound 
can be found if u has a zero mean value over T>. In this case, the bound (3.9) 
still holds and it is referred to as a Poincare inequality; see Corollary A.15. 
We also note that the inequality (3.9) can be viewed as an estimate of all the 
eigenvalues of the Laplace operator on the region except for the smallest. 

For a subdomain with part of its boundary equipped with a Dirichlet con
dition, we can use a Friedrichs inequality. For the others, we need an argument 
involving a suitable coarse space, which is able to represent at least constant 
functions. We note that typically, decompositions, as in Assumption 2.2, for 
finite element functions are carried out after removing a coarse component 
PHU. For the particular case of the overlapping algorithms of this chapter, we 
typically need to bound 

V = 0{u — PHU) =: Bu, 

with 0 a finite element function supported on the region V; see the proof of 
Lemma 3.12. It is clear then that, if PHU is able to reproduce constants, then 
Bu is invariant if a constant is added to u: 

B{u + c) = Bu, c constant. 

The bound (3.8) then gives, for any constant c, 

<c( \Vu\'^dx+j^ \u + c\^dx 
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and bound (3.10) can also be recovered in this case by choosing —c as the mean 
value of u over V. We refer in particular to Theorem A.18 in the appendix. 
The argument presented is usually referred to as quotient space argument. 

We note that a similar procedure of removing a coarse component from 
a finite element function is employed for the additive, iterative substructur-
ing methods in Sect. 5.4. For the Neumann-Neumann and FETI methods in 
Chap. 6, a quotient space argument is made possible by the fact that hybrid 
preconditioners are employed; see, e.g.. Sect. 2.5.2. There, local solvers are ap
plied to suitable subspaces for which certain averages vanish; see in particular 
Sect. 6.2, 6.3, and 6.4.2, and the proofs of Lemmas 6.2, 6.17, 6.34, and 6.36. 

We finally remark that bounds that are independent of the size of the 
subregions X> are not necessarily good, since factors depending on the shape 
of the subdomains may produce large constants. This may happen for certain 
domain decomposition methods if the subdomains fail to be shape regular. 
Most, but not all, of the analysis in this monograph is carried out for subre
gions that are cubes or the union of a few regular tetrahedra and the results 
remain equally vahd if the subregions are images of a reference cube, etc., 
under sufficiently benign mappings, which effectively means that their aspect 
ratios remain uniformly bounded. 

Similarly, for certain iterative substructuring methods, shape-regular sub
structures with very irregular boundaries may give rise to large stability con
stants; cf. Remark 4.5. For overlapping methods, on the other hand, there is 
no real degradation in the bounds. 

3.5 Technical Tools 

We first define a quasi-interpolant I^ : ifo(J?) ->̂  V^, which is stable under 
the assumption that the coarse mesh elements are shape regular, but not 
necessarily all of comparable diameters. Let y be a node of the coarse mesh 
Tff, and Wj, be the union of the elements in TH that share y. For every vertex 
y, we set 

• 0 , y& dn, 

{i^u){y) = 
u,, "̂  / u{x) dx, otherwise. 

where \u)y\ denotes the measure oi oOy. 
Given an element K G TH, we define U!K as the union of K and its neigh

boring elements 

U;K= U K^. 

We only consider two cases: either UK is in the interior of J? or there is at 
least one full face of a coarse element of U>K which is part of dH. In case dtox 
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intersects dfl in one point or along an edge, we can always add one or few 
elements in such a way that UK shares a full face with the outside boundary. 
In a more general case where K is the union of coarse elements, we define w^ 
as the union of the IJJK for which K C K. 

We have the following stability result. We refer to [139], [136, Ex. 3.2.3], 
[458, Lem. 1.4] for similar operators that do not preserve zero values on the 
boundary. See also Lemma 3.16 for a different interpolant and a similar proof. 

Lemma 3.6 Let TH be shape regular and let u G HQ{Q). Then, there exists 
a constant C such that 

||w-/-^M||i,2(jvr) < CHK\U\H\^K)-> {3-11) 

\i"u\HHK) < C\u\ 
H'-{WK)- {3-12) 

Proof. We only consider the three-dimensional case here. We consider a 
coarse tetrahedron K £ TH and first assume that U)K does not touch the 
boundary dO. Let (j)i, i = 1,. . . ,4, be the basis functions relative to the 
vertices of K. Since, 

Ui\\h(K) < CHi, 

with a constant C that is independent of K (see Lemma B.5), and 

, - 3 /2 
\\LOy\ W u(x)dx\ <C\\U\\L2(^^^^,HJ^ 

July 

we have 

4 

\\I^U\\L^(^K) < '^{C\\U\\L2(^^^)H~^^^) Uih^K) < C ||n||i,2(^^^). (3.13) 

We note that this inequality is equally valid when ojx touches the boundary. 
Let now 

U = U — \U!K\~^ / udx. (3-14) 

Since I^ reproduces the constant functions on K, we obtain by using a 
Poincare inequality (see Corollary A.15): 

since u has a zero average on UK and LOK has a diameter of order HK-
We next consider the case where COK shares at least one full face with 

dQ. Since u vanishes on dO fl doJx, (3.13) and a Friedrichs inequality (see 
Corollary A.15) yield 
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We next prove the second inequality. Let K be such that UJK does not touch 
the boundary and let u be defined as in (3.14). Using an inverse inequality 
(see Sect. B.5), (3.11), and a Poincare inequality, we find 

< CH]^' (||Fu - u||i.(^) + ||n||i.(^)) 

The case when UJK touches dQ can be treated as before by using a 
Friedrichs inequality. D 

Remark 3.7. We note that the interpolant I^ and Lemma 3.6 sufiice for our 
study of methods for scalar elliptic problems. When we extend our results 
to the case of linear elasticity in chapter 8, we will need a quasi-interpolant 
which reproduces not just constants but also all linear functions. Following 
Clement [139], we note that the value of I^u at a node y is that of the 
1/^(^2;)—projection of u onto the space of constant functions on ujy. We can 
replace this value by that of the projection onto the space of linear functions. 
No new ideas axe then needed to extend the proof of the lemma to this new 
case; see Sect. 8.2 (in particular Lemma 8.1) for further details. 

The following lemma shows the stability of pointwise interpolation from 
the coarse to the fine mesh. We refer to [134] for an earlier, different proof of 
the same result. As for the coarse mesh, for fc € 7^, Wfc is the union of k and 
its neighbors. 

Lemma 3.8 There exists a constant C independent of h and H, such that 

I rh \2 ^ ^1,2(1-8) I |2 

\UH-I UHlH^ik) < Chf} '\UH\H^WU)^ 

for k eTh, UH ^ VH, and s = 0,1. 

Proof. Let UH £ VH- We will, without limiting the generality of our ar
guments, confine ourselves to tetrahedral elements in three dimensions; other 
cases only require minor additional arguments. To prove this stability result, 
we first note that any element k £ % which falls entirely inside an element 
of the coarse space, contributes exactly the same to the energy of the two 
functions and gives a vanishing interpolation error, since I'^UH = UH on the 
element. We can therefore confine our study to an element fc, of diameter /ifc, 
which has vertices A, B, C, and D which do not all belong to the same coarse 
mesh elements; cf. Fig. 3.1 for a two-dimensional picture. We will estimate 
\l'^UH\jjif).\ in terms of norms of UH over four tetrahedra, which will soon be 
introduced, and which each is a subset of an individual coarse element. 

Since k is shape regular, the basis functions relative to k satisfy 

I'I'ifHHk) < Chk, i = A,B,C,D, 

file:///UH-I
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^k 

Fig. 3.1. Geometry underlying the proof of Lemma 3.8. 

(see Lemma B.5) and thus 

\UH{B)f + \UH{C)f + \UHiD)f). 

We now bound the four terms on the right hand side separately. Since the 
elements of the coarse mesh are shape regular, we can find a shape-regular 
tetrahedron with a diameter comparable to hk, which has a vertex, A, B, C, 
or D, in common with k and which is a subset of one of the coarse mesh 
elements; see Fig. 3.1 for a two-dimensional example. These tetrahedra, kA, 
ks, kc, and kr>, are not necessarily elements of the fine triangulation but we 
can always make them subsets of w^; see Fig. 3.1. 

Let us consider ATA and let B', C", and D' be its other vertices. Since UH 
is linear on kA, a scaling argument {see Lemma B.5) gives 

hk\uH{A)\^ < hk{\uH{A)\^ + \UH{B')\^ + \UH{C')\^ + \UH{D')\^) 

<Chf \UH\\i^k^) < ch^^ WUHWI^^^Y 

Similar bounds can be found for the other three terms and tetrahedra. 
We then obtain, 

\l''UH\h(k) < Chf \\UH\\h(^,-) 

and, since /'* reproduces constants, 
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l^'^UH^Hi^k) = l^'^iUH - Mff)llfi(fc) < Chf \\UH - Mff|li2(„,), 

with UH the mean value of UH on w^. The proof of the bound for s = 1 is 
now completed by recalling that the diameter of ojk is on the order of hk and 
by using a Poincare inequality. 

The proof for s = 0 can be carried out in a similar way. Using Lemma B.5, 
we find 

Wl'nnWh^,) < Chl(\uH(A)f + \uH(B)f + \UH(C)\' + \uH{D)f), 

and thus 

Let UH be defined as before. We can write 

\\UH - I'^UnWhi^k) = \\(uH-UH)-I^(uH-UH)\\l2(^k) < C ^H - UH^h^^^y 

The proof is completed by using a Poincare inequality. D 
The following lemma shows the stability of piecewise linear interpolation 

of piecewise quadratic functions. 

Lemma 3.9 Let Uh he a continuous, piecewise quadratic function defined on 
Th and let I^Uh € F'* be its piecewise linear interpolant on the same mesh. 
Then, there exists a constant C, independent of h, such that 

\l'^Uh\m{k) < C\uh\m(k), k eTh-

Proof. We have 

\l''Uh\Hi(k) < '^{\l''Uh - Uh\Hi(^k) + \Uh\m(k))-

Consider the contribution of the first term on the right hand. We obtain, 

|/''w/j -«ft,||^i(^) < C/i |̂w/i||f2(fc) < C\uh\jjni,y 

by using a standard error bound (cf. Lemma B.6) and an elementary inverse 
inequality for quadratic polynomials (cf. Lemma B.27). D 

We next develop an estimate of the L^—norm over a strip of width Si along 
the boundary 5/?! of a generic subdomain. Given 6i > 0, let i? ,̂̂ ; C i?| be 
the set of points that are within a distance Si of dfi'^ \ dO and let Hi be the 
diameter of i?^. We note that the following result holds for all of iJ^(i7j'). 

Lemma 3.10 There exists a constant C such that 

Proof. Let us cover Qi^s- by shape-regular patches with 0{Si) diameters. 
By using a Friedrichs inequality (see Corollary A. 15) for each patch and by 
summing over the patches, we find that 
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< C{S'MHH^,,S,) + ^i\Hh(a^-))- {3.15) 

The second term on the right can be estimated by a trace estimate. Indeed, 
by combining the trace result in Lemma A.6 and the embedding LP'idO'^ c 
H^/'^{dni) with a scaling argument, we find 

\Hh(dni) < C(^>lffi(i?<) + l/^il|w|li2(f?j))- (3.16) 

Combining the last two inequalities concludes the proof. D 

3.6 Convergence Results 

A bound for the largest eigenvalue of the additive operator is given in the 
next lemma. It is an immediate consequence of Assumptions 2.4, 2.3, and 3.2, 
and Lemma 2.10. 

Lemma 3.11 We have 

a{PadU, u) < (x:{N'' + 1) a(w, u), w e V^. 

We note that an upper bound for the largest eigenvalue can also be found 
directly using a coloring technique. In this case, a weaker hypothesis on the 
number of colors can be employed. It is enough to assume that every point 
X e i? belongs to at most Nc overlapping subdomains; see, e.g., |182, Th. 4.1] 
or [424, p. 165]. We note that it is easy to find partitions with N^ < -^''? e-g-) 
by considering three subdomains which intersect pairwise but where the three 
do not have any points in common. 

In order to prove a bound for the smallest eigenvalue of the additive op
erator, we need, according to Lemma 2.5, to find a stable decomposition. 

Lemma 3.12 / / exact solvers are employed on all the subspaces, then there 
exists a constant C, independent of h, H, and 5, such that 

a{P-J^u,u) <c(l + j ^ a{u,u), u G y \ 

Proof. We will find a stable decomposition for every u eV. We first define 

Wo := I^u e Vo, (3.17) 

where P^ = I^ is the quasi-interpolant of Lemma 3.6. Given the remainder 

W =U — RQUO =U — I^UQ, 

we next define the local components by 

Ui = Ri{l''{$iw)) eVi, l<i<N. (3.18) 
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Here {Oi} is the piecewise linear partition of unity associated with the over
lapping partition and defined after Lemma 3.4. We note that the restriction 
operator Ri is necessary since, according to our definition, the local spaces 
consist of functions defined on the subdomains only. 

The local functions define a splitting of u since using the definition of I^Q, 
the linearity of J'*, and the assumption that the 0i form a partition of unity, 
we can write 

JV N 

i = l i = l 

We now prove the stability of this splitting. A bound for WQ follows from 
the stability of I^ given in Lemma 3.6: 

OO(MO,-'̂ O) = \uo\^m{n) < C\U\]JI(^Q^ = Ca(u,u). (3.19) 

For 1 <i < N,-we have 

<C [ \wVdifdx + C [ lOiVwfdx, 
JQ'. Jo'. 

(3.20) 

where for the first inequality, we have used Lemma 3.9. In order to bound the 
right hand side of (3.20), we first assume that, for s = 0,1, 

Hh(oi) = \u-l''^o\h(no<C E HK'~'^KHu.,y {3-21) 
KeTH 

The second term on the right hand side of (3.20) can be bounded by using 
Lemma 3.4 and (3.21) for s = 1: 

f\9iVwfdx<f\Vw\Ux<C E l^ll-M-'i.)- (^-22) 

For the first term on the right hand side of (3.20), we note that V^, differs 
from zero only in a strip Qi^§. of width 5i in the vicinity oidQ[. Using Lemmas 
3.4 and 3.10, we then find that 

f \wVeifdx= [ |wV6ii|2(/x<-2 I \w\ dx 

• / / H-^ '' 1 " ' ' ^ ^ ' \ (3.23) 

The second term in the last sum can be bounded using inequality (3.21) for 
s = 0 and Assumption 3.5: 
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Combining (3.20), (3.22), (3.23), and (3.24), summing over the subdomains, 
and using Assumption 3.2, we obtain 

N 

which, together with (3.19) and Lemma 2.5 gives the desired result. 
We stiU need to provide a proof of inequality (3.21). We write 

w =u — I^uo = (u — UQ) + (uo — I^uo). 

Lemma 3.6 gives 

I |2 ^ ^ V ^ 7r2(l —s)i |2 
\U-UO\H>(O-)<C 2 ^ Hj^ mm(u,K)^ 

K€TH 

and Lemma 3.8 

These two inequalities, combined with the triangle inequality, give (3.21). D 
Combining Lemmas 3.11 and 3.12, we find a bound for the condition num

ber of Pad-

Theorem 3.13 In case exact solvers are employed on all suhspaces, the con
dition number of the additive Schwarz operator satisfies 

<Pad) <c(l + jY 

where C depends on N'^, but is otherwise independent of h, H, and 6. 

We will now consider some particular cases. A first simplification occurs 
in the case of a structured fine mesh in which case T is obtained by refining 
a coarser triangulation TH- We can then choose 

Vo = F ^ C F 

and we note that I'^Uo = WQ- Assumption 3.5 is still required for the proof of 
the lower bound. 

A further simplification is achieved by building the overlapping partition 
from the coarse mesh. In this case, TH coincides with the initial nonoverlapping 
partition {J?^} and Assumption 3.5 is automatically satisfied. 



70 3 Two-Level Overlapping Methods 

We end this section by noting that the bound given in Theorem 3.13 is 
sharp. More precisely, we consider the particular case of /? = (0,1)^ with 
T and TH nested, uniform, triangular meshes of diameters h = 2~^ and 
H = 2~^, K > k, respectively. We also assume that the nonoverlapping 
partition {i7j} coincides with TH and that Si/h = S/h is bounded from above 
(small overlap). In this case, there exists a constant c such that 

K{Pad) > ' ^ y -

The proof of this result can be found in [86]; we refer in particular to Lemma 
3.5 and Remarks 3.7 and 3.8 of that paper. 

3.7 Remarks on the Implementation 

In this section, we make some remarks on some practical aspects of two-level 
overlapping preconditioners. The preconditioner associated with the additive 
operator can be immediately deduced from formula (3.1): 

N 

Kl = E ^Ui'^ + Rl^o'Ro. (3.25) 
8 = 1 

In case a multiplicative or a hybrid method is employed, the corresponding 
preconditioner can be applied using the algorithm in section 2.6. In any case, 
the restrictions Ri and the operators Ai need to be constructed. 

For the local spaces, the Ri, i > 0, are rectangular matrices of zeros 
and ones, which simply extract the degrees of freedom that lie inside the 
subdomains /?^. The restriction matrix Ro for the coarse space is dealt with 
in more detail in the following. Once the restriction operators are available, 
the matrices associated with the subspaces can be obtained from the global 
matrix A through the formula 

Ai = RiARj, i = 0,...,N. (3.26) 

We note that for the local spaces, this simply means that we extract the blocks 
of A corresponding to the degrees of freedom associated with the subdomains 
J7^. Once the matrices Ai are available, exact or inexact factorizations can be 
found and stored. For overlapping preconditioners, the local and coarse solvers 
can therefore be obtained from the global matrix A. This is not always true 
for other domain decomposition algorithms; Neumann-Neumann and FETI 
methods for instance, see Chap. 6, rely on the solution of local problems 
with Neumann boundary conditions and the corresponding solver cannot be 
obtained directly from A. 

We now focus our attention on the restriction RQ onto the coarse space. 
We first assume that the fine mesh is a refinement of the the coarse one 
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and therefore VQ C V. The restriction operator is defined by the interpolant 
B^ -.Vo^V, from the subspace to the global space, which takes a vector of 
coarse degrees of freedom and gives the vector of fine degrees of freedom that 
determines the corresponding coarse function. 

More precisely, let {4>f, i = 1 , . . . , NH} and {^j, j = 1 , . . . , iV/j} be the 
basis functions for the fine and coarse spaces, respectively. A coarse vector 
u eVo CV can be represented using either basis: 

NH Nh 

<x) = 5 ^ u f ct>f{x) = ^ 4 ,l>'^(x), (3.27) 
i=i i= i 

where u^ and u'^ are the vectors of coarse and fine degrees of freedom, re-

•0 
spectively. The extension matrix R'Q is such that 

Since the coarse basis functions are also contained in the fine space, they can 
also be represented using the fine basis: 

Nh 

(^f{x) = Y,rij<t>^{x), i = l,...,N^. (3.28) 
i= i 

We note that r^j is the nodal value of the i-th. coarse basis function at the 
j-th. fine node: 

r-ij ••= ^ f ( 4 ) -

We now substitute (3.28) into (3.27) and obtain 

NH Nh Nh 

i—i j—i j—i 

Exchanging the sums on the left hand side yields 

NH 

We have therefore shown that the entries of Ro are exactly the coefficients 
Tij obtained by interpolating the coarse basis functions into the fine mesh. In 
other words, the i-th column of the extension matrix li^ consists of the fine 
nodal values corresponding to the basis function (i>f. We note that exactly 
the same procedure applies when the fine and coarse meshes are not nested. 

We end this section by pointing out a somewhat dehcate issue for two-level 
overlapping methods; that of Dirichlet boundary conditions. The presentation 
in this chapter has been made for the case of homogeneous Dirichlet condi
tions: the finite element spaces considered are contained in HQ{Q) and the 
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corresponding vectors of degrees of freedom consist of nodal values in the 
interior of Q. Matrices and operators should in principle be those acting on 
these degrees of freedom only and can be obtained from the stiffness matrix 
A for a Neumann problem in fi by deleting rows and columns relative to the 
nodes on the boundary. This is however seldom done in practice since it re
quires a renumbering of the unknowns. Normally, finite element codes build 
the global matrix A for the Neumann problem and boundary conditions are 
taken into account in a second step. For the case of Dirichlet conditions on 
the entire or part of dQj the equation (and therefore the corresponding row 
in A and entry in the right hand side) corresponding to a boundary node Xk 
is changed into 

«fcfcWfc = akkQk, (3.29) 

with Qk the value coming from the Dirichlet condition and akk a suitable posi
tive scaling parameter (a multiple of the fc-th diagonal entry of A is sometimes 
employed). The fc-th row of the stiffness matrix A is therefore changed and 
A becomes nonsymmetric (entries in the fc-th column can be put to zero as 
well only in the case of homogeneous Dirichlet conditions). If a Krylov-type 
method employs an initial guess that satisfies the Dirichlet condition, the fc-
th entry of the corresponding residual is zero and the further application of 
A will give a vector with the same property. Indeed, even though A is not 
symmetric, it is always applied to residual vectors that are zero in Xk and 
is therefore symmetric in the corresponding subspace. For these reasons, we 
need to make sure that the preconditioner as well gives vectors that vanish at 
the nodes on dfi. 

We consider the two-level preconditioner in (3.25) and assume that the lo
cal and coarse matrices are obtained through (3.26). The local components do 
not present any particular problem; the matrices Ri have exactly one entry for 
each row or column and Ai is simply obtained by extracting the corresponding 
block from A. If we start from a residual vector that vanishes on dQ fl dQi, 
the application of each of the three factors in RjAj^Ri will give a residual 
with the same property. 

The coarse component of the preconditioner however must be considered 
more carefully. Indeed, when AQ is obtained from the modified A through 
(3.26), the row corresponding to a coarse node on dQ will not be of the type 
in (3.29) and will not correspond to the correct coarse matrix for a Dirichlet 
problem. We therefore need to modify those rows accordingly. Alternatively, 
we can construct AQ directly, by employing the same routine as for A but for 
the coarse mesh. In either case, when A^^ is applied to a coarse residual that 
vanishes on 9J7, the same will hold for the resulting vector. 

Even with the modifications above, the coarse component of the precon
ditioner requires an additional change. Since the operator Bi^ : Vo —>• F , 
provides the interpolation from the coarse to the fine mesh, a coarse residual 
that vanishes on dfi will result in an interpolated residual in V with the same 
property. The same does not hold however for the restriction RQ : V ^ VQ. 
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It can easily be seen that the value at a coarse node Xi of a restricted vector 
RQU'^ is a hnear combination of all nodal values of w'* at the fine nodes that lie 
in the coarse elements that touch Xi. A fine residual that vanishes on dfi will 
in general not give a coarse one with the same property. If care is not taken, 
the coarse solve wiU then give a residual that does not vanish on 5J7 , leading 
the Krylov iteration out of the correct subspace. Convergence still occurs to 
the correct solution but this fact can sometimes cause loss of performance 
of two-level methods. In practice, a very large value of the diagonal entries 
in the coarse matrix Ao corresponding to nodes on dQ can sometimes re
store performance, but this is a fix that may depend heavily on the particular 
problem. 

A possible remedy is to put to zero all rows in RQ corresponding to coarse 
nodes on dfl. The transpose I{^ of this modified matrix can also be employed 
for the extension step. 

3.8 Numerical Results 

In this section, we present some numerical results for two-level overlapping 
preconditioners to show that bounds in Theorem 3.13 are reflected in numeri
cal practice. We will in particular look at how the rate of convergence depends 
on the relative overlap, the fine mesh, and the number of subdomains. More 
numerical tests and examples can be found in [424]. 

The results given here are from Cai, Gropp, and Keyes [108, sect. 4.1], 
courtesy of the authors, for symmetric, positive definite problems. Others, for 
nonsymmetric and/or indefinite problems, are reported in Sect. 11.4. 

We consider i? = (0,1)^ and the Poisson problem 

-Au = / , 

with homogeneous Dirichlet conditions. The right hand side / is chosen such 
that u = exp(xy) sin(7rx) sin(7ry) is the solution. 

The fine discretization consists of a uniform mesh of diameter h and a five-
point central finite difference approximation. Similarly, the coarse problem 
consists of a finite difference approximation over a coarser uniform mesh of 
diameter H. The overlapping subdomain partition is obtained by extending 
the coarse elements by adding layers of fine elements; the overlap 6 is thus an 
integer multiple of h. Exact coarse and local solvers are employed. 

In order to allow a direct comparison with the nonsymmetric case, the 
solution of the preconditioned system is accelerated with GMRES without 
restarts. We note that for the additive preconditioner the conjugate gradi
ent method would be more appropriate. The iterations are stopped after a 
reduction of the Euclidean norm of the preconditioned residual by a factor 
10"^ 

The following algorithms axe considered: 
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1. MSR: Richardson's method without relaxation (see appendix C.3) with 
the nonsymmetric, multiplicative preconditioner (2.9) of Sect. 2.2. 

2. MSM: GMRES with the same nonsymmetric, multiplicative precondi
tioner. 

3. ASM: GMRES with the symmetric, additive preconditioner (3.1). 

We note that an upper bound for the error propagation operator for MSR is 
given in Theorem 2.9. 

Iteration counts are shown in Table 3.1 as functions of the fine mesh size 
and the overlap, for different partitions. Entries that would have required a 
relative overlap S/H greater than 0.5 are left blank. We note that the number 
of colors Nc is the same for all the cases shown and is equal to 4. 

As expected, GMRES performs better than Richardson and the multi-
phcative preconditioner better than the additive one when the same iterative 
method is employed; it requires roughly half the number of iterations. In addi
tion, within the same group of columns which correspond to a common value 
of H, the iteration counts are constant along the diagonals, corresponding to 
the same value of H/8 shown in parenthesis. Comparison with different groups 
of columns, then reveals that the iteration counts are bounded independently 
of h and H; they appear to grow linearly with H/S as predicted by the the
ory. We refer to [108] for additional comments and a discussion of the parallel 
complexity of the algorithms. 

Table 3.1. Iteration counts for solving the Poisson equation. The overlapping factors 
H/S for MSR are given in parentheses. The corresponding overlapping factors for 
MSM and ASM are the same as for MSR and are therefore omitted. The number, 
as in {2h), which appears next to the name of each method indicates the overlap 6. 

h-"- = 32 64 128 32 64 128 64 128 
Methods i7 = l/4 iy = l/8 H = 1/16 
MSR(/i) 7 (8) 11 (16) 19 (32) 6(4) 7(8) 10 (16) 5(4) 6(8) 
MSR(2/«) 6 (4) 7(8) 11(16) 5(2) 6(4) 7(8) 4(2) 5(4) 
MSR(4/«) 5(2) 6(4) 7(8) 5(2) 6(4) 4(2) 
MSR(8/i) 5(2) 6(4) 5(2) 
MSM(7i) 5 6 7 4 4 5 3 3 
MSM(2/») 5 5 6 4 4 4 3 3 
MSM(4/i) 4 5 5 4 4 3 
MSM(8/j) 4 5 4 
ASM(/i) 11 13 15 10 10 11 9 8 
ASM(2/i) 11 11 13 10 10 10 8 8 
ASM(4/») 10 11 11 10 10 8 
ASM(8/i) 10 11 10 
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3.9 Restricted Schwarz Algorithms 

Let us consider the same overlapping subdomain partition as in section 3.2 and 
the same coarse problems as in Sect. 3.3. A symmetric additive preconditioned 
operator was deiined in (3.1) and we recall that for a subdomain f2\ the 
restriction Hi is the operator that extracts the degrees of freedom in the 
interior of fi[, while the extension Rj extends a vector of degrees of freedom 
contained in [}[ by zero. We introduce the following modification: 

N 

Pras = -RQ ̂ 0 -^0^ + 2_^ Ri ^i RiA, 
i=l 

where Ai, Ao, and RQ are defined as before. Here, the new restriction R^ only 
extracts the degrees of freedom associated with the nonoverlapping subdomain 
J?i and makes those in the extended subregion J?̂  \ J?̂  vanish. In practice, this 
means that when a local component of the preconditioner is applied to a 
residual vector, after the solution of a local problem, only the entries of the 
residual that only belong to the subdomain i7| (and are not shared by others) 
are updated. This reduces the communication between different subdomains 
(and between different processors). 

This restricted additive Schwarz preconditioner is nonsymmetric even for 
a symmetric A but, surprisingly, for certain symmetric matrices GMRES with 
a restricted Schwarz preconditioner performs better than the conjugate gradi
ent method with the original symmetric preconditioner, in terms of iteration 
counts, CPU time, and communication time. We note that in a parallel im
plementation, half of the communication cost can be saved. A multiplicative 
version is also available, together with the following variant 

N 

Pash = RlA^^R^A + ^RfAr^RiA, 

which is referred to as additive Schwarz with harmonic overlap. Variants em
ploying restrictions or extensions with weights are also possible and applica
tions to indefinite and nonsymmetric problems have also been considered. 

To our knowledge, a comprehensive theory of these algorithms is still miss
ing. We note however that the restricted additive Schwarz preconditioner is 
the default parallel preconditioner for nonsymmetric systems in the PETSc 
library (see [33]) and has been used for the solution of very large problems; 
see, e.g., [240, 278, 106]. We refer to [115, 409] for a more thorough introduc
tion, additional details, some analysis, and numerical results. See also [356] 
for an algebraic theory. 

3.10 Alternative Coarse Problems 

So far, we have only considered coarse problems given by a standard finite 
element approximation on a coarse mesh. Structured meshes are usually con-
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structed by refining a coarse triangulation, which can conveniently be em
ployed for the coarse solver. For unstructured meshes, we have shown that 
a coarse mesh, independent of the fine mesh, can be employed, but only if 
an interpolation operator from the coarse to the fine finite element space can 
be found and efficiently implemented; see Sect. 3.3 and 3.7. However, this 
is not always a simple task, especially in three dimensions. Alternative ap
proaches are reahzed by (smoothed) aggregation techniques and partition of 
unity coarse spaces, which provide efficient coarsening procedures without the 
need of introducing a coarse triangulation. Such procedures, when employed 
to construct multilevel preconditioners, belong to a class of coarsening tech
niques called algebraic multigrid methods; see, e.g., [454] and the references 
therein. We also note that it is possible to use the coarse, global spaces which 
will be developed in Chap. 5 and 6 but that we are not going to pursue that 
idea here. 

The key idea of such techniques is to consider a coarse space that is the 
span of a set of partition of unity functions associated with an overlapping 
partition of subdomains, typically the same that we employ for the local com
ponents of the preconditioner. In smoothed aggregation methods the basis of 
the coarse space is found by applying a suitable operator, called a smoother, 
to some initial set of simple functions; in the more properly called partition of 
unity coarse spaces they are constructed by directly assigning explicit nodal 
values inside the subdomains. 

In the following, we assume that the fine triangulation % is quasi uniform. 
In addition, we only consider quasi-uniform partitions into subdomains. We 
will only present the most relevant proofs here and refer to the literature for 
more complete results. 

3.10.1 Convergence Results 

Here we will always assume that we employ exact solvers for the local and 
coarse problems but approximate solvers could be used as well without any 
major changes of the theory. 

As before, our preconditioner is uniquely defined by two components: an 
overlapping partition of i7 into subdomains 

J^={fi'iCn\ l<i<N}, 

and a set of coarse basis functions {#« | 1 < i < N}, that determine a coarse 
space. 

The coarse basis functions axe finite element functions and are associated 
with the subdomains. We first define the index set I = {i = 1,. ..,N\ dQ[ fl 
dfi = 0}; in the construction of the coarse space the subdomains that touch 
df2 do not need to contribute any basis functions: 

Vo = span {^iI i £ I}. 
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For simplicity, we assume that, if the boundary of a subdomain intersects dfi, 
this intersection has a nonvanishing (n— 1)-dimensional measure for problems 
in R". In the more general case, subdomains that intersect dQ in one or few 
isolated points, or along a curve, should also contribute to the coarse space. 

In practice, a larger coarse space can be employed by adding basis functions 
related to the other subdomains. The largest eigenvalue of the preconditioned 
operator will remain the same, and according to Lemmas 2.6 and 2.5, the 
smallest one can only increase. These extra basis functions are also needed in 
certain proofs. 

We next introduce two sets of sufficient conditions on T and the coarse 
functions, given in terms of H and 5, H > 5 > Q, which reiiect the size of the 
subdomains and the overlap, respectively. They ensure that the resulting addi
tive preconditioner is optimal and scalable and allow us to derive quantitative 
bounds which only involve the relative overlap between the subdomains, as in 
the case of two-level methods with a standard coarse space. We note that the 
analysis presented here, leading to the quadratic bound in Theorem 3.17, is 
a modification of that developed in [93] for the case of generous overlap, and 
in [275] for the case of small overlap. The analysis that follows and leads to 
Theorem 3.19 is a modification of results from [409]. 

Assumption 3.14 (Coarse space I) 

3. There exists Qint C Q, such that '^i^x^ii^) — ^ /" ' ' ^ ^ ^int, o-nd 
dist (x, dO) < CH for x e i^\ i^int; 

4. supp{^i} c7? | , i € J . 

We note, that a nonnegative function <?j, which equals one in the interior 
of ni and decreases smoothly to zero in a layer of width 6 around 0(^1, satisfies 
the given bounds for | • |f and for || • ||Q. The additional assumption, that a 
coarse interpolant reproduces constants everywhere, except in a layer of width 
H around the boundary, will translate into an error estimate for a suitably 
defined interpolation operator; see Lemma 3.16. 

Assumption 3.15 (Partition) 

1. diam (ni) < CH; 
2. For every x ^ Q, there exists Q[ € T, such that x ^ Q[ and 

dist{x,dfi[\dfi) >c5; 
3. The partition T can be colored using at most N'^ colors, in such a way 

that subregions with the same color are disjoint; 

I \ni\ > cm. 
The first and the last assumption together ensure that the subdomains 

all have diameters of comparable size H and that they are shape regular. 
According to the second assumption, 6 is a, measure of the overlap between the 
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subdomains; cf. Assumption 3.1. The third assumption is the finite covering 
assumption of Assumption 3.2. 

Lemma 3.16 (Coarse Interpolant) Let Assumption 3.14 hold. Then, the 
operator QQ : HQ{S7) —>• Vb, defined by 

Qou = '^Ui^i, Ui = \n'i\ ^ 1 udx. 

satisfies, 

l'5oM||ri(x?) < C—\U\HI(^Q)', 

l|w-(5oM|li2(^) <CH^\u\\j^^^^y 

foru€H^{n). 

Proof. In the same way as in the proof of [275, Lem. 2.2] (see also Lemma 
3.6), we can prove 

TT 

where J7j„t was defined in Assumption 3.14. 
We next define the boundary region B = n \ Hint, collect the indices of 

the subdomains touching B in 

B = {i<i<N\Bnni^(l)}, 

and define an extended boundary region by B' = U^GB ^i-
Using Assumption 3.14.1 and the Cauchy-Schwarz inequality, we find 

jrd—l 1 

Since u vanishes on dB' H dfl and B' has a width on the order of H, we can 
use a Friedrichs inequality (cf. Corollary A.15) and obtain 

\Qo'^\m{B) < yKI_H-i(_B')' 

which combined with (3.30) proves the first inequality. 
In a similar way, we find 

l|w-(5ow||i2(s) < ||W||L2(S) + ||(5ow||i2(B) 

< C||u||i2(B') < CH\u\m{^B')-

Combining (3.30) and (3.31), we have proven the second inequality. D 
We have the following result. 

(3.31) 
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Theorem 3.17 Let Assumptions 3.14 and 3.15 hold. Then, in case exact 
solvers are employed, there exist positive constants c and C, such that 

c ( 1 + —- ) a{u,u) <a{PadU,u) <Ca{u,u), ueV, 

JJ.2 
and thus 

^i(Pad) <c(l + j 

Proof. The upper bound is a direct consequence of the finite covering 
property Assumption 3.15-3; cf. Lemma 3.11. In order to establish the lower 
bound, we need to find a stable decomposition. For u £V, let 

uo = QQU, 

Ui=l''{9i(u-uo)), l<i<N, 

where {6i} is the partition of unity relative to T, defined by Lemma 3.4 and 
(3.7). 

The same arguments as in the proof of Lemma 3.12 give 

^ (( H\ 1 

The quadratic bound is then found by applying Lemma 3.16. D 
The stable decomposition, on which the proof of the previous theorem 

relies, was originally given in [93] for the case of generous overlap and in [275, 
Lem. 2.3] for the case of small overlap. 

In order to improve the quadratic bound of Theorem 3.17, we replace the 
partition of unity functions {Oi} with the coarse basis functions {^i} in the 
proof of Theorem 3.17. In order to do so, our coarse basis functions need 
to satisfy additional properties, originally proposed in [409]; cf. Lemma 3.4. 
They involve bounds on the I/°^-norm of these functions and of their gradients 
together with the requirement that they form a partition of unity on the whole 
oiO. 

For the same overlapping partition T, we consider a set of coarse finite 
element functions as previously introduced and associated with the interior 
subdomains J, and enlarge it by also using functions associated with the sub-
domains that touch on. We introduce 

{#i | l < i < A r } , 

such that supp {^j} C O'^l <i < N.lt is important to note that some of the 
#j may not vanish on dH and that they therefore do not belong to the the 
coarse space VQ. We will use them all in our proof and will assume that the 
family {^j}^^ forms a partition of unity on the entire H. The assumptions 
on the overlapping partition J" remain the same; see Assumption 3.15. We 
assume for our coarse basis functions: 
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Assumption 3.18 (Coarse space II) 

1- \\H\L^{n)<C,l<i<N; 
2. \^i\wu^{n) <C/6, l<i<N; 

N 
3. Y.^i{x) = l,forxeQ; 

4- There exists Qmt C Q, such that X) ^i{x) = 1> for x G ^int, o,nd 

dist (x, dfi) < CH for x £ Q\ fiint; 
5. supp{^i} cn'.,l<i<N. 

Similar assumptions were originally proposed in [409]. Before proceeding, 
we note that the proof that we present here relies on the same idea as that 
of [409, Th. 1], but that we treat the boundary coarse functions in a different 
way, by simply excluding them from the coarse space. We finally note that 
Assumptions 3.18.1 and 3.18.2 imply 3.14.1 and 3.14.2. 

An interpolation operator into the coarse space VQ can be defined in exactly 
the same way as in Lemma 3.16. We have the following theorem: 

Theo rem 3.19 Let Assumptions 3.18 and 3.15 hold. Then, there exist posi
tive constants c and C, such that, 

c I 1 + — 1 a{u, u) < a{PadU, u) < C a{u, u), u eV, 

and thus 

<Pad) <c(l + j 

Proof. The upper bound is a direct consequence of the finite covering 
assumption in Assumption 3.15.3. In order to find the lower bound, we need 
to find a stable decomposition. For u eV, let 

uo = Qou, 
Ui = l''{^i{u-Ui)), i e l , (3.32) 
Ui = I'^i^iu), i ^ I. 

We have 
TV N 

since the {^i\ form a partition of unity on the entire i7. 
The same arguments, as in the proof of Lemma 3.12, give 

<c(i + f ) E -
(3.33) 
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where for the last inequality, we can use a Poincare inequality instead of an 
error bound for QQ. 

Similarly, we find, for i ^I, 

HT HT 
H 

sc i + f E 
(3.34) 

|2 

since u vanishes on 5i?^ r\dQ and we can apply a Friedrichs inequality (cf. 
Corollary A.15). The linear bound is then found by applying Lemma 3.16 to 
(3.33) and (3.34). D 

We note that the error bound in Lemma 3.16 is not needed for the proof 
of Theorem 3.19. 

Remark 3.20. The assumption that the triangulation Tu is quasi uniform is not 
used in the proofs of this section. Indeed, Theorems 3.17 and 3.19 are direct 
consequences of Assumptions 3.14 and 3.15 for any arbitrary shape-regular 
mesh %• 

3.10.2 Smoothed Aggregation Techniques 

The basic ideas of smoothed aggregation are fairly simple and natural: in a 
first step, the fine mesh points are aggregated to form an initial nonoverlapping 
partition of the domain J?, and the characteristic functions associated with 
this nonoverlapping partition are constructed (aggregation); see below. In a 
second step, these characteristic functions, with values typically decreasing 
from one to zero in a layer of width 0(/i), are smoothed by the application of 
a suitable smoother. The supports of the smoothed functions define an over
lapping partition and corresponding local problems, while their hnear span 
provides a low dimensional coarse problem. This procedure can be applied re
cursively to obtain additional coarse levels for the construction of a multilevel 
method. The smoother employs the stencil of the finite element matrix and 
is typically chosen as a polynomial of degree g > 0 of the original stiffness 
matrix. The overlap is then 6 ^ qh. The property that the coarse space rep
resents constant functions, is ensured by exploiting the kernel of the original 
problem. 

An aggregation technique was first introduced in [312] and then used quite 
extensively for the solution of problems arising in economics; see [339] and 
the references therein. Smoothed aggregation techniques have been consid
ered in [453, 93] for two levels and in [454, 455, 242, 452] for multiple levels. 
Extensive studies are reported on certain smoothers and practical procedures 
proposed for the initial aggregation, i.e., the initial partition into subdomains. 
Numerical tests have also been performed on a large class of scalar and vec
tor problems. We also mention [306], where smoothed aggregation techniques 
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are applied to discontinuous Galerkin approximations of advection-difTusion 
problems. 

We will start from an initial partition fo = {^i \ i < i < N} into 
nonoverlapping subdomains. We always assume that these nonoverlapping 
subdomains are shape regular, and that the diameter of each subdomain is 
on the order of H. The method considered will generate both an overlapping 
partition and coarse basis functions starting from a J^Q. 

A first choice is to build a coarse space by aggregation. We define a set of 
finite element 'characteristic' functions relative to the initial nonoverlapping 
partition J^Q, {^i} and consider the span of these functions. For every node x 
oiTh, we set 

0, X e n\JTi, 
^i{x) = ^ card({j | x e 5 J ? J } ) ~ \ X e dQi, 

where card (M) denotes the cardinality of a finite set M. 
We note, that, if the subdomain boundaries do not contain any nodes of 

the fine mesh Th, the value of these functions at the nodes is either zero or 
one, and that they decrease from one to zero across a strip of width h. In the 
general case, they assume values between zero and one, and they decrease from 
one to zero across a strip of width at most 2h. Furthermore, the nonvanishing 
nodal values of ^i cannot be arbitrarily small, since the partition To is shape 
regular. We also note that these functions form a partition of unity on i? 
except in a strip of width 0{h) along dQ. 

The set {<?j} therefore satisfies Assumption 3.14 with 6 = h, and the result
ing coarse space can be analyzed within the framework introduced in the previ
ous section. However, the corresponding additive preconditioner would have an 
unsatisfactory bound of the condition number, which would increase quadrat-
ically with H/h. Therefore, the coarse functions {^i} need to be smoothed to 
decrease their energies. In order to do so, we apply a suitable operator, called 
the smoother, 

^i = S^i, 1 < i < N. 

This smoothing process has the effect of increasing the support of the origi
nal functions and of creating additional overlap between the supports of the 
functions. We will then define the overlapping subdomains by 

7?| = supp{<?i}, (3.35) 

and we obtain an overlapping partition ^ = { i ? ^ C i ? | l < i < N}. 
The smoothing should also exploit the stencil of the operator A. If 

S = pq(DA), where pq is a polynomial of degree q > 0 and D a diagonal 
matrix, then the support of the initial function ^i is increased by q layers of 
fine elements, which gives an overlap of order S = qh. In addition, we need to 
preserve the property that the modified coarse space {#i} contain constants. 
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This property is guaranteed by the null space of the original differential oper
ator which consists of constant functions. We note that A, the representation 
of a(-, •) on V, is not singular since homogeneous Dirichlet conditions are 
imposed on 5J7 , but that when applied to a constant vector, it produces a 
vector that vanishes everywhere except in a strip, of width 0(h), around dfi. 
li Pq{0) = 1, we can then write 

JV N 

Y,^i = SY,^i = Sl=p,(DA) 1 = 0' +p,(0)l = 1', 
i=l i=l 

where 1 is the vector of all ones, ( 1 , . . -, 1)^, while 0' and 1' are vectors of 
zeros and ones, respectively, except for entries at nodes in a neighborhood, of 
width 0{qh), of dO. The smoothed coarse functions thus satisfy Assumption 
3.14.3 with a J on the order of qh. 

In view of these remarks, we consider the following assumptions on the 
initial partition J^o snd the smoother S. 

Assumption 3.21 (Initial partition and smoother) 

1. The initial partition J^o satisfies 

cH'^ < |J?i| < CH"". (3.36) 

2. S is equal to Pq{DA), where Pq is a polynomial of degree q and D a diag
onal matrix, such that 
a) cS<qh<C5< C'H; 
h) PM = 1; 
c) \\S\\2 < 1; 
d) eiS'^AS) < Cq-^g{A), 

where \\-\\2 and g(-) denote the spectral norm and the spectral radius of a 
matrix, respectively. 

We note that Assumptions 3.21.2.c and 3.21.2.d were originally considered 
in [453, Lem. 2.8] and [93, Lem. 4.2] for the case when 5 is a polynomial in 
A. An assumption similar to 3.21.2.a was stated in [93, Ass. 4.1], but in terms 
of the graph corresponding to the initial partition J^Q. 

The proof of the following result is given in [305]. 

Lemma 3.22 Let Assumption 3.21 hold. Then, the coarse functions and the 
overlapping partition obtained by smoothed aggregation using S satisfy As
sumptions 3.14 and 3.15. Therefore, there exist positive constants c and C, 
such that the corresponding additive operator satisfies 

c ( 1 + — j a{u, u) < a(PadU, u) < Ca(u, u), M 6 F. 
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Remark 3.23. If ||S'||oo < C, then Assumption 3.18.1 holds, but a suitable 
condition on S that ensures that Assumption 3.18.2 also holds appears to be 
difficult to find. 

Examples of smoothers can be found in [93], [453], [454], [96], and [305]. 
We note that not all of the Assumptions 3.21.2 can be proved for some of 
them, but that they have shown comparable performance in some simple test 
cases; see [305]. We finally note that for linear elasticity problems, the coarse 
spaces need to be enriched since they need to contain the kernel of the relevant 
differential operator. We may consider the rigid body modes or even a basis 
for the space of first-order polynomials and multiply them by the partition of 
unity functions #»; see section 8.2. Several basis functions are now associated 
with each subdomain. 

3.10.3 Partition of Unity Coarse Spaces 

Although numerical results on simple test cases in [305] seem to suggest a 
linear growth, as a function of H/d, in the condition number when smoothed 
aggregation coarse spaces are employed, as in Theorem 3.19, for some of the 
smoothers Assumptions 3.21 do not hold. As was shown in [409], it is also 
possible to construct coarse basis functions {^j} by directly assigning nodal 
values inside the subdomains of the overlapping partition T. 

As for the smoothed aggregation techniques, we suppose that T is obtained 
from an initial nonoverlapping partition To = {Oi} such that 

c F " < |/?i| < CH'^ (3.37) 

We suppose that each subdomain in To consists of elements of Th- For i = 
1 , . . . , iV, 01 is obtained from /?» by adding q layers of elements; also let 
Of = Hi- For j > 1, the domain J?| is obtained from /2|~^ by adding those 
elements fc € 7^ for which dk f) df2{~^ ^ 0. We set Q[ = Qf and 5 = qh. 

We next consider a finite element function ^j defined by its nodal values. 
We set <?i{x) = 1 if X is a node in i?^, and #i(x) = 0 if x G J? \ i?^. For 
the other nodes, we set i'i{x) = (q — j)/q if x belongs to the j-th layer, i.e., 
X e dfil. We finally set 

<?,: 

We have the following result; see [409, Th. 1]. 

Lemma 3.24 Let {<?,} be the partition of unity functions and let T he the 
overlapping partition defined above. Then, Assumptions 3.18 and 3.15 hold. 
Therefore, there exist positive constants c and C, such that the corresponding 
additive operator satisfies 
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c 11 + — j a(w, u) < a{PadU, u) < Ca{u, u), u£V-

We note that Assumptions 3.18.1 and 3.18.2 can be established in a way 
similar as in the proof of Lemma 3.4. 



Substructuring Methods: Introduction 

4.1 Introduction 

In this part of our monograph, which ends with Chap. 6, we will develop and 
analyze a large number of iterative substructuring methods, which are based 
on a nonoverlapping partition of the region J? on which the original problem 
is defined. We will consider only scalar, second-order, self adjoint, elhptic 
problems on i? C M , (and occasionally in M ) where /? is a Lipschitz region 
of unit diameter. In fact, to make our analysis fully possible, we will make a 
further assumption. Assumption 4.3. In this chapter and the next, which, in 
large part, are based on Dryja, Smith, and Widlund [178], we will introduce 
the Schur complement systems to which the original finite element problems 
are reduced in a first direct elimination step and also a number of technical 
tools which are necessary in the analysis of the many iterative substructuring 
algorithms of this monograph. 

Certain iterative substructuring methods have already been introduced in 
Sect. 1.3. They are based on nonoverlapping decompositions of the region into 
an often very large set of subdomains, also known as substructures, a term 
borrowed from structural engineering; see Przemieniecki [389]. We note that 
many finite element codes are based on similar decompositions, in fact several 
levels of nested subdivisions are frequently used in such a context. Direct 
elimination is often used in engineering computations in which the interior 
variables of elements and larger and larger macro elements, created by merging 
elements or smaller macro elements, are successively eliminated. We can think 
of iterative substructuring methods as halting this process at some stage and 
solving the remaining linear system by a preconditioned Krylov space method. 
If a parallel computer is used, one or several substructures will be allocated 
to an individual processor and the elimination of the interior unknowns of the 
substructures can then be carried out in parallel across the substructures. We 
note that this type of ordering is also beneficial in that it results in relatively 
sparse triangular factors; see [220, 221]. 
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4.2 Problem Setting and Geometry 

Let OQD C dfi be a closed set of positive measure, and let OQN '•= dQ \ dflo 
be its complement- We impose homogeneous Diriclilet and general Neumann 
boundary conditions, respectively, on these two subsets and introduce the 
Sobolev space Hl{Q,dQD) := {v € H^{0) :v = Oon 5 / ? D } . 

For simplicity, we will only consider in full detail the case of a piecewise 
linear, conforming finite element approximation of the following second order 
model problem: find u € Hl{Q,dQD)-, such that 

a{u,v) = f{v) veHl{n,dQD), (4.1) 

where 

a{u,v) := I p{x)Vu-Vvdx, f(v):= fvdx + / gNvds. (4.2) 
JQ Jn JeoN 

Here QN is the Neumann boundary data defined on OQN', it provides, together 
with the volume load / , the contributions to the load vector of the finite 
element problem. We assume p{x) > pmin > 0 for x e i?. We note that 
we could add a zero order term, with a positive coefficient function, to our 
problem without any real changes in the performance of the algorithms and 
only minor changes in the theory. 

The extension of our results to other conforming finite element methods is 
routine but we have to expect that the constants in our bounds might depend 
on the order of the elements. We will consider extensions to spectral finite 
elements in Chap. 7 and to elliptic systems in Chap. 8. 

We decompose i? into nonoverlapping subdomains i7i,i = 1 , . . . ,iV, also 
known as substructures, and each of which is the union of shape-regular el
ements with the finite element nodes on the boundaries of neighboring sub-
domains matching across the interface. We will distinguish between subdo
mains with boundaries which intersect df^D and the floating subdomains with 
boundaries which do not. 

Definition 4.1. A substructure Qi is a floating subdomain if the intersection 
of its boundary with OOD is empty. 

The interface 
r := yji^jdOi n dfij 

is the union of 

• the interior subdomain faces, regarded as open sets, that are shared by 
two subregions, 

• the subdomain edges, also regarded as open, that are shared by more than 
two subregions, 

• vertices, which are endpoints of edges. 
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If there is an edge which is a part of OQN and which is common to the 
boundaries of only two subdomains, we wiU regard that edge as a part of the 
face common to this pair of subdomains, while any edge common to at least 
three subdomains will be included in the set of interface edges. Similarly, we 
will regard a subdomain vertex on c?/2jv part of an interior edge unless there 
are several edges that end at the vertex. In the latter case, we will treat the 
vertex the same as a vertex in the interior of i?. The subdomain faces which 
belong to dQ are not part of the interface J"; the nodal values on dQo will 
always vanish and those on dfiN which belong to only one subdomain will 
effectively belong to the subdomain interior. They will be eliminated together 
with the interior degrees of freedom when the given linear system is reduced 
to a Schur complement system involving only the unknowns of the interface 

r. 
We will denote the faces of J?̂  by JF*i, its edges by ^*^, its vertices by V^, 

and its wire basket, i.e., the union of its edges and vertices, by W*. Occasion
ally, we will also use faces, edges, and vertices with just one superscript and 
even drop the superscripts all together. 

Let % be the triangulation of subdomain Qi, of diameter hi, and let T = 7^ 
be the geometrically conforming global mesh on J?, of diameter h = max{ft,i}; 
cf. appendix B.1.1. We denote the standard finite element space of continu
ous, piecewise linear functions on % by V^{fli); we always assume that these 
functions vanish on cJi?, n5i?D. We assume that the triangulation of each sub-
domain is shape regular and quasi uniform. The diameter of J?j is Hi, with 
H = maxjiJj}. The finite element approximation of the elliptic problem is 
continuous across F and we denote the corresponding space by V*^ = V'^(n). 

Definition 4.2. The sets of nodes on F, dfi, and dfii are denoted by / \ , dn^, 
anddOi^in respectively. Analogously, J^^, Sf^', andWl denote the sets of nodes 
on a face !F^^, an edge S^'^, and the wire basket W^, respectively. Since the faces 
and edges are open sets, J^ and Wj^ are disjoint and so are J^ and £]^. 

We assume that all possible large jumps of p{x) are aligned with the sub-
domain boundaries and, for simplicity, that on each subregion J7J, p{x) has a 
constant value pi > 0. Our bilinear form and load vector can then be written 
in terms of contributions from individual subregions. With 

a^'^^{u,v) = pi I Vu-Wvdx, i = l,...,N, 

we have 

a{u,v) = y2a^'\u,v), /(i-) = V ( / fvdx + / gNvds). (4.3) 
i^l i^l JQi JdQindON 

We make the following assumption. 
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Assumption 4.3 The partition into subdomains is such that: 

1. Each subregion Qi is the union of shape-regular coarse tetrahedral elements 
of a global conforming mesh TH and the number of such tetrahedra forming 
an individual subdomain is uniformly bounded. 

2. If a face of a subdomain intersects df^m then the measure of this set is 
comparable to that of 80,. Similarly, if an edge of a subdomain intersects 
dQD, the length of this intersection is bounded from below in terms of the 
diameter of Qi. 

Remark 4-4- Assumption 4.3.1, which basically ensures that the subregions 
cannot be very thin, is necessary for our theory of all iterative substructur
ing methods presented in this monograph. It can easily be shown that the 
diameters of any pair of neighboring subdomains are comparable. Assump
tion 4.3.2, on the other hand, appears to be necessary only for balancing 
Neumann-Neumann methods (see Sect. 6.2) and one-level FETI methods (see 
Sect. 6.3). 

Remark 4-5. The theory of iterative substructuring methods does not cover 
the case of many partitions into substructures that are commonly used in 
practice such as those obtained using mesh partitioners, where fine elements 
are aggregated to form subregions; cf. Figure 4.1 for an example. In such cases, 
the boundaries of the substructures may be very irregular and faces (consisting 
of points that belong to two substructures) and edges (curves that belong to 
more than two substructures) are not plane surfaces or straight lines. We note 
that even in such a case, we can define faces, edges, and vertices of the interface 
relatively easily. We first associate with each node x of the triangulation the 
set A/"x of indices of the J7j to which it belongs. A node x belongs to a face 
if Mx has exactly two elements and y belongs to the same face if A4 = J^y 
Similarly, a; is a vertex if no other node has the same index set while x is 
an edge node if M^ has at least three elements and there exists at least one 
additional node y with Xy = Nx-

We will occasionally use a piecewise linear finite element space V^ on the 
triangulation consisting of the coarse elements from which the subdomains are 
composed; there is no need to assume that this coarse triangulation is quasi 
uniform. We note that many of the estimates in this and the following chapters 
are given in terms of the ratio H/h. Since our analysis will typically be carried 
out locally for one substructure (and its next neighbors) at a time, we can 
interpret the factor H/h as maxj{iJi//ij}. The quantity (Hi/hi)", Q C M", 
gives a measure of the number of degrees of freedom associated with /?». 

The Sobolev space H^{Q) is closely related to our family of elliptic prob
lems. This space and its norm are defined in appendix A.l for the case of a 
region with unit diameter. In the case of a region of diameter Hi, such as the 
substructure J7J, we use a norm with different relative weights obtained by a 
simple dilation argument: 
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1 
ll^llfri(^i) ~ l^ln^ifii) + ^II^IL2(fii)- (4.4) 

Fig. 4 . 1 . Finite element meshing of a mechanical object (top) and partition into 
thirty subdomains (boUom). Courtesy of Charbel Farhat. 
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We will also need to work with traces of functions on the boundaries of the 
substructures. The trace space H^/'^{df2i) is equipped with the scaled norm: 

1 
l"lljji/2fao.-) - l^ljji/2f9o.) + 77-|l"lli2(af2i); (4-5) 

cf. also appendix A.2. 
From now on, we will denote the finite element solution by u. The discrete 

problem corresponding to (4.3) is of the form: find u € V^{Q) such that 

a{;a,v) = f{v) v £V''{n). (4.6) 

We recall that in most discussions of domain decomposition methods, there 
are technically two spaces: the space of finite element functions V^, and the 
space of coefiicients (degrees of freedom) of the finite element functions; we 
will make no distinction as far as notations are concerned. Matrix and vector 
notations for finite element problems were already introduced in Sect. 1.2; see 
also appendix B.6. Here we will extend our discussion to the case of many 
subdomains- The contributions to the stiffness matrix A and the right hand 
side / can be formed one subdomain at a time. The stiffness matrix is then 
obtained by subassembling these parts. We will order the nodes interior to 
the subdomains first, followed by those on the interface F. More precisely, 
we define as interior degrees of freedom all those that are not on F. Thus, 
they consist of those that lie in the interior of the subdomains but also of 
those on faces of OHN, in accordance with the precise definition of F given at 
the beginning of this section. All the matrices and vectors are expanded by 
zeros, giving them each the same dimension as the global stiffness matrix and 
the vector of unknowns; we could also work with the extension and restriction 
operators of Chap. 1, but from now on, we will often adopt a less cumbersome, 
shorthand notation. We will otherwise use many of the same notations as 
in that chapter, e.g., when working with stiffness matrices attributable to 
subregions, their Schur complements, etc. 

We can then write the linear system as 

Thus, to multiply A by the vector u, we first restrict the vectors Ui and Ur to 
the substructures, then multiply them by the individual substructure stiffness 
matrices and, finally, obtain the product Au by padding with zeros and adding 
the resulting vectors. 

The following lemma relates the energy of a finite element function defined 
on a substructure and the norm of its trace. We note that we use the scaled 
norms introduced in formulas (4.4) and (4.5). 

Lemma 4.6 There exists a constant Ct, depending only on the shape of Qi, 
such that 
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\Mm/^an,)<Ct\\u\\m^n,), ueV'^ini). (4.8) 

In addition, for every <j>, which is the trace of a finite element function on 
dfli n -T, there exists an extension u £ V^{i^i)f which depends linearly on cj), 
such that 

M\H^{ni) < Ce||^||jji/2(9j?,nr)- (4-9) 

Here Cg depends only on the shape of J?j and the aspect ratio and the quasi-
uniformity constant of %• The same hounds hold for the H^- and H^l'^-
seminorms provided that the subregion is floating or at least one of its faces 
intersects the set OQD and the intersection has a measure that is comparable 
to that of dOi-

Proof. The trace estimate (4.8) can be found in Lemma A.6 for regions 
of unit diameter. The bound involving the scaled norms can be found by a 
simple rescaling argument, and those for the seminorms by a quotient space 
argument; we first drop the L^-term on the left hand side of the inequality 
and note that the remaining seminorm is invariant if a constant is added to 
u. Finally, we use a Poincare or Priedrichs inequality, see Corollary A.15, to 
eliminate the i^-term on the right hand side. 

As far as (4.9) is concerned, for simplicity, we only give a proof for the 
case of a substructure that does not touch dfi: 5i?i PI .T = dfii- We first 
consider a region J7J of unit diameter and the harmonic extension v € H^{Qi) 
of the boundary data 0, i.e., the solution of the Laplace equation with a 
Dirichlet boundary condition given by cj). We note that since a step function 
belongs to H^, s < 1/2, the continuous, piecewise linear function 0 belongs to 
H^'^^{dQi) for s < 1/2. Therefore, since J7j is a Lipschitz polyhedron. Lemma 
A.49 ensures that v € iI*+^/^(J?i), for every s < sn, with so > 0. Thus, by 
Lemma A.5, the harmonic function v is continuous and the standard Lagrange 
interpolation operator J'' can be used for both two and three dimensions and 
for any Lagrangian finite element, resulting in a finite element function I'^v; 
see appendix B.1.2. By using the bound on the interpolation error in Lemma 
B.6 and the regularity result in Lemma A.49, we now obtain, for s £ (0, s^), 

\^''v\m(ni) < \l''v-v\Hi(ni) + \v\m{Oi) 

The proof is completed by using an inverse inequality; see Lemma B.27. 
Bounds for the scaled norms and seminorms can be found in the same way 

as before, i.e., by a scaling argument and the use of a Poincare or Priedrichs 
inequality. D 

Remark 4-7. In case df^i intersects dHi) but not dOjsf, the H^/'^{dfii) and 
H^/'^{dfli n r) norms in (4.8) and (4.9), respectively, can be replaced by the 
î QQ {dQi n r) norm. Por the case of a substructure that touches dQN, a 
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regularity result for the Laplace problem with boundary conditions of mixed 
Dirichlet/Neumann type needs to be employed, therefore requiring additional 
assumptions on dfii (such as convexity, for instance); see [143] for a two-
dimensional result. 

Remark 4-8• The proof of Lemma 4.9 can be extended directly to any Hermite 
finite element method. In the proof, we just modify the standard interpolation 
formula by setting all derivative degrees of freedom equal to zero; all that 
is required from the interpolation formula is that it is stable and that it 
reproduces constants. 

We note that there are other proofs of the main part of Lemma 4.6; cf. 
[61, 463, 76]. 

4.3 Schur Complement Systems 

As in the previous section, we will tacitly assume that vectors defined only on 
subdomains are extended by zero elsewhere. 

In a first step of many iterative substructuring algorithms, the unknowns 
in the interior of the subdomains are eliminated; cf. Sect. 1.3. In this step, 
the Schur complements, with respect to the variables associated with the indi
vidual substructures and the nodes on 5/2, fl F are introduced. The resulting 
linear system can be written as 

(4.10) 

where 
q(j) _ qU) _ AU) _ AU) AU) '- AU) 

and the reduced system is given by 

Sur = fr- (4.11) 

Thus, the matrix S is obtained from the S^^"* by subassembly. In practice, the 
matrix S is often not formed explicitly, since this is a potentially expensive 
operation. Instead, a sparse representation of the Aff and the sparse, triangu
lar factors of the Ajj are stored, and the action of 5* on a vector is calculated 
as needed. We note, in particular, that the application of the inverse of A^/) 
to a vector corresponds to the solution of a Dirichlet problem on J7J or to a 
problem with Dirichlet boundary conditions on df2j D F and with homoge
neous Neumann data on dfijfydfiN- Similarly, many iterative substructuring 
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preconditioners are built from inverses of certain Schur complements. These 
inverses are normally not calculated in practice. Instead, in order to apply 
the inverse of S^^^ to a vector w^/', we can solve a Neumann problem on /?_,-. 
Indeed, it is easy to show that the vector 

can be found by solving the local system 

-(1)^(4' 
The matrices S and 5'*̂ -'̂  can also be viewed as operators defined on in

terface functions on F and dOj fl F, respectively. They can be represented as 
block matrices with a block for each face, edge, and vertex of F. We will often 
combine all the edge and vertex blocks of a subregion /?_,• into a single wire 
basket block. (We can also merge them all into a single block corresponding 
to the wire basket of the entire interface.) We then obtain 

5(̂ -) = 

/ qU) qU) qU) 

and 

TT '-'Te '-'TV 
^j^e ^se ^ev I (4-12) 
qUr qUr qiJ) 

. '-'TV '-'SV '-'VV • 

qU) qU) 

\'^TW '^WW J 

respectively. Here Sjr-p is constructed from the blocks that correspond to the 
individual faces, and to pairs of faces, of Qj, etc. We will use both block 
structures, (4.12) and (4.13), in the description of different algorithms, as 
appropriate. 

All of the algorithms that we consider can be reformulated using inex
act interior solvers. We explain briefly how this can be done. After a block 
Cholesky factorization of A, we find that the exact inverse A~^ can be written 
as 

1 _ (I -AjlAiA M j / 0 W / 0 

If we have a good preconditioner for S, Bg^, and a good preconditioner for 
All, i-e., an approximate solver BJ^ for the interior problems, we can create 
a preconditioner for A of the form 

,_fl-By/Air\fBy/ 0\f I 0\ 
^- -[o I ) [ o B^^)[-Ar,BY,^l)-

We see, by examining the resulting formulas carefully, that an application of 
B^^ to a vector need only involve B^j in two matrix vector multiphes, and 
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Bg^ in only one; if / / is the first component of the vector on which B^^ 
operates, we can save Bj/fj and reuse it when multiplying with the second 
block matrix. It is also possible to use different approximate interior solvers 
in the three factors of B^^ and to construct nonsymmetric preconditioners of 
a similar form. 

In the analysis presented here, we will always require exact interior sub-
domain solvers. Algorithms that use approximate interior solvers have been 
analyzed, e.g., in Borgers [63], Bramble, Pasciak, and Vassilev [77], and Haase, 
Langer, and Meyer [250]. Since it is important to first fully understand the 
case when exact interior solvers are used, we will focus on that case. We can 
then exclusively work with the space of discrete harmonic functions V^ and 
the bilinear form s(-, -); cf. Sect. 4.4. Numerical experiments, cf. Borgers [63], 
Haase, Langer, and Meyer [250], Skogen [419], and Smith [423], indicate that a 
good rate of convergence can be maintained, e.g., when one multigrid V-cycle 
is used, instead of an exact solver, to solve the interior problems. 

4.4 Discrete Harmonic Extensions 

The space of discrete harmonic functions, is an important subspace which is 
directly related to the Schur complements and to the values at the nodes on 

r. 
A function û *) defined on /?, is said to be discrete harmonic on i?j if 

A^pjuf^+A^pru^p=0. (4.14) 

It is easy to see that w*̂*) =: Tiiiup) is completely defined by its values on 
dQi n r and that it is orthogonal, in the aj(-, -)-inner product, to the space 

v^r\Hl{Qi,dgir\r). 
The space V^ C V^ of global, piecewise discrete harmonic functions con

sists of functions that are discrete harmonic on each substructure. A function 
u belongs to V^ if and only if Auuj + AjpUr = 0 and it is completely defined 
by its values on F. The subspace V'^ is orthogonal, in the a(-, •) inner product, 
to all the interior spaces V*^ fl i?o (J?j, df^i D F), i = 1 , . . . , iV; such a space 
can also be regarded as the subspace of functions of H^ (J?) which vanish on 
Q\Qi. We denote the piecewise discrete harmonic extension of ur by 'H{ur)-

In the analysis to be given, the inner product defined by the Schur com
plement 5" will be important; our preconditioners will be defined with respect 
to the inner product 

s{u,v) =u'rSvr- {4-15) 

It follows immediately from the definition of S that s(-,-) is symmetric and 
coercive; we note that Amines') > Ainin(^)-

The following lemma results from elementary variational arguments. It is 
enough to write the energy w '̂̂  A '̂̂ u^*) using the 2 x 2 block structure in 
(4.7) and the definition of the discrete harmonic extension in (4.14). 
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Lemma 4.9 Letup he the restriction of a finite element function to dQiC^F. 

Then, the discrete harmonic extension u^^^ = liiiup) ofu^ into i7j satisfies 

ai{u^'\u^'^) = mill , ai{v^'\v^'^) 

and 

Analogously, if ur is the restriction of a finite element function to F, the 
piecewise discrete harmonic extension u = ^{ur) of ur into the interior of 
the suhdomains satisfies 

aiu,u) = mill a{v,v) 
v\r=ur 

and 
s{u,u) = ufSur = a(u,u). 

Tliis lemma ensures that instead of working with functions defined on the 
interface F, we can consider the corresponding discrete harmonic extensions. 

The next lemma ensures that we can equivalently work with norms of local 
discrete harmonic extensions and traces on the subdomain boundaries. It is a 
direct consequence of Lemmas 4.6 and 4.9. We note that the result relies on 
the existence of a stable finite element extension into the subdomains. 

Lemma 4.10 Letu be discrete harmonic. Then, there exist positive constants 
c and C, independent of h and H, such that 

II ||2 ^ II ||2 << /^ II l|2 
c\\ur\\Hi/2(^gQ.^r) ^ \M\m(Oi) S '^ lRJ'll_H-i/2(9^inr)' 

I |2 ^ I |2 ^̂  /^ I |2 

Consequently, 

with Up the restriction of u to dOi fi F and the constants independent of h, 
H, and the pi. 

4.5 Condition Number of the Schur Complement 

In this section, we prove an estimate for the condition number of the Schur 
complement S; our discussion follows Brenner [85]. We note that, it follows 
from the discussion on page 17, that we must expect the condition number 
to grow at least as lf~^; if an unpreconditioned conjugate gradient method 
is applied to the linear system, the sparsity pattern of S makes exchange of 
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information possible only between neighboring subdomains. However, in this 
case, the condition number turns out to be even worse. 

We assume that pi = 1, i = 1,. ..,N. In addition, as in the case of the 
stiffness matrix A, precise estimates in terms of h and H can be found most 
easily for quasi-uniform triangulations Th and subdomain partitions, TH- For 
simphcity, we also only consider the case of homogeneous Dirichlet boundary 
conditions on the whole 5i? = d^D- We first introduce an equivalent L^-norm 
o n T : 

JV 

l|w||f = X^I|w|ii2(ai2.). 
i-l 

Lemma 4.11 Let u he the trace of a finite element functions in V^ on F. 
Assume that pi = 1, i = 1,.. .,N, and that the fine mesh % and the coarse 
partition TH are quasi uniform. Then, there exist two positive constants c and 
C, independent of h and H, such that 

cH\\u\^P < s(u,u) < Chr^WuW^. 

Thus, 

Proof We employ the discrete harmonic extension, still denoted by w, into 
the interior of all the /?j. We first consider the lower bound. Using (4.5) and 
(4.8), we find that 

Since i? has unit diameter, and thus Hi < 1, summing over the subdomains 
yields 

H\\ufr <C' | |u | |^ i (^) . 

The proof of the lower bound is concluded by using a Friedrichs inequality, 
Lemma A. 14, for the discrete harmonic function u G HQ{Q) and Lemma 4.9. 

In order to prove the upper bound, we use Lemma 4.10 and find 

JV 

s{u,u) = |w|^i(i^) < C Y^Mm/^eni)-
i=l 

The use of an inverse estimate (see Lemma B.27) completes the proof of the 
upper bound. 

In order to prove the bound for the condition number, it is enough to use 
the estimates 

ch'''-U'^u<\\u\\l<Ch''-'^u^u, / ? c M " ; 

see Lemma B.5. D 
We note that the estimates given in Lemma 4.11 are sharp; see Brenner [85]. 
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4.6 Technical Tools 

A number of additional auxiliary results are needed for the analysis of the 
iterative substructuring and other domain decomposition algorithms. They are 
mainly based on discrete Sobolev type inequalities for finite element functions. 
These results will be used extensively in Chap. 5 and 6 as well as in the rest 
of this monograph; they are crucial in establishing Assumptions 2.2 and 2.4 
for a variety of iterative substructuring methods. The relevant norms and 
seminorms have been introduced in (4.4) and (4.5); these norms contain large 
multiples of L^-norms. 

The analysis and development of efficient iterative substructuring meth
ods in two dimensions mainly rely on three tools. The first is the construction 
of a stable discrete extension of trace functions from the boundaries of the 
substructures, which ensures the uniform stability of discrete harmonic exten
sions; see Lemmas 4.10 and 4.9. The second is the i '^-bound of Lemma 4.15. 
Finally, we need a bound for functions associated with single edges, which is 
the analog of the three-dimensional result given in Lemma 4.24. 

We have chosen to present full proofs only for the three-dimensional algo
rithms. We note that the second bound, just mentioned, ensures the almost 
uniform stability of the standard coarse interpolant in two dimensions, while 
the third ensures that a decomposition into functions associated with single 
edges is almost uniformly stable; see Remarks 4.13 and 5.4. Such estimates 
are also necessary for the results of Chap. 6, where, in two dimensions, local 
functions are decomposed into terms associated with substructure edges and 
vertices; cf. Lemmas 6.3, 6.34, and 6.36. 

Similar tools are needed for three-dimensional problems. We need the sta
bility of discrete harmonic extensions and a bound for functions associated 
with single faces; see Lemma 4.24. Bounds for the L°°-norm are replaced by 
a bound involving the L^-norm over single edges or the wire basket. These 
bounds ensure that a decomposition of local functions into wire basket (edge 
and vertex) and face components is almost uniformly stable. This is crucial 
in Sect. 5.4.2 and 5.4.3, and in the proofs of Lemmas 6.3, 6.34, and 6.36 in 
Chap. 6. 

4.6.1 Interpolation into Coarse Spaces 

The following lemma illustrates the limitations of the interpolation operator 
jH .yh ^ yH ^ jj^ three dimensions. I^u is the result of piecewise Hnear 
interpolation of the finite element function u onto the coarse space V^, built 
on the coarse triangulation TH'-, see appendix B.1.2. In order to prove this 
lemma, we need an inverse inequality: with K G TH, 

ll"llioo(i^)<C(l/ft)||w||2,,(^); (4.16) 

see Bramble and Xu [81, Lemma 2.3]. Since equality holds for any nodal 
basis function, we find that this bound is sharp and so are the bounds of the 
following lemma. The constant C is independent of H and h. 
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Lemma 4.12 In three dimensions, for u £ y' '(i?i), 

W-I^'uWhi^^) < C{H/h)H'\u\WhV 

and 

Proof. Let K eTn, with K c Qi, and let {(l>i,...,^i} be the nodal basis 
functions associated with the nodes {Pi} of K. Lemma B.5 ensures that 

\<t>i?miK) < CH, UiW^K) < CH^ 

and we find, 
4 

Using (4.16), we obtain 

Summing over K d Oi and using Assumption 4.3 gives 

H 
\^''n\''m.^.<C-\W^' 

The norm on the right hand side can be replaced by the seminorm by using 
the fact that the left hand side does not change if we add any constant to u 
and by using a Poincare or Friedrichs inequality, just as in the proof of Lemma 
4.6. 

Proceeding similarly, we can prove 

\W-I''u\\l.(n^) < 2||u||i.(^^) +2 | | /^u | | i . (^^) < cfH^\\u\fH^^^^y 

As before, the norm on the right hand side can be replaced by the seminorm 
by using the same arguments. D 

Remark 4.13. The situation is much more favorable in two dimensions. In fact, 
we have 

\H\l^{n,) < C{l + log{H/h)) ||u|||fi(fi,), 

see Lemma 4.15 below, which gives the more benign bounds 
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The next lemma concerns an operator for which the bounds are much 
improved in comparison with Lemma 4.12. We note that the norms are now 
given in terms of the entire region i?. In fact, it is not possible to provide 
bounds as in this lemma for the H^- and i^-norms, weighted by the values 
Pi of the coefHcient of the elliptic problem as in (4.3), if we require the con
stants in the estimates to be independent of the />«; see Xu [471]. This fact 
helps explain why we will resort to quite exotic coarse spaces when designing 
iterative substructuring methods in Chap. 5 and 6 since our ambition is to 
obtain algorithms which perform well even for large jumps in the coefficients 
across the interface F. A proof of Lemma 4.14 and a general discussion are 
also given in Bramble and Xu [81]. 

Lemma 4.14 Let the coarse mesh TH he quasi uniform and let Q^u he the 
Li^-projection of u & H^{fl) onto the finite element space V^. Then, in two 
and three dimensions, 

\\u - Q^u\\l^a) < CH'^\ufHHn)^ 

and 

Proof. The first inequality follows directly from Lemma 3.6, since, by def
inition, Q^u is the best approximation in L?. To prove the second, we note 
that, again by Lemma 3.6, it can be reduced to estimating \I^u — Q^u\'^jji tQ\. 

We then note that I^u - Q^u = Q^{I^u - u) and thus 

Here we have used an inverse inequality, which holds since the coarse mesh is 
assumed to be quasi uniform, that Q^ is the X^-projection, and Lemma 3.6. 
D 

We note that the results for the quasi-interpolant I^ given in Sect. 3.5 are 
stronger since the coarse mesh elements need only be shape regular but not 
necessarily all of comparable size. We also note that the estimates of Lemma 
3.6 cannot be made independent of the pi either but that they are of a more 
local character. 

4.6.2 Inequalities for Edges 

We now consider inequalities associated with the edges and the wire basket 
of a substructure. 

The following result plays an important role in the theory; see, e.g., [69, 
72, 478] where alternative proofs can be found. The bound in this lemma is 
known to be sharp; cf. Brenner and Sung [91] for an explicit construction. The 
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sharpness of the bound can also be estabhshed by a less direct argument by 
using lower bounds for iterative substructuring algorithms due to Brenner et 
al; see [92, 89]. 

Lemma 4.15 Let a be any convex combination of values ofu{x), withx G fli, 
a hounded subregion in the plane of diameter H. Then, for u &V'^, 

h - «llioc(^.) < C (1 + \Og{H/h))\u\]J^^^^.y 

The logarithmic factor cannot he removed. 

Proof We will follow a proof given in Thomee [436]. We consider the case 
oi H = 1; the general case follows by a scaling argument. We first note that 
by a Sobolev inequality, we have for any r > 1 

ll^l|L-(f2,) < Cr^^^hWmiOi), u e H^Qi); (4.17) 

cf. [357, Theorem 1]. We combine this inequality with an inverse inequality 

\\u\\Lo^(n,)<Ch-''/''\\u\\L^^i2,), ueV^; (4.18) 

cf. [90, Lemma 4.5.3], and obtain 

l|w|U°°(i?i) < Cr^^^ h-'^^''\\u\\H^(^Qi), r>l. 

We complete the proof of the first inequality by choosing r = log(l//i) + 1: 

\MUm ^ c{i + iog(i/h)) (i//,)V(i+iog(iA)) iî iiî ^̂ ^̂ ^ 

<C{l+lOg{l/h))\\u\\jj,^^^y 

The second inequality can then be proven by using the Poincare inequality in 
Lemma A. 13. D 

Results very similar to those of the next lemma can be found in Bramble, 
Pasciak, and Schatz [76], Bramble and Xu [81], and Dryja [173]. They provide 
discrete trace inequalities for a single edge or for the wire basket. The proofs 
are straightforward; it is sufficient to consider the inequalities, given in Lemma 
4.15 for two dimensions and to integrate along the third direction. 

Lemma 4.16 Letu^k be the average value ofu over S'^, an edge of Oi. Then, 

and 
\\u - ue>^\\l^£k) < C(l + log{H/h))\u\jji(^n.y 

Similar hounds also hold if the edge £^ is replaced hy the wire basket W*. 
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We also give a useful variant of this lemma. We refer to the proof of [173, 
Lemma 4] for the first inequality. The second can then be proven by using a 
Poincare inequality. 

Lemma 4.17 Let Ugk he the average value of u over S'', an edge of a face 
pi. Then, 

M\l-^{e^) < C(l +log(if//i))||«||^V2(^.,) 

and 
\\U-Usk\\l^^k) < C(l +log{if//l))|w|^i/2(_^y). 

Similar bounds also hold if the edge £'' and the face pi are replaced by the 
wire basket W* and the boundary dfii, respectively. 

When we estimate the parameter CQ, introduced in Assumption 2.2 of the 
abstract convergence theory, we must demonstrate that all functions in the 
finite element space can be decomposed into components in the subspaces in 
such a way that the sum of the resulting energies are uniformly, or almost 
uniformly, bounded with respect to the parameters /i, iJ , etc. A main tool for 
deriving such decompositions is a suitable partition of unity built from a set 
of functions O^h, associated with edges, Ojrj, associated with faces, and nodal 
basis functions, 9y,i, corresponding to the substructure vertices. 

In this subsection, we will consider the functions associated with the sub-
domain edges. 

Definition 4.18. Given an edge E'^ C F, let dgk € V*^ be the function that 
vanishes at all nodes of Qu except those of £^ where it takes the value 1. In 
addition, let O^h be the discrete harmonic function that coincides with -d^h on 

r. 
We note that, given M € F'*, the function I^{'d£ku) is the extension by zero 

of the values of « on ^*, while HiOghu) = V.{^£hu) is the piecewise discrete 
harmonic extension of the same trace. From now on, we will use the notation 
'H{0ghu) for the function 'H{l'^(0£hu)), etc. 

Our next lemma complements Lemma 4.16 and provides bounds for the 
extensions from a single edge or the wire basket. We note that while l'^{0£ku) 
vanishes at the end points of the edge ^*', w in general does not. 

Lemma 4.19 Let £^ be an edge of a substructure fii and let u £V^. Then, 

\Hi{Oe^u%,^^^^ < \r^{'&eku%,^^^^ < C\\uf 

Similar bounds also hold if the edge £'' is replaced by the wire basket H" 
and/or if the seminorms in H^{Qi) are replaced by those in H^l^idQi). 

Proof. The first inequalities follow from the minimizing properties of dis
crete harmonic extensions. For the second inequalities, involving the zero ex
tensions, we note that given a fine element K E.Th that shares an edge (a, b) 
with £'', Lemma B.5 ensures that 
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\lH^s^u)\jj,^j,) < Ch{{'&£.{a)u{a)f + {'l}e.{h)u{h)f). 

Since i?^j has values in [0,1], another apphcation of Lemma B.5 ensures 

that the right hand side can be bounded both by Cf^(l'^(0£hu))^ds and 

by C / u^ds. The proof of the two inequalities is completed by summing over 
the elements. Bounds for the wire basket are found in the same way, while 
those involving the iJ^/^-seminorm on the boundary are a consequence of a 
trace theorem. D 

By combining Lemmas 4.16 and 4.19, we obtain an estimate of the energy 
of the edge function 'Hi{9£hu): 

Corollary 4.20 For an edge £'' of a substructure i?, and u € V'^, we have 

A similar bound also holds for the wire basket W*. 

In the description of our algorithms in Chap. 5, we will use ĵ||w||p(£-fcA in 
addition to ||w|||2/£fe-)- Here ||w||/2(-̂ fc) is the ^^—norm of the nodal values of 
u on £^. The first expression is appropriate when defining bilinear forms on 
a subspace related to the edge £''. The two are, for all theoretical purposes, 
interchangeable since the mass matrix related to the second expression is 
uniformly well conditioned given that the triangulation of each subdomain, 
by assumption, is quasi uniform; see Lemma B.31. 

We finally state and prove a nonstandard Poincare inequality, which was 
given in a somewhat different form in [184, Lemma 6]. We note that the 
logarithmic factors in the estimates are related to the fact that traces over an 
edge (and therefore averages) are not in general defined for every function in 

Lemma 4.21 (Poincare-Friedrichs inequality) Let S'' be an edge of Qi. 
Then, for any u € V^{fii), 

Proof. We consider u — u^k. Using the Cauchy-Schwarz inequality, we find 

see also Lemma 4.30. The use of Lemma 4.16 then yields 

WusAWndQi) < CHi{l + \og{Hlh))\\u\\]jt^^.y 

A trace theorem gives a similar bound, without a logarithmic factor, for 
||tf|||^2(9f^.)- We then note that u — u^h does not change if we add a con
stant to u and the proof of the first inequality can be completed by using a 
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standard Poincare inequality; see Theorem A.18. The second bound can be 
proved in a similar way. D 

We note that the previous lemma ensures that 

\Hh(ao,) < CHi{l + \og{H|h))\u\l^^a^), (4.19) 

for a finite element function that vanishes over an edge. Similar bounds can 
also be found for functions that vanish at a vertex: using Equation (4.16), we 
find that 

\HUoa,)<CHi{H/h)\u\]jr^a,y 

We note that this bound is much less satisfactory; this is the reason why for 
some iterative substructuring methods of the next two chapters we need to 
assume that no substructure touches the boundary OOD in just one or few 
points. 

4.6.3 Inequalities for Faces 

In this section, we will consider functions associated with subdomain faces. In 
particular, we will partition a function into terms associated with single faces. 
As for the edges, we will associate a function with each face: 

Definition 4.22. Given a face T^ C F, letOjr, e V^ he the piecewise discrete 
harmonic function that vanishes at all nodes of J/j except those of Tl where 
it takes the value 1. 

As in the previous section, we employ auxiliary functions, i^jr,, that takes 
the same values as 9jrj on F and for which bounds can be established relatively 
easily. In the next lemma, we explicitly construct such functions for a shape-
regular tetrahedron. Those for a mapped cube can be constructed in the same 
way; see [126, Lem. 3.3.6]. We note that in the estimate of the first term of 
(4.25), for a case of a subdomain, which is the union of a finite number of 
such tetrahedra, we can work with the functions 'dyr, that we will construct 
in Lemma 4.23 extending them by zero in the additional coarse elements that 
also are part of the substructure. 

Lemma 4.23 For any face T^ of a tetrahedron Qi, there exists a finite ele
ment function 'djrj e V^, that equals 1 at the nodal points of T^, vanishes on 
Fh\Tf^, and satisfies 

Y, ^^.•(a;) = l, xe{Qi,hyJdQi,h)\Wl 

0 < djri < 1, 

|V^^,(x)|<C/r(x). 

(4.20) 

Here r = r{x) denotes the distance to W*. 
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Fig. 4.2. Construction of the partition function '§•^3 in a tetrahedron. 

Proof. We will first construct four functions, that are not finite element 
functions, and that form a partition of unity, i.e., they satisfy the first equality. 
The four finite element functions -dj^j are then obtained by piecewise hnear 
interpolation. It is easy to verify that these new functions also define a par
tition of unity and that the bound on the gradient is preserved. We will use 
the same notation for these two sets of functions. 

We divide the substructure into four tetrahedra by connecting its centroid 
C, by line segments, to the four vertices of the tetrahedron. Similarly, we divide 
each triangular face of the substructure into three triangles by extending the 
bisectors of the three vertices of the triangle until they meet. We denote the 
resulting points on the faces by Ck, see Fig. 4.2. By connecting the Ck with 
C, by line segments, we obtain the wire baskets of twelve tetrahedra. 

We construct the function {^jr,, associated with the face .F-', as follows: 
At C the value is 1/4. We interpolate linearly between the value 1/4 and 1 or 
0, whichever is appropriate, along the line segments connecting C to the Ck-
The values elsewhere are constant on the intersection of any plane, through 
the unique substructure edge that belongs to a specific subtetrahedron, and 
that same subtetrahedron. This constant value is determined by the value, 
already known, at the point on the appropriate line segment, which is one of 
the edges of the same subtetrahedron. We note that -dj^j is now defined on the 
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whole closure of Qi except on the edges and vertices. Finally, we modify the 
function by changing its values in the elements that have at least one vertex 
on an edge of the substructure. We make the function zero on the wire basket 
W and continuous, by piecewise linear interpolation, using the previously 
constructed values at the nodes that are not on, but next to, the edge. We 
also replace the function elsewhere by its piecewise linear interpolant. 

We return for a moment to consider the function prior to the interpolation. 
The values on any two planes associated with two different substructure edges, 
which intersect at a point on the appropriate line segment, are the same. 
The partition functions are therefore continuous across the boundaries of the 
subtetrahedra. Explicit formulas for the gradient and estimates thereof can, at 
least in principle, be given. The most important observation is that \V'&jrj \ < 
C/r, where r is the distance to the nearest edge of the original tetrahedron. 

It is also easy to show that {dj^,} form a partition of unity on the special 
line segments, and everywhere else, except in the special elements next to the 
edges of the original substructure. Finally, by construction, they have values 
in [0,1]. D 

The following lemma is an extension to three dimensions of a result of 
Dryja and Widlund [180]. The present approach makes it possible to prove 
nontrivial bounds for iterative substructuring algorithms without the use of 
an extension theorem such as (4.9). We can always work in subspaces of the 
original finite element spaces, and we never need to use trace and extension 
theorems. One advantage of this approach is that the constants obtained in 
the estimates can be calculated explicitly from geometric information. When 
working with the trace and extension theorems, it is more difficult to deter
mine the exact relationship between the geometry, e.g., the aspect ratios of 
the substructures, and the constants of the bounds. 

Lemma 4.24 Leti}jrj(x) be the functions of Lemma 4-23, where T^ is a face 
of the substructure Qi, and let l'^ denote the interpolation operator associated 
with the finite element space V^. Then, 

Y, iH:&T^u){x) = u{x), X e J2i,h \ wi, 

and 

Proof. Again we provide a proof only for the case of a tetrahedral sub
structure. The first formula follows immediately from the first equality of 
Lemma 4.23. In order to prove the second, we first consider the contributions 
to the energy from the elements that touch the wire basket W . By defini
tion, 4jrj vanishes on the wire basket. Lemma B.30 ensures that the energy 
contributed from this small neighborhood of the wire basket can be bounded 
by ChJ2x k{^)l^' where the sum is taken over all the nodal points that are 
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within a mesh width of the wire basket. This sum can be bounded by a line 
integral on paths along the edges by using Lemma B.30 and, as in Lemma 
4.16, it can therefore be bounded by C(l + log{H/h))\\u\\^i^^.y We obtain: 

(4.21) 

We next consider the contributions from the elements that do not touch 
the wire basket W . Let K be such an element. By using elementary consid
erations, we obtain, 

\I\^T^U)\HHK) < 2|^^,w||,,(^) +2 | / ' ' { (^^ , -^^,)u) |2,x W 

Here 0 < ^j^j < 1 is the average of ^^pi over the element K. 
The bound for the first term is trivial, but that of the second term is more 

complicated. We first use an inverse inequality and obtain 

By using the bound on the gradient oii}jrj in Lemma 4.23, we can bound t?;Fj — 
•^j^j by Chi/r, where r is the distance to the wire basket. Hence, summing 
over the elements that do not touch the wire basket, 

K K 

with rx the distance of the barycenter of K to the wire basket. We partition 
the elements of J?̂  into groups, in accordance to the closest edge of i?^; the 
exact rule for the assignment of the elements that are halfway between is of 
no importance. For each edge of the wire basket, we use a local cylindrical 
coordinate system with the z axis coinciding with the edge, and the radial 
direction, r, normal to the edge. Using cylindrical coordinates, we estimate 
the sum by an integral 

X ] ^K^ll^t|li2(ii:) < C / " f f \uf^drd(t>dz. (4.22) 

The integral with respect to z can be bounded using Lemma 4.16. We obtain 

and thus 

Y.''~KMl'{K)<C{l + \og{Hilhi))\\ufH^n^J r-'dr (4.23) 
^ ^ r > , Jr=h 

Combining the last inequality with (4.21) concludes the proof. D 
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We remark that one of the two logarithmic factors of the previous lemma 
results from the use of Lemma 4.16 while the other results from the large 
values of the gradient of -dj^i when we approach the wire basket; see (4.23). 
In other words, one factor arises from the fact that we put the values of 
the function u to zero on the wire basket, while the second comes from the 
decoupling of the terms associated with single faces. 

We also need bounds for the functions Ojrk. 

Lemma 4.25 Let J^'" be the face common to two substructures Qi and Qj. 
Then, 

<WTAmm <C{l + log{Hlh))H, 

and 

\\^J'A\h{i2i) < CH^-

The same bounds also hold for the other subdomain fij. 

Proof. For the first property, we only need to find a bound for i?^fc; a 
bound for Ojrk then follows from the minimizing property of discrete har
monic extensions given in Lemma 4.9. The proof is similar to that of the 
second inequality of the previous lemma. We first consider contributions from 
elements that touch the wire basket. Lemmas B.30 and 4.23 ensure that the 
energy contributed from this small neighborhood of the wire basket can be 
bounded by 

Ch Y, WT^ (X) P < C/i ̂  1 < CH, 
X X 

where the sum is taken over all nodal points that are within a mesh width of 
the wire basket. 

To estimate the contribution to the energy from the rest of the substruc
ture, we consider one subtetrahedron ii ' at a time and the bound on the 
gradient in Lemma 4.23. We obtain: 

Y.\^TAmiK)<CY.r],'\K\, 
K K 

with rx the distance of the barycenter of K to the wire basket and \K\ the 
volume of K. The sum is taken over the elements that do not touch the wire 
basket. The proof can then be concluded as for (4.22) of Lemma 4.24, by 
replacing the sum with an integral and introducing cylindrical coordinates 
which use the appropriate substructure edge as the z-axis. 

We now turn to the proof of the second inequality. We note that the 
bound trivially holds for djrk but that a more elaborate argument seems to 
be required for 6jrk. To avoid irrelevant scaling factors, we consider the special 
case of i? = 1, and we also denote the region by i?. In this case, we only have 
to prove that ||^.F'°lli2(fi) î  bounded. We introduce an auxiliary function 
V e H^{Q) by solving 
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—Av = 9j:k, ar e i?, 
V = 0, ic e dQ. 

Since Q is polyhedral, we have 

with s e (0, s^); see Lemma A.49. By Green's formula, we find 

We now find bounds for the two terms on the right hand side of (4.24). Since 
Oj:h is discrete harmonic, we find that 

/ Vt; • Wej^kdx = f V(v-w)- Ve^kdx, w e V^{i7) H H^(/)). 
Jn Jn 

The right hand side can be estimated from above using the nodal interpolant 
w = I^v, which is defined since v is continuous; cf. Lemma A.5. Using the 
error estimate in Lemma B.6 and the regularity result, we obtain 

By using the bound for \9jrh \jjit^\-, we see that the first term originating from 
the Green's formula is o(||̂ jrfc 11̂ 2(̂ 2))-

For the second term, the face integral, we use Cauchy-Schwarz's inequality, 
a standard trace theorem, and the regularity result. We obtain, 

dv 
\ J . ^''•?'*'"*'l - '^ir'^llff3/2(i?)|F;rHlL2(a^) i : ^\\^T>'\\L^(0)\\'^T>'\\L^an)-—6î feds| < c||v||^3/2(^)||6'^^|li2(aj?) < c\\0jrk\y,^.\\ej.4^ 

The proof can now easily be concluded by observing that ||̂ ĵ '=||x,2(9i7) < C. 
n 

As for the edge contributions, we can provide estimates that only involve 
the values of the functions on the boundary. The following result is a direct 
consequence of Lemma 4.10 and the Poincaxe inequality in Lemma A.17; cf. 
also Remark A.9. 

Lemma 4.26 Let T'' he a face of a substructure Qi and let u £V'^. Then, 

\e:p.\'HU^e^,)<C(l + log(H/h))H 

and 

\l'^(^:r''U)\j^u^on,) < C{1+log(iJ//z))2||n||2^,/,(,^^), 

|/ ' '(??^fc(M-'0^0)l^l/2(9f^,) < C{l+l0g(iJ/ / l))2|«|2^l/2(9j^,) , 

| / ' ' ( l ?^* , (w-%;r0) |^ l /2(9 i^ . ) < C{1 +log(H/h)f\u\jj,,^^Q^,y 

where Ujrh andu^jrh are the averages ofu overT'^ anddT'^, respectively. The 
seminorms on the left hand sides can be replaced by the norms of HQ(^ {T''). 

file:///9jrh
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4.6.4 Inequalities for Vertices and Auxiliary Results 

We finally consider functions associated with the substructure vertices and 
provide a few additional results. 

Definition 4.27. Given a vertex V'' C F, let '&yk € V'^ he the function that 
vanishes at every node in Qh except V*̂  where it takes the value 1. In addition, 
let dyk be the discrete harmonic function that coincides with '&yk on F. 

Given u € V'^, the function u(y'')i}yk is the extension by zero of the value of 
u at V^, while u{V'')0yk is the harmonic extension of the resulting boundary 
values. On a substructure i?^, we then have the decomposition 

u= Yl MOTU)+ Y1 MOSU)+ Y1 ^W^V, (4.25) 
TCdOi ecdOi V€dOi 

which is valid for every discrete harmonic function in V'^{ili). 
A bound for the vertex terms can easily be obtained by combining the 

inverse inequality given in (4.16) with the third bound of Lemma B.5. 

Lemma 4.28 Let V'' be a vertex of a substructure fli and let u ^V^. Then, 

\u(y )OvAmt^{dni) = Î C^ )^v>'\m/^(dOi) ̂  '^\H\m/^(dQi)-

Corollary 4.20 and Lemmas 4.24 and 4.28 then give: 

Corollary 4.29 The decomposition (4-25) is stable with a stability constant 
that grows only as C(l +log(iJ//j))^. 

We end this section with some additional auxiliary results. The proof of the 
following result is an immediate consequence of the definition of the averages 
and the Cauchy-Schwarz inequality. 

Lemma 4.30 Let Ujrk, ugQ^, Ugjrk, u^i, and Uyyi be the average of u over 
T^, dfii, dT^^ £', and W^, respectively. Let in addition Hi, Hk, and Hi be 
the diameters of Qi, T^, and £^, respectively. Then, 

d^dn,? <CHf\\u\\i^^Q^^y 

{UQJ7k)'^ < CH^ Il^lli2(9jrfc), 

(U£lf<CH^^\\u\\l^(^gly 

(uw^)'^ <CH-^\\u\\l,^^iy 

We will have the occasion of multiplying finite element functions by each 
other and to estimate their products. It is therefore natural to consider such 
bounds in a lemma. We note that a partial result has already been given in 
Lemma 3.9. 



112 4 Substructuring Methods: Introduction 

Lemma 4.31 Let u be a continuous, piecewise quadratic function defined on 
the finite element triangulation and let I'^u G V'^ be its piecewise linear inter-
polant on the same mesh. Then, there exists a constant C, independent of h 
and H, such that 

\l''u\H'-iQi) < C|w|iyi(i2i) • 

The same type of bounds hold for the L^- and HQQ -norms and it can also 
be extended, with different constants, to the case of piecewise cubic functions, 
etc. 

Proof. The bound involving the i?-^-seminorms was already proven in 
Lemma 3.9. For the bound in L^, we note that, for each element K e Th, 
we have 

\\I''U\\L^K) < C\\U\\L^K)-

This inequality can be proven on the reference element by noting that here / ' ' 
is a mapping from and into finite dimensional spaces and that it is therefore 
bounded. A scaling argument then shows that the constant is independent of 
the diameter of K and only depends on its aspect ratio. Summing over the 
elements K C Oi then gives the bound in L^. The bounds for the HQQ -norm 
is obtained by using the K-interpolation method; cf. appendix A.l. Thus, 

/*oo 

|w||L/2 = \\u\\l^ + / t-'^K{t,ufdt, 
•"oo Jo 

where 
K{t,u)= inf {\\uo\\H^+t'\\ui\\i.f''\ 

«=«0+«l 0 

The crucial observation is that 

K{t,I*'u)<CK{t,u), 

where C can be chosen as the larger of the constants in the H^ and i ^ bounds. 
The proof then follows easily. D 



Primal Iterative Substructuring Methods 

5.1 Introduction 

In this chapter, which has evolved from Dryja, Smith, and Widlund [178], 
we will introduce and analyze a number of primal iterative substructuring 
methods. The mathematical development of this class of methods began in the 
mid-nineteeneighties with a series of important papers by Bramble, Pasciak, 
and Schatz; see [72, 74, 75, 76]- For a survey article, which covers similar 
material, see Xu and Zou [476]. 

An iterative substructuring method is of primal type if the iteration is car
ried out in terms of a subset of the original finite element degrees of freedom, 
namely those on F, the union of the interfaces between the substructures. In 
Sect. 6.3 and 6.4, we will consider dual methods where the principal unknowns 
of the iteration are certain Lagrange multipliers which enforces the continu
ity of the finite element solution across the interface given by the subdomain 
boundaries. 

In this and the following chapter, we will primarily consider problems in 
three dimensions. In Sect. 5.4, we will consider several families of iterative 
substructuring methods which differ primarily by the selection of the coarse 
space. We will also comment on the easier two-dimensional case in several 
remarks. 

5.2 Local Design and Analysis 

The problems considered in this part of our monograph are of the form (4.3). 
We will develop our theory for the piecewise constant coefficient case, but all 
our results are equally valid for the case when the coefficients vary moderately 
in each subdomain. When all pj = 1, we have the special case of the Poisson 
equation. In order to be successful with problems that have large variations in 
the coefficients, it is important to be able to carry out a local analysis. This 
is often done in a Schwarz framework. 
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Let V^^'> be the restriction of the functions in the solution space V to the 
subdomain Hj. We will assume that the space V can be decomposed into 
a sum of subspaces "^RfVi- We then decompose V^^'^ into subspaces 1̂ /̂  , 
with V^ the restriction of Vi to Hj, and introduce bilinear forms a '̂' (•, •) on 
V}''' X V}''', where the bilinear forms 

are obtained by subassembly just as the bilinear form a(u, v) can be obtained 
from 

i^^'{u,v) = / pjVu-Vvdx. 

The case when the space is a direct sum of the local subspaces V^ has 
been considered by Mandel [332,333]. He showed that if one of the sets of local 
subspaces contains the null space of a^^\-, •), for each J7j, then bounds on the 
condition number of the global preconditioned problem can be obtained from 
bounds for individual subdomains. 

We formulate a related result that is also useful when the local subspaces 
do not form a direct sum decomposition. 

Lemma 5.1 Assume that there exist constants CQ SO that for all u G V 
there exists a representation u = ^iRjui,Ui € Vi, such that 

Y,a^\ui,Ui)<c!,^^\^^Hu,u), 
i 

then the constant Co of Assumption 2.2 can he given by Co = maxj Cg . 

Proof This result follows immediately by summing over the substructures. 
D 

When a local approach to the design of iterative substructuring methods 
works, then there is no real difference between the Poisson case and that of 
arbitrary positive values of the pi. Once the a^^-,-) have been constructed 
for the special case, we can simply scale them by pj and add over j . 

We note that an algorithm due to Smith [421] (Algorithm 5.10) and the 
standard vertex based iterative substructuring method (Algorithm 5.2) can 
be analyzed using substructure by substructure estimates. The overlapping 
additive Schwarz algorithms of Chap. 3 and [179], [180], [181], [183], [466] and 
another algorithm due to Smith [422] (Algorithm 5.7), on the other hand, 
are Schwarz methods for which we have been unable to perform an analysis 
using only local estimates. To our knowledge, no general results, which are 
independent of the values of the pi, exist for those algorithms. 
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5.3 Local Solvers 

Iterative substructuring algorithms with good convergence properties are con
structed from two types of components: many local solvers and a coarse grid 
solver. The coarse model typically has only one or a few degrees of freedom per 
substructure. In this section, we will primarily describe one basic method of 
constructing the local solvers; see further Sect. 6.2 for a discussion of the im
portant Neumann-Neumann algorithms which form another important family 
of primal iterative substructuring methods. We note that, in this and in the 
following chapter, we consider spaces of discrete harmonic extensions; cf. Sect. 
4.4 and, in particular. Lemma 4.9. 

Our approach in this section can essentially be viewed as a classical split
ting of the Schur complement matrix. For simplicity, we write down the pre-
conditioners only for the additive algorithms; similar, but more complicated, 
formulas can be given for the multiplicative Schwarz methods, etc. 

We first recall that the Schur complement for the entire problem is ob
tained through subassembly of the matrices given in (4.12). This results in 
the formula 

( STT STS STV \ 
Sle See Sev • (5.1) 

^Tv ^ev ^vv J 
As in the classical theory for iterative methods, cf. Varga [456], a precondi-
tioner for S can be obtained by a splitting, i.e., by dropping certain blocks, or 
matrix elements. Here we eliminate not only the off-diagonal blocks of (5.1) 
but also the subblocks representing the coupling between all pairs of faces, 
edges, and vertices. The resulting preconditioner has the form 

- 1 
0 0 

0 q - 1 0 
0 0 c - 1 

B 

The matrix Sy^y^ is block diagonal with a block for each face, See has a block 
for each edge, and Svv is diagonal. This is a block-Jacobi preconditioner. We 
note that each block corresponds to a set of adjacent variables on the interface 
r and that we decompose the interface functions by cutting from certain mesh 
points to some of their neighbors, or, equivalently, by partitioning the degrees 
of freedom of Fh into disjoint subsets. 

We need to introduce some additional notations. Let Sj7ij:-i be the sub-
matrix of 5* associated with the face Ĵ % and let Sgie' be that of the edge S\ 
Similarly, Syiyi is the diagonal element of S associated with the vertex V*. Let 
Ryri be the rectangular restriction matrix which returns only the components 
of a global vector associated with the face ^*. Similar restriction matrices. Ret 
and Ryi, are introduced for the edges and individual vertices, respectively. We 
note, e.g., that, Sj^ijn = RjnSR^i. 

The preconditioner B~^ can now be rewritten as 
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B = y RjriS^i^jRjri + y RgiSf-if-iRsi + / ^RyiSyj^jRi^i, 
i i i 

and we also find that 

B S ̂  y RjriSririRj^iS -\- y RgiSgifriRi^iS -\- y RyiSyiyiRyiS. 
i i i 

This preconditioned matrix is the same as that obtained from an additive 
Schwarz method with the spaces V^i, V^i, V^i. Here Vpi is the space of 
discrete harmonic functions defined by the degrees of freedom of Tl; the 
operator R^i represents the extension by zero to all the nodes of FhXJ^l-
Similarly V^i is defined by arbitrary nodal values on £l with a trivial extension 
operator. Thus, R^i V^i consists of discrete harmonic extensions of functions 
with degrees of freedom which vanish at the nodes / \ \£l and R^i Vyi consists 
of discrete harmonic extensions of functions with degrees of freedom which 
vanish at all nodes in 1 ,̂ except at V*. We note that functions in R^^V^i has 
values different from zero only in the two subdomains which have that face in 
common. Similarly, the other spaces have elements different from zero only in 
the subdomains which have that edge or vertex in common. 

To decrease the cost and to avoid computing the elements of the Schur 
complements, we make some further simplifications. We note that the matrices 
S£ici are quite well conditioned; it follows from Lemmas 4.16 and 4.19 that 
their condition numbers are 0(1 + log(H/h)). We therefore replace Sj ;^ ; , in 
the preconditioner, by l/(hiP£i)I. Here J is an identity matrix and pgi = 
Y^ann£i^<t)PJ- ^ *̂ ® Schwarz framework, this corresponds to replacing the 
exact local bilinear forms s{R^iU,R%u) on the spaces V^i by asi{u,u) = 

^4p£A\''^\\%(£i)- We can also replace the diagonal element Syiyt by hipyi = 3place tl 

^i 12dOnv^=ji<iPj- "^^^ modified preconditioner can then be written as 

We note that the second and third sums could be combined into one corre
sponding to the wire basket W*̂ '̂  : 

B-^ = Y, RliS-\^,Rri + RUD'W)~^RW- (5.2) 

Here the elements of the diagonal matrix D^ are constructed from the weights 
p£i and pyi and the local mesh sizes. 

We should also provide a relatively inexpensive algorithm for calculating 
the action of each S^lj^^ • We do so by solving a hnear system associated 
with the two domains J7J and J7j that share the face .F*". Let A '̂-') denote the 
submatrix of A associated with J7JJ = J?, U i?j U J^''. Then, 

^U = (o/)(Jt| |) \?); (5.3) 
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cf. Subsect. 1.3.1. Here the subscripts X and B represent the nodes of J?i U J?j 
and T^^ respectively. We note that this is a problem very similar to that 
discussed in Subsect. 1.3.4. Hence, the action of S'^^jzh can be calculated by 
solving a homogeneous Dirichlet problem on flij with a right hand side that 
differs from zero only on JF^. In this construction, we could also replace J?ij 
by any shape-regular region that contains the face T*^ in its interior. We stress 
that the solution of the local problems never requires the exphcit construction 
of elements of S. Instead, in each iteration, independent Dirichlet boundary 
value problems are solved for regions enclosing the individual faces. 

Sj7kjrh can also be replaced by the J operator, the square root of minus 
an appropriate discrete Laplacian, introduced in Dryja [172] and at the end 
of Sect. 1.3.4, in case we have a regular tensor product triangulation of the 
face. Other preconditioners that are known to be effective for problems on the 
union of two substructures; cf., e.g., Bj0rstad and Widlund [61] and Chap. 1 
can also be considered. 

In the splittings just considered, we eliminate the coupling between all 
pairs of faces and all pairs of edges; for many more details, see Sect. 5.4. In 
our second main approach, we attempt to maintain this couphng. To keep 
the problems local, we instead eliminate the couphng between neighboring 
subdomains working with the full Schur complements of the individual sub
structures; see the discussion of Neumann-Neumann methods in Sect. 6.2. 

5.4 Coarse Spaces and Condition Number Estimates 

In addition to the local solvers discussed in the preceding section, any suc
cessful domain decomposition preconditioner must also contain a global space 
component; see the discussion on page 17. We can either add a coarse solver 
to a preconditioner based only on local solvers or replace part of the precondi
tioner. In this section, we will discuss several coarse spaces. The first of them 
is based on the space V^ of continuous, piecewise linear functions using the 
substructures as elements. Conceptually this is clearly the simplest, but as 
will be shown, it can be inadequate in three dimensions, basically because of 
Lemma 4.12. In the remaining subsections, we discuss wire basket based and 
face based coarse problems. 

Our analysis will be based on the abstract Schwarz theory developed in 
Chap. 2. We note that for all the algorithms, it is easy to obtain a bound on 
p{£) by using a standard coloring argument; cf. Subsect. 2.5.1. We simply note 
that the subdomains associated with the local subspaces form an overlapping 
cover of the domain, and that every point in the domain is covered by a finite, 
uniformly bounded number of such subregions. The subregions can be grouped 
into sets, with elements that do not overlap, and the subspaces related to these 
sets can be merged. The number of subspaces is then reduced to a constant 
and a uniform upper bound for p{£) is obtained. 
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5.4.1 Vertex Based Methods 

In this subsection, we will assume, in order to simplify our work, that all the 
subdomains are tetrahedral; we note that since every UH € V-^ is piecewise 
linear, it is harmonic in each substructure, and thus V^ consists of piece-
wise discrete harmonic functions. To incorporate a global component into the 
preconditioner, we first represent 5 in a partially hierarchical basis. The face 
and edge nodal basis functions are not changed, but those associated with 
the vertices axe replaced by piecewise linear functions on the coarse triangu-
lation. The basis change from the partially hierarchical to the nodal basis is 
represented by 

OIRJ 
, 0 0 / 

where the operators Hjr and Rg represent coarse space linear interpolation 
from the values at the vertices to the faces and edges, respectively. 

The Schur complement (5.1) can be rewritten as 

S=\ 0 / 0 \ \ S^s Sss Ssv \ \ 0 I - m \; (5.4) 
/ 0 0 \ / Sjrjr Sre SjFv \ f i o - -i?j 
0 { 0 1 ^^£ ^J^ J^ 1 0 1 - -RJ 
-R -̂-RslJ X^'rv ^Iv ^vv/ Voo I 

we note that the inverses of the special block triangular matrices are obtained 
by switching the sign of the off'-diagonal blocks. As in the preceding section, 
we now drop the off-diagonal blocks as well as the coupling between all pairs 
of faces and all pairs of edges but we keep the matrix block in the lowest right 
position intact. We obtain, 

/ / 0 o \ /STT 0 0 \ (iQ-ky 
B=\ 0 / 0 0 ^^5 0 0 / - ^ J 

\-Rjr-RslJ \ 0 0 SvvJ VOO / 

The preconditioner can now be written as 

^ , , _ 0 

and 

B~ S = 2_^ Rjri Sj^ijri Rjri S + ^ Rgi Sgi gi -Rfi 5 -|- RffSyyRnS, 

where RH = {Rr Re I)- Thus, we obtain an additive Schwarz preconditioner 
with the same face and edge spaces as before but with a coarse space, V^, 
in place of the set of individual, local vertex spaces. In the case of piecewise 

file:////0I-m
file:///-Rjr-RslJ
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linear finite elements, the matrix Syv is equal to A^, the stifTness matrix 
obtained by treating the substructures as elements; we note that there are no 
interior degrees of freedom in this special case. We can therefore replace the 
two last terms in the preconditioner and obtain 

B~ = y ^R-piSj^ij^jRjri + \ R^iR^i + RffA RH-

As before, there is no need to form the matrix S explicitly. 

Algorithm 5.2 Use a Schwarz method with the suhspaces V^, V^i, and V^j. 
For all the V^j spaces, use the bilinear forms associated with hjP£j\\u\\^2(^gjy 

Theorem 5.3 Algorithm 5.2 satisfies the three assumptions of Sect. 2.3 with 

Co < C{Hjh){l + \og{Hlh))'\ p{E) < C, u<C. 

The constants in the hounds are independent not only of the mesh size and 
the number of substructures, hut also of the values pi of the coefficient of (4-S). 

Proof. We first estimate the first stability parameter, Co- We note that we 
are only going to work with discrete harmonic functions for which s(u,u) = 
a(u,u). Our subspaces form a direct sum, and there is therefore a unique 
decomposition for every u € V'^(n). Let uo = I^u. We use Lemma 4.12 and 
find, by adding over the substructures, that 

aiR^uo^Rluo) <C^pi\I^ufHHQi) < C{H/h)a(u,u), 
i 

where RQ = RH- We next bound the energy for the parts of the decomposition 
of the function u that are associated with the faces. This requires the use of 
Lemmas 4.12 and 4.24. Let w = u — I^u, and let ujrk = 'H{^jrhw), where 
'djrk is the function in Lemma 4.23 and 'H{v) denotes the discrete harmonic 
extension of the function I'^v given on the interface T; cf. Sect. 4.4. Then, 

< CX'i-+log{H/h)f{pi\\w\\%^^^)+pj\\w\\jjt^^.)) 

We recall that we use scaled norms on the substructures; cf. Equation (4.4). 
Therefore, 

J2a{RT''Uj.k,R^kUjrk) < C{H/h){l + log{H/h)fa{u,u). 
k 

Let ugi = R£i{u — I^u). Then, by Lemmas 4.12 and 4.16, and the equivalence 
of the L^{5')- and the scaled -£^(^*)-norm (cf. the discussion after Lemma 
4.19), we find 
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< C{H/h){l + log{H/h)) Y, pMh(o,) 
j 

< C{H/h){l + log{H/h))a{u,u). 

We have thus found a bound for the stability constant Co- In order to obtain 
a bound for to, we only have to consider the edge spaces since exact solvers 
are employed on all the other subspaces. The constant upper bound follows 
directly from Lemma 4.19. D 

Remark 5.4- It is clear that the H/h factor is directly attributable to the 
potentially large energy of the coarse mesh interpolant. The situation is much 
more favorable in two dimensions. In that case, we employ the preconditioner 

B~ = 2_^R£iSgigiR£i + RffA RH, 

which consists of a coarse component build on a coarse vertex based space and 
local components associated with the edges of the partition. The application 
of each S'Jj^; requires the solution of a Dirichlet problem on the union of the 
two substructures that share the edge 5*. A bound for the interpolant I^ is 
given in Remark 4.13, while a result analogous to Lemma 4.24 holds for each 
edge; cf. [180]. In this case, we have the following bounds 

Ci < C{1 + \og{Hlh)f, p{8) < C, w < a 

We also note that this is essentially the algorithm developed in an early paper 
by Bramble, Pasciak, and Schatz [72]. 

In the proof of Theorem 5.3, we must use I^u because all functions in the 
other subspaces vanish at the vertices. In the next algorithm, we add the one-
dimensional spaces associated with each vertex and its standard nodal basis 
function. After doing so, we obtain a much stronger result, but the bounds 
are no longer independent of the variation of the coefficient of (4.3) across the 
interface F. The additive Schwarz preconditioner is now given by 

B = 7 R-r-iS TTiTiRT''^/ 1 RfriRfi-\-RfTA RH'\'/ ~, R^)iR\)i. 

We note that, as in (5.2), we can combine the edge and vertex spaces into a 
single wire basket space, Vy^;, with a corresponding restriction operator, R^. 
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We obtain 

B-^ = Y, RTiT^S-JR^i + R^A^'^RH + R^{D^)-^Rw 

Here D^ is the global diagonal matrix constructed from the weights p^i and 
pyi, and the local mesh sizes, as in formula (5.2). 

Algorithm 5.5 Use a Schwarz method with the subspaces V^, V^i, and Vy^. 
In addition, on the spaces Vyy, use the bilinear form given by u^D^u. 

Theorem 5.6 Algorithm 5.5 satisfies the three assumptions of Sect. 2.3 with 

Cl < C(l + \og{Hlh)f, piS) < C, w < a 

Here we cannot guarantee that the estimate of Cg is independent of the jumps 
in the coefficients of (4-3). 

Proof The proof is almost identical to that given above except that we 
use -Mo = I^u and Lemma 3.6 rather than I^u and Lemma 4.12. D 

Conditions on the pi for which the norm of J^ , and CQ, are uniformly 
bounded are given in Dryja, Sarkis, and Widlund [177]. 

We can increase the overlap between the subspaces and obtain methods 
with condition numbers that are uniformly bounded and independent of H 
and h. Such a method was given in Smith [422]. This algorithm, known as 
the vertex space algorithm has much in common with the two-level additive 
Schwarz methods of Chap. 3 except that we now work with trace spaces 
defined on the interface F. 

To define this algorithm, we first define edge spaces associated with a set 
r^' that includes all parts of the faces adjacent to the edge S^ that are within 
a distance cHj from the edge, see middle of Fig. 5.1. We also define the vertex 

Fig. 5.1. Support of face, edge, and vertex spaces. 
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region T^^ as the part of F that is at a distance less than cHj from the 
jth vertex of the substructure. The space related to this set, after a trivial 
extension outside, is 

Rry' Vjiyj ={ue V''\u{x) = 0 , x e n \ r^'}, 

with a similar definition for Vp^j. For this algorithm, we first consider exact 
projections; the algorithm is then completely defined by its subspaces. 

Algorithm 5.7 Use a Schwarz method with the subspaces given by V^, V!^i, 

In [422], Smith proved the following result. This proof follows almost im
mediately from Theorem 3.13; in fact the proof of that theorem can be con
siderably simplified since we assume that the overlap is generous and the fine 
mesh is a refinement of the coarse. 

Theorem 5.8 Algorithm 5.7 satisfies the three assumptions of Sect. 2.3 with 

Cl < C, p{£) < C, o) = 1. 

Here we cannot guarantee that the estimate of CQ is independent of the jumps 
in the coefficient of (4-3). 

Using the definitions given above, we find that 

B~ = RjjA RH + / ^R-piS^i^jRyri + 
i 

i k 

We note that the first term essentially involves solving a system associated 
with a block of 5", represented in the partial hierarchical basis, while the other 
terms involve systems given by blocks of S in the usual nodal basis. In prac
tical implementations, the Sjnjn, S^sj ^sj, and Sj^ykj^yk need not be formed 
explicitly; we can instead solve problems such as (5.3). Another approach to 
cutting costs is to use probing to obtain approximations of the blocks of the 
Schur complement; cf. Chan and Mathew [131] and Chan, Mathew, and Shao 
[133]. 

In the analysis given in [422], Smith considered only the case when the 
overlap is generous, i.e., on the order of H. However, numerical experiments 
suggest that very satisfactory convergence can also be obtained with a quite 
minimal overlap; cf. Bj0rstad et al. [59], [60] and Gropp and Smith [241]. Thus 
motivated, Dryja and Widlund [182] showed that if the overlap is uniformly 
on the order of 5, then Algorithm 5.7 satisfies 
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Cl<C{l + \og{HI6)f. (5.5) 

We note that a case when the overlap is minimal, as for an algorithm based 
on a direct sum decomposition, corresponds to setting 6 = hm the formula 
above. 

Remark 5.9. A similar algorithm with generous overlap can also be developed 
in two dimensions; see Remark 5.4 for some algorithmic details. In this case, 
we only have coarse, vertex, and edge components. The logarithmic bound 
(5.5) can also be found; see [182]. 

5.4.2 Wire Basket Based Algorithms 

We will now consider another class of coarse problems based on averages and 
the wire basket. Methods of this class use a different approach to overcome the 
difficulties associated with the piecewise hnear interpolation over the coarse 
triangulation, which led to the poor result of Theorem 5.3 or to estimates 
that are not known to be vaUd uniformly for all values of the coefficient of 
(4.3). Instead, we now essentially interpolate using averages of u over the 
wire basket. These algorithms work quite well for problems with large jumps 
in the coefficients; cf. Smith [423] which is a report on an early fully parallel 
implementation of this algorithm. We note that Bramble, Pasciak, and Schatz 
[76] pioneered the use of similar ideas. Here, we begin by describing a method 
introduced in Smith [420]; cf. also [421]. 

For the wire basket based methods, we work with the block matrix (4.13) 
rather than (4.12). Let Ry^ be the operator that maps the values on the wire 
basket onto the faces by assigning, to each node on a face, the average value of 
the nodal values on the boundary of the face. This represents an alternative to 
the change of basis of the space given in equation (5.4). S can now be written 
as 

/ 0\fS:PTSTw\fT-Rj 
^ \-Rw T) [s^ Sww) [o I^ 

We note the similarity with (5.4), but that we are now using piecewise constant 
interpolation onto the faces instead of a piecewise linear interpolation onto 
the faces and edges. Equivalently, the previous transformation is a change 
of basis, where a standard nodal basis function associated with a degree of 
freedom on the wire basket is transformed into ones that has constant values 
on each adjacent face, given by the average of the nodal basis function on the 
boundary of the face in question. We proceed as in the preceding subsection 
and drop the couphng between pairs of faces, and the faces and the wire 
basket. We obtain 

\0 I ) \ 0 S^\yJ \RwI 

and 
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i 

where Ro = (Rw I)- This is also an additive Schwarz scheme that uses 
the same face spaces V^i as the vertex based algorithms. The coarse space, 
fy(;, can conveniently be defined as the range of an interpolation operator 
I%:V''^VX, defined by 

^VV'"= 1 3 u{Xk)0^^,+ ^ UQjrkOjrk. (5.6) 

Here 9x^ is the discrete harmonic extension of the standard nodal basis func
tions (i>k associated with the node xu; see Definition 4.27. The resulting finite 
element function is continuous across all substructure interfaces. Therefore, 
Vy^ is a conforming subspace of V^. We note that we can obtain a much bet
ter bound on the norm of this operator than for the standard coarse space 
interpolant I^ and that this is a key to obtaining better bounds than those 
in Theorem 5.2. 

We note that this coarse space has a relatively large dimension and that the 
use of an exact solver would be relatively expensive. Instead, we will therefore 
use the bilinear form given by 

a^{u,u) = "^{l+logiHi/hi)) hi Pi mm \\u - T]i\\fi{w') (̂ •'̂ ) 
i 

for this subspace, where the r/i are real parameters. The introduction of this 
bilinear form corresponds to replacing Syvw by a matrix that is built from 
substructure contributions that each is a simple rank-one perturbation of a 
multiple of the identity matrix. We remark that the minimum value for the 
quantity r]i is equal to the average of the nodal values of u on the wire basket 
Wi; see Equation (5.8) below. 

In order to solve a linear system involving this bilinear form and a right 
hand side r, 

a^(u,v)=v'^r, veV^, 

we can use a fast technique suggested by Mandel [331]; cf. also Smith [420], 
[421]: let D ^ = (1 -|- log{Hi/hi))hipiI, and rewrite the problem as 

min y " m i n ^(u(*) - rjil^^)'^D^'\u^'^ - rnl^'^) - u^r, 

where all the components of the vector 1̂ *) are equal to one. We then take 
derivatives with respect to r/j and u and obtain the linear system 

l W ^ i ) « ( y W _ l « ^ . ) = 0 , (5.8) 

Z ' u - ^ r > ( ^ h « 7 ? i = r. (5.9) 
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Here, D is the diagonal matrix obtained by subassembling the D^'^K We then 
eliminate u and obtain the following system for the averages 'qi : 

We note that this is a sparse linear system with coupling only between next 
neighboring subdomains. Once the rji are known, u can be found by solving 
the diagonal system (5.9). 

Algorithm 5.10 Use a Schwarz method with the subspaces given by Vyj> and 
V^h and the bilinear form given by ci^{u,u) for the space Vy^. 

Theorem 5.11 Algorithm 5.10 satisfies the three assumptions of Sect. 2.3 
with 

cl < c{i + \og{Hih)f, p{£) < c, w < a 
77*6 constants in the bounds are independent not only of the mesh size and the 
number of substructures, but also of the values pi of the coefficient of (4-3). 

Proof We begin by estimating to. For the spaces V^k, w = 1, trivially, 
since we use exact projections. Let uo € Vy|> and let UQ be the restriction of 
uo to J7i- Let w^^' = u}^' — '%', where u^^^ is the average of the nodal values 
of UQ on the wire basket. Since the mesh is quasi uniform, we can replace 
the ^^(>V')-norm with the L^(W*)-norm (cf. the remarks after the proof of 
Lemma 4.19). We also recall that the minimum values for the quantities rn 
are equal to the averages of the nodal values of u on the local wire baskets 
Wi, or, in case the L^(yV")-norm is employed, to the averages of u on the Wi. 

According to Equation (5.6), we can split WQ into two parts 

i'^ =X)«'0,9.F*>^^*' + ^ ' 

The first has constant values on the faces while the second vanishes there. 
Then, using Lemmas 4.25, 4.19, and 4.30, we obtain 

i 

i 

i k 

<CY,a + ^og{H/h))pi\\wi^^ 
Ili2(>v') 

i 
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We now estimate the stability constant CQ. Let u be an arbitrary dis
crete harmonic function and let WQ := !%''•'•• ^ ^w* is the average of u (or, 
equivalently, of WQ) on the wire basket W*, we find using Lemma 4.16, that 

a^(uo,wo) < C'^(l+log{Hi/hi))iocanpi\\uo-m\\h(w') 
Vi 

< C^(l+log(i / i / / i i ))Vi |«l 

= C{l + \og{Hlh)fa{u,u). 

There remains to estimate the face contributions 

Uj^h = 'H{^jrk{u — Wo)) = 'H{^jrk{u — Ugj^k)). 

We note that the values of UQ on the wire basket are irrelevant since •dyrh 
vanishes on that set. Therefore, by using Lemmas 4.26 and 4.6 We find 

a{R^kUj.k,R^kUjrk) < Cpi|J''(i?^fe{n-Wa^fe)))|^i/2(9^.) 

+ Cpj\I^{'&jru{u - %^0))l^l/2(9f?.) 

< C{l+log{Hlh)f{pi\u\^HHQ,) +pM]i^{aj))-

We then sum over the faces of the partition to obtain the bound for CQ . • 
We conclude this subsection by mentioning two earlier wire basket based 

algorithms due to Bramble, Pasciak, and Schatz [76]. Their work has influ
enced much of the later work in the field. One of their coarse spaces is given in 
terms of the averages of the nodal values over the entire substructure bound
aries OQi- The other space is defined by extending the wire basket values 
as a two-dimensional discrete harmonic function onto the faces, and then as 
a discrete harmonic function into the interiors of the subdomains. For both 
methods. Bramble, Pasciak, and Schatz proved the same bounds as in Theo
rem 5.11; cf. [76]. 

5.4.3 Face Based Algorithms 

We have seen that the vertex space method of Algorithm 5.7 has a condition 
number that is independent of the parameters h and H but that this bound 
might not be independent of the variations of the coefficients across the in
terface r. We could explore the possibility of replacing the coarse space V^ 
by the wire basket space Vy^ and the bilinear form as in Algorithm 5.10. The 
local spaces could be chosen as in Algorithm 5.7. This leads to an algorithm 
for which we can prove the same type of bounds as in Theorem 5.11, i.e., that 
the condition number is bounded by C(l + log(iT/ft))^. We can also show that 
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a bound with C(l + \og{H/h)) holds if we allow the constant to depend on 
the variation of the pi. 

However, there are alternative coarse spaces for which it is possible to 
derive bounds on the condition number that are independent of the values of 
Pi and that are only linear in (1 + log(H/h)); these results were first given 
in [178]. The main ideas behind the first of these algorithms is to expand the 
coarse space by allowing an additional degree of freedom for each face, rather 
than specifying the values on the face in terms of values on all or part of the 
wire basket. We note that some of the coarse spaces that we will explore in the 
remainder of this section have inspired the recent development of dual-primal 
FETI methods which is the topic of Sect. 6.4. 

The first face based coarse space, Vj^, can be viewed as the range of the 
following interpolation operator: 

J ^ M ( X ) = Y^ u{xk)0xu{x)+ "Y UjrkOj-kix). (5.10) 

We note that I^^ is similar to Iy\,, given in (5.6), except that we replace the 
averages UQjrk with ujrk. We equip this new space with the bilinear form 

a^{u,u) = 'Ymmpi{hi\\u-r]i\\%^yvi)+ ^ Hi{l+log{Hi/hi)){ujrk -r]i)^}. 

Algorithm 5.12 Use a Schwarz method with the subspaces given by Vj^, V^i, 
Vp^j, and V^yj and the bilinear form just given by a^{u,u). 

Theorem 5.13 Algorithm 5.12 satisfies the three assumptions of Sect. 2.3 
with 

Cl < C{1 + \og{Hjh)), p{£) <C, u<C. 

The constants in the bounds are independent not only of the mesh size and the 
number of substructures, but also of the values pi of the coefficient of (4-3). 

Proof The proof of the first assumption is quite similar to those of the 
other theorems of this section. We now use WQ = -^M^- Instead of Lemma 3.6, 
we use the foUowing estimates: 

\\u-ltru\\h^o,^ < CHflufjj,^^^) (5.11) 

and 
<C(l + log{Hi/hi))\u\ (5.12) 

Inequality (5.11) follows from Lemmas 4.25, 4.30, a simple trace theorem, 
which provides a bound of the I/^(c?J?i)-norm in terms of the iT-'-{i?j)-norm, 
and a Poincare inequality. The second inequality, (5.12), is estabhshed by 
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using Lemmas 4.19, 4.16, 4.25, 4.30, and, again, the same trace theorem and 
Poincare inequality. 

The estimate 

a^(uo,uo) < C{l + log(H/h))a{u,u), 

with Mo := -^M ,̂ follows from Lemmas 4.16, 4.25, 4.30, and the same trace 
theorem and Poincare inequality. The estimate is developed one substructure 
at a time. Instead of the minimizing iji, we can use ugn^, the average over 
the subdomain boundary. This choice of shift makes it possible to use the 
Poincare inequality and also to avoid introducing an additional logarithmic 
factor. 

The bounds for the other components of the decomposition does not in
crease the value of Co since we are using spaces which overlap generously. We 
use the estimates (5.11) and (5.12). 

Finally, again working with one subdomain at a time, we use Lemma 4.25 
and the fact that I^ reproduces constants to establish that 

a{B^uo,B^uo) <Ca^{uo,uo), UOEVM-

D 

Remark 5.14- In Chap. 7, we will show that all the results for the iterative 
substructuring methods of this chapter and Chap. 6 hold in the spectral ele
ment case as well. These results are obtained directly once we have established 
that almost all the results of Sect. 4.6 are equally valid in the spectral element 
case. An exception is the i^-bound given in Lemma 4.25 which we have just 
used in the proof of formula (5.11). However, we can avoid this problem by 
replacing 9yrk by '&jrk in formula (5.10) for which the i^-bound is trivial and 
which also results in an interpolant which works equally well. 

We can decrease the dimension of the global space just considered. Rather 
than using the coarse subspace, involving all of the nodal values on the edges, 
only one degree of freedom per edge, an average value, suffices. The resulting 
space, denoted by Vg, is the range of the interpolation operator 

4u(x)= ^ u{V'')9v,{x) + ^ U£ie£i{x)+ ^ M^.e^.(x). (5.13) 
v*'er £icw T'^cr 

Here ugi is the average of the values of u on £1 and Ogi the discrete harmonic 
function which equals 1 on that set and vanishes elsewhere on F^- We define 
the bilinear form for this space by 

a^{n, u) = J2pi min{/ii ^ (M(V^) - T]if + 

Hi Y. {u£i-m?+Hi{l+\oz{Hilhi)) Y, ( u ^ . - r y O ' } . 
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Remark 5.15. Since the number of unknowns of the coarse space is just a small 
multiple of the number of subregions, we could also consider using an exact 
solver with this coarse space. 

Algorithm 5.16 Use a Schwarz method with the suhspaces given by V^, V^t, 
Vp^j, and V^yj and the bilinear form associated with aQ(u,u). 

Theorem 5.17 Algorithm 5.16 satisfies the three assumptions with 

Cl < C(l + \og{Hlh)), p{£) <C, co<C. 

The constants in the bounds are independent not only of the mesh size and the 
number of substructures, but also of the values pi of the coefficient of (4-3). 

Proof All the estimates needed are close counterparts of those of Theorem 
5.13. Thus, we use the interpolant I^u to define the coarse space component 
UQ. Using similar techniques as before, we can establish the estimates 

\\i-^-^Bu\\h(n,)<H!\u\jj^^a,) 

and 

We note that it is easy to show that the operator I^ reproduces constants; 
see (5.13). The proof of the upper bound 

a f (tfo,wo) < C{l + log(H/h))a(u,u), 

also follows by an argument very similar to that in the proof of Theorem 5.13. 
We can also show that 



Neumann-Neumann and FETI Methods 

6.1 Introduction 

The FETI and Neumann-Neumann families of algorithms are among the best 
known and most severely tested domain decomposition methods for elliptic 
partial differential equations; cf., e.g., [51], [201], and [308]. They are iterative 
substructuring methods and share many algorithmic components, such as local 
solvers for both Neumann and Dirichlet problems on the subregions into which 
the region of the original problem has been partitioned. We note that while 
the local subspaces of the algorithms of Chap. 5 are related to faces, edges, 
wire baskets, and vertices of the subdomains, we will encounter subspaces 
related to the entire boundaries of our subdomains in Sect. 6.2 and 6.3. 

We will begin this chapter by a description and analysis of the balancing 
Neumann-Neumann method previously briefly discussed in Subsect. 1.3.4 and 
1.3.6. We establish an auxiliary result. Lemma 6.3, which is also central in 
the analysis of the FETI methods. We then discuss two famihes of FETI al
gorithms namely the one-level FETI and the dual-primal FETI (FETI-DP) 
methods. The FETI methods are dual iterative substructuring methods where 
the iterates are discontinuous across the interface; these jumps will only dis
appear at the convergence of the iteration. The iteration is written in terms 
of Lagrange multipliers which are dual variables directly associated with the 
requirement of continuity of the finite element solution across the interface. 
We note that some of these ideas were already briefly discussed in Subsect. 
1.3.5. There the Lagrange multipliers were approximations of the fluxes across 
the subdomain interface. 

As was shown in Subsect. 1.3.4 and 1.3.5, the Neumann-Neumann (FETI, 
respectively) method provides a preconditioner for the Schur complement sys
tem of Sect. 1.3.1 (for the flux equation in Sect. 1.3.2, respectively), by solv
ing Neumann problems using the flux jumps (Dirichlet problems and function 
jumps, respectively) on each subdomain and then correcting the previous iter
ate with the corresponding function (flux) values. Similar ideas were already 
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employed by Glowinski and Wheeler [226, 227] for mixed approximations of 
elliptic problems. 

The term one-level in the FETI context refers to the type of coarse com
ponent or solver employed and not to the overall algorithm. It is in contrast 
to two-level FETI methods, which were developed primarily for biharmonic 
and shell element problems by Farhat et al [198, 192] and involve satisfying 
some of the continuity constraints in each step of the iterations. We will not 
discuss these methods in this monograph but will instead focus on one-level 
and dual-primal FETI methods. The term dual-primal refers to the idea of 
enforcing relatively few continuity constraints, across the interface between 
the subregions, throughout the iteration, as in a primal method, while all 
other constraints are enforced by using dual variables, i.e., Lagrange multipli
ers, as in a one-level FETI method. We will see that the FETI-DP methods 
differ in several important respects from the strictly dual FETI methods, in 
particular the one-level FETI methods described in Sect. 6.3. In fact, from an 
algorithmic point of view, the FETI-DP methods are closer to the primal iter
ative substructuring methods of Chap. 5 than to the one-level FETI methods. 
While the global part of the preconditioner for a strictly dual FETI method is 
directly associated with the dual variables, that of a FETI-DP method is not. 
We note that primal iterative substructuring methods had been studied quite 
extensively, see, e.g., [177], [178], [184], and Chap. 5, well before a similarly 
complete, and quite challenging, mathematical theory was developed for the 
FETI methods; see [87, 88], [340], [435], and [289]. FETI algorithms using 
inexact subdomain solvers have also been developed and analyzed in [288]. 

The theory for iterative substructuring methods has been developed for 
elliptic systems, e.g., in [288] and [383]; see also [291] and Chap. 8 where 
we will extend the theory of this chapter to the system of linear elasticity. 
Extensions were also performed to spectral elements in, e.g., [378] and to some 
hp approximations on anisotropic meshes in [444, 445, 446, 447]; see Chap. 
7 for a more detailed presentation. Neumann-Neumann type and one-level 
FETI algorithms have been devised for convection-diffusion problems in, e.g., 
[2, 5, 440]; see Sect. 11.5 for more details. Neumann-Neumann, one-level FETI, 
and FETI-DP methods for edge element and Raviart-Thomas approximations 
have been proposed in, e.g., [438, 443, 441, 393, 447, 448]; see Chap. 10 for 
more references and details and a presentation of some of them. We note 
in particular that effective FETI-DP algorithms are now available for three-
dimensional edge element approximations as well; see [442]. The Neumann-
Neumann and FETI-DP methods have also been extended to mixed finite 
element methods, in particular, for incompressible Stokes and Navier Stokes 
equations, see [386, 314, 315, 316], and for almost incompressible elasticity, 
see [230, 229]; see also Chap. 9. We also note that algorithmically some of 
the FETI-DP methods that we consider, have certain features in common 
with very early work on iterative substructuring methods for problems with 
many substructures; cf. the brief discussion in Subsect. 1.3.6 and the studies 
on Neumann-Dirichlet algorithms in [176], and two contributions to the first 
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international symposium on domain decomposition methods, [173] and [465]. 
We note, in particular, that, as indicated in Chap. 1, the Neumann subsystems 
of these early algorithms are nonsingular; there are no floating subregions 
because of a device very similar to that used in the FETI-DP methods. The 
use of Lagrange multiphers, in a special context, was also suggested in [465]. 

6.2 Balancing Neumann-Neumann Methods 

In this section, we will describe and analyze a hybrid Schwarz algorithm 
known as the balancing Neumann-Neumann method. It is one of a family 
of Neumann-Neumann methods which were first developed without a coarse 
space; see early papers by Bourgat, De Roeck, Glowinski, Le Tallec, and 
Vidrascu [65, 153, 154]. They were later considerably improved by adding a 
second, coarse level; see Dryja and Widlund [184], Le Tallec [308], and Mandel 
and Brezina [335]. We note that the work in [184] concerned additive methods 
and that so does some recent work by Mandel and Dohrmann [336, 164, 165]. 
In contrast to the work in Chap. 5, we will find that the lower bound on the 
Schwarz operator (see Sect. 2.3 and 2.5.2) can be derived by algebra alone 
and that the main effort will go into the proof of an upper bound of the norm 
of the Pi from which the Schwarz operator of the method is built. We will 
again confine our study primarily to the three-dimensional model problem 
given by (4.3). References to other types of problems or approximations have 
been given in Sect. 6.1. 

6.2.1 Definition of the Algorithm 

In the rest of this chapter, we wiU denote the standard finite element space 
of continuous, piecewise linear functions on Hi by W'^{f2i), as is standard 
practice in the FETI literature. We will reserve the notation V for a space of 
Lagrange multipliers which is introduced in Sect. 6.3.1. We will always assume 
that the functions of W'^{i7i) vanish on dHn and that the triangulation of 
each subdomain is quasi uniform. 

We denote the corresponding trace spaces hy Wi := W^{dQi fl P) , i = 
1 , . . . , iV, and by W := n i= i ^i ^^e associated product space; for a definition 
of the interface F, see Sect. 4.2. Given u £ W, we denote its i-th component 
by Ui. We will often consider elements of W which are discontinuous across 
the interface. Thus, in the FETI methods, the continuity of the finite element 
solution across the interface will be satisfied only at the convergence of the 
iteration. 

We can naturally define a stiffness matrix A and a Schur complement ma
trix S on these product spaces as direct sums of the subdomain stiffness and 
Schur complement matrices, respectively. We recall that for a chosen finite 
element method and for each subdomain Hi, we first assemble the local stifi'-
ness matrix A '̂̂  and the local load vector corresponding to single, appropriate 
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terms in the sums of (4.3). The interior variables of any subdomain are then 
ehminated by a step of block Gaussian elimination in work that can be par-
allehzed across the subdomains. As in Chap. 4, the resulting matrices are the 
Schur complements 

S'^'^=A%-AfMfi)-'Afr, i = l , . . . , iV, 

where F and / represent the interface and interior, respectively. As before, 
the 5^') are only needed in terms of matrix-vector products. 

Our finite element approximation of the elliptic problem is continuous 
across F and we denote the corresponding subspace of W by W. We note 
that while the stiffness matrix A and Schur complement S, which correspond 
to the product space W, are singular if we have any floating subdomains, 
those on W are not. As in Sect. 2.2, we introduce interpolation operators 
-Rf : Wi —> W; the continuous global function Rfwi G W shares the nodal 
values with Wj on d^i^h H J/j and vanishes on the rest of Jft. 

An important role in the description and analysis of the Neumann-
Neumann algorithms is played by a family of weighted counting functions 
5i € Wi, which are associated with the individual dOf, cf. [177, 184, 335, 412]. 
They are defined for 7 € [1/2,00) by a sum of contributions from /?j and its 
relevant next neighbors, 

Si{x) = ^'""f ^' , x&dQi,hf\Fu. (6.1) 
Pi 

Here X^ is the set of indices j of the subregions such that x e dQj^h- We note 
that this formula can be extended to the case when pi varies over the boundary 
of the subdomain but that we will only consider the piecewise constant case 
in our theory. We recall that any node of Fh belongs either to a face common 
to two subdomains, to an edge common to at least three subdomains, or is a 
vertex node common to several substructures; cf. Sect. 4.2. The pseudoinverses 
Si are defined by 

5\{x) = (Si{x))-\ X e dOi^h n Fh. (6.2) 

They provide a partition of unity: 

Y,Rjh\x) = l, xeFh. (6.3) 
i 

An operator, E,^ : W —y W, will be central to our discussion: 

JV 

^ ,«:=^i?f /^4«, ) . (6.4) 
i=l 

We note that, at any node x Q. Fh, E^u{x) provides an average of the values 
Ui{x), with i ^ J\fx, weighted with the values S\{x) and that it defines a 
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6]ui + Sluj + ^I 

Fig. 6.1. Point-wise weighted averages oi u £ W provided by tlie operator E^ 

continuous function. Clearly, when restricted to W, E,^ reduces to the identity 
mapping because of (6.3); see Fig. 6.1 for an example of three subdomains. 

We recall that our iterative substructuring methods determine the value 
of the finite element solution on the interface F. We also recall that we can 
regard the traces of an element w E W as, Dirichlet data given on the sets 
dfii^h n Fh and that any discrete harmonic function is completely defined 
by its values on those sets. Once these values are known, the values inside 
the substructures can be found by using the first equation of (4.10), i.e., 
by solving local Dirichlet problems on the substructures or a problem with 
a Dirichlet condition on dQi^u H Fu, a homogeneous Dirichlet condition on 
dQi^h n dS2D,hi and a Neumann condition on 5/?i,ft H dQN,h- Equivalently, 
we can then say that our iterative substructuring methods determine the 
piecewise, discrete harmonic part of our solution while the other interior parts, 
which are orthogonal to the discrete harmonic functions, can be determined 
immediately from the first equation of (4.10) in the preliminary Gaussian 
elimination step. 

We will now define a Neumann-Neumann algorithm using the framework 
of Chap. 2. A minimal coarse space Wo CW for this algorithm is defined by 
the Si of the interior, floating substructures, i.e., those with boundaries which 
do not intersect dfln^ the part of the boundary of the original region J? where 
we impose zero Dirichlet boundary conditions: 

Wo = span {Rj5\ , dQi n OQD = 0}- (6.5) 

We will denote by BIQ the matrix with columns representing the basis functions 
of Wo and by Po : W —y Wo, the projection onto the coarse space using an 
exact solver. We can also include functions related to the other substructures 
in WQ. They are constructed by extending the dj by zero on OHD H df^i. 
The inclusion of these basis functions often improves the performance of the 
algorithm. We will make the following assumption: 
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Assumption 6.1 There is no subregion i?i with a boundary that intersects 
d^D,h in only one or a few of its vertices. 

We note that this assumption is not necessary for the theory of the Neumann-
Neumann method if extra basis functions for the coarse space are added as 
just suggested, cf. Dryja and Widlund [184], nor for the FETI-DP theory, 
of. Klawonn, Widlund, and Dryja [292], but that we do not know if it can 
be dispensed with in the proof of the main results for the one-level FETI 
methods while maintaining good quality bounds on the rate of convergence 
of the algorithms. 

The local spaces Wi of our Schwaxz algorithm axe simply the i-th com
ponent of the product space W. We recall that an element of RfWi C W, 
associated with the substructure i?^, can be regarded as a continuous, piece-
wise discrete harmonic function defined by its values at the nodes of OHi^h nFh 
and which vanishes at all points of rh\dfii^h- We also recall that whenever we 
write 'Hi{ipui), we will assume that we first form I^{(fUi), i.e., map the product 
of the two functions </? and Ui into the finite element space by interpolation, 
and then extend the result as a discrete harmonic function. 

The bilinear form Si{u,v) for the subspace Wi is defined by 

Si(u,v):=ao,{'Hi{Siu),'Hi(Siv))=pi VHi(Siu) •VHi{6iv)dK. (6.6) 

This scaled Neumann problem defines a projection-Uke operator Pi = RfPi 
given by 

Si{PiU,Vi) = s{u,Rjvi), VieWi] (6.7) 

cf. (2.6). Here s(-, •) is the restriction of the bilinear form a(-, •) to the subspace 
of piecewise discrete harmonic functions. For any floating subdomain, PjW is 
defined only for those u e W ior which s{u,Rfvi) = 0 for the Vi for which 
HiiSiVi) is constant on J?,. This condition is satisfied if s('u, RfS}) = 0; we note 
that Rjdl is a basis function for WQ- A right hand side of (6.7) satisfying these 
compatibility conditions is said to be balanced. For any fioating subdomain, we 
make the solution PiU of (6.7) unique by imposing an additional constraint. 
We could require 

'Hi{5iPiu)dx = 0, (6.8) / 

which just means that we select the solution orthogonal, with respect to the 
I/^-scalar product, to the null space of the Neumann operator. But it is more 
convenient to choose the solution that belongs to range{S^-^'>), 

I^{6iPiu) e rangeiS'^^), (6.9) 

i.e., the solution orthogonal, with respect to the ^^-scalar product, to the null 
space of the Neumann operator. In any case, range{Pi) has codimension one 
with respect to the space Wi if i?^ is a fioating subdomain, and it coincides 
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with Wi otherwise. We note that the choice of these constraints will not affect 
the algorithm at all; they are just required for the analysis. 

We now use the first hybrid Schwarz operator (2.11) introduced in Sect. 
2.2 to define our algorithm. The relevant operator, for which we will estabhsh 
spectral bounds, is 

N 

Phyl =Po + {I- Po)C£Pi){I - Po)- (6.10) 
i=l 

We recall that a general framework for hybrid Schwarz operators of this type 
was introduced in Sect. 2.5.2. In particular, we can employ Theorem 2.13. 
We note that the right factor (/ — PQ) assures us that the right hand side of 
(6.7) always will be balanced; therefore, the local Neumann problems are all 
solvable. 

The bihnear form of the left hand side of (6.7) is defined by the H^{Oi)-
seminorm and a diagonal scaling of the nodal values on dOi^h^Ph. This scaling 
has the great advantage that a stable decomposition is immediately available. 
Since u = E^u, for u £W, formula (6.4) provides a sphtting of u: 

N 

U = ^Rfvi, Vi:=l''{Slui)eWi. 
i-l 

In addition. 
N 

^Si{vi,Vi) = s{u,u), ueW. (6.11) 

A consequence of this formula is a lower bound of 1 for the additive Schwarz 
operator '^^—i Pi, and thus for Phyi, since PQ is an orthogonal projection; cf. 
Assumption 2.12 and Theorem 2.13. 

6.2.2 Matrix Form of the Algorithm 

We can rewrite our algorithm using matrix notations, denoting the Euclidean 
scalar product by (-,•). Let D^''^ be the diagonal matrix with the elements 
SJ^x) corresponding to the point x G dfli^h- Then, 

Si{u,v) = {S^^D^^~^u,D^'^~^v). 

We also have, 
Pi = RjPi = RjD^^S^^^D^^RiS, 

where 5'*̂ '̂ ''' is a pseudoinverse of S'^'^\ We recall that the appUcation of 5'*̂ '̂ ''' 
to a vector can be carried out by solving a Neumann problem on /?» with an 
appropriate right-hand side; see Sect. 4.3. In case Qi is a floating subdomain, 
the solution is not unique and different choices for the particular solution 
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1. Initialize 

M° = R^So^Rofr + w, w € range{I — Po) 

2. Iterate k — 1,2,... until convergence 

N 

Precondition: z"'' = ^R^D^^S^^'^D^'^Riq"'^ 

Project: y*"^ = {I - R^S^^RaS)z''-^ 

a^=(y '= -^g*- l ) / (p^V> 
u = u ~ -\- a p 

q — q — a bp 

= 0] 

Fig. 6.2. Implementation of the balancing Neumann-Neumann algorithm as a 
projected preconditioned conjugate gradient method. 

provide different pseudoinverses. As in the previous subsection, we will select 
the solution which belongs to range{S^^^) to simplify our analysis. Thus, 

range{Pi) = range{D^'^ S^^); (6.12) 

of. (6.9). In the following, we assume that this choice has been made, but 
note that similar bounds hold for the first one, and generally for any choice 
that ensures that a Poincare inequality holds for vectors in range{D^'^'i Pi); 
cf. (6.8). Since for floating subdomains the kernel of 5'̂ *̂  consists of constant 
vectors, we find that 

k{ui) := III (ijui) = 0 <^^ me range{S^^), (6.13) 

where Ij 6 W, is a vector of ones. 
Since an exact solver is employed for the coarse space, we have 

-Po = RQ SQ RQS, SO '•= ROSRQ . 

Implementation issues have already been discussed in Sect. 2.5.2. We 
rewrite the projected conjugate gradient algorithm of Sect. 2.5.2, for our par
ticular balancing Neumann-Neumann method for the solution of 

Su = fr, w e W, 
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in Fig. 6.2. We note that because of Lemma 2.11, we are able to eliminate the 
first projection step. Since we only work with vectors in the continuous space 
W, the expression of the Schur complement S is given by (4.10). The apph-
cation of 5 to a vector involves the solution of a Dirichlet problems on each 
substructure. Each step of the iteration involves one application of PQ, and 
thus one multiplication with S and the solution of a coarse problem involv
ing 5*0 - In addition, we solve a local Neumann problem on each substructure, 
when applying S'^^^^, and also a local Dirichlet problem for each subdomain 
which is required for the second application of S in the calculation of the 
new residual. Therefore, there is a total of one Neumann and two Dirichlet 
problems on each substructure and one coarse problem in each step. We note 
that all the Neumann problems can be solved in parallel and that so can the 
two groups of Dirichlet problems. 

6.2.3 Condition Number Boimds 

We now provide a condition number estimate; we will use the abstract frame
work of Sect. 2.5.2 only in part. We first note that J^^-i PiU is obtained by 
solving a Neumann problem for each subregion i?,. If standard unsealed local 
Neumann solvers are used, we first obtain the vectors Wi := S^'^^^D^'''>RiSu. 
These local solutions generally do not match across the interface but they 
define elements in the Wi- They are then averaged using the S}, i.e., the ele
ments of £>(*), as weights and the resulting interface values are then extended 
as piecewise harmonic functions by solving a Dirichlet problem on each sub-
domain. Thus, we start with w £W defined by 

Wi = D^^'^RiPiU = D^^'^PiU = S'^^^D'^^RiSu, ueW. (6.14) 

We note that, because of our choice for 5*̂ *̂  (cf. (6.12)), w € range{S). Using 
formula (6.4), we find that 

N 

E^w = ^PiU. (6.15) 
i=l 

We now proceed to find upper and lower bounds on the spectrum of Phyi. 
We have already observed in Chap. 2 that we can view such a hybrid method as 
an additive Schwarz method on the subspace range{I—PQ); cf. Theorem 2.13. 
A lower bound of 1 now follows directly from formula (6.11); see Assumption 
2.12 and Theorem 2.13. 

In order to find an upper bound, we first need certain Poincare type in
equalities. 

Lemma 6.2 Let w £ range{S). Then, if Hi is a floating subdomain, 

with a constant that is independent ofwi. Hi, and hi. 
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Proof. If Qi is a floating subdomain, then (6.13) holds. We note that, if v 
is constant on dQi, then 

;.(v) = 0 -^ v = 0. (6.16) 

Using Lemma B.31 and the scaled norm in (4.5), we find 

Urn)? < {hjijii)ihjwfwi) < c\dni\\\wi\\h^s^^^ < CHf\\wi\\jj^,,^g^^y 

with a constant that is independent of Wj, Hi, and hi- The linear functional 
li{-) can therefore be extended to a functional, still denoted by Zj(-), to all of 
H^/'^{dfii). Property (6.16) still holds. The application of Lemma A.17 and a 
scaling argument conclude the proof. D 

The following lemma is central in the theory for the Neumann-Neumann 
as well as for the FETI methods. Our estimates are expressed in terms of the 
norm 

N 

i=l 

% = {w,Sw) =Y^\wi\%i), we W. 

We recall that |wi||(i), pi\'Hi(wi)\^j^i_^^.^ and 
pi|^i|jfi/2(-g^.-) provide equiva

lent seminorms for Wi eWi, according to Lemmas 4.9 and 4.10. 
Lemma 6.3 Let E^ he the operator defined in formula (6.4)- Then, 

\E^wfs<C(l+log{H/h)f\w\l, w€range{S). (6.17) 

Proof. We rewrite the formula for v := E^w for an arbitrary element 
w eW and find that for « = 1 , . . . , A'', 

Viix) := {E^w{x))i = J2 I>'{S}wj{x)), a: G 5/?^,,, n A . (6.18) 

Here J\fx is again the set of indices of the subregions that have x on their 
boundaries- We note that the coefficients in this expression are constant on 
each face and edge of 5i?i and that their values will often differ between 
different faces, edges, and vertices. It is therefore natural to write Vj as a sum 
of terms that vanish at all the interface nodes outside individual faces, edges, 
and vertices, respectively. The norms of the individual terms of this sum are 
then estimated. We will use the characteristic finite element functions 9jr of 
a face !F, 9s of an edge S, and 9y of a vertex V for this purpose; they were 
already introduced in Sect. 4.6 (cf. Definitions 4.18, 4.22, and 4.27). They 
are discrete harmonic functions that vanish at every node of dOi^h except at 
those of .F/i, those of £h, and at V, respectively. As shown in Sect. 4.6, these 
functions define a partition of unity and we have also already developed a 
number of technical results pertaining to them in the same section. One of 
the few things that is really new in this proof is the use of the following simple 
inequality, which can be proven by an elementary argument: 



6.2 Balancing Neumann-Neumann Methods 141 

piSJ <mm{pi,pj), (6.19) 

for 7 6 [1/2, oo). This inequality and the choice of scaling of the Neumann 
problems will allow us to develop bounds for the rate of convergence of our 
algorithms which do not depend on the values of the pi. 

We only need to estimate the contribution from one subdomain Hi to the 
norm of E^w. In this proof, we tacitly assume that the number of subdomains 
to which an edge or a vertex belong is uniformly bounded; this is certainly 
true if Assumption 4.3 holds. 

We have, by using the partition of unity, 

T<ZdQi ecdOi V£90i 

We first consider the face terms. 

Face Terms. We note that the sum in (6.18) gives rise to two contribution 
for a face J^ shared by, e.g., i?j and i?j, namely, 

I'^ie^vi) = I'^ie^isjuji + s}wj)). 

If4{^)and4{^) 
are the values of Sl(x) and S'j{x), respectively, a,t x E Th, 

we can write 
Pi\i'^ie^vi)\l,,,^^g^^^ < Cpi\\iHOTVi)\\l,^.^^^ 

+ 2Cpidt{j^f\\i>^{erwj)\\%,^,^^^ 

< 2Cpi\\lH0Tm)\\lu^,^,+2Cpj\\l'^{d:pWj)\\l,,, 
•"oo (•''> -"oo (•''> 

where we have used (6.19) for the last inequality. Lemma 4.26 and the Poincare 
inequality in Lemma 6.2 now provide the bound 

\l''{eTVi)\%., < C{l+log{H/h))H\wi\%., + \wjfsa,), (6.20) 

if both J7j and J?j are floating subdomains. For a subdomain with a boundary 
that intersects df^D, we instead use the inequality 

with Wijr the average of Wi on J^. The first term can be estimated by using 
Lemma 4.26. The second term can be estimated by 

C{l + log(H/h))\\wi\\j,, /2(afi i) ' 

file:///wjfsa


142 6 Neumann-Neumann and FETI Methods 

by using Lemmas 4.30 and 4.26. We complete the proof by using either a 
standard Priedrichs inequahty or, if the intersection of dQi and dQo is only 
an edge, Lemma 4.21 and obtain a bound of the same quality as for the 
floating subdomains- We recall, that under Assumption 6.1, we do not need 
to consider any other cases. 

Edge Terms. Similar arguments work for the edge contributions. Let x be 
any nodal point in 8h- If <^i(^) is the value of 5],{x), for k £ Xx, Lemmas 4.19 
and 4.9, (6.19), and the triangle inequality yield 

\i\eevi)\%.,<cpi\\ Y, 4(̂ KIIî (̂ ) <c E pk\W\?me)-

Lemmas 4.17 and 6.2 give, in case all the subdomains are floating, 

\l''{0svi)\l,,, < C{1 + logiH/h)) Y, kfcll(^)- {6-21) 
k£^fx 

For the other subdomains, we proceed similarly to the estimate of the face 
terms and write Wk = {wk —Wkjr) +WkTi with J^ C df^k a face that contains S 
on its boundary. We then estimate the two terms separately. For the first, we 
use Lemma 4.17 and a Poincare inequality for the face JF; cf. Lemma A.17. For 
the second, we first employ Lemma 4.30 and then either a standard Friedrichs 
inequality or, if the intersection of 5/2, and di^jy is only an edge. Lemma 4.21. 
We finally arrive at (6.21). 

Vertex Terms. We finally consider the vertex components. Lemma 4.28 and 
(6.19) gives 

|ui(V)0v||w <C Yl Pk\\wkfm/2(^9n,y 
keAfy 

The use of a Poincare inequality gives 

k(V*^>v||« <C Y l̂ fcllw (6.22) 
k<£Afv 

in case all the subdomains are floating. Subdomains next to dOo can be 
handled with the same techniques as before; if a subdomain only has an edge 
in common with df^D, we have an extra factor (1 +log(iJ//i)) in the estimate. 

The proof can now be concluded by using estimates (6.20), (6.21), and 
(6.22), and summing over the faces, edges, and vertices of i7j, and then over 
the substructures. D 

To prove our upper bound for the hybrid Schwarz operator, we could 
work with Assumption 2.4 and Lemma 2.6 (or, equivalently, Theorem 2.13). 
However, we will find it more convenient to estimate the norm of the operator 
Y,Pi directly. 
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With Wi defined by (6.14), we have already estabhshed formula (6.15). We 
recall that the global function w &W belongs to range{S). With the Wi as in 
(6.14), we also find by using the definition of the Pi that 

i i 

i i 

Therefore, we find, by using (6.15), (6.23), and Lemma 6.3, that 

I Y.i PM% = \Eo< < 0(1 + logiH/h)f\w\l 

= C{l + log{H/h))^{j:iPiU,u)s. 

(6.23) 

(6.24) 

Therefore 
N 

\Y.Pi\s<C{l+\og(H/h)y\ 

N 

{Y,Pin,u)s < C{l+\og{Hlh)Y\u% 

and the proof of the following theorem is completed after noting that PQ is an 
orthogonal projection. 

Theo rem 6.4 The hybrid Schwarz method defined by the operator (6.10) and 
the spaces and bilinear forms of this section satisfies 

s{u,u) < s{Phyiu,u) < C{l + log{H/h))'^s{u,u), 

where C is independent not only of the mesh size and the number of substruc
tures, but also of the values pi of the coefficient of (4-3). 

Remark 6.5. We note that the smallest eigenvalue of Phyi is exactly one, since 
we have equality in formula (6.11); cf. (2.13) in Lemma 2.5. 

6.3 One-Level FETI Methods 

The finite element tearing and interconnecting (FETI) methods were first 
introduced by Farhat and Roux [200]; for a detailed introduction, see [201] 
or [435]. An important advance, which made the rate of convergence of the 
iteration less sensitive to the number of unknowns of the local problems, 
was made by Farhat, Mandel, and Roux a few years later in [199] where the 
Dirichlet preconditionerwas. introduced. The first, quite pioneering theoretical 
work was carried out by Mandel and Tezaur [340, 435]; see also Brenner [87, 
88]. Here we will essentially follow a paper by Klawonn and Widlund [289] in 
which the family of algorithms and the theory was extended in several different 
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respects. In this section, we will focus on the older one-level FETI methods; 
we will introduce and analyze several dual-primal FETI methods in Sect. 6.4. 
We note that the FETI algorithms have also been extended to some diflfusion-
reaction problems, for which the local Neumann problems are nonsingular, 
by Farhat, Chen, and Mandel [191], to some finite element approximations of 
Max;well's equations in two dimensions and with discontinuous coefficients by 
Toselli and Klawonn [443] and Rapetti and Toselh [393], and to some scalar 
convection-diffusion problems by Toselli [440]. Here we will primarily consider 
problems in three dimensions, focusing, in particular, on the elliptic problem 
given in (4.3). More references have been given in Sect. 6.1; see also Sect. 6.4 
for FETI-DP algorithms. 

When introducing the dual-primal FETI methods, in Sect. 6.4, we will also 
use additional, intermediate subspaces W oi W for which only a relatively 
small number of continuity constraints are enforced across the interface in 
each iteration. One of the benefits of working in W, rather than in W, will 
be that two related Schur complements will be strictly positive definite; see 
further Sect. 6.4. 

6.3.1 A Review of the One-Level FETI Methods 

In this subsection, we review the FETI method of Farhat and Roux [200, 201], 
in particular, the variant with a Dirichlet preconditioner introduced in Farhat, 
Mandel, and Roux [199]. We will also introduce a general family of projections 
that was first introduced for heterogeneous problems in [201]. Such methods 
have been tested in large scale numerical experiments; see, e.g., [51]. For a 
more detailed description and extensions beyond scalar elliptic problems; see 
[191, 193, 342, 398, 435] and Chap. 8. We also point out that there are other 
variants of the FETI methods, e.g., those due to Park, Justino, and Felippa 
[372]. The relation of one of them to the FETI methods developed by Farhat 
and Roux is discussed in [401], and a convergence analysis of this method can 
be found in Tezaur's dissertation [435]. Still other variants are due to Brenner 
[87, 88]. 

In what follows, we will work almost exclusively with functions in the trace 
spaces Wi and, whenever convenient, consider such an element as representing 
a discrete harmonic function in i?^; cf. Sect. 4.4. Thus, for w £ W, H{w) 
denotes the piecewise discrete harmonic extension into all of the J? ;̂ we will 
understand ^{{w) as an element in a product space W with the components 
Hiiwi). 

The values of the right-hand sides also change when the interior variables 
are eliminated. We denote the resulting vectors, representing the modified 
load originating in i?j, by / , , and the local vectors of interface nodal values 
by ««. 

We can now reformulate the finite element problem, reduced to the inter
face r, as & minimization problem with constraints given by the requirement 
of continuity across F: find u £W such that 
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Fig. 6.3. Left: U-shaped arrangement of Lagrange multipliers for an edge in a 
nonredundant case. Right Lagrange multipliers for an edge in the fully redundant 
case. 

J{u):=^{Su,u)-{f, 
Bu = 0 

u) -^ min 1 

J 
(6.25) 

where 

u = , / = 

\UN ) 

/ 2 

\fNJ 

, and S = 

/ 5 « 0 ••• O \ 

o 5(2) ••- ; 

: • • - • • - O 

\ O ••• 0 S 'Wy 

The matrix 
5 = { B « , B ( 2 ) , . . . , B W ) (6.26) 

is constructed from {0,1 , -1} such that the values of the solution u associated 
with more than one subdomain coincide when Bu = 0. We note that the 
choice of B is far from unique. While there is little choice of how to write 
the constraint for a nodal point which belongs to a face, there are many 
options for a point on an edge or for a vertex. For the face nodes, we only 
have to choose a sign, but we note that for an edge node, e.g., one common 
to four subdomains, a minimum set of three constraints can be chosen in 
many ways to assure continuity at the point in question. In fact, for such an 
edge node, up to six constraints can be introduced; see Fig. 6.3. The local 
Schur complements S^'^^ are positive semidefinite, and they are singular for 
any subregion with a boundary that does not intersect dHo- The problem 
(6.25) is uniquely solvable since kernel{S) n kernel{B) = {0}, which means 
that S is invertible on kernel{B). 

By introducing a vector of Lagrange multipliers A to enforce the constraints 
Bu = 0, we obtain a saddle point formulation of (6.25): find {u,\) €W ~x.U 
such that 

\Su + B^X = f 
I Bu = 0 

(6.27) 
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We note that the solution A of (6.27) is unique only up to an additive element 
of kernel{B'^). The space of Lagrange multiphers, U, is therefore chosen as 
range{B). It can then be regarded as the space of jumps of functions in W. 

We will also use a full-column-rank matrix built from all of the null space 
elements of S; these elements are associated with individual subdomains 

R = 

^i?(l) 0 0 \ 

0 7?(2) 

Ko 0 
0 

(6.28) 

Thus, range(R) = kernel{S). In fact, the subdomains that intersect dHn do 
not contribute to kernel{S), and therefore those columns of R are void. 

Remark 6.6. The case of linear elasticity is considerably more complicated. 
For the interior subregions, there are full six-dimensional null spaces of rigid 
body motions. There can also be contributions to R from subdomains with 
boundaries intersecting OQD for which there are not enough essential bound
ary conditions to fully control the entire space of rigid body motions; see 
further Chap. 8 and appendix A.6.2. 

A solution u of the first equation in (6.27) exists if and only if / — B^\ G 
range{S); this constraint will lead to the introduction of a projection P . We 
obtain 

u = S\f-B'^X)-Ra a f - B'^\ L kernel{S), 

where 5^ is a pseudoinverse of S. We will see that a can be determined 
easily once A has been found. The pseudoinverse is generally not uniquely 
determined, but it can easily be shown that our algorithms are invariant to the 
specific choice. Thus, without loss of generality, we can assume in our analysis 
that S'^ is symmetric. We can, e.g., choose the Moore-Penrose generahzed 
inverse; see Golub and Van Loan [231]. We note that another, computationally 
less expensive alternative has been implemented in Farhat and Roux [200]. 

Substituting the expression for u into the second equation of (6.27) gives 

BS^B'^X = BS^f - BRa, (6.29) 

and we obtain the system 
F\ + Ga = d 

e GT\ = " (6-30) 

with F := BS^'B'^, G := BR, d := BS'^f, and e := R'^f. 
We now introduce a symmetric, positive definite matrix Q and an inner 

product (A,/i)(5 := (A, Q/i) on U = range{B). As before, (•, •) stands for the 
^^—inner product. Let 

P^:=I-G{G^QG)-'G^Q 
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be the projection from U onto the subspace of Lagrange multiphers that are 
Q—orthogonal to range{G); see the definition of V below. We find that 

We note that 
P = I - QG{G'^QG)-^G'^ 

is a projection from U onto kernel{G^); this projection is orthogonal in the 
Q~^ inner product, i.e., the inner product defined by (A, Q'^JJ). By multiply
ing (6.29) by (G^(5G)-^G^(5, we find that a := (G^QG^^G^Qid - FX), 
which then fully determines the primal variables in terms of A. We note that 
the operators P and P^ represent the only global part of the preconditioner. 

There are different successful choices for Q. In the case of homogeneous 
coefficients, it is sufficient to use Q = I, while for problems with jumps in the 
coefficients, we have to make more elaborate choices to make our bounds inde
pendent of the variations of the coefficients in Equation (4.3). A full analysis 
has been developed in [289] for a family of diagonal scahng matrices Q as well 
as for the case when Q is chosen as the FETI Dirichlet preconditioner; see 
Sect. 6.3.2 and 6.3.3 and [51, 201]. Here we will only consider the latter choice 
in detail. The version with a diagonal scaling has been tested experimentally 
by Rheinbach [396] and it performs very satisfactorily and it also decreases 
the computational cost. We also note that we can view the introduction of a 
nontrivial positive definite, symmetric Q in terms of a scaling of the matrix 
B from the left by the operator Q^^^. 

We now introduce the spaces 

(6.32) 
V :={XGU : {X,Bz)=0, z € kernel(S)} 

= kernel (G'^) = range{P), 

and 

V •.= {neU : in, BZ)Q = 0, ze kerneliS)} = range{P'^). (6.33) 

It can easily be shown that V is isomorphic to the dual space of V- Following 
Farhat, Chen, and Mandel [191], we call V the space of admissible increments. 
The one-level FETI method is a preconditioned conjugate gradient method, 
in the space V, applied to 

P'^FX = P'^d, XeXo + V, (6.34) 

with an initial approximation AQ chosen such that G^XQ = e. 
The most basic FETI Dirichlet preconditioner, as introduced in Farhat, 

Mandel, and Roux [199] for Q = / , is of the form 

N 

M-^ := BSB'^ = ^B«S«B«^ . (6.35) 
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We note that S can be replaced by a principal minor of A, but that such 
a choice leads to much poorer bounds and it can also lead to an increased 
number of iterations. To apply M~^ to a vector, N independent Dirichlet 
problems have to be solved, one on each subregion; it is therefore called the 
Dirichlet preconditioner. 

We note that, strictly speaking, the matrix M~^ does not have an inverse, 
but we will^how in Lemma 6.11 that PM~^ is a one-to-one mapping of V 
to V, here M~^ is our modified preconditioner defined in the next subsection; 
of. (6.37). In fact, to keep the search directions of this preconditioned conju
gate gradient method in the space Vj the application of the preconditioner 
M~^ (or M~^) is followed by an appUcation of the projection P. Hence, the 
Dirichlet variant of the FETI method is the preconditioned conjugate gradient 
algorithm applied to the equation 

PM-^P'^FX = PM-^P'^d, A e Ao + y . (6.36) 

We note that for A e 7 , PM'^P'^FX = PM-^P'^P'^FPX, and we can 
therefore view the operator on the left-hand side of (6.36) as the product of 
two symmetric matrices. 

We note that several different possibilities of improving the FETI precon
ditioner M~^ have been explored. Some interesting variants are discussed in 
Rixen and Farhat [399] in a framework of mechanically consistent precondi-
tioners and redundant Lagrange multipliers; see the discussion and analysis in 
Sect. 6.3.3. A family of improved FETI preconditioners, with nonredundant 
Lagrange multipliers, will be introduced and analyzed in Subsect. 6.3.2. 

We end this subsection with some remarks on implementation. Precondi
tioned systems of the form (6.36) were introduced in Sect. 2.5.2 and a possible 
implementation of the conjugate gradient method was also suggested. We have 
rewritten the projected conjugate gradient algorithm of Sect. 2.5.2 in Fig. 6.4 
for a general one-level FETI method. We note that Ao = QG{G^QG)~^e 
satisfies the second condition of (6.31). Indeed, this is a different type of pro
jected algorithm than those that were previously considered. While for the 
hybrid methods in Sect. 2.5.2 and the Balancing Neumann-Neumann method 
in Sect- 6-2.2, the coarse and local components of the solution are deter
mined by projecting the original equation into the two subspaces range{Po) 
and range{I — PQ) (see the preconditioned operator in equation (6.10)), here 
the two components are determined by the two independent equations in the 
FETI system (6.31), which comes from the mixed problem (6.30). We remark 
that the projection I — PQ employed for the hybrid methods in Sect. 2.5.2 is 
constructed using the matrix A of the unpreconditioned problem, while the 
projection P employed here is independent of the original matrix F. For this 
reason, it is a simple matter to check that the first projection step involving 
P ^ is necessary here. Finally, we note that for the calculation of the (ik and 
ak we can equivalently employ the previous vectors q'' or r*̂ , since P^ is a 
projection. 
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1. Initialize 

A° = QG{G'^QG)~'-e + ju, ^ € range{P) 
r^^d-FX" 

2. Iterate k — 1,2,... until convergence 

Project: g*"^ = P'^r'''^ 
Precondition: ;?*~^ = M~^q''~^ 

Project: «/*~̂  = Pz''~^ 

/?* = < / - ' , ? ' - ' ) / ( / - ' , ?*-') [/?' = 0] 
/ = / - i + / 3 y - i [pi=yO] 

a ' = ( / - \ 9 ' - ' ) / ( p ' , J ^ / ) 
Â  =A'=-'+aV 
r = r —a t p 

Fig. 6.4. Implementation of the one-level FETI method as a projected precondi
tioned conjugate gradient method. 

As already mentioned, one-level FETiTalgorithnis are determined by the 
choice of Q and M~^. For the choice Q = M"-*-, each step of the corresponding 
preconditioned conjugate gradient method involves one application of P^ and 
one of P , the solution of local Dirichlet problems on the substructures, neces
sary for the apphcation of M"'^, and the solution of local Neumann problems 
required for the application of F in the calculation of the new residual, ^ c e 
the applications of P ^ and P involve two additional apphcations of Q = M~^ 
and the solution of two coarse problems, there is a total of one Neumann 
and three Dirichlet problems on each substructure and two coarse problems 
in each iteration step. We note that this cost is higher than for a step of the 
Neumann-Neumann method; see Sect. 6.2. In case a diagonal Q is used, we 
only need one application of the preconditioner and thus only one Dirichlet 
problem on each subdomain. We note that the FETI-DP algorithms also allow 
us to reduce the computational cost of each step. 

Remark 6.7. It is clear that the algorithms introduced in this section rely on 
the existence of non-trivial kernels of the local Neumann problems, since they 
provide a coarse solve which makes the method scalable; see the inverse of 
G^QG in the definition of the projection P . The characterization of these local 
kernels is required and may not be a trivial task for some more complicated 
problems. A modification of one-level FETI algorithms is possible when the 
local Neumann problems are uniquely solvable, as for the bilinear form 
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uvdx a{u,v) + / 1 

(see [191]) and for problems arising in electromagnetics (see [443]). Such an 
algorithm was proposed in [191] and an abstract framework was later given in 
[443]. This modification leads to a different algorithm and requires a different 
implementation. 

6.3.2 The Case of Nonredundant Lagrange Mtdtipliers 

In this subsection, we present a one-level FETI preconditioner and prove a 
spectral bound which is independent of the values of the coefficients pi of (4.3) 
if the operator Q, which enters the definition of P, is chosen carefully. In our 
proofs, we will use a number of arguments developed in [340], but they also 
differ in several respects. We assume, for the rest of this subsection, that B 
has full row rank, i.e., the constraints are linearly independent and there are 
no redundant Lagrange multipliers; cf. Fig. 6.3, left. 

The preconditioner is now defined, for any diagonal matrix D with positive 
elements, as 

M - i := {BD-^B^)-^BD-^SD-^B^{BD-^B'^)-^ 

= ( B I ? - i 5 ^ ) - i f ^ B « Z ? « " ' 5 « P « " ' 5 « ^ ( 5 I ? - ^ B ^ ) - i ^ •̂̂ '̂* 

It is easy to see that BD~^B^ is a block-diagonal matrix. Its inverse can be 
computed at essentially no extra cost since the block sizes are HX, where n^ 
is the number of Lagrange multipliers employed to enforce continuity at the 
point X. To obtain a method which converges at a rate that is independent of 
the coefficient jumps, we now choose a special family of matrices D; a careful 
choice of the operator Q will also be required. As in Sect. 6.2, a crucial role 
is played by the functions 5|, which in turn depend of the coefficients pi of 
the elliptic problem; see (6.2). The diagonal matrices £)*̂ *) are the same as in 
Sect. 6.2. Thus, D^^^ has the diagonal entry (5|(x) corresponding to the point 
X e dOi^h n -T/i; see (6.3). Finally, we set 

/ Z ? « 0 ••• 0 \ 

: • • . • • . 0 

\ o ••• 0 D ( ^ ) J 
We note that this matrix operates on elements in the product space W. It can 
be regarded as a scaling from the right, by D~^/'^, of the matrix B. 

An important role will be played by the operator 

P^ := D-^B'^{BD-^B'^)-^B , (6.38) 
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which maps W into itself. This is a projection that is orthogonal in the scaled 
i'2-inner product {x,Dy), where x,y £ W. We note that this operator is in
variant if we replace B by Q^/'^B. In addition, it preserves the jumps, in the 
sense that 

BP^ = B. (6.39) 

The next two lemmas exploit this property. 

Lemma 6.8 For any jj, € U, there exists aw G range{P^) such that ^ = Bw. 

Proof. For any /z € (7 = range{B), there exists a w € W such that 
/t = Bw. We can then select w = Pj^w GW, since, by a simple computation, 
Bw = Bw = /t. D 

The next lemma follows directly from (6.39). 

Lemma 6.9 The projection operator P^ satisfies 

w — PjyW e W, 

i.e., this function is continuous across F for all w eW. 

We now show that P^w can be expressed in terms of the operator E^ 
defined in (6.4); see also Lemma 6.3. Let ex G W he equal to 1 at a point 
X £ Fh and vanish at all other points of Fh- It is easy to see that the D-
weighted average of the components of M £ Ŵ  at x is equal to {ex,Du) and 
thus the operator E^ can also be written as 

N 

E^u = Y^Rfl"(4ui) = 1 2 (e.,Du) e,. (6.40) 
j = i xeFh 

Lemma 6.10 Let u GW. Then, 

P^u = u — E^u. 

Proof By Lemma 6.9, u — P^u is continuous across the interface and thus 

E^{u-P^u)=u-P^u. (6.41) 

Since, for x G Fh, the vector e^ is continuous across F, Be^ = 0. We find, 
by using the definition of Pj, given in (6.38), that the £>-weighted average of 
P^u at X vanishes: 

{ex,DP^u) = {€x,B^{BD-^B^)-^Bu) = {Be^, iBD'^B^y^Bu) = 0, 

and thus, by using (6.40), 
E^P^u = 0. 

Combining this equality with (6.41) proves the result. D 
The identity of Lemma 6.10 also form a basis for an alternative stopping 
criterion for one-level FETI and FETI-DP iterations; cf. [400] and [337]. Li 
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addition to the the residual for equation 6.34, we can compute, at a very 
modest extra cost, a primal residual obtained by averaging the displacement 
vector across the interface and applying the assembled Schur complement. 

We note that, since £J^ does not depend on B, P^ does not depend on the 
particular choice of B either. For future reference, we write down a formula 
for Pp w for an arbitrary element w € V(̂ . It is an easy consequence of Lemma 
6.10. Thus, we find by using formula (6.40), that for i = 1 , . . . ,iV, 

Vi{x) := {PMx))i = Y^ S}(x)(wi(x) - wj{x)), x e dQi,h H A , (6.42) 

where Nx again is the set of indices of the subregions that have x on their 
boundaries- We note that the coefficients <5](x) in this expression are constant 
on each face and on each edge of dQi and that they are independent of the 
particular choice of B. In this section, we will use Lemmas 6.3 and 6.10 to 
estimate the norm of P^,. In Sect. 6.4, we will however use the formula (6.42) 
directly and write the Vi as sums of terms that vanish at all the interface 
nodes outside individual faces, edges, and vertices, respectively. The norms of 
the individual terms of this sum are then estimated; see, e.g., [178, 182, 184], 
the proof of Lemma 6.3 as well as Sect. 6.4. 

To prepare for the analysis of the preconditioner, we equip V with the 
norm 

ll/xlli-, := \D-^B'^{BD-^B'^)-^p,\l = ( M - V , M ) , (6.43) 

where, as before, |w | | = {Sw,'w). We have 

Lemma 6.11 || • ||v" defines a norm on V. 

Proof. Since || • ||v" is clearly a seminorm, we only need to show that 
||/i||\/' = 0 implies /x = 0. Consider any /i £ V with \\IJ,\\V' = 0. By Lemma 
6.8, fj, = Bw for some w € range{P,^). Since P^w = w, we obtain 

0 = Mfy, = \\Bw\fy, = \D-^B'^{BD-^B'^)-^Bw\l = \P^w\l = \Ml • 

Thus, w e kernel{S) and by the definition of V, (6.33), we find that /x = 0 
since 

M\% = {li,Qlj) = {fi,QBw) = 0. 

D 

The importance of the operator P^ can be seen by the fact that, for 
/i = Bu, we have 

We will use this property extensively in the analysis of all FETI methods in 
this chapter. 

We can now show that 

PM-'^ :V' ^V, 

file:////Bw/fy
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is symmetric and positive definite. Symmetry is easy to establish and positive 
definiteness follows immediately from Lemma 6.11 and the fact that, with 
A e V, ( P M - U , A) = ( M - U , A) = ||A||f.,, since V = range{P'^). 

We equip the space of admissible increments V with a norm 

"^" — sup 

As we have already observed, V is isomorphic to the dual space of V. By 
using formula (6-43), we find by a simple computation that 

||A||2. = (MA,A), \€V. (6.44) 

This formula is legitimate since V = range{P), and we can give a good 
meaning to 

P^M :V ^V, 

as a symmetric, positive definite operator. We can effectively view M~^ and 
M as symmetric, positive definite operators from V onto V and V onto V, 
respectively. 

The next result is needed in the proofs of Lemma 6.14 and indirectly in 
the proof of Theorem 6.15. 

Lemma 6.12 For any w G W, there exists a unique z^ G kernel{S) such 
that B{w + Zw) e V. Moreover, 

\\BZ^\\Q<\\BW\\Q. (6.45) 

Proof. We recall that the property B(w -\- z^) e V is equivalent to 

B'^QB{w + Zy,) ± kernel{S). 

This Galerkin condition ensures that the element z^ £ kernel{S) is a solution 
of the variational problem: 

Z'^(B'^QB){W + Z,„)=0, Z £ kernel{S). 

Since kernel{S) D kernel{B) = {0} and Q is symmetric and positive definite, 
the operator (B'^QB) is symmetric and positive definite on kernel{S). The 
problem thus has a unique solution z^ that minimizes \\B{w + Z)\\-Q^ over 
z € kernel(S). The orthogonality condition also ensures that 

WBz^Wl = {z^,{B^QB)z^) < {w,{B^QB)w) = WBwfg, 

which concludes the proof. D 
We will now establish an important stability estimate for P^ , which is at 

the core of the proof of our main results. It is closely related to Lemma 6.3 
which is the core result in the convergence theory of the Neumann-Neumann 
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algorithms. For the choice Q = M~^, we are then almost ready to prove one of 
our main results, Theorem 6.15. As noted before equally strong results can be 
obtained with a careful choice of a diagonal Q; the use of such an operator will 
decrease the cost of the algorithm. We have chosen not to cover the related, 
quite complicated theory; see [289] for fuU details. 

We note that we do not know how to prove our next result, Lemma 6.13, 
nor the corresponding result in Sect. 6.3.3, without using Assumption 6.1. We 
recall that this assumption is not necessary in the Neumann-Neumann theory 
(cf. Dryja and Widlund [184]) since in the Neumann-Neumann algorithm we 
are free to increase the coarse space, e.g., by adding basis functions associated 
with the special boundary subdomains while in the one-level FETI algorithms 
of this section, we have to work exactly with kernel{S) when constructing the 
projection P. 

Lemma 6.13 For any w G range{S), we have 

\PMl<C{l + \og{H/h)f\w\l. 

Here C is independent of h, H, 7, and the values of the pi. 

Proof. This result foUows immediately from Lemmas 6.10 and 6.3. D 
We now combine the results of Lemmas 6.12 and 6.13. 

Lemma 6.14 For any w € range{S) and with the unique z^ € kernel(S) 
given in Lemma 6.12, and for Q = M~^, we have 

\P^z^]l<C{l + \og{Hlh)f\w\l. 

Here C is independent of h, H, 7, and the values of the pi. 

Proof. For any u ^W and our choice of Q, we have 

\P^u\l = {SP^u,P^u) = {M-'Bu,Bu) = \\Bu\\l. 

According to Lemma 6.12, for any w G range{S), the unique Zu< € kernel(S) 
such that w + Zu, €: V satisfies 

\P^z^\s = WBZ^WQ < \\BW\\Q = \PMs-

The proof is completed by combining this inequality with Lemma 6.13. D 
We are now ready to jM ôve a condition number estimate for the precondi

tioned FETI operator PM'^P'^F. 

Theorem 6.15 The preconditioner M, with Q = M~^, satisfies 

{MX, A) < (FA, A) < C{1 + \og{Hlh)f{M\ A), A e V. (6.46) 

Here C is independent of h, H, 7, and the values of the pi. 

Proof. We will estimate the smallest eigenvalue \rain{PM~^P'^F) from 
below and the largest eigenvalue AmaxC-P-'W'"''"-? -̂?') from above. 

file:///PMs-
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Lower Bound: 

We note that this bound is optimal in the sense that it is independent of 
h and H and possible coefficient jumps. It is derived using purely algebraic 
arguments. 

Following Mandel and Tezaur [340, proof of lemma 3.11], we will use the 
formula 

(FA, A) = sup % ^ ^ , XeV. (6.47) 

Our proof of (6.47) is essentially borrowed from Mandel and Tezaur. We first 
note that S~^/'^B'^\ e range{S) has a good meaning since XeV means that 
B'^X e range{S). We find that 

(FA,A)= {S^BTX,BTX) = | | 5 - I / 2 B ^ A | | 2 

( 5 -1 /2^^ A, v)2 {B^X,wf 
— ^^P \ri\2 ~ ^^P — i — 1 2 — • 

Let n e V he arbitrary. It follows from Lemma 6.8 that there exists a 
u! 6 range(P^) such that fi = Bw. We denote by w_\_ the component of w 
that is orthogonal to kernel(S). Clearly, we have 

{X,Bwf {X,Bu,^f 

werange(S) I^U I^J-ls 

We also observe that for all w, 

{Sw^,ws.) = {Sw,w), (6.48) 

and it also follows, from the definition of V, that 

(A, Bw±) = {X,Bw), XeV. (6.49) 

Using (6.48) and (6.49), we obtain, since w = P^w, 

{X,Bw^y' ^ {X,Bwf ^ {X,Bwf ^ (A,M)2 ^ {X,nf 
\w^\l Ms \Po^\l \D-^BT{BD-^BT)-i^\l Ml, ' 

for ij, e V'. The proof of the left inequality of (6.46) concludes by using the 
definition of the norm || • \\v and formula (6.44). 

Upper Bound: 

We will derive an upper bound for (FA, A) that depends only polylogarithmi-
cally on H/h and is independent of possible coefficient jumps. 

Let w e range{S) be arbitrary. By Lemma 6.12, there exists a unique 
Zu, € kernel{S) such that B{w + z^,) e V. By using Lemmas 6.13 and 6.14, 
we obtain 

file:///ri/2
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\P^{w + z^)\]; < C{l + \og{Hlh)f\w\l. (6.50) 

Combining this formula with (6.47), we obtain, for all A € F , 

{FA, A) = sup 
w^range{S) v^\ 

<C{l + \og{H/h)f sup 
{\Bwf 

2 

= C{l + \og{Hlh)Y sup 
{\,B{w + z^)) 

werange(S) \\B{w + 2:„)llv" 

C(l+l0g{H/h)r sup | |^^ | |2^ 

Bw£V' 

= C{l + \og{Hlh)f sup ^^'''^ 

= C ( l + log(if//i))2 

iiev \m\v' 

The proof of the right inequality of (6-46) concludes by using (6-44). D 
It is important to note that the special choice of Q enters the proof of this 

theorem only via (6.50), which in turn depends on Lemma 6.14. Therefore, 
if we can prove an equally strong bound for I-PD-̂ ^WII foi^ another choice of 
Q, then we immediately obtain a result as strong as Theorem 6.15. As noted 
before, an alternative recipe, with a diagonal Q, is provided in full detail 
in Klawonn and Widlund [289, Theorem 4.11]; it gives as strong a result as 
Theorem 6.15. 

6.3.3 The Case of Redundant Lagrange Multipliers 

In this subsection, we extend our analysis to the case of redundant Lagrange 
multipliers; cf. Fig. 6.3, right. For a detailed algorithmic description of FETI 
preconditioners in this case and an analysis based on mechanics, see Rixen 
and Farhat [398, 399]. We note that, in an implementation, there appears to 
be real advantages in treating the constraints in a fully symmetric way, i.e., 
using a maximum number of of Lagrange multipliers. In those papers, Qr = I; 
to distinguish the redundant from the nonredundant case, we will write Qr 
instead of Q, etc., in this subsection. We will choose the Dirichlet precondi-
tioner as Qr and note that the resulting algorithm has proven successful for 
difficult industrial problems; cf. Bhardwaj et al. [51]. For this choice of Qr, we 
show, in Theorem 6.21, a condition number estimate which is independent of 
the jumps in the coefficients. As noted before a carefully designed, diagonal 
Qr can also be chosen for which we can prove a condition number estimate 
that is also independent of the values of the pi\ see Klawonn and Widlund 
[289, Theorem 5.7]. 
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Following Rixen and Farhat, we consider the case where a maximum num
ber of redundant Lagrange multipliers are introduced, i.e., when all possible 
pairs of degrees of freedom of the primal variables u, that belong to the same 
nodal point x G F^, are connected by a Lagrange multiplier. Any edge or 
vertex node, where at least three subregions meet, will then contribute at 
least one additional Lagrange multiplier in comparison with the nonredun-
dant case. An illustration of an edge common to four subregions is given in 
Fig. 6.3, right. 

We denote the new jump operator, similar to the one given by (6.26) but 
with additional rows, by 

where Br consists of the columns of Br attributed to the i-th component 
of the product space W. The new vector of Lagrange multipliers is denoted 
by A .̂ The space of Lagrange multipliers is chosen as Ur := range{Br). This 
guarantees uniqueness of the Lagrange multiplier solution since otherwise the 
solution of Equation (6.52), given below, would only be unique up to an ad
ditive term from kernel{Bj). We also introduce diagonal scaling matrices 
Dy' :Ur^Ur, that operate on the Lagrange multiplier space. This is in con
trast to the matrix D of the nonredundant case, discussed in Subsect. 6.3.2, 
which maps the spa<;e of primal variables W onto itself. The row of BI^^ rel
ative to the Lagrange multiplier that enforces continuity between the nodal 
values of Wi e Wi and Wj £ Wj, at x G dOi^u H dOj^n, is scaled by <5J(ar), cf. 

(6.3), and this scale factor defines the corresponding element of Dr . Finally, 
we define a scaled jump operator by 

Bz>, : = ( i ? « 5 « , . . . , I ? W s W ) . 

The FETI preconditioner is given by 

JV 

M-^ := BD,SBl^ = J2 D^B':^S^^B^^'^D'^'^. (6.51) 
j = i 

This preconditioner, with 7 = 1, and a different scaling, was introduced in 
Rixen and Farhat [399, Sect. 5]. We also note that in the special case of 
continuous coefficients, we obtain the multiplicity scaling described in [399, 
Sect. 3]. 

The matrix of the reduced linear system can be written as 

Fr := BrS^Bj, 

and we now have to solve the preconditioned system 

PrM-^PrFrXr = PrM'^Prdr, (6.52) 
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with Pr := I - QrGr{GjQrGr)-^Gj,Gr := BrR, and dr := BrS^f. Here 
Qr will be chosen as M~^. We denote the inner product induced by Qr by 

The next lemma shows that the redundant and the nonredundant imple
mentations of the Lagrange multiplier methods gives rise to the same operator, 
which is central in the theory. 

Lemma 6.16 The operator Bj) B^., with its two factors just defined in this 
subsection, and the operator P^ , defined in (6.38), are the same: 

Proof. We first note that range{Br) contains all possible Lagrange multipli
ers for every x E Ph-^y construction, each nonzero entry of Dr corresponds 
to a Lagrange multiplier and to a point x £ dHi^h H dQj^h, for some other 
subregion J7j, and it is equal to 5](x). Applying {By')'^ to the vector given 
by Dr Br'iv yields a vector Vi €Wi, with the components 

Vi{x) := {Bl^YD^^BrW(x) = ^ d}{x)(wi(x)-Wj(x)), x G dQi,h. (6.53) 

This is the same formula as (6.42). D 
As a consequence of this result, the operator Bj^Br does not depend on the 
particular choice of P^ and we can still use Lemma 6.13 in the redundant case. 
We also note that Bj^Br is not symmetric unless the pi are all the same. 

A full analysis of this FETI variant, with redundant Lagrange multipliers, 
can now be carried out using Lemma 6.16, adapting the arguments of Subsect. 
6.3.2 to the current context, step by step. From Lemmas 6.10 and 6.16, we 
obtain 

BrBj^ By ^ ByPj^ ^ By. 

As in subsection 6.3.2, we obtain several results by using such an identity. 
The proof of the following lemma proceeds exactly as that of Lemma 6.8. 

Lemma 6.17 For any fir € Ur, there exists a w E. range^Bj^ Br), such that 
fir = BrW. 

As in Subsect. 6.3.2, we define a space of admissible increments, 

Vr := {Aj. G Ur : {\r,Brz) = 0 , z E. kernel{S)} = range{Pr), 

and the space 

V^ := {fir € Ur : {fj,r,Brz)Q^ = 0 , z e kernel{S)} = range{Pj). 

We equip V^ with the norm 

llMrllv;! : = \BD^flr\s, P-r £ K'? 
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and Vr with the norm 

IIArllv; := sup 
llMrIK 

The fact that || - ||v;' is a norm is estabhshed exactly as in the nonredundant 
case by using Lemmas 6.16 and 6.17. 

Lemma 6.18 || • \\v; defines a norm on V^. 

As in the nonredundant case, we easily find that, for n^ = B^u, 

and that 
{MrK,K) = \\K\\v. XreVr, (6.54) 

by a sirngle computation. Again^jis in the nonredundant case, it is immediate 
that PrM~^ : V^ ->• Vr, and PjMr '• Vr ->• F/ , are symmetric, positive definite 
operators- Thus, we can view M~^ and Mr as symmetric, positive definite 
operators from VJ,' onto Vr and Vr onto Vr, respectively. We now formulate a 
result analogous to Lemma 6.12. The proof is the same. 

Lemma 6.19 For any w € W, there exists a unique z^ £ kernel{S), such 
that w :=w + Zw with BrW 6 V^. Moreover, 

WBrZuiWq-, < \\BrW\\Q^. 

Using Lemmas 6.13, 6.16, and 6.19, we obtain an exact counterpart of 
Lemma 6.14 

Lemma 6.20 For any w G range{S), and the unique z^, € kernel{S) given 
in Lemma 6.19, and for Qr = M~^, we have 

\Bl^BrZ^\l <C{l+\og{Hlh)f\w\l. 

Here C is independent of h, H, 7, and the values of the pi. 

Continuing as in the nonredundant case, after substituting B'[, Br for P^, 
and the auxiliary results of this subsection for those of the previous subsection, 
we obtain 

Theorem 6.21 The preconditioner Mr, with Q = M~^, satisfies 

{MrX, A) < {FrX, A) < C(l + \og{Hlh)f{Mr\, A), A 6 K 

Here C is independent of h, H, 7, and the values of the pi. 

Proof. The proof proceeds, line by line, as the proof of Theorem 6.15. D 
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6.4 Dual-Primal FETI Methods 

The dual-primal FETI (FETI-DP) methods were introduced more recently, 
than the one-level FETI methods, by Farhat, Lesoinne, Le Tallec, Pierson, 
and Rixen [194]. Their work was soon foUowed by a significant contribution 
to the theory for two dimensional second and fourth order problems by Mandel 
and Tezaur [341], by a paper by Farhat, Lesoinne, and Pierson [195], which 
specifically addresses an algorithm for three-dimensional problems, and by 
Pierson's doctoral dissertation [388]. In all FETI-DP algorithms, we enforce 
a relatively small number of continuity constraints across the interface in 
each iteration step. In the first algorithms of this kind only the values at the 
subdomain vertices were classified as primal, i.e., as having unique values. In 
addition, the algorithms presented in [195] and [388] use constraints on the 
averages over edges and faces, similarly to those of the algorithms considered 
in this section. Since the face and edge constraints were originally introduced 
to enhance the rate of convergence of the iteration, they are referred to as 
optional. We will see that we can replace all or most of the primal vertex 
constraints by constraints written in terms of averages over edges (and faces). 
Such primal edge constraints generally provide better rates of convergence of 
FETI-DP algorithms than when only primal vertex constraints are used. 

Our presentation is, in large part, based on Klawonn, Widlund, and Dryja 
[292, 293] and Klawonn, Rheinbach, and Widlund [286] and, after a discussion, 
in the next subsection, of the original FETI-DP method in two dimensions, 
it will focus on algorithms for problems in three dimensions. We will show 
that good convergence bounds can be maintained even for quite general coef
ficients such as those of equation (4.3), which can model highly heterogeneous 
materials. The work in [292] was inspired by that of Mandel and Tezaur and 
also based on other earlier work, in particular [177], [178], and [289]. 

We recall that domain decomposition algorithms for elliptic problems can
not be scalable, i.e., have a rate of convergence which is independent of the 
number of subregions, unless a coarse space component is included. As we have 
seen in Chap. 5, the underlying coarse spaces for three dimensional problems 
can be quite complicated; see also [467]. We will construct two FETI-DP 
methods, namely Algorithms B and C, which are inspired by relatively exotic 
coarse spaces such as those of Subsect. 5.4.3; see also [177, 178]. Both of these 
methods have relatively large global, primal subspaces and we note that a 
main issue when searching for competitive preconditioners is to try to design 
methods with a coarse component of a small dimension while, at the same 
time, maintaining a good rate of convergence. We then present and analyze 
Algorithm D, which can have a very satisfactory ratio between the dimension 
of the coarse space and the number of substructures as well as a good rate of 
convergence. We finally discuss Algorithm E, which would first appear to be 
a useful alternative to Algorithm C, but for which additional conditions on 
the coefficients are required to obtain as good bounds as for Algorithms B, C, 
and D. 
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Fig.^.5. OiK l̂evel FETI and FETI-DP. Degrees of freedom of the spaces W, left, 
and W, right 

^^ As already mentioned in the beginning of Sect. 6.3, we will use subspaces 
W which are intermediary between W and W and for which only a relatively 
small number of continuity constraints are enforced across the interface. An 
important benefit of working in W, rather than in W, is that the Schur com
plements that arise in the computation will all be strictly positive definite. 
The underlying variational problem can be written as in (6.25) except that 
the space W is replaced by its subspace W. 

Since the three dimensional case is comphcated, we will begin our discus
sion with the case of two dimensions for which the primal unknowns are only 
associated with the subdomain vertices. The generalization to two-dimensional 
elasticity problems is straightforward while three-dimensional elasticity is 
treated in Sect. 8.5. Algorithms for edge element approximations have been 
proposed in [447, 448] for two dimensions and, more recently, in [442] for three 
dimensions. Recently Li has extended the FETI-DP algorithms to incompress
ible Stokes and Navier-Stokes equations; see [314, 315, 316]. 

We finally note that in recent work, Mandel, Dohrmann, and Tezaur [337] 
have estabUshed very interesting and close connections between FETI-DP 
algorithms and a new family of additive Schwarz methods of balancing type, 
see [164, 165, 336]. They have estabhshed that almost the entire spectrum of 
a FETI-DP algorithm coincides with that of a related balancing algorithm. 
Experimental evidence of this phenomenon had previously been presented by 
Fragakis and Papadrakakis [206]. We note that our emphasis in this section is 
different; we focus on establishing selection criteria for the primal constraints 
which will guarantee rapid convergence of the iterations. 

6.4.1 FETI-DP Methods in Two Dimensions 

In early studies of FETI-DP methods for problems in two dimensions, see 
Faxhat, Lesoinne, Le Tallec, Pierson, and Rixen [194] and Mandel and Tezaur 
[341], only constraints on the degrees of freedom associated with the vertices of 
the substructures are enforced in each iteration, i.e., the vertex degrees of free
dom belong to the primal set of variables, while all the continuity constraints 
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associated with the edge nodes are fully enforced only at the convergence of 
the iterative method. We can think of this as resulting from incisions in the 
mesh along the interface leaving only the subdomain vertex nodes attached; 
see Fig. 6.5. We thus allow multiple values for almost all of the unknowns as
sociated with the interface. This results in a much lower computational costs 
than for a standard finite element problem where continuity is enforced at 
every point oi Fh- __ 

We will always work in subspaces W C W ioi which sufficiently many 
constraints are enforced so that the resulting leading diagonal block matrix of 
the saddle point problem, though nojonger block diagonal, is strictly positive 
definite. Similarly, we will denote by PT''(/?) the subspace of Hi W'^(ni) which 
ecjuals p£ when^estricted to the interface R We also introduce two subspaces, 
Wn C W and WA , corresponding to a primal and a dual part of the space W. 
They will play an important role in the description and analysis of our iterative 
methods and their direct sum equals W. We note that the dual subspace 
WA will be directly associated with jumps across the interface and with the 
Lagrange multipliers that are introduced to eliminate these jumps. Each of 
our FETI-DP algorithms, in this and in the next subsection, is expressed in 
terms of a Sdiur complement S related to the dual space WA- Thus, in this 
subsection, W consists of functions in W that take the same value at the 
subdomain vertices and can be written as 

W = Wn®WA. (6.55) 

Here Wn C W is the space of continuous interface functionsjhat vanish at 
all nodal points on Fh except at the subdomain vertices, and WA is the direct 
sum of local subspaces WA,i'-

N 

WA:=l[WA,i. (6.56) 

Here WA,i C Wi consists of local functions on df^i that vanish at the vertices 
of i?j. 

The (continuous) degrees of freedom associated with the substructure ver
tices and with the subspace Wn are called primal (H), while those (potentially 
discontinuous across F) associated with the subspaces WA,i and with the in
terior of the substructure edges are called dv,al (A). 

Let A be the stiffness matrix, which is obtained by restricting 

A = d iag{A«,A(2) , . . . ,AW} 

from Yl^ W'^{f2i) to W^{n). We note that A is no longer block diagonal since 
a coupling now exists between substructures that have a vertex in common. 
We can partition A as 
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I An Ain AIA\ 

A={AJJJ Ann AnA , (6.57) 
\Aj^Al^ AAAI 

where the subscript I refers to the internal degrees of freedom of the substruc
tures, n to those associated with the subdomain vertices, and A to those of 
the interior of the subdomain edges; see Fig. 6.5, right. We note that An and 
AAA are block diagonal and that each block corresponds to a single subdo
main and that any nonzero of AAI (and AIA) represents a coupling between 
degrees of freedoms associated with the same substructure. Similarly as for the 
stiffness matrix for the conforming space W, A can be obtained by partially 
assembling local contributions associated with the substructures. 

The variables of the / and U sets are then eliminated and a Schur com
plement, associated with the degrees of freedom of the set Z\, of the interior 
of the edges, is obtained: 

We also obtain a reduced right hand side JA from thejoad vectors associated 
with the individual subdomains. We denote by UA € WA the vector of degrees 
of freedom associated with the edges. 

As in Subsect. 6.3.1, we can reformulate the finite element problem, re
duced to the second subspace WA-, as a minimization problem with^onstraints 
given by the requirement of continuity across all of F: find UA &W such that 

J{UA) ••= \{SUA,UA) - {fA,UA) -5- min .„ ^^s 
BAUA = 0 ^^•^^' 

The matrix BA is constructed from {0,1, —1}, in a way very similar to the 
matrix B introduced in Sect. 6.3.1, and in such a way that the values of the 
solution u, at the nodes common to more than one subdomain, coincide when 
BAU = 0. Again these constraints are very simple and just express that the 
nodal values at any edge node coincide across the interface. In comparison 
with the FETI methods of Sect. 6.3, we can drop some of the constraints, in 
particular those associated with the vertex nodes which are assigned to the 
primal set. Since an edge node belongs to exactly two substructures, there 
is basically no choice for BA (apart for the sign of each row) and since the 
only constraints are for points on the edges, no distinction need to be made 
between non-redundant and redundant constraints and Lagrange multipliers. 

By introducing a set of Lagrange multipliers X e V := range{BA), to 
enforce the continuity constraints, we obtain a saddle point formulation of 
(6.59), as in (6.27). Since A is symmetric, positive definite, so is S. We can 
therefore eliminate the subvector UA, and obtain the following system for the 
Lagrange multipliers: 

FA = d, (6.60) 
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with 
F := BAS-^BI, d := BAS'^IA-

Once A is found, we can back solve and obtain, 

UA=S-\fA-Bl\)£WA-

The values of the solution in the interior of the subdomains, ui, and at the 
subdoniain vertices, wjr, are provided as a byproduct when solving a linear 
system with the block matrix given in formula (6.58). 

We will now introduce a preconditioner for F; cf. (6.51). As in the analysis 
in Subsect. 6.3.3 for the case of redundant Lagrange multipliers, we introduce 
diagonal scaling matrices D^^. Each of their diagonal elements corresponds 
to a Lagrange multipher which enforces continuity between the nodal values 
of some Wi £ Wi and Wj G Wj at some point x £ J/j and it is given by 5j{x). 
We also define a scaled jump operator by 

5.,^ :=(DiM),...,<)<)), 

where, as before, the block B^^ is obtained by extracting the columns of BA 
associated with the local space Wj. 

As in Subsect. 6.3.3, we solve the dual system (6.60) using the precondi
tioned conjugate gradient algorithm with the preconditioner 

M-i := BO,ASABIA = j^D^B^S^B^^D^, (6.61) 
j = i 

where S^ is the restriction of the local Schur complement 5̂ *̂  to WA,i C Wi. 
The FETI-DP method is the standard preconditioned conjugate gradient 

algorithm for solving the preconditioned system 

M-^FX = M-^d 

and can therefore be implemented as in Sect. C.5. In contrast to the one-level 
FETI methods, we can use an arbitrary initial guess A''. We have rewritten 
the algorithm in Fig. 6.6. 

Most of the computational work in each step of the algorithm goes into the 
application of the local Schur complements 5*^^ in the application of M~^, 
and the application of the inverse of 5*, in the apphcation of F. The restriction 
S^]^ can in principle be found by deleting the rows and columns in S'(') which 
are related to the subdomain vertex^degrees of freedom. Since in practice S"*̂*̂  
need not be formed, given WA,i € WA,i, we form the vector Wi Q.Wi, which is 
equal to WA,i at the interior edge nodes and which vanishes at the subdomain 
vertices. We then find the vector 

S^'^Wi = {A% - AfjAf~'Afr)wi (6.62) 
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1. Initialize: r*^ = d - FX° 

2. Iterate k = 1,2,... until convergence 

Precondition: z''~^ = AfV*"^ 

/?'= = (^'=-\r^-')/{;s*-',r*-') W' = 0] 
/ = ^ ' = - i + / ? V - i [p '=^°] 
a^ = (^^-Sr*-i ) / (p*,F/) 

A'= = A*'-'+aV 
r'' = r*- ' - a^'Fp'' 

Fig. 6.6. Implementation of the FETI-DP method as a standard preconditioned 
conjugate gradient methods. 

and discard the entries of the vertices. The appUcation of S2 thus involves 
the solution of a Dirichlet problem on each substructure^ 

As far as the application of S~^ to a vector WA G WA is concerned, we 
have already shown in Sect. 4.3 that the apphcation of an inverse of a Schur 
complement can be performed by solving a system with the original matrix 
and with a suitable right hand side. In the current case, the vector S~^ JA 
equals the Z\-component of the vector 

A-i (0 0 flf, (6.63) 

where A is the stiffness matrix given in (6.57). A linear system of algebraic 
equations is therefore solved exactly in each step of the iteration. 

In order to decrease the cost of factoring A, it is more convenient to reorder 
the unknowns in a different way than in (6.57) and eliminate the unknowns 
of type / and A first. After this eUmination, we obtain 

Sn = Ann - (A^n Aln) ( ^ | / j ^ ^ ) " ' ( ^ ^ ^ ) . (6.64) 

We note that the 2 x 2 block matrix that is inverted here can be made block-
diagonal, with each block associated with a single substructure. More pre
cisely, after permuting the rows and columns of the matrix, each block is the 
stiffness matrix of a local problem with Neumann boundary conditions on the 
subdomain edges and with a zero Dirichlet condition at the vertices. There
fore, all the unknowns except those of the subdomain vertices (subscript U) 
can first be eliminated at a modest expense^ and in parallel across the subdo-
mains, resulting in the Schur complement Sn for the vertex variables, which 
provides the coarse component of our preconditioner. In this first step, we can 
take full advantage of a high quality sparse Cholesky solver. 
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The order of Sn equals the number of subdomain vertices which do not 
belong to dHn- The matrix Sn is sparse. Indeed, it can be shown quite easily, 
as in appendix C.2, that no nonzero off-diagonal elements exist in this reduced 
system matrix except those that correspond to pairs of vertices which belong 
to the same substructure. It is clear from these remarks that each iteration 
step involves the solution of one Neumann and one Dirichlet problem, on each 
substructure, and a coarse problems involving the vertex variables and the 
matrix Sn-

A similar strategy can be developed if additional optional constraints are 
added, as for the three dimensional methods of the next section, but we note 
that, obviously, the final reduced system of equations, which is directly related 
to the global part of the primal subspace, wiU be larger and therefore more 
expensive to handle unless we also eliminate the vertex constraints for suffi
ciently many or all the vertices. We will discuss several options of handhng 
these issues in Subsect. 6.4.4 after describing and analyzing several FETI-DP 
algorithms. 

In their paper on two-dimensional problems, Mandel and Tezaur [341] 
established a condition number bound of the form C{1 + log{H/h))^ for a 
FETI-DP method of this type when equipped with a Dirichlet preconditioner. 
The algorithm considered is scalable with the constant C independent of the 
number of subregions, the subdomain diameters, as well as the mesh size h of 
the finite element model. Mandel and Tezaur also established a similar result 
for a fourth-order elliptic problem in the plane. Their proof in [341], for the 
second order equation, uses linear algebra arguments and a lemma from a 
classical paper by Bramble, Pasciak, and Schatz [72, Lemma 3.5]. 

The same algorithm. Algorithm A, with only primal vertex constraints, can 
also be defined for the three dimensional case but it does not always perform 
well; see Farhat et al. [194, sect. 5]. This is undoubtedly related to the poor 
bound for the vertex-based iterative substructuring methods; see Sect. 5.4.1 
or [178, Sect. 6.1]. However, we will be able to establish results as strong as 
in the previous sections of this chapter for three other algorithms. Algorithms 
B, C, and D; see Theorems 6.35 and 6.38. 

We end this section with a comparison of one-level and dual-primal FETI 
methods. The latter class of algorithm, which has been developed more re
cently, and presents certain advantages: 

• FETI-DP algorithms do not require the characterization of the kernels of 
local Neumann problems. Indeed, the enforcement of the additional con
straints in each iteration always makes the local problems nonsingular and 
at the same time provides an underlying coarse global problem. As already 
pointed out in Remark 6.7, the characterization of these null spaces, re
quired for the one-level FETI methods, may not be a trivial task for some 
more complicated problems. 
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• The same FETI-DP algorithms and codes can be employed for problems 
with and without nontrivial local kernels; this is not the case for one-level 
FETI methods (see Remark 6.7). 

• FETI-DP methods do not require the introduction of a scaling matrix 
(5, which enters in the construction of a coarse solver for one-level FETI 
algorithms. 

• One-level FETI methods are projected conjugate gradient algorithms that 
cannot start from an arbitrary initial guess; see Fig. 6.4. This initial guess 
can be far from the exact solution. In contrast, FETI-DP methods are 
standard preconditioned conjugate algorithms and can therefore employ 
an arbitrary initial guess A°; see Fig. 6.6. 

6.4.2 A Family of FETI-DP Algorithms in Three Dimensions 

As already mentioned, the algorithm of the previous subsection can also be 
defined for three-dimensional problems in a straightforward way. However, it 
does not always provide a satisfactory rate of convergence; see Subsect. 6-4.5-
We will therefore modify it in such a way that different and often larger coarse 
problems are obtained. We will present five algorithms, denoted by A, B, C, 
D, and E, respectively, and will analyze Algorithms B, C, and D, in full detail. 
An analysis of Algorithm E can be found in [293]. 

A close look at the previous section suggests that the FETI-DP method is 
completely specified by the conforming subspace Wn in (6.55). More precisely, 
a set of interface primal degrees of freedom (JT) in the conforming space W 
uniquely defines a subspace Wn CW as the span of the basis functions in W 
associated with these degrees of freedom. In that subsection, we have chosen 
the nodal basis functions of the subdomain vertices. Here we will also consider 
averages on subdomain edges and faces;^e Fig. 6.7. 

The nonconforming spaces WA and W are specified by (6.56) and (6.55). 
More precisely, the local spaces WA,i are defined as the subspaces of the W, 
consisting of functions for which the primal degrees of freedom (a combination 
of nodal values at some vertices and averages over certain edges and faces) 
vanish. Thus, the space W consists of functions in W for which the values 
associated with the degrees of freedom of the set 11 are the same regardless 
of which component of the product space W is^used in their calculation. We 
note that the larger Wn, the smaller WA and W. In the limit wh^e the set JT 
consists of all the nodal va lu^on J", Wn coincides with W and WA is empty. 

Once the interface space W is specified, the global space W'^{0) is deter
mined as in the previous subsection. The degrees of freedom in T^''(J?) are 
again divided into interior (/), primal (iJ), and dual (A) sets. The stiffness 
matrix A, defined as the restriction of A to 1¥''(J7), has the same block struc
ture as in (6.57), and can be obtained by partially subassembling the matrices 
of the subdomains. We arrive at a reduced problem by eliminating the primal 
variables associated with the interior nodes (/), the vertex nodes designated 
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Fig. 6.7. Potential primal degrees of freedom for FETI-DP in three dimensions: 
face and edge averages, and vertex values. 

as primal, as well as the variables (or a set of special Lagrange multipliers) re
lated to the remaining primal constraints (U). The resulting equation for the 
dual part of the solution, UA, can be written jis a constrained minimization 
problem as in (6.59). The Schur complement S will be positive definite since 
we will always introduce enough consteaints, in terms of the primal subspace 
Wn, to make the restriction of A to W^(n) invertible. 

As before, a matrix B^ is constructed from {0,1, —1} and the constraints 
B^UA = 0 express that the nodal values at any node coincide across the 
interface F. As in the previous subsection, we do not need any constraints 
at primal vertices but we will otherwise work with a fully redundant set of 
Lagrange multipliers for the edges as in Subsect. 6.3.3. We recall that, by 
assumption, every edge belongs to more than two substructures and we note 
that if we have a constraint on the average over a face, work with standard 
nodal basis functions, and use one constraint per node, we already have a 
redundancy. The same observation is equally valid for any edge with a primal 
constraint. 

We now introduce Lagrange multipliers X G V := range(BA), where the 
range is taken over functions in WA', since any continuous Ruction is in the 
null space of BA , the range may as well be taken over all of 1^. We will in fact 
redefine BA, in comparison with the previous subsection, and view it as an 
operator on all of r^- The variables UA are then eliminated and an equation 
for A is obtained which involve the operator F, as in (6.60). The operator F 
will depend on the choice of the subspaces Wn and WA and we will denote 
the operators of the resulting linear systems by FA, FB, FC, FD, and FE, 
respectively. 

A preconditioner is defined similarly as in the previous subsection: the 
scaling matrices D^^ ^^ defined as before and the preconditioner M~^ is 
given in terms of the block diagonal matrix S and the matrix BD,A by 
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TV 

M-1 := Bn,ASBl^^ = Y,D^^B^^S^'^B^fD 
i=l 

We note that the product giving M~^ is well defined since BD,A is now an 
operator on all of Fh and the computation is not affected in any way; see Sect. 
6.4.4 for details. As before, multiplication by S amounts to solving a Dirichlet 
problem on each subdomain. Just as in Subsect. 6.3.1, we should make sure 
that we return to F = range{B^) after applying the preconditioner. We do so 
by premultiplying M~^ by P the -^2-orthogonal projection from range{B£)^^) 
onto range{B^). Thus, P removes a component of kemel{B'^). We maintain 
symmetry by also multiplying M"-*- from the right by the same operator. In 
contrast with the one-level FETI methods of Sect. 6.3, the inclusion of this 
operator P will make no real difference; examining the algorithm in Fig. 6.6, 
we find that while thej^agrange multipliers will be different, the underlying 
elements in the space W will be the same. We note that the projection on the 
right will always be applied to elements in range{BA)', it will therefore make 
no difference. We note, in addition, that kernel{F) = kernel{B'^); therefore 
FM-^ = FPM-^. 
_̂̂  The definition of M~^ clearly depends on the choice of the subspaces 

Wn and WA for the different algorithms. The resulting preconditioners are 
denoted by MJ^, M^^, M^^, M ^ \ and M ^ \ respectively- In Lemma 6.33, 
we will establish that M~^ is always invertible whenever 5̂  is. 

We note that the matrix A and its blocks, as given in (6.57), are seldom 
formed in practice. Algorithmically, the Schur complements S and the S^'^^ 
are only needed in_terms of products of S~^ and the S^^^ and vectors. When 
the primal space Wn also involves averages over edges or faces, the expUcit 
construction of the individual blocks would require a change of basis to accom
modate these averages, and to separate the primal and dual part of the space. 
This is not desirable since it can lead to additional fill in. In preparation for 
the analysis, in Subsect. 6.4.3, and the discussion of the practical implemen
tation, in Suteect. 6.4.4, we provide the following lemma with a variational 
definition of S without employing a new basis. We recall that the block di
agonal matrix S is defined in terms of the local Schur complements 5^'^; cf. 
Sect. 6.3.1. 

Lemma 6.22 Let the spaces Wn, WA, and W, and the Schur complement S 
be defined as above. Then, S satisfies 

{SUA,UA) = mm{Sv},w), UA € WA, (6.65) 

where the minimum is taken over w = wn +UA ^ W, with wn € Wn-

Proof. We consider the restriction of S to the space W and realize that S 
may be obtained by using a step of block Cholesky factorization that elimi
nates the degrees of freedom of type Fl. An argument as in the proof of Lemma 
4.9 concludes the proof. D 
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We note that any Schur complement of a positive semi-definite, symmetric 
matrix is always associated with a variational problem such as (6.65). Previ
ously, we have often considered discrete harmonic extensions of values given 
on the interface F (or dfii); here we compute an element in the primal sub-
space as a function of an element of the dual sgace WA- In Subsect. 6.4.4, we 
will provide practical procedures for applying S~^ to vectors. 

We are now ready to define our first FETI-DP algorithm in terms of a pair 
of subspaces. The definitions of our algorithms will employ the characteristic 
finite element functions Ojr of a face T, 0£ of an edge £, and 9y of a vertex 
V. These functions were introduced in Sect. 4.6 and they were featured in 
the proof of Lemma 6.3. We also recall that we identify trace functions de
fined on the subdomain boundaries with the corresponding discrete harmonic 
extensions into the substructures. 

Algorithm 6.23 (Algorithm A) The primal suhspace, Wn, is spanned by 
the discrete harmonic vertex nodal finite element basis functions Oyu. The 
local subspace WA,i is defined as the subspace of Wi of elements which vanish 
at the subdomain vertices, i.e., by 

WA,i ••= {uGWi-. u{V^) = 0 , V" e dfii}. 

Hence, W = WA is the subspace ofW of functions that are continuous at the 
subdomain vertices. 

As we have already pointed out. Algorithm A is not competitive because 
of a poor estimate of the condition number; see also Remark 6.39. Our first 
algorithm for which a good condition number estimate has been obtained is 
Algorithm B; we note that it has a quite large primal subspace and that it is 
therefore quite unlikely to be competitive with one-level FETI and Neumann-
Neumann algorithms in spite of a good bound of the condition number. 

Algorithm 6.24 (Algorithm B) The primal subspace, Wn, is spanned by 
the vertex nodal finite element basis functions dyu and the cutoff functions 
dgih and Ojrij of all the edges and faces, respectively, of the interface. The 
local subspace WA,i is defined as the subspace of Wi where the values at the 
subdomain vertices vanish together with the averages Ugik andujnj, i.e., by 

WA,i ••= {ueWi-. w(V") = 0 ,%i. = Q,u:Fii = 0, V'\£'^,r^ C dQi}. 

Here 

•'̂ f'*̂  = -F—TT- o,nd u-pn = -f——r- (6.66) 

Hence, W = WB is the subspace ofW of functions that are continuous at the 
subdomain vertices and have the same values of Ugik and uj^i independently 
of which component of u £ WB is used in the evaluation of these averages. 
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It turns out that the constraints on the face averages can be dropped 
while maintaining just as satisfactory a bound on the condition number of 
the algorithm. 

Algorithm 6.25 (Algorithm C) The primal subspace, Wn, is spanned by 
the vertex nodal finite element basis functions 9yu and the cutoff functions 
d£ik of all the edges of R The local subspace WA,i is defined as the subspace 
of Wi where the values at the subdomain vertices vanish together with the edge 
averages U£ih, i.e., by 

WA,i := {ueWi-. u(V'^) = Q,U£iu = 0, V'^S''' C dQi). 

Hence, W = Wc is the subspace ofW of functions that are continuous at the 
subdomain vertices and have common averages Ugik for all the edges. 

^^ The number of degrees of freedom of the corresponding primal subspace 
Wn is therefore^ equal to the sum of the number of vertices and the number 
of edges; this Wn is of lower dimension than the primal space of Algorithm 
B. 

Since we are able to show as strong a result for Algorithm C as for Al
gorithm B, it is natural to a t t e m p t ^ eUminate even more constraints, i.e., 
further decrease the primal subspace Wn while preserving the fast convergence 
of the FETI-DP method. This will lead to the introduction of Algorithm D; in 
the case of benign coefficients, the only constraints necessary are one primal 
edge for each face. After, quite selectively, adding edge and vertex constraints, 
such as those of Algorithm C, we are able to prove as strong a result as for 
Algorithms B and C for any choice of the pi. As in our design of good scalings 
for Neumann-Neumann and one-level FETI methods, our selection of primal 
edges and vertices are suggested very directly by our attempts to prove strong 
theoretical results, in particular, results which hold for all possible positive 
values of the coefficients pi. 

The number of constraints enforced in all the steps of the iterations of 
Algorithms B and C is substantially larger than when only the vertex con
straints are satisfied as in Algorithm A, but we are still able to work with a 
uniformly bounded number of such constraints for each substructure. In or
der to put this in perspective, we consider Algorithms B and C in the very 
regular case of cubic substructures. There are then seven global variables for 
each interior substructure in the case of Algorithm B since there are eight 
vertices, each shared by eight cubes, twelve edges, each shared by four, and 
six faces each shared by a pair of substructures. The count for Algorithm C 
is four while for Algorithm D the count can be as low as three quarters; if 
the coefficients are benign, we need only select one edge for each face of F 
and such a primal edge can be shared by two faces. We note that the counts 
would be different, relative to the number of substructures, e.g., in the case 
of tetrahedral subregions. 
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Our requirements on a minimal set of primal constraints, which we have 
found necessary to give a complete proof of a good bound for Algorithm 
D, will be given in Assumption 6.27. We note that there are basically two 
requirements for the bound for the operator P^ in Lemma 6.36. The first is 
that for each^ace there is a primal edge. This ensures that on each face, all 
functions in WA have vanishing mean value on at least one edge.The second 
is that, for each pair of substructures that have only an edge or a vertex in 
common, it is possible to move from one to the other moving through primal 
edges and substructures for which the coeiRcient p is not much smaller than 
the minimum for the two subregions under consideration. We finally note that 
vertex constraints might not be necessary as long as there are enough primal 
edges. However, in practice, some of them might be employed in order to make 
the Schur complement S invertible even in the absence of the edge constraints; 
see further Subsect. 6.4.4. 

Before proceeding, we give a more precise definition. Let J?j and Qj be two 
substructures that have an edge £^^ but not a face in common. An acceptable 
edge path is a path from i?^ to Qj, possibly through several other subdomains, 
J?fc, which all have the edge ^'•' in common and the coefficients of which satisfy 

TOLD *pk> m.m{pi,pj) (6.67) 

for some chosen tolerance TOLD; this parameter will appear in our bounds of 
the condition number of the algorithm. The path can only pass from one sub-
domain to another through an edge designated as primal. Clearly, if the edge 
*̂̂  is primal, an acceptable edge path between /?» and J7j exists consisting of 

only the two substructures. Consequently, we can always create an acceptable 
edge path for any edge by simply designating the edge as primal. We also note 
that this issue will not arise for an edge in the interior of the region which is 
common to only three subdomains, if we assume that every face has at least 
one primal edge. In this case, any pair of the three subdomains will have a 
face in common. 

We next consider a pair of substructures which has a vertex V*̂  but not a 
face or an edge in common. We then assume that V'^ is either a primal vertex 
or that we have an acceptable edge path of the same nature as above, except 
that we can be more lenient and only insist on 

TOLD *Pk> (hk/Hk) mm(pi,pj). (6.68) 

We summarize: 

Definition 6.26 (Acceptable edge path). Let Qi and Qj he two substruc
tures that have an edge £^^ hut not a face in common (or a vertex V^^ but not 
an edge in common). An acceptable edge path between Qi and Qj is a sequence 
of substructures 

{Qi = J7I, J72, . . . , /2fc,..., /2M = /^j}? 

such that: 



6.4 Dual-Primal FETI Methods 173 

1. All Qk in the path have the edge S^^ (resp. the vertex V^^) in common. 
2. For k = 1,.. .,M — 1, the substructures Qk and J?fc+i share a primal edge. 
3. All Qk in the path satisfy (6.67) for the case of a shared edge (or (6.68) 

for the case of a shared vertex.) 

We stress the fact that adjacent substructures in an acceptable edge path do 
not need to share a face. 

Assumption 6.27 (Algorithm D) 

1. For each face, we need at least one edge, which is part of the boundary of 
the face, to be designated as primal, i.e., we require that the edge averages 
U£ik are the same whichever component ofuE. WD is used to evaluate the 
average. 

2. In addition, for all pairs of substructures Qi and Qj, which have an edge 
but not a face in common, or a vertex but not an edge in common, there 
exists an acceptable edge path between the two subdomains. 

We note that we could allow our edge paths to stray somewhat further 
away from the edge ^*^, or the vertex V*̂ . In fact, a careful examination of 
the proof of Lemma 6.36 would reveal that alternative, more liberal rules 
concerning the paths could be adopted. 

If the coefficients of the equation do not vary significantly, there is always 
an acceptable edge path and only Assumption 6.27.1 is required. Otherwise, 
several different strategies can be developed for selecting primal edges and 
vertices. One strategy would be to start by selecting one primal edge per face 
and then try to find acceptable edge paths between any pair of subdomains 
which have an edge but not a face in common and where the edge has not 
yet been designated as primal. The principal candidates for inclusion in an 
enlarged set of primal edges are those for which a large TOLD would be 
required; we could, e.g., start by choosing those edges associated with the 
greatest variability of the coefficients as reflected by the potentially largest 
values of TOLD- Similarly, we could select as primal vertices those with the 
worst values of TOLD as in (6.68). We could alternatively begin by first 
selecting as primal those edges with greatest variability in the coefficients and 
then, in a second phase, add primal edges to meet the requirement that there 
is a primal edge which is part of the boundary of each face of R Whatever 
strategy is chosen, the selection of an edge for the primal set can depend on 
the set of edges already selected. Additional strategies are conceivable where 
edges, previously selected, are deselected and replaced by others. We can also 
exercise an option of designating some additional vertices of the substructures 
as primal; this might not be strictly necessary but if constraints are enforced 
at enough vertices the resulting matrix can be made invertible even without 
any edge constraints. As previously noted, this can be an advantage in the 
implementation of the method; cf. Subsect. 6.4.4. 
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Algorithm 6.28 (Algorithm D) The primal subspace Wn, is defined in 
terms of primal constraints associated with a subset of the edges and vertices 
of the interface which satisfies Assumption 6.27. 

We note that any choice of primal edges and vertices will be associated 
with a maximum value of the parameter TOLD, which will appear in the 
bound of the condition number of the preconditioned operator; see Theorem 
6-38. We also again note that in the case of benign coefHcients and hexagonal 
substructures, we can have as few as three edge constraints per subdomain, 
and hence a very small primal space since each edge is shared by four sub
structures. We also note that we are free to add any other vertex, edge, or face 
constraints to our definition of the primal space; the bounds on the condition 
numbers will only improve. If all edges and vertices are made primal, we have 
returned to Algorithm C. 

Our final algorithm, Algorithm E, can be derived from Algorithm B by 
eliminating the edge constraints; recall that Algorithm C was derived from 
Algorithm B by dropping the face constraints. 

Algorithm 6.29 (Algorithm E) The primal subspace, Wn, is spanned by 
the vertex nodal finite element basis functions 9yu and the cutoff functions 
djrik of all the faces of R The local subspace WA,i is defined as the subspace 
of Wi where the values at the subdomain vertices vanish together with the face 
averages Ujrik, i.e., by 

WA,i •-= {u£Wi: u(V") = 0,ujrik = 0, V'^ J^*' C 5/?i}. 

Hence, W = WE is the subspace ofW of functions that are continuous at the 
subdomain vertices and have common averages Uynu for all the faces. 

This algorithm was introduced and analyzed in [293]. In order to succeed 
with the analysis, a concept of acceptable face path was introduced. For each 
pair of subdomains Qi and Qj, which have an edge in common, we must find 
a path through neighboring subdomains J?fc, such that 

TOLE *pk> iiiin(/)i, pj) (6.69) 

with an acceptable tolerance TOLE- The path will pass from one substructure 
to another only through faces common to pairs of neighboring substructures. 
It is easy to select values of the pi for which TOLE is arbitrarily large; see 
Subsect. 6.4.5. In contrast to Algorithm D, we are not able to lower the value 
of TOLE by introducing additional constraints if we are unwilling to use edge 
constraints. We will provide experimental evidence in Subsect. 6.4.5 which in
deed suggests that face constraints are less powerful than edge constraints for 
problems with very large jumps in the coefficients across the interface. How
ever, we also note that the condition (6.69) is trivially satisfied with TOLE = 1 
for an interior edge which is common to just three 

We will not provide an analysis of this algorithm and we instead refer to 
[293]; see also Remark 6.40. 
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6.4.3 Analysis of Three FETI-DP Algorithms 

We recall that there is a central, common part of the analysis of the algorithms 
of Sect. 6.2 and 6.3 and that technically the proof of the central Lemma 6.3 
is similar to work in Chap. 5. Here some additional ideas are required, in 
particular, in the analysis of Algorithm D, but we will also find that several 
algebraic arguments have much in common with those used for one-level FETI 
methods. We note that Assumption 4.3.2 is not necessary for FETI-DP algo
rithms. As in [341], the two different Schur complements, 5̂  and S will play 
an important role in the analysis of the dual-primal iterative algorithms. We 
also recall that S represents a global problem while 5* does not. 

We recall that V := range{BA) is the space of Lagrange multipliers, where 
the range is taken over elements in WA or, equivalently, W. As in Subsect. 
6.3.3, we introduce a projection 

PA := Bjy^BA-

As already mentioned, we will work with a fuUy redundant set of Lagrange 
multipliers. The proof of Lemma 6.16 can be carried over to the current case 
as well and a simple computation shows that PA preserves the jump of any 
function UA € WA^ i-e., 

BAPAUA = BAUA-

We also have PAU = 0,iiu eW. As before, wejntroduce an^di t ional related 
operator EA = I — PA- We have EAUA € Wj for UA 6 WA- We can then 
borrow formula (6.42); for x E. Ph and WA G WA, we have 

(PAWA{x))i = ^ <5t(ar){wzi,i(x)-WzijCar)), xedQi^h- (6.70) 
3 '€M 

We note again that the coefHcients in this expression are constant on the set 
of the nodal points of each face and edge of dQi, and that this formula is 
independent of the particular choice of BA-

In our proof of the lower bound for the preconditioned operators in Theo
rems 6.35 and 6.38, we will use the following lemma and corollary; the corollary 
replaces Lemma 6.8 which was used in the proof of Theorems 6.15 and 6.21. 

Lemma 6.30 J^r any (J, &V, there exists a WA G WA, such that fj, = BAWA 

and EAWA G Wn- This result holds for all pairs of spaces which define the 
algorithms of this section. 

__ Proof. We first note that for any /x € V, there are many elements of UA G 
WA such that /x = BAUA- Given any such UA, we then write it as 

UA = PAUA + EA'UA-

EAUA is an element in W but not necessarily an element of its subspace 
Wn- If UA vanishes at a vertex, then formula (6.70) ensures that PAUA (and 
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therefore EAUA) also will vanish at that vertex. Let now £''' be a primal edge. 
Since UA € WA, the mean value of UA vanishes on f **̂  and 

{PAUA)£ik + (EAUA)£ik = 0. 

Similar considerations hold for a primal face. We can then obtain an element 
with the right properties by replacing EAUA by j ts averages over the primal 
edges and faces. More precisely, we define wn 6 Wn by 

WJT = ^ {EAUA)sikOsi'' + ^ iEAUA)j7ijOj7ii, 

where the sums are only taken over primal edges and faces, respectively. We 
then set WA = PAUA + wn = PAW A + wn- By construction, WA £ WA, and, 
since wn is continuous, 

BAWA = BAPAUA = BAUA = M-

The proof is concluded by noting that E^WA = wn € Wn- Q 
The following corollary will be used directly in the proof of the lower 

bounds for the FETI-DP operators. 

Corollary 6.31 Let WA satisfy the condition of Lemma 6.30. Then, 

\wA\g< \PAWA\S-

Proof.^Smce EAWA G Wn, the variational formulation of the Schur com
plement S, given in (6-65), implies that 

|wzi | | < \WA - EAWA\1 = \PAWAIS-

D 

Remark 6.32. Stronger statements than those in Lemma 6.30 and Corollary 
6-31 can be made for Algorithms A and C- Indeed, from formula (6-70), we 
find that if UA € WA then PAUA vanishes at all substructure vertices, since 
UA does. Therefore, PAUA € WA for Algorithm A. In addition, for Algorithm 
C, formula (6.70) ensures that PAUA has vanishing averages over all the edges 
and therefore PAUA € WA- This shows that, in the proof of Lemma 6-30 the 
averages {EAUA)£ik all vanish and we can therefore choose WA = PAUA, 

which ensures EAWA = 0. We then have equality in Corollary 6.31. The same 
results hold for Algorithms B and D, in case the averages over edges and faces 
in (6.66) are constructed using only the nodal values in the interior of the 
edges and faces. Or, in other words, the conclusion follows in case each primal 
constraint employs values at the nodes x where the functions SJ (x) take the 
same value; see formula (6.70). 
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We can now prove the invertibility of the FETI-DP operators and of the 
preconditioners. The key point here is that there are enough continuity con
straints to make a piecewise constant function that vanish on a part of dQ 
vanish in the whole J?. 

Lemma 6.33 The operators S and M~^ are invertible. 

Proof^We first consider S and an element WA € WA, such that SWA = 0. 
If w € 1^ is the minimizing element of Lemma 6.22, then Sw = 0 and w is 
therefore equal to a constant Ci on each substructure J?i. Clearly, Q = 0 if J?̂  
touches df^D, which we have assumed to be nonempty. 

For Algorithms A, B, C, and E, where every vertex is primal, we can 
then consider all the substructures that share a vertex with J7, and, since 
w must be continuous at the vertices, deduce that w also vanishes in these 
substructures. Finally, since J? is connected, we can visit all the substructures 
moving through vertices and deduce that w = 0 and therefore WA = 0. 

For Algorithm D, it is enough to consider primal edges. Because of As
sumption 6.27.1, for every substructure that shares a face with J?j, w has the 
same average over the corresponding primal edge and must therefore vanish 
on this substructure. We can now visit all the substructures moving through 
common faces and deduce that w and therefore WA must vanish everywhere. 

We now consider & (j, e V, such that M~^fi = 0, and the WA G WA of 
Lemma 6.30. Then, 

0 = {M-^iJ,,fj,) = {M-^BAWA,BAWA) = {SPAWA,PAWA)-

This implies S{PAWA) = 0 and therefore 

WA = PAW A + EAWA = C + wn, 

with c ^ u a l to a constant Ci on each substructure Qi and a continuous 
wn £ Wn- We now consider Algorithms A, B, C, and E, where each ver
tex is primal- We note that WA vanishes at the substructure vertices and, 
since wn is continuous, c must also be continuous at the vertices. The same 
argument as before then ensures that c = 0 and thus 

H = BAWA = BAPAWA = BAC = 0. 

A similar argument, that employs the primal edges of Assumption 6.27.1, 
provides the result for Algorithms D. D 

We note that for Algorithm D, edge constraints are enough in order to 
ensure invertibility. However, we have already noted that it can be computa
tionally advantageous in practice to add vertex constraints in a such a way 
that invertibility is guaranteed only by these constraints; cf. Sect. 6.4.4. 

We continue by analyzing Algorithm B and begin by proving the following 
core estimate. 
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Lemma 6.34 (Algorithm B) For all w 6 WBJ we have 

\PAW\1 <C {l + \og{Hlh)f\w\s, 

where C > 0 is independent of h,H, the pi, and j . 

Proof. We use formula (6.70) and set 

Vi(x) := (P/iw(x))i = ^ SJ{x){wi{x) - Wj(x)), x € 5^,/*- (6-71) 

We then have to estimate 
N 

\PAW\1 = ^\vifg<,y 

We can therefore focus on the estimate of the contribution from a single 
subdomain J?j. 

We model our proof on Lemma 6.3 and [289, Lemmas 4.7, 5.4] but note 
that the arguments need to be modified to some extent. Since the coefficients 
in the sum in (6.71) are constant on each face and edge of J?,, we decompose Vi 
into terms associated with single faces and edges. We note that we only have 
contributions from faces and edges since all elements in WB are continuous at 
the vertices. Here, in contrast to the proof Theorem 6.15, we do not need to 
use Assumption 6.1. 

We now cut the function Vi using the functions 6jr and 9s and write it as 
a sum of terms which vanish at all the interface nodes outside individual faces 
and edges; cf., e.g., [178, 184, 182]. We then have, since the Vi vanish at the 
subdomain vertices, 

Vi= Y. l\^TVi)+ Y. I'^i^e^i)-

Face Terms. We find that the face T, shared by the substructures i?j and 
J7j, contributes 

1 /2 
and we have to estimate its H^^ (jr)-norm. 

We note that SJ is constant on !Fh and that w has common face averages, 
i.e., Wi^y^ = Wj^j:. Using inequality (6.19), these observations, and Lemma 
4.26, we obtain, 

= Pi\\lHOTS]{{Wi - « j j ) - {WJ - MJ,-,^)))||L/.,^^ 
/ "" ^ ' \ (6.72) 

< C(l + log(Hi/hi))^min(pi,pj) (^Iwil^i/a^j^^ + |wj||.i/2(^)J 

< C{l + log{Hi/hi))^ {pM\m/^ao,) + PjMm/^anj)) • 
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^ij 

Fig. 6.8. Section of a coiifigiiratioii witli an edge 8 sliared by four substructures. 
An acceptable edge path. {Qi, fij, Qk}, which employs the primal edges 5'-' and P'* 
is also shown for the substructures i?i and f^k • 

We note that, by assumption, Hj and Hi are comparable and so are hj and 
hi, since the triangulations of J?i and J?̂  are locally quasi uniform and match 
across the interface F. By using Lemmas 4.9 and 4.10, we have therefore 
proven 

r{OTVi)\U, < C{l+log{H/h)y{\w,^ '*ls(') \w 
|2 

J 150) (6.73) 

Edge Terms. We next consider the edge contributions and only consider, for 
simplicity, the case of an edge £ common to four subdomains Hi, Oj, /2fc, and 
Hf, see Fig. 6.8. We also recall that all the edges are primal and therefore Wi, 
Wj, Wk, and W£ have all the same average over £. There are three terms in the 
estimate of the contribution of J?̂  to |Pziw||, namely 

Pi\\l\S]eeiwi-wj[ 

+ Pi\\i''isles{wi-wk 
+ +Pi\\it^{sle£{ 

2 

Wi-Wl))}]^ 2 

(6.74) 

We recall that dj, dl, and j j are constant on S^ and that the four averages 
Wi,e, Wk,e, Wj,£, and wi^e are all equal. 

We first consider the second term in detail assuming that J?i shares a face 
with each of J7j and J?/, but only an edge with J?^. Using formula (6.19), 
Lemmas 4.19 and 4.17, we find 



(6.75) 

180 6 Neumann-Neumann and FETI Methods 

Pi W^'i^l^ed'^i - Wk))\fHi/^Q^.) 

< Cpi\\I^{8l{es{wi-Wi,e)-es{wk-wu,e)))\\l^£) 

< 2 {pi\\lHOs{wi-WiM\his)+Pk\\l''i^s{wk-WkM\h(e)) 

< C (pillWi -Wi,£-|||2(£) + Pk\\Wk-Wk,s\\\-^{S)) 

<C{l + \og{Hlh))(p 

< C(l + log{F//i)) {\wi\%,, + \wk\%,,), 

with JF' a face of J?̂  and J^'^ a face of i?^, which have the edge S in common. 
We note that since J?, and J7J, as well as /?« and i?^, have a face in common, 
the argument given above could be modified for the first and third edge con
tributions; they can be reduced to estimates for face terms directly. We have 
therefore proven 

ll^OeVi) 11(0 < C{1 + \og{H/h)) ^ \wk | | ( . ) , (6.76) 
k 

where the sum is taken over all the substructures that share the edge S. 
U 

We now prove our condition number estimate for Algorithm B, which only 
depends polylogarithmically on the dimension of the subproblems. 

Theo rem 6.35 (Algori thm B) The preconditioner MB satisfies 

{MB\, A) < {FBX, A) < C(l + log{H/h)f{MBX, A), XeV. (6.77) 

Here C is independent of h, H, 7, and the values of the pi. 

Proof. We will estimate the smallest eigenvalue XminiM^^Fs) from below 
and the largest eigenvalue XmaxiM^^Fs) from above. 

Lower Bound: 

As in the analysis of the one-level FETI methods, see the proof of Theorem 
6.15, we can use the following formula, which follows from the definition of F: 

{FBX,X)= sup i ^ ^ i ^ ^ l ^ . (6.78) 

Let p eV^he arbitrary. It then follows from Corollary 6.31 that there exists 
a WA G WA with p = BAWA and such that \WA\^ < \PAWA\S- We obtain, 

,j^ . ...{X^BAWA}^ {X,BAWAf (A,/x)2 (A,/x)2 

\WA\~ \PAWA\1 \BI,AP'\'S {MB^P^P)' 

The left inequality of (6.77) follows by choosing p := MBX. 

file:///Pawa/s-
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Upper Bound: 

We first note that the supremum in formula (6.78) can be replaced by a 
suprenium over the space_^VF. Indeed, to every WA € WA we associate the 
minimizing element w €W oi Lemma 6.22, such that, 

\WA\-g = Iwls-. 

In addition, since WA and w differ by a continuous element, we have BAWA = 
BAW. Using then Lemma 6.34, we obtain for A in V, 

(FBX,X) = sup 
w • 

2 ^^_ {X,BAW) 2 

= C (1 + kg(H/hif sup ^ ^ ^ 4 5 ^ 
w€W {M^^ BAW, BAW) 

= C (1 + los(H/h)f sup .//_'f^' . = C (1 + log{Jf//i))2(M£A, A). 

D 
We now turn to the analysis of Algorithms C and D. 

Lemma 6.36 (Algorithms C, D) For all w 6 Wc, we have, 

\PAw\l<C{l + log{H/h))^\w\l. 

For all w £ WD, we have, 

\PAW\1 < C max{l,TOLD) {l + log{H/h)f\w\l. 

In both cases, C > 0 is independent of h, H, the pi, and 7. 

Proof. We can proceed as in the proof of Lemma 6.34; we will use the same 
notation and only discuss details that are technically different. We note that 
in Algorithm D not all vertices are necessarily primal and that we therefore 
have to estimate terms of PAW(X) related to the vertices which are not primal. 

We cut the function Vi using the functions 9jr,0£, and Oy and write it as a 
sum of terms which vanish at all the interface nodes outside individual faces, 
edges, and vertices, respectively. We then have 

TddQi ecdOi VedOi 

where the last sum is taken over all the vertices that are not primal. 

file:///Paw/1
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Face Terms. As in the proof of Lemma 6.34, we find that the face T^ shared 

by fli and J?j, contributes 

and we have to estimate its ifgo (-^)-norm. We recall that J] is constant on 
Th but that w in general has different face averages «JJ,;P and Wĵ jr, since we 
now do not work with primal faces. Using inequality (6.19), we obtain. 

(T) 

< 2 mm(pi,pj) (^\\lH^Aiwi-Wi,^) - K ' " ^i.^)))II^V2(^) + 

^of(^) 
(6.79) 

+\\(wi,:F - Wj,:F)ejrf 

The first term on the right hand side can be estimated as in (6.72) by 

as desired, by applying Lemma 4.26. 
There remains to estimate ||{wt,:F — Wj,j^)9j^\\l^if2,^.- We recall that for 

Algorithm C every edge is primal (cf. Algorithm 6.25) and that for Algorithm 
D every face has at least one primal edge that belongs to its boundary (cf. 
Assumption 6.27.1). Let £ C dT be a designated, primal edge. Since Wi^s = 
Wj^s^ we then have 

\wi,T - Wj,jr\'^ < 2 {\wi,£ - Wi^r? + \wj,e - WJ,T?) . 

It is sufficient to consider the first term on the right hand side since the second 
can be dealt with in exactly the same way. Using Lemma 4.30, we find 

\Wi,£ - Wi^T? = \{W - Wi,jr).^^f < C/Hi\\Wi - Wi,jr ||i2(f), 

and, by using Lemma 4.17 and the Poincare inequality in Lemma A.17, 

\wi,e - Wi,Tf < C/Hi{l + log{H/h))\wi - Wi,^ |ffi/2(^). (6.80) 

Combining the last inequality with the bound for Ojr in Lemma 4.26 yields 

(w :,^ - wj,^)^^||^i/2(^) < C{l + log{H/h)f (|«;i|^x/2(^) + |w',-|ii/2(^)) 

The remainder of the proof of the result for Algorithm C, involving bounds 
for edge contributions on primal edges, can be carried out as in the proof of 
Lemma 6.34; cf. (6.75). 
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However, for Algorithm D, we need to do some further work since some 
edges or vertices may not be primal. 

Edge Terms. Proceeding as in the proof of Lemma 6.34, we can estimate 
the contributions of the edges of /?» to the energy of Vi in terms of L^-norms 
over the edges. We consider in particular the configuration in Fig. 6.8, where 
four substructures i?,, Hj, Hk, and Hi share an edge £ and Hi shares a face 
with each of f2j and f2(, but only an edge with 1?^. We need to estimate the 
three contributions in (6.74). We first consider the second term in detail. If we 
have a trivial, acceptable edge path, i.e., the common edge is designated as 
primal, we can proceed exactly as in (6.75)- Otherwise assume that we have 
the non-trivial, acceptable edge path {i7j, J?^, J?^}, via the edges £^^ and S^'^; 
in general the acceptable edge path could be more complicated but such a case 
could be analyzed similarly. We now note, in particular, that the definition of 
an acceptable edge path ensures that 

Using Lemma 4.19, the second term in (6.74) can be estimated by 

= Pi Il4 {l^{^£{wi - Wi^ea)) + 9e{wj^£ii - Wj^£jk) 

< Cmin{pi,pk) (||/''(^f(M'i - Wi,fi,))|||2(f) + Hj \wj^sij -Wj^£jk\^ 

+| | / ' ' (^ f (« ' fc-w, , f ,0) | | i . (^) ) , 

where we used the fact that 0 < ^^(x) < 1 on £. The first and third terms of 
the last expression can be estimated as before in (6.75). For the second, we 
have to use TOLD * Pj > m.m(pi,pk). We note that the edges S^^ and P*', 
which belong to dS7j, may belong to different faces. We employ the average 
of Wj over W^ and write 

\Wj^£ij - Wj^sjh f < 2\Wj^£i3 - Wjy^3 P -I- 2\Wj^£ih — Wj^yvj |^. 

Each of the two terms can then be estimated as in (6.80), using Lemma 4.17. 
For the first, we find: 

\Wj^£ij - Wj^wi Y = \{w- Wj^wi)jgij \' 

< C/Hj\\Wj -Wj^Wi \?L^(£ii) 

<CIHj\\wj-Wj^v^i\\l^^y^y^ 

We finally obtain, 
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Pi \\5il\es{wi - WkMh^e) < C{l+\og{Hlh)) (/>>i|^i/.(a^,) + 

Since fli and /?_,-, as well as i?j and Qi, have a face in common, the argument 
given above could be simplified for the first and third edge contributions, see 
(6.74); they can be reduced to estimates of face terms. 

Vertex Terms. Finally, we consider the terms resulting from the vertices. 
Let V € dfli be a vertex that is not primal. We have, according to (6.71) and 
(6.19), 

<C ^ min(/>i,y9£)/ii|t(;i(V)-w/(V)p, 
feATv 

where we have used the bound \(^v\'\ji/2rQQ.\ < Chi which can be obtained 
from an inverse inequality. We now consider each term in the sum separately. 
Let i?f share the vertex V with J?j. and assume that we have, an acceptable 
edge path {i?j, i?^, i?^} via the edges S'^^ and S^^ meeting the condition 

TOLD *Pj>^ mm{pi,pt). (6.82) 

We can proceed as in the analysis of the edge terms and obtain 

mm{pi,pe)hi\wi{V) - w / ( V ) p 

< 3 min(y9i, p()hi {\wi{V) - Wi^sa f + \wj^£ij - Wj^gje f + \wt{V) - Wi^sa | 2 \ 

It is sufficient to estimate the first term on the last line; the third term can 
be treated in exactly the same way, and the second term can be estimated 
as above with the only diflference being an additional factor hj/Hj which is 
accounted for in (6.82). Using Lemmas B.5 and Lemma 4.17, and estimating 
\wi^S'i I as before, we obtain 

hi\iwi{V) -Wi^sa? = hi\{wi -Wi^£ii)iV)f < \\wi-Wi^s'i\\h{£io) 

Using (6.82), we finally obtain 

mm.{pi,pi)hi\'Wi{y)-wiiy)\^ < C{l + log{H/h)) (pilm •i|«^i|_H-i/2(9^.) 
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Remark 6.31. As already noted in Sect. 6.4.2, when we defined Algorithm D, 
a closer look at the previous proof shows that more general paths can be con
sidered than those in Definition 6.26. However, we note that if there are many 
long paths, through many subdomains, the constant in the estimate of the 
norm of P^tt will necessarily be large since there can be many contributions 
of the form PiKjI^i/acg^.) from the same subdomain. In addition, we note 
that if the coefficient p varies moderately, conditions (6.67) and (6.68) are 
always satisfied and only Assumption 6.27.1 is required. 

We can now prove our condition number estimates for Algorithms C and 
D, which are as strong as those of Theorem 6.35. The proof can be carried 
out exactly as for Theorem 6.35, using Lemma 6.36 instead of Lemma 6.34. 

Theorem 6.38 (Algorithms C, D) The preconditioner Mc satisfies 

{Mc\ A) < (FcA, A) < C(l + \og{Hlh)f{Mc\ A), XeV. 

Similarly, the preconditioner MD satisfies 

{MDX, A) < (FDA, A) < C max(l, TOLD) (1 + log{H/h)f{Mj:,X, A), XeV. 

Here C is independent of h, H, 7, and the values of the pi. 

Remark 6.39 (Algorithm A). By using similar tools, in particular. Lemma 
4.12, we can prove the weaker bound 

(MAA, A) < (FAA, A) < C{Hlh){l + log{H/h)f{MAX, A), XeV. 

The following result is estabHshed in [293]. 

Remark 6.4O (Algorithm E). By using similar tools, we can also prove, for 
XeV, 

{FEX,X)>{MEX,X) 

{FEX,X) < Cma;^{{l + log{H/h))^,TOLE*{l + log{H/h))){MEX,X), 

where the tolerance is that of (6.69). 

6.4.4 Implementation of FETI-DP Methods 

We review an approach given in Farhat, Lesoinne, and Pierson in [195]. We 
then assume that we have chosen a sufficient number of primal vertices so 
that the stifiiiess matrix, which results from A by partial assembly at the 
primal vertices, is invertible even without any additional primal constraints. 
An algorithm for selecting such a set of vertex constraints is given in Lesoinne 
[313]. 

We recall that in two dimensions, such a set of vertex constraints is suf
ficient to obtain a fast and scalable algorithm but that in three dimensions. 
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we should choose a primal space, which also ensures that certain edge and/or 
face averages are the same across the interface. 

The approach is implemented by introducing additional optional Lagrange 
multipliers directly related to a set of constraints of the form 

JV 

QABAUA = Y, QAB^A'^A = 0 (6.83) 
i=l 

Here QA is a rectangular matrix with one row for each optional constraint; 
each row provides a linear combination of the rows of BAUA with the weights 
chosen so as to assure that an edge or face average will have common values 
across the interface. Thus, if (6.83) is satisfied, all the primal edge and/or face 
conditions will be satisfied. These optional constraints are fully enforced in 
every step of the iteration by a separate set of Lagrange multipfiers. 

We now assume that the unknowns are ordered such that the interior 
and dual variables come first, grouped together in blocks with respect to the 
subdomains and equipped with the subscript r, and that the primal vertices, 
equipped with the subscript c, are ordered last. We note that the matrix 
A is partially assembled with respect to the primal vertices; recall that we 
introduced a matrix A already in Subsect. 6.4.1 in the simpler case when 
there are no optional constraints. We now have 

A:= 
Arr QT 
Acr Ace 0 
V r 0 0 _ 

where 

^ (1 ) 

0 

O 

A (N) 

A^ 
« iWr A^' A 

A 
^11 
(i) 
AI ^AA 

AI A^ := 

4 ( 1 ) T E . ( 1 ) 

A(N)T„(N) 

N 

lee = E ^ ^ ' ^ ^'^cR^\ Qr ••= U^^ •. • Q n and (?« := [0 QAB « l 

Here, the ni are the matrices which perform the partial assembly at the 
relevant primal vertices and A^c is the submatrix which is assembled at the 
primal vertices. The resulting leading two by two block of A is non singular 
since, by assumption, we have chosen a large enough set of primal vertices. 
Using the notation 

Br := [0 BA] 

and reintroducing the Lagrange multipliers A £ range{BA), we can reformu
late the original finite element problem as follows 
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/i-jpf C7* ^T T Ur 'fr 
•^cr -^cc ^ ^ Uc fc 
Qr 0 0 0 /* 0 
Br 0 0 0 A 0 

Fig. 6.9. Model domain decomposed into cubes with discontinuous diffusion coef
ficients pi = 1 and 10''. 

(6.84) 

The Schur complement S is obtained as the leading block of the two by two 
matrix that^remains after that uj, u^, and /x have been eliminated. When 
computing S~^fA, we should take advantage of ordering given in (6.84) and 
eliminate all of Ur prior to assembling and factoring a Schur complement with 
respect to u^ and /j,; see (6.63) and the discussion in Sect. 4.3. This will allow 
us to carry out the matrix vector multiplication of F = BAS~^B^ with any 
given vector at a reasonable cost. 

We note that alternative methods, without any additional Lagrange mul
tipliers, are discussed in Klawonn and Widlund [290]. 

6.4.5 Computational Results 

This subsection is based on a conference paper [286] and on experimental work 
by and a PETSc code developed by Ohver Rheinbach; for information on the 
PETSc system, see [32]. We have applied the FETI-DP algorithms A, B, C, 
and E to the model problem (4.3), where J? := (0,1)^ is the unit cube. We 
decompose the unit cube into N x N x N cubic subdomains with sidelength 
H := 1/N. The diffusion coefficients pi alternate between 1 and 10^ and are 
distributed in a three-dimensional checkerboard pattern; cf. Fig. 6.9. On the 
front, left, and bottom part, homogeneous Dirichlet boundary conditions are 
applied while on all the remaining parts of the boundary, homogeneous Neu
mann boundary conditions are used. The coefficients are constant on each 
subdomain and (4.3) is discretized by conforming trilinear elements with cu
bic finite elements with edge length h. We use the preconditioned conjugate 
gradient method with a zero initial guess. The stopping criterion is the relative 
reduction of the initial residual by 10~^ in the Euclidean norm. In order to 
analyze the numerical scalability of our algorithms, we have carried out two 
different types of experiments. In our first set of runs, we kept the subdomain 
problem size, i.e., H/h fixed and increased the number of subdomains and 
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Table 6.1. Algorithm A - Constant H/h 

Subdomains ] Dof/Subdom. Dof Iterations Amin Aiiiax 

8 1000 6,859 9 1.00035 11.5539 
27 1000 21,952 14 1.00051 28.8335 
64 1000 50,653 19 1.00361 25.0130 

125 1000 97,336 22 1.00283 28.8335 
216 1000 166,375 24 1.00231 25.0127 
343 1000 262,144 26 1.00188 28.8335 
512 1000 389,017 25 1.00161 25.0127 
729 1000 551,368 26 1.00138 28.8335 

1000 1000 753,571 24 1.00125 25.0127 

thus the overall problem size; cf. Tables 6-1, 6-2, 6-3, and 6-4- Our second 
series of experiments is carried out with a fixed number (216) of subdomains 
and an increasing H/h resulting in an increased value of 1/h; cf. Tables 6.5 
and 6.6 and Fig. 6.10- Prom both set of runs, we see that our computational 
results support the theoretical condition number estimates- However, for Al
gorithm E, the growth of the condition number appears to be linear rather 
than polylogarithmic in H/h. We note that for this problem, the bound given 
in Remark 6.40 is basically meaningless since TOLE = 10*. Experiments for 
an isotropic material, i.e-, without any jumps in the coefficients show the same 
polylogarithmic growth for Algorithm E as for Algorithms B and C. We also 
note that a variant of Algorithm E, which works with averages over the clo
sure of the faces, has been used extensively and that there is experimental 
evidence that this gives a faster rate of convergence than Algorithm E. In a 
third set of experiments, we have tested our algorithms for parallel scalabil
ity. We consider a decomposition into 216 subdomains with 13,824 degrees of 
freedom for each subdomain with an overall problem size of 2,685,619 degrees 
of freedom; cf- Table 6-7-

The experiments in Tables 6.1, 6.2, 6.3, and 6-4 were carried out on two 
dual Athlon MP 2200+ PCs with 2 GByte memory each- The experiments in 
Tables 6-5, 6-6, and 6-7 were computed on the 350 node Linux cluster Jazz 
at the Argonne National Laboratory. Each node is a 2.4 GHz Pentium Xeon 
where half of the nodes each has 2 GByte memory and the other half each 1 
GByte. 

The experiments show that all algorithms have a good parallel scalability 
for our model problem- For this problem and the number of degrees of freedom 
considered, the CPU times are not significantly different, although Algorithm 
C is always slightly faster- To decide which method is the best, more extensive 
testing with different model problems and geometries is needed-
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Table 6.2. Algorithm B - Constant H/h 

Subdoniains ] Dof/Subdom. Dof Iterations Amin Amax 

8 1000 6,859 7 1.00085 1.47091 
27 1000 21,952 8 1.00049 1.55036 
64 1000 50,653 8 1.00025 1.47011 

125 1000 97,336 8 1.00022 1.55036 
216 1000 166,375 8 1.00013 1.46995 
343 1000 262,144 8 1.00013 1.55036 
512 1000 389,017 8 1.00009 1.46989 
729 1000 551,368 8 1.00010 1.55036 

1000 1000 753,571 7 1.00014 1.46985 

Table 6.3. Algorithm C • • Constant H/h 

Subdomains ] Dof/Subdom. Dof Iterations Amin Amax 

8 1000 6,859 8 1.00030 1.61492 
27 1000 21,952 9 1.00040 2.06800 
64 1000 50,653 9 1.00020 1.93210 

125 1000 97,336 10 1.00012 2.06875 
216 1000 166,375 9 1.00009 1.93192 
343 1000 262,144 10 1.00008 2.06875 
512 1000 389,017 9 1.00006 1.93210 
729 1000 551,368 10 1.00005 2.06875 

1000 1000 753,571 9 1.00005 1.93210 

Table 6.4. Algorithm E -• Constant H/h 

Subdomains Dof/Subdom. Dof Iterations Amin Amax 

8 1000 6,859 8 1.00102 11.4671 
27 1000 21,952 10 1.00185 16.2107 
64 1000 50,653 14 1.00129 16.2191 

125 1000 97,336 16 1.00113 16.2246 
216 1000 166,375 19 1.00089 16.2281 
343 1000 262,144 19 1.00079 16.2304 
512 1000 389,017 20 1.00067 16.2319 
729 1000 551,368 20 1.00060 16.2329 

1000 1000 753,571 20 1.00054 16.2335 
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Table 6.5. Algorithms A and C - Constant H 

Subdomains H/h Dof Algorithm A Algorithm C 
Iter An An Iter An An 

216 4 6,859 14 1.00018 4.20279 6 1.00001 1.28960 
216 8 79,507 22 1.00147 16.7662 8 1.00029 1.75693 
216 12 300,763 27 1.00306 34.0512 10 1.00010 2.08459 
216 16 753,571 31 1.00371 53.9590 11 1.00017 2.34317 
216 20 1,520,875 32 1.00519 75.7574 11 1.00024 2.55999 
216 24 2,685,619 34 1.00651 99.0372 12 1.00029 2.74869 
216 28 4,330,747 36 1.00660 123.530 12 1.00035 2.91716 
216 32 6,539,203 36 1.00677 149.054 13 1.00034 3.07033 

Table 6.6. Algorithms B and E - Constant H 

Subdomains H/h Dof Algorithm B 
Iter An An 

Algorithm E 
Iter An An 

216 4 6,859 5 1.01252 1.06768 13 1.00006 4.19816 
216 8 79,507 7 1.00052 1.31862 19 1.00044 12.1453 
216 12 300,763 8 1.00021 1.62065 22 1.00058 20.3391 
216 16 753,571 10 1.00021 1.90164 23 1.00054 28.5889 
216 20 1,520,875 10 1.00033 2.14742 23 1.00066 36.8711 
216 24 2,685,619 11 1.00040 2.36688 25 1.00062 45.1044 
216 28 4,330,747 12 1.00040 2.61352 24 1.00081 53.3703 
216 32 6,539,203 12 1.00046 2.80160 24 1.00097 61.5779 

-

Algorithm A / 

Algorithm E ^^ 

0 5 10 15 20 25 30 3. 

i Algorithm C 

Algorithm B 

log^HAi) 

Fig. 6.10. Condition number as a function of H/h for Algorithms A and E {left) 
and as a function of log{H/h)^ for Algorithms B and C (right). 
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Table 6.7. Parallel scalability - Algorithms A, B, C, and E with 216 subdomains, 
13,824 dof per subdomain for a total of 2,685,619 dof 

Algorithm 
Processors A B C E 

27 223s 207s 205s 216s 
54 113s 106s 106s 110s 
108 57.0s 54.2s 53.8s 55.4s 
216 29.1s 28.9s 27.2s 29.1s 



Spectral Element Methods 

7.1 Introduction 

Spectral element approximations were first introduced by Patera [374] and 
then for the Legendre case, which is more directly relevant to our work, by 
Maday and Patera [330]. These methods have been used extensively, in partic
ular, in large scale simulations of incompressible fluid flow; see, e.g., Deville, 
Fischer, and Mund [160]. In this chapter, we will demonstrate that the meth
ods and theory developed in Chap. 3, 5, and 6 can be extended to the spectral 
element case; we will also discuss extensions of the theory to p and hp meth
ods in section 7.5. For a short introduction to spectral element methods, see 
appendix B.2, and for a detailed introduction to spectral methods, which form 
a basis for spectral elements, see [46, 48]. 

In this chapter, we will primarily consider three-dimensional problems. The 
corresponding two-dimensional algorithms can also be defined and analyzed 
using similar tools. We will use a conforming, shape-regular triangulation 
7" = {J7j, i = 1 , . . .,N} of our region J?. Each element J7i is the image of 
the reference cube O = (—1,1)^ under an affine mapping. We will denote the 
maximum diameter of T by H. Given a polynomial degree A; > 1, the discrete 
space V'' consists of continuous, piecewise Qj. functions. 

Throughout we will work with the nodal basis functions of the spectral 
elements as introduced in appendix B.2. We recall that the nodal basis func
tions are defined with respect to the set of Gauss-Lobatto-Legendre (GLL) 
points and that their restriction to an element are constructed from the ba
sic Lagrange interpolation functions for the points in question. We also recall 
that the integrals used in the variational formulation of our elliptic problems 
are replaced by Gauss-Lobatto-Legendre quadrature. 

We will consider the second order problem 

a{u,v):= / pVu-Vvdx= / fvdx, vG H^{n), (7.1) 
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where p{x) > pmm > 0. Different assumptions on p will be made in the sections 
on overlapping and iterative substructuring methods. Because of the equiv
alence (B.15) and Corollary C.2, good preconditioners for spectral element 
approximations with exact integration are also good for those that employ 
quadrature. In the following, we will therefore make no distinction between 
the bilinear forms a(-, -) and aQ{-, •), and use the notation a(-, •). Similarly, we 
will make no distinction between the corresponding stiffness matrices and use 
the common notation A = A^ and write the linear system as 

AkU = f. 

1/k 

1/k 

Fig. 7.1. Two-dimensional GLL mesh on the reference element i? and on an aiRnely 
mapped element J?, G T. The dimensions of the thinnest element are 0(l/fe) and 
0{l/k^) and its aspect ratio 0{k). 

An important tool for the development and analysis of preconditioners 
for spectral element approximations is the finite element mesh % = Tk{fi) 
obtained by introducing planes through the GLL nodes which are parallel to 
the element faces. It consists of parallelepipeds and will be referred to as the 
GLL mesh in what follows. The mesh of a mapped element J?i € T is obtained 
from that of the reference cube /) and the affine mapping associated with J?̂  
and it is denoted by 7i = 7fc(i?i). The global GLL conforming mesh, built from 
the local %, is denoted by Tk{^); see Figures 7.1 and 7.2 for two-dimensional 
examples. We note that these famihes of meshes are not shape regular. Indeed, 
the elements in Tfc have dimensions ranging from ~ 1/fĉ  to ~ 1/fc and the 
aspect ratios of some of the elements, in particular those next to the middle 
of an edge or face, grow in proportion to the degree k; cf. Figures 7.1 and 7.3. 

The corresponding finite element spaces of piecewise trilinear functions on 
fk, Ti, and Tk{n), are denoted by i"" = V'in), V^i^i), and ¥>" = V'in), 
respectively. The stiffness matrix obtained by approximating the bilinear form 
a(-, -) in V'^ is denoted by Ah- There is a one-to-one correspondence between 
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V'^ and V'' given by 

jk .yh ^ yk^ jh .yk ^ yh ̂  

where J*̂  and I^ are the nodal interpolation operators onto V'^ and V*^^ re
spectively. We use the notation Uh € V^ and Uk € V'' to distinguish between 
the piecewise trilinear and the piecewise polynomial functions. 

A basic problem in our efforts to extend results from the lower order finite 
element case to spectral finite elements stems from the fact that the GLL mesh 
Tk fails to be uniformly shape regular. More precisely, if inverse estimates as 
in Lemma B.27 were to be employed, the diam.eter h in the denominator 
must be chosen as a typical minimum length and this could spoil some of 
our estimates. With the help of Lemma 7.1, given below, we will develop our 
theory by working with the first order finite element space V*^ and we will 
start by establishing that Ah is spectrally equivalent to the spectral element 
matrix Ak- The idea of preconditioning with these sparse matrices goes back 
to Orszag [365] and a complete theory, which we will develop in Sect. 7.2, 
was apparently first given by Canuto [120]. These preconditioners are often 
associated with Deville and Mund, see [162, 161], who have done a great deal 
to develop and popularize these techniques; we will therefore call this special 
finite element model the Deville-Mund problem. For other early work on these 
methods, see also Canuto and Quarteroni [122]. Our strategy is then, in view 
of Corollary C.2 (a good preconditioner of a good preconditioner remains a 
good preconditioner), to reexamine the work in Chap. 3, 5, and 6 and show 
that all our results can be carried over directly to the Deville-Mund problem. 
While we will focus on scalar elliptic problems and, in particular, on the model 
problem (4.3) when working on iterative substructuring methods, we note that 
our results can be extended to elliptic systems, as in Chap. 8, to the same 
extent as for lower order finite element methods. 

The approach selected here was first used systematically and successfully 
in the thesis of Casarin [126]; see also [127]. Casarin's work on overlapping 
Schwarz methods was inspired by a master of science thesis by Pahl [369]. 
There is an alternative route to the results on iterative substructuring methods 
which was taken by Pavarino and Widlund in work that preceded Casarin's; 
see in particular [381, 382]. For further work along those lines and work on 
specific algorithms, see [378, 383, 384, 385]. We also note that all that work 
followed even older work by Pavarino on overlapping Schwarz methods with 
generous element-wide overlap; see [375, 376, 377]. There has also been work 
on more general p and hp version finite element approximations, employing 
different types of bases, by Babuska et al. [31], Bica [52, 53] Casarin and 
Sherwin [417], Quo and Cao [243, 244, 245, 246, 247,123, 248, 124], Pavarino, 
Warburton, and Hesthaven [380, 459], Korneev, Langer, and Xanthis [295]. 
We refer to Sect. 7.5 for further comments and references on extensions to p 
and hp approximations. 
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A fundamental (and trivial) result for trilinear functions on general paral
lelepipeds is given in the following lemma; cf. [126, Lem. 3.3.1]. A key point 
is that the constants in the bounds are independent of the diameter and the 
aspect ratio of the element- Given an element K = (0, hi) x (0, /i2) x (0, /is) 
and a coordinate direction Xj, let a, 6, c, and d be the vertices of a face of K 
perpendicular to this direction, and let a', 6', c', and d! be the corresponding 
points on the parallel face. 

Lemma 7.1 Let K = {0,hi) x (0,^2) x (0,^3) and a, b, c, and d be the 
vertices of a face of K perpendicular to the Xi direction. Then, there are 
constants c > 0 and C, which are independent of hi, h2, and hz, such that, if 
u e Qi{K), 

c|l"lli2(ji:) <'ii ' ia/is E (Hxf + uix'f) < C\\u\\l^^j^y 

c\\dxiU\\l^^j^^<{hih2hs/h;i) E {u{x) - u{x')f < C\\d^M\hiK)^ 
x=a^byCyd 

c\\dxM\lc<.(K)<K'^ E Hx)-uix')y^ <c\\d^M\lc.(K)-
x=ayb^c^d 

We note that corresponding estimates for one dimension, 

IMh^j^ < h/2{u{af+uiaT) < 3||n||i.(,), 

WuxW^ = h~^{u{a) — •u(a'))^, 

can be derived very easily. 

(7.2) 

7.2 Deville-Mund Preconditioners 

In view of the central role of this preconditioner for our development of our 
theory, we will provide a full theory except for a result due to Bernardi and 
Maday [47, CoroUary 4.6], which is also given in appendix B.12. We will follow 
Canute [120] quite closely. Most of our work will concern one-dimensional 
problems and continuous, piecewise linear functions (j)h, with nodes at the 
GLL{k) points ^i,0 < i < k, and polynomials of degree k denoted by (j)k-
With A := (—1,1), we consider the polynomial interpolation operator /* : 
C{A) ->• Pfc(/1). We will compare the L^- and iJ^-norms of two functions (f)h 
and (j>k which share the same values on the GLL mesh, i.e., <^k = d'^'f'h and 

The proof that the Deville-Mund preconditioner is optimal for two and 
three dimensions can be reduced to a result on the interval A, namely. 

Lemma 7.2 There exist constants c > 0 and C, which are independent of the 
degree k, such that 

cUkWh^A) < UhWh^A) < CUk\\h(Ap (7-3) 
and 

c|̂ fe|ffi(A) < \Mh(A) < \Mh(A)- (7-4) 
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Proof. Let 

^ i ~ {?i7?i+i); hj := ^j+i -Cj, 0 < i < fe - 1. 

By direct calculation, it is easy to show that, as in (7.2), 

By using formulas (B.5) and (B.6), we find 

(l/C)ho <wo< Cho 

{l/C)hk-i <Wk< Chk-i 

(l/C)(hj-i + hj) < Wj < C(hj-i + hj), 1 < i < fc - 1; 

see Canute [120] for details. The inequalities of (7.3) then follow by using 
formula (B.8). 

The lower bound of formula (7-4) follows directly from a result of Bernardi 
and Maday given in Lemma B.12, the fact that l'' reproduces constants, and 
the Poincare inequality in Lemma A. 13. For the upper bound, let us consider 
\'l>h\m(Aj)- Since 0/j is a linear function, it is harmonic in Aj. (j)^ and (j)h also 
share the same values at the endpoints of Aj and the upper bound follows 
immediately by adding over j . D 
What remains is to generalize Lemma 7.2 to two and three dimensions. The 
L^-bound follows easily by using the one-dimensional bound for one variable 
at a time. Similarly, we can estimate the L^-norm of a first derivative of Uh 
in terms of the norm of the derivative of Uk by using all the inequalities of 
Lemma 7.2, one by one. For an affinely mapped element, the result follows by 
a standard scaling argument. We obtain: 

Theorem 7.3 Letuh he apiecewise trilinear finite element function onTk{^) 
and let Uk he the Q̂ ^ polynomial which takes on the same values as uu at 
the GLL nodes of Q. Then, there exist constants c > 0 and C, which are 
independent of the degree k, such that 

c\\uk\\l,^^^<\\uh\\l,^^-^<C\\uk\\l,^^-^ 

A similar result holds for an affinely mapped element Qi and for the domain 
Q, with constants that only depend on the aspect ratio of Qi and of the mesh 
T, respectively. 

Corollary 7.4 The spaces V'' and V^ are isomorphic and the matrices Ak 
and Ah are spectrally equivalent. 
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7.3 Two-Level Overlapping Schwarz Methods 

In this section, we will follow the analysis first given by Casarin [127, 126] 
quite closely- We now assume that the coefficient p in (7.1) is constant; as in 
Chap. 3, there are no strong results for arbitrary variations of the coefficients. 
Two-level overlapping Schwarz methods can be developed straightforwardly 
for the Deville-Mund problem. To simplify our analysis, as well as the practice, 
we will use the underlying spectral element mesh T as our coarse mesh. We 
define our coarse space, Vb = V^, as a first (or low order) finite element space 
on this mesh. It then follows immediately that Vo is contained in V^ and also 
in V^ in the linear case. R^ -.Vo^V^, again denotes the natural extension 
operator from the coarse to the fine mesh and AH the stiffness matrix for the 
coarse problem on VQ. 

Fig. 7.2. Overlapping subdomain in two dimensions. 

The local spaces are associated with an overlapping partition of Q. Here, 
we will construct the overlapping subdomains Q[ from the individual spectral 
elements J?, by adding one or several layers of Gauss-Lobatto points from the 
neighboring elements. We refer to Figure 7.2 for a two-dimensional example. 
We assume a small overlap and a finite covering as in Assumptions 3.1 and 
3.2. We denote by 7 '̂ the GLL mesh obtained from the GLL nodes in D\. The 
local space Vi = V^{Q\) is the space of piecewise trilinear functions on 7 '̂ 
that vanish on dQ[ and Rj : y' '(i?|) -)• F*(J?), is the interpolation operator 
that extends such a local finite element function by zero to the rest of H, and 
then interpolates into the spectral element space V'' at the GLL nodes. In 
terms of degrees of freedom, Rf simply takes a vector of degrees of freedom 
in the interior of i?^ and returns a global vector with zeros at the GLL nodes 
in fi\fi[. The local finite element stiffness matrix on Vi is denoted by Ah,i. 
With these definitions, a two-level additive preconditioner can be defined by 
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JV 

^h^ '•= RQ^'H'^ + Z J - ^ ^ ' ^ M - ^ " 

and the preconditioned operator by Pad = A^^A^. 
We note that A'^^ is exactly the two-level preconditioner for the finite 

element matrix Ah defined in Chap. 3. Indeed, while the spaces V'^ and V^ 
are different, they give rise to the same space of degrees of freedom and it is 
easy to show that the extension matrices RQ and Rf are the same for the 
two spaces. According to Corollaries C.2 and 7.4, it is then enough to bound 
the condition number of the two-level preconditioned finite element operator 

We will now examine the proofs of Sect. 3.6 and, in particular, the technical 
tools of Sect. 3.5. We find that there are no problems with the coarse global 
space; we can use Lemma 3.6 directly and we do not need to use Lemma 
3.8 since Vo C F ' ' . We find that Lemma 3.9 relies on an inverse inequality; 
we will soon see how to overcome this restriction and still prove a strong 
result in Lemma 7.5, using an alternative argument. Lemma 3.10, on the other 
hand, holds for all of H^ and it therefore presents no problems. We also find 
that Lemma 3.11, which relies on a coloring argument for the overlapping 
partition, remains valid. We finally turn to the remaining task which is to 
prove a counterpart of Lemma 3.12. Here we find that Lemma 3.9 is used to 
derive the estimate of formula (3.20) but that the rest of the proof remains 
valid without any assumptions on the aspect ratios of the mesh elements. 
Following Casarin, we formulate and prove the following lemma. 

Lemma 7.5 Let K = (0, hi) x (0, /is) x (0, hs), 9 € l^^ '~(if) , with 0 < 6» < 1, 
and u he a trilinear function. Then, there is a uniformly bounded constant C, 
independent in particular of K and its aspect ratio, such that 

A similar bound holds for an affinely mapped element K, with a constant that 
depends only on the angles of K. 

Proof. By using Lemma 7.1, we have, for the direction Xj, 

\\d.j\eu)\\l.^K)<{hih2h,ih^ Y, {e{x)u{x)-e{x')u{x')f. 
x=a,b,c,d 

A term in the sum above can be bounded by 

2e{x')^{u{x) - u(x')f + 2u(xf{e{x) - e{x')f 

and another application of Lemma 7.1 concludes the proof for an axi-parallel 
element. The case of an affinely mapped element can be treated using a stan
dard scaling argument. D 
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Remark 7.6. A uniform bound as in Lemma 7.5 can also be established, by 
a simple computation, for any tetrahedron with a right angle. By examining 
this proof, we also see that is not possible to get a uniform bound for all, 
arbitrarily distorted, tetrahedra. We also note that alternative Deville-Mund 
preconditioners can be developed by replacing the piecewise trilinear finite 
element functions by piecewise hnears after subdividing each GLL element into 
six tetrahedra. There is clear numerical evidence that such a preconditioner 
is more powerful than the one based on trilinears. 

The proof of Lemma 3.12 can now easily be modified and we have established 
the following direct counterpart of Theorem 3.13. 

Theorem 7.7 In case exact solvers are employed on all subspaces, the con
dition number of the additive Schwarz operator satisfies 

<Pad) <c{l + j 

where C depends on N^, hut is otherwise independent of k, H, and 5. 

Remark 7.8. A different two-level preconditioner can be defined without us
ing local GLL meshes and local spaces of piecewise trihnear functions. Fol
lowing Casarin [126, Sect. 3.5], the local finite element spaces V '̂'(J?^) can be 
replaced by spectral element spaces consisting of piecewise polynomial func
tions with vanishing values at all the GLL points in J? \ i7|. The extension 
matrices i?f remain the same while the local matrices Ah^i are now replaced 
by A}.,i = RiAkRf- We note that the support of these local functions is not 
contained in /?,'. The same condition number bound as in Theorem 7.7 can be 
proven in this case. We note that the resulting matrices are dense but that if 
the subdomains are rectangular the resulting linear systems can be solved ef
ficiently by exploiting the tensor product structure of the problems to develop 
fast diagonalization methods; see Deville, Fischer, and Mund [160, Chap. 4] 
and also Couzy and Deville [144, 145] and Lynch, Rice, and Thomas [326]. 

7.4 Iterative Substructuring Methods 

Iterative substructuring methods can be devised for spectral element approx
imations as well. The mesh T provides a nonoverlapping partition into shape-
regular subdomains of maximum diameter H, obtained from affine mappings 
of the reference cube D. We use the same notations as for low order finite 
element approximations, introduced in Sect. 4.2. Thus, the interface F is the 
union of the interior subdomain faces, edges (all regarded as open sets), and 
vertices. The faces of J7J are denoted by Ĵ *-?, its edges by £^^, its vertices by 
V*̂ , and its wire basket by W*. We will also use notation with one or even 
without any superscript. The sets Fh, dOi^h, ^h •, ^l^, and W^ now consists 
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of GLL nodes. We note that a vertex V^ is always a node of the local GLL 
mesh Ti-

As before, we assume that all possible large jumps of the coefficient p{x) 
in (7.1) are aligned with the subdomain boundaries 

In the case of a region of diameter Hi, we use norms with different relative 
weights obtained by a simple dilation argument as in formulas (4.4) and (4.5). 
To every substructure, we associate a local space y*'(i?j) = Q^(i?j) and a local 
bilinear form «,(-, •) as in (4.3). 

We can now proceed as in Sect. 4.3 and order the global degrees of freedom 
relative to interior GLL nodes of the subdomains first (subscript / ) , followed 
by those on the interface F (subscript F). For local functions, an analogous 
splitting can be considered. The contributions to the stiffness matrix A = 
Ak and the right hand side / can be formed one subdomain at a time and 
we obtain a linear system as in (4.7). The unknowns in the interior of the 
substructures are then eliminated and a system with a Schur complement 
matrix S = Sk is obtained, as in (4.10) and (4.11): 

Sur = fr-

The contributions to the Schur complement matrix can also be formed one 
subdomain at a time, using the local Schur complements 5"*̂ '̂  = 5 .̂ . The 
same is true for the right hand side fr-

Discrete harmonic extensions can also be defined in this case: a local func
tion Ui e V^*(J?i), represented by the local vector «(*), is said to be discrete 
harmonic if (4.14) holds. As in the case of continuous, piecewise Unear func
tions, w(*) =: ^{up) is completely defined by its nodal values on dQi. A 
function w £ V^ is piecewise discrete harmonic if its restriction Ui to fii is 
discrete harmonic; the function u =:'H{u) is completely defined by its nodal 
values on F. 

We will work with the inner products defined by the Schur complements: 

s{ur,vr) •= UpSvp, 

cf- (4-15) The minimum property of discrete harmonic extensions in Lemma 
4.9 remains valid in this case and we can either work with functions defined on 
the interface F (and with the scalar product s{-, •)) or with the corresponding 
discrete harmonic extensions (with the scalar product a(-, -)). The equivalence 
between the H^/'^- and iJ^-norms on a substructure for discrete harmonic 
extensions given in Lemma 4.10 remains valid for spectral approximations. 
Indeed, the proof involves the construction of a stable polynomial extension, 
in a way similar as for finite element functions in Lemma 4.6. Stable extensions 
can indeed be constructed for polynomials; see, e.g., [328, 45, 39]. 

We have the following result for the condition number of the Schur comple
ment matrix. The proof can be found, e.g., in [352]; see in particular Theorem 
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2.1. We are not aware of any result for three dimensional approximations and 
the generalization of the two-dimensional proof in [352] does not appear to be 
trivial. 

Lemma 7.9 Assume that pi = 1, i = 1,... ,N, that i? c M , and that the 
mesh T is quasi uniform. Then, there exists a constant C, such that 

<Sk) < C ^ . 

We will again consider the local and global GLL meshes and the corre
sponding spaces of piecewise trilinear functions. Unknowns interior to the 
subdomains can be ehminated and a system involving the Schur complement 
matrix Sh is obtained. We will denote by Sf^ the local Schur complement 
associated with f^i. As for the original stiffness matrices Ah and Ak, Sh is an 
optimal preconditioner for Sk-

Lemma 7.10 The matrices S^ and Sj^ , and Sk and Sh are spectrally equiv
alent. 

Proof. We need only show the equivalence of the local Schur complements. 
Bounds for the global ones can then be obtained by subassembling as in (4.10). 
Let w^̂  be a vector of nodal degrees of freedom on dili, and let Uk and Uh be 
the corresponding discrete harmonic extensions. We obtain 

uy} S'^^'ny = ai{uk,Uk) < ai{I^Uhj''uh) < Cai{uh,Uh) = Cuy S^Ky, 

where we use Lemma 4.9 for the first and last equalities and for the first 
inequality, and Theorem 7.3 for the second inequality. A lower bound can be 
found in a similar way. D 

7.4.1 Technical Tools 

We recall that the basic tools for the analysis of the iterative substructuring 
methods developed in Chap. 5 and 6 were collected in Sect. 4.6. We will 
therefore first systematically consider the extent by which these auxiliary 
results can be extended to the spectral element case. We again note that 
because of the large and growing aspect ratios of some of the elements of 
the Gauss-Lobatto mesh, we have to avoid using inverse inequalities, i.e., we 
should make sure that any argument based on such an inequality can be 
replaced. In addition, as in Casarin [127, Sect. 3.3], once we have stability 
results for these finite element functions, they translate into corresponding 
results for polynomials, by using Lemma 7.2 and Theorem 7.3. We will only 
consider the modifications of the proofs required for the particular anisotropic 
GLL mesh and refer to Sect. 4.6 for the rest of the proofs. Finally, we only give 
proofs for cubic substructures. The general case of affinely mapped elements 
can easily be dealt by a scaling argument. 

The following lemma is an analog of Lemmas 4.16 and 4.17. We note that 
the latter employs Lemma 4.15 which relies on an inverse inequality. 
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Fig. 7.3. Three-dimensional GLL mesh on the reference element i? close to a face. 

Lemma 7.11 Let Ugi be the average value ofu over £\ an edge of a face T^ 
of J?,. Then, there exists a constant C, such that 

Iklli2(fl) < C(l+l0g(fc))||w||2^i(^,), 

||W|||2(5,) < C ( l +l0g(fc))||w|||-i/2(^.), 

and 
\U — Ugi <C(l + log{k))\u\jj,^^^^, |2 

lz,2(£J) 

|2 

foru e V''{f2i). Similar bounds also hold for the wire basket W^ of the subdo-
main /?» if the edge £^ and the face T^ art replaced by W* and the boundary 
dfiij respectively. 

Proof Let Uh = I'^u. We refine the GLL mesh % creating a quasi-uniform 
mesh which has a mesh size on the order of 1/fĉ  on the unit cube; see Figure 
7.3. For the first two inequalities, we first consider the case of iJ = 1. The 
function Uh can also be represented on the finer quasi-uniform mesh and we 
can then employ Lemmas 4.16 and 4.17 and obtain bounds for Uh with 1/h 
replaced by kP. Lemma 7.2 and Theorem 7.3 then give the bounds for u. The 
resulting inequalities are equally valid for any H as can be seen by a simple 
scaling argument. Therefore the factor log{H/h) is replaced by log(fe) in all the 
appropriate inequalities. The inequalities involving the seminorms can then 
be proven by using a Poincare inequality. D 

We next turn to an analog of Lemma 4.19: 

Lemma 7.12 Let •&£! £ V'^{Qi) be the finite element function that equals 
one at the nodes of an edge P of Qi and which vanishes on the rest of the 
nodes in fii^h- Then, 



204 7 Spectral Element Methods 

Similar bounds also hold for the wire basket W* of the subdomain fli 

Proof. The proof is very similar to that of Lemma 4.19. We estimate the 
energy of the zero extension from the edge. We consider an element K, of 
dimensions hx^ hy, and hz, in the GLL mesh % that touches an edge £; see 
Figure 7.3. We assume that S is parallel to the z direction. Then, hx = hy < 
hz-

The nodal values of I'^i^siu) on K are 0, 0, 0, 0, 0, 0, '(?^,(o)«(a), 
'&£iib)u{b), with a and b the vertices on £^. Using Lemma 7.1 and the in
equalities in (7.6), we can easily show that 

|i' ' '(^f^")llfiW < Chz {(^£j{a)u{a)f + {^£.{b)u{b)f). 

Using Lemma 7.1 and that 0 < dsi < 1, the right hand side can be bounded 
both by C J^ {l'^{'&sj u))^dz and by C f^ v?dz. Summing over the elements and 
using the minimum property of discrete harmonic extensions and Theorem 7.3 
concludes the proof. D 

Given a face T^ of a substructure i?,, we recall that for first order finite 
element approximations, we have constructed two functions 9jrj and t?jrj in 
Lemma 4.25. They have the same values on 5i?j and vanish at all the nodes 
of dQi^h except at those of T^ where they take the value one. Oj:, is discrete 
harmonic while an explicit construction of the interior values of '&j:j is given 
in the proof of Lemma 4.25. Both sets of functions provide partitions of unity 
at all the nodal points in Qi except for those on the wire basket. 

In the proofs of Lemmas 4.25 and 4.24, the bound for | \9j:3 \ \L'^{Qi) depends 
on an inverse inequality. The resulting estimate is used only once in Chap. 5 
and 6, namely in the proof of formula (5.11) in the proof of Theorem 5.13. 
We have already noted, in Remark 5.14, that we can modify that argument 
and use the functions 'dj^j instead of the Ojrj. The proofs of the H^ bounds in 
Lemmas 4.25 and 4.24 can also easily be modified. We proceed as follows: 

Lemma 7.13 Given a face T^ of Qi, there exists a finite element function 
•dj^i e V^{Qi), that is equal to one at the nodal points of T^ and zero on 

Y, ^T' {3^) = 1, x£ {f}i,h u dni,h) \ wl 

0 < t?^.- < 1, ^^•^' 

mT^{x)\<C/r{x), 

for X in every element that does not touch W* and r = r{x) the distance to 
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Proof. We construct -^jri as in the proof of Lemma 4.25, in particular, by 
interpolation on the GLL mesh %. A careful look at that proof reveals that 
the properties of 'dj^j are independent of the finite element mesh in i?j and 
therefore remain valid in the GLL case. D 

Lemma 7.14 Let'&j^j he the functions in Lemma 7.13, where T^ is a face of 
the substructure Qi. Then, for every x € i7j,^ U /i,/i that is not on W^, 

Y^ J*' (i?^.- u) (x) = ^ / ' ' (t?^.- u) (x) =u(x), ueV'' 
3 3 

and 

•M — Wj^rj) 1^1/2(3^^-) ^ ' ^ ( l + •'•Og(fc))^|^t|^l/2{-g|J^•)• 

Froo/. The first equality follows directly from Lemma 7.13. 
For the first inequality, we only consider the case of a substructure of unit 

diameter. The more general case can be dealt with using a scaling argument. 
Because of Theorem 7.3, it is enough to estimate the energy of the finite 
element function I^{'&j:ju). 

We recall that the proof of the corresponding result for low order approx
imations in Lemma 4.24 consists of two independent parts. Li the first, we 
estimated the contributions from elements that do not touch the wire basket 
and this can be done in exactly the same way in this case, using Lemma 7.13, 
and noting that the elements that touch the wire basket have a minimum 
mesh size on the order of 1/fc .̂ We obtain the same bound where the ratio 
H/h is replaced by k; see, in particular, formula (4.21). In a second part, we 
estimated contributions from elements that touch the wire basket. We need 
to modify this part of the proof since some of the elements that touch the 
wire basket have large aspect ratios; cf. Figure 7.3. We follow an argument in 
[126, Lem. 3.3.7]. 

We consider an element K, of dimensions h^, hy, and hz, in the GLL mesh 
Ti that touches an edge S; see Figure 7.3. We assume that S is parallel to the 
z direction. In fact, for the GLL mesh we have 

hx = hy <hz. (7.6) 

We note that hx = hy are on the order of 1/fc ,̂ while hz ranges from C/fc^ to 
C/k. 

The nodal values of l'^{i}jrju) on K are 0, 0, 0, 0, u{a), u{b), t?:rj(c)w(c), 
and '&jrj {d)u{d), with a and b vertices on J^^ and c and d vertices in the interior 
of f^i. Using Lemma 7.1 and the inequalities in (7.6), we can easily show that 

ll'^i^TMhiK) < Chz (w(a)2 + w(6)2 + u(c)2 + u{df) 

<C 
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where we have also used the fact that •djrj has values between zero and one. 
Summing over the element K and using Lemma 7.11 give 

Y, \I\^:FOU)\]J^K) < C ( 1 +log(fc)) \\u\\ 
K 

where the sum is taken over the elements in % that touch >V^ This concludes 
the proof of the first inequality. The two remaining bounds can be proven 
as in Lemma 4.26, using properties of discrete harmonic extensions and the 
Poincare inequality in Lemma A.17. D 

We note that the proof of the previous lemma is not valid for general 
anisotropic meshes since it relies on the property of the GLL mesh, given in 
(7.6), which ensures that long elements are aligned with the subdomain edges. 

Lemma 7.15 Let'&j^j he the functions in Lemma 7.13, where T^ is a face of 
the substructure Qi. Then, 

If Ojrj € V''{i7i) is discrete harmonic and vanishes at the nodes in dQi^h 
except at those in J^l where it is equal to one, then 

< C ( l + log(fc))iJi. 

Proof The proof of the first bound can be carried out as in Lemma 4.25 
using the modifications developed in the proof of Lemma 7.14. The second 
follows directly from the fact that '&jrj has values in [0,1]; cf. Lemma 7.13 
and the third from a trace theorem. Finally, the last inequality is a direct 
consequence of the minimum properties of discrete harmonic extensions. D 

7.4.2 Algorithms and Condition Number Bounds 

It is clear that every lemma in Sect. 4.6 now has a counterpart for spectral 
element functions. We can immediately find algorithms for spectral element 
approximations corresponding to those in Chap. 5 and 6, by observing that 
while for h approximations we work with vectors of nodal values at the mesh 
nodes, here we work with vectors of nodal values at the GLL points. In par
ticular, degrees of freedom and, equivalently, GLL nodes can be partitioned 
into internal, face, edge, and vertex nodes. Indeed, written in matrix form, 
the algorithms and operators are exactly the same. 

Here we only consider two algorithms in more detail but refer to Chap. 5 
and 6 for others and for a more thorough treatment. 

We first consider the wire basket method in Sect. 5.4.2. Here we work 
with the space of piecewise discrete harmonic extensions V'' cV''. Since the 
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values of these functions are uniquely determined by their value on F and 
since Lemma 4.9 holds, we could equivalently work with functions defined on 
r. We note that 

S-.V'' -^ V''. 

We employ the preconditioned Schur complement 

B S = RQ SyyyyUoS + 2_^ Rj^i ^jri jri -RjT* S. 
i 

The coarse component consists of the solution of a coarse problem in the 
subspace Vy^ C V^, a, subspace which can be defined as the range of the 
interpolation operator I^ -.V^ ^ V^, given by 

I^w:= Yl '^(''j)^3+ Yl ^dTi^Ti- (7-7) 
Xj£Wh Tier 

The first sum is extended to all GLL nodes on the wire basket W, while the 
second to all subdomain faces on F. For a node the discrete harmonic 
function that takes the value one at Xj and vanishes at all other nodes on J", 
while, for a face T^ ^ the discrete harmonic function Oj^j is defined in Lemma 
7.15. As usual, the extension -RQ" : Vy^ ->̂  t^^, is the natural interpolation 
operator from the subspace to the global space. The approximate solver 5^\y 
is defined by the bilinear form 

ao'{u,u) = ^ ( 1 + log(fc))pimin \\u - Vi\\h(w')'^ 

cf. Equation (5.7). We note that, because of Lemma 7.3, the i^-norm can be 
replaced by a discrete norm obtained using a quadrature formula based on 
the GLL nodes-

The local components of the preconditioner are associated with single 
faces. They are built on subspaces of discrete harmonic functions that vanish 
everywhere on Fh except at the nodes in T^. Exact solvers are employed and 
the local bilinear forms are therefore the restrictions of s(-, -) to these sub-
spaces. A method for solving these local problems was given in Equation (5.3) 
and one for solving the coarse problem in Equation (5.9). 

Using the same arguments as for Theorem 5.11, we can prove 

Theorem 7.16 (Wire basket method) There is a constant dependent of 
the aspect ratio of the mesh T, hut otherwise independent of the diameters of 
the elements in T, the polynomial degree k, and the coefficients pi, such that 

K{B-^S)<C{l+log{k))'\ 

We note that the above result was originally proven in [381, 382] using 
different techniques. 
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Similarly, all the other algorithms of Chap. 5 can be generalized to spectral 
element approximations on shape-regular meshes. In particular, we note that 
for the local edge and vertex components of the preconditioners of Sect. 5.2, 
the bilinear forms for edge and vertex components are 

asi{u,u) = PsAH\h(€i)^ avj{u,u) = PvAH\h(w)-

In case the L-^-norms are replaced by discrete ones obtained by using a quadra
ture formula based on GLL points, the edge and vertex bilinear forms give rise 
to diagonal matrices. Similar considerations apply to the face based algorithms 
in Sect. 5.4.3. 

Theo rem 7.17 The results of Theorems 5.2, 5.5, 5.7, 5.12, and 5.16 are 
valid after replacing H/h by k. 

We now turn to the Neumann-Neumann and FETI algorithms of Chap. 
6. They can also be defined and analyzed in a straightforward way for spec
tral element approximations. Roughly speaking, the definitions of the various 
operators are the same, provided that the nodal interpolation operator l'^ 
is replaced by /*. Here we only consider the balancing Neumann-Neumann 
method in detail. 

As in Sect. 6.2, we introduce a trace space Wi,i = 1,...,N, for each 
df2i, consisting of restrictions to the subdomain boundary of spectral element 
functions in F*'{l?j), and an associated product space W := YliLi Wi. The 
subsgace of functions which are continuous across the interface F is denoted 
by W. The contributions 5̂ *̂  to the Schur complement S from the individual 
subdomains are computed as before; each of them is directly related to the 
component Wi of the product space W. The weighted counting functions Si 
are defined as in (6.1): 

Piix) 
Siix) = ^''^':;, (• \ X € dQi. 

where J^x is the set of subdomain indices to which the node x belongs. The 
values at the GLL nodes in dfii^h are then interpolated in order to obtain a 
spectral element function in Wi. The pseudoinverses 6] are then defined as 
in formula (6.2). An averaging operator similar to that of (6.4) can then be 
defined by 

N 

i=l 

where w, G Wi is the component of w € VF associated with the subregion J?j 
and Rj an interpolation operator as in Sect. 6.2. 

The coarse space Wo C PF is given by 
Wo = span {i?f 4 , 5/?i n 5/?D = 0} 
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and, as for finite element approximations, we are free to extend this space by, 
e.g., adding basis functions associated with the boundary subdomains. The 
local space Wi is simply the individual component of the product space and 
the bilinear form for Wi is given by 

Si(u,v) = ai{'H.i{5iu),V.i{5iv)); 

of- (6-6). Projection-like operators Pi = RjPi are then defined with Pi given 
by equation (6.7). In matrix form, we have 

Pi = RfPi = RjD^^S^'^^D^^RiS, 

where -D '̂̂  is a diagonal matrix that corresponds to the multiplication of a 
vector by the values of 5\ and 5'̂ '̂ ^ is a pseudoinverse of 5̂ *̂  which provides 
a solution of a local Neumann problem. Here, we choose the solution that 
ensures S^'^^^Ui e Range{S^'^^), but note that other choices are possible; cf. 
(6.8). 

The hybrid preconditioned operator P^yi is then defined in (6.10). We 
refer to Sect. 6.2 for details and some practical aspects. 

The key to the theory is a stability property for the operator ED in Lemma 
6.3. It relies on a Poincare type inequality for certain functions; see Lemma 
6.2. Here, we have 

Lemma 7.18 Letu G Range{S'^'^). Then, 

ll^lli.2(9fii) ^^^iW\H^/2{dni)' i = l,...,N, 

with a constant that is independent of u, Hi, and k. 

Proof. The proof is very similar to that of Lemma 6.2 and we only consider 
the case of a substructure of unit diameter. Here, if i7j is a floating subdomain, 
we have 

li{u) := k-^ ( l^u) = 0 <;=^ ue RangeiS'^''^), 

where 1 G W^ is a vector of ones; cf. (6.13). By using the lower bound in 
(B.7) for the weights of the quadrature formula on the GLL nodes and the 
equivalence in formula B.8, /»(•) is a bounded linear functional in Wi: 

<Ck-^{Zj,ik^)\HUoo,)<C\\u\ |2 

where the sums are taken over the GLL nodes ^ji on 5J?J. Since the constant 
C is independent of k, li{-) can be extended to the whole of H^/'^{dOi) and 
the proof can be concluded as in Lemma 6.2. D 

The previous lemma and the technical tools of the previous section enable 
us to prove a stability estimate for ED as in Lemma 6.3, with the ratio H/h 
replaced by k. The same arguments as in Subsect. 6.2.3 then provides the 
following result. 
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Theorem 7.19 (Balancing Neiunann-Neumann method) The hybrid 
Schwarz method defined by the operator (6.10), and the spaces and bilinear 
forms of this subsection, satisfies 

s{u,u) < s{Phyiu,u) < C(l + log{k))^s{u,u), 

where the constant C is independent not only of the polynomial degree and the 
number of substructures, but also of the values of the coefficients pi. 

We note that a purely additive version of Neumann-Neumann methods 
for spectral element approximations was originally analyzed in [378] using 
different tools. One-level and dual-primal FETI methods can be developed 
and analyzed as in Chap. 6- We have: 

Theorem 7.20 The results of Theorems 64, 6.15, 6.21, 6.35, and 6.38 are 
valid after replacing H/h by k. 

7.5 Remarks on p and hp Approximations 

7.5.1 More General p Approximations 

In the previous sections, we have extended overlapping and iterative sub-
structuring methods to spectral element approximations. The development 
and analysis relied on the fact that degrees of freedom are localized and as
sociated with GLL nodes. In addition, the use of GLL meshes, the spectral 
equivalences in Lemma 7.2, and the equivalence results for trilinear functions 
in Lemma 7.1 allowed us to prove Lemma 7.5 and the Sobolev type inequalities 
of Sect. 7.4.1. 

Spectral elements basis functions present certain advantages but they are 
not the only choice for higher order approximations. They, indeed, provide 
a natural quadrature formula for the evaluation of the integrals. The use of 
quadrature does not spoil the accuracy of the solution and provides discrete 
norms that are equivalent to the original ones. These are all properties that 
are not guaranteed by other types of bases. 

However, spectral element bases also have some disadvantages. They re
quire tensor product meshes and are therefore not well suitable for triangles 
or tetrahedra. In addition, they are not hierarchical and are not particularly 
well suited for adaptive procedures; if a better approximation is needed and 
the polynomial degree k is increased, the GLL nodes change and completely 
new basis functions need to be constructed. Other basis functions are more 
suitable for adaptive p and hp finite elements. They are hierarchical and allow 
different polynomial degrees for interior, face, and edge functions. We refer, 
e.g., to [415] for additional details. 

Basis functions currently used in p and hp codes generally satisfy the 
following assumption: 
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Assumption 7.21 The shape functions on an element K £T can be parti
tioned into internal, face, edge, and vertex functions. 

1. An internal shape function vanishes on dK and outside K. 
2. A face function, associated with a face T, vanishes on dT and on the rest 

of the interface. 
3. An edge function, associated with an edge, vanishes on the rest of the 

interface except for that edge and the faces that share £. In particular, it 
vanishes at the end points of £. 

4- A vertex shape function is a basis functions of the low order space Pi (if), 
for tetrahedral meshes, or Qi{K), for meshes consisting of mapped cubes. 

In two dimensions, we only have interior, edge, and vertex functions. 
Even though basis functions are still associated with the element vertices, 

edges, faces, and the interior, they are not in general associated with nodes, 
except for the vertex functions. For tensor product meshes, they are often 
chosen as tensor products of one dimensional functions 

{ ^ ^ , ^ 1 f^Lj{t)dt, i = l , . . . , A : - l | c P , ( - l , l ) , 

where Lj is the Legendre polynomial of degree j . 
We first consider overlapping methods. Since basis functions are not lo

calized and are not associated with single nodes, we cannot in general have 
the great flexibility in the choice of the overlapping partition into subdomains 
possible for spectral elements; see Sect. 7.3. Indeed, overlapping subdomains 
now need to be unions of entire elements. This was indeed the method pro
posed by Pavarino in [375, 376]. There, any subdomain is taken as the union 
of the elements that have a subdomain vertex in common. The overlap is thus 
of order H, and a uniform bound is obtained for the corresponding precondi-
tioner. However, for high polynomial degree, this procedure forces us to take 
subdomains with a large number of degrees of freedom in three dimensions 
and thus may result in very large local problems. 

We now turn our attention to iterative substructuring methods. In two 
dimensions, two-level preconditioners can be devised in a straightforward way 
and satisfactory bounds can be obtained for all choices of basis functions that 
satisfy Assumption 7.21. After eliminating the internal degrees of freedom, we 
obtain a Schur complement system involving degrees of freedom associated 
with edges and vertices: 

c _ f ^ss Sev 

see Sect. 5.3 and 5.4.1, and in particular Remark 5.4. A preconditioner is then 
obtained by removing the couplings between vertices and edges and between 
all pairs of edges: 

B~ = 2_^^£*^£'£'^£^ +Rv^VV^V = 2^^£*^£'£'^£^ '^ ^H^H ^H: 
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We note that vertex functions are the hnear or bihnear shape functions asso
ciated with the vertices. They therefore span a coarse space VH and no change 
of basis is necessary; see Sect. 5.4.1. 

For the analysis of this method, we refer to Babuska, Craig, Mandel, and 
Pitkaranta [31]- We recall that the analysis of iterative substructuring meth
ods basically relies on three tools: the first provides stability estimates for 
functions associated with the wire basket or single edges (single vertices in 
two dimensions); cf. Lemmas 4.16 and 4.19 (or 4.15 in two dimensions). In 
particular, we recall that the three-dimensional result in Lemma 4.16 is a 
consequence of the two-dimensional inverse inequality in Lemma 4.15. The 
second tool is a decomposition result for components associated with single 
faces (edges in two dimensions); cf. Lemma 4.24. The third is the construction 
of a stable discrete extension of trace functions from the boundaries of the 
substructures; cf. Lemmas 4.10 and 4.9. 

These tools are also available for two-dimensional polynomial functions 
and are given in [31] for triangular and quadrilateral meshes. For simplicity, 
we only consider quadrilateral meshes. Similarly to Lemma 4.15, for every 
substructure i?^, we have that 

M\U(o,)<C(l + log(m\ufH,(^^^, ueq.m; (7.8) 

see [31, Th. 6.2]. The result for edge components corresponding to Lemma 
4.24 is replaced by the inequality 

\M%u^(e) < HHI,.^£) + C (1 + log(fe))||ti|||^(£), u e Qki^i), (7.9) 
-"00 

which is valid for functions u G Qjt(/2i) that vanish on OH \ £, with £ an 
edge of Hi; see [31, Th. 6.6]. We refer to appendix A.2 for the definition of 
the trace spaces and norms; see in particular Remark A.9. Stable polynomial 
extensions can be found in [31, Sect. 7]. 

The three results mentioned above allow us to prove that the condition 
number of the two level preconditioner satisfies 

ii{B-^S)<C{l+log(k))\ 

for any choice of basis functions that satisfy Assumption 7.21; see [31, Sect. 
3] for details. 

The situation is however much less favorable in three dimensions. Here, we 
can partition the Schur complements with respect to the wire basket degrees of 
freedom (associated with edges and vertices) and with face degrees of freedom: 

c — ( ^^^ ^^v\> \ 

as in Sect. 5.4.2. A wire basket preconditioner is obtained by removing the 
couplings between the wire basket and the faces and between all pairs of faces. 
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After a change of basis for the wire basket basis functions and the introduction 
of an inexact solver, we obtain 

i 

However, unless a spectral element basis is employed, the condition number of 
B~^S may be very large. In [417], numerical tests are performed on a single 
tetrahedral element and a particular choice of basis functions. The condition 
number of B~^S is shown to be of the order of k^f'^ and is primarily due to 
the strong coupling between wire basket and face components. 

We note that this strong coupling prevents us from finding Sobolev type 
inequalities as in Sect. 4.6 with good quality constants. Consequently all the 
algorithms in Chap. 5 and 6 are bound to show unfavorable condition num
bers. In particular, we know from Assumption 2.2 and the work in Chap. 5 
that if we try to develop effective primal iterative substructuring methods, it 
is necessary work with subspaces which allow for a stable decomposition of 
arbitrary elements of our space V. In fact, the failure to do so will necessarily 
lead to small eigenvalues of the operator Pad', cf. Lemma 2.5. It is therefore 
natural, as originally suggested by Mandel [333], to change the basis to en
sure a weaker coupling between wire basket and face components and between 
different face components. 

These ideas were explored theoretically and experimentally in the thesis 
of Bica [52, 53]. He principally worked on extending the wire basket method 
to ;)—method finite elements using individual tetrahedral elements as subdo-
mains. The goal was to develop effective methods for which the condition 
number can be bounded by C(l +log(p))^ with C independent of the number 
of elements as well as the degree p of the piece wise polynomials. 

We recall that in Subsect. 7.4.1 of this chapter, we systematically developed 
technical tools similar to those of Sect. 4.4 and 4.6. For the spectral element 
case, there is complete success and all results on iterative substructuring meth
ods previously developed for lower order finite elements are therefore equally 
valid for spectral elements. For the j?—method there are many new technical 
difficulties. However, an extension theorem for polynomials, similar to that of 
Lemma 4.10, has been developed for three dimensions by Muiioz-Sola [355] 
by working with a particular extension operator. That work followed earlier 
similar work in two dimensions by Babuska, Craig, Mandel, and Pitkaranta 
[31] and Maday [328], which includes a bound in H^^^{T) of a polynomial 
extension in terms of the L-^—norm over the boundary of the triangle T. An
other classical tool is an inequality of Markov; see Rivlin [397]. Bica's work, 
which uses all these tools, led to a C(l -I- log(p))^ bound for one of his wire 
basket algorithms; he also presents experimental evidence that C(l + log(j)))^ 
should be possible. 

While, generally, the development of efficient iterative substructuring pre-
conditioners for general p approximations remains less advanced than for lower 
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order and spectral elements, there has been additional work that deserves at
tention. Casarin and Sherwin [417] successfully explored a change of basis 
for a different higher order method on tetrahedra. We also wish to mention 
Guo and Cao [123, 248] and Korneev and Jensen [296], Korneev, Langer, and 
Xanthis [295]-

7.5.2 Extensions to hp Approximations 

In hp finite element approximations higher accuracy of the discrete solution 
is achieved by refining the mesh and/or by increasing the polynomial degree. 
We introduce a finite element triangulation T =Th, consisting of triangles or 
tetrahedra, or afiinely-mapped squares or cubes, and of maximum diameter h. 
Piecewise polynomial functions of degree k are then employed. We note that 
different polynomial degrees may also be chosen, on different elements, as well 
as on different edges and faces; cf. Assumption 7.21. In addition certain types 
of nonconforming meshes are possible. We refer to, e.g., [415] for details. The 
same basis functions discussed previously may be employed as well as spectral 
element basis functions. 

In recent years, there has been some work on the extension of some do
main decomposition preconditioners to hp approximations. Here, we mention 
Ainsworth [11], Guo and Cao [243, 244, 245, 246], Oden, Patra, and Feng [364], 
Le Tallec and Patra [310], Korneev, Flaherty, Oden and Fish [294], Ainsworth 
and Sherwin [12], Bauer and Patra [38], Pardo and Demkowicz [371], Korneev, 
Langer, and Xanthis [295], and ToselU and Vasseur [448]. Additional mate
rial can be found in the references therein. Here, we only briefly describe the 
two-dimensional algorithm by Guo and Cao in [244] as an example. 

We consider a nonoverlapping partition into subdomains and assume that 
the substructures are unions of element of the fine mesh %- As usual, we also 
assume that they are unions of elements of a coarse mesh TH that is contained 
in 7^. 

We eliminate the degrees of freedom internal to the substructures and ob
tain a modified system involving the Schur complement S for the degrees of 
freedom on the interface F between the substructures. We note that Assump
tion 7.21 ensures that the vertex basis functions span the low order space of 
piecewise linear functions on the fine mesh %• The idea in [244] is to use the 
edge-based preconditioner of Remark 5.4 for low order h approximations. This 
consists of a coarse solve on a low order coarse space on TH and local solvers 
associated with single subdomain edges acting on piecewise linear functions 
that are supported on single edges. In order to obtain a decomposition of the 
hp space, higher order components associated with single edges e of the fine 
mesh must also be accounted for; we use local spaces associated with single 
fine edges on F and define a preconditioner by 

£'cr £'creC£' 
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The first term involves the solution of a coarse problem on a piecewise linear 
space on TH- The second involves the solution of a Dirichlet problem for 
piecewise linear elements on unions of two substructures that share an edge, 
while the third involves the solution of Dirichlet problems for p finite elements 
on unions of the two fine elements in % that share an edge e C F. The results 
for low order finite elements in Sect. 4.6 and a generalization of (7.8) to hp 
finite element functions in [244, Lem. 4.2] makes it possible to prove that the 
condition number of the additive operator satisfies: 

K(B-^S) < C (1 + log{Hk/h))'\ 

We note that (H/h)"^ provides a measure of the number of elements of a 
substructure, while fc" is a measure of the degrees of freedom associated with a 
single element. Therefore, (Hk/h)"' measures the number of degrees of freedom 
associated with a single substructure. We refer to [244] for a detailed analysis 
and additional comments. 

Preconditioning three-dimensional hp approximations presents the same 
problems and diiliculty as for p approximations that employ basis func
tions not associated with GLL nodes. In conclusion, we mention the work 
in [444, 445, 446] where certain Neumann-Neumann and FETI precondition-
ers are extended to some hp approximations in two and three dimensions on 
anisotropic meshes. If basis functions on GLL nodes are employed and the 
subdomains are suitably chosen, the condition numbers retain the logarith
mic dependence in the polynomial degree and they remain independent of 
arbitrarily large aspect ratios of the mesh. 



8 

Linear Elasticity 

8.1 Introduction 

The equilibrium of linear elastic material is described by a system of elliptic 
equations. We refer to appendix A.6.2 for an introduction. In this chapter, we 
only consider three-dimensional problems. With /? C M a polyhedral domain 
and with dOn a subset of positive measure of its boundary df2, we introduce 
the space 

Hl{Q,dQDf := {v e H\nf : v\en^ = 0}. 

We next consider the problem of finding u € -ffo (J?, dOoT-, such that 

a(u, v) := / 2//(x)e(u) : e(v) dx + A(x)divu divv dx = < F , v >, (8.1) 
Jn Jn 

for all V e Hl{Q,dQDY- Here eij(u) = \{^ + | j ^ ) is the linearized strain 
tensor, A and /x are the Lame parameters, which are positive functions, and 
the inner products are defined as 

e(u) : e(v) = ^ eij{u)eij{v), 

<F,\->= '^fiVidx+ ^ giVi ds, 
J Q ^ _ ] ^ J d^N I—I 

where OQN = dO \ dQo-
We assume that the Poisson ratio v = •2(x+n) ^^ bounded away from 1/2. 

As remarked in appendix A.6.2, in this case, we have 

A = Y ^ / * < C / * . (8.2) 

The elliptic system (8.1) has much in common with our scalar elhptic 
model problem discussed in the previous chapters. Thus, it can be discretized 
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eflfectively by low order finite element methods. Methods based on mapped 
quadrilaterals and parallelepipeds are in particular frequent use. Let V'* be the 
corresponding finite element space of vector functions that vanish on dQD-
We note that the resulting stiffness matrices are often very much more ill-
conditioned than those of scalar elliptic problem and that simple iterative 
methods such as Jacobi-conjugate gradient methods are utterly inefficient. 

The basic theory, in the constant coefficient case, for this problem is sum
marized in appendix A.6.2; see also Ciarlet [137] for a detailed treatment of 
nonlinear and linear elasticity. While the null space of a scalar elliptic prob
lem consists of constants, we now have a six-dimensional null space of rigid 
body modes. This is reflected in the discussion of pure Neumann problems on 
floating subdomains where the data has to satisfy the compatibility condition 
given in (A.38) and the solution is defined only up to a rigid body mode. This 
will have important consequences when we redesign our overlapping as well 
as our iterative substructuring methods. 

The space of rigid body modes, 1^3, is spanned by the r^: three translations 

r i 

"1" "0" "0" 
0 , rs = 1 , rg = 0 
0 0 1 

(8.3) 

and three rotations 

r4 

0 ' ara " X2 

xz , n = 0 , re = -Xl 

_-X2_ _-Xl_ 0 
(8.4) 

This is a good basis if we consider a region centered at the origin; in other 
cases, it is natural to replace Xi in the rotations r4,r5, re by Xi — x^ where 
x^ is a point in a relevant region. We note that it is easy to show that both 
the divergence and the linearized strain tensor of all rigid body modes vanish. 
The rigid body modes are all linear functions and they thus are contained 
in the polynomial space (Pi)^ and indeed in any conforming finite element 
space that we might consider for Equation (8.1). An important consequence 
of this fact is that the null space of the stiffness matrix A '̂̂  of any floating 
subdomain i?^ is equal to 1ZB. Similarly, since the rigid body modes have no 
elastic energy, the Schur complement 5^'^ of such a subregion has the same 
null space. We recall that in order to construct a scalable algorithm, we must 
include the entire null space of the operator in a coarse, global space; see 
Mandel [332] or Smith, Bj0rstad, and Gropp, [424, p. 132] for a discussion of 
this null space property. 

In separate sections, we will consider two-level overlapping Schwarz meth
ods and a wire basket based iterative substructuring method, first considered 
in Pavarino and Widlund [383] in the spectral element as well as lower or
der finite element case. Some modifications are required of the algorithms, 
developed for the scalar case, to deal with the richer null space. We will 
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also show how balancing Neumann-Neumann and several FETI methods can 
be extended to compressible linear elasticity. The extension of the balancing 
and one-level FETI algorithms and theory turns out to be routine while the 
redesign of the dual-primal FETI methods is more challenging; new results 
have been obtained only recently by Klawonn and Widlund [290, 291]- All our 
results closely parallel those for the scalar elhptic problems of the previous 
chapters. 

8.2 A Two-Level Overlapping Method 

We will now examine Chap. 3 to see what changes of the algorithms and 
theory will be required. We will primarily consider the algorithm of Sect. 3.6. 
We will also adopt the same assumptions. 

We introduce an overlapping partition into subdomains {/?j'}, as in Sect. 
3.2, satisfying Assumptions 3.1 and 3.2. The local problems are then defined 
just as in Sect. 3.2 in terms of this overlapping decomposition after replacing 
the bilinear form by that of problem (8.1). 

We next introduce a shape-regular, but not necessarily quasi-uniform, 
coarse mesh TH- We assume that Assumption 3.5 holds and recall that in 
Sect- 3.3 the coarse space V^ is chosen to be a continuous, piecewise linear, 
or trilinear finite element space on a TJj. This space will serve equally well for 
each of the components of the elasticity problem; all rigid body modes can be 
represented exactly in the resulting space. 

As for the technical tools given in Sect. 3.2 and 3.5, only the construction of 
the quasi-interpolant I^ needs to be modified so as to reproduce the entire null 
space TIB. As already pointed out in Remark 3.7, this can be accomplished 
straightforwardly by a simple change in the definition of the values at the 
vertices of the coarse mesh to make the new operator I^ reproduce all Hnear 
functions. More precisely, with the same definitions as in Sect. 3.5, let y be a 
node of the coarse mesh TH, and ojy be the union of the elements in TH that 
share y. Let in addition TTy : L^{ojy) ->• Pi{a;j,), be the L^-projection onto the 
space of linear functions on Uy. For every vertex y, we define 

r 0, ye on, 
{I"u)iy) = \ 

I i'^v'UJiy) otherwise. 

It is a simple matter to check that, if w is a linear function on uix, with 
K e TH, then I^u = u on K. Here, LJK is the union of K and the elements, 
the boundaries of which have a nonempty intersection with dK. We use the 
same notation for the operator acting on vector-valued functions, which is 
obtained by applying I^ component by component. 

If 1i{u)K) = H^(U)K)^/TIB is the quotient space introduced in appendix 
A.6.2, then by using similar arguments as in Lemma 3.6, we obtain: 
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Lemma 8.1 Let TH be shape regular and let I^ he the modified quasi-
interpolant of Remark 3.7 discussed above. Then, there exists a constant C 
such that 

| | / ^ u - u||i2(^) < CFK|U |H(C .K) , (8.5) 

I^^U|H(„^)<C|U|H(„^)- (8.6) 

It is now straightforward to modify the proof of Theorem 3.13 to obtain: 

Theorem 8.2 In case exact solvers are employed on all suhspaces, the condi
tion number of the additive Schwarz operator for the linear elasticity problem 
satisfies 

<Pad) <c(l + ^ 
5 

where C depends on N'^, the number of colors of the decomposition {J?^}, but 
is otherwise independent of h, H, and S. However, we cannot guarantee that 
the estimate is independent of variations in the Lame parameters /x and A. 

We win not discuss the modification necessary for the methods of Sect. 
3.10. We only note that the coarse spaces need to be enriched and that there
fore the point of departure would be a set of new coarse basis functions for the 
coarse space. We could take a set { ĵ | 1 < i < N], developed for the scalar 
case and replace them by {I^{^iVk) | 1 < « < A ' ' , l < f c < 6 } , where the rk 
are the rigid body modes, given in (8.3) and (8.4), and / ' ' is the interpolation 
operator which maps into the iinite element space selected for the problem 
(8.1). 

8.3 Iterative Substructuring Methods 

We now turn to iterative substructuring methods. As for the overlapping 
methods considered in the previous section, we will find that the redesign of 
the algorithm for the problem at hand is very directly related to the larger null 
space of our system of elliptic equations. Otherwise, much of the framework of 
the discrete problem can remain the same. Thus, exactly as in Sect. 4.2, the 
given region J? in three dimensional space is partitioned into nonoverlapping 
subdomains Qi which define an interface J", which consists of vertices, edges, 
and faces. As before, the wire basket W is the union of the edges and vertices 
o f r . 

As for the scalar elliptic problems, we consider a model problem where the 
coefHcients, the Lame parameters, are constant in each subdomain: 

JV 

«(u,v) = ^ a j ( u , v ) 
i-l 

= y ^ I 2/xj / e(u) : e(v) dx -\-\i / divu divv dx 1 . 
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We recall that, by assumption, the substructures are polyhedral domains 
and unions of elements of a shape-regular fine mesh. We denote the standard 
finite element space of continuous, piecewise linear vector-valued functions 
on fli by Y'^{fli) and always assume that these functions vanish on OS^D-
We recall that the triangulation of each subdomain is assumed to be quasi 
uniform. 

Since a substructure may share a single edge or face with dHn (see As
sumption 4.3), we need to characterize the kernels of local Neumann problems. 

Lemma 8.3 The subspace of vectors u € V'*{/?i)^ such that 

ai{u,u) = 0 , 

consists of: 

1. the null vector if dfii fi dfio contains at least three points that are not 
aligned and thus, in particular, if the intersection contains one or several 
faces; 

2. a one-dimensional space of rotations if dfii fl OOD contains two points 
on a straight line and no points outside this line, thus, in particular, if it 
consists of an edge; 

3. the whole space WS if dfii n OQD is empty. 

To simplify our discussion, we will assume that no subdomain has a bound
ary which intersects dfln in just one or few points, or along an edge; in fact, 
we assume that such an intersection contains a whole subdomain face. We 
denote by l^i the nuU space defined for the substructure fii in the previous 
lemma. Because of the Korn inequalities in Lemma A.39 and the compress
ibility condition (8.2), we can equivalently work with iJ^-seminorms, scaled 
only with the Lame coefficient /tj, for certain local subspaces. 

Lemma 8.4 There exist positive constants c and C, which depend only on 
the shape of fii and on the local Poisson's ratio Vi, such that 

CMi|u||fi(i7;)3 < ai{u,u) < CMi|u||fi(^.)3, 

for u in the quotient space 'V^{fii)l'RI3i. 

We note that in case Qi intersects dfi in only an edge an additional logarithmic 
factor in H/h is likely to arise in the constants, as in Lemma 4.21 and the 
discussion that follows. To simplify our discussion, we have excluded such 
cases. 

8.4 A Wire Basket Based Method 

In this section, we will describe a wire basket based method for the equations 
of linear elasticity. This algorithm is based on Algorithm 5.10, which is due 
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to Smith [420]. This method was first developed for the equations of elasticity 
in Pavarino and Widlund [383]. 

In our discussion of Algorithm 5.10, we began by introducing an operator 
Rw the transpose of which maps values on the wire basket onto the faces and 
a closely related interpolation operator J-^ defined in (5-6). As in the scalar 
case, the values obtained at the nodes of a face wiU depend only on the values 
on its boundary. This wiU make the elements of the range of this operator, 
which wiU serve as the coarse space of our Schwarz method, continuous across 
the interface F. While this extension operator is exceptionally simple in the 
scalar case, a more elaborate construction is required for the system of linear 
elasticity. 

8.4.1 An Extension from the Interface 

We will need new extension operators, £i, based on solving Dirichlet problems 
of the elastic problem on the individual substructures. We will call them the 
elastic extension operators. As in Sect. 4.4, such a function, which is defined 
in Hi, is the solution of 

A^jn^^ + A^lu'-p = 0. 

Such a solution can also be regarded as the element £i{vLr) which equals u r 
on di^i and which is orthogonal, in the aj(-,-)-inner product, to the space 
V'* n {H^{fii, dOi n r ) ) ^ . We can also characterize this solution variationally 
as in Lemma 4.9. 

8.4.2 An Extension from the Wire Basket 

In the construction of our algorithm, we need an extension of finite element 
functions given on the wire basket to the faces. This is a local operation and 
we can therefore restrict our attention to the reference element (—1,1)^; we 
will only consider the case of hexagonal substructures. A preliminary operator 
/•yy is simply given by the restriction of u to the wire basket, i.e., by 

/ • ^ U = ^ u(Xft)^fc. 

Xk&Wh 

This operator works component by component; we will use the same notation 
when it is applied to individual components and vector valued functions. Since 
the resulting functions vanish at all face mesh points, it is clear that this 
operator will not preserve any of the rigid body modes. 

We next consider the difference between each of the Vj and ly^Vj. They 
can all be expressed in terms of four scalar functions, defined by 

g'^ = i-iJ^i, g^=xi-i^xi, g^ = x2-i^x2, Q'^=x3-i^xs. 
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These four functions vanish on the wire basket and each of them can be spht 
into six face terms, 

G'=j:^i Q'=J:QI G'=J:QI o'=t^i 
k=l k=l fc=l fc=l 

Here, the Ql,j = 0,1,2,3, vanish on all faces except on T'^. For each com
ponent Ui of u, we define a new extension Iy\,Ui from the wire basket to the 
interface as follows: on a face ^*^, for which the two relevant variables are Xi 
and X2, the restriction of ly^^Ui to f'' has the form 

I^Ui = I^Ui + ak,iQl + h\^l + })l^^l. (8.8) 

The weights afc,i, h\ ,̂ and }y\. ^ are chosen so that ly^ preserves the functions 
l,Xi,a;2,ar3, and therefore the rigid body modes. The weights are given by 

/ Uids \ UiXjck 
„ . . - JdT'' . jj- _ JdJ=->' i --[ 2 

Ids / x|cfe 

We note that on each face only three correction terms come into play; see 
(8.8). 

A simple computation shows that, the new extension operator reproduces 
all linear functions, on each face, and therefore also all the rigid body modes. 
If, e.g., Ui = co + ciXi + C2X2 + C3X3, we find that on the face J^'' = {xs = 1}, 
that 

ak,i = x(co + cixi + C2X2 + C3, l)9^fc = Co + C3, 

3 
&fc,i = ^ ( C O + C l ^ l +C2X2 +C3,Xi)9j7h =Ci, 

3 
b%i = T^(C0 + CiXi + C2X2 + C3,X2)djrh = C2, 

as required. 
For a vector valued displacement u, the extension operator can now be 

defined as the discrete elastic extension of the vector with components given 
by (8.8) and by similar expressions for the other faces, i.e., by 

I^U = £{l!^Ui,I^U2,Iyv'^3). 

Any rigid body mode r is reproduced inside each element, i.e., £i{r) = r. This 
follows from the minimium property of the elastic extension and the fact that 
a(r ,r) = 0. Therefore, I%r = r, reW. 

The extension operator /yy, defines a change of basis in V r ; the face basis 
functions are unchanged, but the wire basket basis functions are transformed 
according to (8.8). 
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8.4.3 A Wire Basket Preconditioner for Linear Elasticity 

We can now describe our wire basket preconditioner for linear elasticity prob
lems in matrix form. We proceed as in Subsect. 5.4.1 and 5.4.2, to wiiicli we 
refer for more details. 

We perform a change of basis in the space spanned by the wire basket 
functions in order to satisfy the null space property, i.e., in order to ensure 
that the null space of the local contribution 5^'^ to the preconditioner is 
the space of rigid body modes 7iB. This can be accomphshed by using the 
extension operator ly^ defined by (8.8), since Jyy reproduces all rigid body 
modes. In matrix form, this change of basis from the new basis to the original 
nodal basis is represented locally by the matrix 

Ai) f,ii)T 
'-TT ^W 

Tii) 
WW 0 I 

where the diagonal blocks are identity matrices of the appropriate order. Then, 
5*̂ *̂  is transformed into 

r(i) 

Mi) Ai) 
0 

'-w ^ww 

q(i) 

q(i)T q{i) 

q(i) 

T 
TW '-'WW 

(i)T 

0 /• (i) WW 

q(.i) 

nonzero 
nonzero 

(i) 
WW 

The local preconditioner S**̂*̂  is constructed by 
a) eliminating the coupling between faces and the wire basket in the trans

formed matrix; 
b) ehminating the coupling between all pairs of faces, i.e., by replacing 

Spjr by its block-diagonal part 5' (i) TTi 

m c) replacing the wire basket block Sy^y^ by a simpler matrix Sy^y^-. replace 

^ww ^y ^ rank-six perturbation of the identity. On the reference element, it 
is given by 

q(i) _ 

°ww — 
(l + l o g { F A ) ) M i ( J « - ^ ^ ) . 

T 

"'J'^j 
(8.9) 

(This corresponds to using a cheaper, approximate solver for the wire basket 
variables.) 

d) returning to the original basis: 

5 « = 
Ai) 0 

Ai) 
'•WW 

0 
q{i) 
'^WW ^ 'ww 

(8.10) 

'^ f 'i\'T' •^ {'i\T' 

The action of Ry^ and Ry^ on a face shared by two elements Oj and 
J?j is the same, because the extension of any function defined on the wire 
basket to a face, using the operator Jy^, is determined only by the values on 
the boundary of that face. Therefore the preconditioner can be obtained by 
subassembly. We obtain. 
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and 

ITT 0 
—Rw Iww 0 Sv\!y\; 0 Iww 

S S — RQ Sy^^RpS + y ^ R^k S'̂ fĉ fc-RjTfcS', 

where RQ = {-Rw^-^ww); see Subsect. 5.4.2 or Dryja, Smith, and Widlund 
[178]. 

We define the usual orthogonal projections Pyrk onto the face spaces and a 
projection-Hke operator PQ, defined by a bilinear form ao{-, •) consistent with 
(8.9), onto the wire basket space, and obtain the additive Schwarz operator 

jrk 

Theorem 8.5 The condition number of the iteration operator P is hounded 
by 

K{P)<C{l+log{H/h))-\ 

where C is a constant independent not only of the mesh size and the number of 
substructures, but also of the values of the Lame parameters ^i and Aj of our 
model problem (8.7) provided that the Poisson ratios Ui are uniformly bounded 
away from 1/2. 

The proof follows, step by step, that of Theorem 5.11; for full details, see 
[383]. 

8.5 Neumann-Neumann and FETI JVEethods 

In this section, we will first consider a balancing Neumann-Neumann and one-
level FETI methods previously discussed in Sect. 6.2 and 6.3, respectively. 
As in the previous sections of this chapter, the changes of the algorithms 
and analysis are very directly related to the larger null space of the elhptic 
system (8.1). We recall that the key to the analysis of these two families of 
algorithms for scalar eUiptic problems is Lemma 6.3; such a result also holds 
for the problem at hand and we will show that only a few changes of the 
algorithms are required. In contrast, the FETI-DP algorithm considered in 
the final subsection of this chapter will require more extensive modifications 
of the algorithms. As in Chap. 6, we will change notations and denote our 
finite element space of continuous, piecewise linear functions by W'*, etc. 

8.5.1 A Neumann-Neumann Algorithm for Linear Elasticity 

As in Sect. 6.2, given a finite element approximation of the elliptic system (8.1) 
and a partition of the region J? into substructures, we can introduce a finite 
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element trace space W^, i = 1 , . . . , AT, for each dfii and an associated product 
space W := 0 1 = 1 ^ ^ . The subspace of vector valued functions which are 
continuous across the interface F is denoted by W . A stiffness matrix, A, and 
a Schur complement, S, are then introduced. The contributions S'̂ *̂  to S from 
the individual subdomains are computed as before; each of them is directly 
related to the component Wj of the product space W . The weighted counting 
functions 5i that are appropriate for our elasticity problem are based on the 
Lame parameter /Zj of the subdomains, which replace the pi in the definition 
(6.1): 

As in Lemma 8.4 only one of the Lame parameters enters this definition. The 
pseudoinverses <5| are then defined as in formula (6.2). An operator similar to 
that of (6.4) can then be defined by 

N 

EDM = Y.Rjl\5\ui), (8.11) 

where Uj € Wj is the component of u € W associated with the subregion Oi 
and i??^ an interpolation operator as in Sect. 6.2. 

The larger null space must be accommodated when we redefine the sub-
spaces and bilinear forms for the balancing Neumann-Neumann algorithm of 
Sect. 6.2. We first modify the coarse space; cf. (6.5). The new Wo C W is 
given by 

Wo=span{7?f/ ' ' (4rfc) , 5/?i n 5X?i5 = 0, fc=l,...,6}; (8.12) 

we note that this space contains the entire space of rigid body modes. As in 
the scalar case, we are free to enrich this space, e.g., by adding basis functions 
associated with the boundary subdomains. The local space Wj is simply the 
individual component of the product space W and the bilinear form for W , 
is given by 

Si(u,v) = ai{£i{5iv),£i{5i\)), 

where £i are the discrete elastic extension operators introduced in Subsect. 
8.4.1; cf. also (6.6). Projection-hke operators Pi = RfPi are then defined 
with Pi given by equation (6.7). Finally, the constraint (6.9) is replaced by 
the requirement that I^{5iPiM) belongs to range{S^'^^), a space of codimension 
six. 

The key to the theory is a lemma that replaces Lemma 6.3: 

Lemma 8.6 Let ED he the operator defined in formula (8.11). Then, 

\ED^\l<C{l+\og{Hlh)f\vf\l, werange{S). (8.13) 
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The proof of this lemma requires no new ideas: using Lemma 8.4, we can 
estimate the individual components of E'j^w using the same tools as in the 
scalar eUiptic case. Similarly, no new ideas are required to estabhsh: 

Theorem 8.7 The hybrid Schwarz method defined by the operator (6.10), 
and the spaces and bilinear forms of this subsection, satisfies 

s(u,u) < s{Phyl^x,^x) < C{1+log(iJ//i))2s(u,u), 

where C is independent not only of the mesh size and the number of substruc
tures, but also of the values of the Lame parameters Hi and Xi of our model 
problem (8.7) provided that the Poisson ratios Vi are uniformly bounded away 
from 1/2. 

8.5.2 One-Level FETI Algorithms for Linear Elasticity 

These FETI methods can easily be extended to problems of elasticity. Exam
ining Sect. 6.3, we find that the matrix R of vectors of elements of kemel{S), 
defined in (6.28), must be expanded to account for all the rigid body modes 
of the floating subdomains, characterized by Lemma 8.3; cf. Remark 6.6. As 
in the scalar elliptic case, Lemma 8.6 plays a central role in the theory for 
one-level FETI methods. All other changes are completely routine. In the 
fully redundant case, e.g., we obtain a result which is completely analogous 
to Theorem 6.21: 

Theorem 8.8 The preconditioner Mr, defined as in (6.51), and with Q = 
M~^, satisfies 

{MA, A) < {FrX, A) < C(l + \og{Hlh)f{Mr\, A), A £ K 

Here C is a constant independent of h, H, 7, and the values of the Lame pa
rameters fii and Xi of our model problem (8.7) provided that the Poisson ratios 
Pi are uniformly bounded away from 1/2. 

8.5.3 FETI-DP Algorithms for Linear Elasticity 

We first recall that this family of algorithms was first introduced by Farhat, 
Lesoinne, and Pierson [195]; their versions of the algorithm have been used ex
tensively to solve very large and difficult problems. As in Sect. 6.4, we will now 
try to identify subspaces W with a sufficiently rich set of primal constraints 
that will allow us to prove satisfactory bounds on the condition numbers of 
our FETI-DP algorithms. We recall that for scalar elliptic problems and Algo
rithm D, we always make sure that the boundary of each face of the interface 
r contains at least one primal edge. In addition, it is sometimes necessary 
to make some vertices and additional edges primal in order to obtain bounds 
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that are not strongly dependent on the values of the coefficients in the dif
ferent subdomains. In order to understand what might be appropriate in the 
present context, we will first consider two special cases. 

In the first, we assume that we have two subdomains made of the same 
material, which have a face in common and are surrounded by subdomains 
made of a material with much smaller Lame parameters. Such a problem will 
clearly have six low energy modes related to the rigid body modes of the union 
of the two special subdomains. Since six rigid body modes are associated with 
each substructure, any preconditioner that has less than six {12 — 6) linearly 
independent primal constraints across that face will have at least seven low 
energy modes and is likely to be poor. 

This observation suggests that we might introduce six Hnearly independent 
constraint across each face of the interface. Given that point constraints have 
been shown to be ineffective in Sect. 6.4, we will choose the constraints in 
terms of averages (and first order moments) over edges of the components of 
the displacement vector. One can show that for a rectangular face, averages 
from three (or four) different edges are needed to obtain the required set of 
six linearly independent constraints. In fact, what matters is that the set of 
constraints control all rigid body modes in the sense that if the functionals 
which represent the constraints all vanish for a rigid body mode, then the rigid 
body must vanish. A face equipped with such a full set of primal constraints 
is call fully primal. 

In the second case, we again consider two subdomains surrounded by sub-
domains with much smaller Lame parameters. We now assume that the two 
special subdomains share only an edge. In this case, there are seven low en
ergy modes of the finite element model corresponding to the same rigid body 
modes as before and an additional one. The new mode corresponds to a rela
tive rotation of the two subdomains around their common edge. We conclude 
that in such a case, we should introduce five (12 — 7) linearly independent pri
mal constraints for the special edge since without any constraints, we would 
have twelve low energy modes. Such edges will be called fully primal in our 
discussion. 

Three of the five constraints of a fully primal edge ^*^ are given in terms of 
the averages over the edge of the three displacement components. We note that 
one rigid body mode, corresponding to a rotation around the edge vanishes 
on the edge. The additional two constraints, which completes our full set of 
constraints for this fully primal edge, are given by the L^{£^^)-inn.ev product 
of the other two rotational rigid body modes with the vector of displacements. 

We can now design an algorithm similar to Algorithm C of the scalar case 
by insisting that all edges of the interface are fully primal. We note that all 
faces then are also fully primal. We also make all vertices fully primal. We 
can then establish that this algorithm satisfies the same strong bound as the 
first bound in Theorem 6.38. 
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Theorem 8.9 (Algorithm C for elasticity) The preconditioner Mc sat
isfies 

{Mc\ A) < {FcK A) < C(l + log(H/h)f{McX, A), XeV. 

Here, the constant C is independent of h, H, 7, and the values of the Lame 
parameters /tj and Aj of our model problem (8.7) provided that the Poisson 
ratios vi are uniformly bounded away from, 1/2. 

A natural question now arises if a counterpart to Algorithm D can be 
developed. This is the main topic of a forthcoming paper by Klawonn and 
Widlund [290]; see also the conference paper [291]. In these papers, the ac
ceptable edge paths of Sect. 6.4 are replaced by paths that can pass from one 
subdomain to one of its neighbors either through a fully primal face or a fully 
primal edge. If such paths exist for every edge and vertex of the interface, 
and with a modest tolerance as in formulas (6.67) and (6.68), we can again 
establish as satisfactory a bound as the second one in Theorem 6.38. 

We also note that it is not necessary to make an edge fully primal if it is 
common to no more than three sub domains, which each shares a fully primal 
face with the other two. Current research is focused on finding effective and 
even smaller sets of primal constraints for this and more general configura
tions. 

It is interesting to consider the constraints that so far have been employed 
in practice for some large scale FETI-DP codes; see, e.g., [195]. First, one nor
mally chooses enough vertex constraints in order to make the global stiffness 
matrix invertible, as in the scalar case; see Subsect. 6.4.4 and, in particu
lar, Lesoinne [313]. In addition, three average constraints over the closure of 
each face are typically employed and, occasionally, three additional first or
der moments. All these optional constraints are usually enforced by using an 
additional set of Lagrange multipliers as outlined in Subsect. 6.4.4; for an al
ternative approach see [290]. We also note that if only vertex constraints are 
used, the iteration counts will often exceed several hundreds. 
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Preconditioners for Saddle Point Problems 

9.1 Introduction 

In this chapter, we consider preconditioners for several indefinite problems of 
the form 

- - ( B 5 C ) ( ; ) = ( 0 = - - <''-̂ ' 
which arise from the approximation of saddle point problems. The theory for 
continuous and discrete problems of this kind is reviewed in appendices A.7.2 
and B.4, respectively. We assume that the matrix A is symmetric, positive 
semidefinite and that C is symmetric, nonnegative definite. The real number 
t is small and may vanish. Systems with t = 0 arises from the Stokes problem 
(see appendices A.7.2, B.4.1, and B.4.2) and from flows in porous media (see 
appendices A.7.2 and B.4.3). Almost incompressible elasticity (see appendices 
A.7.2, B.4.1, and B.4.2) and certain stabilized formulations of the Stokes prob
lem (see, e.g., [460, 418]) give rise to problems with t > 0; in this case, good 
preconditioners should be robust with respect to arbitrarily small values of t. 
We assume that A, B, and C are operators representing the related bihnear 
forms and that the algebraic problem (9.1) arises from a variational problem: 
find u eV and p G Q, such that 

a{u,v)+b{v,p) =F{v), veV, 
b(u,q) -t\(j),q)=G(q), qeQ. 

For simplicity, we employ a notation without superscripts for the finite di
mensional spaces V and Q which are finite or spectral element spaces; see 
appendix B.4. We employ the scalar products (•, •)v and (•, •)Q, and the cor
responding induced norms || • ||y and || • | |Q, respectively. These scalar products 
are assumed to be independent of the discretization parameters. In the follow
ing, we will also work with vectors W £ X in the product space X := V x Q 
and we will use the norm given by \\l(\\^ := ||w||y -l- WPW'Q for U = {u,p}. 
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We make the following assumptions on the bilinear forms and the spaces; 
cf. appendix B.4. 

(i) a(-, -) and 6(-, •) are continuous, i.e., 

|tf-^Av| = |a(tf,i')| < ai||tf||y \\v\\v, u,v €V 

\u'^BTp\ = Ip-^Bul = \b{u,p)\ < a2\\u\\v \\P\\Q, U€V, p€Q. 

(ii) a{-, •) is coercive on Z, i.e., 

u^Au = a{u,u)>fi\\u\\v, ueZ, (9.4) 

where Z CV is defined as 

Z = kernel{B) = {veV\ b{v,q)=0, qe Q}. 

(iii) b(-, •) satisfies an inf-sup condition, i.e., 

inf sup -n—n—n—n— = inf sup -n—n—',, ,, > 7 > 0. (9.5) 
Oji<ieQo^vGV \\v\\v miQ 0^q€Qo^v€V \\v\\v MIQ 

(iv) c(-,-) is symmetric, nonnegative, and continuous, i.e., 

p'^Cp = c(p,p)>0, \q'^Cp\ = \c(p,q)\<d\\p\\Q\\q\\Q, p,qeQ. (9.6) 

In some cases, a stronger assumption on the coercivity of a(-, •) holds: 

u'^Au = a{u,u)>(i\\u\\v, ueV. (9.7) 

We note that the matrix A may still be positive definite even if condition (9.7) 
does not hold. This is the case for fiows in porous media where A is a scaled 
mass matrix. 

We note that the continuity properties (9.3) and (9.6) ensure the bound-
edness of the operator A, which is equivalent to the sup-sup condition 

sup sup < Ci, (9.8) 
VGXu&x \\u\\x\\y\\x 

where Ci depends only on ai, a2, and S, and is independent of t € [0,1]. In 
addition, conditions (9-3-9.6) imply the invertibility of A, which is equivalent 
to the inf-sup condition 

inf sup ..^^. '̂ "'•̂ „ > (72 > 0, (9.9) 

where C2 depends only on ai, 0:2, /?, 7, and S, and is independent of t. For 
additional details see, e.g., [30, 94, 95]. 
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One of the oldest methods for the solution of the algebraic problem (9.1) 
is the Uzawa algorithm, see [24], which, in case A is invertible amounts to 
eliminating the variable u and then solving a Schur complement system, with 
the positive definite matrix 

S := eC + SQ= eC + BA-^B^, 

for p. However, this algorithm requires the exact apphcation of A~^ which, 
in general, is quite expensive. A possible remedy is then to use an in
exact Uzawa algorithm where an iterative method is employed instead of 
the exact inverse of A; see [35, 78, 186, 403]. Another strategy is to work 
with a block preconditioner without eliminating the variable u; see, e.g., 
[406, 405, 270, 460, 418, 282, 279, 281, 461, 280] and Sect. 9.2. Still another 
strategy, which has been employed for flows in porous media, consists in in
troducing an additional Lagrange multiplier that enforces the continuity of u 
across the element boundaries of the triangulation. In this case, A becomes 
block diagonal and can be inverted inexpensively. A Schur complement sys
tem is then obtained for p and the new Lagrange multiplier. Such algorithms 
will be presented in Sect. 9.3. A different remedy is based on the observation 
that the variable u satisfies a positive definite problem in case t = 0. Thus, let 
u = Ug+v), with Ug eV such that Bug = g and w e Z. Therefore, w satisfies 

a{w,v) = F{v) — a{ug,v), v e Z; 

see condition (9.4). Certain methods solve this problem directly; particular 
care is then needed in order to make sure that the iterates belong to the 
subspace Z. Several methods in Sect. 9.4 and 9.3 employ these ideas; see, e.g., 
[310, 12, 346, 347, 189]. 

We note that saddle point problems also arise from certain approxima
tions on nonmatching grids (e.g., the mortar method) and the fictitious do
main methods. Fictitious domain techniques may also be employed for the 
preconditioning of standard approximations, where a finite element problem 
on an unstructured mesh and a complicated domain is replaced by a problem 
on a larger but simpler domain and on a uniform mesh, for which fast solu
tion methods may be employed. We will not present preconditioners for these 
problems and of this type in this monograph but refer the interested reader 
to, e.g., [298, 4, 3, 6, 129, 303, 302, 426, 104, 469, 387, 55] and the references 
therein, for mortar approximations, and to [26, 299, 224, 225, 300, 263], for 
fictitious domain techniques and related topics. Nor will we discuss precondi
tioners for stabilized formulations of Stokes or elasticity problems for which 
an inf-sup condition does not hold; see, e.g., [460, 418]. 

Before proceeding, we recall some properties of the Schur complements 
5*0 and S. Their condition numbers can be related to the properties of the 
bilinear form 6(-,-); see, e.g., [95, Sect. IL3.2] and the references therein for 
more details. See also [418, Sect. 1]. 
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Lemma 9.1 Let A be invertible. We have, forp G Q, 

p'Sp>p^SoP>^\\pfQ. 

If the stronger coercivity property (9.7) holds, then 

p'SoP<{allP)\\pfQ, 

and 
p'Sp < {{all 13) + fS) Wpfg < {{all(3) + 5) | |p||^. 

Proof. We first note that ^o and S are symmetric and positive semidefi-
nite. In order to find the lower bound, it is enough to consider 5o, since the 
bilinear form c(-, •) is positive semidefinite. Since A is positive semidefinite 
and invertible, it is positive definite and we can define the scalar product 

{U,V)A-^ '•= v^A~^u, u,v ^V, 

and the corresponding induced norm. 
Using a property of Hilbert norms, the continuity of a(-,-) in (9.3), and 

the inf-sup condition (9.5), we find, for q € Q, 

^Tq „ _ ,,Tr> A-1 TjT,, _ \\r>T „l\2 _ „„^ (!>, i? q) 
q boq — q ±>A n q — \\1^ ^lU-i — ® P̂ —\\~\\2 0:^vev \\v\\j^_i 

{q'^BA-^vf {q^Bvf 
= s u p „ , 1 = s u p ^rr .^ 

o^v^v v^ A-^v o^v£V v^ Av 

> — sup ^ , . , / > ^ Wqfo, 

- Oil 0^v€V Ml ~ Oil ^ 
which proves the lower bound. 

In order to prove the upper bound for So, it is enough to consider the 
continuity of b{-, •) in (9.3) for 5 6 Q and u = A~^B^q, and the coercivity of 
a(- ,-)m(9.7): 
q-^Soq = q^B{A-^B^q) < a^ \\q\\Q U'^B'^qWv 

< Oi2(i-^'^q\\Q {q''BA-^AA-^B'^qY/-'=a2(i-^'''\\q\\Q {q^ S^qf^ 

which proves the upper bound for SQ. That of S is then a consequence of the 
continuity of c(-, •) given in (9.6). D 

We note that the constants in the previous lemma are independent of the 
small parameter t. This result highlights why Uzawa's method, which em
ploys the Schur complement S are potentially attractive. While the condition 
number of the original system A usually depends on discretization parame
ters, that of S often does not. (However, we recall that for certain spectral 
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element approximations the inf-sup constant 7 may depend on the polyno
mial degree; see appendix B.4.2.) Lemma 9.1 may be summarized, by saying 
that the quadratic forms with the Schur complements So and S are spectrally 
equivalent to the scalar product in Q, which typically is a subspace of L^ 
and therefore to a mass matrix. We note that this is true only if the stronger 
coercivity condition (9.7) holds, as for the Stokes problem and almost incom
pressible elasticity. For flows in porous media, only the weaker property (9.4) 
holds; we will see in Sect. 9.3, that S is equivalent to an operator related to 
a Laplacian. Finally, in case the bilinear form c(-, -) is not continuous, we can 
obtain the same results by employing the modified norm ||J>||Q -l-tc(p,j>)^/^ in 
Q; see, e.g., [279, 280]. 

9.2 Block Precondit ioners 

We consider the system (9.1) and will look for symmetric, block diagonal 
preconditioners of the form 

B - { i l ) , (9.10) 

with A and C suitable symmetric, positive definite matrices. Since A is sym
metric and B is positive definite, we can employ the conjugate residual al
gorithm (CR) or MINRES; see appendix C.6-2. In this case, convergence is 
determined by the condition number of the preconditioned operator B~^A, 

^ ^ K ( ^ - M ) = ^"'"'" = "iax{|A|: \ea{B-^A)}_ 
P-min min{|A| : A G a{B-^A)} ' 

see Lemma C.12. 
A first strategy is given in [279, 280]. It is very general and does not 

require any additional assumptions beyond the usual continuity, coercivity, 
and inf-sup conditions. The proofs are similar to those of Lemmas 1 and 4 in 
[279]. 

Since B~^A and B~^^^AB~^^'^ have the same spectrum, the sup conditions 
(9.8) and (9.9) suggest that bounds on the spectrum of a suitable precondi
tioned operator may be obtained by rescaling the vectors V and U in these 
conditions in such a way that Euclidean norms are obtained in the denomi
nators. This leads to the definition 

U^BU := ||W||3f, 

and to the matrices Hy and HQ, defined as the representations of the scalar 
products in V and Q, respectively: 

u^Hyu := \\ufvi ueV; p^Hqp := | |p | | | , peQ. 

file:////ufvi
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Lemma 9.2 Let 
R-(Hv 0 

V 0 HQ 

Then, 

sup sup < Ci 
V^XU&X \\0l\\2\\V\\2 

mf sup 11,,11 11̂ ,11 > C2 > 0, 
vexuex IIWII2IIVII2 

with Ci and C2 the same constants as in conditions (9.8) and (9.9). Therefore, 

K{B-'A) < ^ . 
O2 

Proof. Since \\U\W = l/^BU, it is enough to make the substitutions 

U' = B^/'^U, V = B^''^V 

in conditions (9-8) and (9-9). D 
We are then led to the following strategy: a good block diagonal precondi-

tioner for the mixed system A is obtained if we employ good preconditioners 
for the operators representing the scalar products in V and Q. We therefore 
assume that 

ci\\p\\l<P^Cp<C2\\prQ, peQ. ^^'^^^ 

Theorem 9.3 Let the conditions in (9.11) hold. Then, 

G2 m m | a i , c i | 

with Ci and C2 the same constants as in conditions (9.8) and (9.9). 

Proof. We will look for similar sup-sup and inf-sup conditions as in Lemma 
9-2- We first note that from the definition of B and the inequalities in (9-11), 
we have, for U = {u,p} € X, 

min{ai,ci} \\Ufx < U'^BU = u'^Au+p'^Cp < max{o2,C2} ||W||^. 

We can then prove that 

U^B-^/^B-'/^V ^ ^ 
sup sup 1. 11 11 11 < Ci max{a2,C2} 
vexuex \\U\\2 

using the substitutions W = B^/'^U and V = B^^^V, and the sup-sup condi
tion (9.8). An inf-sup bound can be found similarly. D 

file:////U/W
file:////Ufx
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We stress that the condition number depends on the spectral bounds in 
(9.11) and the parameters cti, a2, /3, 7, and 6 in conditions (9.3-9.6), but is 
uniform in t € [0,1]. 

We will now discuss an alternative way of devising a block preconditioner, 
which, to the best of our knowledge, was proposed earlier than the previous one 
in [270]. We note that a similar strategy was already proposed in [406, 405]. 
It works under somewhat more restrictive assumptions, since we will now 
require that the block A is invertible, and this may lead to a different choice 
of the blocks A and C. We arrive at this idea after reminding ourselves that 
an Uzawa algorithm requires the exact solution of a linear system with the 
matrix A; here we will work with preconditioners for A and S; see also [70] 
for similar and related ideas. For the case t = 0, we will now obtain bounds 
that are independent of the constants in conditions (9.3)-(9.6). 

We will use the following fundamental result; see [270, Sect. 5.1]. Our proof 
follows [282, Lem. 1]. 

Lemma 9.4 Let A be invertible and t = 0. If 

^ \0 S 

then, B~^A has exactly three distinct eigenvalues: 

l-VE 1 + V5 

Therefore, 

K{B-^A) 

2 

VE + i 
V 5 - 1 ' 

Proof. To find the spectrum of B ^A, we can equivalently work with the 
matrix 

B-'/^AB-'/^ = (i ^Q^̂ ] , B = S-'/^BA-'/\ 

Since S = So and therefore BB'^ = / , a simple computation shows that the 
eigenvalues of B~^^'^AB~^^^ that are different from 1 are solutions of 

Â  - A - 1 = 0. 

The spectrum of B~^^'^AB~^^'^ is therefore 

r l - V 5 l + Vb, 
^ 2 ' ' 2 ^' 

D 
We stress that in the previous lemma the condition number is independent of 
all the continuity, coercivity, and stability constants of the bilinear forms. 
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Remark 9.5. A similar result holds in case t > 0. Indeed, a simple calculation 
shows that the eigenvalues of B~^/'^AB~^/'^ that are different from one, are 
solutions of 

Â  - A - 1 - (1 - A)iV = 0, 

with /x an eigenvalue of S'^f^CS'^/'^. 

Even though the Schur complement S and the block A are often difficult 
to invert, this result suggests the following strategy: a good preconditioner for 
the mixed system A can be obtained if good preconditioners for the A block 
and for the Schur complement S are employed. 

The assumptions that we make are therefore that A and C are good precon
ditioners for A and S, respectively, i.e., there exist strictly positive constants, 
such that, 

aiu^Au < u^Au < a^u^Au, w £ V, 
{9-12) 

cxp^Sp < p^Cp < C2p'^Sp, p e Q. 

The following result can be proven in the same way as Theorem 9.3. More 
precise bounds for the spectrum of the preconditioned operator are provided 
in [270, Th. 5.1]. 

Theo rem 9.6 / / A is invertible and B is defined as in Lemma 9.4, then the 
condition number of the preconditioned operator B~^A satisfies, for t > 0, 

K(B-^A) < K ( S - M ) 
min{ai,ci} ' 

In case t = 0, we have 

y^+l\ max{a2,C2} 
K{B-^A) < 

1 / 5 - 1 / min{ai,ci} ' 

We note that the constants in this result are now independent of the 
parameters a i , a-z, (i, 7, and 5 in conditions (9.3-9.6). In addition, in case 
the weaker coercivity property (9.4) holds, this second approach may lead to 
a different preconditioning strategy; see the case of flows in porous media in 
Sect. 9.3, where A is spectrally equivalent to a mass matrix. 

Block triangular preconditioners can also be employed. In this case, the 
conjugate residual method must be replaced by another Krylov space method, 
such as GMRES. See, e.g., [70, 280, 281, 287]. In our discussion, we will follow 
Klawonn [281]. When these methods are used, the block diagonal precondi
tioner given in (9.10) is replaced by 

S=(-^5). (9.13) 

or by its transpose, with A and C again suitable symmetric, positive definite 
matrices. Restricting the discussion to the upper triangular preconditioner. 
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one can establish spectral bounds for the preconditioned operator AB~^ simi
lar to those for the block diagonal case. One can also show that, if we choose to 
make A — A positive definite, then multiplying by the positive definite matrix 

n={-'-/l), (9.14) 

from the right will make AB~^T-i symmetric, positive definite. This makes it 
possible to show a strong bound on the decay of the error in the precondi
tioned GMRES algorithm that resembles the bound for the conjugate gradient 
method rather than that of the conjugate residual method; see [281, Theorem 
3.7]. 

9.3 Flows in Porous Media 

We consider saddle point approximations of second order diffusive problems 
and assume that the boundary of a bounded Lipschitz domain i? is partitioned 
into two sets df^D and c?J?jv. 

In order to be consistent with the notations and the abstract framework 
employed in the previous sections, we will not employ bold letters for veloc
ities. The letters u, v, w,... will be employed for primal variables (velocities) 
and are understood to be vectors, while the letters p, q, r,... are employed for 
the dual variables (pressures) and represent scalar functions. We also use the 
notation n for the outward unit normal of a domain. 

We consider the following problem for a velocity u and a pressure p: 

u = —K-Vp in $7, 
y-u = f in $7, 

u-n = go on d^Y), 
P = 9N on CJON? 

(9.15) 

where K = [K-ij] is a symmetric, uniformly positive definite and bounded 
diffusive matrix, / € ^^(j?), gj^ e H^^''^{df2D), and QN e H^I'^idQN). We 
will also refer to this system as Darcy's problem in the following. In case 
OQN = 0, we require the compatibility condition 

f fdx+ f gDds = 0 (9.16) 
Jn Jan 

and the pressure p is determined up to an additive constant. 
The variational formulation for problem (9.15) and some finite element 

approximations are reviewed in appendices A.7.2 and B.4.3, respectively. We 
recall that we obtain a saddle point problem of the form (9.2) with t = Ohj 
defining the bilinear and linear forms by 
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a{u,v) = I (IC~^u) -vdx, 

b{u,p) = — W -updx, 
Jo 

G{p) = - I fpdx, 
Jo 

F{v) = - guiv-n) ds. 

We consider a shape-regular triangulation Th of i?, of maximum diameter 
h. The appropriate finite element spaces V and Q are conforming spaces in 
iT(div; i?) and i^(i?), respectively. Here, we only recall that V may be chosen 
as a Raviart-Thomas finite element space consisting of vector functions with 
a continuous normal component across the interfaces between the elements of 
a mesh, while Q may consist of discontinuous scalar functions: 

V = RT]:{f2), Q = Q t i ( ^ ) , fc>l. 

We refer to appendices B.3.1 and B.4.3 for more details. Other spaces con
forming in i l(div;i?) may also be employed; cf., e.g., [95, Sect. III.3]. The 
solution u satisfies u - n = go on OQDJ and, in addition, the space V consists 
of vectors with a vanishing normal component on OQD- In case 5i?jv = 0, 
then V consists of vectors with a vanishing normal component on the whole 
of dfi and p is defined up to an additive constant. Uniqueness can be ensured 
by imposing the condition that the mean value of p over fi vanishes, i.e., by 
requiring additionally that the functions in Q have a vanishing mean value. 

Finite element approximations give rise to an algebraic problem of the form 
(9.1), with t = 0. We recall that the weaker coercivity property (9.4) holds in 
this case, and that the matrix A remains symmetric and positive definite. The 
Schur complement BA~^B^ can therefore be formed but only the lower bound 
in Lemma 9.1 holds. We also recall that the subspace Z = kernel{B) c V 
is the kernel of the divergence operator defined in V, while the range of the 
divergence equals Q; cf. appendix B.3.4 and in particular Lemma B.24. 

We note that the classification into Dirichlet and Neumann conditions 
may be confusing when we devise iterative substructuring methods of, e.g., 
Neumann-Neumann or FETI type for this problem. Indeed, Neumann (nat
ural) boundary conditions on OQN for the mixed problem arise from Dirich
let (essential) conditions for the underlying second order equation, and, con
versely, Dirichlet (essential) conditions on dQo for the primal variable of the 
mixed problem arise from Neumann (natural) conditions for the second order 
equation. For this reason, Neumann problems for the mixed system are always 
well posed, while Dirichlet problems require the compatibility condition (9.16) 
and provide a pressure that is only defined up to an additive constant. We 
also point out that a Dirichlet condition for the mixed system provides the 
value of w • n (the appropriate trace for the primal variable u G iJ(div; /?)) on 
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the boundary, while a Neumann condition imposes the value of the flux pn, 
which is in general not defined for pressures p^ LP'{Q). 

Block diagonal preconditioners of type (9.10) can be employed with the 
conjugate residual algorithm. The two strategies considered in Sect. 9.2 give 
rise to different types of preconditioners. The first is considered in Lemma 
9.2 and Theorem 9.3; according to condition (9.11), the blocks A and C need 
to be good preconditioners for the matrices representing the scalar products 
in iJ{div;J?) and L?{0)-, respectively. For the first block, we refer to Chap. 
10, where many preconditioners are presented, while for the second block it 
is enough to take the block diagonal mass matrix for a finite element space 
consisting of discontinuous functions. 

The second strategy in Sect. 9.2 is considered in Lemma 9.4 and Theorem 
9.6. According to condition (9.12), it is enough to have good precondition
ers for the A block and for the Schur complement BA~^B^. The block A is 
spectrally equivalent to a mass matrix and it is therefore uniformly well condi
tioned. On the other hand, we will see that BA~^B^ is spectrally equivalent to 
suitable approximations of the Laplace operator; in case JC does not vary very 
much across i?, it was proven in [462] that BA~^B^ is spectrally equivalent 
to a finite difference approximation of a Laplacian. Many efficient precondi
tioners can then be employed. However, many practical problems exhibit large 
jumps in K. We wiU present several successful strategies of constructing good 
preconditioners for this Schur complement in the next few sections. 

We will first consider some iterative substructuring methods; they were 
indeed the first to be studied. We will then present some more recent work 
and some overlapping preconditioners. 

9.3.1 Iterative Substructuring Methods 

In this section, we derive some simple iterative substructuring methods in the 
same way as we did for the Laplace equation in Chap. 1; see, in particular. 
Sect. 1.1, 1.2, and 1.3. 

To the best of our knowledge, two of the first iterative substructuring 
methods were presented in Glowinski and Wheeler [227] (some older work of 
the same authors can also be found in the references therein). In that work, 
two methods are presented; they are unpreconditioned conjugate gradient 
algorithms for certain interface variables. The important issue of singular local 
Dirichlet problems was already addressed there. We also note that an analog 
of harmonic discrete Stokes extensions was also employed; cf. Sect. 9.4.2. 

Here, we present the two methods in [227] for a very simple situation. 
We derive equations for interface variables in a fashion similar to those of 
Chap. 1. We then present simple Neumann-Neumann and Dirichlet-Dirichlet 
algorithms. The latter was successfully generalized in [147, 148]. The same 
framework applies to the Stokes problem, for which a Neumann-Neumann 
method is presented in Sect. 9.4.2. However, there can be differences if there 
are more than two subdomains. 
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We consider a partition of J? into two subdomains J?i and J?2, with a com
mon interface F, as in Sect. 1.1 and Fig. 1.1. Here, we assume that OQD = 0, 
in order to avoid comphcations with possibly singular local Dirichlet problems. 
Problem (9-15) is equivalent to the following transmission problem: 

wi = —KVpi in f^i, 
V-ui=f in f^i, 

Pi = 9N on dQ.1 n 50 

iti • n i = —1*2 • n2 onT, 
-Pi n i =P2n2 onT, 

U2 = -KNp2 in f72, 
V - W 2 = / in f72, 

P2= 9N on dQ.2 n d^ 

(9.17) 

We note that this problem can be obtained by variational arguments but also 
directly from (1.2). 

We now rewrite the algebraic problem (9.1) in block form, by further 
partitioning the degrees of freedom, as in Sect. 1.2. Here the appropriate par
tition is into velocity degrees of freedom internal to the two subdomains, Uj ' 
and Uj', respectively, pressure degrees of freedom associated with one sub
structure, p^^^i and p*̂ ^̂ , respectively, and velocity degrees of freedom on the 
interface T, ur- We recall that pressures are discontinuous and therefore any 
pressure degree of freedom is associated with only one substructure. This cor
responds to a partition of finite element functions into velocities supported on 
single subdomains and with vanishing normal component on J", pressures sup
ported on single subdomains, and velocities with vanishing internal degrees of 
freedom. Since the degrees of freedom for the velocity are normal components 
along the faces (edges in two dimensions) of the triangulation, we assume that 
the degrees of freedom in ur are values oiu-rii = —u • n2-

The discrete problem (9.1) can then be written as 

(4^ Bf^^ 
B « 0 

0 0 
0 0 

0 0 
0 0 Bf 0 

Ji.JP 

B^ 

K4\Bf^ 41 Bp' Arr) 

p(i) 
(2) 

UJ ' 
p(2) 

\ur ) 

{^f'\ 
(9.18) 

where the interface blocks can be found by subassembling local contributions: 

Arr = A^^l + APP, fr f^'^+fP. 

We note that fy=fy=0 but that we keep these terms so that the same 
formulas can be employed for the Stokes problem. 

http://Ji.JP
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In order to write the coupled problem in matrix form, equivalent to the 
original system (9.18), we need to employ a definition of the fiuxes piUi and 
P2n2 using duality; cf. equation (1.7). Thus, if (pj is a velocity basis function 
relative to a degree of freedom on F, we have, using (9-17), 

/ (-Pi rii) • <t>j ds = {pi Ui) •<t>jds- I V -{jpi (pj) dx 
J JdOi\r Joi 
r 
= / 9N (l>j -nids + / {JC~^Ui) • (j)jdx — I PiW • (f)j dx. 

An approximation A*̂*) of the functional representing the flux {—pi Ui) can be 
found by replacing the exact solution {ui,pi] with its flnite element approx
imation. Letting j run over the velocity degrees of freedom on F and using 
the local matrices, we have 

A« = Afjuf + A%v!p + Bf V'^ - f^^, (9.19) 

with Up and up local vectors of degrees of freedom, which are values of 
Ml • n\_ and W2 • rii, respectively. 

As for the Laplace problem, this approximation coincides with the resid
ual corresponding to the degrees of freedom on J" of a Darcy problem with 
a Neumann condition on F. Using this flux, we can write the transmission 
problem (9.17) as 

ur 

4WP+4WP+4'^ V') - fP (9.20) 
= -{Af.uf + AP.UP + BP%i^) - fP) = Xr 

This coupled problem can be obtained directly from the algebraic system 
(9.18) by introducing the two interface vectors of degrees of freedom u^ 
and uP. As for the Laplace problem in Sect. 1.2, the transmission condition 
involving the fluxes coincides with the last equation in (9.18). We note that 
the first and last equations are discretizations of local problems with Dirichlet 
conditions up on the interface F and that they are well posed since we assume 
that only Neumann conditions are given on dH. 

We can now obtain equations for the interface variable ur and the flux Xr 
by proceeding in the same way as in Sect. 1.3.1 and 1.3.2. 
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A Schur complement system can be obtained from (9.18) by eliminating 
the interior variables using the first four equations (see also the first and fourth 
equations in the coupled system (9.20)): 

Srur =9r-

We note that the Schur complement Sr can be constructed by subassembling 
local contributions 

where each contribution involves the solution of a local Darcy problem with 
Dirichlet conditions; cf. the first and fourth equations in (9.20). This equation 
is the unpreconditioned problem of Method 1 in [227]. The Schur complement 
Sr is symmetric and positive definite; see [227, Th. 3.1]. 

An equation for the flux \r can be obtained as in Sect. 1.3.2 by finding 
local velocities and pressures from the coupled system (9.20): 

(Af, 4lBf\ (uf\ ( /« \ 

v^f B« 0 ; v^^'v V 5« J 

and then using the interface variables Up in the second equation of (9.20). 
We obtain the system 

FrXr = dr, Fr = S^'^ + 4 ^ ^ " ' . 

We note that the application of each Sp~ involves the solution of a local 
Darcy problem with Neumann conditions on F; cf. (9.21). This equation is the 
unpreconditioned problem of Method 2 in [227]; see, in particular, equation 
(7.21). The matrix Fr is also symmetric and positive definite. 

Preconditioned Neumann-Neumann and Dirichlet-Dirichlet methods can 
then be obtained as in Sect. 1.3.4 and 1.3.5, respectively. Dirichlet-Neumann 
algorithms are also possible. A Neumann-Neumann algorithm corresponds to 
the preconditioned equation 

Fr SfUr = Fpgr-

This can be obtained as in Sect. 1.3.4 by starting from an initial guess u^, first 
solving Dirichlet problems on each i?^ with data u'p on F, and then a problem 
on each subdomain, with Neumann data on F chosen as the difierence of 
fluxes of the solutions of the two Dirichlet problems. The values on F of the 
solutions of these Neumann problems are then employed to correct the initial 
u% and find the new iterate. 

A preconditioned method for the flux equation is given by 

SrFrXr = Srdr. (9.22) 
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This method was studied in [147, 148] for the more general case of many 
subdomains and jumps of the diffusion matrix; it is presented in Sect. 9.3.3. 
Here, we only mention that it can be obtained as in Sect. 1.3.5, by starting 
from an initial guess Aj. of the flux, flrst solving two Neumann problems on the 
subdomains i7j with data Aj. on F, and then a problem on each subdomain, 
with Dirichlet data, on F, chosen as the difference of the traces, on F, of the 
solutions of the two Neumann problems. The values on F of the fluxes of the 
solutions of these Dirichlet problems are then employed to correct the initial 
Ap and find the new iterate. 

We point out that in case there are Dirichlet conditions on OH or if there 
are fioating subdomains, the local mixed Dirichlet problems may be singular. 
Local pressures are then not uniquely determined. They can be chosen in such 
a way that scalability is ensured. This issue was already addressed in [227] for 
the unpreconditioned Schur complement system. For the preconditioned flux 
equation this was considered in [147, 148]-

To provide a comparison, we will now consider the Stokes system, with 
discontinuous finite elements employed for the pressure; see Sect. 9.4 for ad
ditional algorithms. We consider the two subdomain configuration of Fig. 1.1, 
already employed in this section and Dirichlet conditions on di7. An equivalent 
coupled Stokes problem is 

—vAui + Vpi = / 
V • ui = 0 

in fii, 
in f^i, 
on dQ.1 nan, 
on r. 
on r. 
in ^ 2 , 

in f^2, 
on 0^2 nao; 

(9.23) 
M l = M2 

vVui • ni - pi ni = -{vWu2 •n2 -P2 ^2) 

-UAU2 + Vp2 = / 
V • U2 = 0 

U2 = QD 

see [392, Sect. 5.5]. We recall that the velocity u is continuous and with nodal 
degrees of freedom on the mesh. 

The degrees of freedom can be partitioned exactly as before in equation 
(9.18). We note, in particular, that the subvector ur consists of values of the 
velocity on the interface F. The same system as in (9.18) is obtained for the 
Stokes problem. Approximations of the fiuxes 

A'-*-' ~ uVui -Ui —pi rii 

can be found as before by using duality and exactly the same formula (9.19) 
is obtained. The algebraic coupled system corresponding to (9.23) can there
fore be written as in (9.20). Preconditioned Neumann-Neumann and FETI 
method can be devised in exactly the same way. The more general case of 
many subdomains have been considered in [386, 229, 230, 316, 314, 314] and 
some results are presented in Sect. 9.4.2. We note that there is a difference 
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from Darcy's problem when many subdomains are considered. For Stokes 
problems Neumann boundary conditions give rise to singular problems (as for 
the Laplace equation), while for Darcy flows, Dirichlet problems can be sin
gular. The singularity of these problems can be exploited to ensure scalability 
of algorithms. 

9.3.2 Hybrid-Mixed Formulations and Spectral Equivalencies with 
Crouzeix-Iiaviart Approximations 

As already mentioned, even though the matrix A is spectrally equivalent to 
a mass matrix, forming the Schur complement BA~^B^ of (9.1) can be ex
pensive. A possible remedy is to work with vector functions that have a dis
continuous normal component across the interelement boundaries and impose 
continuity using Lagrange multipliers. In this case, the matrix A becomes 
block diagonal and can be easily inverted. The new Schur complement now 
acts on the pressures and the new Lagrange multiphers (which also has the 
meaning of a pressure). We refer to [20] for details and additional results. Our 
presentation is largely based on [412, Sect. 3.4]. In particular, we wiU see that 
there is an equivalence between mixed formulations of second order problems 
and some nonconforming approximations that employ Crouzeix-Raviart finite 
elements. Many preconditioning strategies construct preconditioners for this 
new Schur complement. 

For simplicity, we assume here that dHo = $, gN = 0, and that %, consists 
of tetrahedra (triangles in two dimensions). We consider the case of fc = 1. 
We employ the set of faces of the elements of the triangulation % that do 
not lie on df2, which we denote by J^h, with the understanding that in two 
dimensions it consists of edges. We will refer to J^h as the interface between 
the elements. 

We first define a velocity space consisting of discontinuous vectors: 

V= II RT^{K)-

the pressure space remains the same. We then need the space of normal traces 
of vectors in V on the interface J^h-

W= 11 Fo{F). 
FeTh 

We assume that functions in W are also defined on dp by extending them 
by zero. We then consider the problem of finding u eV, p £ Q, X £W, such 
that, 
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/ (IC-^u) -vdx- y] ( / V -vpdx- / {v-nK)Xds) = 0, v G V 

- ^ / V •uqdx = G{q), qeQ (9.24) 
Ken ''^ 

y^ / {u-nK)P'ds = 0, fi^W, 
K&n •'^^ 

with riK the outward unit normal to the element K and G(-) defined as before. 
We note that the last condition means that the solution u has a continuous 
normal component across the element boundaries. By considering the differ
ential problem on an element K, we immediately see that A represents the 
value of the pressure on the interface J^h-

Problem (9.24) is equivalent to the original one. The bilinear forms con
sidered satisfy the continuity and coercivity conditions that ensure well-
posedness. The new problem gives rise to the algebraic problem 

Bi 0 0 \ \p\ = \ h \ , (9.25) 
A 0 0 y \xj \oJ 

where the couple {p, A} determines a pressure. Values inside the elements 
K £ Th are given by p (one for each element), while values on the element 
interface are given by A (one for each face F £ !Fh). We can then employ one 
pressure variable: 

P\ 6 _ (Bi\ ~_fh 

and write 

" = I A J ' ^ = I S J - * = V 0 

IT)(:)^G). 
with u eV and rj e Q xW. 

The matrix A is now block diagonal, with each block corresponding to an 
element K E.Th-it can easily be inverted and an equation for 7] (p and A) is 
obtained: 

Sv = 9, (9.27) 

with the Schur complement 

,.^^-.5.= ( | 1-. I 
T 

We note that S is symmetric and Lemma 9.1 can be employed to show that 
it positive definite. In addition, S can be constructed by subassembling local 
contributions from each element; this can easily be seen by partitioning the 
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columns of B into contributions acting on single elements. We can indeed find 
the bilinear form corresponding to S. By considering the original problem 
(9.24) and eliminating u, we find that the bilinear form corresponding to S is 

rf~SC = agivX) = E / (^~'^KV) • V^Crfar, (9.28) 
Ken •'^ 

where the discrete operator V K : Q X VT ->• F , is defined on the element K 
and for rj = {p, A} by 

/ {K~^VKf]) • Vdx = — j pV-vdx+l X{v-nK)ds, v£V. 
JK JK JdK 

We next introduce the finite element space 

P = PcR{rh)®PB{Th), 

with PcR{Th) the space of Crouzeix-Raviart finite elements on Th that vanish 
on dQ, see [149], and PsiTh) the space of quartic bubbles. In particular, 
PcRiTh) consists of piecewise linear functions that are continuous only at the 
barycenters bp of the faces F e J^h', the degrees of freedom are chosen as the 
values at these barycenters (one per face). The space PsiTh) is spanned by the 
quartic polynomials that vanish on J^h (there is then one degree of freedom for 
each element); for this space we can choose a basis consisting of bubbles that 
take the value one at the barycenters 6^ of the elements K € %,• However, 
the degrees of freedom need not be associated with these barycenters. 

The spaces P and Q x W have the same dimension. We introduce an 
interpolation operator 11 : P ^ Q xW, as TIip = {TIT-Z/', TTjr /̂'}, with L^-
projections defined, for each element K eTu and face F e J^h,hy 

nr'ip=\K\-^ / ipdx = tlj{bK), on if, 
JK 

njrilj = \F\-^ f il^dS = il^ibp), on F. 
JF 

We see immediately that i l is an isomorphism, liri = {p,\} € Q xW is the 
solution of the system (9.24), we define a new pressure by ^ = n~^{p,\}. 
The new couple {u,ip] satisfies 

If we then eliminate the velocity w, we obtain an equation for V' € -P which 
involves the modified Schur complement 

Sp = n'^Sn :P—^P. 
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The bilinear form corresponding to Sp can be written in terms of integrals 
over the elements and a suitable L^-projection over V; see [20] for details. The 
key point is now that Sp is spectrally equivalent to the bihnear form which 
approximates the Laplacian over the space P: 

4>'^Ap 4> : = ap{ip, 4>)= ^ f (^VV') • W4>dx, V, </> £ ^-

In addition, the Schur complements S and Sp are also spectrally equivalent 
for our choice of basis. We summarize these findings in the following lemma. 
We note that the proof rehes on local arguments only and that the result 
therefore is valid for meshes that are not quasi uniform. The first bound is 
a direct consequence of the definition of Sp and the choice of a basis for the 
space P. A proof, which employs techniques in [84], can be found in [412, 
Lem. 3.2]. 

Lemma 9.7 Let the triangulation % be shape regular. Then, there are con
stants, independent of h and the diffusive tensor K, such that 

ci tP'^S^! < 4>^SP4> < C24>^S'il^, 

C3 tjj'^Apip < 'ilFSp'ip < ip'^Aptp. 

The lemma can be summarized by saying that in order to find a good precondi-
tioner for the Schur complement S it is enough to find a good preconditioner 
for the stiffness matrix for Crouzeix-Raviart finite elements augmented by 
bubble functions. 

The last step that remains to perform is to note that for some special cases 
the stiffness matrix Ap is block diagonal or that it is spectrally equivalent 
to a block diagonal matrix, with blocks corresponding to the two subspaces 
PcRiTh) and PB{%). 

Lemma 9.8 Assume that % is shape regular. 

1. Let K. = pi, with p constant on each element K e % and I the identity 
matrix. Then, C3 = 1 in Lemma 9.7 and Ap = dia,g{AcR,AB}, where 
AcR is the stiffness matrix for the Crouzeix-Raviart finite element space 
PcRiJh) o,nd Ap is block diagonal, with each block corresponding to one 
element. 

2. Let K. be smooth and a small perturbation of a constant matrix on each 
element. Then, there exist constants independent of h and fC, such that, 

C4ap('>p,-4!) <ap(^ i ,V ' i ) +ap('>p2,tp2) < Cs,ap(tlj,tjj), V = V'l + ^ 2 , 

for every ^1 G PCR{%) and 1JJ2 e PB{%)-

We have therefore reduced the problem of preconditioning S from the 
hybrid-mixed system (9.24) to that of preconditioning nonconforming ap
proximations of Crouzeix-Raviart type. Domain decomposition precondition-
ers have been proposed for the latter. Here, we mention Sarkis [410, 412, 413], 
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where overlapping methods are considered together with some choices of 
coarse spaces that provide condition numbers that are independent of pos
sibly large jumps of /C, and Cowsar [147, 146], where some overlapping and 
iterative substructuring methods are proposed- We will consider the balancing 
Neumann-Neumann method of Cowsar, Mandel, and Wheeler [148] in more 
detail in the next section. We also mention Brenner [83], Braess and Verfiirth 
[68], Oswald [366, 367], Vassilevski and Wang [457], Sarkis [411, 412], for some 
multilevel preconditioners. 

9.3.3 A Balancing Neumann-Neumann Method 

We now consider a method that was proposed and analyzed in [148]. It pro
vides a preconditioner for Method II in [227]. 

We first present the algorithm as originally introduced in [148]. The bal
ancing Neumann-Neumann algorithm of Sect. 6.2 is applied to the pressure 
equation (9.27), which involves the bilinear form ag(-,-) in (9.28). Given a 
nonoverlapping partition into subdomains, it is in fact possible to employ the 
algorithm of Sect. 6.2 without any essential modification since the degrees 
of freedom of the pressure space Q x W can be partitioned into those inter
nal to the subdomains and those on the interface. In addition, the matrix 
corresponding to the bilinear form can be constructed by subassembling con
tributions from single subdomains and the local kernels consist of constant 
functions. Solutions of local Dirichlet problems for the pressure are used to 
eliminate degrees of freedom internal to the subdomains and we then use solu
tions of local Neumann problems also for the pressure. We will finally discuss 
ways of calculating the local operators. 

We consider a partition of /? into nonoverlapping subdomains, as in Sect. 
4.2. For simplicity, we only consider three-dimensional problems; the results 
carry over to the two-dimensional case. In particular, we assume that i? is de
composed into nonoverlapping subdomains (substructures) i?i,i = 1,...,A'', 
each of which is the union of shape-regular elements with the finite element 
nodes on the boundaries of neighboring subdomains matching across the in
terface. The interface F is the union of the interior sub domain boundaries. 
As in the previous section, we employ the set of faces Th of the elements of 
the triangulation % that do not lie on dfi. The letter F will always denote a 
face in .F/j. 

Here, we rename the matrix corresponding to ag{-,-) Ag and rewrite the 
system (9.27) as 

A§ri = g. 

Degrees of freedom can be partitioned into those internal to the subdomains 
(corresponding to those in Q and those in W that do not he on F) and those 
on the interface (those in W that lie on F): 

^ V An Arr 
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The matrix Ag has the structure considered in Chap. 4, where we introduced 
iterative substructuring methods for conforming approximations of second 
order, scalar problems; see, in particular, equation (4.7). The matrix An is 
block diagonal and a Schur complement system involving the unknowns on the 
interface F alone can be obtained, after a step of block Gaussian elimination: 

S = Arr - AriAir^Air : Wr -^ Wr, 

with Wr the space of traces of functions m Q x W on F; cf. Sect. 4.3. We 
note that Wr consists of discontinuous, piecewise constant functions on F. 

The Schur complement S, as well as the matrix Ag, can be constructed 
by subassembly. We define Wi as the space of traces of functions in. Q x W 
on dOi \ dfi and let Rj : Wi ->• Wr, be the extension by zero to the rest of 
F. We have: 

i=l 

with 5̂ *) the local Schur complements constructed from local stiffness ma
trices; cf. equation (4.10). The local stiffness matrices are given by formula 
(9.28) by restricting the sum to the elements contained in one subdomain. A 
formula for the application of the 5̂ *̂  will be given below. 

We now consider exactly the same hybrid algorithm as in Sect. 6.2, as 
defined in equation (6.10); the various components are defined in Sect. 6-2.2. 
The local components involve pseudoinverses of the S^^^, for which a formula is 
given below. The scaling functions 5\ are defined by (6.2), with the assumption 
that K = pil on Oi. We note that exactly two terms appear in the sum in 
(6.2) since degrees of freedom in Wr are associated with faces in J^h- A coarse 
space of minimal dimension is the span of the functions dj associated with 
floating subdomains. We note that the only subdomains that are not floating 
are those that share a face with dH. We refer to Sect. 6.2 and [148] for further 
details-

The logarithmic bound for the condition number of the preconditioned 
operator in Theorem 6.4 remains valid in this case. The proof is given in 
[148]; we note that it rehes on an equivalence of the bilinear form og(-, •) with 
one defined on a conforming finite element space. 

We now consider the problem of applying the local Schur complements 
and their pseudoinverses to a vector. The formulas, already given in [148], 
involve solutions of local saddle point problems and wiU allow us to relate this 
algorithm to others that have been proposed over the years. We first note that 
in practice, it is only necessary to use Lagrange multipliers on the interface 
F in order to enforce the continuity of normal velocities; cf. equation (9.24). 
The Schur complement S remains unchanged. 

Application of the Local Schur Complements S**-*-*. Given Xi £ Wi, we 
want to calculate 
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in = S-^Ai e Wi. 

We first need to recall that the Schur complement S (and therefore 5*̂ *̂ ) has 
been obtained from the original mixed system (9.24) after repeatedly elimi
nating variables. In particular, we first eliminated the velocity u and obtained 
equation (9.27) for p and A. We then eliminated the degrees of freedom inter
nal to the subdomains from S = Ag and obtained an equation involving S. 
The Schur complements S or 5̂ *̂  can be then constructed from the blocks of 
the mixed systems of the form (9.24). 

We now fix a subdomain J?,, and consider the local spaces 

where RT^{Qi) is the conforming Raviart-Thomas finite element space and 
Q^{Qi) the space of piecewise constant functions on /?,. We consider the 
following saddle point Neumann problem: given Aj G W,, find Uj € RTi^f^i), 
Pi € QQ{Qi), such that, 

/ {K~^Ui) -Vidx - V -ViPidx = - Xi(vi • n,) ds, vi € RTl^{Qi) 

- j V -Uiqidx = 0 , qieQ^{f2i), 

which can be written in matrix form as 

It can easily be shown that 

We have therefore shown that 

in = -B^'\i 

5«>=(4» o) (̂ ;̂;; ^i; j ( 4 " o ) ' ; (9.30) 

cf. (9.25). We note that the application of S^'^^ requires the solution of a local 
mixed Neumann problem, which is always invertible, with datum given by the 
fiux A,. 

Application of the Pseudoinverses of the Schur Complements 5^* .̂ 
Given /tj € Wi, we now want to calculate 

Ai = 5«Viem. 

As we have already remarked many times in this monograph, inverses of Schur 
complements can be applied by employing inverses of the original matrices; 
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see Sect. 4.3. Looking at the expression for S^''^ in (9.30), it is easy to find the 
3 x 3 mixed system that needs to be considered. The Â  to be computed is the 
third component of 

/A(^) 4^) 

We write the equation for the vector on the left-hand side in variational form 
in order to recognize what type of problem it satisfies. We start by considering 
the spaces i?T/*(J?i) and (QQ (J?i), employed for the application of 5^'), and Wi, 
the space of normal components of local vectors on the subdomain boundary, 
previously defined. We then look for Ui £ RT^^fli), pi € QQ^fli), and A, € VF,, 
such that, 

/ {K~^Ui)-Vidx- I V-ViPidx+ {vi-ni)Xids = 0, 

— V -Uiqidx = 0, 

/ (ui • ni)ipi ds = - iJ,iipi ds, 
Janinr JdQinr 

for Vi € RT^.Q{fii), qi € QQ{Qi), and ipi GWi- We note that the last condition 
means that Ui • rii = Hi on df^i D F. We can therefore solve the following 
Dirichlet problem: find Ui G RT^{Qi) andp^ £ Q^{Qi), such that Ui-rii = —/li 
on dfii n r and 

/ (K-^Ui) -Vidx- V-ViPidx = 0, Vi G RT^.Q{ni), 

- I V-UiQidx = 0 , qieQ{f2i), 

with RT^.Q{f}i) denoting the subspace of RT^^iHi) of vectors with vanishing 
normal component on df^i fl F. We note that Ui provides a discrete harmonic 
Darcy extension of the normal component yUj; see Sect. 9.4.2 for a discrete 
Stokes extension. 

We have already noted in Sect. 9.3 that this problem, in general, is not 
solvable on a floating subdomain unless a compatibility condition is satisfled; 
see (9.16). In particular, we need 

/ Hids = 0. 

This property is ensured by the fact that we apply local solvers after applying 
a coarse solver, i.e., to a balanced vector, which ensures that the required 
compatibility condition is satisfied. 



254 9 Preconditioners for Saddle Point Problems 

Once we have a solution of the Dirichlet problem, we choose any Â  satis
fying the first equation of the 3 x 3 mixed system: 

/ Xi{vi • Ui)ds = - {IC~^Ui)-Vidx+ V-ViPidx, Vi & RT\^{fii), 

or, equivalently. 

More details can be found in [227] and [148]. 
The attentive reader, who has followed us this far, should certainly has 

noted some similarities with some other methods presented in this mono
graph. We recall that in the previous section, we reformulated the mixed Darcy 
system by employing Lagrange multipliers in order to enforce continuity of 
the velocity across the elements. The equation considered by the balancing 
Neumann-Neumann of this section is related to these Lagrange multipliers, 
which have the meaning of a pressure on the interface F. A similar procedure 
is employed in Chap. 6 for the FETI methods, where preconditioned equations 
for Lagrange multiphers are considered; cf. Sect. 6.3, in particular. 

In addition, formula (9.30), which gives the local component of the unpre-
conditioned operator 5, resembles that of the FETI operator F in (6.30). In
deed, we have the inverse of a local Neumann matrix, pre- and post-multiplied 
by a matrix related to the enforcement of continuity across the subdomain 
boundaries; cf. the matrix B^2 ™ (9.30). Moreover, the apphcation of the lo
cal components of the preconditioner involves the solution of local Dirichlet 
problems, just as in the Dirichlet preconditioner for FETI methods in formula 
(6.35). 

It can be shown that the unpreconditioned operator S of this section co
incides with the operator Fr in Sect. 9.3.1 for the case of two subdomains 
and if basis functions for the velocity spaces RTi{Qi) and the trace space 
Wr are chosen so that the matrices i?2 become identities. In addition, the 
preconditioned operator of the balancing Neumann-Neumann method of this 
section coincides with the operator Sr Fr of Sect. 9.3.1. 

Far from trying to force any one method to fit into a specific class, we have 
added these remarks in order to point out some connections between seem
ingly different methods that have been proposed over the years and to show 
that they rely on similar important ideas that have permeated domain de
composition research over the years. Balancing Neumann-Neumann and FETI 
methods for the Stokes system have been developed later and some of them 
are presented in Sect. 9.4.2. Generalizations of balancing Neumann-Neumann 
methods for Darcy problems on nonmatching grids have also been proposed in 
[387]. Iterative substructuring methods for Raviart-Thomas approximations 
are presented in Sect. 10.2. 
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9.3.4 Overlapping Methods 

We now briefly consider two overlapping methods that were originally pro
posed by Ewing and Wang [189] and Mathew [345, 346, 347]. The two meth
ods both reduce the Darcy problem to a symmetric, positive definite problem 
for a divergence free vector. They next employ a two level overlapping method 
in a space of functions which are divergence free in a finite element sense. 

We consider the mixed system (9.1) and assume, for simpUcity, that 
OQN = 9, 9D = 0, and fc = 1. We obtain, 

Bu = G. ^^•'^^' 

We recall that u £ V = RT^.Q{f}), the space of Raviart-Thomas vectors 
on the mesh Th with vanishing normal component on the boundary, that 
p £ Q = QQ.Q{fI), the space of piecewise constant functions with vanishing 
mean value on J?, and that a compatibility condition needs to be satisfied; cf. 
(9.16). 

We next consider the coarse mesh TH, which provides a nonoverlapping 
partition into substructures, TH = {f^i, I <i < N}, and we then extend each 
substructure /?»to a larger subregion 0'^, such that dH^ does not cut through 
any fine element. We assume that these new subregions are shape regular and 
that Assumptions 3.1 (small overlap) and 3.2 (finite covering) hold. We also 
set J7o = ^- We refer to Sect. 3.2 for details. 

The first step of the algorithm consists in finding a velocity u* £ V that 
satisfies the second equation of (9.31): 

Bu* = G, 

and writing 
u = u* +w. 

The equation for w € F then becomes 

Aw + B'^p = F-Au* = f, 
Bw = 0 . 

The new velocity is therefore divergence free in the sense that 

w £ Z = kernel{B) = {v £V\ V •v = 0}. 

We therefore have a symmetric, positive definite problem: find w e Z, such 
that 

a{w,v) = f(v), veZ, (9.32) 

with the appropriate right-hand side, and an overlapping preconditioner, as 
in Chap. 3. 
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Step 1. We consider the problem of finding u*. We introduce the Raviart-
Thomas space on the coarse mesh TH, VQ = RT^Q{Q), of vectors with a 
vanishing normal component on dfi, and the space, Qo = QQ.Q{Q) of constant 
pressures on each coarse element with vanishing mean value. Let -Rĝ  : VQ X 
Qo :^V "x Q, be the natural interpolation operator from the subspace. Let 

^Bo 0 ) - ^ \ B 0 ; ^ ' 

be the matrix for the mixed problem on the coarse spaces. We then find that 

^o\_r.TfAoBn~\ (F 
Pl)-^^\B, 0 j ^ V G 

We note that the residual G — BUQ has vanishing mean value on each coarse 
element /?«, since, for qo £ Qo, 

ql{G-Bul)=ql{G-Boul)=Q. 

We can therefore consider local Dirichlet problems. We define the local spaces 
by 

Vi = RTJ'.oi^i) = RT^{Qi) n ifo(div; Qi), Qi = Q^^oi^i), 

where the velocities have vanishing normal component on the subdomain 
boundaries and the pressures have vanishing mean values. We also employ 
the natural interpolation operators Rf : Vi x Qi :-^ V x Q, and the local 
matrices 

- ^ D n I Ri -Bi 0 J ^\B 0 ^ 
We note that these local matrices represent local Dirichlet problems on the 
substructures and may therefore not be invertible. However, the following 
local vectors 

ur\ ^^fAiBj\\(F-Aul 
p*ij ^' \Bi 0 ) ^\G-Bu*o 

are well defined since the residual G — BUQ has a vanishing mean value on /?j 
and the solution u | should have a vanishing normal component along dHi; cf. 
(9.16). It can easily be verified that 

N 

is the desired vector. We note that the Ai, can be replaced by different, simpler 
matrices ioi 1 < i < N, since we only need to provide a velocity u* that 
satisfies the second equation of (9.31). The procedure given here can be found 
in [345, 346]; see [189] for a similar construction. 
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Step 2. We now consider the preconditioning of the positive definite problem 
(9.32). The space Z can be fully characterized using Lemma B.23 in three 
dimensions and the decomposition (B.32) in two dimensions. Two dimensional 
problems are considered in [189]. We have 

Z = curl S, S C H\n), 

with S the space of continuous piecewise linear functions. We can therefore 
look for w = curl ip,%j} ^ S, such that, 

a(curl'!/;,curl(/)) = / (/C~^curl•)/')• curl(/)dx = / ( c u r l ^ ) , (l> Q. S. 
J Q 

The relevant bilinear form becomes the usual grad-grad form arising from the 
Laplacian after a rotation of the axes, and the two-level overlapping precondi-
tioner in Chap. 3 can be employed. Additive and multiplicative methods are 
considered in [189]. Optimal convergence is proven for the case of generous 
overlap. 

The three-dimensional case is more complicated since Z consists of the 
curls of Nedelec finite element functions. In addition, the vector potential 
that provides the velocity w is defined only up to the gradient of a continuous 
function. This approach has been explored in [118]. 

Another approach is employed in [345, 346, 347], where coarse mixed prob
lems and local mixed problems on overlapping subdomains are employed. We 
do not go into details but refer to [346] for the precise algorithm. An analysis 
in two dimensions and for the case of generous overlap can also be found in 
that paper. 

9.4 The Stokes Problem and Almost Incom.pressible 
Elasticity 

Let O c M" be a bounded Lipschitz domain. We recall that the Stokes prob
lem corresponds to the choices t = 0 and that 

i{u,v) = v I Vu - Vv dx, 
In 

b{u,p) = — V -updx, 
JQ 

while almost incompressible elasticity results in a t > 0 and the forms 

o(u, v) =2^ I e{u) : e{v) dx, 
Jo 

b(u,p) = — / V • updx, 
Jn 

^(P,Q) = / PQdx. 
Jn 
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see appendices A.7.2, B.4.1, and B.4.2. In the following, we will refer gener-
ically to these problems as Stokes problems. In our discussion, we restrict 
ourselves to the case of homogeneous Dirichlet conditions, i.e., a zero veloc
ity or displacement u on 5J7- We employ a finite or spectral element space 
V C Hl{fl)'^, consisting of continuous, piecewise polynomial functions, that 
vanish on 5i?, on a given mesh. For the pressure the space Q C L'Q{Q) con
sists of discontinuous polynomial functions with a vanishing mean value in 
Q. There are of course also well-known mixed finite element approximations 
with continuous pressure spaces, such as the Taylor-Hood methods. However, 
the study of domain decomposition methods for such cases appear to intro
duce a number of additional technical difficulties; see, e.g., [284, 119] for some 
methods with continuous pressures. 

We note that the stronger coercivity property (9.7) holds in this case, 
because of the Friedrichs' and Korn's inequalities in Lemmas A.14 and A.39, 
respectively. For this reason, we choose 

\\u\\y = a{u,u) = w^Au. 

Since the bilinear form c(-, •) is the L^-scalar product, we also set 

For this particular case, we have 

tti = /3 = (5 = 1, 

in (9.3), (9.7), and (9.6). We note that spectral bounds for the Schur com
plement S can be found since Lemma 9.1 can be applied. In particular, for 
t = 0, 

7^ q'^Cq < q^Soq < al q'^Cq, qeQ. (9.33) 

We will only consider block preconditioners and iterative substructuring 
algorithms in the following sections. We note that successful overlapping pre
conditioners have also been considered by Gervasio [222], Fischer [203], Kla-
wonn and Pavarino [283, 284, 285], R0nquist [404], Fischer, Miller, and Tufo 
[204], and Pavarino [379] 

9.4.1 Block Preconditioners 

We consider the system (9.1) and look for symmetric, block preconditioners 
of the form 

B={i^). (9.34) 

with A and C positive definite, symmetric matrices. We denote the special 
case with A = A and C = C hj B. Since A is symmetric and B is positive 
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definite, we can employ the CR algorithm and the theory developed in Sect. 
9.2. 

The two strategies presented in Sect. 9.2 give rise to the same conclusion: 
Theorem 9.3 can be applied if A and C are good preconditioners for the 
operators associated with the scalar products in V and Q (or, equivalently, 
for A and C). Here, we instead consider the particular analysis in [282] which 
provides explicit bounds for the condition number in terms of the stability 
constants of the discrete Stokes problem. We also refer to [406, 405, 270, 460, 
418, 461] for alternative analyses and results. 

We assume that there exist strictly positive constants, such that, 

«il|f*llv = aiu^Au < w^Au < a2W^Au = a2||w||v5 u £V, 
(9.35) 

CIIIPIIQ = cip^Cp<p'^Cp < C2P^Cp = calbll^, p€Q. 

The next lemma gives explicit bounds; a proof follows those of Lemmas 1 
and 2 and Theorems 3 and 4 in [282]. 

Theorem 9.9 Let 0 < t < 1. The condition number of the preconditioned 
operator B~^A satisfies 

j _ i ^ . 1/2 + Va2 + 1/4 
K{B-^A) < 

- 1 / 2 + ^ 7 + 1/4' 

with a-2 and 7 the continuity and inf-sup constants of the bilinear form b{-, •). 
In addition, 

K{B-U) < K(B-U) ^ ^ ^ 4 ^ < 1 / 2 + ^ / ^ 2 ^ 1 / 4 (ma^{a2,C2} 
mm{ai , c i | - 1 / 2 + ^ / 7 + 1/4 \mm{ai,Ci} 

Proof We will use the notation 

>^max{L) = max{A : A € o-(L)}, fimaxiL) = max{|A| : A € cr{L)}, 

>^min{L) = min{A : A G a{L)}, UminiL) = min{|A| : A e (T{L)}, 

for a generic matrix L and its spectrum a{L). The spectral radius p{L) satisfies 

p{L) = fJ,max{L) = \\L\\2. 

Step 1. We consider the operator B~^A and show that 

l^maAB-'A) = ^ ^ + Jx^axiC-^/^ So C-1/2) + ( ^ ) 

(9.36) 

M m m ( S - M ) = - ^ ^ + JxminiC-^/^ So C'^l^) + { \^r 
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In order to do so, we employ the matrix 

Setting up the eigenvalue problem for the eigenvalues A and the eigenvectors 
U = {u,p}, we see that the eigenvalues that are different from 1, satisfy 

BB^p = C-i/2 So C-^'^p = (A - l)(t2 + A)p, 

and therefore 

(A - l){f +\)=z, ze a (C- i /2 So C-i /2) . 

Finding A yields (9.36). 

Step 2. Finding the extremal values for 0 < i < 1 then gives 

Mma.(^-M) <\ + A / A „ . . { ( 7 - V 2 SO C-V2) + 1 

(9.37) 

l^min{B-^A) >-\ + y A„i„(C-l/2 So C-^l^) + \ . 

Step 3. We note that the Schur complement So is symmetric and positive 
definite. Upper and lower bounds for its extremal eigenvalues are provided by 
Lemma 9.1 and are given in (9.33) for our particular case. This proves the 
bound for K{B~^A). 

Step 4. In order to prove the second bound, we write 

/*™a.(^-^/'-45-V2) = p ( 5 - l / 2 ^ ^ - l / 2 ) = | |5- l /2^^- l /2 | |2 

<( sn ^ ^ - ^ ^ ( su ^'^^^\ 
~ yoiulxW^BU) yo^ulxW^BU) 

< fimaxiB-^^^AB-^/'^) max{a2,C2}. 

A lower bound can be found in a similar way by noting that, for a matrix L, 
f^min(L) = l/p{L-^). U 

This result can be summarized as follows: in order for the block diago
nal preconditioner to be effective, it is enough that the blocks A and C are 
good preconditioners for A and C. We note that this result is independent 
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of the small parameter t (and therefore holds for t = 0), while it may de
pend on the discretization parameters if the inf-sup constant 7 depends on 
the discretization order, as for certain spectral element approximations. 

Many good preconditioners for A have been developed in the previous 
chapters. For the vector Laplacian, we refer to Chap. 3 for overlapping pre
conditioners, to Chap. 5 for primal iterative substructuring methods, and to 
Chap. 6 for Neumann-Neumann and FETI methods. For the elasticity opera
tor, we refer to Chap. 8, where some overlapping and nonoverlapping methods 
have been presented. Finally for spectral element approximations, we refer to 
Chap. 7. 

For the block C, we note that this operator is spectrally equivalent to a 
mass matrix on a finite or spectral element space consisting of discontinuous 
functions. It is therefore block diagonal, with each block corresponding to 
one element, and it can therefore be inverted at very low cost. In addition, 
we recall that for spectral elements the local mass matrices are diagonal; see 
Chap. 7. 

9.4.2 Iterative Substructuring Methods 

In this section, we will discuss some iterative substructuring methods for 
the Stokes problem. As for symmetric, positive definite problems, they are 
based on a nonoverlapping partition into subdomains or substructures Qi,i = 
1,. ..,N, of the computational domain i?. We will employ the notation and 
assumptions of Sect. 4.2. In particular, we recall that the substructures are 
unions of fine elements for h approximations or consist of one or a few spectral 
elements for spectral element approximations (cf. Sect. 7.4 for the latter case). 
The interface F is the union of the intersections of the subdomain boundaries. 
We refer to Sect. 4.2 for a precise definition of this interface and for additional 
definitions and notations. 

We recall that two simple iterative substructuring preconditioned algo
rithms have been presented in Sect. 9.3.1 for the case of two subdomains, 
namely a Neumann-Neumann and a FETI method. Here we mainly focus on 
the generalization of the former to the case of many subdomains while provid
ing references for some other methods at the end of this subsection. (We note 
that the work that is most similar to the Neumann-Neumann method that we 
will present is the work by Li [314, 315, 316] on FETI-DP algorithms.) 

For the Stokes problem not only are the local Neumann problems singular 
for floating subdomains but additionally the boundary values of the local 
Dirichlet problems should satisfy the zero flux constraints 

/ u • nds = 0. 

We recall that by the divergence theorem, this is a necessary condition for 
a divergence-free extension. After the averaging of the solutions of the local 



262 9 Preconditioners for Saddle Point Problems 

Neumann problems, we cannot expect that this condition will be met. How
ever, we can efTectively drop this constraint for the local Dirichlet problems 
by restricting the pressure spaces to have zero averages. The resulting reduced 
Dirichlet problems are well posed. The pressure component that are piecewise 
constant on the subdomains will instead be part of a coarse component of the 
preconditioner. For this coarse space, we also have to include a sufficiently rich 
velocity space to make this global problem inf-sup stable; naturally, we will 
build our preconditioner only from stable subspace components. We note that 
the solution of the coarse problem and, in particular, its pressure components 
will provide the necessary mechanism of global communication of information 
across the region O. 

We will rely on a partition of the degrees of freedom into those interior to 
the substructures and those on the interface F. The interior degrees of freedom 
consist of local velocities supported on single subdomains and local pressures 
that have vanishing mean values on the substructures. These unknowns can 
then be eliminated in parallel by a step of block Gaussian elimination. A Schur 
complement system is then obtained for the interface F; this will correspond to 
an indefinite, saddle point problem. The ehmination of the pressure variables, 
which are constant on each subdomain, through the solution of a saddle point 
coarse problem, yields a symmetric, positive definite system for the interface 
velocities for which the conjugate gradient method can be employed. 

We note that natural boundary conditions for the Stokes problems have 
been already given in Sect. 9.3.1: 

vWui-n —pni = ri, on 5J?, i = 1,2,. . . , n . (9.38) 

They are derived by using Green's formula. In contrast with the case of Dirich
let boundary conditions, the pressure is now uniquely determined, and the 
pressure space should now be taken to be L?{Q). In this case, as for the 
Laplace operator, each velocity component is determined only up to a con
stant, and the rj must satisfy compatibility conditions. 

Schur Complement Systems. We will now derive a Schur complement 
system; further details and additional formulas can be found in [386]. We 
proceed as in Sect. 4.3 but we note that the notation here is a little heavier 
since we deal with saddle point problems. 

In preparation for the elimination of the interior degrees of freedom, we 
reorder the vector of unknowns as 

( ui\ interior velocities 
PI I interior pressures with zero average in each J?j 
ur interface velocities 

\Po J constant pressures in each J? .̂ 

Then, after using the same permutation, the discrete Stokes system matrix 
can be written as 
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A II 
A-

. An Arr 

Bji (AH 

Bii 0 

0 
An 

0 

Apj 

Bir 
Arr B^ 
Bo 0 J 

see also (9.18) for the case of two subdomains for which constant pressures do 
not need to be considered. 

Eliminating the interior unknowns Ui and pi by static condensation, we 
obtain the saddle point Schur complement system 

gfur 

where 

S = An 

_ I Arr £>o 
Bo 0 

AnArrAj 

B]; 
"^ri-^ii -^n 

An Bjj. 
0 0 

AuBjA-' (Al,0 
BII 0 / \BirO 

(9.39) 

Sr BQ 

Bo 0 

and a similar formula holds for the new right hand side (y 0)^; see [386]. 
We note that this Schur complement S is not the same as the one derived in 
the beginning of this chapter in the context of Uzawa-type algorithms. 

By using a second permutation that reorders the interior velocities and 
pressures subdomain by subdomain, we note that .47/ represents the solution 
of Â  decoupled Stokes problems, one for each subdomain and all uniquely 
solvable, with Dirichlet data given on dQi: 

A7' = ^11 

(^r 
\ 0 

This is the matrix associated with the discrete Stokes extension operator S'H 
described below. 

As for iterative substructuring methods for positive definite problems, the 
matrix S need not be explicitly assembled since only its action on a vector 
is needed in a Krylov iteration. This operation, essentially, only requires the 
action of A'j} on a vector, i.e., the solution of N decoupled Stokes problems. 
In other words, its action can be computed by subassembhng the actions of 
the subdomain Schur complements 5̂ *̂  defined for /?», by 

5(^) = Afr • 

file:///BirO
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Once ( I is known, ( ) can be found by back-substitution: 

uA ^ {An BJA-' ffbA _ (Al, 0 \ fur 
Pi) \Bn 0 J y\0j \BirOj \po 

We note that uj and pi are independent of po-
The substructuring procedure described here is associated with the space 

decomposition 
VxQ = ®g^Vi xQi®VrxQo. 

The interior spaces are defined as 

As for iterative substructuring methods for positive definite problems, the 
interface velocity space is associated with an extension operator from the 
interface F; in addition the coarse pressures are constant in each subdomain. 
We have 

Vr = SniVr) = {v€V\ v\a, = Snivlan,), i = l,2,...,N} , 

Qo = {l ^ Q \ <l\ni = constant, i = 1,2,. . . , iV} . 

Here SH :Vr^V,is the velocity component of the discrete Stokes harmonic 
extension operator that maps an interface velocity ur € Vr '-= V\r onto the 
solution {u,p) of the following homogeneous Stokes problem defined on each 
subdomain separately: find u €V, with u = ur on each dfii, and p £ X)j=i Qi 
such that on i?j 

a(u,v) + b(v,p) = 0 V GVi, 

b{u,q) = 0 qeQi. 

The following comparison of the energy of the discrete Stokes extensions 
SH and the discrete harmonic extensions 'H (see Sect. 4.4) of each velocity 
component can be found in [71] and [223] for finite element discretizations 
and in [128] and [310] for spectral element discretizations. We note that the 
corresponding local bounds for individual subdomains are equally valid and 
that the upper bound has an elementary proof. This lemma allows us to reduce 
part of the proof of our main result to arguments for the scalar elliptic case. 

Lemma 9.10 Let up € Vr, and let 7 be the inf-sup constant of the chosen 
mixed finite element space V x Q. Then, 

cj'^ a(S'Hur,S7iur) < a{'Hur,9iur) < a{SV.ur,S'Hur). 

file:///BirOj
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If we define an interface inner product by 

s(ur,vr) = a(S'H(ur),S'H(vr)) = uJ^Srvr, 

and by bo{ur,po) the restriction of the other bihnear form to the Stokes 
harmonic extensions, the variational formulation of the saddle point Schur 
complement problem (9.39) can be given by (see Pavarino and Widlund [384, 
lemma 7.1]): find up £ Vr and po G Qo such that 

s{ur,vr) + bo{vr,po) = F{vr) vr e Vr, /g ^QN 
bo{ur,qo) = 0 qo &Qo-

Problem (9.40) is equivalent to the following positive definite problem: find 
ur € Vr,B such that 

s(ur,vr) = F(vr) vp € Vr,B , (9-41) 

where Vr,B is the subspace of balanced velocities defined by 

Vr,B = ker BQ = {vr G Vr \ BQVF = 0} 

= {v &V\ v\n^ =S'H{v\Qn^), JQ^.V-U = 0, i = l,...,N}. 

In the following, we will also use the term balanced for the couple Vr,B x Qo-
(We also note that in Pavarino and Widlund [386], this is referred to as the 
benign space.) 

The equivalence of problems (9.40) and (9.41) follows from the fact that 
Vr,B consists of the functions of S7i{V) that satisfy the zero flux constraints 
on the subdomain boundaries. We obtain (9.40) by using Lagrange multipliers 
Po = {po,i)iLi to enforce the constraints given in the definition of the balanced 
subspace. 

A Neumann-Neumann Preconditioner. We will solve the saddle point 
Schur complement problem 

<z)-i%l){z)-& 
by a preconditioned Krylov space method such as GMRES or PCG. The latter 
can be applied to this indefinite problem, because we will start and keep the 
iterates in the positive definite subspace Vr,B of balanced velocities; we note 
that the indefinite bihnear form defined by 5 is a norm on space Vr,B x Qo-

We consider the balancing Neumann-Neumann preconditioner of Pavarino 
and Widlund [386], which is based on the solution of a coarse Stokes problem 
with a few degrees of freedom per subdomain and of local Stokes problems 
with natural and essential boundary conditions on each subdomain. This pre
conditioner is of the same hybrid form that was introduced for symmetric. 
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positive definite problems in Sect. 6.2; see also Sect. 2.5.2. Thus, the coarse 
problem is treated multiphcatively, while the local problems are treated ad-
ditively. The preconditioned operator has the same form as in Sect. 6.2: 

N 

Phyl =QS = Po + (I- P o ) { ^ Pi){I - Po), 
i=l 

where PQ = QHS and Pi = QiS. The matrix form of the preconditioner is 

JV 

Q = PhyiS-^ = QH + {T- QHS) ^ Qi{I - SQH), 
i=l 

where the precise form of the coarse operator QH and local operators Qi is 
given below. We note that Q can be written as a three-step preconditioner; 
see Sect. 2.6. Given a residual vector r the preconditioned vector f = Qr is 
given by 

t •«- QHr, 
N 

8 = 1 

f-^t + Qnir-St). 

We note that the first step can be left out if r is a residual in the range of 
S{I — Po); we can show that Po(/ — Po) = 0. We also note that we have 
returned to the balanced space after each full application of the operator 
Phyl, but that prior to the application of (/ — PQ), we are generally outside 
this space; we can say that the coarse correction restores the balance. While 
Po is a projection on the balanced space, it is not on the larger space; this is 
an explanation why the stability of the coarse solver, expressed in terms of 
its inf-sup constant 70, will enter the bound of the condition number of this 
iterative method; see Theorem 9-11. 

Coarse Solver. Given a residual vector r, the coarse term QHr is the solution 
of a coarse, global Stokes problem with a few velocity degrees of freedom and 
one constant pressure per subdomain 1?̂ : 

QH = RH^O PH, 

where 

i!«=i'f; 
and 
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0̂ = RHSR], = {^l%^° ^ ' Q ' ) - (9.43) 

Four choices for the extension matrix LQ {and therefore for the velocity coarse 
space span(Lo)) are proposed in [386]. Some of the columns of LQ are defined in 
terms of the pseudoinverses 5\ of the Neumann-Neumann counting functions 
associated with each subdomain i?,; see (6.1). We use the function 6\ in all or 
almost all of the subdomains and for each velocity component. The columns 
of Lo can be defined by one of the following four choices: 

0) the functions j | , 
1) the 5\ and the continuous coarse piecewise bi- or tri-linear functions; 
2) the 4 and the continuous coarse piecewise bi- or tri-quadratic functions; 
3) the 5l and the quadratic coarse edge/face bubble functions for the normal 

direction. 

Choice 0) provides a quite minimal coarse velocity space and it turns out not 
to be inf-sup stable; it is included since it corresponds to the standard choice 
for the Laplacian. Choices 1), 2), and 3) are enrichments of 0). The choice 2) 
is uniformly inf-sup stable, i.e., its inf-sup stability constant 70 is independent 
of the number of subdomains. The inf-sup constant of 3) satisfies 

7o '>(7 / ( l + log(if//i)), 

with the constant C independent of the number of subdomains. For spectral 
elements, log(fc) replaces log{H/h); k is the degree of the polynomials which 
define the spectral elements. There is no full theory for the choice 1), but it has 
worked quite well in numerical experiments. We note that 2) is a very natural 
choice because it is based directly on a well-known stable discretization of 
the Stokes problem on the coarse finite or spectral elements. We note that 
1) and 2) might not be easy to adapt to unstructured subdomain meshes 
produced by automatic mesh partitioners. This is one of the reasons why the 
choice 3) is also considered, since it can relatively easily be adapted for general 
unstructured subdomains. For detailed proofs, see Pavarino and Widlund [386, 
Lem. 5.2]. 

In order to avoid linearly dependent SJ functions, and hence a singular 
coarse space problem, we might have to drop all of the components of these 
functions for one subdomain. This depends on the coarse triangulation; on a 
regular hexahedral mesh in three dimensions, we should, e.g., include at most 
3(iV — 1) such functions. 

We refer to [386] for precise formulas for the velocity and pressure compo
nents of the coarse operator QHS. 

Local Solvers. The local operators Qi are only applied to residuals of bal
anced velocity fields in Vr,B and thus the second residual component will 
vanish. It can also be shown that the pressure components obtained in this 
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step of the preconditioner plays no further role when we next apply the opera
tor {/—Po); see [386, Lem. 4.1]. Each local operator Qi is based on the solution 
of a local Stokes problem on J?̂  with natural boundary conditions. This local 
problem is nonsingular for any subdomain J7J the boundary of which inter
sects dn, but it is singular otherwise, i.e., for the floating subdomains; cf. Sect. 
4.2. In the latter case any constant velocity belongs to the null space, while 
the pressure is now uniquely determined because a pressure term is present 
in the Neumann boundary condition; see (9.38). To avoid possible complica
tions with singular problems, we can modify the local Stokes problems on the 
floating subdomains, by adding e times the velocity mass matrix to the local 
stiffness matrix A^^^ or we can make these solutions unique by requiring that 
each velocity component has a zero average over i?^; the right hand sides will 
always be compatible. 

Given a residual vector with a first component rr and a zero second com
ponent, QiV is the weighted solutions of a local Stokes problem on subdomain 
J7j with a natural boundary condition on dfii\dfi: 

«-(^rs)(|T)"'(^'r'2)(?)^ (-, 
see [386] for details. Here Ri are 0,1 restriction matrices mapping rr into rr; 
and £>̂ *) are diagonal matrices representing multiplication by the functions 
Si. This operator has a form quite similar to that of the Neumann-Neumann 
methods for positive definite problems introduced in Sect. 6.2. 

We have the following main result; see [386]. 

Theo rem 9.11 The balancing Neumann-Neumann operator Phyi is symmet
ric, positive definite, with respect to the scalar product defined by S on the 
balanced subspace Vr,B x Qo and 

7o 7 

where 

{ {1+log{H/h))'^ for finite elements, 

(1 -|- log k)^ for spectral elements, 

and 7o and 7 are the inf-sup constants of the coarse problem and the original 
discrete Stokes problem, respectively. The constant C is independent of the 
number of subdomains and degrees of freedom. 

A similar Neumann-Neumann algorithm has been developed for almost 
incompressible hnear elasticity in [230, 229]; see also Subsect. 9.4.3. 

Other iterative substructuring algorithms have also been proposed in the 
literature. Here, we mention Bramble and Pasciak [71] Pasciak [373], Quar-
teroni [390], Marini and Quarteroni [344], Fischer and R0nquist [205], Casarin 
[126, 128], R0nquist [402], Le Tallec and Patra [310], Ainsworth and Sherwin 
[12], Calgaro and Laminie [119], and Li [314, 315, 316]. 



9.4 The Stokes Problem and Almost Incompressible Elasticity 269 

Table 9.1. Constant coefficients, v = 0.499 

A. Fixed number of subdomains: N = 4 x 4 
mesli size local prob. dofs iter. Amax time 
160 X 160 40 X 40 206,082 17 7.21 10.5 
240 X 240 60 x 60 462,722 18 8.30 26.3 
320 X 320 80 x 80 821,762 19 9.12 65.6 
400 X 400 100 X 100 1,283,202 19 9.78 96.2 
480 X 480 120 x 120 1,847,042 19 10.34 188.8 
B.Fixed local prob.: 8C 1 X 80 elements (51,842 dofs) 
mesli size N dofs iter. Aiiiax time 
320 X 320 4 x 4 821,762 19 9.12 65.6 
640 X 640 8 x 8 3,281,922 20 9.33 69.5 
960 X 960 12 X 12 7,380,482 21 9.44 72.1 

1280 X 1280 16 X 16 13,117,442 21 9.48 73.8 
1600 X 1600 20 X 20 20,492,802 21 9.49 75.5 

9.4.3 Computational Results 

This subsection is based on the thesis work of Paulo Goldfeld; cf. [229]. His 
thesis is an extension of the work carried out jointly by Goldfeld, Pavarino, 
and Widlund [230] in which Neumann-Neumann methods and results very 
similar to those of Theorem 9-11 were developed for almost incompressible 
elasticity. We note that the scahng matrices D*̂ '̂  in (9.44) will now depend 
on the values of the Lame parameter //, which can vary dramatically across 
the interface; cf. Sect. 6.2. 

Several parallel C codes, using the MPI-based PETSc library, were devel
oped and extensively tested on Seaborg, an IBM SP RS/6000 of the National 
Energy Research Scientific Computing Center of the US Department of En
ergy's Office of Science, using up to 2000 of its processors, as weU as on other 
distributed computer systems. For information on the PETSc system, see [32]. 
A mixed finite element method, Q2 - discontinuous Pi, is implemented on rect
angular elements for almost incompressible elasticity in two dimensions; cf. 
appendix A.6.2. The region i? is a rectangle partitioned uniformly into N 
substructures. A type 1) coarse space is used. One subdomain was assigned to 
each processor used in the experiments. The iterations were stopped after a 
reduction of 10~^ of the X-̂ —norm of the initial residual. The performance of 
the balancing Neumann-Neumann algorithm is first illustrated for an almost 
incompressible material with a Poisson ratio v = 0-499 in Table 9-1. 

We note that only the estimate of the largest eigenvalue of the precon
ditioned operator is given; the smallest is always very close to 1. The times, 
given in seconds, are the total times of the computation, which also include 
the setup of the problem, the assembling of the matrices, and the factorization 
of the coarse and local matrices- We note that the condition number grows 
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Table 9.2. Heterogeneous Material 

A. Fixed number of subdomains: N = 8 x 8 
mesli size local prob. dofs iter. Amax time 
320 X 320 40 x 40 821,762 20 8.60 12.5 
480 X 480 60 x 60 1,847,042 22 10.08 31.2 
640 X 640 80 x 80 3,281,922 23 11.22 72.3 
800 X 800 100 X 100 5,126,402 23 12.14 115.6 
B . Fixed local prob.: 80 x 80 elements (51,842 dofs) 
mesh size N dofs iter. Amax time 
640 X 640 8 x 8 3,281,922 23 11.22 72.3 
960 X 960 12 X 12 7,380,482 22 10.67 71.7 

1280 X 1280 16 X 16 13,117,442 22 10.78 74.4 
1600 X 1600 20 X 20 20,492,802 22 10.76 76.2 
2560 X 2560 32 x 32 52,449,282 22 10.70 88.7 
3520 X 3520 44 x 44 99,151,362 21 10.64 102.9 

slowly with the dimension of the local problems, as predicted by the theory. 
It also remains almost constant when the number of subdomains increases. 

Experiments for heterogeneous materials were also carried out. In the final 
table, the different subdomains are constructed using Lame parameters of a 
rubber-like material, steel, and aluminium with Poisson ratios of 0.495,0.275, 
and 0.341, respectively. (The rubber-like material is closer to incompressibility 
than natural rubber.) The results again show a very satisfactory performance. 
We also note that the largest example involve almost 10® degrees of freedom. 
We note that while ideally, the execution time would remain constant in the 
B tables, the actual growth is modest for up to almost 2000 subdomains. 



10 

Problems in H(dW ; f2) and H(cur\; i?) 

In this chapter, we analyze some domain decomposition iterative methods for 
the variational problems which involve the bilinear forms 

ad iv(u ,v)= / (a d i v u d i v v + B u - v ) dx, u, V e iJ{div; J?), (10.1) .(u,v) = | c 

Ociiri (u, v) = / (Actirlu • curl v + Bu • \)dx, u, v £ i?(curl ; J?).{10.2) 

n 

We refer to appendix A.6.3 for an introduction to the variational problems 
and appendix A.5 for a discussion of the spaces iJ(div; i?) and iJ(ctirl ; J?). 
The matrices A and B are symmetric uniformly positive definite with entries 
ttij and bij G L'^(n), 1 <i,j <n, and a € L°°(fl) is a scalar-valued positive 
function bounded away from zero. The two bilinear forms are thus symmetric 
and coercive. 

Given a Lipschitz region J? C K", n = 2,3 of unit diameter, we introduce 
a family of conforming and shape-regular triangulations T/̂ , as in appendix 
B.1.1. We consider conforming Raviart-Thomas and Nedelec finite element 
spaces; see appendix B.3. For simplicity, we only consider the case of triangu
lations made of triangles, for n = 2, and of tetrahedra, for n = 3. The results 
in this chapter also hold for meshes consisting of affinely mapped squares or 
cubes. 

Given a polynomial degree fc > 1, the Raviart-Thomas finite element 
spaces i?T^.Q(J7), which are conforming in iJo{div; J7), are introduced in Sect. 
B.3.1, while two- and three-dimensional Nedelec spaces A''D^.Q(J7), which are 
conforming in iJo(curl; i?), are presented in appendices B.3.2 and B.3.3, re
spectively. 

For f G L^{/?)", we consider the two discrete problems: find u £ i?T^.Q{i?) 
such that 

fldiv (u, v) = y f • V dx, V € RT^-oi^), (10.3) 
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and u € ND'^.^^iO) such that 

acuri (u, v) = /" f • V dx, V € ND'^.Q(n); (10.4) 

n 

see Sect. A.6.3. In this chapter, we set a(-, •) = adw (•, •) or a(-, •) = Ocuri (•, •)> 
and V = RT^.Q{n) ovV = ND^.Q{fi), depending on the problem we consider. 
Similarly, A is the stiffness matrix obtained by approximating the bihnear 
form o(-, -) in V- We recall that, for fc = 1, the degrees of freedom in RT^.Q(n) 
are associated with edges and faces of Tft, for n = 2 or n = 3, respectively, and 
those in ND'j^.^^{Q) with edges. 

The development and analysis of domain decomposition preconditioners 
for finite element approximations in iJ(div; J?) and iJ(curl; J?) is fairly re
cent. Compared to the scalar and vector second order problems in iJ^{/?)" in 
Chap. 5, 6, and 8, where the relevant operator has a small null space (consist
ing of constants for the Laplacian, and rigid body modes for linear elasticity), 
here the divergence and curl operators have large null spaces; see appendix 
A.5.4. We recall that the null space of the divergence consists of curls of H^ 
functions or vectors (cf. Lemmas A.25, A.27, and A.28) and that of the the 
curl consists of gradients of H^ functions (cf. Lemmas A.23 and A.25). 

For problems in H^{n)", the kernels are finite dimensional and consist of 
low-frequency functions that are contained in the chosen coarse space; see, 
e.g., the case of overlapping methods in Chap. 3, primal iterative substruc-
turing methods in Chap. 5, Neumann-Neumann and FETI methods in Chap. 
6, and linear elasticity problems in Chap. 8. However, for the divergence and 
curl operators the large null spaces also consist of high-frequency functions 
that cannot be represented by a low-dimensional coarse space. We recall that 
these kernels can also be characterized for Raviart-Thomas and Nedelec finite 
element spaces; see appendix B.3.4 and, in particular, Lemmas B.21 and B.23. 

The size of the null spaces and the fact that only the normal or the tan
gential components of the finite element functions are continuous across the 
interelement boundaries make the analysis much more cumbersome. Indeed, 
while certain algorithms can be implemented in exactly the same way as for 
approximations in H^{fi), their analysis requires more sophisticated tools. 
This is the case for overlapping preconditioners, where standard coarse spaces 
consisting of Raviart-Thomas or Nedelec functions on a coarse mesh can be 
employed and local spaces are formed by selecting degrees of freedom inside 
overlapping subdomains, as in the case of approximations of H^{Q) in Chap. 
3. Similarly, some iterative substructuring methods for two-dimensional prob
lems, which employ standard coarse spaces and local spaces associated with 
single edges, and some Neumann-Neumann methods, which also employ stan
dard coarse spaces, are defined in the same way as their counterparts for 
problems in H^{f}); see Sect. 5.4.1 and in particular Remark 5.4, and Sect. 
6.2. 



10 Problems in ii"(div; Q) and ii"(curl; Q) 273 

However, other methods are not directly applicable to Raviart-Thomas 
and Nedelec approximations. Certain subspaces need to be modified and com
pletely new algorithms often need to be devised. This is the case for certain 
balancing Neumann-Neumann and FETI methods; cf. Chap. 6. In addition, 
many important problems remain open, as is the case of iterative substruc-
turing methods for Nedelec approximations in three dimensions. 

For Raviart-Thomas approximations, similar methods can be developed for 
two and three dimensions and the analysis is also quite similar. In addition, 
since vectors in H{cvLrl; H) and Nedelec spaces in two dimensions can be 
obtained from those in iJ(div; H) and Raviart-Thomas spaces, respectively, 
by a rotation of 90 degrees (cf. Lemma A.20 and appendix B.3.2), algorithms 
for two-dimensional Raviart-Thomas approximations can also be defined and 
analyzed for Nedelec approximations. This will become clear as we proceed 
with our presentation. 

To our knowledge, the first studies on domain decomposition precondition-
ers for Raviart-Thomas approximations of the bilinear form (10.1) are due to 
Arnold, Falk, and Winther in [21], which was followed by [22] and [23], and by 
work by Hiptmair [259], which was continued in [261, 260]. In [21], two-level 
overlapping and certain multilevel methods are proposed and analyzed for 
Raviart-Thomas approximations in two dimensions. In [259, 261], multilevel 
preconditioners are studied in three dimensions. This pioneering work intro
duced the fundamental idea that stable decompositions of Raviart-Thomas 
functions should treat the components in the kernel of the divergence oper
ator and those in its orthogonal complement separately. Multilevel precondi
tioners for Nedelec approximations in three dimensions were then considered 
in [260, 23]. Overlapping methods for three-dimensional Nedelec approxima
tions were specifically studied in [439] and a unified framework for iJ(div; H) 
and iT(curl;J?) was later given in [262]. The work mentioned above, then 
paved the way to the additional results on iterative substructuring methods, 
for which we refer to section 10.2 and the references therein. 

We also mention the work of Alonso and Valli which concerns certain 
domain decomposition methods for various types of three-dimensional elec
tromagnetic problems; see, e.g., [16, 17] and the references therein. Among 
multilevel methods, we further mention [249, 395]. Overlapping methods have 
also been considered for spectral element approximations in [257, 258]. Two-
level and multilevel preconditioners have also been applied to and studied 
for time-harmonic electromagnetic fields: in this case an indefinite problem is 
solved; see Chap. 11. We mention the two-level method in [232] for h approxi
mations, which extends the theory for scalar problems developed in Chap. 11, 
and that in [371] for hp approximations in two dimensions, which appears to 
be robust also for certain anisotropic meshes. 

Some earlier results on mixed approximations of scalar difî usion problems 
deserve a special mention. The Laplace problem for a pressure p can be refor
mulated in mixed form by introducing the fiux u = —gradp as an additional 
unknown; see appendices A.7.2 and B.4. With p £ L^(J?) and u G H{div; J?), 
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finite element spaces consisting of discontinuous functions for p and Raviart-
Thomas spaces for u can then be employed. An equation for p can be found by 
eliminating u, thus giving a nonconforming approximation for the Laplacian. 
Some overlapping and nonoverlapping domain decomposition preconditioners 
have been proposed for these types of approximations; see chapter 9-

10.1 Overlapping Methods 

In this section, we study some two-level overlapping methods for three-
dimensional problems in H{div; J?) and iJ{curl; J?). The algorithms are de
fined and can be analyzed in exactly the same way for two-dimensional prob
lems. We follow the analysis in [439] for if (curl; J?) in three dimensions and 
then adapt it to the case of H{div; J?). We recall that two-dimensional prob
lems in iT(div; i?) were originally studied in [21] and that a common frame
work was given in [262]; see Sect. 10.1.3 for additional comments. 

We only consider the case of constant coefficients: 

«div (u, v) = ?7i / div udiv v dx + ri2 / u • v dx, (10.5) 

o n 

flcuri (u, v) = ?7i / curlu • curl V dx + r}2 / u • v dx, (10.6) 

with ?yi > 0 and r]2 > 0. In the more general case, our bounds can be expected 
to depend on the maximum and minimum of a and of the eigenvalues of B in 
(10.1), and on the maximum and minimum eigenvalues of A and B in (10.2). 

We assume that the domain H is convex; we will indeed need to use the 
regularity result of Lemma A.54. Here, we consider less general partitions 
than those in Sect. 3.2 and assume that our overlapping partitions arises from 
a coarse mesh. More precisely, we introduce a shape-regular, quasi-uniform 
coarse mesh 7H on the domain J?, with H the maximum of the diameters of 
its elements- In contrast to Sect. 3.3, we now assume that the fine mesh % is 
a refinement of TH-

ThCTH. 

The local overlapping subregions J7̂  are constructed from the elements of the 
coarse mesh TH by extending the substructures J?, to larger regions in such a 
way that df^l does not cut through any fine element. We assume that these 
new subregions are shape-regular and that Assumptions 3.1 (small overlap) 
and 3.2 (finite covering) hold. We also set J?o = ^^ 

We summarize our geometric assumptions: 

Assumption 10.1 The domain Q is a convex polyhedron and the coarse 
mesh is quasi uniform. The overlapping partition consists of shape-regular 
subdomains and satisfies Assumptions 3.1 and 3.2, with overlap 5 and Nc 
colors. 
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As in Chap. 3, overlapping preconditioners are built from a coarse solver 
and local solvers associated with the overlapping partition into subdomains. 
Equivalently, they are given in terms of a coarse space Vo and local spaces Vi, 
i = 1 , . . . , iV, and solvers on these subspaces. Here, we define Vo as the lowest 
order Raviart-Thomas or Nedelec space built on the coarse triangulation TH-

Vo=RT^o(^) or Fo = iVZ?f[o{^)-

Since %, CTH,VO is a, subspace of V, and 

RT-.VO-^ V, 

is the natural interpolation operator from the coarse to the fine mesh. 
Local spaces are associated with single subdomains; they are defined as 

fine Raviart-Thomas or Nedelec spaces on individual subdomains and con
sist of local functions with vanishing normal or tangential component on the 
boundary of the subdomain: 

Vi = RTt,o{^i) or Vi=NDlom, i = l,...,N. 

The extension operators 
Rj :Vi-^V, 

are defined as the extensions by zero to the rest of H. We note that, as for 
nodal finite elements in section 3.2, the restriction Ri consists of zeros and ones 
and simply extracts the degrees of freedom inside J? .̂ We have V = J2i RfVi] 
cf. Lemma 10.9. 

We select exact solvers for the coarse and local problems. Following the 
notation of Sect. 2.2, we define, e.g., for iJ(div; J?) 

aj(uj,v,) =T}i diviijdivvj dx + ??2 / Uj - v, dx, Uj, ViEVi, 0<i<N. 

Q'. n'. 

Analogous definitions hold for iJ{curl; J?). 
If {Ai} are the matrices corresponding to the local bilinear forms, a two-

level additive Schwarz method gives rise to preconditioned operators of the 
form: 

N 

Pa, = All A, Kl = i^A^'ih + E Rf^T'Ri-

We stress the fact that for Raviart-Thomas and Nedelec approximations 
two-level overlapping methods can be implemented in exactly the same way 
as in the case of nodal elements, in terms of local and coarse solvers and re
striction and extension operators. The analysis employs the abstract Schwarz 
theory of chapter 2 but is more involved, as already noted. Multiplicative and 
hybrid methods can also be considered and analyzed, and inexact solvers can 
also be considered; see Chap. 2 for more details. 

We have the following result. 
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Theorem 10.2 Let k >1. If exact solvers are employed on all the subspaces, 

then the condition number of the additive Schwarz operators for Raviart-

Thomas and Nedelec approximations satisfy 

Here, C may depend on k, the number of colors of the partition N^, or the 
shape-regularity constants of the coarse and the fine meshes, hut is independent 
of h, H, S, and the coefficients rji and rj2 • 

We note that here we obtain a quadratic growths in H/d, as opposed to the 
case of approximations in H^ {Q). This bound does not appear to be sharp; see 
Sect. 10.1.3. The largest eigenvalue of Pad is bounded from above by {N^ +1). 
This can be proven by using Assumptions 2.4, 2.3, and 3.2, and Lemma 2.10. 
We refer to Sect. 3.6 for additional comments. 

According to Lemma 2.5, we need to find a stable decomposition in order to 
prove a bound for the smallest eigenvalue. This is done first for i l ( cu r l ; /?) 
and then for iJ(div; Q) in the following subsections, after providing some 
technical tools. 

10.1.1 Problems in ^(c i i r l ; Q) 

Technical Tools 

We recall that the space HQ{CWC\. ; J?) has the following decomposition, which 
is orthogonal both in L^(J?) and iZ"{curl; O): 

Fo(curl ; /?) = gradiJoH^) ® H^{cMr\;Q), (10.7) 

with 
iJo-^(curl; J?) = HoicMrl; i?) n ii"(divo; O); 

see Remark A.26 in appendix A.5.4. 
We recall that Nedelec finite element spaces also have discrete Helmholtz 

decompositions. Following (B.29), we set 

S = V^^ifi), V^ = ND'^.l^in), 

and obtain the orthogonal decomposition 

7 = g r a d S ' © F ^ - (10.8) 

We note that while gradS* C grading(i?), in general V^ <f. iTQ^(curl;/?), 
and that both decompositions (10.7) and (10.8) are also orthogonal with re
spect to the bilinear form a(-, -). 

We summarize the properties of the orthogonal complements in the fol
lowing lemma; see Lemma A.54 and inequalities (A.20) and (B.31). 
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Lemma 10.3 There exists a constant C, depending only on Q, such that 

l|u||i,2(^)n < C||curlu||x,2(fi)n, M ^ H^{cMvl; Q) \J V^. 

In addition, if Q is convex, the space iJQ^(ctirl; J?) is continuously embedded 
inH^in)": 

\Mm(n)^ < C{l|u||i2(^)« + ||curlu|||2(f2)„) < C||curlu| |i2(^)„, 

/or ue i fgL(cur l ; J?). 

In our analysis, we will find stable decompositions of the two terms cor
responding to the two subspaces in (10.8). In order to do so, we need some 
additional projection operators and spaces. Following Hiptmair [259, 260], we 
first define a finite dimensional space of more regular functions as follows: let 

e^ : Fo(cur l ; il) —^ Fo-^(curl; H), 

be the orthogonal projection onto iJQ^(ctirl; J?). In particular, 0-^u is defined 
by 

0-^u := u — grad q, 

where q £ HQ (i?) satisfies 

(grad q, gradj?) 1,2(̂ )„ = (u, gradp)i2(^)„, p € iJo (/?). 

It is readily seen that 0-'- preserves the curl and is an orthogonal projection 
in L^(J?)" as well. We now define 

The space F+ is finite dimensional, but is not a finite element space. However, 
the curls of these vectors are finite element functions. In the following, we need 
to interpolate vectors in F+ . Error estimates can be found for these particular 
vectors. 

Lemma 10.4 Let Th be a shape-regular triangulation and let u G if ^(/?)"•, 
such that 

curlu,^ e Pfc+i(if)", KeTh. 

Then, the following estimate holds for fc > 1 and K eTu: 

W^ - ^NDU'^WL^K)^ <ChK\u\H^K)'-, (10.9) 

with a constant C independent o /u and h. 

Proof We follow [23]; see also [262, Lemma 4.3] for a similar proof. We 
first assume that K is the reference tetrahedron. Since ct t r lu £ Pfc+i(is')", 
it also belongs to U'{KY, for p > 1, and thus Lemma B.19 can be applied. 
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Using the triangle inequality and the equivalence of the L^- and i*^-norms 
on the finite dimensional space Fk+iiK)", we find 

The norm on the right hand side can be replaced by a seminorm using a quo
tient space argument. A scahng argument which uses the appropriate trans
formation for vector functions (cf. [359]) then proves the error bound for a 
general element K. D 

We next define a projection P'* onto the semicontinuous space F+ by 

P'' : iJo(ciirl;J7) —)• F+ , 

{cur l{P ' 'u-u) ,cur lv)^2^^^„ = 0 , v € 7+-

Lemma 10.3 ensures that the operator P'^ is well defined. 

Remark 10.5. It can easily be checked that whenever P^ is apphed to a vector 
u-*- e y-*", it coincides with 0^. In this case, we have 

curl(P' 'u-^) = ctirl(6»^u^) = c u r l u ^ . 

The following lemma holds; see [262, Lemma 4.4]. 

Lemma 10.6 Let Q be convex. Then, the operator P^ satisfies the following 
error estimate 

| |u^ - P V I U = ^ ( I ? ) » < Ch\\cvir\ui\\mar, ui e V^, (10.10) 

with C independent of h and û J-

Proof. A proof can be found in [262]. Here, we give a direct argument, 
similar to that of [262, Lemma 4.3] and originally proposed in [439, Lemma 
3.3]. Let u^ e V^. Because of Remark 10.5, cur l{u^ — P'*u^) = 0, and, 
since the boundary of i7 is simply connected, Lemma A.25 ensures that 

for a g 6 H(j(n). Using interpolation into the Nedelec space and (B.23) in 
Lemma B.20 yields 

= ^ ^ n j g r a d g ) = gradg?,, 

with qh = Ijiq € S. We can then write 

= K - P''<,KD,P''< - P'Omnr 
< \\ni - P'^uiWmn)'^ | | P V - ^ W - P V I U ^ W » , 
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where, for the second equality, we have used the fact that, because of (10.11), 
both u^ and P'^uj^ are orthogonal to u^ — U^jy^P'^uj^ = gradqh- We then 
obtain 

\\ui - P'^uiWmnr < \\P''vLi-nU,P''vii\\LHnr- (10-12) 

It is then enough to bound the right hand side of (10.12). This can be done 
by using Lemma 10.4: 

The bounds and the regularity result in Lemma 10.3 finally give 

| | P V - ^ A r i ) . ^ ' ' < I U ^ ( ^ ) " < C / i | | cu r l (P^O |U . (« ) . 

= C/i||curlu^||i2(fi)«. 

D 
We end this section by defining the operator 

g^ : L\nr -^ Vo, 

as the L^ projection onto the coarse space VQ. The following error estimates 
follow directly from those in Lemma 4.14 for scalar functions. 

Lemma 10.7 LetTn be quasi uniform. Then, the following inequalities hold 

||curl(Q-^u)||x,2(^)„ <C|u|jji(i2)«, 

| |div((5^u)| |i2(^) < C|u|jfi(i?)», 

l | u - ( 5 u\\L^{n)^ <CH\u\ffi{n)'^, 

with constants independent ofu andH. 

As for overlapping methods for approximations in H^, local components of 
a stable splitting are found by employing the continuous, piecewise linear par
tition of unity functions for the overlapping partition constructed in Lemma 
3.4. We have the following lemma; cf. Lemmas 3.9 and 4.31 for analogous 
results. 

Lemma 10.8 Let u e V and let 0 be a continuous, piecewise linear, scalar 
function on Q. Then, the interpolated vector 11%JJ^{9VL) belongs to V and, for 
K ETh, the following inequalities hold, 

\\KDA(^^)\\LHKr<c\\9u\\mKr, (10.13) 
| |curl(i7^^^(0u))||i2(^)„ < C | |curl(0u)||i2(^)„, (10.14) 

with constants C independent ofu, 9 and h. 
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Proof. We recall that the moments that define the interpolant -/Tjvi?j, ^' 
volve integrals of the tangential components over edges and faces, as well as 
moments of u computed over each tetrahedron in %,; see appendix B.3.3. 

The vector u has continuous tangential component across the edges and 
faces of the tetrahedra; since 9 belongs to C°(J7), the vector 9u also has a 
continuous tangential component and the moments that define n%Dk ^^ ^^^^ 
well defined and provide a Nedelec vector in V. 

Let us now consider (10.13). The function ^u belongs to H^{K)'^ and its 
curl to Pfc+i(ir)". Lemma 10.4 can then be appUed: 

< IIHIi.2(iir)« + Chk\9u\Hi(^K)- < C||6'u||x,2(^)„, 

where, for the last inequality, we have used an elementary inverse inequality 
for polynomials in Pfc+i; see Lemma B.27. 

Let us next consider inequality 10.14. Using the commuting property 
(B.25) in Lemma B.20, we find 

The proof can also be carried out, using similar arguments, for the Raviart-
Thomas interpolant n^Tk ^^^ ^^^ vector curl(0u). D 

A Stable Decomposition 

We are now ready to prove the existence of a stable decomposition in V-

Lemma 10.9 There exists a constant C, independent of h, H, 5, and the 
coefficients rn and ri2, such that, for ueV, there exists a decomposition 

N 

i=0 

that satisfies 

^ a i ( u i , U i ) < C I 1 + f y j Ja(u,u). 

Proof Equation (10.8) ensures that u has the following decomposition 

u = grad^ + w-^, (10.15) 

where q E. S and w^ € V-^. We decompose grad^ and w^ separately. 
We first consider the gradient term. Using the result for continuous finite 

element spaces conforming in H^ifi) given in the proof of Lemma 3.12, we 
can find a decomposition [qi] d S of q, such that 
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N N 

i=0 i=0 

H 

= C {l + — \ a{gradq,gradq) . 

We then consider w^ £ V-^. We will find a nonconforming approximation 
of w-'-, as described in [262], by first projecting onto tfie semicontinuous space 
F"*", and tfien onto tfie coarse space VQ, using the Li^ projection Q^. We will 
next divide the remainder into a sum of functions supported on the individual 
subdomains {i?^}. 

The first step is performed in the following way: 
consider the splitting 

w-^ = Wo + V, (10.17) 

where 

wo := Q" {Ph^^) e Fo, (10.18) 

V := w — Wo € V. 

We note that P/iW-*- belongs to iJo^ (curl; i?) and thus to H^{Q)'^ because 
of Lemma 10.3. We then decompose v as a sum of terms in the local spaces 
{Vi}f-i. With {9i}l-i, the piecewise linear partition of unity relative to the 
covering {Q'^}^l constructed in Lemma 3.4, we define 

m~n%j^^{eiw)eVi, i = i,...,N. (10.19) 

The function w^ is thus decomposed as w^ = X)i=o ^J'^i-
We first consider the component in the coarse space VQ: 

for its curl, we can employ Lemmas 10.7 and 10.3, and the definition of the 
projection Pu, and write 

||curlwo||i2(^)„ < C|PftW^|jji(^)„ < C||curlP/jW^||i2(^)„ 

= C||curlw+||i2(i2)n. 

Using the definition of Q^ and 0, Lemma 10.7, and Remark 10.5, we next 
find 

l | w o | U 2 ( i ^ ) „ < | |P / iW^ | | j ; , 2 ( f^ )n = | | 6 » ^ W ^ | | i 2 ( f ^ ) n < 11W"^ | |j;,2(i^)n . ( 1 0 . 2 1 ) 

For the terms Wj, we employ (10.14), and write 
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||curlwi|||2(j^/)n 

<C| |cur l{0,v) | | i , (^ , )„ 

<C (ll + ||^,curlv||i.(^,)„) 

< C (||grad6»i|||,,(^,)„||v|||2(j^/)„ + Pi\\loo(^n'i,\\'^^^^\\h(nr)n) 

where we have used Lemma 3.4 and equation (3.7) for the last inequality. 
Summing over the subdomains and using the finite covering property in 

Assumption 10.1, we find 

N 

J2 l|curlwi|||2(^,)„ < C (^-2 ||v|||2(«)„ + ||curlv|||2(fi)„) . (10.22) 

The first term on the right hand side of (10.22) can be bounded, using 
Lemmas 10.6 and 10.7. We have 

l|v||i.(„)„ < 2||w^ - P,.w^||i.(^)„ + 2||P^w^ - Q^P,.w^| |i .(^)„ 

< C (h' ||curlw^||2,^^^„ + i f2 ||curlPftW^||2,^^^„) (10.23) 

The second term can be bounded using (10.20), as 

| |curlv|| |2(^)„ < 2 (||curlw-L||2,^^^„ + ||curlwo|||2(j^)„) 

Combining (10.22), (10.23), and (10.24) yields 

f2 | |curlwi| | i .(^)„ <c ll+(^j-'^ j | |cur lw^| | i . (^)„ . (10.25) 

We then find bounds for the L^.j^orms of the local terms. Lemma 10.8, 
the finite covering property, and (10.21) give 

N N 

i=l ' i=l 

A , o (10-26) 

i=l 
< C-dlw^m.^^^^ + | |wo | | i 2 (^)„ ) < C| |W^| |2,^^^„. 

Finally, by employing (10.20), (10.21), (10.25), and (10.26), and the equiv
alence of the graph and the energy norm, we obtain 

(10.24) 
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f^ai(wi,Wi) < C ( l + ( f ) ) a ( w ^ , w ^ ) . (10.27) 

The proof is concluded by defining 

Uj := gradgj + Wj C Fj, i = 0,...,N, 

using the bounds for the two components in (10.16) and (10.27), and noting 
that the decomposition (10.15) is also orthogonal with respect to a(-, -). D 

10.1.2 P rob lems in H{Aiw',f2) 

The technical tools in Sect. 10.1.1 and the proof of Lemma 10.9 rely on a 
few basic properties: a Helmholtz decomposition of the continuous and finite 
element spaces, a regularity result for vectors with certain vanishing traces on 
the boundary (see Lemmas 10.3 and A.54), and estimates for vectors in certain 
orthogonal complements (see Lemma 10.3). All these tools are also available 
for vector functions in ii"(div;/?) and RT^{n) and a similar stable decom
position can be found in this case. Indeed, this was the approach employed 
in [262], where a common framework was given for the analysis of certain 
two-level overlapping and multilevel preconditioners for H'^{Q), iJ(div;J?), 
and i J (cur l ; J?). Speaking informally, if we replace the ' cu r l ' with the 'div' 
operator and ' g r ad ' with ' cur l ' , the same results and proofs as in the pre
vious subsection hold verbatim. Here, we only review the technical tools for 
iT(div; i?) and briefly sketch the proof of Lemma 10.9 for Raviart-Thomas 
approximations in three dimensions. The result collected in this section can 
be found in appendix A.5 for the continuous spaces, and in appendix B.3 for 
the discrete ones. 

The space i/"o(div; i?) has the following orthogonal decomposition: 

(10.28) 
ifo(div; J7) = curliJo(ctirl ; Q) © H^{diy; Q) 

= curl iJo^ (curl; n) 0 H^{<iiv; H), 

with 
i?o"^(div; n) = iJo(div; J?) n ii"(curlo; J7); 

see Lemma A.27 and Remark A.30. In addition, Raviart-Thomas finite ele
ment spaces also have a discrete Helmholtz decomposition. Following (B.33), 
we set 

and obtain the orthogonal decomposition 

y = c u r l S ' © y ^ . (10.29) 

We note that 
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curlND'^l^in) = curliV£)^.o(/?), 
cur lHQ- (cur l ; J?) = ciurlHQ(curl; i?). 

For a given w G curli^Q^(curl; J?), there is a unique u £ iJQ^(curl; i?), such 
that w = cur lu ; an analogous result holds for w 6 curl NDj^l^ (i?). We 
recall, in addition, that 

||u||i,2(^)„ <C| | cur lu | | i2 (^ )„ , u€iJo-^(curl;/?)US'. (10.30) 

Both decompositions (10.28) and (10.29) are also orthogonal with respect 
to the bilinear form a{-, •). We summarize the properties of these orthogonal 
complements in the following lemma. 

Lemma 10.10 There exists a constant C, depending only on Q, such that 

I|u||i2(|?)„ < C||divu| |i2(^), ueiJ5^(div; i?) U V"-̂ . 

In addition, if Q is convex, the space iJo^(div;i?) is continuously embedded 
inH^iOY. 

As for the analysis in iJ(curl ;J?) , we can find a space of more regular 
functions by defining the orthogonal projection 

e^ : i?o(div; J?) -^ H^(div; /?). 

Here, 0^u is defined by 

0-^u := u — ctirlw, 

where w 6 JIg^(curl; J7) satisfies 

(ciu-lw,curlv)i2(^)„ = (u,curlv)i2(f2)„, v G H^{curl;f2). 

We note that the solution w is uniquely defined because of (10.30). 
It is readily seen that 0-^ preserves the divergence and is an orthogonal 

projection in i^( i?)" as well. We now define 

V+ := 0^{V^) C ifo^(div; /?). 

The space F+ is finite dimensional, but is not a finite element space. The 
divergence of these functions however are finite element functions. 

We define the projection P ' ' onto the semicontinuous space F+ by 

P'' : i Jo (d iv ; r? )—^y+, 

(d iv (P ' ' u -u ) ,d ivv)^ ,^^^ = 0 , v e F + . 

Lemma 10.10 ensures that the operator P ' ' is well defined. It can also be 
checked that whenever P'* is applied to a vector u-*- € V̂ "*-, it coincides with 
0-'-. In this case, we have 

div (P'^u-L) = div {0^u^) = divu-L. 

The following two lemmas can be proven in a similar way as their coun
terparts 10.4 and 10.6. 
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Lemma 10.11 Let Th be a shape-regular triangulafAon and let u e iJ^(J?)", 
such that 

divu|^eP,+i(ir), KeTh. 

Then, the following estimate holds for k >1 and K £Th: 

l |u-ilAT;.u||i2(^)„ < C hK\u\Hi(K)^ , (10.31) 

with a constant C independent ofu and h. 

Lemma 10.12 Let i7 be convex. Then, the operator P'^ satisfies the following 
error estimate 

| | u ^ - P V l l L ^ ( ^ ) ' ' < C / i | | d i v u ^ | U 2 ( ^ ) , u ^ € F ^ , (10.32) 

with C independent of h and u^ 

We finally need a result for the interpolation of the product of two finite 
element functions. The proof can be carried out as for Lemma 10.8. 

Lemma 10.13 Let u€V and let 0 be a continuous, piecewise linear, scalar 
function on fi. Then, the interpolated vector II^jr^{9u) belongs to V and, for 
K eTh, the following inequalities hold, 

\\n^n(^u)\\L^K)^<c\\du\\L^^Kr, (10.33) 
\\div{nkTA^u))\\LHK) < C ||div(^u)||i2(^), (10.34) 

with constants C independent ofu, 9 and h. 

We are finally able to prove the existence of a stable decomposition in V. 
Lemma 10.9 holds verbatim for the definitions and notations given in this 
subsection. 

Proof. Here we only sketch the proof and only point out the parts that 
are different from the i J (cur l ; J?) case. We consider the discrete Helmholtz 
decomposition (10.29) and find 

u = ctirlw-L+z-L, (10-35) 

where w^ G S and z-"- € V-^, and decompose curlw-"- and z^ separately. 
Since w^ is a vector in the Nedelec space, we can use the decomposition 
already proven for iJ(ciirl; J?) in Lemma 10.9. More precisely, w-'- belongs 
to the orthogonal complement NDf}.^^ (i?) and it can thus be decomposed 
according to (10.17) and (10.19). Using the bounds in (10.20) and (10.25), we 
find 

JV N 

^ a j ( c u r l w j , c u r l w j ) = ??2 ̂  ||curlw,||^2(^/)„ 
i=0 i=0 
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<C\l+(^) iTTallcurlw -L||2 

a(curl w^ , curl w^). 

The component z^ in the orthogonal complement can be decomposed as in 
Lemma 10.9: 

N 

^^ = Y,Rj^i, (10.36) 

with 

zo := Q^ (PftZ^) € Vo, (10.37) 

V := z^ - zo e y, 

Z i~^AT. (^^v)eT / i , i = i , . . . ,Ar. 

Bounds for the single terms can be found in exactly the same way as before 
and the stable decomposition for u is 

Uj := curlwj + Zj C Vi, i = 0,...,N. 

10.1.3 Final Remarks on Overlapping Methods and Numerical 
Results 

For the proof of Theorem 10.2, we required two quite restrictive assumptions: 
the domain i? needs to be convex, to enable us to use the regularity result of 
Lemma A.54, and the coarse mesh is required to be quasi uniform, in order 
to use the bounds for the L^-projection in Lemma 10.7. For approximations 
in H^(n), more general meshes can be considered since the X^-projection can 
be replaced by a more local operator such as the quasi-interpolant in Lemma 
3.6. 

Theorem 10.2 provides a quadratic bound in H/6, as opposed to the case 
of problems in H^{Q), for which a linear bound is obtained. Indeed, a quan
titative result as in Lemma 3.10 is missing for vectors in iJ(div; J?) and 
^(ciu'l; J7) and a linear bound has not been found. Numerical results in 
[439] for three-dimensional Nedelec approximations are consistent with a lin
ear bound, suggesting that the bound in Theorem 10.2 is not sharp; see also 
the numerical results below. 

The proof that we have given of Theorem 10.2 is basically that in [439] 
for Nedelec approximations in three dimensions. In [262], a similar analysis 
was given which employs a different stable decomposition. More precisely, the 
I/-^-projection in the definition of the coarse component in (10.18) and (10.18) 
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Table 10.1. Two-level additive Schwarz algorithm. Estimated condition number 
and number of CG iterations for a residual norm reduction of 10~^ (in parentheses), 
versus n, number of subdomains and Hj5. 

H/S 
n ^5u6 8 I 1 : I 1.33 
8 2« - 8.94 (19) 8.98 (20) 9.05 (15) 
16 2^ 14.05 (21) 8.49 (19) -
16 43 - 8.61 (19) 9.86 (21) 27. 54 (28) 
16 8« - 10.5S 1(19) -
24 33 13.86 (21) 8.45 (19) -
24 6^ - 8.43 (19) 9.05 (19) 21.93 (27) 
24 12^ - 9.39 (18) -
32 43 13.02 (20) 8.30 (18) -
32 8^ - 8.37 (19) 8.78 (19) 21.39 (25) 
40 5^ 13.12 (20) 8.29 (18) -
40 10^ - 8.29 (18) 8.68 (19) 22.28 (25) 
48 6« 12.91 (20) 8.36 (18) -
48 12^ - 8.32 (18) 8.64 (18) 22.93 (24) 

is replaced by the orthogonal projection onto the complements ND^.'Q'{Q) 

and RT^.^ (J7), respectively. In [21], solutions of suitable mixed problems in 
the coarse space Vb are employed for the coarse component. It can be proven 
that the decompositions considered in [21] and in [262] are the same, even 
though they are written in different ways. However, none of the methods in 
[439] or in [21, 262] seem to allow us to remove the restrictions in Theorem 
10.2 mentioned above. 

We finally present some numerical results for the two-level overlapping 
preconditioner of Sect. 10.1 and 10.1.1. They were originally given in [439]. 
We consider the Dirichlet problem (10.4) in the unit cube fi and with uniform 
triangulations %, and TH- The fine triangulation Th consists of n^ cubical 
elements, with h = 1/n. The number of subdomains Hsub equals the number 
of coarse elements in Tff. Low order edge elements are chosen, k = 1, and 
7? i=% = i;cf. (10-6). 

Table 10.1 shows the estimated condition number and the number of conju
gate gradient iterations to obtain an error reduction of 10~^ of the residual, as 
functions of the problem size, the number of subregions, and the relative over
lap. A behavior similar to that of the overlapping preconditioners for scalar 
problems is observed. The condition number initially decreases with H/S. For 
larger values of the relative overlap, the number of colors iV^ increases, and, 
consequently, the condition number increases, in accordance with our analy
sis. In addition, for a fixed value of the relative overlap, the condition number 
appears to be bounded independently of the number of subregions. 
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Inverse of estimated min eign. Zero and first order fit {-) and quadratic fit {—) 

£1.6-

1 : * J J , ^ * Tt * 

5 6 7 
H/delta 

Fig. 10.1. Two-level method. Inverse of the minimum eigenvalue (asterisk), least-
square zero (solid line), first (solid line), and second order (dashed line) fitting 
polynomials, versus H/S. Case for n equal to 16, 18, and 20. 

Fig. 10.1 shows the inverse of the smallest eigenvalue and some least-square 
fitting polynomials, versus H/S. We observe that the inverse of the smallest 
eigenvalue appears to grow hnearly for H/d > 4 and is practically constant 
for II/6 < 4. This suggests that the leading term of its asymptotic expansion 
is linear in H/S and that the bound given in Theorem 10.2 is probably not 
sharp. 

Additional results in [439] confirm that condition numbers are independent 
of ?7i and r?2-

10.2 Iterative Substructuring Methods 

In this section, we present some iterative substructuring methods for problem 
(10.3), involving the lowest order Raviart-Thomas spaces RT/}{Q) = RT^.Q{Q) 

in three dimensions and homogeneous Dirichlet conditions on dQ. The meth
ods presented here are also valid for two-dimensional problems in iJ(div; i?) 
and H{c^xr\•, Q); cf. Sect. 10.2.4. Throughout this section, we drop the sub
scripts that refer to the polynomial order in our notations, since we only con
sider lower-order approximation spaces. We only consider the case of meshes 
consisting of affinely mapped cubes: our results also hold for tetrahedral 
meshes. 
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We use the notation, introduced in Sect. 4.2, for problems in H^{Q). In 
particular, we assume that Q is decomposed into nonoverlapping subdomains 
(substructures) Qi,i = 1,.. .,N, each of which is the union of shape-regular 
elements with the finite element nodes on the boundaries of neighboring sub-
domains matching across the interface. 

The interface F is the union of the interior subdomain faces, edges (all 
regarded as open sets), and vertices. For our methods, we only deal with 
subdomain faces and no further assumption needs to be made concerning the 
boundary edges. The faces of /?» are denoted by J'̂ *̂ , its edges by S^'^, its 
vertices by V*̂ , and its wire basket by W*. We will also use notation with one 
or without any superscript. 

Let 7i be a triangulation of the subdomain Hi, of diameter hi, and let 
T = Th he the geometrically conforming global mesh on i7, of diameter h = 
max{/ij}; cf. appendix B.1.1. The diameter of i?^ is Hi, with H = max{ilj}. 
The degrees of freedom in the space RT^{fi) are associated with the faces of 
the fine triangulation T- Fine faces on dfi, dfli, and F are denoted here by 
dfih^ df^i,h, and F^, respectively. 

We assume that all possible large jumps of the coefficients a{x) and B{x) 
are aligned with the subdomain boundaries and that on each subregion i?j, 
a(x) and B{x) have constant values Oi and Bi, respectively. The 7i and /?i > 0 
are the largest and smallest eigenvalues of Bi: 

lii ifr} < ifBiTi <-tiifri, 7? e M^ (10.38) 

If we define 

ai(u,v) := j {ai d ivud ivv + B^ u • v) dx, u , v e RT^{Qi), (10.39) 

then the global bilinear form a(u, v) = adiv (u, v) can be written in terms of 
contributions from individual subregions as for (4.3). A similar procedure can 
be used for the right-hand side of (10.3). 

We also assume that Assumption 4.3.1 holds: each substructure is the 
union of shape-regular coarse elements of a global conforming mesh TH and 
the number of such elements forming an individual subdomain is uniformly 
bounded. We will employ the low-order Raviart-Thomas space RT^{[}) = 
RT(^Q{[}) on the coarse triangulation TH-

In the case of a region of diameter Hi, we use norms with relative weights 
obtained by a simple dilation argument: 

11 112 I i2 11 112 

For H~^!'^{dQi), we employ the dual norm 

p|lif-i/2(9f?i) = sup 
{u,(i>) 
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where (-,•) denotes the duality pairing between H~^/'^{dQi) and H^/'^{dQi). 
We wiU work with finite element functions defined on the boundaries dfii 

and the interface F. Indeed, the normal component of a vector u € RT^{Qi) 
belongs to Qi = Q'l, the space of functions that are constant on each fine face 
/ £ dfli^h and that vanish on dfl Pi dfli. We define a subspace thereof by 

Once a normal vector n to J" is defined, the normal component of a vector 
u € RTQ(n) belongs to the space of functions that are constant on each fine 
face / e -T/i and that vanish on OH D dHi and, from now on, we denote this 
by Q = Q ^ 

We finally introduce a space of traces of coarse functions: let Q^ be the 
space of functions /t defined on F, such that for each substructure J7J and 
each face JT*̂ , /i is constant on jr»i. We note that Q^ is the space of normal 
traces on F of vectors in RTQ^{Q). 

We introduce the following convention: given a Raviart-Thomas vector 
u e RT^{Q), we denote by u the column vector of its degrees of freedom. 
This makes sense since degrees of freedom in RT^{Q) are given in terms of 
(scalar) normal components over the faces of T- In addition, this ensures that 
many of the results in Chap. 4, 5, and 6 hold verbatim. For degrees of freedom 
associated with a substructure J?,, we use the notations ŵ *) or, equivalently, 
Uj. In addition, for the same vector u we also denote its normal component 
on the boundary J" by w and on dQi, by u^^^ or Wj, along fixed unit normal 
vectors (n and n^, respectively). 

We can now proceed as in Sect. 4.3: 
we number the degrees of freedom relative to faces interior to the subdomains 
first (subscript J), followed by those on the interface F (subscript F). The 
contributions to the stiffness matrix A and the right hand side / can be 
formed one subdomain at a time. We obtain the same linear system as in 
(4.7). The unknowns in the interior of the substructures are eliminated and a 
Schur complement system, involving the degrees of freedom on F, is obtained, 
as in (4.10) and (4.11): 

Sur = fr-

The contributions to the Schur complement matrix S : Q ^ Q, can also be 
formed one subdomain at a time, using the local Schur complements S^^"* : 
Qj -^ Qj. A similar procedure applies to the right hand side fr- We note that, 
since no degrees of freedom are associated with subdomain edges and vertices, 
according to the representations (4.12), (4.13), and (5.1), Schur complements 
only have blocks associated with single faces: S'^^^ = Sjr-p and S = Sj^r-

Discrete harmonic extensions can also be defined in this case: a local vector 
Uj, determined by the local degrees of freedom «('), is said to be discrete 
harmonic on J?j if (4.14) holds. This corresponds to the continuous problem 
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—grad (o div u) + Bu = 0 in fii, 
u • n^ = u^' on dCli \ dCl, 
u • iij = 0 on dfli n dfl. 

As for continuous, piecewise polynomial functions, u^'^^ =: ^{up), for Up € 
Qi, or, equivalently, Uj = 'H{up), is completely defined by its normal com
ponent on dfli and is orthogonal, in the aj(-, -)-inner product, to the space 
RT^{Qi). A vector u is piecewise discrete harmonic if its restriction, Uj, to /?j 
is discrete harmonic; the vector u =: 'H{u) is completely defined by its normal 
component u on F. 

We will work with the inner products defined by the Schur complements 
(see (4.15)): 

s{u,v) := 11^Sv, u,v e Q, 
Si{ui,Vi) := ufS'-'^hi, Ui,Vi e Qi. 

The minimization property of discrete harmonic extensions in Lemma 4.9 
remains valid in this case and we can equivalently work with functions defined 
on the interface F (in the spaces Qi and Q with the scalar product s(-, •)) and 
the corresponding discrete harmonic extensions (with scalar product a(-, •)). 
We note however that we cannot, in general, work with norms of local discrete 
harmonic extensions and traces on the subdomains as in Lemma 4.10. A trace 
theorem is indeed given in Lemma A. 19 and it provides bounds that are 
independent of the diameter of the substructure: for u G -H"o(div;/?»), a scaling 
argument gives 

<C(Jff||divu||i.(^^) + ||u||i,(^^)). 

However, harmonic extensions that ensure stability constants that are inde
pendent of the diameter of the subdomain can in general be found only for 
special functions; see Lemma 10.19 below. 

We first need to introduce some technical tools. We will only present the 
most relevant proofs and refer to the references for the others. 

10.2.1 Technical Tools 

Raviart-Thomas Interpolants onto Standard Coarse Spaces 

We consider the interpolation operator iT^^ = Hj^p^ onto RT^{fl), which, 
we recall, is defined in terms of the degrees of freedom 

XHngru)- \J^\-' Jn-n ds, 

with J^ a face of TH] see appendix B.3.1. The interpolant Hj^p is logarithmi
cally stable in the || • Haiv-norm, in three dimensions, in contrast to the nodal 
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interpolant on continuous finite element spaces, which has a norm which grows 
algebraically with H/h; cf. Lemma 4.12. We note that for the case at hand the 
best bound for the L^-norm alone involves a factor of H/h; this can easily be 
seen by considering an element u, for which all the interior degrees of freedom 
vanish. The proof of the following result was originally given in [470]. 

Lemma 10-14 There exists a constant C, which depends only on the aspect 
ratios of K E. TH o-nd of the elements ofTh, such that, for u € RTQ{fi), 

(10.41) 
||div(iTfru)|||2(;i-) < lldivulll^^^^, 

Wn^T^Wh^K) < C{l+log{H/h)) ( | |u | | | , (^) + f f i | | d i v u | | | . ( ^ ) ) 

Proof. The commuting diagram property (B.27) ensures that 

(div (iTf^u)) 1̂  = (iTf (div u)) 1^, (10.42) 

where UQ is the i^-projection onto the space of constants on K. The first 
inequality in (10.41) follows immediately. 

The proof of the second inequality of (10.41) uses Green's formula, Lemma 
B.17, and the continuous, piecewise linear partition of unity functions {Oj^}, 
associated with the faces {!F} of K, constructed in Lemma 4.25. 

We consider a face T C dK, and note that it is partitioned into nonover-
lapping faces f e J^h- We number these faces so that fi, l <i <nj^, are the 
faces that have at least one vertex on the boundary d!F; see, e.g., Fig. 5.1. 
We note that since, by assumption, the triangulation of the face J^ is quasi 
uniform, njr < C{Hji/h). For a face /» G J^m let ki <Z K he the element of 
the fine triangulation to which fi belongs. 

We apply Lemma B.17 to the coarse triangulation TH-; it is then sufficient 
to bound \r{n^j:\i), for each face T C OK. We can write 

\T\XT{n^TVL) = j\vi--n)ds 

^r f (10-43) 
= / (1 - 6'^)(u •n)ds+ / ^^(u • n) (/s =: / + / / . 

T dK 

The first term on the right hand side is an integral over the fine faces fi that 
touch dT, where u - n is constant and equal to A/i(u). Since 9jr has values 
between zero and one, applying Lemma B.17 to the fine triangulation T gives 

|/ |<^E|AMu)||/, |< (^ElHlWoj (E '^ j (10.44) 

For the second term in (10.43), we use Green's formula and Lemma 4.25: 
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I J / | < / |div {$TU) \dx= [ |6';rdiv u + grad Ojr • u| dx 
i i (10-45) 

< CH^JI^WAWMWLHK) + C(Fif(1 + log{F//i)))V2||u||i.(^). 

Combining (10.43), (10.44), and (10.45) yields 

|^|2A^(iTfru)2 < C ( iJ | : | |divu| | i . (^) + i / ; , ( l + log(iJ//j))| |u| |i,(^)) . 

The proof is concluded by using Lemma B.17 and summing over the faces 
TcdK.Q 

In our analysis, we will also employ the operator - /T^, which provides 
the discrete harmonic function with the same normal component as H^j, 
on r. More precisely, v = i T ^ u is obtained by first applying the coarse 
interpolation operator II^j. to u and then extending its normal component 
on r harmonically inside the substructures. We note that TI^J-M and i T ^ u 
have the same normal component v G Q^ on F and bounds for the energy 
norm of the former can be obtained from Lemma 10.14 and the minimizing 
property of discrete harmonic extensions. We will also employ local operators 
n^^, i = 1,...,N, iov which the previous procedure is applied on single 
substructures. 

Equivalent Trace Norms 

We introduce equivalent norms for the finite-dimensional trace spaces Q, Qi, 
and Q^. We refer to [470, Lem. 2.2] for a proof which employs a Poincare 
inequality in H^/'^{dfIi). 

Lemma 10.15 There exists a constant c > 0, which is independent of the 
diameter of fii, i = 1,...,N, such that for each JJ, € H~^/^{df}i) with {JJ,, 1) = 
0 

^ ^^P u\ — - MH-^/HOQi) < sup . 

For finite element functions in Q^ (and thus in Q-^), the supremum in the 
definition of the iJ~^/^-norm can be taken over a finite-dimensional space. It 
is not enough to replace H^/'^{dfIi) with the space of continuous, piecewise 
bilinear functions 

Vi = v^ := {0 e c°{dni) I ^1, e Qi(/), / e Ti\ r^ c dOi}, 

but a larger space needs to be employed. We introduce the space of quadratic 
bubbles 

Bi = £ f := {cf> e CfidHi) \4>y= af^i ^2 Vs ^^4, / € T^, r^ C dQi), 
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where ^i, I < i < 4:, are the nodal basis functions that span Q i ( / ) on the 
face / . The support of any bubble basis function is exactly one element. We 
then define 

V, = V/':=Vi+Bi. 

We have the following property; see [470, Lem. 2.3] for a proof. 

Lemma 10.16 For (f) € Vi, there exist a unique decomposition cj) = (pv + 'PBJ 
with (f)v & Vi and ^B £ Bi. In addition, there exists a constant C, which 
depends only on the aspect ratio of /?«, such that 

The proof of the following result can be found in [470, Lem. 4.2]. 

Lemma 10.17 There exist constants, c and C, such that, for JJ, € Qi, 

«^^P lUi/^''^^ < M\H-^^Hao,} < C sup |. , | /^' '^^ • (10.46) 

Furthermore, if {/j,, 1) = 0, then the H^^^-norm in (10.46) can he replaced by 
the seminorm and the supremum can be taken over the nonconstant functions 
0. 

The following lemma compares norms of trace functions on substructures 
that share a face. 

Lemma 10.18 Let J7j and Qj be two substructures with a common face T. 
Let jjijr be a function in Li^{df2i U dOj), that vanishes outside T. Then, there 
is a constant C, that depends only on the aspect ratios of Qi and Qj, such 
that 

Proof For simplicity, we assume that the two substructures are elements 
of the coarse mesh, obtained by mapping the reference cube Q with two afiine 
mappings Fi and Fj. We have 

llMJ^IIjj-i/2(9i?i) - sup 

< Ci sup 

3/2 „,.„ itl'^7 < <CiC2(Hi/Hj)f/^ sup 

where the constants Ci and C2 only depend on the aspect ratios of the sub
structures and fl{x) := jj,jr{Fi{x)) = ^jr{Fj{x)). The product CiC2(Hi/Hj)^^^ 
can then be bounded by a constant that only depends on the aspect ratios of 
the two substructures. D 
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Stable Extensions 

As for the case of continuous finite element spaces, we need an extension 
operator of boundary functions in Qi\ cf. Lemma 4.6. The stable extension 
operator, defined in the next lemma, provides a divergence-free extension of 
boundary functions in the subspace Qi-fi. This fact ensures that the stability 
constant will be independent of the diameter of J7J- This will not be true for 
some other extension procedures. 

Lemma 10.19 Let Qi he a substructure. Then, there exists^ an extension op
erator "Hi : Qo;h -^ RT'^iQi), such that, for ji £ Qo;h, "l-iiH has vanishing 
divergence and 

mfih-m < CMIH-U^O,), (10-47) 
where C is independent of h. Hi, and fi. 

Proof The proof is similar to that of Lemma 4.6. It is enough to find 
the solution w of a Laplace problem with Neumann boundary datum ji and 
interpolate g r a d u into the Raviart-Thomas space RT^{fli). The application 
of the regularity result in Lemma A.53 and the error estimates in (B.19) 
conclude the proof; see [470, Lem. 4.3] for details. D 

Decomposition Results 

In our analysis, we need a decomposition result for trace functions on the 
boundary of a substructure. In contrast to the case of continuous, piecewise 
linear functions, we here only have contributions associated with the faces. 
We refer to Sect. 4.6 for decomposition results in H^ into face, wire basket, 
edge, and vertex components. 

Given a substructure Qi, we define partition of unity functions associated 
with its faces; cf. Lemmas 4.25 and 4.24. Here, we work with discontinuous 
functions and for a face T, we let C,jr be the characteristic function of T, i.e., 
the function that is identically one on !F and zero on dOi \ T. We clearly have 

y~] C,T{X) = 1, almost everywhere on dHi \ dfl. 

Given a function fi £ Qi and a face of i?^, we denote 

We have the following estimates for the face components of the particular 
functions in Qi with vanishing average on the subdomain faces. A proof was 
originally given in [470]. 

Lemma 10.20 Let fi £ Qi- Then, 

2_^IJ'T{X) = fJ-ix), almost everywhere in dQi \ dQ. 
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If, in addition, /J, € Qi-o and 

fids = fiy^ds = 0, T C dOi, 

then, there exists a constant C, independent of h and fin, such that, for fin G 

< C ( l + l 0 g ( f ) ) ( ( l + l 0 g ( f ) ) | | / . + M^||^_,/,(,^^) + ||M||^_,,,(^^^)). 

Proof. The first property follows directly from the definition of jij:. The 
proof of the second property is carried out in several steps. 

Step 1. Since (ij^ £ Qi;o-, Lemma 10.17 ensures that 

II II ^ n (M.F,0> 
llM.F||ii--i/2(af?i) < L. sup T-j . 

*€Vi \<P\H^/-^(dni) 
(^^ const. 

By using Lemma 10.16, we find that any function (j) eVi can be decomposed 
uniquely into (f>v + 'f>B, with (j)v £ Vi and (I>B £ Bi and thus 

II II / r̂  {I^TAV) \W\\H-^/^{dni)<C sup J— 

+ C7SUP ,̂ ^f-^"^ . 

Step 2. We first consider the first term on the right hand side of (10.48). 
We consider the continuous, piecewise linear partition of unity functions {^jr}, 
associated with the faces {T} of J?i, constructed in Lemma 4.25. For 4>v € Vi, 
we now define a weighted average c^^ by 

^ jerds= Il''{0^ct>v)ds, 

with / ' ' is the nodal interpolation operator onto V .̂ Then, the supremum in 
the first term on the right in (10.48) can be replaced by 

c„n ^^^' '^^^ - Sim i^':F,(|>V-C^v) 
" 1 / 1 — ' " J - P I J, „ I 

sup T—-̂  , 

i.e., we need only consider functions (f>v which have a zero weighted average. 
The following norm equivalence can be proven using Lemma A.17: 
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We remark that, because of (10.50), the if'-'^^-seniinorm in the last term of 
(10.49) can be replaced by the full norm. We now decompose (j>v into compo
nents associated with the faces and the wire basket of J? :̂ 

Y, I^{0T<t>v) + 4>v,w- (10.51) 

Lemmas 4.19 and A.6 give 

|<?f>V,w|jJl/2(9i2i) < C'll'/'V,w||L2(yi;i). 

Using Lemmas 4.17 and 4.10 then gives 

\'l>vAW{Qn,) < C(l + log{H/h)) UvW'Hif.^oa,)- (10-52) 

For the face components. Lemma 4.24 and the same trace and extension results 
employed for (f>v,w give 

\\'l^v,:F\fHU2(90,) < C{l+log(H/h)mvrHU^90,y (10-53) 

We find, by using the splitting (10.51), that 

{(J-T, (t>v) = E {fJ-T, <t>vf) + if^^F, <t>v,w) 
TCdT (10-54) 

= ifl', (f>V,T) + {P-T, (j>V,w)-

Since I^{9j^(j)v) = (t>v,T = ^'^{&T^V,T) and since we can always assume that 
c^y = 0, we obtain 

{fiff, (I>V,T) = 0 , //ff e Q^, 

and C^V,:F — 0- The first term on the right side of (10.54) can be bounded by 
means of (10.53). For HH € Q^, we have 

\{fJ',4>V,T)\ = \{fJ- + P-H,(l>V,T)\ ^^^_^ 
(10.55) 

<C(l + log{H/h))Uv 

In order to bound the second term on the right side of (10.54), we note that, 
for each ^V,WJ there is a unique (1>B,T £ -B ,̂ such that 

/ (pv,w ds = 4>B,T ds, f e J^h, 

f f 

with 4>B,T = 0 on dHi \ T. This mapping is clearly continuous in l?(dfli). 
Since in addition <l>v,w vanishes outside a strip of width h around dT^ an 
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inverse inequality (cf. Lemma B.27) and a Priedrichs' inequality (cf. Lemma 
A. 17) give 

\\<f>B,T\?Hi/2(^QQ.) < C-\\(j)B,T\\L^[dQi) 

By means of this bound and (10.52), we finally obtain 

< C\\iJ'\\H-^/^{dQi)\\<t>v,w\\m/^(dQi} (10-56) 

<C{l + logiH/h)mMH-./^an,^Uv\\HU2 idQi)-

Combining (10-54), (10-55), and (10-56) yields 

\{lJ,T,4>v)\<C{l + \og{Hlh)f/^Uv \\H^I^(dQi) 

X (l|j» + Mi?llfl-i/2(9f2i) + (l + log(-H•/ft)) '̂'̂ llMllJT-V2(or2i))• 
(10-57) 

Step 3. We now consider the second term on the right hand side of (10.48). 
We decompose (/>B into the sum of terms (/>B,;F supported on individual faces 

H= Y. '^B,T- (10.58) 

Bounds for the i^-norm can easily be found for (t>B,T- For the iJ^-seminorm, 
we employ an inverse inequality and Corollary A.15 on each fine face / : 

\<t>B,T\H^(dQ,) < C|<?^B|ifi(9I?;)-

An interpolation argument using Lemma A.11 then gives a bound for the 
iJ^/^-norms: 

UB,A?HU-^{dQi) <'^UB\?Hi/2(Qa.y (10.59) 

Using (10.59), we find: 

\{^l'T,<t>B)\ = \{fi,<pB,T)\ < | |M||jT-i/2(or2i) \\<pB,T\\m/^dni) 

< C\\fJ,\\H-y^dQi)UB,M\m/^{dni) (10.60) 

< C\\lJ'\\H-y2(aOi)\\'pB\\m/2(dOi)-

Step 4. The proof is completed by combining (10.48), (10.57), and (10.60). 
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10.2.2 A Face-Based Method 

We now construct a two-level preconditioner where local components are as
sociated with single faces of the partition and the coarse solve rehes on the 
solution of a problem on a standard coarse space. These algorithms were orig
inally presented and studied in [449] in two dimensions and in [470] in three 
dimensions. Following the ideas in Sect. 5.3, the local component of the pre
conditioner is obtained by replacing S~^ = S^^ by a block diagonal matrix 
S'^]p- Each block in Sj^jr is given by Sjnjn, the submatrix of S associated with 
the face T''. We define Qjn as the space of piecewise constant functions on 
^* and Rjri : Q -^ Qjn, as the rectangular restriction matrix which returns 
only the components of a global vector associated with .F*. 

The coarse component is the solution of a coarse problem for the space 
Qo := Q^ on the coarse mesh TH- Here, we have assumed, for simplicity, that 
the single substructures are mapped cubes oi TH- If ^ : Qo ^ Q, is the 
natural interpolation operator from the coarse to the fine mesh, our additive 
preconditioned operator P = J2i Pj can be written as 

P — B S — RQ OQ ROS + / RjriS.piriRjriS., 

with S'o = R^SRQ the restriction of S to Qo. This corresponds to the decom
position 

Q = -RQ QO + y^ Rj^i QT^ • 

We note that our preconditioner employs exact solvers on all the subspaces 
and that the action of S'J^I ;̂ on a vector can be calculated by solving a 
Dirichlet problem on the union of the two substructures that share T'^\ cf. 
equation (5.3). Numerical results given in [470] show that S'o can be replaced 
by the stiffness matrix AH relative to the coarse mesh TH-

We have the following result: 

Theorem 10.21 The condition number of the additive Schwarz operator P 
satisfies 

t^{p)<cai+iog{H/h)f, 

with 

£ •-= max max< -—, 
i<i<jv [ (ii 

and ai, j3i, and 7, defined in (10.39) and (10.38). 

l<i<N t /?i ' tti J 

Proof- We employ the abstract Schwarz theory in Sect. 2.3; see Theorem 
5.3 for a similar proof. A bound on p{£) (and thus on the largest eigenvalue 
of P) can be found by using a standard coloring argument; cf. Sect. 2.5.1. 
Indeed, the supports of functions associated with the local subspaces (unions 
of pairs of substructures that have a common face) form an overlapping cover 
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of the domain and every point in the domain is covered by a finite, uniformly 
bounded number of such subregions. 

For the smallest eigenvalue, we need to find a stable decompositions, as 
required by Assumption 2.2. We will work with discrete harmonic functions. 
Let u € Q and u be the corresponding discrete harmonic function. For every 
face JF% we fix a unit normal iij to :F*. We define: 

uo := n^T^, 

Ui :=n{CT-{u-Uo)), 

where WQ G QO is equal to iio • n, on every face T"^ and n^j- was defined in 
Sect. 10.2.1 as the discrete harmonic function that has the same normal com
ponent on the interface as the coarse interpolant. This splitting clearly gives 
a decomposition of u, and thus of the corresponding traces a decomposition 
of M. 

Bounds for UQ follow from Lemma 10.14 and the minimizing properties of 
the harmonic extension. We find 

a{uo, uo) < C?(l + log{H/h))a{u,u). (10.61) 

Let now T'' be a face shared by two substructures Hj and i?;. We assume 
that, e.g., n^ = n^ = —n;. We define the normal component by 

We note that, from the definition of the degrees of freedom on the coarse space 
RT^{fi), Ui has vanishing mean value on T"^, and thus on dQj and dQi. Using 
the extension result in Lemma 10.19 and the decomposition result in Lemma 
10.20, we find, for any ^H G QO, 

aj{ui,Ui) < aj{njUi,'HjUi) = \\By^{njUi)\\l^^.) 

< C7j\\CMu-uo)\\j,_,,,^g^.^ < C^j{l+\og{H/h)) 

X ( ( l + l o g ( F / M ) | | ( u - U o ) + M i f | | f f - l / 2 ( 9 f ? . ) + | | w - W o | | ^ - l / 2 ( 9 f ? . ) ) -

For the second term on the right, we apply the trace estimate in (10.40) 
to the vector u — iT^yU and use Lemma 10.14. For the first term, it is enough 
to choose HH = —WQ. We obtain: 

aj{ui,Ui) < Ci{l+log(H/h)fa{u,u). (10.62) 

A similar bound can be found for o;(ui,Ui). Combining (10.61) and (10.62) 
and using Lemma 4.9 yields 

s{R'^uo,R'Suo) + Y.s{R^iUi,R^iUi) < C£,{l + \og{Hlh)fs{u,u), 

which concludes the proof. D 
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We end this section with some comments on the theoretical result of the 
previous lemma. As opposed to the case of conforming approximations in 
H^{Q) in three dimensions, a standard coarse space on a coarse triangulation 
ensures a logarithmic bound in (H/h); of. Lemmas 10.14 and 4.12. The bound 
obtained is independent of possibly large jumps of both coefficients a and B 
of the original problem. It only depends on their ratio and on the largest and 
smallest eigenvalue of the tensor B. Indeed the numerical results reported in 
[470] show that in practice no deterioration is observed when the ratio B/a 
becomes small. 

10.2.3 A Neumann-Neumann Method 

We now consider a balancing Neumann-Neumann preconditioner similar to 
that in Sect. 6.2. The coarse space is now the standard coarse space Q^ 
already employed in the previous section, while the local solves consist of 
Neumann problems on single substructures. Our hybrid preconditioned oper
ator is defined in exactly the same way as for scalar and vector problems in 

N 

Phyl = PO + (/ - PoXY, Pi){I - Po); 
i = l 

see (6.10). We refer to Sect. 2.5.2 for a general treatment of these hybrid 
operators and to section 6.2 for the precise definition of each component. 
Here, we use the same notations as in Sect. 6.2 to be able to employ the same 
definitions and results. The local spaces Wi := Qi are associated with single 
substructures and the coarse space Wo '•= QH, built on tjie coarse mesh TH, is 
employed. The conforming space Q is now denoted by W, while the product 
space rij^i ^i is denoted by W. In addition, we redefine S :W ^ W, as the 
block diagonal matrix where each block corresponds to a substructure J?j and 
is equal to S'-''\ We note that S is not singular in this case since the local 
bilinear forms are not. In W, we will employ the norm \ - \s and the scalar 
product s(-, -) induced by S, while for the local spaces Wi, we will use | • \g(i) 
and the scalar product Si{-, •) induced by the local Schur complement S^'^K 

An exact solver is employed in Wo and the projection PQ is defined as in 
the previous section. Once a set of scahng functions {S}} is introduced, the 
local solvers and the projection-like operators P, = RfPi are defined by (6.6) 
and (6.7), respectively. Here, Rf is the extension by zero from dfii^h to F^-

We are left with the definition of the scaling functions {Sj}. In this case, 
they are defined using only the coefficient B. In addition, since the degrees of 
freedom are associated only with the faces of T, a degree of freedom in Ph is 
shared by exactly two substructures. For a substructure i?i and for a face J '̂-' 
shared by i?i and J?j, we define, for % > 1/2, 

6} = 4 := ^^^ y , on J^'J. (10.63) 
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These functions provide a partition of unity; see (6.3) and (6.11). This allows 
us to prove a lower bound for the operator Phyi; see Assumption 2.2 and 
Lemma 2.12. 

A bound for the condition number of Phyi was proven in [438] using the 
Schwarz theory in Sect. 2.5.2. Here, we follow Sect. 6.2 and give a different 
proof. For the upper bound, we employ the averaging operator ED :W^W 
defined as in (6.4). Indeed, it is enough to estimate the norm of ED; see 
Lemma 6.17. We need to modify our analysis shghtly. 

Lemma 10.22 There is a constant C, independent of the coefficients a and 
B, h, and H, such that 

\{I - PO)EDW\1 < C?(l + log{H/h)f\w\'s, weW, 

with £, defined as in Theorem 10.21. 

Proof We first note that 

fid] <min(7j,7_,); 

see (6.19). 
We set 

Wi := Uwi, w := VM) 

and, for i = 1, ...,N, 

Vi := -- {EDW)U V := l-iv 

(10.64) 

The representation formula (6.18) remains valid and is indeed simpler, since 
a fine face in Ph belongs to exactly two substructures. For a face .F'^ C dfii 
that is also shared by a second substructure i?j, we have 

Vi = 6ljWi + Sj^Wj = Vj, on jr»i. (10.65) 

We note that v £W. 
We next introduce two coarse functions. Let WQ be the discrete harmonic 

vector obtained by first interpolating w on the coarse mesh on each subdo-
niain: 

(wo)i := n^T'^i, Wo := WQ • n, 

and then 
VO:=EDWO, VO-='HVO. 

The local interpolants were defined in Sect. 10.2.1. The trace WQ is not in 
general continuous across the subdomain boundaries, but Vo is continuous 
and belongs to the coarse space WQ. It is easy to check that VQ coincides with 
the interpolant nj(j,v and thus the function 

u:= V — Vo = ED{W — Wo) (10.66) 
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has vanishing mean value on each face of the decomposition: 

I uds= I ujrijds = 0. (10.67) 

We finally set u := Hu. 
Since 

(/ - Po)v = (/ - Po){v - vo) = (/ - Po)u, 

it is enough to find a bound for u or, equivalently, for the corresponding 
discrete harmonic extension. The function u has vanishing mean value on 
each face T^^ C 5i?j and thus on dQi. We can use Lemma 10.19 and write 

k i l lw = ai(u,u) < 7ilhlllr-i/2(afi.) < C'TJ YJ Il^^'^'llfl--i/2(9f2i)-

Using (10.65), (10.64), and (10.66), and Lemma 10.18, we can write 

+ C 7 i | l 4 C.r« (wi - «^o)||^-i/2(9^^) 

< C7illC:F^^(«'i - Wo)||^-i/2(9^,) 

Each of the two terms on the right hand side can be bounded using Lemma 
10.20; the choice fXR = WQ and a triangle inequality yield 

||C:Fii(wji-wo)||^_i/2(a^,) 

< C{1 +log{H/h))({l + log{H/h))\\wi\\l_,,,^Q^^^ + \\wo\\jj-u2^ao,))^ 

and a similar estimate holds for the contribution on Hj. Using the trace esti
mate in (10.40) and Lemma 10.14, we find 

K l l w < C$(l + log(F/ft))2(ai(w,w) + a , ( w , w ) ) 

< C ^ ( l + log(iJ//i))2(K||(, , + K- | | ( , , ) . 

Summing over the faces JF*̂  c dfii and then over the substructures finally 
yields 

\{I-PO)EDW\1 = \{I-Po)u\l < \u\l < Cai + log{H/h)f\w\l. 

n 
We are now able to prove the main result of this section. 

Theorem 10.23 The condition number of the hybrid Schwarz operator Phyi 
satisfies 

l^{Phyl)<C^{l+\og{Hlh)f. 
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Proof. Let u G range{I — Po). We have shown that it is enough to find 
a bound on the largest eigenvalue. As for scalar, piecewise linear finite ele
ment functions, the representation formula (6.15) remains vahd if we define 
Wi := D^'^^ RiPiU € Wi with £)(*) the diagonal matrix corresponding to the 
multiplication by 8\. We can then write 

N 

| { J - P o ) ^ P i n | | = \{I-P^)Enw\% < C^{l+\og{Hlh)f\w\%-
i=l 

Using (6-23), and the fact that PQ is an orthogonal projection, we can then 
write 

\i^-Po)Ef=iPMl < C^{l + \og{Hlh)f{Y.,PiU,u)s 

= C?(l + \og{Hlh)f{{I - Po) E i PiU,u)s, 

and thus 

N 

\{I - Po)Y,PMs < Ce(l + log{H/h)f\u\l, u e rangeil - Po). 
j = i 

An upper bound for the largest eigenvalue of Phyi can then be found by using 
that Po is an orthogonal projection. D 

A balancing Neumann-Neumann method with a minimal coarse space can 
also be devised in this case. We recall that for scalar diffusive problems and 
linear elasticity problems, we can associate with each subdomain a set of basis 
functions, by multiplying the kernel of the local problems by the partition of 
unity functions SJ. For scalar diffusive problems, one can choose one constant 
function for each subdomain (see Sect. 6.2 and equation (6.5)), while for lin
ear elasticity problems, the rigid body modes (three in two and six in three 
dimension) are employed (see Sect. 8.5). 

Here, it is enough to choose one function for each substructure correspond
ing to the outward unit normal vector n, to the boundary: 

Wo = {Rfui}. (10.68) 

The new coarse space is strictly contained in the standard one previously 
defined. Numerical results in [441] show that the same bound holds as in 
Theorem 10.23. However, the analysis carried out here and in [438] does not 
seem to apply to this case in a straightforward way; see also the numerical 
results in the next subsection. 

In addition, one-level FETI methods (see Sect. 6.3) can be defined and an
alyzed for Raviart-Thomas approximations. This was carried out in [443] and 
the same bound as in Theorem 10.23 was proven for the corresponding pre
conditioned operator. In particular, we note that the local Neumann problems 
are not singular and modifications in the algorithms and in the analysis are 
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needed; see [191, 443]. We refer to the next subsection for numerical results. 
Similar FETI preconditioners have also been applied to mortar approxima
tions; see [393]. We finally mention that FETI-DP methods have also been 
proposed and studied for two-dimensional problems in [447, 448]; the pri
mal constraints are averages over the edges and a coarse space problem of the 
same dimension and sparsity pattern as for the balancing Neumann-Neumann 
method in this section needs to be solved. 

We note that, as for the face based method in the previous section, the 
bound obtained for the Neumann-Neumann preconditioner is also independent 
of possibly large jumps of both the coefficients a and B of the original problem, 
even though the scaling functions j | are only constructed using values of B. 
Numerical results in [438] show that in practice no deterioration is observed 
when the ratio B/a becomes small, at least for two-dimensional problems; cf. 
the numerical results in the next subsection. 

10.2.4 Remarks on Two-Dimensional Problems and Numerical 
Results 

The algorithms presented in Sect. 10.2.2 and 10.2.3 can be applied to two-dim
ensional Raviart-Thomas approximations in a straightforward way. In addi
tion, since, in two dimensions, Nedelec finite element vectors can be obtained 
from those of Raviart-Thomas spaces by a simple rotation by ninety degrees, 
these algorithms can also be defined for problems in if (curl; J?) in two di
mensions. Indeed, the two dimensional version of the face-based algorithm in 
Sect. 10.2.2 was originally studied in [449] using simpler techniques. 

Here, we present some numerical tests for a balancing Neumann-Neumann 
and a one-level FETI methods for i/"(curl; /?) in two dimensions; cf. (10.4). 
The first corresponds to the coarse space in (10.68), while the second was 
studied already in [443]. The results presented here were originally given in 
[441]. 

The normal vectors n^ employed to define a balancing Neumann-Neumann 
method in iI(div;J7) with the coarse space in (10.68), are now replaced by 
unit tangential vectors tj on the subdomain boundaries; see [441]. Similarly, 
the same vectors (suitably scaled) are employed for the one-level FETI method 
in order to construct the coarse matrix R in (6.28). Since the local Neumann 
problems are nonsingular, the modifications for FETI methods mentioned 
in Remark 6.7 need to be used. Finally, we note that the two algorithms 
have coarse problems of the same size; we have one coarse function for each 
substructure 

We consider the domain O = (0,1)^ and two uniform triangulations % 
and TH = {^i}- The fine triangulation is made of triangles for the FETI 
method, and squares for the balancing method. It consists of 2 * n^ triangles 
and 'nP squares, respectively, with h = 1/n. Lowest order edge elements are 
considered. We note that, in contrast to the case of nodal elements, for a fixed 
value of n, triangular and rectangular meshes do not give rise to edge element 
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spaces of the same dimension. Nevertheless, the mesh size h and the order of 
accuracy is the same and the comparison of the two methods is reasonably 
fair. The coarse triangulation consists of nc? squares which are unions of fine 
elements, with H = 1/nc. The substructures J?̂  are the elements of the coarse 
triangulation. Throughout, we use the value x = 1/2 (cf. (10.63)) and 

B 
bO 
Ob 

Fig. 10.2. Case with a = 1, b = 1, n = 32, 64, 128, 192, 256. Estimated condition 
number (asterisk) and least-square second order logarithmic polynomial (solid line), 
versus p — Hjh for the balancing NN method {left) and the one-level FETI method 
{right). 

We first consider a case with constant coefficients and meshes with n = 32, 
64, 128,192, 256. Fig. 10.2 shows the estimated condition number (asterisks), 
for a = 6 = 1, as a function of p = H/h, for different values of n. For a fixed 
value of p, the condition number is quite insensitive to the dimension of the 
fine mesh. We have also plotted the best second order logarithmic polynomial 
least-square fits; our numerical results for both methods are consistent with 
the condition number bound in Theorem 10.23 and suggest that this bound 
is sharp. This bound was proved in [443] for the FETI method. 

We then consider some cases where the coefficients have jumps. In Ta
ble 10.2, we show some results when the coefficient b has jumps across the 
substructures. We consider the checkerboard distribution shown in Fig. 10.3, 
where b is equal to by in the shaded area and to b-2 elsewhere. For a fixed value 
of n = 128, bi = 100, and a = 1, the estimated condition number and the 
number of conjugate gradient iterations in order to obtain a reduction of the 
norm of the preconditioned residual by a factor 10~®, are shown as a function 
oi p = H/h and ^2. For 62 = 100, the coefficient b has a uniform distribu
tion, and this corresponds to a minimum for the condition number and the 
number of iterations for both methods. When &2 decreases or increases, the 
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Fig. 10.3. Clieckerboard distribution of the coefficients in the unit square. 

condition number and the number of iterations also increase, but they can 
still be bounded independently of 62- We observe that the two methods give 
comparable iteration counts. 

Table 10.2. Checkerboard distribution for b: (61, &2). Estimated condition number 
and number of CG iterations to obtain a relative preconditioned residual less than 
10~® (in parentheses), versus p = H/h (columns) and 62 (rows), for the Balancing 
{left) and the FETI {right} methods. Case of n = 128, a = 1, and 61 = 100. 

b2,p 4 8 16 4 8 16 

w-'^ 15.6 (22) 13.4 (22) 12.1 (22) 4.12 (17) 5.99 (22) 8.42 (26) 
I Q - " 15.1 (21) 13.2 (21) 12.1 (23) 4.09 (16) 5.96 (20) 8.37 (25) 
IQ-^ 13.8 (20) 12.5 (21) 11.9 (23) 4.04 (15) 5.88 (19) 8.25 (23) 
10-^ 10.8 (19) 10.8 (21) 11.5 (22) 3.88 (13) 5.65 (17) 7.91 (21) 
1 6.31 (17) 7.55 (19) 10.2 (21) 3.44 (12) 5.02 (15) 6.99 (18) 
10 3.87 (13) 5.41 (15) 7.36 (18) 2.56 (9) 3.73 (12) 5.16 (14) 
10^ 2.33 (8) 3.12 (10) 3.87 (11) 1.76 (7) 2.41 (8) 3.10 (10) 
lO'' 3.70 (12) 4.77 (14) 5.56 (16) 2.51 (9) 3.37 (11) 3.99 (12) 
lO'' 3.96 (14) 4.33 (14) 4.64 (15) 2.74 (10) 3.09 (11) 3.51 (11) 
10*' 3.27 (12) 3.55 (13) 4.34 (14) 2.20 (9) 2.73 (10) 3.35 (11) 
lO'' 2.99 (12) 3.44 (13) 4.28 (14) 2.09 (9) 2.65 (10) 3.34 (12) 

In Table 10.3, we show some results when the coefficient a has jumps. We 
consider the checkerboard distribution shown in Fig. 10.3, where a is equal 
to «! in the shaded area and to 02 elsewhere. For a fixed value of n = 128, 
ai = 0.01, and b = 1, the estimated condition number and the number of 
iterations are shown as a function of y9 = H/h and 02. We remark that for 
02 = 0.01, the coefficient a has a uniform distribution. For both methods. 
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a slight increase in the number of iterations and the condition number is 
observed, when a2 is decreased or increased and when H/h is large. 

Table 10.3. Checkerboard distribution for a: (ai,a2). Estimated condition number 
and number of CG iterations to obtain a relative preconditioned residual less than 
10~® (in parentheses), versus p — H/h (columns) and a2 (rows), for the Balancing 
{left) and the FETI {right) methods. Case of n = 128, 6 = 1, and ai = 0.01. 

«2,P 4 8 16 4 8 16 
1 0 - ' 2.56 (10) 4.33 (13) 8.02 (17) 2.80 (8) 4.49 (12) 7.29 (15) 
10-** 2.56 (10) 4.32 (13) 8.01 (17) 2.41 (8) 3.81 (11) 6.21 (14) 
10"^ 2.56 (10) 4.30 (13) 7.96 (17) 1.82 (7) 2.65 (9) 4.05 (11) 
10--* 2.52 (9) 4.13 (13) 7.49 (16) 1.79 (7) 2.45 (8) 3.23 (10) 
10-^ 2.39 (9) 3.51 (12) 5.59 (14) 1.78 (7) 2.42 (8) 3.07 (9) 
10"^ 2.34 (9) 3.16 (11) 4.14 (13) 1.76 (7) 2.40 (8) 3.25 (10) 
10-1 2.32 (8) 3.12 (10) 3.87 (12) 1.77 (7) 2.41 (8) 3.10 (10) 
1 2.33 (8) 3.12 (10) 3.87 (11) 1.77 (7) 2.46 (8) 3.26 (10) 
10 2.34 (8) 3.16 (10) 4.11 (11) 1.77 (7) 2.46 (8) 3.26 (10) 
10^ 2.34 (8) 3.16 (10) 4.14 (12) 1.77 (7) 2.46 (8) 3.26 (10) 
10^ 2.34 (8) 3.17 (10) 4.14 (12) 1.77 (7) 2.46 (8) 3.26 (10) 

10.2.5 Iterative Substructuring for Nedelec Approximations in 
Three Dimensions 

The iterative substructuring methods presented in the previous sections can
not be defined for Nedelec approximations in three dimensions. 

The interpolant iT^^ onto a Nedelec space on a coarse triangulation TH 
does not exhibit the favorable bounds oiUpj. in Lemma 10.14. Bounds at least 
as bad as those for the nodal interpolant onto finite element spaces of contin
uous functions are expected; see Lemma 4.12. Indeed, from the commuting-
diagram property (B.23) and Lemma 4.12, we find 

| | iTf^(grad«) | | | , (^) = | |g rad(J^«) 

for K e TH- Here, we have the same problem as for approximations on con
tinuous nodal spaces in Sect. 5.4 and more exotic coarse spaces need to be 
employed. A first step in this direction was the work in [265] where a wire 
basket algorithm was proposed and studied. See also [266] for a generalization 
to a saddle-point problem. Local components are associated with the faces 
of the partition as in the methods in Sect. 5.4.2 and 10.2.2. Two wire basket 
spaces are then considered. The corresponding preconditioner has the form 
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As before, the local spaces consist of interface functions with vanishing degrees 
of freedom outside the faces T"^. The first coarse space consists of the gradients 
of the wire basket functions in the space Vy^ defined in Sect. 5.4.2. The second 
coarse space consists of tangential vectors on F that are nonvanishing only 
in a suitable neighborhood of the wire basket W- Approximate solvers that 
are defined in terms of averages as in (5.7) are employed; we refer to [265] for 
details. Here we only note that the underlying idea is to employ two coarse 
spaces that should reduce two error components associated with the Helmholtz 
decomposition in (10.8). The corresponding preconditioned operator is shown 
to be scalable and to have a condition number that grows at most cubically 
in \og{H/h). Independence of coefficient jumps is not guaranteed. 

More recently, scalable and quasi-optimal FETI-DP algorithms, which are 
also robust with respect to coefficient jumps, have been found and analyzed for 
three-dimensional h edge element approximations; see [442]. These methods 
ensure a logarithmic bound in H/h on the condition number and employ a 
relatively small number of primal constraints. As noticed in [442], the difficulty 
of devising efficient and robust iterative substructuring methods for three-
dimensional edge element approximations lies in the strong coupling between 
the degrees of freedom associated with the subdomain edges and faces. The 
situation is similar to that for p and hp approximations that rely on more 
general bases (see Sect. 7.5) and a local change of basis appears to be necessary. 
This observation may shed light to the reason why efficient and robust iterative 
substructuring algorithms for three dimensional problems have been so hard 
to devise for a long time. We note that, this difficulty was overcome in [265] 
by choosing a sufficiently large coarse space. We refer to [442] for additional 
details and for some discrete Sobolev type inequalities for the appropriate 
trace spaces. 

We conclude this section by mentioning the work of Alonso and Valli who 
studied certain domain decomposition iterative methods for various types of 
three-dimensional electromagnetic problems; see, e.g., [16, 17] and the refer
ences therein. 
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Indefinite and Nonsymmetric Problems 

11.1 Introduction 

In this chapter, we will present generalizations of some Schwarz precondition-
ers to nonsymmetric and indefinite problems. Such extensions were originally 
carried out in [99, 116, 117]. We also refer to [424, Sect. 5.4] for a fine presen
tation. 

The Schwarz theory for nonsymmetric problems is relatively less satisfac
tory than that for positive definite symmetric problems, presented in Chap. 2 
and 3. There are two main reasons. The first is related to the bounds for the 
convergence rates of GMRES which are far from sharp; see appendix C.6. In 
particular, we need to assume that the symmetric part of the preconditioned 
operator is positive definite. The second relies on the assumption that the 
indefiniteness and nonsymmetry of the differential operator is small with re
spect to the symmetric, positive definite part, typically a low-order (relatively 
compact) perturbation. The need of this assumption, for instance, prevents 
this theory from explaining the behavior of certain domain decomposition 
preconditioners for convection-dominated problems. 

The result that we present here requires that the subdomains and the 
coarse elements are sufliciently small. This restriction appears natural for 
indefinite problems for which the coarse problem is well-posed only if the 
coarse mesh is fine enough. Indeed experience with domain decomposition 
preconditioners shows that such restriction is not required for nonsymmetric 
problems that are positive definite; see. e.g., [116] and Sect. 11.4. In addition, 
the performance of multiphcative methods are far better than that of additive 
preconditioners. This has no analog in the symmetric, positive definite case 
and a theory justifying such behavior is still lacking. In the last Sect. 11.5, 
we will give a brief overview of some important methods for nonsymmetric or 
indefinite problems, for which a comprehensive theory is mostly missing but 
which are often used in some large scale computations for the solution of large 
problems. 
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Given a bounded polygonal or polyhedral domain i? C M", we will consider 
the homogeneous Dirichlet boundary value problem: find u G HQ{Q), such 
that 

Lu = / in J?, 

n = 0 on dQ. 

The elliptic operator L is defined as 

(11.1) 

^ -=-E^K-^) + 2E^^a^+-' (11-2) 

see (A.51) in Appendix A.7. 
We assume that conditions (A.52) on the coefficients hold. In addition, the 

matrix {aij{x)] is symmetric and uniformly positive definite for x e O. The 
right hand side / 6 i^(/2); see Appendix A.7. We also assume that problem 
(11.1) has a unique solution; see Lemma A.46. 

The weak form of equation (11.1) is: find u 6 i^o (/?) such that 

biu,v) = (f,v)ma), v€H^(n), (11.3) 

where the bilinear form b{u,v) is defined in (A.54): 

b(u,v) = > / an————dx+y^2 / bi——vdx + / cuvdx. 
ij^J n 9xj dxi ^ i ^ dxi i ^ 

We consider a shape-regular, not necessarily quasi uniform, triangulation 
7" = 7^ of J? and the space V = V'^ oi piecewise linear functions on T that 
vanish on dH; see appendix B.l. The Galerkin approximation of equation 
(11.3) is defined by: find u eV such that 

b{u,v) = (/,t;)i2(^), v€V. (11.4) 

If the mesh size h is small enough, it follows from Theorem B. l l that this 
problem has a unique solution. By using nodal basis functions to span the 
finite element space, equation (11.4) is transformed into a linear system of 
algebraic equations 

Bu = / , (11.5) 

which is large, sparse, nonsymmetric, possibly indefinite, and relatively iU-
conditioned. 

We also use two other bilinear forms 

It- p 

^1.7 — J-

du dv 

and 
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-±a'<tris'''y-tjAk' 
which correspond to the second order terms and the skew-symmetric part of 
L, respectively. The bilinear form a(-,-) defines a norm, which we denote by 
II • lla. Under our assumptions on the coefficients Uij, this norm is equivalent to 
the i^Q-norm by Priedrichs inequality; see Appendix A.4. Let A be the matrix 
representation of a{-, •). 

It is immediate that 

s{u,v) = —s(v,u), u,v Q. HQ(n). 

We note that, by integration by parts, we can write 

b{u,v) = a(u,v) + s(u,v) + / cuvdx, 
Jo 

with 

E dbi 

1=1 

We note that we make no assumptions on the sign of c but only assume that 
the continuous and discrete problems are well-posed. 

Using elementary, standard tools, it is easy to establish the following in
equalities; see also Appendix A.7. 

(i) Continuity: there exists a constant C, such that 

\Hu,v)\<C\\u\\a\\v\\a, U,V€H^{n). (11.6) 

(ii) A Carding inequality: there exists a constant C, such that 

\Hl-C\\u\\ht^a)<biu,u), ueH^in). (11.7) 

(iii) There exists a constant C, such that 

\s(u,v) \< C||M||a||v||i2(^), u,v e Hl{n), 

Jii 
uvdx\ < C||«||i2(i^)||t;||x,2(jj), u,v e L^{Q) 

We note that the bounds for 6{-, •) and s{-, •) are diff'erent, since each of 
the terms in s(-, •) contains a factor which is of zero order. This enables us to 
control the skew-symmetric term and makes the analysis possible. 

We also use the following regularity result which is valid for polygonal or 
polyhedral domains; see Lemma A.49. 
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(iv) The solution w of the adjoint equation 

b{(f>,w) = (5,0)L2(r2), (i>£Hl{Q) 

satisfies 
l|w||jji+7(^) < C\\g\\L2i^a) , {11-9) 

where 7 depends on the interior angles of dO, is independent of g, and is 
greater than 1/2. 

To define the additive Schwarz algorithms, we need a partition into sub-
domains and a coarse triangulation; see Sect. 3.2 and 3.3. We first partition 
fl into substructures {/2i, i = 1, • • •, N}, which are unions of fine elements of 
T- Each Qi is assumed to be shape regular and has a diameter Hi; let H be 
the maximum diameter of the substructures. 

Following Sect. 3.3, we next introduce a shape-regular coarse mesh TH 
of i? and the finite element space Vo = V^ of continuous, piecewise hnear 
functions on TH, vanishing on dQ. For K € TH, let HK denote the diameter 
of K. The fine mesh T need not be a refinement of TH- Bilinear or trilinear 
finite element spaces could also be considered on quadrilateral or hexagonal 
coarse meshes. We define an interpolation operator 

by interpolating the coarse functions onto the fine mesh. For u € Vo, we define 

Rlu = I^u. 

11.2 Algorithms on Overlapping Subregions 

In this section, we introduce two variants of an additive Schwarz algorithm 
and provide bounds on their convergence rates; see Theorem 11.1 below. The 
theory that we present here was originally given in [99, 116]. Multiphcative 
methods can also be defined and analyzed and we refer to [117] for an abstract 
theorem resembling Theorem 2.9. 

We consider the same overlapping partition {/?|}, introduced in Sect. 3.2, 
and obtained by extending the substructures {fii}. We assume that the over
lap is small, i.e., that Assumption 3.1 holds. We also assume that a finite 
covering property holds (see Assumption 3.2) and that the subregions and 
the coarse elements are locally of comparable size (see Assumption 3.5). We 
will also use the notation J7Q = J? and refer to Chap. 3 for additional details. 

As before, the local spaces are defined as finite element spaces consisting 
of functions that are piecewise linear on the local meshes: 

Vi = {u^Hl{fl[), ^ i ^ e P ^ f c e ? ; } , l<i<N. 

We recall that these subspaces are contained in the original space V, in the 
sense that local functions extended by zero to all of Q belong to V. Let 
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Rj :Vi-^V, l<i<N, 

represent these zero extensions. 
The space V admits the following decomposition 

N 

V = RSVo + Y,RiVi^ (11-10) 

which is the same as that considered in Chap. 3. 
As in the positive definite case (see Sect. 2.2), we can define projection

like operators, which will be the main building blocks of our algorithms. These 
operators map the finite element space V into the subspaces Vi and are defined 
in terms of local bilinear forms. For simplicity, we only consider the case of 
exact local bilinear forms defined, for Ui, Vi € Vi, hy 

bi{ui,Vi) = b{Rfui,Rfvi), 

ai{ui,Vi) = a(Rjui,Rjvi). 

Let 
Bi = RiBR^ , Ai = RiARj^ 

be the matrix representations of these local bilinear forms. 
For i = 0,...,N,we define Pi :V ^ Vi,hy 

bi {PiU, Vi) = b{u, Rjvi), VieVi, 

andQi-.V ^ Vi, by 

ai{QiU,Vi) = b{u,Rfvi), Vi€Vi. 

If H is small enough, the operators Pi are well-defined since Bi is invertible; 
see Lemmas 11.3 and 11.4. For Qi, no restriction on H is necessary since Ai 
is symmetric and positive definite. We now set 

Pi = RjPi = RjB-^RiB, 

Qi = RjQi = RjA-'RiB. 

and introduce the additive operators 

^ « = EloPi = (EloRlB-'Ri)B = ( £ « ) - ! £ , 

p(2) = Po + ^l^ Q, = [R^B^'R^ + Zli RjA-'Ri) B = (P(2))- ip . 

The only difference between P(^) and P^^^ is that, for i > 0, we replace the 
projections Pi, corresponding to the J?^, by the Qi. The coarse mesh projection 
is not changed. 

We finally apply GMRES to the preconditioned systems 
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P^'\ = 9^'\ 5(i) = { S « ) - V , (11-11) 

In order for equations (11.11) and (11.12) to have unique solutions, the 
operators P^^^ and P^^) must be invertible. This follows from Theorem 11.1 
given below. 

The main result of this chapter is Theorem 11.1. Together with the error 
estimates for GMRES in Appendix C.6, it allows us to establish that the two 
algorithms converge at a rate which is independent of the mesh parameters h 
and H, if the coarse mesh is fine enough. 

Theo rem 11.1 There exist constants Ho > 0, c{Ho) > 0, and C{Ho) > 0, 
such that if H < Ho, then, for i = 1,2 and u £V, 

c{Ho) Co^a{u,u) < a(u,P^^u) 

and 
a{P^'\,P^'\j) < C{Ho) a{u,u), 

where the constant Co will he introduced in Lemma 11.2. 

The operator PQ is very important, since it provides global transporta
tion of information. All the other projections are local mappings. Without 
using Po, information would travel only from one subregion to its neighbors 
in each iteration and it would take 0{1/H) iterations for the information to 
propagate across the region. Without such a global mechanism, it would also 
be impossible to confine the spectrum to the right half plane. To see this, 
we consider a symmetric, indefinite case. If the subregions are small enough, 
all the local elliptic problems are positive definite, symmetric and, in the ab
sence of a global part, the preconditioner defined by the Schwarz algorithm 
is symmetric, positive definite. Therefore, by Sylvester's inertia theorem, cf. 
[428, Th. 6F], the additive operators P^^^ and P^^) h^ye as many negative 
eigenvalues as the original discrete elliptic problem. 

The constant HQ determines the minimal size of the coarse mesh prob
lem and it depends on the operator L. In practice, this restriction appears 
necessary only for indefinite problems, but not for nons3Tnmetric, positive 
definite ones, and in general Ho decreases as c becomes more negative, while 
it increases if we increase the overlap. HQ also depends on the shape of the 
domain Q. We refer to Sect. 11.4 for some numerical results. If the domain is 
not convex, the estimate of Ho, imphcit in our proof of Lemma 11.6, depends 
on the parameter 7 in (11.9). We do not know of any explicit formula for 
Ho but it is known from experience that it can be determined by numerical 
experiments. We refer to [116,117] and [424] for further comments and details. 

The proof of Theorem 11.1 is based on the following results. The first is 
the existence of a stable decomposition; see Lemma 3.12. 
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Lemma 11.2 There exists a constant Co, which is independent of h and H, 
such that, for all u eV, there exist Ui £ Vi with 

N 

U 
i-0 

and 

J2a{Rjui,Rjui) = ^a i {u i ,Ui ) < C^a{u,u), C^ < (1 + y j -
i=0 i=0 ^ -^ 

We note that this lemma is independent of the skew-symmetric and zero order 
terms of the elliptic operator since only a{-, •) is involved. 

Lemma 11.3 There exist constants HQ > 0 and C{HQ) > 0, such that if 
H < Ho, then, for u eV, 

\\Pou\\a<c{Ho)\\u\\a 

and 
\\PoU - W| | i2(^) < C{Ho)H''\\PoU - U\\a. 

Proof. The first bound follows directly from Schatz's work, cf. Theorem 
B.l l and [414], by replacing the approximate solution by the coarse mesh 
solution and the exact solution of the continuous problem by the finite element 
solution in V. 

In order to obtain a bound for the error u — PQU, we consider the auxihary 
problem 

L*w = PQU — U in /?, w = 0 on dO, 

where L* is the adjoint of L. We have for any WQ £Vo, 

| |Pow-w|||2(^) = {POU-U,L*W)L-^(Q) = b{Pou-u,w) 

= b{PoU-U,W-Wo) < C | | P o W - M | | a | | M ' - W o | | a -

Since PQU — ue L^(f^), then w G iJ^+'^{i?) for an 7 > 1/2 follows from the 
regularity result (11.9). The Sobolev embedding theorem in Lemma A.5 then 
implies that w — wo is continuous. The approximation estimates in Lemma 
B.6 yield the existence of WQ € Vo such that 

\\w - woWa < CIT^ \\w\\i+y^n; (11.13) 

see, e.g., [414]. Therefore, 

| | P o W - w | | | 2 ( f i ) < CH^\\PoU-u\\a\\PoU-u\\L2(^Q^,, 

which gives the L^-bound. D 
We note that in order for the error estimate (11.13) to hold, it is necessary 

that the coarse space Vo contains not only the constant functions but also the 
linear ones. This appears to be necessary only for the theory. 

file:////PoU
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Lemma 11.4 The restriction of the quadratic form b{-, •) to the subspaces Vi, 
i > 0, is strictly positive definite for H sufficiently small, i.e., there exists a 
constant c > 0 such that 

ca{Rjui,Rjui) =cai(ui,Ui) < hi{ui,Ui) = b{Rjui,Rjui), Ui e Vi. 

Proof. We have to prove that the second order terms dominate the other 
symmetric term, since the contribution from the skew-symmetric term van
ishes. This follows from the Priedrichs inequality for the region fl[ given in 
Sect. A.4: 

bi{ui,Ui) = ai{ui,Ui) + / ctifdx > (1 - CHf)ai{ui,Ui). 
.IQ'. 

D 

We note that it is not necessary to require the positive definiteness of 
the local bihnear forms, but that a suitable inf-sup condition, that implies 
invertibility, is sufficient. 

Lemma 11.5 Let v = Y^i^i Rfvi , where Vi G Vi. Then there exists a con
stant C > 0, such that 

- II 2^i=l Ri ViWa < ^ l^i=l \\Ri ViWa 

- I I V ^ ??^ii-l|2 - c r r v ^ \\pT.,.\\2 

Proof The proof follows from Assumption 3.2, since for each x & Q, the 
number of terms in the sum, which differ from zero, is uniformly bounded. D 

Lemma 11.6 There exist constants Ho > 0, c{Ho) > 0, and C{Ho) > 0, 
such that if H < Ho, then, for u &V, 

N 

c{Ho)CQ^a{u,u) < '^2C'{Pi''^TPi''J') ^ C{Ho)a(u,u) 

and 
N 

c{Ho) C^'^a{u,u) < a{Pou,Pou) + ^^a{QiU,Qiu) < C{Ho)a{u,u). 

Proof An upper bound for a{PoU, PQU) is given in Lemma 11.3. To obtain 
an upper bound for the sum of the other terms, we use Lemma 11.4 and the 
definition of the Pi to show that 

N N N 

c ^ a(PiU, Piu) < ^ b{PiU, Piu) = b{u, ^ Pju). 
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The right hand side can be estimated by using inequality (11.6) and Lemma 
11.5. The other upper bound is established in a similar way. 

To prove the lower bounds, we begin by using Lemma 11.3 and obtain 

ll^lli^c^) < 2||n - Potx||i.(^) + 2||Pon||i.(^) < C{H^^a{u,u) + \\Pou\\l.^^^). 

Since PQU vanishes on 5J?, we can use a Friedrichs inequality and Lemma 11.3 
and replace the last term by C||PoM||a||w||o. By using Garding's inequality, 
(11.7), it follows that 

(1 - CH^"')a(u,u) < b{u,u) + C\\Pou\\a\\u\\a . 

By the definition of the operators Pj and Lemma 11.2, we find that 

N N N 

b{u,u) = ^h{u,Rjui) = '^bi{PiU,Ui) = '^b{PiU,Rjui). 

j=0 j=0 j=0 

The boundedness of b{-, •), (11.6), can now be used to obtain 

JV JV 

Y,b{Pi%Rln) < cY,\\PM\a\\R, .T 

=0 8=0 

i{u,u) <CCQ }^a(PiU,Piu), 

which by Lemma 11.2 and the Cauchy-Schwarz inequality can be bounded 
from above by 

/ N \ 1/2 

CCo\J2\\PM\l] \Ma-

We finally obtain 
JV 

«( , : J - : ^ 
i=0 

for a sufficiently small H. 
The proof of the other lower bound is quite similar. D 
Proof of Theorem 11.1: The upper bounds on the norms of the operators 

follow immediately from Lemmas 11.5 and 11.6. 
In order to obtain the lower bounds, we first consider 

N N N 

a(u,P^^'u) = 2_. o>{'>^y Piu) = 2_. c^iPiU, Piu) + 2_.(0'{u, Piu) —a(PiU,Piu)). 

i=0 j=0 i=0 

Using Lemma 11.6, we see that it suffices to show that 

JV 

I ^ ( a ( u - PiU,Piu))\ < CHa{u,u). (11-14) 
i-O 

The definition of the quadratic forms yields 
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a(u — PiU, Piu) = b(u — PiU, Piu) — s(u — PiU, Piu) 
(11.15) 

- (c{u-PiU),PiU)L^(Q). 

By using the definition of Pi, the first term of the right hand side is seen 
to vanish. For i = 0, the second term can be bounded using inequality (11.8) 
and Lemma 11.3: 

\s{u - Pou,Pou)\ < CH'^^a(u,u). 

Since s{PiU, Piu) = 0, there remains to consider s{u, X)i Piu). Using inequal
ity (11.8) and Lemma 11.5, we find 

N N N 

\'^s{u-PiU,PiU)\ < C\\u\\a | | ^ P i ^ | | l , 2 ( f i ) < C\\u\\a C^\\PM\\2I^Q)) 1/2 

Using a Friedrichs inequality on each subdomain fi[ and Lemma 11.6, the 
desired inequality follows. 

The third term in (11.15) is written as the difference of two expressions, 
which can be handled with exactly the same tools. This proves (11.14) and 
thus the lower bound for P^^^. The estimate for the operator P^^^ is obtained 
similarly. D 

11.3 An Iterative Substructuring Method 

We conclude our discussion by outlining how some other results, previously 
analyzed for the positive definite, symmetric case, can be extended to the class 
of elliptic problems 11.1. We confine our discussion to problems in the plane 
and only consider a simple iterative substructuring method as an example; 
see Remark 5.4. 

Primal iterative substructuring methods for symmetric, positive definite 
problems are treated in Chap. 5. They are iterative methods for the solution 
of Schur complement equations, once the degrees of freedom internal to the 
substructures {J7J} have been eliminated. They can also be written as iterative 
methods for the original system (11.5). 

We assume that the initial nonoverlapping partition coincides with the 
coarse mesh Tjj, i.e., the substructures {i7i} are the coarse elements. Given 
two subregions Oi and J7j that have a common edge, let 5*-' be this edge. We 
use subspaces corresponding to the subregions i?ij = HilJS^^ [jflj. These 
subregions play the same role as the 01 in the overlapping method previously 
defined. We note that an interior substructure is covered by three such regions. 
The local subspaces are Vij = HQ{Qij) n V. We employ the same coarse space 
Vb = V^ as before. 

Compared with the case considered previously, we use less overlap in the 
sense that only the elements of V^ can differ from zero at the vertices of the 
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substructures. This is reflected in a poorer bound for tfie constant of Lemma 
11.2: 

Cl<C{l + \og{Hlh)f; 

see Remark 5.4 in Chap. 5. Lemma 11.2 is modified accordingly. The rest of 
the proof carries over without change. In Theorem 11.7, we use the notation 
Pad = Po + Y^Pij-

Theorem 11.7 For the iterative suhstructuring method, introduced as an ad
ditive Schwarz method with the subspaces Vb and Vij, there exist constants 
Ho > 0, C{HQ) > 0, and C{HQ) > 0, such that if H < HQ, 

c{Ho) (1 + log{H/h))-^a(u,u) < a(u,Padu) 

and 
a{PadU,Padu) < C{Ho)a{u,u). 

11A Numerical Results 

In this section, we present some numerical results for some two-level overlap
ping and one iterative suhstructuring preconditioners, in order to show that in 
this case the rate of convergence often depends on the same geometric quan
tities as in the symmetric, positive definite case (i.e. the relative overlap d/H 
or log{H/h)). The results given here are from Cai, Gropp, and Keyes [108]; 
courtesy of the authors; see Sect. 4.2-4.4 of their paper for nonsymmetric 
and/or indefinite problems. Results for symmetric, positive definite problems 
have already been given in Sect. 3.8 of this monograph. 

We use the same two-dimensional discretization as in Sect. 3.8, together 
with the same subdomain partitions. We consider homogeneous Dirichlet 
problems as in (11.2) with the second order part of the operator discretized 
by a five-point central or upwind finite difference approximation. The right 
hand side / is chosen such that u = exp(xy) sin(7rx) sin(7r</) is the solution. 

We recall that the methods employed are MSR (Richardson's method with
out relaxation with a nonsymmetric, multiplicative, two-level overlapping pre-
conditioner), MSM (GMRES with the same multiphcative preconditioner), 
and ASM (GMRES with the symmetric, additive, two-level overlapping pre
conditioner; cf. Pg^J in Sect. 11.2). In addition, we consider a hybrid variant 
of the iterative suhstructuring preconditioner in Sect. 11.3, denoted here by 
CGK; cf. Cai, Gropp, and Keyes [107, 108] for details. The subdomain parti
tion coincides with the coarse mesh. A logarithmic growth in H/h is expected 
for the residual reduction factor of GMRES. Results for an incomplete LU 
(ILU) factorization with different levels of fill in are also presented as a com
parison. 
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11.4.1 A Nonsymmetric Problem 

We first consider the nonsymmetric, constant coefficient problem correspond
ing to a uniform convection making a 45° angle with the coordinate axes: 

Lu= -Au + b^- + b—. 
ox ay 

We note that this problem is nonsymmetric but positive definite; of. Lemma 
A.44 in appendix A.7. The first-order terms of the elliptic operator are dis-
cretized by two schemes, namely, the central difference method or the upwind-
difference method-

Iteration counts are shown in Table 11.1, as functions of the overlap, for 
different partitions and different values of the convection strength. 

The behavior of the preconditioners is different for central-difference and 
upwind-difference approximations. When using the former method, for a fixed 
fine mesh size h~^ = 128 and b is increased beyond a certain size {near 10), 
all methods, except MSM with sufficient overlap, show a sharp upturn in the 
iteration count. The MSR fails to converge if b is larger than this transitional 
b for essentially all overlapping sizes. All other GMRES-based methods con
tinue to converge but at a slower rate, especially the nonoverlapping method, 
which appears to have difficulty handling large convection terms. A better 
performance is observed for a fixed value of b when the overlap is increased. 

The situation changes when we switch to the upwind-difference method. 
For a fixed value of b, the iteration counts do decrease when the overlap is 
increased. However, they appear to be less sensitive to the overlap for larger 
values of b than for central finite difference approximations. We note that 
even with modest overlap, the iteration counts are independent of b for MSR, 
MSM, and ASM. The iteration counts of the iterative substructuring method 
increase considerably with b. 

There seems to be a connection between the stability of the discretization 
and the convergence rate of overlapping domain decomposition precondition
ers. The theory presented in this chapter very well predicts the behavior of 
algorithms with central difference discretizations. However, it offers little in
sight into the case of upwind finite differencing. 

It is important to note that multiplicative preconditioners presented here 
show a much bigger improvement over additive methods than for symmetric, 
positive definite problems, when the same Krylov space method is employed; 
cf. Table 3.1 in Sect. 3.8. The poor performance of MSR may also partially 
derive from the fact that relaxation must be employed for the Richardson's 
method; it is however difficult to find an optimal value for the relaxation 
parameter in practice. Finally, the nonoverlapping method does not behave 
well if b is large with either discretization scheme. 
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Table 11 .1 . Iteration count for solving the nonsymmetric model equation. The 
fine mesh size is uniform with l/h = 128. The number, such as (2/i), which appears 
next to the name of a method, indicates the overlap 6 for overlapping algorithms 
and the level of fill in for ILU preconditioners. 

Methods ii" = 1/4 H = 1/8 
Central-difference Method 

6= 1 5 10 50 100 150 1 5 10 50 100 150 
MSR(/») 19 
MSR(2/i) 12 
MSR(4/i) 7 
MSR(8/i) 6 

18 15 c» cx) CO 
11 9 2 1 oo oo 
8 8 22 oo oo 
7 8 24 00 00 

10 10 10 
7 7 7 
6 6 6 
5 5 5 

13 00 oo 
14 oo oo 
10 35 oo 
7 10 21 

MSM(/?) 7 
MSM(2/i) 6 
MSM(4/i) 5 
MSM(8fe) 5 

7 7 10 10 9 
6 6 8 8 8 
5 6 7 7 7 
5 5 6 6 6 

5 5 5 
4 4 4 
4 4 4 
4 4 4 

8 10 12 
7 8 11 
5 7 9 
4 5 7 

ASM(/i) 15 
ASM(2/i) 13 
ASM(4/i) 12 
ASM(8/i) 11 

17 18 22 22 21 
15 15 20 20 21 
13 13 18 19 20 
12 12 16 17 17 

11 12 12 
10 10 11 
10 11 11 
10 11 12 

20 26 32 
18 23 27 
15 20 23 
14 16 19 

CGK 13 14 16 28 35 47 11 12 13 26 36 50 
ILU(O) 60 84 81 59 41 27 
ILU(l) 38 53 51 34 22 15 
ILU(2) 31 46 42 28 19 13 

Upwind-i difference Method 
h = 10 50 100 500 10̂  10* 10 50 100 500 10̂  10* 
MSR(/i) 18 14 13 18 18 18 10 13 14 21 23 23 
MSR(2/i) 14 14 15 16 16 16 10 13 16 17 16 15 
MSR(4/») 12 13 14 13 12 12 9 12 12 12 12 12 
MSR(8/») 10 10 10 11 11 11 8 9 9 8 8 8 
MSM(/?) 9 9 8 7 7 7 7 9 9 10 11 11 
MSM(2/i) 8 8 7 7 7 7 7 8 8 9 9 9 
MSM(4/i) 7 7 6 6 6 6 7 7 6 6 6 6 
MSM(8/i) 5 5 5 5 5 5 5 5 5 5 5 6 
ASM(/i) 19 20 19 18 17 17 14 19 21 22 22 23 
ASM(2/*) 17 18 16 16 17 17 14 17 19 19 20 19 
ASM(4/i) 15 16 16 16 16 16 14 15 16 17 17 18 
ASM(8/i) 13 14 14 14 14 14 13 14 15 15 16 16 
CGK 17 22 25 41 47 49 16 23 38 41 50 60 
ILU(O) 82 61 50 23 16 6 
ILU(l) 51 36 28 12 9 4 
ILU(2) 42 30 24 11 8 4 
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11.4.2 The Helmholtz Equation 

We consider then the Helmholtz equation with constant coeiHcients and ho
mogeneous Dirichlet conditions: 

Lu = — Au — iJ^u. 

This problem is self-adjoint, but indefinite. The eigenvalues of the continuous 
equation are 

•w^ (11.16) Hi 

where i and j are positive integers and HQ is the side of i7. The number LO'^ is 
chosen so as to avoid having eigenvalues in a small neighborhood of zero (and 
thus making the problem nearly singular), but there may be several negative 
eigenvalues. 

Iteration counts are shown in Table 11.2 as functions of the overlap, for 
different partitions and different values of cj^. 

For slightly indefinite (small J^) problems, all methods exhibit the same 
behavior as when uj is zero (for which the problem is positive definite); con
vergence improves when the overlap is increased and iteration counts appear 
to be independent of the number of subdomains and the diameter of the fine 
mesh. However, when a; increases, iteration counts grow rapidly, unless a suf
ficiently fine coarse mesh is employed. This shows that a restriction on H may 
be required in practice, as predicted by Theorem 11.1. A finer coarse mesh 
(more coarse-mesh points per wavelength) is needed for this problem in order 
to counteract the higher wavenumber. However, to the best of our knowledge, 
no quantitative theoretical results are available, to predict this threshold value 
of if. 

The requirement for the coarse mesh to be sufficiently fine can be clearly 
seen for instance for MSM in the two entries with u^ = 300 with an overlap 
of 4/i; with H = 1/8 more than 100 iterations are required for convergence, 
while 9 suffice with H = 1/16. We note that the first choice ensures about 3 
coarse points per wavelength, while for the second, we have about 6. 

As for the other test cases, MSM provides a performance superior to MSR 
and ASM. We finally note that increasing overlap seems to degrade conver
gence in the strongly indefinite case, whereas it always improves the conver
gence of definite operators. The iterative substructuring method appears to 
be sensitive to w^ for H large, but it performs fairly well when the coarse 
mesh is sufficiently fine. 

11.4.3 A Variable-Coefficient, Nonsymmetric Indefinite Problem 

Our last test problem has variable (oscillatory) coefficients and is nonsym
metric and indefinite: 
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Table 11.2. Iteration count for solving the Helmholtz equation. The fine mesh size 
is uniform with 1/h = 128. 

w' = 0 30 70 110 150 300 0 30 70 110 150 300 
Methods H = 1/8 ff = = 1/16 
MSR(ft) 10 11 20 CO 00 00 6 6 6 7 21 00 

MSR(2/i) 7 7 16 c» c» oo 5 5 5 5 14 oo 
MSR(4/j) 6 6 14 oo oo oo 4 4 5 5 12 oo 
MSM(ft) 5 5 7 9 13 35 3 4 4 4 6 8 
MSM(2/i) 4 4 6 8 12 37 3 3 4 4 6 9 
MSM(4/») 4 4 5 8 13 >100 3 3 4 4 6 9 
ASM(/i) 11 12 14 19 23 62 8 9 9 10 11 16 
ASM(2/») 10 10 14 18 23 61 8 8 9 10 10 16 
ASM(4/i) 10 10 13 15 22 78 8 9 10 10 12 17 
CGK 11 13 18 25 31 80 10 10 12 14 16 23 

Of 1 On \ Of 1 On 
I/U = — 7— 1 + - sin(507r:r)7— — 7;- I 1 + - sin(507rx) sin(507ry)7— 

ax \ 2 ox J ay \ 2 ay 
OVJ OU 

+20sin(107rx) cosflOvri/)- 20cos(107ra;) sinflOTrj/)- 70w. 
ox oy 

The coefRcients of the second-order terms oscihate but remain negative. The 
coefHcients of the first-order terms physically represent a ten-by-ten array of 
closed convection cells, with no convective transport between cells. However, 
the subdomain boundaries do not in general align with the convection cell 
boundaries, so this zero-convective-flux property is not exploited. The op
erator L is discretized by the five-point central difference method. A fixed 
overlapping factor of 5/H = 0.25 in both x and y directions is employed in 
all overlapping methods. 

Iteration counts are shown in Table 11.3 for different partitions and dif
ferent fine meshes. This problem is difficult for all of the methods, but the 
iteration count for MSM is smaller than those of the others by almost a fac
tor of 2, or more. MSR diverges in all cases. For a fixed coarse-mesh size H, 
some methods tend to require fewer iterations when the fine mesh is refined; 
others require more. This behavior is believed to be related to the oscillatory 
coefRcients in the second-order terms of L. The discretization becomes more 
stable when h gets smaller relative to the coefficient oscillation wavelength. 

The nonoverlapping method CGK based solely on the diffusive terms of L, 
behaves reasonably well, probably because the magnitude of the convection is 
not large and averages to zero over the domain. 

For this variable-coefficient problem, the domain decomposition precondi-
tioners overwhelmingly outperformed the global ILU preconditioners for fine 
mesh sizes. 
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Table 11.3. Iteration counts for solving the variable-coefficient, nonsymmetric 
indefinite problem. 

h^ 1/32 
H = 1/4 
1/64 1/128 1/32 

H = l/8 H = 
1/64 1/128 1/64 

= 1/16 
1/128 

MSR c» 00 00 00 00 00 00 00 

MSM 15 15 14 16 15 15 10 10 
ASM 33 35 35 29 26 25 19 18 
CGK 38 37 37 33 30 33 22 24 

H=l 
ILU(O) 
ILU(l) 
ILU(2) 

44 
28 
22 

78 
44 
36 

312 
99 
76 

11.5 Additional Topics 

In this section, we provide some more details on certain domain decomposition 
algorithms for some important nonsymmetric or indefinite problems. We recall 
that the numerical results in the previous section showed that the abstract 
Schwarz theory is able to predict the performance of algorithms only in some 
situations, namely, normally when the indefinite part of the operator is a low-
order, small perturbation of the second order part and when the indefiniteness 
is mild- There are however important practical cases where these assumptions 
do not hold. Already the numerical results highlighted this fact. Thus, 

1. for convection-dominated problems (at least with convective fields with 
closed streamlines), the rate of convergence of some overlapping precondi-
tioners appears to be independent of possibly strong convection strengths 
and might be quite insensitive to the overlap, if a stable discretization 
method is employed (cf. Table 11.1); 

2. for highly indefinite problems, convergence may deteriorate when the over
lap is increased (cf. Table 11.2); 

3. multiplicative preconditioners can be dramatically better than additive 
ones for certain highly nonsymmetric or indefinite problems. 

In the following subsections, we will briefiy review some of the most popular 
domain decomposition preconditioners for some nonsymmetric or indefinite 
problems. A mathematical theory is mostly missing for these algorithms. We 
will not go into details but we will refer to appropriate references. 

11.5.1 Convection-DifFusion Problems 

Here, we consider the scalar convection-diffusion operator 

Lu = —vAu + 2b • Vu -|- cti. 
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with b a given vector field; cf. (11.2). We assume that the magnitude of b 
is much larger than the diffusion coefficient v, which, only for simplicity, is 
assumed to be constant. The ratio between |b| and P is proportional to the 
Reynolds number. 

We first recall that for moderate or high Reynolds numbers standard finite 
difference or finite element approximations need to be suitably modified; here, 
we only mention, among many others, the stabilized methods in [267, 207] and 
the discontinuous Galerkin methods in [276, 264]. We refer to, e.g., [391, ch. 8] 
and [140] for an introduction and additional references. In this review section, 
we will not go into details and will only consider standard finite element 
formulations, with the implicit understanding that in practice they must be 
replaced by a more appropriate approximation when the Reynolds number 
is moderate or large. While this does not present particular problems for 
stabilized methods that rely on continuous finite element spaces, the definition 
of the algorithms for discontinuous Galerkin approximations, which rely on 
discontinuous functions, is often far from trivial- In particular, we do not 
know that any iterative substructuring algorithm have been proposed, so far, 
for such discretizations. 

We have already shown in Sect. 11.4 that overlapping preconditioners may 
perform quite well even for large Reynolds numbers, at least for some types of 
flows. Dirichlet problems for the overlapping subdomains appear to be appro
priate in many cases. We refer to, e.g., Cai [99], Cai and Widlund [116, 117], 
Cai, Gropp, and Keyes [108], and Hebeker and Kuznetsov [254]. Different 
boundary conditions can also be employed for local problems in order to ac
celerate convergence; see, e.g., Garbey [216], Garbey and Kaper [217], for ad
ditional details and numerical tests. Overlapping methods for discontinuous 
Galerkin approximations of convection-diffusion problems have been consid
ered by Lasser and Toselli [307, 306] and analyzed by generahzing the tools 
developed in this chapter for conforming approximations. We note that over
lapping preconditioners for discontinuous Galerkin approximations of sym
metric, positive definite problems were previously developed and analyzed 
by Feng and Karakashian [202]. FinaUy, we recaU that restricted Schwarz al
gorithms have been employed for the solution of very large nonsymmetric 
problems; see Sect. 3.9. 

Standard iterative substructuring methods do not appear to perform well 
if convection is strong; cf. Table 11.1. Dirichlet problems do not appear to be 
entirely appropriate for iterative substructuring algorithms and certain types 
of flows. We note that Neumann problems are not appropriate either; indeed, 
a Neumann problem on a substructure Hi 

Lu = f in f2i, 
du 
dn on c?Oi, 

(11.17) 

corresponds to a variational formulation involving the bilinear form 
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bi{u,v) = / (ly'^u-Vv+ h-Vuv+ cuv)dx 

= / {lyVu-Vv + ic-V •h)uv)dx+ / h-nuvdS (11.18) 

+ (b • Vwf — b • Wvu) dx. 
JOi 

We note that the symmetric contributions, corresponding to the second hne, 
are all positive (semi)definite under the usual assumption that c — V • b is 
positive, except for the boundary term. Indeed, the sign of it depends on the 
angle between the outward normal and the flow field b and it can be neg
ative unless Neumann conditions are imposed only on the outflow part of 
the boundary, where b • n > 0- This shows that the local Neumann prob
lems, required by some algorithms, might not be appropriate for convection-
dominated problems; cf., e.g., the Dirichlet-Neumann algorithm in Sect. 1.3.3, 
or the Neumann-Neumann and FETI algorithms in Sect. 1.3.4 and and 1.3.5 
and Chap. 6. 

In view of these remarks, more general boundary conditions need to be 
considered in order to make local problems more stable or to accelerate con
vergence. We note that this is an idea that was already proposed in some very 
early works; see Hagstrom, Tewarson, and Jazcilevich [253], for a convection-
diffusion problem, and Lions [321] for the Laplace equation. One of the moti
vations of this early work was the fact that the original Schwarz alternating 
method, which employs local Dirichlet problems, cannot be used for nonover-
lapping partitions into subdomains. 

In this section, we review some of the methods specifically designed for 
convection-diffusion problems. Others, which rely on optimized interface con
ditions, axe mentioned in Sect. 11.5.3 below. A first class of methods rely 
on adaptively choosing the boundary conditions on the subdomain inter
faces according to the sign of b - n, in such a way that stable local problems 
are obtained. In particular, this gives rise to modifications of the Dirichlet-
Neumann algorithm in Sect. 1.3.3, such as the adaptive Dirichlet-Neumann, 
Robin-Neumann, and /? Robin-Neumann methods. We refer to Carlenzoli and 
Quarteroni [125], Ciccoli [138], Trotta [451], Gastaldi, Gastaldi, and Quar-
teroni [218] as well as to Nataf and Rogier [358] and Auge, Lube, and Otto 
[27]. 

A second strategy is to ensure that the local problems are coercive inde
pendently of the sign of b - n on the subdomain interface. This gives rise to 
different modifications of the original Dirichlet-Neumann algorithm for sym
metric, positive definite problems, such as the 7 Dirichlet-Robin and the 7 
Robin-Robin algorithms; see Alonso, Trotta, and Valli [14]. We also refer to 
[392, Chap. 6] for a fine presentation of these two classes of methods. 

A different approach, which has much in common with some of the previous 
works, is to generalize the Neumann-Neumann methods of Sect. 1.3.5 and 
Chap. 6, by suitably modifying the local Neumann problems in order to make 
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them positive definite. This, to the best of our knowledge, was originally 
proposed by Achdou and Nataf [7], and then extended by Achdou, Le Tallec, 
Nataf, and Vidrascu [2, 5]. Looking at the bihnear form in (11.18), we see that 
the possible indefiniteness and instability arises from the boundary term. We 
then form a new coercive bilinear form by subtracting the ofTending term: 

bi(u,v) = / (vVu-Vv + h-'Vuv + cuv)dx— / h -nuvdS. (11.19) 

This new bilinear form corresponds to the Robin problem 

(11.20) 
Lu = f in fij, 

du 
u——h b -nw = g 

on 
on dfli 

We note that similar Robin conditions had already been employed; see [392, 
Chap. 6] and the references therein. 

With this new bilinear form, we can now define a variant of the balancing 
Neumann-Neumann algorithm in exactly the same way as in Sect. 6.2; see in 
particular the hybrid operator in (6.10) and Sect. 6.2.2. The only difference 
is in the definition of the local components of the preconditioner, for which 
the pseudoinverses 5^*^^ the application of which amounts to solving local 
Neumann problems of the form (11.17), are replaced by solving Robin prob
lems as in (11.20). We refer to [2, 5] for details and some numerical results. 
Since this method generalises the Neumann-Neumann algorithm for symmet
ric problems, it is called the Robin-Robin algorithm. However, we note that it 
is a different algorithm than the 7 Robin-Robin method of Alonso, Trotta, and 
Valli [14]. For the case of two nonoverlapping subdomains, the latter involves 
the solution of two local problems with two different types of Robin conditions 
in the spirit of the Dirichlet-Neumann algorithm in Sect. 1.3.3, where different 
local problems are solved in each step, while the former involves the solution 
of four local problems; two Dirichlet problems followed by two others with 
the same type of Robin conditions in the spirit of the Neumann-Neumann 
algorithm in Sect. 1.3.4. 

The same type of coarse space as in (6.5) can be employed. We recall that 
it is constructed by taking one constant function for a floating subdomain 
and multiplying it by the scahng function Sf. A more effective coarse space 
is proposed in [2, 5]: 

Wo = span {Rf(5lvi)}, 

with Vi the solution of the adjoint of the Robin problem (11.20) with g = 0 
and / = 1. 

In the same spirit as the Robin-Robin method, a one-level FETI algorithm 
has been developed by one of the authors in [440]. The point here is that the 
discrete convection-diffusion problem can be written as a FETI saddle-point 
system by working in a space of functions that are discontinuous across the 
subdomain boundaries; cf. (6.27) in Sect. 6.3.1. Here 5 is a block diagonal 
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matrix where each block consists of the local Schur complement S'(') for the 
local Robin problem (11.20). When subassembling the local contributions, the 
Robin terms involving b • nw cancel at the subdomain interfaces. A FETI 
preconditioner can then be defined exactly as in Sect. 6.3.2; cf. (6.37). The 
coarse matrix R in (6.28) employs the local functions Vi of the Robin-Robin 
method: 7?̂ *̂  = Uj. Dififerent choices for the scaling matrix Q, needed for the 
construction of the projection P , have also been proposed and tested. We 
refer to [440], for details, numerical tests on various types of flows b , and 
comparisons with the Robin-Robin method. Since the local bilinear forms 
employed for the construction of the preconditioners are positive definite, 
modifications mentioned in Remark 6.7 need to be employed. 

11.5.2 The Helmholtz Equation 

We now consider the scalar model problem 

Lu := — Au — u)'^u = / in n, 
du . ^ ^^ (11.21) 
-—I- tu>u = 0 on as 2 
an 

in more detail We note that this problem is well-posed for every u because of 
the Sommerfeld boundary condition, which involves an imaginary coefficient 
iu; see, e.g., [268, 269]. The problem remains well posed if we replace iu 
by —iu). These boundary conditions are first order radiation conditions and 
are often replaced by higher order or nonlocal ones. Additional Dirichlet or 
Neumann conditions are usually considered on the boundary of scatterers in 
practical problems. 

Helmholtz type problems are particularly difficult to precondition effec
tively for two main reasons: 

1. in order to be effective, coarse solvers usually require a rather fine coarse 
mesh thus leading to potentially large coarse problems; 

2. in case local Dirichlet or Neumann problems are employed on the subdo-
mains, they may be close to singular and are not always appropriate for 
domain decomposition preconditioners. 

The first restriction can already be predicted by the analysis in this chapter 
and was seen in the numerical results in Sect. 11.4.2; cf. Table 11.2. Indeed, 
it is reasonable to assume that the coarse problem should be well-posed and 
this is ensured only if the coarse mesh is sufficiently fine; cf., e.g., [268, 269]. 
Concerning the second restriction, we note that to^ may be close to one of 
the eigenvalues of the Laplace operator with Dirichlet or Neumann boundary 
conditions; see (11.16) for the case of a square subdomain and a Dirichlet 
condition. We note that these eigenvalues scale like 1/Hf, with Hi the typical 
size of the subdomain and, even though the local problems can be made posi
tive definite by making the subdomain small enough (cf. Lemma 11.4), this is 
often impractical. For more general subdomains a formula for the eigenvalues 
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is not available and it is also impractical to determine them numerically. We 
finally note that in practice it is very unlikely that a local problem is singular; 
however, local problems that are close to singular may give rise to instabilities 
of domain decomposition algorithms and therefore slow the convergence. 

For these reasons, much of the effort has gone into making local problems 
more stable, in a spirit similar as for the convection-diffusion problems of 
the previous section. One of the first important contributions was given by 
Despres in his Ph.D. thesis [157]. We consider for simphcity the case of two 
nonoverlapping subdomains, J?i and J72, with an interface F, and modify the 
iterative method of Sect. 1.3.3; cf. Fig. 1.1. In terms of differential operators 
(see (1.2)), we can write, for n > 0: 

(H,){ 
rs n + 1 / 2 

ani 

—^ 1- liou, ' = —— 1- ^wuo on T, 
aril dn2 

( -Au^+^ - w^n^+i = / in fts 

{H2){ 

2, 

^ ^ ^ + iww"+i = 0 on On-i \ F, 
dn2 

^ " " ^ ^ , • n + l ^W""*"^^^ , n+1/2 T-

on2 on\ 
(11.22) 

Some remarks are necessary. First we note that on each subdomain, Helmholtz 
problems with boundary conditions of the form 

du 

are solved and they are therefore well-posed. In addition, in each fractional 
step different fluxes are matched on the interface F. The algorithms can 
therefore be regarded as a generalization of the Dirichlet-Neumann algo
rithm of Sect- 1.3.3. An additive version can also be considered- We refer 
to [157, 159, 158, 40, 41, 42] and [141, 142] for additional comments, exten
sions, and some theoretical results. Here we only mention that in the case of 
one dimensional problems, for which the transmission condition in (11.22) is 
exact, and N subdomains, the algorithm for the continuous problem converges 
in a number of iterations that is at most .A''. 

Overlapping methods that employ transmission conditions on the subdo
main boundaries have also been considered for Helmholtz problems. Here, 
we mention [103] and [350]. We also note that perfectly matched layers have 
been considered for the construction of stable local problems in [437]. We also 
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mention the two level method in [455], which employs an algebraic multigrid 
technique for the construction of a coarse problem. 

We end this section with the important FETI-H method, a generalization 
of the FETI method for Helmholtz type problems. This method was, to 

the best of our knowledge, originally presented in [196, 197]. The starting 
point is always an equivalent formulation of the discrete Helmholtz problem 
as a saddle point problem with continuity constraints across the interfaces of 
nonoverlapping subdomains; cf. (6.27) in Sect. 6.3.1. Here we do not eliminate 
degrees of freedom in the interior of the substructures (which would amount 
to solving potentially almost singular Dirichlet problems) but work with all 
degrees of freedom: 

where 

U2 
, / = 

/ 2 
, and A = 

/ A « 0 •-• 0 \ 

0 A(2) •-. ; 

\UNJ [fN) : ' • . '•- 0 

\ 0 -•• 0 A(^^J 

The local problems Â *) are chosen in such a way that they are invertible by 
employing suitable radiation or transparency conditions for the construction 
of the local problems A^*). We must ensure, in particular: 

1. that the local problems are invertible (cf. the boundary conditions in 
(11.21)); 

2. that after subassembhng, the original discrete Helmholtz problem be re
covered (and consequently any additional terms in the local bilinear forms 
on the internal subdomain boundaries must cancel). 

We also recall that a Sommerfeld condition as in (11.21) leads to a well-
posed problem with either a plus or a minus sign employed on the subdomain 
boundary, but not necessarily with different signs on different parts of the 
boundary of the same domain. 

The discretization of the following local problems are therefore employed 
for the local matrices A^*): 

—Au — (jj'^u = / in fij, 

-r—\-%eiijOU = a onaUi. 
on 

We assume that on dOi fl dQ the same boundary condition as for the original 
problem is employed. The coefficients ei is either —1 or 1 and must be chosen 
in such a way that, if two subdomains Qi and Qj have a common interface, 
gj = —£j on that interface. With this restriction however, it is not possible 
to choose £i strictly positive (or strictly negative) on the whole of dQi for 
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a general subdomain partition. If a sign conflict cannot be resolved on the 
interface between two subdomains, then Si = Sj = 0 must be employed. In 
this way, it is possible to choose ê  > 0 (or Si < 0) in such a way that it does 
not vanish on at least a subset of df^i with nonvanishing measure. We refer 
to [196, Fig. 2] for an illustration. 

Once we have ensured that the local matrices are invertible, we can elimi
nate the primal variable u and obtain an equation for the Lagrange multipliers: 

FA = d. (11.24) 

The surprising fact is that when a Krylov type method is employed for the 
system (11.24) without any preconditioner, the rate of convergence is inde
pendent of the diameter of the fine mesh h; see [196, Sect. 3.2]. However, 
it depends on the number of subdomains and the frequency u. A suitable 
projection P onto a coarse space is therefore employed: 

P'^FPX = P'^d, X = Xo + PA, Ao = (/ - P)A. 

The coarse space is spanned by the columns of a matrix Q. We have 

P = I - Q(Q^FQ)-^Q^F, Ao = Q{Q^FQ)-^Q^d, 

and the application of P and P^ requires the solution of a coarse problem. 
Instead of using simple coarse functions built from constant functions on the 
subdomains, as in the original one-level FETI method, plane waves are em
ployed, which help reduce the size of the coarse space; if Ng is a number 
of angular directions in the plane, the column Q^^^ of Q corresponds to the 
function 

exp{iu(x cos9j + y sinOj)), Oj = 27r(j - 1)/Ng, 1 < i9 < iV .̂ 

The generalization to the three dimensional case is straightforward. 
When the projected operator P'^FP is employed without any additional 

preconditioner, the rate of convergence is found to be independent of h, the 
number of subdomains, and the wave number oj, in many practical problems. 
We also refer to [196] for details, additional comments, and numerical tests. 
We also note that the choice of the Krylov type method appears to play an 
important role; see [196, 327]. FETI-H algorithms have been employed for 
the solution of very large problems; see, e.g., [196, 197, 228, 256]. We also 
refer to [152] for an earlier FETI method which employs two sets of Lagrange 
multipliers. 

11.5.3 Optimized Interface Conditions 

The basic idea of optimized interface conditions is to solve an optimization 
problem for the interface condition in order to maximize the rate of conver
gence of a domain decomposition iteration. To the best of our knowledge, this 
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was first proposed by Tan and Borsboom [434]. The connection that was later 
made between interface conditions in domain decomposition and absorbing 
boundary conditions for propagation problems made the optimization prob
lem tractable and solvable. A typical approach consists in choosing higher 
order boundary conditions involving a certain number of coefficients, which 
are then determined by solving an optimization problem. The parameters need 
to be computed at the interface nodes. The optimization procedure can be 
considered either at the continuous or at the discrete level. 

One of the first applications in this direction was to convection-difTusion 
problems and is due to Japhet in her Ph.D. thesis [271] and to Japhet, Nataf, 
and Rogier [273]; see also [272, 274]. 

Other applications of optimized interface conditions have been made for 
the Laplace equation by Engquist and Zhao [187], for Helmholtz problems by 
Chevalier and Nataf [135], Gander [212], Gander, Magoules, and Nataf [215], 
for flows in porous media by Wiflien, Faille, Nataf, and Schneider [468], for 
Navier-Stokes equations by Lube, MiiUer, and Miiller [322], for sedimentary 
basin modeling by Faille, Flauraud, Nataf, Schneider, WiUien [190], for evo
lution problems by Gander and Halpern [214], and for systems of equations 
by Dolean, Lanteri, and Nataf [166]. See also Japhet, Nataf, and Roux [274], 
Genseberger [219], and Gander and Golub [213], for additional references. 

11.5.4 Nonlinear and Eigenvalue Problems 

We end this section by briefly mentioning some applications of domain de
composition preconditioners to the solution of some nonlinear problems. We 
stress that the references given here are only a small part of the work that is 
available; the interested reader should look at the proceedings of the annual 
domain decomposition conferences for a broad overview of applications; see, 
e.g, [56, 338, 304,130,155, 255, 297]. One of the first apphcations to nonlinear 
problems was carried out in [253]. 

The solution of an algebraic nonlinear problem arising from the discretiza
tion of a nonlinear partial differential equation using a Newton method re
quires the solution of a linear system with a Jacobian matrix in each step. 
In order to do so, a Krylov type iterative method can be employed together 
with a domain decomposition (Schwarz) preconditioner. The overall proce
dures are commonly referred to as Newton-Krylov-Schwarz algorithms and 
have now been used quite extensively for the solution of large scale problems. 
Here, we mention applications to compressible flows by Cai, Gropp, Keyes, 
Melvin, and Young [109], Kaushik, Keyes, and Smith [277], Anderson, Gropp, 
Kaushik, Keyes, and Smith [19], Gropp, Kaushik, Keyes, and Smith [239], 
Sala [408], to time-dependent problems by Cai, Keyes, and Venkatakrishnan 
[113], and to some reacting flow problems by McHugh, Knoll, and Keyes [349]; 
see also Lee and Yu [311]. 
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The general framework of Newton-Krylov-Schwarz algorithms was first in
troduced by Cai, Gropp, Keyes, and Tidriri [110]. Some theory was developed 
by Cai and Dryja [105], and Dryja and Hackbusch [175]. 

Nonlinear preconditioning strategies have also been proposed more re
cently in the domain decomposition context by Cai and Keyes [111], followed 
by Cai, Keyes, and Marcinkowski [112], and Cai, Keyes, and Young [114]. We 
note that the idea of nonlinear preconditioning had been already employed in 
the multigrid context; see, e.g., [82, 251]. 

Contact problems have also been solved efficiently using domain decompo
sition algorithms. In particular, the inequality constraints that appear in these 
problems can be dealt with using modifications of FETI methods. Here, we 
only mention Dostal, Friedlander, and Santos [167], Dostal, Gomes Neto, and 
Santos [169, 168], and Dostal and Horak [170]. Different domain decomposi
tion preconditioners for contact problems have been considered by Barboteu, 
Alart, and Vidrascu [36], and Alart, Barboteu, Le Tallec, and Vidrascu [13]. 

We also mention Zou and Huang [482], Xu [473], Tai [431], Tai and Espedal 
[432], Earth, Chan, and Tang [37], Abdoulaev, Achdou, Hontand, Kuznetsov, 
Pironneau, and Prud'homme [1], Palansuriya, Lai, lerotheou, and Pericleous 
[370], Tai and Xu [433], and Lui [323, 325, 324] for some other results or 
applications for nonlinear problems. 

Many problems in structural mechanics require the solution of large eigen
value problems. Domain decomposition algorithms, for an underlying positive 
definite problem, are often combined with a Lanczos or block Lanczos method. 
There are other alternatives such as the method of component mode synthe
sis, which has been analyzed systematically by Bourquin; see, e.g., [66, 67]. 
An even more accurate method is due to Bennighof and Lehoucq [43]. 



Elliptic Problems and Sobolev Spaces 

In this appendix, we present, mostly without proof, some standard results 
about elliptic problems and Sobolev spaces. We only discuss results that are 
employed in this monograph and we refer to [361, 317,8] for more rigorous and 
thorough treatments of these topics. We also refer to [391, Ch. 1] and [48, Ch. 
1] for concise introductions. For simplicity, we will only present definitions for 
real-valued functions; the definitions can easily be extended to the complex-
valued ones. 

A.l Sobolev Spaces 

Here and in the following, we assume that J? C R" is a Lipschitz domain, i.e., 
a bounded open set with Lipschitz continuous boundary; see, e.g., [317, 8]. 

Definition A . l . The boundary dO is Lipschitz continuous if there exists a 
finite number of open sets Oi,i = 1,... ,m, that cover dO, such that, for every 
i, the intersection dQ fl Oi is the graph of a Lipschitz continuous function and 
Qr\Oi lies on one side of this graph. 

We recall that for a Lipschitz domain it is possible to define a unit outward 
normal n almost everywhere ondQ. 

The space of square-summable functions on Q is defined as 

L'^{Q) = lu: Q^^\ I \ufdx<oo\. 

It is a Hilbert space with the scalar product 

(w,-u)_t,2(̂ ) = uvdx 

n 

and an induced norm given by 
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Il«lli2(f?) = {U,U)L^(Q) = / \ufdx. 

We introduce the space !>(]?) = CQ'^Q) consisting of functions in C°°{(}) 
with compact support in J?. Given a muhi-index a = ( a i , . . . , a„) with \a\ = 
«! + . . . + «„, we define the derivative 

dMu 
D"u = d"! ...d"-u:= it 1 vC ̂  

d"^Xi...d"^Xn 

If a = ( 0 , . . . , 0), we mean D"u = u. 
We define a pseudo-topology in !)(/?) and say that a sequence {Un} C 

X>(i7) converges if there exists a function u £ I'(/2) such that the supports 
of the {un} are all contained in a compact subset of J? and their derivatives 
{£>"«„} of any order converge uniformly to D"u. The space of distributions 
2?'(J7) is the dual of T>{Q), i.e., the space of the linear functionals on V{Q) 
that are continuous with respect to the pseudo-topology just defined. We note 
that we can associate a distribution with every w € i^(i?), still denoted by u 
and defined by 

(«,^) = / U(j)dx, (f>^'D{fi), 

o 

where (-,•) denotes the duality pairing between V{Q) and T>{Q). 
Given a multi-index a and a distribution u, we can define its derivative 

D^u e V'{Q) by 

{D"u,4>) = {-l)\"\{u,D"4>), 0€2?(/2). 

We are now ready to define the Sobolev space H^{Q) for any integer fc > 1. 
A function u belongs to H^{n) if, for every multi-index a, with \a\ < k, there 
exists Ua € L?{fi), such that 

(D"tf, ^) = j Ua4>dx, 4> e V{n). 

We can then identify D'^u with «„• The space H^^Ct) is a Hilbert space with 
the scalar product 

\a\<k 

and an induced norm || • ||jj*3(j7) given by 

\a\<k Q 

A seminorm | • \H^(^Q) is given by 

file:///ufdx
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MHHn)= J2 Jl^^ufdx. 

In case fc = 1, we can write 

I Il2 II ||2 I I |2 II ||2 

with 

The space iJ*(J7) can also be defined for any real number s > 0. We do not 
enter into details but refer to, e.g., [317, 8] for a complete treatment. Among 
the many possible (equivalent) definitions, we choose one that employs the 
K-interpolation method. Let X C Y he two Hilbert spaces with continuous 
embedding. For u eY and t > 0, we define 

K{t,u;X,Yf= inf {|Kllx+*^IKIIy}. UQEX, meY. 

An interpolation space can be defined for 0 G [0,1] as 

[X,Y]e = {ueY\ r'-^+^Z''^ K{t,u;X,Y) e L^{0,oo)} 

with a norm given by 

/•C» 

| |M||2 = | | ^ | | 2 , + / f-{29+l) ^ (^^ y. x^ y )2 dt. 

Jo 

[X,Y]g is a Hilbert space. We have 

Xc[X,Y]oCY, 

with [X, Y]ff coinciding with X or y if 6* = 0 or 0 = 1, respectively. 
Let now fci > fe be two non-negative integers and let s = (1 — 0)fci + Ok-z, 

6»e [0,1]. We then define 

with the norm 
llftllffoCr?) = \W\\[H''l(a),H''2(Q)]g', 

see, e.g.. Sect. 1.9 and 1.15 in [317]. This definition is independent of ki and 
fe and depends only on s. In addition, for the case of integer s it gives the 
Sobolev spaces of integer order previously defined and an equivalent norm. 

An equivalent intrinsic norm defined in terms of integrals over H can also 
be found for Sobolev spaces of fractional order as stated in the following 
lemma. 
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Lemma A.2 Let a G (0,1). Then, the norm 

with the seminorm 

provides an equivalent norm in H'^{Q). Let s > 0, with [s] the integer part of 
s and a = s — {s\. Then, an equivalent norm in H'^{Q) is given by 

/ \ i / 2 

(A.2) 

with the seminorm 

I ,2 _ sr f f \DM^)-DMy)? 

For simplicity, we employ the same notation for the equivalent interpolation 
norms and the intrinsic norms defined in (A.l) and (A.2). 

We define HQ{0) as the closure of X>(i?) in H^{Q). One can prove that 
HQ{Q) is a proper subspace of H^{fi) if and only if s > 1/2: 

lH^{Q)=H\Q), s < l / 2 , 
\H^{Q)^H^{f2), s > l / 2 . 

For a discussion of the case s = 1/2, see, e.g., [351, Page 106]. 

Remark A.3. If /? is a proper subset of J?, relatively open with respect to J?, 
and s is a non-negative number different from an integer plus 1/2 (in partic
ular, from 1/2), then the space HQ{Q) coincides with the space of functions 
on fi such that their extension by zero to Q belongs to H^{fi). 

Let now s be a non-negative real number. We define the space H~^{fi) as 
the dual space of H^(n), i.e., as the space of continuous linear functionals on 
HQ{Q). Given a functional u e H~^{0) and a function v e HQ{Q), we denote 
the value of u at v by {u,v). The space H~^{fi) is then equipped with the 
dual norm 

ll-^ l̂lif-Ci?) = sup -r— . 
veH^{n) \\v\\H'(n) 

The following properties hold. 

Lemma A.4 The space C°°(i?) is dense in H^{Q) for every s £^. In addi
tion, if s\_ < 82 are two real numbers, then H'^^ (/?) is continuously embedded 
and dense in H'^^ {Q). In particular, there exists a constant depending only on 
Q, si, and S2, such that 
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l|-w||ff''i(f?) < C \\U\\H'2(O), U e H'^n). 

For every non-negative integer k, the embedding H''^^{fl) c H''{fi) is conn-
pact. 

If C"'{/?) is the space of continuous functions in fi endowed with the max
imum norm, we have the following regularity result. 

Lemma A.5 Let Q C R" he a hounded Lipschitz domain. If s > n /2 , then 

H'{n) c C0{7?) 

and the embedding is compact. 

The space LP{Q), for p > 1, is defined as 

U>{Q) = {u: n^^\ [ \u\Pdx<oo\. 

It is a Banach space with norm 
i/p 

\u\\Lp(n) = ( / \u\''dx 

As before, for p = 2, H^{0) = W^''^{fi), s € R, we can define the spaces 
W^''P{0). For a non-negative integer A; and p = oo, VF^'°^(J?) is the space of 
functions that are bounded together with their derivatives up to order k. 

We can also define spaces of vector functions: H'^{Q)'^ is the space of vector 
functions in R" such that each component belongs to H\(2). Scalar products 
and norms can be defined in a straightforward way. 

A.2 Trace Spaces 

In this section, we define some Sobolev spaces on a, set F C dfl. If dO is 
Lipschitz continuous, integrals over dfi can be uniquely defined using a par
tition of unity relative to the covering {Cj} and systems of local coordinates 
on {dfi n Oi}-., see Definition A.l. We refer to [361, Sect. 3.1] for details. We 
can then define the space H^{dQ), s > 0, consisting of functions on dQ, such 
that 

i i i i O i i i i 2 I i 2 

with the seminorm 

and a = s — [s]. 
The following two lemmas can be found in [237]. 
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Lemma A.6 Let Q he a Lipschitz region and let s > 1/2. Then, the operator 
7o : C°°{n) -)• C°°{dQ), mapping a function into its restriction on the bound
ary, can he extended continuously to an operator 70 : H^{fi) -)• H^~^/'^{dfi). 

Lemma A.7 With the same assumptions as in Lemma A.6, there exists a 
continuous lifting operator TZQ : H^~^/'^{dQ) -^ H^{Q), such that 7o(7?ow) = 

The previous definitions and properties can easily be generalized to a 
proper subset F C dD with non-vanishing (n — l)-dimensional measure and 
which is relatively open with respect to dD. 

The space H^{Q) defined in the previous section coincides with the kernel 
of 70 for 1/2 < s < 3/2. For larger s, it consists of functions that vanish on dfi 
together with some additional derivatives. Similarly as in Lemmas A.6 and 
A.7, one can define a trace on T c dfi, of positive measure, as a continuous 
operator from H^{[}) onto H^-^/'^{r). For 1/2 < s < 3/2, we denote the 
subspace of H^{fi) of functions that vanish on F by H^{0, F). 

Since dfi has no boundary, H^{dO) coincides with H^{df}), for an ar
bitrary s > 0, where the former is defined as the closure of 2?{5J7), the 
space of C°° functions on dO with compact support- The Sobolev space 
H~^{dQ), s > 0, can be defined as in the previous section, as the dual space 
oiH^{dn)=H'{dQ). 

Even if J" is a proper subset of dfl, H^{F) coincides with H^(r), for 
s < 1/2. However the extensions by zero of functions in H^^'^F) = H^/'\F) 
do not in general belong to H^/'^{df2). We therefore define the space 

HII;\F) = {ue H^/'\F) I Su e H^l'\dfi)}, 

where £u is the extension by zero oiuto df2. We have the following lemma. 

Lemma A.8 Let F C dfl. Then, HQQ (F) coincides with the interpolation 
space [H^(F),L'^(F)]i/2. With 

Mn'^i^r) '•= \M[Hi{r),L'^(r)U,^, 

there then exist constants, such that, for u € HQQ (F), 

Remark A.9. Hue H^f'^{dQ) vanishes almost everywhere on dfi \ F, then 
Lemma A.8 ensures that 

ll''̂ llifi/2(9i?) and ||'u||̂ i/2^j^-j 

are equivalent norms. In addition, the immersion HQQ (F) C H^^^{F) is con
tinuous: 
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l|w||_H-i/2(r) < I|w||jji/2(9f2) < C'll-ull^i/a^^^, 

as it can easily be seen by using the definition of the iJ^/^-norm. It is also 
straightforward to show that, even though u vanishes on dfi \ F, the semi-
norms \u\jji/2rQQ\ and \u\jji/2fj;^\ are not equivalent and the former cannot be 
bounded from above by a multiple of the latter. 

The dual space of Hl[\r) is denoted by H^Q^^{r). We note that smce 
Fo^^Cr) coincides with H^/^{r), H-^/^{r) is a proper subset of H~^''\r). 

The Green's formula can be generalized to functions in H^{Q)'^. 

Lemma A.IO For u G H^{Q)^ and v € H^{0), we have 

/ {'V-u)vdx+ / u-Wvdx= / {u-n)vdS. 
Jo Jn Jdo 

A.3 Linear Operators 

Let X and Y be two Banach spaces with norms \\-\\x and || • | | r , respectively. 
We define C{X, Y) as the space of linear continuous operators from X into Y. 
The space C{X, Y) is a Banach space endowed with the operator norm 

ll̂ ll = ll̂ lk ,̂F) = sup M k , Ae£(x,y). 
u£X\{0} \\U\\X 

We recall that a finear operator is continuous if and only if it is bounded. We 
also note that linear functionals are particular linear operators defined from 
a Banach space X into C. We use the notation X' = C{X, C). 

The following lemma provides a useful tool for the proof of certain bounds 
in intermediate spaces. 

Lemma A . l l Let X and Y he two separable Hilbert spaces such that X is 
continuously embedded and dense in Y. Let the same properties hold for a 
second pair of Hilbert spaces X and Y. If 

A € /:{X,X)n£(Y,Y), ax = WM^^x^jij, ay = \\^\\C(Y,Y)^ 

then, for $ G [0,1], A belongs to £{[X,Y]0,[X,Y]0), with 

\\M£.([X,Y]s,[X,Y]e) ^ "'X "'Y-

A.4 Poincare and Friedrichs Type Inequalities 

Poincare and Friedrichs type inequalities provide powerful tools for the anal
ysis of variational problems, finite element approximations, and domain de
composition methods. These inequalities derive from the following general 
result. 
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Theorem A.12 Let O cMP be a bounded Lipschitz domain and let fi, i = 
1,. ..,L, L > 1, be junctionals (not necessarily linear) in H^{Q), such that, 
if V is constant in Q, 

L 

8 = 1 

Then, there exist constants, depending only on i? and the junctionals ji, such 
that, jorue H^{0), 

L 

M\hin)<Ci\u\%.^^a) + C2Y.\ji{u)\\ 
j = i 

Despite the generality of this theorem, its proof is a simple application of 
Relhch's theorem and can be found in [361, Th. 7.1]. We also remark that it 
is vahd for certain more general domains and functionals; see [361, Sec. 7.1]. 

Lemma A.13 (Poincare inequality) Let u 6 H^{Q). Then, there exist 
constants, depending only on Q, such that 

'Wh-^iQ) < Cil'"ljji(i?) + ^ 2 

Prooj We only need apply Theorem A.12 with L = 1 and the hnear 
functional 

/i(w) = I udx. 
n 

D 

Lemma A.14 (Friedrichs inequality) Let F C dfi have nonvanishing 
(n — l)-dimensional measure. Then, there exist constants, depending only on 
Q and F, such that, jor u G H^{0), 

M\l\n) < Ci\u\]j^Q) + C2\\u\\l^r)-

In particular, ij u vanishes on F, 

and thus 

Mm(n) < M\m{n) < i^i + 1) Mmin)-

Prooj We need only apply Theorem A.12 with L = 1 and ji{u) = 
| |« | | i ,2(r)- Q 

The following corollary can be obtained by simple scaling arguments: 
More precisely, it can be obtained by mapping the domain i?, of diameter H, 
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into Q, of unit diameter, by an isotropic dilation. One can then employ the 
previous results for fi: mapping the functions back into J? gives an exphcit 
dependence on H. The constants in the estimates depend only on /?, i.e., the 
shape of Q. 

Corollary A.15 Let fl be Lipschitz continuous with diameter H. Then, there 
exists a constant Ci, that depends only on the shape of i? hut not on its size, 
such that 

II^IL2(j?) <CiH \u\jji(^n), 

for u e H^{fi) with vanishing mean value on fl. Similarly, if F c df2 is 
defined as in Lemma A.I4 and has a diameter of order H, then 

WLHQ) <C2H |w|jji(^-) +C3H\\u\\^2(_py 

forueH^(n). 

Remark A. 16. We note that Lemmas A.13 and A.14 axe not valid in general 
for non Lipschitz domains, as can easily be seen by considering a domain 
which is the union of two triangles with only a vertex in common. 

In the analysis of some iterative substructuring methods, we need some 
inequalities involving functions on the boundary. The following result can 
easily be proven using Theorem A.12 and the operators 70 and TZQ of Lemmas 
A.6 and A. 7. A similar result holds in two dimensions. 

Lemma A.17 Let J? C M be a Lipschitz continuous polyhedron and let fi, 
i = 1,...,L, L > 1, be functionals in H^/'^{dfi), such that, if v is constant 
on dfi, then 

E 1/̂ (̂ )1'= 0 ^ ^ = 0-
i = l 

Then, there exist constants, depending only on i? and the functionals fi, such 
that, for ueH^/^idn), 

L 

i = l 

A similar result holds if dQ is replaced by one of its faces T. Consequently, 
there exists a constant C4, that depends only on the shape of fi hut not on its 
size, such that 

Il^lli2(9fi) ^ C'4ii"|u|jji/2(g^), 

if u ^ H^/'^idf}) either has a vanishing mean value on dfi or belongs to the 
closure of the space ofC°°{df2) functions that vanish on a face of f2. Similarly, 
ifJ-'C df} is one of the faces of Q of diameter H, then there exists a constant 
C^, that depends only on the shape of T but not on its size, such that 
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ifu e H^/'^{T) either has a vanishing mean value on T or belongs to HQ(^ (T). 

We end this section with the following theorem. 

Theorem A.18 (Poincare inequality) Let H C M" be a bounded Lipschitz 
domain and V be a closed subspace of H^{Q) that contains Po(/2), the space 
of constant functions on Q. Let W be a Hilbert space with a norm \\-\\w and 
let 

B:V -^W, 

be a bounded linear operator, such that 

Bv = 0, ve Fo(n). 

If 
\\Bu\\w < \\B\\\\u\\Hi(n), ueW, (A.3) 

then 
\\Bu\\w < \\B\\CQ \u\H^n), ueW, 

where Cn depends only on the domain fl, but is otherwise independent of 
u, B, and of the spaces V and W. The theorem remains valid if H^{f2) is 
replaced by H^/^{dfl) or H^'^{T), with T a face of fl. 

Proof. Let u €V and let UQ be its mean value on J?. Lemma A. 13 ensures 

WBuWlr = \\B{u - u^Wy, = WBnC + l)\u\j,^ (i?)-

For the spaces of traces, Lemma A.17 can be employed. D 
The previous result is employed extensively in this monograph. We also 

refer to it as a Poincare inequality, of which it is a direct consequence. It 
basically states that if the left hand side of the inequality (A.3) does not change 
if we add a constant to u, then the norm on the right hand side can be replaced 
by the seminorm. Since the norms we employ are mainly defined by integrals, 
an additional scaling argument usually provides an explicit dependence of the 
constants on the diameter of i?. 

A.5 Spaces of Vector-Valued Functions 

In this section we introduce some Sobolev spaces of vector-valued functions. 
We mention, e.g., [223, 151, 95, 354] as general references for this material. 
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A.5.1 The Space ia"(div; /?) 

Given a vector function u G K", n = 2,3, the divergence operator is defined 
as 

divu = V-u = ^ g i , (A.4) 

where Ui is the i-th component of u. The space iJ{div; J?) consists of square-
integrable vectors, with square-integrable divergence. It is a Hilbert space with 
scalar product and graph norm defined by 

(u,v)div;fi= / u-\dx+ / divudivvrfa;, ||u||divi? = {u,u)div;r2. 

Given a vector u € iJ(div; J?), it is possible to define its normal component 
u • n on the boundary dQ; see [223, Ch. I, Th. 2.5 and Cor. 2.8]. 

Lemma A.19 Let Q he Lipschitz continuous. Then, the operator 
7„ : C°°{Q) —>• C°°{dQ), mapping a vector into its normal component on 
the boundary, can he extended continuously to an operator 7„ : i/"(div; Q) —>• 
H~^/'^{dQ). In addition, there exists a continuous lifting operator Tin : 
H-^/\dn) -^ H{div;n), such that'yn{1ln<l>) = <l>, <f> e H-'^l'\dn). The 
following Green's formula holds: for u e iT(div; i?) and q € H^{Q), 

/ u • grad5dx + / divugc?x = / u - n q d S , 
Jn JQ Jdn 

where the integral on the right hand side is understood as the duality pairing 
hetween H~ 2 [dQ) and H 2 {dQ). 

The subspace of vectors in if (div; J?) with vanishing normal component 
on dfi is denoted by ifo(div; J?), the subspace of vectors in iJ(div; J?) with 
vanishing divergence by iI(divo; J?): 

F(divo; /?) = {u e i7(div; /?), divu = 0}, 

and the subspace of vectors in iJo{div;J7) with vanishing divergence by 
Fo(divo;/?) 

iJo(divo; i?) = {u e iIo(div; J?), divu = 0}. 

The space L^(J?)" has the following orthogonal decompositions, see [151, vol. 
3, p. 215, Proposition 1], 

L^ifl)'' = H{divo; ^ ) © gradH^in), (A.5) 

L2(/?r = Ho{divo;0)(BgradH\n). (A.6) 

These decompositions are the generalization of the Helmholtz decomposition 
for a smooth vector into a divergence-free and a curl-free part. 
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Since H{diy; Q) C L^(J?)"', the decompositions (A.5) and (A.6) give rise 
to an orthogonal decompositions of H{dw; J?) and iJo(div; i?), into the kernel 
of the divergence operator and its orthogonal complement: 

i l (div; n) = iI(divo; /?) 8 -H"^(div; /?), (A.7) 

Ho(div; /?) = iJo(div o;f^)®H^(div; /?), (A.8) 

where 

H^idiy; /?) = ii"(div; /?) n gradH^{n), 

H^idiY; n) = Ho(div; /?) n gradiJ^{J?). 

We stress the fact that (A.7) and {A.8) are orthogonal both with respect to 
the {•,-)L^(O) and (^Odivif? inner products. The decompositions {A.7) and 
(A.8) ensure that 

\MLHQ)- < Co | |divu||i2(^), u e if^(div;/2) UH-o^(div; J?). (A.9) 

A.5.2 The Space H{cvirl;i2) in Two Dimensions 

We now consider the case i? C R . Given a scalar function q and a vector u, 
the vector and scalar curl operators are defined, respectively, by 

f dq dq 
\OX2 OXi 

and 
dU2 dUi /A i n \ 

curlu = ^—. {A.IO) 
OXi 0X2 

The space i l (curl ; i?) consists of square-integrable vectors, with square-
integrable curl. This is a Hilbert space with scalar product and graph norm 
defined by 

(U,v)cur l ; i2 = / U • V d x + / CUrl U CUrl V, d x , | |u | |^url ; i? = ( U , u ) c u r l ; i ? . 

We define the unit tangent vector t on the boundary dO by 

t = {-n2,ni). 

For a generic vector u, its tangential component on the boundary is 

u • t = n X u. 

By using the definitions (A.4) and {A.IO), we have the following result. 

Lemma A.20 A vector u = (MI , W2) belongs to iJ(curl; J?) if and only if the 
vector V = (—•U2,wi) belongs to iJ{div; Q). In addition, 

V • n = —u • t. 

file:///MlHQ)-
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It is then clear that, using the results for H(div; i?), for u G -H'(ctirl; J?), 
it is possible to define its tangential component on the boundary; see also 
[223, Ch. I, Th. 2.11]. 

Lemma A.21 Let i} c M. be Lipschitz continuous. Then, the operator 
'jt : C°°(J?) -^ C°°{dO), mapping a vector into its tangential compo
nent on the boundary, can be extended continuously to an operator 7t : 
iJ(curl; J7) —>• H~^/'^{dfI). In addition, there exists a continuous lifting oper
ator -Rt : H-'^/'\dn) -)• i l(curl; r?) such that 7i(7^t(/)) = ^, 0 € H-'^/^{dn). 
The following Green's formula holds, for u e iT(curl; J?) and q G H^{0), 

/ curl uqdx 
Jn 

/ u• curlqdx = I u-tqdS, 
Jn Jdn 

The subspace of vectors in i J (cur l ; J?) with vanishing tangential compo
nent on dD is denoted by iJo(curl; i?), the subspace of vectors in H(curl; i?) 
with vanishing curl by iJ{curlo; J?), and the subspace of vectors in iTo(curl; J?) 
with vanishing curl by iJo(curio; ^)-

Since iJ(curl;J7) c ^^(i?)" and gradiJi{/?) c H(curl; 17), the decom
positions (A.5) and (A.6) give rise to the following orthogonal decompositions 
of iJo{curl; J?) and iJ{curl; J7), 

iJo(curl; /?) = gradiJoH^) ® -H'o"^(curl; J?), 

if (curl ; J?) = gradiJ^(r?) 8 i l ^ ( c u r l ; J7), 

(A.11) 

(A.12) 

where 

iJo-^(curl; /?) = i7(divo; O) n iJo(curl; /?), 

H-^ (curl •,n)=Ho (div o; ̂ ) H ii"(cvirl -,0). 

(A.13) 

We note that (A.ll) and (A.12) are orthogonal both with respect to the 
(•? •)L^(O) and (•, •)curi ;f? inner products, and that they are valid also for n = 3; 
see Sect. A.5.3. 

A.5.3 T h e Space i J ' ( c tu ' l ; ^ ) in Three Dimensions 

We will now consider the case /? C 
operator is defined by 

ciu-l u = V X u = 

Given a vector u, the vector curl 

dus 

dX2 

dU2 ' 

dX3 

dui 
dxs 

dus 
dxi 

dU2 

dxi 
dui 

dX2 . 



350 A Elliptic Problems and Sobolev Spaces 

The space iT(curl; Q) consists of square-integrable vectors, with a square-
integrable curl. This is a Hilbert space with scalar product and graph norm 
defined by 

(U,v)cur l ; f? = / U-wdx+ CUrl U • CUrl V, rfa;, | | u | | ^ u r i . ^ = {u ,u ) cu r l ; f 2 . 

We remark that we will use the same notation i l (curl ; J?) for the space in 
two and three dimensions. 

The tangential component of a vector u on the boundary dfi is defined by 

ut = u — (u - n)n = {n X u) X n. 

Since |ut| = |n x u|, the vector u has vanishing tangential component if and 
only if n X u = 0. With an abuse of terminology, we will also refer to n x u 
as the tangential component in this monograph. 

Given a vector u 6 iJ{curl;J7), it is possible to define its tangential 
component n x u on the boundary; see, e.g., [223, Ch. I, Th. 2.11]. 

Lemma A.22 Let I? c M be Lipschitz continuous. Then, the operator -yt '• 
C°°{QY -^ C°°{dQY, mapping a vector into its tangential component on the 
boundary, can be extended continuously to an operator jt '• i?(curl; H) —>• 
iJ-i/2(5/2)3_ jyjg following Green's formula holds, for u € H{curl;£2) and 

/ curlu--vdx — I u • curl-vdx = (n x u) - vdS. 
JQ JQ Jdn 

Thus the operator 7^ is continuous, but it is not surjective. The space of 
tangential traces of iJ(curl; J?) is a proper subspace of H~^f'^{df}Y and it 
can be fully characterized; see, e.g., [15, 97, 98] and the references therein for 
a more detailed analysis. 

As in the two-dimensional case, the subspace of vectors in iJ(curl; i?) 
with vanishing tangential component on dfi is denoted by Ho{c\ir\; J?), the 
subspace of vectors in iJ{curl; i?) with vanishing curl by iT(curlo; i?), and 
the subspace of vectors in JIo(curl; J?) with vanishing curl by ilo(curio; ^)-

In the three-dimensional case. Equations (A.5) and (A.6) give rise to the 
same orthogonal decompositions, as given in (A.11) and (A.12). 

A.5.4 The Kernel and Range of the Curl and Divergence 
Operators 

In this section, we will characterize the kernel and the range of the curl and 
divergence operators. This characterization depends on the domain J? where 
the Sobolev spaces, previously introduced, are defined. We will review some 
results valid for a particular set of Lipschitz domains and refer to [151, vol. 3, 
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Sect. IX. 1.3] for the case of more general smooth domains, and to [18] for a 
generalization to a larger class of Lipschitz domains. 

We assume that i? C M", n = 2,3, is an open bounded connected set, with 
Lipschitz continuous boundary. We only consider the case where i? is simply 
connected and its boundary consists of one connected component and note 
that these two conditions are equivalent for n = 2. The results presented in 
this section can be found in [151, vol. 3, Sect. IX.1.3], to which we refer for 
the proofs. 

The kernel of the gradient operator consists of the constants, when deiined 
in H^{Q), and of the zero function, when defined in Hl{Q). 

The following lemma characterizes the kernel of the curl operator as the 
range of the gradient operator for simply-connected domains; see [151, vol. 3, 
pp. 217-221]. 

Lemma A.23 If i? is simply connected, then, for n = 2,3, 

iJ(curlo;/?) =gradii"^(/?). {A.14) 

RemMrk A.24-^ the case where O is not simply connected, gradi/"^{/?) 
is a proper subspace of iJ(curio; .J?), and its orthogonal complement in 
iT(curlo; /?) can be fully characterized and is of finite dimension which equals 
the number of cuts necessary to make i? simply connected; see [151, vol. 3, 
p. 219, Prop. 2]. We also note that {A.12) is a decomposition of the space 
iJ (cur l ; J7) into the kernel of the curl operator and its orthogonal comple
ment, only with the hypothesis of Lemma A.23. In this case, we have, for 
n = 2, 

||u||z,2(fi)« < CQ ||curlu||i2(f?), u e H^{cMr\.;Q), {A.15) 

and, for n = 3, 

I|u||i2(i2)" < Cfi | |curlu| |i2(^)„, vLeH^{cva:\;i2). {A.16) 

The next proposition characterizes the kernel of the curl operator in 
iJo(curl; i?) and, for the case n = 2, that of the divergence in ifo(div; J7); 
see Lemma A.20 for the relation between iJ{ctirl; i?) and iJ{div; Q) in two 
dimensions. This result can be found in [151, vol 3, p. 222, Prop. 3] and [151, 
vol 3, p. 224, Cor. 5]. 

Lemma A.25 If the boundary dO is connected, then 

iJo(curIo; fl) = graidH^(n), n = 2,3, {A.17) 

i/o(divo; n) = cviTlH^(n), n = 2. {A.18) 

Remark A.26. In the case where di7 consists of more than one connected 
component, the subspace of II^{f}) of functions that are constant on each 
connected component oidfi replaces IIo{f^) in (A.17) and (A.18). When there 
is only one connected component, the gradients (and curls, for n = 2) of these 
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two spaces coincide and (A.ll) is a decomposition of the space iJo(curl; i?) 
into the kernel of the curl operator and its orthogonal complement. In this 
case, we have, for n = 2, 

I|U||L2(^)« < Cn ||curlu||i2(^), u e HQ {CMTI; Q), {A.19) 

and, for n = 3, 

||u||£,2(|j)„ < Co ||curlu||x,2(^)„, u e HQ{cvir\\Q). {A.20) 

The following two propositions complete the characterization of the kernel 
of the divergence operator. For n = 3, we will need the space of vectors in 
H^(n)^, with vanishing tangential component 

H^tinf = {ue H\Q)\ n X u\en = 0}. 

Lemma A.27 If Q is simply connected and n = 3, we have 

i:fo{divo; n) = curliJo^{^)^ = cmrlH^inf. {A.21) 

A proof can be found in [151, vol. 3, p. 224, Prop. 4 and Rem. 5]. We note 
that in the case where i? is not simply connected, ctirliJQ^(J?)^ is a proper 
subspace of iIo(divo;J?) and its orthogonal complement is the same finite 
dimensional space as mentioned in Remark A.24. 

Lemma A.28 If the boundary dO is connected, we have 

F(divo; O) = curl H\n), n = 2, 

H{diY 0; /?) = curl H^{nf, n = 3. 

A proof can be found in [151, vol. 3, p. 222, Prop. 3]. We note that in 
the case where dH consists of TO > 1 connected components, curliJ^{i?) 
and curliJ^(J?)^ are proper subspaces of H{divo;D) and their orthogonal 
complements have dimension TO — 1. 

The following corollary is a direct consequence of Lemma A.28 and gives 
a necessary and sufficient condition for the existence of a vector potential for 
a divergence-free vector. 

Corollary A.29 Let dfl he connected. A necessary and sufficient condition 
for a vector u e I/^(J?)" to he of the form u = cwclq, with q G H^{Q) if 
n = 2, or u = cu r lv , with v G H^{QY (/"^ = 3, is that 

divu = 0. 

Remark A.30. It follows from Lemmas A.28 and A.27, for n = 3, that the 
range of the curl operator on iJ{curl;J7) and ifo(curl;/?) coincides with 
curliJ^(J?)^ and curlHQ^(O)^, respectively. 
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The following proposition generalizes Corollary A.29 to the case of more 
regular vectors, and ensures that a divergence-free vector potential can be 
found in three dimensions; see [223, Ch. I, Th. 3.4, Cor. 3.3 and Rem. 3.12]. 

Lemma A.31 Let n = 3 and let 5i? be connected. For s € [0,1], a necessary 
and sufficient condition for a vector u e iJ*{i?)^ to be of the form u = cur lv , 
with V e iJ^+*(/2)^ and divv = 0, is 

divu = 0-

We end this section with a characterization of the range of the divergence 
operator. We set 

Ll{n) = iqeL^{n)\ f qdx = o\. {A.22) 

Lemma A.32 The divergence operator is continuous and surjective from 
H{div-,n) into L^(n), and from Ho{div; H) into L'Q{Q). 

Proof. The proof is quite simple and only the surjectivity needs to be 
checked. Let q € Lp'{fi). If p € H^{n) is the solution of the following Dirichlet 
problem 

Ap = q, in /?, 

p = 0, on df2, 

then u = gradp € H{6iY; O) and divu = q. If, on the other hand, q 6 Ll{n) 
and p e H^{fi) is the solution of the following Neumann problem 

Ap = q, in H, 

-^ = 0, on on, 
on 

then u = g r a d p € iJo{div; J?) and div\i = q . U 

A.6 Positive Definite Problems 

Let if be a Hilbert with scalar product {•,-)H and corresponding induced 
norm || - ||_H-. We introduce a real bilinear form a(-,-) : if x if ->• R. We 
assume that a{-, •) is symmetric, 

a{u,v) = a{v,u), u,veH, 

continuous, 
\a{u,v)\ < a\\u\\H\\v\\H, u,v e H, 

and coercive (or, equivalently, elliptic). 
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a{u,u) > l3\\u\\jj, ueH, / ? > 0 . 

We note that, since a(-, •) is continuous, we can associate a continuous, linear 
operator A: H ^ H', with it, such that 

{Au,v) =a{;a,v), u,v € H, {A.23) 

where (-,-) denotes the duality pairing between H' and H. 

Remark A.,33. We can also define a different operator A: H ^ H, such that 

{Au, V)H = a{u, v), u,v e H. 

li R : H' ^ H is the linear map in the Riesz representation theorem (cf. 
[477, P. 90]), then RA = A. 

The bilinear form a(-, •) provides a second scalar product in H since it 
is symmetric, continuous, and coercive; we denote the corresponding induced 
norm by || • ||o. We have the equivalence 

/̂  ll̂ lllf < ll'̂ lla ^'3'll^lllf) ueH. 

Given a linear functional F € H', we consider the following problem: find 
u £ H, such that 

a{u,v) = {F,v), v€H. {A.24) 

We note that problem (A.24) can equivalently be written as 

Au = F, {A.25) 

or 
Au = RF 

We have the following result, see, e.g., [477, Sect. III.7], [391, Sect. 5.1.1] 
or [188, Sect. 6.2.1]. 

Lemma A.34 (Lax-Milgram lemma) Let a{-, •) be a symmetric^ continu
ous, and coercive bilinear form defined on a Hilbert space H and let F be a 
linear functional in H'. Then, problem (A.24) has a unique solution, satisfying 

\\u\\H<{l/f3)\\F\\H', 

\\u\\a<{l/V^)\\F\\H:, 

where (3 is the coercivity constant. In addition, u is the unique function in H, 
such that 

J{u) < J{v), v€H, 

with 

J{u) = -a{u,u)-{F,u). 

The operator A defines an isomorphism from H onto H'. 
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A.6.1 Scalar Problems 

We now consider a general, second order, elliptic, scalar partial differential 
equation involving the operator 

Let J? C M", n = 2,3, be a Lipschitz region of unit diameter. We first impose 
homogeneous Dirichlet conditions on dfl. We look for a function w G H(j{n), 
such that 

^'' = 1 "̂ ̂ ' {A.27) 
w = 0 on oU. ^ ' 

By multiplying the first equation of (A.27) by a test function v and inte
grating by parts, we find the weak form of problem (A.27): find u G HQ{Q) 
such that 

a{u,v) =<F,v>, ve Fo(/?), (A.28) 
where 

and 

<F,v>= / fvdx. 

We assume that the matrix A = [uij] is symmetric and uniformly bounded 
from above and below: 

Ai f̂ ^ < ^'^A(x) ^<A2 ?^?, ? € M", almost all x € /?, (A.29) 

with Ai > 0, and that the right hand side / belongs to H~^{0). 
Our assumptions on the matrix A and the Friedrichs inequality in A. 14 

ensure that the bilinear form a(-, •) is coercive and that the Lax-Milgram 
lemma A.34 therefore can be applied. 

Theorem A.35 (Dirichlet problem) There exists a unique u G HQ{Q) 
satisfying (A.28) and constants, such that 

\\u\\m(^Q) < Ci | |F| | j j- i(^), \\u\\a < C2||F||jj-i(^), 

with 

\\P\\H-^{Q) = ll/llff-i(j?)-

Remark A.36. We can also consider a non-homogeneous Dirichlet condition 

u = QD on dfl, 

with QD e H^f'^{dQ). In this case, we look for a function u G H^{Q) that 
is equal to go on dfi and that satisfies (A.28). The well-posedness of this 
problem can be proven by using the continuous lifting TZogD of Lemma A.7 
and then solving for w = M — TZogn G Hl{Q). 
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Remark A.,37. We can also consider the more general case of mixed boundary 
conditions. Let df^D C dD be a closed set of positive measure, and let t?/2jv = 
dn \ OQD be its complement. We impose homogeneous Dirichlet conditions 
on dflD and a general Neumann condition 

du 
*J Q™ ^i = 9N on^^N, 

where n^ is the i-th component of the unit vector n. In this case the so
lution u belongs to Hl{Q,dQD), the subspace of functions in H^{Q) that 
vanish on dfln, the right hand side / is assumed to belong to the dual of 
H^{f^, dflo), which is a proper subspace of H~^{f}), and the Neumann data 

I / O 

QM to H^ ' {C?J7JV)- The bilinear form a(-,-) is the same as before and the 
right hand side is 

< F,v >= I fvdx+ g^vds, 

where the integrals are understood as duality pairings. We have 

\\F\\H' < C {\\f\\Hl{n,enuy + Il5wll/f-i/=(9i?^)) • 

We next consider the Neumann problem 

Lu = / in n, 
v^n du {KM) 
2-.i,j=iO'ij-Q^ni = 9N on a n . 

It is clear that if there is a solution u then it is defined up to an additive 
constant. Moreover, by integration by parts, we find that the following com
patibility condition must hold: 

[ fdx+ [ , 
Jn Jdn 

gN ds = 0. {A.31) 

We then consider the quotient space H = H^{fi)/M, defined as a space of 
equivalence classes, where two functions in H^ (J?) are equivalent if they differ 
by a constant. We note that in an equivalence class, we can always choose 
the function that has vanishing mean value on /? as the representative of the 
class. The bilinear form {u, V)H = (Vw, Vf) uniquely defines a scalar product 
in H and, by using the Poincare inequality in Lemma A.13, the corresponding 
induced norm ||w||jj is equivalent to 

inf | |M-C | | J J I ( J? ) . 

We assume that / belongs to the dual space of H^{fi) (a proper subspace 
of H~^{f})) and QN to H~^/'^{df}). With these assumptions and condition 
(A.31), the expression 
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{F,u) = fudx + QNUds, u £ H, 
Jn Jon 

uniquely defines a linear functional of H'. 
Using the same definition of a(-, •), we consider the following variational 

problem: find u e H, such that 

a(u,v) =< F,v >, v£H. {A.32) 

The Lax-Milgram lemma A.34 ensures the well-posedness of problem 
(A.32): 

Theorem A.38 (Neumann Problem) Assume that f and QN satisfy the 
regularity assumptions given above and that (A.31) holds. Then, there exists 
a unique u e H satisfying (A.32) and constants, such that 

\\U\\H<CI\\F\\H,, ||w|U<C2||i^||ff', 

with 
\\F\\H' <C{\\f\\Hi(oy + \\9N\\H-U2(da)) • 

A.6.2 Linear Elasticity 

We will consider the equilibrium equations for a linear isotropic elastic mate
rial. We refer to [362] for a detailed analysis of general elastic problems. 

Linear elastic materials are described by two generalized Lame coefficients 
A(x) and n{x). The pure displacement model is a good model for compressible 
materials, for which the Poisson ratio v = 2(\+LI,) ^^ bounded away from 1/2; 
we will consider almost incompressible elasticity in appendix A.7.2. We note 
that since A = jz^M? then A is uniformly bounded in terms of// if the Poisson 
ratio is bounded away from 1/2. 

Given a displacement vector field u £ H^{(})"•, we denote its i-th compo
nent by Ui and define the corresponding strain tensor by 

e = e(u) 

We note that 

1 ( dui duj 
2 \dxj dxi 

n 
divu = ^ € i i ( u ) 

and that e is symmetric: ejj = Cjj. In addition, e(u) = 0 if and only if u G VB, 
where 

{'RB = {si + b[x2, -xif], n = 2, 

\'RB = {a. + hx[xiX2X3]'^}, n = S 

is the space of rigid body modes. The dimension of T^ is 3 forn = 2 and 6 for 
n = 3. Translations correspond to 6 = 0 or b = 0, while rotations correspond 
to a = 0. 
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We next define the stress tensor 

r = r(u) = 2fi e(u) + A div u J, 

where I is the identity matrix in R". The stress tensor is also symmetric. We 
introduce the second-order operator 

Lu = —div r{u) 
n ^ n ^ 

OTii v ^ d - H ^ = - H ^ (2/^eij(u) + Adivu%) 
i= i •' i= i -' 

Given a load vector f, we first consider homogeneous Dirichlet conditions on 
dfi: find u, such that 

LVL = f in ft, 
u = 0 on dU. 

{A.33) 

The weak form of problem (A.33) is: find u G HQ{Q)^ such that 

a ( u , v ) = < F , v > , v e ^ o ^ / ? ) " , {A.34) 

where 

a(u, v) = / (2//e(u) : e(v) dx + \ div u div v) dx 
Jn 

and 

< F , v > = / i-wdx, 
Jn 

with 
n 

e{u) : e(v) := ^ eij{u)ei_,{v). 

We also introduce the quotient space H = H^{fl)'^/VB, defined as a space 
of equivalence classes, where two vectors in H^(n)"- are equivalent if they 
differ by a rigid body mode. In analogy with the Friedrichs and Poincare 
inequalities for scalar functions, we have two Korn inequalities for the strain 
tensor; see [362, Sect. 6.3]. 

Lemma A.39 (Korn inequalities) Let H be a bounded Lipschitz domain. 
Then, 

\^\HHO)n < 2 /" |e(u)|2 dx = 2 Y " [ €ij(uf dx, u € i^oH^)"- (^.35) 
Jo ij^yJo 

There exists a constant, depending only on Q, such that, 

M\HHOY ^^ I |e(u)|^dx, ueH. (A.36) 
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The first Korn inequality (A.35) and the Priedrichs inequality in Lemma 
A. 14 allow us to apply the Lax-Milgram lemma to the Dirichlet problem 
(A.33). 

Theorem A.40 (Dirichlet Problem) Let f € H-'^{nY. Then, there ex
ists a unique u € HQ{Q)'^ satisfying (A.34) and constants, such that 

l |u | | j j i( j?)» < C l | | F | | j y - i ( ^ ) « , | | u | | a < C2 | |F | | iy - i ( f2 )n , 

with 

l|F||i?-i(^)" — l|f||jJ-H^)"-

Neumann problems can also be considered 

, t ^ = ^ ^ " " ' ^ {A.37) 
T(u)n = gjv onaiL ^ ' 

It is clear that, if a solution u of problem (A.37) exists, then it is defined 
only up to a rigid body mode in 'RB. Moreover, the following compatibility 
condition must hold 

f-rdx+ gN-rds = 0, re'RB. 
Jn Jan 

(A.38) 

The bilinear form 

P n 

{U,V)H= V eij (u) eij (v) dx 
Jo • , 

defines a scalar product in H and, by using the second Korn inequality (A.36), 
the corresponding induced norm \\U\\H is equivalent to 

mi \\vL-r\\Him)^. 
re'RB ^ ' 

We assume that f belongs to the dual space of H^{n)^ and gjv to 
H~^/'^{dQ)'^. From these assumptions and condition (A.38), the expression 

(F,u) = f -udx + g iv-uds , u€H, 
JQ JdQ 

defines a linear functional of H'. 
Using the same definition of a(-, •), we consider the following variational 

problem: find u € if, such that 

a(u,v) = < F , v > , v€-H"- (A.39) 

The Lax-Milgram lemma and the second Korn inequality (A.36) ensure 
the well-posedness of problem (A.39): 
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Theorem A.41 (Neumann Problem) Assume that f and gjv satisfy the 
regularity assumptions given above and that (A.38) holds. Then, there exists 
a unique ue H satisfying (A.39) and constants, such that 

•ff'5 I I^ IU 

<C2 | |F 

with 
\\P\\H' < C( | | f | | ( iJi(f2)n)/ + | |gjv| | ff- i /2(9|?)») -

Remark A.42. As for the case of the Laplace equation, non-homogeneous 
Dirichlet or mixed boundary conditions can also be considered. 

A.6.3 Problems in ^ ( d i v ; /?) and H(curl ; O) 

Given a bounded polyhedral domain J? C M", n = 2,3, we introduce the 
boundary value problems 

Lu = —grad (a div u) + B u = f in i?, 
u • n = 0 on dn, 

for n = 2,3, 
Lu = curl (a curl u) + B u = f in i?, 

u X n = 0 on 5i?, 

for n = 2, and 

Lu = curl {A cvtrl u) + B u = { in i?, 
u X n = 0 on 5/2, 

{A.40) 

{A.41) 

{A.42) 

for n = 3. The coefficient matrices A = [uij] and B = [bij] axe symmetric 
uniformly positive definite with ai^j and bij G L°°{n), 1 < i,j < n, and 
a e L°°{n) is a positive function bounded away from zero. 

For the weak formulation of problems (A.40), (A.41), and (A.42), we em
ploy the Hilbert spaces if (div; J?) and if (curl ; J7), defined in Appendix A.5 
together with their scalar products and graph norms. We first consider prob
lem {A.40). If we define the bilinear form 

«div(u ,v)= / ( a d i v u d i v v + B u - v) da;, u, v £ ii'(div; i?), {A.43) 

o 

for f € L^{J?)", the variational formulation of Equation (A.40) is: 
find u € iio{div; J?) such that 

adiv (u, v) = / f - V c?x, V e ii'o(div; H). {A.44) 

n 

For problem {A.42), we define the bilinear form 
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«curi(u, v) = / (A curlu-curl V + 5 u-v) dx, u, v € iJ{curl;i?), {A.45) 

n 

and, for f 6 L^(n)^, the variational formulation of Equation {A.42) is: 
find u e iJo{curl; i?) such that 

Ocuri (u, v) = / f - V dx, V € iJo{curl; H). {A.46) 

For problem (A.41), an analogous definition in terms of the scalar curl holds. 
With an abuse of notation, we denote the corresponding bilinear form by 

We associate an energy norm, defined by || • ||n = adiv (••,•) or || • Ĥ  = 
fflcuri {•, •), with these bilinear forms; our assumptions on the coefficients guar
antee that these norms is equivalent to the graph norms in H{div; J?) and 
iT(curl; J?), respectively. 

The Lax-Milgrani lemma A.34 ensures that problems (A.44) and {A.46) 
are well posed: 

Theo rem A.43 Let the above assumptions on the coefficients A, B, and a 
he satisfied and f £ i^(J?)". Then, problems (A.44) o-nd (A.46) have unique 
solutions. 

Considering problem (A.40), we note that if there is a 5 such that f = 
—V(ag), then (A.44) is equivalent to a mixed variational formulation of the 
following elliptic equation 

—div {B~^Vw) + a~^w = g, in £2, 
B-^Vw-n = 0, ondQ. 

To see this, we introduce a flux q = —B~^S/w as an additional unknown. The 
corresponding mixed variational problem can be written as: 
find (q,w) 6 iJo{div; i?) x X^(J7) such that 

{A.47) 

/ B<\ -pdx — w divpdx = 0, p € ifo(div; J?), 

n Q 

/ divq vdx + a~^wvdx = / gvdx, v € L^{fi). 

n n n 

The second equation gives 

w = ag — odiv q 

and thus, using the first equation, q = u. We refer to Sect. A.7.2 for the 
analysis of the well-posedness of Problem (A.47). 
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Another application is provided by stabilized mixed formulations of the 
Stokes problem; see [95, Ch. IV] and the references therein. Still other apph-
cations of the space H{div; J?) are given in [21]. 

As for problems (A.41) and (A.42), when time-dependent Maxwell's equa
tions are considered, the electric field u satisfies the following equation 

curl {//-^curlu) + e-^ + ^ ^ = - ^ ' i^ ^- (^-48) 

Here J{x,t) is the current density and e, fi, a are non-negative functions that 
describe the electromagnetic properties of the medium. For their meaning 
and for a general discussion of Maxwell's equations, see [151, 354]. A similar 
equation holds for the magnetic field. For a perfect conducting boundary, the 
electric field satisfies the essential boundary condition 

u X n = 0, on dO. {A.49) 

Natural boundary conditions 

curl u X n = 0, on dH, 

can also be considered; see [151, 354]. For low-frequency fields in conducting 
media, the term involving the second derivative in time in (A .48) can be 
neglected, and a parabolic equation is obtained, known as an eddy current 
problem. Variational problems as (A.46), involving the bilinear form Ocuri {','), 
arise, for instance, when Equation (A.48) is discretized with a finite difference 
scheme which is implicit in time. 

A.7 Non-Symmetric and Indefinite Problems 

A.7.1 Generalizations of the Lax-Milgram Lemma 

The Lax-Milgram lemma can be generalized to more general problems. Let 
iJ be a Hilbert space with scalar product {•,-)H and corresponding induced 
norm || • \\H- We introduce a complex sesquilinear form b{-, •) : H x H ^ C 
We assume that b{-, •) is continuous, 

\b{u,v)\ <a\\u\\H\\v\\H, u,v E. H, 

and coercive, 
\b(u,u)\>l3\\ufH, ueH, l3>0. 

We note that b{-,-) is not required to be symmetric and that we cannot in 
general associate a scalar product with it. We can still define operators B and 
B; cf. Equation (A.23) and Remark A.33. 

We have the following generalization, see, e.g., [391, Sect. 5.1.1]: 
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Lemma A.44 (Lax-Milgram lemma) Let b{-, •) be a continuous and co
ercive sesqilinear form defined on a Hilbert space H and let F be a linear 
functional in H'. Then, problem (A.24) has a unique solution, satisfying 

\\U\\H < (1//3) \\F\\H'. 

The operator B therefore defines an isomorphism from H onto H'. 

There is however a wide class of problems that are not coercive and to 
which the Lax-Milgram lemma cannot be applied. Given a bounded polygonal 
or polyhedral domain J?, we consider the homogeneous Dirichlet boundary 
value problem: find u € Hl{Q), such that 

Lu = / in Q, 
w = 0 on 5i?, {A.50) 

where the operator L has the form 

We make the following assumptions on the coefficients 

uij € L°°(n), bi e w^'°°(n), c e i°°(/?), i<i,j <n. {A.52) 

In addition, the matrix A = [uij] is symmetric and uniformly positive definite 
in H: cf. (A.29). The right hand side / e P(n). 

The weak form of Equation (A.50) is: find u £ HQ{Q) such that 

b(:a,v) = {f,v)mn), v€H^(n). {A.53) 

The bilinear form b{u, v) is defined by 

or 

b(u,v) = > / an————dx+y^ / ibi——v — bi——u]dx+ cuvdx. 
r-^J n 9xj dxi t^Jn\ dxi dxi J J a 

Here, c(x) = c{x) - YH^I dbi{x)/dxi. 
We also consider the adjoint problem: find w e HQ (i?) such that 

b{v,w) = {f,v)L^^n), veHlin). {A.55) 

This problem corresponds to a homogeneous Dirichlet problem for the adjoint 
operator L*, defined by 

(i*w,-u)i2(r2) = b(:v,u) = (U,LV)L2(O), U,V G H^{0). 

Under particular assumptions on c the bilinear form is coercive and the 
Lax-Milgram lemma A.44 can be applied: 
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Lemma A.45 If c > 0, then b{-,-) is coercive and problem (A.53) is well 
posed. 

In the more general case, a Garding inequality holds: 

(iM\^iHo) < IKw>")l +7l|w|li^(^), u e Hl{Q), {A.56) 

for suitable /? > 0 and 7 e M. 
The following result rehes on the Garding inequality {A.56) and the com

pactness of the embedding H^{f}) c L?{f}): cf. Lemma A.4. We refer to, e.g., 
[188, Sect. 6.2.3] for a proof. 

Lemma A.46 (Fredholm Alternative) Let the Garding's inequality (A.56) 
hold. Then, 

1. For every /* > 7, the problem of finding u € HQ{Q), such that, 

b(u,v)+fj,(u,v)L^n) = (f,v)L^(n), v € Hl{Q) 

is well-posed. 
2. Either problem (A.53) has a unique solution for every f e L^{^), such 

that, 
\\U\\HHO) < C||/IU^(^), 

or there exists a non-trivial solution u ^0 in -ffo{/?) for / = 0. 
3. The solutions of (A.53) for / = 0 form a finite dimensional space 

N c HQ{Q). Its dimension is equal to the dimension of N* c IIQ{Q) 

of solutions of the adjoint problem (A.55) for / = 0. 
4. Problem (A.53) has a solution if and only if 

{f,v)LHn)=0, v€N*. 

A.7.2 Saddle-Point Problems 

Let V and Q two Hilbert spaces, endowed with scalar products (•, •)v and 
(- , - )Q, and corresponding induced norms || • \\v and || - \\Q, respectively. 

Given bihnear forms a :V xV ^W and 6 : V x (J -)• R, and functionals 
F eV and G € Q', we consider the problem: find {u,p) eV x Q, such that, 

a{u,v) + b{v,p) = F{v), veV, 

b{u,q) =G{q), qeQ. ^ ' ' 

If b{-, •) is continuous, we can associate a continuous, linear operator B : 
V ^ Q', with it, such that 

{Bu,q) =b(u,q), u€V, q€Q. 

We make some assumptions on the bilinear forms. 
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(i) a(-, -) and 6(-, •) are continuous 

|a(w,t))| <ai | |w| |v | |u | | \ / , u,veV M 58^ 

|6{u,|>)| <a2 | |n | |y IIPIIQ, U£V, peQ. 

(ii) a{-, •) is coercive on Z: 

a(u,u)>f3\\u\\^, ueZ, {A.59) 

where Z CV is defined as 

Z = ker(B) = {v€V\ b(v,q) = 0, q € Q}. 

(iii) b{-, •) satisfies the inf-sup condition 

inf sup II '̂î ^ ii^l > 7 > 0- {A.60) 
OitqeQoj^vev \\v\\v\\q\\Q 

We have the following result; see [95, Sect. II.l]. 

Lemma A.47 Let F e V and G £ Range{B). If conditions (i), (ii), and 
(iii) hold, then there exists a unique solution to the mixed problem (A. 57) and 
constants, depending only on ai, a^, /?, and 'j, such that 

\\u\\v < C,{\\F\\v. + \\G\\Q.), WPWQ < C2{\\F\\v. + \\G\\Q.). 

If G = 0, the solution u is the unique function in Z cV that satisfies 

a(u,v) = F{v), V e Z, 

and, ifa{-,-) is symmetric, it is the unique function in Z, such that 

J{u) < J(v), veZ, 

with 

J{u) = -a(u,u)-{F,u). 

Given a continuous, symmetric, positive semi-definite bilinear form 

c-.QxQ^R, 

we can also consider the problem 

a{u, v) + b{v,p) = F{v), veV, 

b(u,q) -c(p,q) =G{q), qeQ. 

Under the the same assumptions (i), (u), and (iii), one can show that problem 
(A.61) is well posed; see [95, Sect. II.1.2]. We note in particular that if 

c{-,-) = € ( - , - ) Q > e > 0 , 

the constants appearing in the stability estimates are independent of e. 
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The Stokes System and Nearly Incompressible Elasticity 

Given a viscosity î  > 0, f € i J - i ( i ? )" , and g € H^/'^dH)", such that 

L g-nds = 0, 

we consider the Stokes problem: find (u,p) 6 H^{fl)'^ x L'Q{f}), such that 
u = g on dQ and 

- ^ ^ ^ + ^ ^ = ^' (A.62) 
V - u = 0 . ^ ' 

Here the space i o ( ^ ) ' ^ ^ defined in (A.22). This problem can be rewritten 
in the mixed variational form 

a(u,v) + 6(v,p) = F(v) , v e y , 

h{vi,q) =Giq), q€Q, ^ ' ' 

by defining 

a ( u , v ) = i / / V u r V v d x , b{u,p) = — S^-updx, 
Jn Jo 

F{v)= I f-vdx, G{q) = 0 , 

and 
V = HUnr, Q=Ll{f}). 

Here, given two vectors u and v, we have used the notation 

V - V - Y^ ^ " ' ^'"^ 
. •^ , c?x,- dxj' 

Lemma A.47 and the theory of the previous section can be applied to the 
Stokes system (A.63). In particular, we note that by the Friedrichs inequality 
in Lemma A.14, the bilinear form a(-, •) is coercive on the whole space V. 
In addition, an inf-sup condition holds for the bilinear form &(-,•), since, for 
every q G L^^H), it is possible to find u G HQ{D)'^, such that 

-V-u = p, |u|iyi(i2)" < 7~^lblU2(j?); {A.64) 

see [95]. 
Nearly incompressible elasticity problems give rise to a similar mixed sys

tem: 
a{u,v) + 6(v,i?) = F ( v ) , veV, 
b{n,q) - ec(p,q) = G{q), qeQ, ^ ' ' 

by defining, for // > 0, 
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a(u, v) = 2// / e(u) : €(v) dx, c{p, q) = pq dx, G{q) = 0 
JQ JQ 

and with 6(-,-), F{-), V, and Q as before. The strain tensor e{-) is defined 
in Sect. A.6.2 and the incompressible limit corresponds to the value t = 0. 
We note that this problem can be obtained from the linear elasticity problem 
(A.33), by setting p = X divu. We have t^ = (1/A) and the limit case t ->• 0 
corresponds to the incompressible limit A -)• oo, when the Poisson ratio v 
approaches 1/2. 

The coercivity of a{-, •) on the whole V is ensured by the first Korn in
equality (A.35) and an inf-sup condition for &(-, •) follows from the previous 
analysis of the Stokes problem. The framework of the previous section can 
then be apphed in order to prove the well-posedness of problem (A.65) and 
the constants involved in the estimates are independent of t > 0, or, equiva-
lently, of A > 0. 

Mixed Formulation of the Laplace Equation: Flows in Porous 
Media 

In certain apphcation involving the diffusive equations of section A.6.1, it is 
important to have a reliable approximation of the flux itself. If ^ = [atj] is 
the diffusive matrix of the operator L defined in (A.26), we can reformulate 
the scalar eUiptic problem as 

u = -A^p, 

' ' " " = ^' Op (^-66) 
i-AWp) • n = - Elj=i dij -^rii = u • n, 

with / e I/^(i?). The first equation of (A.66) is called Darcy's law and relates 
the pressure p to the velocity u. Since A is uniformly positive definite because 
of (A.29), we can multiply the first equation by A~^, and then both equations 
by test functions, and integrate over Q. We obtain 

/ {A ^u) -vdx— / V -wpdx = — I -v-npds 
Jo JQ Jen 

— I V -uqdx = — fqdx. 
Ja Ja 

{A.67) 

We then define the forms 

a(u, v) = (A ^v) •'vdx, b{-u.,p) = — / V -vLpdx, 
Ja Jn 

G{q) = - [ fqdx, 
Jo 

{A.68) 

and the spaces 
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V = H{div; /?), Q = U\Q). {A.69) 

We note that the bihnear form h{-, •) is the same as that of the Stokes problem 
in the previous section but it acts on the larger space V. 

We start by considering general Neumann conditions for the function p: 

P = 9N on 50 , 

with QN G H^/'^{dQ). Substituting this expression into the first equation of 
(A.67), gives rise to a problem of the form (A.63), with 

F ( v ) : = - / wag^ds. {A.70) 
Jdn 

We note that F{-) is well-defined in V because of Lemma A.19. 
The well-posedness of problem {A.63) is ensured by Lemma A.47. More 

precisely, the continuity conditions in {A.58) clearly hold. We next note that 
the operator B :V ^ Q, defined by the bilinear form &{•,•) coincides with the 
divergence operator and therefore 

Z = ker{B)=H{AwQ;Q). 

The bilinear form a(-, •) is thus coercive on Z with (3 > Aj^ ; see {A.59) 
and {A.29). The inf-sup condition {A.60) follows from the surjectivity of the 
divergence operator; see Lemma A.32 and its proof. The same lemma ensures 
that G e Range{B) for / e L^{n). 

We next consider the Dirichlet condition 

E dp 

with gn £ H~^f'^{dO). We assume that go and / satisfy the compatibility 
condition (A.31). In this case, the solution p is defined up to an additive 
constant and we therefore require that it has mean value zero on Q. The 
appropriate spaces that ensure the well-posedness of this problems are thus 

V = HoidiY; /?), Q = Ll{f}). {A.71) 

We then look for functions u £ iT(div; /?) and p E Q, such that u-n = go 
on dfi and {A.63) is satisfied with 

F(v) = 0. {A.72) 

The well-posedness of this problem can be proven as before. 
We remark that essential {Dirichlet) boundary condition on the scalar 

function p in the original scalar elliptic problem give rise to a mixed problem 
with natural boundary conditions {Neumann) on the flux u and viceversa. We 
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finally remark that a more general diffusion-reaction problem can be consid
ered: 

- V • (^Vp) +cp = f. 

With the same expression for the flux u, the corresponding mixed formulation 
has the form {A.61); see also Sect. A.6-3 and Problem (A.47)-

Remark A.48. We can also consider the more general case of mixed boundary 
conditions. Let df^D C 9i7 be a closed set of positive measure, and let df^N = 
dfi\dOr> be its complement. We impose, for simplicity, homogeneous Dirichlet 
conditions on ODD and a general Neumann condition p = g^ on OON- In this 
case the solution u and the test functions v belong to iJo(div; J7, 5 J ? D ) , the 
subspace of vectors in ii"(div; Q) with vanishing normal component on dOo 
and the Neumann data QN is supposed to belong to H^^'^ip^N)- In this case, 

P{^) = - / \ -TO-gNdx, 
J OQN 

and no compatibility condition on / is required, and the pressure is uniquely 
determined. 

A.8 Regularity Results 

In this section, we will give some regularity results for scalar and vector-valued 
functions. We only report on results that we need in this monograph. 

The following regularity result for the Laplace operator can be found by 
combining [238, Corollary 2.6.7] with the existence of the extension operator 
given in Lemma A. 7. It provides a regularity result for the Poisson problem 
with nonhomogeneous Dirichlet conditions. 

Lemma A.49 Let J? C M he a hounded polyhedron with Lipschitz continuous 
boundary. Let, in addition, f G L^{i7) and <f> G H^^^{dQ). Then, there exists 
sn > 0, such that, if s < sn, the solution u of 

—Au = f in n, 
u = <f> on dfl, 

belongs to H^I'^+'{0). 

The result can be improved for convex domains; see [150, Corollary 18.18]. 

Lemma A.50 Let /? c M he a bounded, open, convex polyhedron and let 
s 7̂  — I he a real number, such that 

s < m i n | ^ , ^ - l | , {A.73) 
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where w is the largest angle between the faces of Q. Then, the Laplace operator 
A defines an isomorphism: 

A : H^+'{n) n Hl{Q) ^ - ^ H'{f2). {A.74) 

Remark A.51. Since, for every fixed bounded, convex polyhedron the maxi
mum angle LO is strictly smaller than TT, Lemma A.50 implies that there exists 
a real number SQ > 0, such that the mapping (A.74) is an isomorphism, for 
any s e [0,SQ). 

The following corollary is a direct consequence of Lemma A.50 and the 
existence of the extension operator given in Lemma A.7. 

Corollary A.52 Let H c M. be a polyhedron satisfying the same assump
tions as in Lemma A.50 and let s < SQ, S ^ —1/2, with SQ given in Remark 
A.51. Let, in addition, f € H^(n) and 4> e H^/^+^{dn). Then, the solution 
u of 

—Au = f in n, 
u = (f> on 50 , 

belongs to H'^+'{Q). 

The following regularity result for the Laplace operator can be found in 
[150, Corollary 23.5]. It provides a regularity result for the Laplace problem 
(A.30) with a Neumann boundary condition. See also [238, Corollary 2.6.7]. 

Lemma A.53 Let i? c M he a hounded polyhedron with a Lipschitz contin
uous boundary, not necessarily convex. Let, in addition, f € H~^/'^~^^{Q) and 
tp G H^{dfi), satisfy the compatibility condition (A.31). Then, there exists 
S'Q > 0, such that, if s ^ 0 and s < s'^, the solution u of 

Au = f in n, 
du 
dn on c?fi. 

belongs to H^''^+'{n). 

We finally provide some results on iJ{div; J?) and if (curl ; J?). Given the 
spaces 

Hrin) = Hoidiy; /?) n iJ(curl; H), 

HN{Q) = i l (div; J?) n iJo(ctirl; J7), 

the following proposition is a classical result and a proof can be found in [18, 
Th. 2.17]. 

Lemma A.54 If the domain i? is convex, then the spaces HT{0) andHN{(}) 
are continuously embedded in H^ (i?)". 

We remark that the conclusion of Lemma A.54 is in general false for a 
nonconvex polyhedron. 
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Galerkin Approximations 

In this appendix, we recall some well-known results on finite and spectral el
ement approximations. We mention [136, 391, 90, 50] as general references, 
[121, 48] for spectral element approximations, [223, 95] for approximations of 
saddle-point problems, and [223, 95, 359, 391, 354] for conforming approxi
mations in H{div; J?) and iT(ctirl; J?). 

B.l Finite Element Approximations 

B.1.1 Triangulations 

Let n C M", n = 2,3, be a bounded polygonal or polyhedral domain with 
Lipschitz continuous boundary. 

A triangulation (or, equivalently, mesh) is a non-overlapping partition 
of J? into elements. We consider meshes consisting of triangles or affinely 
mapped rectangles in two dimensions, and of tetrahedra or affinely mapped 
parallelepipeds in three dimensions. More precisely, let the reference triangle 
(tetrahedron) have vertices (0,0), (0,1), (1,0) (or (0,0,0), (0,0,1), (0,1,0), 
(1,0,0), respectively). The reference square and cube are (—1,1)". Through
out this monograph, a reference element K is one of the four regions defined 
above and elements are always open sets. An affine mapping from K onto an 
element K is defined by 

FK-.K^K, FK{X) = BKX + bjf, 

with BK a linear mapping and bj^ a constant vector. We define a family of 
triangulations %,, h> 0: 

Definition B . l . Let h > 0. A family of triangulations of fl is a partition of 

Th = {K = FK{K)}, 

such that, 
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U X = j?; Kr\K' = % ifKy^K'; 
KGTH 

^ is a reference element and FK is an affine mapping; 

h = max HK, hx = diam {K). 
K€Th 

h is called the diameter ofTh- The family Th is ca//erf geometrically conforming 
(briefly, conforming^, if the intersection between the closure of two different 
elements is either empty, a vertex, an edge, or a face that is common to both 
elements. 

We consider particular triangulations. 

Definition B.2. il family of triangulations Th is called shape-regular if there 
exists a constant independent of h, such that 

hx < CpK, K eTh, 

where pK is the radius of the largest circle or sphere contained in K. The ratio 
hx/pK is called the aspect ratio of K. 

Definition B.3. ^ family of triangulations %, is called quasi-uniform if it is 
shape-regular and if there exists a constant independent of h, such that 

HK >Ch, Ke %. 

B.1.2 Finite Element Spaces 

Given an open set V in M", n = 1,2,3, we now define some polynomial spaces. 
Let Pfc(2?), A; > 0, be the set of polynomials of total degree at most k defined 
on V, and let P^ (V)"-, for n = 2,3, be the set of vectors of M", the components 
of which belong to Pfc(2?). In addition, let QhiV) be the set of polynomials of 
degree at most k in each variable. 

Let Th he a, conforming triangulation. We have the following result; cf., 
e.g., [391, Pr. 3.2.1]. 

Lemma B.4 A function w : i? —>̂ R belongs to iJ^{/?) if and only if the 
restriction of u to every K e % belongs to H^{K), and, for each common 
face (or edge in two dimensions) f = Kir\K2, we have 

Finite element spaces of continuous, piecewise polynomial functions are 
therefore contained in H^{Q). For fe > 1, we define (see [391, Sect. 3.2]) 

V^ = V^{Q) := {u e C0(/?) I ui, eFk(K), KeTh], 
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if Th consists of triangles or tetrahedra, and 

V^ = V^{0) := {u e C0(/?) \u\,e q,{K), Ke%}, 

if Th is made of afiinely mapped rectangles or parallelepipeds. 
For a fixed polynomial degree k, the set of Lagrangian basis functions { Ĵ-} 

associated to a set of nodes {P,} of the triangulation can be introduced. The 
degrees of freedom are then the values of a function at these nodes. We have 

i 

and the basis functions are uniquely defined by 

There is of course a one-to-one correspondence between functions in V'^ and 
vectors of degrees of freedom. Throughout this monograph, we use the same 
notation for finite element functions u and vectors of degrees of freedom, and 
for finite element spaces and spaces of vectors of degrees of freedom. 

The support of the nodal basis function (f>'> is contained in the union of 
the elements that share the node Pi. A scaling argument allows us to prove 
the following property; see [391, Prop. 3.4.1]. 

Lemma B.5 Let (f>f be a basis function associated to a node of K e Th- Then 
there exist constants independent of HK, and h, such that 

C2hi-'<m\h^j,-^<c2hi-', 

where Ci is also independent of the aspect ratio of K. 

A nodal interpolation operator J'* = I^ can be defined for functions that 
are continuous in i? by 

i 

see Lemma A.5. Error estimates can also be found; see [391, Sect. 3.4.1]. 

Lemma B.6 Given a mesh Th, for u 6 H'^{Q) and 

Th 

KeTh, •^<s<k + l, 0<m<s, 

there exists a constant, depending only on m, s, and the aspect ratio of K, 
such that, 
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If Th is conforming and shape-regular, we have 

We also need some finite element spaces that consist of discontinuous func
tions and are conforming in I/^(J?). For fc > 0, see [391, Sect. 3.2], 

Q'̂  = Qliil) := {u e L\Q) I W|̂  € Pfc(if), K eTh] , 

Q^ = Qifl{n)~Ql{fi)^ri{n), 

if Th is made of triangles or tetrahedra, and an analogous definition holds if 
Th is made of rectangles or parallelepipeds. 

In the remainder of this appendix, we will always assume that triangula-
tions Th are conforming, unless it is otherwise stated, in such a way that the 
finite element spaces introduced in this section are well defined. 

B.1.3 Symmetric, Positive Definite Problems 

We first consider the finite element spaces V^ = V^{il) and VQ^ = V^Q{i^), 
defined in Sect. B.1.2 and the scalar elliptic problem (A.27). Given its vari
ational formulation (A.28), we consider a conforming approximation in the 
subspace VQ^: find uu G VQ*, such that, 

a{uh,Vh) =< F,Vh >, Vh e Vo^. (B.l) 

The well-posedness of problem (B.l) is ensured by the Lax-Milgram Lemma 
A.34. Error estimates can be found using Lemma B.6; see, e.g., [391, Sect. 
6.2.1]. 

Theorem B.7 Let % be a conforming triangulation of Q and k>l. Then, 
problem (B.l) is well-posed: there exists a unique solution, such that 

\\Uh\\m{Q) < Ci\\F\\H-i(Q), \\Uh\\a < C2\\F\\H-i(n), 

where the constants are the same as in Theorem A.35. The finite element 
solution satisfies 

a{u - Uh, Vh) = 0 , Vhe Vo^, (B.2) 

or, equivalently 
\\U — Uh\\a= inf l lw- ' ^ / i l l a . 

If the mesh Th is shape-regular, we have 

\u-Uh\HHO) < Ch^~^\u\H3(o), -^ <s<k + l 

and if, in addition, Q is convex, 

\\u-Uh\\L^{Q) <Ch''\u\H'{Q)-

file:///u-Uh/HHO
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Property (B.2) is referred to as Galerkin orthogonality of the finite element 
solution. 

Remark B.8. We note that the error estimates in the previous lemma ensure 
that the discrete solution converges to the exact u when h tends to zero, if 
u is sufficiently regular. Convergence can be proven even in the case when 
the solution u only belongs to iJ^(i?); see [391, Th. 6.2.1]. For the Neumann 
problem (A.30), we choose the finite element space Hh = V^ /M. and a result 
analogous to Theorem B.7 can be proved. 

Remark B.9. For the linear elasticity problems of Sect. A.6.2, we employ 
spaces of vector functions in V^{Q), the components of which belong to 
V^{fi). Results analogous to Theorem B.7 can be proved in this case as well. 

B. l .4 Non-Symmetric and Indefinite Problems 

We now consider the more general Dirichlet problem (A.50). We consider the 
following discrete problem: find UH^VQ, such that, 

Kuh,Vh) = {f,Vh), Vh&V^; (B.3) 

see the variational problem {A.53). 
Under the assumption that the bilinear form 6(-, •) is coercive, the Lax-

Milgram Lemma A.44 can be applied. 

Theorem B.IO Let Th be a conforming triangulation of fl and let the con
ditions stated in Lemma A.45 be satisfied. For fc > 1, problem (B.3) is well-
posed: there exists a unique solution, such that 

Kliji(i?) < C'i||/||i2(i7)-

77*6 fimte element solution satisfies 

\u-Uh\m{Q)<C M \u-Vh\m(n)-

If the mesh %, is shape-regular, we have 

\u-Uh\m{n) < Ch-^£^\u\H'(ic), - < s <k + l. 

We remark that under the same assumptions on the coefficients of Lemma 
A.45, the discrete problem is well-posed without any restriction on the mesh 
size h. However, in the more general case where only a Garding inequality 
(A.56) holds, well-posedness can only be ensured if the finite element space is 
sufficiently large and thus h is sufficiently small. We refer to [414] for a proof 
of the following result. 
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Theo rem B . l l Let the continuous problem (A.53) have a unique solution u 
and let k > 1. Then, there exists a constant ho > 0, such that problem, (B.3) 
is well-posed for h < HQ: there exists a unique solution, such that 

luhlnHO) < C'I | | / I IL2(^) 

and 

\u-Uh\m{Q)<C ini \u-Vh\m{i^)-

Finally, if the mesh Th is shape-regular, we have 

\u-Uh\H^{n) < Ch^~'^\u\H'-{n), -<s<k + l. 

B.2 Spectral Element Approximations 

Spectral element methods are particular j)-version finite element approxima
tions where higher accuracy is achieved by increasing the polynomial degree 
of the approximation spaces inside each element of a given, fixed mesh, as op
posed to the ft,-version where a more accurate solution is obtained by refining 
the mesh while keeping the degree fixed. Nodal basis functions are associated 
to a special set of nodes which allow us to use quadrature formulas of high 
precision for the evaluation of the stiffness matrix and the load vector. We 
refer to [46, 48, 50] as general references for this section. 

We consider T, a conforming, shape-regular triangulation of Q consisting 
of (mapped) rectangles or cubes as in Definitions B.l and B.2. This mesh is 
considered fixed. We will denote the elements of T, by {Qi, i = 1,...,N} 
and the reference element by f2 = (—1,1)"'-

Given a polynomial degree fc > 1, the discrete space V'' C H^{f}) is the 
one defined in Sect. B.1.2, i.e., the space of continuous, piecewise Q .̂ elements, 
constructed from a tensor product of degree k polynomials of one variable. 
Since, so far, we have only considered elements that are affinely mapped, our 
spectral element space can also be written as 

yfc = V\n) = {uk € C\n) I UkiFii^)) e Qfc(l?), i = l....,N}, 

where F, :/)—)• i?, is an affine mapping; cf. Definition B.l. We note that 
not every quadrilateral can be obtained from the reference square through 
an affine mapping. For general quadrilaterals the definition (B.4) still holds, 
but Fi must be replaced by a bilinear mapping. Similar considerations hold 
in three dimensions. 

We now introduce a particular nodal basis of V''. Basis functions will be 
defined on the reference element and then mapped onto the current element. 
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We denote by GLL{k) the set of Gauss-Lobatto points {<^J; 0 < J < fc} on 
^ = [—1,1] in increasing order and by {wj > 0} the corresponding quadrature 
weights; see [48, Sect. 4]. The GLL{k) nodes are the (distinct and real) zeros 
of (1 — x'^)L'f.(x), with Lk the Legendre polynomial of degree k, cf. [48, Sect. 
3]. They also satisfy 

^j=-cos{0j), jw/kKOj <{j + l)Tr/k, l<j<k-l. (B.5) 

This follows from observing that the zeros of L'f.{x) are bracketed by pairs of 
zeros of Lk{x) and by using bounds for these zeros given in [429, Thm. 6.21.3]. 
There is also a constant C > 0 such that 

l ( l - j | ) ^ (1-^2)1/2 

c—^^"^-^^—k < Wj < C- ^—; (B.6) 

see Szego [429, (15.3.14)]. In particular, we have (see, e.g., [46, Page 76]) 

•> C 
<Wi<—, 0<i<k. (B.7) fc(fc + l ) - ' - k 

In the theory for domain decomposition methods for spectral element meth
ods, the following important result is used: 

Lemma B.12 Let A = (-1,1) and let I^ : C{A) ->• Pft(yl), he the polynomial 
interpolation operator which interpolates at the GLL(k) points. Then, there 
exists a constant C, which is independent of k, such that 

\m (A) < C\\(f>\\Hi(A)-

This result is due to Bernardi and Maday; cf. [47, Corollary 4.6]. The proof is 
quite technical. 

For the cube 1? = ( - l , l ) ^ we set GLL{kf = {% = (6,0>?/); 0 < 
hhl < k} and denote the corresponding weight by {wiji = WiWjWi > 0}. 
Similar definitions can be given in two dimensions with the obvious modifi
cations. The following result, which is relatively easy to prove, cf. [48, Rem. 
13.3], allow us to prove the eUipticity of the spectral element approximation 
obtained by using GLL quadrature: 

fc 
IKIlW)<E«fc(^i) '«'i^3"|K||2,^^), Uk^QdA); (B.8) 

see [48, Rem. 13.3]. In the following, we use the same notation for the mapped 
Gauss-Lobatto nodes and corresponding weights for an element i7j = Fj(i7) e 

r. 
Given the nodes GLL{k)"', our basis functions on F*'(/?) are the tensor 

product of fc-th order Lagrange interpolating polynomials on GLL{k), defined 
by 
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kij) = Sij. (B.9) 

On the reference element in three dimensions, we can write 

k k k 

Uk{x,y,z) = ^ ^ ^ W f c { < J i j / ) k{x)ij{y)ii{z), (B.IO) 
i=0 j=0 1=0 

and an analogous representation holds in two dimensions. For a general ele
ment in T, basis functions are obtained by mapping those on the reference 
element. Three dimensional basis functions can be divided into: 

1. interior, if the indices i, j , k are all different from 0 and k, 
2. face, if exactly one of the indices is 0 or fc, 
3. edge, if exactly two of the indices are 0 or k, 
4. vertex, if all indices are 0 and/or k. 

In two dimensions, we distinguish between interior, vertex, and edge basis 
functions. 

Equation (B.IO) defines an interpolation operator J*̂  on the reference ele
ment. By using the mappings {Fi}, a global interpolant, still denoted by J*', 
can be obtained on J?. It is clear that /^ can, in general, only be defined for 
continuous functions. On /?, we have 

k k k 

l''u{x,y,z) := '^'^'^ui^iji) ii{x)lj{y)ii{z), 
j=0 j=0 1=0 

and an analogous definition holds in two dimensions. We have the following 
error estimates, cf. [48, Th. 14.2]. 

Lemma B.13 For any real numbers r and s satisfying s > (n + r)/2 and 
0 < r < 1, there exists a positive constant depending only on s such that 

I" ^ "'ljj'-(fi) - '-''^ l"ljf»(fi)-

In addition, 

Given / € i ^ ( ^ ) , we now consider the model problem: find u 6 HQ{Q), 

such that 

a{u,v):= / pS/u-S/vdx= / fvdx, v£ H^(0). (B.ll) 
Jo Jo 

The coefficient p{x) > pmin > 0 can be discontinuous, with very different 
values for different elements, but we allow it to vary only moderately within 
each subregion. Here, we restrict ourselves to a piecewise constant coefficient 
p{x) = Pi for X € f^i, a particular case of problem (A.28). 
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A discrete problem is obtained by restricting problem (B.ll) to VQ and 
by using Gauss-Lobatto-Legendre numerical quadrature on each element. We 
obtain the discrete bilinear form 

N 

agiukjVk) := {pVuk,Vvk)Q = '^Pi{Vuk,Vvk)Q,(2i, Uk,Vk € V''(n), 

and the discrete right hand side 

N 

if,Vk)Q = Y.if,Vk)Q,Qi, VkeV'^iH). 
i=l 

The local contributions of the new inner product are defined in, e.g., three 
dimensions by 

k k k 

{U, v)Q,m = X ^ 1 2 X ^ u{^mjl)v{Ujl)Wmjl, (B.12) 
m=0 i=0 /=0 

As before, we have used the same notation for the mapped nodes GLL(k)"' 
and corresponding weights on an element /?». We note that, in order for the 
discrete right hand side {f,Vk)Q to be defined, / needs to be continuous on 
J?. This is certainly so if / G H^{Q), t > (n/2); cf. Lemma A.5. 

The inequalities in (B.8) ensure that the discrete inner product is uniformly 
equivalent to the standard X^-inner product on V''(n), i.e., 

I|wfelli2(i2) < {uk,Uk)Q < C\\uk\\l^n), Uk e V''{n), (B.13) 

with a constant C that only depends on the shape of the elements in T. 
The spectral element approximation of (B.ll) consists in finding Uk ^VQ, 

such that, 
aQ{uk,Vk) = {f,Vk)Q, Vk £ VQ. (B.14) 

Thanks to (B.8), we have 

a{uk,Uk) < aqiuk^Uk) < Ca{uk,Uk), Uk € V''{n), (B.15) 

and the new bilinear form is therefore continuous and coercive. A detailed 
analysis of this method, including a discussion of existence, uniqueness, and 
error estimates for an individual element, is given in Bernardi and Maday [46, 
Sect- 15]. Using the coercivity of the discrete bilinear form, we can prove the 
following result. 

Theorem B.14 Let T consist of one element Q = Q. If f £ H^{Q), t > 
(n/2), then problem (B.I4) is well posed: there exists a unique solution, such 
that 

||wfc||jji(i?) < Ci,p\\I f\\L^(n)', 
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where Ci,p depends on the coefficient p. The spectral element solution satisfies 

\u-Uk\HHn) < C{k^~^\\u\\H'(n) + k'^lMsHQ) +C2,pfc~^''), s > 1, 

where C2,p and Tp depend on p, and C2,p = 0 in case p{x) = 1. In addition, 

\\u-Uk\\L2(0) < C(fc~*||w||_H-.(r2) + k~^\\u\\Ht(0) +C2,pk~''''~^). 

Remark B.15. The case of more than one spectral element is treated in [330]. 
In addition, more general boundary conditions can also be considered, as well 
as more general second-order, positive definite problems; see section A.6. 

B.3 Divergence and Curl Conforming Finite Elements 

B.3.1 Raviart-Thomas Elements 

The Raviart-Thomas spaces are conforming in iJ{div; J?) and were originally 
introduced in [394] in two dimensions and then extended in [359] to the three 
dimensional case. We mention [223, 95, 354] as good references for this section. 

We only consider the case of a triangulation Th made of triangles, for 
n = 2, and of tetrahedra, for n = 3, as introduced in section B.1.1. Given a 
triangle or a tetrahedron K, we consider the polynomial space 

Dfc( i f ) :=Pft_i ( i r r®xPfc_i( i f ) , fc>l, 

where x is the position vector in M" and ^k-i{K) is the space of homogeneous 
polynomials of degree fc — 1 on if. A function u in D^ {K) is uniquely defined 
by the following degrees of freedom 

fu-npds, peFk-v{f), (B.16) 

for each edge (n = 2) or face (n = 5) f of K. For fc > 1, we add 

u-pdx, pePfc_2(ifr. 
/ . 

We have the following result; cf., e.g., [359, 95]. 

Lemma B.16 A vector function u : H -)• 'R"' belongs to ii"(div;/2) if and 
only if the restriction of u to every K & Th belongs to H{div;K), and, for 
each common face (or edge in two dimensions) f = Kir\K2, we have 

u-n | ^^ , onf. 

with, e.g., n = ni = —n2. 

file:///u-Uk/HHn
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It can be proven that the following spaces are well-defined; see [359, 95]: 

RTt{f2) := {u e H(div;n) \ u,^ G Bk{K), KeTh}, 

RT^.o(^) := {u e ifo(div;/?) | u,^ eBk(K), KeTh}-

The corresponding interpolation operator is denoted by n^Tk • When there is 
no ambiguity, we simply use the notations RT'^{n), RTQ{n), and iT^y. 

For the case fc = 1, the elements of the local space have the simple form 

Di( i r ) = {u = a + 6x I a e Po{A')", b e P o W } • 

It is immediate to check that the normal components of a vector in Di (K) 
are constant on each edge (n = 2) or face (n = 3) / . These values 

Xf{u) = jj-^ Ju-nds, fcdK, (B.17) 

/ 

can be taken as the degrees of freedom. As in the case of nodal elements, 
the i^-norm of a vector u G 'Di{K) can be bounded from above and below 
by means of its degrees of freedom. The proof of Lemma B.5 can easily be 
adapted to the following result, and similar estimates can also be obtained for 
the case k > 1. 

Lemma B.17 LetK € Th- Then, there exist constants only depending on the 
aspect ratio of K, such that 

c ^ hJXfiuf < | |u| | i .(^) < C ^ h]Xfin)^ (B.18) 
fcdK fcdK 

where hf is the diameter of f. 

Finite elements built on triangulations made of rectangles (n = 2) or 
parallelepipeds (n = 3) can also be considered. We refer to [394, 359, 95, 391] 
for details. 

For the spaces defined in this section, the corresponding nodal interpo
lation operator -/TJITJ, is not defined in the whole space iT(div;J?); some 
additional regularity is required. In particular, the normal component on dK 
of a vector u € iJ{div; J?) generally only belongs to H~^l'^{dK) and not to 
iJ~^/^(/) , and the degrees of freedom (B.16) are not defined in general. They 
are certainly well-defined if the trace of a vector u on the boundary of a generic 
element is sufliciently regular, that is, if u belongs to iJ''(J?)" for r > 1/2. 
The following error estimate can be proven using standard arguments as in 
[391, Sect. 3.4.2] 

| | u - i T V , u | | ^ , ( ^ ^ < Ch''\vL\Hr(a), \<r<k. (B.19) 

The constant C depends only on the aspect ratios of the elements of Th and 
the exponent r. See also [359] for other error estimates and [95, Sect. III.3.3] 
for additional comments. 
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B.3.2 Nedelec Elements in Two Dimensions 

Nedelec elements (also called edge elements) are finite elements which are 
conforming in ii"{curl; H). Just as, in two dimensions, vectors in i f (curl; H) 
are obtained from those in iJ(div; J?) by a rotation of 90 degrees, Nedelec 
finite element vectors are obtained from those in the Raviart-Thomas spaces 
in the same way. However, we will see that the two families of elements are 
completely different in three dimensions. 

In two dimensions (n = 2), it is enough to rotate the vectors in the Raviart-
Thomas spaces introduced in the previous section. In the case of triangles the 
local spaces are thus 

•Rk{K) := {u + V I u e Fk-i{Kf, v € h{K)\ v - x = o} , fe > 1, 

and a function u in 1Zk{K) is uniquely defined by the following degrees of 
freedom: 

/ • 
u-tepds, p€Fi,-i{e), 

for each edge e, and, in addition, for fe > 1, 

updx, pePfc-2(ifr-I. 
Here tg is a unit vector that is tangent to e. 

In the case fe = 1, the local space 1Zk{K) has the form 

Tlt(K) ai + bx2 
(12 — bXi 

a € Po(if)^ b £ ¥o{K) 

It is easy to check that a vector in TZi (K) has a constant tangential component 
on each edge of ii', and the corresponding degrees of freedom {Ae(u), e C OK} 
can be taken as the values of the tangential component on the three edges e 
of K. They can be written as 

Ae(u) = -— / n X \ids, e C dK, ;(u) = — / n X \ids, e C 
"-e J 

and the degrees of freedom in the global space are associated to the edges 
of the triangulation. By direct computation, the curl of a vector in TZi (K) is 
constant. 

We have the following result; cf., e.g., [359]. 

Lemma B.18 A vector function u : H ^ R" belongs to iJ(curl; i?) if and 
only if the restriction of M to every K E. %. belongs to H{curl;K), and, for 
each common face (or edge in two dimensions) f = KiC\K2, we have 

u x n | ^ ^ = u x n | ^ ^ , on f, 

with, e.g., n = ni = —n2 
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Given the local spaces IZkiK), the global ones, conforming in i J (cur l ; i?) 
and iJo{curl; i?), are defined in the obvious way and are denoted by ND^{n) 
and ND^.(,{n), respectively, or by ND^{Q) and ND^{f2), when there is 
no ambiguity. Clearly, Lemma B.17 and inequality (B.19) still hold for the 
Nedelec spaces in two dimensions. 

B.3.3 Nedelec Elements in Three Dimensions 

We now consider the three dimensional case n = 3. We give [359, 223, 354] as 
general references for this section. 

For triangulations made of tetrahedra, the local spaces on a generic tetra
hedron K are defined as 

nk{K) := {u + V I u e ¥k-i{K)\ V e fk{Kf, v - x = o} , fc > 1; 

see [223, Sect. III.5.3]. A vector in u € 7lk{K) is uniquely defined by the 
following degrees of freedom, see [359], 

/ 
u- teP( / s , pePfc_i(e) , (B.20) 

for the six edges e of K, and, for fc > 1, 

( u x n ) - p c ? 5 , p € P f c - 2 ( / ) ^ 
/ , 

for the four faces / of K, and, additionally, for k > 2, 

L u-pdx, p ePfc-3{î r-
K 

Here te denotes a unit vector in the direction of the edge e. We recall that 
Lemma B.18 also holds in three dimensions. It can be proven that the following 
finite element spaces are well defined (see [359]): 

iVi?^(/?) := {u € F ( c u r l ; /?) | u,,, G 7^fe(if), KeTh}, 

NDl.^{f2) := {u € Ho{cvurl;f2) | u,^ | € TZkiK), KeTh}. 

The corresponding interpolation operator is denoted by H^j^^, and, as usual, 
we will drop the superscript k, when there is no ambiguity. 

In the case fc = 1, the elements of the local space Tlk{K) have the simple 
form 

ni{K) = {u = a + b x x | a , b e F o { J s : f } . 

It is immediate to see that the tangential components of a vector in TZi (K) 
are constant on the six edges e of K. These values 
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XJu) = -^ fu-teds, eCdK, (B.21) 
|e| J 

e 

can be taken as the degrees of freedom. Similarly to Lemma B.17, we have 

c ^ hlKiuf < | |u| | i .(^) < C ^ hlKiuf, (B.22) 
eCdK eCdK 

where he is the length of e and the constants c and C only depend on the 
aspect ratio of the element K. 

Nedelec finite elements can also be built on triangulations made of paral
lelepipeds. We refer to [359] for details. 

The interpolation operator on the space ND^{n) is not defined in the 
whole space iJ{curl;i?); additional regularity is required. Different choices, 
and consequently different error estimates, are possible; see [359, 223, 353, 
15, 18, 23, 354]. We remark that the interpolant il^j^^u is not defined for a 
generic vector u in H^{0)^ for 1/2 < r < 1, as was the case for the Raviart-
Thomas spaces, since the degrees of freedom {B.20) involve the tangential 
component of u on the edges, which is not necessarily defined. If we require 
that u 6 H^{n)^ for r > 1, then the trace of u is defined on the edges. 

We only give the following result: the first part is proven in [18, Lem. 4.7], 
while the second follows from a Sobolev embedding theorem. 

Lemma B.19 For any p > 2 and any element K G Th, the interpolant II^j-,^ 
is well defined and continuous on the space 

{u e LP{Kf I c u r l u e I/iKf, u x n G ^{dKf}, 

and thus on 
{u e H^{Kf I c u r l u 6 L^iKf). 

B.3.4 T h e Kerne l and Range of t he Cur l and Divergence 
Opera to rs 

We now suppose that the domain J? is a simply connected polygon or poly
hedron, with a connected boundary. In Sect. A.5.4, we have seen that the 
range of the divergence operator in iJ(div;i?) is i^(i?) and the kernel of 
the curl operator in iJ{curl; i?) is the space gradiJ^(J?). In two dimensions, 
the kernel of the divergence operator is curliJ'^(J7), and in three dimensions 
it coincides with curl i J (curl ; /?) . Similar properties hold for the spaces of 
functions satisfying homogeneous boundary conditions. 

In this section, we state analogous properties for the finite element spaces 
previously introduced. These results are well known and can, for instance, be 
found in [223, 171, 64, 95, 260,18, 354]. In particular, we refer to [260] for the 
proofs of the results in this section. The case when O is not simply connected 
or its boundary is not connected, is treated in [18] and does not present any 
particular difficulties. 



B.3 Divergence and Curl Conforming Finite Elements 385 

We denote the L^-projection onto the finite element space Q'li^) by 
n^^ = n^. We recall that the spaces Q^i^) and Q^-fii^) have been de
fined at the end of Sect. B.1.2. The following lemma is well known and is 
often referred to as commuting-diagram property; a rigorous proof can be 
found in, e.g., [260, Th. 2.30]. 

Lemma B.20 Let Th be shape-regular and the functions q, VL, V sufficiently 
regular. Then, the following identities hold on each element in Th and for 
k> 1: 

grad (I^q) = i T ^ (grad q), (B.23) 

c u r l « ^ ^ u ) = i T ^ ^ _ ^ { c u r l u ) , n = 2, (B.24) 

curl ( / ^ ) = i 7 ^ r , (curl g) , n = 2, (B.25) 

curl (iT^^^u) = i T V , (curl u ) , n = 3, (B.26) 

d iv ( iT^r ,v )= iT^^_^(d ivv) . (B.27) 

We remark that Proposition B.20 is proved by local arguments on each 
element of Th, and the result is thus valid for an arbitrary Lipschitz domain. 
Proposition B.20 implies that the interpolants of the finite element spaces, 
that we have introduced, preserve the kernel of the relevant operators. An 
analogous result is vahd for the spaces that satisfy homogeneous boundary 
conditions. 

The following proposition characterizes the kernel of the curl operator; see 
[260, Th. 2.36] for a proof. 

Lemma B.21 / / i? is simply connected, with a connected boundary, the ker
nels of the curl operator defined in ND^{Q) and ND'^.f^{Q) are grady^'*{i?) 
and grad V^.Q{Q), respectively. 

We can now define the following decompositions of the Nedelec spaces into 
the kernel of the curl operator and its orthogonal complement: 

NDliQ) = g r ad¥^{0 ) ® ND^'^in), (B.28) 

NDt,o{n) = g rad V,%{n) 0 NDl:^{n). (B.29) 

These decompositions are the discrete analogs of (A.12) and (A.ll) . We note 
that, in general, the spaces ND,.' (i?) and ND,.!Q (J?) are not included in 
H^ (curl; J?) and H^ (curl; J?). 

The following Proposition states the analog of (A.15), (A.16), (A.19), and 
(A.20). Its proof can be found in [18, Prop. 4.6]. 

Lemma B.22 Let Q be a Lipschitz domain. Then, for u € ^Df.' (J?) U 

I|u||i2(ij)„ < CHn ||curlu||i2(j^)n, n = 2, (B.30) 

l|u|U2(i2)» < CHn | |curlu| |i2(^)„, n = 3. (B.31) 
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We now consider the characterization of the kernel of the divergence op
erator. For the two-dimensional case, we can use the results for iJ (cur l ; i?) 
and prove results analogous to Proposition B.21. In particular, the kernels of 
the divergence operator defined in RT^{n) and RT^.Q{fI) are curl V^(S^) and 
curlV^^Q(J7) and the following decompositions hold for n = 2: 

RTtin) = curl v^in) e RT^''^{n), (B.32) 
RT^-oin) = curl V,%(n) e i?T,%^(/2). (B.33) 

For the three-dimensional case, the following result can be found in [260, 
Th. 2.36]. 

Lemma B.23 /f i? C M is simply connected, with a connected boundary, 
the kernels of the divergence operator defined in RT^{Q) and RTJ^.Q{Q) are 
cviv\NDl{Q) and curlNDI.Q{Q). 

We can now define the following decompositions of the Raviart-Thomas 
spaces into the kernel of the divergence operator and its orthogonal comple
ment, for n = Z, 

RT^in) = curlND'^in) © RT^'^iQ), (B.34) 

RTJi.om = curliVI?fc%(/?) © RT^;o^{n). (B.35) 

These decompositions are the discrete analogs of {A.7) and (A.8). 
We end this section with a characterization of the range of the divergence 

operator; see [260, Th. 2.36]. 

Lemma B.24 The divergence operator is surjective from RTJ^{fi) into 
Ql_i{,fi), and from RTJ^.oln) into Ql_^.Q{fi). 

B.4 Saddle-Point Problems 

We now consider the approximation of problem (A.57). As for indefinite prob
lems, it is not enough to consider subspaces V^ CV and Q'^ C Q that have 
good approximation properties in order to have a well-posed discrete problem. 
Given G € Q', we define the space Z^{G) C V^ as 

^ " ( 0 ) = {Vh e V' I b(vh,qh) = G(qh), Qh £ (? '} , 

with Z'^ = Z^{0). Since in general Z'^ ^ Z, condition {A.59) does not ensure 
the coercivity of a{-, •) in Z*^. Similarly, the continuous inf-sup condition {A.60) 
does not translate into an analogous condition for the discrete spaces. We then 
make two assumptions on the subspaces V*^ and Q'^: 

(i) a(-, -) is coercive on Z'^: 
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a{uh,Uh) > (ihWuhWv, Uh e Z \ (B.36) 

(ii) b{-, •) satisfies the discrete inf-sup condition: 

inf sup I, ^^!!'']?''\ >7h>0. (B.37) 

We note that in most apphcations, (Uh is independent of the discretization 
parameters, but -jh. may not be. 

We next consider the discrete problem: find {uh,Ph) EV'^ x Q^\ such that, 

(B.38) 
a(uh,Vh) + b(vh,Ph) = F{vh), Vh £ V^ 

b{i^h,qh) =G{qh), qh^Q 

We have the following result; see [95, Sect. II.2.2]. 

Lemma B.25 Let the same assumptions as in Lemma A.47 be satisfied. If 
(B.36) and (B.37) hold and Z^{G) is not empty, then problem (B.38) has a 
unique solution. There is a constant, depending only on ai, a^, jih, and jhr 
such that 

IKIIv < C{\\F\\v' + \\G\\Q,), WPUWQ < C{\\F\\v' + \\G\\Q.). 

In addition, 

| |^-w/i | |y < C7^^ ini \\u-Vh\\v + C ini \\p-qh\\Q, 
vheV- queQ'' 

\\p-ph\\Q<C%'^ ini \\u-Vh\\v + C%^ M \\p-qh.\\Q, 

where the constants only depend on ai, a2, and (3h. If, in addition, Z^ C Z, 
then 

||-w-M/i||y < (1 + - r i I inf ||M-t;/j||y. 
V Ph) vhezi^ 

Remark B.26. Under the same assumptions {B.36) and (B.37), an analogous 
result to Lemma B.25 can be proven for the more general problem (A.61); see 
[95, Sect. IL2.4]. 

B.4.1 Finite Element Approximations for the Stokes Problem 

We now consider some choices of spaces for the Stokes problem; see section 
A.7.2. We first note that the bilinear form a(-,-) is coercive in any finite 
dimensional subspace V^ C V = Ill{fl). The main focus is then the choice 
of subspaces that ensure the discrete inf-sup condition (B.37). For nearly 
incompressible elasticity the bilinear form a(-, •) is coercive in the whole Vh 
thanks to the Korn inequality (A.35). Since the bilinear form b{-,-) is the 
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same as for the Stokes problem, velocity and pressure spaces that work for 
the Stokes problem also work for these elasticity problems. 

In the following, we only mention some particular choices of spaces and 
refer to the references for a detailed analysis. 

We consider a conforming, shape-regular triangulation Th consisting of 
affinely mapped squares or cubes; see Sect. B.1.1. We first consider the so-
called Q2(''')"Qo('*) approximations. Here, the velocity space consists of con
tinuous vectors the components of which belong to 

{ueC''{Q)\u\^€Q2(K),KeTh}, 
while the pressure space consists of discontinuous functions in 

{peL\n)\pi^eQoiK),Kerh}. 
These spaces satisfy an inf-sup condition {B.37), with 7/4 independent of h, 
but they lead to non-optimal error estimates; see [95, Ch. VI, Pg. 221]. 

For Q2 {h)-¥i (h) approximations, the velocity space is the same, but the 
pressure space is chosen as 

{peL^n)\p\,,e¥^{K),Kerh}. 
These elements also satisfy a uniform inf-sup condition and give optimal error 
estimates for the velocity and the pressure; see [95, Ch. VI, Pg. 216]. 

Some choices with continuous pressure spaces are also possible; see [95] for 
more details. 

B.4.2 Spectral Element Approximations for the Stokes Problem 

We consider a conforming, shape-regular triangulation T consisting of affinely 
mapped squares or cubes, as described in Sect. B.2. 

The Qfc-Qfc_2 approximation, with fc > 2, consists of continuous velocities, 
the components of which belong to 

{u e c\n)I u{Fi{x)) e q,{n), i = i....,N], 

and discontinuous pressures in 

{p e L\n) I p(Fi{x)) e Qk-2(n), i = i.. . . ,iv}. 

For velocities, we consider the tensor product Lagrangian nodal basis based on 
the one dimensional nodes GLL(k) described in Sect. B.2. Numerical quadra
ture based on GLL{k) is also employed. A very convenient basis for the pres
sures consists on tensor product nodal basis functions associated to the inter
nal GLL{k) nodes, i.e., the end points ±1 are excluded. 

This method satisfies a non-uniform inf-sup condition, with 7*, = cfc(^~")/^; 
see [329, 427]. The choice Q^-Pfc_i, on the other hand, ensures a uniform inf-
sup condition; see [49]. 
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B.4.3 Finite Element Approximations for Flows in Porous Media 

We now consider some choices of finite element spaces for the saddle point 
problem {A.67) in Sect. A.7.2, which is written as in (A.63) by defining the 
(bi)linear forms as in (A.68): 

a(u,v) = / (A ^u)--vdx, b(u,p) = — / V - u p d x , G(q) = — / fq 
Jo Jo Jo 

dx. 

Here, we only consider the case of Neumann boundary conditions; this corre
sponds to the choice (A.70) for the functional F(-) and (A.69) for the contin
uous spaces: 

F{y) = - f vngNds, T/= F(div; /2) , Q = L^{n) 
Jan 

The choices (A.72) and (A.71) can be treated in a similar way. 
We consider a conforming, shape-regular triangulation % consisting of 

affinely mapped triangles or tetrahedra as in Sect. B.1.1. The case of mapped 
squares or cubes can be treated similarly. We then choose finite element spaces 
that are conforming in if (div; J?) and L^{S7): 

V>' = RT^{Q), Q>'= Ql_^{n), 

for fc > 1; see Sect. B.3.1 and B.1.2. 
Lemma B.24 ensures that the inf-sup condition {B.37) holds for the bilinear 

form 6(-, -). In addition, it can be proven that 7/̂  is independent of the meshsize 
h; see, e.g., [394, 95]. The same lemma also ensures that 

Z'' = Z^{0) = {u e F ' ' I V • u = 0} 

and that therefore, ioi u £ Z^, 

a{u,u) = I (A-^u) -Udx > A^^WuWl^f^n^ = ^2"^l|u|ldiv;i25 

since A is uniformly positive definite thanks to (A.29). Inequality (B.36) then 
holds. 

For the problem corresponding to the choices (A.72) and (A.71), we employ 

B.5 Inverse Inequalities 

Inverse inequalities are powerful tools for the analysis of Galerkin approxima
tions and domain decomposition methods. While Poincare type inequalities 
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(see Sect. A.4) are valid for functions in the continuous space H^{Q), in
verse inequalities are only valid for finite element or polynomial functions and 
typically give bounds of certain Sobolev norms in terms of a weaker one. 

We first consider a conforming, shape-regular triangulation Th and the 
finite element space V^ = V/*(i7); see Sect. B.1.2. The foUowing result can be 
obtained by simple scaling arguments; see, e.g., [391, Sect. 6.3.2]. 

Lemma B.27 (Finite element spaces) Let s>t>0 be two real numbers. 
Then, for K eTh, there exists a constants, depending only on s, r, k, and the 
aspect ratio of K, such that 

\uh\H'(K)<Ch'^^''~*^\uh\HUK), UheV". (B.39) 

If, in addition, Th is quasi-uniform, then 

\uh\H'(n)<Ch-('~*^\uh\HHn), Uh^V^. (B.40) 

Some inverse inequalities involving the L"^- and the iJ^-norms were also 
given in Equation (4.16) and Lemma 4.15. 

Inverse inequalities are also available for polynomials. We refer to [46, Sect. 
5] for the following lemma. 

Lemma B.28 (Polynomial spaces) Let m be an integer and s a real num
ber with 0 <m < s. We have 

In addition, 

where C depends on the triangulation T. 

We note that the two previous lemmas can be combined in order to obtain 
bounds that are explicit both in h and k. We refer to [415, Sect. 4.6] for a 
comprehensive presentation. We finally remark that the two previous results 
are independent of the particular choice of the basis for the finite dimensional 
subspaces. 

B.6 Matrix Representation and Condition Number 

In this section, for simplicity, we only consider the model problem: find u € 
11^(0), such that 

a{u,v) =<F,v>, V e HQ{n), 

with 

Vu • Vv dx. a{u,v) = / ' 
Jn 
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We first consider finite element approximations; see Sect. B.l. Once a basis 
{<^i} is chosen for the finite element space V = VQ, & finite element function 
u can be uniquely written as 

i 

We recall that we use the same notation for a function u{x) and the corre
sponding column vector of degrees of freedom, and for spaces of functions 
V and the corresponding spaces of degrees of freedom. The discrete problem 
(B.l) then gives then rise to a linear system 

AhU = f, 

where the matrix A = Ah and the right hand side / are given by 

Aij = a{(t>j, (j)i), fi = < F,(t>i> . 

The following result is a consequence of the symmetry and coercivity of a(-, •). 
We note, in particular, that it is independent of the choice of the basis func
tions. 

Lemma B.29 The matrix Ah is symmetric and positive definite. 

We look for an upper bound for the condition number K(A/J) of Ah- We 
recall that K{Ah) is defined by 

<Ah) = ^ ^ ^ ^ ^ , 

where 

u^AhU . u^AhU 
>^max{Ah) = max j ; , \min[Ah) = m m ^ 

are the maximum and minimum eigenvalues of Ah] see appendix C. Before 
proceeding, we also define the mass matrix M = Mh as 

We note that M is also symmetric and positive definite. 
Combining the Priedrichs inequality in Lemma A.14 and the inverse esti

mate in Lemma B.27 for s = 1 and i = 0, we obtain the following result which 
gives bounds for the generalized eigenvalue problem involving Ah and Mh-

Lemma B.30 Let the triangulation Th be conforming and quasi-uniform. 
Then, there exist two constants, such that 

ci\\u\\h(^o) < a(u,u) < C2/i~^||w|li2(i?), u£V, 

where ci only depends on Q and both constants are independent of the basis. 
Equivalently, we have 

ci u^Mu < u^Au < C-2 hr'^ u^Mu, ueV. 
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In order to find bounds for Xmaxi^h) and Xmin{Ah), it is enough to bound 
the eigenvalues of M. Such bounds in general depend on the choice of the basis. 
The following result can be found in [391, Pr. 6.3.1] and can be proven using 
a scaling argument. We note that it remains valid for all the vector finite 
element spaces introduced in Sect. B.3, thanks to Lemma B.17 and inequality 
(B.22). 

Lemma B.31 Let the triangulation Th be conforming and quasi-uniform. Let 
in addition {<J)i = (l)^} be the nodal basis functions introduced in Sect. B.1.2. 
Then, there exist two constants, such that 

C3 ft" u^u < u^Mu < C4 ft" u^u, ueV. 

Combining Lemmas B.30 and B.31, we obtain the desired result, which we 
also express in terms of the number of degrees of freedom Lh = 0{h~^). 

Theorem B.32 Let the triangulation % be conforming and quasi-uniform,. 
Let in addition {(/)j = (f>f} be the nodal basis functions introduced in Sect. 
B.1.2. Then, there exist two constants, such that 

C5 ft" u'^u < u^AhU < Ce ft"~^ u^u, ueV. 

Consequently 
K{AH) < Ch-^ < CLI^". 

We note that the estimate of the condition number is sharp. Estimates 
for particular meshes that are not quasi-uniform can also be found; see, e.g., 
[34, 352]. 

The analysis can also be carried out for the spectral approximations in 
Sect. B.2. Once a basis {(f>i} for the space V = VQ is employed, problem 
(B.14) gives rise to a linear system 

AkU = f, 

where A = A^ and / are defined as before, using the approximate bihnear 
form aQ{-, •) and right hand side (/, •)Q. The properties of aQ{-, •) ensure that 
A is symmetric and positive definite. Here we only mention the following two 
dimensional result. A proof can be found in [46, Lem. 5.5] or [352, Prop. 2.7]. 
We note that this bound is sharp. 

Theorem B.33 Let n = 2 and {</>« = (?!>f} be the nodal basis functions intro
duced in Sect. B.2. Then there exist two constants, such that 

Or fc~^ u^u < u^AkU < Csk u^u, u eV. 

Consequently, 
<Ak)<Ck^<CLl/'', 

with Lk = 0{k"') the number of degrees of freedom. 
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We end this section with an estimate for the mass matrix M: 

We note that M is diagonal thanks to the choice of nodal basis functions on 
the GLL nodes and the quadrature formula. Indeed, its entries are equal to the 
quadrature weights. The proof of the following lemma is a direct consequence 
of the bounds in {B.7). 

Lemma B.34 Let {(f>i = <^^} be the nodal basis functions introduced in Sect. 
B.2. Then there exist two constants, such that 

C9 fc-2n ̂ T^ < u^Mu < Cio fc~" n^n, ueV. 



Solution of Algebraic Linear Systems 

Throughout this appendix we consider the solution of hnear systems 

Au = b, (C.l) 

with u, b E M", and A annx n, real, invertible matrix. We use the notation 
< w,^ > = u^v, for u,v e M". We mention, e.g., [456, 231, 28, 252, 450, 233, 
156, 363] as good references for this appendix. 

C . l Eigenvalues and Condition Number 

We recall that, given matrix A € R"^", its eigenvalues A € C and eigenvectors 
•u G C" \ {0} are solution of 

Au = Xu. 

The set of eigenvalues of A, also called spectrum, is denoted by a{A). The 
spectral radius p{A) is defined as 

p(A) := max {|A|}. 
AG(r(A) 

Given a matrix norm 11 • 11 *, we define the condition number of an invertible 
matrix A by 

K,{A):=\\A\U\\A-'\U. 

In the same way, given a second matrix M, we can consider the generahzed 
eigenproblem 

Au = XMu. 

A matrix A is said positive definite if all its eigenvalues have positive real 
part or, equivalently, if u^Au has positive real part for u G C \ {0}. We note 
that in this case 

u^Au = u^^-^u>0, ueM"\{0}. (C.2) 
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If in addition A is symmetric, then its eigenvalues are real and strictly posi
tive. Throughout this monograph, we make use of the following property. It 
can be proven using simple transformations and well-known properties of the 
eigenvalues; see, e.g., [231, Sect. 8.1]. 

Lemma C . l Let A and M be two symmetric, positive definite matrices of 
order n. For an arbitrary matrix B € M" ", let 

\\B\\A := sup ' . |." , 

with ||w||^ := u^Au, and similarly for \\B\\M- Then: 

1. The following eigenvalue problems have the same n eigenvalues 

Au = XMu, (C.3) 

M-^Au = Xu, (C.4) 
(M-i /2^M-i /2)w = Aw, (C-5) 

(A^/^M-^A^/^)u = Xu. (C.6) 

They are all real and strictly positive. 
2. The smallest and largest eigenvalues of the problems above satisfy 

_ u^Au u^Au 

3. We have 

and thus 

4- We have 

„ J « u ^ M u ' ''""'''-^'J^uTMu 

\\M-^A\\A = | | M - U | | M = Xma. = P{M-'A), 

| | ( M - U ) - i | U = | | ( M - I A ) - 1 | | M = 1/A™„, 

KA{M-^A) = K 2 ( M - V 2 A M - V 2 ) = X^ax/Xmir 

(u^Au > CU^Mu, U e M"") =^ X-min > C. 

Analogously, 

(u^AuKCu^Mu, u e R " ) =^ Xmax<C, 

and thus 
KA(M-'^A) < C/c. 
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In this monograph, we use the notation 

K{M-^A) = KA{M-^A) = KM{M-^A). 

We note that since M~^A is not symmetric, its norm ||M~-^A||2 is not in 
general equal to its largest eigenvalue. However, M~^A is symmetric with 
respect to the scalar products induced by A and M. 

Lemma C.l allows us to prove the following corollary, which we use exten
sively in this monograph. It basically ensures that a good preconditioner of a 
good preconditioner remains a good preconditioner. 

Corollary C.2 LetA,B, andC he three positive definite symmetric matrices. 
Then, K ( C - U ) < K{C-^B)K{B-^A). 

C.2 Direct Methods 

C.2.1 Factorizations 

Direct methods for the solution of linear systems usually construct a factor
ization of the matrix A. For a general matrix we can consider an LU decom
position (possibly after a reordering of the equations or unknowns) 

A = LU, 

or, for a symmetric, positive definite matrix, a Choleski decomposition 

A = U'^U = LDL^. 

Here, L is a lower triangular matrix with ones on the main diagonal, U is 
upper triangular, and D is diagonal. 

Block factorizations can also be employed. If for instance A is symmet
ric and is partitioned into four blocks, corresponding to a partition of the 
unknowns into two sets, we can formally write 

A 
All Ai2 

AI2 A22 
I 0 

AT 4 - 1 7" 
All A12 

0 s 

I 0 

^ 1 2 ^ 1 1 ^ 

AiiO 
0 S 

I ATM 
0 

1 1 ^ 1 2 

/ 

(C.7) 

with the Schur complement S = A22 — Afj^n^^ia- The above factorization is 
not defined for an arbitrary symmetric matrix. However, we have the following 
result for positive definite matrices. 

Lemma C.3 Let A be symmetric and positive definite. Given an arbitrary 
partition into four blocks as in (C. 7), corresponding to a partition of the un
knowns into two sets, then the diagonal Mocks An and ^22 are also symmetric 
and positive definite and the factorization (C. 7) is always defined. In addition 
S is also symmetric and positive definite. 
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Proof. The first assertion is easily proven by noting that 

wf All Ml = [ul 0] A [ul 0]^ > 0, til # 0, 

and similarly for A22- The second assertion can be proven by noting that, 
according to (C.7), if U2 ^ 0, 

U^SU2 = 
0 

U2 

Al l 0 
0 S 

0 
W2 

where 

D 

V = 
I An^Ai2 
0 / 

- 1 
0 

U2 

= v^Av > 0, 

7^0. 

We refer to, e.g., [231] for a detailed presentation and discussion of these 
factorizations. 

In some of the methods presented in this monograph, the application of 
the inverse of the Schur complement S itself is required. Indeed, in order to 
calculate 

W2 = S~^V2, 

it is not necessary to form S~^ exphcitly, but it is enough to solve a hnear 
system involving the original matrix A with a suitable right-hand side, and 
extract the lower block of the solution. Using {C.7), we can easily show that 

U l 

U2 
A - 1 

C.2.2 Fill-in 

Matrices arising from finite or spectral element approximations are generally 
sparse, i.e., the number of their non-zero elements is small compared to the 
total number of entries. However, the factors of the factorizations above are 
in general much less sparse. We say that two unknowns i and j are connected 
or coupled ii eithei Oij or aji is different from zero. Fill-in takes place at {i,j), 
with i and j two uncoupled unknowns, if the corresponding entry {i,j) or 
(j, i) in one of the factors is non-zero. In the following we briefly describe how 
fiU-in takes place and refer to [220] for additional details. 

We consider an LU factorization; see [231, Ch. 3]. Given A^̂ ) = A, the 
algorithm constructs a sequence of matrices {A^^\ fc = 2 , . . . , n } , such that 
U = A ( " ) . The entries of Â *̂^ below the main diagonal along the columns 
from 1 to fc — 1 are zero. For k = l , . . . , n — 1, the entries of the new matrix 
^(fc+i) 3j.g constructed from Â *̂ ) and are given by 

,(fc+i) _ 

(K) ^ — 1, . . . , K, j =i,...,n 
0, i = 1 , . . . , fc. i = j + l,. 

(fe) ) * ) ^ — "• T^ -•-) • . . , n . 
(C, 
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km q 
Fig. C.l . Fill-in: unknowns shared by the same square/rectangle are coupled. 

After the construction of A^ '̂+^ ĵ we say that the unknown k has been elim
inated. The algorithm preserves the entries in the rows from 1 to fc, and 
introduces zeros in the fc-th column below the main diagonal. It is clear that, 
even if an entry a -̂ , associated with the unknowns i and j , is zero, the new 
entry a\j ^ may be different from zero if 

(k)(k) 
ah a ik "-kj # 0 . 

This is the case if unknowns i and j are not coupled, but they are both con
nected to the newly eliminated unknown k. This is described graphically in 
Fig. C.l, left, where unknowns are represented by points on a lattice. Two 
unknowns are connected if they belong to the same square or rectangle. Elim
ination of the unknown k brings in a coupling of the unknowns to which k was 
connected. Similarly for the unknown m; see the two new shaded squares in 
Fig. C.l, center. The successive ehmination of g then couples all the unknowns 
belonging to the two bigger squares; see Fig. C.l, right. Clearly this process 
and the resulting factorization depend on the order in which the unknowns 
are ehminated. However, unknowns k and m are not coupled and their elimi
nation can be made independently and in parallel and the resulting factor is 
independent of the order in which they are eliminated. 

Similar remarks apply for block factorizations . Block elimination of a set 
of unknowns causes a coupling between all the unknowns that were connected 
to those in the block; cf., for instance, the block {k^m^q} in Fig. C.l. 

C.3 Richardson Method 

Given a splitting of the matrix A 

A = M' 'N, 

with M non-singular, and an initial vector u^ € 
scheme where, for fc > 0, 

(C.9) 

we can set up an iterative 
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MM*'+^ = Nu'' + h. (CIO) 

Clearly, if the sequence {u''} converges, it must converge to the solution of 
the linear system 

Mu = Nu + h, (C.ll) 

and then of (C.l). The iteration scheme (C.IO) can be rewritten in a number 
of different ways: in term of the residual r*̂  :=h — Au'', we have the equation 

which shows the increment between two successive iterates. We note that the 
computation of the new iterate w*'+̂  involves the calculation of the residual 
r^ (and then the application of the original matrix A to a vector) and the 
application of the inverse of M to the residual- A more general iteration scheme 
may be obtained by using a relaxation parameter a € M, which should have 
the effect of accelerating convergence: 

«fc+i = u f c + a M - V * ' . (C.12) 

Using (C.l) and (C.12), and the iteration matrix 

B := M-^(( l - a)M + aN) = I - aM'^A, (C.13) 

we can write 
gfc+i ^ Be^^ (C.14) 

which provides an equation for the error e'^ := u — u'', and then 

gfc = B''e^. (C.15) 

Convergence takes place, independently of the choice of w°, if the error tends to 
zero as k tends to infinity, independently of e°- We note that equation (C.15) 
only involves the iteration matrix B, but not A alone, and is independent of 
the right-hand side b. We have the following conditions for convergence; cf., 
e.g., [231, Sect. 10.1.2]. 

Lemma C.4 A necessary and sufficient condition for the convergence of 
(C.IO) is that the spectral radius of the iteration matrix B is strictly less 
than one. A sufficient condition is that 

II-B||*<1, 

where || • ||+ is any norm in R" ". /f || • ||* is induced by a vector norm, then 
we have 

l|e'=||*<^,^||eO|U, v*--=MU. (C.16) 
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The quantity r?* is called convergence factor and gives a bound for the error 
reduction at each step. 

If no relaxation is employed (a = 1), it is clear that best convergence is 
achieved when M = A, for which B = 0- The matrix M is called precondi-
tioner, and for the reasons above, in practice it is chosen in such a way to 
satisfy the two following, somewhat conflicting, conditions: 

1. M should be 'close' to A; 
2. the inverse of M should be easy to apply. 

The case M = I corresponds to no preconditioning. 
If we decompose A into its lower diagonal, diagonal, and upper diagonal 

parts 
A = L + D + U, (C.17) 

the Jacobi and Gauss-Seidel preconditioners correspond to the choices M = D 
and M = D -\- L, respectively- Sufficient conditions for the convergence of the 
corresponding iterative methods are given in, e.g., [231, Sect. 10.1.2]. We can 
also consider a block decomposition in (C.17). 

In case both A and M are symmetric and positive definite, we can employ 
Lemma C.l in order to get more precise estimates in terms of the spectrum 
of M-'^A. 

Lemma C.5 Let A and M he symmetric and positive definite and let Xmin 
and Xmax be the smallest and largest eigenvalues of M~^A, respectively. Then 
the preconditioned Richardson method (C.12) converges for any choice of the 
initial vector, if and only if 

(0,2), iJ,ea{M-^A), 

and thus 
ae (0,2/Xraax)-

In this case, the convergence factor is 

r]A{a) = max{|l - aXmin\, \aXmax - 1|}-

77*6 minimum value ofrjAicx) is 

Xmax ~ Xmin K ( M A) — 1 

''°''* ~ Xmax + Xmin ~ K{M-^A) + 1 

and is attained for a = 2/{Xmax + Xmin)-

Proof Using (C.13) and Lemma C.4, we see that the method converges if 
and only if 

o - ( / - a M - ^ A ) c ( - l , l ) . 

This is equivalent to 

file:///aXmax
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1. Initialize: r° = 6 - Au° 

2. Iterate A; = 0,1, • • • until convergence 

Precondition: z'' = M~'^r^ 

Fig. C.2. Preconditioned Ricliardson iteration. 

- l < l - a / i < l , /t e o-(M~^A), 

which proves the first assertion. The bound for a is obtained by noting that 
the eigenvalues of M~^A are all positive. The convergence factor rjA{a) is 
found by taking the maximum of |1 — a^\ over /x 6 a{M~^A) and the value 
of r}opt by taking the minimum of ?/A(Q;) over a 6 (0,2/Xmax)- D 

We note that in case no relaxation is employed (a = 1), the Richardson 
method converges if and only if Xmax < 2 since all eigenvalues of M~^A are 
positive. 

Given u^ and a choice for a, the preconditioned Richardson iteration is 
given in Fig. C.2. 

C.4 Steepest Descent 

We note that if the matrix A is symmetric and positive definite, the solution 
of the linear system (C.l) is the unique vector that minimizes the quadratic 
functional 

^(x) = -x'^Ax — iFx. 

Indeed, the gradient of (l>{x) is equal to —r{x) = Ax — b. If we consider 
the Richardson iteration of the previous section with no preconditioning, we 
see that the new iterate u''~^^ is found from u'' by moving along the search 
direction r*". The step-length a gives the amount of which one moves along 
this direction. In this case, the search direction coincides with the direction of 
r^ = r(w*'), i.e., the direction where, locally, the reduction of 0(x) is maximum 
(steepest descent). 

Given a direction and a positive definite, quadratic functional, the optimal 
a that achieves the maximum reduction of (f){x) at each step can be easily 
found by solving 

min d>(u'' + ar''}. 

The minimum is attained for 
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1. Initialize: r° = = b-Au° 

2. Iterate k = 0 1, • • • until convergence 

«'= = <r''\r'' > / <r^ 

r* -a'^Ar'' 

Ar^ > 

Fig. C.3. Unpreconditioned Steepest Descent iteration. 

a = a" -
< r^'.Ar^ > 

In addition, the new residual corresponding to the new iterate w + = u + 
Q,kj,k ^g 

*»'*^"rl ^ «»"̂  H' j4_T* 

We therefore have the algorithm in Fig. C.3. 
We note that only one appUcation of the original matrix A is required at 

each step, since the vector Ar'" can be stored and used to evaluate the new 
residual. We have the following convergence result; cf. [363, Th. 3.3]. 

Lemma C.6 Let A be symmetric and positive definite. Then, the Steepest 
Descent method with no preconditioning satisfies the error bound 

II h l\ ^ h \\ Oi l 

I F \\A Ji VAW^ \\A.1 

where the convergence factor is 

K2(A) - 1 VA = K2(A) + 1' 

Consequently, it converges for any choice of u^. 

We note that the Steepest Descent method satisfies the same error bound 
as the Richardson method with an optimal choice of a. However in this case 
no information about the spectrum of A is required. 

C.5 Conjugate Gradient Method 

For this section, we follow the presentation in [363, Sect. 5.1]. We also refer 
to [231, 450, 233, 156] for somewhat different presentations. 

Let A be symmetric and positive definite. Steepest Descent chooses the 
search directions as those of the residuals. In Conjugate Gradient the search 
directions {p''} are chosen as conjugate with respect to A, i.e., 
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<p\AiP >=<p\p> >A= 0, i # j . (C.18) 

In addition, the algorithm provides a cheap way of generating conjugate di
rections. We assume now that we are given an initial guess u^ and a set of 
conjugate directions {p^}. We can then generate the sequence 

n * + i = u f c + a V , k = 0,l,... (C.19) 

where ak is the one-dimensional minimizer that solves 

min d>(u'' + ap'^}. 

We have 

<p'',Ap^ >• 

Since the vectors {p''} are orthogonal with respect to the scalar product 
< •, • >A, they are also linear independent and thus provide a basis for M". 
We have the following property; cf. [363, Th. 5.1 and 5.2]. 

Lemma C.7 Let u^ £ M" and {p^} be an arbitrary set of conjugate direc
tions. For k >1, we have 

<rk,Pi>=0, i = 0,l,...,k-l, 

and u^ minimizes (j){x) over the space 

u^ + span {pi, » = 0 , 1 , . . . , fc — 1}. 

Consequently, the sequence generated by (C.19) converges to the solution of 
(C.l) in at most n steps. 

We note that the previous result holds for any set of conjugate directions. 
In addition, since it is not valid for an arbitrary set of hnearly independent 
directions, it highlights the importance of the conjugacy condition (C.18). 

The Conjugate Gradient algorithm now provides a particular choice for 
the search directions: they are of the form 

where the scalar /3^ is uniquely determined by imposing the condition that 
the new direction is conjugate to the previous ones; see (C.18). We can then 
write the algorithm in Fig. C.4. 

As for Steepest Descent, only one application of the original matrix A is 
required at each step. We have the following property; cf.[363, Th. 5.3]. 

Lemma C.8 Suppose that the k-th iterate generated by the Conjugate Gra
dient method is not the .solution of (C.l). Then, 
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1. Initialize: r° = 6 - Au° 

2. Iterate A; = 1, 2, • • • until convergence 

/?* = (r '=-^r* '- ' ) / (r '=-^r '=- '> [/?' = 0] 

/=r ' ' - i+ /3V"' b'='-°] 
a* = ( r* - i , r* - i ) / (p* ,V) 
•u = -M ~ + a p 

r — r ~ —a Ap 

Fig. C.4. Unpreconditioned Conjugate Gradient. 

< r * , r ' > = 0 , i = 0,...,k-l, 

span{r% i = 0 , 1 , . . .,fc} = span{AV'', i = 0, l , . . . , fc} 

span{p', i = 0 , 1 , . . .,fc} = span {AV°, i = 0,1, ...,fc} 

< / , A p ' > = 0 , i = 0 , . . . , f c - l . 

Therefore the sequence {«*'} converges to the solution of (C.l) in at most n 
steps. 

We note that the residuals and the conjugate directions both provide bases 
for the Krylov spaces fCk = ICk{ro,A) = span{A*r*', i = 0, l , . . . , fc — 1} 
and that, thanks to Lemma C.7, the iterate u'' minimizes ^(x) over the space 
u^ + lCk{ro,A). 

Convergence of the unpreconditioned Conjugate Gradient depends on the 
condition number of A: we have the following result. We refer to [450, Th. 
38.5] for a proof. 

Lemma C.9 Let A be symmetric and positive definite. Then, the Conjugate 
Gradient method satisfies the error bound 

We'^U < 2r?l||eO|U, 

where the convergence factor is 

VA = 
\AOT + 1 

We note that the previous result may provide just a crude estimate of the 
rate of convergence. If the eigenvalues of A are clustered, it is then well-known 
that convergence is fast; we refer to, e.g., [450, Sect. VI.38] or [156, Sect. 6.6.4] 
for additional results and comments. 
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1. Initialize: r*^ = h - Au° 

2. Iterate A; = 1, 2, • • • until convergence 

Precondition: z''~^ = AfV*"^ 

/?'= = (^'=-\r^-')/{;s*-',r*-') Ifi' = 0] 

/ = ^ ' = - i + / ? V - i [p '=^°] 

â  = (^^-Sr*-i)/(p*,V) 
u — u ~ + a p 
r^ = r*"^ - a^Ap* 

Fig. C.5. Preconditioned Conjugate Gradient. 

The Conjugate Gradient iteration also provides an estimate of the eigen
values of the matrix A (and thus of K2{A)). Indeed, thanks to Lemma C.8, 
the columns of 

Rk = [ro/||ro||,...,rfc_i/||rfc-i||], 

provides an orthonormal basis for the Krylov space JCk{ro, A). One can prove 
that the restriction of A to Kk{ro, A) 

Tk = RlARk 

is a symmetric, tridiagonal matrix (see [231, Sect. 10.2.5]), the entries of which 
can be constructed from the coefficients a ' and j3^ of the Conjugate Gradi
ent iteration. We refer to [430] for the precise formulas. By calculating the 
eigenvalues of T^ one can easily obtain estimates of the largest and smallest 
eigenvalues of A. 

Lemma C.9 provides a better bound than that for Steepest Descent in 
Lemma C.6, however, in case K2{A) is large as in the case of finite and spec
tral element approximations, preconditioning is necessary. Given a symmetric, 
positive definite matrix M, we can consider the modified linear system 

M-^/'^AM-^/'^V = M-^/^b, V = M^/\. 

We note that M~^^'^AM~^^'^ is symmetric and positive definite and it reduces 
to the identity in case M = A. We can then consider M as a preconditioner 
for A and apply the unpreconditioned Conjugate Gradient method to this 
modified system. After some manipulations, we find the algorithm in Fig. 
C.5. 

We note that this algorithm does not involve the application of M~^/^, 
but only of M~^. It is not however the Conjugate Gradient method applied 
to a system involving the matrix M~^A, which is not symmetric in general. 
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In addition, it requires one application of the original matrix A and one appli
cation of M~^ to a vector. Using Lemmas C.9 and C.l, we find the following 
result. 

Lemma CIO Let A and M be symmetric and positive definite. Then, the 
preconditioned Conjugate Gradient method satisfies the same error bound as 
in Lemma C.9, with 

^ K ( M - I A ) + 1 " 

In Sect. 2.5.2, we give a particular variant of the Conjugate Gradient. 
Estimates for the eigenvalues of M~^A can also be obtained in this case using 
the coefficients a ' and /?*. 

C.6 Methods for Non-Symmetric and Indefinite Systems 

C.6.1 The Generalized Minimal Residual Method 

The Generalized Minimal Residual Method (GMRES) is described in [407] and 
the theory developed in X^(i?) can be found in [185]. Here we briefly describe 
the GMRES algorithm and state a convergence theorem without proof. We 
follow the presentation in [407]. 

Let A be an invertible matrix, not necessarily symmetric or positive def
inite, and w° e K" an initial vector. The GMRES algorithm basically relies 
on two ideas. The first is to build orthonormal bases {t;^,v^, . . . ,v^} for the 
Krylov subspaces 

Kk = lCk{r\A) = span {rO,ArO,---, A''-VO}, 

where r^ = 6 — Au^ is the initial residual. It does so by the so-called Amoldi 
iteration which also produces the representation of A in A^̂ . An approximate 
solution u^ is then found by solving the least-square problem 

min II& - Au\\2 = min ||r° - Az\\2. (C.20) 

We find the algorithm in Fig. C.6, where, /? = ||r^||, ei is the first column of 
the (j + 1) X (j + 1) identity matrix, Vj is the matrix, the columns of which 
are the vectors v'', k = 1,. ..,j, and Hj is a (j + 1) x j matrix, the non-zero 
entries of which are the elements hiX, see [407]. 

Several comments are required. The second step in the iteration above is 
a step of the Arnoldi iteration. Indeed, we easily find 

fc+i 
Av'' = ^ / i i , f c t ;* , f e= l , . . . , i . 
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1. Initialize: r° = 6 - Au° 

2. Iterate k = l,2,...,j 

v' = rV\\r% 

q^ = Av'' 

hi,k — <q'',v^ >, i — l,...,k 
k 

^k k Y ^ , i 
V =q - 2_^hi,kV 

i-l 

hk+l,k = \\v''\\2 

v*+i = v''/hk+i,k 

3. Form tlie approximate solution 

v? = u -\- VjW-', where m' minimizes ||/?ei — Hjw\\2, w GW 
Fig. C.6. GMRES iteration. 

and thus 
AVj = Vj+iHj (C.21) 

Since the columns of Vj and l^+i are orthonormal, we find 

VfAVj = Hj, 

where Hj is a j x j Hessemberg matrix, the non-zero entries of which are the 
elements hi^k- The representation of A in ICk is thus Hj and can be used to 
extract information on the spectrum of A. 

We next remark on the third step of the algorithm. It indeed solves the 
minimization problem (C-20). In order to see that, we rewrite {C.20) as 

min \\/iv^ — AVjw\\2-

Using the representation (C.21) and the fact that the columns of Vj+i are 
orthonormal, we can finally write 

\\/3v^ - AVjwh = \\Vj+i{^e^ - Hjw)\\2 = \\fie^ - Hjivh-

Some other important practical aspects are given in [407]. Here we only men
tion that the least-square problem in the third step of the algorithm can be 
solved by using a QR factorization of Hj. Such factorization can be obtained 
from that of -fTj-i at the previous step. In addition, the residual norm of the 
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approximate solution ij can be computed from the QR factorization at no 
extra cost, without finding vJ. 

Thanks to the minimization property {C.20), the exact solution would be 
reached in no more than n iterations if we use exact arithmetic. Following 
[185], the rate of convergence of the GMRES method can be characterized in 
terms of the minimal eigenvalue of the symmetric part of the operator and 
the norm of the operator. They are defined by 

<u,Au> „ \\Au\\2 
Cr, = mm , C„ = max -n—n—; 

ueW <u,u> ^ „£K" ||M||2 

cf. (C.2). 
By considering the decrease of the norm of the residual in a single step, 

the following theorem can be established. 

Lemma C . l l If Cp > 0, then, after k steps, the norm of the residual is 
bounded by 

C 2 \ ''/'^ 

The rate of convergence can be improved by using a suitable precondi-
tioner. Let M be an invertible matrix. We consider the precondition problem, 
derived from (C.l), 

M-^Au = M-^b. 

The GMRES algorithm can be written in this case as in Fig. C.7. 
Here, /?, Vj, and Hj are defined as before. 

C.6.2 The Conjugate Residual Method 

The preconditioned conjugate residual (PCR) method is a generalization of 
Conjugate Gradient for symmetric, not necessarily positive definite, systems 
and symmetric, positive definite preconditioners; see [25, 252]. A fine presen
tation can be found in [252, sect. 9.5]; see also [280, sect. 2.1.3]. 

We consider the linear system (C.l) and a preconditioner M. One version 
of PCR is given in Fig. C.8. We note that the algorithm can be implemented 
in such a way that only one matrix-vector product for A and M~-̂  is needed, 
by introducing three additional vectors; see, e.g., [280, sect. 2.1.3]. 

In order to give a convergence result, we define 

K = K(M-'^A) = '^"""' = "^^{ l^ l - A € a ( M - ^ A ) } 
^ ' fi^in min{|A|: A e a { M - i A ) } ' 

where a{M~^A) is the spectrum of M~^A. We have the following result. 
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1. Initialize: r° = 6 - Au° 

r<' = &-A«° 

Precondition: z^ — M~ r 

v' = z'/Wz'h 

2. Iterate k — l,2,...,j 

l ' - Av'' 

Precondition: z = M-U^ 
hi,k = < « * , « * > , i = l,...,k 

t)^ = 
k 

z'' -'^hi,kv' 

i—l 

hk+l,k — \\v% 
v*'+^^ V /hk+i,k 

3. Form tlie approximate solution 

u' — u -\-Vjw\ where w' minimizes ||/?ei — Hjw\\2, w £W. 

Fig. C.7. Preconditioned GMRES iteration. 

1. Initialize: r O = 6 -Au°, p-^ = 0, p° = M-VO 

2. Iterate k = 1,2,- • • unt i l convergence 

/3 = (r*-^ M-^A/-^) / (A/" '^,M~^Ap k-l\ 

-1 

ao = {AM' -'Ap"-' ,M-'^Ap''' '}/{Ap''-' M~ V̂" -'} 
a\ = (AM" -'Ap^-' ,M-^Ap'''' ^ ) / ( A / - 2 M~ M/--'} 

/ = M-^Ap''-^ - aop''~^ - a i / ~ ^ 

Fig. C.8. PCR iteration. 

Lemma C.12 Let A be regular and symmetric and M symmetric and positive 
definite. Then, after k steps, the norm of the residual is hounded by 

l|M-VV||2 < _ | ^ | | M - V V | | 2 
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with p = ^ ^ and /x e Z, such that | — 1 < // < | . 

The proof can be found in, e.g., [252, Th. 9.5.13]. A more general result 
can also be given in case A is mildly indefinite and bounds for the negative 
and positive parts of <T(M~^yl) are available; see [252, Th. 9.5.14]. 
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Index 

ff(curl; n), 348, 349 
approximation, see Ned^lec elements 
preconditioning, 271 

i7(div;i?), 347 
approximation, see Raviart-Tliomas 

elements 
preconditioning, 271 

afRne mapping, 371 
anisotropic meshes, 202, 206, 215, 273 
average operator, 134, 139, 140, 151, 

208 

basis functions 
Lagrangian, 373 

block preconditioners, 24, 235, 241, 258 

Cauchy-Schwarz inequalities, strength
ened, 40 

coarse grid, 59, 90, 219, 274, 289, 314 
coloring, 46 
condition number, 395 

convergence of conjugate gradient, 
407 

of Schur complement, 97, 202 
of stiffness and mass matrix, 390 

Conjugate Gradient, 403 
Conjugate Residual, 409 
convection-diffusion problems, 311, 326 
counting functions, 134 

for i3"(div; Q) and i3"(curl; O), 301 
for elasticity, 226 
for scalar elliptic problems, 134 
for spectral elements, 208 

curl, see ii"(curl; i?) 

Darcy flows, see porous media 
Deville-Mund preconditioner, 196 
direct methods, 397 
Dirichlet-Neumann, 8, 18, 328 
discontinuous Galerkin, 82, 327 
divergence, see H{div; i?) 

edge elements, see N^d^lec elements 
eigenvalue problems, 335 
eigenvalues, 395 
elasticity, linear 

approximation, 375 
nearly incompressible, 257, 366, 388 
preconditioning, 217 
well-posedness, 357 

extensions 
continuous spaces, 342 
discrete harmonic, see harmonic 

extensions, discrete 

factorizations, 397 
FETI, 131 

DP, see dual-primal 
dual-primal, 160 

for elasticity, 227 
acceptable edge path, 172, 229 
analysis, 175 
three dimensions, 167 
two dimensions, 161 

for if(div; Q) and if (curl; f?), 304 
for convection-diffusion, 329 
for Helmholtz, 332 
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for porous media, 241 
for spectral elements, 208 
for Stokes problems, 241 
one-level, 143 

nonredundaiit Lagrange multipliers, 
150 

redundant Lagrange multipliers, 
156 

one-level for elasticity, 227 
two subdomains, 12, 241 

fictitious domain methods, 233 
fill-in, 398 
finite elements 

spaces, 372 
triangulation, see triaiigulation 

floating subdomains, 88 
Predholm alternative, 364 
Priedrichs inequalities, 104, 343 

Carding inequality, 313, 364 
Galerkin approximations, 371 
Gauss-Lobatto 

meshes, 194 
points, 377 

GMRES, 315, 407 
Green's formulas, 347, 349, 350 

harmonic extensions, discrete, 96 
for elasticity, 222 
comparison, 264 
for H{<ii.Y; J?) and iy(curl; i2), 290, 

295 
for porous media, 253 
for spectral elements, 201 
for Stokes problems, 264 

Helmholtz equation, 312, 330 
FETI-H, 332 
overlapping methods, 331 

indefinite problems, 362 
algebraic, 407 
approximation, 375 

inexact solvers, 36 
interface conditions, see transmission 

conditions 
interface, subdomain, 88 
interpolant 

L^ projection, 101 
ini i"(curl ; i?) , 384 

in i7(div; 12), 381 
nodal into and firom GLL meshes, 195 
quasi-interpolant, 62 
standard nodal, 99, 100, 112, 373 
standard nodal for nonnested meshes, 

64 
interpolation 

spaces, 339, 343 
inverse inequalities, 389 

jump operator, 150 

Korn inequalities, 358 

Lax-Milgrain lemma, 354, 363 
Lipschitz domain, 337 

mass matrix, 391 
Maxwell's equations, 362 
mesh, see triangulation 
mixed methods, see saddle point 

problems 
mortar methods, 233 

Nedelec elements 
interpolant, 384 
range and kernel of the curl, 384 
three dimensions, 383 
two dimensions, 382 

Neumann-Dirichlet, 15 
Neumann-Neumann, 10, 16, 131 

balancing, 133, 250, 265, 301 
for H{div; i?) and H{cuxl; J?), 301 
for convection-diffusion, 328 
for elasticity, 225 
for porous media, 250 
for spectral elements, 208 
for Stokes problems, 265 
two subdomains, 10, 241 

nonlinear problems, 334 
nonnested grids, 64 

optimal, method, 9 
optimality, 9 
optimized interface conditions, 333 
overlap, definition/sniall/generous, 56 
overlapping methods, 55 

alternative coarse problems, 75 
analysis, 67 
for H{div; i?) and H{cuxl; J?), 274 
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for elasticity, 219 
for Helmholtz, 331 
for nonsymmetric or indeiinite 

problems, 314 
for porous media, 255 
for spectral elements, 198 
for Stokes problems, 258 
local solvers, 56 
numerical results, 73 
standard coarse spaces, 59 

partition of unity 
coarse spaces, 84 
functions, 57, 105, 204, 295 

plane waves, 333 
Poincare inequalities, 104, 343 
porous media, flows in 

approximation, 389 
preconditioners, 239 
well-posedness, 367 

positive definite problems, 353 
algebraic, 395, 403 
approximation, 374 

preconditioner, 401, 406, 409 
projection, see interpolant 

quasi-optimal, method, 18 
quotient space arguments, 60, 346 

Raviart-Thomas elements, 380 
interpolant, 381 
range and kernel of the divergence, 

384 
reference element, 371 
regularity results, 369 
Richardson method, 399 
Robin-Robin, 328, 329 

saddle point problems 
approximation, 386 
well-posedness, 364 

scalability, 17 
scalable methods, 17 
scaling arguments, 60 
Schur complement, 5, 94, 201, 244, 251, 

263, 290, 397 
application, 94 
application of the inverse, 95 
condition number, 97, 202 

Uzawa algorithm, 233, 237 
Schwarz methods 

additive, 37 
alternating, 21, 27 
convergence theory, 39 
definition, 35 
hybrid, 38, 47, 137 
implementation, 52 
multiplicative, 37 
restricted, 75 

smoothed aggregation, 81 
Sobolev spaces 

definition, 337 
immersions, 340 
of vector-valued functions, 346 
traces, 341 

spectral elements, 376 
approximations, 378 
interpolant, 195, 378 
preconditioners, 193 
spaces, 376 

spectral radius, 395 
spectrum, see eigenvalues 
steepest descent, 402 
Steklov-Poincare operator, 6 
stiffness matrix, 390 
Stokes problem 

finite element approximations, 387 
preconditioners, 257 
spectral element approximations, 388 
well-posedness, 366 

subdomain partitions 
nonoverlapping, 88 
overlapping, 56 

substructuring methods 
for H{div; Q) and i f (curl; i2), 288 
for linear elasticity, 220 
for nonsymmetric or indeiinite 

problems, 320, 327, 331, 333 
for porous media, 241 
for scalar problems, 113, 131 
for spectral elements, 200 
for Stokes problems, 261 
generalities, 87 

trace operators 
continuous spaces, 341 
in iy(curl; 12), 349, 350 
in i7(div; 12), 347 
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transmission conditions, 
331, 333 

triaiigulation, 371 
quasiuniform, 372 
sliape-regular, 372 

Uzawa algorithm, 233 

2, 4, 242, 245, weighted average, see average operator 
wire basket 

an extension from, 222 
definition, 89 
method for ii"(curl; i?), 308 
method for elasticity, 221 
method for spectral elements, 206 




