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Preface

All books on linear systems for undergraduates cover both the discrete and
the continuous systems material together in one book. In addition, they also
include topics in discrete and continuous filter design, and discrete and
continuous state-space representations. However, with this magnitude of
coverage, although students typically get a little of both continuous and
discrete linear systems, they do not get enough of either. A minimal coverage
of continuous linear systems material is acceptable provided there is ample
coverage of discrete linear systems. On the other hand, minimal coverage of
discrete linear systems does not suffice for either of these two areas. Under
the best of circumstances, a student needs solid background in both of these
subjects. No wonder these two areas are now being taught separately in so
many institutions.

Discrete linear systems is a big area by itself and deserves a single book
devoted to it. The objective of this book is to present all the required material
that an undergraduate student will need to master this subject matter and
to master the use of MATLAB1 in solving problems in this subject.

This book is primarily intended for electrical and computer engineering
students, and especially for the use of juniors or seniors in these undergrad-
uate engineering disciplines. It can also be very useful to practicing engi-
neers. It is detailed, broad, based on mathematical basic principles and
focused, and contains many solved problems using analytical tools as well
as MATLAB.

The book is ideal for a one-semester course in the area of discrete linear
systems or digital signal processing where the instructor can cover all chap-
ters with ease. Numerous examples are presented within each chapter to
illustrate each concept when and where it is presented. In addition, there
are end-of-chapter examples that demonstrate the theory presented. Most of
the worked-out examples are first solved analytically and then solved using
MATLAB in a clear and understandable fashion.

The book concentrates on understanding the subject matter with an easy-
to-follow mathematical development and many solved examples. It covers
all traditional topics plus stand-alone chapters on transformations and con-
tinuous filter design, which should be covered before attempting the IIR
digital filter design. These chapters (transformation and continuous filter
design) plus the two comprehensive chapters on IIR and FIR digital filter
design make this book unique in terms of its thorough and comprehensive

1 MATLAB is a registered trademark of The Mathworks, Inc. For product information, please
contact: The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098. Tel: 508-647-7000.
www.mathworks.com.



treatment. A complete chapter on state-space is presented.  Another chapter
summarizes all representations used in describing discrete linear systems
with many examples and illustrations. A very comprehensive chapter on the
DFT and FFT is also unique in terms of the FFT applications.

In working with the examples that are solved with MATLAB, the reader will
not need to be fluent in this powerful programming language, because they
are presented in a self-explanatory way. 

To the Instructor: All chapters can be covered in one semester. In a quarter
system, Chapters 8 and 9 can be skipped. The MATLAB m-files used with this
book can be obtained from the publisher. 

To the Student: Familiarity with calculus, differential equations and pro-
gramming knowledge is desirable. In cases where other background material
needs to be presented, that material directly precedes the topic under con-
sideration (just-in-time approach). This unique approach will help the stu-
dent stay focused on that particular topic. In this book there are three forms
of the numerical solutions presented using MATLAB, which allows you to type
any command at its prompt and then press the Enter key to get the results.
This is one form. Another form is the MATLAB script which is a set of MATLAB

commands to be typed and saved in a file. You can run this file by typing
its name at the MATLAB prompt and then pressing the Enter key. The third
form is the MATLAB function form where it is created and run in the same
way as the script file. The only difference is that the name of the MATLAB

function file is specific and may not be renamed.
To the Practicing Engineer: The practicing engineer will find this book

very useful. The topics of discrete systems and signal processing are of most
importance to electrical and computer engineers. The book uses MATLAB, an
invaluable tool for the practicing engineer, to solve most of the problems. 
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1

1
Signal Representation

1.1 Introduction

We experience signals of various types almost on a continual basis in our
daily life. The blowing of the wind is an example of a continuous wave. One
can plot the strength of the wind wave as a function of time. We can plot
the velocity of this same wave and the distance it travels as a function of
time as well. When we speak, continuous signals are generated. These spo-
ken word signals travel from one place to another so that another person
can hear them. These are our familiar sound waves. 

When a radar system detects a certain object in the sky, an electromagnetic
signal is sent. This signal leaves the radar system and travels the distance
in the air until it hits the target object, which then reflects back to the sending
radar to be analyzed, where it is decided whether the target is present. We
understand that this electromagnetic signal, whether it is the one being sent
or the one being received by the radar, is attenuated (its strength reduced)
as it travels away from the radar station. Thus, the attenuation of this elec-
tromagnetic signal can be plotted as a function of time. If you vertically
attach a certain mass to a spring at one end while the other end is fixed and
then pull the mass, oscillations are created such that the spring’s length
increases and decreases until finally the oscillations stop. The oscillations
produced are a signal that also dies out with increasing time. This signal,
for example, can represent the length of the spring as a function of time.
Signals can also appear as electric waves. Examples are voltages and currents
on long transmission lines. Voltage value gets reduced as the impressed
voltage travels on transmission lines from one city to another. Therefore we
can represent these voltages as signals as well and plot them in terms of
time. When we discharge or charge a capacitor, the rate of charging or
discharging depends on the time factor (other factors also exist). Charging
and discharging the capacitor can be represented thus as voltage across the
capacitor terminal as a function of time. These are a few examples of con-
tinuous signals that exist in nature that can be modeled mathematically as
signals that are functions of various parameters.
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Signals can be continuous or discrete. We will consider only one-dimen-
sional discrete signals in this book. A discrete signal is shown in Figure 1.1.
Discrete signals are defined only at discrete instances of time. They can be
samples of continuous signals, or they may exist naturally. A discrete signal
that is a result of sampling a continuous signal is shown in Figure 1.2. An
example of a signal that is inherently discrete is a set of any measurements
that are taken physically at discrete instances of time.

In most system operations, we sample a continuous signal, quantize the
sample values and finally digitize the values so a computer can operate on
them (the computer works only on digital signals).

In this book we will work with discrete signals that are samples of con-
tinuous signals. In Figure 1.2, we can see that the continuous signal is defined
at all times, while the discrete signal is defined at certain instances of time.
The time between sample values is called the sampling period. We will label
the time axis for the discrete signal as n, where the sampled values are
represented at … –1, 0, 1, 2, 3 … and n is an integer.

1.2 Why Do We Discretize Continuous Systems?

Engineers used to build analogue systems to process a continuous signal.
These systems are very expensive, they can wear out very fast as time passes
and they are inaccurate most of the time. This is due in part to thermal

FIGURE 1.1 An example of a discrete signal. 
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interferences. Also, any time modification of a certain design is desired, it
may be necessary to replace whole parts of the overall system.

On the other hand, using discrete signals, which will then be quantized
and digitized, to work as inputs to digital systems such as a computer,
renders the results more accurate and immune to such thermal interferences
that are always present in analogue systems.

Some real-life systems are inherently unstable, and thus we may design a
controller to stabilize the unstable physical system. When we implement the
designed controller as a digital system that has its inputs and outputs as digital
signals, there is a need to sample the continuous inputs to this digital computer.
Also, a digital controller can be changed simply by changing a program code.

1.3 Periodic and Nonperiodic Discrete Signals

A discrete signal x(n) is periodic if

(1.1)

where k is an integer and N is the period which is an integer as well. A
periodic discrete signal is shown in Figure 1.3. This signal has a period of 3.
This periodic signal repeats every N = 3 instances.

FIGURE 1.2 A sampled continuous signal.
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Example 1.1

Consider the two signals in Figure 1.4. Are they periodic?

Solution

The first signal is periodic but the second is not. This can be seen by observing
the signals in the figure.

1.4 The Unit Step Discrete Signal

Mathematically, a unit step discrete signal is written as 

(1.2)

where A is the amplitude of the unit step discrete signal. This signal is shown
in Figure 1.5.

FIGURE 1.3 A periodic discrete signal.
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FIGURE 1.4 Signals for Example 1.1.

FIGURE 1.5 The step discrete signal.
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1.5 The Impulse Discrete Signal

Mathematically the impulse discrete signal is written as 

(1.3)

where, again, A is the strength of the impulse discrete signal. This signal is
shown in Figure 1.6 with A = 1.

1.6 The Ramp Discrete Signal

Mathematically the ramp discrete signal is written as 

(1.4)

where A is the slope of the ramp discrete signal. This signal is shown in
Figure 1.7.

FIGURE 1.6 The impulse discrete signal. 
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1.7 The Real Exponential Discrete Signal

Mathematically, the real exponential discrete signal is written as 

(1.5)

when is a real value. If 0 < < 1 then the signal x(n) will decay exponentially
as shown in Figure 1.8. If 0 > > 1 then the signal x(n) will grow without
bound as shown in Figure 1.9.

1.8 The Sinusoidal Discrete Signal

Mathematically, the sinusoidal discrete signal is written as 

(1.6)

where A is the amplitude, 0 is the angular frequency and is the phase. A
sinusoidal discrete signal is shown in Figure 1.10. The period of the sinusoidal

FIGURE 1.7 The ramp discrete signal.
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discrete signal x(n), if it is periodic, is N. This period can be found as in the
following development.

x(n) is the magnitude A times the real part of ej( 0n+ ). But is the phase
and A is the magnitude, and neither has an effect on the period. So if ej 0n is
periodic, then 

FIGURE 1.8 The decaying exponential discrete signal. 

FIGURE 1.9 The growing exponential discrete signal. 
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or

If we divide the above equation by ej 0n we get 

For the above equation to be true the following two conditions must be true:

and

These two conditions can be satisfied only if 0N is an integer multiple of 2.
In other words, x(n) is periodic if

FIGURE 1.10 The sinusoidal discrete signal. 
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where k is an integer. This can be written as

If  is a rational number (ratio of two integers) then x(n) is periodic and

the period is 

(1.7)

The smallest value of N that satisfies the above equation is called the fun-
damental period. If 2 / 0 is not a rational number, then x(n) is not periodic.

Example 1.2

Consider the following continuous signal for the current

which is sampled at 12.5 ms. Will the resulting discrete signal be periodic?

Solution

The continuous radian frequency is w = 20 radians. Since the sampling
interval Ts is 12.5 msec = 0.0125 sec, then 

Since for periodicity we must have 

we get

 =

For k = 1 we have N = 8, which is the fundamental period.
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Example 1.3

Are the following discrete signals periodic? If so, what is the period for each?

1.

2.

Solution

For the first signal 0 = and the ratio 0/2 must be a rational number.

This is clearly not a rational number and therefore the signal is not periodic.
For the second signal 0 = and the ratio 0/2 = /2 = 1/2 is a rational
number. Thus the signal is periodic and the period is calculated by setting

For k = 2 we get N = 1. This N is the fundamental period.

1.9 The Exponentially Modulated Sinusoidal Signal

The exponentially modulated sinusoidal signal is written mathematically as 

(1.8)

If cos( 0n + ) is periodic and 0 < < 1, x(n) is a decaying exponential discrete
signal as shown in Figure 1.11. If cos( 0n + ) is periodic and is not in the
interval 0 < < 1, x(n) is a growing exponential discrete signal as shown in
Figure 1.12. If cos( 0n + ) is nonperiodic and 0 < < 1, x(n) will not decay
exponentially in a regular fashion as in Figure 1.13. If cos( 0n + ) is non-
periodic and is not in the interval 0 < < 1, x(n) will grow irregularly
without bounds as in Figure 1.14. 

1.10 The Complex Periodic Discrete Signal

A complex discrete signal is represented mathematically as 

(1.9)
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FIGURE 1.11 The decaying sinusoidal discrete signal. 

FIGURE 1.12 The growing sinusoidal discrete signal. 
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FIGURE 1.13 The irregularly decaying modulated sinusoidal discrete signal. 

FIGURE 1.14 The irregularly growing modulated sinusoidal discrete signal. 
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where is a real number. For x(n) to be periodic we must have

or

Simplifying we get

If we divide by Aej n we get

The above equation is satisfied if 

or

Again, and similar to what we did in Section 1.8, if 2 / is a rational number
then x(n) is periodic with period

and the smallest N satisfying the above equation is called the fundamental
period. If 2 / is not rational, then x(n) is not periodic.

Example 1.4

Consider the following complex sinusoidal discrete signals.

1. 2ejn

2. ejn

3. e( j2 n+2)

4. ejn8 /3

Are the signals periodic? If so, what are their periods?

x n x n N( ) ( )

Ae Aej n j n N( )

Ae Ae Aej n j n j N

1 Ae j N

N k2

N
k

2

N k
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Solution

For the first signal, jn = j n requires that = 1. For periodicity, the ratio 2 /
must be a rational number. But 2 /1 is not a rational number and this signal
is not periodic.

For the second signal, jn = j n requires = . For periodicity again, 2 /
must be a rational number. The ratio 2 / = 2 / = 2/1 is a rational number.
Thus the signal is periodic.

For k = 1 we get N = 2. Thus N is the fundamental period.
For the third signal, e (j2 n+)2 can be written as e2 ej2 n and 2 jn = j n requires
= 2 . For periodicity, 2 / = 2 /2 = 1/1 must be a rational number which

is true in this case. Therefore, the signal is periodic.

For k = 1 we get N = 1, which is the fundamental period.

For the fourth signal, j n =j and = . For periodicity, 2 / must
be a rational number.

This is a rational number and the signal is periodic with the fundamental
period N calculated by setting

For k = 4 we get N = 3 as the smallest integer.

1.11 The Shifting Operation

A shifted discrete signal x(n) is x(n – k) where k is an integer. If k is positive,
then x(n) is shifted k units to the right and if k is negative, then x(n) is shifted
k units to the left.

Consider the discrete impulse signal x(n) = 5A (n). The signal x(n – 1) =
5 (n – 1) is the signal x(n) shifted by 1 unit to the right. Also x(n + 3) =
5 (n + 3) is x(n) shifted 3 units to the left. The importance of the shift operation
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will be apparent when we get to the next chapters. In the following section
we will see one basic importance.

Example 1.5

Consider the discrete pulse in Figure 1.15. Write this pulse as a sum of
discrete step signals.

Solution

Consider the shifted step signal in Figure 1.16 and the other shifted step
signal in Figure 1.17. Let us subtract Figure 1.16 from Figure 1.17 to get
Figure 1.15.

1.12 Representing a Discrete Signal Using Impulses

Any discrete signal can be represented as a sum of shifted impulses. Consider
the signal in Figure 1.18 that has values at n = 0, 1, 2, and 3.

Each of these values can be thought of as an impulse shifted by some units.
The signal at n = 0 can be represented as 1 (n), the signal at n = 1 as 1.5 (n – 1),
the signal at n = 2 as 1/2 (n – 2), and the signal at n = 3 as 1/4 (n – 3).
Therefore, x(n) in Figure 1.18 can be represented mathematically as 

FIGURE 1.15 Pulse signal for Example 1.5. 
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FIGURE 1.16 Signal for Example 1.5.

FIGURE 1.17 Signal for Example 1.5.
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Example 1.6

Represent the following discrete signals using impulse signals.

1.

2.

where the arrow under the number indicates n = 0, where n is the time index
where the signal starts.

Solution

Graphically, the first signal is shown in Figure 1.19, and it can be seen as a
sum of impulses as

The second signal is shown in Figure 1.20 and can be written as the sum of
impulses as 

1.13 The Reflection Operation

Mathematically, a reflected signal x(n), is written as x(–n) as shown in
Figure 1.21.

FIGURE 1.18 Representation of a discrete signal using impulses.
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1.14 Time Scaling

A time-scaled discrete signal x(an) of x(n) is calculated by considering two
cases for a. In case a = k, we will consider all cases where k is an integer. In

FIGURE 1.19 Signal for Example 1.6.

FIGURE 1.20 Signal for Example 1.6.
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case a = 1/k we will also consider all values for k where k is an integer. An
example will be given shortly.

1.15 Amplitude Scaling

An amplitude scaled version of x(n) is ax(n) where, if a is negative, the
magnitude of each sample in x(n) is reversed and scaled by the absolute
value of a. If a is positive, then each sample of x(n) is scaled by a.

Example 1.7

Consider the following signal

Find

1. x(–n)
2. x(–n + 1)
3. 2x(–n + 1)
4. x(–n) + x(–n + 1)

FIGURE 1.21 The reflected signal.
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Solution

1.
x(–n) is x(n) shifted about the zero position which is

2. x(–n + 1) is x(–n) shifted to the left 1 unit and it is

3. 2x(–n + 1) is x(–n + 1) scaled by 2 and is

4. x(–n) + x(–n + 1) = + 

We add these two signals at the n = 0 index to get

1.16 Even and Odd Discrete Signal

Every discrete signal x(n) can be represented as a sum of an odd and an even
discrete signal. The discrete signal x(n) is odd if

(1.10)

The discrete signal x(n) is even if 

(1.11)

Therefore, any discrete signal, x(n), can be written as the sum of an even and
an odd discrete signal. We write

where

(1.12)

and

(1.13)
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Example 1.8

The signals in Figures 1.22 and 1.23 are not odd or even. Write them as the
sum of even and odd signals.

FIGURE 1.22 Signal for Example 1.8.

FIGURE 1.23 Signal for Example 1.8.
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Solution

For we have

Now if we add xodd and xeven we will get

For we have

Now if we add xodd and xeven we will get

{-3/2, -1, 0, 1, 3/2} + {3/2, 1, 0, 3/2} = {0, 0, 0, 2, 3}

1.17 Does a Discrete Signal Have a Time Constant?

Consider the continuous real exponential signal

Let us sample x(t) every t = nTs sec with > 0. Then we write 

where a = e– Ts is a real number. The continuous exponential signal has a
time constant where e– t = e–t/ . This implies that = 1/ . Therefore
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But e–Ts/ = a and by taking the logarithm on both sides, we get 

or

So, a discrete time signal that was obtained by sampling a continuous expo-
nential signal has a time constant as given above.

Example 1.9

Consider the following two continuous signals

1. Find the time constant for both continuous signals.
2. Discretize both signals for Ts = 1 sec and then find the time constant

for the resulting discrete signals.

Solution

For x(t) = e–t and by setting e–t = e–t/ in order to find the time constant we
see that = 1 sec. By letting t = nTs we get the discretized signal

As discussed earlier, we set

to get the discrete time constant

For x(t) = e–100 t, we set

x n e a
T n
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to get =  sec. Similarly, the second discretized signal is

and the discrete time constant is

1.18 Basic Operations on Discrete Signals

A discrete system will operate on discrete inputs. Some basic operations
follow. The output of a discrete system is the input operated upon in a certain
way.

1.18.1 Modulation 

Consider the two discrete signals x1(n) and x2(n). The resulting signal y(n)
where

is called the modulation of x1(n) and x2(n) and where y(n) in a discrete signal
found by multiplying the sample values of x1(n) and x2(n) at every instant.

1.18.2 Addition and Subtraction 

Consider the two discrete signals x1(n) and x2(n). The addition/subtraction
of these two signals is y(n) where

1.18.3 Scalar Multiplication

A scalar multiplication of the discrete signal x(n) is the signal y(n) where 

where A is the scaling factor.

1
100

x n eT n n
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1.18.4 Combined Operations

We may have multiple operations among input discrete signals. One oper-
ation may be represented as

where we have scaling, shifting and addition operations combined. In other
operations you may have the output y(n) presented as 

where you have x1(n) scaled, then the modulated signal resulting from x2(n)
and x3(n) is subtracted from 2x1(n).

Example 1.10

Consider the discrete signal as shown in Figure 1.24. Find

1. x(–n)
2. x(n + 2)
3. x(2n)
4. x(n/2)
5. x(2n – 1)
6. x(n)x(n)

FIGURE 1.24 Signal for Example 1.10.
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Solution

From Figure 1.24 we see that

1. x(–n) is x(n) reflected and is

2. x(n + 2) is x(n) shifted to the left by 2 units and is

3. The new time axis in this case is nnew = nold/2 where nold is the index
of the given x(n). The indices are arranged as in the following with
the help of the equation nnew = nold/2.

Therefore, the new n axis for x(2n) will start at –1 and will contain
the indices n = –1, 0 and 1. The value at –1 for the scaled signal x(2n)
will be the value of x(n) at n = –2. Similarly, the value at nnew = 0 will
be the value at nold = 0, and the value at nnew = 1 will be the value at
nold = 2. Therefore, x(2n) is

4. This is also a scaling case. For this case, the new time axis is

nnew = 2nold

These indices are arranged in the following table.

nold nnew

–2 –1
–1 –1/2 No value will appear at n = –1/2 since n must be an integer

0 0
1 1/2 No value will appear
2 1
3 No value for x(n) at n = 3 so we stop at this point

nold nnew

–2 –4
–1 –2

0 0
1 2
2 4

x n( ) , , , ,1 1 0 1 1

x n( ) , , , ,1 1 0 1 1

x n( ) , , , , ,2 1 1 1 0 1 1

x n( ) , , , ,2 0 1 0 1 0
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The scaled signal x( ) therefore is

5. x(2n+1) is x(2n) shifted left by 1 unit and is

6. x(n) multiplied by x(n) is called the element-by-element multiplica-
tion and is 

1.19 Energy and Power Discrete Signals

The total energy in the discrete signal x(n) is E(n) and mathematically written
as

(1.14)

The average power in the discrete signal x(n) is P(n) and is written mathe-
matically as 

(1.15)

where 

is the energy in x(n) in the interval –k < n < k. The average power of a discrete
periodic signal is written mathematically as

(1.16)

where N is the period of x(n).
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Example 1.11

Consider the following finite discrete signals

1. x(n) = –1 (n – 0) + 2 (n – 1) – 2 (n – 2)
2.

Find the energy in both signals.

Solution

The first signal x(n) can be written as

The energy in the signal is then

This means that x(n) has finite energy.
For the second signal the total energy is given by

Example 1.12

Consider the discrete signals

Find the energy and the power in x(n)

Solution

This sum clearly does not converge to a real number. Hence x(n) has infinite
energy. The power in the signal is
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Therefore, x(n) has finite power and is a power signal.

Example 1.13

Find the energy in the signal:

Solution

The energy is given by

which converges to 2/6. This means that x(n) has finite energy.

1.20 Bounded and Unbounded Discrete Signals

A discrete signal x(n) is bounded if each sample in the signal has a bounded
magnitude. Mathematically, if x(n) is bounded then

where is some positive value. If this is not the case then x(n) is said to be
unbounded. The step signal is bounded, the ramp is unbounded and the
sinusoidal signal is bounded.

1.21 Some Insights: Signals in the Real World

The signals that we have introduced in this chapter were all represented in
mathematical form and plotted on graphs. This is how we represent signals
for the purpose of analysis, synthesis and design. For better understanding
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of these signals we will provide herein real-life situations and see the relation
between these mathematical abstractions of signals and get a feel of what
they may represent in real life.

1.21.1 The Step Signal

In real-life situations this signal can be viewed as a constant force of mag-
nitude A Newtons applied at time (t) = 0 sec to a certain object for a long
time. In another situation, Au(t) can be an applied voltage of constant mag-
nitude to a load resistor R at the time t = 0.

1.21.2 The Impulse Signal 

Again, in real life, this signal can represent a situation in which a person hits
an object with a hammer with a force of A Newtons for a very short period
of time (picoseconds). We sometimes refer to this kind of signal as a shock.

In another real-life situation, the impulse signal can be as simple as closing
and opening an electrical switch in a very short time. Another situation
where a spring-carrying mass is hit upward can be seen as an impulsive
force. A sudden oil spill similar to the one that happened during the Gulf
war can represent a sudden flow of oil. You may realize that it is impossible
to generate a pure impulse signal for zero duration and infinite magnitude.
To create an approximation to an impulse we can generate a pulse signal of
very short duration where the duration of the pulse signal is very short
compared with the response of the system.

1.21.3 The Sinusoidal Signal

This signal can be thought of as a situation where a person is shaking an
object regularly. This is like pushing and pulling an object continuously with
a period of T sec. Thus, a push and pull forms a complete period of shaking.
The distance the object covers during this shaking represents a sinusoidal
signal. In the case of electrical signals, an AC voltage source is a sinusoidal
signal.

1.21.4 The Ramp Signal

In real-life situations this signal can be viewed as a signal that is increasing
linearly with time. An example is when a person applies a force at time t = 0
to an object and keeps pressing the object with increasing force for a long
time. The rate of the increase in the force applied is constant.

Consider another situation where a radar antenna, an anti-aircraft gun and
an incoming jet are in one place. The radar antenna can provide an angular
position input. In one case the jet motion forces this angle to change uniformly
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with time. This will force a ramp input signal to the anti-aircraft gun since
it will have to track the jet.

1.21.5 Other Signals

A train of impulses can be thought of as hitting an object with a hammer
continuously and uniformly. In terms of electricity, you may be closing and
opening a switch continuously. A rectangular pulse can be likened to apply-
ing a constant force to an object for a certain time and instantaneously
removing that force. It is also like applying a constant voltage for a certain
time and then instantaneously closing the switch of the voltage source. Other
signals are the random signals where the magnitude changes randomly as
time progresses. These signals can be thought of as shaking an object with
variable random force as time progresses, or as a gusting wind.

1.22 End of Chapter Examples

EOCE 1.1 

Consider the following discrete periodic and nonperiodic signals in Figure 1.25.
For the periodic signal find the period N and also the average power. For
the nonperiodic signals, find the total energy.

FIGURE 1.25 Signals for EOCE 1.1.
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Solution

For the first discrete signal in Figure 1.25, the signal x(n) is periodic with
period N = 3. The average power is then

We can use MATLAB to calculate this average power as in the following script.

%calculating average power for x(n)

%The signal

x = [1 0.5 0]

N = 3; % the period

% implementing the equation for power

pp = sum(abs(x).^2);

p = pp/N; % the average power

The result will be 0.4167.
For the second discrete signal the period is N = 4. The average power is

calculated as

We can use MATLAB and write the following script to find the power.

%calculating average power for x(n)

%The signal

x = [1 1 1 1 0]

N = 5; % the period

% implementing the equation for power

pp = sum(abs(x).^2);

p = pp/N; % the average power

The result is 0.8 for the average power.
The last signal in Figure 1.25 is not periodic and the total energy is
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We can use MATLAB to find this total energy in the signal by writing the
following script.

% Calculating the energy in the signal

% Defining the signal

x= [0 1 2 2 2];

E = sum(abs(x).^2) %the energy equation

The result will be 13 for the energy.

EOCE 1.2

Write MATLAB scripts to simulate the step and the impulse signals.

Solution

For the step signal

We can use the MATLAB function ones to generate sequences that have every
value unity. We write ones(1,L) where L is the number of ones in this row
vector that ones generate. However sometimes not all step signals start at
n = 0. In this case we have 

We know that u(n) is defined for n 0 and we also know that we cannot
generate u(n) for an infinite number of samples. Therefore we will generate
these sequences for a limited interval. We will denote n1 to be the left limit
and n2 to be the right limit. Notice that ones(1,L) will generate L ones for
n = 0, 1, 2, 3,… L – 1 automatically. To generate the most general step
sequence u(n – n0) in the interval n1 n n2 we write the following MATLAB

script that will generate a unit step signal that starts at n0 = –1 and defined
in the interval –3 n 3 first.

% entering the starting point and the limits

n0 = -1; n1 = -3; n2 = 3;

n = [n1: n2]; % generating the index n

% the following will generate the step signal desired

x=[(n- n0)>=0];

stem(n,x);

u n
n

n
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1 0
0 0

u n n
n n
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01
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Note in the above script on the line before the last that for n = –3, n0 = –1
(fixed), the logical expression (–3 – (–1)) 0 results in –3 + 1 0 and evaluates
to false, which in MATLAB evaluates to zero. Therefore for n = –3, u(n + 1) is
zero.

Now take n = –2; the expression –2 + 1 0 evaluates to false again. Take
n = –1. The expression –1 + 1 0 evaluates to true and hence the first one
appears. The plot is shown in Figure 1.26. To sketch 3u(n – 5) in the interval
–10 n 10 we write the script

% entering the starting point and the limits

n0 = 5; n1 = -10; n2 = 10;

n = [n1: n2]; % generating the index n

% the following will generate the step signal desired

x=[(n- n0)>=0];

stem(n,x); xlabel(‘n’);ylabel(‘Step at n = 5’);

and the plot is shown in Figure 1.27.
For the impulse signal we have

We can use the MATLAB function zeros to generate a sequence of zeros of any
length. For example, the command

FIGURE 1.26 MATLAB-generated step signal starting at n = -1.
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delta = zeros(1,L)

will generate a sequence of zeros of length L, Then we can make the first
value in the sequence one to form the impulse signal and write

delta(0) = 1;

But again, suppose you want to generate an impulse sequence that has a
certain value at n = n0 and zero otherwise. We write

For this we write the following MATLAB script that simulates (n – 1).

%index where you want the impulse signal to have a value

n0=1;

%we also need a fixed interval for the signal

n1= -5;

n2= 5;

n = [n1 :n2]; %forming the index n

%this will generate the impulse at the specified index

x = [(n-n0)==0];

stem(n,x);

The plot is shown in Figure 1.28. Note the last line of the above MATLAB script

FIGURE 1.27 MATLAB-generated step signal starting at n = 5.
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If n = –5, (–5 – 1 = = 0) evaluates to false and the impulse at n = –5 is zero.
If n = 2, (2 – 1 = = 0) also evaluates to zero and the impulse signal at n = 2
is zero. But if n =1, (1 – 1= = 0) evaluates to true and this is the only value
in the interval –5 n 5 for the impulse to have a value other than zero.

EOCE 1.3

Write MATLAB scripts to simulate the exponential signal

and the sinusoidal signal

Solution

we can generate the x(n) sequence in a limited interval only. To simulate
3(.5)n in the interval –3 n 3, we write the script

FIGURE 1.28 MATLAB-generated impulse signal at n = 1.
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n1= -3;

n2= 3;

n = [n1: n2];

x = 3*(.5).^n;

stem(n,x);

% the .^ operator multiplies element-by-element

and the plot is shown in Figure 1.29. It is seen that this signal is bounded
because 0 < <1.

For the sinusoid sequence

the signal can be simulated in a fixed interval. To do that let us look at the
signal

and write the following script to simulate this signal.

n1 =-10;

n2 =11;

n = [n1: n2];

x = 3 cos(3 pi n+5);

stem(n,x);

The plot is shown in Figure 1.30.

FIGURE 1.29 MATLAB-generated exponential decaying signal.
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EOCE 1.4

Consider the following signals

Are the signals periodic?

Solution

The first signal will decay to zeros as the index n get larger and it is not
periodic. For the second signal, 0 = 2 and for periodicity, the ratio 2 / 0

must be rational. We have

= =  

and therefore the signal is periodic. The period N is

N = k

For k = 1 we have N = 1. Note that the addition of 3 to x(n) has no effect on
the period N. We can use MATLAB to verify this and simulate x(n) in the
interval –3 < n < 3 and write the script.

FIGURE 1.30 MATLAB-generated sinusoidal signal.
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n1 = -3;

n2 = 3;

n = [n1: n2];

x = 5 cos(2 pi n + pi)+3;

stem(n, x);

and the plot is seen in Figure 1.31. It is seen from the figure that N = 1.

EOCE 1.5

Consider the following discrete signals

Find x1(n) + x2(n) and x1(n) x2(n) analytically and using MATLAB.

Solution

Analytically, we can arrange the two signals as below and then add the
corresponding samples. Remember we add samples with similar indexes.

FIGURE 1.31 Signal for EOCE 1.4.
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+

x1(n) has an index that starts at n = 0 and ends at n = 3, and x2(n) has an
index that starts at n = –1 and ends at n = 2. Note also that x(n) starts at n = –1
and ends at n = 3. The initial index, n = –1, for x(n) is the minimum of the
minimum of the starting index for x1(n) and x2(n).

The last index n = 3 for x(n) is the maximum of the maximum of the last
index for x1(n) and x2(n). This note will help us do the addition with MATLAB.

For x1(n) x2(n) we have the same arrangement

Using MATLAB, let n1 represent the time scale (index) for x1(n) and n2 represent
the time scale for x2(n). Then the index for x(n) = x1(n) + x2(n) will start with
the minimum of n1 and n2 and end with the maximum of n1 and n2. Notice
also when we added the signals analytically, we made both of the same
length and the same length as x(n). In MATLAB, the function find works as
follows: find(x) returns the indices of the vector x that are nonzero. With that
notice we now write the script that adds the two signals.

n1 = [0 1 2 3]; % index for first signal

x1= [0 1 2 3]; 

n2 = [ -1 0 1 2]; %index for the second signal

x2= [0 1 2 3];% signals with same value but different indices

% the starting index of the sum

n = min (min(n1) , min(n2) ): max (max(n1) , max(n2) ); 

%initializing x1i to zeros with the new index

x1i = zeros(1, length(n)); x2i = x1i; %copying x1i into x2i

% now we fill x1i and x2i

x1i (find((n >= min(n1)) & (n <= max(n1)) == 1)) = x1;

x2i (find((n >= min(n2)) & (n<= max(n2)) == 1)) = x2;

x = x1i + x2i % the addition result

The output is similar to what we got earlier.
Using MATLAB, we can simulate the element-by-element multiplication

using a script similar to the one we just wrote for the addition.

x n1 0 0 1 2 3( ) , , , ,

x n2 0 1 2 3 0( ) , , , ,

x n( ) , , , ,0 1 3 5 3

x n( ) , , , , , , , , , , , ,0 0 1 2 3 0 1 2 3 0 0 0 2 6 0
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n1 = [ 0 1 2 3]; % index for first signal

x1= [0 1 2 3]; 

n2 = [ -1 0 1 2]; %index for the second signal

x2= [0 1 2 3];% signals with same values but different indices

% the starting index of the sum

n = min (min(n1) , min(n2) ): max (max(n1) , max(n2) ); 

%initializing x1i to zeros with the new index

x1i = zeros(1, length(n)); x2i = x1i; %copying x1i into x2i

% now we fill x1i and x2i

x1i (find((n >= min(n1)) & (n <= max(n1)) == 1)) = x1;

x2i (find((n >= min(n2)) & (n<= max(n2)) == 1)) = x2;

x = x1i.*x2i % the element-by-element multiplication

and the result is again similar to what we arrived at before.

EOCE 1.6

The scripts that we have generated can be put in the form of functions. A
function in MATLAB receives parameters and sends back results. Once this
function is written and saved it can be utilized as often as desired. The
function is typed in the MATLAB editor and then saved and given a name
similar to the name of the function that was written. Let us write functions
to implement the step signal, the impulse signal, the reflection of a signal,
the sum of two signals, the product of two signals and the shifting by n0 of
a discrete signal.

Solution

The general form of a MATLAB function is 

where rv1 is the returned value one and pv1 is the passed value one.
Function_Name is the name of the function which should be the same name
given to the file when the function is saved.

For the step discrete signal, let us call the function stepsignal. We will pass
to stepsignal the time when the signal should start. We will call this time
Sindex. We will also pass to it the starting and the ending of the time interval
which we will call Lindex and Rindex for left index and right index. The
function will return the signal x(n) and its index. The function is 

function[xofn, index]= stepsignal(Sindex, Lindex, Rindex)

index = [Lindex : Rindex];

xofn = [(index – Sindex) >= 0];

For the impulse signal, let us call the function impulsesignal. We will pass
to it the point of application of the impulse signal, Sindex, and the range,

function rv1 rv2  rvn Function_Name pv1,  pv2,   pvn
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Lindex and Rindex. The function will send to us the impulse signal x(n)
and its index. The function is

function[xofn, index]= impulsesignal(Sindex, Lindex, Rindex)

index = [Lindex:Rindex];

xofn = [(index – Sindex) == 0];

The reflection of the signal x(n) is implemented using the MATLAB function
fliplr. We will use fliplr to flip the sample values for x(n) and to flip
the time index. The function will be called xreflected and will receive
the original x(n) and the original index. It will give back the reflected x(n)
and the new index. The function is

function [xnew, nnew] = xreflected(xold, nold);

xnew = fliplr(xold);

nnew = -fliplr(nold);

The function to add two discrete signals x1(n) and x1(n) will be called
x1plusx2. It will receive the original signals and their original indices and
return the sum of the two signals and the index for the sum. This function is 

function[x, n] = x1plusx2 ( x1orig, x2orig, n1orig, n2orig)

n = min(min(n1orig), min(n2orig)): max(max(n1orig), max(n2orig));

x1i = zeros(1, length(n));

x2i= x1i

x1i (find((n >= min(n1orig))&(n <= max(n1orig))== 1))= x1orig;

x2i ( find((n >= min(n2orig))&(n<= max(n2orig)) == 1))= x2orig;

x = x1i+ x2i;

The function to multiply x1(n) and x2(n) is similar to the x1plusx2 function
and is given next. 

function[x, n] = x1timesx2 ( x1orig, x2orig, n1orig, n2orig)

n = min(min(n1orig), min(n2orig)): max(max(n1orig), max(n2orig));

x1i = zeros(1, length(n));

x2i= x1i

x1i (find((n >= min(n1orig))&(n <= max(n1orig))== 1))= x1orig;

x2i ( find((n >= min(n2orig))&(n<= max(n2orig)) == 1))= x2orig;

x = x1i.* x2i;

A shifted version of x(n) is x(n – n0)

x n x n nshift( ) 0
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If n – n0= m then xshift (m + n0) = x(m). This indicates that the sample values
are not affected but the index is changed by adding the index shift n0. We
will call the function xshifted and pass to it the original x(n), the original
index n1 and the amount of shift n0.

function[xnew, nnew] = xshifted (xold, nold, n0)

nnew = nold + n0;

xnew = xold;

EOCE 1.7

Find

1. x(n) = u(n) – 3 (n – 1) –3 n  3
2. x(n) = 3u(n – 3) + (n – 2) + u( - n) –3 n  3

Solution

For the first x(n), we have the two signals

Thus u(n) – 3 (n – 1) is 

We can use MATLAB to generate x(n) and to plot it as follows.

n = [-3 : 3]; % generate the time index

x = stepsignal(0, -3, 3) -3  impulsesignal(1, -3, 3);

stem(n, x)

and the plot is shown in Figure 1.32.
For the second signal we have
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and the sum is

We can use MATLAB to find this result.

n= [-3 : 3];

x = 3  stepsignal( 3, -3, 3) + impulsesignal(2, -3, 3) 

+ xreflected (stepsignal(0, -3, 3), n);

The result is shown in Figure 1.33. Note in the above script that the function
xreflectedwas called and one of the passed parameters is stepsignal(0,
–3, 3), which is a function that will return the signal u(n). Thus, u(n) and n
are passed to xreflected.

EOCE 1.8

Write a general-purpose script to find the odd and even parts of a discrete
signal x(n) defined on the interval n1 n n2.

Solution

Let us repeat the equations for the even and the odd part of x(n)

FIGURE 1.32 Signal for EOCE 1.7.
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We can utilize the functions we have written so far to come up with the
following script. Given x(n) and its index n we write the script

[xref, n1] = xreflected(x, n);

[xe ne] = x1plusx2 (x, xref, n, n1);

[xo no] = x1plusx2 (x, -xref, n, n1);

% for plotting, we define the new indices a and b

a = min([ne, no])

b = max([ne, no])

c=-2; d=2; %y-axis range

subplot(2, 2, 1);

stem(n, x); title('The original signal'); xlabel('n');

axis([a b c d]); 

subplot(2, 2, 2);

stem(n1,xref);

title('Reflected signal') ; xlabel('n');

axis([a b c d]); 

subplot(2,2,3);

stem(ne, 0.5*xe); title('Even signal') ; xlabel('n');

axis([a b c d]); 

subplot(2, 2, 4);

stem(no,0.5*xo);

title('Odd signal'); xlabel('n');

axis([a b c d]);

FIGURE 1.33 Signal for EOCE 1.7.
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EOCE 1.9

Consider the following signal

for –5 n 5. Find the even and odd parts of x(n).

Solution

Although x(n) can easily be seen as an odd signal, we will use MATLAB with
the help of the functions and the scripts that we have written so far to plot
the original signal, the reflected signal, the odd signal and the even signal.

First we call the function impulsesignal six times to get x(n) and then use
the script we just wrote for the odd and even parts of x(n) to produce the plots.

n = [-5 : 5]; %the span of the original signal

x1 = impulsesignal(-3, -5, 5)+ impulsesignal(-2, -5, 5);

x2 = impulsesignal(-1, -5, 5) – impulsesignal(1, -5, 5);

x3 = impulsesignal(2, -5, 5) + impulsesignal(3, -5, 5);

x = x1 + x2 –x3;

[xref, n1] = xreflected(x, n);

[xe ne] = x1plusx2 (x, xref, n, n1);

[xo no] = x1plusx2 (x, -xref, n, n1);

% for plotting, we define the new indices a and b

a = min([ne, no])

b = max([ne, no])

c=-2; d=2; %y-axis range

subplot(2, 2, 1);

stem(n, x); title('The original signal'); xlabel('n');

axis([a b c d]); 

subplot(2, 2, 2);

stem(n1,xref);

title('Reflected signal') ; xlabel('n');

axis([a b c d]); 

subplot(2,2,3);

stem(ne, 0.5*xe); title('Even signal') ; xlabel('n');

axis([a b c d]); 

subplot(2, 2, 4);

stem(no,0.5*xo);

title('Odd signal'); xlabel('n');

axis([a b c d]);

The plots are in Figure 1.34.

x n n n n n n n( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 1 1 2 3
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EOCE 1.10

Consider the following signal:

Find and plot the following signals:

1. x(–n)
2. x(n – 2)
3. x(n) + x(–n)

Solution

1. Analytically,

and x(–n) is {1, 1, , 1, 0}. Using MATLAB, we first generate x(n) then
find its reflection.

n= [-2 : 2]

x1 = stepsignal(1, -2, 2);

x2= impulsesignal(-1, -2, 2);

x=x1+x2;

[xref nref] = xreflected(x, n);

FIGURE 1.34 Signals for EOCE 1.9.
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subplot(1,2,1);

stem(n,x);xlabel('n');title('The original signal');

subplot(1,2,2);

stem(nref, xref); title('Original signal reflected');

xlabel('n');

and the plot is shown in Figure 1.35.
2. Analytically,

or we notice that x(n–2) = is x(n) shifted by 2 and is

Using MATLAB, we use the shifting function we derived earlier to
write

n= [-2 : 2]

x = stepsignal(1, -2, 2) + impulsesignal(-1, -2, 2)

[xshif, nshif] = xshifted(x,n, 2);

subplot(1,2,1);stem(n,x);xlabel('n');

title('The original signal');

subplot(1,2,2)

stem(nshif, xshif ); title('The shifted signal');

xlabel('n');

and the plot is shown in Figure 1.36.

FIGURE 1.35 Signal for EOCE 1.10.
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3. Using MATLAB, we can find x(n) + x(–n) by writing the MATLAB script

n = [-2 : 2]

x1 = stepsignal(1, -2, 2)

x2=impulsesignal(-1, -2, 2)

x = x1 + x2;

[xref, nref] = xreflected(x, n);

[xfinal nfinal] = x1plusx2 (x, xref, n, nref);

stem(nfinal,xfinal); title('Original and the reflected 
added')

xlabel('n');

and the plot is in Figure 1.37.

1.23 End of Chapter Problems

EOCP 1.1

Analytically find the following signals if x(n) = nu(n – 1)   – < n <

1. x(–n)
2. x(–n + 1)

FIGURE 1.36 Signal for EOCE 1.10.
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3. x(n) + x(–n)
4. x(2n)
5. x + x(–n)
6. x(n) (n – 1)
7. x(–n) u(n – 2) + (n)
8. x(n – 2) + (n) x(n)
9. u – x(n)

10. x(–n – 2) + u(n – 2)

EOCP 1.2

Use MATLAB to generate the following signals if x(n) = u(n) – u(n – 1) for 0 
n 5:

1. x(–n)
2. x(n + 2)
3. x(n) + x(–n)
4. x(n – 2) + x(n+2)
5. x(–n – 1) . x(n)
6. x(–n) . x(n) + x(–n – 1)
7. x(n) + cos(2 n + )
8. x(-n) . cos(3 n + )
9. (.1)nx(n) cos(3 n + )

FIGURE 1.37 Signal for EOCE 1.10.
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EOCP 1.3

Check the periodicity for each of the following signals for 0 n . If they
are periodic, what is the period?

1. cos(2 n + )
2. (.1)ncos(5 n + )
3. u(n)
4. u(n) + 1
5. (n) + u(n)
6. cos
7. u(n) + cos(2 n + )
8. cos(2 n + ) + (n – 1)
9. 2cos(2n – )

10. cos  + u(n)

EOCP 1.4

Use MATLAB to check periodicity for the signal in EOCP 1.3.

EOCP 1.5

Find the power in the following signals:

1. u(n) n 0
2. u(n) n  1

3. n  0

EOCP 1.6

Find the energy in each of the following signals for –5 n 5:

1. (n)
2. cos(2 n)
3. u(n) . (n)
4. 2u(n)cos(2 n)
5. u(n) . u(–n)
6. n cos(2 n)

Find the energy in the following signals for n > 0:

1. u(n) (.1)n

2. (.1)n cos(2 n)
3. (.5)nn

2

2 n

3
2 n

( )n m
m 0
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EOCP 1.7

Consider the following signals.

1. x(n) = u(n) + u(n – 1) 0 n  5
2. x(n) = nu(n) 0 n  5
3. x(n) = (.1)ncos(2 n + 1) 0 n  5

a) Use MATLAB to sketch the even and the odd parts.
b) Show that the energy in x(n) is the sum of the energy in its components,
the even and the odd parts.
c) Are the signals bounded?

EOCP 1.8

Usually the discrete signals we deal with in engineering, x(n), are obtained
by taking samples from continuous signals x(t). Give five examples where
discrete signals are naturally discrete.

EOCP 1.9

Consider the following signals

1. x(t) = e–3tu(t)
2. x(t) = e–tcos(1000t)u(t)

a) Let us take samples from both signals every 2 sec. Find x(n) for both.
b) What is the time constant for the first signal?
c) If 0 n 10, find the energy in x(n) for both signals.

EOCP 1.10

Let y(n) = y(n – 1) + u(n) with y(–1) = 1 for n  0

1. Write down the samples for y(n).
2. Can you find a closed form equation for y(n)?

EOCP 1.11

Let y(–1) = 1 and consider the equation 

1. Find the samples for y(n) for n 0.
2. Find a mathematical closed form expression for y(n).

y n y n u n( ) ( ) ( )2 1
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2
The Discrete System

2.1 Definition of a System

A system is an assemblage of things that are combined to form a complex
whole. When we study systems, we study the interactions and behaviors of
such an assemblage when subjected to certain conditions. These conditions
are called inputs. In its simplest case a system can have one input and one
output. This book deals with linear systems. We will call the input x(n) and
the output y(n) as depicted in Figure 2.1.   

2.2 Input and Output 

The discrete signal x(n) is the continuous signal x(t) sampled at t = nTs where
t is the continuous time, n is an integer and Ts is the sampling interval. We will
talk about sampling later in the text. If an input signal x(t) is available at the
input of a linear system, the system will operate on the signal x(t) and produce
an output signal that we call y(t). As an example, consider the case of an elevator
where you push a button to go to the fifth floor. Pushing the button is the input
x(t). The elevator is the system under consideration here. In addition to many
other components, the elevator system consists of the small room to ride in and
the motor that drives the elevator belt. The input signal x(t) “asks” the elevator
to move to the fifth floor. The elevator system will process this request and
move to the fifth floor. The motion of the elevator to the selected floor is the
output y(t).

Pushing the button in this elevator case produces an electrical signal x(t).
This signal drives the motor of the elevator to produce a rotational motion
which is transferred, via some gears, to a translational motion. This transla-
tional motion is the output y(t). To summarize, when an electrical input
signal or request x(t) is applied to the elevator system, the elevator will
operate on the signal and produce y(t) which, in this example, can be thought
of as a translational motion.
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The example that we just considered is inherently a continuous system.
An example of a discrete or digital system is the digital computer. The
computer has many inputs and many outputs. An input can be generated
by pressing any key on the keyboard and an output can be the display of
the character that the user presses on the keyboard on the screen. The mouse
and the scanner can be thought of as inputs as well. A computer program
is a digital set of zeros and ones. It has an input set of raw data. The output
of the computer program is the useful data.

2.3 Linear Discrete Systems

A linear discrete system has the following properties:

1. If the input is α x1(n), the output is α y1(n).
2. If the input is x1(n) + x2(n), the output is y1(n) + y2(n).

By combining the two conditions, a system is considered linearly discrete if
for the input α x1(n)+ β x1(n), the output is α y1(n)+ β y2 (n), where α and β
are constants.

Example 2.1

Consider the input–output relation

where α and β are constants. Is this system linear?

Solution

Using the definition of linearity introduced previously we can proceed as
follows. If the input is x1(n), the output is y1(n); therefore, we write

FIGURE 2.1 Linear system representation.
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If the input is x2(n), the output is y2(n), therefore

If the input is αx1(n) + βx2(n), the output is y(n), therefore

Thus the system is said to be linear.

Example 2.2

Consider the following system

Is this system linear?

Solution

Consider two cases of the input signals, x1(n) and x2(n). The corresponding
outputs are then given by

for x1(n) and

for x2(n). Now let us consider further that αx1(n) + βx2(n) has been applied
to the system as its input. The corresponding output is then given by 

But

Therefore, the system is nonlinear.

y n
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R R
x n2
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1 2
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y n
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Example 2.3

Consider the following system

Is this system linear?

Solution

As in Example 2.2, consider two cases of the input signals, x1(n) and x2(n).
The corresponding outputs are then given by 

and

Now let us apply αx1(n) + βx2(n) to the system as its input. The corresponding
output is then given by

or

Therefore, the system is nonlinear.

2.4 Time Invariance and Discrete Signals

A system is said to be time invariant if, for a shifted input x(n – n0), the
output of the system is y(n – n0). To see if a system is time invariant or time
variant we do the following:

y n x n x n( ) ( ) ( )= +[ ]( )2 2 1

y n x n x n1 1 12 2 1( ) ( ) ( )= +[ ]( )

y n x n x n2 2 22 2 1( ) ( ) ( )= +[ ]( )

y n x n x n x n x n( ) ( ) ( ) ( ) ( )= +( ) +[ ]( ) +( )2 2 11 2 1 2α β α β

y n x n x n x n x n

y n y n

x n x n x n x n

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

= +[ ] + +[ ]
≠ +

= [ ] +[ ]+ [ ] +[ ]
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1 2
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1. Find the output y1(n – n0) that corresponds to the input x1(n).
2. Let x2(n) = x1(n – n0) and then find the corresponding output y2(n).
3. Check if y1(n – n0) = y2(n). If this is true then the system is time

invariant. Otherwise it is time variant.

Example 2.4

Let y(n) = cos(x(n)). Find out if the system is time variant or time invariant.

Solution

Step 1. 

Step 2.

Step 3.

Thus the system is time invariant.

Example 2.5

Let y(n) = x(n)cos(n). Find out if the system is time variant or time invariant.

Solution

Step 1.

Therefore,

Step 2.

y n x n

y n n y n n x n n

1 1

1 0 1 0 1 0

( ) cos ( )

( ) cos

= ( )
−( ) = −( )( ) shifted by  is 

y n x n n2 1 0( ) cos= −( )( )

y n n y n1 0 2−( ) = ( )

y n x n n1 1( ) ( )cos( )=

y n n x n n n n1 0 1 0 0−( ) = −( ) −( )cos

y n x n n n2 1 0( ) cos( )= −( )
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Step 3.

Therefore, the system is time variant.

Example 2.6

Let y(n) = ne-nx(n). Find out if the system is time variant or time invariant.

Solution

Step 1.

Therefore,

Step 2.

Step 3.

Therefore, the system is time variant.

2.5 Systems with Memory

If at any value of n, y(n) depends totally on x(n) at that particular value, then
in such a case we say the system is without memory. Otherwise the system
is with memory.

Example 2.7 

Consider the input-output relation 

Is the system with or without memory?

y n n y n1 0 2−( ) ≠ ( )

y n ne x nn
1 1( ) = ( )−

y n n n n e x n nn n
1 0 0 1 0

0−( ) = −( ) −( )− −( )

y n ne x n nn
2 1 0( ) = −( )−

y n n y n1 0 2−( ) ≠ ( )

y n x n( ) ( )= ( )2
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Solution

For any value of n, y(n) depends on x(n) at that particular value. If we look
at the output at n = 4 then we look at the input at n = 4 as well. In this case,
the system is without memory.

Example 2.8

Consider the system

Is the system with or without memory?

Solution

The output y(n) at n = 0 depends on x(n) at n = –1. Therefore, the system is
with memory.

2.6 Causal Systems

A causal system is a system where the output y(n) at a certain time n1 depends
on the input x(n) for n < n1.

Example 2.9

If x(n) is given as

and the output y(n) is 

Is this system causal?

Solution

The first sample of the input has appeared at n = 0, as does the first sample
of the output. Therefore, the system is causal. Note that the system is causal
even if the output starts at any value for which n ≥ 0.

y n nx n( ) = −( )1

x n( ) , ,= { }↑
1 1 1

y n( ) , ,= { }↑
1 1 2 1 4
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Example 2.10

Let the input x(n) be as

Let this signal be the input to a system where the output was recorded as

Is the system causal?

Solution

The first input sample starts at n = 0 and the first output sample starts at
n = –3. This makes the system noncausal.

2.7 The Inverse of a System

If we can determine the input by measuring the output, then the system
under consideration is said to be invertible. Note that if two inputs give the
same output the system is not invertible.

Example 2.11

Consider the following systems

1. y(n) = x(n)
2. y(n) = 2x(n)
3. y(n) = a cos(x(n))

Are these systems invertible?

Solution

The first system is invertible. The corresponding pictorial representation is
shown in Figure 2.2. The second system is also invertible. Figure 2.3 shows
the corresponding pictorial depiction. The third system is not invertible. Why?

Let us consider two inputs, x1(n) = x(n) and x2(n) = x(n) + nπ, where n is
an even integer. For this system the output corresponding to x1(n) = x(n) is
given by

x n( ) , , ,= { }↑
1 0 1 0

x n( ) , , , ,=






↑

1 1 0 1 0
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and the output corresponding to x2(n) = x(n) + nπ is given by

We can see here that two different inputs produced the same output. There-
fore, the system is not invertible as claimed.

2.8 Stable System

The signal x(n) is considered bounded if �x(n)� < β < ∝ for all n, where β is
a real number. A system is said to be BIBO (bounded-input bounded-output)
stable if and when the input is bounded the output is also bounded. y(n),
the output, is bounded if �y(n)� < β < ∝.

Example 2.12

Consider the system

and assume that x(n) is bounded. Is the system stable?

FIGURE 2.2 System for Example 2.11.

FIGURE 2.3 System for Example 2.11.
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Solution

If x(n) is bounded, this implies that

But a shifted version of x(n) is also bounded for x(n) is bounded. Therefore,

and the system is BIBO.

Example 2.13

Consider that x(n) is bounded and applied to a system where y(n) is obtained
as

Is the system BIBO?

Solution

Since x(n) is bounded, we have �x(n)� < β. We also know that a shifted version
of x(n) is also bounded. Thus

However, as n approaches infinity y(n) will grow without bounds and the
system is not BIBO.

2.9 Convolution

To find the output of a discrete system y(n) to an input x(n), we need the
impulse response, h(n), for the system. h(n) is the output of the system when
the input is δ(n), where δ(n) is the impulse signal. If we apply the signal δ(n)
to the system as shown in Figure 2.4, the output is h(n). Notice that we do

x n( ) < β

y n x n k M
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=
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β β

y n n x n k
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not know the system itself (the input–output relation) but we know that if
the input is the impulse signal δ(n), the output will be the impulse response
h(n).

Now consider the shifted impulse signal δ(n – m) to the same system as
shown in Figure 2.5. The output will also be shifted because we are consid-
ering only linear systems. Therefore, δ(n – m) will produce h(n – m).

We have also seen in Chapter 1 that any discrete signal can be represented
as the sum of weighted shifted impulses (samples). We have seen that the
signal x(n) can be represented as

(2.1)

Note that each x(m) is a sample and a constant. Also, if x(m) is multiplied
by δ(n – m) and applied to the discrete linear time-invariant system, the
output will be x(m)h(n – m) as shown in Figure 2.6. 

Now let us say that we were to add all the shifted weighted samples

and present this as input to the same system. The output in this case is

FIGURE 2.4 The response to the impulse signal.

FIGURE 2.5 The response to the shifted impulse signal.

FIGURE 2.6 The response to the shifted impulse signal multiplied by a constant.
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which is the sum of all the responses to each weighted sample individually.
But

Knowing that when x(n) is presented as an input to a linear time-invariant
system the output is y(n) allows us to write

(2.2)

or

The above equation is the convolution equation that, given x(n), the input
to a discrete system, and h(n), the impulse response, will give you the output
y(n). This also tells you that, given h(n) for any system, you can find y(n) for
any input x(n).

Example 2.14

Consider the system in which the impulse response is known to be

Find the output y(n) for the input x(n) = δ(n).

Solution

Note that we expect the output to be the h(n) given because the input is δ(n).
Using the convolution sum we have

But δ(m) is only defined at m = 0. Therefore

as anticipated.

x m n m x n
m
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∑

y n x m h n m
m
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=−∞
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Example 2.15

Consider the input x(n) = u(n) and the impulse response h(n) = (.5)nu(n) for
a certain system. What is the output of the system? 

Solution

Using the convolution equation we write

But since u(m) = 1 for n ≥ 0 and both x(n) and h(n) start at n = 0, we have

The last result was obtained using the geometric series sum

Example 2.16

Let x(n) = (.5)n + (.6)n+1 and h(n) = u(n) for n ≥ 0. Find y(n).

Solution

Using the convolution equation we write

which reduces to
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Example 2.17

Consider the system where x(n) = Au(n) and h(n) = Bu(n). Find the output y(n).

Solution

Using the convolution sum we have

which reduces to

Note that this system grows without bounds as n approaches infinity.

2.10 Difference Equations of Physical Systems

A difference equation that represents the input–output relation for a discrete
linear time-invariant system is of the form

(2.3)

with the initial conditions y(–1), y(–2),…y(–N). The relation in the equation
above is a general relation between x(n), the input, and y(n), the output of
the discrete system. The order of this general difference equation is N. We
also say that N is the degree of the system. An example is the difference
equation

where N here is 1, the order of the discrete difference equation; thus it is a
first-order difference equation. Our goal is to find the output y(n) given the
input x(n).

The total solution has two parts: the homogeneous solution and the par-
ticular solution. We will learn how to find the total solution in the following
section. But first, we will see how to find the homogeneous solution.
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2.11 The Homogeneous Difference Equation and Its Solution

The general form of a homogeneous difference equation is

(2.4)

with initial conditions y(–1), y(–2),…y(–N) and all inputs set to zero. You can
see that without inputs, the homogeneous solution is zero unless we have
nonzero initial conditions.

To find yh(n), the homogeneous solution, we assume a solution of the form
c(p)n. If c(p)n is a solution it must satisfy the homogeneous equation above.
So we substitute c(p)n into Equation (2.4) to get

Since the summation in the above equation is over k, we write 

By expanding the above equation we get

To satisfy the above equation, either 

or

But c(p)n cannot be zero. Therefore, 

(2.5)

This equation is called the characteristic equation of the system. If we mul-
tiply this equation by pN we will have
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So the homogeneous solution yh(n) is 

(2.6)

where p1, p2, …, pN are the roots of

and c1, c2, …, cN are constant to be determined using the given initial conditions.

Example 2.18

Consider the homogeneous difference equation that describes a discrete
system as

with the initial condition y(–1) = +1. What is y(n)? Check your answer using
iterations.

Solution

The solution y(n) is the sum of the homogeneous and the particular parts.
The homogeneous part is due to the initial condition and the particular part
is due to the existing external inputs. In this case there are no external inputs
and so the particular part is zero. The homogeneous part is calculated by
first assuming a solution of the form yh(n) = cpn and then substituting in the
given equation to get

or

The characteristic equation is then 1 – 2p–1 = 0. Solving for p we get p = 2.
The homogeneous solution is then

To find c1 we use the initial condition and write
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The final solution is then

We can check the validity of the solution obtained by iteration. We can
rewrite the given difference equation as

With the given initial condition we can find y(n) for n ≥ 0 as in the following:

These values can be checked via the closed form solution

If we are interested in the first few values of y(n) we can use iteration, and
if we are interested, for example, in y(1000), we better find the closed form
solution.

2.11.1 Case When Roots Are All Distinct

When all roots are distinct the form of the homogeneous solution is

(2.7)

where p1, p2, … , pn are the roots of the characteristic equation and c1, c2 , …,
cn are to be determined using the given initial conditions.

y n y n y n u nh p
n( ) ( ) ( ) ( ) ( )= + = 2 2

y n y n( ) ( )= −2 1

For

For

For

For

n y y

n y y

n y y

n y y

= = − = =

= = = =

= = = =

= = = =

0 0 2 1 2 1 2

1 1 2 0 2 2 4

2 2 2 1 2 4 8

3 3 2 2 2 8 16

, ( ) ( ) ( )

, ( ) ( ) ( )

, ( ) ( ) ( )

, ( ) ( ) ( )

y n n( ) ( )= 2 2

For

For

For

For

n y

n y

n y

n y

= = =

= = =

= = =

= = =

0 0 2 2 2

1 1 2 2 4

2 2 2 2 8

3 3 2 2 16

0

1

2

3

, ( ) ( )

, ( ) ( )

, ( ) ( )

, ( ) ( )

y n c p c p c ph
n n

n n
n( ) = + +…+1 1 2 2



72 Discrete Systems and Digital Signal Processing with MATLAB

2.11.2 Case When Two Roots Are Real and Equal

If we consider a second order discrete system, the roots in this case will be
equal and real. Denoting the roots as p1 = p2 = p, the homogeneous solution
in this case is

(2.8)

The reason for multiplying the second term by n is to make the two terms
independent. If we have three equal real and repeating roots, the homoge-
neous solution is

(2.9)

If two roots are real and equal and one root is real then

(2.10)

where p = p1 = p2 and p3 is the other real root.

2.11.3 Case When Two Roots Are Complex 

Suppose the roots in this case are p1 and p2. Complex roots always appear
as complex conjugates. So if p1 = a + jb, then p2 = a – jb. Then we can put p1

and p2 in polar form and get

and the homogeneous solution is then

For this solution to be real, c1 must be the complex conjugate of c2. Because
of that we write the solution as

Since c1 is the complex conjugate of c2, the two terms in the above solution
are conjugates. If 
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then

where real stands for the real part of the complex number. The constants can
be written in polar form as c1 = Qejβ and c2 = Qe–jβ. With this at hand, we
rewrite the homogeneous solution as

where θ = tan–1 (b/a), Q is the magnitude of c1 and β = ∠c1 is the angle of
the complex number c1. The only two constants to be found in Equation
(2.11) are β and Q. They can be found using the initial conditions.

2.12 Nonhomogeneous Difference Equations 
and their Solutions

The solution of the nonhomogeneous difference equation

can be obtained by finding the homogeneous solution of

with the initial conditions

then adding it to the particular solution of

So we write the total solution as
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Note that if we are given a nonhomogeneous difference equation with initial
conditions, we first find yh(n) and do not evaluate the constants associated
with yh(n) because these initial conditions are given for the total solution
y(n). The following example will illustrate this point.

Example 2.19

Consider the system described by the difference equation

where x(n) = u(n) for n ≥ 0 and the initial conditions are y(–1) = 1.

Solution

We start by finding the solution to the homogeneous part

The characteristic equation is obtained by inspection as p – 2 = 0, and this
gives p = 2. The homogeneous solution is then

We will not use the initial conditions to find c1, but we will wait until we
find yp(n) and then apply them to the total solution y(n).

For the particular solution, and since our input is u(n), a constant for n ≥ 0,
we predict that yp(n) is the constant k1. This k1 should be evaluated by
substituting yp(n) = k1 in the given difference equation to obtain

k1 – 2k1 = 1 or k1 = –1

Therefore, the total solution y(n) is

In this total solution, we use the initial conditions to find c1. We have y(–1) = 1.
Thus,

and the constant is c1 = 4. The total solution is then
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To test the validity of this solution, let us try to find the first few values of
y(n) by iteration. We were given that

So

and

In the derived closed form solution, y(n) = (4)2n – 1, so y(0) = (4)20 – 1 = 3,
and y(1) = (4)21 – 1 = 7.

2.12.1 How Do We Find the Particular Solution?

Usually the particular solution is the solution because of the inputs applied
to the systems. There are no general rules as to the form of the particular
solution. All we can do is guess. For a long time, certain particular solution
forms were proven true for certain inputs. The forms are listed in Table 2.1
along with the given input x(n).

2.13 The Stability of Linear Discrete Systems: 
The Characteristic Equation

2.13.1 Stability Depending On the Values of the Poles

We can determine if the discrete linear system is stable or not by evaluating
the roots of the characteristic equation

If the roots are within the unit circle, then the system is stable. If any root is
outside this range, then the system is unstable. In this case we can solve for

TABLE 2.1

Particular Solutions for Selected Inputs

x(n) y(n)
ku(n) k1

kαn k1αn

kn k1n + k2

kδ(n) 0
kcos (nθ) k1 cos (nθ) + k2 sin (nθ)
ksin(nθ) k1cos (nθ) + k2 sin (nθ)
kαn cos (nθ) k1αn cos(nθ) + k2αn sin(nθ)
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the eigenvalues or the poles of the system using the MATLAB function roots.
If the characteristic equation is given as

then using MATLAB we type the command

roots([1 0.5 1])

to get the roots. But we are interested in the magnitude of the roots to make
sure that this magnitude is within the unit circle. Thus we modify the com-
mand and write

abs(roots([1 0.5 1]))

2.13.2 Stability from the Jury Test

Sometimes the real coefficients, a1, a2, … , aN in the characteristic equation
are not constants; they are variables on which the stability of the system
depends. In such a case we can use the Jury test to find out about the stability
of the system. For higher order systems the Jury test is superior.

To understand this test we will consider the following general character-
istic polynomial

a5 p5 + a4 p4 + a3 p3 + a2 p2 + a1 p1 + a0 = 0

with a5 different from zero and positive. Next we arrange the leading coef-
ficients as in the following table.

f0   0

P p2 0 5 1 0+ + =.

a a a a a a

a a a a a a a a

5 4 3 2 1 0

0 1 2 3 4 5 0 5

          

          [ ] Subtract

a a a a a a

a a a a a a a a

5 4 3 2 1 0

0 1 2 3 4 5 0 5

          

          [ ] Subtract

b b b b b

b b b b b b b

4 3 2 1 0

0 1 2 3 4 0 4

0          

        [ ] Subtract

c c c c

c c c c c c

3 2 1 0

0 1 2 3 0 3

0        

      [ ] Subtract

d d d

d d d d d

2 1 0

0 1 2 0 2

0      

    [ ] Subtract

e e

e e e e

1 0

0 1 0 1

0    

[ ] Subtract
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The first row in the table contains the coefficients in the characteristic equa-
tion in descending powers of p. The second row is the first row reversed.
We then multiply the second row by the last element in row 1 divided by
the last element in row 2, then subtract [row 2]a0/a5 from row 1 to get the
third row. The process continues in this fashion until we get to the last row
with one element only, f0 in this case.

For the system represented by this characteristic equation to be stable, the
leading boxed coefficients must all be positive. Let us look at an example to
illustrate the process. Consider the characteristic equation

3p2 + 2kp + 1 = 0

The table is arranged as in the following.

Stability requires that the boxed elements in the table be positive. This
requires that

 > 0 

or

Thus for stability, the values for k should be limited to –2 < k < 2.

Example 2.20

Consider the system

Is the system stable?

3 2 1

1 2 3 1 3
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Solution

The character equation is

p – 2 = 0

with p = 2 as the root. Since p > 1, the system is unstable. With the Jury test
we have

–3 is not positive. Thus the system is unstable.

Example 2.21

Consider the system

Is the system stable?

Solution

The character equation is

p – 0.5 = 0

with p = 5. Since 0 ≤ 5 ≤ 1, the system is stable.
With the jury test we have

3/4 is positive and the system is stable.

2.14 Block Diagram Representation of Linear 
Discrete Systems

So far we have seen linear discrete systems represented as difference equa-
tions. These systems can also be represented as block diagrams. The main
components for the block diagrams are given next.
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1 2
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−[ ]( ) subtract
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.   .    

−
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2.14.1 The Delay Element

The delay element is shown in Figure 2.7. In this case

where D in the diagram is the delay time. The delay element can be imple-
mented physically as a shift register.

2.14.2 The Summing/Subtracting Junction

This junction is shown in Figure 2.8. The output here is

2.14.3 The Multiplier

The multiplier is shown in Figure 2.9. In this case

FIGURE 2.7 The delay element.

FIGURE 2.8 The summing/subtracting junction.

FIGURE 2.9 The multiplier element.
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Example 2.22

Consider the system

Represent this system in block diagram form.

Solution

This is a first-order system where only y(n) is delayed. The block is shown
in Figure 2.10.

The direction of the arrows is important. It means that the signals are flowing
in the indicated direction.

Example 2.23

Consider the system

Give the block diagram representation.

Solution

We rewrite the output as

In terms of the D operator we have

The representation is shown in Figure 2.11.

FIGURE 2.10 Block diagram for Example 2.22.
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y n y n y n x n( ) ( ) ( ) ( )− − − − = −5 1 3 2 1

y n y n y n x n( ) ( ) ( ) ( )= − + − + −5 1 3 2 1
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2.15 From the Block Diagram to the Difference Equation

This is best illustrated by examples. The rule is that you find signals at the
junctions proceeding from the input side going right to the output side.

Example 2.24

Consider the block diagram in Figure 2.12. Find the difference equation
represented in the diagram.

Solution

Looking at the output of the first summing junction from the left we have
the signal x(n). Looking at the output of the second summing junction, we
have the signal x(n) + x(n – 1) + 2y(n). The output of the last summing
junction is y(n). Coming to this last junction is the signal x(n – 1) + x(n – 2) +

FIGURE 2.11 Block diagram for Example 2.23.

FIGURE 2.12 Block diagram for Example 2.24.
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2y(n – 1). Thus the output of the last junction is y(n) = 2y(n – 1) + x(n – 1) +
x(n – 2). The difference equation is then

Example 2.25

Consider the system in Figure 2.13. What is the difference equation?

Solution

The output of the first summer is y(n). The output of the second summer is
y(n – 1). The output of the third summer is y(n- 2). The output of the forth
summer is y(n), which is y(n – 3) + x(n). Therefore, the system representation
as a difference equation is

2.16 From the Difference Equation to the Block Diagram: 
A Formal Procedure

This procedure will also be discussed using examples.

Example 2.26

Consider the system

Draw the block diagram.

FIGURE 2.13 Block diagram for Example 2.25.

� D � D

x (n)

y (n)
D ��

y n y n x n x n( ) ( ) ( ) ( )− − = − + −2 1 1 2

y n y n x n( ) ( ) ( )− − =3

y n y n x n x n( ) ( ) ( ) ( )− − = + −2 1 1
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Solution

1. The given system is first order in y(n). Therefore, we will need only
one delay element.

2. We initially draw the diagram in Figure 2.14 where we have one
delay element preceded and followed by a summing junction. The
input and output lines are drawn with x(n) line not connected.

3. In the given equation, solve for y(n) to get

Let us represent a delay by D, two delays by D2 and so on to get

We will feed (2y(n) + x(n)) to the summer before the delay and x(n) to the
summer following the delay as shown in the final diagram in Figure 2.15

Example 2.27

Consider the system

Draw the block diagram.

FIGURE 2.14 Block diagram for Example 2.26.

FIGURE 2.15 Block diagram for Example 2.26.

D� �
y (n)x (n)

D� �
y (n)x (n)

2

y n y n x n x n( ) ( ) ( ) ( )= − + + −2 1 1

y n Dy n x n Dx n( ) ( ) ( ) ( )= + +2

y n D y n x n x n( ) ( ) ( ) ( )= +[ ]+2

y n y n y n x n x n( ) . ( ) . ( ) ( ) ( )− − − − = + −0 5 1 0 3 2 3 1
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Solution

1. Our system in second order in y(n), so we need to delay elements.
2. Draw the initial block diagram as in Figure 2.16 where every delay

is preceded and followed by a summing junction and x(n) is hanging
and not connected.

3. Solve for y(n) as

Represent each delay by D and so on to get

Feed 0.3y(n) to the summer before the first delay, (0.5y(n) + x(n)) to the
summer before the second delay, and 3x(n) to the summer following the last
delay to get the block diagram in Figure 2.17.

Example 2.28

Consider the system

Draw the block diagram.

FIGURE 2.16 Block diagram for Example 2.27.

FIGURE 2.17 Block diagram for Example 2.27.
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Solution

1. The system is third order in y(n) and we will need three delay
elements.

2. We initially draw the block as shown in Figure 2.18 with each delay
preceded and followed by a summer and the x(n) input line hanging.

3. Next we solve for y(n) as

3y(n) + x(n) is fed to the summer preceding the first delay, 0 to the summer
preceding the third delay, and 0 to the summer following the last delay as
shown in Figure 2.19. Note that 0 means nothing is connected.

2.17 The Impulse Response

The impulse response is the response due to an impulsive input. We will
call the output y(n), h(n) when the input x(n) is δ(n).

Example 2.29

Find the impulse responses for the system

Solution

The output will be h(n) if x(n) = δ(n). The difference equation becomes

FIGURE 2.18 Block diagram for Example 2.28.

FIGURE 2.19 Block diagram for Example 2.28.
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This is a nonhomogeneous difference equation in h(n) and has a solution
that contains two parts; hh(n) and hp(n). For hh(n), the character equation is p
– .5 = 0 and p = 5. So

For the particular solution we look at Table 2.1 and find that if the input is
an impulse, the particular solution is zero. Thus hp(n) = 0. Therefore,

Next we find c1. From the above equation we have

But we do not know the values for h(0). From the given system with x(n) =
δ(n) we have

Next we equate the h(0) values to get

And finally

Example 2.30

Consider the system

What is the impulse response?

Solution

The characteristic equation is

which gives p1 = –2 and p2 = –3.
Since x(n) = δ(n), the particular solution for h(n) is hp(n) = 0 as seen in

Table 2.1. Thus the total solution is

h n ch
n( ) (. )= 1 5

h n h n h n ch p
n( ) ( ) ( ) (. )= + = 1 5

h c c( ) (. )0 51
0

1= =

h h( ) . ( ) ( )0 5 1 0 0 1 1= − + = + =δ

h h c( ) ( )0 1 0 1= = =

h n nn( ) (. )= ≥5 0 for 

y n y n y n x n( ) ( ) ( ) ( )+ − + − =5 1 6 2

p p2 5 6 0+ + =
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To find c1 and c2 we substitute n = 0 and n = 1 in the above solution for h(n)
to get

But we do not know the values of h(0) and h(1). However, from the given
system with x(n) = δ(n) and n = 0 we get

with h(0) = 1.
And with n = 1 we have

with h(1) = –5. Thus we will end up with the two algebraic equations obtained
by equating values for h(0) and h(1). The equations are

Solving the two equations gives c1 = –2 and c2 = 3 and the impulse response
is then

2.18 Correlation

Correlation between two finite duration signals x1(n) and x2(n) is referred to
as cross-correlation while correlation between the finite signal x(n) and itself
is referred to as auto-correlation. Next we explain both.

2.18.1 Cross-Correlation

The cross-correlation between the two signals x1(n) and x2(n) is an indication
of the similarities between the two signals as a function of the delay between

h n c c nn n( ) ( ) ( )= − + − ≥1 22 3 0

h c c

h c c

( )

( )

0

1 2 3

1 2

1 2

= +

= − −

h h h( ) ( ) ( ) ( )0 5 1 6 1 0 1+ − + − = =δ

h h h( ) ( ) ( )1 5 0 6 1 0+ + − =

h c c

h c c

( )

( )

0 1

1 5 2 3

1 2

1 2

= = +

= − = − −

h n nn n( ) ( ) ( )= − − + − ≥2 2 3 3 0
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them. The cross-correlation between x1(n) and x2(n) is written mathematically
as

(2.12)

The index k is known as the lag of x1(n) relative to x2(n). If we let n – k = m,
then the cross-correlation equation becomes

(2.13)

This shows that we can use two equations to evaluate cross-correlation. The
question whether Rx1x2

(k) is the same as Rx2x1
(k) is examined next. According

to the formula for cross-correlation we have

But

and

Thus we see that

(2.14)

The above equations for cross-correlation are defined for energy signals
where the summation converges to some constant. If the signals are power
signals (periodic signals are examples of this type) then the summation will
not converge and thus we will use average values. In this case if the period

R k x n x n kx x
n

1 2 1 2( ) ( ) ( )= −
=−∞

∞

∑

R k x m k x m x n k x nx x
m n

1 2 1 2 1 2( ) = +( ) ( ) = +( ) ( )
=−∞

∞

=−∞

∞

∑ ∑

R k x n x n kx x
n

2 1 2 1( ) ( ) ( )= −
=−∞

∞

∑

R k x n k x nx x
n

1 2 1 2( ) ( ) ( )= +
=−∞

∞

∑

R k x n x n k x n k x nx x
n n

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )− = + = −
=−∞

∞

=−∞

∞

∑ ∑

R k R kx x x x2 1 21
( ) ( )= −
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of the discrete sequence is N then the cross-correlation is taken over one
period (which is the same as averaging over an infinite interval) and is
defined as

(2.15)

We have also seen before that the convolution between the two signals x(n)
and h(n) is given by

and the convolution between x(n) and h(–n) is

(2.16)

But the quantity to the right of the equal sign in Equation (2.16) is nothing
but the cross-correlation between x(n) and h(n). Therefore, we conclude that
the convolution between x(n) and h(–n) is the cross-correlation between x(n)
and h(n). We write

(2.17)

2.18.2 Auto-Correlation

Auto-correlation is defined between the signal and itself. It is defined for
energy signals as

(2.18a)

and for power signals of period N it is defined as

(2.18b)

R k
N

x n x n kx x
n
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1
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0

( ) ( ) ( )= −
=
∑
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2.19 Some Insights

Let us say that we have a first-order system with the output y(n) given as

As n approaches infinity, the output will approach the value zero. In this
sense we say the output is stable for our particular input. For first-order
systems (that are described by first-order difference equations) the output
will have one term of the form (a)n. For second-order systems, the output will
have two terms similar to (a)n at the most. For third-order systems we will
have three terms, and so on.

In many systems of order greater than two, and for the purpose of analysis
and design, we can reduce the order of the system at hand to a second-order
system due to the fast decay of some of these terms. The solution for the
output for these systems is in the following form

The stability of the system is determined by the values of a1 and a2. If any
of the a's has a magnitude that is greater than 1, the output y(n) will grow
wild as n approaches infinity. If all the a's have a magnitude not greater than 1,
then the output y(n) will decay gradually and stays at a fixed value as n
progresses. The a's are called the eigenvalues of the system. Therefore, we
can say that a linear time-invariant system is stable if the eigenvalues of the
system have magnitudes not greater than 1.

2.19.1 How Can We Find These Eigenvalues?

A linear time-invariant system can always be represented by a linear differ-
ence equation with constant coefficients

We can look at the auxiliary algebraic equation by setting the input, x(n), to zero

and letting y(n – k) = Dky(n) to get

y n nn( ) ( . )= >0 5 0 for 

y n c a c a
n n

( ) = ( ) + ( )1 1 2 2

y n a y n k b x n kk k
k

M

k

N

( ) ( ) ( )− − = −
==
∑∑

01

y n a y n kk
k

N

( ) ( )− − =
=
∑ 0

1

y n a D y nk
k

k

N

( ) ( )− =
=
∑ 0

1
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We can expand the above equation to get

We can factor out y(n) as

y(n) cannot be zero (in which case the output of the system would be zero
at all times) and therefore

or

This is an Nth order algebraic equation with N roots. Let us call them the N a's.
These are the eigenvalues of the system.

2.19.2 Stability and Eigenvalues

To summarize, any linear time-invariant system can be modeled by a linear
difference equation with constant coefficients. The auxiliary algebraic equa-
tion that can be obtained from the difference equation will have a number
of roots called the eigenvalues of the system. The stability of the system is
determined by these roots. These roots may be real or complex. If all the
magnitudes of the roots are less than or equal to 1, then the system is stable.
If any of the roots has a magnitude that is greater than 1, the system is
unstable. The eigenvalues of the system are responsible for the shape of the
output, y(n). They dictate the shape of the transients of the system as well.

2.20 End of Chapter Examples

EOCE 2.1

Are the following systems linear?

1. y(n) = (.5)nx(n) + 1
2. y(n) = (.5)n cos(2x(n))
3. y(n) = sin(n) – x(n)

y n a Dy n a D y n a D y nN
N( ) ( ) ( ) ... ( )− − − − =1 2

2 0

y n a D a D a DN
N( ) 1 01 2

2− − −…−[ ] =

1 01 2
2− − −…−[ ] =a D a D a DN

N

1 01 2
2a a a D a a D DN N N

N− − −…−[ ] =



92 Discrete Systems and Digital Signal Processing with MATLAB

Solution

1. For an input x1(n) the output is

For an input x2(n) the output is

If the input is αx1(n) + βx2(n), then the output is

But αy1(n) + βy2(n) is

Thus the system is not linear.
2. For y = (.5)n cos(2x(n)) and if the input is x1(n) then

If the input is x2(n), then

Now

If the input is αx1(n) + βx2(n), then

which is clearly not equal to αy1(n) + βy2(n). Thus the system is not
linear.

3. For y = sin(n) – x(n), if the input is x1(n), then

y n x nn
1 15 1( ) (. ) ( )= +

y n x nn
2 25 1( ) (. ) ( )= +

y n x n x n

x n x n

n

n n

( ) (. ) ( ) ( )

(. ) ( ) (. ) ( )

= +[ ]+
= + +

5 1

5 5 1

1 2

1 2

α β

α β

α β α β(. ) ( ) (. ) ( ) (. ) ( ) (. ) ( )5 5 2 5 5 11 2 1 2
n n n nx n x n x n x n+ + ≠ + +

y n x nn
1 15 2( ) (. ) cos ( )= ( )

y n x nn
2 25 2( ) (. ) cos ( )= ( )

α β α βy n y n x n x nn n
1 2 1 25 2 5 2( ) ( ) (. ) cos ( ) (. ) cos ( )+ = ( ) + ( )

y n x n x nn( ) (. ) cos ( ) ( )= +( )5 2 1 2α β

y n n x n1 1( ) sin( ) ( )= −
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If the input is x2(n), then

Now

If the input is αx1(n) + βx2(n)

which is clearly not equal to αy1(n) + βy2(n). Thus the system is not
linear.

We can use MATLAB to generate the sequence α(sin(n) – x1(n)) + σ(sin(n) –
x2(n)) , the sequence sin(n) – αx1(n) – βx2(n) and find the difference between
them. If the difference is zero, then the system is linear. Otherwise it is
nonlinear. We will let α = β = 1 and x1(n) = n and x2(n) = 2n. The MATLAB

script is

n = 0:10; % generate only 11 samples

y1 = (sin(n)-n) + (sin(n)-2*n);

y2 = (sin(n)-n)-2*n;

y = y1 – y2; % the diff. vector of samples.

% adding all y values and taking the absolute values.

e = abs( sum (y)); 

The answer will be 1.4112. Because e in the above script is not zero, this
proves that the system is nonlinear.

EOCE 2.2

Consider the same systems as in EOCE 2.1. Are they time-variant systems?

Solution

1. For x1(n) as an input

y1(n) shifted by n0 is

y n n x n2 2( ) sin( ) ( )= −

α β α βy n y n n x n n x n1 1 2( ) ( ) sin( ) ( ) sin( ) ( )+ = −( ) + −( )

y n n x n x n

n x n x n

( ) sin( ) ( ) ( )

sin( ) ( ) ( )

= − +( )
= − −

α β

α β

1 2

1 2

y n x nn
1 15 1( ) (. ) ( )= +

y n n x n nn n
1 0 1 05 10−( ) = −( ) +−(. )
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If we apply a shifted version of x1(n), x1(n – n0), then 

But y2(n) ≠ y1(n – n0), so the system is time variant.
2. For x1(n) as an input 

y1(n) shifted by n0 is

If we apply x1(n – n0) to the system, the output would be

But y1(n – n0) ≠ y2(n), so the system is time variant.
3. For y = sin(n) – x(n) , if we apply x1(n) as input the output is

y1(n) shifted by n0 is

If we apply x1(n – n0) to the system, then the output is

But y1(n – n0) ≠ y2(n), so it is a time-variant system.

We can use MATLAB to prove these results. We will compare y1(n – n0) to
y2(n) given above. Let x(n) = n, and let us shift by 2 samples. The script is

n = 0:10;

m = n;

x1 = n;

n = n + 2;

x1 = x1 +2;

y1 = sin(n) –x1;

y n x n nn
2 1 05 1( ) (. )= −( ) +

y n x nn
1 15 2( ) (. ) cos ( )= ( )

y n n x n nn n
1 0 1 05 20( ) (. ) cos ( )− = −( )−

y n x n nn
2 1 05 2( ) (. ) cos ( )= −( )

y n n x n1 1( ) sin( ) ( )= −

y n n n n x n n1 0 0 1 0−( ) = −( ) − −( )sin

y n n x n n2 1 0( ) sin( )= − −( )
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y2 = sin(m)-x1;

y = y1 – y2;

e = abs(sum(y)) % difference between samples

The result will be 2.378. This proves the analytical result.

EOCE 2.3

Consider the systems for n ≥ 0

1. y(n) = (.5)n x(n)
2. y(n) = n(.5)n x(n)
3. y(n) = (.5)n x(n)

If x(n) is bounded, what about y(n)?

Solution

1. Since x(n) is bounded we write

If (.5)n is bounded then we will conclude that y(n) is bounded too.

as N → ∞, (.5)N+1 goes to zero and

Thus y(n) is also bounded.
2. Since x(n) is bounded, we will check the signal n(.5)n. As n approaches

∞, (.5)n will approach zero. The multiplicative term n(.5)n will die as
n approaches infinity, so the system output is bounded.

3. Because x(n) is known to be bounded, we will check the sum (5)n

for n ≥ 0.

x n( ) < < ∞β

(. )
(. )

.
5

1 5
1 5

1

0

n
N

n

N

= −
−

+

=
∑

(. )
.

5
1

1 5
2

0

n

n=
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∑ =
−

=

( )
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1 5
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0

1
n

n
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As N approaches infinity, (5)n+1 will grow without bounds. Thus

will not converge to any value. Hence the system output is not
bounded.

EOCE 2.4

Consider the following finite duration signals. 

1. x1(n) = { , 1, 1} x2(n) = { , 1, 1}
2. x1(n) = { , 1, 1} x2(n) = {1, 1, }
3. x1(n) = { , 1, 1} x2(n) = δ(n) = { }

Find x1(n) * x2(n), the convolution result, for the above cases.

Solution

For two finite signals x1(n) and x2(n), and if x1(n) is defined on the interval
sn1 < n1 < en1 and x2(n) is defined on the interval sn2 < n2 < en2, then y(n) =
x1(n) * x2(n) will start at the index sn1 + sn2 and ends at the index en1 + en2.

1. . 

In this case, x1(n) is defined on 0 < n1 < 2 and x2(n) is defined on the interval
0 < n2 < 2. y(n) will start at 0 + 0 = 0 and ends at 2 + 2 = 4. So we write

Therefore, the convolution result is

 

We can use MATLAB to find y(n) = x1(n) * x2(n) if both signals start at
n = 0. Since the signals here both start at n = 0, we can use MATLAB

and write the script

( )5
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n=0:2;

x1 = [ 1 1 1];

x2 = [ 1 1 1];

y = conv(x1, x2);

subplot(1,3,1)

stem(n,x1);xlabel('n');ylabel('The first signal');

subplot(1,3,2);stem(n,x2);xlabel('n');ylabel('The second 
signal');

n=0:4;

subplot(1,3,3);stem(n,y);

xlabel('n');ylabel('The result of the convolution');

to get the same result as shown in Figure 2.20.

2. In this case x1(n) starts at n = 0 and ends at n = 2, and x2(n) starts at
n = –2 and ends at n = 0. y(n) = x1(n)* x2(n) will start at 0 + (–2) = –2
and ends at n = 2 – 2 = 0. So we write

and

FIGURE 2.20 Signals for EOCE 2.4.
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Therefore, we have

We can use MATLAB to find y(n), but, since x2(n) does not start at n
= 0, we will do some modification before we can use the conv
function from MATLAB. The following MATLAB script will do that.

x1 = [ 1 1 1]; x2 = [ 1 1 1];

n1=[0 1 2];

n2=[-2 -1 0];

sn1 = 0; % starting index for x1

sn2 = -2; % ending for x1

en1= 2; % starting for x2

en2 = 0; % ending for x2

sn = sn1 + sn2; % starting for y(n)

en = en1 + en2; % ending for y(n)

n = sn : en ; % index for y(n).

y = conv(x1, x2);

subplot(1,3,1)

stem(n1,x1);xlabel('n');ylabel('The first signal');

subplot(1,3,2);stem(n2,x2);xlabel('n');ylabel('The
second signal');

subplot(1,3,3);stem(n,y);

xlabel('n');ylabel('The result of the convolution');

The plot is shown in Figure 2.21.
3. The starting index of x1(n) is sn1 = 0 and the ending index is en1 = 2.

The starting index of x2(n) is sn2 = 0 and the ending index is en2 = 0.
Therefore, y(n) will start at ns = sn1 + sn2 = 0 + 0 = 0 and will end at
en = en1 + en2 = 2.
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We can use MATLAB here directly since both signals start at n = 0 and
write

n1=[0 1 2];

n2=[0];

x1 = [ 1 1 1];

x2 = [ 1 ];

y = conv(x1, x2);

subplot(1,3,1)

stem(n1,x1);xlabel('n');ylabel('The first signal');

subplot(1,3,2);stem(n2,x2);xlabel('n');

ylabel('The second signal');

n=0:2;

subplot(1,3,3);stem(n,y);

xlabel('n');ylabel('The result of the convolution');

The result is shown in Figure 2.22.

FIGURE 2.21 Signals for EOCE 2.4.
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EOCE 2.5

Consider the following system represented by the impulse response h(n).

with

1. x(n) = u(n)
2. x(n) = (.5)n u(n)

Find y(n) = x(n) * h(n) for both cases.

Solution

1. For the first case

Since both signals start at n = 0, y(n) will start at n = 0.

FIGURE 2.22 Signals for EOCE 2.4.
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After simplification we get

2. For the second case

Since both x(n) and h(n) in this case start at n = 0, we have

And after simplifying we arrive at

EOCE 2.6

Consider the following homogeneous difference equations

1. y(n) + .6y(n – 1) = 0 with y(–1) = 1
2. y(n) + y(n – 1) + (1/4) y(n – 2) = 0 with y(–1) = y(–2) = 0

a) Find the characteristic equation for the above systems and see if they are
stable.
b) Find the homogeneous solution for both. The homogeneous solution is
the solution due to the initial conditions.

Solution

For the first system the characteristic equation is

p + .6 = 0 or p = –.6

Since 0 < .6 < 1, the system is stable. The homogeneous solution is 
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With y(–1) = 1, we have

Thus the solution is

For the second system the characteristic equation is

By factoring we get

Since 0 < .5 < 1, the system is stable. The homogeneous solution is then

With the initial conditions given we can write

Solving these equations we arrive at c2 = – (1/2) and c1 = –1. The final solution
is then

y n c nn
h  for ( ) = −( ) ≥1 6 0.
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EOCE 2.7

Consider the following difference equations

1.  

2.  

Find the total solutions for the two systems.

Solution

For the first system, the characteristic equation is p + .6 = 0 or p = –.6 and
the homogeneous part of the solution is

The particular solution is taken to be

This particular solution is taken from Table 2.1 with x(n) = u(n), a constant.
We will substitute the particular solution into the difference equation given.
We will get

c2 + .6c2 = 1 

and this gives us c2 = . The total solution now is

To find c1 we use the initial condition given to us and write

and finally the solution is
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For the second system the characteristic equation is

p2 + p + = 0 with p1 = p2 = –  

The homogeneous solution is

The particular solution is yp(n) = 0 and is obtained from Table 2.1. The total
solution is

Next we find the constants c1 and c2 using the given initial conditions.

Solving the above equation gives c1 = –1 and c2 = – , and the total solution
is then

n ≥ 0

EOCE 2.8

Consider the system

For x(n) = u(n), find y(n) due to the input x(n) using the convolution sum-
mation equation.

Solution

We will first find h(n) and then find y(n) using the convolution equation
y(n) = h(n) * x(n). To find h(n) for the system, we set x(n) equal to δ (n). In
this case, with a characteristic equation of p + 1 = 0, and a particular solution
of zero as seen in Table 2.1, we have
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To find c1, we have from the solution for h(n) that h(0) = c1. Also we can
substitute in the given difference equation with x(n) = δ(n) to find h(0). We
will have

But h(–1) = 0 since the output starts at n = 0. Thus

We then equate h(0) obtained from the solution and h(0) obtained from the
given system to get

And the solution for the impulse response is finally 

Once we have h(n) we can find y(n) using the convolution equation

By using the geometric series summation we simplify to get

EOCE 2.9

Consider the following systems

1.  
2.  
3.  
4.  

For all systems, use MATLAB to find the impulse responses in the range –10 ≤
n ≤ 20, the step responses and the sinusoidal responses for x(n) = .5sin(n)u(n).
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Solution

As we know, the general difference equation is given as

In MATLAB, the function called filter is used to solve difference equations
for a particular input x(n). The function filter is used by typing 

y = filter(b, a, x)

where y is the output, b is the input row coefficients associated with the
input, a is the input row coefficients associated with the output y as seen in
the general equation above and x is the given input.

For the first system

we will enter the b and the a vectors and use the functions stepsignal
and inpulsesignal defined in Chapter 1 and write the following script
to find the corresponding plots.

a=[1 0.6];

b=[1];

x=impulsesignal(0,-10, 20);% generating the input

n=[-10:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,3,1)

stem(n,impulse);xlabel('n');title('The impulse response');

axis([-10 20 -1 1])

x=stepsignal(0,-10,20);

step=filter(b,a,x); %the output due to the step input

subplot(1,3,2)

axis([-10 20 0 1])

stem(n,step);xlabel('n');title('The step response');

x=0.5*sin(n);

axis([-10 20 -1 1])

sinusoidal=filter(b,a,x);

subplot(1,3,3);axis([-10 20 0 1])

stem(n,sinusoidal);xlabel('n');

title('The sinusoidal response');

axis([-10 20 -1 1])

and the plots are in Figure 2.23. You can see that the system is stable.

y n b x n m a y n km
m

M

k
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y n y n u n( ) . ( ) ( )+ − =0 6 1



The Discrete System 107

For the second system

we will use the same MATLAB script above with the changes

b = [1];

a =[ 1 1 0.1];

The plots are in Figure 2.24. The system is stable. We can see that using
MATLAB by typing

Eigenvalues = roots([1 1 0.1])

to get 

Eigenvalues =
–0.8873
–0.1127

FIGURE 2.23 Signals for EOEC 2.9.
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For the third system

we will use the above script with the changes

b = [ 1 –1];

a = [1 1 0.1 8]; 

to get the plots in Figure 2.25. The system is not stable. We can see that using
MATLAB by typing

Eigenvalues = roots([1 1 0.1])

to get

Eigenvalues =
–2.3755     
0.6878 + 1.7014i
0.6878 – 1.7014i

FIGURE 2.24 Signals for EOEC 2.9.
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For the last system 

we use

b = [1 0 0.1];

a = [1 0 0 0 –0.8];

The plots are in Figure 2.26. The system is stable. That is asserted by typing

Eigenvalues = roots([1 0 0 0 -.8])

to get

Eigenvalues =
–0.9457     
–0.0000 + 0.9457i
–0.0000 – 0.9457i
0.9457

FIGURE 2.25 Signals for EOEC 2.9.
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EOCE 2.10

Consider the system 

1. Find the impulse response.
2. Find the output if x(n) = u(n).

Solution

1. The characteristic equation by inspection is p2 +1 = 0 with the roots
p1 = j and p2 = –j or p1 = ejπ/2 and p1 = e–jπ/2.  Thus

We must find c1 and c2 to completely find h(n). From the solution
just obtained we have

and

FIGURE 2.26 Signals for EOEC 2.9.
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We now find the same from the system given to us with the input
being the impulse signal and get

and

We now equate the h(0) and the h(1) obtained from the solution we
arrived at with h(0) and h(1) obtained from the difference equation
that was given to us. We will have the two simultaneous algebraic
equations

The result will be

and the impulse response is then

2. Using convolution, the output y(n) is

Using trigonometric identities we arrive at
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EOCE 2.11

So far in this chapter we have learned that a discrete linear system can be
represented by its block diagram, its difference equation and its impulse
response h(n). Given below are systems represented as difference equations.
Find the other two representations.

1. y(n) + 2y(n – 1) = x(n)
2. y(n) – 4y(n – 2) = x(n)
3. y(n) – .9y(n – 1) + 10y(n –2) +y(n – 3) = x(n) + x(n – 1)

Solution

1a. The Block Diagram Representation

Let y(n – 1) = Dy and y(n – 2) = D2y, and so on. The difference equation can
be written then as

Solve for y(n) to get

The system is first order in y and should have one delay element in the block
diagram. As we did earlier we will have a summer before and after each
delay, we will feed –2y(n) to the summer before the delay and x(n) to the
summer after the delay. The block diagram is shown in Figure 2.27.

1b. The Impulse Response Representation

The impulse response representation completely describes the discrete sys-
tem since, given any input we can find the output as y = x(n) * h(n). We start
by letting x(n) = δ(n) in the difference equation given

The character equation is p + 2 = 0 or p = –2 is the root. Thus

To find c1 we have

and h(0) in the given difference equation is found as

y n Dy n x n( ) ( ) ( )+ =2

y n Dy n x n( ) ( ) ( )= − +2

y n y n n( ) ( ) ( )+ − =2 1 δ

h n c nn( ) ( )   = − ≥1 2 0

h c c( ) ( )0 21
0

1= − =
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So h(0) = 1 = c1 and finally

This impulse response can be found by using MATLAB as in the following
script

a=[1 2];

b=[1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

The plot is in Figure 2.28.

2a. The Block Diagram Representation

The difference equations can be written as

We need two delays in this case and the block diagram is shown in Figure 2.29.

2b. The Impulse Response Representation

The difference equation is

FIGURE 2.27 System for EOCE 2.11.
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The character equation is

The impulse response is then

From this last equation for h(n) we get

and so we need values for h(0) and h(1). We do that using the given difference
equation and write

FIGURE 2.28 Signals for EOCE 2.11.

FIGURE 2.29 System for EOCE 2.11.
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and

Therefore, we have now the two algebraic equations to solve

The results are

and the final solution is then

h(n) can also be found using MATLAB as in the following script.

a=[1 0 -4];

b=[1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

The plot is shown in Figure 2.30.

3a. The Block Diagram Representation

The difference equation can be written as

Here we need three delay elements since the system is third order. The block
diagram is shown in Figure 2.31. 
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3b. The Impulse Response Representation

We will use MATLAB to find the impulse response as in the next script.

a=[1 -.9 10 1];

b=[1 1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

FIGURE 2.30 Signals for EOCE 2.11.

FIGURE 2.31 System for EOCE 2.11.
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The plot is shown in Figure 2.32. The system is unstable since the magnitude
of some of the roots is bigger than 1. The MATLAB command

EigenValues = roots([1 -.9 10 1])

will result in

EigenValues =
0.4995 + 3.1384i
0.4995 – 3.1384i

–0.0990

EOCE 2.12

Consider the block diagrams in Figures 2.33 through 2.36. Find the other
representations.

Solution

For the system in Figure 2.33 the output after the first summer is x(n) +
0.1y(n). The output at the second summer is x(n – 1) + 0.1y(n – 1 ) + x(n).
The output of the second summer is also y(n). Therefore,

FIGURE 2.32 Signals for EOCE 2.11.
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FIGURE 2.33 System for EOCE 2.12.

FIGURE 2.34 System for EOCE 2.12.

FIGURE 2.35 System for EOCE 2.12.

FIGURE 2.36 System for EOCE 2.12.
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The impulse response is obtained graphically using MATLAB as in the follow-
ing script.

a=[1 -.1];

b=[1 1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

and the plot is shown in Figure 2.37.
For the system in Figure 2.34 the output after the first summer is x(n).

After the second summer the output is x(n – 1) + x(n). After the third summer
the output is x(n – 2) + x(n – 1) + x(n). This output is actually y(n). Therefore, 

To calculate the impulse responses we simply let x(n) = δ(n). Therefore,

FIGURE 2.37 Signals for EOCE 2.12.
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We can also use MATLAB to find the impulse response as in the following
script.

a=[1];

b=[1 1 1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

and the plot is shown in Figure 2.38.
For the system in Figure 2.35 the output of the first summer is x(n) + y(n).

At the output of the second summer we have x(n) + x(n – 1) + y(n – 1). At
the output of the third summer we have x(n) + x(n – 1) + x(n – 2) + y(n – 2).
At the output of the last summer we have

FIGURE 2.38 Signals for EOCE 2.12.
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and the difference equation is

The impulse response can be evaluated using MATLAB as in the following
script.

a=[1 0 0 -1];

b=[1 1 1 1];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

The plot is shown in Figure 2.39.

FIGURE 2.39 Signals for EOCE 2.12.
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For the system in Figure 2.36 the output of the first summer is x(n) + y(n).
At the output of the second summer we have

The impulse response using MATLAB is obtained using the script

a=[1 -1];

b=[1 2];

x=impulsesignal(0,0,20);% generating the input

n=[0:20];

impulse=filter(b,a,x); %the output due to x(n)

subplot(1,2,1)

stem(n,x);xlabel('n');title('The input signal');

subplot(1,2,2)

stem(n,impulse);xlabel('n');title('The impulse response');

The plot is seen in Figure 2.40. 

FIGURE 2.40 Signals for EOCE 2.12.
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We can also find this response analytically. Recall the general form of the
difference equation

If N, the degree of the difference equation, is less than M, the general form
of h(n) is

where pk is the kth root of the characteristic equation of the system. In this
example, N = 1 and M = 1. Therefore,

We need to find the constant c1 and A0. We do that by evaluating the equation
for h(n) at n = 0 and n = 1 to get

But p1 is the characteristic root of the characteristic equation and is 1. Thus,

To solve for c1 and A0 we evaluate the difference equation at n = 0 and n = 1
when x(n) = δ(n). We will get

which gives h(0) = 1. We also have

which gives h(1) = 3. By comparing this h(1) with the h(1) obtained above,
we get c1 = 3 and A0 = h(0) – c1 = 1 – 3 = –2. Therefore, the final impulse
response is
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which agrees with the plot in Figure 2.40.

EOCE 2.13

Consider the discrete systems represented by the impulse responses.

1.  
2.  
3.  

Find the difference equations first then use MATLAB to find the output y(n)
if x(n) = u(n) – u(n – 5).

Solution

1. For the first system
Multiply h(n) = (.3)n u(n) by .3 and shift by 1 to get

If we subtract these last two equations we will have

We can rearrange terms and write

But [u(n) – u(n – 1)] is the impulse at n = 0. Thus

since (.3)nδ(n) has value only when n = 0. We know that if the input
x(n) is δ(n) the output is y(n) = h(n). Therefore, the difference equation
is

At this point we have the difference equation and the input, so we
can use the MATLAB filter function to find y(n). We will use the MATLAB

h n n nn( ) ( ) ( ) ( )= − = −3 1 2 3 2δ δ

h n u nn( ) (. ) ( )= 3
h n u nn n( ) ((. ) (. ) ) ( )= +3 2
h n n n n n( ) ( ) ( ) ( ) ( )= + − + − + −δ δ δ δ1 2 3

(. ) ( ) (. )(. ) ( )3 1 3 3 11h n u nn− = −−

h n h n u n u nn n( ) . ( ) (. ) ( ) (. )(. ) ( )− − = − −−3 1 3 3 3 11

h n h n u n u n u n u nn n n( ) . ( ) (. ) ( ) (. ) ( ) (. ) ( ) ( )− − = − − = − −[ ]3 1 3 3 1 3 1

h n h n n nn( ) . ( ) (. ) ( ) ( )− − = =3 1 3 δ δ

y n y n x n( ) . ( ) ( )− − =3 1
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functions stepsignal and x1plusx2 to generate u(n) and –u(n –
1) and then add them to get u(n) – u(n – 1). We do that because these
two step signals start at different indices. The MATLAB script follows.

n = -10 : 10;

a = [1 -.3];

b = [1];

[x1 n1] = stepsignal(0, -10, 10);

[x2 n2] = stepsignal(5, -5, 10);

[x n] = x1plusx2(x1, -x2, n1, n2);

y = filter(b, a, x);

subplot (1, 2, 1), stem(n, x); ylabel('input signal');

xlabel('n');

subplot (1, 2, 2); stem(n, y); ylabel('output signal');

xlabel ('n');

The plots are shown in Figure 2.41. 

FIGURE 2.41 Signals for EOCE 2.13.
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2. For the second system

This impulse response can be thought of as a sum of the output
responses each due to one system as shown in Figure 2.42. We have

Multiply by .3 and shift by 1 to get

By subtracting the last two equations we get

Therefore, the difference equation is

Similarly, h2(n) = (.2)n u(n) can be shown to have the difference equa-
tion representation

We will use MATLAB to find y(n) = y1(n) + y2(n) for x(n) = u(n) – n(n – 5)
by writing the following script.

n = -10 : 10;

a1 = [1 -.3]; a2 =[ 1 –0.2];

b1 = [1]; b2 = b1;

[x1 n1] = stepsignal(0, -10, 10);

[x2 n2] = stepsignal(5, -5, 10);

FIGURE 2.42 System for EOCE 2.13.
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[x n] = x1plusx2(x1, -x2, n1, n2);

y1 = filter(b1, a1, x); 

y2 = filter(b2, a2, x); 

y = y1 + y2;

subplot (1, 2, 1), stem(n, x); ylabel('input signal');

xlabel('n');

subplot (1, 2, 2); stem(n, y); ylabel('output signal');

xlabel ('n');

The plots are shown in Figure 2.43.
3. For the third system

We know that when x(n) = δ(n), then y(n) = h(n). The difference
equation is then

The output is found using MATLAB as in the following script.

FIGURE 2.43 System for EOCE 2.13.
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n = -10 : 10;

a = [1];

b = [1 1 1 1];

[x1 n1] = stepsignal(0, -10, 10);

[x2 n2] = stepsignal(5, -5, 10);

[x n] = x1plusx2(x1, -x2, n1, n2);

y = filter(b, a, x);

subplot (1, 2, 1), stem(n, x); ylabel('input signal');

xlabel('n');

subplot (1, 2, 2); stem(n, y); ylabel('output signal');

xlabel ('n');

The plots are shown in Figure 2.44.

EOCE 2.14

Consider the following systems shown in Figure 2.45 and 2.46. Let x(n) =
u(n) in Figure 2.45 and x(n) = δ(n) in Figure 2.46. Find y(n) for both cases. Let 

FIGURE 2.44 Signals for EOCE 2.13.
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Solution

For the system in Figure 2.45, the output y(n) is

and

Similarly

Therefore, the final output is

FIGURE 2.45 System for EOCE 2.14.

FIGURE 2.46 System for EOCE 2.14.

x ( n )

y ( n )

h1 ( n )

h2 ( n )

�

�

x (n)

y (n)

h1 (n)

h2(n)

h3(n)

y n x n h n x n h n( ) ( ) * ( ) ( ) * ( )= +1 2

x n h n x m h n m u m u n m

n

n m

mm

n m n

n

m

n

n n

( ) * ( ) ( ) ( ) ( )(. ) ( )

(. ) (. ) (. )
(. )

(. )

(. ) (. ) (. )

1 1

1

1 1

1
0

1

5

5 5 5
1 5

1 5

5 5 2 5

= − = −

= ( ) =
− ( )





−

= − + = −

−

=−∞

+∞

=−∞

+∞

−

− +

−
=

−

∑∑

∑
≥≥ 0

x n h n nn( ) * ( ) (. )2 2 5 0= − ≥

y n nn( ) (. )= − ≥4 2 5 0



130 Discrete Systems and Digital Signal Processing with MATLAB

For the system in Figure 2.46, the output of the summer is 

The output of the system is

We have

and

The output of the summer is

and the output of the whole system is then

Finally, the output is

EOCE 2.15

Consider the following signals

Correlate x1(n) with itself and all other signals.

x n h n x n h n z n( ) * ( ) ( ) * ( ) ( )1 2+ =

y n z n h n( ) ( ) * ( )= 3

x n h n nn( ) * ( ) (. )1 2 5 0= − ≥

x n h n nn( ) * ( ) (. )2 2 5 0= − ≥

z n nn( ) (. )  = − ≥4 2 5 0

y n z m h n m u m u n m

y n

m n m

mm

n m

m

n
n

m

n

( ) ( ) ( ) (. ) ( )(. ) ( )

( ) (. ) . (. )

= − = −( ) −

= ( ) −

−

=−∞

+∞

=−∞

+∞

−

= =

∑∑

∑ ∑

3

1

0 0

4 2 5 5

4 5 5 2 5 1

y n n n nn

n

n n n( ) (. )
(. )

(. )
(. ) (. ) (. )     =

− ( )





−
− +[ ] = − − +[ ] ≥

− +

−4 5
1 5

1 5
2 5 1 8 4 5 2 5 1 0

1 1

1

x n u n n

x n u n n

x n u n n

x n u n n

1

2

3

4

0 9

9 18

4 5

9 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

= ≤ ≤

= ≤ ≤

= − ≤ ≤

= − ≤ ≤



The Discrete System 131

Solution

We will use MATLAB to do this. We can see clearly that for Rx1x1
the strongest

correlation is when the lag k is equal to zero. In this case Rx1x1
at k = 0 is

obtained by summing 1(1) ten times to get 10 as the strength. For Rx1x2
the

maximum strength is at k = –9. This is true because for a full overlap we
need to shift x2(n) in the reverse direction which means negative k. If k = 0
in this case we have only one sample overlap: 1(1) = 1. This is evident from
the plot shown in Figure 2.47.

%We will compute the correlation using convolution

n1=0:9;n2=9:18;n3=-4:5;n4=-9:0;

x1=ones(size(n1));% x1(n) with 10 ones

x2=x1; x3=x1; x4=x1;%all signals filled with 10 ones

x1ref=fliplr(x1);x2ref=fliplr(x2);% reflecting the signals

x3ref=fliplr(x3); x4ref=fliplr(x4);

n1ref=-fliplr(n1); n2ref=-fliplr(n2);% reflecting indices and 
changing sign

FIGURE 2.47 Plots for EOCE 2.15.
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n3ref=-fliplr(n3); n4ref=-fliplr(n4);

% minimum index for the length of the correlation result

k1min=n1(1)+n1ref(1);

k1max=n1(length(n1))+n1ref(length(n1ref));% maximum length

Rx1x1=conv(x1, x1ref);% the cross-correlation result

k1=k1min:k1max;

k2min=n1(1)+n2ref(1);

k2max=n1(length(n1))+n2ref(length(n2ref));

k2=k2min:k2max;

Rx1x2=conv(x1, x2ref);

k3min=n1(1)+n3ref(1);

k3max=n1(length(n1))+n3ref(length(n3ref));

k3=k3min:k3max;

Rx1x3=conv(x1, x3ref);

k4min=n1(1)+n4ref(1);

k4max=n1(length(n1))+n4ref(length(n4ref));

k4=k4min:k4max;

Rx1x4=conv(x1, x4ref);

subplot(2,2,1);stem(k1,Rx1x1);title('Rx1x1');

subplot(2,2,2);stem(k2,Rx1x2);title('Rx1x2');

subplot(2,2,3);stem(k3,Rx1x3);title('Rx1x3');

xlabel('The lag k');

subplot(2,2,4);stem(k4,Rx1x4);title('Rx1x4');

xlabel('The lag k');

EOCE 2.16

One important application of cross-correlation is the estimation of the
impulse response h(n). Given a system with impulse response h(n), the out-
put using convolution is y(n) = x(n)*h(n). If we cross-correlate the output of
the system with a noisy input with normal distribution, then the cross-
correlation

where r(n) is a noisy random input; in the above equation we have used the
fact that r(n)*h(n) = h(n)*r(n). The signal Rrr (k) is the auto-correlation of the
input noise. If the input noise has a bandwidth that is much greater than
the bandwidth of the system, we write

The reason is that if the auto-correlation of the input noise is approximately
an impulse, then we know that it contains a very wide band of frequencies.
To see that let us look at the noise auto-correlation. We will use MATLAB to
do that.

R k y n r n r n h n r n R k h nyr rr( ) ( ) * ( ) ( ) * ( ) * ( ) ( ) * ( )= − = [ ] − =

R k h nyr ( ) ( )≈
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N=50;

r=randn(1, N); % generating 1000 random numbers

rref=fliplr(r);

Rrr=conv(r,rref);

k=(-(N-1):(N-1));

title('Auto-correlation of the input noise with normal 
distribution');

stem(n,Rrr/Rrr(N)); xlabel('The lag k');

The plot is seen in Figure 2.48. You can easily see that the auto-correlation
is approximately the same as the impulse signal, which has a huge band-
width. Therefore, we say that if we cross-correlate the random normally
distributed input noise with the output of the system, we will have an
approximation of the impulse response of the system.

Let us look at an example. Consider the system

FIGURE 2.48 Plot for EOCE 2.16.
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Solution

We will plot its actual impulse response and then the approximation to it
using cross-correlation between the output and the input noise. We do that
using MATLAB.

N=500;

nr=0:499;

ny=nr;

r=randn(1,N);

y=zeros(size(r)); % output initialized to zeros

for n = 2: 500

  y(n)=r(n)-0.5*y(n-1);

end

rr=fliplr(r);

nrr=-fliplr(nr);

Ryr=conv(y, rr);

%k=-(N-1):(N-1);

kmin=ny(1)+nrr(1);

kmax=ny(length(ny))+nrr(length(nrr));

k=kmin:kmax;

subplot(2,1,1);

stem(k,Ryr/Ryr(N));axis([-1 15 -1 1.2]);

title('Approximation of impulse response using cross-
correlation');

num = [1 0]; den=[ 1 0.5];

n=0: 500;

x=zeros(size(n)); x(1)=1;

[y,v]=dlsim(num,den,x);

yy=conv(y,x);

n=0:1000;

subplot(2,1,2);stem(n,yy); title('Actual impulse response');

axis([-1 15 -1 1.2]);

The plots are shown in Figure 2.49.

2.21 End of Chapter Problems

EOCP 2.1

Consider the following systems 

1. y(n) = nx(n)

n ≥ 0
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2. y(n) = cos(x(n)) + u(n)

n ≥ 0

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10. y(n) = y(n – 1) + y(n – 2) + x(n)

Are the above systems linear? Are they time-invariant systems? Show work.

EOCP 2.2

Consider the following systems

FIGURE 2.49 Plots for EOCE 2.16.
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1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

Find the output y(n) for each system using the convolution sum equation.
Are the systems stable?

EOCP 2.3

Consider the following finite signals: 

1.

2.

3.

4.

5.

Find x(n) = x1(n) * x2(n) for each case above.

EOCP 2.4

Consider the following systems with the initial conditions.

1. y(n) – .6 y(n – 1) = 0,   y(–1) = 1

2. y (n) – .6 y(n – 2) = 0, y(–1) = 0, y(–2) =1

3. y (n) – .6 y(n – 1) + .6 y(n – 2) = 0,   y(–1) = 0, y(–2) = –1

4. y (n) – .1 y(n – 3) = 0,   y(–1) = y (–2) = 0, y(–3) = 1

5. y (n) + .1 y(n – 1) + y(n – 3) = 0, y(–1) = 0, y(–2) = 1, y(–3) = 0

6. y(n) + .6y(n – 2) = 0,  y(–1) = y(–2) = 1

Are the above systems stable? What is the output due to the given initial
conditions?

h n u n x n u n( ) ( ), ( ) ( )= =
h n u n x n nn( ) (. ) ( ), ( ) ( )= =2 δ
h n u n x n u nn( ) (. ) ( ), ( ) ( )= =3

h n u n x n u nn n( ) (. ) ( ), ( ) (. ) ( )= =3 2

h n nu n x n nn( ) (. ) ( ), ( ) ( )= =3 δ

h n n
n

u n x n nn( ) (. ) cos ( ), ( ) ( )= +



 =5

2
1

π δ

h n u n x n u n u nn( ) (. ) ( ), ( ) ( ) ( )= = − −4 2

h n u n u n x n u n u n( ) ( ) ( ), ( ) ( ) ( )= − − = − −2 2

h n u n x n u n u nn n( ) (. ) ( ), ( ) (. ) [ ( ) ( )]= = − −4 5 1

h n u n x n u n u nn n( ) (. ) ( ), ( ) (. ) [ ( ) ( )]= = − −1 5 5

x n x n1 21 1 1 1 1 1 1 1( ) {       }  {       }= ( ) =
↑ ↑

x n x n1 21 1 1 1 1 1 1 1( ) {       }  {       }= ( ) =
↑ ↑

x n x n1 21 2 1 3 1 2( ) {      }   {   }= − ( ) =
↑ ↑

x n x n1 21 2 3 4 1 2( ) {      }   {   }= − − − − ( ) =
↑ ↑

x n x n1 21 1 2 2 3 3 1 2 3( ) {           }   {     }= − − − ( ) =
↑ ↑
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EOCP 2.5

Consider the systems

1. y(n) – .6y(n – 1) = sin(n), y(–1) = 0

2. y(n) – .6y(n – 2) = δ(n), y(–1) = 0, y(–2) = 1

3. y(n) – .6y(n – 1) + .6y(n – 2) = 3δ(n), y(–1) = 0, y(–2) = 0

4. y(n) – .1y(n – 3) = δ(n), y(–1) = y(–2) = y(–3) = 0

5. y(n) + .1y(n – 1) + y(n – 3) = 2δ(n), y(–1) = y(–2) = y(–3) = 0

6. y(n) + .6y(n – 2) = 3u(n),   y(–1) = y(–2) = 0

Find the total output, y(n), for each system above.

EOCP 2.6

Consider the following difference equations

1. y(n) – .6y(n – 1) = x(n)
2. y(n) – .6y(n – 2) = x(n) – x(n – 1)
3. y(n) – .6y(n – 1) + .6y(n – 2) = x(n)
4. y(n) – .1y(n – 3) = x(n) + x(n – 1)
5. y(n) + .1y(n – 1) + y(n – 3) = x(n)
6. y(n) + .6y(n – 2) = x(n – 2)

Draw the block diagram for each system.

EOCP 2.7

Consider the following systems

1. h(n) = δ(n) – δ(n – 1)
2. h(n) = δ(n) – δ(n – 1) + δ(n – 2) + δ(n – 4)
3. h(n) = u(n)
4. h(n) = (.3)nu(n)
5. h(n) = (.3)nu(n)+ (.6)nu(n)
6. h(n) = u(n),  0 ≤ n ≤ 5

What are the difference equations that represent these systems?

EOCP 2.8

Consider the following difference equations

1. y(n) + 3y(n – 1) = x(n)
2. y(n) + 3y(n – 1) + 3y(n – 2) = x(n)
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3. y(n) – .1y(n – 2) = x(n)
4. y(n) + .1y(n – 2) = x(n)
5. y(n) + 3y(n – 1) = x(n) + x(n – 1)
6. y(n) + 3y(n – 1) + 3y(n – 2) = x(n) + x(n – 1) + x(n – 2)
7. y(n) – .1y(n – 2) = x(n) + x(n – 1) + x(n – 2)
8. y(n) + .1y(n – 2) = x(n) + x(n – 1) + x(n – 2) + x(n – 4)
9. y(n) + 3y(n – 1) = x(n) + x(n – 1) + x(n – 2)

10. y(n) + 3y(n – 1) = x(n) +x(n – 1) + x(n – 2) + x(n – 3)

What are the impulse responses for each system above?

EOCP 2.9

Consider the block diagrams in Figures 2.50 through 2.59. What are the
impulse responses for each system?

FIGURE 2.50 System for EOCP 2.9.

FIGURE 2.51 System for EOCP 2.9.

FIGURE 2.52 System for EOCP 2.9.

D� �

y ( n )x ( n )

D� �
y (n)x (n)

1

D� �
y (n)x (n)
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FIGURE 2.53 System for EOCP 2.9.

FIGURE 2.54 System for EOCP 2.9.

FIGURE 2.55 System for EOCP 2.9.

FIGURE 2.56 System for EOCP 2.9.

FIGURE 2.57 System for EOCP 2.9.

FIGURE 2.58 System for EOCP 2.9.
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EOCP 2.10

Consider the following systems

1.  
2.  
3.  
4.  
5.  

a) For what values of k are the systems stable?
b) Use MATLAB to find the step, impulse and the sinusoidal responses for all
systems with suitable k.

EOCP 2.11

Consider the difference equation

1. Is the system stable? For what k values?
2. Draw the block diagram representation of the system.
3. Use MATLAB to find the step and the impulse responses for a certain k.
4. Find the impulse response analytically with k of your choice.
5. Find the step response analytically assuming zero initial conditions

with suitable k.
6. Solve the difference equation by iterations for n = 0, 1, 2, 3 and 5 if

x(n) = u(n) for suitable k.

EOCP 2.12

Consider the system represented by the difference equation

FIGURE 2.59 System for EOCP 2.9

D� �
y(n)x(n)

D � D �D�

y n ky n x n( ) ( ) ( )+ − =1
y n ky n y n x n( ) ( ) ( ) ( )+ − + − =1 2
y n ky n x n( ) ( ) ( )− − =1
y n y n ky n x n( ) ( ) ( ) ( )+ − + − =1 2
y n y n y n y n x n( ) . ( ) . ( ) ( ) ( )+ − + − + − =1 1 3 2 3

y n yk n y n x n( ) ( ) . ( ) . ( )− − + − =1 0 5 2 0 5

y n y n ky n x n( ) ( ) ( ) ( )− − + − =6 1 9 2 19
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1. Use MATLAB to find the step and the impulse responses for a k value
that makes the system stable.

2. Use MATLAB to find the output y(n) if x(n) = 2u(n) +5nu(n).
3. Draw the block diagram for the system.

EOCP 2.13

Consider the following systems

1.  
2.  

Approximate the impulse response using cross-correlation. Compare with
the actual impulse response.

EOCP 2.14

Consider the following outputs of the linear discrete systems

1. y(n) = (.3)nu(n)
2. y(n) =(.3)nu(n)+ (.6)nu(n)

Approximate the impulse responses using correlations.

y n y n x n( ) . ( ) ( )+ − =2 1
y n y n y n x n( ) . ( ) . ( ) ( )+ − + − =2 1 1 2
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3
The Fourier Series and the Fourier Transform 
of Discrete Signals

3.1 Introduction

According to Joseph Fourier, a discrete periodic signal can be represented
as a sum of complex exponentials or sinusoids. Also, a nonperiodic discrete
signal and a finite-duration discrete signal can be represented as a finite sum
of complex exponentials. This last representation for finite-duration discrete
signals is called the Fourier transform of discrete signals. There are many
advantages for this representation. The most important one is that if the
discrete signal is put in the frequency domain, every single frequency in the
signal will be clearly identified. Consider the plot of the discrete signal

as shown in Figure 3.1. By looking at the plot you would hardly think that
this signal is composed of many sinusoids. You will probably reason that
this signal contains no sinusoids at all. In the frequency domain, if we look
at the magnitude of the signal, we see something similar to Figure 3.2.

You can clearly see the three frequencies in the figure. You may also argue
that these signals of small magnitudes, like the term 0.1cos(10 n), can be
neglected. You may be wrong, especially if this term is the term that we are
interested in. Before we present discussion about the discrete Fourier series
and the discrete Fourier transform, we provide a very useful review on
complex numbers. 

3.2 Review of Complex Numbers

This is a good place to give a brief review of complex numbers because the
chapters ahead, as well as this chapter, are heavily involved with their
arithmetic manipulation.

y n n n n( ) cos( ) cos( ) . cos( )2 200 4 0 1 10
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FIGURE 3.1A discrete sinusoidal signal.

FIGURE 3.2 A discrete signal in the frequency domain.
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3.2.1 Definition

By definition, the complex number j is the square root of –1. In general, the
complex number C = P + jQ consists of two parts; the real part, P, and the
imaginary part, Q. C can be represented in many forms as we will see later.
If we are multiplying or dividing complex numbers we would prefer to use
the polar form. If we are adding or subtracting complex numbers we would
rather use the rectangular form. The reason for that is the ease each form
provides in the corresponding calculation.

Consider two complex numbers C1 and C2 where C1 = P1 + jQ1 and C2 =
P2 + jQ2. These complex numbers are given in the rectangular form.

3.2.2 Addition

When we add two complex numbers we add their real parts and their
imaginary parts together to form the addition

(3.1)

3.2.3 Subtraction

When we subtract two complex numbers we subtract their real parts and
their imaginary parts to form the subtraction

(3.2)

3.2.4 Multiplication

Let us now consider the two complex numbers in polar form. In polar form
C1 and C2 are represented as

where

and

C C P P j Q Q1 2 1 2 1 2

C C P P j Q Q1 2 1 2 1 2

C M e C M ej j
1 1 2 2

1 2  and

M P Q

M P Q

1 1
2

1
2

2 2
2

2
2

1
1 1

1

2
1 2

2

tan

tan

Q
P

Q
P
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We can also represent the complex numbers C1 and C2 as M1 1 and M2

2, where M1, M2, 1 and 2 are as given above. The complex number M1

1 is read as a complex number with magnitude M1 and phase angle 1.
Complex numbers are easily multiplied in polar form as

(3.3)

If we have more than two complex numbers in polar form to be multiplied
we use the same procedure. We multiply their magnitudes and add their
phase angles to form the new product.

3.2.5 Division

To divide two complex numbers we divide their magnitudes and subtract
their phase angles.

(3.4)

3.2.6 From Rectangular to Polar

Consider the complex number C1 = P1 + jQ1. This representation in the
rectangular form is shown in Figure 3.4. To convert to polar form we write
C1 as C1 = M1 ej 1 = M1 1 where

 and  

3.2.7 From Polar to Rectangular

Consider the complex number C1 = M1 ej 1 = M1 1 in polar form as seen
in Figure 3.3. To convert to its equivalent rectangular form we write C1 as
C1 = P1 + jQ1,  where

These two equations can be solved simultaneously for P1 and Q1.

M e M e M M e M Mj j j
1 2 1 2 1 2 1 2

1 2 1 2

C C M e M e

M M e M M

j j

j

1 2 1 2

1 2 1 2 1 2

1 2

1 2

M P Q1 1
2

1
2

1
1 1

1

tan
Q
P

M P Q
Q
P1

2
1
2

1
2

1
1

1

  and  tan
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3.3 The Fourier Series of Discrete Periodic Signals

We are given the discrete signal x(n) that might be the result of sampling a
continuous signal x(t) at t = nTs sec. This signal is periodic of period N
samples if

for all integer values n. The fundamental period is the smallest N that satisfies
the above condition. The period in seconds would be NTs where Ts is the

FIGURE 3.3 Rectangular form.

FIGURE 3.4 Polar form.

�1

M1

x

jy

x

jy

P1

Q1

x n x n N( ) ( )
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sampling period. In this case the digital frequency is = 2 /NTs. Now
consider the complex exponential set

(3.5)

where m is referred to as the frequency index and n is the discrete-time index.
Notice that this complex exponential set is periodic with period N for all
integers n since

(3.6)

Notice also that since m (n + N) = m(n), there is only one set of complex
functions of length N that is unique in the overall set. Unique set means that
the members in the set are independent; no one function or complex expo-
nential in the set can be written as a linear combination of the others. In the
set m(n) of length N we see that

(3.7)

since using the geometric series sum we have

(3.8)

We can also see that

(3.9)

This is the orthogonality condition. The periodic signal x(n) can be approx-
imated as the linear combination of the unique set (m) with the N complex
exponentials as

(3.10)

To find the Fourier series coefficients we multiply the above approximation
by e–j2 kn/N and then sum over the period N to get

m
jm nT j mn Nn e e ms 2 0 1 2    , , , ...

m
jm n N T j m j mn N j mn N

mn N e e e e ns 2 2 21

m
n
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n

N

n e
N m N N

m N N
0

1
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0
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, , ,

e e
e

e
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m N N
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n
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j m N
n

N
2 2

0
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e e e
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(3.11)

using the geometric series sum and the orthogonality condition we estab-
lished earlier. Try to see it for yourself.

Writing the approximation to the periodic signal x(n) allows us to clearly
see the frequency contents of the signal through the coefficients cm. These
coefficients are complex numbers, yet they have a magnitude and a phase.
It can be easily seen that the cm set is periodic. We write

(3.12)

Also, if x(n) is real, then the Fourier series magnitude coefficients have even
symmetry and the phase of the coefficients have odd symmetry. We finish
this topic with an example. Consider the periodic discrete signal x(n) =
{1 0 1 1 0 1 1 0 1 …} with Ts = 0.1 sec as the sampling interval used to
obtain x(n). The period N is clearly 3. Thus the Fourier series coefficients are
calculated as in the following:

These are the frequency components in the signal x(n). These components
are located at m = m2 /NTs = 20m /3 rad/sec for m = 0, 1, and 2. Thus
these frequencies are located at 0, 20 /3 and 40 /3 rads per sample. This
is something very difficult to see given only the discrete periodic signal
x(n) = {1 0 1 1 0 1 1 0 1 …} with Ts = 0.1 sec. We will come back to the
Fourier series coefficients in Chapter 7 and see how can we utilize this
development to estimate the average power, the average value and the
energy in signals. We will also learn how to compute these Fourier series
coefficients using the computer and the very well known algorithm, the
fast Fourier transform.
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3.4 The Discrete System with Periodic Inputs: 
The Steady-State Response

To start the process, let us consider the input x(n) to be of the form

The term cos( n) can also be written as

Now we can use superposition and apply the input e j n and e–j n one at a
time. Let us take first x(n) = ej n as the input to the system represented by
h(n), the impulse response. The output of the system in this case is

Given that n was taken in the range n , the output here is the steady-
state output that remains after all the transients die. Finally, with x(n) = ej n

we have

where yss(n) is the steady-state response and x(n) = ej n. Let us define H(ej ) as

(3.13)

then

(3.14)

x n X n( ) cos( )

cos( )n e ej n j n1
2

y n x n h n h n x n h m x n m h m e

y n h m e e e h m e

m

j n m

m

j n j m

m

j n j m

m

( ) ( ) * ( ) ( ) * ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

y n x n h m ess
j m

m

( ) ( ) ( )

H e h m ej j m

m

( )

y n x n H ess
j( ) ( )
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Example 3.1

Consider the impulse response for a discrete system as h(n) = (n) + (n – 1)
and let the input to the system be x(n) = ej n for – n  + . Find the steady-
state output.

Solution

From the relation yss(n) = x(n)H(ej ) with x(n) = ej2 n and H(ej ) as

Thus the steady-state output becomes

The input is applied at = 2 . So

and

Example 3.2

For the same system as in Example 3.1, and with the input x(n) = 10 + cos(n ),
what is the steady-state output?

Solution

To use yss(n) = ej nH(ej ), we must put all the terms in x(n) in exponential
form and then we can use the superposition principle to find

H e m m e e e

H e e

j j m

m

j j

j j

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 0 1 1 0

1

0 1

y n e e nss
j n j( ) 2 1 0

H e e jj j1 1 2 2 22 cos sin

y n e nss
j n( )   2 2

y n x n e

y n x n e

y n x n e

ss
jn

ss
j n

ss
j n

1 1
0

2 2

3 3

10 10

1
2

1
2
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( )due to
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where

From Example 3.1 we have H(ej ) = 1 + e–j and for x1(n) = 10ej (0) , we have

For

we have

and

For

we have

and

Therefore, the total solution is the combination

cos( )n
e ejn j n

2

H e

y n e

j

ss
j n

2

10 2 201( ) ( )

x n
e j n

2 2
with

H e e jj j1 1 0cos sin

y n
e

ss

j n

2 2
0 0( ) ( )

x n
e j n

3 2
with

H e e e jj j j1 1 1 0cos sin

y n
e

ss

j n

3 2
0 0( ) ( )

y n y n y n y n nss ss ss ss( ) ( ) ( ) ( )       1 2 3 20 0 0 20
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Example 3.3

Find the steady-state output for the system

with the input x(n) = 10.

Solution

We will find H(ej ) first.

The input is x(n) = 10 = 10 ejn0. So = 0 and

and the steady-state response is

3.4.1 The General Form for yss(n)

Consider the input x(n) as

when is the radian frequency and is the phase shift. If x(n) is applied to
a linear time-variant system, the steady-state output using Equation (3.14)
will be

Let us write H(ej ) in terms of its magnitude and phase as Mej where M is
the magnitude of H(ej ) and is its phase shift. The steady-state solution is
then

h n u nn( ) (. ) ( )5
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5 5
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1 5
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20(. ) .
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2
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By putting exponents together we get

and finally the steady-state response is written as

(3.15)

Example 3.4

Let h(n) = (n) + (n – 1) and let . Find the steady-state
response yss(n).

Solution

To find the steady-state response we need to use the formula in Equation (3.15).
Thus we need values for the parameters in the formula. The magnitude of
the input is X = 10. M is the magnitude of H(ej ) = 1 + e– j as shown in
previous examples. The input frequency is = /2, and H(ej ) is

The magnitude and the phase of the system at the frequency of the input are

The steady-state response is then given by

3.5 The Frequency Response of Discrete Systems

The frequency response of a discrete system is a set of output values when
each value is obtained for a particular input x(n) at a unique frequency value.
At each frequency of the input, the output will have a change in its magni-
tude and phase.The frequency response H(ej ) was derived in the process of
finding the steady-state response in which we have found that
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if x(n) is ej n and we have defined the frequency response as

(3.16)

So if we have the impulse response of the system, we can use the above
equation to find the frequency response. Also we can calculate the frequency
response H(ej ) as a function of from the difference equation directly.

Consider the first-order difference equation

Let the input be periodic of the form

We have seen that the output will be

Therefore, if we substitute this output in the difference equation, we will get

If we cancel out the ej n by dividing by ej n (note that ej n is never zero), we
will have

or

which is the frequency response of the system.
We can now generalize to the general difference equation case

(3.17)

y n x n H ess
j n( ) ( )

H e h m ej j m

m

( )

y n ay n x n( ) ( ) ( )1

x n e j n( )

y n e H ess
j n j( )

e H e ae H e ej n j j n j j n( )1

H e aej j1 1

H e
ae

j
j

1
1

y n a y n k b x n kk k
k

M

k

N

( ) ( ) ( )
01



156 Discrete Systems and Digital Signal Processing with MATLAB

Similar to what we did before and by letting x(n) = ej n and y(n) = ej nH(ej ),
we will get

We can factorize H(ej ) and cancel the ej n to get

and finally the general frequency response is 

(3.18)

Example 3.5

Find the frequency response for the system

Solution

With x(n) = ej n and y(n) = ej n H(ej ) the difference equation can be written as

or

The frequency response is then
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3.5.1 Properties of the Frequency Response

We will discuss two properties here.

3.5.1.1 The Periodicity Property

We have seen the frequency response function H(ej ) previously and it is
presented here as

For periodicity, H(ej ) must be the same as H(ej( +2 ))

You can easily see that

Thus

This property is important since in one period we can learn all about the
signal that is being transformed.

3.5.1.2 The Symmetry Property

To study this property we will consider H(ej ) for real values. We have

and

H e h m ej j m

m

( )

H e h m e h m e ej j m

m

j m j m

m

( ) ( ) ( )( ) ( )2 2 2

e m j m jj m2 2 2 1 0 1cos( ) sin( ) ( )

H e h m e H ej j m j

m

( ) ( )2

H e h m ej j m

m
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The magnitude of e– j m is the same as the magnitude of ej n, thus

This indicates that the magnitude of H(ej ) has even symmetry. Also the
phase of e– j m is – m and that of ej n is m. Therefore the phase of H(ej ) is
the negative of the phase of H(e– j ). This indicates that the phase of H(ej )
has odd symmetry.

In general, from the frequency response for a given discrete system, you
can tell if the system is able to pass a certain frequency range or reject another.

Example 3.6

Let

With respect to passing or rejecting frequencies, what kind of system is this?

Solution

H(ej ) = 1 – e– j = 1 – (cos – j sin ) = 1 – cos + j sin . The magnitude response
is

The plot of the magnitude of H(ej ) vs. is shown in Figure 3.5. Notice that
the system attenuates low-frequency signals but at frequencies approxi-
mately between /2 and this system does not attenuate as it does at
frequencies near zero. Hence this system passes high frequencies and pre-
vents low frequencies from passing.

Example 3.7

Consider the system with the frequency response function

What frequencies does this system pass and what frequencies does it not?

Solution

The magnitude of the frequency response is

H e H ej j

H e ej j1

H e j sin ( cos )2 21

H e
e

j
j

1
2 0 1.
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The plot of �H(ej )� is shown in Figure 3.6. It is clear from the plot that this
system passes low frequencies and rejects high frequencies.

3.6 The Fourier Transform of Discrete Signals

The Fourier transform of a discrete signal x(n) is X( ) where = wTs. w is
the analogue frequency of the continuous signal and Ts is the sampling
period. The Fourier transform of discrete signals is defined as

(3.19)

and to find x(n) given X( ) we use the relation

(3.20)

FIGURE 3.5 Magnitude plot for Example 3.6.
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Note that X( ) is a function of the continuous variable , the digital frequency,
while x(n) is a function of the discrete variable n.

We have seen that the frequency response function H(ej ) was needed to
calculate the steady-state response for a given discrete system. It also con-
tains information about the system itself. The Fourier transform of discrete
signals can be applied to signals that are periodic and not periodic. It will
make the solution to difference equations much easier as we will see later.

Example 3.8

What is the Fourier transform of

Solution

The Fourier transform of x(n) is X( ) and it is

where here we used the geometric series sum

FIGURE 3.6 Magnitude plot for Example 3.7.
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(3.21)

So or we write the pairs  

Example 3.9

What is the Fourier transform of the impulse signal A (n)?

Solution

For x(n) = A (n) we have

Note that (n) is valid only at n = 0. Therefore,

3.7 Convergence Conditions

The Fourier transform of x(n) is given again as

where X( ) is an infinite series and that series must converge for X( ) to
exist. For X( ) to exist, it is necessary that x(n) be summable. This means that

However, some signals such as the step signal are not summable. We will
see how to deal with such signals later in this chapter.
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3.8 Properties of the Fourier Transform of Discrete Signals

Table 3.2 lists some properties of the Fourier transform of discrete signals.
We will prove some of them here.

3.8.1 The Periodicity Property

The Fourier transform of the discrete signal x(n) is

Let = + 2 . Then

But e– j2n = cos(2 n) – j sin(2 n) = 1 – 0 = 1. Thus,

and X( ) is periodic in with the period of 2 .

3.8.2 The Linearity Property

The Fourier transform of x(n) = a1x1(n) + a2x2(n) is

which clearly results in
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3.8.3 The Discrete-Time Shifting Property

If x(n) is shifted by n0, then the Fourier transform of x(n – n0) is

If we let n – n0 = m, then the Fourier transform of x(n – n0) becomes

The Fourier pairs are then

3.8.4 The Frequency Shifting Property

The Fourier transform of x(n)ej 0n where 0 is the frequency shift is

Therefore,

3.8.5 The Reflection Property

Consider the reflected signal x(–n) of x(n). Its Fourier transform is

Let –n = m. Then the transform becomes
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Thus

3.8.6 The Convolution Property

In real-time, with an input x(n) and a system transfer function h(n), the output
of the system is then y(n) and is given by

(3.22)

Sometimes this summation becomes very complex to evaluate. Now let us
take the Fourier transform on both sides to get

where f indicates “the Fourier transform of.” But according to the defining
equation of the Fourier transform we have

where the last term above is obtained using the interchange of summation
property. 

Now let k = n – m to get

Finally the important relation results in the equation for the convolution in
the frequency domain

(3.23)
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This result means that convolution in real-time is multiplication in the fre-
quency domain, an easy-to-manipulate complex algebra. This result can be
written as

(3.24)

Example 3.10

Consider the discrete system with h(n) = (n) + (n – 1) and an input x(n) =
(.5)n u(n). Find the output y(n) using the Fourier transform method.

Solution

The transform of h(n), using Table 3.1 and the linearity and the shifting
properties in Table 3.2 is

and the Fourier transform of x(n) is

The output using the Fourier transform is then

We can bring the above equation into the discrete domain. The first term is 
(.5)n u(n). We can use the shifting property in Table 3.2 for the second term 
and get (.5)n-1u(n – 1). The output in the discrete domain is 

Example 3.11

Let us pass the input x(n) = (.5)uu(n) through two systems with 

Find y(n) using the Fourier transform method.
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Solution

As in Example 3.10,

TABLE 3.1

Fourier Transform Pairs

x(n) X(�)

A (n) A

Au(n)

A

anu(n) �a� < 1

nanu(n) �a� < 1

ej 0n

cos( 0n)

sin( 0n)

TABLE 3.2

Fourier Transform Properties

Real-time Fourier domain

a1x1(n) + a2x2(n) a1X1( ) + a2X2( )
x(n – n0) e–j n0 X( )
ej 0n x(n) X( – 0)

nx(n)

x1(n) * x2(n) X1( ) X2( )

x1(n)x2(n)
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and

If we call the output of the first system y1(n) then

The output of the second system will have the output of the first system as
its input. Therefore, the output of the second system y(n) is

By using Tables 3.1 and 3.2 we get

3.9 Parseval’s Relation and Energy Calculations

We have seen in Chapter 1 that the total energy in the signal x(n) is

The Parseval’s relation for discrete signals says that this energy can be
computed using the Fourier transform as

Example 3.12

Find the energy in the signal
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Solution

We have seen that

We can use the Parseval’s theorem to find the energy as

If we simplify we arrive at

3.10 Numerical Evaluation of the Fourier Transform 
of Discrete Signals

We should keep in mind that the Fourier transform of x(n) is X( ) which is
a complex function in . MATLAB can be used to calculate the complex values
for X at each value. The magnitude of X, the phase of X, the real part of
X, and the imaginary part of X can be calculated and plotted. We also know
that X( ) is periodic of period 2 . Since X( ) is symmetric when x(n) is real,
we can plot �X( )� in the interval [0, ] and know all about x(n) in that range.

Example 3.13

Find the Fourier transform of x(n) = (.1)n n  0. Plot the magnitude and the
phase of X( ), the Fourier transform of x(n).
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Solution

The Fourier transform is given by

To use MATLAB to plot �X( )� and the phase of X( ) vs. we need to put X( )
in the form

(3.25)

We then can use the MATLAB function

X= freqz(n,d,df)

The function freqz receives the numerator vector n, the denominator
vector d and the digital frequency vector, and sends back the complex
values of X( ) in the vector X. Then we can use the MATLAB functions abs
and angle to find the magnitude and the angle of the frequency response.
In our example

where n = [1]; d = [1 – .1]. We will use 401 frequency points in the range
from 0 to  radians. The MATLAB script is shown next.

df = 0:pi/400:pi; % 401 frequency points

n = [1]

d = [1 -.1]

x = freqz(n, d, df)

subplot(2, 1, 1); 

plot(df, abs(x));

ylabel('Magnitude plot');

subplot(2, 1, 2);

plot(df, angle(x));

ylabel('Phase plot'); xlabel('Frequency');

The plots are shown in Figure 3.7.

Example 3.14

Find the Fourier transform of x(n) = (n) + (n – 1) + (n – 2) + ( n – 3). Plot
the magnitude and the phase of X( ).
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Solution

Since x(n) is finite and defined only at the n = 0, 1, 2 and 3, we can still use
the MATLAB function freqz and we can use the following script to plot the
magnitude and phase of X( ) at 401 frequency points.

df = 0:pi/400:pi; % 401 frequency points

n = [1 1 1 1]

d = [1]

x = freqz(n, d, df)

subplot(2, 1, 1); 

plot(df, abs(x));

ylabel('Magnitude plot');

subplot(2, 1, 2);

plot(df, angle(x));

ylabel('Phase plot'); xlabel('Frequency');

The plots are in Figure 3.8.
However, we can take a different approach and implement the defining

equation for X( ) directly. We have

Assume that x(n) is valid for n1 n n2 and we want to calculate X( ) at
p + 1 points. We are also interested in the frequency range from 0 to . In
this case, the frequency spacing is taken as

FIGURE 3.7 Frequency response for Example 3.13.
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The frequency response becomes

 for m = 0, 1, … p (3.26)

where N is the number of samples for x(n). Note that if x(nr) is a column
vector having N rows and 1 column, and X(m) is also a column vector having
(p + 1) rows and 1 column, then the summation

should be a matrix of p + 1 rows and N columns. This requires the vector m
to be a column vector with p + 1 rows and 1 column and the nr vector to be
a row vector with 1 row and N columns. In MATLAB, if we enter data as row
vectors then Equation (3.26) can be written as

(3.27)

where indicates transpose of a matrix or a vector in MATLAB. To implement
this method for the example at hand we will write the script

FIGURE 3.8 Frequency response for Example 3.14.
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m =[0:400] % 401 points for the transform

n = [0 1 2 3]; % the index for which x(n) is defined.

x = [1 1 1 1];% the values of x(n).

df = (pi/400)*m;

X = ((exp (-j*pi/400)).^(m'*n))*x'; % ' indicates transpose

subplot (2, 1, 1);

plot (df,abs(X))

ylabel('Magnitude plot');

subplot(2, 1, 2); 

plot(df, angle(X));

ylabel('Phase plot'); xlabel('Frequency');

and the plots are shown in Figure 3.9. Note that this example was straight-
forward. The method described in the example will be very useful, especially
if you are to find the Fourier transform of x(n) = n(.1)n cos(n) for 0 n 100
or for 0 n 1000 or for a bigger range. We will look at an example of this
form in the EOCE section later in the chapter.

3.11 Some Insights: Why Is This Fourier Transform?

3.11.1 The Ease in Analysis and Design

With the Fourier transform we are able to identify the frequency contents of
the input signal x(n), both the magnitude and the phase spectrum. It may

FIGURE 3.9 Frequency response for Example 3.14.
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not be possible to predict what frequencies such x(n) contains, especially if
they are given as a plot. Knowing the frequency contents of the input signal
gives us more insights into the way we analyze and design linear systems.
We will know what frequencies will pass and what frequencies will not pass
through a particular system. Some convolution sums are very difficult to
evaluate in discrete real-time. With the help of the Fourier transform things
become much easier. 

3.11.2 Sinusoidal Analysis

If the system H( ) is subject to a sinusoidal input signal

the steady-state output, yss(n), of the system can be evaluated as

or

where X is the magnitude of the input x(n), M is the magnitude of the
frequency response of the discrete system H( ), is the phase of H( ) at a
particular given and is the phase of H( ).

This says that the output of a linear time-invariant system, if subject to a
sinusoidal input, will have a steady-state solution equal to the magnitude
of the input signal multiplied by the magnitude of the transfer function of
the system evaluated at the frequency of the input signal and shifted by the
phase angle of the transfer function evaluated at the input frequency as well.

Note also that the frequency of the output is the same as the frequency of
the input. This means that the system is linear. If the system is not linear,
the output frequency will differ from the input frequency.

3.12 End of Chapter Examples

EOCE 3.1

Consider the discrete system given below

Plot the frequency response, the phase and magnitude of H( ).

x n X t( ) cos( )

y n x n H nss( ) ( ) ( ) cos( )

y n XM nss( ) cos( )

h n n n n( ) . ( ) . ( ) . ( )1 2 2 5 3
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Solution

The impulse response h(n) is defined only at n = 0, n = 2 and n = 3. With

we have

The plot of the phase and magnitude for H(ej ) can be obtained using MATLAB

and we will take the range from 0 to 4 to show that H(ej ) is periodic in 
of period 2 . The script is 

m=0:400;

df = (m/400)*pi*4; % Range from 0 to 4pi

n = [.1 0 .2 .5]

d = [1]

x = freqz(n, d, df)

subplot(2, 1, 1); 

plot(df, abs(x));

ylabel('Magnitude plot');

subplot(2, 1, 2);

plot(df, angle(x));

ylabel('Phase plot'); xlabel('Frequency');

The plot is shown in Figure 3.10.

EOCE 3.2

Consider the difference equation

Find the frequency response and plot its magnitude and phase.

Solution

With x(n) = ej n and y(n) = ej n H(ej ) we have from the given equation that

When we factor out H(ej ) we will get

H e h m ej j m

m

( )

H e e e e e ej j j j j j. . . . . .( )1 2 5 1 2 50 2 3 2 3

y n y n y n x n( ) . ( ) . ( ) ( )1 1 2 2
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and

Next we use MATLAB to plot the magnitude and the phase of this frequency
response in the range from 0 to 2 radians.

m=0:400;

df = (m/400)*2*pi; % Range from 0 to 2pi

n = [1]

d = [1 .1 .2]

x = freqz(n, d, df)

subplot(2, 1, 1); 

plot(df, abs(x));

ylabel('Magnitude plot');

subplot(2, 1, 2);

plot(df, angle(x));

ylabel('Phase plot'); xlabel('Frequency');

The plot is shown in Figure 3.11.

FIGURE 3.10 Frequency response for EOCE 3.1.
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EOCE 3.3

Find the frequency response of the system with

Solution

We know that

and this is not a difference equation so we can use the MATLAB function
freqz to find the frequency response. It is also not easy to find H(ej )
analytically. So we use the method we established earlier in the chapter. In
this case n1 is 0 and n2 is 100. We will take 400 points, so p is 400. The
frequency resolution is taken as

We will use MATLAB to implement H = e– j( /p)m h as we did earlier for the
Fourier transform approximation. The MATLAB script is

m = [0:400]; n = [0:100]; p =400;

h = n.*(0.6.^n).*sin(n);

FIGURE 3.11 Frequency response for EOCE 3.2.
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df = (pi/p)*m;

H = ((exp (-j*pi/400)).^(m'*n))*h';

subplot(2, 1, 1); plot(df, abs(H));

ylabel('Magnitude plot');

subplot(2, 1, 2); plot(df, angle(H));

ylabel('Phase plot');

xlabel('Range from 0 to pi');

The plots are in Figure 3.12.

EOCE 3.4

Consider the discrete system described by the impulse response

Find that steady-state response of the system when

Solution

First we need to find H(ej ), then we can use the formula

FIGURE 3.12 Frequency response for EOCE 3.3.
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to find the steady-state response. The frequency response is

The input can be divided into two separate inputs; x1(n) and x2(n), where

Then we can use superposition to find yss(n) = yss1(n) + yss2(n) where yss1(n)
is the output due to x1(n) and yss2(n) is the output due to x2(n).

For x1(n)= 2cos( /2 n) we have 

With

and for = /2 the magnitude of the frequency response becomes

and the phase is 0 – tan–1(.9/1) = 0.7328. The steady-state solution is then

For x2(n) = 4sin( /2), we need to write both inputs using the same reference.
We write this second input as

The only difference now is in the phase shift of the input and its magnitude.
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The output is then

Finally

EOCE 3.5

The Fourier transform of x1(n) + x2(n) is X1( ) + X2( ). Use MATLAB to
show this property.

Solution

Consider the two signals

and

Let = 2 and = 3. Now consider the following MATLAB script to obtain the
proof .

m= 0: 400; k=(pi/400)*m;

n=0:2; x1=[2 3 4]; x2=[2 0 3];

x = 2*x1 + 3*x2; % the sum of the signals

X = ((exp (-j*pi/400)).^(m'*n))*x';

X1 = ((exp (-j*pi/400)).^(m'*n))*x1';

X2 = ((exp (-j*pi/400)).^(m'*n))*x2';

plot(k, abs(X)-abs(2*X1+3*X2));

xlabel('Frequency');

ylabel('Error in approximation');

The plot is shown in Figure 3.13.

EOCE 3.6

Use MATLAB to prove the time-shifting property of the Fourier transform of
discrete signals.
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Solution

Consider the signal

We know that by shifting x(n) 3 units, for example, only the index n for x(n)
will change. The MATLAB script is

m =0:400;

k = (pi/400)*m;

n = [0 1 2];

x = [1 2 3];

X = ((exp (-j*pi/400)).^(m'*n))*x';

% next we shift X, the transfer of x(n), by 3 units.

X = (exp(-j*3).^k').*X;

%let us shift x in real-time by 3 units

FIGURE 3.13 Error for EOCE 3.5.
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x_shifted = x; % no change in value

n_shifted = n+3; %index shift only

X_shifted = ((exp(-j*pi/400)).^(m'*n_shifted))*x_shifted';

plot(k, abs(X_shifted)-abs(X)); title('The error signal');

xlabel('Frequency');

The plot is shown in Figure 3.14.

EOCE 3.7

Consider the following frequency response

1. What is the steady-state output if the input to the system is 

2. Use MATLAB to find the response to this input.

FIGURE 3.14 Error for EOCE 3.6.
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Solution

1. The frequency response at the input frequency is

and the magnitude at the input frequency is

The angle is

and the steady-state solution is

2. We can use MATLAB and write the following script:

n =0:10; % 11 samples only

x = (1/2)*cos(pi/4*n); 

yssanalyt=0.5*1.36*cos(pi/4*n-1.05);

b = [1]; %numerator vector in the frequency response

a = [1 -.9]; %denominator vector in the frequency response

ymatlab = filter(b, a, x);

subplot(3, 1, 1), stem (n,x); ylabel('Input signal')

subplot(3, 1, 2), stem (n, yssanalyt); ylabel('Output 
analytical')

subplot(3, 1, 3), stem (n, ymatlab); ylabel('Output using 
MATLAB');

xlabel('n');

The plots are shown in Figure 3.15. You can see that as n increases
in the solution using MATLAB for the total response, the outputs in
the steady-state solution and the MATLAB total response do match.
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EOCE 3.8

Consider the system shown in Figure 3.16. Let S1 be represented by

and S2 be represented by

Find the output using MATLAB if

FIGURE 3.15 Signals for EOCE 3.7.

FIGURE 3.16 System for EOCE 3.8.
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Solution

The frequency response of system 1 is obtained as 

and the frequency response of system 2 is obtained as

Systems 1 and 2 are connected in parallel and y(n) can be calculated as the
output of the whole system. Thus

The MATLAB script used to find the output is 

n =0:20; % 21 samples only

x = (1/2)*cos(pi/4*n-pi); 

b = [2 .2 2]; %numerator vector in the frequency response

a = [1 .2 2.01 .2]; %denominator vector in the frequency 
response

y = filter(b, a, x);

subplot(2, 1, 1), stem (n,x); ylabel('Input signal')

subplot(2, 1, 2), stem (n, y); ylabel('Output using MATLAB')

xlabel('n');

The plot is shown in Figure 3.17.

EOCE 3.9

Consider the system in Figure 3.18. System S1 is represented by

and S2 is represented by
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Find the steady-state response y(n) if x(n) is

Find also the response to this input using MATLAB. Note that using MATLAB

you will get the total response. The steady-state response is obtained by
observing the MATLAB output for large n.

Solution

Since S1 and S2 are connected in series, the steady-state yss(n) can be thought
of as the output to the system H1(ej ) H2(ej ) with the input x(n).

The whole system is now

FIGURE 3.17 Signals for EOCE 3.8.

FIGURE 3.18 System for EOCE 3.9.
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The frequency response at the input frequency is given by

The magnitude of the frequency response is  and its phase is (0 – tan–1

(1/1)) = – /4. Thus the steady-state response for the whole system is

We see that the output is the input reduced in magnitude by  and shifted
by – /4.

We can use MATLAB to plot yss(n) and the response to the given input. We
write the script

n =0:10; % 11 samples only

x = (1/2)*cos(pi/4*n); 

yssanalyt=(1/2*sqrt(2))*cos(pi/4*n-pi/4);

b = [1]; %numerator vector in the frequency response

a = [1 0 -1]; %denominator vector in the frequency response

ymatlab = filter(b, a, x);

subplot(3, 1, 1), stem (n,x); ylabel('Input signal')

subplot(3, 1, 2), stem (n, yssanalyt); ylabel('Output 
analytical')

subplot(3, 1, 3), stem (n, ymatlab); ylabel('Output using 
MATLAB');

xlabel('n');

The plots are shown in Figure 3.19.

EOCE 3.10

Two systems h1(n) and h2(n) are connected in series with an input x(n) = (n).
Find the output y(n) for n 0 if h1(n) = (1/2)nu(n) and = h2(n) = (1/4)nu(n).

Solution

In real-time y(n) = (h1(n) * h2(n)) * x(n). But we can use the Fourier transform
to write
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With X( ) = 1, the first system is

and the second system is

The output then is given as

Using Table 3.1 we get

FIGURE 3.19 Plots for EOCE 3.9.
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with

Let us plot y(n) analytically and using MATLAB with the following script:

n =0:20;

x = zeros(1,length(n));x(1)=1; % this is the impulse input

b = [1];

a = [ 1 -3/4 1/8];

yanalyt=2*(1/2).^n-(1/4).^n;

ymatlab = filter(b, a, x);

subplot (3, 1, 1) ;stem(n,x); ylabel('Input signal')

subplot (3, 1, 2); stem(n, yanalyt); ylabel('Output 
analytically')

subplot (3, 1, 3) ;stem(n, ymatlab); ylabel('Output using 
MATLAB')

xlabel('n');

The plots are shown in Figure 3.20.

FIGURE 3.20 Plots for EOCE 3.10.
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3.13 End of Chapter Problems

EOCP 3.1

Perform the following calculations and give the result in the form a + jb.

1.  

2.  

3.  

4.  

5.  

EOCP 3.2

Put the complex numbers in EOCP 3.1 in the polar form.

EOCP 3.3

Find the frequency response for each of the following systems.

1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

EOCP 3.4

For a = .5, and b = .4, use MATLAB to plot the magnitude and phase of the
frequency responses found in EOCP 3.3.
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EOCP 3.5

Use MATLAB to find the steady-state response of each system in EOCP 3.3 to
the inputs

1.  

2.  

EOCP 3.6

Find the frequency response for each of the following systems.

1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9. y(n) + ay(n – 1) = x(n) + x(n – 1) + x(n – 3)

10. y(n) = x(n) + x(n – 1) + x(n – 3) + x(n – 4)

EOCP 3.7

Use MATLAB to plot the magnitude and phase of the systems in EOCP 3.6 for
a = .1 and b = .5.

EOCP 3.8

Use MATLAB to find the steady-state responses for the system in EOCP 3.6
with a and b as given in EOCE 3.7 if

1. x(n) = 10

2. x(n) = sin  

EOCP 3.9

Find the Fourier transform of the following signals.

1.  
2. (.5)nu(n)+ ejn

3. (.5)nu(n – 1)+ej(n-1)
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4. (.5)nu(n) – (.5)n-1u(n – 1)

5. (n – 1)(.5)n-1 u(n – 1)

6. 3  

7.  

8.  

9.  

10.  

EOCP 3.10

Use the Fourier transform to find the output y(n) when the input is x(n) =
(.5)nu(n) for the following systems.

1.  

2.  

3. h(n) = (.5)nu(n)

4. h(n) = (.5)nu(n) – (.5)n-1u(n – 1)

5. h(n) = (.3)n-5u(n – 5) + (n)

EOCP 3.11

Consider the following systems shown in Figures 3.21 through 3.25. Find
y(n) if x(n) = (.5)nu(n). Use the Fourier transform method. We are given that

FIGURE 3.21 Signal for EOCP 3.11.

FIGURE 3.22 Signal for EOCP 3.11.
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EOCP 3.12

Consider the signal in Figure 3.26. Find the Fourier transform of this signal.

EOCP 3.13

Consider the system 

1. Find the steady-state output if x(n) = A cos(n ).
2. Find the steady-state response when 

FIGURE 3.23 Signal for EOCP 3.11.

FIGURE 3.24 Signal for EOCP 3.11.

FIGURE 3.25 Signal for EOCP 3.11.
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where 

3. What do you think that this system is doing?

EOCP 3.14

Consider the system

1. Find the frequency response of this system.
2. Find the steady-state response when

3. What do you say about this system?

FIGURE 3.26 Signal for EOCP 3.12.
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EOCP 3.15

Consider the systems

and

1. Find the difference equation that describes the two systems.
2. What is h(n), the impulse response for both?
3. Use MATLAB to find the steady-state response if 

4. Are both systems stable?
5. Use MATLAB to plot the magnitude response of each system.
6. What kind of system is each?

EOCP 3.16

Consider the following discrete signals with Ts = 0.1 sec.

1.  

2.  

3.  a periodic signal with N = 3.

a) Find the period for the first two signals.
b) Find the Fourier series coefficients.
c) Where are these frequency components located?
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4
The z-Transform and Discrete Systems

4.1 Introduction

The z-transform is a frequency domain representation that makes solution,
design and analysis of discrete linear systems simpler. It also gives some
insights about the frequency contents of signals where these insights are
hard to see in real-time systems. There are other important uses for the
z-transform but we will concentrate only on the issues described in this
introduction. 

4.2 The Bilateral z-Transform

The z-transform of the signal x(n) is given by 

(4.1)

where z is the complex variable. If we try to expand Equation (4.1) we get

(4.2)

You can see that in Equation (4.1) the power of z indicates the position of
the samples in the signal x(n). This notice is very important. Consider that 

where this signal has the strength x(0) and is located only at n = 0. The z-
transform of x(n), X(z), is then 

X z x n z n

n

( ) ( )

X z x z x z x z x z x z( ) ( ) ( ) ( ) ( ) ( )2 1 0 1 22 1 0 1 2

x n x n( ) ( ) ( )0
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Similarly, if 

then we can see that this signal has values only at n = –1, n = 0 and n = 1. Thus

In general, if 

is a signal that is available only at n = n0, then X(z) is

Example 4.1

Consider the signal in Figure 4.1. What is the z-transform of x(n)?

Solution

x(n) can be written as

and its z-transform is given by Equation (4.1) as 

Substituting in the above equation we get

Notice that z–2 represents a delay of 2Ts units of time and z3 represents an
advance of 3Ts units of time, where Ts is the sampling interval for the signal
x(n).

X z x n z x n z x z xn

n

n

n

( ) ( ) ( ) ( ) ( ) ( )0 0 00

x n x n x n x n( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 1
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4.3 The Unilateral z-Transform

The unilateral z-transform is the transform of the signal x(n) for n n0. We
will take n0 = 0 in this discussion. We will use the notation

to indicate that we can get X(z) from x(n) and we can get x(n) from X(z) as
well.

Example 4.2

Find the z-transform of x(n) = A  (n)

Solution

Using the definition of the z-transform we write

FIGURE 4.1 Signal for Example 4.1.
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But (n) is defined only at n = 0. So X(z) = Az –0 = A and we write

Similarly we have

Example 4.3

Find the z-transform of x(n) = Au(n), the unit step discrete signal.

Solution

With Equation (4.1) we have

Since u(n) starts at n = 0 and is available only for n 0, X(z) becomes 

where the last result is a direct application of the geometric series sum. Thus
we write 

and similarly 

Example 4.4

Find the z-transform of the signal x(n) = Aan for n 0.

Solution

Using the defining equation of the z-transform, we write using the unilateral
case
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Therefore, we write

and

Example 4.5

Find the z-transform of the complex exponential discrete signal

Solution

Using the defining equation again we write

Using the notation we established we write

Example 4.6

Find the z-transform of the signal

Solution

Using the defining equation we get
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By rearranging terms and using the geometric series sum we arrive at

After simplification we get

4.4 Convergence Considerations

The z-transform of x(n) is given by

where z is a complex number. This complex number can be written in polar
form as

With z in polar form, X(z) becomes

(4.3)

So we can see that the z-transform of x(n) is the Fourier transform of x(n)r–n.
If r = 1 then z = ej and �z� = �ej � = 1, which is a circle of unity magnitude radius.

In Equation (4.3) and if we consider the unilateral case, the series must
converge for the z-transform to exist. This will happen if x(n)r–n is absolutely
summable. Mathematically we require 

X z
A

ae z
A

ae z
A

ae z ae z
j n j n

nn
j j( )

2 2 2
1

1
1

1
1 1

00
1 1

Aa n u n
A az

az e e a z
n

j jcos( ) ( )
cos1

1

1

1 2 2

X z x n z n

n

( ) ( )
0

z re j

X re x n re x n r ej j n n j n

nn

( ) ( )
00

x n r n

n

( )
0



The z-Transform and Discrete Systems 201

The region where the z-transform converges is called the region of conver-
gence (ROC) and is usually an annular region.

Example 4.7

What is the ROC of the z-transform of x(n) = Au(n)?

Solution

We have seen that 

The ROC is �z� > 1, which is the region exterior to the unit circle in the z-plane.

Example 4.8

What is the ROC of the z-transform of x(n) = A an u(n)?

Solution

We have seen that

The ROC is then �z� > �a�.

Example 4.9

What is the ROC of the z-transform of x(n) = Aan ej u(n)?

Solution

We have seen that 

for which the ROC is �z� > �aej � = �a�.

Example 4.10

What is the ROC of the z-transform of x(n) = Aancos( n) u(n)?
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Solution

We have seen that

The ROC for both terms is �z� > �a� since �e–j � = �ej � =1.

Example 4.11

Find the ROC of the z-transform of x(n) = (.5)n u(n) + (.4)n u(n).

Solution

From the properties of the z-transform (which will be discussed later), we
have

where X1 (z) and X2 (z) are the z-transforms for (.5)n u(n) and (.4)n u (n),
respectively.

The ROC is given by �z� > .5 and �z� > .4. Thus we conclude that the ROC is
�z� > .4. This is the annular region outside the circle of radius .4 in magnitude.

Example 4.12

Find the ROC of the z-transform of x(n)= (.5)n u(n)+ (.9)n u(-n-1).

Solution

The first signal, x(n) = (.5)n u(n), has the transform

with the ROC �z� > .5. The second signal x2(n) = (.9)n u(–n – 1) has the
z-transform
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Let as add 1 and subtract 1 from the right side of the equation above so that
we make the summation stop at n = 0. We will get

To start the summation from n = 0 to n = , we replace n by –n under the
summation to get

For the second signal we require that �(.9)–1 z1� < 1. This implies an ROC given
by �z� < .9. Thus to find the ROC of X(z) we require that �z� > .5 and �z� < .9.
This means that the ROC is .5 < �z� < .9.

4.5 The Inverse z-Transform

The inverse z-transform can be obtained analytically as

(4.4)

with and c is a counter-clockwise closed path in the z-plane.
To avoid integration in the z-plane to find x(n) from X(z), we can use other

ways to find x(n) given X(z) with the help of Tables 4.1 and 4.2.

4.5.1 Partial Fraction Expansion

We will assume that our signals x(n) are defined for n 0. The best way to
illustrate the method is to give an example.

Example 4.13

Consider the signal in the z-domain

What is x(n)?
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TABLE 4.1

Selected z-Transform Pairs

x(n) X(z) ROC

A (n) A Entire z-plane

Au(n)

nu(n)

anu(n)

nanu(n)

nanu(n)

n2u(n)

n2anu(n)

A sin( n)u(n)

A cos( n)u(n)

an sin( n)u(n)

TABLE 4.2

z-Transform Properties

Discrete Time–Domain z-Domain

a1x1(n) + a2x2(n) a1X1(z) + a2X2(z)
x(n – n0)u(n – n0) z–n

0 X(z) n0  0
anx(n) X(z/a)

n x(n)

x(n/p) X(zp) for positive p
x1(n)* x2(n) X1(z) X2(z)

x(0)

x( ) for known x( )
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Solution

X(z) can be written as

where A and B are constants. After determining A and B, we will use the
entries in Table 4.1 and the properties in Table 4.2 to find x(n). However, the
entry

requires a z in the numerator. Therefore we need to divide X(z) by z then do
the partial fraction expansion. After we are done, we will again multiply the
results by z to get X(z). So we will write

The constants are determined as

Therefore,

The z-transform is then

Now we can use Table 4.1 to get x(n) with the help of entry 1 in Table 4.2.
We will get
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with

x(0) = –1 + 1 = 0
x(1) = –1 + 2 = 1
x(2) = –1 + 4 = 3
x(3) = –1 + 8 = 7

4.5.2 Long Division

In most cases X(z) can be put in a rational fraction form as a ratio of two
polynomials in z, the numerator and the denominator. Then we can use long
division to find the first few values of x(n). This method is good to check
the results of the closed form for x(n). The two polynomials should be put
in descending power of z.

Example 4.14

Find the first three values of x(n) for

Solution

We can multiply out the denominator to get

Now we arrange X(z) as in the following
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The result is read as

This indicates that

x(0) = 0, x(1) = 1, x(2) = 3 and x(3) = 7

as was obtained before with the closed form.

4.6 Properties of the z-Transform

Next we will discuss some of the important properties of the z-transform.
We assume that the signals start at n 0.

4.6.1 Linearity Property

The z-transform of x(n) = a1x1(n) + a2 x2(n) is 

Therefore, we write

4.6.2 Shifting Property

The z-transform of x(n-n0) u(n-no) is 
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Since u(n – n0) = 1 for n n0. we have the z-transform of x(n – n0) u(n – no)
written as 

Let m = n – n0, then

So we write

The z-transform of x(n – n0) is

Let n – n0 = m. Then the transform of x(n – n0) is

Therefore, we write

The reason for this derivation is to take into account the initial conditions
for y(n) since they are always given for n < 0.
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The z-transform of x(n + n0) is 

Let n + n0 = m. Then the transform of x(n + n0) is

Therefore, we write

The reason for this derivation will be apparent when we talk about state-
space systems in later chapters. This also takes into consideration nonzero
initial conditions.

4.6.3 Multiplication by e-an

The z-transform of e-an u(n)x(n) is

Thus we have
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4.6.4 Convolution

The z-transform of 

if x1(n) and x2(n) start at n 0 is obtained using the z-transform defining
summation equation

which is also given as

Let n – k = m in the inner summation. Then m = –k will be the lower
summation. But x2(m) is defined only for m 0. Therefore, 

From this we write

This is the convolution equation in real-time related to the convolution in
the frequency domain. We see that convolution, a sometimes difficult oper-
ation, in real-time is simply complex multiplication in the z-domain.

4.7 Representation of Transfer Functions as Block Diagrams

Consider the general third-order transfer function
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The block diagram representation for this transfer function is obtained using
the following steps.

1. The system is third order and hence we need three delay elements.
Each delay will be preceded by a summer and followed by a summer.
The initial diagram is shown in Figure 4.2, where z–1 represents a
delay element.

2. Next we feed forward, a to the summer at the output Y(z), b to the
summer before the third delay, c to the summer before the second
delay and d to the summer before the first delay. The modified
picture is shown in Figure 4.3.

3. Now we feed backward, g to the summer before the first delay, f to
the summer before the second delay, and e to the summer before the
third delay. The final block is shown in Figure 4.4.

FIGURE 4.2 Block diagram step 1.

FIGURE 4.3 Block diagram step 2.

FIGURE 4.4 Block diagram step 3.
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Example 4.15

Draw the block diagram for the system described by the following transfer
function

Solution

First we write the system transfer function as 

We see that we need three delay elements. The block is shown in Figure 4.5.
Note that we have only one feedback line to the summer that precedes the
third delay. Also we have only two forward paths as seen in the figure.

4.8 x(n), h(n), y(n), and the z-Transform

Throughout this book we have been using x(n) to represent the input, h(n)
to represent the impulse response and y(n) to represent the output. In discrete
real-time the output is given using the convolution

FIGURE 4.5 Block diagram for Example 4.15.
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But as we saw earlier, convolution is multiplication is the transform domain.
Thus we write Y(z) = X(z) H(z). We then can use Table 4.1 and Table 4.2 to
get back to the real-time signal y(n).

Example 4.16

If x(n) = u(n) is an input to the system with h(n) = (.5)n u(n), what is the
output y(n)?

Solution

The output in the z-domain is

The input in the z-domain is X(z) = z/z – 1 and the impulse response is H(z) =
z/z – .5. Thus, using the convolution property of the z-transform we write

We will find Y(z)/z first to make use of Table 4.1.

The constants A and B are calculated as

Therefore,

and
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To get back y(n) we use Table 4.1 and write

4.9 Solving Difference Equation Using the z-Transform

We have seen before that the z-transform of x(n – n0) is 

This relation is important when we z-transform difference equation.

Example 4.17

Consider the system

y

with y(–1) = 0 and x(n) = u(n). Find y(n) for n 0.

Solution

We will z-transform the given difference equation term by term. 

Therefore, the given equation becomes

or
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Solving for Y(z) we get

By doing partial fraction expansion on Y(z) we get

and

Example 4.18

Use the z-transform to find the impulse response of the system

Solution

We z-transform the equation above term by term to get

With

and y(–2) = y(–1) = 0 (calculating the impulse response) we have 

or

and
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The constants are

Thus

and the output y(n) = h(n) is

4.10 Convergence Revisited

Consider the following transfer function in the z-domain

Let us first find h(n) using long division by first putting the numerator and
the denominator of the transfer function in the descending powers of z. In
this case we will get

and the impulse response h(n) in this case is

This impulse response is causal since h(n) has zero values for n < 0. However,
if we put H(z) in the form

we will get
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and h(n) in this case is

The signal is noncausal because it is zero for n > 0 and nonzero or n 0.
Notice that

But we have two signals

There is a reason for what we see here. Consider the signal h(n) = an u(n)
with its z-transform

This H(z) has the ROC �z� > �a� since we require that �az–1� < 1 for the series to
be summable. Notice also that H(z) has its pole at z = a and that H(z)
converges outside the circle of radius of magnitude a.

Consider next the signal h(n) = anu(–n – 1) with its z-transform given by

where we changed the sign on n when we changed the limit to start at n =
0 and end at n = . H(z) then is written as

But the ROC is now different since in this case we required that �a–1 z� < 1 for
the series to converge. This means that �z/a� < 1 or �z� < �a�.
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From what has been discussed it is clear that to find h(n) from H(z), the
ROC must be given. To generalize, let us consider that H(z) has N poles and
M zeros. If H(z) has a ROC for which

when pi is the ith pole that is farthest from the pole at the origin, then in this
case the system is causal. But if the ROC is

where pi is the ith pole that is closest to the pole at the origin, then in this
case the system is noncausal. Let us look at some examples.

Example 4.19

Consider the system

with ROC �z� > 2. Find h(n).

Solution

The transfer function can be written as

We can see that the ROC of H(z) is outside the rings �z� = 1 and �z� = 2 and
hence h(n) = (1)n u(n) + (+2)n u(n)

Example 4.20

Consider the same H(z) as in Example 4.19 but the ROC now is �z� < 1. What
is h(n)?

Solution

We can see in this case that the ROC is inside both rings �z� = 1 and �z� = 2.
Therefore

The minus sign here is added because the system is noncausal.

z pi
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4.11 The Final Value Theorem

The final value of the signal x(n) as n can be obtained using the
z-transform. The derivation is omitted since it is somewhat involved. We
have

(4.5)

if x(n) has a final value. x(n) will have a final value if all the poles of X(z)
are within the unit circle. This is to say that for all the poles zi, �zi� > 1.

Example 4.21

Consider the system

Find h( ) or the final value of h(n).

Solution

We can see here, since the expression for h(n) is simple, that h( ) = (.5)
u( ) = 0. This is clear because (.5) will approach zero faster. But we can use
the final value theorem since the pole for H(z) = z/(z – .5) is within the unit
circle. Therefore

4.12 The Initial-Value Theorem

The initial-value theorem is used to find the initial value x(0) for the signal
x(n). From the z-transform of x(n) we write

If we take the limit of X(z) as z approaches infinity we will have 

x x n z X z
n z
lim lim

1
1
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zz
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So we have

(4.6)

as the initial-value theorem.

Example 4.22

If a certain system has the impulse response 

what would be h(0), the initial value for h(n)?

Solution

It is clear that h(0) =(.5)0 u(0) = 1. Using the initial value theorem, we have

4.13 Some Insights: Poles and Zeroes

The transfer function, H(z), of a linear time-invariant system is a very impor-
tant representation. It tells us many things about the stability of the system,
the poles, the zeros and the shape of the transients of the output of the
system. Using H(z) we can find the steady-state response of the system and
the particular solution of the system all in one shot.

4.13.1 The Poles of the System

The poles of the system are the roots of the denominator, the algebraic
equation in the variable z, of the transfer function H(z)

D(z) is a polynomial in z of order equal to the order of the system. The roots
of the denominator D(z) are called the poles of the system. These are the
same poles we discussed in Chapter 2. We called them then the eigenvalues
of the system. D(z) is actually the characteristic equation of the system or,
as referred to before, the auxiliary equation of the system.

lim
z

X z x 0

h n u nn( ) (. ) ( )5
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4.13.2 The Zeros of the System

The roots of the numerator N(z) are called the zeros of the system.

4.13.3 The Stability of the System

The poles of the system determine its stability. If the poles are all within the
unit circle, then the system at hand is stable and the transients will die as
time progresses. The stability of the system is determined by the poles and
not the zeros. If one of the poles is outside the unit circle, then the system
is not stable. You may have zeros that are outside the unit circle, but the
location of the zeros has no effect on the stability of the system.

Given H(z), the roots of the denominator will determine the general shape
of the output y(n) which, in this case, is h(n) because the input x(n) is the
impulse (n). If D(z) has two roots (second-order system) called 1 and 2

then the output will have the general form

where the constant c’s are to be determined. The exponential terms will
determine the shape of the transients. If one of the ’s is outside the unit
circle, the output will grow without bounds. If the two ’s are within the
unit circle, the output will die as time progresses. The ’s are the eigenvalues
or the poles of the system.

The transfer function Y(z)/X(z) is called H(z) if the input X(z) is 1 (x(n) =
(n)). The transfer function Y(z)/X(z) is very important as we will see later

in the design of linear time-invariant systems

4.14 End of Chapter Exercises

EOCE 4.1

Find the z-transform of the signals

1. x(n) = (1/3)n u(n)
2. x(n) = –(1/2)n u(–n – 1)
3. x(n) = (1/2)n u(n) – (1/2)n u(–n – 1)

and indicate their ROC.

y n h n c c
n n

( ) ( ) 1 1 2 2
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Solution

For the first signal x(n) = (1/3)n u(n) the z-transform is 

or �1/3� < �z�. So the ROC in �z� > 1/3.
For the second signal, x(n) = –(1/2)n u(–n – 1), the z-transform is given by

with the ROC �z� < 1/2.
For the last signal, x(n) = (1/3)n u(n) – (1/2)n u(–n – 1), the z-transform is 

with ROC now as �z� > 1/3 and �z� < 1/2 . By combining these conditions we
get

for the ROC.

EOCE 4.2

What is the z-transform of the signal 

Solution

x(n) can be written as
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where x1(n) = (.5)n u(n). Thus we have

Next we can use the differentiation property in Table 4.2 to find X(z) as 

with �z� > .5 as the ROC.

EOCE 4.3

What is X(z) if 

Solution

We can divide the given signal into two parts

where X1(z) and X2(z) are the z-transforms of cos(n)u(n) and nu(n), respec-
tively. Therefore

with �z� > 1 as the ROC. X2(z) can be obtained by finding the z-transform of
u(n) first, then taking the derivative with respect to z as

EOCE 4.4

What is the z-transform of the signal
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with

and

Solution

By using the convolution property we write

and x(n) then is

We can also use MATLAB and convolve x1(n) with x2(n) and write the following
script

x1 = [1 2]

x2 = [0 1 3]

x = conv (x1, x2)

to get 

x = {  1  5  6}

which indicates that

EOCE 4.5

With

and

what is the z-transform if x(n) = x1(n) * x2(n)?

x n n n1 2 1( ) ( ) ( )

x n n n2 1 3 2( ) ( ) ( )

X z X z X z z z z z z z z( ) ( ) ( )1 2
1 1 2 1 2 2 31 2 3 3 2 6

x n n n n( ) ( ) ( ) ( )1 5 2 6 3

0

X z z z z z( ) 0 1 5 60 1 2 3

x n n n n1 1 1( ) ( ) ( ) ( )

x n n n2 1( ) ( ) ( )
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Solution

Convolution in real-time is multiplication in the z-domain. Thus

and the inverse z-transform is

We can also use MATLAB to do this but with some attention to the starting
index of each signal. We use the MATLAB function conv if the two signals
start at n = 0. In our case x1(n) starts at n = –1 and x2(n) starts at n = 0. In
this case we have to fix the starting and ending indices to find x(n). We write
the following MATLAB script to do that.

x1 = [1 1 1];

n1 = [-1 0 1];

x2 = [1 1];

n2 = [0 1];

ns = n1(1) + n2(1); % the starting minimum

ne= n1(length (x1)) + n2(length(x2)); % the ending maximum

n = [ns : ne];

x = conv(x1, x2);

[n’ x’] % to display the convolution result with the index n

We will get

–1 1
0 2
1 2
2 1

and from this we have

EOCE 4.6

When

what is X(z) and its ROC?
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Solution

Using the linearity property of the z-transform, we write

and the ROC is �z� > .3 and �z� > .5 and �z� > .9 all satisfied simultaneously.
The ROC becomes �z� > .9. 

EOCE 4.7

Consider the transforms

and

What is x(n) = x1(n) * x2(n) ? 

Solution

and

We can use MATLAB to find x(n) = x1(n) * x2(n) by writing the script

x1=[1 1 3];

x2=[1 0 3];

x=conv(x1,x2);

to get

x = {  1 6 3 9}

and
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We can also use the z-transform to arrive at this result.

and then the inverse z-transform is

EOCE 4.8

Use MATLAB, long division and partial function expansion to find h(n) if 

with ROC 

Using MATLAB, first we need to put X(z) in ascending powers of z-1 and write

Then we will use the MATLAB function residuez that has the form

[r  p  k] = residuez (num, den)

where num and den are the coefficients of the numerator and the denomi-
nator of the rational z-transformed function. r is a vector that contains the
residues, p in the vector that contains the poles and k is the constant term
that is nonzero if the degree of num is larger or equal to the degree of den,
the numerator and the denominator of the rational z-transformed function.
With this we write the script

num=[ 0 0 1];

den=[1 –3 2 ];

[r,p,k]=residuez(num,den)

to get

r = 0.5000 and –1.0000
p = 2 and 1
k = 0.5
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This gives the transfer function

from which we get

using Table 4.1. We can see that the first few terms of h(n) are

We can also use MATLAB to find some terms of h(n). To do that, we can use
the MATLAB function filter with an impulsive input. We have

If X(z) = 1, (h(n) = (n)), then Y(z) = H(z) and y(n) is h(n). To do that we write
the script

num = [0 0 1];

den = [1 -3 2];

x = [1 zeros(1, 2)]; % the impulse input of 3 samples.

h = filter(num, den, x)% h(n) for only the first 3 samples

to get the same result we found earlier.
Using long division, we can divide the numerator by the denominator to

get

which clearly indicates that h(0) = 0, h(1) = 0 and h(2) = 1 as we saw earlier. 
Using partial fraction expansion, we write the transfer function as
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with the constants evaluated as

So the transfer function becomes

and

EOCE 4.9

Find h(n) if H(z) is

Assume the resulting signal h(n) is valid only for n 0 and it is real.

Solution

Since this H(z) is not similar to any form in Table 4.1, we need to use partial
fraction expansion on H(z). We do that using MATLAB and write the script

num=[0 0 1];

den=[1 -.9 .7];

[r p k]=residuez(num,den)

mag_r= abs(r)

phase_r=angle(r)

mag_p=abs(p)% magnitude of the poles

phase_p=angle(p)% phase angles of the poles
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to get

r = –0.7143 – 0.4557i  and –0.7143 + 0.4557i
p = 0.4500 + 0.7053i and 0.4500 – 0.7053i
k = 1.4286
mag_r = 0.8473 and 0.8473
phase_r = –2.5737 and 2.5737
mag_p = 0.8367 and 0.8367
phase_p = 1.0029 and –1.0029

Hence we can see that

with the ROC as �z� > 0.8367. Now we can use Table 4.1 to get the inverse
transform h(n). We write 

These two terms are complex conjugate terms. We know that the sum of two
complex conjugate terms is two times the real part of the complex number.
Thus we write

After some simplifications we get

EOCE 4.10

Consider the system transfer function in the z-domain

with ROC �z� > 2. Find h(n).
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Solution

First we write H(z) in the proper form so that we can use partial function to
find h(n). H(z) then is 

By putting H(z) is partial fraction form we use MATLAB and write the script

num = [0 0 1 ]

den = [ 1 -6 11 -6 ]

[ r p k ] = residuez (num, den)

to get

r = 0.5000, –1.0000 and 0.5000
p = 3.0000, 2.0000 and 1.0000
k = [ ] to indicate zero value

Then the partial fraction expansion results in

To bring H(z) back into real-time we need to look carefully at the ROC for

H(z). For the first term 0.5/(1 – z–1) = 0.5z/(z – 1),the pole is at z = 1. The

ROC of H(z) is outside the ring �z� = 2 and hence outside the ring �z� = 1. In

this case

The second term –1/(1 – 2z–1) = –z/(z – 2) has the pole z = 2. The ROC of

H(z) is outside the ring �z� = 2 and hence

The last term 0.5/(1 – 3z–1) = 0.5z/(z – 3) has a pole at z = 3. The ROC of
H(z) is outside the �z� = 2 circle and z = 3 is within this ROC. Thus
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Therefore, the inverse transform is

Note: When you use MATLAB to find h(n) be careful to pay attention to the
ROC of H(z).

EOCE 4.11

Consider the following causal difference equation

where y(n) is the output and x(n) is the input.

1. Find the transfer function H(z).
2. Find the transfer function H(ej ).
3. Find h(n), the impulse response.
4. Find y(n) if x(n) = u(n).

Solution

1. With zero initial conditions we transform the difference equation
term by term into the z-domain. We will have 

Taking Y(z) as a common factor we get

and the transfer function is

with ROC �z� > .7.
2. Since H(z) converges for �z� > .7, the unit circle is inside the ROC and

so we can find H(ej ) from H(z) as
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3. h(n) can be obtained directly from Table 4.1 as 

h(n) = (.7)nu(n)

4.  With h(n) = (.7)nu(n) and x(n) = u(n) we have y(n) = x(n) * h(n). Or
in z-domain we have

At this point we can determine the ROC for Y(z) as the intersection of region
�z� > 1 and �z� > .7. Thus the ROC for Y(z) is �z� > .7. We can use MATLAB to
find Y(z) in partial fraction form by writing the script

num = [ 1];

den = [ 1 -1.7 .7 ];

[r, p, k] = residuez (num, den)

to get

r = 3.3333 and –2.3333
p = 1.0000 and 0.7000

Thus

The inverse transform of the above equation gives

We can use MATLAB to plot the results obtained in this example. We will use
the MATLAB function freqz as

[ H, theta ] = freqz(num, den, N, ‘whole’)

where H is the vector that contains all the frequency response values, theta
the vector that contains the frequency values, num and den are the coeffi-
cients of the numerator and the denominator of the transfer function, and
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whole indicates that freqz will evaluate H for the N theta values around
the entire unit circle.

The MATLAB script is given next.

num = [ 1 0 ];

den = [ 1 -.7];

[ H, theta ] = freqz(num, den, 200, 'whole');

mag_H = abs (H);

angle_H = angle(H);

% Next we will generate an impulse input of length 20

ximp = [ 1 zeros(1, 19) ];

% Next we generate a step input of length 20

xstp = ones(1, 20);

yimp = filter(num, den, ximp);

ystp = filter(num, den, xstp);

subplot(2, 2, 1); plot(theta/pi, mag_H);

xlabel('Frequency is pi units'); 

ylabel('Magnitude');

subplot(2, 2, 2); plot(theta/pi, angle_H/pi);

xlabel('Frequency in pi units'); ylabel('Angle in pi units');

n=0:19;

subplot(2, 2, 3); plot(n, yimp);

xlabel('n'); ylabel('Impulse response');

subplot(2, 2, 4); plot(n,ystp);

xlabel('n'); ylabel('Step response');

The plots are as in Figure 4.6.

EOCE 4.12

Consider the system transfer function

Find h(n) for the following ROCs and indicate stability.

1.  �z� > 3
2.  �z� < .2
3. .2 �z� <.3
4. .3< �z� <3
5. .2 < �z� < 3
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Solution

The poles of the system are at z =.3, z = –.2 and z = 3.

1. �z� > 3 is the ROC that is outside the ring �z� = 3. The poles at .3, –.2
and 3 are inside this ring, but the ring �z� = 1 is not inside this ROC.
Therefore the system is unstable and causal with 

2. �z� < .2 is the ROC that is inside the ring �z� = .2. The �z� = 1 ring is
not in this ROC. Also, none of the system poles are inside this ROC.
Therefore, the system is unstable and noncausal with

3. .2 < �z� < .3 is the ROC that is between the two rings �z� = .2 and �z� =
.3. The �z� = 1 ring is not in this ROC, hence instability. The ROC is
inside �z� = 3 and �z� = .3, with

FIGURE 4.6 Signals for EOCE 4.11.
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4. .3 < �z� < 3 is the ROC that is between the two rings �z� = .3 and �z� =
3. The ring �z� = 1 is inside this ROC and hence the system is stable.
The ROC is inside �z� = 3 and thus

5. .2< �z� < 3 is the ROC that is between the two rings �z� = .2 and �z� =
3. The ring �z� = 1 is within this ROC. Thus the system is stable. The
ROC is inside �z� = 3 and �z� = .3. Thus we have

EOCE 4.13

MATLAB has a function called filter that can be used to find the response
to a discrete system using initial conditions that are different from zero. The
form of this function is

y = filter(num, den, x, y0)

where y is the output vector, num is the numerator coefficients vector, den
is the denominator coefficients vector, x is the input vector, and y0 is the
initial conditions vector that is derived using the actual initial conditions
given to you with the system under investigation. In real-time the Nth order
difference equation can be represented as

The z-transform of the above equation is

The derived initial conditions for the filter function are computed as in the
following.
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Consider the following system

y(n) – y(n – 1) = x(n)

with y(–1) = 1 and x(n) = (n). Find y(n) using the z-transform.

Solution

We can z-transform the difference equation term by term and write

We can rearrange terms and write

We finally have 

With X(z) = 1, the output is

Using Table 4.1 we get 

y(n) = 2u(n)

Using MATLAB we first write  without initial conditions to get

The initial condition vector y0 will have one component since the system is
first order. So the derived initial condition is

Next we write the MATLAB script to find y(n) for x(n) = (n).
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n = 0 : 10;

num = [ 1 ];

den = [ 1 -1 ];

y0=1;% this is the derived initial condition

x = [ 1 zeros(1,length(n)-1) ];

y=filter(num, den,x,y0);

subplot(1, 2, 1); stem(n, x); xlabel('n'), ylabel('Input 
signal');

subplot(1, 2, 2); stem(n, y); xlabel('n'), ylabel('Output 
signal');

The plots are shown in Figure 4.7.
We can also use MATLAB with the MATLAB function filtic to find the

derived initial conditions for us. The general form of filtic is

ic=filtic(num,den,x0,y0)

where ic is the returned derived initial conditions. num and den are as
discussed before. x0 and y0 are the initial condition vectors given with the
problem for negative n. We can rework the MATLAB solution using the filtic
function as in the script

FIGURE 4.7 Signals for EOCE 4.13.
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n = 0 : 10;

num = [ 1 ];

den = [ 1 -1 ];

y0 = 1;% the given initial condition

ic=filtic(num,den,y0); %the derived initial condition

x = [ 1 zeros(1,(length(n)-1)) ];

y = filter(num, den, x, ic);

subplot(1, 2, 1); stem(n, x); xlabel('n'), ylabel('Input 
signal');

subplot(1, 2, 2); stem(n, y); xlabel('n'), ylabel('Output 
signal');

and the result is the same.

EOCE 4.14

Consider the following system

with x(n) = u(n) and y(–1) = 1, y(–2) = 2 and y(–3) = 3,

1. Find the output y(n) using MATLAB.
2. Find the system transfer function.
3. Is the system stable?

Solution

1. The initial condition vector y0 for the function filter is determined
next.

We can use MATLAB to determine these derived initial conditions by
writing the following script

num = [ 1 ];

den = [ 1 -.5 -.1 .2 ];

y0 = [1 2 3];% the given initial condition

ic=filtic(num,den,y0); %the derived initial condition

y n y n y n y n x n( ) . ( ) . ( ) . ( ) ( )5 1 1 2 2 3

y a y a y a y

y a y a y

y a y
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1 2 1 2
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The result is

ic = 0.1000  –0.3000  –0.2000

With these derived initial conditions we can write the following
MATLAB script to plot the response due to the step input.

n = 0 : 15;

num = [ 1 ];

den = [ 1 -.5 -.1 .2 ];

y0 = [ 1 2 3];% the given initial condition

ic=filtic(num,den,y0); %the derived initial condition

x = [ ones(length(n)) ];

y = filter(num, den, x, ic);

subplot(1, 2, 1); stem(n, x); xlabel('n'), ylabel('Input 
signal');

subplot(1, 2, 2); stem(n, y); xlabel('n'), ylabel('Output 
signal');

The plots are shown in Figure 4.8.

FIGURE 4.8 Signals for EOCE 4.14.
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2. The system transfer function is obtained by taking the z-transform
of the difference equation with zero initial conditions. The result is

By grouping similar terms we get

and the transfer function is

3. We can use MATLAB to find the poles of H(z). We type at the MATLAB

prompt

r=roots([1 -.5 -.1 .2]);

abs(r)%the magnitude of the roots

to get 0.5000, 0.6325, and 0.6325. The roots are within the unit circle
and thus the system is stable.

EOCE 4.15

Consider the system

1. Find the impulse response h(n).
2. What is the step response?
3. Use MATLAB to find y(n) if x(n) = (.5)nsin(n) u(n).

Solution

1. If we can find H(z) for the given system, we will inverse transform
H(z) to get h(n). Let us z-transform the given difference equation to
get
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and the transfer function is then

The ROC is �z� > 0.5. Using partial fraction expansion on H(z), we
have

with

and

B =

Thus

and from Table 4.1 we get

2. The step response is obtained with X(z) =  The output will be

We will do partial fraction expansion on 
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to get

The resulting output in the z-domain is

and the inverse z-transform is

We can use MATLAB to verify this solution by writing the script

n = 0: 20;

num = [1 1];

den = [1 -1/2];

x = [ones(length(n))];

ymatlab = filter(num, den, x);

yanalyt = -3*(0.5.^n) + 4*(1.^n) ;

subplot (3, 1, 1), stem(n, x), ylabel('Input');

subplot (3, 1, 2), stem(n, ymatlab), ylabel('MATLAB
output');

subplot (3, 1, 3), stem(n,yanalyt); ylabel('Analytical');

xlabel ('n');

The plots are shown in Figure 4.9.
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3. We will use MATLAB to do that.

n = 0: 20;

num = [1 1];

den = [1 -1/2];

x = ((.5).^n).*sin(n);

y = filter(num, den, x);

subplot (2, 1, 1), stem(n, x), ylabel('Input');

zeroline=zeros(1, length(n));

hold on; plot(n,zeroline);hold off;

subplot (2, 1, 2), stem(n, y), ylabel('Matlab output');

hold on; plot(n,zeroline);hold off;

xlabel ('n');

The plots are shown in Figure 4.10.

EOCE 4.16

Consider the following system

FIGURE 4.9 Signals for EOCE 4.15.
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What is h(n), the impulse response?

Solution

We will use partial fraction expansion to find h(n). As we did previously, we
will put H(z)/z in partial fraction form, then multiply by z to introduce a z
into the numerator. By doing so we will easily inverse-transform back to
real-time since the entries in Table 4.1 have z in the numerator. 

We next find the constants and write

FIGURE 4.10 Signals for EOCE 4.15.
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Using Table 4.1 we get

By taking common factors we get

and finally

EOCE 4.17

Consider the system

What is h(n)?

Solution

The impulse response h(n) is the inverse z-transform of H(z). We will put
H(z)/z in partial fraction form first.

and H(z) will be 

From this last expression for H(z) and using Table 4.1 we get
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where is the magnitude of 1– j and 1 + j and – /4 is the phase of 1 – j.
We still need to find A and B. We can use MATLAB to do that and to confirm

some of the results that we arrived at (the magnitude and the phase of the
poles). We will write the script

n = [ 0 1 0 ];

d = [1 –2 2 ];

[r, p, k] = residuez(n, d);

mag_r = abs(r)

phase_r=angle(r)

mag_p = abs(p)

phase_p=angle(p)

to get

mag_r = 0.5000 0.5000
phase_r = –1.5708 1.5708
mag_p = 1.4142 1.4142
phase_p = 0.7854 –0.7854

The impulse response is then

In the above expression we have two complex conjugate terms. The sum of
two conjugate terms is two times the real part of the term. Thus we write

EOCE 4.18

Consider the system

y(n) – .4y(n – 1) = x(n)

with x(n) = 2sin (2 /4 n)u(n). What are the initial and final values for y(n)
with x(n) as the input?

2
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Solution

With

X(z) is

We know that Y(z) = X(z)H(z). But from the difference equation, H(z) is

Therefore,

The initial value of y(n) is y(0). Using the initial value theorem we can find
y(0) without solving for y(n) from Y(z).

The final value of y(n) is

provided that all poles of (z – 1) Y(z) lie inside the unit circle. This is not the
case here because the input is a pure sinusoid and it has its pole on the unit
circle. Without paying attention to this we may mistakenly use this theorem
and write

But we know that the output y(n) is also sinusoidal and does not settle on
a single value as n approaches infinity. However, if x(n) = u(n) then
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and

y(0) =

The final value in this case will be

EOCE 4.19

Consider the system in Figure 4.11.

1. Find the transfer function representation.
2. Find the difference equation representation.
3. Find y(n) if x(n) = u(n).
4. Is the system stable?

Solution

1. The signal after the first summer is X(z) +Y(z). This signal then passes
through a delay and becomes [X(z) + Y(z)] z–1. Then it passes through
another delay and becomes [[X(z) + Y(z)]z–1]z–1. The output of the
last summer is Y(z) which is

By grouping like terms we arrive at

FIGURE 4.11 System for EOCE 4.19.
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And the transfer function is

2. From

we can write

The inverse transform is

3. If x(n) = u(n) then X(z) =  The output then is

The constants are found next.

Therefore, the output in the z-domain is
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The output in the time domain is

This solution can be verified using MATLAB as in the script

n = 0: 20;

num = [2 0 1];

den = [1 0 -1];

x = [ones(length(n))];

ym = filter(num, den, x);

ya = 3/4*(-1.^n) + 3/2*n.*(1.^n)+1/4*(1.^n) ;

subplot (3, 1, 1), stem(n, x), ylabel('Input');

subplot (3, 1, 2), stem(n, ym), ylabel('MATLAB output');

subplot (3, 1, 3), stem(n,ya); ylabel('Analytical');

xlabel ('n');

axis([0 20 0 40]);

The plots are in Figure 4.12.

FIGURE 4.12 Signals for EOCE 4.19.

y n u n nu n u nn n n( ) ( ) ( ) ( ) ( ) ( ) ( )
3
4

1
3
2

1
1
4

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

20

40

0 2 4 6 8 10 12 14 16 18 20
0

20

40

n

A
na

ly
tic

al
   

   
   

   
 M

A
T

LA
B

 o
ut

pu
t  

   
   

   
   

   
   

 In
pu

t



252 Discrete Systems and Digital Signal Processing with MATLAB

4. To check stability we look at the poles of 

We can see that the poles are at z = 1 and z = –1 and they are on the
unit circle. Hence the system is on the verge of stability.

EOCE 4.20

Consider the system in Figure 4.13, with 

1. Find the transfer function.
2. Is the system stable?
3. Find the general form of h(n) if h(n) is real and causal.
4. If x(n) = u(n), what is y(n)?

Solution

1. From the Figure 4.13 we see that the output is

and from the properties of the z-transform we write Y(z) as

and the transfer function is

FIGURE 4.13 Signals for EOCE 4.20.
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By substituting the individual transfer functions given to us we
arrive at

2. The poles are at z = .5 and they are within the unit circle. This means
that the system is stable.

3. Since we are assuming that h(n) is real and causal then

and

With the help of Table 4.1 we get

This means that the ROC for H(z) is �z� > .5. If the ROC for H(z) were
�z� < .5 then 

4. If the input x(n) = u(n) then X(z) = and

Let us write the output as the sum

and perform partial fraction expansion as
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Next we find the constants as

and

The output in the z-domain is then

The output in the time domain is 

EOCE 4.21

If x(n) = (n) + (n – 3) and the output y(n) is (n – 4), what is the transfer
function H(z)? Assume the system is linear and time invariant.

Solution

We know that y(n) = x(n) * h(n) in the discrete time domain. Mathematically

y(n) =

An easier way of finding H(z) is to work directly with the z-domain by taking
advantage of the convolution property of the z-transform
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Y(z) = H(z) X(z)

After substitution we get

and finally

4.15 End of Chapter Problems

EOCP 4.1

Find the z-transform for the following signals and indicate the ROC.

1. x(n) = 3(.3)nu (n)
2. x(n) = (.3)nu (n) – (.3)nu(–n – 1)
3. x(n) = u(n) – u(n – 1)

4. x(n) = sin

5. x(n) = u(n)*(.5)n u(n)
6. x(n) = u(n)*(.5)n u(n)*(.5)n u(–n – 1)

7. x(n) = nu(n) – nsin u(n)

8. x(n) = (n – 1) u(n – 1) – 2 (n – 1)
9. x(n)= u(–n – 1)* u(n) + (n – 1)sin((n – 1) /4) u(n – 1)

10. x(n)= n (.5)nsin(n) u(n) + u(–n – 1)

EOCP 4.2

Consider the following signals in the z-transform domain. Find h(n) for each
case.

1. H(z) = 10 ROC : 

2. H(z) = ROC : 

3. H(z) = ROC : 

z H z z4 31( )

H z
z

z z z z z
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4. H(z) = ROC : 

5. H(z) = ROC : 

6. H(z) = ROC : 

7. H(z) = ROC : 

8. H(z) = ROC : 

9. H(z) = ROC : 

10. H(z) =  ROC : 

EOCP 4.3

The following signals will produce a causal h(n). Find h(n) using partial
fraction, long division and MATLAB.

1. H(z) =

2. H(z) =

3. H(z) =

4. H(z) =

5. H(z) =

6. H(z) =

EOCP 4.4

Draw the block diagrams for the following systems in the z-domain.

1.

2.

3.
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4.

5.

EOCP 4.5

Find  for the block diagrams in Figures 4.14 through 4.18.

FIGURE 4.14 Block for EOCP 4.5.

FIGURE 4.15 Block for EOCP 4.5.

FIGURE 4.16 Block for EOCP 4.5.

FIGURE 4.17 Block for EOCP 4.5.
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EOCP 4.6

For each block diagram in Figures 4.19 through 4.23 find y(n), the step
response.

EOCP 4.7

Consider the following transfer functions. Find the difference equations
representing these systems and indicate if any of them is stable. Use MATLAB

to find h(n).

FIGURE 4.18 Block for EOCP 4.5.

FIGURE 4.19 Block for EOCP 4.6.

FIGURE 4.20 Block for EOCP 4.6.

FIGURE 4.21 Block for EOCP 4.6.
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D

D
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1. H(z) =

2. H(z) =

3. H(z) =

4. H(z) =

5. H(z) =

EOCP 4.8

Consider the following difference equations. Find the transfer functions and
the outputs y(n). Are the systems stable? 

1. y(n) –  .5y(n – 1) = x(n) + x(n – 1), y(–1) = 0, x(n) = (n)
2. y(n) –  .5y(n – 1) = x(n) + x(n – 1), y(–1) = 1, x(n) = (n)
3. y(n) –  .5y(n – 1) = x(n) + x(n – 1), y(–1) = 0, x(n) = sin(2 /1n)u(n)
4. y(n) –  .3y( n – 1) = x(n) + x(n – 1), y(–1) = –1, x(n) = sin(2 n/3n)

u(n) + cos(2 n/3)u(n)
5. y(n) – .8y(n – 1) +. 2y(n – 2) = x(n), y(–1) = 0 , y(–2) = 1, x(n) = (n)

FIGURE 4.22 Block for EOCP 4.6.

FIGURE 4.23 Block for EOCP 4.6.
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6. y(n) – .8y(n – 1) +. 2y(n – 2) = x(n – 1), y(–1) = 1, y(–2) = 1, x(n) = u(n)
7. y(n) + y(n – 1) + y(n – 2) = x(n), y(–1) = y(–2) = 0, x(n) = u(n)
8. y(n) + .1y(n–2) = x(n – 2), y(–1) = y(–2) = 1, x(n) = u(n)
9. y(n) – .5y(n – 3) = x(n), y(–1) = y(–2) = 0, y(–3) = 1, x(n) = (n)

10. y(n) = x(n) + x(n – 1) + x(n – 2) + x(n – 3), x(n) = sin(n)u(n)

EOCP 4.9

The following are outputs of linear discrete systems. Find y(0) and y( ) for
each output.

1. Y(z) = 

2. Y(z) = 

3. Y(z) = 

4. Y(z) = 

5. Y(z) =  

EOCP 4.10

Find the steady-state output for the systems

1. H(z) = x(n) = sin(n)u(n)+ cos(n) u(n)

2. H(z) =

3. H(z) =

4. H(z) = + (n)

5. H(z) = x(n) = 3

EOCP 4.11

Consider the following difference equation

y(n) – .5y(n – 1) – .3y(n – 2) – .4y(n – 3) = x(n)

a) With y(–1) = y(–2) = y(–3) = 0 and
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1. x(n) = (n)
2. x(n) = u(n)
3. x(n) = cos(10 n/3)u(n)

Use MATLAB to find y(n) assuming that y(n) is causal; use long division to
verify the MATLAB results.

b) With y(–1) = y(–2) = y(–3) = –1 and

1. x(n) = (n)
2. x(n) = u(n)
3. x(n) = cos(10 n/3)u(n)

Use MATLAB to find y(n) assuming that y(n) is causal; use long division to
verify the MATLAB results.

c) Is the system stable?
d) Find h(n) if ROC is �z� > 2.

EOCP 4.12

Consider the system in Figure 4.24.

1. Find the difference equation representing the system.
2. For what value(s) of a is the system stable?
3. Pick a value for a to make the system stable, and find y(n) for x(n)

= (n)
4. Use MATLAB to find y(n) for a = .5 if

a) x(n) = 10 (n)
b) x(n) = 10 sin(3/4 )u(n)

5. Find the initial and final values for y(n) is 4.

EOCP 4.13

Consider the following system in Figure 4.25.

1. Find  as a function of F(z), the feedback function.

2. If F(z) =1, find .

3. Is the system stable in 2?  If yes, for what k values?

4. If F(z) =  find .

5. Is the system stable in 4? If yes, for what k values?
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2
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6. Find the difference equation representing the system for both cases

F(z) = 1 and F(z) = .

7. Find the impulse response of the system when F(z) = 1 and F(z) =

with a value of k that makes the system stable.

8. Find the step response for both F(z) = 1 and F(z) =  with a k
value that stabilizes the system.

9. Let E(z) = X(z) – F(z) Y(z). Find this error signal E(z) as a function of k.
10. Find e(0) and e( ). e(n) is called the error signal.
11. What value for k will make e( ) = .1? Pick a suitable input x(n) that

will give you this k value.

EOCP 4.14

The outputs and the inputs are given for an unknown linear time-invariant
system. What is the transfer function for each?

1.

2.

3.

FIGURE 4.24 Block for EOCP 4.12.

FIGURE 4.25 Block for EOCP 4.13.
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4.

5.

x n n( ) ( )
y n u n( ) ( )

x n n u n u n( ) sin ( ) ( )2
3
11

y n n u n( ) cos ( )10
3
11
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5
State-Space and Discrete Systems

5.1 Introduction

As the interest in many scientific fields increased, modeling systems using
linear time-invariant equations and tools such as transfer functions were not
adequate. The state-space approach is superior to other classical methods of
modeling. This modern approach can handle systems with nonzero initial
conditions (modeling using transfer functions requires that initial conditions
be set to zero) as well as time-variant systems. It can also handle linear and
nonlinear systems. We also have been considering systems with single-input
single-output. The state-space approach can handle multiple-input multiple-
output systems.

Systems can have many variables. An example is an electrical circuit where
the variables are the inductor current, the capacitor voltage and the resistor
voltage among others. With the state-space approach we can solve for a
selected set of these variables. The other variables in the circuit system can
be found using the solution for the selected variables.

Using the state-space approach we will follow the subsequent procedure.
We will select specific variables in the system and call them state variables.
No state variable selected can be written as a linear combination of the other
state variables. Linear combination means that if

v1(t) = 3v3(t)  + 2v2(t) (5.1)

where v1(t), v2(t) and v3(t) are state variables, we say that v1(t) is a linear
combination of v2(t) and v3(t). If we have a first-order differential or difference
equation, we will have only one state variable. If the differential or the differ-
ence equation is second order, we will have only two state variables. Similarly,
if we have an nth order differential or difference equation, we will have only
n state variables. Once we select or decide on the state variables in the system
under consideration, we will write a set of first-order simultaneous differential
or difference equations where the right side of these equations is a function
only of the state variables (no derivatives or shifts) and the inputs to the
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system, and the number of these equations is determined by the number of
state variables selected. We will call this set the state equation set. These state
equations will be solved for the selected state variables. All other variables in
the system under consideration can be solved using the solutions of these
selected state variables and the inputs to the system. We can use any approach
we desire to solve for these selected states. The equations we write to a set of
selected outputs in the system are called output equations.

The above discussion relates closely to continuous systems and explains
the evolution of state equations from real physical systems. In many cases,
we derive discrete systems from continuous systems by many means such
as sampling or transformation. The equivalence of the differential equations
is the difference equations where the basic unit is the delay element. From
these difference equations the states in discrete form are obtained. Some
systems are inherently discrete and the difference equation is readily
obtained. The concept of the state is best understood with dynamic physical
systems and that is how we explain it here. 

5.2 A Review on Matrix Algebra

What follows is a brief review of some of the concepts and definitions we
need in this chapter. We will deal with second-order systems when we deal
with hand solutions. For matrices of higher dimensions you can consult any
linear algebra book.

5.2.1 Definition, General Terms and Notations

A matrix is a collection of elements arranged in a rectangular or square array.
The size of the matrix is determined by the number of rows and the number
of columns in the matrix. A matrix A of m rows and n column is represented
as Amxn. If m = 1 then A is a row vector and is written as A1xn. If n = 1 then
A is a column vector and is written as Amx1. If n = m then A is a square
matrix and we write it as Anxn or Amxm . If all elements in the matrix are zeros
we say A is a null matrix or a zero matrix.

5.2.2 The Identity Matrix

The identity matrix is the square matrix where elements along the main
diagonal are ones and elements off the main diagonal are zeros. A two-by-
two identity matrix is
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(5.2)

5.2.3 Adding Two Matrices

If A = and B =  then 

A + B =
(5.3)

To add two matrices they must be of the same size. If the matrices are of
higher order, the procedure is the same; we add the corresponding entries.

5.2.4 Subtracting Two Matrices

If A = and B =  then 

A – B = (5.4)

To subtract two matrices they must be of the same size. If the matrices are
of higher order, the procedure is the same; we subtract the corresponding
entries.

5.2.5 Multiplying A Matrix by a Constant

If A = and k is any given constant, then 

k = (5.5)

If the matrix A is of higher order, then k is multiplied by each entry in A.

I2 2
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kc kd
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5.2.6 Determinant of a Two-by-Two Matrix

Consider the A2 2 matrix

The determinant of A is

det(A) = ad-bc (5.6)

5.2.7 Transpose of A Matrix

If A = then the transpose of A is given by 

AT = (5.7)

This works for higher order matrices as well, where the first column in A
becomes the first row in AT and so on.

5.2.8 Inverse of A Matrix

If A =  then the inverse of A is

A–1 = (5.8)

and since  is a constant, we can write the inverse as

The inverse of a square matrix exists if the determinant of the matrix is not
zero. Also, to find an inverse of a certain matrix, that matrix has to be square.

The procedure above for finding the inverse is only for a 2 2 matrices.
For higher order matrices the procedure is different and is found in any
linear algebra book. 

A2 2
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5.2.9 Matrix Multiplication

We can multiply two matrices A and B if the number of columns in A is equal
to the number of rows in B. If Amxn is to be multiplied by Brxp then n must
be equal to r and the resulting matrix should have m rows and n columns.

If A = and B =

then if we multiply A by B and let matrix C hold the resulting product, the
size of C is 2 2. We could multiply A by B because the number of columns
in A, which is two, is equal to the number of rows in B, which is also two.
The multiplication of A by B is C and it is

C = AB = = (5.9)

We multiply the first row of A, element by element, by all the columns of
B. Similarly, we take the second row of A and multiply it by all the columns
of B. Note that in general AB is not the same as BA. The rules for multipli-
cation have to be observed.

5.2.10 Eigenvalues of a Matrix

The eigenvalues of a matrix A are the roots of the determinant of ( I – A),
where I is the identity matrix and is a variable.

5.2.11 Diagonal Form of a Matrix

A matrix A is in diagonal form if all elements in the matrix that are off the
diagonal are zeros. If A is not diagonal, we can make it diagonal by finding
the matrix P that contains the eigenvectors of A. So if A is not a diagonal
matrix then (P-1AP) will transform A into a diagonal matrix. If the eigenval-
ues of A are distinct (distinct means that no one eigenvalue is equal to the
other) then P-1AP will look like a diagonal matrix where the elements on the
main diagonal are the eigenvalues of A. If some of the eigenvalues of A are
repeated, then the matrix P-1AP will be in a block diagonal form or what is
known as Jordan form. 

5.2.12 Eigenvectors of a Matrix

The eigenvectors of a matrix A are the nonzero roots of the homogeneous
matrix equation

(5.10)

a b

c d

e f

g h

a b

c d

e f

g h

ae bg af bh

ce dg cf dh

i iI A p 0



270 Discrete Systems and Digital Signal Processing with MATLAB

where pi is a column vector that represents the eigenvector for a certain eigen-
value i. All eigenvectors must be independent. If we have n distinct eigenval-
ues, then we will have n independent eigenvectors for each eigenvalue, and
each eigenvector is obtained as the nonzero solution to ( i I – A)pi = 0.

If A is nxn and we have n – k distinct eigenvalues (again distinct means
no one eigenvalue is equal to any of the remaining n – 1 eigenvalues) then
we will have n – k independent eigenvectors for each distinct eigenvalue
and each eigenvector is obtained as the nonzero solution of ( i I – A)pi = 0.
Each remaining eigenvalue in the set k of eigenvalues is therefore not distinct.
We may have groups of repeated eigenvalues in the k set of eignenvalues.
We will assume here that we have only one set which is k and thus we have
k repeated eigenvalues. The following procedure can be applied to other
repeated sets in the set k.

Assume that k = 3. Let the repeated eigenvalues be denoted as r and let
us denote the eigenvectors as p1r , p2r and p3r .

To find p1r we will find the nonzero solution to ( r I – A)p1r = 0

To find p2r we will find the nonzero solution to ( r I – A)p2r = p1r

To find p3r we will find the nonzero solution to ( r I – A)p3r = p2r

These are called generalized eigenvectors corresponding to the three
repeated eigenvalues. In some situations, even if we have repeated eigen-
values, we still can get independent eigenvectors if the matrix A is symmet-
ric. We do that by finding a nonzero solution to ( i I – A)pi = 0 where i is
the repeated eigenvalue.

5.3 General Representation of Systems in State-Space

Thus far we have seen many representations of discrete linear time-invariant
systems. We have seen the difference equation representation, the block dia-
gram representation, the z-transform representation, and the impulse response
representation. Given any representation we should be able to deduce the
other. In this section we will study the state-space representation starting with
the difference equation. Using state-space representation, a difference equation
of order n can be reduced to n first-order difference equations.

5.3.1 Recursive Systems

Consider the fourth order equation

y(n) – a1y(n – 1) – a2y(n – 2) – a3y(n – 3) – a4y(n – 4) = box(n)
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We will have four states v1 through v4 since we have a fourth-order difference
equation. Let

v1(n) = y(n – 4)

v2(n) = y(n – 3)

v3(n) = y(n – 2)

v4(n) = y(n – 1)

from which we write

v1(n + 1) = y(n – 4 + 1) = y(n – 3) = v2(n)

v2(n + 1) = y(n – 3 + 1) = y(n – 2) = v3(n)

v3(n + 1) = y(n – 2 + 1) = y(n – 1) = v4(n)

and we can also write the output as

y(n) = a1y(n – 1) + a2y(n – 2) + a3y(n – 3) + a4y(n – 4) + b0x(n)

= a1v4(n) + a2v3(n) + a3v2(n) + a4v1(n) + b0x(n)

Therefore, we can finally write

v1(n + 1) = v2(n)

v2(n + 1) = v3(n)

v3(n + 1) = v4(n)

v4(n + 1) = a4v1(n) + a3v2(n) + a2v3(n) + a1v4(n) + b0x(n)

Notice that the right side of all of the above four state equations is a function
of the states v1(n) through v4(n) and the input. This should be the case. No
term such as v1(n – 1) or v2(n – 3) should appear on the right side of these
equations.

We can now arrange the state equations in matrix form and write
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and for the output equation we have

y(n) = + b0x(n)

with

A = B = C = D = (b0)

We can write the state and output equations in matrix form as

v(n + 1)= A v(n) + B x(n)

y(n) = C v(n) + D x(n)

When v(n + 1) is a 4 1 matrix, A is 4 4 matrix, B is 4 1 matrix, C is a 1 4
matrix and D is a 1 1 matrix. Notice that these state equations are now in
the form of a first-order matrix difference equation.

5.3.2 Nonrecursive Systems

Consider the difference equation

y(n) = a0x(n)  + a1x(n – 1)  + a2x(n – 2)  + a3x(n – 3)

Let

v1(n) = x (n – 3)

v 2(n) = x (n – 2)

v 3(n) = x (n – 1)

Then

v 1(n + 1) = x (n – 2) = v2(n)

v 2(n + 1) = x (n – 1) = v3(n)

v 3(n + 1) = x (n)
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and the output equation is

y(n) = a0x(n) + a1x(n – 1) + a2x(n – 2) + a3x(n – 3) 

Substituting the states in the above output equation gives

y(n) = a0x(n) + a1v3(n)  + a2v2(n)  + a3v1(n)

The state matrix equations are then

= + x

y(n) = + a0x(n)

where in this case

A = B = C = D =

5.3.3 From the Block Diagram to State-Space

Consider the block diagram shown in Figure 5.1. To obtain the states from
the block diagram, we need first to determine the order of the system so that
we know how many states to consider. Then we will let the output of every
delay represent a state. Since the system is second order, we will have two
states v1(n) and v2(n). Let the output of the first delay from the input side be
denoted as v1(n). Then the input of this delay is v1(n + 1). Therefore, from
the graph we have 

v1(n + 1) = x(n)  + a0y(n)

Let the output of the second delay be v2(n). Then
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or

The input to the second delay is v2(n + 1) and is 

Also, the output y(n) is

y(n) = b0x(n) + v2(n)

Therefore, the state and the output matrix equations are

= + b0x(n)

where

A = B = C = D =

Consider another block diagram as shown in Figure 5.2. This system is
third order and must have three states. Let the output of the first delay from
the input side be v1(n), the output of the second delay be v2(n), and the output
of the last delay be v3(n). The input of the first delay is 

FIGURE 5.1 Block diagram representation 1.
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v1(n + 1) = x(n) + a0 v1(n)

The input of the second delay is 

v2(n + 1) = v1(n) + a1 v2(n)

The input of the third delay is 

v3(n + 1) = v2(n) + a2 v3(n)

The output y(n) is 

y(n) = v3(n)

We then have the state-space system in matrix form as 

= + x(n)

y(n) = + (0) x(n)

where

A = B = C = D = (0)

FIGURE 5.2 Block diagram representation 2.
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5.3.4 From the Transfer Function H(z) to State-Space

Given H(z), the transfer function is the z-domain. We can obtain the state-
space realization in many ways. We will illustrate that using an example.

Example 5.1

Consider the system

H(z) =

What is the state-space representation?

Solution

1. Using direct realization, the block diagram for H(z) is shown in
Figure 5.3. Let the output of the first delay be v1(n). Then,

where v2(n) is the output of the second delay. Also,

The output is

y(n) = x(n) + v2(n)

FIGURE 5.3 Block diagram for Example 5.1.
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Then the state-space representation is

+ x(n)

with

2. The transfer function can also be written as

H(z) = 

This is what we call the cascade system realization, and the block
diagram can be drawn as in Figure 5.4. Again the system is still
second order and if we let the output of the first delay be v1(n) and
the output of the second delay be v2(n), then

The output is

y(n) = x(n) + v1(n) + v2(n)

FIGURE 5.4 Block diagram for Example 5.1 in cascade form.
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We can now clean the state equations above and write

v1(n + 1) = –2v1(n) – 3x(n)

v2(n + 1) = –2v1(n) – 3v2(n) – 2x(n)

y(n) = v1(n) + v2(n) + x(n)

with

= x(n)

y(n) = x(n)

where

A = B = C = (1 1) D = (1)

3. We can also write H(z) in a parallel realization form as

H(z) = 

The block diagram is shown in Figure 5.5. Let v1(n) be the output of
the upper delay and v2(n) be the output of the lower delay. Then

FIGURE 5.5 Block diagram for Example 5.1 in parallel form.
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v1(n + 1) = 3x(n) – 2v1(n)

and

v2(n + 1) = –8x(n) – 3v2(n)

The output is

y(n) = v1(n) + v2(n)

The state-space system is then

x(n)

y = (1 1) x(n)

with

A = B = C = (1 1) D = (0)

4. Let us now draw a simulation diagram from

H(z) = 

that is different from the diagram we drew earlier in this example.
From 

H(z) =  

we have 

Y(z)

By taking the inverse z-transform we get the difference equation

6y(n) + 5y(n + 1) + y(n + 2) = -x(n) + x(n + 2)

This is a second-order difference equation and its block diagram is
shown in Figure 5.6. Let the output of the first delay on the top be
v2(n) and the output of the lower delay be v1(n). Then we have the
state and the output equations as
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v2(n + 1) = x(n) – 5v2(n) – 6v1(n)

v1(n + 1) = v2(n)

y(n) = v1(n) + x(n) – 5 v2(n) – 6v1(n)

Then the matrix state-space representation is

x(n)

y = x(n)

with

A = B = C = D = (1)

Notice that in all of these four state-space realizations we had different A,
B, C and D matrices. To check that each system is a true realization, the
eigenvalues in each case should be the same. In case 1

A =

FIGURE 5.6 Block diagram for Example 5.1.
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and the eigenvalues for the system are the roots of the determinant of ( I - A).

det( I – A) = 2 + 5 + 6 and the eigenvalues are at –2 and –3.
In case 2

A = and det( I – A) = det =

The eigenvalues are at –2 and –3.
In case 3

A = and det( I – A) = det =

The eigenvalues are at –2 and –3.
In the last case 

A = and det( I – A) = 

The eigenvalues are at –2 and –3.

Example 5.2

Consider the system

with the coefficient of z5 in the denominator always unity. What is the state-
space representation?

Solution

We start by the block diagram shown in Figure 5.7. From the graph we see
that the state equations are
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and the output equation is

The state equations and the output equation in state-space matrix form are

FIGURE 5.7 Block diagram for Example 5.2.
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Example 5.3

Given the system

What is the state space representation? Find A, B, C and D.

Solution

From Example 5.2 we can write these matrices by inspection and get

5.4 Solution of the State-Space Equations in the z-Domain

We are given the state-space system

By taking the z-transform on the above state equations we will get

Notice that z is a scalar and cannot be subtracted from A. Therefore we write
the above equations as
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where I is the identity matrix. Solving the above equation for the states we get

(5.11)

v(n) is the inverse transform of the above equation. For the output y(n) we
have

Y(z) = CV(z) + DX(z) = 

This is a good place to try to find H(z) from the state-space equations. With
v(0) = 0, we have

Y(z) = CV(z) + DX(z) =

or

(5.12)

5.5 General Solution of the State Equation in Real-Time

The state equation in matrix form is repeated here

Assume that the initial condition vector v(0) is known for n = 0. For n = 0,
the state equation becomes

For n = 1 the state equation is

If we substitute v(1) in the equation for v(2) we get

=

For n = 2, the state equation is
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From the above we deduce that for n 0 the states are given by

(5.13)

Let An = (n), the state transition matrix. Then the solution for v(n) becomes

(5.14)

(5.15)

In general we do not attempt to solve for An as a function of n. But we use
recursion to solve for v(n).

Now let us compare the solutions for the state vector using the time-
domain given by

and the solution using the z-domain given as

A close look at these solutions reveals that the transition matrix is found by
comparing the coefficients of v(0) and it is the inverse transform of

(5.16)

5.6 Properties of An and Its Evaluation

In real-time we will use the computer to solve for the states v(n). We can
also use the z-transform method to find a closed-form solution for the states
if the system order is reasonably low. The transition matrix A has some
interesting properties.
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1. The response to a system with zero input is 

For n = 0, v(0) = (0)v(0). This indicates that (0) = I, where I is the
identity matrix. This result is useful if we want to confirm the cor-
rectness of (n).

2. With (n) = An, let n = n1 + n2 to write

3. With (n) = An, let n = –m to get 

Thus we can write 

Example 5.4

Consider the system

Find the states and the output, v(n) and y(n).

Let  with x(n) = 0

Solution

In real-time we can use recursion to solve v(n) and y(n). The state solution is

But with x(n) = 0, 
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Now we start the iteration and write

and so on. But since A is in a diagonal form we have

and therefore the state solution is

Thus

Finally, the closed form solution is
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Using the z-transform, we have

But again with x(n) = 0 we have

Now we substitute this matrix inversion in the states solution to get

and the inverse of V(z) is v(n) which is 

For comparison we find the first few values next.

We can also see that the inverse z-transform of 
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as obtained earlier in real-time. You can also see here that the transition
matrix at n = 0 is

which is the identity matrix.

5.7 Transformations for State-Space Representations

Let us define another state vector called w(n) such that 

w(n) = Pv(n) (5.17)

where P is called the transformation matrix. With w(n) = Pv(n) we have

(5.18)

But we know that the original state equation is

and using the new transformation we have

(5.19)

Then, by substituting in the original state equation we get

(5.20)

Multiply both sides in the equation above by P to get

(5.21)

and for the output we have

(5.22)

These are the new state and output equations. The transfer function of the
original system is 
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For the new system, the transfer function is 

(5.23)

Knowing that

I = PP–1 and (LMN) –1 = N–1 M–1 L–1

we write the new transfer function as

(5.24)

You can see clearly now that 

Hold(z) = Hnew(z)

This also means that the eigenvalues are the same for the new transformed
system.

Assume that the old system has the initial condition vector v(0). Then with
w(n) = Pv(n),

w(0) = Pv(0) (5.25)

and

P-1w(0) = v(0) (5.26)

The solution of the old system in z-domain for the states and the outputs are

(5.27)

Y(z) = CV(z) + DX(z) (5.28)

and the solutions of the new system in the z-domain are

(5.29)

(5.30)
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If the matrix P is the matrix that contains the eigenvectors of A, then PAP–1 is
a diagonal or a block diagonal matrix depending of the eigenvalues of A as
we discussed at the beginning of the chapter. When the matrix A is transformed
into a diagonal matrix where the eigenvalues are located on the main diagonal,
the state equations are decoupled and can be solved one by one easily.

5.8 Some Insights: Poles and Stability

The objective of this chapter is to represent linear systems in state-space form
and to look for ways of solving for the states. In that, the process was to
represent an nth order system (nth order difference equation) as n first-order
difference equations and arrange these equations in what we call state-space
representation as

where x is the input vector (assuming multiple inputs) and y is the output
vector (assuming multiple outputs). The v vector is the vector that contains
the states of the system. The A matrix is the matrix that contains the param-
eters that control the dynamics of the system. As we saw in previous chap-
ters, in every system representation there was a way to find the eigenvalues
of the system. In state-space representation, the roots of the determinant of
the matrix, (sI – A), where I is the identity matrix, are the eigenvalues of the
system, the poles. And as we mentioned before, these poles determine the
shape of the transients of the system under investigation.

Consider the case where the dynamics matrix A is

A =

( I – A) = –

The eigenvalues are the roots of the determinant of ( I – A). They are the roots
of 2 + 5 + 6 = 0. The eigenvalues are at –3 and –2. Thus we expect a solution
that will contain the terms c1(–3)n  + c2(–2)n. The stability of this system depends
entirely on the eigenvalues, not on the constants c1 and c2. These eigenvalues
are the roots of ( I – A). They are also the roots of the characteristic equation
derived from the difference equation and also the roots of the denominator in
the transfer function representing the system in the z-domain.
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To summarize, if the system is given in state-space form, the stability of the
system is determined by finding the roots of det( I – A). If all the roots are
within the unit circle, the system is stable. If one of the roots is not, the system
is unstable. And again, the roots will determine the shape of the transients.

5.9 End of Chapter Examples

EOCE 5.1

Consider the following matrices

Find the following:

1. AB – B and (AB)T + C

2. A–1 and AA–1

3. The eigenvalues for A and A2

4. CDB + D

5. BC – A

Solution

We will use MATLAB to find the answers to the above questions. The MATLAB

script is 

A=[-2 0;0 -3]; B=[0;1]; C=[1 2]; D=[5];

ABminusB=A*B-B

ABtransplusC=(A*B)' + C

invA=inv(A)

AinvA=A*inv(A)

eigA=eig(A)

eigAA=eig(A*A)

CDBplusD=C*D*B + D

BCminusA=B*C-A

The result is

ABminusB =
0

–4

A B C D
2 0

0 3
0
1

1 2 5( )
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ABtransplusC =
–1 –1
2

invA =
–0.5000      0

0   –0.3333

AinvA =
1  0
0  1

eigA =
–3
–2

eigAA =
4
9

CDBplusD =
15

BCminusA =
2  0
1  5

EOCE 5.2

Consider the following matrices

Find

1. Eigenvalues for A and B

2. A–1 and B–1

3. (AB)–1 and B–1 A–1

4. BCBC and CA–1

5. (CA)–1 and (BC)–1 A

A B C
2 9
0 1

1 2
0 1

1 0
0 1
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Solution  

MATLAB is used again here. The script is

A=[2 9;0 1]; B=[1 2;0 1]; C=[1 0;0 1];

Ainv=inv(A)

Binv=inv(B)

ABinv=inv(A*B)

BinvAinv=inv(B)*inv(A)

BCBC=B*C*B*C

CinvA=C*inv(A)

CAinv=inv(C*A)

BCinvA=inv(B*C)*A

The result is

Ainv =
0.5000   –4.5000

0  1.0000

Binv =
1  –2
0  1

ABinv =
0.5000   –6.5000

0  1.0000

BinvAinv =
0.5000   –6.5000

0  1.0000

BCBC =
1  4
0  1

CinvA =
0.5000   –4.5000

0  1.0000

CAinv =
0.5000   –4.5000

0  1.0000
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BCinvA =
2  7
0  1

EOCE 5.3

Consider the matrices

1. Find eigenvalues and eigenvectors for A and B.
2. Find eigenvalues and eigenvectors for A2 and B2.
3. Put C in the diagonal form by first calculating P, the matrix of the

eigenvector for C.
4. What are the eigenvectors and eigenvalues of P–1CP?

Solution

We will use MATLAB again. The MATLAB command

[V,D] = eig(A,B) 

produces a diagonal matrix D of eigenvalues usually on the main diagonal
and a matrix V with eigenvector columns. The script is

A=[-1 0;0 -2]; B=[-3 0;0 4]; C=[1 1;0 2];

[Aeigvectors Aeigenvalues]=eig(A)

[Beigvectors Beigenvalues]=eig(B)

[AAeigvectors AAeigenvalues]=eig(A*A)

[BBeigvectors BBeigenvalues]=eig(B*B)

[Pofeigenvectors Cindiagonalform]=eig(C)

[PinvCPeigvectors PinvCPeigenvalues]=eig(inv 
(Pofeigenvectors)*C*P)

The result is

Aeigvectors =
0  1
1  0

Aeigenvalues =
–2    0
0  –1

A B C
1 0

0 2
3 0

0 4
1 1
0 2
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Beigvectors =
1  0
0  1

Beigenvalues =
–3    0
0  4

AAeigvectors =
1  0
0  1

AAeigenvalues =
1  0
0  4

BBeigvectors =
1  0
0  1

BBeigenvalues =
9  0
0  16

Pofeigenvectors =
1.0000  0.7071

0  0.7071

Cindiagonalform =
1  0
0  2

PinvCPeigvectors =
1  0
0  1

PinvCPeigenvalues =
1  0
0  2
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EOCE 5.4

Put the following system in state-space form.

Solution

Let

We have three states since our system is third order. Thus we have

=

The output y(n) is

and the state and output equations are

EOCE 5.5

Consider the system

Write the state and output equations for this system.

y n y n y n x n( ) ( ) ( ) ( )2 1 3 3 4

v n y n1 3( ) ( )

v n y n2 2( ) ( )

v n y n3 1( ) ( )

v n y n v n1 21 2( ) ( ) ( )

v n y n v n2 31 1( ) ( ) ( )

v n y n y n x n3 1 2 1 3 3 4( ) ( ) ( ) ( ) 2 3 43 1v n v n x n( ) ( ) ( )

y n v n v n x n( ) ( ) ( ) ( )2 3 43 1

v v x( ) ( ) ( )n n n1
0 1 0
0 0 1
3 0 2

0
0
4

y v x( ) ( ) ( ) ( )n n n3 0 2 4

H z
z

z z z
( )

2 1
3 2 83 2
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Solution

We can deduce the difference equation from H(z) first, then find the state
equations.

From the transfer function we can write

By taking the inverse transform we get

Let us draw the block diagram first. The block diagram is shown in Figure 5.8.
From the figure we see that the states are 

and the output is

FIGURE 5.8 Block diagram for EOCE 5.5.

v3

v2

x(n) y(n)

v1

�

�

�

��

�

�

-3

1

D

D

-2

-1

2

D

Y z z z z z X z( ) [ ] ( )3 23 2 1 2 1

y n y n y n y n x n x n( ) ( ) ( ) ( ) ( ) ( )2 1 3 2 3 2 1

v n x n v n v n v n

v n v n

v n v n

3 3 2 1

2 3

1 2

1 3 2

1

1

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

y n v n v n( ) ( ) ( )1 22
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From the state and the output equations we can form the state-space matrix
equations as

We can also write different state equations using Example 5.2. Referring to
Example 5.2 we have

in our present case. Then by inspection we have

After substitution we arrive at

EOCE 5.6

Consider the following system in Figure 5.9. Write the state equations in
matrix form.

FIGURE 5.9 Block for EOCE 5.6.

v v x( ) ( ) ( )n n n1
0 1 0
0 0 1
1 2 3

0
0
1

y v x( ) ( ) ( ) ( )n n n1 2 0 2

H z
b z b z b z b
z a z a z a

z z z
z z z

( ) 0
3

1
2

2 3
3

1
2

2 3

3 2

3 2

0 0 2 1
3 2 1

v v x( ) ( ) ( )n n n1
0 1 0
0 0 1
1 2 3

0
0
1

y v x( ) ( ) ( )n b a b b a b b a b n b n3 3 0 2 2 0 1 1 0 0

y v x( ) ( ) ( ) ( )n n n1 2 0 0

y(n)

v3v2v1

x(n)

-2 -3 -5

DDD ����
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Solution

Let the output of the first delay be v1(n), v2(n) for the second delay and v3(n)
for the third delay. Then the state equations are

The output equation is

The state and output equations in state-space matrix form then are

EOCE 5.7

Consider the system

1. For what values of k is the system stable?
2. For a value of k that stabilizes the system, find H(z) = .

3. Use recursion to solve for v(0), v(1), v(2), v(3) and v(4) with x(n) =

u(n) and v(0) = .

4. Use the z-transform to solve for v(n) for n 0.
5. What is the transition matrix?

v n x n v n1 11 2( ) ( ) ( )

v n x n v n2 21 3( ) ( ) ( )

v n x n v n3 31 5( ) ( ) ( )

y n x n v n( ) ( ) ( )3

v v x( ) ( ) ( )n n n1
2 0 0

0 3 0
0 0 5

1
1
1

y v x( ) ( ) ( )n n n0 0 1

v v x

y v

( ) ( ) ( )

( ) ( )

n
k

n n

n n

1
1 0
1

0
1

0 1

Y z
X z

( )
( )

0
1
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Solution

1. The eigenvalues of this system are the roots of the characteristic
equation, which is the determinant of ( I – A) set equal to zero.

det

This system is stable if the eigenvalues of the system matrix A are
all within the unit circle. The eigenvalues are at 1 and k. Therefore,
for stability, the value of k has to be within the unit circle. 

2. For k = , the state matrices are 

The transfer function in this case is

We use MATLAB to find the transfer function H(z) from the matrices
A, B, C and D. We will use the MATLAB function ss2tf (state-space
to transfer function) to do that in the following script.

A=[1 0; 1 -1/2]; B=[0;1]; C=[0 1]; D=[0];

[num den]= ss2tf(A,B,C,D)

I A
0

0
1 0
1

1 0
1k k

( ) ( )( )I A 1 k

1
2

A B C D
1 0

1
1
2

0
1

0 1 0

H C I A B D( ) ( )z z 1

H( )z
z

z0 1
1 0

1
1
2

0
1

1

H( )
( )( )

z
z z

z

z
0 1

1
1
2

1

1
2

0

1 1

0
1

H( )
( ) ( ) ( )

z
z z

z

z z

z

z z

1
1
2

1

1
1
2

1

0
1

1
1
2

1
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to get
num =
    0 1 –1

den =
1.0000 –0.5000 –0.5000

and the transfer function is

3. To use recursion to solve for v(n) we will use the equation

v(n + 1) = Av(n) + Bx(n)
and

y(n) = Cv(n) + Dx(n)

We will have the initial sate as

The other few terms of the state vector and the output are given
below.

v(1)

H( )
( )

z
z

z z
z

z z

1
1 2 1 2

1
1
2

1
2

v

y

( )

( )

0
0
1

0 0 1
0
1

1

1 0
1

1
2

0
1

0
1

1
0
1
2

0
1

0
1
2

y( )1 0 1
0
1
2

1
2

v( ) ( )2
0 0

1
1
2

0
1
2

0
1

1
0
1
4

0
1

0
3
4

y( )2 0 1
0
3
4

3
4
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and so on. We can use MATLAB to do this recursion. We will do that
in the following script.

A=[1 0; 0 -1/2]; B=[0;1];C=[0 1];D=[0];

isv=[0;1];%initial state vector

for n=0:3 %only the first four values

  yn=C*isv

  isvplus1=A*isv + B*1; % 1 comes from unit step input

  isv=isvplus1

end

to get the same results as we had before.
4. We can also use the z-transform method to find the output and the

state values.

After some simplifications we arrive at

and the output in the z-domain is given by

The output is one-dimensional or scalar. We can do partial fraction
expansion using MATLAB and write

num = [1 0 0];

den = [1 -1/2 -1/2];

[r p k]=residuez(num, den)

V I A v I A BX( ) ( ) ( ) ( ) ( )z z z z z1 10

V

V

( )
( ) ( )

( )
( )

( )

z
z

z z

z

z z z

z

z

z
z

z
z z

z z

1
2

1

1
2

0

1 1

0
1

5
1

1
2

1

1
2

0

1 1

0
1 1

0
1

1
2

1

0
1

1
2

1 1

z

z z

z
z( )

V( )
( )

( ) ( )
z

z z z

z z

z

z z

0
1

1
2

1

0

1
2

1

2

Y CV Vz z z
z

z z
0 1

1
2

1

2

( )
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to get
r = 0.6667 0.3333

p = 1.0000 -0.5000

Therefore, with the help of MATLAB we arrive at

and by taking the inverse transform we get

If we substitute values for n we can verify the results we arrived at
earlier. Try that.

5. The transition matrix An is the inverse transform of 

By taking the inverse z-transform we find the transition matrix as

You can see that as an indication that the transition
matrix is correct.

We can also use MATLAB to verify the entries in the transition matrix An.
For the first entry we have 11(z) = . We will write the following MATLAB

script to find 11(n).

Y z
z

z
z

z
( )

.0 6667
1

1 3
1
2

y n v n u nn
n

( ) ( ) . ( ) ( )2 0 6667 1 1 3
1
2

z z

z
z

z
z z

z
z

( ) ( )

( )

I A 1 1
0

1 2 1 1 2

z z

z
z

z z
z

z

( ) ( )
.

( )

I A 1 1
0

0 6667
1

1 3
1 2 1 2

An
n

n n n u n
( )

. ( )
( )

1 0
0 6667 1 1 3 1 2 1 2

A0 1 0
0 1

z
z 1
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syms Phill z %symbolic definitions

Phill = z/(z-1); 

iztrans(Phill)

The result is 1u(n) as expected.

EOCE 5.8

Consider the system in Figure 5.10.

1. Write down the state and output equations.
2. What is the transition matrix?
3. With x(n) = 0 and an initial state vector of , what is the state

vector and the output?
4. Is the system stable?
5. Use MATLAB to find y(n), for x(n) = u(n) and the initial state of .
6. Find the transfer function H(z).

Solution

1. From Figure 5.10 and by taking v1(n) as the output of the upper delay
and v2(n) as the output of the lower delay, we have the state equations

The output equation is

FIGURE 5.10 Block diagram for EOCE 5.8.

1
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Then the state and output equations are grouped as

2. With , the state transition matrix is the inverse trans-

form of z(zI – A)–1. We have 

and

The transition matrix written is the inverse transform of z(zI – A)–1

and is

But since A is in diagonal form, we could have found An by inspec-
tion. With 

,

3. With x(n) = 0, the state vector becomes

v v x( ) ( ) ( )n n n1
1 0

0 2
1
1

y v x( ) ( ) ( ) ( )n n n1 1 0

A
1 0

0 2

( )
( )( )

z
z

z

z

z z z
I A 1

11 0
0 2

2 0
0 1

1
1 2

z z

z
z

z
z

I A 1 1
0

0
2

An
n

n

u n

u n

( ) ( )
( ) ( )

1 0
0 2

A
1 0

0 2
An

n

n

u n

u n

( ) ( )
( ) ( )

1 0
0 2

v Av( ) ( )n n1
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For n = 0 we have

For n = 1 we get

For n = 2 we have

For n = 3 we get

For n = 4 we get

Then by induction we can see that 

and

v( )0
1
0

y( ) ( ) ( )0 0 0 11 2v v

v

y

( )

( ) ( ) ( )

1
1 0

0 2
1
0

1
0

1 1 1 1 0 11 2v v

v

y

( )

( ) ( ) ( )

2
1 0

0 2
1
0

1
0

2 2 2 1 0 11 2v v

v

y

( )

( ) ( ) ( )

3
1 0

0 2
1
0

1
0

3 3 3 1 0 11 2v v

v

y

( )

( ) ( ) ( )

4
1 0

0 2
1

0
1
0

4 4 4 1 0 11 2v v

v( )
( ) ( )

n
u nn1

0
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Using MATLAB we can use recursion and write the following script
to solve for the output and the state vector:

A=[-1 0; 0 -2]; B=[1;1];C=[1 1];D=[0];

isv=[1;0];%initial state vector

for n=0:4 %only the first five values

  yn=C*isv

  isvplus1=A*isv + B*0; % 0 comes from zero input

  isv=isvplus1

end

and the result will be identical to what we just found. We can also
plot y(n) vs. n by using the MATLAB function dlsim as in the
following script:

A=[-1 0; 0 -2]; B=[1;1];C=[1 1];D=[0];

isv=[1;0];%initial state vector

n=0:10;

x=zeros(1,length(n));

[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear syatem 
simulation

stem(n,y); xlabel('n'); ylabel('Initial condition 
response');

The plots are shown in Figure 5.11.
4. The stability of the system depends on the location of the poles. One

of the poles is not within the unit circle. Thus the system is not stable.
5. With x(n) = u(n) and the initial conditions, v1(0) = 1 and v2(0) = 0,

we can use MATLAB to find y(n) as in the following script:

A=[-1 0; 0 -2]; B=[1;1];C=[1 1];D=[0];

isv=[1;0];%initial state vector

n=0:10;

x=(1.^n);

[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear system 
simulation

stem(n,y); xlabel('n'); ylabel('The step response');

The plot is in Figure 5.12.

y( ) ( ) ( )n u nn1
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FIGURE 5.11 Plot for EOCE 5.8.

FIGURE 5.12 Plot for EOCE 5.8.
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6. The transfer function H(z) is calculated using the equation

Finally

We can use MATLAB to verify this result as in the following script.

A=[-1 0; 0 -2]; B=[1;1];C=[1 1];D=[0];

[num den]=ss2tf(A,B,C,D)

to get
num = 0    2    3
den = 1    3    2

which verifies the result.

EOCE 5.9

We have seen in this chapter that the state-space representation is not unique.
To illustrate that consider the following system 

with

What are the other state-space representations?

Solution

Let us define another state vector called w(n) such that w(n) = Pv(n) where
P is called the transformation matrix. Let

H C I A B D( ) ( )z z 1

H( ) ( ) ( )z z

z
z z

1 1

1
1

0

0
1

2

1
1

0
1

1
1

2

1
1

H( )
( )( )

z
z z

z z
z z

z
z z

1
1

1
2

2 1
1 2

2 3
3 22

v Av Bx( ) ( ) ( )n n n1

y Cv D x( ) ( ) ( ) ( )n n n

A B C D
2 0
0 3

0
1

0 1 0      ( )    ( )

P
1 0
0 2
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Then the new system is

and for the output we have

Assume that the old system has the initial condition Vector . Then

with w(n) = Pv(n), w(0) = Pv(0) and P-1w(0) = v(0). The solutions of the new
system in the z-domain are

and

Let us now use MATLAB to find the step response with zero initial conditions
to the old system; we will then consider the new system and see that the
two outputs are the same. The MATLAB script is next.

A=[0.5 0; 0 0.4]; B=[0;1];C=[0 1];D=[0];

n=0:10;

x=(1.^n);

isv=[0;0];% initial state vector

[yold v]=dlsim(A,B,C,D,x,isv);subplot(2,1,1); stem(n,yold);

title('The step response using the old system');

P=[ 1 0; 0 2];

Anew=P*A*inv(P);

Bnew=P*B;

Cnew=C*inv(P);

Dnew=D;

isvw=P*isv;

[ynew w]=dlsim(Anew, Bnew, Cnew, Dnew, x,isvw);

subplot(2,1,2); stem (n, ynew); xlabel('n'); 

title('The step response using the new system');

The plot s are shown in Figure 5.13.
We can also use MATLAB to check the stability and the eigenvalues for both

systems as in the following script.

w PAP w PBx( ) ( ) ( )n n n1 1

y CP w D x( ) ( ) ( ) ( )n n n1

v( )0
1
0

W I PAP w I PAP PBX( ) ( ) ( )z z z z z1 1 1 1
0

Y CP W DX( ) ( ) ( )z z z1
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A=[0.5 0; 0 0.4]; B=[0;1];C=[0 1];D=[0];

P=[ 1 0; 0 2];

Anew=P*A*inv(P);

Aeigenvalues=eig(A)

Aneweigenvalues=(Anew)

to get

Aeigenvalues =
0.4000
0.5000

Aneweigenvalues =
0.4000
0.5000

EOCE 5.10

Consider the following system

FIGURE 5.13 Plot for EOCE 5.9.
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1. Is the system stable?
2. Find y(n) if x1(n) = (.1)n u(n) and x2(n) = (.1)n u(n).
3. Find the transfer function H(z).

Solution

1. Let us write the state and output equations first. Let 

Then,

and

The state and output equations are then

with

The eigenvalues for A are the roots of the determinant of (zI – A).

v n y n1 2( ) ( )

v n y n2 1( ) ( )

v n y n v n1 21 1( ) ( ) ( )

v n y n x n x n y n y n

x n x n v n v n

2 1 2

1 2 2 1

1 1 2( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

v v( ) ( )
( )
( )

n n
x n

x n
1

0 1
1 1

0 0
1 1

1

2

y v( ) ( )
( )
( )

n n
x n

x n
1 1 1 1 1

2

A B C D
0 1
1 1

0 0
1 1

1 1 1 1

det( ) detz
z

z
I A

1
1 1

det( )z z zI A 2 1
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The roots are

The magnitude of the roots is unity. This means that the system is
on the verge of instability or we can call it unstable.

2. With zero initial conditions,

Y(z) = CV(z) + DX(z)

We can substitute in the above state equation and write

The output equation in the z-domain is

or

z j1 2
1 1 4

2
1

2
3
2,

V I A BX( ) ( ) ( )z z z1
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.

z

z
z z z z
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z
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z
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z
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1
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1
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We can use MATLAB to find the inverse transform of Y(z) and get
y(n). We will leave that as an exercise.

We can also use MATLAB to find y(n) as in the following script. We
will use superposition first. This means that we will kill the inputs
one at a time. In this case only the B and the C matrices will change.

We will then apply both inputs at once. The matrices in this case are

The MATLAB script is next.

%We start with the solution using superposition

A=[0 1 ; -1 1]; B=[0;1];C=[-1 -1];D=[1];

isv=[0;0];%initial state vector

n=0:10;

x1=(.1).^n; x2=(-.1).^n;

[y1,v1]=dlsim(A,B,C,D,x1,isv);% dlsm: discrete linear 
syatem simulation

[y2,v2]=dlsim(A,B,C,D,x2,isv);

y=y1 + y2;

subplot(2,1,1);stem(n,y); xlabel('n'); ylabel('The 
response due to both inputs using superposition');

% Both inputs are applied together next

A=[0 1 ; -1 1]; B=[0 0;1 1];C=[-1 -1];D=[1 1];

isv=[0;0];%initial state vector

n=0:10;

x1=(.1).^n; x2=(-.1).^n;

x=[x1;x2];

[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear system 
simulation

subplot(2,1,2);stem(n,y); xlabel('n'); 

ylabel('The response due to both inputs applied together');

The plots are shown in Figure 5.14.
3. The transfer function H(z) is 
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Since we had two inputs and single output, we should have one row in H(z)
with two entries. They are 

We can also use MATLAB to find H(z) as in the following script.

FIGURE 5.14 Plots for EOCE 5.10.

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

n

The response due to both inputs applied together

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4
The response due to both inputs using superposition

n

H( )
( )

z
z

z z z z z z
z

z z
1

1
1

1
1

1 1

0 0
1 1

1 12 2 2 2

H( )z
z z

z
z z z z

z
z z

1
1 1

1
1 1

1 12 2 2 2

H z
z z

z
z z

z
z z

Y z
X z11 2 2

2

2
1

1
1 1

1
1

( )
( ) ( )

( )

H z
z z

z
z z

z
z z

Y z
X z12 2 2

2

2
2

1
1 1

1
1

( )
( ) ( )

( )



State-Space and Discrete Systems 317

A=[0 1 ; -1 -1]; B=[0 0;1 1];C=[-1 -1];D=[1 1];

[num1 den]=ss2tf(A,B,C,D,1)%for the numerator of H11(z)

[num2 den]=ss2tf(A,B,C,D,2)%for the numerator of H12(z)

The result is 
num1 = 1 0 0
den = 1.0000   1.0000  1.0000
num2 = 1 0 0
den = 1.0000   1.0000  1.0000

which agrees with the analytical results obtained previously.

EOCE 5.11

Consider the system

Find the output y(n) if the input is x(n) = u(n). Use as many different state-
space representations as you wish.

Solution

1. Using Example 5.2 we can write the first state-space representation
by inspection. We have the state equation as

and the output equation as

2. Series connection. The transfer function can be written as
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The block diagram is shown in Figure 5.15. From Figure 5.15 we
have the state equations as

and the output equation is

Thus the state-space system is

3. Using partial fraction expansion we can write the transfer function as

The block diagram is shown in Figure 5.16. From Figure 5.16 we can
see that the states are

and the output is

FIGURE 5.15 Block diagram for EOCE 5.11.
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The states and output equations in matrix form are

4. We can represent the system in the block diagram as shown in Figure
5.17. Let the output of the first delay be v1(n). Then

Let the output of the second delay be v2(n) and the output of the
third delay be v3(n). Thus

The output from the figure is given by

FIGURE 5.16 Block diagram for EOCE 5.11.
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The state and output equations are then

We will use MATLAB next to find the step response, y(n), for all four repre-
sentations and show that y(n) for all four representations is the same. Let us
also use zero initial conditions.

%For the first system

A=[0 1 0; 0 0 1; 6 -11 6]; B=[0;0;1];C=[6 -9 9];D=[1];

isv=[0;0;0];%initial state vector

n=0:10;

x=(1.^n);

[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear syatem 
simulation

subplot(2,2,1);

stem(n,y); ylabel('First representation');

%For the second system

A=[0 5 2; 0 3 2; 0 0 2]; B=[1;1;1];C=[2 5 3];D=[1];

FIGURE 5.17 Block diagram for EOCE 5.11.
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[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear syatem 
simulation

subplot(2,2,2);

stem(n,y); ylabel('Second representation');

%For the third system

A=[2 0 0; 0 3 0; 0 0 1]; B=[1;1;1];C=[16 30 3];D=[21];

[y,v]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear syatem 
simulation

subplot(2,2,3);

stem(n,y); ylabel('Third representation');xlabel('n')

%For the fourth system

A=[0 0 6; 1 0 -11; 0 1 6]; B=[6;-9;9];C=[0 0 1];D=[1];

[y1,v1]=dlsim(A,B,C,D,x,isv);% dlsm: discrete linear syatem 
simulation

subplot(2,2,4);

stem(n,y); ylabel('Fourth representation');xlabel('n')

The plots are shown in Figure 5.18. Note in this example that the A matrix
in the third case is diagonal. So for analytical solutions it is desirable that
you do partial fraction expansion and then draw the block diagram from
which you will obtain the A matrix in its diagonal form. Note also that if

FIGURE 5.18 Plots for EOCE 5.11.
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then

5.10 End of Chapter Problems

EOCP 5.1

Let  and 

1. Find A2, A3, A–1 and the eigenvalues and eigenvectors for A.
2. Find B2, B3, B–1, eigenvalues and eigenvectors for B.

EOCP 5.2

For

1. Find eigenvalues and eigenvectors for B.
2. Form the matrix P which has the eigenvectors as its columns.
3. Find P–1BP. Is it diagonal?
4. Find the eigenvalues for P–1BP.

EOCP 5.3

With

Find An, Bn and Cn.
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EOCP 5.4

Consider the following difference equations

1.

2.

3.

4.

5.

6.

7.

8.

9.

Find the state-space representation for each system above. Find A, B, C and D.

EOCP 5.5

Given the following impulse responses

1.
2.

3.

4.
5.

Find the state-space representation for each system. Find A, B, C and D.

EOCP 5.6

Consider the following blocks in Figures 5.19 through 5.23. Find the state-
space representation for all blocks. Find A, B, C and D.

EOCP 5.7

Consider the following transfer functions

1.

2.

3.
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FIGURE 5.19 Block for EOCP 5.6.

FIGURE 5.20 Block for EOCP 5.6.

FIGURE 5.21 Block for EOCP 5.6.

FIGURE 5.22 Block for EOCP 5.6.
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4.

5.

Find four different state-space representations for each transfer function.

EOCP 5.8

Consider the system

Use the state-space in all parts.

1. For what value k is the system stable?
2. Take a value for k that makes the system stable and find the eigen-

values of the system.
3. For the value of k in part 2 find the output y(n) for x(n) = u(n) using

MATLAB.
4. Repeat part 3 using the z-transform method.
5. Find the transition matrix An.
6. Find H(z) from the state equations analytically.
7. Find H(z) using MATLAB.
8. Use MATLAB to find h(n) from H(z). Find the residues using MATLAB.

EOCP 5.9

Consider the system

with y(–1) = 0 and y(–2) = 1.

FIGURE 5.23 Block for EOCP 5.6.
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1. Is the system stable?
2. Put the system in state-space.
3. Use MATLAB to find h(n) using the state equations.
4. Use MATLAB to find y(n), the step response.
5. Use MATLAB to find the derived initial conditions with x1(0) = x2(0) = 0.
6. Find H(z) using MATLAB and identify each entry with the H(z) matrix.
7. Find An.

EOCP 5.10

Consider the systems

For both systems and using state-space method

1. Find two state-space representations.
2. Find h(n).
3. Find An.
4. Find the step response.
5. Check stability for both systems.

EOCP 5.11

Consider the system

1. Write the state-space representation.
2. For what value(s) of k is the system stable?
3. Find the difference equation representing H(z).
4. Pick a k that makes the system stable and find the output y(n) for

x(n) = n sin(n)u(n). Use the MATLAB function dlsim to do that.
5. Find An for a given k.
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EOCP 5.12

Consider the system

where y1(n) and y2(n) are the outputs and x1(n) and x2(n) are the inputs.

1. Write the state-space equations describing the system.
2. Is the system stable? Find the eigenvalues for A.
3. With x1(n) = x2(n) = u(n), find y1(n) and y2(n).
4. Find the transfer function matrix H(z) from A, B, C and D.
5. Find the state transition matrix.
6. Find the impulse response of the system.
7. Draw the block diagram for the system and obtain a different state-

space representation.
8. Find the step and impulse responses for the representation in part 7.
9. What are the eigenvalues for the new representation in part 7.

EOCP 5.13

Consider the system in Figure 5.24.

1. Write the state-equations for this system.
2. Is the system stable?
3. What is the transition matrix?
4. What is the transfer matrix H(z)?

5. Find y1(n) and y1(n) for .

6. Find the impulse response for the system.
7. Write the coupled two difference equations describing the system.

FIGURE 5.24 System for EOCP 5.13.
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EOCP 5.14

Consider the systems

1. Draw the block diagram for these systems.
2. What are the state-space representations for both systems?
3. What is the transition matrix for both systems?
4. Find the step response for both systems.
5. Find the impulse response for both systems.
6. Are the systems stable?
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6
Modeling and Representation of Discrete 
Linear Systems

6.1 Introduction

The transfer function, H(z), for linear time-invariant systems can be inverse
transformed to produce h(n), the impulse response of the system. Thus h(n),
the signal, can be modeled using the z-transform approach to represent the
transfer function of the system. In communications, we broadcast signals of
various types, and in most situations we sample the signal to be transmitted
and then transmit it via a communication channel using a huge number of
data points. Due to many factors, such as interference, these data values get
distorted. However, we can represent the signal to be transmitted using the
z-transform approach and transmit only the coefficients of the numerator
and the denominator of the transfer function H(z).

When we studied the general form of the sinusoidal signal in previous
chapters, we modeled the signal as

x(n) = Acos(θn+ϕ) (6.1)

To avoid loosing data points during transmission, we can send only the
amplitude of the signal, its frequency and its phase. This is easier and more
efficient.

The transfer function, H(z), and the signal x(n) = Acos(θn +ϕ), among many
other representations, are models that we employ for certain uses. In this
book we use modeling primarily for the purpose of analysis and design of
linear time-invariant systems.

We can model mechanical systems, for example, using the laws of Newton
to write a set of differential equations. We can model electrical systems as
well using similar laws to derive differential equations that relate different
components in the system. We do similar things in chemical systems,
mechanics and dynamics. Basically, we derive differential equations from
existing systems. If various parameters in these systems are unknown, we
can approximate these systems by finding their impulse response and then
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derive the differential equations represented by these responses. Discrete
systems can then be derived from these models; sometimes we find that
there are systems that are inherently discrete in nature.

6.2 Five Ways of Representing Discrete Linear Systems

In this chapter we will consider representing linear time-invariant systems
using all the techniques that we have presented so far in this book. We can
represent linear time-invariant systems in many ways. The following five
ways are considered.

1. Using linear difference equations with constant coefficients
2. Using the impulse response function, h(n)
3. Using the transfer function approach
4. Using block diagrams
5. Using state-space approach

To do so we will learn by example; we will consider many examples in this
chapter and see how we can move from one representation to another. Given
one representation from the five representations listed above, we should be
able to deduce the other representations. We will also find the output, y(n),
given the input, x(n), along with the necessary initial conditions and dem-
onstrate that the output y(n) will be the same for the same input x(n) and
the same given initial conditions for the same system.

6.2.1 From the Difference Equation to the Other Four Representations

6.2.1.1 The Difference Equation Representation

Consider the difference equation 

y(n) + 3y(n – 1) + 2y(n – 2) = x(n) with y(–1) = y(–2) = 0 and x(n) = u(n)

The characteristic equation is 

z2 +3z + 2 = 0

where z = –2 and z = –1 are the poles of the system. The solution has two
terms, the homogeneous and the particular. The homogeneous solution is 

y n c ch
n n( ) ( ) ( )= − + −1 22 1
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Since x(n) = u(n), a constant, the particular solution is

With yp(n) = c3, the original equation becomes

with c3 = 1/6. Then the total solution is 

Next we evaluate the constants. With the help of the initial conditions we get

We can solve the above equations to get

c1 = 4/3 and c2 = –1/2

The total solution is then

6.2.1.2 The Impulse Response Representation

With x(n) = δ(n), the difference equation becomes

y(n) + 3y(n – 1) + 2y(n – 2) = δ(n)

The solution in this case has two parts. Since the input is a delta, the partic-
ular solution is zero. The total solution in this case is

The impulse response is derived with zero initial conditions. Thus we will
not be able to use the given initial conditions; we will find our own. From
the difference equation with the delta signal as the input we have

h(0) = 1 and h(1) = 0 – 3(1) – 2(0) = –3

y n cp( ) = 3

c c c3 3 33 2 1+ + =

y n c cn n( ) ( ) ( )= − + − +1 22 1 1 6

y c c

y c c

( )

( )

− = = − − +

− = = + +

1 0 2 1 6

2 0 4 1 6

1 2

1 2

y n n n( ) ( ) ( )= − + − − +4 3 2 1 2 1 1 6

h n c cn n( ) ( ) ( )= − + −1 22 1
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From the solution we obtained we have

So by equating these derived initial conditions we get

Solving for c1 and c2 we have 

c1 = –1 and c2 = 2

The final solution is

The output y(n) for x(n) = u(n) is 

6.2.1.3 The z-Transform Representation

We can z-transform the difference equation term by term and get

from which we have the transfer function representation as

The poles of the system are the roots of the denominator in the transfer
function H(z). With x(n) = u(n) we have 

Y(z) =  

We can do partial fraction expansion to find y(n). First we do partial fraction
expansion on Y(z)/z.
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= = + +

where A = 1/6, B = –1/2 and C = 4/3.
Finally, the output in the z-domain is

Y(z) =  +  +  

The output y(n) is the inverse transform of Y(z) and is 

y(n) = n ≥ 0

6.2.1.4 The State-Space Representation

With the difference equation

y(n) + 3y(n-1) + 2y(n – 2) = x(n)

let

Then

The output and the state-space equations are 

y

The eigenvalues for the system matrix A are at –1 and –2, thus the system
is unstable.

To find the output of the system using state-space we proceed as in the
following. The state vector in the z-domain is
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=

=

The output vector is

Y(z) = +  

+ + =

This is what we have found earlier and the output y(n) is

y(n) = n ≥ 0

6.2.1.5 The Block Diagram Representation

The original system is shown in Figure 6.1. From the block we have 

Thus the state-space system is

This representation is similar to the earlier state-space representation and
the output y(n) is obtained in a similar way.
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6.2.2 From the Impulse Response to the Other Four Representations

6.2.2.1 The Impulse Response Representation

We will consider the same system, namely,

If the input is the unit step, the output can be evaluated using the convolution
sum and the result is repeated here as

y(n) = (–1) +2 n ≥ 0

6.2.2.2 The Transfer Function Representation

With

The z-transform is obtained as

H(z) = = =

With the unit step as an input, the output y(n) is inverse z-transform of 

FIGURE 6.1 Bock diagram representation.
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and it was calculated earlier as

y(n) = n ≥ 0

6.2.2.3 The Difference Equation Representation

From the transfer function representation

we can write

By inverse transforming the above equation we arrive at the difference equation

For n = n – 2, we have the difference equation

The output for a step input was derived earlier and is 

y(n) = n ≥ 0

6.2.2.4 The State-Space Representation

With

H(z) =  

We have the block diagram as shown in Figure 6.1. The state and output
equations are again

and the output y(n) is as obtained earlier.
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6.2.2.5 The Block Diagram Representation

With

H(z) =

We can draw a different block diagram as shown in Figure 6.2. Let v1(n) be
the output of the first delay and v2(n) be the output of the second delay. Then

The state matrix equations are then 

The eigenvalues for A are –1 and –2 and again the system is unstable. The
solution is again

y(n) = n ≥ 0

6.2.3 From the Transfer Function to the Other Four Representations

6.2.3.1 The Transfer Function Representation 

Consider the same system

H(z) =  

FIGURE 6.2 A different block representation.
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With the unit step as an input, the output y(n) is the inverse z-transform of 

and it was calculated earlier as

y(n) = n ≥ 0

6.2.3.2 The Impulse Response Representation

With

H(z) =  

The impulse response h(n) is the inverse z-transform of H(z). We will do
partial fraction expansion on

=

Thus

and h(n) is

h(n) = – (–1)n + 2(–2)n n ≥ 0

The output y(n) is the convolution sum between u(n) and h(n) and was
calculated earlier. 

6.2.3.3 The Difference Equation Representation

This was derived earlier from 

and will not be repeated here.
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6.2.3.4 The State-Space Representation

From

H(z) =  

we can obtain the state equations by inspection as we saw in Example 5.2.
The state and the output equations are

v(n+1) =  v(n) +  x(n)

y(n) =  v(n) + (1)x(n)

The eigenvalues for A are at –1 and –2 again and thus this system is unstable.
The output y(n) can easily be calculated and is left for you.

6.2.3.5 The Block Diagram Representation

With

We can draw the block diagram as in Figure 6.3. From Figure 6.3 we can
obtain the state and the output equations as

FIGURE 6.3 Another block representation.
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and the matrix state equations are

v(n + 1) =  v(n) +  x(n)

y(n) =  v(n) + (1)x(n)

The given values of A in this case are at –1 and –2 and the system is again
unstable. The same solution can be obtained again for y(n).

6.2.4 From the State-Space to the Other Four Representations

6.2.4.1 The State-Space Representation

Consider the states and the output equations

It is clear here that the system is unstable and the output y(n) is as calculated
earlier. 

6.2.4.2 The Transfer Function Representation

The transfer function H(z) can be calculated from the state matrix equations
as

After some simplifications we arrive at
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The output Y(z) is

Y(z) =

and y(n) is again

y(n) = n ≥ 0

6.2.4.3 The Impulse Response Representation

From 

H(z) =

The impulse response is the inverse transform of H(z) and is

h(n) = – (–1)n + 2(–2)n n ≥ 0

The output is the convolution between the step input signal and the impulse
response. It was shown earlier and is presented again as

y(n) = n ≥ 0

6.2.4.4 The Difference Equation Representation

We have the state and the output equations as

v(n + 1) = v(n) + x(n)

y(n) =  v(n) + (1)x(n)

The states are 

Let
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Then

The output equation is

By arranging terms we get the difference equation as

The output due to a step input was calculated earlier.

6.2.4.5 The Block Diagram Representation

We have the states and the output equations as

v(n+1) = v(n) + x(n)

y(n) = v(n) + (1)x(n)

From the state and the output equation we can draw the block diagram as
shown in Figure 6.4. The system is again unstable and the output is still 

y(n) = n ≥ 0

FIGURE 6.4 Another block representation.
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6.2.5 From the Block Diagram to the Other Four Representations

Consider the block diagram in Figure 6.5.

6.2.5.1 The State-Space Representation

The states are written using the block in Figure 6.5 as

The output is

The state and matrix equations are then 

v(n+1) = v(n) + x(n)

y(n) = v(n) + (1)x(n)

The eigenvalues for A are the roots of the determinant of (zI – A).

(zI – A) = – =  

The determinant of (zI – A) set to zero is

z2 + 3z + 2 = 0

FIGURE 6.5 Another block representation.
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and has the roots at –1 and –2 which indicates that the system is unstable.
To find the output we need the inverse of (zI – A).

(zI – A)–1 = =

The output therefore is 

Y(z) = + (1)

+ (1)  

Y(z) = + (1)  

Y(z) = + (1)

= +

Finally, the output in the z-domain is given by

The solution y(n) for the above equation was obtained earlier as

y(n) = n ≥ 0

6.2.5.2 The Transfer Function Representation

With

A = , B = , C = and D = (1),
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the transfer function is

H(z) = C(zI-A)–1 B + D = + 1

H(z) = + 1 

= + + 1

H(z) = +

Finally,

H(z) = + =

6.2.5.3 The Impulse Response Representation 

From

H(z) =  

the impulse response is the inverse transform of H(z) and is

h(n) = – (–1)n + 2(–2)n n ≥ 0

The output is the convolution between the step input signal and the impulse
response. It was shown earlier and is presented again as

y(n) = n ≥ 0

6.2.5.4 The Difference Equation Representation

This was derived earlier from 

and will not be repeated here.
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6.3 Some Insights: The Poles Considering Different Outputs 
within the Same System

Given a linear time-invariant system with multiple-inputs multiple-outputs,
the poles of the system, regardless of what output you choose and what
input you consider, will stay the same. This means that in such a system of
many inputs and many outputs, the shape of the transients will be domi-
nated by the fixed number poles of the system.

In summary, in a system of many inputs and many outputs, if you consider
the transfer function relating any input to any output, the eigenvalues, or
poles, will be the same. You may have different zeros for different transfer
functions, but different transfer functions within the same system will have
exactly the same poles.

6.4 End of Chapter Exercises

EOCE 6.1

Consider the following system as shown in Figure 6.6. Represent the system
using all four representations and find the output y(n) for x(n) = u(n).

Solution

Using the state-space model

From the Figure 6.6, we see that 

FIGURE 6.6 Block diagram for EOCE 6.1.
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from which we get the state-space matrix system as

The output y(n) can be obtained with x(n) = u(n) and with zero initial condi-
tions with the help of the following MATLAB script:

n=0:25;

x = ones(size(n));

vin=[0 ; 0];

A = [0 1; -1 1];

B = [0; 1];

C =[0 1];

D = [0];

[y, v] = dlsim(A, B, C, D, x, vin);

stem (n, y), xlabel('n'), ylabel('The step response using the 
state-space model');

The transfer function representation

The transfer function H(z) is obtained as

H(z) = C(zI – A)–1 B + D = + (0)

By evaluating the inverse we get

H(z) = =

Finally, the transfer function is obtained as

H(z) =  

Now we can use the MATLAB function dstep to find the step response and
compare it with what we found using the state-spare representation. The
following script is used.
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num = [0 1 0] % numerator for H(z).

den = [1 -1 1]; % denominator for H(z).

n=0:25;

y=dstep(num, den,n);

stem(n,y); xlabel('n');

ylabel ('The step response using the transfer function model');

The difference equation representation

From 

H(z) =  

and by cross multiplication we have

By inverse transforming the above equation we arrive at

If we substitute n – 2 for n, we will get

We then can use the MATLAB function filter to find the step response y(n)
as long as the coefficient of y(n) in the difference equation is unity. The script
is

b = [0 1 0] ; % input coefficients, x(n)

a = [1 -1 1]; % output coefficients, y(n)

n=0:25;

x=ones(size(n));

y=filter(b,a,x);

stem(n,y); xlabel('n');

ylabel ('The step response using the difference equation 
model');

The impulse response representation

We can take the inverse transform of

H(z) =  

z
z z

Y z
X z2 1− +

= ( )
( )

Y z z z X z z( ) ( )[ ]2 1− +[ ] =

y n y n y n x n( ) ( ) ( ) ( )+ − + + = +2 1 1

y n y n y n x n( ) ( ) ( ) ( )− − + − = −1 2 1

z
z z2 1− +



Modeling and Representation of Discrete Linear Systems 349

to get h(n). We can also use the MATLAB function dimpulse to find the
impulse response h(n) using the convolution equation 

y(n) = h(n) * x(n)

with x(n) = u(n). The next MATLAB script will do just that.

n=0:25;

x1=zeros(size(n));x1(1)=1;% impulse signal to find h(n)

x2=ones(size(n));% the input signal

b=[0 1 0];% input vector

a=[ 1 -1 1];% output vector

h=filter(b,a,x1);%the impulse response h(n)

y=conv(h,x2);%the output using convolution

stem(n,y(1:26));

title('The step response using the impulse response 
representation');

xlabel('n');

All the MATLAB scripts above for this first EOCE can be put together to
produce one plot with multiple figures. By putting them together we have
the script

%State space model

n=0:25;

x = ones(size(n));

vin=[0 ; 0];

A = [0 1; -1 1];

B = [0; 1];

C =[0 1];

D = [0];

[y, v] = dlsim(A, B, C, D, x, vin);

subplot(2,2,1);stem (n, y); 

title('Step response: state-space model');

%Transfer function model

num = [0 1 0] % numerator for H(z).

den = [1 -1 1]; % denominator for H(z).

n=0:25;

y=dstep(num, den,n);

subplot(2,2,2);stem(n,y);

title('Step response: transfer function model');

%Difference equation model

b = [0 1 0] ; % input coefficients, x(n)

a = [1 -1 1]; % output coefficients, y(n)

n=0:25;
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x=ones(size(n));

y=filter(b,a,x);

subplot(2,2,3);xlabel('n');stem(n,y);

title('Step response: difference equation');

%The impulse response model

n=0:25;

x1=zeros(size(n));x1(1)=1;% impulse signal to find h(n)

x2=ones(size(n));% the input signal

b=[0 1 0];% input vector

a=[ 1 -1 1];% output vector

h=filter(b,a,x1);%the impulse response h(n)

y=conv(h,x2);%the output using convolution

subplot(2,2,4);stem(n,y(1:26));

title('Step response: impulse response model');

xlabel('n');

The output using all the representations is shown in Figure 6.7.

EOCE 6.2

Consider the following difference equation representing the discrete system

y(n) + .81y(n – 2) = x(n) – x(n – 2)

FIGURE 6.7 Plots for EOCE 6.1.
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Represent the system using all the models discussed. Find the impulse
response of the system using all representation.

Solution

The difference equation representation

With x(n) = δ(n), we can find the impulse response using MATLAB as in the
script

b = [1 0 -1] ; % input coefficients, x(n)

a = [1 0 .81]; % output coefficients, y(n)

n=0:25;

x=zeros(size(n));x(1)=1;%the impulse signal

y=filter(b,a,x);

stem(n,y); xlabel('n');

ylabel ('Impulse response: difference equation model');

The impulse response representation

We can use the MATLAB filter function directly on the difference equation
to find the impulse response exactly as we did in the difference equation
case. We can also use the MATLAB function dimpulse to find the impulse
response as in the script

b = [1 0 -1] ; % input coefficients, x(n)

a = [1 0 .81]; % output coefficients, y(n)

n=0:25;

y=dimpulse(b,a,n);

stem(n,y); xlabel('n');

title('Impulse response: Impulse response model');

The transfer function representation

From the difference equation and by z-transforming term by term, we get 

By multiplying all sides by z2 we will get

Finally, the transfer function is given by

H(z) =  
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h(n) is the inverse z-transform of H(z) and can be obtained using the filter
function as in the script.

num = [1 0 -1] ; % input coefficients, x(n)

den = [1 0 .81]; % output coefficients, y(n)

n=0:25;

x=zeros(size(n));x(1)=1;%the impulse signal

y=filter(num,den,x);

stem(n,y); xlabel('n');

title('Impulse response: transfer function model');

The state-space representation

With

H(z) =  

the state-space system can be obtained with the following state matrices:

The system matrix A =

The input matrix B =

The output matrix C = =

The transmission matrix D = (1)

The output y(n), the impulse response in this case, can be obtained as in the
script.

n = 0:25;

x = zeros (size (n)); x(1)=1;

vin = [0 ; 0];

A = [0 1; -.81 0]

B = [0; 1]

C = [-1.81 0];

D = [1];

[y, v]= dlsim(A, B, C, D, x, vin);

stem (n, y); xlabel('n'); title('Impulse response: 
state-space');
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The block diagram representation

From 

H(z) =

we can obtain a different state-space representation. The block diagram is
shown in Figure 6.8. From the block we have

The state matrices are 

A = , B = , C = ( 0    1), D = (1)

We will find the impulse response as in the following script:

%State space model

n=0:25;

x =zeros(size(n));x(1)=1;

vin=[0 ; 0];

A = [0 -.81; 1 0];

B = [-1.81; 0];

C =[0 1];

D = [1];

[y, v] = dlsim(A, B, C, D, x, vin);

stem (n, y); 

title('Impulse response: state-space model');

FIGURE 6.8 Block diagram for EOCE 6.2.
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The system is stable since the poles are at z1,2 = ±.9. Again, we can combine
the script in this exercise and produce one plot with multiple figures as in
the following script.

%The difference equation representation

b = [1 0 -1] ; % input coefficients, x(n)

a = [1 0 .81]; % output coefficients, y(n)

n=0:25;

x=zeros(size(n));x(1)=1;%the impulse signal

y=filter(b,a,x);

subplot(2,2,1);stem(n,y);

title('From difference equation model');

ylabel('Impulse response');

%impulse response model

num = [1 0 -1] ; % input coefficients, x(n)

den = [1 0 .81]; % output coefficients, y(n)

n=0:25;

y=dimpulse(num,den,n);

subplot(2,2,2);stem(n,y);

title('From Impulse response model');

%State-space model

n = 0:25;

x = zeros (size (n)); x(1)=1;

vin = [0 ; 0];

A = [0 1; -.81 0]

B = [0; 1]

C = [-1.81 0];

D = [1];

[y, v]= dlsim(A, B, C, D, x, vin);

subplot(2,2,3);stem (n, y); xlabel('n'); 

title('State-space model #1');

ylabel('Impulse response');

%State-space model Different model

n=0:25;

x =zeros(size(n));x(1)=1;

vin=[0 ; 0];

A = [0 -.81; 1 0];

B = [-1.81; 0];

C =[0 1];

D = [1];

[y, v] = dlsim(A, B, C, D, x, vin);

subplot(2,2,4);stem (n, y); 

title('State-space model #2');

The plots are shown in Figure 6.9.
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EOCE 6.3

Consider the state-space system

Find the other representations and the impulse response.

Solution

The state-space representation

From the state and output equations we have, we can write the state-space
matrices as

A = , B = , C = , D = (0)

FIGURE 6.9 Plots for EOCE 6.2.
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The impulse response is obtained using the following MATLAB script.

n = 0:25;

x1=zeros(size(n));x1(1)=1;

x2=x1; x3=x2;

x=[x1' x2' x3'];

vin = [0; 0; 0];

A = [0 -1 0; 1 0 0; 0 1 0];

B = [1 0 1; 0 1 0; 0 0 1];

C = [0 0 1];

D = [0];

[y, v]= dlsim(A, B, C, D, x, vin);

stem (n, y); xlabel('n'); title('Impulse response: 
state-space');

The transfer function representation

We start with finding (zI – A) and write

(zI – A) = – =  

The inverse of (zI – A) is 

(zI – A)–1 =

The transfer function H(z) is then

H(z) = (zI – A)–1B
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H(z) =  

We can also obtain H(z) using MATLAB by writing the next MATLAB script.

A = [0 -1 0; 1 0 0; 0 1 0];

B = [1 0 1; 0 1 0; 0 0 1];

C = [0 0 1];

D = [0 0 0];

[n1 d]=ss2tf(A, B, C, D, 1)%column 1 coefficients

[n2 d]=ss2tf(A, B, C, D, 2)%column 2 coefficients

[n3 d]=ss2tf(A, B, C, D, 3)%column 3 coefficients

The output is

n1 = 0 0.0000 0.0000 1.0000
d = 1 0 1 0
n2 = 0 0.0000 1.0000 0.0000
d = 1 0 1 0
n3 = 0 1.0000 –0.0000 2.0000
d = 1 0 1 0

With X1(z) = X2(z) = X3(z) = 1, we can find the impulse response in the z-domain
as

Y(z) =  

Y(z) =  

or

Y(z) =  

At this point we can do partial fraction expansion on Y(z)/z and get y(n).
However, we can use MATLAB and find the impulse response as in the script.

num = [0 1 1 3] ; % input coefficients, x(n)

den = [1 0 1 0]; % output coefficients, y(n)
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n=0:25;

y=dimpulse(num,den,n);

stem(n,y); xlabel('n');

title('Impulse response: transfer function model');

The impulse response representation

It looks trivial but we can use MATLAB to find h(n) from H(z) then use MATLAB

again to find the impulse response, the convolution between h(n) and x(n),
the impulse input, just to get more practice with MATLAB. Remember that
h(n) convolved with the impulse signal is just h(n).

n=0:25;

x=zeros(size(n));x(1)=1;% impulse signal to find h(n)

b=[0 1 1 3];% input vector

a=[ 1 0 1 0];% output vector

h=filter(b,a,x1);%the impulse response h(n)

y=conv(h,x);%the output using convolution

stem(n,y(1:26));title('Impulse response: impulse response 
model');

xlabel('n');

The difference equation representation

We can z-transform the state and output equations to get

zV1(z) = –V2(z) + X1(z) + X3(z)

zV2(z) = V1(z) + X2(z)

zV3(z) = V2(z) + X3(z)

and the output y(n) becomes

Y(z) = V3(z)

Solving the above equations we get

V2(z) =  

If we substitute V2(z) in the last of the state equations, we arrive at

V3(z) =  
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If we multiply the numerator and the denominator to the right in the above
equation by z3 we will get

V3(z) =

or finally

Y(z) = V3(z) = + +  

We can inverse transform the last equation and get the difference equation
representation. We will have

y(n + 3) + y(n + 1) = x1(n) + x2(n + 1) + 2x3(n) + x3(n + 2)

We can at this point use superposition and find the impulse response for

= , = , and =  

individually, then sum up the responses to get the total impulse response.
We will do that using the following MATLAB script.

n=0:25;x=zeros(size(n)); x(1)=1;

n1=[ 0 0 0 1]; n2=[0 0 1 0];n3=[ 0 1 0 2];

d=[ 1 0 1 0];

y1=filter(n1,d,x); y2=filter(n2,d,x); y3=filter(n3,d,x);

y=y1+y2+y3;

stem(n,y); title('Impulse response: difference equation 
model');

The block diagram representation

The block diagram is implemented directly from the state and the output
equation, and is shown in Figure 6.10. We can consider all the MATLAB scripts
that we wrote for this exercise and generate one plot with multiple figures
illustrating the impulse response using all representations. The script is

%The state-space model

n = 0:25;

x1=zeros(size(n));x1(1)=1;

x2=x1; x3=x2;

x=[x1' x2' x3'];

vin = [0 ; 0; 0];
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A = [0 -1 0; 1 0 0; 0 1 0];

B = [1 0 1; 0 1 0; 0 0 1];

C = [0 0 1];

D = [0];

[y, v]= dlsim(A, B, C, D, x, vin);

subplot(2,2,1);

stem (n, y); title('From state-space');

ylabel('Impulse response');

%The transfer function model

num = [0 1 1 3] ; % input coefficients, x(n)

den = [1 0 1 0]; % output coefficients, y(n)

n=0:25;

y=dimpulse(num,den,n);

subplot(2,2,2);stem(n,y); xlabel('n');

title('From transfer function model');

%The impulse response model

n=0:25;

x=zeros(size(n));x(1)=1;% impulse signal to find h(n)

b=[0 1 1 3];% input vector

a=[ 1 0 1 0];% output vector

h=filter(b,a,x1);%the impulse response h(n)

y=conv(h,x);%the output using convolution

subplot(2,2,3);

stem(n,y(1:26));title('From impulse response model');

xlabel('n');ylabel('Impulse response');

n=0:25;x=zeros(size(n)); x(1)=1;

n1=[ 0 0 0 1]; n2=[0 0 1 0];n3=[ 0 1 0 2];

d=[ 1 0 1 0];

y1=filter(n1,d,x); y2=filter(n2,d,x); y3=filter(n3,d,x);

y=y1+y2+y3; subplot(2,2,4);

stem(n,y); title('From difference equation model');

xlabel('n');

FIGURE 6.10 Block diagram for EOCE 6.3.
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The plot is shown in Figure 6.11.

6.5 End of Chapter Problems

EOCP 6.1

Consider the following systems

1. y(n) + y(n – 2) = 3x(n)

2. y(n) + y(n – 3) = x(n)

3. y(n) + 2y(n – 1) + 2y(n – 2) = x(n – 1)

4. y1 (n) – 2y2 (n – 1) = 0 and y2 (n) – 3 y1 (n – 1) = x(n)

5. y(n) = x(n) + 2x(n – 1) + 3x(n – 3)  + 4x(n – 4)

a) Find the other four representations and indicate if the system is stable or not.
b) Find the step and the impulse responses using the other representation.

FIGURE 6.11 Plots for EOCE 6.3.
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EOCP 6.2

Consider the systems

1. H(z) =  

2. H(z) =  

3. H(z) =  

4. H(z) =  

5. H(z) =  

a) Find the other four representations for the first three systems.
b) Find the step response for the last two systems.

EOCP 6.3

Consider the systems represented by the block diagrams as shown in Figures
6.12 through 6.16.

1. Give the other four representations for these systems.
2. Use state-space method to find the step response for the last two

systems.
3. Find the impulse response for the first system using the state-space

representations.

EOCP 6.4

Consider the systems

1. h(n) = (.7)n u(n)
2. h(n) = (.7)n u(n) + (.8)n u(n)
3. h(n) = u(n – 1) – u(n – 2)

FIGURE 6.12 Block for EOCP 6.3.

z
z z( )+ 1
z

z z

2

2

4
1

+
+( )

z
z

+
−
1
13

z
z z

z
z z

( )

( )

+

+

















1

1

2

z
z z z z

z
z z2 2 21

1
1

1
1+ + + +

+
+ +







y(n)
� �� D D D

x
1(n)

x2 (n)



Modeling and Representation of Discrete Linear Systems 363

FIGURE 6.13 Block diagram for EOCP 6.3.

FIGURE 6.14 Block diagram for EOCP 6.3.

FIGURE 6.15 Block diagram for EOCP 6.3.

FIGURE 6.16 Block diagram for EOCP 6.3.
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4. h(n) = n(.6)n u(n)

5. h(n) =  

1. Find the other representation.
2. Find the step response for system 5.
3. Find the steady-state response for system 2.

EOCP 6.5

Consider the systems

A = , B = , C = , D = (0)

A = , B = , C = , D = (0)

A = , B = , C = , D = (1)

A = , B = , C = , D = (1)

A = , B = , C = , D = (0)

1. Find all other representations.
2. Find H(z) for the last three systems.
3. What are the poles for the last three systems?
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7
The Discrete Fourier Transform 
and Discrete Systems

7.1 Introduction

We have two types of linear systems: the continuous linear system and the
discrete linear system. The Fourier transform of the continuous signal x(t) is

X(w) = (7.1)

By observing the signal x(t) in the frequency domain, we are able to see all
the frequencies that x(t) contains, and based on that we can further process
the signal x(t) and alter its frequency components in any way we wish.

But the Fourier transform equation given above is not suitable for com-
puter evaluation since the bounds on the integral are infinite. By discretizing
the signal x(t) and obtaining the discrete signal x(n), we can Fourier trans-
form the signal x(n) into the frequency domain in order to see its frequency
components hoping that we can utilize the computer in all calculations. The
Fourier transform of the signal x(n) is

X(ej ) = (7.2)

where is the digital frequency and is related to the continuous frequency
by the equation

(7.3)

where Ts is the sampling period used to sample x(t) to get x(n). x(n) now is
discrete but is of infinite duration and, again, it is not possible to evaluate
X(ej ) on the computer. This problem will be discussed next.

x t e dtjwt( )

x n e j n( )

wTs
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7.2 The Discrete Fourier Transform and the Finite-Duration 
Discrete Signals

Continuing with the discussion above, let us assume that x(n) is zero for all
the integer n values less than zero, and for n greater than or equal to some
integer value N. In other words suppose x(n) = 0 for n < 0 and n N. Then
we can define the N-points Fourier transform for the truncated x(n) as 

(7.4)

The above equation is the discrete Fourier transform (DFT) of the finite
duration signal x(n).

In this defining equation,

1. x(n) in the truncated signal that is zero for n < 0 and n N.
2. N is the length of the truncated signal x(n).
3. n is the index for the samples in x(n).
4. k is the frequency index for the DFT.

We can see in the above equation for the DFT that X(k) is finite, x(n) is finite
and the number of points in x(n) is the same as the number of points in X(k).
Now it is easy to implement the DFT equation using the computer.

To go back to the discrete time signal x(n) from the X(k) values, we use
the inverse relation

x(n) = n = 0, 1, …, N – 1 (7.5)

Example 7.1

Consider the discrete signal given by

x(0) = 1 and x(1) = 0

Find the DFT of x(n) and do the inverse DFT to obtain x(n) from X(k) for n =
0, 1.

Solution

In this example, N is 2 and X(k) is 

=

X k x n e
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Before we evaluate X(k), let us look at the defining equation for X(k). We

have substituted WN = in Equation (7.5) where 

Based on this relation, in this example we have 

WN = W2 =

Now by expanding the X(k) equation we get

To calculate x(n) from X(k) we use the inverse relation

to get

=

and

=

7.3 Properties of the Discrete Fourier Transform

Following are some of the characteristics that the DFT possesses.

7.3.1 How Does the Defining Equation Work?

If we look at the defining equation in its trigonometric form we have

(7.6)
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You can see that each component of X(k) is a correlation of all the samples
in x(n) with cosine and sine signals that have k complete periods in the N
samples interval. This can be seen in the example that we considered earlier,
Example 7.1, where with N = 2

If we plot cos( nk) or sin( nk) on a fine grid, we will observe a complete
cycle for k = 1 and 2 cycles for k = 2 in the N = 2 interval. This can be seen
in Figure 7.1.

7.3.2 The DFT Symmetry 

For a real x(n) signal, the DFT is symmetrical around the point k = N/2. The
magnitude of X(k) will have even symmetry and the phase of X(k) will have
odd symmetry. To see this we can show that

and that the phase of X(k) is the negative of the phase of X(N – k). The
magnitude of X(k) is

FIGURE 7.1 Correlation signals for the DFT.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Signals used for correlation in obtaining the DFT

For N = 2

1 period 2 periods 

X k x n nk j nk
n

( ) ( ) cos( ) sin( )
0

1

X k X N k( ) ( )



The Discrete Fourier Transform and Discrete Systems 369

and the magnitude of X(N – k) is

=

since = 1.
To look at this in a different way we have 

X(k) =

But

if Real Real .

Real

and

Real =

We also know that

= =

Thus

Real Real

and consequently

To show that
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we need to show that the imaginary

Imag = –Imag

But

Imag = –

and

Imag = –

But again

Thus

Imag =

Therefore,

Imag = –Imag

and thus

7.3.3 The DFT Linearity

Given the signal
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the DFT of x(n) is then

To see this result, we have

=

Finally we have 

This linearity property is very important because we usually have signals
that have more than one frequency component.

7.3.4 The Magnitude of the DFT

If we are calculating the DFT of the signal x(n) that was obtained by taking
N samples of a real sinusoid of amplitude Mr then the magnitude of the DFT
is

If the N samples in x(n) were obtained by sampling a complex sinusoid of
the form

then

If, however, x(n) has a dc component Md, then 

In the relation above, the input to the DFT system should have a sinusoidal
component that makes an integer number of periods over the N samples.
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7.3.5 What Does k in X(k), the DFT, Mean?

After we calculate the DFT of the signal x(n) which is usually samples of the
continuous signal x(t), we may be interested in the value of the frequency
when the magnitude of X(k) is maximum. The plot of �X(k)� is usually drawn
vs. the frequency index k. The distance between the successive values of k
is given by the frequency resolution fs/N where fs is the sampling frequency.
If the maximum value of �X(k)� is at k = km, for example, then the frequency
at which �X(k)� is maximum is km fs/N Hz. If we let f = fs/N be the frequency
resolution, then we have 

(7.7)

where Tr is the time interval along which the samples are taken.

Example 7.2

Consider the magnitude DFT of the signal x(n) that was obtained by sam-
pling a continuous sinusoid at fs = 1000 Hz as shown in Figure 7.2.

1. What is the frequency at which �X(k)� is maximum?
2. What is the frequency at which �X(k)� is minimum?
3. If only the value at k = 2 is known for �X(k)�, can you find �X(3)�?

Solution

1. From the plot we see that �X(k)� is maximum at k = 0 and k = 4 and
that N = 5. Thus we have km fs/N = 0(1000)/5 = 0 Hz and 4(1000)/5 =
800 Hz as the two frequencies.

TABLE 7.1

Some Properties of the DFT

Linearity

Time shifting

Frequency shifting

Modulation

Circular convolution

Parseval’s theorem

Duality

indicates circular convolution
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2. The minimum magnitude is at k = 1, 2 and 3. Thus 

, and Hz

are the frequencies.
3. With only X(2) known we have

Thus from the symmetry property we would know X(3) = X(2) = 1.

7.4 The Relation the DFT Has with the Fourier Transform 
of Discrete Signals, the z-Transform and the Continuous 
Fourier Transform

7.4.1 The DFT and the Fourier Transform of x(n)

Given x(n) for – n  + . The Fourier transform is defined as

FIGURE 7.2 Signal for Example 7.2.
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where = wTs , w is the continuous radian frequency and Ts is the sampling
interval used to sample x(t) to get x(n). If the signal x(n) is truncated and is
limited to the lower n = 0 and the upper n = N – 1 interval where N is some
integer value, then

Now if we let 

we will have 

But the term is a function of k only since N is known. Thus we can write

(7.8)

The above equation is nothing but the DFT of the finite signal x(n) defined
for n = 0, 1,…, N – 1. Therefore, from this development you can see that if
x(n) is limited to the interval n = 0, 1,…, N – 1, and X(ej ) is sampled starting
at values of = 0 and then regularly spaced along the unit circle by 2 k/N,
the DFT will be the sampled version of X(ej ).

7.4.2 The DFT and the z-Transform of x(n)

The z-transform for a finite length signal x(n) is

where N is the number of samples in x(n). If we set then
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But again, the term 2 k/N is a function of k only since N is known. Thus
we can write

(7.9)

7.4.3 The DFT and the Continuous Fourier Transform of x(t)

Consider the signal x(t) that is assumed to be zero for t < 0. The Fourier
transform of x(t) is 

Let Ts be a small positive number. Then the above equation can be approx-
imated as

In the interval nTs t nTs + Ts, if Ts is chosen small enough such that x(t)
in this interval will be considered constant, then

With

we have

If x(nTs) is very small for n N, then the continuous Fourier transform can
be simplified further as
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If we set w = 2 k/NTs we will have

But

which is the DFT of x(nTs). Thus the continuous Fourier transform can be
approximated at 2 /NTs k points where k = 0, 1, …, N – 1. Finally we write

= (7.10)

Example 7.3

Consider the signal x(n) where x(0) = 1, x(1) = 0 and x(2) = 1. Use the z-transform
method to find X(k).

Solution

This signal can easily be put in the z-domain. It is

X(z) = 1z–0 + 0z–1 + 1z–2 = 1 + z–2

With z = e j we have 

But

With N = 3 as is the case in this example we have
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with

Using the defining equation of the DFT we have

=

with

With this simplification we can get the first few samples of the DFT.

7.5 Numerical Computation of the DFT

The DFT is a computer program that can be used to transform the signal
x(n) defined for n = 0, 1, …, N – 1, where N is the number of samples in x(n),
to X(k), a set of N values defined for the frequency index k = 0, 1, …, N – 1.
In other words, the DFT can be thought of as a system (a computer program)
whose input is x(n) and whose output is X(k).

To implement the DFT equation on a digital computer, MATLAB will be
used. To do that we will try to find the DFT of the signal in Example 7.3
where x(0) = 1, x(1) = 0 and x(2) = 1. The following MATLAB script is used.

% supply the x(n) array in a column form

N = 3;
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xn = [1 0 1];

% initialize x(k) to a column of N zeros

Xk = zeros(N,1);

%supply the index n 

n = 0: N-1;

%starting the loop to calculate X(k);

for k = 0: N-1

Xk =(exp(-j*2*k*pi/N).^n)*xn'

end

and the results are the same as those obtained in Example 7.3, where x(0) =

2, x(1) and x(2) . To find x(n) from X(k) we use the inverse
DFT and write the following MATLAB script:

% Supply the X(k) column array

Xk = [2 1 + exp(-j * 4 *pi/3) 1 + exp(-j *8 *pi/3)];

N = 3;

%fill the discrete signal x(n) with zeros

xn= zeros(N,1);

% supply the frequency index k.

k = 0: N-1;

% start the loop to compute x(n)

for n = 0: N-1;

xn = 1/N*(exp(-j * 2 * pi *n/N).^k) * Xk'

end

The results are again similar to the original signal x(n), with x(0) = 1, x(1) =
0 and x(2) = 1.

7.6 The Fast Fourier Transform: A Faster Way of Computing 
the DFT

If we look at the following equation to calculate X(k) from x(n)

we can see that to evaluate X(k) for a single k value we need to perform N
multiplications. Yet to calculate the N values for k we will need N2 multipli-
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cations. The goal is to reduce this number of multiplications. For that reason
the FFT, a fast way of computing the DFT, was developed in which the

number of multiplications, N2, was reduced to multiplications.

Thus if N = 1024, for example, it will take 1048576 multiplications using the
DFT. Using the FFT, it will take 5120 multiplications, a drastic reduction in
the number of multiplications.

To see how this FFT was developed, let us look back at the DFT equation.
We have

If we define then the DFT equation becomes

Here we will derive what is called the radix-2 FFT and use what is called
decimation in time. The last equation can be written as 

With not depending on the index n, this term can be pulled out and X(k)
becomes

Notice that we are dividing x(n) into even and odd parts. Notice also that

With this observation X(k) becomes

(7.11)
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Now consider . With and we can write

as

(7.12)

with X(k) repeated as

(7.13)

In Equation (7.13) we can find the first N/2 points. We can use Equation
(7.12) for X(k + N/2) to find the other N/2. Notice that the last two equations
are similar with only the sign of  reversed. 

To make things more clear, let us consider the case where N = 8, an 8-point
DFT. With the last two equations, we can see that the 8-point DFT is reduced
to the 4-point DFT. Remember that a 2-point DFT can be implemented
without any complex multiplication. So if we subdivide the 4-point DFT
further, we will get the 2-point DFT.

In general, if we are given N samples of x(n) and are asked to find X(k),
we will first subdivide the N-point DFT into N/2-point DFT. We continue
with this process until we get to the 2-point DFT.

The FFT is implemented in MATLAB and can be used directly to evaluate
the DFT of the signal x(n). We need to remind the reader here that the FFT
will give the same result as the DFT. The FFT is not an approximation to the
DFT in any way. Also, the properties for the DFT will hold for the FFT.

7.7 Applications of the DFT

We will look next at some of the important applications of the DFT.

7.7.1 Circular Convolution

Let us look at the input-output relationship between the input x(n) and the
output y(n) of the discrete linear system.
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where * indicates linear convolution. If we define the signals x(n) and h(n)
to have zero values for n < 0 and n N, then the linear convolution relation-
ship becomes

But we can see that if n 0 and n  2N – 1, h(n –m) is zero. Hence

y(n) = 0 for n 0 and n  2N – 1

Notice that 2N – 1 is the length of the convolution result. However, y(n) is
generally not zero for n N. Note also that if we take the N-points DFT of
y(n) we will miss the nonzero values of y(n) as the result of the linear
convolution. This indicates a need to define another form of convolution so
that y(n)= x(n) * h(n) is zero for n 0 and n N.

To arrive at this conclusion in a different approach, let X(k), H(k) and Y(k)
be the DFTs of the input x(n), the impulse response h(n) and the output y(n)
of the linear discrete system.

Let us claim now that

(7.14)

Does this mean that

where * indicates convolution?
Taking the inverse DFT of Y(k) = X(k)H(k) leads to

By rewriting the above equation we get
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Thus, we can write

where N (n) is the impulse signal with a strength of N at n = 0 and a strength
of zero for n 0. With the relation (n – m) f(n) = f(m) we can simplify the
equation for y(n) to get 

The above equation is similar to the linear convolution equation when it is
not limited to one period N. Based on what has been presented we will
define circular convolution as 

(7.15)

and use the notation

to indicate circular convolution. With this result we can say now that circular
convolution in the discrete domain is equal to multiplication in the DFT
domain. That is

(7.16)

Example 7.4

Consider the signals x(n) and h(n), each of length N = 4. 

Solution

To calculate the output y(n) using circular convolution we will write first the
signals as

The output y(n) will be of length 4 as well, and
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To find y(1) we will move (shift) the first value in h(n) and append it to the
end of the array h(n). The two arrays are now

and

To find y(2) we will list the two arrays by again performing the same shifting
to get

with

For the final value, y(3), we will have

and

Example 7.5

Consider the signals x(n) and h(n) with N = 2 and x(0) = h(0) = 1 and x(1) =
h(1) = 0. Find the output y(n) of the system given by this h(n).

Solution

Using circular convolution we need to find y(0) and y(1). For y(0) we have

x(n) = {1 0}

h(n) = {1 0}

y(0) = (1)(1) + 0(0) = 1

x n x x x x( ) ( ) ( ) ( ) ( )0 1 2 3

h n h h h h( ) ( ) ( ) ( ) ( )1 2 3 0

y x h x h x h x h( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 2 2 3 3 0

x n x x x x( ) ( ) ( ) ( ) ( )0 1 2 3

h n h h h h( ) ( ) ( ) ( ) ( )2 3 0 1

y x h x h x h x h( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 2 1 3 2 0 3 1

x n x x x x( ) ( ) ( ) ( ) ( )0 1 2 3

h n h h h h( ) ( ) ( ) ( ) ( )3 0 1 2

y x h x h x h x h( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 0 3 1 0 2 1 3 2
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For y(1) we have

x(n) = {1 0}

h(n) = {0 1}

y(1) = (1)(0) + 0(1) = 0

But we also know that y(n) is the inverse DFT of Y(k) = X(k)H(k). To find
X(k) and H(k), we need to find X(0), X(1), H(0) and H(1).

In the same way we have H(0) = 1 and H(1) = 1. Y(k) is the term-by-term
multiplication of X(k) and H(k) and is

y(n) is the inverse DFT of Y(k) and is given by 

with

7.7.2 Linear Convolution

Consider the two signals, x(n) and h(n), each of length N1 and N2, respectively.
If we append zeros to the end of x(n) and h(n) to make the length of both
equal to N1 + N2 – 1, then the linear convolution is the same as the circular
convolution. It means that we can use the DFT to find linear convolution if
both signals have the length N1 + N2 – 1.
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Example 7.6

Consider x(n) where x(0) =1 and x(1) = 0 and h(n) where h(0) = 1 and h(1) = 0.
Find y(n) = x(n) * h(n) and y(n) = x(n) h(n).

Solution

First we will make x(n) and h(n) each of length N1 + N2 – 1 = 2 + 2 – 1 = 3
by appending zeros at the end and write 

x(n) = {1 0 0}

h(n) = {1 0 0}

With circular convolution we have

To find y(1) we list the arrays as

x(n) = {1 0 0}

h(n) = {0 0 1}

with y = 1(0) + 0(0) + 0(1) = 0

To find y(2) we list the arrays again as

x(n) = {1 0 0}

h(n) = {0 1 0}

with y(2) = 1(0) + 0(1) + 0(0) = 0

So y(n) with circular convolution is 

y(n) = {1 0 0}

Using linear convolution we get the same result.

7.7.3 Approximation to the Continuous Fourier Transform

We have seen in Section 7.4.3 that the approximation to the Fourier transform
of the signal x(t) is related to the DFT X(k) as in the relation

We can implement this approximation in MATLAB. Let us look at an example.
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Example 7.7

Consider the signal

Plot the actual X(w) and its approximation using the DFT.

Solution

The actual Fourier transform of x(t) is 

First we need to sample x(t) to get X(k) and then we need to scale X(k) to
get the approximation to X(w), the actual continuous Fourier transform. In
the following MATLAB script we will use a sampling period of 0.1 sec and a
number of samples N = 27 = 128. Note that to use the fft function with
Matlab, N must be 2 raised to an integer power.

integer=8;

N = 2.^integer; %number of samples in x(n)

Ts = 0.1;fs=1/Ts; %sampling period

NTs = N * Ts;

t = 0:Ts:2;

xn = [ones(1, length(t)) zeros(1, N-length(t))];% fill zeros 
to get N sample

Xk=fft(xn); % the fft used to calculate the DFT

exponent = 2 * pi / N;

% Next choose a k range

k = 1:2.^integer-1;

sf = ((1 - exp(-j*2*pi*k/N))./( j*2*pi*k/NTs));% the scaling 
factor

%we have avoided division by zero. Xwappr at k=0 is Ts

Xwappr = [Ts sf].* Xk;

k=0:2.^integer-1;

% transforming into the frequency axis: the spacing is fs/N

wappr=k*2*pi*fs/N;

% above is the approximate of X(w).

% next is the actual X(w)

wact = wappr(1, 2:length(wappr));%avoiding the zero for Xactual

% trying to avoid w = 0 (sin(w)/w)

x t
t
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X w w e
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Xwact = (2 * sin(wact) ./wact).*exp(-j*wact); % point by point 
division (./)

Xwact = [2 Xwact]; % X(w) at w = 0 is 2

wact = wappr;

subplot(2,1,1);plot (wact, abs(Xwact));title('The actual 
Fourier transform');

axis([0 30 0 3]);

subplot(2,1,2); plot(wappr, abs(Xwappr));

title('The approximation using the DFT');

xlabel('Frequency in radians/sec');axis([0 30 0 3]);

The plots are shown in Figure 7.3. If we increase the number of samples N
to 28 = 256, we have the better approximation as seen in Figure 7.4.

7.7.4 Approximation to the Coefficients of the Fourier Series 
and the Average Power of the Periodic Signal x(t)

Given a periodic continuous signal, x(t) with the period T the Fourier series
approximation is calculated first by evaluating the Fourier series coefficients

(7.17)

FIGURE 7.3 Plots for Example 7.7.
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For the computer to approximate this integration we need to represent x(t)
in a discrete form. Let us sample x(t) at t = nTs where Ts is the sampling
interval and n is an integer. Thus we will have 

Remember that we are integrating over the period T in continuous time. In
discrete time we need to subdivide this period T into intervals of width Ts

and we will have N of these intervals. Thus we write T = NTs. If we make Ts

very small (N very large) and approximate the area under x(t)e–jw0kt in these
intervals we can have a good approximation to the integral equation given.

With this process, w0 will be

and c(k) will be 

where the integration becomes summation and hence dt becomes Ts. Finally,
the equation for c(k) becomes

FIGURE 7.4 Plots for Example 7.7.
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(7.18)

The above equation is 1/N times the DFT of x(nTs). Thus 

where X(k) is the DFT of x(nTs). Remember also that

is the average value of x(t). Hence X(0)/N is an approximation to the average
value of x(t). The average power in the periodic signal x(t) is given as

(7.19)

and its approximation using the Fourier series coefficients is

(7.20)

But with X(k) = Nc(k) we have the average power approximated as

(7.21)

Example 7.8

Consider the signal

Find the average value of the signal, its average power and its Fourier series
coefficients as well as their approximations.
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Solution

The signal is periodic with period T = 1 sec. The average value is

The average power is given as

The other Fourier series coefficients can be found by using MATLAB as in the
following script:

syms t;% symbolic constants

T=1; %period of the signal

w=2*pi/T;

for k=0:3

%performing the integration to calculate the coefficients

ck=1/T*int(sin(w*t)*exp(-j*w*k*t),t,0,1)

end

The result is 

ck = 0
ck = –1/2*i
ck = 0
ck = 0

You can see from this result, as expected, that the sine wave has only one
frequency component, that c(0) = 0, the average value and the �c(1)� = 1/2 is
the only frequency component that is nonzero.

We can use the DFT to find an approximation to c(0) , the average power
and the other frequency components. First we see that x(t) is periodic with
T = 1 sec. We will divide this T interval into equally spaced intervals. With
the frequency of the signal x(t) equal to 1 Hz, we choose fs to be 10 Hz. Thus,
with fs = 10 Hz, Ts = .1 sec. The number of samples we will take from x(t)
in the T interval is 

samples

The MATLAB script is given next.
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Ts=0.1; fs=1/Ts;T=1; N=T/Ts;

n=0:N-1;

xn=sin(2*pi*n*Ts);

Xk=fft(xn);

ck=Xk/N;

average=Xk(1)/N

avpower=(1/(N*N))*sum(abs(Xk).^2)

k=0:N-1;

waxis=k*2*pi*fs/N;

stem(waxis,abs(ck));xlabel('Frequency in radians/sec');

title('An approximation to the fourier series coefficients 
for sin(2*pi*t)');

ylabel('Magnitude of the coefficients');

The average value as expected is zero and the average power is 1/2. The
plot is shown in Figure 7.5.

7.7.5 Total Energy in the Signal x(n) and x(t)

The total energy in the signal x(n) for n = 0, 1, …, N – 1 is given as

(7.22)

FIGURE 7.5 Plots for Example 7.8.
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If we are given a nonperiodic signal x(t), we can talk about its total energy.
If we sample x(t) at the sampling rate fs satisfying the Nyquist sampling rate,
then the approximate energy in the signal is

n1 and n2 are the integer values for which x(t) is approximately zero for t <n1

and t >n2.

Example 7.9

Consider the signal x(t) = e–t t > 0. What is the total energy in the signal?

Solution

The total energy in the signal is

We can compute this value of 1/2 using the DFT. But first let us look at the
continuous Fourier transform of x(t)

The magnitude of X(w) is given as

We can see that for w > 2 (50), the magnitude of X(w) approaches zero. Thus
let fs = 2(50) =100 Hz be the sampling frequency. We can also see that for
t > 5, the signal x(t) approaches zero as well. Therefore we will choose the
time interval of 5 sec and sample x(t) in this interval. In this case the number
of samples N is T/Ts = 5(100) = 500.

We can use MATLAB to calculate the total energy in x(t) as in the following
script:

fs=100; Ts =1/fs; T=5;% T is the time interval for sampling 
x(t)

N=T/Ts;

n=0:1:500; %n*Ts= 500*.01=5=the time interval T 
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xn=exp(-n*Ts);

Xk=fft(xn);

Etotal=Ts*sum(abs(xn).*abs(xn))%total energy in real time

Effttotal=Ts/N*sum(abs(Xk).*abs(Xk))%total energy in x(t) 
using fft

to get

Etotal = 0.505 using the time domain
Effttotal = 0.506 using the DFT

Note that if we were given a discrete signal x(n) such that

then

MATLAB can be used also to compute the total energy in the signal as in the
following script:

xn=[1 0 1 1 0];

Xk=fft(xn);

Etotal=sum(abs(xn).*abs(xn))%total energy in real time

Effttotal=1/5*sum(abs(Xk).*abs(Xk))%total energy in 
x(n)using fft

The result will be

Etotal = 3
Effttotal = 3

7.7.6 Block Filtering

A digital filter can be described by the impulse response h(n). h(n) can change
the magnitude of the input signal as well as produce a phase shift. In using
the DFT to calculate y(n), the output of the filter h(n), notice that you need
the entire x(n) present. In case of huge x(n), this will cause a considerable
delay in obtaining y(n). If we break x(n) into blocks of data, we can use the
DFT to produce blocks of the output y(n). These blocks then can be arranged
to produce the total output y(n). This method will produce outputs faster
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and will reduce the waiting time for incoming x(n) samples. An example of
how to perform this method will be given in the EOCE section later.

7.7.7 Correlation

Correlation is often used in the detection of a target in a radar signal. It can
also be used in the estimation of the frequency content of a certain signal.
Cross-correlation is the correlation between two different signals and auto-
correlation is the correlation with the signal itself. The cross-correlation is
given by the relation

(7.23)

The above equation is similar to the convolution equation with the only
difference being that x2(n) is shifted but not reflected.

In dealing with discrete signals we use N samples and assume that the
signals are periodic with period NTs. With periodic signals and if 0 n
N – 1 we have

The cross-correlation equation can be written then as 

(7.24)

If we take the DFT of the above result we will have

(7.25)

and then the inverse DFT of X1(–k) X2(k) is Rx1x2(p). If x2(n) is real then 

Finally, we have

(7.26)

Note that . It can be shown that

(7.27)

R p x n x p nx x
n

1 2 1 2( ) ( ) ( )

x n x n N( ) ( )

R p x n x p n x n x nx x
n

1 2 1 2 1 2( ) ( ) ( ) ( ) * ( )

R X k X kx x1 2 1 2( ) ( )

X k X k1 1( ) * ( )

R p X k X kx x1 2 1 2( ) ( ) ( )*

R p R px x x x1 2 2 1
( ) ( )

R p x k x kX X2 1 1 2( ) ( ) ( )*
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One important application of auto-correlation is the estimation of the energy
spectrum density of the signal x(n). The auto-correlation process helps to
eliminate the noise if it is present in a certain signal. The energy spectrum
density estimate is 

0 p N – 1 (7.28)

From the above relation we have

(7.29)

We will give an example on how to use the above relation later in the EOCE.

7.8 Some Insights

7.8.1 The DFT Is the Same as the fft

The DFT is not an approximation to the fft; it is the same as the fft. The fft
is a fast and an efficient way of calculating the DFT.

7.8.2 The DFT Points Are the Samples of the Fourier Transform of x(n)

The Fourier transform of the discrete signal x(n) for n = 0, 1, … , N – 1 is 

If we sample X(ej ) on the unit circle with = 2 k/N for k = 0, 1, … , N – 1, then

7.8.3 How Can We Be Certain That Most of the Frequency Contents 
of x(t) Are in the DFT?

To get X(k) from x(t) we need first to sample x(t) making sure that fs, the
sampling frequency used to produce x(n), is at least twice fm, the maximum
frequency in x(t). This is necessary to avoid aliasing. Next, N samples should
be collected from x(t) in NTs sec, where Ts = 2 fs. The number of samples N
is inversely related to the frequency resolution f according to

R p
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The smaller the frequency resolution is, the better is the process of detecting
most of the frequency components in x(t).

7.8.4 Is the Circular Convolution the Same as the Linear Convolution?

The circular convolution between the two signals x1(n) and x2(n) will be the
same as the linear convolution if we append zeros to the end of x1(n) and
x2(n) so that the number of samples in x1(n) and x2(n) will be N1 + N2 – 1 where
N1 is the number of samples in x1(n) and N2 is the number of samples in x2(n).

7.8.5 Is ?

Due to the inherent factor 1/Ts in calculating the Fourier transform of discrete
signals, the magnitude of the DFT, �X(k)� should be multiplied by Ts to get
the approximation to �X(w)�. Note that this approximation is not as good as
the approximation we discussed earlier in this chapter.

7.8.6 Frequency Leakage and the DFT

In the development of the DFT, the signal x(nTs) is made periodic first and
then multiplied by the rectangular window of unity magnitude that extends
from n = 0 to n = N – 1. The result of this multiplication is the signal x(n).
To understand this better consider the signal x(t) = sin(t). This signal is
periodic and there is no need to make it periodic. Its Fourier transform
consists of one component at w = 1. If we truncate x(t) by multiplying it with
a rectangular window that is centered at t = 0, the Fourier transform of sin(t)
multiplied by this window will result in a sinc-shape graph centered at w = 1.
From this you can see that the frequency content of x(t) after this multipli-
cation is distorted. This is referred to as frequency leakage.

To have better approximation, different windows can be used. Two well-
known windows are the Hanning and the Hamming windows. These windows
do not have sharp cuts at the edges; they gradually approach zero. The two
windows are implemented in Matlab.

7.9 End of Chapter Exercises

EOCE 7.1

Consider the discrete time system represented by 

n = 0, 1, 2, …, 10

f
N
2

X w X k( ) ( )

h n n( ) ( . )0 5
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and consider an input to the system given by

n = 0, 1, 2, …, 5

Find the output y(n) using the DFT method.

Solution

We have Nh = 11 samples for h(n) and Nx = 6 samples for x(n). So we need
to add 6 – 1 = 5 zeros to h(n) and 11 – 1 = 10 zeros to x(n) so that each signal
will have (11 + 6) – 1 = 15 samples. At this point we can use the DFT to
calculate y(n). The MATLAB script that follows will compute y(n) using the
function conv and it will also compute y(n) by inverse transforming Y(k)
for comparison.

nh=0:10; nx=0:5;

hn=.5.^nh; xn=1.^nx; %original signals

yn=conv(xn,hn)%output using direct convolution

hn=[hn zeros(1,length(nx)-1)];%zero padding

xn=[xn zeros(1,length(nh)-1)];

Hk=fft(hn); Xk=fft(xn); Yk=Hk.*Xk;

Yn=ifft(Yk)%inverse fft to get y(n)

n=0:15;

subplot(2,1,1);stem(n,yn);title('Output using direct 
convolution');

subplot(2,1,2);stem(n,Yn); xlabel('n');

title('Output using the inverse DFT');

The result is plotted in Figure 7.6. Note that we have h(n) and x(n) each of
length 16. This means that the radix-2 fft was used. If we want the faster
and more efficient radix-2 to be used, each signal should have 2p as its length
where p is a positive integer.

EOCE 7.2

Find an approximation to the magnitude of the Fourier transform of 

Solution

To use the DFT to approximate the Fourier transform of x(t) we need to
sample x(t) first. Let us look at the Fourier transform of e–10tu(t) so that we
can find the frequency at which X(w) is approaching zero. The Fourier
transform is

x n u n( ) ( )

x t e u tt( ) ( )10
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and the magnitude of X(w) is 

For w = 30 rad/sec, the magnitude of X(w) is approximately zero. Thus we
choose ws  2w = 60 . Let us choose ws = 300 with fs = 150 Hz and Ts =
1/150 sec. Note that at t = 1 sec, x(t) is approximately zero. Let us choose
NTs = 1 or N = 1/Ts = 150 samples. We have established a lower limit on N
of 150. To use the radix-2 fft, N must be an integer power of 2. The next N
then will be 28 = 256.

We have seen in this chapter two ways to perform this approximation. In
the first method the approximation was given by

FIGURE 7.6 Plots for EOCE 7.1.
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and in the second method, the approximation to �X(w)� was Ts (X(k)). In the
following script we use the two methods.

integer=8;

N = 2.^integer; %number of samples in x(n)

Ts = 1/150;fs=1/Ts; %sampling period

NTs = N * Ts;

n=0:150; %n*Ts=1second for n=150.The record length taken from 
x(t)

xn = [exp(-10*n*Ts) zeros(1, N-length(n))];% fill with zeros 
to get N samples

Xk=fft(xn); % the fft used to calculate the DFT

% Next choose a k range

k = 1:2.^integer-1;

sf = ((1 - exp(-j*2*pi*k/N))./( j*2*pi*k/NTs));% the scaling 
factor

Xwappr1 = [Ts sf].* Xk; %First method of approximation

k=0:2.^integer-1;

% transforming into the frequency axis: the spacing is fs/N

wappr=k*2*pi*fs/N;

% above is the approximate of X(w).

% next is the actual X(w)

Xwappr2=Ts*Xk;% Second method of approximation

wact = wappr;

Xwact =1./(sqrt(wact.^2+100)); % point by point division (./)

subplot(3,1,1);plot (wact, Xwact);title('The actual Fourier 
transform');

axis([0 30 0 .15]);

subplot(3,1,2);plot(wappr,abs(Xwappr1));

title('First method: approximation using the DFT');

axis([0 30 0 .15]);

subplot(3,1,3); plot(wappr, abs(Xwappr2));

title('Second method: approximation using the DFT');

xlabel('Frequency in radians/sec');axis([0 30 0 .15]);

The plots are shown in Figure 7.7.

EOCE 7.3

Consider the signal

x t t t( ) sin( ) sin( )2 2000
1
2

2 4000
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1. Use the DFT to approximate �X(w)� with N =16, and choose fs such
that the Nyquist criteria is observed and fs/N = f1/k1 = f2/k2 where
k1 and k2 are integers and f1 and f2 are the frequencies of the two
components in x(t), 2000 Hz and 4000 Hz.

2. Repeat while fs/N m1 f1 m2 f2.
3. Can you do a correction to the approximation? 

Solution

1. The highest frequency in x(t) is f2 = 4000 Hz. With fs = 16000 Hz,

Therefore, on the frequency axis of the magnitude of �X(k)�, we will
see that the frequency content of the first component at f1 = 2000 Hz
corresponds to k1 = 2, and the frequency content of the second com-
ponent at f2 = 4000 Hz corresponds to k2 = 4. In this case the Fourier
transform of x(t), X(w), will match exactly the DFT of x(n), X(k). The
MATLAB script to prove that follows.

FIGURE 7.7 Plots for EOCE 7.2.
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fs=16000;Ts=1/fs;

N=16;

n=0:15; % 16-points fft

t=n*Ts;

xn=sin(2*pi*2000*t)+0.5*sin(2*pi*4000*t);

Xk=fft(xn);

Xkappr=Ts*Xk;

k=n*fs/N; % the frequency axis

stem(k,abs(Xkappr));

xlabel('Frequency in Hertz');

title('Exact approximation using the DFT')

The plot is shown in Figure 7.8. The magnitude of X(2) = 8 is the
magnitude of the 2000 Hz term times N divided by 2. This is true
because the first term in x(t) has no dc components.

2. If we sample at fs = 10000 Hz (satisfying the Nyquist rate) and with
N = 16 we have 

for any k1 or k2. In this case there will be distortion in the frequency
spectrum using the DFT. This is to say that the 2000- and 4000-Hz

FIGURE 7.8 Plot for EOCE 7.3.
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frequencies will not be observed at any value of k in the DFT mag-
nitude plot. For fs = 10,000 Hz the approximation to x(t) will be as
seen in Figure 7.9. 

3. If we use the Hanning window instead of the rectangular window
inherent in the DFT development, we will get some improvements
as seen in Figure 7.9. The MATLAB script for using the Hanning and
the rectangular windows follows.

fs=10000;Ts=1/fs;

N=16;

n=0:15; % 16-points fft

t=n*Ts;

xn=sin(2*pi*2000*t)+0.5*sin(2*pi*4000*t);

hn=hanning(16); % 16-points Hanning window

wn=xn.*hn'; % truncation using Hanning window

Xkrec=fft(xn);

Xkhan=fft(wn);

Xkrecappr=Ts*Xkrec;

Xkhanappr=Ts*Xkhan;

k=n*fs/N; % the frequency axis

subplot(2,1,1);stem(k,abs(Xkrecappr));

FIGURE 7.9 Plot for EOCE 7.3.
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title('Approximation using rectangular windows and the 
DFT');

subplot(2,1,2);stem(k,abs(Xkhanappr));

xlabel('Frequency in Hertz');

title('Approximation using Hanning windows and the DFT');

EOCE 7.4

Consider the signals x(t) and h(t) that are the input and the impulse response
of a linear system

Find the output y(n) and display the frequency spectrum of the input and
the output using the DFT.

Solution

The input x(t) is periodic with period T = 0.001. We will sample x(t) at fs =
8000 Hz satisfying the Nyquist rate. For fs = 8000 Hz we have Ts = 1/8000
sec. We will sample x(t) for T = 0.001 sec. To choose a value for N we use
the relation NTs = T or N = T/Ts = 0.001/1/8000 = 8 samples.

For h(t) = e–100t, we see that if t = 0.1 sec h(t) will be very close to zero in
value. The Fourier transform of h(t) is H(w) and is

with a magnitude of

With w = 2 (20) rad/sec, �H(w)� will approach zero. So we choose ws as ws

2(2 )(20) to satisfy the Nyquist rate. Let us make ws  2 (200). Thus fs = 200
and Ts = 1/200 sec. So for a time length of 0.1 sec (at which h(t) 0) and
with Ts = 1/200 we have 

or N = 0.1(200) = 20 samples

Now we will find the DFT for x(t) with N = 8 and the DFT for h(t) with N =
20. To find y(n) we will use convolution by making x(n) and h(n) both of
length n1 + n2 – 1 where n1 and n2 are the number of samples in x(n) and
h(n), respectively. To do that we will pad x(n) and h(n) by zeros. The following
script will do that.
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%For x(n) we will sample for 0.001 seconds

Ts1=1/8000; n1= 0:8;t1=n1*Ts1; N1=8;

xn=sin(2*pi*1000*t1);

%For h(n) we will sample for .1 seconds

Ts2=1/200;n2=0:20; t2=n2*Ts2; N2=20;

hn=exp(-100*t2);

subplot(1,3,1); stem(n1,xn);title('x(n)');

xlabel('n');

subplot(1,3,2); stem(n2,hn);title('h(n)');

xlabel('n');

%next we make both signals of size n1+n2 -1

N=length(xn)+length(hn)-1;

xn=[xn zeros(1, N-length(xn))];

hn=[hn zeros(1, N-length(hn))];

Xk=fft(xn); Hk=fft(hn);

Yk=Xk.*Hk;

yn=ifft(Yk);

%Plotting

n=0:1:N-1;

subplot(1,3,3); stem(n,yn);title('y(n)');

xlabel('n');

The plots are shown in Figure 7.10. Notice in the above MATLAB script that
the DFT of x(n), h(n) and the inverse transform of Y(k) were calculated using
the relation

N = length(xn) + length(hn) –1;

But 27 is not an integer power of 2 and hence the radix-2 fft was not used.
To use the radix-2 fft we need not pad x(n) or h(n) with zeros since padding
will be made by calling the fft function

Xk = fft(xn, N);

In this case x(n) will be made of length N where (N – length (xn)) is the
number of the padded zeros. We can use this method with h(n) as well. When
we use the command

Yk = Xk * Hk’;

Yk will be of length N as well.
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EOCE 7.5

Consider the discrete system where the input x(n) is the pulse defined as 

and the impulse response is defined as

Find the output y(n) using the DFT.

Solution

The signals here are already sampled. We can see that x(n) is zero for n 6.
Thus the number of samples in x(n) is 6. For h(n), there is no real integer
that makes h(n) zero. But if n = 5, h(n) is close to zero. Thus h(n) will have

FIGURE 7.10 Plots for EOCE 7.4.
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a value close to zero for n 5. For this h(n) we will have five samples. To
use radix-2 fft, N1 + N2 – 1 should be an integer multiple of 2. N1 + N2 – 1 =
6 + 5 –1 = 10  2p for any integer p. The next integer 2p greater than 10 is
16 = 24. So we need to use at least 16-point DFT to find y(n) using the radix-2
fft. The MATLAB script follows.

nx=0:5; nh=0:4;

xn=ones(1,6); hn=.2.^nh;

Xk=fft(xn,16); Hk=fft(hn,16);

Yk=Xk.*Hk;

yn=ifft(Yk);

% for plotting

n=0:15;

subplot(1,3,1);stem(nx,xn);title('The input signal');

xlabel('n');

subplot(1,3,2);stem(nh,hn);title('The impulse response 
signal');

xlabel('n');

subplot(1,3,3);stem(n,yn);title('The output signal');

xlabel('n');axis([0 15 0 1.4]);

The plot is shown in Figure 7.11.

FIGURE 7.11 Plots for EOCE 7.5.

0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input signal

n
0 2 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Impulse response signal

n
0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

Output signal

n



The Discrete Fourier Transform and Discrete Systems 407

EOCE 7.6

Suppose that we have 2 sec of the signal x(t). Let us sample x(t) at fs = 1000 Hz.

1. Find the maximum frequency that can be present if there is to be no
aliasing.

2. What analogue frequencies are present in the DFT?
3. What is the frequency resolution? 

Solution

1. With fs = 1000 Hz, from the Nyquist condition we have

fs  2fm or

2. The frequency spacing (the frequency resolution) is given by

where Tr is the total time of observing the signal and is called the
record length.

3. From (2) with fs/N = 0.5 we get 

The frequencies in the DFT are at

where m is an integer. So they are at 

0,  1 ,  2, … , 500, –499, –

EOCE 7.7

Consider the two signals x1(n) = x2(n) with

x1(0) = 1, x1(1) = 1, x1(2) = 0, and x1(3) = 1

Find the cross-correlation between x1(n) and x2(n), Rx1x2 and Rx2x1.
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Solution

Note that x1(n) has four samples as well as x2(n). To use the DFT to find the
cross-correlation, we need to make both x1(n) and x2(n) of length 4 + 4 – 1 =
7 samples. We will pad x1(n) with 3 zeros and we will do the same for x2(n).
The following MATLAB script will accomplish this.

x1n=[1 1 0 1 0 0 0];n1x=0:6;

x2n=[1 1 0 1 0 0 0];n2x=0:6;

X1k=fft(x1n); X2k=fft(x2n);

X1kconj=conj(X1k);

Rx1x2=X1kconj.*X2k;

X2kconj=conj(X2k);

Rx2x1=X1k.*X2kconj;

rx1x2=ifft(Rx1x2);

rx2x1=ifft(Rx2x1);

n=0:6;

subplot(2,2,1);stem(n1x,x1n);title('x1(n)');

xlabel('n');

subplot(2,2,2);stem(n2x,x2n);title('x2(n)');

xlabel('n');

subplot(2,2,3);stem(n,rx1x2);title('cross-correlation
between x1 and x2');

xlabel('n');

subplot(2,2,4);stem(n,rx2x1);title('cross-correlation
between x2 and x1');

xlabel('n');

The plots are shown in Figure 7.12. We could have used the MATLAB function
conv to find the same result. The next script can be used.

x1n=[1 1 0 1];n1x=0:3;

x2n=[1 1 0 1];n2x=0:3;

N=length(x1n);

n=1:N;

x1nref=x1n(N+1-n);

n1x = -fliplr(n1x);%the index changes too

x2nref=x2n(N+1-n);

n2x = -fliplr(n2x);

rx1x2=conv(x1nref,x2n);

rx2x1=conv(x1n,x2nref);

n=-3:3;

subplot(2,2,1);stem(n1x,x1n);title('x1(n)');
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xlabel('n');

subplot(2,2,2);stem(n2x,x2n);title('x2(n)');

xlabel('n');

subplot(2,2,3);stem(n,rx1x2);title('cross-correlation
between x1 and x2');

xlabel('n');

subplot(2,2,4);stem(n,rx2x1);title('cross-correlation
between x2 and x1');

xlabel('n');

The plots are shown in Figure 7.13.

EOCE 7.8

Use MATLAB to generate an N-points random signal x1(n), then add to it the
N-points samples of the 1000-Hz signal x2(n) where 

Find the energy spectral estimate of x(n) where 

FIGURE 7.12 Plots for EOCE 7.7.
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Solution

We will use MATLAB to generate 51 random values that are uniformly dis-
tributed between zero and one. The MATLAB script to calculate the spectral
energy estimate follows.

%Generating the signal x(n)

n=0:50; %51 samples

x1n=rand(1,length(n));

X1k=fft(x1n);

x2n=sin(2*pi*1000*n/10000);% fs=10000Hz

X2k=fft(x2n);

xn=x1n+x2n;% the signal x(n)

Xk=fft(xn);

Xkconj=conj(Xk);

k=0:50;

ESDk=(Xk.*Xkconj)/length(n);% energy spectral density estimate

subplot(4,1,1);stem(k,X1k);ylabel('X1(k)');

subplot(4,1,2);stem(k,X2k);ylabel('X2(k)');

subplot(4,1,3);stem(k,Xk);ylabel('X1k(k)+X2k(k)');

subplot(4,1,4);stem(k,ESDk); xlabel('k');ylabel('Energy 
Density');

FIGURE 7.13 Plots for EOCE 7.7.
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The plots are shown in Figure 7.14. You can clearly see that the 1-kHz signal
is standing out while the noise is attenuated. 

EOCE 7.9

Consider a discrete system with input 

0 n  20 

and impulse response

Find the output y(n) using block filtering.

Solution

The impulse response has 2 values and the input has 21 values. If we want
to use 8-point DFT then we can divide x(n) into 3 blocks each having 7 values
in it. Thus 7 + 2 – 1 = 8 is the length of the DFT output as the result of
convolving the 7-values input with the 2-values impulse response. Let us
call the input blocks x1(n), x2(n) and x3(n). The output blocks are then y1(n),
y2(n) and y3(n). Note that for 7-values input we will have 8-values output.

FIGURE 7.14 Plots for EOCE 7.8.

0 10 20 30 40 50
-50

0

50

0 10 20 30 40 50
-10

0

10

0 10 20 30 40 50
-50

0

50

0 10 20 30 40 50
0

10

20

k

E
ne

rg
y

S
pe

ct
ra

l 
D

en
si

ty
 

X
1k

(k
) 

+
 X

2k
(k

) 
  

  
 X

2(
k)

  
  

  
  

 X
1(

k

x n e n( )

h n n( ) 1 0 1



412 Discrete Systems and Digital Signal Processing with MATLAB

To find out the final output we will form the array y(n) as a series of the
subarrays y1(n), y2(n) and y3(n), where the eighth value of y1(n) will be added
to the first value of y2(n) and the eighth value of y2(n) will be added to the
first value of y3(n). This array of y(n) can be viewed as 

The following MATLAB script will produce y(n) using block filtering with the
DFT and regular linear convolution.

n=0:20;

xn=exp(-n);%the signal x(n) with 21 samples

x1n=xn(1:7);x2n=xn(8:14); x3n=xn(15:21);% the three blocks

% next we will make each block of length 8 by padding zeros

x1n=[x1n 0]; x2n=[x2n 0]; x3n=[x3n 0];

hn=[1 1]; %the impulse response

hne=[hn zeros(1,8-length(hn))]; %extending h(n) to of length 8

X1k=fft(x1n); X2k=fft(x2n); X3k=fft(x3n); Hk=fft(hne);

Y1k=X1k.*Hk; Y2k=X2k.*Hk; Y3k=X3k.*Hk;

y1n=ifft(Y1k); y2n=ifft(Y2k); y3n=ifft(Y3k);

yn=[y1n(1:7) y2n(1:7) y3n(1:8)];

yn(8)=y1n(8)+y2n(1); yn(15)=y2n(8)+y3n(1); % overlapping

%next we will use regular convolution to find y(n)

y=conv(xn,hn);

subplot(2,1,1);stem(n,y(1:21)); xlabel('n');

title('Output using linear convolution');

subplot(2,1,2);stem(n,yn(1:21)); xlabel('n');

title('Output using block filtering');

The plots are shown in Figure 7.15.

EOCE 7.10

High resolution and dense spectrum are two misleading terms. Next we con-
sider an example to show you the difference. Consider the signal

It is clear that x(n) has the two frequencies at .37 and .55 . Let us take only
20 samples of the 100 samples from x(n) and find the spectrum. Then let us
pad the 20-sample signal with 80 zeros and find the spectrum again. Next
let us take all 100 samples from x(n) and find the spectrum.

y n y y y y y y y y y y( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 2 3 3 30 6 7 0 1 6 7 0 1 7

x n n n( ) sin(. ) sin(. )37 55
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Solution

We will use MATLAB to accomplish this task.

n=0:1:99; %generating 100 samples

xn=sin(.37*pi*n)+sin(.55*pi*n);

x1n=xn(1:20); %taking only few points from x(n)

X1k=fft(xn);

k1=0:10; w1=k1*2*pi/20; %range from zero to 3.14 rad

%let us now padd x1(n) with 80 zeros

x2n=[x1n zeros(1,80)];

X2k=fft(x2n);

k2=0:50; w2=k2*pi*2/100;

%Now we take all 100 points

Xk=fft(xn);

k=0:1:50; w=k*pi*2/100;

n1=0:19;

subplot(2,3,1);stem(n,xn);xlabel('n');title('100 samples No 
padding')

subplot(2,3,2);stem(n1,x1n);xlabel('n');title('20 samples No 
padding')

subplot(2,3,3); stem(n, x2n);xlabel('n');title('20 samples 80 
zeros')

FIGURE 7.15 Plots for EOCE 7.9.
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subplot(2,3,4); stem(w,abs(Xk(1:51)));xlabel('Frequency in 
radians');

title('Corresponding spectra');

subplot(2,3,5); stem(w1,abs(X1k(1:11)));xlabel('Frequency in 
radians');

title('Corresponding spectra');

subplot(2,3,6); stem(w2,abs(X2k(1:51)));xlabel('Frequency in 
radians');

title('Corresponding spectra');

The plots are shown in Figure 7.16. Notice that with only 20 samples of x(n)
and no zero padding, the spectrum is not dense as it is in the case when 20
samples are taken with 80 zeros padded. Padding with zeros will make the
spectrum more dense. This does not mean that the DFT with zero padding
will tell more about the frequency contents of the signal. As it is seen in the
plot, with few samples and no zero padding and with few samples and zero
padding, the magnitude plots are distorted and do not have values of the
exact two frequencies of .37 and .55 . However, by taking more points from
x(n), we can see the spectrum emphasized at the .37 and.55 frequencies.

FIGURE 7.16 Plots for EOCE 7.10.
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Thus we can say that zero padding can only make spectrum more dense
which does not mean good frequency resolution. More points or samples
will produce more frequency components and yet good frequency resolution.
This is not to say that good frequency resolution comes from more samples
only. You need to consider a good time span over which the signal is well
known. If the signal is periodic, you can sample over one period. Taking
more samples within this period gives good frequency resolution and yet
more frequencies will be detected using the DFT. If the signal is not periodic
but its amplitude approaches zero as time reaches a certain limit, then you
need to sample the signal for the period of time up to that limit. This is what
is known as the record length in digital signal processing.

7.10 End of Chapter Problems

EOCP 7.1

A continuous time signal has fm as its highest frequency. If fm = 1 kHz and
we desire sampling the signal at 10 times fm, what would be the record length
and the number of samples if the frequency resolution is to be 10 Hz?

EOCP 7.2

Find the circular convolution between the signals

1. u(n) for 0 n 5 and e–n/.1 for 0 n  5
2. 5sin(n /3) for 0 n 4 and e–n for 0 n  4
3. e–n/2 and itself for 0 n 10
4. x(n) = 1 and itself for 0 n  5
5. cos(n /6) for 0 n 6 and (n) for 0 n  6

EOCP 7.3

1. Find the discrete Fourier transform X(ej ) of x(n) = e–n/3 for 0 n 7.
2. Sample X(ej ) at = 2 k/N with N = 16.
3. Find the first 4 values X(0) ,…, X(3) using the DFT equation.
4. Find all eight values for X(k) and compare with the values found in

part 2.
5. If x(n) in part 1 is an input to the linear system given by h(n) = e–n/6

for 0 n 3, use convolution to find y(n), the output of the system.
6. Use the DFT to find y(n) in part 5.
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EOCP 7.4

Consider the signal

1. Let N = 8, 16, 32 and 64. Find the spectrum for x(n) using the DFT.
2. What conclusion can you draw by completing part 1?
3. If x(n) = cos(n /6) for 0 n 63, plot the spectrum for x(n) in this case.
4. Compare the results of part 1 and part 3.

EOCP 7.5

Find the DFT of the following signals where n is taken in the interval 0 
n N – 1. A is a constant.

1. A (n)
2. A

3. Asin(2 n/N)
4. Acos(2 n/N)

EOCP 7.6

Consider the signal

1. What is the period of x(t)?
2. What is the minimum sampling frequency?
3. Sample x(t) for one period at fs = 10 fm and plot x(n).
4. Find the DFT of x(n) in 3.
5. Repeat 3 over two periods. What do you observe? Keep N as in 3.
6. Find the DFT of x(n) in 5. What do you notice?

EOCP 7.7

Use the DFT to find the energy spectrum density for the signals

1.      0 n 15

2. 0 n 15

x n
n n

( )
cos 6 0 5

0 otherwise

x t t t( ) sin( ) sin( )600 1000

x n
n

( ) sin
2
11

x n e
nn

( ) sin3 2
11
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EOCP 7.8

Use the DFT to find the cross-correlation between the signals given in EOCP 7.7.

EOCP 7.9

Use the DFT to approximate the Fourier transform for the signals

1.

2.

3.

EOCP 7.10

Consider the system

h(n) = e–n 0 n 10

1. If x(n) = u(n) for 0 n 5, find y(n) using linear convolution via the
DFT.

2. Find the impulse response for the system.

EOCP 7.11

Consider the system

1. If the input is x(t) = e–5tu(t), use the DFT to find y(n).
2. If the input is x(t) = 10sin(2 (500)t) + 10, find the output y(n) using

the DFT.
3. Is there any dc component in the output? Use the DFT to check.

EOCP 7.12

Consider the signals

x t e u tt( ) ( )

x t
t

( ) cos20
2
13

x t
t

( )
1 0 1

0 otherwise

h t e u t
t

( ) ( )3

x t t t( ) sin( ) cos2 3 4

x t e t tt( ) sin( ) cos10 2 3 4



418 Discrete Systems and Digital Signal Processing with MATLAB

1. Are the signals periodic?
2. Find the Fourier series coefficient and/or the Fourier transform

(approximation) using the DFT for the signals.
3. What is the average power/total energy in the signals x(t)?

EOCP 7.13

Consider the signal

1. Find the total energy in the signal using the DFT.
2. If x(t) is multiplied by sin(t), what would be the approximation to

the total energy in the signal using the DFT.

EOCP 7.14

Consider the signal

as an input to the system

1. Find y(n) using convolution and the DFT.
2. Subdivide the input signal into blocks and use block filtering to find

y(n) again.
3. Compare the results in 1 and 2.
4. Find the total energy in both signals using the DFT.

EOCP 7.15

Consider the signal

1. Find the approximation to the Fourier transform of x(t).
2. Use the Hamming windowing method and repeat part 1.
3. Use the Hamming windowing method and repeat part 1.
4. Comment on the results.

x t e u t
t

( ) ( )10

x t e t u tt( ) sin( ) ( )10

h t e u tt( ) ( )4

x t t( ) cos ( )2 300
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EOCP 7.16

Consider the signal

1. Choose an fs and a suitable N so that only the 700 and the 300 Hz
will appear in the DFT magnitude plot. Plot the DFT magnitude.

2. Choose fs (you should satisfy the sampling Nyquist rate in this part,
too) and a suitable N so that the frequencies in x(t) will appear
distorted on the DFT magnitude plot. Plot the DFT magnitude. 

3. How can you get a more accurate plot in part 2 to suppress the
frequency distortion? Plot the DFT magnitude.

EOCP 7.17

A continuous signal has a duration of 2 sec and is sampled at 64 equally
spaced values.

1. What is the distance between successive frequency points?
2. What is the highest frequency in the spectrum?
3. What is the maximum frequency in the continuous signal if there is

to be no aliasing?

x t t t( ) sin ( ) sin ( )10 2 700 2 300
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8
Analogue Filter Design

With Khaled Younis, Ph.D.

8.1 Introduction

The goal of this chapter is to review analogue filter design before we talk
about digital filter design. This is important because most of the techniques
for designing discrete time infinite impulse response (IIR) filters require the
availability of suitable analogue lowpass filter (LPF) approximations. There
are many established approximations for the design of analogue LPF. We
will focus on five well-known approximation methods, namely, Butterworth,
Chebyshev Type I, Chebyshev Type II, elliptic and Bessel filters.

The detailed derivation of these filters and their transfer functions can be
found in texts on analogue filter design. First, we describe the specifications
of the analogue lowpass filters. For each filter approximation we give the
magnitude response, transfer function and the minimum order N needed to
satisfy the analogue specifications. Then, the analogue frequency transfor-
mation is discussed. At the end, we describe the MATLAB functions that are
useful for designing each of these filters and we provide some design exam-
ples. But first let us gain some understanding of the filter concept.

At this point in the course of this book we should have a very good
understanding of the concept of input, output and a linear time-invariant
system. We will stress again that if x(t) is an input to a linear time-invariant
system, the output will reshape the input due to the characteristics of the
system itself. Let us look at the following system transfer function. 

(8.1)

The magnitude of this transfer function is

(8.2)

H jw
Y jw
X jw jw

( )
( )
( )

1
1

Y jw
X jw

H jw
w

( )
( )

( )
1

1 2
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At low frequencies (close to zero), the magnitude of the transfer function is
close to unity. As the frequency increases, the magnitude decreases to a value
close to zero.

It seems that this system will pass low frequencies and prevent high
frequencies from passing through the system. This is similar to the process
of filtering frequencies. Most input signals have frequencies. It seems to us
that the impulse signal has no frequency, but if we take the Laplace transform
of the impulse signal we see that the transform is a constant that is spread
over all frequency values; thus the impulse signal has a constant value at all
frequencies. If a signal contains both high and low frequencies, only frequen-
cies in the low range will pass.

From the discussion above we see that the words system and filter are the
same. In reality, the word system, and not filter, is used for electrical, mechan-
ical and any dynamical systems.

Filters can be built using either active or passive circuit elements. The use
of active or passive elements depends on the kind of the application being
designed. In most communication systems we use active filters because
inductors are heavy, very noisy and quite expensive. Passive filters do not
produce an output of magnitude greater than the magnitude of the input.
If high gain is required, we use active filters. Active filters are limited in
terms of frequency. If we require filters that will operate on signals with
frequencies very much higher than megahertz, we tend to use passive filters.

The phase angle of any transfer function has the lead-lag information that
relates the input to the output. If the phase angle is positive, we say the output
leads the input, and if the phase angle is negative, it means that the output
lags behind the input. If the phase angle is zero, then the input and the output
appear at the same time and we say the input and output are in-phase. The
gain of any filter (the dc gain) can be calculated at the zero frequency. 

Remember that we are dealing with steady-state analysis (s = jw) when we
are dealing with the problem of designing filters. As the frequency approaches
zero, w will approach zero, and thus s approaches zero. To increase or decrease
the gain of a filter we simply multiply the transfer function by the desired
constant. If the constant is positive, it will have no effect on the phase angle
of the filter. If the constant is negative, 180° will be added to the phase of the
filter. Thus the sign of the constant is important. Filters can have linear phase,
meaning that the phase is a linear function of frequency.

8.2 Analogue Filter Specifications

An analogue filter can be represented by the equation 

(8.3)
Y s
X s

H s
N s
D s

( )
( )

( )
( )
( )
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where s is the complex variable in the Laplace transform (s = + jw), and
X(s) and Y(s) are the Laplace transforms of the input and output signals x(t)
and y(t), respectively. H(s) is the transfer function of the analogue filter and
N(s) and D(s) are polynomials in s. To obtain the specifications in analogue
frequency w, we evaluate the transfer function at s = jw to obtain H(jw). The
phase shift and group delay of the filter are given by 

(8.4)

and

(8.5)

respectively. (w) and (w) are the phase and delay characteristics. A plot
that shows the location of zeros and poles of an example H(s) is shown in
Figure 8.1. There are four common configurations for frequency-selective
filters: a lowpass filter (LPF), a highpass filter (HPF), a passband filter (BPF),
and a bandstop filter (BSF). The magnitude responses for these filter types
are shown in Figure 8.2. Looking at the magnitude response we can easily
see why these are called brick wall (or ideal) filters. For each of these filters
only selected frequencies will pass — above wc for the LPF and below wc for
the HPF. In the case of the BPF, frequencies above the lower cut-off frequency,
wcl, and below the upper cut-off frequency, wcu, will pass. On the other hand,
this frequency range will be rejected in the BSF case. In the next section we
will focus on the design of common lowpass Butterworth filters. At the end
of the chapter we will describe a method for transforming a lowpass filter
with wc = 1 rad/sec to other filter configurations.

FIGURE 8.1 Typical analogue filter zero-pole plot.
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Since we cannot achieve the ideal lowpass filter shown in Figure 8.2(a),
we need to allow for some ripple in the passband and the stopband. There-
fore a magnitude response similar to the one shown in Figure 8.3 is usually
obtained. Note that the magnitude-squared response can assume any value
in the dashed area. In other words, the analogue lowpass filter should satisfy
the following specifications

(8.6)

where wp and ws are the passband and stopband edge frequencies, respec-
tively. The passband ripple, denoted as (1 + 2)–1 is given by the minimum
value of the magnitude-squared in the passband. In the normalized form of
the magnitude response, the maximum passband gain is unity. The maxi-
mum stopband ripple is given by .

FIGURE 8.2 Ideal (brick wall) filters (a) LPF, (b) HPF, (c) BPF and (d) BSF.

FIGURE 8.3 Practical lowpass filter specifications.
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Usually the ripples of the analogue filter are specified in decibels in terms
of the peak passband ripple, Rp, and the minimum stopband attenuation,
Rs, defined by

(8.7)

(8.8)

So far we have seen that there are four parameters of interest in the analogue
filter specifications, namely, wp, ws, Rp and Rs. There are two other parameters
that will be shown to be useful when we derive the equation to calculate
the minimum order of the analogue filter to satisfy certain specifications.
These are the lowpass filter transition ratio, or selectivity parameter, k, which
is given by

(8.9)

The other parameter is called the discrimination parameter, d, and is given by

(8.10)

8.3 Butterworth Filter Approximation

The magnitude-squared response of an Nth order analogue lowpass Butter-
worth filter is given by

(8.11)

where wc is the frequency where the magnitude-squared drops by 3 dB.
Therefore, it is called the 3-dB cut-off frequency. In other words, the magni-
tude response at wc is always , regardless of the filter order N.

The Butterworth filter provides the best Taylor Series approximation to
the ideal lowpass filter response at analogue frequencies w = 0 and w = .
The magnitude-squared response has 2N – 1 zero derivatives at these loca-
tions. Hence it is called maximally flat at w = 0 and w = . The response is
monotonic overall, decreasing smoothly from w = 0 to w = . Figure 8.4
shows the magnitude response �H(jw)� of a lowpass Butterworth filter of order
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5. As can be seen in Figure 8.4, �H(jw)� =  at w = 1 and therefore the cut-
off frequency of this filter is 1 rad/sec. The transfer function of an Nth order
analogue Butterworth filter is given by 

(8.12)

where

(8.13)

and c normalizes the magnitude so that the maximum magnitude is unity.
The transfer function has 2N poles equally spaced in angle on a circle of
radius wc in the left half s-plane that exist in complex conjugate pairs. The
poles are symmetrically located with respect to the imaginary axis. The
denominator polynomials have been tabulated in the analogue filter design
texts for reference. However, as we shall see in Section 8.8, we can use MATLAB

for designing such filters easily.
As can be seen from Equation (8.11), the two parameters that define the

Butterworth LPF are the order N and the cut-off frequency wc. Therefore we
need to derive these parameters from the specifications. Recall that the main

FIGURE 8.4 Magnitude response of a fifth-order Butterworth lowpass filter.
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constraints in Equation (8.6) are the value of the magnitude-squared response
at wp and ws. In other words, at w = wp

(8.14)

and at w = ws

(8.15)

Equations (8.14) and (8.15) can be arranged into the equations 

or we write the equations as

We can divide the above equations to get

If we solve the above equation for N we get

(8.16)

Note that since N must be an integer value we round up the results of the
right-hand expression to the next higher integer. The value of wc can then
be chosen anywhere from the following range of values 

(8.17)
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The lower limit was found by solving Equation (8.14) while the upper limit
was obtained by solving Equation (8.15).

8.4 Chebyshev Filters

Looking at the frequency response of the Butterworth filter given in Figure 8.4
we can obviously see that specifications are exceeded at frequencies close to
w = 0 and w = . This is due to the fact that the response is monotonic
overall. Thus, to meet the filter specifications at wc with minimum order, we
need to far exceed the requirements at frequencies away from wc. Therefore,
the mean approximation error (defined as the difference between the ideal
[brick wall] response and the actual frequency response) is minimal at w =
0 and w = , and is high at wc. Another approach is to distribute the approx-
imation error over the entire passband or stopband regions maintaining the
same maximum passband error or minimum stopband attenuation with
lower filter order. There are approximation methods that have an equiripple
behavior instead of a monotonic behavior. In the next section, we will
describe Chebyshev Type I approximation which has the property that the
magnitude of the frequency response is equiripple in the passband and
monotonic in the stopband. On the other hand, Type II Chebyshev filter
approximation is monotonic in the passband and equiripple in the stopband.

8.4.1 Type I Chebyshev Approximation

The Chebyshev Type I filter incorporates an equiripple of Rp dB in the pass-
band and a monotonic behavior in the stopband. Hence, the absolute approx-
imation error over the entire passband is minimized. Moreover, the transition
from passband to stopband is more rapid than for the Butterworth filter. 

The magnitude response for Type I Chebyshev filter is given by 

(8.18)

where TN(w) is the Nth order Chebyshev polynomial of the first kind

(8.19)

The above polynomial can also be derived via the recurrence relation 
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(8.20)

with T0(w) = 1 and T1(w) = w. The Chebyshev Type I cut-off frequency wc is
the frequency at which the passband ends and the filter has magnitude
response of 10–Rp/20. Typical plots of the magnitude responses of the Type I
Chebyshev lowpass filter with wc= 1 rad/sec are shown in Figure 8.5 for
four different values of the filter order N with the same passband ripple .
From these plots it is seen that the magnitude response is equiripple between
w = 0 and w =1, and it is maximally flat for w > 1 rad/sec. The Nth-order
analogue Type I Chebyshev filter has a transfer function given by

(8.21)

where

(8.22)

and

(8.23)

FIGURE 8.5 Magnitude-squared response of a Chebyshev Type I filter with different N values.
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In Equation (8.22) the constant is given by

(8.24)

when N is odd and

(8.25)

when N is even. Note that c normalizes the magnitude so that the maximum
magnitude is unity. The poles are evenly spaced about an ellipse in the left
half s-plane.

Looking at Equation (8.18) we can see that the filter is completely specified
by three parameters: , wc and N. In a typical design, is specified by the
allowable passband ripple and wc is specified by the desired passband cut-
off frequency. Then we choose the order N to meet the stopband specifica-
tions exactly at w = ws in Equation (8.6). This yields that the filter order
required is

(8.26)

Example 8.1

Estimate the minimum order and cut-off frequency for a Chebyshev Type I
analogue filter having the following specifications:

wp = 1000 rad/sec ws = 3000 rad/sec
Rp = 2 dB Rs = 60 dB

Solution

Using Equations (8.7) and (8.8) we substitute the given values to get

So, = 0.7648

So, = 0.001. Now we find k and d as follows:

c pi
N

i1

c pi
N

i1 2
1
2

1

N
d d

k k

d
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log

log

cosh

cosh
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1 1

1 1

1

1

2 10 1 2log

60 10 2log

k w w

d

p s 1000 3000 0 333

1 0 00076482
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Using Equation (8.26), we get the minimum order N as

So the minimum filter order to achieve the above specifications is 5.

8.4.2 Inverse Chebyshev Filter (Type II Chebyshev Filters)

The Chebyshev Type II filter is monotonic in the passband. It minimizes the
absolute approximation error over the entire stopband by incorporating an
equiripple of Rs dB in the stopband. It is important that there is no ripple in
the passband for the Type II Chebyshev filter. However, the stopband does
not approach zero as quickly as the Type I filter (and does not approach zero
at all for even-valued filter order N). The square-magnitude response expres-
sion is given by 

(8.27)

where for the Chebyshev Type II filter wc is the frequency at which the
stopband begins and the filter has magnitude response

(8.28)

The right-hand expression in Equation (8.27) was obtained by evaluating
�H(jw)� at w = ws. Typical responses are as shown in Figure 8.6 for different
values of N and wc = 1 rad/sec. Note that a Type II Chebyshev lowpass filter
can be related to a Type I filter through a transformation. Specifically, in
Equation (8.18) if we replace the term 2T 2

N(w/wp) by its reciprocal, and also
replace the argument of T 2

N(.) by its reciprocal we arrive at an equation
equivalent to Equation (8.28). Actually, it is possible to design a Type I filter
and then apply the above transformation to obtain the Type II Chebyshev
filter. The transfer function giving rise to Equation (8.27) is 

(8.29)
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where 

(8.30)

(8.31)

(8.32)

(8.33)

and where 

(8.34)

FIGURE 8.6 Magnitude-squared response of a Chebyshev Type II filter for different values
of N. 
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when N is even and 

(8.35)

when N is odd. The pole locations are the inverse of the pole locations of
Type I Chebyshev filter, whose poles are evenly spaced about an ellipse in
the left half s-plane. The filter order N required to satisfy the filter specifi-
cations is the same as that for the Type I Chebyshev filter, which is given by
Equation (8.26).

8.5 Elliptic Filter Approximation

We have noticed that by incorporating equiripple behavior in the passband
or the stopband (as in the case of Chebyshev filters), the performance had
improved. The improvement was in the sense of reducing the transition
width (ws – wp) and minimizing the filter order required to achieve certain
specifications for given values of , , and wp.

Elliptic filters further improve the performance because they are equiripple
in both the passband and stopband. Given a filter order N, passband ripple
Rp in decibels and stopband ripple Rs in decibels, elliptic filters provide the
steepest roll-off characteristics. This class of approximations, referred to as
elliptic filters, has the form

(8.36)

where UN(w) is a Jacobian elliptic function. The cut-off frequency is the
frequency at which the passband ends and the filter has a magnitude
response of 10–Rp/20. Figure 8.7 shows the magnitude-squared response of an
elliptic filter for different values of N. The transfer function of an elliptic
filter meets a given set of filter specifications, passband edge frequency wp,
stopband edge frequency ws, passband ripple and minimum stopband
attenuation , with the lowest filter order N. The theory of elliptic filter
approximation is mathematically quite involved. 

For most applications, the filter order meeting a given set of specifications
ws, wp, and can be estimated using the approximate formula

(8.37)
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where d is the discrimination parameter defined in Equation (8.10) and is
computed as follows

(8.38)

(8.39)

(8.40)

where k is the selectivity parameter defined in Equation (8.9).

8.6 Bessel Filters

Note that the only objective in the preceding approximations is to achieve
a specific magnitude response characteristic. As a result, the phase charac-
teristic turns out to be nonlinear, i.e., the delay tends to vary with frequency,
especially in the case of the elliptic approximation. It is desired to have a
group delay of a filter independent of frequency. This is obtained if the phase

FIGURE 8.7 Magnitude-squared response of an elliptic filter for different values of N.
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shift should be a linear function of frequency. One class of filters that tried
to achieve this is Bessel filters which can have an all-pole transfer function
of the form

(8.41)

where B(s) is called the Bessel polynomial and

(8.42)

The magnitude response, phase response and group delay can be found to be

(8.43)

(8.44)

(8.45)

where v = N+1/2 and

(8.46)

where (.) is the gamma function. Figure 8.8(a) shows the magnitude-
squared response of a Bessel filter for different values of N. Note that the
only parameter that defines the Bessel function is the order N, and the
magnitude response is poorer than the previous approximations. The phase
response here is linear, as can be seen in Figure 8.8(b).

Analogue Bessel lowpass filters have maximally flat group delay at zero
frequency and retain nearly constant group delay across the entire passband.
Filtered signals therefore maintain their wave shapes in the passband fre-
quency range. Bessel filters generally require a higher filter order than other
filters for satisfactory stopband attenuation. �H(jw)� < at w = wc and
decreases as filter order N increases. This is unlike the other approximations,
where the magnitude response was fixed at wc.
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FIGURE 8.8(a)Frequency response of a Bessel filter for different values of N. (a) Magnitude-
squared response; (b) phase response; (c) group delay response.

FIGURE 8.8(b)
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8.7 Analogue Frequency Transformation

The preceding sections have discussed different approximations for the
design of continuous-time lowpass filters. In this section we will discuss a
method for transforming analogue lowpass prototypes (with cut-off frequency
of 1 rad/sec) into bandpass, highpass, bandstop and lowpass filters of the
desired cut-off frequency. The following is a set of frequency transformations
transforming lowpass filters with system function H(s’) to a different con-
figuration function H(s).

Lowpass to lowpass: (8.47)

Lowpass to highpass: (8.48)

Lowpass to bandpass: (8.49)

FIGURE 8.8(c)
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Lowpass to bandstop: (8.50)

where in the above transformation wcl is the lower cut-off frequency and wcu

is the upper cut-off frequency.
Looking at the previous transformations we can see that the transformation

is not linear except for the lowpass to lowpass case. However, this nonlin-
earity provides no difficulty since the filter being transformed is approxi-
mately constant in the frequency band of interest. Therefore, while the
frequency spacing of the ripple peaks and valleys is affected, the amount of
ripple is still the same. Furthermore, in transforming the lowpass filter to
bandstop or bandpass filter, the substitution is second order, so the output
filter is twice the order of the input filter.

8.8 Analogue Filter Design using MATLAB

The signal processing toolbox of MATLAB has many useful functions that help
in the design of analogue filters of the types described in the previous
sections. These functions can be grouped into four categories: 

1. Functions for the computation of minimum order required for classical
IIR (infinite impulse response) filters to achieve certain specifications 

2. Functions for the design of analogue lowpass prototype filters with
a normalized cut-off frequency of 1 rad/sec

3. Functions for the complete design of analogue filters of any config-
uration; lowpass, highpass, bandpass, or bandstop, with varying wp

and ws

4. Functions for transforming a 1 rad/sec prototype lowpass filter to
other configurations

However, before we talk about these sets of functions, it is important to
discuss the MATLAB function freqs which is used to compute the complex
frequency response �H(jw)� for an analogue filter. Given the numerator and
denominator coefficients of the system function H(s) in vectors b and a,

h = freqs(b,a,w)

returns the complex frequency response along the imaginary axis in the
complex plane at the frequencies specified in real vector w. Note that there
is a function called bode in the control toolbox and the system identification
toolbox in MATLAB that computes the magnitude and phase of the frequency
response of linear time-invariant (LTI) models. When invoked without

s
s w w

s w w
cu cl

cl cu
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left-hand arguments, bode produces a Bode plot on the screen. The magni-
tude is plotted in decibels (dB), and the phase in degrees. The decibel cal-
culation for the magnitude is computed as 20log10(�H(jw)�), where �H(jw)� is
the system’s frequency response.

8.8.1 Order Estimation Functions

The Signal Processing Toolbox of MATLAB provides order selection functions
that calculate the minimum order for an analogue filter that meets a given
set of the requirements. These functions are: buttord, cheb1ord,
cheb2ord and ellipord for the computation of the minimum order N
required for Butterworth, Chebyshev Type I, Chebyshev Type II and elliptic
filters, respectively. The following table summarizes these functions. 

The filter specifications are given as

buttord selects the minimum order digital or analogue Butterworth filter
required to meet a set of filter design specifications.

These functions also work with the other standard band configurations,
as well as for digital filters as we shall see in Chapter 10. For highpass filters,
Wp is greater than Ws. For bandpass and bandstop filters, Wp and Ws are
two-element vectors that specify the corner frequencies at both edges of the
filter, lower frequency edge first. For the band filters, the output Wn is a
two-element row vector. For the complete description of use of these and all
MATLAB functions the reader is encouraged to see MATLAB’s Function Refer-
ence for details. 

These functions are useful in conjunction with the filter design functions
in the sense that before we design a filter we need to estimate the minimum
order required to satisfy a specific requirement and then use the output order
N and wn as input for the filter design functions.

TABLE 8.1

Order Estimation Functions

Analogue Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs ,‘s’)
Chebyshev Type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs, ,‘s’)
Chebyshev Type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs ,‘s’)
Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs, ,‘s’)

Wp Passband corner frequency; it is the cut-off frequency in rad/sec and may have a 
value above 1 

Ws Stopband corner frequency in rads per second
Rp Passband ripple, in decibels; this value is the maximum permissible passband loss in 

decibels
Rs Stopband attenuation, in decibels; this value is the number of decibels the stopband 

is down from the passband
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8.8.2 Analogue Prototype Design Functions

There are a number of functions in MATLAB used to create lowpass analogue
prototype filters with a cut-off frequency of 1 rad/sec. The table below
summarizes the analogue prototype design function for each supported filter
type.

The above functions return the zeros, poles and gain of the assigned filter.
They return the poles in the length n column vector p and the gain in scalar k.
In [z,p,k] = buttap(n), z is an empty matrix because there are no zeros. In
[z,p,k] = cheb1ap(n,Rp), z is an empty matrix because there are no zeros.
Passband ripple Rp dB should be specified. In [z,p,k] = cheb2ap(n,Rs), if n
is odd, z is of length n – 1 and if n is even, z is of length n. The value of Rs
in dB should be specified. In [z,p,k] = ellipap(n,Rp,Rs), if n is odd, z is of
length n – 1 and if n is even, z is of length n. The values of Rs and Rp in
decibels should be specified. In [z,p,k] = besselap(n), z is an empty matrix,
because there are no zeros. 

8.8.3 Complete Classical IIR Filter Design

You can easily create an analogue filter of any order with a lowpass, highpass,
bandpass, or bandstop configuration using the filter design functions shown
in Table 8.3. By default, each of these functions returns a lowpass filter; you
need only specify the desired cut-off frequency Wn in rad/sec. However, they
can design lowpass, bandpass, highpass and bandstop analogue filters. They
return the filter coefficients in the length n + 1 row vectors b and a, with
coefficients in descending powers of s

(8.51)

[b,a] = besself(n,Wn) designs an order n lowpass analogue filter
with cut-off frequency Wn.

[b,a] = butter(n,Wn,’s’) designs an order n lowpass analogue
Butterworth filter with cut-off frequency Wn.

TABLE 8.2

Analogue Prototype Functions

Filter Type Analogue Prototype Function

Bessel [z,p,k] = besselap(n)
Butterworth [z,p,k] = buttap(n)
Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)
Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)
Elliptic [z,p,k] = ellipap(n,Rp,Rs)
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[b,a] = cheby1(n,Rp,Wn,’s’) designs an order n lowpass analogue
Chebyshev Type I filter with cut-off frequency Wn that equals wp.

[b,a] = cheby2(n,Rs,Wn,’s’) designs an order n lowpass analogue
Chebyshev Type II filter with cut-off frequency Wn that equals ws.

[b,a] = ellip(n,Rp,Rs,Wn,’s’) designs an order n lowpass ana-
logue elliptic filter with cut-off frequency Wn that equals ws.

If Wn is a two-element vector, Wn = [w1 w2] with w1 < w2, then these
commands return an order 2n bandpass analogue filter with passband w1 <
w < w2. If the input argument ftype is used, then we can design a highpass
or bandstop filter, where ftype is

1. high for a highpass analogue filter with cut-off frequency Wn
2. stop for an order 2n bandstop analogue filter if Wn is a two-element

vector, Wn = [w1 w2]; the stopband is w1 < < w2

With different numbers of output arguments, the complete filter design
functions directly obtain other realizations of the analogue filter. We have
already dealt with the case of two output arguments that return the coefficient
of the numerator and denominator of H(s). To obtain zero-pole-gain form,
use three output arguments, e.g.,

[z,p,k] = butter(n,Wn,'s') 

TABLE 8.3

Complete Design Functions

Filter Type Design Function

Bessel [b,a] = besself(n,Wn) 
[b,a] = besself(n,Wn,‘ftype')
[z,p,k] = besself(n,Wn,...)
[A,B,C,D] = besself(n,Wn,...)

Butterworth [b,a] = butter(n,Wn,‘s’)
[b,a] = butter(n,Wn,'ftype’,’s’)
[z,p,k] = butter(n,Wn,...)
[A,B,C,D] = butter(n,Wn,...)

Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,’s’)
[b,a] = cheby1(n,Rp,Wn,’ftype’,’s’)
[z,p,k] = cheby1(n,Rp,Wn,...)
[A,B,C,D] = cheby1(n,Rp,Wn,...)

Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,’s’)
[b,a] = cheby2(n,Rs,Wn,’ftype',’s’)
[z,p,k] = cheby2(n,Rs,Wn,...)
[A,B,C,D] = cheby2(n,Rs,Wn,...)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,’s’)
[b,a] = ellip(n,Rp,Rs,Wn,’ftype',’s’)
[z,p,k] = ellip(n,Rp,Rs,Wn,...)
[A,B,C,D] = ellip(n,Rp,Rs,Wn,...)
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or

[z,p,k] = butter(n,Wn,'ftype','s')

which will return the zeros and poles in length n or 2n column vectors z
and p and the gain in the scalar k.

To obtain state-space form, use four output arguments, e.g.,

[A,B,C,D] = butter(n,Wn,'s') 

or

[A,B,C,D] = butter(n,Wn,'ftype','s')

where A, B, C and D are the state-space system matrices

and x is the input vector, v is the state vector, and y is the output vector.

8.8.4 Analogue Frequency Transformation

The signal processing toolbox provides a set of functions to transform a
1-rad/sec cut-off frequency analogue lowpass filter to another analogue
lowpass filter (with different cut off frequency) or a bandpass, highpass or
bandstop filter. These are shown in Table 8.4.

As shown, all of the frequency transformation functions can accept two
linear system models: transfer function and state-space form. For the band-
pass and bandstop cases w0 is the center frequency and equals and
Bw is the frequency bandwidth that equals wcu – wcl, where wcl is the lower
cut-off frequency and wcu is the upper cut-off frequency.

TABLE 8.4

Transformation Functions

Frequency Transformation Transformation Function

Lowpass to lowpass [numt,dent] = lp2lp(num,den,W0)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,W0)

Lowpass to highpass [numt,dent] = lp2hp(num,den,W0)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,W0)

Lowpass to bandpass [numt,dent] = lp2bp(num,den,W0,Bw)
[At,Bt,Ct,Dt]=lp2bp(A,B,C,D,W0,Bw)

Lowpass to bandstop [numt,dent]=lp2bs(num,den,W0,Bw)
[At,Bt,Ct,Dt]=lp2bs(A,B,C,D,W0,Bw)

d
dt

v Av Bx

y Cv Dx

w wcl cu
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8.9 How Do We Find the Cut-Off Frequency Analytically?

In filter design and analysis we calculate the cut-off frequency wc as in the
following. Given the transfer function H(jw), we set

(8.52)

We can solve this equation by first finding the maximum value of the mag-
nitude of H(jw) and dividing that value by , and then setting it equal to
�H(jw)� evaluated at w0, where w0 is the frequency at which the magnitude is
maximum. The maximum value for H(jw) can be calculated either by using
calculus (find the derivative of H(jw) and setting it equal to zero) or by
plotting the magnitude of H(jw) vs. w and locating the maximum value.

Example 8.2

Consider the transfer function

Calculate wc, the cut-off frequency.

Solution

We see that the maximum amplitude is 1 by evaluating the magnitude at
w = 0. We now use Equation (8.52) and write

or

Squaring both sides gives
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Solving the above equation, by considering the positive side of the w-axis,
gives wc = 1. Using calculus, we can find the maximum magnitude of the
transfer function by finding the derivative of �H(jw)� with respect to w as

Setting the above equation equal to zero results in w = 0. At w = 0, �H(0)� = 1,
which is the maximum magnitude of �H(w)�. Following the procedure above,
we can solve for wc to get the same result: wc = 1.

Example 8.3

Consider the transfer function

Calculate wc, the cut-off frequency.

Solution

The maximum amplitude occurs at a very high frequency ( ) and it is unity.
We now use Equation (8.52) to find the cut-off frequency and write

Squaring both sides gives

Solving the above equation, while considering the positive side of the w-axis,
gives wc = 1. Using calculus, we can find the derivative of �H(jw)� with respect
to w and get

d
dw w
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Setting the above equation equal to zero (the denominator cannot be zero)
results in

= 0

This last equation results in w = . At w = , �H(j )� = 1, which is the
maximum magnitude of �H(jw)�. Following the procedure above, we can solve
for wc to get the same result: wc = 1.

Example 8.4

Consider the system described by

Calculate the cut-off frequency.

Solution

With s = jw, the magnitude of the transfer function can be calculated as

This is a bandpass filter. In case of a bandpass filter, we will look at the
following parameters:

1. The cut-off frequencies wcl and wcu. These can be calculated using
the same procedure that we used to determine the cut-off frequencies
for the lowpass and the highpass filters.

2. The center frequency w0. The center frequency is the frequency where
the transfer function H(s) is purely real. It is also the frequency at
which the magnitude of H(s) is maximum, as well as the geometric
mean of wcl and wcu or

(8.53)

3. The bandwidth . The bandwidth is the width of the frequency band
in the bandpass filter.

2

2 1 2 1 2
w

H s
R L s

s R L s LC
( ) 2 1

H jw
w

R
L

LC w w
R
L

( )

1 2 2
2
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4. The quality factor Q. The quality factor is defined as the ratio of the
center frequency to the bandwidth

(8.54)

It is a measure of the bandwidth of the passband. 

The center frequency can be calculated by making H(s) purely real. We can
do that by setting

Solving the above equation leads to

We next calculate the cut-off frequencies wcl and wcu. H(jw) has its maximum
at w0. Therefore, the maximum magnitude of H(jw) is �H(jw0)�.

To find wcl and wcu we divide �H(jw0)� by the square root of 2 and set it equal
to �H(jw)� as

With some manipulations we get the following quadratic equation in w:

By solving the above equation we get the two cut-off frequencies

Q w0

jw L
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For the bandwidth we have

and for the quality factor

8.10 Limitations

The following limitations are met in filter design using MATLAB.

1. All classical IIR lowpass filters are ill-conditioned for extremely low
cut-off frequencies. Therefore, instead of designing a lowpass IIR
filter with a very narrow passband, it may be better to design a wider
passband and decimate the input signal. 

2. For besselap, n must be less than or equal to 25. besselap finds
the filter roots from a look-up table constructed using the Symbolic
Math Toolbox.

3. For high-order filters, the state-space form is the most numerically
accurate, followed by the zero-pole-gain form. The transfer function
coefficient form is the least accurate; numerical problems can arise
for filter orders as low as 15.

4. If filter specifications call for a bandpass or bandstop filter with
unequal ripple in each of the passbands or stopbands, design the
filter as separate lowpass and highpass sections and cascade the two
filters together.

8.11 Comparison between Analogue Filter Types

Butterworth filters sacrifice roll-off steepness for smoothness due to mono-
tonicity in the passband and the stopband. An elliptic or Chebyshev filter
can generally provide steeper roll off characteristics with a lower filter order.

w
R
L

R L LCcu 2
2 1

2

w w R Lcu cl

Q w
L
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Unless the smoothness of the Butterworth filter is needed, use other filter
types.

Chebyshev Type I filters are equiripple in the passband and monotonic in
the stopband. Type I filters roll off faster than Type II filters, but at the
expense of greater deviation from unity in the passband. The benefit of Type
II Chebyshev filters is that they are smooth in the passband.

Elliptic filters offer steeper roll-off characteristics than Butterworth or Che-
byshev filters, but are equiripple in both the passband and stopband. In
general, elliptic filters meet given performance specifications with the lowest
order of any filter type. 

Lowpass Bessel filters have a monotonically decreasing magnitude
response, as do lowpass Butterworth filters with a poorer performance in
the magnitude response. Compared with the Butterworth, Chebyshev and
elliptic filters, the Bessel filter has the slowest roll-off and requires the highest
order to meet an attenuation specification. Nevertheless, we should not
forget that Bessel filters provide us with the benefit of linear phase response. 

8.12 Some Insights: Filters with High Gain vs. Filters 
with Low Gain and the Relation between the Time 
Constant and the Cut-Off Frequency for First-Order 
Circuits and the Series RLC Circuit

If we are interested in designing filters with a gain higher than unity we
need to use circuits with active elements. Circuits with all passive elements,
in most cases, give us a maximum gain of unity. If we are interested in using
passive circuits with gains less than unity, we can place additional loads
across the output terminals. If we seek circuits with gain higher than unity,
we need to use circuits with active elements such as operational amplifiers.
The time constant, , for first-order filters is the parameter that characterizes
the shape of the transient response. For RL and RC filters, the time constants
are L/R and RC, respectively. We noticed that for RL or RC filters the cut-off
frequency is wc = 1/ .

For an RLC series circuit, the overdamped, underdamped and critically
damped transients are determined by the neper frequency , and the reso-
nant frequency w0. The neper frequency is R/2L rad/sec and the resonant
frequency is

rad/sec

and w0 are time domain characteristics. The bandwidth, = 2 , is a
frequency characteristic. Recall that the quality factor Q = wc/ . The time

1
LC
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when the response becomes underdamped is when Q = ½. As Q increases
in value the peak at w0 becomes sharper and the bandwidth smaller. This
indicates an underdamped response. If Q is low and is wide, it is an
indication of overdamped transient response.

8.13 End of Chapter Examples

EOCE 8.1

A lowpass filter has a desired peak passband ripple of 0.1 dB, and a minimum
stopband attenuation of 50 dB; what are the values of and ?

Solution

Using Equation (8.7), we substitute Rp = 0.1 to get

and substituting Rs =50 dB in Equation (8.8) we have 

By solving for we get

These conversions can be applied using MATLAB by the functions
Rp2Epsilon.m and Rs2Delta.m, respectively. The first function is:

function Epsilon=Rp2Epsilon(Rp)

% Converts the peak passband ripple to its corresponding value

% of Epsilon

Epsilon=sqrt((10^(Rp/10)-1));

The other function is

0 1 10 1 2. log

10 10 01 2.

10 1 0 02330 01. . 0.1526

50 10 2log

2 5

5 2

10

10 0 0032.
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function Delta=Rs2Delta(Rs)

% Converts the minimum stopband ripple to its corresponding 

% value of Sigma

Delta=sqrt(10^-(Rs/10));

We can verify the results obtained above by typing

Epsilon=Rp2Epsilon(.1)

at the command line prompt and hitting the return key. Similarly we can
verify the 0.0032 value by typing

Delta=Rs2Delta(50)

at the command line prompt.

EOCE 8.2

The goal of this example is to demonstrate the use of the function freqs
and to show the different forms in which the magnitude response and phase
response can be displayed in MATLAB.  Find and graph the frequency response
of the transfer function given by 

Solution

The magnitude and phase response can be displayed using the function
freqs as in the following MATLAB script.

a = [1 0.1 1];

b = [0 0.2 1];

w = logspace(-1,1);

freqs(b,a,w)

The plot is shown in Figure 8.9. You can also create the plot with the script

h = freqs(b,a,w);

mag = abs(h);

phase = angle(h);

subplot(2,1,1), loglog(w,mag)

subplot(2,1,2), semilogx(w,phase)

To convert to Hertz, degrees and decibels, use 

H s
s

s s
( )

.
.

0 2 1
0 1 12
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f = w/(2*pi);

mag = 20*log10(mag);

phase = phase*180/pi;

The frequency response for the system (Figure 8.10) can be obtained using
the bode function as in Bode(b, a, w);

EOCE 8.3

Use MATLAB to estimate the orders and cut-off frequencies for all filter types
having the following specifications:

wp = 1000 rad/sec ws = 3000 rad/s
Rp = 2 dB Rs = 60 dB

Solution

The following MATLAB code finds the minimum order and cut-off frequency for
any type of filter. Run the MATLAB file order_estimation.m once for every
type of filter. After you type the following code and save it as
order_estimation.m, type order_estimation at the command line
prompt.

% Example8_3 : order_estimation.m

function [N,Wc] = order_estimation

% Order Estimation of analogue filters.

FIGURE 8.9 Frequency response computations using the freqs command.
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% Get filter type

FilterTypes{1}='Butterworth';

FilterTypes{2}='ChebyshevI';

FilterTypes{3}='ChebyshevII';

FilterTypes{4}='Elliptic';

for i=1:4

disp([int2str(i) ') ' FilterTypes{i}])

end

Type = input('Analogue filter type: '); Wp = input('Pass band 
frequency (rad/sec):');

% Get specifications

Ws = input('Stop band frequency (rad/sec):');

Rp = input('Pass band Ripple (dB):');

Rs = input('Stop band Ripple (dB):');

switch Type

case 1 % Butterworth

[N, Wc] = buttord( Wp, Ws , Rp , Rs, 's');

case 2 %Chebyshev 1

[N, Wc] = cheb1ord( Wp, Ws , Rp , Rs, 's');

case 3 % Chebyshev 2

[N, Wc] = cheb2ord( Wp, Ws , Rp , Rs, 's');

FIGURE 8.10 Frequency response computations using the bode command.
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case 4 % Elliptic

[N, Wc] = ellipord( Wp, Ws , Rp , Rs, 's');

end

% End of program

A sample run is

>> order_estimation

1) Butterworth

2) ChebyshevI

3) ChebyshevII

4) Elliptic

Analogue filter type: 1

Pass band frequency (rad/sec):1000

Stop band frequency (rad/sec):3000

Pass band Ripple (dB):2

Stop band Ripple (dB):60

ans = 7

The following table shows the obtained results:

Note that the least order is in the case of elliptic filter. This is due to the
equiripple response in both passband and stopband regions.

EOCE 8.4 

Study the effect of the filter order N on the characteristics of the Butterworth
filter.

Solution

To study the dependence of the Butterworth filter characteristics on the
parameter N we draw the magnitude-squared response given in Equation
(8.11) for wc = 1 and evaluate for N = 2, 4, 8 and 50. We build the MATLAB

function frequency_response.m, which can be used to show the mag-
nitude-squared response of analogue filters for different values of N to give
an indication about the effect of filter order on the response. We specify that
we want to show the magnitude-squared response of a Butterworth filter,
and the curves are generated. The results are shown in Figure 8.11. As can
be seen in the figure, as N increases the filter magnitude response becomes

TABLE 8.5
Butterworth Chebyshev 1 Chebyshev 2 Elliptic

N 7 5 5 4
wc 1118.3 1000 2516.1 1000
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sharper, i.e., the transition from the passband region to the stopband region
takes less time. However, for all cases, the magnitude-squared response at
wc is equal to –3 dB.

% frequency_response.m 

% Calculates the frequency response of common analogue low 

% pass filters. 

% Displays the magnitude, phase response and the group delay. 

% The function is able to calculate frequency responses for

% several orders at a time. 

function frequency_response

% Get filter order

Order = input('Enter up to 7 filter orders, Default [2 4 8 
20]): ');

if isempty(Order)

Order=[2 4 8 20];

end

NumOrders=length(Order);

% Get filter type

FilterTypes{1}='Butterworth';

FilterTypes{2}='ChebyshevI';

FIGURE 8. 11 Magnitude-squared response of a Butterworth filter for different N. 
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FilterTypes{3}='ChebyshevII';

FilterTypes{4}='Elliptic';

FilterTypes{5}='Bessel';

for i=1:5

disp([int2str(i) ') ' FilterTypes{i}])

end

Type = input('Analogue filter type: ');

% Get Specifications

switch Type

case {1 ,5}

% No specifications needed

case 2

    Rp = input('Peak Passband Ripple [in dB] : ');

case3

Rs = input('Minimum Stopband Ripple [in dB] : ');

case 4 

Rp = input('Peak Passband Ripple [in dB] : ');

Rs = input('Minimum Stopband Ripple [in dB] : ');

otherwise

error('Invalid Filter Type')

end

ShowPhase = input('Plot phase?(enter number: 1-yes,2-no):');

% Values of frequency to estimate the response at

Omega = [0:0.01:3];

% Design the filter

switch Type

case 1 % Butterworth Filter

figure;hold on;

for i=1:NumOrders

[z{i} p{i} k{i}] = buttap(Order(i));

end

case 2 % Chebyshev Filter 1

for i=1:NumOrders

[z{i} p{i} k{i}] = cheb1ap( Order(i) , Rp);

end

case 3 % Chebyshev ilter 2

for i = 1 : length ( Order )

[z{i} p{i} k{i}] = cheb2ap ( Order(i) , Rs ) ;

end

case 4 % Elliptic Filter 

for i=1:NumOrders

[z{i} p{i} k{i}] = ellipap(Order(i),Rp,Rs);

end
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case 5 % Bessel Filter 

for i=1:NumOrders

[z{i} p{i} k{i}] = besselap(Order(i));

end

end

% Display Magnitude-sqared response in dBs vs. analogue

% frequency in rad/sec

Shape = {'k-','k:','k--','k-.','k:','k.','k'};

figure

hold on;

for i=1:NumOrders

[pz pp] = zp2tf(z{i},p{i},k{i});

h = freqs(pz, pp, Omega);

gain = 20 * log10(abs(h));

plot(Omega, gain,Shape{i});

end

axis([0 3 -100 10]);

xlabel('\omega [rad/sec]')

ylabel('H(j\omega)^2| [dB]')

if NumOrders>1

for i=1:NumOrders

LegArray{i}=['N = ' int2str(Order(i))];

end

legend(LegArray);

title(['Magnitude-Squared Response for ' 
FilterTypes{Type} ' Filter'])

else

title(['Magnitude-Squared Response for ' 
FilterTypes{Type} ' Filter of order ' int2str(Order)])

grid

end

hold off;

if ShowPhase == 1

figure;hold on;

for i=1:NumOrders

[pz pp] = zp2tf(z{i},p{i},k{i});

h = freqs(pz, pp, Omega);

phase = unwrap(angle(h));

plot(Omega, phase,Shape{i});

end
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axis([0 3 min(phase)-1 max(phase)+1]);

xlabel('\omega [rad/sec]')

ylabel('<H(j\omega)')

if NumOrders>1

for i=1:NumOrders

LegArray{i}=['N = ' int2str(Order(i))];

end

legend(LegArray);

title(['Phase Response for ' FilterTypes{Type} ' 
   Filter'])

else

title(['Phase Response for ' FilterTypes{Type} ' 
   Filter of order ' int2str(Order)])

grid

end

figure;hold on;

for i=1:NumOrders

[pz pp] = zp2tf(z{i},p{i},k{i});

[Gd,W] = GRPDELAY(pz,pp,Omega)

plot(W,Gd,Shape{i});

end

axis([0 W(end) -100 100]);

xlabel('\omega [rad/sec]')

ylabel('GD')

if NumOrders>1

for i=1:NumOrders

LegArray{i}=['N = ' int2str(Order(i))];

end

legend(LegArray);

title(['Group Delay for ' FilterTypes{Type} ' 
   Filter'])

else

title(['Group Delay for ' FilterTypes{Type} ' Filter 
   of order ' int2str(Order)])

grid

end

end

disp('Make changes to the figure before saving if desired')

disp('Click any key to continue ...')

pause

eval([' print -djpeg n_' FilterTypes{Type}])
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A sample run of the program is given next.

>> frequency_response

Enter up to 7 filter orders, Default [2 4 8 20]): [2 4 8 50]

1) Butterworth

2) ChebyshevI

3) ChebyshevII

4) Elliptic

5) Bessel

Analogue filter type: 1

Plot phase?(enter number: 1-yes,2-no):2

Make changes to the figure before saving if desired

Click any key to continue ...

>>

EOCE 8.5

Design an analogue elliptic LP filter of order N equal to 6 and cut-off fre-
quency equal to 1. Use MATLAB to design the filter and to generate the
frequency response graphs.

Solution

Run the MATLAB program frequency_response. Enter 6 for order, 4 for Type
and 2 for showing phase. The following is the sample run of the program
that we just displayed in EOCE 8.4.

>> frequency_response

Enter up to 7 filter orders, Default [2 4 8 20]): 6

1) Butterworth

2) ChebyshevI

3) ChebyshevII

4) Elliptic

5) Bessel

Analogue filter type: 4

Peak Passband Ripple [in dB] : 5

Minimum Stopband Ripple [in dB] : 60

Plot phase?(enter number: 1-yes,2-no):2

Make changes to the figure before saving if desired

Click any key to continue ...

>>

The resulting frequency response plot is shown in Figure 8.12.
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EOCE 8.6

Show using MATLAB that 

1. If we choose wc to equal the lower limit in Equation (8.17) then the
passband specifications are met exactly whereas the stopband spec-
ifications are exceeded. 

2.  If we choose wc to equal the upper limit in Equation (8.17) then the
stopband specifications are met exactly while the passband specifi-
cations are exceeded. 

Solution

We start by having certain analogue LPF specifications. These specifications
are entered into the MATLAB script EOCE8_6. For example we choose the
following set of values

wp = 1000 rad/sec ws = 3000 rad/s
Rp = 10dB Rs = 50 dB

These values are stored as the default values in the EOCE8_6 file, so these
values will be selected if you hit return when the program asks you for

FIGURE 8.12 Magnitude-squared response of an elliptic filter of order 6 with Rp = 5 dB and
Rs = 60 dB.
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specifications. The program then computes the minimum order N needed
for the Butterworth filter to satisfy the requirements. It then computes wc

according to Equation (8.17) and plots the magnitude-squared response
based on it. The results are shown as the continuous curve in Figure 8.13.
We can see that the passband ripple is met exactly whereas the stopband
specifications are exceeded. The script EOCE8_6 follows.

% EOCE8_6.m 

% For a Butterworth filter, the order will be estimated and 

% omega_c will be given two extreme values that ensure meeting

% the specifications of passband and stopband frequencies

% respectively.

spec = input('Enter specifications of filter ([Wp Ws Rp 
Rs]):');

if isempty(spec)

spec = [1000 3000 10 50];

end

Wp = spec(1);Ws = spec(2); Rp = spec(3); Rs = spec(4);

Epsilon=sqrt((10^(Rp/10)-1));

Delta=sqrt(10^-(Rs/10));

[N Wn_est] = buttord(Wp,Ws,Rp,Rs,'s');

FIGURE 8.13 Plots for EOCE 8.6.
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Wn_pass = Wp * Epsilon^(-1/N);

Wn_stop = Ws * (Delta^(-2) - 1)^(-1/(2*N));

Omega = [0:1.5*Ws];

[z_pass p_pass k_pass] = butter(N,Wn_pass,'s');

[z_stop p_stop k_stop] = butter(N,Wn_stop,'s');

[pz_p pp_p]=zp2tf(z_pass, p_pass, k_pass);

[pz_s pp_s]=zp2tf(z_stop, p_stop, k_stop);

h2 = freqs(pz_p,pp_p, Omega);

h3 = freqs(pz_s,pp_s, Omega);

figure

hold on;

plot(Omega(1:100:end),20*log10(abs(h2(1:100:end))),'ko-');

plot(Omega(1:100:end), 20*log10(abs(h3(1:100:end))),'kx-');

legend({'\omega_c = \omega_p\epsilon^{-1/N}',...

'\omega_c = \omega_s(\delta^{-2}-1)^{-1/(2N)}'});

xlabel('\omega [rad/sec]')

ylabel('|H(j\omega)^2| [dB]')

title(['Magnitude-Squared Response for a Butterworth 
Filter'])

hold off;

A sample run is 

>> Eoce8_6

Enter specifications of filter ([Wp Ws Rp Rs]):[100 3000 10 50]

>>

The plots are shown in Figure 8.13.

EOCE 8.7

Design the filters whose specifications are given in Table 8.5. Plot the mag-
nitude responses of these filters.

Solution

The following MATLAB scripts can be run to obtain the results. For the case
of Butterworth filter:

% Example 8.7.1

% Design of analogue LP Butterworth filter.

N = 7; Wc = 1118.3;

[b , a] = butter( N , Wc , ‘s’);

Omega = [0:4000];

h = freqs( b , a , Omega);
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plot(Omega, 20 * log10( abs( h ) )); 

axis([0 4000 -80 10]);

Title(‘ Butterworth Filter’);

For Chebyshev filter Type I:

% Example 8.7.2

% Design of analogue LP Chebyshev Type I filter

N = 5; Wc = 1000;

[b , a] = cheby1( N , 2 , Wc , ‘s’);

Omega = [0:4000];

h = freqs( b , a , Omega);

plot(Omega, 20 * log10( abs( h ) )); 

axis([0 4000 -80 10]);

Title(‘ Chebyshev 1 Filter’);

For Chebyshev filter Type II:

% Example 8.7.3

% Design of analogue LP Chebyshev Type II filter

N = 5; Wc = 2516.1;

[b , a] = cheby2( N , 60 , Wc , ‘s’);

Omega = [0:4000];

h = freqs( b , a , Omega);

plot(Omega, 20 * log10( abs( h ) )); 

axis([0 4000 -80 10]);

Title(‘ Chebyshev 2 Filter’);

For elliptic filter:

% Eample 8.7.4

% Design of analogue LP Elliptic filter

N = 4; Wc = 1000;

[b , a] = ellip( N , 2 , 60 , Wc , ‘s’);

Omega = [0:4000];

h = freqs( b , a , Omega);

plot(Omega, 20 * log10( abs( h ) )); 

axis([0 4000 -80 10]);

Title(‘ Elliptic Filter’);

The plots are shown in Figures 8.14, 8.15, 8.16, and 8.17.  
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FIGURE 8.14 Magnitude response of Butterworth filter of order 7 and wn = 1118.3 rad/sec.

FIGURE 8.15 Magnitude response of Chebyshev Type I filter of order 5 and wn = 1000 rad/sec.
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FIGURE 8.16 Magnitude response of Chebyshev Type II filter of order 5 and wn = 2516.1 rad/sec.

FIGURE 8.17 Magnitude response of elliptic filter of order 4 and wn = 1000 rad/sec.
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EOCE 8.8

Plot the pole-zero locations on the s-plane for the filters plotted in EOCE 8.7. 

Solution

Use the MATLAB function zplane to plot the zeros and poles after getting
them as shown below. The first script (Figure 8.18) is

N = 7; Wc = 1118.3;

[z , p , k] = butter( N , Wc , ‘s’);

zplane( z , p);

The second script (Figure 8.19) is

N = 5; Wc = 1000;

[z , p , k] = cheby1( N , 2 , Wc , ‘s’);

zplane( z , p);

The third script (Figure 8.20) is

N = 5; Wc = 2516.1;

[z , p , k] = cheby2( N , 60 , Wc , ‘s’);

zplane(z , p);

FIGURE 8.18 Pole Zero plot of Butterworth filter, N = 7, wn = 1118.3 rad/sec.
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FIGURE 8.19 Pole Zero plot of Chebyshev Type I filter, N = 5, wn = 1000 rad/sec.

FIGURE 8.20 Pole Zero plot of Chebyshev Type II filter, N = 5, wn = 2516.1 rad/sec.
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The fourth script (Figure 8.21) is

N = 4; Wc = 1000;

[z , p , k] = ellip( N , 2 , 60 , Wc , ‘s’);

zplane( z , p );

Notice that poles are located on a circle whose radius is equal to wn in the
case of the Butterworth filter, whereas the poles are located on an ellipse in
Chebyshev Types I and II and elliptic filters. Zeros are always located on the
imaginary axis. Moreover, notice that the Butterworth and Chebyshev Type II
filters don’t have zeros; relate this to the fact that they are monotonic in the
passband.

EOCE 8.9

Given the following signal

x(t) = 1 + sin(t) + sin(6t)

design an analogue filter that eliminates the component sin(6t). Plot the filter
magnitude response. Assume 60-dB allowable ripple in the stopband.

Solution

We wish to design a filter with a maximally flat response in the passband
and the minimum possible order. Therefore, we choose Chebyshev Type II
filter. To eliminate sin(6t) and keep the other components within tolerable

FIGURE 8.21 Pole Zero plot of elliptic filter, N = 4, wn = 1000 rad/sec.
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attenuation, we choose wp greater than 1 rad/sec and ws less than 6 rad/sec.
Let wp = 1.5 rad/sec and ws = 4 rad/sec. Now assume a passband attenuation
of 3 dB is acceptable. We can estimate the order and cut-off frequency and
draw the magnitude response as in the following script.

%Example8_9.m

Wp = 1.5; Ws = 4; Rp = 3 ; Rs = 60;

[N,Wc]=cheb2ord(Wp,Ws,
Rp , Rs , 's');

[ b , a ] = cheby2( N , Rs , Wc , 's');

Omega = [0:0.01:7];

h = freqs( b , a , Omega);

gain = 20 * log10( abs( h ) );

plot( Omega , gain);

The plot is shown in Figure 8.22. Note that according to the magnitude
response shown, frequencies higher than 4 rad/sec will be highly attenuated
while frequencies less than 1.5 rad/sec will be attenuated slightly.

EOCE 8.10

Design a fifth-order bandpass filter having a maximally flat response in the
passband and equiripple response in the stopband. Figure 8.23 shows the
ideal bandpass filter. Then plot the magnitude and phase responses of the
filter using Bode plots.

FIGURE 8.22 Magnitude response of the designed filter.
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Solution

Chebyshev Type II approximation has a maximally flat response in the
passband and an equiripple response in the stopband. We will use the
cheby2 MATLAB function as in the following script.

%Example8_10.m

N = 5; Rs = 80 ; Wc1 = 3 ; Wc2 = 6;

[B , A] = cheby2( N , Rs , [Wc1 Wc2], ‘s’);

bode( B , A , [0:0.1:100]);

grid;

We used the function bode from the control toolbox of MATLAB to plot mag-
nitude and phase responses. bode plots the magnitude in dB and phase in
degrees vs. radian frequency w in log scale. The plots are shown in Figure 8.24.

EOCE 8.11

Design an analogue elliptic LP filter of the fifth order. Then use frequency
transformations to obtain a highpass filter with cut-off frequency equal to
1000 rad/sec, and a bandstop filter with lower and upper cut-off frequencies
equal to 1000 and 2000 rad/sec, respectively.

Solution

Using the MATLAB function ellipap we get the required analogue filter
using the MATLAB command

[z, p, k] = ellipap(5,3,20);

where 3 is the 3-dB allowed attenuation in the passband and 20 is the allowed
20-dB attenuation in the stopband.

FIGURE 8.23 Specifications of the required bandpass filter shown on an ideal bandpass.
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Next we get the transfer function representation of the filter using MATLAB

using the command

[B A] = zp2tf(z, p, k);

We then plot the response for the lowpass filter.
First let us find the highpass filter transfer function. The MATLAB function

1p2hp is used for this purpose as in the following

Wn = 1000;

[Bhp Ahp] = lp2hp(B, A, Wn);

Finally we find the bandstop transfer function. The MATLAB function 1p2bs
is used for this purpose. The following script contains all these commands
and plots the lowpass and the bandstop filter responses as shown in Figure
8.25.

%Example 8.11

% Using the MATLAB function ellipap we get the required 
analogue filter:

[z, p, k] = ellipap(5,3,20);

FIGURE 8.24 Bode plot showing the magnitude and phase responses of the designed band-
pass filter.
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% Now we get the transfer function representation of the 

% filter as follows:

[B A] = zp2tf(z, p, k);

% First lets find the highpass filter transfer function.

% The MATLAB function lp2hp is used for this purpose:

Wn = 1000;

[Bhp Ahp] = lp2hp(B, A, Wn);

% Now we find the bandstop transfer function. 

% The MATLAB function lp2bs is used for this purpose:

Wnl = 1000;

Wnu = 2000;

W0 = sqrt(Wnl*Wnu);

Bw = Wnu - Wnl

[Bbs Abs] = lp2bs(B, A, W0, Bw);

% Here we generate the magnitude response plots:

%For highpass filter

[Hhp,Whp] = freqs(Bhp, Ahp);

subplot(2,1,1);

plot(Whp, abs(Hhp));

axis([0 4000 0 1.2]);

FIGURE 8.25 Magnitude response of the bandstop filter.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

The lowpass filter

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

w (rad/s)

The bandstop transformed filter

M
ag

ni
tu

de
M

ag
ni

tu
de



472 Discrete Systems and Digital Signal Processing with MATLAB

title('The lowpass filter');

grid;

ylabel('Magnitude');

%For bandstop filter

[Hbs,Wbs] = freqs(Bbs, Abs);

subplot(2,1,2);plot(Wbs, abs(Hbs));

axis([0 4000 0 1.2]);

grid;

xlabel('w (rad/s)');

ylabel('Magnitude');

title('The bandstop transformed filter');

Notice that the frequency transformation preserved the filter specifications.

EOCE 8.12

Consider the circuit in Figure 8.26. Find values for R and L so that the output
y(t) will contain frequencies below 20 rad/sec only.

Solution

We will start by investigating what kind of filter is given. We will put the
circuit in the Laplace domain and find the transfer function relating the input
x(t) to the output y(t). The transfer function is obtained by the voltage divider
method as 

or

We can see that this circuit is a lowpass filter with a maximum gain of unity
and a cut-off frequency of R/L (prove that). It is desired that we pass fre-
quencies below 20  rad/sec, which means that the desired cut-off frequency
is 20 rad/sec. Let L = 1000 mH, then R = 20 .

FIGURE 8.26 Circuit for EOCE 8.12.
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EOCE 8.13

The maximum gain that can be achieved with almost all passive circuits is
unity. Suppose we reconsider EOCE 8.12 and, in addition, we need to atten-
uate the input signal by 50%. Can we modify the existing circuit as described
in EOCE 8.12 to accomplish this?

Solution

Let us add another resistor in parallel with R across the output y(t). The
transfer function in this case is

where 

and RL is the resistor added in parallel with R. It is clear that adding a load
resistor will not change the maximum magnitude of the transfer function; it
is still unity and the attempt fails.

Let us instead add another resistor in series with the input source, x(t).
The transfer function in this case is

with cut-off frequency at and maximum gain of . We desire a

magnitude of 0.5. This can be accomplished by setting R = Rs. The desired
cut-off frequency is 20 rad/sec. So we write

With R = 20 , we select a new L of 2 H.

EOCE 8.14

Consider the series RLC circuit in Figure 8.27, with y(t) as the output and
x(t) as the input. Select values for R, L and C so that the output will receive
only the range of frequencies between 10 and 20 Hz.
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Solution

At low frequencies the output voltage is zero. At high frequencies, the output
voltage is zero as well. This is a bandpass filter. We start the design by

calculating the center frequency as w0 = 2 f0 and f0 = = 14.14 Hz. (w0)2

= (2 f0)2 = 8186.2. Let C = 1 10–6 F, then L = 1/Cw2
0 = 122.156 Hz and the

quality factor is Q = = 1.414. For R we use the equation

.

Having values for R, L and C, the design is complete. Notice that the center
frequency is independent on R. Let us vary R and give it values of 10, 100,
1000 and the designed value of 7816.4 . Let us fix L and C as in the design.
We will write the next MATLAB script to demonstrate the effect of varying R
and observing the bandwidth and the magnitude of each transfer function
that corresponds to each R.

clf

R=[10 100 1000 7816.4]

L=122.156;

C=0.000001;

w=0:1:200;

for i=1:4

T1=((j*w)*(R(i)/L))./(-w.^2+j*w*(R(i)/L)+1/(L*C));

Mag_T1=abs(T1);

plot(w,Mag_T1);

hold on

end

title('Second order RLC series bandpass filter')

xlabel('w in rad');

ylabel('Magnitude of the transfer functions');

FIGURE 8.27 Circuit for EOCE 8.14.
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axis([50 150 0 1.25])

gtext('R=10');gtext('R=100');

gtext('R=1000');gtext('R=7816.4');

The plots are shown in Figure 8.28. We can see that the center frequency is
the same for each R used, but for R = 10 , the maximum magnitude is very
small. This magnitude increases as the value of R increases.

EOCE 8.15

Design a bandstop filter that has a center frequency of 50 Hz and a band-
width of 100 Hz. Use passive circuit elements. The circuit is shown in
Figure 8.29.

FIGURE 8.28 Plots for EOCE 8.14.

FIGURE 8.29 Circuit for EOCE 8.15.
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Solution

The transfer function relating the input to the output is

The quality factor is

and the inductance is

With C = 1 10–6 F, L is

 H

For R we use the equation

Having values for R, L and C, the design is complete.
The following MATLAB script generates multiple plots for the design and

also varies the value of R which has no effect on the center frequency but
controls the bandwidth of the rejection band.

clf

R=[10 100 1000 6364.9]

L=10.1321;

C=0.000001;;

w=0:1:200*pi;

for i=1:4

T1=(-w.^2+1/(L*C))./(-w.^2+j*w*(R(i)/L)+1/(L*C));

Mag_T1=abs(T1);

plot(w,Mag_T1);

hold on
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end

title('Second order RLC series bandreject filter')

xlabel('w in rad');

ylabel('Magnitude of the transfer functions');

axis([50 500 0 1.1])

gtext('R=10');gtext('R=100');

gtext('R=1000');gtext('R=7816.4');

The plots are in Figure 8.30. Pay close attention to the way the resistance R
is shaping the magnitude of the transfer function. The smaller the R, the
narrower the rejection, or the more selective the filter becomes in terms of
rejecting a specific band of frequencies. 

EOCE 8.16

Consider the two systems

and

What range of frequencies in the input x(t) that the combination of the two
systems, if placed in series, will allow to pass? What is the resulting filter?

FIGURE 8.30 Plots for EOCE 8.15.
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Solution

We will have H1(s)H2(s) as the new system. Note that the first system is
lowpass and the second is highpass. When we cascade the two systems
together, we expect the overall system to be bandpass with the passing range
as [1  10] rad/sec. We will use MATLAB again and write the following script
to see what type of filter this combination is.

Clf

num1=[1];

den1=[1 10];

num2=[1 0];

den2=[1 1];

num=conv(num1,num2); % multiply num1 with num2

den=conv(den1,den2);

bode(num,den);

title('The filter representing H1(s)H2(s)')

The plots are in Figure 8.31. This is a bandpass filter as it emphasizes fre-
quencies in the mid range. Why don't you try the other combinations?

FIGURE 8.31 Plots for EOCE 8.16.
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8.14 End of Chapter Problems

EOCP 8.1

Draw the poles of 

for a third-order lowpass Butterworth filter after replacing s by jw.

EOCP 8.2

Consider a series RLC circuit where the output voltage y(t) is taken across
the resistor and the input is the voltage x(t).

1. Find the transfer function of this filter.
2. What is this type of filter?

EOCP 8.3

An elliptic bandstop filter is to be designed. It should fulfill the following
specifications:

1 >= �H(jw)�2 >= 0.95 w <= 1200 and w >= 1800
�H(jw)�2 <= 0.02 800 >= w >= 2200

1. Estimate the order and the cut-off frequencies.
2. Find the transfer function of the filter.

EOCP 8.4

Plot the magnitude and phase responses of Butterworth, Chebyshev Type I,
Chebyshev Type II, elliptic, and Bessel LP filters. Let the order be 5 and the
cut-off frequency be 1. Assume Rp = 3 dB and Rs = 60 dB. Comment on the
phase response of Bessel filter compared with others.

EOCP 8.5

Design a bandstop filter that has a bandwidth of 1000 rad/sec that can
reject the component sin(1414t) from the following signal

x(t) = sin(500t) + sin(1414t) + cos(2500t)

H s
s jws

N( )
1

1
2
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EOCP 8.6

Consider the following transfer function

Design by finding the values of a, b, c, d and e the filters in the table below.
(Hint: The transfer function above is for a Butterworth filter.)

EOCP 8.7

A lowpass filter has a desired peak passband ripple of 0.2 dB, and a minimum
stopband attenuation of 40 dB; what are the values of and ?

EOCP 8.8

Find and graph the frequency response of the transfer functions given by 

What type of filters are these systems?

Type wn a b c d e

LP 1000 

HP 1000
BP 1000, 2000

BS 1000, 2000
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EOCP 8.9

Use MATLAB to estimate the orders and cut-off frequencies for all filter types
having the following specifications:

wp = 2000 rad/sec ws = 3000 rad/s
Rp = .1 dB Rs = 50 dB

EOCP 8.10

Study the effect of the filter order N on the characteristics of the elliptic filter.
Show by drawing graphs, each with different order N.

EOCP 8.11

Design an analogue elliptic LP filter of order N equal to 6 and cut-off fre-
quency equal to 100. Use MATLAB to design the filter and to generate the
frequency response graphs.

EOCP 8.12

Given the following signal

x(t) = 1 + sin(t) + sin(6t)

design an analogue filter that eliminates the component sin(t). Plot the filter
magnitude response. Assume 60-dB allowable ripple in the stopband.

EOCP 8.13

Design a sixth-order bandstop filter having a maximally flat response in the
passband and equiripple response in the stopband. Let Rs = 50 dB.

EOCP 8.14

Consider the system in Figure 8.32.

FIGURE 8.32 Circuit for EOCP 8.14.
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1. Taking y(t) as the output voltage across the resistor, what is the
transfer function relating Y(s) to X(s)?

2. Taking y(t) as the voltage across the capacitor, what is the transfer
function relating Y(s) to X(s)?

3. What are the eigenvalues in parts 1 and 2?
4. What types of filters are represented in parts 1 and 2?
5. What are the effects of the zeros in parts 1 and 2 on the nature of

the filter?
6. What is the cut-off frequency in parts 1 and 2?
7. If R = 1k and C = 1 F, what is an approximation to the output y(t)

in the filter represented in part 1 if the input x(t) = 10sin(10t) –
sin(1000t) + 12?

8. If R = 1k and C = 1 F, what is an approximation to the output y(t)
in the filter represented in part 2 if the input x(t) = 10sin(10t) –
sin(1000t) + 12?

EOCP 8.15

Consider the circuit in Figure 8.33.

1. Taking y(t) as the voltage across the capacitor, what is the transfer
function relating Y(s) to X(s).

2. What type of filter is represented in Figure 8.33?
3. What is the cut-off frequency if it exists?

EOCP 8.16

Consider the system in Figure 8.34.

1. Taking y(t) as seen in Figure 8.34, what is the transfer function
relating Y(s) to X(s)?

2. What type of filter is represented in Figure 8.34?
3. What is the cut-off frequency if it exists?

FIGURE 8.33 Circuit for EOCP 8.15.
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EOCP 8.17

Consider the system in Figure 8.35.

1. Taking y(t) as seen in Figure 8.35, what is the transfer function
relating Y(s) to X(s)?

2. What type of filter is represented in Figure 8.35?
3. What is the cut-off frequency if it exists?

EOCP 8.18

Consider the system in Figure 8.36.

1. Taking y(t) as seen in Figure 8.36, what is the transfer function
relating Y(s) to X(s)?

2. What type of filter is represented in Figure 8.36?
3. What is the cut-off frequency if it exists?
4. What is the output y(t) if x(t) = 10sin(10t) – sin(1000t) + 12?

FIGURE 8.34 Circuit for EOCP 8.16.

FIGURE 8.35 Circuit for EOCP 8.16.
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EOCP 8.19

Consider the following systems represented by the transfer functions relating
the output to the input of some dynamic systems.

(a)

(b)

(c)

(d)

(e)

1. Plot the magnitude of each system vs. frequency. You may use MATLAB

to obtain the bode plots.
2. Remember that the cut-off frequency is found by locating the maxi-

mum magnitude on the bode plot and going 3 db down the magnitude
scale. Find the cut-off frequencies for the given systems?

3. Characterize the filters given in this problem.

FIGURE 8.36 Circuit for EOCP 8.17.
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EOCP 8.20

Consider the following systems

H1(s)

H2(s)

1. For the first system, design to have a maximum DC gain of 10 and
a cut-off frequency of 10 k. Find the a value and the additional gain
desired.

2. For the second system, a DC gain of 5 and a cut-off frequency of 10 k
is desired. We want the design to resemble a lowpass filter with
positive a and b values. Find a and b.

1
7s a

1
2s as b
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9
Transformations between Continuous 
and Discrete Representations

9.1 The Need for Converting a Continuous Signal 
to a Discrete Signal

We convert a continuous signal to a discrete signal so that we can use the
computer to analyze and perform many complex computations that are
otherwise very difficult to be carried out analytically. The area of digital
signal processing is based on the discretized analogue signal.

When a speech signal is discretized, it becomes very easy to store the
spoken words electronically and to transmit these words digitally. This is
done using a digital processor. Some digital processors are used to enhance
recorded speech. Others are used to generate waveforms that are similar to
our spoken words.

In a radar station, a continuous signal is sent into space. When this signal
hits a target, it reflects back and is picked up by the radar antenna to be
analyzed. Discretizing the reflected signal at this point becomes very impor-
tant and the computer can perform all kinds of analyses and make very
important calculations regarding the distance, speed and direction of the
target as well as how high it is. Without the discrete signal, this crucial
information is very difficult to obtain.

In medical imaging, a very complex mathematical operation is needed in
the CAT scan operation. This mathematical operation is very difficult to
implement using analogue circuits; however, it is easily carried on using a
digital processor of a computer.

In real life situations, most signals that we need to process are analogue
signals. These signals must be discretized so that we can study them and
perform some computations using the computer. We may need to reconstruct
the discrete signal that the computer outputs and generate an analogue
signal to drive a radar antenna, for example. To use a computer in studying
signals we need to discretize the input signal so that the computer can work
on it to produce the discrete output. This output is then converted to ana-
logue signal again. Thus, there is a process needed to be performed before
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and after the signal is acted upon by the digital processor. However, the
advantages of using a digital processor are many.

If you use a calculator to multiply 5 by 5 you will get a precise result, 25.
A digital signal processing is not affected by temperature or any other dis-
turbances like the analogue processor. Very complex tasks such as looping
and conditional statements are difficult to build using analogue circuits. Yet
these are readily built using digital processors.

In control systems, we often need to have an observer to estimate some of
the parameters of the controlled system. We can build this observer using
analogue circuits. But if we need to do some modification to the observer,
the complete design has to be revised. However, if we use a digital observer,
we need only to program it to make the changes. This is an issue of flexibility.
An observer made from analogue circuits may be heavy and large; a digital
processor is small and lightweight.

Infinite impulse response digital filters are very difficult to design in the
z-domain. We transform the continuous analogue filter with feedback
(designing analogue filters in the s-domain is straightforward) to a digital
IIR filter in a very easy way.

The process of discretizing a continuous signal and then converting the
output of the digital processor to a continuous signal is shown in Figure 9.1.
The continuous signal is digitized, that is, it is discretized and then each
sample is quantified to a finite binary number. The computer will process
this binary input and produce the binary output. This binary output is then
converted to a continuous signal. Sampling and quantization is often known
as analogue-to-digital conversion (A/D) and reconstruction is often known
as digital-to-analogue (D/A).

9.2 From the Continuous Signal to Its Binary 
Code Representation

Before it gets to the computer input, the continuous signal is first sampled at
regular intervals. An example is shown in Figure 9.2. After sampling, we will
have only values of the continuous signal x(t) at nTs where Ts is the sampling
interval and n is an integer. Every time the sampler picks a sample, the sample
is being held to be quantified and given a binary number representation. Then

FIGURE 9.1 Mixed system.
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the sampler picks another sample and the process of holding and binary
representation continues. The holding is needed so that the value of the
sample taken is given a binary code. This process is shown in Figure 9.3.

FIGURE 9.2 Continuous and discrete signals.

FIGURE 9.3 The sample-and-hold process.
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The sample-and-hold is a device that will sample x(t) and hold the value
of the signal x(n) so that a binary code is attached to it. Then another x(n)
value in taken from x(t). This value will be held and given a binary code.
The process continues in this fashion. 

9.3 From the Binary Code to the Continuous Signal

The digital-to-analogue device at the output of the computer will pick the
value of the first binary code and hold it until the next value is made ready
and the process continues. The output will be similar to the output of the
sample-and-hold discussed earlier. The final analogue or continuous signal
is obtained by smoothing this staircase-like signal by passing it through a
lowpass filter.

9.4 The Sampling Operation

We will look at the sampling operation in real-time and frequency domains.

9.4.1 Ambiguity in Real-Time Domain

Consider the following real-time signal

x(t) = sin(wt) = sin(2 ft) (9.1)

Let us sample x(t) at the rate of fs samples per second. Let us also assume
that the sampling is at regular intervals of Ts duration where Ts = 1/f sec. By
starting the sampling at t = 0, the next sample will be at Ts, the one after is
at 2Ts, and so on. Then we can say that we are sampling at T = nTs with n =
0, 1, 2,…

The sampled signal is then

(9.2)

where x(nTs) is the next sample of x(t). Let us write x(nTs) as x(n) where we
understand that we are sampling at nTs.

We know that the sinusoidal signal repeats every 2 m radians. Thus we
can write

x nT fnT
f
f

ns s
s

sin sin2 2
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(9.3)

or

(9.4)

If we let m/n = k, then we have

(9.5)

If we equate the arguments in Equation (9.5) we will get

(9.6)

The significance of the last equality is that if we have a periodic signal with
frequency f that is sampled at fs, and another periodic signal with frequencies
f + kfs that are sampled also at fs, the samples of all these signals will be the
same. This implies that we can have the same x(n) discrete signals that could
be the result of sampling, for example, the following signals:

x1(t) = sin(2 (1)t) with f = 1Hz
x2(t) = sin(2 (3)t) with f = 3Hz
x3(t) = sin(2 (6)t) with f = 6Hz

at the sampling frequency fs = 2 samples per second. We will take three samples
from each signal.

For the first signal

x1(0) = sin(0) = 0, x1(1) = sin( ) = 0, x1(2) = sin(2 ) = 0

The second signal is

x2(0) = sin(0) = 0, x2(1) = sin(3 ) = 0, x2(2) = sin(6 ) = 0
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For the third signal 

x3(0) = sin(0) = 0, x3(1) = sin(6 ) = 0, x3(2) = sin(12 ) = 0

You can see that in the 3-samples sequence (and it could be the 4 samples,
the 50 samples, the 1000 samples) x(n) is the same signal that we get if we
sample the three signals at the same frequency fs = 2 Hz. It is known that,
given the signal x(n), it would be impossible to decide which time signal
x(n) represents without any extra information. This is why ambiguity arises
here. The plot to illustrate this ambiguity is shown in Figure 9.4.

To conclude, we can say that if we sample a sinusoidal wave of frequency
f at a sampling frequency fs and then sample any other sinusoidal signal of
frequency ( f + kfs), at the same frequency fs with k as a positive or negative
integer, we will not be able to distinguish among the sampled values of these
signals. The name aliasing arises from these observations. One x(n) discrete
signal can contain the sample values at the sampling frequency fs of x(2 t)
and x(2 (3)t). Thus the 1 Hz-signal is an alias to the 3-Hz signal. 

9.4.2 Ambiguity in the Frequency Domain

Consider the band-limited signal x(t) with its spectrum shown in Figure 9.5.
The signal is said to be band-limited since there are no frequency components

FIGURE 9.4 Ambiguity in time.
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below or above B Hz. The discrete spectrum, �X(ej )�, is periodic. If we sample
x(t) at fs > 2B, we will have the case as shown in Figure 9.6. From this figure
you can see that the original signal can be filtered out and uniquely deter-
mined as the output of a lowpass filter since there is no overlapping among
the repeated spectrum. However, if we sample at fs < 2B, we will have the
case as shown in Figure 9.7. You can also see from Figure 9.7 that overlapping
and aliasing occur as a result at the edges of the repeated spectra. In this
case, we cannot filter our original signal because it is distorted.

9.4.3 The Sampling Theorem

In Sections 9.4.1 and 9.4.2 we observed that if we are given a continuous-
time signal x(t) that is to be sampled at the sampling frequency fs to produce
the discrete signal x(n), the original signal x(t) will be recovered completely
from its sampled signal x(n) if x(n) is the result of sampling x(t) at the
sampling frequency fs that is greater than two times the highest frequency
in x(t). The condition fs > 2fm where fm is the highest frequency in x(t) is
known as the sampling condition or the sampling theorem.

FIGURE 9.5 The band-limited signal x(t).

FIGURE 9.6 Sampling without aliasing.

FIGURE 9.7 Sampling with aliasing.
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9.4.4 Filtering before Sampling

If we are trying to sample the continuous signal x(t) that is of interest to us
at the sampling frequency fs, the whole spectral content of the signal x(t) will
reside in the interval [–fs/2 fs/2]. If there is a noise signal n(t) that has
frequency components outside the range of the signal of interest x(t), these
frequency components will appear in the spectral interval [–fs/2 fs/2]. To
avoid this we will filter out the noise signal n(t) before we sample the signal

s(t) = x(t) + n(t)

by passing s(t) through a lowpass filter that has a cut-off frequency of fc = B Hz
where B is the positive maximum frequency in the signal x(t). In practice we
always have some noise associated with the signal of interest x(t) and we
always filter the input signal.

Example 9.1

Consider the continuous signals

1. Sample x1(t) at fs = 10 Hz and find x1(n).
2. Sample x2(t) at fs = 10 Hz and find x2(n).
3. Compare x1(n) and x2(n) and comment on the result.

Solution

1. If we sample x1(t) at t = nTs = n(.1), we get x1(n) = sin(2 (5)n(.1)) or
x1(n) = sin(n ).

2. If we sample x2(t) at t = nTs = n(.1), we get x2(n) = sin(2 (15)(n)(.1))
or x2(n) = sin(3n ).

3. x1(n) = sin(n ) and x2(n) = sin(3n ) = sin(3n – 2n ) = sin(n ).

This indicates that x1(n) and x2(n) are the same. Remember that x1(t) has the
5-Hz frequency and x2(t) has the 15-Hz frequency. This is the ambiguity that
we talked about in time-domain.

Example 9.2

Consider the signals we had in Example 9.1, namely,

x t t

x t t
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1. Sample x1(t) and x2(t) at fs = 50Hz and find x1(n) and x2(n).
2. Compare x1(n) and x2(n) and comment on the results.
3. Plot the continuous and the sampled signals.

Solution

When we sample x1(t) at fs = 50 Hz we get

By sampling x2(t) at fs = 50 Hz we get

But x1(n) x2(n) for any n. This happens because fs = 50 >2(5), the frequency
of x1(t) and fs > 2(15), the frequency of x2(t). In this we have satisfied the
sampling theorem and hence x1(n)  x2(n). The plots are shown in Figure 9.8
using the MATLAB script

n = 0:.02:.4;

x1 = sin(10*pi*n);

x2 = sin(30*pi*n); plot(n, x1); hold on; plot(n,x2);

plot(n, x1,'*'); plot(n, x2,'o');

FIGURE 9.8 No ambiguity in time-domain.
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Title('Two different frequency signals sampled at same fs');

ylabel('No ambiguity in the time-domain');

xlabel('time');

9.4.5 Sampling and Recovery of the Continuous Signal

Let x(t) be a continuous-time signal that is sampled at the frequency fs Hz
where fs = 1/Ts and t = nTs. We then have with Ts as the sampling period

In the frequency domain the continuous signal is

(9.7)

and the discrete signal x(n) is

(9.8)

where is the digital frequency.
The sampling of x(t) can be viewed as multiplication of x(t) by the train

of impulses separated by Ts sec. We will write this train of impulses as

(9.9)

The multiplication of x(t) by the train of impulses can be written mathemat-
ically as

(9.10)

where

(9.11)

x n x nTs( ) n

X jw x t e dtjwt( ) ( )

X e x n ej j n

n
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i t t nTs
n
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x t x nT t nTs s s
n
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i t t nTs
n
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is the train of impulses. The frequency domain representation of xs(t) is

(9.12)

The train of impulses i(t) can be represented using the Fourier series as

(9.13)

Now the product of i(t) with x(t) can be seen in a different expression using
the Fourier series as

(9.14)

The frequency domain representation of Equation (9.14) for xs(t) is

or

(9.15)

where ws = 2 fs is the sampling frequency.
From Equation (9.15) we can see that the continuous signal multiplied by

the train of impulses in the frequency domain is a scaled and shifted version
of the continuous signal x(t) in the frequency domain. The scaling factor is
1/Ts and the shifting is k(2 fs) = kws. We used this result in Section 9.4.2 when
we explained ambiguity in the frequency domain. Again, if fs > 2f or ws >2w,
where ws is the sampling frequency and w is the highest radian frequency
in the signal x(t), we will have no aliasing and should be able to reconstruct
the original signal x(t). Further, we observe that

(9.16)
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and by the same way

(9.17)

This means that the discrete Fourier transform is obtained from the Fourier
transform of the output of the ideal sampler shown in Figure 9.9 by simply
substituting /Ts for w and is given as

(9.18)

We call it ideal sampler because the duration of the impulse is ideally zero.
We can see from this mathematical development that if we have a signal

x(t) with f being the highest frequency in it, and if we sample x(t) by multi-
plying it by the train of impulses where the period between the impulses
Ts = 1/f is the sampling period, then we can pass the product i(t)x(t) through
a lowpass filter with the cut-off frequency

B < wc < ws – B

where B is the highest nonzero radian frequency in x(t) and ws is the sampling
frequency as illustrated in Figure 9.10. This ideal lowpass filter has the
following characteristics:

(9.19)

FIGURE 9.9 Ideal sampling.

FIGURE 9.10 Recovering x(t).
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To get an approximation to x(t) after sampling, let us find the impulse
response h(t) for H(jw). We have 

or by carrying the integration we get

(9.20)

So h(t) is the impulse response for the lowpass filter used to filter the original
signal, or realistically, to approximate x(t).

Now we can use the methods of Chapter 2 and use convolution to get the
approximated x(t). The sampled time signal is

(9.21)

This xs(t) signal is now applied to the lowpass filter with h(t) as its impulse
response. Therefore, the output of the filter is now an approximation for x(t)
and is

(9.22)

With

the shifted h(t – nTs) becomes

To simplify things let 
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Then we get

 (9.23)

Finally the approximation to x(t) becomes 

(9.24)

You can see from the above expression that the approximation to x(t) can be
obtained by shifting the impulse response by nTs and scaling by a factor of
x(nTs) for – n .

9.5 How Do We Discretize the Derivative Operation?

The derivative of the time signal x(t) is x(t) and at the point t = nTs is

(9.25)

Example 9.3

Consider the system described by the differential equation

where y(t) is the output and x(t) is the input.

1. With no input find the output y(t) for t 0.
2. Use the discrete approximation for differentiation to find y(t) for t 0.
3. Compare the results of 1 and 2.
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Solution

1. With x(t) identically zero, the solution to 

is

for t 0

where y(0) is the initial condition for the output y(t).
2. With 

the equation describing the system becomes

Writing y(nTs) as y(n) and keeping in mind that we are sampling
uniformly at Ts units of time, we arrive at

This means that the distance between n and n + 1 is Ts units of time.
With n – 1 replacing n we get

Finally, the difference equation is written as

The solution y(n) in discrete form is
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3. The solution in the continuous case was calculated as

With t = nTs and writing y(nTs) as y(n), we get

y(n) = y(0)

with

(9.26)

Notice that if aTs is much smaller than unity in magnitude, then a2T2
s

and similarly a3T3
s  and a4T4

s  will have a negligible magnitude. So for
�aTs� much smaller than unity, we can replace

with

which is the same solution we obtained using the discretization
formula.

Example 9.4

Consider the second-order system

with the initial conditions y(0) and Write the equivalent difference
equation that will approximate the above system.

Solution
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we can write the second derivative as 

(9.27)

By substituting for the approximation of in Equation (9.27) we get

(9.28)

Now we can substitute in the given differential equation describing the
system with y(nTs) and x(nTs) written as y(n) and x(n) to get

If we replace n with n – 2, we will get

Multiplying the last equation by T2
s we get

The solution of the above approximation to the given differential equation
will start at n = 2, and thus we require discrete values for y(0) and y(1). The
discrete value y(0) is the continuous value y(0), and the discrete value y(1)
is the continuous value y(Ts). To get y(Ts) we can use the approximation

(9.29)

with as given. Therefore, y(Ts) is solved as
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9.6 Discretization of the State-Space Representation

Consider the multi-input multi-output system in state-space in the time-
domain

(9.30)

where v(t) is the n 1 state vector, x(t) is the r 1 input vector, y(t) is the p  1
output vector, A is the n n system matrix, B is the n r input matrix, C is
the p n output matrix and D is the p r transmission matrix. With the
initial condition vector v(0) the solution vector v(t) is 

t > 0 (9.31)

If the starting time is set to t0, then the solution to the state vector becomes

t > t0

If we set t0 = nTs and t = nTs +Ts in the above equation, we will get

In the sampling process it is fair to assume that the input x(t) is constant in
the interval nTs t nTs + Ts. The solution v(t) in the discrete form is now

(9.32)

If we now let
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(9.33)

Therefore, the solution to the state vector becomes

(9.34)

The output is obtained by substituting nTs for t to get

(9.35)

If we now write x(nTs) as x(n) and v(nTs) as v(n) we finally have

(9.36)

(9.37)

Example 9.5

Consider the state equations

What is the discrete state-space approximation?

Solution

To find and we need to find eAt first. eAt is the inverse transform of (sI – A)–1
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The discrete matrix is given as

With Ts = 1,

The transition matrix at this sampling time is

The discrete approximation to the continuous state-space vector representa-
tion is

and the output approximation is given as

9.7 The Bilinear Transformation and the Relationship 
between the Laplace-Domain and the z-Domain
Representations

A continuous time system has the input x(t), the transfer function H(s),
and the output y(t). A discrete system has the input x(n), the transfer
function H(z), and the output y(n). The discrete system has an output that
matches the output of the continuous system at discrete points nTs where
n is an integer and Ts is the sampling or the discretization interval. We are
assuming here that the discrete system is the continuous system dis-
cretized. In frequency, let Y(ej ) denote the discrete Fourier transform of
the output y(n) so that
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(9.38)

where y(nTs) is y(t) taken at nTs discrete points. We mentioned earlier in this
chapter that we sample the signal y(t) by multiplying it by the train of
impulses i(t) to get ys(t). Let Ys(w) be the Fourier transform of the sampled
signal ys(t) and write

(9.39)

We have learned before that the digital frequency is 

where w is the analogue frequency. Then we can write the Fourier transform
as

(9.40)

From Equations (9.38) and (9.39) we can deduce that 

Again, Y(ej ) is the discrete Fourier transform of y(n) and Ys(w) is the contin-
uous Fourier transform of ys(t) which is the product of the signal y(t) by the
impulse train i(t).

In many cases in practice we will be using a digital filter represented by
the transfer function H(z) to filter an analogue or continuous signal. In many
cases, too, we will be designing the analogue filter H(s), then we can trans-
form it to the digital filter H(z), where we have to make sure that

(9.41)

in the range – since Y(ej ) is periodic with period 2 .
For the continuous system we have the input-output relationship

Y(w) = H(w) X(w)
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where H(w) = H(s)|s=jw. In the design of H(z), the digital filter, using H(w),
the analogue filter, we will assume that the magnitude of H(w) is approxi-
mately zero for w > ws/2, where ws = 2 /Ts. Also it is assumed that the
magnitude of the input X(w) is approximately zero for w > ws/2. With Ys(w)
and Xs(w) as the Fourier transforms of the sampled output and input ys(t)
and xs(t), we have

Ys(w) = H(w) Xs(w) for  (9.42)

With Equation (9.41) and (9.42), we can write

for (9.43)

We also know that

(9.44)

If we set w = /Ts in Equation (9.44), we will get

(9.45)

which is the discrete Fourier transform of x(nTs).
Now we can write the input-output relation

(9.46)

with the discrete input-output relationship written as

(9.47)

We see from Equations (9.46) and (9.47) for Y(ej ) that

(9.48)
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where it is clear that the digital transfer function H(ej ) is obtained from the
continuous H(w) by the substitution w = /Ts. Note that if z = ej and if s =
jw = 1/Ts ln(z) then 

(9.49)

To verify Equation (9.49) set z = ej and simplify to get

The approximation to ln(z) is given by

Therefore, if we design H(s) for the continuous filter, we can obtain H(z) for
the digital filter by performing the substitution

(9.50)

With this transformation we can have the digital filter transfer function as

(9.51)

This is the bilinear transformation equation that is the most popular nowa-
days. Other transformations that are used to obtain H(z) from H(s) will be
listed in Section 9.8 without further details of their derivations. The bilinear
transform in Equation (9.50) is superior.

If the cut-off frequency of the continuous filter is wc then from w = /Ts

we have

(9.52)

where c is the corresponding approximation to wc due to the approximation
in the transformation. We know that points on the unit circle in the z-domain
will be mapped on the jw axis in the Laplace domain. With z = ej we can write
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(9.53)

The point in the z-plane must be mapped into the point jw in the

Laplace domain. We then write

(9.54)

Solving for in Equation (9.54), we get

(9.55)

Example 9.6

Consider the continuous filter described by the transfer function

What is H(z)?

Solution

With and assuming Ts = 0.1, we get 

After simplification we arrive at

We will use MATLAB to plot �H(z)� and �H(s)� as in the following script:

w=-pi:pi/10:pi;

theta=w*.1;

nz=[1/23 1/23]; dz=[1 -17/23];
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Hz=freqz(nz,dz,theta);

ns=[1]; ds=[1 3];

plot(w,abs(Hz),'o'); hold on;

Hs=freqs(ns,ds,w);

plot(w,abs(Hs),'*');

legend('Discrete transfer function','Continuous transfer 
function',0);

title('Magnitude frequency response for H(s) and its 
approximate H(z)')

xlabel('Radian frequency');

The plots are shown in Figure 9.11. Notice in the MATLAB script above that
we called the function freqz and passed to it the digital frequency
theta=w*.1. This is according to the relation that must be satisfied:  =
wTs. is the digital frequency and w is the analogue frequency. The cut-off
frequency of the continuous filter is wc = 3 and the cut-off frequency of the
digital filter is approximately

FIGURE 9.11 Plots for Example 9.6.
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9.8 Other Transformation Methods

There are many methods that are used to transform a transfer function H(s)
to a transfer function H(z). Next we will present some of them without
further details of how these methods were derived. We are interested in the
application of these methods when we are discretizing continuous systems.

9.8.1 Impulse Invariance Method

If H(s) is strictly proper (the degree of the numerator is less than the degree
of the denominator), then the digital filter H(z) is the sampling period Ts

multiplied by the z-transform of H(s).

9.8.2 The Step Invariance Method

Given the continuous transfer function H(s), the discrete transfer function
H(z) is (1 – z–1) times the z-transform of H(s)/s.

9.8.3 The Forward Difference Method

The transformation here is carried by the substitution

9.8.4 The Backward Difference Method

To go from H(s) to H(z) we use the transformation

9.8.5 The Bilinear Transformation 

This method was discussed earlier in this chapter and is carried by the
transformation

s
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Example 9.7

Consider now the filter H(s) as

and let us find H(z) using the five methods described above with Ts = .1

Solution

Using the impulse invariance method

With , the impulse response is

The sampled h(t) is then

The z-transform of (e–3Tw)n is . Therefore, 

H(z) =

Using the step invariance method

In this case,

and the inverse-transform of is . If we evaluate this time sig-
nal at t = nTs we get

with the z-transform as
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Therefore, the transfer function H(z) is

Using the forward difference method

With the discrete transfer function is

Using the backward difference method

With ,

=

Using the bilinear transformation method

With ,

To compare the quality of the transformations we will plot the magnitude
of H(s) and all of the five transfer functions H(z). We will do that using the
following MATLAB script:

w=-pi:pi/50:pi;

theta=w*.1;

nc=[1]; dc=[1 3];

nii=[.1 0]; dii=[1 -exp(-.3)];

nsi=[0 (1/3)*(1-exp(-.3))]; dsi=[1 -1*exp(-.3)];

nfd=[0 .1]; dfd=[1 -.7];

nbd=[1/13 0]; dbd=[1 -10/13];

nbt=[1/23 1/23]; dbt=[1 -17/23];

Hs=freqs(nc,dc,w);
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Hzii=freqz(nii,dii,theta);

Hzsi=freqz(nsi,dsi,theta);

Hzfd=freqz(nfd,dfd,theta);

Hzbd=freqz(nbd,dbd,theta);

Hzbt=freqz(nbt,dbt,theta);

plot(w,abs(Hs)); hold on;

plot(w,abs(Hzii),'*');

plot(w,abs(Hzsi),'o');

plot(w,abs(Hzfd),'s');

plot(w,abs(Hzbd),'d');

plot(w,abs(Hzbt),'.');

legend('CTF','DTF II','DTF SI','DTF FD','DTF BD','DTF BT',0);

title('Magnitude frequency response for H(s) and its 
approximate H(z)')

xlabel('Radian frequency');

The plots are shown in Figure 9.12. Note that every transformation is differ-
ent and produces different approximation to H(s). This is to say that every
transformation should be selected carefully depending on the problem at
hand. The Impulse Invariance method was the worst in Example 9.7. The
step invariant and the bilinear transformations were almost exact in approx-
imating the continuous transfer function. If you decrease the sampling time
Ts from 0.1 to 0.01, the Impulse Invariant method will be a good approximate
to the continuous transfer function.

9.9 Some Insights

9.9.1 The Choice of the Sampling Interval Ts

As long as the sampling theorem is satisfied we will not have any aliasing.
The sampling theorem is satisfied by choosing fs such that fs > 2fm where fm

is the maximum frequency in the signal to be sampled. The smaller the Ts

the better the approximation as long as we are satisfying the sampling
theorem. In practice, we do not need tosample at very small Ts, since that
will require huge amounts of computations that may not actually be needed.

9.9.2 The Effect of Choosing Ts on the Dynamics of the System

If the transfer function of the system described by H(s) has complex poles,
then discretizing this continuous transfer function can result in the loss of
some dynamics (change of location of poles) if the sampling period Ts is
according to the relation



516 Discrete Systems and Digital Signal Processing with MATLAB

where b is the imaginary part of the complex pole a ± jb. The reason is that
the mapping from the s-plane to the z-plane is not one-to-one.

9.9.3 Does Sampling Introduce Additional Zeros for the Transfer 
Function H(z)?

If the difference between the number poles and zeros in H(s) is zero then
H(z) will have zero difference between the number of its poles and zeros
due to sampling with any sampling interval Ts. If the difference between the
number of poles and zeros in H(s) is nonzero, then when we discretize H(s)
to get H(z), new zeros will be introduced in H(z). The number of the new
zeros in H(z) is equal to the difference between the number of poles and
zeros in H(s) minus 1.

FIGURE 9.12 Plots for Example 9.7.
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9.10 End of Chapter Examples

EOCE 9.1

Consider the continuous transfer function

1. Find the magnitude of the complex poles.
2. Choose Ts such that /Ts = 1/2 times the magnitude of the imaginary

part of the complex pole.
3. Discretize H(s) with Ts as obtained in part 2.
4. Comment on the results

Solution

1. We will use MATLAB to find the complex poles and their magnitude.

den=[1 0 4];

eigenvalues=(roots(den))

to get

eigenvalues =
0.0000 2.0000i
0.0000 –2.0000i

2. With , the sampling time is Ts = .

3. We will use MATLAB to get H(z) and write the MATLAB script

num=[1]; den=[ 1 0 4];

Ts=pi;

[A, B, C, D]=tf2ss(num,den);

%next we will dicritize A and B with Ts =.879

[disA, disB]=c2d(A,B,Ts);

%now back to transfer function representation

[disnum,disden]=ss2tf(disA, disB, C, D)

to get

H s
s
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1

42

Ts

1
2

2( )



518 Discrete Systems and Digital Signal Processing with MATLAB

disnum = 1.0e – 015 * [0  0.2220  –0.2220]
disden = 1.0000  –2.0000  1.0000

This means that the discrete transfer function is given by

4. Notice that the dynamics of H(s) has changed. An additional zero
was introduced in the discrete transfer function. The system was
marginally stable, and after discretization it became unstable. 

EOCE 9.2

Consider the two systems

H(s) =

H(s) =

Show that for any Ts we will always get (2 – 1 = 1) extra zero using the first
transfer function but no extra zeros in using the second.

Solution

To do that we will use the MATLAB script

%For the first transfer function

num=[1]; den=[ 1 0 1];

Ts=.1;

[A, B, C, D]=tf2ss(num,den);

%next we will discretize A and B with Ts =.879

[disA, disB]=c2d(A,B,Ts);

%now back to transfer function representation

[disnum,disden]=ss2tf(disA, disB, C, D)

to get

with one additional zero. If we now change Ts from .1 to 10 we will get
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with only one additional zero as expected. You can choose any value for Ts

in the above script and you will always get one additional zero.
For the second transfer function we can use the same script as above with

little modification. For Ts = .1, we get the discrete transfer function

with no additional zeros as expected, because the number of poles is equal
to the number of zeros in H(s). Notice that the zero at s = 0 for H(s) is mapped
into the unit circle in H(z) as expected. If we change Ts to 10 we will not get
any additional zeros. We will get

Notice that the s-plane zero at zero still maps into the z-plane at z = 1.
However, since we have chosen a sampling interval of 10, the location of the
s-plane pole is changed. Hence the dynamics will change as well.

EOCE 9.3

Consider the continuous system

1. Find y(t) due to x(t) = 0 and v(0) = 

2. Find y(n) as in part 1 by discretizing the state equations.
3. Comment on the plots for y(t) and y(n).

Solution

1. Using the Laplace transform method we have

V(s) = (sI – A)–1v(0)
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The transition matrix is the inverse transform of (sI – A)–1. We have

(sI – A)–1 =

and the transition matrix is then

and the state vector becomes

with

and

2. To find y(n) we calculate eATs using eAt. In doing that we get

=

To find y(n) we still need

Finally the discrete state and output equations are
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To plot y(n) we need the initial conditions in the discrete domain.
We have

Therefore, the initial conditions are the same and we can use the
following MATLAB script to plot y(t) and y(n), the approximation to
y(t). Two methods of discretization will be used in the following
MATLAB script. The first is the method described in this chapter. The
second is the method that MATLAB uses, the c2d (continuous to
discrete) function.

%The continuous solution

A=[ -2 0; 0 -1]; B=[0;1]; C=[ 0 1]; D=[0];

vin=[0;1]; t=0:.1:5; x=zeros(size(t)); %zero input

[yt, vt]=lsim(A ,B ,C ,D ,x,t, vin);

%The discrete solution

%pick up a sampling interval

Ts=.1; n=0:50; x=zeros(size(n));

vin=[0;1];% same initial conditions

Ad=[exp(-2*Ts) 0; 0 exp(-Ts)];

Bd=[ 0; -1*exp(-Ts)+1];

Cd=[0 1];

Dd=[0];

[yd, vd]=dlsim(Ad, Bd, Cd, Dd, x,vin);

%Dicritize A and B with Ts =.1 using the c2d MATLAB function

[disA, disB]=c2d(A,B,Ts);

[ydm vdm]=dlsim(disA, disB, C,D,x,vin);

plot(t,yt); xlabel('Time(sec)');

title('The continuous and the discrete solutions. Ts 
=0.1');

hold on

plot(n*Ts,yd,'*'); xlabel('Time(sec)');

plot(n*Ts,ydm,'o');

legend('Cont sol','Disc sol: book method','Disc sol MATLAB
method',0);

and the plot is shown in Figure 9.13.
4. The approximation can vary by changing the sampling interval Ts.
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EOCE 9.4

Consider the continuous system described by the differential equation

with y(0) = 0, , and x(t) = u(t). Find y(t) and its approximate solu-

tion y(n) by discretizing the differential equation and plot the results.

Solution

As in Example 9.3 and with a = 0, b = 1 and c = 1, the approximate difference
equation is

We will use MATLAB to plot y(t) and y(n) for the value of Ts = .1 sec as in the
following script: 

FIGURE 9.13 Plots for EOCE 9.3.
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% for the continuous system;

nc = [1]; dc =[1 0 1]; 

t = 0: .1: 10; % simulation for 5 seconds

xc = ones(size(t)); % input unit step signal

yc = lsim(nc, dc, xc, t);

plot(t,yc); hold on; 

title('The continuous and the discrete outputs: Ts =.1');

xlabel('Time(sec)');

% for the discretize system;

Ts = .1; % sampling period

nd = [0 0 Ts*Ts]; dd=[ 1 -2 1+Ts*Ts]

n = 0:1:100 ; %simulations for 5 seconds(.1*50)

xd = ones(size(n)); yd = dlsim(nd, dd, xd); plot (n*Ts, yd,'*');

legend('Continuous solution','Discrete solution',0);

The plots are shown in Figure 9.14. You can see that the approximation is
not very accurate. The original continuous system is oscillatory; its poles are
on the imaginary axis. Since we are discretizing this system we should be
careful with the sampling interval we choose. As seen in Figures 9.14 and
9.15, the approximation is much better with small Ts. The simulations for
Ts = .5 and .01 are shown in Figure 9.15.

FIGURE 9.14 Plots for EOCE 9.4.
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EOCE 9.5

Consider the state-space continuous systems

1.

2.

Find the approximate discrete representation for the two systems.

Solution

For the first system we have

with

and

FIGURE 9.15 Plots for EOCE 9.4.
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For we calculate first eAt as the inverse Laplace transform of (sI – A)–1.

and

Using partial fraction expansion we get

and the transition matrix is

The discrete transition matrix is

The matrix (Ts) is given by

For Ts = 1, we have
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and

We can use MATLAB to find (1) and (1) as in the following script:

A=[0 1; -2 -3];

B=[0;1];

Ts=1;

[dA,dB]=c2d(A,B,1)%Ts=1

to get

dA =
0.6004 2325
–.4651 –.0972

dB = 
.1998
.2325

For the second system we can use MATLAB to find (1) and (1) as in the
following script:

A=[0 1 0; 0 0 1;-1 -2 -3];

B=[0;0;1];

Ts=1;

[dA,dB]=c2d(A,B,1)%Ts=1

to get

dA =
0.9166  0.8092  0.1966
–0.1966  0.5234  0.2194
–0.2194  –0.6355  –0.1349

dB =
0.0834
0.1966
0.2194

( )
.
.

1
1998
2325
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EOCE 9.6

Consider the continuous system

Find two transfer functions, H(z), to represent the continuous system.

Solution

We will use the Impulse Invariance method first. From

we have the impulse response h(t) as

and

If we take the z-transform or h(nTs) we will get the first z-domain represen-
tation as

By using the Step Invariant method we have

with the time signal as

and
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The z-transform of h(nTs) is 

Thus the second z-domain representation is 

An appropriate value for Ts in the two z-domain representations will approx-
imate the continuous filter H(s).

EOCE 9.7

A continuous signal x(t) is given. Its continuous Fourier transform is given by 

The inverse continuous transform is also given by

If we sample x(t) at the sampling interval Ts sec, we will obtain the discrete
signal

Keep in mind that as long as fs > 2fm, where fm is the highest frequency in
x(t), we can reconstruct x(t) from x(n).

Solution

In this example we will use MATLAB to study the effect of sampling in the
frequency domain. To do that we need to represent x(t) and X(jw) in MATLAB.
We will sample x(t) on a finite gird with tg being the grid interval where tg �
Ts. In this case, the MATLAB simulated continuous signal x(t) is 

In the same way, and using the relation

H z
z

z e
z

z e
z

zT Ts s
( )

. . .6 5 1 1
15 2

H z
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z
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the MATLAB-simulated Fourier transform can be written as

To see this let us consider the continuous signal

with its Fourier transform calculated as

For w  2 (2000) the magnitude of X(jw) is approximately zero. Also, for t =
.005, e–1000t is approximately zero and we can approximate x(t) in the interval
from 0 to .005 seconds. Let us choose the grid interval, tg, to be 0.00005 which
is less than 1/2(2000). In the following MATLAB script we will plot the simulated
continuous signal x(t) and its simulated continuous Fourier transform X(jw).

tg = 0.00005;

t = 0: tg: .005;

xg =(exp(-1000*t));

wmax = 2*pi*2000;

M = 400; m = 0: 1: M;

w = m*wmax/M;% frequency for 0 to 2*pi*2000

Xg =tg*(exp(-j).^(w'*t))*xg'

Xg = abs(Xg); subplot(2, 1, 1);

plot(t, xg); xlabel('Time(sec)');ylabel('x(t)');

title('x(t) and its Continuous Fourier transform X(jw): an 
approximation to both');

subplot(2, 1, 2); plot(w/(2*pi*1000), Xg);

xlabel('Frequency in KHz'); ylabel('Magnitude: continuous 
X(jw)');

The plots are shown in Figure 9.16. To study the effect of sampling in the
frequency domain, let us sample x(t) at fs = 8000 Hz and 200 Hz. Notice that
the Nyquist rate for x(t) is 2(2000) = 4000 Hz. In the first case, we are
satisfying the Nyquist rate but we are not in the second case. We hope to
see the aliasing effects on the magnitude plots for the discrete Fourier trans-
forms due to this type of sampling. We will use the following MATLAB script
to do that. We will start with fs = 8000 Hz, the no-aliasing case.

X jw x t e dtjwt( ) ( )

X jw t x k eg g g
jwkt

k

g( ) ( )

x t e t( ) 1000

X jw
jw

( )
1
1000
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tg = 0.00005;

t = 0: tg: .005;

xg =(exp(-1000*t));

%the above is for the continuous signal x(t)

fs=8000; Ts=1/fs;

n=0:1:40; %for time duration of .005 seconds

xd=exp(-1000*n*Ts);

%the above is for x(t) sampled at fs=8000 Hz

M = 400; m = 0: 1: M;

w = m*pi/M;% frequency for 0 to pi

Xd =xd*exp(-j*n'*w);% the discrete Fourier transform

Xd = abs(Xd); subplot(2, 1, 1);

stem(n*Ts, xd); xlabel('Time(sec)');ylabel('x(n): fs= 8000 
Hz');

title('x(n) and its Discrete Fourier transform Xd(jw): an 
approximation');

subplot(2, 1, 2); plot(w, Xd);

xlabel('Frequency: Radians/second'); ylabel('Magnitude of 
Xd(jw)');

axis([0 3 0 10]);

The plots are shown in Figure 9.17. You can see from the plots in Figure 9.17
that there is a scaling factor to the magnitude plot for Xd(jw) due to sampling.
The scaling factor of 8000 Hz is present. The maximum magnitude is around

FIGURE 9.16 Plots for EOCE 9.7.
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8 compared with 0.001 for the continuous case. We can also see in the figure
that for fs = 8000 Hz, there is no aliasing present since the plot for the con-
tinuous Fourier transform in Figure 9.16 is similar to the one in Figure 9.17.

For the sampling frequency of 200 Hz (the sampling frequency criteria is
not satisfied), the magnitude plot for the discrete Fourier transform of x(n)
is scaled by 200 Hz. We can also see in Figure 9.18 that for fs = 200 Hz, there
is aliasing present since the plot for the continuous Fourier transform in
Figure 9.16 is not similar to the one in Figure 9.18.

EOCE 9.8

In this example we will study the effects of sampling in the time domain.
We have derived the formula for the reconstructed signal as 

where xa(t) is the approximation to the signal xa(t) obtained by the recon-
struction operation from the discrete signal xa(n). A closer look at the above
approximation shows that it is an interpolation of infinite order. 

FIGURE 9.17 Plots for EOCE 9.7 with no aliasing.
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Solution

In practice, the zero-order hold method is employed and is implemented
in MATLAB by the function stairs. Using the zero-order-hold method, the
signal x(n) is converted into a weighted impulse train and then passed
through the filter

The second practical approach is the first-order-hold interpolation that is
implemented in MATLAB by the function plot. In this case x(n) again is
converted into a weighted impulse train and then passed through the filter

FIGURE 9.18 Plots for EOCE 9.7 with aliasing.
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The third practical approach is to use the cubic-spline interpolation which
does not require that we pass the converted x(n) through a filter like the
previous two reconstruction methods. This method is implemented in MATLAB

using the function spline that takes as inputs to it the samples x(n), the
sampling intervals nTs and the time grid for which the values for xa(t) are
desired. 

We will use the same signal x(t) that we used in the last EOCE to demon-
strate the aliasing in time. The continuous signal was given as

with its Fourier transform calculated as

For t = .005, e–1000t is approximately zero and we can approximate x(t) in the
interval from 0 to .005 seconds. Let us choose the grid interval, tg, to be
0.00005 which is less than 1/2(2000). In the following MATLAB script we will
use the sampling frequency of fs = 8000 Hz and the three MATLAB implemen-
tations for the reconstruction of x(t).

fs=8000; Ts=1/fs;

n=0:1:40; %for time duration of .005 seconds

xn=exp(-1000*n*Ts);

subplot(1, 3, 1);stairs(n*Ts, xn); 

xlabel('Time(sec)');

ylabel('Reconstruction with zero-order-hold');

hold on; stem(n*Ts, xn);hold off;

subplot(1, 3, 2); plot(n*Ts, xn);

xlabel('Time(sec)')

ylabel('Reconstruction using first-order-hold');

hold on; stem(n*Ts,xn);hold off

tg=0.00005;%the grid for the spline

t=0:tg:0.005; subplot(1,3,3); 
xd=spline(n*Ts,xn,t);plot(t,xd);

ylabel('Reconstruction using spline'); hold on; 
stem(n*Ts,xn);

xlabel('Time(sec)')

The plots are shown in Figure 9.19. 
If we use fs = 200 Hz and the three MATLAB reconstruction implementations,

we get the plots in Figure 9.20. You can clearly see that for fs = 200 Hz, a
frequency below the Nyquist rate, aliasing is obvious since the plots do not
match with the fine signal x(t), even with small error.

x t e t( ) 1000

X jw
jw

( )
1
1000
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9.11 End of Chapter Problems

EOCP 9.1

Consider the two signals

1. If you sample the above two signals at the sampling frequency of
1 kHz, would you be able to distinguish between the two signals?

2. Repeat, using fs = 103/3 kHz.
3. Use MATLAB to plot x1(t), x1(n), x2(t) and x2(n).

EOCP 9.2

Give an example of five continuous signals that when sampled at fs = 104 Hz,

1. Would produce five discrete signals each of which is unique
2. Would produce five discrete signals where

x1(n) = x2(n) = x3(n) = x4(n) = x5(n)

FIGURE 9.19 Plots for EOCE 9.8 without aliasing.
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EOCP 9.3

Consider the following continuous time signals

Follow a procedure similar to that in EOCE 9.8 and EOCE 9.7 to 

1. Find the approximate maximum frequencies for both signals where
the magnitude spectra approach zero magnitude.

2. Find appropriate time intervals where the two signals approach a
value of zero outside these intervals.

3. Sample both signals at fs > 2fm and find x(n) for both where fm is the
approximate maximum frequency after which the magnitude spec-
tra is approximately zero.

4. Sample both signals at fs< fm.
5. Look at the effect of sampling in the frequency domain for both signals.

FIGURE 9.20 Plots for EOCE 9.8 with aliasing.
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6. Look at the effect of sampling in the time domain.
7. Draw a conclusion regarding observations on this problem.

EOCP 9.4

Repeat EOCP 9.3 for

EOCP 9.5

Find the approximate difference equations and the corresponding discrete
initial conditions for the following first-order differential equations:

1.  with y(0) = 2

2.  with y(0) =

3.  with y(0) = 10

4.  with y(0) = 0

EOCP 9.6

Discretize the following continuous systems along with their initial conditions.

1.

2.

3.
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4.

5.

EOCP 9.7

Consider the following time domain state-space systems:

1.

2.  

3.

4.

a) Analytically, discretize the first two systems with zero initial conditions.
b) Use MATLAB to plot y(t) and y(n) for values of Ts of your choice for the
first two systems if x(t) = tsin(t).
c) Use MATLAB to put the last two systems in a discretized form. Use zero
initial condition with x(t) = u(t) to plot y(t) and y(n) for both systems with
appropriate Ts.
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EOCP 9.8

Consider the systems in the s-domain.

1. What is the cut-off frequency wc for both systems?
2. What is the digital cut-off frequency c for both systems?
3. Use the transformation

to find the approximate H(z) for both systems
4. Use MATLAB to plot the frequency response for the two systems in

the s-domain and the z-domain.
5. Give your observations.

EOCP 9.9

We have discussed five methods by which we can find an approximation to
the s-domain system. Use these five methods to find five different discrete
transfer functions, H(z), for each of the systems.

EOCP 9.10

Consider the systems
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1. Choose Ts such that

where b is the imaginary part of the complex roots for the two
systems

2. Find H(z), the approximation to H(s), with such Ts.
3. Plot using MATLAB the frequency response for both systems in the

s-domain and in the z-domain.
4. What comments can you make?
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b

s
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10
Infinite Impulse Response (IIR) Filter Design

10.1 Introduction

After Chapter 8, where we discussed the design process of analogue filters,
and Chapter 9, where we presented different methods of frequency trans-
formations, we believe that we are ready to design infinite impulse response
(IIR) digital filters. The design of IIR digital filters in this chapter will be
based on the design of analogue continuous filters (Chapter 8) and frequency
transformations (Chapter 9). The most important frequency transformation
used to transform an analogue continuous filter to an IIR digital filter is the
Bilinear transformation. In this chapter we will use the Bilinear and the
Impulse Invariance transformations in the design process. Basically, we will
be designing IIR digital filters from analogue continuous filters using these
two frequency transformations. IIR digital filters are the filters in which the
output at a certain instant depends on the current and previous inputs and
outputs on or prior to that instant. We will be designing proper, rational and
stable IIR digital filters only in this chapter (the reasons are explained later
in the chapter). Also, satisfying the requirements for the magnitude and the
phase in designing IIR filters is very difficult. Thus we will deal with either
the magnitude or the phase requirements. In this chapter we will design by
satisfying the magnitude requirements, hoping that the damage resulting
from not satisfying the phase requirements will be minimal. The digital IIR
filter transfer function we will be designing will be obtained using the
following steps:

1. Start with an analogue lowpass prototype filter with cut-off fre-
quency of 1 rad/sec.

2. Use frequency transformation to transform the analogue lowpass
prototype to a lowpass, highpass, bandpass or bandstop analogue
filter with the desired cut-off frequency/frequencies.

3. Use the bilinear or the impulse invariance transformation to trans-
form the analogue filter to its approximate IIR digital filter.
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The following is a set of frequency transformations transforming lowpass
filters with system function H(s’) to a different configuration function H(s).

Lowpass to lowpass: 

Lowpass to highpass:

Lowpass to bandpass:

Lowpass to bandstop:

where in the above transformations wcl is the lower cut-off frequency and
wcu is the upper cut-off frequency.

Looking at the previous transformations we can see that the transformation
is not linear except for the lowpass to lowpass case. However, this nonlin-
earity provides no difficulty since the filter being transformed is approxi-
mately constant in the frequency band of interest. Therefore, while the
frequency spacing of the ripple peaks and valleys are affected, the amount
of ripple is still the same. Furthermore, in transforming the lowpass filter to
bandstop or bandpass filter, the substitution is second order, so the output
filter is twice the order as the input filter.

10.2 The Design Process

In designing stable and proper IIR digital filters we will use the wealth of
knowledge and experience that is available in literature about designing
analogue filters. In particular, we will use the information presented in
Chapter 8 to design analogue filters and then use the two transformation
methods discussed in Chapter 9 to obtain the IIR digital filter transfer func-
tion. The two methods are the bilinear and the impulse invariance methods.
The relationship between the analogue frequency w and the digital frequency

is w = /Ts where Ts is the sampling period.

10.2.1 Design Based on the Impulse Invariance Method

For transforming an analogue continuous filter to an IIR digital filter using
the Impulse Invariance method, the digital IIR filter H(z) is obtained by
multiplying the sampling period Ts by the z-transform of H(s). If we call the
eigenvalue for the continuous system , then we have the following trans-
form pair

s
s

wc

s
w
s

c

s
s w w
s w w

cl cu

cu cl

2

s
s w w

s w w
cu cl

cl cu
2
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(10.1)

At t = nTs, e t = e nTs = (e Ts)n and the z-transform of (e Ts)n is obtained as in
the following pair 

(10.2)

If the poles of H(s) are all distinct and if H(s) is strictly proper, then H(s) can
be expanded in partial fraction form as

(10.3)

and the impulse response of H(s) is

(10.4)

With t = nTs we have

(10.5)

In this case, the z-transform of h(n) in Equation (10.5) is

(10.6)

With Equation (10.6), we can finally write the transfer function of the IIR
digital filter using the Impulse Invariance method as

(10.7)

Example 10.1

Let us start with the analogue prototype first-order lowpass filter Hplp(s ) =

. We can use the frequency transformation s = s/wc to transform the

prototype lowpass analogue filter into a lowpass analogue filter with cut-
off frequency wc. With a cut-off frequency of 3 rad/sec the new transfer
function is 
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H(s) = .

Next let us find H(z) that corresponds to H(s) = . Use the Impulse Invari-
ance method with Ts = .1.

Solution

With H(s) = , the impulse response is h(t) = 3e–3t. The sampled h(t) is then

The z-transform of (e–3Ts)n is . Therefore, the digital transfer function

is

H(z) =  

When the order of the filter is high, the computations become very complex.
We will try to use MATLAB to accomplish the impulse invariance transforma-
tion. First we need to use partial fraction expansion on H(s). The MATLAB

function residue is used to perform partial fraction expansion on H(s).
Remember that the poles in the z-domain are at e nTs where n is the nth pole.
Next, we will use the MATLAB function residuez to get the numerator and
the denominator coefficients of the transfer function H(z). Then we will
multiply the resulting H(z) by Ts to find the final Impulse Invariant trans-
formed digital IIR filter. This is accomplished for the example at hand as in
the following MATLAB script.

Ts=0.1;

nums= [3];%numerator for H(s)

dens=[1 3];

[res,poles,const]=residue(nums, dens);

[numz denz]=residuez(res, exp(poles*Ts), const);

numz=numz*Ts %Final H(z)

denz

The result is the same as we obtained analytically with H(z) = .

Let us now write a MATLAB function to accomplish the Impulse Invariance
transformation since we will be using it over and over in the examples to
follow. The function is given next.
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function [numz denz]=impinv(nums, dens, Ts)%f in function is 
lower case

[res,poles,const]=residue(nums, dens)

[numz denz]=residuez(res, exp(poles*Ts), const);

numz=numz*Ts %to get the Final H(z)

We will call the function impinv as

[numz denz]=impinv(nums, dens, 0.1)

MATLAB contains the function impinvar that is used to produce IIR digital
filters based on the Impulse Invariance transformation. The syntax is

[numz,denz] = impinvar(nums,dens,fs) 

This function creates a digital filter with numerator and denominator coef-
ficients numz and denz respectively, whose impulse response is equal to the
impulse response of the analog filter with coefficients nums and dens and
a sampling frequency fs. The nums and dens coefficients will be scaled by
fs. If you don't specify fs, it defaults to 1 Hz. The syntax

[numz,denz] = impinvar(nums,dens,fs,tol) 

uses the tolerance tol for grouping repeated poles together. Default value
is 0.001, i.e., 0.1%.  The repeated pole case works, but is limited by the ability
of the function roots to factor such polynomials. Either of the two functions,
impinv, which is written above or impinvar, which is available with in
MATLAB, can be used. 

10.2.2 Design Based on the Bilinear Transform Method

For transforming an analogue continuous filter to an IIR digital filter using
the Bilinear method, the digital IIR filter transfer function H(z) was derived
in Chapter 9 and is repeated here as

(10.8)

where as explained in Chapter 9

(10.9)

The difference between c = 2 tan–1 wcTs/2 and c = wcTs depends on the term
tan–1 wcTs/2. This difference is known as warping. If wcTs/2 is very small,
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then tan–1 wcTs/2 = wcTs/2 and thus c = wcTs. We can eliminate the effect of
warping by prewarping. In prewarping the cut-off frequency of the analogue
filter wc is made equal to the cut-off frequency of the digital filter using the
relation that was explained in Chapter 9

(10.10)

with c = wcTs. With prewarping, we substitute wprewarp for wc so that the
frequency responses before and after mapping match exactly at the frequency
point fprewarp. The matching point fprewarp is specified in Hz. With the Bilinear
transformation, the stability of the analogue continuous filter is preserved.
This means that the poles of H(s) that are in the left-half of the s-plane are
mapped into the unit circle of the z-plane.

Example 10.2

Find the H(z) that corresponds to H(s) = , the transfer function discussed

in Example 10.1. Use the Bilinear transform method with Ts = .1.

Solution

With ,

The cut-off frequency of the analogue filter is wc = 3 and the desired corre-
sponding cut-off frequency of the digital filter is c = wcTs = 0.3. However,
with the Bilinear transform, c = 2 tan–1 wcTs/2 = 0.2978. Thus, the amount
of warping is 0.3 – 0.2978 = 0.002 or 2%. Had we used prewarping with
wprewarp = 2/Ts tan( c/2) = 2.978 substituted for wc, the digital transfer function
would be
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Note that the location of the pole of H(z) obtained using the Impulse Invari-
ance method is at approximately the same location as the pole obtained using
the Bilinear transform method.

With higher order filter the calculations get very complex. MATLAB contains
the function bilinear and is used to obtain the transfer function H(z) that
approximates the analogue transfer function H(s).

Within the syntax

[zz,pz,kz] = bilinear(zs,ps,ks,fs) 

the function converts the s-domain transfer function specified by zs, ps
and ks to a z-transform discrete equivalent obtained from the Bilinear trans-
formation where column vectors zs and ps specify the zeros and poles,
scalar ks specifies the gain and fs is the sampling frequency in Hz.  With
the syntax

[numz,denz] = bilinear(nums,dens,fs)

where nums and dens are row vectors containing the numerator and denom-
inator coefficients of the analogue transfer function H(s), in descending powers
of s, the function transforms H(s) to the z-transform coefficients numz and
denz of the IIR digital filter transfer function H(z). The syntax

[Az,Bz,Cz,Dz] = bilinear(As,Bs,Cs,Ds,fs) 

is a state-space version of the bilinear transform.
Each syntax for the bilinear function accepts an optional additional input

argument that specifies prewarping. The syntax

[zz,pz,kz] = bilinear(zs,ps,ks,fs,fprewarp) 

applies prewarping before the bilinear transformation so that the frequency
responses before and after mapping match exactly at frequency point
fprewarp. The matching point fprewarp is specified in Hz.

We can now use MATLAB to find H(z) with and without warping. With
warping we use the script

Ts=0.1;

nums= [3];%numerator for H(s)

dens=[1 3];

[numz denz]=bilinear(nums,dens,1/0.1)

and the result is

numz = 0.1304  0.1304
denz = 1.0000  –0.7391
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With prewarping we use the same script but with 

[numz denz]=bilinear(nums,dens,1/0.1,2.978/(2*pi))

substituted for

[numz denz]=bilinear(nums,dens,1/0.1)

and the result is

numz = 0.1313  0.1313
denz = 1.0000  –0.7374

You can see that the difference between the two digital transfer functions is
minimal due to the fact that wcTs/2 is very small.

10.3 IIR Filter Design Using MATLAB

We will use two methods to design IIR digital filters using MATLAB. In the
first method, we will start with the analogue prototype lowpass filter, then
we will convert this filter into any of the lowpass, highpass, bandpass or
bandstop analogue filters with any cut-off frequency/frequencies. Next we
will use either the Impulse Invariance or the Bilinear transformation meth-
ods to design the IIR digital desired filter. In the second method we will
translate the digital requirements and use direct design methods available
with MATLAB.

10.3.1 From the Analogue Prototype to the IIR Digital Filter

We can use the design methods we learned in Chapter 8 to design any
analogue filter of any type, then transform that filter to its IIR digital equiv-
alent using the Impulse Invariance or the Bilinear transformations. The two
transform MATLAB functions are impinvar and bilinear. The syntax for
these functions was discussed earlier in this chapter. In this chapter we will

TABLE 10.1

Analogue Prototype Functions

Filter Type Analogue Prototype Function

Butterworth [zs,ps,ks] = buttap(n)
Chebyshev Type I [zs,ps,ks] = cheb1ap(n,Rp)
Chebyshev Type II [zs,ps,ks] = cheb2ap(n,Rs)
Elliptic [zs,ps,ks] = ellipap(n,Rp,Rs)
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start with analogue prototype (1 rad/sec cut-off frequency) lowpass filters,
then transform them to other analogue filters of any type and with any
desired cut-off frequency/frequencies. Next, we will list the MATLAB func-
tions needed without any further discussion, since they were explained in
Chapter 8. 

10.3.2 Direct Design

MATLAB has many functions that will help us design digital IIR filters directly.
These MATLAB functions are listed in Table 10.4.
In Table 10.4, n is the order of the desired IIR digital filter. wn is the single-
valued cut-off frequency of the lowpass filter. In case of a bandpass or a
bandstop digital filter, wn is a vector of two values: the lower and the upper
cut-off frequencies. Rp and Rs are the passband and the stopband attenuation
ripples in decibels. ftype is the type of the desired filter. We use stop for
stopband digital filters and high for highpass digital filters. If you do not
specify the ftype the default is lowpass. The wn frequency/frequencies
must be normalized to the range [0 1]. The range [0 1] corresponds to the
range [0 ]. zz, pz and kz are the zeros, poles and gain constants.

We will not discuss Bessel filters in this chapter although they produce
linear phase response. We need to use high-order Bessel to get good results.
This is to say that Bessel filters have poor behavior and even Butterwoth

TABLE 10.2

Analogue Transformation Functions

Frequency Transformation Transformation Function

Lowpass to lowpass [nums,dens] = lp2lp(nums,dens,W0)
[As,Bs,Cs,Ds] = lp2lp(As,Bs,Cs,Ds,W0)

Lowpass to highpass [nums,dens] = lp2hp(nums,dens,W0)
[As,Bs,Cs,Ds] = lp2hp(As,Bs,Cs,Ds,W0)

Lowpass to bandpass [nums,dens] = lp2bp(nums,dens,W0,Bw)
[As,Bs,Cs,Ds]=lp2bp(As,Bs,Cs,Ds,W0,Bw)

Lowpass to bandstop [nums,dens] = lp2bs(nums,dens,W0,Bw)
[As,Bs,Cs,Ds]=lp2bs(As,Bs,Cs,Ds,W0,Bw)

TABLE 10.3

Transformation from Analogue to Digital Filters

Frequency Transformation Transformation Function

Bilinear [zz,pz,kz] = bilinear(zs,ps,ks,fs) 
[zz,pz,kz] = bilinear(zs,ps,ks,fs,fprewarp)
[numz, denz] = bilinear(nums,dens,fs)
[numz, denz] = bilinear(nums,dens,fs,fprewarp)

Impulse Invariance [numz,denz] = impinvar(nums,dens,fs) 
[numz,denz] = impinvar(nums,dens,fs,tol) 
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filters produce better results. One of the reasons we do not use FIR filters
(finite impulse response filters are discussed in Chapter 11) is that they
require high order. But they also produce linear phase and are always stable,
unlike IIR filters. At the end of the chapter (EOCE), we will give many
examples to illustrate the procedure of designing IIR digital filters.

10.4 Some Insights

10.4.1 The Difficulty in Designing IIR Digital Filters in the z-Domain

Designing an irrational IIR digital filter is very difficult and its implemen-
tation is very costly. The IIR digital filters we will consider are the IIR filters
that are rational, proper, causal and stable. The transfer function representing
such digital IIR filters is given as

(10.11)

where aN must not be zero for the filter to be proper and causal. To design
such a filter we can either find the constants a0 through aN and b0 through
bN or use a much easier method to find 

(10.12)

It can be easy to find �H(ej )�2 but our goal is to find a rational, proper and
stable H(z). Note that not every �H(ej )�2 can be factored out as in Equation
(10.12) and therefore the search for a rational, proper and stable H(z) is very
difficult. However, if we are after a rational, proper and stable analogue
transfer function H(s) as in

TABLE 10.4

Direct Design Matlab Functions for IIR Filters

Filter Type Analogue Prototype Function

Butterworth [numz, denz] = butter(n,wn,’ftype’)
[zz, pz, kz] = butter(n,wn,’ftype’)

Chebyshev Type I [numz, denz] = cheby1(n,Rp,wn,’ftype’)
[zz, pz, kz] = cheby1(n,Rp,wn,’ftype’)

Chebyshev Type II [numz, denz] = cheby2(n,Rs,wn,’ftype’)
[zz, pz, kz] = cheby2(n,Rs,wn,’ftype’)

Elliptic [numz, denz] = ellip(n,Rp,Rs,wn,’ftype’)
[zz, pz, kz] = ellip(n,Rs,Rp,wn,’ftype’)
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(10.13)

we can see that finding

(10.14)

is very simple if �H(jw)�2 is a proper rational function of w2. Consider the
magnitude-squared response for the analogue transfer function of a Butter-
worth prototype lowpass filter

(10.15)

Let N = 2 in Equation (10.15). With (jw)(jw) = –w2 = s2, we can write Equation
(10.5) as

(10.16)

We can factor by finding the roots of 1+(–s2)2 = 0 or (–1)2 s2(2) = –1.

Simplifying further we arrive at

(10.17)

The four roots are at 

(10.18)

We can use MATLAB to find these roots. At the MATLAB prompt we type:

n=0:3;%four roots

s=exp(j*(3*pi+2*pi*n)/4)%all the roots (4 of them)

%We observe the roots in the left-half s-plane and group them

s=[s(1) s(2)];

den=poly(s) %get the denominator coefficients
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The desired H(s) is therefore

(10.19)

You can see the symmetry in the roots. Half of the roots are in the left-half
s-plane. These are the roots that will be considered. With this simple example
you can see the simplicity of factorizing �H(ej )�2 to obtain the rational, proper
and stable H(s).

10.4.2 Using the Impulse Invariance Method

Only if H(s) is strictly proper (the degree of the numerator is less than the
degree of the denominator) will the Impulse Invariance method give you
correct results. 

10.4.3 The Choice of the Sampling Interval Ts

If the sampling period Ts is according to the relation

where b is the imaginary part of the complex pole a ± jb of the transfer
function H(s), the transformation to H(z) may result in loss of some dynamics
of the system. The reason is that the mapping from the s-plane to the z-plane
is not one-to-one.

10.5 End of Chapter Examples

EOCE 10.1

We are trying to eliminate all frequencies that are higher than 100 Hz from
the incoming signal x(t). If the sampling frequency is 1000 Hz, design a
digital lowpass IIR filter to accomplish this task.

Solution

The cut-off frequency, wc, of the equivalent analogue lowpass filter needed
is 200 rad/sec. We will carry out the design using two methods and with
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each method we will use the bilinear and the Impulse Invariance transfor-
mations. We will design second- and sixth-order Butterworth filters. For
filters of order 2 or higher the complexity of the mathematics is high. Thus
we will use MATLAB in all the design problems.

First method: from the analogue prototype to the IIR digital filter

We will write the following MATLAB script to accomplish the design using
this method. We will start with a prototype second-order analogue lowpass
Butterworth filter, then convert it to a second-order lowpass analogue But-
terworth filter with cut-off frequency of 200 rad/sec. Then we will use the
Bilinear and the Impulse Invariance transformations to get H(z), the transfer
function of the IIR digital filter.

%we will generate the lowpass analogue Butterworth prototypes 
first

for n=2:4:6% N=2 and 6

[zs, ps, ks]=buttap(n);

% put in terms of transfer function

[nums, dens]=zp2tf(zs,ps,ks);

%next we transform to analogue lowpass with cut-off 200pi

[nums, dens]=lp2lp(nums, dens, 200*pi);

%Then we use the Bilinear transform first

fs=1000;

[numzb, denzb]=bilinear(nums, dens, fs)

%then we use the Impulse Invariance method

[numzi, denzi]=impinvar(nums, dens, fs)

%Now we plot the magnitude response of the IIR digital filter

%using the two transformation methods

[Hb, fb]=freqz(numzb, denzb);

[Hi, fi]=freqz(numzi, denzi);

subplot(2,1,1);

plot(fb/pi, abs(Hb));

hold on;

axis([0 1 0 1]);

title('The Magnitude response using the Bilinear transform');

subplot(2,1,2);

plot(fi/pi, abs(Hi));

hold on;

end

title('The Magnitude response using the Invariance transform');

xlabel('frequency in pi units');

axis([0 1 0 1]);

The plots are shown in Figure 10.1. You can see that the Bilinear transfor-
mation is superior to the Impulse Invariance transformation for the low order
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of 2. The two methods are somehow identical when the order becomes 6.
Using the Bilinear transformation method, the numerator and denominator
coefficients of the transfer function of the IIR digital second-order filter are

numzb = 0.0640  0.1279  0.0640
denzb   = 1.0000  –1.1683  0.4241

and the corresponding IIR filter transfer function is

For the sixth-order filter we have

numzb = 0.0003  0.0017  0.0043  0.0058  0.0043  0.0017  0.0003
denzb = 1.0000  –3.6543  5.8693  –5.2192  2.6894  –0.7574  0.0908

and the corresponding IIR filter transfer function is

FIGURE 10.1 Plots for EOCE 10.1: Indirect Method.
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Using the Impulse Invariance method, the numerator and denominator coef-
ficients of the transfer function of the IIR digital second-order filter are

numzi = 0  0.2449
denzi   = 1.0000  –1.1580  0.4112

and the corresponding transfer function of the IIR filter is

For the sixth-order filter we have

numzi = 0.0000  0.0003  0.0057  0.0096  0.0026  0.0001
denzi = 1.0000  –3.6300  5.7952  –5.1282  2.6316  –0.7386  0.0882

and the corresponding transfer function of the IIR filter is

Second method: Direct Design

Using this method we will use the MATLAB function

[numz, denz] = butter(n,wn,’ftype’)

without ftype, since the default type is lowpass, and with wn = 0.2 and n
= 2 and 6. We used wn = 0.2 as the normalized frequency because the
equivalent cut-off digital frequency is 200 (1/1000) = 0.2 . Using MATLAB,
the digital frequencies should be normalized to belong to the digital fre-
quency interval [0 1].

The following MATLAB script will accomplish the design:

clf

for n=2:4:6;

[numz, denz]=butter(n, 0.2)%the normalized digital frequency 
is 0.2

%Now we plot the magnitude response of the IIR digital filter

%using the two transformation methods

[H, f]=freqz(numz, denz);

plot(f/pi, abs(H));hold on;

end

title('The Magnitude response using the function butter');

xlabel('frequency in pi units');

axis([0 1 0 1]);
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The plots are shown in Figure 10.2. Note the sharpness in the roll-off fre-
quency at 0.2 . In this case, coefficients of the numerator and the denomi-
nator of the transfer function for N = 2 are

numz = 0.0675  0.1349  0.0675
denz = 1.0000  –1.1430  0.4128

and for N = 6 they are

numz = 0.0003  0.0020  0.0051  0.0068  0.0051  0.0020  0.0003
denz = 1.0000  –3.5794  5.6587  –4.9654  2.5295  –0.7053  0.0838

The corresponding digital IIR transfer functions are

and

FIGURE 10.2 Plots for EOCE 10.1: Direct Method.
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It seems that the result of using the butter MATLAB function is similar to
the result using the Bilinear transformation method.

EOCE 10.2

Consider the input continuous signal

Design a digital second- and sixth-order IIR lowpass Butterworth filter to
attenuate the cos(10t) term and pass the dc 2 term.

Solution

We will use the MATLAB direct design method using the butter function.
The highest frequency in the input signal is fm = 10/2 = 1.59 Hz. The
sampling frequency should be at least fs = 2(1.59) = 3.18 Hz, and this
sampling frequency corresponds to the sampling period Ts = 0.31 sec. Let
us take Ts = 0.1 sec. This value still prevents aliasing. The analogue
frequency that we are trying to suppress is w = 10 rad/sec. An analogue
lowpass filter with wc = 5 rad/sec will suppress the cos(10t) term. The
analogue cut-off frequency of 5 rad/sec corresponds to the digital cut-
off frequency c= Ts(wc) = 0.1(5) = 0.5 rads per sample. When we use the
MATLAB butter function, we must normalize the cut-off frequency to
become 0.5/ = 0.1592. Thus, we will use 0.1592 with the MATLAB function
butter. The following MATLAB script will carry out the design and plot
the input signal before and after passing through the digital IIR lowpass
filter.

clf

t=0:.01:5;

xt=cos(10*t)+2;%This is the unsampled input to the IIR digital 
filter

n=0:50;

Ts=.1;

xn1=2;%This signal should pass through the filter

xn2=cos(10*n*Ts);%This signal should not pass

xn=xn1+xn2;

subplot(3,1,1); plot(t, xt);

title('The input signal:cos(10*t)+2 before filtering');

for N=2:4:6%digital filter with orders 2 and 6

[numz denz]=butter(N, 0.1592)%The transfer function of the 
digital filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H)); hold on;

x t t( ) cos( )2 10
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title('The magnitude response of the IIR digital lowpass 
filters');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(n*Ts,yn); hold on;

end

title('The signal after cos(10*t) term is removed');

xlabel('Time(sec)');

The plots are shown in Figure 10.3. The coefficients of the numerator and
denominator of the transfer function of the IIR digital filter for N = 2 are

numz = 0.0457  0.0915  0.0457
denz = 1.0000  –1.3106  0.4935

with the corresponding transfer function

and for N = 6 are

numz = 0.0001  0.0006  0.0016  0.0021  0.0016  0.0006  0.0001
denz = 1.0000  –4.0713  7.1304  –6.8262  3.7512  –1.1186  0.1411

FIGURE 10.3 Plots for EOCE 10.2.
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with the corresponding transfer function

You can see clearly in the plots that the filter is doing well for N = 6. Only
the dc component is present after about 2 sec when the system reaches its
steady state.

EOCE 10.3

We are trying to eliminate all frequencies that are lower than 100 Hz from
the incoming signal x(t). If the sampling frequency is 1000 Hz, design a
digital highpass IIR filter to accomplish this task. Allow 1 dB for the maxi-
mum passband attenuation and 40 dB for the minimum stopband attenua-
tion.

Solution

The cut-off frequency, wc, of the equivalent analogue highpass filter needed
is 200 rad/sec. We will carry out the design using two methods and with
each method we will use the bilinear and the impulse invariance transfor-
mations. We will design second- and sixth-order elliptical filters. For filters
of order 2 or higher the complexity of the mathematics is high. Thus we will
use MATLAB in all the design problems.

First method: from the analogue prototype to the IIR digital filter

We will write the following MATLAB script to accomplish the design using
this method. We will start with a prototype second-order analogue lowpass
elliptical filter, then convert it to a second-order highpass analogue elliptical
filter with cut-off frequency of 200 rad/sec. Then we will use the Bilinear
and the Impulse Invariance transformations to get H(z), the transfer function
of the IIR digital highpass filter.

%we will generate the lowpass analogue elliptical prototypes 
first

for n=2:4:6 % N=2 and 6

Rp = 1; Rs = 40;

[zs, ps, ks]=ellipap(n, Rp, Rs);

% put in terms of transfer function

[nums, dens]=zp2tf(zs,ps,ks);

%next we transform to analogue highpass with cut-off 200pi

[nums, dens]=lp2hp(nums, dens, 200*pi);

%Then we use the Bilinear transform first

fs=1000;

H z
z z z z z z

z z z z z z
( )

. . . . . . .
. . . . . .

0 0001 0 0006 0 0016 0 0021 0 0016 0 0006 0 0001
4 0713 7 1304 6 8262 3 7512 1 1186 0 1411
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[numzb, denzb]=bilinear(nums, dens, fs)

%then we use the Impulse Invariance method

[numzi, denzi]=impinvar(nums, dens, fs)

%Now we plot the magnitude response of the IIR digital filter

%using the two transformation methods

[Hb, fb]=freqz(numzb, denzb);

[Hi, fi]=freqz(numzi, denzi);

subplot(2,1,1);

plot(fb/pi, abs(Hb));

hold on;

title('The Magnitude response using the Bilinear transform');

subplot(2,1,2);

plot(fi/pi, abs(Hi));

hold on;

end

title('The Magnitude response using the Invariance transform');

xlabel('frequency in pi units');

The plots are shown in Figure 10.4. You can see that the Bilinear transfor-
mation is superior to the Impulse Invariance transformation. The Impulse
Invariance method fails with this filter design as you can see from the plot

FIGURE 10.4 Plots for EOCE 10.3: Indirect Method.
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in Figure 10.4. The reason is that, to apply the Impulse Invariance transfor-
mation, the transfer function to be transformed, H(s), should be strictly
proper, as we saw in Chapter 9 when we discussed the Impulse Invariance
method. In our case (as obtained from the above script at line 8 by removing
the semicolon from the end of the MATLAB statement; you may need to type
format long at the MATLAB prompt before running the script), the analogue
transfer function of the highpass filter for order 2 is 

which is clearly a proper transfer function and that is why we did not get
the correct results using the Impulse Invariance method. Using the Bilinear
transformation method, the numerator and denominator coefficients of the
transfer function of the highpass IIR digital second-order filter are

numzb = 0.6379  –1.2733  0.6379
denzb = 1.0000  –1.3027  0.5574

and the corresponding IIR filter transfer function is

For the sixth-order filter we have

numzb = 0.3586  –1.9515  4.6100  –6.0331  4.6100  –1.9515  0.3586
denzb = 1.0000  –3.6468  6.2536  –6.1380  3.7022  –1.3129  0.2446

and the corresponding IIR filter transfer function is

Second method: direct design

Using this method we will use the MATLAB function

[numz, denz] = ellip(n,Rp,Rs,wn,’ftype’)

with ftype as high, wn = 0.2 and n = 2 and 6. We used wn = 0.2 as the
normalized frequency because the equivalent cut-off digital frequency of the
highpass filter is 200 (1/1000) = 0.2 Using MATLAB, the digital frequencies
should be normalized to belong to the digital frequency interval [0 1]. The
following MATLAB script will accomplish the design:

H s
s

s s
( )

. .

2

2 888 5765 394784 176

H z
z z

z z
( )

. . .
. .

0 6379 1 2733 0 6379
1 3027 0 5574

2

2

H z
z z z z z z

z z z z z
( )

. . . . . . .
. . . . . .

0 3586 1 9515 4 6100 6 0331 4 6100 1 9515 0 3586
3 6468 6 2536 6 1380 3 7002 1 3129 0 2446

6 5 4 3 2

6 5 4 3
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Rp=1; Rs=40; wn=0.2;

for n=2:4:6;

[numz, denz] = ellip(n,Rp,Rs,wn,'high')%the normalized 
digital frequency is 0.2

%Now we plot the magnitude response of the IIR digital filter

[H, f]=freqz(numz, denz);

plot(f/pi, abs(H));hold on;

end

title('The Magnitude response using the function ellip');

xlabel('frequency in pi units');

axis([0 1 0 1.1]);

The plots are shown in Figure 10.5. Note that as the order of the highpass
IIR elliptical filter increases, the ripples get excessive. In this case, coefficients
of the numerator and the denominator of the transfer function for N = 2 are

numz = 0.6304  –1.2581  0.6304
denz = 1.0000  –1.2785  0.5477

and for N = 6 are

numz = 0.3477  –1.8799  4.4243  –5.7831  4.4243  –1.8799  0.3477
denz = 1.0000  –3.5576  6.0199  –5.8453  3.5107  –1.2446  0.2377

FIGURE 10.5 Plots for EOCE 10.3: Direct Method.
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The corresponding digital IIR transfer functions are

and

EOCE 10.4

Consider the input continuous signal

Design digital second- and sixth-order IIR highpass elliptical filters to atten-
uate the 2 term and pass the cos(10t) term.

Solution

We will use the MATLAB direct design method using the ellip function. The
highest frequency in the input signal is fm = 10/2 = 1.59 Hz. The sampling
frequency should be at least fs = 2(1.59) = 3.18 Hz. This sampling frequency
corresponds to the sampling period Ts = 0.31 sec. Let us take Ts = 0.1 sec.
This value still prevents aliasing. The analogue frequency that we are trying
to suppress is w = 0 rad/sec. This corresponds to the dc component of
magnitude 2. An analogue highpass filter with wc = 5 rad/sec will suppress
this dc term of 2. The analogue cut-off frequency of 5 rad/sec corresponds
to the digital cut-off frequency c = Ts(wc) = 0.1(5) = 0.5 rads per sample.
When we use the MATLAB ellip function we must normalize the cut-off
frequency to become 0.5/ = 0.1592. Thus we will use = 0.1592 with the
MATLAB function ellip. The following MATLAB script will carryout the
design and plot the input signal before and after passing through the digital
IIR highpass filter. We will allow maximum passband ripple of 1 dB and
minimum stopband attenuation of 40 dB.

clf

t=0:.01:4;

xt=cos(10*t)+2;%This is the unsampled input to the IIR digital 
filter

n=0:40;

Ts=.1;

xn1=2;%This signal should pass through the filter

xn2=cos(10*n*Ts);%This signal should not pass

xn=xn1+xn2;

H z
z z

z z
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subplot(3,1,1); plot(t, xt);title('The input 
signal:cos(10*t)+2 before filtering');

for N=2:4:6%digital filter with orders 2 and 6

[numz denz]=ellip(N,0.1, 40,0.1592,'high')%The transfer 
function of the digital filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H)); hold on;

title('The magnitude response of the IIR digital highpass 
filters');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(n*Ts,yn); hold on;

end

title('The signal after the constant 2 term is removed');

xlabel('Time(sec)');

The plots are shown in Figure 10.6. You can easily see that both filters pass
the cos(10t) term and block the dc term. With N = 2 and N = 6, both filters
worked nicely with little delay with the N = 6 filter. The numerator and
denominator coefficients for the N = 2 elliptical IIR highpass filter are

numz = 0.8231  –1.6455  0.8231
denz = 1.0000  –1.6321  0.6976

FIGURE 10.6 Plots for EOCE 10.4.
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with the corresponding transfer function as

and with N = 6 we get

numz = 0.4716  –2.6891  6.5233  –8.6114  6.5233  –2.6891  0.4716
denz = 1.0000  –4.2625  7.9660  –8.2373  4.9564  –1.6432  0.2380

with the corresponding transfer function

EOCE 10.5

We are trying to pass all frequencies that are higher than 200 Hz and below
400 Hz from the incoming signal x(t). If the sampling frequency is 1000 Hz
(the minimum sampling should be 800 Hz but sampling at higher rates can
give better results), design a digital bandpass IIR filter to accomplish this
task. Use the Cheby1 filter in the design. Use 2 dB for the maximum allowable
ripple in the passband.

Solution

The analogue lower and upper cut-off frequencies are at 400 and 800
rad/sec, respectively. We will carry out the design using two methods and
with each method we will use the Bilinear and the Impulse Invariance
transformations. We will design a fourth-order Cheby1 filter first. 

First method: from the analogue prototype to the IIR digital filter

We will write the following MATLAB script to accomplish the design using
this method. We will start with a prototype second-order analogue lowpass
Cheby1 filter, then convert it to a bandpass analogue Cheby1 filter with order
4 and with the cut-off frequencies at 400 for wcl and 800 for wcu. Then we
will use the Bilinear and the Impulse Invariance transformations to get H(z),
the transfer function of the IIR digital filter. We will be using the MATLAB

function call

[zs, ps, ks]=cheb1ap(N, Rp);

with N = 2 to get the second-order Cheby1 prototype lowpass filter and the
MATLAB transformation

[nums,dens] = lp2bp(nums,dens,W0,Bw)
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z z
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The value of W0 will be calculated as and the value of
Bw is .

clf

%we will generate the lowpass analogue Cheby1 prototypes first

Rp = 2; N=2;%filter order, the actual order is 4

i=1;%index for the plots

%next are labels to be displayed later

frequency{1}='1000'; frequency{2}='4000'; frequency{3}='7000';

for fs=1000:3000:7000;

[zs, ps, ks]=cheb1ap(N, Rp);

% put in terms of transfer function

[nums, dens]=zp2tf(zs,ps,ks);

%next we transform to analogue bandpass with cut-off [400pi 
800pi]

[nums, dens]=lp2bp(nums, dens, 1777, 400*pi);

%Then we use the bilinear transform first

[numzb, denzb]=Bilinear(nums, dens, fs)

%then we use the Impulse Invariance method

[numzi, denzi]=impinvar(nums, dens, fs)

%Now we plot the magnitude response of the IIR digital filter

%using the two transformation methods

[Hb, fb]=freqz(numzb, denzb,200);

[Hi, fi]=freqz(numzi, denzi,200);

subplot(3,1,i);

plot(fb/pi, abs(Hb));

hold on;

plot(fi/pi, abs(Hi),'*');

title(['Magnitude Response with N= 4 and fs = 'frequency{i}]); 

%preparing for the legend

a=['Bilinear transform'];

b=['Impulse Invariance transform'];

legend(a,b);

i=i+1

end

xlabel('frequency in pi units');

The plots are shown in Figure 10.7. You can see that both the Bilinear and
the Impulse Invariance transformations for fs = 1000 Hz did not give good
results. We desire that the normalized digital bandpass for fs = 1000 be in
the interval [400 /1000 800 /1000 ]. This is not close to the results we
obtained for both transforms with fs = 1000 Hz. When we increased the
sampling frequency, the results are the same and correct for both transforms.

( )( )400 800 1777
800 400 400
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Note that when we change the sampling frequency, the digital bandpass
changes too. For example, when fs = 4000 Hz, the band becomes
[400 /4000 800 /4000 ]. Thus, for order four, we will use either of the
designs with fs = 4000 Hz to get good results and a good filter. The numer-
ator and denominator coefficients of the transfer function of the IIR bandpass
digital fourth-order filter are obtained from the result of the above script.
For fs = 4000 Hz, the digital transfer function is obtained for the bilinear
transform as

numzb = 0.0129  –0.0000  –0.0257  –0.0000  0.0129
denzb = 1.0000  –3.3737  4.6069  –2.9908  0.7887

For the fourth-order bandpass filter with fs = 4000 Hz and using the Impulse
Invariance method we have the coefficients 

numzi = 0.0000  0.0525  –0.1054  0.0527
denzi = 1.0000  –3.3446  4.5422  –2.9413  0.7768

FIGURE 10.7 Plots for EOCE 10.5: Indirect Method 1.
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The transfer function of the IIR bandpass digital using the Bilinear transform
is

and with the Impulse Invariance method it is

When we increase the order of the filter to 8 we will use N = 4 in the script
above. We will continue to use the sampling frequencies 1000, 4000 and 7000.
The plots are shown in Figure 10.8. With fs = 1000 Hz we see that the
Impulse Invariance method gives a good approximation. The coefficients of
the numerator and the denominator of the digital IIR bandpass filter with
order eight (N = 4 in the script for bandpass or bandstop filters) and fs =
1000 Hz using the Impulse Invariance method are 

FIGURE 10.8 Plots for EOCE 10.5: Indirect Method 2.
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numzi = 0.0000  0.0222  –0.0398  –0.0209  0.1061  –0.0529  –0.0153  0.0154
denzi = 1.0000  1.5751  2.9703  3.2812  3.6898  2.7001  2.0365  0.8565  0.4066

If we want to use the Bilinear transform method we have to use the coeffi-
cients that are obtained with fs = 4000. This is evident from the second
picture in Figure 10.8. In this case, the coefficients using the bilinear trans-
form are

numzb = 0.0000722  0  –0.0002887  0  0.0004330  0  –0.0002887  0  0.0000722
denzb = 1.0000  –6.9782  22.0341 –41.0188  49.1861 –38.8887  19.8060

–5.9477  0.8084

Second method: direct design

Using this method we will use the MATLAB function

[numz, denz] = cheby1(n,Rp,wn,’ftype’)

with ftype as bandpass, wn = [0.4 0.8] using fs = 1000 and n = 2 and 4
to correspond to the fourth- and eighth-order bandpass IIR digital filters. 

We used wn = [0.4 0.8] as the normalized frequency because the equivalent
cut-off digital frequencies are at 400 (1/1000) = 0.4 and at 800 (1/1000) =
0.8 . Using MATLAB, the digital frequencies should be normalized to belong
to the digital frequency interval [0 1]. The following MATLAB script will
accomplish the design.

clf

Rp=2;

%sampling frequency is 1000 Hz

wn=[0.4 0.8];%normalized to fit in [0 1]

for n=2:2:4;

[numz, denz] = cheby1(n,Rp,wn,'bandpass')%the normalized 
digital frequency is 0.2

%Now we plot the magnitude response of the IIR digital filter

[H, f]=freqz(numz, denz);

plot(f/pi, abs(H));hold on;

end

title('The Magnitude response using the function cheby1');

xlabel('frequency in pi units');

axis([0 1 0 1.1]);

The plots are shown in Figure 10.9. It is evident that the MATLAB function
cheby1 gave good results for the eighth-order filter and not-so-good results
for the fourth-order filter with fs = 1000 Hz. The coefficients for the numer-
ator and the denominator of the bandpass IIR digital filter for order four
using the cheby1 MATLAB function are
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numz = 0.1710     0  –0.3419     0  0.1710
denz = 1.0000  0.9780  0.8495  0.5359  0.4213

and those with order eight are

numz = 0.0187     0  –0.0747     0  0.1120     0  –0.0747     0  0.0187
denz = 1.0000  2.2192  3.7778  4.4718  4.7505  3.6762  2.5025  1.1172  0.4108

If we run the script in the first method with fs as 3000, 4000 and 5000 Hz,
we will obtain the plots in Figure 10.10. You can see in Figure 10.10 that with
N = 4 and fs = 3000 Hz we have reasonable results using both the Bilinear
and the Impulse Invariance transformation. The transfer functions of the IIR
bandpass filter for this case can still be obtained from the same script.

EOCE 10.6

We are interested in passing the term sin(1500t) from the input signal

Design a bandpass IIR Cheby1 digital filter to accomplish this task. Plot the
input signal along with the magnitude response of the filter and its output.

FIGURE 10.9 Plots for EOCE 10.5: Direct Method.
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Solution

Before the signal x(t) is presented as an input to the IIR bandpass digital
filter, it has to be sampled at a sampling rate that is at least two times the
highest frequency in the input signal, which is fm = 5000/2 = 2500/ Hz.
Thus, we will sample at least at fs = 2(2500/ ) = 5000/ Hz. Let us sample
at fs = 5000 Hz. This corresponds to the sampling interval Ts = 1/5000 sec.
The three analogue frequencies that are present in the input signal are located
at 10, 1500 and 5000 rad/sec. Our goal is to pass only the 1500 rad/sec term.
Thus, an analogue IIR filter with a passband located at [400 800 ] will pass
the 1500 rad/sec term and suppress the other terms. The corresponding
digital passband frequencies are at [400 (Ts) 800 (Ts) /5000
800 /5000] = [0.08 0.16 ] rads per sample. When we use the MATLAB func-
tion cheby1 we need to normalize this digital passband to lie in the interval
[0 1]. So, when we use the function cheby1 we will use the passband digital
interval [0.08 0.16].

The following MATLAB script will carryout the design for fourth- and
eighth-order IIR digital bandpass filters. It will also plot the input as well as
the output signals of the filter.

FIGURE 10.10 Plots for EOCE 10.5: Indirect Method 3.
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clf

t=0:.0001:0.02;

%This is the unsampled input to the IIR digital filter

xt=sin(10*t)+sin(1500*t)+sin(5000*t);

n=0:100; fs=5000;

Ts=0.0002;

ts=n*Ts;

xn1=sin(10*ts);%This signal should not pass through the filter

xn2=sin(1500*ts);%This signal should pass

xn3=sin(5000*ts);%this signal should not pass

xn=xn1+xn2+xn3;

subplot(3,1,1); plot(t, xt);axis([0 .02 -2 2.3])

title('The input signal:sin(10*t)+sin(1500t)+sin(5000t) 
before filtering');

Rp=2;

%sampling frequency is 5000 Hz

%the normalized digital frequency is [400/5000 800/5000]

wn=[0.08 0.16];%normalized to fit in [0 1]

for n=2:2:4;

[numz, denz] = cheby1(n,Rp,wn,'bandpass');

%Now we plot the magnitude response of the IIR digital bandpass 
filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H));hold on;

title('The Magnitude response of the bandpass filter using 
cheby1');

xlabel('frequency in pi units');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(ts,yn);hold on;

end

title('The output of the filter after only the sin(1500t) is 
passed');

xlabel('Time(sec)'); axis([0 .02 -2 2.3])

The plots are shown in Figure 10.11. You can see that the fourth-order filter
can do the job. Notice that the frequencies in the input signal are very well
separated and it is easy for this low-order filter to achieve reasonable results.
If the frequencies in the input signal were not separated nicely, then a high-
order filter with sharp edges might be needed.

EOCE 10.7

We are trying to suppress all frequencies that are higher than 200 Hz and
below 400 Hz from the incoming signal x(t). If the sampling frequency is
2000 Hz (the minimum sampling should be 800 Hz but sampling at higher
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rates can give better results), design a digital bandstop IIR filter to accom-
plish this task. Use the Cheby2 filter in the design. Use 40 dB for the mini-
mum allowable ripple in the stopband.

Solution

The analogue lower and upper cut-off frequencies are at 400 and 800
rad/sec, respectively. 

First method: from the analogue prototype to the IIR digital filter

We will write the following MATLAB script to accomplish the design using
this method. We will start with a prototype third-order analogue lowpass
Cheby2 filter, then convert it to a sixth-order bandstop analogue Cheby2
filter with the cut-off frequencies at 400 for wcl and 800 for wcu. Then we
will use the Bilinear and the Impulse Invariance transformations to get H(z),
the transfer function of the IIR digital filter. We will be using the MATLAB

function call

[zs, ps, ks]=cheb2ap(N, Rs);

with N = 3 to get the third-order Cheby2 prototype lowpass filter and the
MATLAB transformation

[nums,dens] = lp2bs(nums,dens,W0,Bw)

FIGURE 10.11 Plots for EOCE 10.6.
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to get the sixth-order bandstop filter. The value of W0 will be calculated as

= 1777, and the value of Bw is 800 – 400 = 400 . With fs
= 2000 Hz we expect the digital normalized bandstop cut-off frequencies at
[400/2000 800/2000] = [0.2 0.4]. 

clf

%we will generate the lowpass analogue Cheby2 prototypes first

Rs = 40; N=3;%filter order, the actual order is 6

i=1;%index for the plots

%next are labels to be displayed later

frequency{1}='2000'; frequency{2}='4000'; frequency{3}='6000';

for fs=2000:2000:6000;

[zs, ps, ks]=cheb2ap(N, Rs);

% put in terms of transfer function

[nums, dens]=zp2tf(zs,ps,ks);

%next we transform to analogue bandpass with cut-off [400pi 
800pi]

[nums, dens]=lp2bs(nums, dens, sqrt(400*pi*800*pi), 400*pi);

%Then we use the Bilinear transform first

[numzb, denzb]=bilinear(nums, dens, fs)

%then we use the Impulse Invariance method

[numzi, denzi]=impinvar(nums, dens, fs)

%Now we plot the magnitude response of the IIR digital filter

%using the two transformation methods

[Hb, fb]=freqz(numzb, denzb,150);

[Hi, fi]=freqz(numzi, denzi,150);

subplot(3,1,i);

plot(fb/pi, abs(Hb));

hold on;

plot(fi/pi, abs(Hi),'*');

title(['Magnitude Response with N= 6 and fs = 'frequency{i}]); 

%preparing for the legend

a=['Bilinear transform'];

b=['Impulse Invariance transform'];

legend(a,b);

i=i+1

axis([0 1 0 1.1]);

end

xlabel('frequency in pi units');

The plots are shown in Figure 10.12. You can see that the Bilinear transforma-
tion is again superior to the Impulse Invariance transformation. We do not
even see the curves that correspond to the Impulse Invariance transformation.

( )( )400 800
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The digital normalized bandstop cut-off frequencies of 0.2 and 0.4 are seen
clearly in the first plot in Figure 10.12. The numerator and denominator
coefficients of the transfer function of the IIR bandstop digital filter using
the Bilinear transformation with N = 6 and fs = 2000 Hz are

numzb = 0.2564  –0.9974  2.0332  –2.5146  2.0332  –0.9974  0.2564
denzb = 1.0000  –2.3335  2.4483  –1.7895  1.0773  –0.3863  0.0536

The transfer function of the IIR bandpass digital using the Bilinear transform
is

Second method: direct design

Using this method we will use the MATLAB function

[numz, denz] = cheby2(n,Rs,wn,’ftype’)

with ftype as stop, wn = [0.2 0.4] using fs = 2000, and n = 2 and 3 to
correspond to the fourth- and sixth-order bandstop IIR digital filters. 

FIGURE 10.12 Plots for EOCE 10.7: Indirect Method.
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We used wn = [0.2 0.4] as the normalized frequency because the equivalent
cut-off digital frequencies are at 400 (1/2000) = 0.2 and at 800 (1/2000) =
0.4 . Using MATLAB, the digital frequencies should be normalized to belong
to the digital frequency interval [0 1]. The following MATLAB script will
accomplish the design.

clf

Rs=40;

%sampling frequency is 2000 Hz

wn=[0.2 0.4];%normalized to fit in [0 1]

for n=2:1:3;%for fourth and sixth order digital bandstop 
filters

[numz, denz] = cheby2(n,Rs,wn,'stop')

%Now we plot the magnitude response of the IIR digital filter

[H, f]=freqz(numz, denz);

plot(f/pi, abs(H));hold on;

end

title('The Magnitude response using the function cheby2');

xlabel('frequency in pi units');

axis([0 1 0 1.1]);

The plots are shown in Figure 10.13. It is evident that the MATLAB function
cheby2 gave good results for the sixth-order filter and not-so-good result

FIGURE 10.13 Plots for EOCE 10.7: Direct Method.
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for the fourth-order filter with fs = 2000 Hz. The coefficients for the numer-
ator and the denominator of the bandstop IIR digital filter for order six using
the cheby2 MATLAB function are

numz = 0.1968  –0.6942  1.3688  –1.6615  1.3688  –0.6942  0.1968
denz = 1.0000  –1.9095  1.4398  –0.8944  0.6772  –0.2460  0.0143

with the transfer function

EOCE 10.8

We are interested in suppressing the term sin(1500t) from the input signal

Design a bandstop IIR Cheby2 digital filter to accomplish this task. Plot the
input signal along with the magnitude response of the filter and its output.

Solution

Before the signal x(t) is presented as an input to the IIR bandstop digital
filter, it has to be sampled at a sampling rate that is at least two times the
highest frequency in the input signal, which is fm = 5000/2 = 2500/ Hz.
Thus, we will sample at least at fs = 2(2500/ ) = 5000/ Hz. Let us sample
at fs = 5000 Hz. This corresponds to the sampling interval Ts = 1/5000 sec.
The three analogue frequencies that are present in the input signal are located
at 0, 1500 and 5000 rad/sec. Our goal is to suppress only the 1500 rad/sec
term. Thus, an analogue IIR filter with a stopband located at [300 800 ] will
suppress the 1500 rad/sec term and pass the other terms. The corresponding
digital stopband frequencies are at [300 (Ts) 800 (Ts)] = [300 /5000
800 /5000] = 0.06   0.16 ] rads per sample. When we use the MATLAB func-
tion cheby2 we need to normalize this digital stopband to lie in the interval
[0 1]. So when we use the function cheby2 we will use the stopband digital
interval [0.06 0.16].

The following MATLAB script will carryout the design for fourth- and
eighth-order IIR digital bandstop filters. It will also plot the input as well as
the output signals of the filter. We will allow a minimum attenuation of 40 dB
in the stopband.

clf

t=0:.0001:0.01;

%This is the unsampled input to the IIR digital filter

H z
z z z z z z

z z z z z z
( )

. . . . . . .
. . . . . .

0 1968 0 6942 1 3688 1 6615 1 3688 0 6942 0 1968
1 9095 1 4398 0 8944 0 6772 0 2460 0 0143

6 5 4 3 2

6 5 4 3 2

x t t t( ) sin( ) sin( )1 1500 5000
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xt=1+sin(1500*t)+sin(5000*t);

n=0:50; fs=5000;

Ts=1/fs;

ts=n*Ts;

xn1=1;%This signal should pass through the filter

xn2=sin(1500*ts);%This signal should not pass

xn3=sin(5000*ts);%this signal should pass

xn=xn1+xn2+xn3;

subplot(3,1,1); plot(t, xt);

title('The input signal:1+sin(1500t)+sin(5000t) before 
filtering');

Rs=40;

%sampling frequency is 5000 Hz

%the normalized digital frequency is [300/5000 800/5000]

wn=[0.06 0.16];%normalized to fit in [0 1]

N=2;%order is indeed 4 for we have a bandstop filter

[numz, denz] = cheby2(N,Rs,wn,'stop');

%Now we plot the magnitude response of the IIR digital bandpass 
filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H));hold on;

title('The Magnitude response of the bandstop filter with 
cheby2 and N=4');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(ts,yn);hold on;

plot(ts, xn1+xn3, '*');

legend('The output of the filter', 'What should pass: 
1+sin(5000t)',0);

title('The output of the filter after only the sin(1500t) is 
suppressed');

xlabel('Time(sec)'); axis([0 0.01 -1 3]);

The plots are shown in Figure 10.14. You can see that the fourth-order filter
could not do the job of eliminating the sin(1500t) term as seen in the lower
plot of Figure 10.14. If we increase the order of the filter to eight, we will
have the plots shown in Figure 10.15. In this figure we have the sin(1500t)
term suppressed and the filter is working nicely.

EOCE 10.9

Consider a random signal (noise) with a dc component. The dc component
has a magnitude of 4. Assume that the noise signal is limited to 10  rad/sec.
Design a lowpass Butterworth digital filter to smooth the noise and uncover
the dc component.
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FIGURE 10.14 Plots for EOCE 10.8 filter order 4.

FIGURE 10.15 Plots for EOCE 10.8 filter order 8.
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Solution

When the highest frequency in the input analogue noise is 100 rad/sec, we
will sample the input noise at a minimum frequency of fs = 2[100 /(2 )] =
50 Hz. Let us sample at fs = 200 Hz. Let us use a cut-off frequency of 10
rad/sec for the analogue equivalent lowpass filter. The digital lowpass will
have the corresponding 10 /200 rads per sample  digital cut-off frequency.
The following MATLAB script will generate the discrete input signal, pass it
through the lowpass Butterworth digital filter, and produce a plot for the
input, the filter magnitude, and the output.

clf

n=0:200; fs=200;

Ts=1/fs;

ts=n*Ts;

xn1=4;%This signal should pass through the filter

xn2=rand(1, length(n));%This signal should not pass(the noise)

xn=xn1+xn2;%the total input

subplot(3,1,1); plot(ts, xn);

title('The input signal:dc component (4) + the noise before 
filtering');

wn=1/20;%normalized to fit in the digital frequency interval 
[0 1]

N=1;%order of the Butterworth lowpass filter

[numz, denz] = butter(N,wn);

%Now we plot the magnitude response of the IIR digital lowpass 
filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H));hold on;

title('The Magnitude response of the lowpass filter with 
butter and N=1');

xlabel('frequency in pi units');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(ts,yn);hold on;

plot(ts, xn1, '*');

legend('The output of the filter', 'What should pass: the dc 
4',0);

title('The output of the filter where the noise is smoothed 
out');

xlabel('Time(sec)');

The plots are shown in Figure 10.16. The filter is working and that is evident
from the last plot in Figure 10.16 where approximately only the dc term is
passed. Notice that a first order filter worked very nicely here.
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EOCE 10.10

Consider the same input signals as in EOCE 10.9, but now we want to get
rid of the dc component and let only the noise pass. Design a high pass
Butterworth digital filter to accomplish this.

Solution

We will still sample the analogue input at 200 Hz. The equivalent highpass
filter required can have a cut-off frequency of 10 rad/sec which is equivalent
to the highpass digital frequency of 10 /200 rads per sample. The following
MATLAB script will accomplish the design.

clf

n=0:200; fs=200;

Ts=1/fs;

ts=n*Ts;

xn1=4;%This signal should pass through the filter

xn2=rand(1, length(n));%This signal should not pass(the noise)

FIGURE 10.16 Plots for EOCE 10.9.

0 0.2 0.4 0.6 0.8 1
4

4.5

5
The input signal:dc component (4) + the noise before filtering

0 0.2 0.4 0.6 0.8 1
0

0.5

1
The Magnitude response of the lowpass filter with butter and N = 1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Time(sec)

The output of the filter where the noise is smoothed out

The output of the filter
What should pass: the dc 4



582 Discrete Systems and Digital Signal Processing with MATLAB

xn=xn1+xn2;%the total input

subplot(3,1,1); plot(ts, xn);

title('The input signal:dc component (4) + the noise before 
filtering');

wn=1/20;%normalized to fit in the digital frequency interval 
[0 1]

N=1;%order of the Butterworth lowpass filter

[numz, denz] = butter(N,wn,'high')

%Now we plot the magnitude response of the IIR digital 
highpass filter

[H, f]=freqz(numz, denz);

subplot(3,1,2); plot(f/pi, abs(H));hold on;

title('The Magnitude response of the highpass filter with 
butter and N=1');

xlabel('frequency in pi units');

yn=filter(numz,denz,xn);

subplot(3,1,3); plot(ts,yn);hold on;

plot(ts, xn2, '*');

legend('The output of the filter', 'What should pass: the 
noise',0);

title('The output of the filter where dc component is 
removed');

xlabel('Time(sec)');

The plots are shown in Figure 10.17. Again a first-order digital highpass filter
has worked very nicely. Notice that the dc component of magnitude 4 is
totally eliminated and the random signal is preserved.

EOCE 10.11

Design 12-order Butterworth and elliptic IIR digital bandstop filters and plot
the magnitude and the phase. We desire a digital cut-off frequency of [0.2  0.5 ]
rads per sample for both filter types. We also desire a 1-dB attenuation in the
passband and 40-dB attenuation in the stopband for the elliptic filter.

Solution

We will use MATLAB to carryout the design and produce the plots. We will
use [0.2 0.5] rads per sample  with MATLAB to normalize the cut-off frequency
to lie in the interval [0 1]. We will use the following MATLAB script.

clf%refresh the escreen

n=6 % filter order

[numz1, denz1]=butter(n,[0.2 0.5],'stop');

[numz2, denz2]=ellip(n,1,40,[0.2 0.5],'stop');
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[H1, f]=freqz(numz1, denz1);

[H2, f]=freqz(numz2, denz2);

subplot(2,2,1);

plot(f/pi, abs(H1));

title('Magnitude: Butterworth N = 12')

hold on;

subplot(2,2,3); plot(f/pi, angle(H1));

title('Phase(radians)Butterworth');

xlabel('frequency in pi units');

hold on;

subplot(2,2,2);

plot(f/pi, abs(H2));

title('Magnitude: Elliptic N = 12')

hold on;

subplot(2,2,4); plot(f/pi, angle(H1));

title('Phase(radians) Elliptic');

hold on;

xlabel('frequency in pi units');

FIGURE 10.17 Plots for EOCE 10.10.
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The plots are shown in Figure 10.18. You can see clearly the nonlinearity of
phase, something inherent with IIR recursive digital filters. As we have
mentioned earlier, a nonlinear phase can distort signals passing through the
filter.

10.6 End of Chapter Problems

EOCP 10.1

We are trying to eliminate all frequencies that are higher than 1000 Hz from
the incoming signal x(t). Design a digital IIR filter to accomplish this task.
Use all types of filters discussed in this chapter.

1. Start with the analogue IIR filter then get its equivalent digital IIR
filter using the transformation methods discussed in this chapter.

2. Use MATLAB and directly design the IIR digital filter after obtaining
the digital specifications.

3. Plot the magnitude responses in each case.

FIGURE 10.18 Plots for EOCE 10.11.

0 0.5 1
0

0.5

1

1.5
Magnitude: Butterworth N = 12

0 0.5 1
-4

-2

0

2

4
Phase(radians)Butterworth

frequency in pi units

0 0.5 1
0

0.5

1

1.5
Magnitude: Elliptic N = 12

0 0.5 1
-4

-2

0

2

4
Phase(radians) Elliptic

frequency in pi units



Infinite Impulse Response (IIR) Filter Design 585

EOCP 10.2

Consider the input continuous signal

Design digital second- and fourth-order IIR lowpass Butterworth filters to
attenuate the cos(1000t) term. Plot the input signal and the output of the filter.

EOCP 10.3

We are trying to eliminate all frequencies that are lower than 1000 Hz from
the incoming signal x(t). If the highest frequency in the incoming analogue
signal is 1500 Hz, design a digital IIR filter to accomplish this task. Allow 5
dB for the maximum passband attenuation and 50 dB for the minimum
stopband attenuation. Plot the magnitude response.

EOCP 10.4

Consider the input continuous signal

1. Design a digital second- and third-order IIR elliptical filter to atten-
uate the cos(150t) term.

2. Design a digital second- and third-order IIR elliptical filter to atten-
uate the cos(100t) term.

3. Design a digital second- and third-order IIR elliptical filter to atten-
uate the cos(400t) term.

4. Plot the input signal and the output of the filter for each case above.

EOCP 10.5

We are trying to pass all frequencies that are higher than 10 Hz and below
50 Hz from the incoming signal x(t). Design a digital IIR filter to accomplish
this task. Use the Cheby1 and Cheby2 filters in the design. Use 5 dB for the
maximum allowable ripple in the passband and 50 dB for the minimum
allowable ripple in the stopband. Plot the magnitude responses of the digital
filters.

EOCP 10.6

We are interested in passing the term sin(5000t) from the input signal

x t t t( ) sin( ) cos( )1000 10

x t t t t( ) cos( ) cos( ) sin( )100 150 400

x t t t t( ) sin( ) sin( ) sin( )10 1500 5000
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Design an IIR Butterworth digital filter to accomplish this task. Plot the input
signal along with the magnitude response of the filter and its output.

EOCP 10.7

We are trying to suppress all frequencies that are higher than 2000 Hz and
below 4000 Hz from the incoming signal x(t). Design a digital IIR filter to
accomplish this task. Use the Cheby2 filter in the design. Use 60 dB for the
minimum allowable ripple in the stopband. Plot the magnitude response of
the digital filter.

EOCP 10.8

We are interested in suppressing the term sin(10t) from the input signal

Design an IIR Cheby2 digital filter to accomplish this task. Plot the input
signal along with the magnitude response of the filter and its output.

EOCP 10.9

Consider the dc and the single frequency signal 

x(t) = 1/2 + sin(10t)

Assume the signal is corrupted by a noise (random noise). Assume that the
noise signal is limited to 100 rad/sec.

1. Design a digital filter to smooth the noise and uncover the signal
x(t) = 1/2 + sin(10t).

2. Design a digital filter to pass the sin(10t) term only.
3. Design a digital filter to pass the dc term only.
4. Plot the input and the output of the corresponding filter in each case.

EOCE 10.10

Consider the same corrupted input signal as in EOCP 10.9, but now we want
to get rid of the dc component and the single frequency term. Design a
Butterworth digital filter to accomplish this. Plot the input and the output
of the designed filter.

EOCP 10.11

An elliptic bandstop digital IIR filter is to be designed. The corresponding
analogue IIR filter should fulfill the following specifications:

x t t t( ) sin( ) sin( )1 10 5000
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 1. Estimate the order and the cut-off frequencies of the analogue IIR
filter.

2. Find the transfer function of the digital filter using the Bilinear and
the Invariance methods.

3. Plot the magnitude response of the filter as well as the phase.

EOCP 10.12

Plot the magnitude and phase responses of Butterworth, Chebyshev Type I,
Chebyshev Type II, and elliptic digital filters. Let the order be 5 and the cut-
off frequency be 1 for the corresponding analogue counterparts. Also assume
Rp = 3 dB and Rs = 60 dB for the analogue IIR filters.

EOCP 10.13

Design a digital bandstop IIR filter where the analogue counterpart should
have a bandwidth of 1000 rad/sec. The analogue IIR filter should reject
the component sin(1414t) from the following signal:

x(t) = sin(500t) + sin(1414t) + cos(2500t)

The analogue filter should ensure attenuation of at least 45 dB of the rejected
component. Plot the input and the output of the digital filter.

EOCP 10.14

Given the following signal

x(t) = 1 + sin(t) + sin(6t)

design a digital filter that eliminates the component sin(t). Plot the filter
magnitude response. Assume 40 dB allowable ripple in the stopband. Plot
the input and the output of the digital filter.

EOCP 10.15

Consider the circuit in Figure 10.19. Use 1 Henry (H) for L, 1 for R1 and
1 for Rf. Design a digital filter to approximate the input–output character-
istics of the circuit. Plot the input and the output of the filter by choosing
appropriate input. Use the Bilinear transformation with Ts = 0.1. Repeat for
different values for Ts. What do you conclude?
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EOCP 10.16

Consider the same circuit in Figure 10.19. Replace the inductor by a 1-F
capacitor. Use 1 for R1 and 1 for Rf. Design a digital filter to approximate
the input–output characteristics of the circuit. Plot the input and the output
of the filter by choosing appropriate input. Use Bilinear transformation with
Ts = 0.1. Repeat for different values for Ts. What do you conclude?

EOCP 10.17

Consider the same circuit as in Figure 10.19. Add a capacitor of 1 F in series
with the 1-H inductor. Use 1 for R1 and 1 for Rf. Design a digital filter
to approximate the input–output characteristics of the circuit. Plot the input
and the output of the filter by choosing appropriate input. Use Bilinear
transformation with Ts = 0.1. Repeat for different values for Ts. What do you
conclude?

EOCP 10.18

Consider the following differential equation:

Design a digital filter to approximate the input–output characteristics of the
system. Plot the input and the output of the filter by choosing appropriate
input. Use the Bilinear transformation with Ts = 0.1. Repeat for different
values for Ts. What do you conclude?

EOCP 10.19

Consider the following differential equation:

FIGURE 10.19 Circuit for EOCP 10.15.
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Design a digital filter to approximate the input–output characteristics of the
system. Plot the input and the output of the filter by choosing appropriate
input. Use the Bilinear transformation with Ts = 0.1. Repeat for different
values for Ts. What do you conclude?

EOCP 10.20

Consider the following differential equation:

Design a digital filter to approximate the input–output characteristics of the
system. Plot the input and the output of the filter by choosing appropriate
input. Use the Bilinear transformation with Ts = 0.1. Repeat for different
values for Ts. What do you conclude?

EOCP 10.21

The transfer functions of an integrator and a differentiator are 

 and  

1. Use the Bilinear transformation to approximate the two transfer
functions with Ts as the sampling interval. Find H1(z) and H2(z).

2. Use the Impulse Invariance transformation to approximate the two
transfer functions with Ts as the sampling interval. Find H1(z) and
H2(z).

3. Plot the magnitude responses for H1(s) and H2(s).
4. For different values of Ts, plot the magnitude responses for H1(z)

and H2(z).
5. Give comments on the results.

y t y t y t x t x t( ) ( ) ( ) ( ) ( )

H s
s1
1

( ) H s s2( )
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11
Finite Impulse Response (FIR) Digital Filters

11.1 Introduction

At the beginning of this chapter we give a brief description of the FIR digital
filter and an example that we hope will motivate us in approaching this
huge topic of digital filtering.

11.1.1 What Is an FIR Digital Filter?

An FIR digital filter is a system with input x(n) and output y(n). The output
y(n) at any discrete value n depends on the present and past values of x(n)
and not on the current or past values of y(n). This type of system is known
as a nonrecursive system.

As we will see later, FIR digital filters are known for their finite duration
responses where the impulse response, h(n), of an FIR filter is nonzero for
n = 0, …, N – 1 where N is the number of samples in h(n). Also, FIR filters
(systems) are found to be always stable, and thus very popular. In addition
to stability, FIR filters can have linear phase. A nonlinear phase system can
distort the input signal to the system. A disadvantage to the FIR digital filter
is the complexity of the implementation if N is very large. As we will see
late in this chapter, the larger the N is, the better the frequency response of
the FIR filter.

11.1.2 A Motivating Example

Put yourself in the city of Baghdad sitting on a hill and counting the F16 jet
fighters crossing over. Let us say that we are counting the number of jets
passing over every minute and are interested in calculating the average
number of jets every minute for the last 4 minutes. Let us say that after 10
minutes we have collected the following data.
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Next we will find the average every minute for the past 4 minutes. The
following table is obtained.

If we look at Table 11.1 we can see that there are sudden jumps in the number
of jets per minute. This sudden jumping indicates high frequency compo-
nents in the signal x(n) used to represent the number of jets crossing over
per minute. However, if we look at the average values we do not see a serious
jump. On the contrary, we see somehow only small deviations in the data.
These small deviations or gradual changes indicate low frequency in the
output y(n) used to represent the average values. Note also that we have to
wait until the fourth minute to find the first average value. So the first
average value is 

y(4) =  

Observe also that if we stop counting after the tenth minute,

TABLE 11.1
Minutes Jets

1 2
2 3
3 0
4 1
5 5
6 1
7 4
8 0
9 3

10 5

TABLE 11.2
Minutes Jets Average

1 2 —
2 3 —
3 0 —
4 1 (2 + 3 + 0 + 1)/4 = 6/4
5 5 (3 + 0 + 1 + 5)/4 = 9/4
6 1 (0 + 1 + 5 + 1)/4 = 7/4
7 4 (1 + 5 + 1 + 4)/4 = 11/4
8 0 (5 + 1 + 4 + 0)/4 = 10/4
9 3 (1 + 4 + 0 + 3)/4 = 8/4

10 5 (4 + 0 + 3 + 5)/4 = 12/4

1
4

1 2 3 4x x x x( ) ( ) ( ) ( )

y x x x x14
1
4

11 12 13 14 0( ( ) ( ) ( ) ( )
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indicates that if the input vanishes after sometime, the output will also vanish
after a different time. In general, we can write the following for the average
y(n):

(11.1)

We can also write y(n) in a different and “interesting” way. We write

(11.2)

At this point we realize that we have a lowpass system (filter) with input
x(n) and output y(n) given by Equation (11.2). What is the impulse response
h(n) for this filter? We usually start indexing at zero. So let us adopt this
method and rewrite Equation (11.2) as

(11.3)

Equation (11.3) is the same as Equation (11.1). Consider now the following
well-known convolution sum equation

(11.4)

where N is the number of coefficients h(n). If we now compare Equation
(11.3) and (11.4) we see that in (11.4) we have N h(n) coefficients and in
Equation (11.3) we have N – 1 = 3 or N = 4 coefficients. We also see that the
h(n) coefficients in Equation (11.3) are all the same constant 1/4 with h(0) =
h(1) = h(2) = h(3) = 1/4. Thus the impulse response for our average example is

To be convinced that the average filter is a lowpass system, we can look at
the frequency response �H(k)�, the magnitude of the fft of the signal h(n). Is
this filter with the constant coefficients of 1/4 the best filter? To answer this
question, let us play with the coefficients of h(n) and consider
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We will use the following MATLAB script to look at the frequency responses
�H(k)�, the magnitude of the fft of the signal h(n), for the two impulse
responses (given above). The script follows. 

h1n=[1/4 1/4 1/4 1/4]; h2n=[1/8 1/4 1/4 1/8];

X1=fft(h1n,1024);X2=fft(h2n,1024);

N=1024; n1=1:ceil((N+1)/2);

n2=ceil((N+1)/2)+1:N;%ceil(2.1)=3

k=1/(N/2)*(ceil(-(N-1)/2):ceil((N-1)/2));

X1=[X1(n2) X1(n1)];X2=[X2(n2) X2(n1)];

plot(k,abs(X1)/max(abs(X1))); hold on;

plot(k,abs(X2)/max(abs(X2)),'--');

legend('h=[1/4 1/4 1/4 1/4]','h=[1/8 1/4 1/4 1/8]',0);

title('The frequency response of the two averaging filters'); 

xlabel('Frequency index k').

The plots are shown in Figure 11.1. In this figure you can see the difference
in the frequency responses. The one with constant coefficients (sharp edges)
has a narrower passband and high ripples. The realizations of the FIR filters
for the average example are shown in Figures 11.2 and 11.3. In Figure 11.2
we have constant h(n) and in Figure 11.3 we have variable h(n).

11.2 FIR Filter Design

The frequency response of a linear time-invariant system is periodic with
period 2 where we have H(ej ) = H(e j( +2k )). We have seen that the impulse
response and the frequency response are related according to 

(11.5)

For causal and nonrecursive filters, the difference equation is given by

h n

n

n

n

n

( )

/

/

/

/

1 8 0

1 4 1

1 4 2

1 8 3

H e h n ej j n

n
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(11.6)

Now if we attempt to find the steady-state output of the system in Equation
(11.6) with x(n) = ej n, we rewrite Equation (11.6) as 

(11.7)

FIGURE 11.1 Comparison of two frequency responses.

FIGURE 11.2 Constant coefficients realization.
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Equation (11.7) can be simplified into the equation

(11.8)

Now Equation (11.8) can be written in compact form as

(11.9)

From Equation (11.9), if we consider a causal filter where h(n) = 0 for n < 0
and h(n) = 0 for n >N – 1, we can rewrite (11.5) as

(11.10)

At this point we can see very clearly (by comparing Equations (11.10) and
(11.9)) that h(n) = bn. In this case, the constants h(n) are the same as the
nonrecursive difference equation coefficients given in Equation (11.6). Know-
ing the difference equation as in (11.6), we can implement the FIR filter using
a simple computer program.

11.2.1 Stability of FIR Filters

If we multiply and divide Equation (11.8) by ej (N – 1) we will have

(11.11)

FIGURE 11.3 Variable coefficients realization.
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From Equation (11.11) we can write the transfer function of the FIR filter
with ej = z as

(11.12)

With h(n) = bn we have

(11.13)

In Equation (11.13) we see a very important property. This property is evident
in the denominator of H(z). We have N – 1 poles at z = 0. This indicates that
the FIR filter is always stable since all the poles lie within the unit circle.

11.2.2 Linear Phase of FIR Filters

Another desired property of the FIR filter is the linear phase. We know that
a linear phase corresponds to a delay in the output of the filter only. However,
a nonlinear phase FIR filter will distort the shape of the output of the filter.

From Equation (11.10) we see that the length of the filter (the number of
the h(n) points) is N. Set the length N as 2m + 1, where m is an integer or an
integer divided by two. Thus, N can be an odd or even number. The filter
will have linear phase if the impulse response h(n) has even symmetry with
h(n) = h(2m – n). To see that, let us substitute h(n) = h(2m – n) in Equation (11.10).
We have

(11.14)

If we substitute k = 2m – n, with N = 2m + 1, in Equation (11.14) we get

(11.15)
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Thus Equation (11.15) can be written as 

(11.16)

It is clear from Equation (11.16) that the magnitude on both sides is the same.
However, the angle is not. From Equation (11.16) we have

(11.17)

With the knowledge that 

we write Equation (11.17) as

(11.18)

Equation (11.18) clearly says that

(11.19)

This is a clear indication that h(n) has even symmetry by choosing N = 2m + 1.
Again, N can be an odd or even integer.

11.3 Design Based on the Fourier Series:
The Windowing Method

Let us say that we are after a certain frequency response H(ej ). This desired
frequency response is periodic with period 2  and thus can be written using
the Fourier series technique as 

(11.20)

We can see from Equation (11.20) that the Fourier series coefficients are the
points in the desired impulse response h(n). These points are obtained by
using the exponential form of the Fourier series as 
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(11.21)

For the majority of practical application, H(ej ) has sharp transition. This will
produce an infinite length and noncausal impulse response h(n). Once we
find a causal h(n) with finite duration, the design is complete.

11.3.1 Ideal Lowpass FIR Filter Design

Consider the desired frequency response for the ideal lowpass FIR filter
shown in Figure 11.4

(11.22)

where c is the cutoff frequency. The desired impulse response can be com-
puted using Equation (11.21) as

(11.23)

FIGURE 11.4 Ideal lowpass filter.
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To find this causal hc(n) we can define a window w(n) in the interval 0 n
N – 1 where N is the number of the Fourier coefficients hc(n). We write

(11.24)

With this window we write the causal impulse response hc(n) as

(11.25)

We know that multiplication in the time domain as seen in Equation (11.25)
is convolutionary in the frequency domain. We then write

(11.26)

In Equation (11.26), Hc(ej ) is the convolution between the frequency response
H(ej ) and the frequency response of the window w(n). If we consider the
case when w(n) = 1 for all n, then this is equivalent to no truncation at all.
In this case, W(ej ) is a pulse train, and W(ej( – r)) in Equation (11.26) can be
replaced by ( – r). With this value for W(ej( – r)), Hc(ej ) in Equation (11.26)
will be the same as H(ej ).

Based on the discussion above we see that if we choose w(n) to be finite
in duration, then we will have a narrow concentration of frequency points,
and we will not have the pulse train as the case with w(n) = 1 for all n. Thus,
with a finite duration w(n), Hc(ej ) will resemble H(ej ) everywhere except at
the rapid sharp edges in H(ej ), the desired frequency responses. For practical
issues in the implementation of the digital filter, we will not take too may
samples in the window w(n).

We can simplify Equation (11.23) to get

(11.27)

where M is the magnitude and m in the delay for the ideal lowpass FIR filter.
For practical impulse response we truncate the response in Equation (11.27)
for n < 0 and for n > N – 1 = 2m to get

(11.28)
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where N is the length of the lowpass FIR filter. Notice that this truncation is 
simply obtained by multiplying h(n) in Equation (11.27) by the rectangular 
window, w(n) = 1 for 0 n N – 1. We will have more to say about other 
types of windows later in the chapter. 

11.3.2 Other Ideal Digital FIR Filters

Consider the magnitude responses for highpass, bandpass, and bandstop dig-
ital filters as shown in Figures 11.5, 11.6, and 11.7. We can use Equation (11.21)
to find h(n) for the highpass filter. Using Equation (11.21) we write

(11.29)

FIGURE 11.5 Ideal highpass filter.

FIGURE 11.6 Ideal bandpass filter.

FIGURE 11.7 Ideal bandstop filter.
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where we have assumed a zero linear phase shift for now. We will compen-
sate this linear phase shift later. From Equation (11.29) we get

Simplifying further with ejn = e–jn we get

(11.30)

c in Equation (11.30) is measured from = , the center of symmetry of the
highpass filter.

Now to make hhp(n) causal and of finite length, we shift hhp(n) by m samples
and finally write 

(11.31)

Other types can be derived using Equation (11.21). For the bandpass filter
we can think of it as a lowpass filter with cut-off frequency u minus another
lowpass filter with cut-off frequency l. Thus the causal N-terms bandpass
filter in Figure 11.6 can be approximated by the impulse response 

(11.32)

The bandstop causal and linear phase FIR filter in Figure 11.7 can be approx-
imates as

(11.33)

11.3.3 Windows Used in the Design of the Digital FIR Filter

We have seen earlier in this chapter that the impulse response h(n) that was
obtained using Equation (11.21) is of infinite length. We had to truncate this
h(n) to obtain a finite length h(n).
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In previous sections we have used the rectangular window, where we
multiplied the infinite length h(n) by w(n), the rectangular window of length
N. In the case of the design of the causal linear phase lowpass filter we had

(11.34)

where h(n) in Equation (11.34) is of infinite length. It is known that multiplying
by the rectangular window will produce ripples in the magnitude plots of
Hlp(ej ). To reduce these ripples we can make the sharp transition in w(n)
smoother. With the goal to reduce these ripples different windows were found.
Some of these windows are given next including the rectangular window.

1. The rectangular window with

(11.35)

2. The Hanning window with

(11.36)

3. The Hamming window with

(11.37)

4. The Blackman window with

(11.38)

5. The Kaiser window with

(11.39)
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It is known that Io(x) is the zeroth-order Bessel function and is given by

(11.40)

It is known that Io(x) can converge rapidly with as much as k = 20. is a
parameter that is used to adjust the trade-off between the main lobe width
and the side lobe level in the magnitude plot of the frequency response of
the FIR filter. You can easily see that if = 0, the Kaiser window reduces to
the rectangular window.

11.3.4 Which Window Gives the Optimal h(n)?

Next we will show that the rectangular window, despite the ripples it intro-
duces in the magnitude plot of its frequency response, gives the best or the
optimal h(n). Consider the desired frequency response Hd(ej ) for all in the
interval [– , ]. The desired impulse response hd(n) is obtained from Hd(ej )
using the discrete time Fourier integral

(11.41)

and the desired frequency response Hd(ej ) is obtained from the impulse
response hd(n) using the summation equation

(11.42)

In most cases hd(n) is two sided and infinite in length. But we need a practical
hd(n) that is causal and of finite length. Let us truncate hd(n) and write

ht(n) = hd(n) (11.43)

The discrete Fourier transform of ht(n) is Ht(ej ). Our goal then is to see to
what degree Ht(ej ) approximates Hd(ej ). Let us define the error between
Ht(ej ) and Hd(ej ) for all as

(11.44)
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which is a commonly used approximation criteria in minimizing the integral
squared error.  Using the Parseval’s Theorem we have

(11.45)

Thus the error in Equation (11.44) can be written as 

(11.46)

Keep in mind that ht(n) is defined only in the interval 0 n N – 1 and that
the length of ht(n) is N = 2m + 1 as defined in Section 11.2 where m is an
integer or an integer divided by two. With this we write Equation (11.46) as 

(11.47)

To minimize the error in Equation (11.47) we set ht(n) = hd(n) in the interval
–m n m. Thus we see that ht(n) is obtained from the desired hd(n) by
truncation. This truncation gives a finite length signal ht(n) that is not causal.
To make ht(n) causal we delay ht(n) by m samples. Thus, our discrete impulse
response h(n) is obtained as 

(11.48)

which has the same magnitude as ht(n) and also has a linear phase shift of m.

11.3.5 Design of a Digital FIR Differentiator

We may be interested in calculating the rate of change of a signal to see how
the signal is changing. One application where digital differentiation may
occur is in the design of a proportional-integral-derivative control. Given
the signal

(11.49)

as an input to a differentiator system, the output y(t) will be

(11.50)
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Using phasors, we can find the ratio of the output to the input in an attempt
to find the transfer function H(jw). The phasor of x(t) is X and that of
the output is wX ( + /2). The ratio then is 

(11.51)

We can write the ratio in Equation (11.51) as

(11.52)

Thus, the transfer function of the differentiator is 

H(jw) = jw (11.53)

In Equation (11.53) w is the continuous frequency. The digital frequency is
related to the continuous frequency w by the relation 

w = Ts (11.54)

where Ts is the sampling period. Thus, the digital transfer function is 

(11.55)

The magnitude of H(ej ) is a line with slope 1/Ts in the range [0, ] and with
slope –1/Ts in the range [– , 0]. The inverse transform of (11.55) is 

(11.56)
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We can simplify more to get

Finally we have

(11.57)

11.3.6 Design of Comb FIR Filters

With the linear phase property, we can design comb digital filters to remove
unwanted frequencies and their harmonics. Let us say that we are interested
in removing the frequencies at 50 Hz, 2(50) = 100 Hz and 3(50) = 150 Hz. In
this case we will sample at 2(150) = 300 Hz to satisfy the Nyquist rate. In this
case the three frequencies we want to remove are at = 2 f/fs. They are at
the digital frequencies 2 50/300 = /3, 2 100/300 = 2 /3 and 2 150/300 = .

We know that a zero at = /3 on the unit circle will eliminate the digital
frequency of /3 and a zero at 2 /3 will eliminate the digital frequency 2 /3
and so on. We also know that zeros must appear in conjugates when they
are complex. Therefore, to have symmetry in order to have the linear phase
we will add another zero at = 0. This zero will also eliminate any dc
component in the input signal. The transfer function of this particular filter
has the numerator N(z) given by (remember to add the complex conjugate
zeros)

Simplifying the above equation will yield in N(z) = z6 – 1. With the denom-
inator of H(z) chosen as D(z) = z6, we will have the transfer function 

(11.58)
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Taking the inverse z-transform we get the difference equation

(11.59)

The impulse response for the system in Equation (11.59) is obtained by setting
x(n) = (n) and h(n) = y(n) to get 

(11.60)

In Equation (11.58) we have six zeros equally spaced on the unit circle and
six poles all at the origin of the unit circle. These six poles at the origin are
needed to make the system causal. Having chosen D(z) = 1, we would get

(11.61)

which is a noncausal filter. Thus, if we are interested in designing a comb
filter with m zeros on the unit circle, the impulse response will be

(11.62)

The frequency response of Equation (11.62) is given as

(11.63)

In Equation (11.63) the frequency response can be simplified and put in a
nice form as

(11.64)

Equation (11.64) can be simplified further to get 

(11.65)

The real part of H(ej ) in Equation (11.65) is 2m sin( m/2) and the phase of
the filter is linear with the slope of –m/2. The frequencies that will be
removed using the FIR filter is Equation (11.65) are at
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(11.66)

11.3.7 Design of a Digital Shifter: The Hilbert Transform Filter

The Hilbert transform filter is an FIR digital filter with the transfer function

(11.67)

The magnitude of H(ej ) in Equation (11.67) is always unity. This filter will
introduce a phase shift of –90˚ for 0 < < and a position 90˚ for – < < 0.
To design the filter, we need a reliable and causal h(n). To get this h(n), let
us first take the inverse transform of Equation (11.67) to get

(11.68)

By simplifying Equation (11.68) we arrive at 

(11.69)

Carrying out the calculation in Equation (11.69) we get

Finally we get the impulse response h(n) as

(11.70)

The filter in Equation (11.70) is not realizable. We can truncate h(n) in Equa-
tion (11.70) with N = 2m + 1, where again m is an integer or an integer divided
by 2, and then shift by m to make the filter realizable. 

The Hilbert transform filter finds its importance in digital transmission. If
the signal x(n) to be transmitted is bandlimited to b, then after being mod-
ulated it becomes x(n) cos( 0n). The bandwidth of the modulated signal is
2 b. Using the Hilbert transform filter, we can cut this bandwidth by 1/2. 
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11.4 From IIR to FIR Digital Filters: An Approximation

An FIR digital filter is a filter where the output y(n) depends only on current
and previous values of the input x(n). An IIR digital filter is a filter where
the ouput y(n) depends on current and previous value for x(n) and previous
values of y(n). Consider the difference equation for a digital FIR filter

(11.71)

where the impulse response h(n) has N sample points. We can z-transform
the Equation in (11.71) to obtain the transfer function H(z) as

(11.72)

and the constants a0 through aN-1 are the impulse response sample values in
h(n). Now we can take an IIR filter transfer function HIIR(z) = N(z)/D(z) and
use long division to get an equation for HIIR(z) similar to the one in Equation
(11.72), which is an equation for an FIR filter. The equation for HIIR(z) that
we will get as the result of the long division will have infinite number of
terms. It is

(11.73)

If the filter represented by H(z) in Equation (11.73) is stable then after some
point in time, aN will have negligible magnitude. In this case we can consider
only the N terms (a0 through aN) and in this case Equation (11.72) for the FIR
filter will be an approximation to Equation (11.73) for the IIR filter.

11.5 Frequency Sampling and FIR Filter Design

Given a mathematical expression for the magnitude transfer function of an
FIR digital filter, we can use the equation

(11.74)

to get the impulse response samples. These samples are infinite in length
and can be truncated and delayed to get the realizable difference equation
for implementation. However in some cases the integration in Equation
(11.74) is not so easy to be carried out. In other cases we might have only
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the samples of H(ej ) equally spaced in the 2 period. We say in the 2 period
because the magnitude of H(ej ) is periodic of period 2 .

Once we collect the frequency samples of the desired H(ej ), we can present
these points to the inverse fast Fourier transform equation to get the impulse
response h(n). This is explained as in the following. If we sample H(ej ) at

 = 2 k/N, where N is the number of samples (N = 2m + 1), Equation (11.74)
can be approximated to get the noncausal h(n) as

(11.75)

Equation (11.75) is the inverse DFT (we will use fft for efficient calculation).
Once we have h(n) we can use a window function and delay the impulse
response by m to get the realizable causal h(n) as

(11.76)

11.6 FIR Digital Design Using MATLAB

There are several functions in MATLAB that help in the design of FIR digital
filters. These functions are explained next.

11.6.1 Design Using Windows

The function fir1 in MATLAB uses the Fourier series approach in designing
lowpass, highpass, bandpass and bandstop FIR digital filters. The most
general syntax is 

h=fir1(n,f,'ftype',w,'noscale')

h is the vector of the filter coefficients of length N + 1. These are the impulse
response coefficients.

The order of the filter is n. For the design of bandstop or highpass FIR
filters, the order n must be even because for odd n we can have a zero at
z = –1 on the unit circle (a zero at = ). f is the normalized cut-off fre-
quency/frequencies between 0 and 1. In case of bandpass or bandstop filter
design, f is a vector that has two components: f =[f1 f2]. Both f1 and
f2 should be normalized to lie between 0 and 1. f1 and f2 are the edge
frequencies of the stopband or the passband. ftype between single quotes
is the type of the filter to be used. For highpass we use high and for bandstop
we use stop.

h n
N

H e enc

j
k

N

k m

m j k
N

n
( )

1 2 2

m n m

h n w n h n mc nc( ) ( ) ( ) n KN0 1 1, ,



612 Discrete Systems and Digital Signal Processing with MATLAB

w is a vector of length n+1. It contains the specific window coefficients to
be used. We use the following syntax for generating the window coefficients.

w=hanning(n+1); w=hamming(n+1);

w=blackman(n+1); w=ones(1,n+1);

The vector w that results from the Hanning, the Hamming and the Blackman
windows is a column vector. The vector w that results from w=ones(1,n+1);
is a row vector. noscale between single quotes makes a request to MATLAB

not to use the default scaling used by MATLAB. With fir1(n,f,'ftype',w)
MATLAB will use the default scaling. With fir1(n,f,'ftype') MATLAB will
use the Hamming window. With fir1(n,f)MATLAB will use the Hamming
window with a lowpass filter with the default scaling given by MATLAB.

11.6.2 Design Using Least-Squared Error

MATLAB uses the function firls to design any multiband FIR filter using
the least-squares technique. The syntax is

h=firls(n,f,m,'ftype')

The order of the filter is n and h contains the n + 1 impulse response
coefficients. ftype can be hilbert for a FIR digital Hilbert transform, or
it can be differentiator for FIR digital differentiator. We can still use
stop and high for ftype. f is a vector of frequency points that are at the
edge of the band. These frequency points must be between 0 and 1, and they
should include the 0 and the 1 point. These points are normalized. f is a
vector that contains the magnitudes corresponding to the frequency points
in the vector f. f and m should be of equal lengths. The lengths should be
even.

11.6.3 Design Using the Equiripple Linear Phase

MATLAB uses the function remez that uses the algorithm developed by
Park–McClellan. This function can be used to design FIR filters with equir-
ipples, linear phase and multiband. The syntax for the remez function is

h=remez(n,f,m,'ftype')

h, n, f, m and ftype are explained in the function firls. The remez
design is more popular and is the most used.

11.6.4 How to Obtain the Frequency Response

MATLAB uses the function freqz to produce the frequency response values.
The syntax for FIR filters is
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[H f]=freqz(h,1,fpts,fs);

The result of executing this function is a vector of frequency response values
evaluated at the frequency vector f. fpts is the number of frequency
points used by freqz and fs is the sampling frequency. h is the impulse
response of the FIR filter and 1 indicates that the filter is nonrecursive (D(z)
in H(z) = N(z)/D(z) is 1).

11.7 Some Insights

11.7.1 Comparison with IIR Filters

In Chapter 10 we considered designing IIR digital filters and we noticed that
few coefficients were needed in order to achieve satisfactory design. Requir-
ing few coefficients means we need to store few coefficients in the computer
memory to implement the design. We have also noted that current outputs
in IIR filters depended on previous outputs. Thus, in terms of implementa-
tion, we need fewer multiplications to obtain outputs at a particular point
in time. This indicates efficiency and speed in the implementation of IIR
digital filters. A problem with IIR filters is that we may encounter instability.
This problem can be overcome by using the series method of implementation
discussed in earlier chapters. The origin of this problem is that with higher
order IIR filters the accuracy in manipulating the coefficients may become
serious and this can cause instability. By implementing the IIR filter as blocks
of series subsystems we can minimize this inaccuracy. Care must be taken
when implementing the IIR filter design with series subsystems, especially
when attempting to use complex poles and/or zeros in implementation of
the subsystems. We need to remember that complex poles or zeros should
occur in complex conjugates.

A more serious problem in designing IIR digital filters is the possibility of
having nonlinear phase. This can happen especially with Butterworth,
Chebysheb and elliptical IIR filters. In some cases, this nonlinearity can be
tolerated and in other cases, it cannot be. This phase distortion can be
reduced but not eliminated completely by using delay equalizers. 

FIR digital filters require more coefficients than the IIR digital filters for
the same design requirements. They are always stable and they have perfect
linear phase characteristics.

11.7.2 The Different Methods Used in the FIR Filter Design

We have looked at different methods to design FIR digital filters. Windowing
is one that is based on the Fourier series. The best window in the design is
the one that gives the fewest ripples. To get fewer ripples in the stopband
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or the passband we desire a window that falls gradually at the edges. The
rectangular window is the worst in this sense but it gives the optimal and
the best minimal error. Another method is the sampling frequency method.
With the efficiency and the speed of the fft, this method is sometimes desir-
able. Its success depends on the number of frequency sampling points taken.

One of the main characteristics of FIR digital filters is the linear phase
they produce. The best method discussed in this regard is the method by
Parks and McClellan. This method is implemented by MATLAB and was used
in the examples in this chapter. It works directly with the desired frequency
response plot and can be applied to frequency responses with multiple bands
with sharp and smooth transitions. This method is considered optimal since
it produces the smallest error between desired and actual responses. 

11.8 End of the Chapter Examples

EOCE 11.1 

Consider the following difference equation

1. Is this a recursive or nonrecursive system?
2. Use the fft to plot the frequency response of the filter.

You can see that the impulse response for the given filter is 

If the coefficients in the above difference equation change we can have

Use the fft to plot the frequency response of the new filter.

Solution

The output y(n) depends only on current and previous values for x(n). Thus
the filter is nonrecursive. The plot for the magnitude frequency response is
obtained using the following MATLAB script for the two impulse responses.

h1n=[1 1 1 1 1]; h2n=[0 1/2 1 1 1 1/2 0];

X1=fft(h1n,1024);X2=fft(h2n,1024);

y n x n x n x n x n x n( ) ( ) ( ) ( ) ( ) ( )1 2 3 4

h n( ) 1 1 1 1 1

h n( ) 0 1 2 1 1 1 1 2 0
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N=1024; n1=1:ceil((N+1)/2); n2=ceil((N+1)/2)+1:N;%ceil(2.1)=3

k=1/(N/2)*(ceil(-(N-1)/2):ceil((N-1)/2));

X1=[X1(n2) X1(n1)];X2=[X2(n2) X2(n1)];

plot(k,abs(X1)/max(abs(X1))); hold on;

plot(k,abs(X2)/max(abs(X2)),'--');

legend('h=[1 1 1 1 1]','h=[0 0.5 1 1 1 0.5 0]',0);

title('The frequency response of two filters');

xlabel('Frequency index k');

The plots are shown in Figure 11.8. We can see that both filters are lowpass
and the second is better since its passband is wider and the magnitude of
the lobes is less.

EOCE 11.2

Plot the magnitude frequency response of the rectangular window, the Han-
ning window, the Hamming window and the Blackman window.

FIGURE 11.8 Plots for EOCE 11.1.
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Solution

We will write the following MATLAB script to plot the responses.

x1=ones(1,10);x2=hanning(10); x3=hamming(10); x4=blackman(10);

X1=fft(x1,1024);X2=fft(x2,1024);X3=fft(x3,1024);X4=fft(x4,10
24);

N=1024; n1=1:ceil((N+1)/2); n2=ceil((N+1)/2)+1:N;%ceil(2.1)=3

k=1/(N/2)*(ceil(-(N-1)/2):ceil((N-1)/2));

X1=[X1(n2) X1(n1)];X2=[X2(n2)' X2(n1)'];

X3=[X3(n2)' X3(n1)'];X4=[X4(n2)' X4(n1)'];

subplot(2,2,1);plot(k,abs(X1)/max(abs(X1)));

title('The Rectangular window');ylabel('Magnitude response');

subplot(2,2,2);plot(k,abs(X2)/max(abs(X2)));

title('The Hanning window');

subplot(2,2,3);plot(k,abs(X3)/max(abs(X3)));

title('The Hamming window');ylabel('Magnitude response');

subplot(2,2,4);plot(k,abs(X4)/max(abs(X4)));

title('The The Blackman window');

The plots are shown in Figure 11.9. You can see that the Blackman window
allows the maximum main lobe width and has negligible ripples at the
side lobes.

FIGURE 11.9 Plots for EOCE 11.2.
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EOCE 11.3

Consider the following continuous signal

Design a lowpass digital filter to filter out the sinusoidal term. Use different
windows in the design. Find the coefficients of the filter, h(n), using the
rectangular window.

Solution

When we sample x(t) we should sample at a frequency that is at least twice
the maximum frequency in the signal. The maximum frequency in x(t) is
fm = 10/2 = 1.59 Hz. Thus fs should be at least 2(1.59) = 3.18 Hz. This
sampling frequency corresponds to the sampling period 1/3.18 = .31 sec. Let
us take Ts = .1 as our sampling period. This value of Ts still prevents aliasing.

The analogue frequency that we would like to suppress is the w = 10
rad/sec. An analogue lowpass filter of wc = 5 rad/sec will suppress the
cos(10t) term. This wc = 5 rad/sec analogue frequency corresponds to the
digital frequency c = wc(Ts) = 5(.1) = .5. Thus, we will design our lowpass
digital filter with c = .5 as the cutoff frequency. The following MATLAB script
will be used for the design and plotting.

clf

%we will use N=11 then 21

N=11; %filter order

m=(N-1)/2;

thetac=.5;

n=0:N-1;

h=sin(thetac*(n-m+eps))./(pi*(n-m+eps));

%eps is used to avoid dividing by zero

h1=h.*(ones(1,N));%we window the filter coefficients

h2=h.*(hanning(N))';

n=0:100;

Ts=.1;

xn1=2;%This signal should pass through the filter

xn2=cos(10*n*Ts);%This signal should not pass

xn=xn1+xn2;

t=0:.1:10;

xt=cos(10*t)+2;

y1=filter(h1,1,xn);

y2=filter(h2,1, xn);

subplot(3,1,1); plot(t,xt);

x t t( ) cos( )2 10
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title('cos(10*t)+2 before filtering');

[H1 f1]=freqz(h1,1,100); subplot(3,1,2);plot(f1/pi,abs(H1)); 
hold on;

[H2 f2]=freqz(h2,1,100);plot(f2/pi,abs(H2),'*');

legend('Rectangular','Hanning',0);

ylabel('Filter: Order 11'); 

subplot(3,1,3); plot(n*Ts,y1);

title('The signal after cos(10*t) term is removed: Filter 
order is 11');

xlabel('Time(sec)'); hold on; plot(n*Ts, y2, '*'); 

legend('Rectangular','Hanning',0);

The plots are shown in Figures 11.10 and 11.11 for N = 11 and N = 21. We
can see that when x(n) is present as an input to the lowpass filter only the
dc component is approximately passing. Thus, the design using the rectan-
gular window works.

FIGURE 11.10 Plots for EOCE 11.3.
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The coefficients of the filter are obtained by removing the semicolon from
the end of the statement

h1=h.*(ones(1,N));

and then running the script. The result is

h =
Columns 1 through 9 
0.0381  0.0724  0.1058  0.1339  0.1526  0.1592  0.1526  0.1339  0.1058
Columns 10 through 11 
0.724 0.0381

with h(0) = 0.0381, h(1) = 0.0724, h(2) = 0.1339, and h(10) = 0.0381.

FIGURE 11.11 Plots for EOCE 11.3.
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EOCE 11.4

Consider the analogue signal

x(t) = sin (t) + sin (10t)

We are interested in suppressing the sin(t) term. Design a digital highpass
filter to accomplish that. Use different windows in the design.

Solution

With fm = 10/2  Hz, we will take our sampling period as Ts= .1 as we did in
EOCE 11.3. An analogue highpass filter with analogue cutoff frequency wc =
5 rad/sec will suppress the sin(t) term and pass the sine(10t) term. wc = 5
corresponds to Ts (wc) = .1(5) = .5. Thus, we will design a highpass digital
filter with cutoff frequency of c = .5 away from  = 0. The following MATLAB

script will be used to design the filter and produce the plots.

clf

%we will use N=11 then 21

N=11; %filter order

m=(N-1)/2;

theta=.5; % away from the theta = 0 point

thetac=pi-theta;%The cutoff frequency of the highpass filter 
away from theta=pi

%The thetac value is used in equation 10.28

n=0:N-1;

mm=n-m+eps; %To avoid division by zero

h=cos(mm*pi).*(sin((thetac)*(mm))./(pi*(mm)));

h1=h.*(hamming(N))';

h2=h.*(blackman(N))';

n=0:50;

Ts=.1;

xn=sin(n*Ts)+sin(10*n*Ts);

t=0:.01:5;

xt=sin(t)+sin(10*t);

y1=filter(h1,1,xn);

y2=filter(h2,1,xn);

subplot(3,1,1); plot(t,xt);

title('The original signal x(t)=sin(t)+sin(10t) before 
filtering');

[H1 f1]=freqz(h1,1,100); subplot(3,1,2);plot(f1/pi,abs(H1)); 
hold on;

[H2 f2]=freqz(h2,1,100);plot(f2/pi,abs(H2),'*');

legend('Hamming','Blackman',0);

ylabel('The filter: N=11');
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subplot(3,1,3); plot(n*Ts,y1);

title('The signal after the sin(t) term is removed: Filter 
order is 11');

xlabel('Time(sec)'); hold on; plot(n*Ts, y2, '*'); 

legend('Hamming','Blackman',0);

The plots are shown in Figure 11.12 and Figure 11.13. We can see that when
x(n) is present as an input to the highpass filter, the output is close to the
sin(t) term and the best approximation is achieved with N = 21. 

EOCE 11.5

Noise comes always at high frequencies. A differentiator amplifies the input
signal more and more as the frequency of the signal increases. If we are
processing a signal that contains noise plus low frequency components and
a differentiator is used in the process, we would like to limit the differentiation
to a certain range to prevent excessive amplification of the noise components.
Let us say that we are interested in the range – c c. Give the differen-
tiator impulse response.

FIGURE 11.12 Plots for EOCE 11.4.
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Solution

We can start with Equation (11.56) with – c = – and c = to get

(11.77)

We will simplify the integration in Equation (11.77) as we did in Section 11.3.5
to get

FIGURE 11.13 Plots for EOCE 11.4.
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Finally we have

(11.78)

With c = /2 and Ts = 1 and by considering the order of the filter to be N = 21
with m, the delay, of (N – 1)/2 = 10, we have the realizable digital differen-
tiator as

We will use MATLAB to obtain the frequency response using the rectangular
and the Hamming windows. The MATLAB script follows.

clf

for N=11:90:101%Filter order 11 and 101

m=(N-1)/2;

thetac=pi/2;

n=0:N-1;

mm=n-m+eps; %To avoid dividing by zero

h=(thetac*cos(mm*thetac))./(mm*pi) - 
sin(mm*thetac)./(pi*(mm.^2));

h1=h.*ones(1,N);

h2=h.*hamming(N)';

[H1 f1]=freqz(h1,1,200); plot(f1/pi,abs(H1));hold on; 

[H2 f2]=freqz(h2,1,200); plot(f2/pi,abs(H2),'*'); 

end

legend('Rectangular: N=11 and 101','Hamming: N=11 and 101',0);

title('Magnitude response for a differentiator');

xlabel('radian frequency in pi units')

gtext('Cutoff frequency = pi/2');

The plots are in Figure 11.14.

EOCE 11.6

We are interested in removing the unwanted frequencies 60 Hz, 120 Hz and
180 Hz from the continuous signal x(t). Design a digital filter that will elim-
inate these frequencies. Assume that the highest frequency in x(t) is 200 Hz.
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1. Consider the input to the comb filter as 

and show the output of the filter. 
2. Consider next the input given above plus cos(100t). What would be

the output of this filter?

Solution

Since the highest frequency in x(t) is 200 Hz, we will sample at least at fs =
2(200) = 400 Hz. Let us sample at fs = 1200 Hz. The digital frequencies
corresponding to the analogue frequencies of 60, 120 and 180 are calculated
in the following way. For f = 60 Hz, = 2 f/fs = 2 (60)/1200 = 0.1 .

Thus the separation between the zeros on the unit circle is . We will
have m zeros with 2 /m = 0.1 . This gives m = 20. Thus the transfer function
of the comb filter is 

and the impulse response is 

FIGURE 11.14 Plots for EOCE 11.5.
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We will write the following MATLAB script to do the design and produce the
plots:

t=0:.001:.1;

x=cos(2*pi*60*t)+cos(2*pi*120*t)+cos(2*pi*360*t);

fs=1200; Ts=1/fs;

n=0:120;

nTs=n*Ts;

xn=cos(2*pi*60*nTs)+cos(2*pi*120*nTs)+cos(2*pi*360*nTs);

subplot(3,1,1);plot(t,x);

title('The original signal');

h=[1 zeros(1,19) -1];

[H,f]=freqz(h,1);

subplot(3,1,2);plot(f/pi,abs(H)/max(abs(H)));

title('Magnitude response of a comb filter:20 zeros');

y=filter(h,1,xn);

subplot(3,1,3); plot(nTs,y);

title('The output of the filter'); xlabel('Time(sec)');

The plots are shown in Figure 11.15 and Figure 11.16. In Figure 11.5 and after
some delay, the output is zero as expected since the frequencies 60, 120 and

FIGURE 11.15
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360 are notched out. In Figure 11.16 only the term cos(100t) is present after
about 0.02 sec. The plots in Figure 11.16 are obtained using the above MATLAB

script with the two expressions:

x=cos(2*pi*60*t)+cos(2*pi*120*t)+cos(2*pi*360*t)+cos(100*t);

xn=cos(2*pi*60*nTs)+cos(2*pi*120*nTs)+cos(2*pi*360*nTs)+cos
(nTs*100);

EOCE 11.7

Consider the following IIR digital filter

Derive an FIR digital filter to approximate the digital IIR filter. Comment on
the results.

FIGURE 11.16 Plots for EOCE 11.6.
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Solution

The IIR digital filter is a stable one. Thus we expect the result of the long
division to converge at some point. Carrying out the long division will result
in

The first three samples of the FIR impulse response are 1, +3/4 and –9/16.
It is much easier to get the remaining terms using MATLAB. To do that we
write the following script that will plot the magnitude response of the IIR
filter and its FIR approximation

%The IIR filter

nIIR=[1 0 -1]; dIIR=[1 -3/4 1/8];

%and its frequency response is

[HIIR fIIR]=freqz(nIIR,dIIR,100);%100 points calculated

plot(fIIR/pi, abs(HIIR)/max(abs(HIIR))); hold on

%next we will use the dimpulse function to get the first 50

%terms in the long division process

terms=dimpulse(nIIR,dIIR,50);

%Let us take 4 point in approximating the FIR filter

nFIR=terms(1:4);%tenth order FIR

[HFIR fFIR]=freqz(nFIR,1,100);%100 points calculated

plot(fFIR/pi, abs(HFIR)/max(abs(HFIR)),'*');

%Let us take 10 point in approximating the FIR filter

nFIR=terms(1:10);%tenth order FIR

[HFIR fFIR]=freqz(nFIR,1,100);%100 points calculated

plot(fFIR/pi, abs(HFIR)/max(abs(HFIR)),'o');

xlabel('Frequency in pi units');title('FIR Approximation to 
an IIR filter');

legend('The IIR Filter','FIR approximation: N=5','FIR 
approximation:N=10',0);

The plots are shown in Figure 11.17. You can see that as the number of terms
is h(n) for the FIR filter increases, the better is the approximation.

EOCE 11.8

Consider the digital filter magnitude responses shown in Figure 11.18. Use
the frequency sampling method to design an FIR lowpass filter to approxi-
mate the one in Figure 11.18.

H z z z( ) 1
3
4
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Solution

Recall that the fft equation takes data points in the range 0 n N – 1. We
know that the discrete Fourier transform is periodic with period 2 . Thus
we can redraw the filter in Figure 10.18 as Figure 11.19. We can sample Figure
11.19 and get the 11 samples in the interval [0 2 ]. Notice that the sample
at the 2 point is not taken because the inverse fft starts its cycle at 2 . With
11 samples we write the following MATLAB script to plot the approximation
to the filter in Figure 11.18.

FIGURE 11.17 Plots for EOCE 11.7.

FIGURE 11.18 Filter for EOCE 11.8.
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n=11;%11 frequency samples

Hsamp=[1 1 1 0 0 0 0 0 0 1 1];

h=ifft(Hsamp);

n1=(n-(n-1)/2+1):n; %shifting the last five samples to the 
front of h

n2=1:n1-1;

h=[h(n1) h(n2)] %The realizable filter coefficients

[H,f]=freqz(h,1,100);%100 frequency points only in [0 pi];

plot(f/pi,abs(H)); hold on;

h=h.*hamming(n)';

[H,f]=freqz(h,1,100);

plot(f/pi,abs(H),'*');

legend('Using Rectangular window','Using Hamming window',0);

title('Approximation using frequency sampling: 11 samples');

xlabel('Frequency in pi units');

The plot is shown in Figure 11.20. The impulse response is obtained from
the script as 

h =
Columns 1 through 9 
0.0694  –0.0540  –0.1094  0.0474  0.3194  0.4545  0.3194  0.0474  –0.1094
Columns 10 through 11 
–0.0540  0.0694

and the realizable transfer function is

FIGURE 11.19 Filter for EOCE 11.8.
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EOCE 11.9

We are interested in removing the frequencies that are higher than 10 kHz
from the analogue signal x(t). Design a digital filter to accomplish that. Use
a sampling frequency of 100 kHz.

Solution

The maximum digital frequency that the digital filter will have is max = .
This corresponds to the analogue frequency fs/2 = 50 kHz. This digital filter,
therefore, will try to suppress analogue frequencies between 10 and 50 kHz.
This corresponds to the digital frequencies

or 0.2 .
The cutoff frequency of the lowpass digital filter is taken as c = 0.1 so

as to suppress the digital frequencies starting at = 0.2 . The following
MATLAB script will finish the design and draw the frequency response of the
digital filter. It will also show the filter output when the input is 

FIGURE 11.20 Plots for EOCE 11.8.
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x(t) = sin (2 50000t) + cos (2 5000t)

clf

%we will use N=11 then 21

N=21; %filter order

m=(N-1)/2;

thetac=.1*pi;

n=0:N-1;

h=sin(thetac*(n-m+eps))./(pi*(n-m+eps));

%eps is used to avoid dividing by zero

h1=h.*(ones(1,N));%we window the filter coefficients

h2=h.*(hanning(N))';

n=0:100;

Ts=1/100000;

xn1=sin(2*pi*50000*n*Ts);%This signal should pass through the 
filter

xn2=cos(2*pi*5000*n*Ts);%This signal should not pass

xn=xn1+xn2;

t=0:.000001:1/1000;

xt=sin(2*pi*50000*t)+cos(2*pi*5000*t);

y1=filter(h1,1,xn);

y2=filter(h2,1, xn);

subplot(3,1,1); plot(t,xt);

title('Input: sin(2*pi*50000*t)+cos(2*pi*5000*t) before 
filtering');

[H1 f1]=freqz(h1,1,100); subplot(3,1,2);plot(f1/pi,abs(H1)); 
hold on;

[H2 f2]=freqz(h2,1,100);plot(f2/pi,abs(H2),'*');

legend('Rectangular','Hanning',0);

ylabel('Filter: Order 21');

subplot(3,1,3); plot(n*Ts,y1);

title('The signal after sin(2*pi*50000*t) term is removed');

xlabel('Time(sec)'); hold on; plot(n*Ts, y2, '*');

legend('Rectangular','Hanning',0);

The plot is shown in Figure 11.21. The period of the output in Figure 11.21
is 1/5000 � .2x10–3 sec. This indicates that the filter is working well.

EOCE 11.10

We wish to pass the range of frequency 400 Hz f 800 Hz in the analogue
signal x(t). Suppose that the highest frequency is x(t) in 800 Hz. Design a
bandpass digital filter to do just that.
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Solution

The sampling frequency is at least 2(800) = 1600Hz. Let us take fs as 2000 Hz.
In this case, the band of digital frequencies will be l = 2 400/2000 = 0.4
and u = 2 800/2000 = 1600 /2000 = .8 . The proposed digital filter is shown
in Figure 11.22.

We will design the filter in Figure 11.22 using the Fourier series method with
the rectangular and Hamming windows and using the frequency sampling
method. As in EOCE 11.8, we will sample in the interval [0 2 ]. The following
MATLAB script will be used to do that. The plots are seen in Figure 11.23.

FIGURE 11.21 Plots for EOCE 11.9.

FIGURE 11.22 Filter for EOCE 11.10.
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clf

%we will use N=11 then 21

N=11; %filter order

m=(N-1)/2;

thetal=.4*pi; %lower cutoff frequency

thetau=.8*pi; %upper cutoff frequency

n=0:N-1;

h=(sin(thetau*(n-m+eps))-sin(thetal*(n-m+eps)))./(pi*(n-
m+eps));

%eps is used to avoid dividing by zero

h1=h.*(ones(1,N));%we window the filter coefficients

h2=h.*(hamming(N))';

[H1 f1]=freqz(h1,1,100); subplot(2,1,1);plot(f1/pi,abs(H1)); 
hold on;

[H2 f2]=freqz(h2,1,100);plot(f2/pi,abs(H2),'*');

title('Bandpass filter approximation using Fourier series 
method');

legend('Rectangular: N=11','Hamming: N=11',0);

%Frequency sampling method

%n=21;

FIGURE 11.23 Plots for EOCE 11.10.
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n=11

Hsamp=[0 0 1 1 1 0 0 1 1 1 0];

%Hsamp=[0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 ];

h=ifft(Hsamp);

n1=(n-(n-1)/2+1):n; %shifting the last five samples to the 
front of h

n2=1:n1-1;

h=[h(n1) h(n2)] %The realizable filter coefficients

[H,f]=freqz(h,1,100);%100 frequency points only in [0 pi];

subplot(2,1,2);plot(f/pi,abs(H)); hold on;

h=h.*hamming(n)';

[H,f]=freqz(h,1,100);

plot(f/pi,abs(H),'*');hold on;

xlabel('Frequency in pi units');

legend('Rectangular: 11 samples','Hamming: 11 samples',0);

title('Bandpass filter approximation using frequency 
sampling');

EOCE 11.11

Use MATLAB to design a lowpass filter of order 21 that will pass frequencies
from 0 to 100 Hz with unity magnitude. We expect zero magnitude for other
frequencies. Assume that the highest frequency coming to this filter is
150 Hz. Use the functions fir1, firls and remez for the design. Use the
Hamming window.

Solution

Using the function fir1 we need to use the form h = fir1 (n, f). The
Hamming window is the default window and since no filter type is specified,
it will use the lowpass. n is 21 and f is obtained as in the following. The
highest frequency in the incoming analogue signal is 150. This means a
sampling frequency of at least 300 Hz. Let us consider fs = 1000Hz. The cutoff
frequency of the analogue filter is 100 Hz. This corresponds to the normalized
digital frequency according to the relation

or f = 100/500 = 0.2. This value can also be obtained by finding first the
corresponding digital frequency: c = Tswc = 1/1000 (2 (100)) = .2 . We now
normalize by dividing by to get 0.2 as the normalized digital frequency. 

Using the function firls, we will use the syntax h = firls (n, f, m)
for a lowpass FIR filter. n is 21. We will take two bands of frequencies, [0 .2]

f
f

f
c

s 2
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and [.3 1], with the corresponding magnitude pairs, [1 1] and [0 0]. Next
we will use the remez function with the same data that was used with the
other two functions. The MATLAB script is given next.

%Design using the fir1 function

h=fir1(21,0.2);

[H f]=freqz(h,1,100);

plot(f/pi, abs(H)); hold on;

title('Lowpass filter with normalized cutoff frequency of 0.2 
and N=21');

%Design using the firls function

n=21;

f=[0 0.2 0.3 1]; m=[1 1 0 0];

h=firls(n,f,m);

[H f]=freqz(h,1,100);

plot(f/pi, abs(H),'*');

%Design using the remez function

f=[0 0.2 0.3 1]; m=[1 1 0 0];

h=remez(n,f,m);

[H f]=freqz(h,1,100);

plot(f/pi, abs(H),'d');

legend('fir1 function','firls function','remez function',0);

xlabel('Frequency in pi units');

The plot is shown in Figure 11.24. You can see that the MATLAB function
firls produced the best approximation. It produced wider band and
fewer ripples.

EOCE 11.12

We are interested in designing a bandstop FIR filter with edge frequencies
at 0.3 and 0.6 . The gain in the passbands is unity and in the stopband is
zero. Use the functions fir1, firls and remez for the design. Use the
Hamming window. 

Solution

We will use n = 22 since we are designing a bandstop filter. In using the
firls function we will take the frequency points at 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.9, and 1. This is an even number of points as required by firls.
The frequency vector is f = [0 .1 .2 .3 .4 .5 .6 .7 .9 1], and the corresponding
m vector is m = [1 1 1 0 0 0 0 1 1 1]. The MATLAB script for the complete
design and for producing the plots is given next.
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%Design using the fir1 function

h=fir1(22,[0.3 .6], 'stop');% 22 is even for bandstop IIR 
filters

[H f]=freqz(h,1,100);

plot(f/pi, abs(H)); hold on;

title('Bandstop filter with normalized cutoff frequency of 
[0.3 .6] and N=22');

%Design using the firls function

n=22;

f=[0 .1 .2 .3 .4 .5 .6 .7 .9 1];%pairs of frequencies(even 
number)

m=[1 1 1 0 0 0 0 1 1 1];

h=firls(n,f,m);

[H f]=freqz(h,1,100);

plot(f/pi, abs(H),'*');

%Design using the remez function

FIGURE 11.24 Plots for EOCE 11.11.
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f=[0 .1 .2 .3 .4 .5 .6 .7 .9 1];%pairs of frequencies(even 
number)

m=[1 1 1 0 0 0 0 1 1 1];

h=remez(n,f,m);

[H f]=freqz(h,1,100);

plot(f/pi, abs(H),'d');

legend('fir1 function','firls function','remez function',0);

xlabel('Frequency in pi units');

The plots are shown in Figure 11.25. We can see clearly that the firls and
the remez functions produce the best approximation. For these functions
the magnitude in the stopband between .3 and .6 is approximately zero.

EOCE 11.13

Design an ideal differentiator using the remez function from MATLAB.

Solution

First we will take one pair of frequency points; we take f = [0 1] with the
corresponding magnitude vector m = [0 ]. We will use n = 11 to complete

FIGURE 11.25 Plots for EOCE 11.12.
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the design. Next we take more frequency pairs; we take f = [0 .4 .6 1] with
m = [0 .4 .6 ]. The MATLAB script is shown next. The plot is shown in
Figure 11.26.

%Design of a differentiator

n=11

f1=[0 1]; m1=[ 0 pi];

f2=[0 .4 .6 1]; m2=[0 .4*pi .6*pi pi];

h1=remez(n,f1,m1,'d');%d for differentiator

h2=remez(n,f2,m2);

[H1 f]=freqz(h1,1,100); % 100 frequency points in [0 pi]

[H2 f]=freqz(h2,1,100);

plot(f/pi,abs(H1)); hold on;

title('Differentiater with N=11');

xlabel('Frequency in pi units');

plot(f/pi,abs(H2),'*');

legend('N=11;f1=[0 1]; m1=[ 0 pi]','N=11;f2=[0 .4 .6 1]; m2=[0 
.4*pi .6*pi pi]',0);

FIGURE 11.26 Plots for EOCE 11.13.
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EOCE 11.14

Design a Hilbert transform filter with N = 11, 31 and 51. Plot the magnitude
responses.

Solution

We will use the functions fir1, firls and remez for the design.

clf

%we will use N=9 then 21

for N=11:10:31; %filter order

m=(N-1)/2;

n=0:N-1;

mm=n-m+eps;

hilbert=(1-cos(mm*pi))./(mm*pi);

hilbert=hilbert.*hamming(N)';

[Hilbert fh]=freqz(hilbert,1); 

subplot(3,1,1);

plot(fh/pi,abs(Hilbert)); hold on;

end

title('Hilbert transform FIR filter magnitude response using 
Eqn. 11.69');

%Design using the MATLAB function firls

for N=12:10:32; %filter order N should be even so magnitude 
at pi is 0

h=firls(N,[0 1],[1 1],'hilbert');

[H f]=freqz(h,1);

subplot(3,1,2);

plot(fh/pi,abs(H)); hold on;

end

title('Hilbert transform FIR filter magnitude response using 
firls');

%Design using the remez function

for N=12:10:32; %filter order N should be even so magnitude 
at pi is 0

h=remez(N,[0 1],[1 1],'hilbert');

[H f]=freqz(h,1);

subplot(3,1,3);

plot(fh/pi,abs(H)); hold on;

end

title('Hilbert transform FIR filter magnitude response using 
remez')

xlabel('Frequency in pi units');



640 Discrete Systems and Digital Signal Processing with MATLAB

The results are shown in Figure 11.27.

EOCE 11.15

Let c be the cutoff frequency of a lowpass filter. If the same c is also the
cutoff frequency of a highpass filter, then in the frequency domain we can
write the frequency response of the lowpass filter, Hlp(ej ), and the frequency
response of the highpass filter, Hhp(ej ), according to the relation

Hlp(ej ) + (11.79)

If we inverse transform Equation (11.79) we get 

hlp(n) + (11.80)

Similarly for the bandpass and the bandstop FIR filters with the same u and
l we have

hbp(ej ) + (11.81)

FIGURE 11.27 Plots for EOCE 11.14.
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Taking the inverse transform of Equation (11.81), we get the relation 

hbp(n) + (11.82)

If the stopband edge frequencies of a stopband filter are at and , then
the following relation is also true

(11.83)

1. Use the MATLAB function fir1 to plot the highpass filter magnitude
response with c =.5 derived from the lowpass IIR filter.

2. Use the MATLAB function fir1 to plot the stopband filter magnitude
response derived from the lowpass FIR filter. The stop edges are at

l =.4 and u =.8 .
3. Use the MATLAB function fir1 to plot the bandpass filter frequency

response derived from the lowpass FIR filter. The pass edges are at
=.4 and u = .8 .

Solution

1. We will use n = 64 to complete the design. The MATLAB script follows.
The plots are shown in Figure 11.28.

FIGURE 11.28 Plots for EOCE 11.15.
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n=64;

hlp=fir1(n,.5);

hap=fir1(n,1-eps);%allpass filter. Avoid division by zero

hhp=hap-hlp;

[Hap fap]=freqz(hap,1);

[Hlp flp]=freqz(hlp,1);

[Hhp, fhp]=freqz(hhp,1);

plot(flp/pi,abs(Hlp)); hold on;

plot(fhp/pi, abs(Hhp),'*');

title('Highpass from Lowpass FIR filter: N=64, Cutoff is 
0.5pi');

xlabel('Frequency in pi units');

legend('Lowpass','Highpass',0);

2. We will use n = 64 to complete the design. The MATLAB script
follows. The plots are shown in Figure 11.29.

wc1=.4; wc2=.8;

n=64;

hlpl=fir1(n,.4);

hlpu=fir1(n,.8);

FIGURE 11.29 Plots for EOCE 11.15.
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hap=fir1(n,1-eps);%avoid division by zero

hsb=hlpl-hlpu + hap;

[Hlpl flpl]=freqz(hlpl,1,100); %for not to condense the 
spectra

[Hlpu flpu]=freqz(hlpu,1,100);

[Hsb, fsb]=freqz(hsb,1,100);

plot(flpl/pi,abs(Hlpl)); hold on;

plot(flpu/pi, abs(Hlpu),'*');

plot(fsb/pi, abs(Hsb),'d');

title('Stopband from Lowpass FIR filter: N=64, Cutoff is 
[.4pi .8pi]');

xlabel('Frequency in pi units');

legend('Lowpass: Cutoff=.4pi','Lowpass: cutoff=.8pi','
Stopband: [.4pi .8pi]',0);

3. We will use n = 64 to complete the design. The MATLAB script follows.
The plots are shown in Figure 11.30. 

wc1=.4; wc2=.8;

n=64;

hlpl=fir1(n,.4);

FIGURE 11.30 Plots for EOCE 11.15.
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hlpu=fir1(n,.8);

hpb=hlpu-hlpl;

[Hlpl flpl]=freqz(hlpl,1,100); %for not to condense the 
spectra

[Hlpu flpu]=freqz(hlpu,1,100);

[Hpb, fpb]=freqz(hpb,1,150);

plot(flpl/pi,abs(Hlpl)); hold on;

plot(flpu/pi, abs(Hlpu),'*');

plot(fpb/pi, abs(Hpb),'d');

title('Passband from Lowpass FIR filter: N=64, Cutoff is 
[.4pi .8pi]');

xlabel('Frequency in pi units');

legend('Lowpass: Cutoff=.4pi','Lowpass: cutoff=.8pi','
Passband: [.4pi .8pi]',0);

11.9 End of Chapter Problems

EOCP 11.1 

Consider the following difference equations

1.

2.

3.

4.

5.

Find the impulse response h(n) for all the filters above and plot their fre-
quency responses using the function freqz and the fft. Compare the
results.

EOCP 11.2

Consider the following continuous signals

1. + sin(100t)
2.
3.

Design a lowpass digital filter to filter out the sinusoidal term with the
highest frequency in each input signal above. Use different windows in the

y n x n x n x n x n x n( ) ( ) ( ) ( ) ( ) ( )1 2 3 4

y n x n x n x n x n x n( ) ( ) ( ) ( ) ( ) ( )1
2

1
21 2 3 4

y n x n x n x n x n x n( ) ( ) ( ) ( ) ( ) ( )1 2 3 41
2

1
2

y n x n x n x n( ) ( ) ( ) ( )2 1 3 2

y n x n x n x n x n x n( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 4

x t t( ) cos( )2 10
x t t( ) cos( )10
x t t t( ) cos( ) sin( )100 1000
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design. Comment on your answers and the resulting plots. Do not use
MATLAB filter design functions.

EOCP 11.3

Consider the analogue signals

1.
2.
3.

We are interested in passing the highest frequency in the input signals given.
Design a filter that can do that. Use different windows and compare results.
Do not use MATLAB filter design functions.

EOCP 11.4

Consider the following analogue signals

1.
2.
3.

Design a filter that will suppress the intermediate frequency and pass the
other two in the input signals above. Again, use different windows and you
may increase the order of the filter in some cases to eliminate some frequen-
cies if they are very close. Do not use MATLAB filter design functions.

EOCP 11.5

Consider the following analogue signals

1.
2.
3.

Design a filter that will suppress the highest and the lowest frequencies and
pass the one in between in the input signals above. Again, use different
windows and you may increase the order of the filter in some cases to
eliminate some frequencies if they are very close. Do not use MATLAB filter
design functions.

EOCP 11.6

Repeat EOCP 11.2 by using the MATLAB filter design functions.

x t t t t( ) cos( ) sin( ) sin( )100 1000 500
x t t t( ) cos( ) sin( )10 150 1050
x t t t t( ) cos( ) sin( ) sin( )10000 400

x t t t t( ) cos( / ) sin( / ) sin( / )5 2 10 3 5 4
x t t t( ) cos( ) sin( )10 150 700
x t t t t( ) cos( ) sin( ) sin( )200 1020 400

x t t t t( ) cos( / ) sin( / ) sin( / )5 7 1 3 5 4
x t t t( ) cos( ) sin( )1 140 70
x t t t t( ) cos( ) sin( / ) sin( )200 3 4 400
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EOCP 11.7

Repeat EOCP 11.3 by using the MATLAB filter design functions.

EOCP 11.8

Repeat EOCP 11.4 by using the MATLAB filter design functions.

EOCP 11.9

Repeat EOCP 11.5 by using the MATLAB filter design functions.

EOCP 11.10

We are interested in removing the unwanted frequencies 50 Hz, 100 Hz and
150 Hz from the continuous signal x(t).

1. Design a digital filter that will eliminate these frequencies. Assume
that the highest frequency in x(t) is 1000 Hz.

2. Demonstrate by using a sample input that the filter is working.

EOCP 11.11

Consider the following IIR digital filters

1.

2.

3.

4.

5.

Derive an FIR digital filter to approximate the digital IIR filter. Comment on
the results. 

EOCP 11.12

Consider the following digital filter magnitude responses shown in Figure
11.31 through Figure 11.35. Use the frequency sampling method to design
an FIR lowpass filter to approximation the magnitude response of these IIR
filters.

H z
z

z
( )

1
1
8

2

H z
z z

( )
1
3
4

1
8

2

H z
z

z z
( )

2

2 5 2

H z
z z

z z
( )

2

2

1
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1
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H z
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FIGURE 11.31 Filter for EOCP 11.12.

FIGURE 11.32 Filter for EOCP 11.12.

FIGURE 11.33 Filter for EOCP 11.12.

FIGURE 11.34 Filter for EOCP 11.12.

FIGURE 11.35 Filter for EOCP 11.12.
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EOCP 11.13

We are interested in removing the frequencies that are higher than 115 kHz
from the analogue signal x(t). Design a digital filter to accomplish that. Use
a sampling frequency of 500 kHz. Plot the results and use different windows.

EOCP 11.14

We wish to pass the range of frequency in the analogue
signal x(t). Suppose that the highest frequency is x(t) in 100 kHz. Design a
bandpass digital filter to do just that. Use different windows and plot results.

EOCP 11.15

Use MATLAB to design a lowpass filter of order 32 that will pass frequencies
from 0 to 1 kHz with unity magnitude. We expect zero magnitude for other
frequencies. Assume that the highest frequency coming to this filter is
10 kHz. Use the functions fir1, firls and remez for the design. Use the
Blackman and the Hanning windows. Plot the results.

EOCP 11.16

We are interested in designing a bandstop FIR filter with edge frequencies
at 0.1 and 0.3 . The gain in the passbands is three and in the stopband is
zero. Use the functions fir1, firls and remez for the design. Use the
Hamming and rectangular windows and plot the results. 

EOCP 11.17

Design an ideal differentiator using the remez function from MATLAB. Com-
pare it with the formula derived in the chapter. Plot the magnitude responses.

EOCP 11.18

1. Use MATLAB to plot the highpass filter magnitude response with c =
0.2 derived from the lowpass IIR filter.

2. Use MATLAB to plot the stopband filter magnitude response derived
from the lowpass FIR filter. The stop edges are at l = 0.2 and u =
0.6 .

3. Use MATLAB to plot the bandpass filter frequency response derived
from the lowpass FIR filter. The pass edges are at l = 0.2 and u =
0.8 .

4. Use MATLAB to plot the lowpass filter frequency response derived
from the highpass FIR filter. Use a cutoff frequency of c = 0.5 .

5. Use MATLAB to plot the highpass filter frequency response derived
from the lowpass FIR filter. Use a cutoff frequency of c = 0.5 .

40 80kHz kHzf
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Index

A

Active circuit elements, 422
Active filters, 422
AC voltage source, 31
A/D, see Analogue-to-digital conversion
Algebra, easy-to-manipulate, 165
Algebraic equations, 115
Aliasing, 529, 531, 532, 534

prevention of, 617
sampling without, 493

Amplitude scaling, 20
Analogue-to-digital (A/D) conversion, 488
Analogue filter design, 421–485

analogue filter design using MATLAB, 438–442
analogue frequency transformation, 442
analogue prototype design functions, 440
complete classical IIR filter design, 

440–442
order estimation functions, 439

analogue filter specifications, 422–425
analogue frequency transformation, 437–438
Bessel filters, 434–437
Butterworth filter approximation, 425–428
Chebyshev filters, 428–433

inverse Chebyshev filter, 431–433
Type I Chebyshev approximation, 

428–431
comparison between analogue filter types, 

447–448
cut-off frequency, 443–447
elliptic filter approximation, 433–434
examples, 449–478
insights, 448–449
limitations, 447
problems, 479–485

Analogue frequency, 159, 437
Analogue prototype

functions, 440, 548
IIR digital filter and, 548, 559, 565, 573

Analogue transformation functions, 549
Anti-aircraft gun, 31
Approximation methods

Bessel filters, 434

Butterworth, 425
Chebyshev Type I, 428
Chebyshev Type II, 428, 431
elliptic, 433
equiripple behavior of, 428
monotonic behavior of, 428

Auto-correlation, 87
definition of, 89, 394
important application of, 395

Auxiliary equation, system, 220

B

Backward difference transformation, 512, 514
Band-limited signal, 492, 493
Bandpass filter(s), 439

approximation
Fourier series method, 633
frequency sampling, 633

bode plot, 470
fifth-order, 468
fourth-order, 567
ideal, 601
magnitude response for, 601
transfer functions of, 570
transforming lowpass filter to, 542

Bandstop cut-off frequencies, 574
Bandstop filter (BSF), 423, 439

center frequency, 475
ideal, 601
magnitude response, 471, 601
sixth-order, 574
transforming lowpass filter to, 542

Bessel filter(s), 434
design functions, 441
frequency response of, 436
phase response, 436
transfer function, 435

BIBO system, see Bounded-input bounded-output 
system

Bilateral z-transform, 195
Bilinear transformation, 506, 512, 514

coefficients, 569
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filter design using, 545
impulse invariance transformation vs., 553
magnitude response, 554, 560
pole obtained using, 547

Binary code, 488, 490
Blackman window, 603, 616
Block diagram, 80, 81, 83, 298

difference equation and, 81, 82
drawing of from state and output 

equation, 342
representation, 112, 113, 115, 210, 

334, 335, 337
linear discrete systems, 78
MATLAB scripts, 359
states matrices, 353

state-space representation, 336
Block filtering, 393, 413
Bounded-input bounded-output (BIBO) 

system, 63
BPF, see Passband filter
Broadcast signals, 329
BSF, see Bandstop filter
Butterworth filter(s), 423, 460

approximation, 425
characteristics, 453
cut-off frequency, 440, 553
design of, 577, 582
magnitude response of, 454, 463, 551
monotonicity in passband, 446
nonlinear phase, 613
pole zero plot of, 465

C

Capacitor, charging and discharging of, 1
CAT scan operation, 487
Causal filters, difference equation, 594
Causal systems, definition of, 61
Center frequency, bandstop filter, 475
Characteristic equation, 76, 102, 104, 110

characteristic root of, 123
coefficients, 77
difference equation representation, 330
roots of, 75

Chebyshev filter(s), 428, 462
cut-off frequency for, 430
design functions, 441
inverse, 431
magnitude response of, 432, 463, 464
nonlinear phase, 613
pole locations, 433
pole zero plot of, 466
transfer function, 429, 431

Chebyshev Type II approximation, MATLAB 
function, 469

Circle of unity magnitude radius, 200
Circular convolution, 372, 380, 383

definition of, 382
equation, 385
linear convolution and, 396

Comb filter(s)
design of, 607
transfer function of, 624

Command line prompt, 450
Communication channel interference, 329
Complex number(s)

addition, 145
complex conjugate terms and, 230
definition of, 145
division, 146
multiplication, 145
polar to rectangular, 146
rectangular to polar, 146
review of, 143
subtraction, 145
z-transform, 200

Conditional statements, building of using 
analogue circuits, 488

Constant coefficients realization, 595
Continuous filter, cut-off frequency of, 509
Continuous Fourier transform, 528

approximated, 376, 385
discrete Fourier transform and, 375

Continuous frequency, 365
Continuous radian frequency, 10
Continuous signal(s), 1, 2, 489

analogue frequency of, 159
binary code representation, 488
discretized, 24
Fourier series approximation, 387
frequency domain, 496
MATLAB simulated, 528
process of discretizing, 488
radar station, 487
sampling and recovery of, 496

Continuous system
differential equation, 522
impulse response, 527
input-output relationship, 507
oscillatory plot of, 523
partial fraction expansion, 525
plots, 519
state-space, 524
transfer functions, 527

Continuous value, 503
Continuous wave, example of, 1
Control systems, 488
Convergence
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conditions, 161
z-transform, 200

Convolution, 64
circular, 372, 380, 383

definition of, 382
equation, 385
linear convolution and, 396

equation, 66, 67, 104, 210
frequency response, 600
linear, 381, 412

equation, 382
output using, 413

property, 224
Fourier transform, 164
z-transform, 254

real-time, 225
result, 96, 381
sum(s), 66, 68, 173

equation, 593
evaluation of output using, 335

z-transform, 210
Correlation, 87

radar signal, 394
signals, discrete Fourier transform, 368

Cross-correlation, 87, 407, 408, 409
equation, 88, 394
important application of, 132

Cross multiplication, 348
Cubic-spline interpolation, 533
Current, continuous signal for, 10
Cut-off frequency(ies), 498, 543

analogue filter, 546
bandstop, 574
Butterworth filter, 440, 553
calculation of, 443
continuous filter, 509
digital filter, 546
first-order circuits, 448
highpass filter, 441, 445, 559, 620
lowpass filter, 445, 640
normalized, 557
use of MATLAB to estimate, 451

D

D/A, see Digital-to-analogue conversion
Data values, distorted, 329
Decimation in time, 379
Defining equation, discrete Fourier transform, 367
Delay elements, 79, 212
Delta signal, 331
Dense spectrum, 412
Derivative operation, discretizing of, 500
DFT, see Discrete Fourier transform

Difference equation, 174
block diagram and, 81, 82
causal, 232, 594
change of coefficients in, 614
delta signal as input, 331
digital FIR filter, 610
equivalent, 502
first-order, 155
general, 106, 123, 155
homogeneous, 69, 70, 101
impulse response, 85
inverse z-transform and, 608
linear, 330
model plots, 355
nonhomogeneous, 73, 86
nonrecursive filters, 594
Nth order, 236
physical systems, 68
representation, 126, 330, 336, 338, 341, 358

cross multiplication, 348
impulse response, 351

solving of using z-transform, 214
state-space representation, 333
step response, 350
systems represented as, 82, 112
unity coefficient, 348
z-transformed, 241, 332

Differentiation property, 223
Differentiator

design of using MATLAB, 637
FIR digital, 612
system, input to, 605
transfer function, 606

Digital-to-analogue (D/A) conversion, 488
Digital filter, 393

analogue to, 549
IIR to FIR, 610
transfer function, 509

Digital frequency, 160, 365, 496
maximum, 630
normalized, 634

Digital passband, normalized, 571
Digital processor, 487
Digital shifter, design of, 609
Discrete Fourier transform (DFT), 366, 507, 

508, 604, 628
approximation using, 400
block filtering with, 412
continuous system, 506
correlation signals for, 368
equation, 366, 377
exact approximation using, 401
frequency index for, 366
inverse, 378
properties of, 372
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with zero padding, 414
Discrete Fourier transform and discrete systems, 

365–419
applications of DFT, 380–395

approximation to coefficients of Fourier 
series, 387–391

approximation to continuous Fourier 
transform, 385–387

block filtering, 393–394
circular convolution, 380–384
correlation, 394–395
linear convolution, 384–385
total energy in signal, 391–393

discrete Fourier transform and finite-duration 
discrete signals, 366–367

exercises, 396–415
fast Fourier transform, 378–380
insights, 395–396

circular convolution and linear 
convolution, 396

DFT points are samples of Fourier 
transform of x(n), 395

DFT same as fft, 395
frequency contents of x(t) in DFT, 

395–396
frequency leakage and DFT, 396
|X(w)|, 396

numerical computation of DFT, 377–378
problems, 415–419
properties of discrete Fourier transform, 

367–373
defining equation, 367–368
DFT linearity, 370–371
DFT symmetry, 368–370
magnitude of DFT, 371
meaning of DFT, 372–373

relation of DFT with Fourier transform of 
discrete signals, 373–377

DFT and continuous Fourier transform of 
x(t), 375–377

DFT and Fourier transform of x(n), 
373–374

DFT and z-transform of x(n), 374–375
Discrete linear systems, ways of representing, 

330–333
block diagram representation, 334
difference equation representation, 330–331
impulse response representation, 331–332
state-space representation, 333–334
z-transform representation, 332–333

Discrete matrix, 506
Discrete periodic signals, Fourier series of, 147
Discrete signal(s), 489

average power in, 28
basic operations, 25–28

addition and subtraction, 25
combined operations, 26–28
modulation, 25
scalar multiplication, 25

bounded, 30
complex periodic, 10
conversion of continuous signal to, 487
decaying exponential, 8
decaying sinusoidal, 12
digitized, 3
even, 21
example of, 2
finite-duration, 366
Fourier transform of, 159, 373, 395
growing exponential, 8, 10
impulse, 6
odd, 21
Parseval’s relation for, 167
periodic, 3, 4
plot of, 143
ramp, 6, 7
real exponential, 7
representation of, 16, 21
shifted, 15
sinusoidal, 7, 9
time constant, 23, 24
time invariance and, 58
time-scaled, 19
total energy in, 28
unbounded, 30
unit step, 4, 5, 198
z-transform of, 199

Discrete system, 55–141
block diagram representation of linear 

discrete systems, 78–81
delay element, 79
multiplier, 79–81
summing/subtracting junction, 79

causal systems, 61–62
convolution, 64–68
correlation, 87–89

autocorrelation, 89
cross-correlation, 87–89

definition of system, 55
difference equations of physical systems, 68
difference equations representing, 350–351
examples, 91–134
frequency response of, 154
from block diagram to difference equation, 

81–82
from difference equation to block diagram, 

82–85
homogeneous difference equation and 

solution, 69–73
case when roots are all different, 71
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case when two roots are complex, 72–73
case when two roots are real and equal, 72

impulse response, 85–87, 151
input and output, 55–56
insights, 90–91

eigenvalues, 90–91
stability and eigenvalues, 91

inverse of system, 62–63
linear discrete systems, 56–58
nonhomogeneous difference equations and 

solution, 73–75
with periodic inputs, 150
problems, 134–141
stability of linear discrete systems, 75–78

stability depending on values of poles, 
75–76

stability from jury test, 76–78
stable system, 63–64
systems with memory, 60–61
time invariance and discrete signals, 58–60

Discrete time
domain, 254
shifting property, Fourier transform, 163

Discrete value, 503
Discretization

formula, 502
interval, 506
methods of, 521
state-space representation, 504

Discrimination parameter, 425, 434
Dynamics matrix, 291

E

Edge frequencies, 635, 641
Eigenvalues, 291, 301
Electrical switch, 31
Electromagnetic signal, 1
Element-by-element multiplication, 28, 41
Elevator system, 55
Elliptic filter(s), 462

approximation, 433
design, 441, 458, 582
magnitude-squared response, 434, 459
nonlinear phase, 613
pole zero plot of, 467
ripples, 562
roll-off characteristics, 448
transfer function of, 433

Ending index, 98
Energy

calculations, 167
discrete signal, 28
finite, 29, 30

signals, cross-correlation equations for, 88
spectrum density, signal, 395
total, 391, 392, 393
use of MATLAB to find total, 34
use of Parseval’s theorem to find, 168

Equation(s)
algebraic, 91, 115
analogue filter, 422
auxiliary, 91, 220
characteristic, 69, 76, 102, 104, 110

characteristic root of, 123
coefficients in, 77
difference equation representation, 330
roots of, 75
system, 220

Chebyshev filter, 431
circular convolution, 385
convolution, 66, 67, 104, 210, 593
cross-correlation, 88, 394
defining, discrete Fourier transform, 367
difference, 174

block diagram and, 81, 82
causal filters, 594
change of coefficients in, 614
delta signal as input, 331
digital FIR filter, 610
equivalent, 502
first-order, 155
general, 106, 123, 155
homogeneous, 69, 70, 101
impulse response, 85
inverse z-transform and, 608
linear, 330
model, 355
nonhomogeneous, 73, 86
nonrecursive filters, 594
Nth order, 236
physical systems, 68
representation, 126, 330, 336, 338, 341, 

345, 348, 358
solving of using z-transform, 214
state-space representation, 333
step response, 350
systems represented as, 82, 112
unity coefficient, 348
z-transformed, 241, 332

discrete Fourier transform, 366, 377
Fourier transform, 164
inverse transform on, 233
linear convolution, 382
matrix state, transfer function calculated 

from, 340
output, 300, 306, 313

in matrix form, 319
z-domain, 314
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simultaneous algebraic, 111
state, 298, 300, 306, 313

discrete state-space approximation, 505
in matrix form, 319, 337
obtaining of by inspection, 339
-space matrix, 299

summation, 604
z-transform, 196, 198, 210

Equiripple linear phase, FIR filter design using, 
612

Exponential signal, MATLAB script to simulate, 37

F

Fast Fourier transform (FFT), 149,378
development of, 379
implementation of in MATLAB, 380

FFT, see Fast Fourier transform
Filter 

active, 422
analogue

prototype functions, 440
specifications, 425
zero-pole plot, 423

average, frequency response, 593
bandpass, 439

bode plot, 470
fifth-order, 468
fourth-order, 567
ideal, 601
magnitude response for, 601
transfer functions of, 570

bandstop, 423, 439
center frequency, 475
ideal, 601
magnitude response, 471, 601
sixth-order, 574
transformed, 471, 542

Bessel, 434
design functions, 441
frequency response of, 436
group delay, 435, 436
phase response, 436
transfer function, 435

Butterworth, 423, 460
approximation, 425
characteristics, 453
cut-off frequency, 440, 553
design of, 577, 582
magnitude response of, 454, 463, 551
monotonicity in passband, 446
nonlinear phase, 613
pole zero plot of, 465

causal, difference equation, 594

Chebyshev, 428, 462
cut-off frequency for, 430
design functions, 441
equation, 431
inverse, 431
magnitude response of, 432, 463, 464
nonlinear phase, 613
pole locations, 433
pole zero plot of, 466

circuit elements, 422
coefficients, 619
comb

digital, 607
transfer function of, 624

continuous, cut-off frequency of, 509
design

direct, 549, 550, 555, 575, 576
functions, 441
IIR, 440, 610
indirect method, 575
limitations in, 447
transfer function, 509
transformation from analogue to, 549
use of windows in, 602

elements used in building of, 422
elliptic, 462

approximation, 433
design, 441, 458, 582
magnitude response of, 434, 459, 464
nonlinear phase, 613
pole zero plot of, 467
ripples, 562
roll-off characteristics, 448
transfer function of, 433

function, initial conditions for, 236
group delay of, 423
high gain, 448
highpass, 423

analogue, cut-off frequency, 441
cut-off frequency, 559, 620
ideal, 601
magnitude response for, 583, 601

Hilbert transform, 609, 612, 639
impulse response, 593
linear phase, 422
low gain, 448
lowpass, 421, 423, 424

analogue Bessel, 435
cutoff frequency of, 445, 640
ideal, 498, 599
impulse response, 499
limitations in design of, 446
maximum gain of unity, 472
peak passband ripple, 449
specifications, 424
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transforming, 542
use of MATLAB to design, 634

magnitude response, 431, 469
noncausal, 608
nonrecursive, difference equation, 594
order

estimated, 433
required, 430

output, delay in, 597
parameters specifying, 430
passive, 422
phase shift of, 423
problems of designing, 422
prototype, 438
sixth-order, 554
specifications, 439, 446, 472
types, comparison between analogue, 446

Final value theorem, 219
Finite duration signals, 87, 96
Finite impulse response (FIR) digital filters, 

591–648
definition, 591
design based on Fourier series, 598–609

design of comb FIR filters, 607–608
design of digital FIR differentiator, 

605–607
design of digital shifter, 609
ideal lowpass FIR filter design, 599–601
other ideal digital FIR filters, 601–602
window giving optimal h(n), 604–605
windows used in design of digital FIR 

filter, 602–604
examples, 614–644
FIR digital design using MATLAB, 611–613

design using equiripple linear phase, 612
design using least-squared error, 612
design using windows, 611–612
obtaining frequency response, 612–613

FIR filter design, 594–598
linear phase of FIR filters, 597–598
stability of FIR filters, 596–597

frequency sampling and FIR filter design, 
610–611

from IIR to FIR digital filters, 610
insights, 613–614

comparison with IIR filters, 613
different method used in FIR filter design, 

613–614
motivating example, 591–594
problems, 644–648

FIR digital filters, see Finite impulse response 
digital filters

First-order circuits, cut-off frequency for, 448
First-order difference equation, 155
First-order systems, output for, 90

Forward difference transformation, 512, 514
Fourier, Joseph, 143
Fourier series

approximation, 387
coefficients, 148, 387, 389

approximation to, 391
finding of using MATLAB, 390

filter design based on, 598
magnitude coefficients, 149

Fourier series and Fourier transform of discrete 
signals, 143–194

convergence conditions, 161
discrete system with periodic inputs, 150–154
examples, 173–188
Fourier series of discrete periodic signals, 

147–149
Fourier transform of discrete signals, 159–161
frequency response of discrete systems, 

154–159
periodicity property, 157
symmetry property, 157–159

insights, 172–173
ease in analysis and design, 172–173
sinusoidal analysis, 173 

numerical evaluation of Fourier transform of 
discrete signals, 168–172

Parseval’s relation and energy calculations, 
167–168

problems, 189–194
properties of Fourier transform of discrete 

signals, 162–167
convolution property, 164–167 
discrete-time shifting property, 163
frequency shifting property, 163
linearity property, 162
periodicity property, 162
reflection property, 163–164

review of complex numbers, 143–147
addition, 145
definition, 145
division, 146
from polar to rectangular, 146–147
from rectangular to polar, 146
multiplication, 145–146
subtraction, 145

Fourier transform
approximation to magnitude of, 397
calculation of, 533
continuous, 375, 376, 528
discrete, 159, 366, 373
ease in analysis and design, 172
fast, 378

development of, 379
implementation of in MATLAB, 380

MATLAB simulated, 529
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pairs, 166
properties, 166
sampled signal, 507

Frequency(ies)
analogue, 159, 507
axis, 400
center, bandstop filter, 475
components

signal, 149, 592
use of DFT to find, 390

continuous, 365
cut-off, 498, 543

analogue filter, 546
bandstop, 574
Butterworth filter, 440, 553
calculation of, 443
continuous filter, 509
digital filter, 546
highpass filter, 445, 559, 620
lowpass filter, 445, 640
normalized, 557

digital, 160, 365, 496, 511
domain(s)

ambiguity in, 492
continuous signal, 496
convolution in, 164, 165
discrete signal in, 144
representation, 195, 497
sampling operation in, 490
signal in, 365

edge, 635, 641
index, 366, 372
input signal, 572
leakage, 396
noise at high, 621
output, 173
pairs, 638
passband edge, 433
passing, 158
points, 637
radian, 497, 498, 624
rejecting, 158
relationship between analogue and 

digital, 542
resolution, 395, 407, 415
response, 170, 171, 172

Bessel filter, 436
comparison of, 595
computations, 451, 452
convolution between, 600
defined, 155
discrete systems, 154
equation used to find, 155
function, 157, 158
general, 156

how to obtain, 612
magnitude of, 178, 186
MATLAB, 175, 594, 623
periodicity property, 157
properties of, 157
simplified, 608
symmetry property, 157

sampling, 372, 491, 497, 632
bandpass filter approximation using, 633
FIR filter design and, 610–611

shifting property, Fourier transform, 163
sinusoidal wave of, 492
spacing, 170
spectrum, input, 403
transformation(s), 541, 543

analogue, 437
functions, 442
lowpass filter, 542

value, 154
Fundamental period, 13, 14, 15

G

Gamma function, 435
Geometric series sum, 67, 105, 148, 160, 200
Grid interval, 529
Group delay, Bessel filter, 435, 436

H

Hamming window, 396, 603, 616, 630
Hanning window, 396, 603

approximation using, 402
magnitude frequency response plot of, 616

Highpass filter (HPF), 423
cut-off frequency, 559, 620
ideal, 601
magnitude response for, 583, 601

Hilbert transform filter, 609, 612, 639
Homogeneous solution, 68

complex roots in, 72
distinct roots in, 71
equal roots in, 72

HPF, see Highpass filter

I

Identity matrix, 289
IIR filter design, see Infinite impulse response 

filter design
Impulse(s)
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discrete signal, 6
representing discrete signal using, 16
shifted, 16
sum of, 18

Impulse invariance
filter design using, 542
transformation, 512, 513, 515

bilinear transformation vs., 553
IIR digital filters based on, 545
magnitude response, 554, 560
numerator and denominator 

coefficients, 555
Impulse response, 85, 100, 108, 114, 241, 

247, 593
calculation of, 119
causal, 216
continuous system, 527
convolution between step input signal and, 

341, 345
defined, 174, 405
difference equation representation, 351
discrete system, 124, 177
final, 123
linear system, 403
lowpass filter, 499
model, 350, 355
plotting of actual, 134
representation, 112, 331, 338, 341, 348, 358
samples, FIR filter, 610
solution for, 105
state-space representation, 355–356
use of MATLAB to find, 105, 113, 116, 119, 

120, 351
use of z-transform to find, 215

Impulse signal, 31, 35, 111
discrete signals using, 18
Fourier transform of, 161
MATLAB-generated, 37
response to, 65
shifted, 65

Infinite impulse response (IIR) filter design, 
541–589

design process, 542–548
bilinear transform method, 545–548
impulse invariance method, 542–545

examples, 552–584
IIR filter design using MATLAB, 548–550

direct design, 549–550
from analogue prototype to IIR digital 

filter, 548–549
insights, 550–552

choice of sampling interval Ts, 552
difficulty in designing IIR digital filters in 

z-domain, 550–552
using impulse invariance method, 552

problems, 584–589
Infinite series, 161
Initial condition vector, 237, 239, 311
Initial index, 41
Initial-value theorem, 219, 220, 248
Input

divided, 178
frequency, 154

frequency response at, 186
magnitude of, 182
spectrum of, 403

magnitude of, 154, 173
matrix, 504
noise, auto-correlation of, 132
–output relation, 56, 60, 68, 508
particular solutions for selected, 75
phase shift of, 178
signal(s), 55, 57

change of magnitude of, 393
frequencies, 172, 572

step, 240
vector, 291, 504

Inspection
obtaining state equations by, 339
state-space representation by, 317

Interchange of summation property, 164
Inverse Chebyshev filter, 431
Inverse transform, 232, 298

calculation of, 404
use of MATLAB to find, 315

Inverse z-transform, 203, 335
difference equation and, 608
long division, 206
partial fraction expansion, 203

J

Jacobian elliptic function, 433
Jury test, 76, 78

K

Kaiser window, 603, 604

L

Laplace domain, 472, 506, 510
Laplace transform, 423, 519

inverse, 524
state vector, 520
transition matrix, 520
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Lindex, 42, 43
Linear convolution, 381, 412

equation, 382
output using, 413

Linear discrete systems, 56
block diagram representation of, 78
stability of, 75

Linearity property
discrete Fourier transform, 371
Fourier transform, 162
z-transform, 207, 226

Linear system(s)
impulse response, 403
representation, 56
types of, 365

Linear time-invariant (LTI) model, 438
Linear time-invariant system(s), 90

analysis and design of, 329
multiple-inputs multiple-outputs in, 346
output of, 173
transfer function of, 220, 329

Linear time-variant system, 153
Load resistor, 31
Long division, 206, 216, 227, 610, 627
Lowpass filter (LPF), 421, 423, 424

analogue Bessel, 435
cut-off frequency for, 445, 640
ideal, 498, 599
impulse response, 499
limitations in design of, 446
maximum gain of unity, 472
peak passband ripple, 449
prototype, 438
specifications, 424
transforming, 542
use of MATLAB to design, 634

LPF, see Lowpass filter
LTI model, see Linear time-invariant model

M

Magnitude
plot, 158, 159, 160
requirements, design by satisfying, 541
response, 158, 427, 429

Butterworth filter, 454, 551
characteristic, 434
Chebyshev filter, 432
elliptic filter, 434, 459
highpass filter, 583

MATLAB

analogue filter design using, 438
approximation to continuous Fourier 

transform, 385

calculation of average power using, 33
complex poles, 517
control toolbox, 469
cut-off frequencies, 451
data entered as row vectors in, 171
default scaling, 612
design of ideal differentiator using, 637
DFT equation implemented on digital 

computer using, 377
digital frequencies using, 569, 576
direct design method, 557, 563
filter function, 124
finding of Fourier series coefficients 

using, 390
FIR digital design using, 611
frequency response, 623
function, 225, 227

Chebyshev Type II approximation, 469
direct design, 550
general form of, 42
roots, 76
use of to find step response, 347, 348
zeros, 35

-generated exponential decaying signal, 38
-generated impulse signal, 37
-generated sinusoidal signal, 39
-generated step signal, 35, 36
IIR filter design using, 548
implementation of fast Fourier transform 

in, 380
impulse invariance transformation, 544
impulse response, 105, 113, 116, 119, 120
inverse transform, 315
limitations in filter design using, 447
lowpass filter design, 634
magnitude of frequency response, 175
partial fraction expansion using, 303
phase response displayed by, 450
random signal generation, 409
reconstruction implementations, 533
recursion, 303, 308
script(s), 98, 180, 182

block diagram representation, 359
discrete input signal, 580
exponential signal, 37
frequency responses, 594
Hanning windows, 402
IIR digital bandpass filters, 571–572
IIR digital bandstop filters, 577
inverse discrete Fourier transform, 378
response plotting due to step input, 240
state-space matrix system, 347
transfer function representation, 357

shifting function, 49
signal processing toolbox, 438, 439
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simulated continuous signal, 528
simulated Fourier transform, 529
spectral energy estimate, 410
statement, 561
step response, 311, 320
system identification toolbox, 438
system stability, 311
time-shifting property of Fourier 

transform, 179
total energy, 392, 393
transfer function, 301
transformation, 565
transition matrix entries, 304
windows implemented in, 396

Matrix state equations, transfer function 
calculated from, 340

Mechanical systems, modeling of, 329
Medical imaging, 487
Memory, systems with, 60, 61
Mixed system, 488
Model(s)

difference equation, 355, 361
impulse response, 350, 355, 361
linear time-invariant, 438
state-space, 346, 355, 361
transfer function, 350

Modeling and representation of discrete linear 
systems, 329–364

exercises, 346–361
poles considering different outputs within 

same system, 346
problems, 361–364
ways of representing discrete linear systems, 

330–346
block diagram to other representations, 

343–346
difference equation to other 

representations, 330–334
impulse response to other representations, 

335–337
state-space to other representations, 

340–342
transfer function to other representations, 

337–340
Modulation, 25
Multiplication, term-by-term, 384
Multiplier element, 79

N

Noise components, preventing amplification 
of, 621

Noncausal filter, 608
Noncausal system, 62

Nonhomogeneous difference equations, 73
Nonlinear system, 57, 58
Nonrecursive system, 591, 614
Nyquist criteria, 400
Nyquist rate, 392, 401, 403, 529, 533, 607

O

Order estimation functions, 439
Orthogonality condition, 148
Output

continuous time system, 506
discrete Fourier transform of, 506
equation, 300, 306, 313

in matrix form, 319
z-domain, 314

frequency, 173
initial condition for, 501
matrix, 504
one-dimensional, 303
values, use of z-transform method to find, 303
vector, 334
voltage, at low frequencies, 474

P

Parseval’s Theorem, 167, 605
Partial fraction expansion, 231, 242, 253, 303

analytical solutions, 321
continuous system, 524
impulse response representation, 338
inverse z-transform, 203
transfer function representation, 228, 318, 357
z-transform representation, 332

Particular solution, 68
Passband

bandwidth, 446
edge frequency, 433
filter (BPF), 423
ripple, 425, 429

Passive circuit elements, 422, 475
Passive filters, 422
Periodicity property

Fourier transform, 162
frequency response, 157

Periodic signal
approximated, 148
average power in, 389

Phase
characteristic, nonlinear, 434
shift, 153

Physical systems, difference equations of, 68
Polar form, complex number written in, 146, 200
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Pole(s)
locations, Chebyshev filter, 433
phase of, 247
system, 220, 252
transient shape and, 346

Power
average, periodic signal, 389
calculation of using MATLAB, 33
signals, 30, 89

Proportional-integral-derivative control, design 
of, 605

Prototype filters, 438
Pulse

definition, 405
signal, 16

Q

Quality factor, 446, 448

R

Radar
antenna, 31
signal correlation, 394
station, continuous signal, 487

Radian frequency, 153, 497, 498, 624
Ramp signal, 6, 7, 31
Random signal

dc component, 577
use of MATLAB to generate, 409

Rational number, 14, 15
Real exponential discrete signal, 7
Real number, 14, 23
Real-time domain, ambiguity in, 490
Record length, 407, 415
Rectangular window, 603, 630

filter design using, 618
magnitude frequency response plot of, 616

Recursive system, 614
Reflected signal, 18, 20
Reflection property, Fourier transform, 163
Region of convergence (ROC), 201, 217, 218, 253
Rindex, 42, 43
RLC series circuit, 448
ROC, see Region of convergence
Roots

magnitude of, 314
symmetry in, 552

S

Sample-and-hold process, 489
Sampling

filtering before, 494
frequency, 372, 491, 497, 531, 565, 

610–611, 632
ideal, 498
interval, 10, 55, 149, 196, 388, 528, 577

changing of, 521–522
choice of, 515, 552

minimum, 572
operation, 490
period, 2, 147–148, 542, 557, 606
rate, Nyquist, 392
theorem, 493, 495
time, transition matrix at, 506
uniform, 501

Scaling factor, 25, 530
s-domain transfer function, 547
Second-order system, 221

initial conditions, 502
output for, 90

Selectivity parameter, 434
Series connection, 317
Shifting property, z-transform, 207
Shift operation, importance of, 15–16
Signal(s)

average value of, 389
band-limited, 492, 493
broadcast, 329
continuous, 1, 2, 489

analogue frequency of, 159
binary code representation, 488
discretized, 24
exponential, 23, 24
Fourier series approximation, 387
frequency domain, 496
MATLAB simulated, 528
process of discretizing, 488
processing of, 2
radar station, 487
sampled, 3
sampling and recovery of, 496

correlation, discrete Fourier transform, 368
delta, 331
discrete, 489

average power in, 28
basic operations, 25–28
bounded, 30
complex periodic, 10
conversion of continuous signal to, 487
decaying exponential, 8
decaying sinusoidal, 12
digitized, 3
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even, 21
example of, 2
finite-duration, 366
Fourier transform and, 159, 373, 395
growing exponential, 8, 10
impulse, 6
odd, 21
Parseval’s relation for, 167
periodic, Fourier series of, 147
plot of, 143
ramp, 6, 7
real exponential, 7
representation of, 16, 21
shifted, 15
sinusoidal, 7, 9, 144
time constant, 23, 24
time invariance and, 58
time-scaled, 19
total energy in, 28
unbounded, 30
unit step, 4, 5, 198
z-transform of, 199

electromagnetic, 1
energy, 167

cross-correlation equations for, 88
spectrum density of, 395

exponential
decaying, MATLAB-generated, 38
MATLAB script to simulate, 37

finite duration, 87, 96, 374
Fourier series coefficients, 389
Fourier transform of, 365
frequency components in, 149, 592
frequency domain, 365
impulse, 31, 35, 111

discrete signals using, 18
Fourier transform of, 161
MATLAB-generated, 37
response to, 65
shifted, 65

input, 55, 57
change of magnitude of, 393
frequencies, 172, 572
MATLAB script, 580

noise associated with, 494
noncausal, 217
periodic, 39, 147

approximated, 148
average power in, 389

power, 30, 89
processing of in real-life situations, 487
processing toolbox, MATLAB, 438, 439
pulse, 16
radar, correlation, 394
ramp, 31

random
dc component, 577
use of MATLAB to generate, 409

reconstructed, 531
reflected, 18, 20, 163
representation of in real life, 31
sampled, 405, 507
sampling interval for, 196
scaled, 28
shifted step, 16
sinusoidal, 14, 31, 173

decaying, 12
exponentially modulated, 10
growing, 12
irregularly decaying modulated, 12
irregularly growing modulated, 12
MATLAB-generated, 39
MATLAB script to simulate, 37
model, 329

step, 31, 161
input, convolution between impulse 

response and, 341, 345
MATLAB-generated, 35, 36

total energy in, 391, 392, 393
z-transform of, 195, 221–222

Signal representation, 1–53
amplitude scaling, 20–21
basic operations on discrete signals, 25–28

addition and subtraction, 25 
combined operations, 26–28
modulation, 25
scalar multiplication, 25

bounded and unbounded discrete signals, 30
complex periodic discrete signal, 11–15
discrete signal time constant, 23–25
energy and power discrete signals, 28–30
even and off discrete signal, 21–23
examples, 32–50
exponentially modulated sinusoidal signal, 11
impulse discrete signal, 6
periodic and nonperiodic discrete signals, 3–4
problems, 50–53
ramp discrete signal, 6
real exponential discrete signal, 7
reason for discretizing continuous systems, 

2–3
reflection operation, 18
representing discrete signal using impulses, 

16–18
shifting operation, 15–16
signals in real world, 30–32

impulse signal, 31 
other signals, 32
ramp signal, 31–32
sinusoidal signal, 31
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step signal, 31
sinusoidal discrete signal, 7–11
time scaling, 19–20
unit step discrete signal, 4–5

Sindex, 42
Sinusoidal discrete signal, 7, 9
Sinusoidal input signal, 173
Sinusoidal response, 108
Sinusoidal signal, 14, 31

decaying, 12
exponentially modulated, 10
growing, 12
irregularly decaying modulated, 12
irregularly growing modulated, 12
MATLAB-generated, 39
MATLAB script to simulate, 37
model, 329

Sixth-order filter, 554
Spectral energy estimate, calculation of, 410
Square-magnitude response expression, 431
Stable system, 63
Starting index, 41, 98
State equation, 298, 300, 306, 313

discrete state-space approximation, 505
in matrix form, 319
obtaining of by inspection, 339

State matrix equations, 337
State-space and discrete systems, 265–328

examples, 292–322
general representation of systems in state-

space, 270–283
block diagram to state-space, 273–275
nonrecursive systems, 272–273
recursive systems, 270–272
transfer function H(z) to state-space, 

276–283
general solution of state equation in real-time, 

284–285
poles and stability, 291–292
problems, 322–328
properties of A″ and evaluation, 285–289
review on matrix algebra, 266–270

adding two matrices, 267
definition, general terms, and 

notations, 266
determinant of two-by-two matrix, 268
diagonal form of matrix, 269
eigenvalues of matrix, 269
eigenvectors of matrix, 269–270
identity matrix, 266–267
inverse of matrix, 268
matrix multiplication, 269
multiplying matrix by constant, 267
subtracting two matrices, 267
transpose of matrix, 268

solution of state-space equations in z-domain, 
283–284

transformations for state-space 
representations, 289–291

State-space matrix system, MATLAB script, 347
State-space model, 346, 355
State-space representation, 310, 343

discretization of, 504
impulse response, 355–356
transformations for, 289

State-space system matrices, 352
State values, use of z-transform method 

to find, 303
State vector, 289, 306, 504

Laplace transform, 520
solution, 285, 504, 505
terms of, 302

Steady-state response, 150, 153, 154, 185
Step input, 240

response plot due to, 240
signal, convolution between impulse response 

and, 341, 345
Step invariance transformation, 512, 513
Step response, 108, 241, 242, 312

difference equation, 350
impulse response model, 350
state-space model, 350
transfer function model, 350
use of MATLAB to find, 311, 320, 347, 348

Step signal, 31, 35, 36, 161
Stopband

attenuation, minimum, 425
ripple, maximum, 424
specifications, 430

Summation equation, 604
Summing junction, 79, 81–82
Superposition, 178

principle, 151
response due to inputs using, 316

Symmetry property, frequency response, 157
System

auxiliary equation of, 220
bounded-input bounded-output, 63
causal, 61, 608
characteristic equation, 69, 70, 123, 220
continuous, 506

differential equation, 522
impulse response, 527
input-output relationship, 507
oscillatory plot of, 523
partial fraction expansion, 525
plots, 519
state-space, 524
transfer functions, 527

control, 488
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definition of, 55
discrete

difference equations representing, 
350–351

Fourier transform, input to, 371
with periodic inputs, 150

eigenvalues, 91, 221, 290, 301
first-order, 80, 90
frequency response for, 156, 184
function, numerator and denominator 

coefficients of, 438
highpass, 478
identification toolbox, MATLAB, 438
impulse response for, 67, 85, 155
initial condition vector, 311
inverse of, 62
linear, 75, 78, 173, 365
linear time-variant, 153

analysis and design of, 329
multiple-inputs multiple-outputs in, 346
output of, 173
system, 90, 329
transfer function of, 220

lowpass, 478
magnitude of, 154
matrix, 301, 333, 352
mechanical modeling of, 329
with memory, 60, 61
mixed, 488
noncausal, 62, 218, 235
nonlinear, 57, 58
nonrecursive, 591, 614
output, 130, 150, 167, 333
physical, difference equations of, 68
poles of, 220, 346
recursive, 614
second-order, 221

initial conditions, 502
output for, 90

stability, 90, 91, 221, 292
poles and, 252
use of MATLAB to check, 311

stable, 63, 75, 101, 236, 354
state-space, see State-space and discrete 

systems
steady-state output in, 153, 595
steady-state response of, 220
third-order, output for, 90
time invariant, 59, 65, 66
time variant, 60
transfer function, 212, 230, 290
unknown parameters of, 329
unstable, 78, 235, 292, 314
zeroes of, 221
zero input, 286

T

Thermal interferences, 3
Third-order systems, output for, 90
Third-order transfer function, 210
Time

ambiguity in, 492, 494
constant, discrete, 23, 24, 25
invariance, discrete signals and, 58
invariant system, 59, 65, 66
-scaled discrete signal, 19
scaling, 19, 41
variant system, 60

Time domain, 251
characteristics, 448
no ambiguity in, 495

Total energy
signal, 391, 392, 393
use of MATLAB to calculate, 392, 393

Transfer function(s), 218, 298
additional zeroes introduced for, 516
analogue filter design, 421
Bessel filter, 435
calculation of, 310, 340
Chebyshev filter, 429
comb filter, 624
continuous, 506, 515, 517
denominator coefficient of, 329
differentiator, 606
digital filter, 509
discrete, 518, 519
elliptic filter, 433
IIR filter, 554, 561, 568, 570
magnitude, calculation of, 445
model, 350
numerator coefficient of, 329
partial fraction expansion and, 318
phase angle of, 422
representation, 332, 335, 344, 347

as block diagrams, 210
MATLAB script, 357
partial fraction expansion, 357

roots of denominator in, 332
s-domain, 547
third-order, 210
use of MATLAB to find, 301
z-domain, 216, 230

Transformation, see also specific types
functions, 442
matrix, 289, 310
methods, 512

backward difference, 512, 514
bilinear, 512, 514
forward difference, 512, 514
impulse invariance, 512, 513, 515
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step invariance, 512, 513
Transformations between continuous and discrete 

representations, 487–539
bilinear transformation and relationship 

between Laplace-domain and z-
domain representations, 506–511

discretization of derivative operation, 
500–503

discretization of state-space representation, 
504–506

examples, 517–534
from binary code to continuous signal, 490
from continuous signal to binary code 

representation, 488–490
insights, 515–516

choice of sampling interval Ts, 515
effect of choosing Ts on dynamics of 

system, 515–516
introduction of additional zeroes for 

transfer function H(z), 516
need for converting continuous signal to 

discrete signal, 487–488
other transformation methods, 5515

backward difference method, 512
bilinear transformation, 512–515
forward difference method, 512
impulse invariance method, 512
step invariance method, 512

problems, 534–539
sampling operation, 490–500

ambiguity in frequency domain, 492–493
ambiguity in real-time domain, 490–492
filtering before sampling, 494–496
sampling and recovery of continuous 

signal, 496–500
sampling theorem, 493

Transition matrix, 285
continuous system, 525
Laplace transform, 520
sampling time, 505
use of MATLAB to verify entries in, 304

Transmission matrix, 504
Trigonometric identities, 111

U

Unique set, 148
Unit circle, 248, 253, 301
Unit step discrete signal, 4, 5, 198

V

Variable coefficients realization, 596

Voltage
divider, 472
sources, AC, 31
value, 1

W

Warping, 545, 546
Waveform generation, 487
Window(s)

Blackman, 603, 616
default, 634
definition, 600
FIR filter design using, 611
Hamming, 396, 603, 616, 630
Hanning, 396, 603

magnitude frequency response plot of, 616
MATLAB script, 402

Kaiser, 603, 604
rectangular, 603, 630

filter design using, 618
magnitude frequency response plot of, 616

use of in filter design, 602

Z

z-domain
design of IIR filters in, 550
input in, 213
multiplication in, 225
output in, 213, 314
representations, bilinear transformation and, 

506
state vector in, 333

Zero input, response to system with, 286
Zero-order hold method, 532
Zero padding, 414, 415
Zero-pole-gain form, 441, 446
z-transform and discrete systems, 195–263

bilateral z-transform, 195–197
convergence, 200–203, 216–218
exercises, 221–255
final value theorem, 219
initial-value theorem, 219–220
inverse z-transform, 203–207

long division, 206–207
partial fraction expansion, 203–206

poles and zeroes, 220–221
poles of system 220
stability of system, 221
zeroes of system, 221

problems, 255–263
properties of z-transform, 207–210
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convolution, 210
linearity property, 207
multiplication by e-an, 209
shifting property, 207–209

representation of transfer functions as block 
diagrams, 210–212

solving difference equation using z-transform, 
214–216

unilateral z-transform, 197–200
x(n), h(n), y(n), and z-transform, 212–214
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