Section 8 REINFORCED CONCRETE*

Part A
 GENERAL REQUIREMENTS AND MATERIALS

8.1 APPLICATION

8.1.1 General

The specifications of this section are intended for design of reinforced (nonprestressed) concrete bridge members and structures. Bridge members designed as prestressed concrete shall conform to Section 9.

8.1.2 Notations

a $\quad=$ depth of equivalent rectangular stress block (Article 8.16.2.7)
$a_{b} \quad=$ depth of equivalent rectangular stress block for balanced strain conditions, in. (Article 8.16.4.2.3)
$\mathrm{a}_{\mathrm{v}} \quad=$ shear span, distance between concentrated load and face of support (Articles 8.15.5.8 and 8.16.6.8)
A $\quad=$ effective tension area, in square inches, of concrete surrounding the flexural tension reinforcement and having the same centroid as that reinforcement, divided by the number of bars or wires. When the flexural reinforcement consists of several bar or wire sizes, the number of bars or wires shall be computed as the total area of reinforcement divided by the area of the largest bar or wire used. For calculation purposes, the thickness of clear concrete cover used to compute A shall not be taken greater than 2 inches.
$\mathrm{A}_{\mathrm{b}} \quad=$ area of an individual bar, sq. in. (Article 8.25.1)
$\mathrm{A}_{\mathrm{c}} \quad=$ area of core of spirally reinforced compression member measured to the outside diameter of the spiral, sq. in. (Article 8.18.2.2.2)
$\mathrm{A}_{\mathrm{cv}} \quad=$ area of concrete section resisting shear transfer, sq. in. (Article 8.16.6.4.5)
$\mathrm{A}_{\mathrm{f}} \quad=$ area of reinforcement in bracket or corbel resisting moment, sq. in. (Articles 8.15.5.8 and 8.16.6.8)
$\mathrm{A}_{\mathrm{g}} \quad=$ gross area of section, sq. in.
$\mathrm{A}_{\mathrm{h}} \quad=$ area of shear reinforcement parallel to flexural tension reinforcement, sq. in. (Articles 8.15.5.8 and 8.16.6.8)
$\mathrm{A}_{\mathrm{n}} \quad=$ area of reinforcement in bracket or corbel resisting tensile force $\mathrm{N}_{\mathrm{c}}\left(\mathrm{N}_{\mathrm{uc}}\right)$, sq. in. (Articles 8.15.5.8 and 8.16.6.8)
$\mathrm{A}_{\mathrm{s}} \quad=$ area of tension reinforcement, sq. in.
$\mathrm{A}_{s}^{\prime} \quad=$ area of compression reinforcement, sq. in.
$\mathrm{A}_{\mathrm{sf}} \quad=$ area of reinforcement to develop compressive strength of overhanging flanges of I - and T-sections (Article 8.16.3.3.2)
$\mathrm{A}_{\mathrm{sk}} \quad=$ area of skin reinforcement per unit height in one side face, sq. in, per ft. (Article 8.17.2.1.3).
$\mathrm{A}_{\text {st }} \quad=$ total area of longitudinal reinforcement (Articles 8.16.4.1.2 and 8.16.4.2.1)
$\mathrm{A}_{v} \quad=$ area of shear reinforcement within a distance s
$\mathrm{A}_{\mathrm{vf}} \quad=$ area of shear-friction reinforcement, sq. in. (Article 8.15.5.4.3)
$\mathrm{A}_{\mathrm{w}} \quad=$ area of an individual wire to be developed or spliced, sq. in. (Articles 8.30.1.2 and 8.30.2)
$\mathrm{A}_{1} \quad=$ loaded area (Articles 8.15.2.1.3 and 8.16.7.2)
$\mathrm{A}_{2} \quad=$ maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area (Articles 8.15.2.1.3 and 8.16.7.2)
b $\quad=$ width of compression face of member
$\mathrm{b}_{\mathrm{o}} \quad=$ perimeter of critical section for slabs and footings (Articles 8.15.5.6.2 and 8.16.6.6.2)
$\mathrm{b}_{\mathrm{v}} \quad=$ width of cross section at contact surface being investigated for horizontal shear (Article 8.15.5.5.3)

[^0]\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{b}_{\text {w }}\) \& \(=\) web width, or diameter of circular section (Article 8.15.5.1.1) \& \(\mathrm{f}_{\text {s }}\) \& \(=\) tensile stress in reinforcement at service loads, psi (Article 8.15.2.2) \\
\hline c \& \(=\) distance from extreme compression fiber to neutral axis (Article 8.16.2.7) \& \(\mathrm{f}_{\mathrm{s}}^{\prime}\) \& \(=\) stress in compression reinforcement at balanced conditions (Articles 8.16.3.4.3 and \\
\hline \(\mathrm{C}_{\mathrm{m}}\) \& \(=\) factor relating the actual moment diagram to an equivalent uniform moment diagram (Article 8.16.5.2.7) \& \(\mathrm{f}_{\mathrm{t}}\) \& \[
\begin{aligned}
\& 8.16 \cdot 4.2 .3) \\
\& = \\
\& \text { extreme fiber tensile stress in concrete at ser- } \\
\& \text { vice loads (Article } 8.15 .2 .1 .1)
\end{aligned}
\] \\
\hline d \& \(=\) distance from extreme compression fiber to centroid of tension reinforcement, in. For computing shear strength of circular sections, d need not be less than the distance from extreme compression fiber to centroid of tension reinforcement in opposite half of member. For computing horizontal shear strength of composite members, \(d\) shall be the distance from extreme compression fiber to centroid of tension reinforcement for entire composite section. \& \& \begin{tabular}{l}
\(=\) specified yield strength of reinforcement, psi \\
= overall thickness of member, in. \\
\(=\) compression flange thickness of I- and Tsections \\
\(=\) moment of inertia of cracked section transformed to concrete (Article 8.13.3) \\
\(=\) effective moment of inertia for computation of deflection (Article 8.13.3) \\
\(=\) moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement
\end{tabular} \\
\hline \(\mathrm{d}^{\prime}\) \& \(=\) distance from extreme compression fiber to centroid of compression reinforcement, in. \& \(\mathrm{I}_{\text {s }}\) \& \(=\) moment of inertia of reinforcement about centroidal axis of member cross section \\
\hline \(\mathrm{d}^{\prime \prime}\) \& \(=\) distance from centroid of gross section, neglecting the reinforcement, to centroid of tension reinforcement, in. \& k

ℓ_{a} \& ```
= effective length factor for compression mem-
bers (Article 8.16.5.2.3)
= additional embedment length at support or at
point of inflection, in. (Article 8.24.2.3)

``` \\
\hline \(\mathrm{d}_{\mathrm{b}}\)
\(\mathrm{d}_{\mathrm{c}}\) & \(=\) distance measured from extreme tension fiber to center of the closest bar or wire in inches. For calculation purposes, the thickness of clear concrete cover used to compute \(d_{c}\) shall not be taken greater than 2 inches. & \(\ell\)
\(\ell_{\text {d }}\)
\(\ell_{\text {dh }}\) & \(\begin{aligned}= & \text { development length, in. (Articles } 8.24 \\ & \text { through } 8.32 \text { ) } \\ = & \text { development length of standard hook in ten- } \\ & \text { sion, measured from critical section to out- } \\ & \text { side end of hook (straight embedment length } \\ & \text { between critical section and start of hook }\end{aligned}\) \\
\hline \(\mathrm{E}_{\text {c }}\) & \(=\) modulus of elasticity of concrete, psi (Article 8.7.1) & & (point of tangency) plus radius of bend and one bar diameter), in. (Article 8.29) \\
\hline EI & \(=\) flexural stiffness of compression member (Article 8.16.5.2.7) & \(\ell_{\text {dh }}\) & \[
\begin{aligned}
& =\ell_{\mathrm{hb}} \times \text { applicable modification factor } \\
& =\text { basic development length of standard hook in }
\end{aligned}
\] \\
\hline \(\mathrm{E}_{\text {s }}\) & \(=\) modulus of elasticity of reinforcement, psi (Article 8.7.2) & \(\ell_{u}\) & \begin{tabular}{l}
tension, in. \\
\(=\) unsupported length of compression member
\end{tabular} \\
\hline \(\mathrm{f}_{\mathrm{b}}\) & \(=\) average bearing stress in concrete on loaded area (Articles 8.15.2.1.3 and 8.16.7.1) & u
M & \[
\begin{aligned}
& \text { (Article 8.16.5.2.1) } \\
= & \text { computed moment capacity (Article 8.24.2.3) }
\end{aligned}
\] \\
\hline \(\mathrm{f}_{\text {c }}\) & \(=\) extreme fiber compressive stress in concrete at service loads (Article 8.15.2.1.1) & \(\mathrm{Ma}_{\mathrm{a}}\) & \(=\) maximum moment in member at stage for which deflection is being computed (Article \\
\hline \(\mathrm{f}_{\mathrm{c}}{ }^{\prime}\) & \(=\) specified compressive strength of concrete, psi & & 8.13.3)
\(=\)
nominal moment strength of a section at bal- \\
\hline \(\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\) & \(=\) square root of specified compressive strength of concrete, psi & \(M_{b}\)
\(M_{c}\) & \[
\begin{aligned}
& =\text { nominal moment strength of a section at bal- } \\
& \text { anced strain conditions (Article 8.16.4.2.3) } \\
& =\text { moment to be used for design of compression }
\end{aligned}
\] \\
\hline \(\mathrm{f}_{\mathrm{ct}}\) & \(=\) average splitting tensile strength of lightweight aggregate concrete, psi & \(\mathrm{M}_{\text {cr }}\) & \begin{tabular}{l}
member (Article 8.16.5.2.7) \\
\(=\) cracking moment (Article 8.13.3)
\end{tabular} \\
\hline \(\mathrm{f}_{\mathrm{f}}\) & \(=\) fatigue stress range in reinforcement, \(\mathrm{ksi}(\mathrm{Ar}-\) ticle 8.16.8.3) & \(M_{n}\)
\(M_{n x}\) & \begin{tabular}{l}
\(=\) nominal moment strength of a section \\
\(=\) nominal moment strength of a section in the
\end{tabular} \\
\hline \(\mathrm{f}_{\text {min }}\) & \[
\begin{aligned}
& =\text { algebraic minimum stress level in reinforce- } \\
& \text { ment (Article 8.16.8.3) }
\end{aligned}
\] & \(\mathrm{M}_{\mathrm{ny}}\) & direction of the x axis (Article 8.16.4.3) \(=\) nominal moment strength of a section in the \\
\hline \(\mathrm{f}_{\mathrm{r}}\) & \[
\begin{aligned}
& =\text { modulus of rupture of concrete, psi (Article } \\
& \text { 8.15.2.1.1) }
\end{aligned}
\] & \(\mathrm{M}_{\mathrm{u}}\) & direction of the \(y\) axis (Article 8.16.4.3) \(=\) factored moment at section \\
\hline
\end{tabular}
\(\mathrm{f}_{\mathrm{s}} \quad=\) tensile stress in reinforcement at service loads, psi (Article 8.15.2.2)
anced conditions (Articles 8.16.3.4.3 and 8.16.4.2.3) vice loads (Article 8.15.2.1.1)
\(\mathrm{f}_{\mathrm{y}} \quad=\) specified yield strength of reinforcement, psi
h . = overall thickness of member, in.
\(\mathrm{h}_{\mathrm{f}} \quad=\) compression flange thickness of I- and Tsections
formed to concrete (Article 8.13.3)
of deflection (Article 8.13.3)
moment of inertia of gross concrete section ment
\(=\) moment of inertia of reinforcement about centroidal axis of member cross section
\(=\) effective length factor for compression members (Article 8.16.5.2.3)
point of inflection, in. (Article 8.24.2.3) through 8.32) sion, measured from critical section to outside end of hook (straight embedment length between critical section and start of hook (point of tangency) plus radius of bend and one bar diameter), in. (Article 8.29)
\(\ell_{\mathrm{dh}} \quad=\ell_{\mathrm{hb}} \times\) applicable modification factor
\(\ell_{\mathrm{hb}} \quad=\) basic development length of standard hook in tension, in.
(Article 8.16.5.2.1)
\(\mathrm{M} \quad=\) computed moment capacity (Article 8.24.2.3)
\(\mathrm{M}_{\mathrm{a}} \quad\) = maximum moment in member at stage for which deflection is being computed (Article 8.13.3)
anced strain conditions (Article 8.16.4.2.3)
member (Article 8.16.5.2.7)
\(\mathrm{M}_{\mathrm{cr}} \quad=\) cracking moment (Article 8.13.3)
\(\mathrm{M}_{\mathrm{n}} \quad=\) nominal moment strength of a section
\(\mathrm{M}_{\mathrm{nx}} \quad=\) nominal moment strength of a section in the direction of the x axis (Article 8.16.4.3)
\(\mathrm{M}_{\mathrm{ny}}\). = nominal moment strength of a section in the direction of the \(y\) axis (Article 8.16.4.3)
\(\mathrm{M}_{\mathrm{u}} \quad=\) factored moment at section
\(\mathrm{M}_{\mathrm{ux}} \quad=\) factored moment component in the direction of the x axis (Article 8.16.4.3)
\(\mathbf{M}_{\mathrm{uy}} \quad=\) factored moment component in the direction of the \(y\) axis (Article 8.16.4.3)
\(\mathbf{M}_{1 \mathrm{~b}} \quad=\) value of smaller end moment on compression member due to gravity loads that result in no appreciable sidesway calculated by conventional elastic frame analysis, positive if member is bent in single curvature, negative if bent in double curvature (Article 8.16.5.2.4)
\(\mathbf{M}_{2 b} \quad=\) value of larger end moment on compression member due to gravity loads that result in no appreciable sidesway calculated by conventional elastic frame analysis, always positive (Article 8.16.5.2.4)
\(\mathbf{M}_{2 \mathrm{~s}} \quad=\) value of larger end moment on compression member due to lateral loads or gravity loads that result in appreciable sidesway, defined by a deflection \(\Delta\), greater than \(\ell_{\mathrm{v}} / 1500\), calculated by conventional elastic frame analysis, always positive. (Article 8.16.5.2)
\(=\) modular ratio of elasticity \(=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}\) (Article 8.15.3.4)
\(=\) design axial load normal to cross section occurring simultaneously with V to be taken as positive for compression, negative for tension and to include the effects of tension due to shrinkage and creep (Articles 8.15.5.2.2 and 8.15.5.2.3)
\(\mathbf{N}_{\mathrm{c}} \quad=\) design tensile force applied at top of bracket of corbel acting simultaneously with V , to be taken as positive for tension (Article 8.15.5.8)
\(\mathrm{N}_{\mathrm{u}} \quad=\) factored axial load normal to the cross section occurring simultaneously with \(\mathrm{V}_{\mathrm{u}}\) to be taken as positive for compression, negative for tension, and to include the effects of tension due to shrinkage and creep (Article 8.16.6.2.2)
\(\mathrm{N}_{\mathrm{uc}} \quad=\) factored tensile force applied at top of bracket or corbel acting simultaneously with \(\mathrm{V}_{u}\), to be taken as positive for tension (Article 8.16.6.8)
\(\mathrm{P}_{\mathrm{b}} \quad=\) nominal axial load strength of a section at balanced strain conditions (Article 8.16.4.2.3)
\(P_{c} \quad=\) critical load (Article 8.16.5.2.7)
\(P_{0} \quad=\) nominal axial load strength of a section at zero eccentricity (Article 8.16.4.2.1)
\(P_{n} \quad=\) nominal axial load strength at given eccentricity
\(P_{n x} \quad=\) nominal axial load strength corresponding to \(M_{n x}\), with bending considered in the direction of the x axis only (Article 8.16.4.3)
\begin{tabular}{|c|c|}
\hline P & = nominal axial load strength corresponding to \(\mathrm{M}_{\mathrm{ny}}\), with bending considered in the direction of the \(y\) axis only (Article 8.16.4.3) \\
\hline \(\mathrm{P}_{\mathrm{nxy}}\) & \[
\begin{aligned}
= & \text { nominal axial load strength with biaxial load- } \\
& \text { ing (Article 8.16.4.3) }
\end{aligned}
\] \\
\hline \(\mathrm{P}_{\mathrm{u}}\) & \(=\) factored axial load at given eccentricity \\
\hline r & \(=\) radius of gyration of cross section of a compression member (Article 8.16.5.2.2) \\
\hline s & \(=\) spacing of shear reinforcement in direction parallel to the longitudinal reinforcement, in. \\
\hline \(\mathrm{S}_{\mathrm{w}}\) & \(=\) spacing of wires to be developed or spliced, in. \\
\hline S & \(=\) span length, ft \\
\hline V & \[
\begin{aligned}
= & \text { design shear force at section (Article } \\
& 8.15 .5 .1 .1)
\end{aligned}
\] \\
\hline v & \[
\begin{aligned}
= & \text { design shear stress at section (Article } \\
& 8.15 .5 .1 .1)
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {c }}\) & \(=\) nominal shear strength provided by concrete (Article 8.16.6.1) \\
\hline \(\mathrm{V}_{\mathrm{c}}\) & \begin{tabular}{l}
\(=\) permissible shear stress carried by concrete \\
(Article 8.15.5.2)
\end{tabular} \\
\hline \(\mathrm{V}_{\mathrm{dh}}\) & \(=\) design horizontal shear stress at any cross section (Article 8.15.5.5.3) \\
\hline \(\mathrm{v}_{\mathrm{h}}\) & \[
\begin{aligned}
& =\text { permissible horizontal shear stress (Article } \\
& \text { 8.15.5.5.3) }
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{n}}\) & \(=\) nominal shear strength (Article 8.16.6.1) \\
\hline \(\mathrm{V}_{\text {nh }}\) & \[
\begin{aligned}
& =\text { nominal horizontal shear strength (Article } \\
& \\
& 8.16 .6 .5 .3 \text { ) }
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {s }}\) & \(=\) nominal shear strength provided by shear reinforcement (Article 8.16.6.1) \\
\hline Vu & \[
\begin{aligned}
= & \text { factored shear force at section (Article } \\
& 8.16 .6 .1)
\end{aligned}
\] \\
\hline \(\mathrm{w}_{\text {c }}\) & \(=\) weight of concrete, lb per cu ft \\
\hline \(y_{t}\) & \(=\) distance from centroidal axis of gross sec tion, neglecting reinforcement, to extreme fiber in tension (Article 8.13.3) \\
\hline Z & \(=\) quantity limiting distribution of flexural reinforcement (Article 8.16.8.4) \\
\hline & \(=\) angle between inclined shear reinforcement and longitudinal axis of member \\
\hline \(\alpha_{\text {f }}\) & ```
= angle between shear-friction reinforcement
    and shear plane (Articles 8.15.5.4 and
    8.16.6.4)
``` \\
\hline & \(=\) ratio of area of reinforcement cut off to total area of reinforcement at the section (Article 8.24.1.4.2) \\
\hline \(\beta_{\text {c }}\) & \(=\) ratio of long side to short side of concentrated load or reaction area; for a circular concentrated load or reaction area, \(\beta_{c}=1.0\) (Articles 8.15.5.6.3 and 8.16.6.6.2) \\
\hline
\end{tabular} \(\mathrm{M}_{\mathrm{ny}}\), with bending considered in the direction of the \(y\) axis only (Article 8.16.4.3) ing (Article 8.16.4.3)
\(P_{u} \quad=\) factored axial load at given eccentricity
\(r \quad=\) radius of gyration of cross section of a compression member (Article 8.16.5.2.2)
pacing of shear reinforcement in direction spacing of wires to be developed or spliced, in.
\(\mathrm{S} \quad=\) span length, ft
\(\mathrm{V} \quad=\) design shear force at section (Article 8.15.5.1.1) 8.15.5.1.1) (Article 8.16.6.1) (Article 8.15.5.2)
design horizontal shear stress at any cross section (Article 8.15.5.5.3) 8.15.5.5.3)
\(\mathrm{V}_{\mathrm{n}} \quad=\) nominal shear strength (Article 8.16.6.1)
\(\mathrm{V}_{\mathrm{nh}} \quad=\) nominal horizontal shear strength (Article 8.16.6.5.3)
\(\mathrm{V}_{\mathrm{s}} \quad=\) nominal shear strength provided by shear reinforcement (Article 8.16.6.1) 8.16.6.1)
\(\mathrm{w}_{\mathrm{c}} \quad=\) weight of concrete, lb per cu ft
\(y_{t} \quad=\) distance from centroidal axis of gross section, neglecting reinforcement, to extreme fiber in tension (Article 8.13.3)
\(\mathbf{z} \quad=\) quantity limiting distribution of flexural reinforcement (Article 8.16.8.4)
\(\alpha\) (alpha) \(=\) angle between inclined shear reinforcement and longitudinal axis of member and shear plane (Articles 8.15.5.4 and 8.16.6.4) area of reinforcement at the section (Article 8.24.1.4.2) load or reaction area; for a circular concen8.15.5.6.3 and 8.16.6.6.2)
\(\beta_{\mathrm{d}} \quad=\) absolute value of ratio of maximum dead load moment to maximum total load moment, always positive
\(\beta_{1} \quad=\) ratio of depth of equivalent compression zone to depth from fiber of maximum compressive strain to the neutral axis (Article 8.16.2.7)
\(\lambda \quad=\) correction factor related to unit weight for concrete (Articles 8.15.5.4 and 8.16.6.4)
\(\mu(\mathrm{mu}) \quad=\) coefficient of friction (Article 8.15.5.4.3)
\(\rho\) (rho) \(=\) tension reinforcement ratio \(=A_{s} / b_{w} d, A_{s} / b d\)
\(\rho^{\prime} \quad=\) compression reinforcement ratio \(=\mathrm{A}_{\mathrm{s}}^{\prime} / \mathrm{bd}\)
\(\rho_{\mathrm{b}} \quad=\) reinforcement ratio producing balanced strain conditions (Article 8.16.3.1.1)
\(\rho_{\mathrm{s}} \quad=\) ratio of volume of spiral reinforcement to total volume of core (out-to-out of spirals) of a spirally reinforced compression member (Article 8.18.2.2.2)
\(\rho_{\mathrm{w}} \quad=\) reinforcement ratio used in Equation (8-4) and Equation (8-48)
\(\delta_{b} \quad=\) moment magnification factor for members braced against sidesway to reflect effects of member curvature between ends of compression member
\(\delta_{\mathrm{s}} \quad=\) moment magnification factor for members not braced against sidesway to reflect lateral drift resulting from lateral and gravity loads
\(\phi\) (phi) \(=\) strength reduction factor (Article 8.16.1.2)

\subsection*{8.1.3 Definitions}

The following terms are defined for general use in Section 8. Specialized definitions appear in individual Articles.

Bracket or corbel-Short (haunched) cantilever that projects from the face of a column or wall to support a concentrated load or beam reaction. See Articles 8.15.5.8 and 8.16.6.8.

Compressive strength of concrete (\(\mathrm{f}_{\mathrm{c}}^{\prime}\))-Specified compressive strength of concrete in pounds per square inch (psi).

Concrete, structural lightweight-A concrete containing lightweight aggregate having an air-dry unit weight as determined by "Method of Test for Unit Weight of Structural Lightweight Concrete" (ASTM C 567), not exceeding 115 pcf. In this specification, a lightweight concrete without natural sand is termed "all-lightweight concrete" and one in which all fine aggregate consists of normal weight sand is termed "sand-lightweight concrete."

Deformed reinforcement-Deformed reinforcing bars, deformed wire, welded smooth wire fabric, and welded deformed wire fabric.

Design load-All applicable loads and forces or their related internal moments and forces used to proportion members. For design by SERVICE LOAD DESIGN, design load refers to loads without load factors. For design by STRENGTH DESIGN METHOD, design load refers to loads multiplied by appropriate load factors.

Design strength-Nominal strength multiplied by a strength reduction factor, \(\phi\).

Development length-Length of embedded reinforcement required to develop the design strength of the reinforcement at a critical section.

Embedment length—Length of embedded reinforcement provided beyond a critical section.

Factored load-Load, multiplied by appropriate load factors, used to proportion members by the STRENGTH DESIGN METHOD.

Nominal strength-Strength of a member or cross section calculated in accordance with provisions and assumptions of the STRENGTH DESIGN METHOD before application of any strength reduction factors.

Plain reinforcement-Reinforcement that does not conform to the definition of deformed reinforcement.

Required strength - Strength of a member or cross section required to resist factored loads or related internal moments and forces in such combinations as are stipulated in Article 3.22.

Service load-Loads without load factors.
Spiral reinforcement-Continuously wound reinforcement in the form of a cylindrical helix.

Splitting tensile strength \(\left(\mathrm{f}_{\mathrm{c}}\right)\)-Tensile strength of concrete determined in accordance with "Specifications for Lightweight Aggregates for Structural Concrete," AASHTO M 195 (ASTM C 330).

Stirrups or ties-Lateral reinforcement formed of individual units, open or closed, or of continuously wound reinforcement. The term "stirrups" is usually applied to lateral reinforcement in horizontal members and the term "ties" to those in vertical members.

Tension tie member-Member having an axial tensile force sufficient to create tension over the entire cross section and having limited concrete cover on all sides. Examples include: arch ties, hangers carrying load to an overhead supporting structure, and main tension elements in a truss.

Yield strength or yield point \(\left(\mathrm{f}_{\mathrm{y}}\right)\) —Specified minimum yield strength or yield point of reinforcement in pounds per square inch.

\subsection*{8.2 CONCRETE}

The specified compressive strength, \(\mathrm{f}_{\mathrm{c}}^{\prime}\), of the concrete for each part of the structure shall be shown on
the plans. The requirements for \(f_{c}^{\prime}\) shall be based on tests of cylinders made and tested in accordance with Section 4Division II.

\subsection*{8.3 REINFORCEMENT}
8.3.1 The yield strength or grade of reinforcement shall be shown on the plans.
8.3.2 Reinforcement to be welded shall be indicated on the plans and the welding procedure to be used shall be specified.
8.3.3 Designs shall not use a yield strength, \(\mathrm{f}_{\mathrm{y}}\), in excess of \(60,000 \mathrm{psi}\).
8.3.4 Deformed reinforcement shall be used except that plain bars or smooth wire may be used for spirals and ties.
8.3.5 Reinforcement shall conform to the specifications listed in Division II, Section 5, except that, for reinforcing bars, the yield strength and tensile strength shall correspond to that determined by tests on full-sized bars.

\section*{Part B}

ANALYSIS

\subsection*{8.4 GENERAL}

All members of continuous and rigid frame structures shall be designed for the maximum effects of the loads specified in Articles 3.2 through 3.22 as determined by the theory of elastic analysis.

\subsection*{8.5 EXPANSION AND CONTRACTION}
8.5.1 In general, provisions for temperature changes shall be made in simple spans when the span length exceeds 40 feet.
8.5.2 In continuous bridges; the design shall provide for thermal stresses or for the accommodation of thermal movement with rockers, sliding plates, elastomeric pads, or other means.
8.5.3 The coefficient of thermal expansion and contraction for normal weight concrete may be taken as 0.000006 per deg F .
8.5.4 The coefficient of shrinkage for normal weight concrete may be taken as 0.0002 .
8.5.5 Thermal and shrinkage coefficients for lightweight concrete shall be determined for the type of lightweight aggregate used.

\subsection*{8.6 STIFFNESS}
8.6.1 Any reasonable assumptions may be adopted for computing the relative flexural and torsional stiffnesses of continuous and rigid frame members. The assumptions made shall be consistent throughout the analysis.
8.6.2 The effect of haunches shall be considered both in determining moments and in design of members.

\subsection*{8.7 MODULUS OF ELASTICITY AND POISSON'S RATIO}
8.7.1 The modulus of elasticity, \(\mathrm{E}_{\mathrm{c}}\), for concrete may be taken as \(w_{c}^{1.5} 33 \sqrt{f_{c}^{\prime}}\) in psi for values of \(w_{c}\) between 90 and 155 pounds per cubic foot. For normal weight con\(\operatorname{crete}\left(\mathrm{w}_{\mathrm{c}}=145 \mathrm{pcf}\right), \mathrm{E}_{\mathrm{c}}\) may be considered as \(57,000 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\).
8.7.2 The modulus of elasticity, \(\mathrm{E}_{\mathrm{s}}\), for nonprestressed steel reinforcement may be taken as \(29,000,000\) psi.
8.7.3 Poisson's ratio may be assumed as 0.2.

\subsection*{8.8 SPAN LENGTH}
8.8.1 The span length of members that are not built integrally with their supports shall be considered the clear span plus the depth of the member but need not exceed the distance between centers of supports.
8.8.2 In analysis of continuous and rigid frame members, distances to the geometric centers of members shall be used in the determination of moments. Moments at faces of support may be used for member design. When fillets making an angle of \(45^{\circ}\) or more with the axis of a continuous or restrained member are built monolithic with the member and support, the face of support shall be considered at a section where the combined depth of the member and fillet is at least one and one-half times the thickness of the member. No portion of a fillet shall be considered as adding to the effective depth.
8.8.3 The effective span length of slabs shall be as specified in Article 3.24.1.

\subsection*{8.9 CONTROL OF DEFLECTIONS}

\subsection*{8.9.1 General}

Flexural members of bridge structures shall be designed to have adequate stiffness to limit deflections or any deformations that may adversely affect the strength or serviceability of the structure at service load plus impact.

\subsection*{8.9.2 Superstructure Depth Limitations}

The minimum depths stipulated in Table 8.9.2 are recommended unless computation of deflection indicates that lesser depths may be used without adverse effects.

\subsection*{8.9.3 Superstructure Deflection Limitations}

When making deflection computations, the following criteria are recommended.
8.9.3.1 Members having simple or continuous spans preferably should be designed so that the deflection due to service live load plus impact shall not exceed \(1 / 800\) of the span, except on bridges in urban areas used in part by pedestrians whereon the ratio preferably shall not exceed \(1 / 1000\).
8.9.3.2 The deflection of cantilever arms due to service live load plus impact preferably should be limited to \(1 / 300\) of the cantilever arm except for the case including pedestrian use, where the ratio preferably should be \(1 / 375\).

\subsection*{8.10 COMPRESSION FLANGE WIDTH}

\subsection*{8.10.1 T-Girder}
8.10.1.1 The total width of slab effective as a Tgirder flange shall not exceed one-fourth of the span length of the girder. The effective flange width overhanging on each side of the web shall not exceed six times the

TABLE 8.9.2 Recommended Minimum Depths for Constant Depth Members
\begin{tabular}{|c|c|c|}
\hline Superstructure Type & Minimum Depth in Feet \({ }^{a}\) Simple Spans & Continuous Spans \\
\hline Bridge slabs with main reinforcement parailel to traffic & 1.2(S + 10)/30 & \((\mathrm{S}+10) / 30 \geq 0.542\) \\
\hline T-Girders & 0.070 S & 0.065 S \\
\hline Box-Girders & 0.060S & 0.055S \\
\hline Pedestrian Structure Girders & 0.033 S & 0.0335 \\
\hline
\end{tabular}
- When variable depth members are used, values may be adjusted to account for change in relative stiffness of positive and negative moment sections.
\(S=\) span length as defined in Article 8.8 in feet.
thickness of the slab or one-half the clear distance to the next web.
8.10.1.2 For girders having a slab on one side only, the effective overhanging flange width shall not exceed \(1 / 12\) of the span length of the girder, six times the thickness of the slab, or one-half the clear distance to the next web.
8.10.1.3 Isolated T-girders in which the T-shape is used to provide a flange for additional compression area shall have a flange thickness not less than one-half the width of the girder web and an effective flange width not more than four times the width of the girder web.
8.10.1.4 For integral bent caps, the effective flange width overhanging each side of the bent cap web shall not exceed six times the least slab thickness, or \(1 / 10\) the span length of the bent cap. For cantilevered bent caps, the span length shall be taken as two times the length of the cantilever span.

\subsection*{8.10.2 Box Girders}
8.10.2.1 The entire slab width shall be assumed effective for compression.
8.10.2.2 For integral bent caps, see Article 8.10.1.4.

\subsection*{8.11 SLAB AND WEB THICKNESS}
8.11.1 The thickness of deck slabs shall be designed in accordance with Article 3.24 .3 but shall not be less than specified in Article 8.9.
8.11.2 The thickness of the bottom slab of a box girder shall be not less than \(1 / 16\) of the clear span between girder
webs or \(5 \frac{1 / 2}{}\) inches, except that the thickness need not be greater than the top slab unless required by design.
8.11.3 When required by design, changes in girder web thickness shall be tapered for a minimum distance of 12 times the difference in web thickness.

\subsection*{8.12 DIAPHRAGMS}
8.12.1 Diaphragms shall be used at the ends of T-girder and box girder spans unless other means are provided to resist lateral forces and to maintain section geometry. Diaphragms may be omitted where tests or structural analysis show adequate strength.
8.12.2 In T-girder construction, one intermediate diaphragm is recommended at the point of maximum positive moment for spans in excess of 40 feet.
8.12.3 Straight box girder bridges and curved box girder bridges with an inside radius of 800 feet or greater do not require intermediate diaphragms. For curved box girder bridges having an inside radius less than 800 feet, intermediate diaphragms are required unless shown otherwise by tests or structural analysis. For such curved box girders, a maximum diaphragm spacing of 40 feet is recommended to assist in resisting torsion.

\subsection*{8.13 COMPUTATION OF DEFLECTIONS}
8.13.1 Computed deflections shall be based on the cross-sectional properties of the entire superstructure section excluding railings, curbs, sidewalks, or any element not placed monolithically with the superstructure section before falsework removal.
8.13.2 Live load deflection may be based on the assumption that the superstructure flexural members act together and have equal deflection. The live loading shall consist of all traffic lanes fully loaded, with reduction in load intensity allowed as specified in Article 3.12. The
live loading shall be considered uniformly distributed to all longitudinal flexural members.
8.13.3 Deflections that occur immediately on application of load shall be computed by the usual methods or formulas for elastic deflections. Unless stiffness values are obtained by a more comprehensive analysis, immediate deflections shall be computed taking the modulus of elasticity for concrete as specified in Article 8.7 for normal weight or lightweight concrete and taking the moment of inertia as either the gross moment of inertia, \(I_{g}\), or the effective moment of inertia, \(\mathrm{I}_{\mathrm{e}}\) as follows:
\[
\begin{equation*}
I_{e}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} I_{g}+\left[1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right] I_{c r} \leq I_{g} \tag{8-1}
\end{equation*}
\]
where:
\[
\begin{equation*}
\mathrm{M}_{\mathrm{cr}}=\mathrm{f}_{\mathrm{r}} \mathrm{I}_{\mathrm{g}} / \mathrm{y}_{\mathrm{t}} \tag{8-2}
\end{equation*}
\]
and \(f_{r}=\) modulus of rupture of concrete specified in Article 8.15.2.1.1.

For continuous members, effective moment of inertia may be taken as the average of the values obtained from Equation (8-1) for the critical positive and negative moment sections. For prismatic members, effective moment of inertia may be taken as the value obtained from Equation (8-1) at midspan for simple or continuous spans, and as the value at the support for cantilevers.
8.13.4 Unless values are obtained by a more comprehensive analysis, the long-time deflection for both normal weight and lightweight concrete flexural members shall be the immediate deflection caused by the sustained load considered, computed in accordance with Article 8.13.3, multiplied by one of the following factors:
(a) Where the immediate deflection has been based on \(I_{g}\), the multiplication factor for the long-time deflection shall be taken as 4 .
(b) Where the immediate deflection has been based on \(I_{e}\), the multiplication factor for the long-time deffection shall be taken as \(3-1.2\left(\mathrm{~A}_{\mathrm{s}}^{\prime} / \mathrm{A}_{s}\right) \geq 1.6\).

\section*{Part C \\ DESIGN}

\subsection*{8.14 GENERAL}

\subsection*{8.14.1 Design Methods}
8.14.1.1 The design of reinforced concrete members shall be made either with reference to service loads and
allowable stresses as provided in SERVICE LOAD DESIGN or, alternatively, with reference to load factors and strengths as provided in STRENGTH DESIGN.
8.14.1.2 All applicable provisions of this specification shall apply to both methods of design, except Articles
3.5 and 3.17 shall not apply for design by STRENGTH DESIGN.
8.14.1.3 The strength and serviceability requirements of STRENGTH DESIGN may be assumed to be satisfied for design by SERVICE LOAD DESIGN if the service load stresses are limited to the values given in Article 8.15.2.

\subsection*{8.14.2 Composite Flexural Members}
8.14.2.1 Composite flexural members consist of precast and/or cast-in-place concrete elements constructed in separate placements but so interconnected that all elements respond to superimposed loads as a unit. When considered in design, shoring shall not be removed until the supported elements have developed the design properties required to support all loads and limit deflections and cracking.
8.14.2.2 The entire composite member or portions thereof may be used in resisting the shear and moment. The individual elements shall be investigated for all critical stages of loading and shall be designed to support all loads introduced prior to the full development of the design strength of the composite member. Reinforcement shall be provided as necessary to prevent separation of the individual elements.
8.14.2.3 If the specified strength, unit weight, or other properties of the various elements are different, the properties of the individual elements, or the most critical values, shall be used in design.
8.14.2.4 In calculating the flexural strength of a composite member by strength design, no distinction shall be made between shored and unshored members.
8.14.2.5 When an entire member is assumed to resist the vertical shear, the design shall be in accordance with the requirements of Article 8.15 .5 or Article 8.16 .6 as for a monolithically cast member of the same cross-sectional shape.
8.14.2.6 Shear reinforcement shall be fully anchored into the interconnected elements in accordance with Article 8.27. Extended and anchored shear reinforcement may be included as ties for horizontal shear.
8.14.2.7 The design shall provide for full transfer of horizontal shear forces at contact surfaces of intercon-
nected elements. Design for horizontal shear shall be in accordance with the requirements of Article 8.15.5.5 or Article 8.16.6.5.

\subsection*{8.14.3 Concrete Arches}
8.14.3.1 The combined flexure and axial load strength of an arch ring shall be in accordance with the provisions of Articles 8.16 .4 and 8.16.5. Slenderness effects in the vertical plane of an arch ring, other than tied arches with suspended roadway, may be evaluated by the approximate procedure of Article 8.16.5.2 with the unsupported length, \(\ell_{u}\), taken as one-half the length of the arch ring, and the radius of gyration, \(r\), taken about an axis perpendicular to the plane of the arch at the quarter point of the arch span. Values of the effective length factor, \(k\), given in Table 8.14.3 may be used. In Equation (8-41), \(C_{m}\) shall be taken as 1.0 and \(\phi\) shall be taken as 0.85 .
8.14.3.2 Slenderness effects between points of lateral support and between suspenders in the vertical plane of a tied arch with suspended roadway, shall be evaluated by a rational analysis taking into account the requirements of Article 8.16.5.1.1.
8.14.3.3 The shape of arch rings shall conform, as nearly as is practicable, to the equilibrium polygon for full dead load.
8.14.3.4 In arch ribs and barrels, the longitudinal reinforcement shall provide a ratio of reinforcement area to gross concrete area at least equal to 0.01 , divided equally between the intrados and the extrados. The longitudinal reinforcement shall be enclosed by lateral ties in accordance with Article 8.18.2. In arch barrels, upper and lower levels of transverse reinforcement shall be provided that are designed for transverse bending due to loads from columns and spandrel walls and for shrinkage and temperature stresses.
8.14.3.5 If transverse expansion joints are not provided in the deck slab, the effects of the combined action of the arch rib, columns and deck slab shall be considered. Expansion joints shall be provided in spandrel walls.

TABLE 8.14.3 Effective Length Factors, \(k\)
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Rise-to-Span \\
Ratio
\end{tabular} & \begin{tabular}{c}
3-Hinged \\
Arch
\end{tabular} & \begin{tabular}{c}
2-Hinged \\
Arch
\end{tabular} & \begin{tabular}{c}
Fixed \\
Arch
\end{tabular} \\
\hline \(0.1-0.2\) & 1.16 & 1.04 & 0.70 \\
\(0.2-0.3\) & 1.13 & 1.10 & 0.70 \\
\(0.3-0.4\) & 1.16 & 1.16 & 0.72 \\
\hline
\end{tabular}
8.14.3.6 Walls exceeding 8 feet in height on filled spandrel arches shall be laterally supported by transverse diaphragms or counterforts with a slope greater than 45 degrees with the vertical to reduce transverse stresses in the arch barrel. The top of the arch barrel and interior faces of the spandrel walls shall be waterproofed and a drainage system provided for the fill.

\subsection*{8.15 SERVICE LOAD DESIGN METHOD (ALLOWABLE STRESS DESIGN)}

\subsection*{8.15.1 General Requirements}
8.15.1.1 Service load stresses shall not exceed the values given in Article 8.15.2.
8.15.1.2 Development and splices of reinforcement shall be as required in Articles 8.24 through 8.32.

\subsection*{8.15.2 Allowable Stresses}

\subsection*{8.15.2.1 Concrete}

Stresses in concrete shall not exceed the following:

\subsection*{8.15.2.1.1 Flexure}

Extreme fiber stress in compression, \(\mathrm{f}_{\mathrm{c}} \ldots \ldots . . .0 .40 f_{c}^{\prime}\) Extreme fiber stress in tension for plain concrete, \(\mathrm{f}_{\mathrm{t}}\) \(0.21 \mathrm{f}_{\mathrm{r}}\)

Modulus of rupture, \(f_{r}\), from tests, or, if data are not available:
\begin{tabular}{|c|c|}
\hline Normal weight concrete & . \(7.5 \sqrt{\mathrm{f}_{c}^{\prime}}\) \\
\hline "Sand-lightweight" concrete & .6.3 \(\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\) \\
\hline "All-lightweight" concrete & . \(5.5 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\) \\
\hline
\end{tabular}

\subsection*{8.15.2.1.2 Shear}

For detailed summary of allowable shear stress, \(\mathrm{v}_{c}\), see Article 8.15.5.2.

\subsection*{8.15.2.1.3 Bearing Stress}

The bearing stress, \(f_{b}\), on loaded area shall not exceed \(0.30 \mathrm{f}_{\mathrm{c}}^{\prime}\).

When the supporting surface is wider on all sides than the loaded area, the allowable bearing stress on the loaded area may be multiplied by \(\sqrt{\mathrm{A}_{2} / \mathrm{A}_{1}}\), but not by more than 2.

When the supporting surface is sloped or stepped, \(\mathrm{A}_{2}\) may be taken as the area of the lower base of the largest frustrum of the right pyramid or cone contained wholly
within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal.

When the loaded area is subjected to high-edge stresses due to deflection or eccentric loading, the allowable bearing stress on the loaded area, including any increase due to the supporting surface being larger than the loaded area, shall be multiplied by a factor of 0.75 .

\subsection*{8.15.2.2 Reinforcement}

The tensile stress in the reinforcement, \(\mathrm{f}_{\mathrm{s}}\), shall not exceed the following:

> Grade 40 reinforcement..000 psi Grade 60 reinforcement.........

In straight reinforcement, the range between the maximum tensile stress and the minimum stress caused by live load plus impact shall not exceed the value given in Article 8.16.8.3. Bends in primary reinforcement shall be avoided in regions of high-stress range.

\subsection*{8.15.3 Flexure}
8.15.3.1 For the investigation of stresses at service loads, the straight-line theory of stress and strain in flexure shall be used with the following assumptions.
8.15.3.2 The strain in reinforcement and concrete is directly proportional to the distance from the neutral axis, except that for deep flexural members with overall depth to span ratios greater than \(2 / 5\) for continuous spans and \(4 / 5\) for simple spans, a nonlinear distribution of strain shall be considered.
8.15.3.3 In reinforced concrete members, concrete resists no tension.
8.15.3.4 The modular ratio, \(n=E_{s} / E_{c}\), may be taken as the nearest whole number (but not less than 6). Except in calculations for deflections, the value of \(n\) for lightweight concrete shall be assumed to be the same as for normal weight concrete of the same strength.
8.15.3.5 In doubly reinforced flexural members, an effective modular ratio of \(2 \mathrm{E}_{s} / \mathrm{E}_{\mathrm{c}}\) shall be used to transform the compression reinforcement for stress computations. The compressive stress in such reinforcement shall not be greater than the allowable tensile stress.

\subsection*{8.15.4 Compression Members}

The combined flexural and axial load capacity of compression members shall be taken as \(35 \%\) of that computed
in accordance with the provisions of Article 8.16.4. Slenderness effects shall be included according to the requirements of Article 8.16.5. The term \(\mathrm{P}_{\mathrm{u}}\) in Equation (8-41) shall be replaced by 2.5 times the design axial load. In using the provisions of Articles 8.16.4 and 8.16.5, \(\phi\) shall be taken as 1.0 .

\subsection*{8.15.5 Shear}

\subsection*{8.15.5.1 Shear Stress}
8.15.5.1.1 Design shear stress, v , shall be computed by:
\[
\begin{equation*}
\mathrm{v}=\frac{\mathrm{V}}{\mathrm{~b}_{\mathrm{w}} \mathrm{~d}} \tag{8-3}
\end{equation*}
\]
where \(V\) is design shear force at section considered, \(b_{w}\) is the width of web, and \(d\) is the distance from the extreme compression fiber to the centroid of the longitudinal tension reinforcement. Whenever applicable, effects of torsion* shall be included.
8.15.5.1.2 For a circular section, \(\mathrm{b}_{\mathrm{w}}\) shall be the diameter and d need not be less than the distance from the extreme compression fiber to the centroid of the longitudinal reinforcement in the opposite half of the member.
8.15.5.1.3 For tapered webs, \(\mathrm{b}_{\mathrm{w}}\) shall be the average width or 1.2 times the minimum width, whichever is smaller.
8.15.5.1.4 When the reaction, in the direction of the applied shear, introduces compression into the end regions of a member, sections located less than a distance \(d\) from the face of support may be designed for the same shear, V , as that computed at a distance d. An exception occurs when major concentrated loads are imposed between that point and the face of support. In that case sections closer than d to the support shall be designed for V at distance d plus the major concentrated loads.

\subsection*{8.15.5.2 Shear Stress Carried by Concrete}

\subsection*{8.15.5.2.1 Shear in Beams and One-Way Slabs and Footings}

For members subject to shear and flexure only, the allowable shear stress carried by the concrete, \(\mathrm{v}_{\mathrm{c}}\), may be

\footnotetext{
*The design criteria for combined torsion and shear given in "Building Code Requirements for Reinforced Concrete"-American Concrete Institute 318 Bulletin may be used.
}
taken as \(0.95 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\). A more detailed calculation of the allowable shear stress can be made using:
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=0.9 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}+1,100 \rho_{\mathrm{w}}\left(\frac{\mathrm{Vd}}{\mathrm{M}}\right) \leq 1.6 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \tag{8-4}
\end{equation*}
\]

Note:
(a) M is the design moment occurring simultaneously with V at the section being considered.
(b) The quantity \(\mathrm{Vd} / \mathrm{M}\) shall not be taken greater than 1.0.

\subsection*{8.15.5.2.2 Shear in Compression Members}

For members subject to axial compression, the allowable shear stress carried by the concrete, \(\mathrm{v}_{\mathrm{c}}\), may be taken as \(0.95 \sqrt{\mathbf{f}_{\mathrm{c}}^{\prime}}\). A more detailed calculation can be made using:
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=0.9\left(1+0.0006 \frac{\mathrm{~N}}{\mathrm{~A}_{\mathrm{g}}}\right) \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \tag{8-5}
\end{equation*}
\]

The quantity \(N / A_{g}\) shall be expressed in pounds per square inch.

\subsection*{8.15.5.2.3 Shear in Tension Members}

For members subject to axial tension, shear reinforcement shall be designed to carry total shear, unless a more detailed calculation is made using
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=0.9\left(1+0.004 \frac{\mathrm{~N}}{\mathrm{~A}_{\mathrm{g}}}\right) \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \tag{8-6}
\end{equation*}
\]

Note:
(a) N is negative for tension.
(b) The quantity \(\mathrm{N} / \mathrm{A}_{\mathrm{g}}\) shall be expressed in pounds per square inch.

\subsection*{8.15.5.2.4 Shear in Lightweight Concrete}

The provisions for shear stress, \(\mathrm{v}_{\mathrm{c}}\), carried by the concrete apply to normal weight concrete. When lightweight aggregate concretes are used, one of the following modifications shall apply:
(a) When \(f_{c t}\) is specified, the shear stress, \(v_{c}\), shall be modified by substituting \(f_{c t} / 6.7\) for \(\sqrt{f_{c}^{\prime}}\), but the value of \(f_{c l} / 6.7\) used shall not exceed \(\sqrt{f_{c}^{\prime}}\).
(b) When \(f_{c t}\) is not specified, the shear stress, \(v_{c}\), shall be multiplied by 0.75 for "all-lightweight" concrete, and
0.85 for "sand-lightweight" concrete. Linear interpolation may be used when partial sand replacement is used.

\subsection*{8.15.5.3 Shear Stress Carried by Shear Reinforcement}
8.15.5.3.1 Where design shear stress v exceeds shear stress carried by concrete, \(\mathrm{v}_{\mathrm{c}}\), shear reinforcement shall be provided in accordance with this article. Shear reinforcement shall also conform to the general requirements of Article 8.19.
8.15.5.3.2 When shear reinforcement perpendicular to the axis of the member is used:
\[
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} s}{f_{s}} \tag{8-7}
\end{equation*}
\]
8.15.5.3.3 When inclined stirrups are used:
\[
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} s}{f_{s}(\sin \alpha+\cos \alpha)} \tag{8-8}
\end{equation*}
\]
8.15.5.3.4 When shear reinforcement consists of a single bar or a single group of parallel bars all bent up at the same distance from the support:
\[
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} d}{f_{s} \sin \alpha} \tag{8-9}
\end{equation*}
\]
where \(\left(v-v_{c}\right)\) shall not exceed \(1.5 \sqrt{f_{c}^{\prime}}\).
8.15.5.3.5 When shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bentup bars at different distances from the support, the required area shall be computed by Equation (8-8).
8.15.5.3.6 Only the center three-fourths of the inclined portion of any longitudinal bent bar shall be considered effective for shear reinforcement.
8.15.5.3.7 Where more than one type of shear reinforcement is used to reinforce the same portion of the member, the required area shall be computed as the sum of the values computed for the various types separately. In such computations, \(v_{c}\) shall be included only once.
8.15.5.3.8 When \(\left(v-v_{c}\right)\) exceeds \(2 \sqrt{f_{c}^{\prime}}\) the maximum spacings given in Article 8.19 shall be reduced by one-half.
8.15.5.3.9 The value of \(\left(\mathrm{v}-\mathrm{v}_{\mathrm{c}}\right)\) shall not exceed \(4 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\).
8.15.5.3.10 When flexural reinforcement located within the width of a member used to compute the shear strength is terminated in a tension zone, shear reinforcement shall be provided in accordance with Article 8.24.1.4.

\subsection*{8.15.5.4 Shear Friction}
8.15.5.4.1 Provisions for shear-friction are to be applied where it is appropriate to consider shear transfer across a given plane, such as: an existing or potential crack, an interface between dissimilar materials, or an interface between two concretes cast at different times.
8.15.5.4.2 A crack shall be assumed to occur along the shear plane considered. Required area of shear-friction reinforcement \(\mathrm{A}_{\mathrm{vf}}\) across the shear plane may be designed using either Article 8.15.5.4.3 or any other shear transfer design method that results in prediction of strength in substantial agreement with results of comprehensive tests. Provisions of Articles 8.15.5.4.4 through 8.15.5.4.8 shall apply for all calculations of shear transfer strength.

\subsection*{8.15.5.4.3 Shear-friction Design Method}
(a) When shear-friction reinforcement is perpendicular to the shear plane, area of shear-friction reinforcement \(A_{\mathrm{vf}}\) shall be computed by:
\[
\begin{equation*}
A_{v f}=\frac{V}{f_{s} \mu} \tag{8-10}
\end{equation*}
\]
where \(\mu\) is the coefficient of friction in accordance with Article 8.15.5.4.3(c).
(b) When shear-friction reinforcement is inclined to the shear plane such that the shear force produces tension in shear-friction reinforcement, the area of shearfriction reinforcement \(A_{v f}\) shall be computed by:
\[
\begin{equation*}
A_{v f}=\frac{V}{f_{s}\left(\mu \sin \alpha_{f}+\cos \alpha_{f}\right)} \tag{8-11}
\end{equation*}
\]
where \(\alpha_{\mathrm{f}}\) is the angle between the shear-friction reinforcement and the shear plane.
(c) Coefficient of friction \(\mu\) in Equations (8-10) and (8-11) shall be:
concrete placed monolithically
concrete placed against hardened concrete with surface intentionally roughened as specified in Article 8.15.5.4.7 . \(1.0 \lambda\)
concrete placed against hardened concrete not intentionally roughened . \(0.6 \lambda\) concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars (see Article 8.15.5.4.8 .0.7 \(\lambda\) where \(\lambda=1.0\) for normal weight concrete; 0.85 for "sand-lightweight" concrete; and 0.75 for "all lightweight" concrete. Linear interpolation may be applied when partial sand replacement is used.
8.15.5.4.4 Shear stress v shall not exceed \(0.09 \mathrm{f}_{\mathrm{c}}^{\prime}\) nor 360 psi.
8.15.5.4.5 Net tension across the shear plane shall be resisted by additional reinforcement. Permanent net compression across the shear plane may be taken as additive to the force in the shear-friction reinforcement \(A_{v f} f_{s}\), when calculating required \(\mathrm{A}_{\mathrm{vf}}\).
8.15.5.4.6 Shear-friction reinforcement shall be appropriately placed along the shear plane and shall be anchored to develop the specified yield strength on both sides by embedment, hooks, or welding to special devices.
8.15.5.4.7 For the purpose of Article 8.15.5.4, when concrete is placed against previously hardened concrete, the interface for shear transfer shall be clean and free of laitance. If \(\mu\) is assumed equal to \(1.0 \lambda\), the interface shall be roughened to a full amplitude of approximately \(1 / 4\) inch.
8.15.5.4.8 When shear is transferred between steel beams or girders and concrete using headed studs or welded reinforcing bars, steel shall be clean and free of paint.

\subsection*{8.15.5.5 Horizontal Shear Design for Composite Concrete Flexural Members}
8.15.5.5.1 In a composite member, full transfer of horizontal shear forces shall be assured at contact surfaces of interconnected elements.
8.15.5.5.2 Design of cross sections subject to horizontal shear may be in accordance with provisions of Articles 8.15 .5 .5 .3 or 8.15 .5 .5 .4 or any other shear transfer design method that results in prediction of strength in substantial agreement with results of comprehensive tests.
8.15.5.5.3 Design horizontal shear stress \(\mathrm{v}_{\mathrm{dh}}\) at any cross section may be computed by:
\[
\begin{equation*}
v_{d h}=\frac{V}{b_{v} d} \tag{8-11~A}
\end{equation*}
\]
where V is the design shear force at the section considered and \(d\) is for the entire composite section. Horizontal shear \(v_{\mathrm{dh}}\) shall not exceed permissible horizontal shear \(\mathrm{v}_{\mathrm{h}}\) in accordance with the following:
(a) When the contact surface is clean, free of laitance, and intentionally roughened, shear stress \(\mathrm{v}_{\mathrm{h}}\) shall not exceed 36 psi.
(b) When minimum ties are provided in accordance with Article 8.15.5.5.5, and the contact surface is clean and free of laitance, but not intentionally roughened, shear stress \(\mathrm{v}_{\mathrm{h}}\) shall not exceed 36 psi .
(c) When minimum ties are provided in accordance with Article 8.15.5.5.5, and the contact surface is clean, free of laitance, and intentionally roughened to a full magnitude of approximately \(1 / 4\) inch, shear stress \(v_{h}\) shall not exceed 160 psi.
(d) For each percent of tie reinforcement crossing the contact surface in excess of the minimum required by Article 8.15 .5 .5 .5 , permissible \(\mathrm{v}_{\mathrm{h}}\) may be increased by \(72 \mathrm{f}_{\mathrm{y}} / 40,000 \mathrm{psi}\).
8.15.5.5.4 Horizontal shear may be investigated by computing, in any segment not exceeding one-tenth of the span, the actual change in compressive or tensile force to be transferred, and provisions made to transfer that force as horizontal shear between interconnected elements. Horizontal shear shall not exceed the permissible horizontal shear stress \(\mathrm{v}_{\mathrm{h}}\) in accordance with Article 8.15.5.5.3.

\subsection*{8.15.5.5.5 Ties for Horizontal Shear}
(a) When required, a minimum area of tie reinforcement shall be provided between interconnected elements. Tie area shall not be less than \(50 b_{v} s / f_{y}\), and tie spacing s shall not exceed four times the least web width of support element, nor 24 inch.
(b) Ties for horizontal shear may consist of single bars or wire, multiple leg stirrups, or vertical legs of welded wire fabric (smooth or deformed). All ties shall be adequately anchored into interconnected elements by embedment or hooks.

\subsection*{8.15.5.6 Special Provisions for Slabs and Footings}
8.15.5.6.1 Shear capacity of slabs and footings in the vicinity of concentrated loads or reactions shall be governed by the more severe of two conditions:
(a) Beam action for the slab or footing, with a critical section extending in a plane across the entire width and located at a distance \(d\) from the face of the concentrated load or reaction area. For this condition, the slab or footing shall be designed in accordance with Articles 8.15.5.1 through 8.15.5.3, except at footings supported on piles, the shear on the critical section shall be determined in accordance with Article 4.4.11.3.
(b) Two-way action for the slab or footing, with a critical section perpendicular to the plane of the member and located so that its perimeter \(b_{0}\) is a minimum, but not closer than \(\mathrm{d} / 2\) to the perimeter of the concentrated load or reaction area. For this condition, the slab or footing shall be designed in accordance with Articles 8.15.5.6.2 and 8.15.5.6.3.
8.15.5.6.2 Design shear stress, v , shall be computed by:
\[
\begin{equation*}
v=\frac{V}{b_{o} d} \tag{8-12}
\end{equation*}
\]
where \(V\) and \(b_{0}\) shall be taken at the critical section defined in Article 8.15.5.6.1(b).
8.15.5.6.3 Design shear stress, v , shall not exceed \(\mathrm{v}_{\mathrm{c}}\) given by Equation (8-13) unless shear reinforcement is provided in accordance with Article 8.15.5.6.4.
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=\left(0.8+\frac{2}{\beta_{\mathrm{c}}}\right) \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \leq 1.8 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \tag{8-13}
\end{equation*}
\]
\(\beta_{c}\) is the ratio of long side to short side of concentrated load or reaction area.
8.15.5.6.4 Shear reinforcement consisting of bars or wires may be used in slabs and footings in accordance with the following provisions:
(a) Shear stresses computed by Equation (8-12) shall be investigated at the critical section defined in Article 8.15.5.6.1(b) and at successive sections more distant from the support.
(b) Shear stress \(\mathrm{v}_{\mathrm{c}}\) at any section shall not exceed 0.9 \(\sqrt{f_{c}^{\prime}}\) and \(v\) shall not exceed \(3 \sqrt{f_{c}^{\prime}}\).
(c) Where \(v\) exceeds \(0.9 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\), shear reinforcement shall be provided in accordance with Article 8.15.5.3.

\subsection*{8.15.5.7 Special Provisions for Slabs of Box Culverts}

For slabs of box culverts under 2 feet or more fill, shear stress \(\mathrm{V}_{\mathrm{c}}\) may be computed by:
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}+2,200 \rho\left(\frac{\mathrm{Vd}}{\mathrm{M}}\right) \tag{8-14}
\end{equation*}
\]
but \(\mathrm{v}_{\mathrm{c}}\) shall not exceed \(1.8 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\). For single cell box culverts only, \(\mathrm{v}_{\mathrm{c}}\) for slabs monolithic with walls need not be taken less than \(1.4 \sqrt{f_{c}^{\prime}}\), and \(v_{c}\) for slabs simply supported need not be taken less than \(1.2 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\). The quantity \(\mathrm{Vd} / \mathrm{M}\) shall not be taken greater than 1.0 where M is the moment occurring simultaneously with \(V\) at the section considered. For slabs of box culverts under less than 2 feet of fill, applicable provisions of Articles 3.24 and 6.4 should be used.

\subsection*{8.15.5.8 Special Provisions for Brackets and Corbels*}
8.15.5.8.1 Provisions of Article 8.15.5.8 shall apply to brackets and corbels with a shear span-to-depth ratio \(\mathrm{a}_{\mathrm{v}} / \mathrm{d}\) not greater than unity, and subject to a horizontal tensile force \(\mathrm{N}_{\mathrm{c}}\) not larger than V . Distance d shall be measured at the face of support.
8.15.5.8.2 Depth at outside edge of bearing area shall not be less than 0.5 d .
8.15.5.8.3 The section at the face of support shall be designed to resist simultaneously a shear V , a moment \(\left[\mathrm{Va}_{\mathrm{v}}+\mathrm{N}_{\mathrm{c}}(\mathrm{h}-\mathrm{d})\right]\), and a horizontal tensile force \(\mathrm{N}_{\mathrm{c}}\). Distance \(h\) shall be measured at the face of support.
(a) Design of shear-friction reinforcement, \(\mathrm{A}_{\mathrm{vf}}\), to resist shear, V, shall be in accordance with Article 8.15.5.4. For normal weight concrete, shear stress \(v\) shall not exceed \(0.09 \mathrm{f}_{\mathrm{c}}^{\prime}\) nor 360 psi. For "all lightweight" or "sand-lightweight" concrete, shear stress v shall not exceed (\(\left.0.09-0.03 \mathrm{a}_{\mathrm{v}} / \mathrm{d}\right) \mathrm{f}_{\mathrm{c}}^{\prime}\) nor \(\left(360-126 \mathrm{a}_{\mathrm{v}} / \mathrm{d}\right)\) psi.
(b) Reinforcement \(\mathrm{A}_{\mathrm{f}}\) to resist moment \(\left[\mathrm{Va}_{v}+\mathrm{N}_{\mathrm{c}}(\mathrm{h}-\right.\)
d)] shall be computed in accordance with Articles 8.15.2 and 8.15.3.
(c) Reinforcement \(A_{n}\) to resist tensile force \(N_{c}\) shall be computed by \(A_{n}=N_{c} / f_{s}\). Tensile force \(N_{c}\) shall not be taken less than 0.2 V unless special provisions are made to avoid tensile forces.
(d) Area of primary tension reinforcement, \(\mathrm{A}_{\mathrm{s}}\), shall be made equal to the greater of \(\left(A_{f}+A_{n}\right)\), or \(\left(2 A_{v i} / 3+A_{n}\right)\).
8.15.5.8.4 Closed stirrups or ties parallel to \(\mathrm{A}_{\mathrm{s}}\), with a total area \(\mathrm{A}_{\mathrm{h}}\) not less than \(0.5\left(\mathrm{~A}_{\mathrm{s}}-\mathrm{A}_{n}\right)\), shall be uni-

\footnotetext{
*These provisions do not apply to beam ledges. The PCA publication, "Notes on ACI 318-83," contains an example design of beam ledgesPart 16, example 16-3.
}
formly distributed within two-thirds of the effective depth adjacent to \(\mathrm{A}_{\mathrm{s}}\).
8.15.5.8.5 Ratio \(\rho=\mathrm{A}_{\mathrm{s}} / \mathrm{bd}\) shall not be taken less than \(0.04\left(\mathrm{f}_{\mathrm{c}}{ }^{\prime} / \mathrm{f}_{\mathrm{y}}\right)\).
8.15.5.8.6 At the front face of a bracket or corbel, primary tension reinforcement, \(A_{s}\), shall be anchored by one of the following:
(a) a structural weld to a transverse bar of at least equal size; weld to be designed to develop specified yield strength \(f_{y}\) of \(A_{s}\) bars;
(b) bending primary tension bars \(\mathrm{A}_{\mathrm{s}}\) back to form a horizontal loop; or
(c) some other means of positive anchorage.
8.15.5.8.7 Bearing area of load on a bracket or corbel shall not project beyond the straight portion of primary tension bars \(\mathrm{A}_{\mathrm{s}}\), nor project beyond the interior face of a transverse anchor bar (if one is provided).

FIGURE 8.15.5.8

\subsection*{8.16 STRENGTH DESIGN METHOD (LOAD FACTOR DESIGN)}

\subsection*{8.16.1 Strength Requirements}

\subsection*{8.16.1.1 Required Strength}

The required strength of a section is the strength necessary to resist the factored loads and forces applied to
the structure in the combinations stipulated in Article 3.22. All sections of structures and structural members shall have design strengths at least equal to the required strength.

\subsection*{8.16.1.2 Design Strength}
8.16.1.2.1 The design strength provided by a member or cross section in terms of load, moment, shear, or stress shall be the nominal strength calculated in accordance with the requirements and assumptions of the strength-design method, multiplied by a strength-reduction factor \(\phi\).*
8.16.1.2.2 The strength-reduction factors, \(\phi\), shall be as follows:
(a) Flexure
\(\phi=0.90\)
(b) Shear \(\phi=0.85\)
(c) Axial compression with-

Spirals . \(\phi=0.75\)
Ties. \(\phi=0.70\)
(d) Bearing on concrete \(\phi=0.70\)

The value of \(\phi\) may be increased linearly from the value for compression members to the value for flexure as the design axial load strength, \(\phi P_{n}\), decreases from \(0.10 f_{c}^{\prime}\) \(A_{g}\) or \(\phi P_{b}\), whichever is smaller, to zero.
8.16.1.2.3 The development and splice lengths of reinforcement specified in Articles 8.24 through 8.32 do not require a strength-reduction factor.

\subsection*{8.16.2 Design Assumptions}
8.16.2.1 The strength design of members for flexure and axial loads shall be based on the assumptions given in this article, and on the satisfaction of the applicable conditions of equilibrium of internal stresses and compatibility of strains.
8.16.2.2 The strain in reinforcement and concrete is directly proportional to the distance from the neutral axis.
8.16.2.3 The maximum usable strain at the extreme concrete compression fiber is equal to 0.003 .

\footnotetext{
*The coefficient \(\phi\) provides for the possibility that small adverse variations in material strengths, workmanship, and dimensions, while individually within acceptable tolerances and limits of good practice, may combine to result in understrength.
}
8.16.2.4 The stress in reinforcement below its specified yield strength, \(f_{y}\), shall be \(E_{s}\) times the steel strain. For strains greater than that corresponding to \(f_{y}\), the stress in the reinforcement shall be considered independent of strain and equal to \(f_{y}\).
8.16.2.5 The tensile strength of the concrete is neglected in flexural calculations.
8.16.2.6 The concrete compressive stress/strain distribution may be assumed to be a rectangle, trapezoid, parabola, or any other shape that results in prediction of strength in substantial agreement with the results of comprehensive tests.
8.16.2.7 A compressive stress/strain distribution, which assumes a concrete stress of \(0.85 \mathrm{f}_{\mathrm{c}}^{\prime}\) uniformly distributed over an equivalent compression zone bounded by the edges of the cross section and a line parallel to the neutral axis at a distance \(a=\beta_{1} c\) from the fiber of maximum compressive strain, may be considered to satisfy the requirements of Article 8.16.2.6. The distance c from the fiber of maximum strain to the neutral axis shall be measured in a direction perpendicular to that axis. The factor \(\beta_{1}\) shall be taken as 0.85 for concrete strengths, \(f_{c}{ }^{\prime}\), up to and including \(4,000 \mathrm{psi}\). For strengths above \(4,000 \mathrm{psi}, \beta_{1}\) shall be reduced continuously at a rate of 0.05 for each \(1,000 \mathrm{psi}\) of strength in excess of \(4,000 \mathrm{psi}\) but \(\beta_{1}\) shall not be taken less than 0.65 .

\subsection*{8.16.3 Flexure}

\subsection*{8.16.3.1 Maximum Reinforcement of Flexural Members}
8.16.3.1.1 The ratio of reinforcement \(\rho\) provided shall not exceed 0.75 of the ratio \(\rho_{\mathrm{b}}\) that would produce balanced strain conditions for the section. The portion of \(\rho_{\mathrm{b}}\) balanced by compression reinforcement need not be reduced by the 0.75 factor.
8.16.3.1.2 Balanced strain conditions exist at a cross section when the tension reinforcement reaches the strain corresponding to its specified yield strength, \(\mathrm{f}_{\mathrm{y}}\), just as the concrete in compression reaches its assumed ultimate strain of 0.003 .

\subsection*{8.16.3.2 Rectangular Sections with Tension Reinforcement Only}
8.16.3.2.1 The design moment strength, \(\phi \mathrm{M}_{\mathrm{n}}\), may be computed by:
\[
\begin{align*}
\phi \mathrm{M}_{\mathrm{n}} & =\phi\left[\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{~d}\left(1-0.6 \frac{\rho \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}\right)\right] \tag{8-15}\\
& =\phi\left[\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}-\frac{\mathrm{a}}{2}\right)\right] \tag{8-16}
\end{align*}
\]
where,
\[
\begin{equation*}
\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}} \tag{8-17}
\end{equation*}
\]
8.16.3.2.2 The balanced reinforcement ratio, \(\rho_{b}\), is given by:
\[
\begin{equation*}
\rho_{\mathrm{b}}=\frac{0.85 \beta_{1} \mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}}\left(\frac{87,000}{87,000+\mathrm{f}_{\mathrm{y}}}\right) \tag{8-18}
\end{equation*}
\]

\subsection*{8.16.3.3 Flanged Sections with Tension \\ Reinforcement Only}
8.16.3.3.1 When the compression flange thickness is equal to or greater than the depth of the equivalent rectangular stress block, a, the design moment strength, \(\phi \mathrm{M}_{\mathrm{n}}\), may be computed by Equations (8-15) and (8-16).
8.16.3.3.2 When the compression flange thickness is less than a, the design moment strength may be computed by:
\[
\begin{align*}
\phi \mathrm{M}_{\mathrm{n}}= & \phi\left[\left(\mathrm{A}_{\mathrm{s}}-\mathrm{A}_{\mathrm{sf}}\right) \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right. \\
& \left.+\mathrm{A}_{\mathrm{sf}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}-0.5 \mathrm{~h}_{\mathrm{f}}\right)\right] \tag{8-19}
\end{align*}
\]
where,
\[
\begin{align*}
A_{s f} & =\frac{0.85 f_{c}^{\prime}\left(b-b_{w}\right) h_{f}}{f_{y}} \tag{8-20}\\
a & =\frac{\left(A_{s}-A_{s f}\right) f_{y}}{0.85 f_{c}^{\prime} b_{w}} \tag{8-21}
\end{align*}
\]
8.16.3.3.3 The balanced reinforcement ratio, \(\rho_{b}\), is given by:
\[
\begin{equation*}
\rho_{\mathrm{b}}=\left(\frac{\mathrm{b}_{\mathrm{w}}}{\mathrm{~b}}\right)\left[\left(\frac{0.85 \beta_{1} \mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}}\right)\left(\frac{87,000}{87,000+\mathrm{f}_{\mathrm{y}}}\right)+\rho_{\mathrm{f}}\right] \tag{8-22}
\end{equation*}
\]
where,
\[
\begin{equation*}
\rho_{\mathrm{f}}=\frac{\mathrm{A}_{\mathrm{sf}}}{\mathrm{~b}_{\mathrm{w}} \mathrm{~d}} \tag{8-23}
\end{equation*}
\]
8.16.3.3.4 For T-girder and box-girder construction, the width of the compression face, \(b\), shall be equal to the effective slab width as defined in Article 8.10.

\subsection*{8.16.3.4 Rectangular Sections with Compression Reinforcement}
8.16.3.4.1 The design moment strength, \(\phi \mathrm{M}_{\mathrm{n}}\), may be computed as follows:
\[
\begin{equation*}
\text { If } \quad\left(\frac{A_{s}-A_{s}^{\prime}}{b d}\right) \geq 0.85 \beta_{1}\left(\frac{f_{c}^{\prime} d^{\prime}}{f_{y} d}\right)\left(\frac{87,000}{87,000-f_{y}}\right) \tag{8-24}
\end{equation*}
\]
then,
\(\phi M_{n}=\phi\left[\left(A_{s}-A_{s}^{\prime}\right) f_{y}(d-a / 2)+A_{s}^{\prime} f_{y}\left(d-d^{\prime}\right)\right]\)
where,
\[
\begin{equation*}
\mathrm{a}=\frac{\left(\mathrm{A}_{\mathrm{s}}-\mathrm{A}_{\mathrm{s}}^{\prime}\right) \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}} \tag{8-26}
\end{equation*}
\]
8.16.3.4.2 When the value of \(\left(\mathrm{A}_{\mathrm{s}}-\mathrm{A}_{\mathrm{s}}^{\prime}\right) / \mathrm{bd}\) is less than the value required by Equation (8-24), so that the stress in the compression reinforcement is less than the yield strength, \(f_{y}\), or when effects of compression reinforcement is less than the yield strength, \(f_{y}\), or when effects of compression reinforcement are neglected, the design moment strength may be computed by the equations in Article 8.16.3.2. Alternatively, a general analysis may be made based on stress and strain compatibility using the assumptions given in Article 8.16.2.
8.16.3.4.3 The balanced reinforcement ratio \(\rho_{\mathrm{b}}\) for rectangular sections with compression reinforcement is given by:
\[
\begin{equation*}
\rho_{b}=\left[\frac{0.85 \beta_{1} f_{c}^{\prime}}{f_{y}}\left(\frac{87,000}{87,000+f_{y}}\right)\right]+\rho^{\prime}\left(\frac{f_{s}^{\prime}}{f_{y}}\right) \tag{8-27}
\end{equation*}
\]
where,
\[
\begin{equation*}
f_{s}^{\prime}=87,000\left[1-\left(\frac{d^{\prime}}{d}\right)\left(\frac{87,000+f_{y}}{87,000}\right)\right] \leq f_{y} \tag{8-28}
\end{equation*}
\]

\subsection*{8.16.3.5 Other Cross Sections}

For other cross sections the design moment strength, \(\phi \mathrm{M}_{\mathrm{n}}\), shall be computed by a general analysis based on
stress and strain compatibility using assumptions given in Article 8.16.2. The requirements of Article 8.16.3.1 shall also be satisfied.

\subsection*{8.16.4 Compression Members}

\subsection*{8.16.4.1 General Requirements}
8.16.4.1.1 The design of members subject to axial load or to combined flexure and axial load shall be based on stress and strain compatibility using the assumptions given in Article 8.16.2. Slenderness effects shall be included according to the requirements of Article 8.16.5.
8.16.4.1.2 Members subject to compressive axial load combined with bending shall be designed for the maximum moment that can accompany the axial load. The factored axial load, \(\mathrm{P}_{\mathrm{u}}\), at a given eccentricity shall not exceed the design axial load strength \(\phi \mathrm{P}_{\mathrm{n}(\max)}\) where:
(a) For members with spiral reinforcement conforming to Article 8.18.2.2
\[
\begin{aligned}
\mathrm{P}_{\mathrm{n}(\max)} & =0.85\left[0.85 \mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\right] \\
\phi & =0.75
\end{aligned}
\]
(b) For members with tie reinforcement conforming to Article 8.18.2.3
\[
\begin{align*}
\mathrm{P}_{\mathrm{n}(\max)} & =0.80\left[0.85 \mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\right] \tag{8-30}\\
\phi & =0.70
\end{align*}
\]

The maximum factored moment, Mu , shall be magnified for slenderness effects in accordance with Article 8.16.5.

\subsection*{8.16.4.2 Compression Member Strengths}

The following provisions may be used as a guide to define the range of the load-moment interaction relationship for members subjected to combined flexure and axial load.

\subsection*{8.16.4.2.1 Pure Compression}

The design axial load strength at zero eccentricity, \(\phi \mathrm{P}_{\mathrm{o}}\), may be computed by:
\[
\begin{equation*}
\phi \mathrm{P}_{\mathrm{o}}=\phi\left[0.85 \mathrm{f}_{\mathrm{c}}^{\prime}\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{A}_{\mathrm{st}} \mathrm{f}_{\mathrm{y}}\right] \tag{8-31}
\end{equation*}
\]

For design, pure compressive strength is a hypothetical condition since Article 8.16.4.1.2 limits the axial load strength of compression members to 85 and \(80 \%\) of the axial load at zero eccentricity.

\subsection*{8.16.4.2.2 Pure Flexure}

The assumptions given in Article 8.16.2 or the applicable equations for flexure given in Article 8.16 .3 may be used to compute the design moment strength, \(\phi \mathrm{M}_{\mathrm{n}}\), in pure flexure.

\subsection*{8.16.4.2.3 Balanced Strain Conditions}

Balanced strain conditions for a cross section are defined in Article 8.16.3.1.2. For a rectangular section with reinforcement in one face, or located in two faces at approximately the same distance from the axis of bending, the balanced load strength, \(\phi \mathrm{P}_{\mathrm{b}}\), and balanced moment strength, \(\phi \mathrm{M}_{\mathrm{b}}\), may be computed by:
\[
\begin{equation*}
\phi P_{\mathrm{b}}=\phi\left[0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ba}_{\mathrm{b}}+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}-\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\right] \tag{8-32}
\end{equation*}
\]
and,
\[
\begin{align*}
\phi \mathrm{M}_{\mathrm{b}}= & \phi\left[0.85 f_{c}^{\prime} \mathrm{ba}_{\mathrm{b}}\left(\mathrm{~d}-\mathrm{d}^{\prime \prime}-\mathrm{a}_{\mathrm{b}} / 2\right)\right. \\
& \left.+\mathrm{A}_{\mathrm{s}}^{\prime} \mathrm{f}_{\mathrm{s}}^{\prime}\left(\mathrm{d}-\mathrm{d}^{\prime}-\mathrm{d}^{\prime \prime}\right)+\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} \mathrm{~d}^{\prime \prime}\right] \tag{8-33}
\end{align*}
\]
where,
\[
\begin{equation*}
a_{b}=\left(\frac{87,000}{87,000+f_{y}}\right) \beta_{1} d \tag{8-34}
\end{equation*}
\]
and,
\[
\begin{equation*}
f_{s}^{\prime}=87,000\left[1-\left(\frac{d^{\prime}}{d}\right)\left(\frac{87,000+f_{y}}{87,000}\right)\right] \leq f_{y} \tag{8-35}
\end{equation*}
\]

\subsection*{8.16.4.2.4 Combined Flexure and Axial Load}

The strength of a cross section is controlled by tension when the nominal axial load strength, \(P_{n}\), is less than the balanced load strength, \(P_{b}\), and is controlled by compression when \(P_{n}\) is greater than \(P_{b}\).

The nominal values of axial load strength, \(\mathrm{P}_{\mathrm{n}}\), and moment strength, \(M_{n}\), must be multiplied by the strength reduction factor, \(\phi\), for axial compression as given in Article 8.16.1.2.

\subsection*{8.16.4.3 Biaxial Loading}

In lieu of a general section analysis based on stress and strain compatibility, the design strength of noncircular members subjected to biaxial bending may be computed by the following approximate expressions:
\[
\begin{equation*}
\frac{1}{P_{n x y}}=\frac{1}{P_{n x}}+\frac{1}{P_{n y}}-\frac{1}{P_{o}} \tag{8-36}
\end{equation*}
\]
when the factored axial load,
\[
\begin{equation*}
P_{u} \geq 0.1 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{A}_{\mathrm{g}} \tag{8-37}
\end{equation*}
\]
or,
\[
\begin{equation*}
\frac{M_{u x}}{\phi M_{n x}}+\frac{M_{u y}}{\phi M_{n y}} \leq 1 \tag{8-38}
\end{equation*}
\]
when the factored axial load,
\[
\begin{equation*}
\mathrm{P}_{\mathrm{u}}<0.1 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{A}_{\mathrm{g}} \tag{8-39}
\end{equation*}
\]

\subsection*{8.16.4.4 Hollow Rectangular Compression Members}
8.16.4.4.1 The wall slenderness ratio of a hollow rectangular cross section, \(\mathrm{X}_{\mathrm{u}} / \mathrm{t}\), is defined in Figure 8.16.4.4.1. Wall slenderness ratios greater than 35.0 are not permitted, unless specific analytical and experimental evidence is provided justifying such values.
8.16.4.4.2 The equivalent rectangular stress block method shall not be employed in the design of hollow rectangular compression members with a wall slenderness ratio of 15 or greater.
8.16.4.4.3 If the wall slenderness ratio is less than 15 , then the maximum usable strain at the extreme concrete compression fiber is equal to 0.003 . If the wall slenderness ratio is 15 or greater, then the maximum usable strain at the extreme concrete compression fiber is equal to the computed local buckling strain of the widest flange of the cross section, or 0.003 , whichever is less.
8.16.4.4.4 The local buckling strain of the widest flange of the cross section may be computed assuming simply supported boundary conditions on all four edges of the flange. Nonlinear material behavior shall be considered by incorporating the tangent material moduli of the concrete and reinforcing steel in computations of the local buckling strain.
8.16.4.4.5 In lieu of the provisions of Articles 8.16.4.4.2, 8.16.4.4.3 and 8.16.4.4.4, the following approximate method may be used to account for the strength reduction due to wall slenderness. The maximum usable strain at the extreme concrete compression fiber shall be taken as 0.003 for all wall slenderness ratios up to and including 35.0. A strength reduction factor \(\phi_{w}\) shall be applied in addition to the usual strength reduction factor, \(\phi\), in Article 8.16.1.2. The strength reduction factor \(\phi_{w}\) shall be taken as 1.0 for all wall slenderness ratios up to and including 15.0. For wall slenderness ratios greater than

Tyateal Monditinic Plor Section

Typloce Sumennat Pier Suetion
\[
\text { Wow sienderness Aotlo }=\frac{x_{0}}{p}
\]

FIGURE 8.16.4.4.1 Definition of Wall Slenderness Ratio
15.0 and less than or equal to 25.0 , the strength reduction factor \(\phi_{\mathrm{w}}\) shall be reduced continuously at a rate of 0.025 for every unit increase in the wall slenderness ratio above 15.0. For wall slenderness ratios greater than 25.0 and less than or equal to 35.0 , the strength reduction factor \(\phi_{w}\) shall be taken as 0.75 .
8.16.4.4.6 Discontinuous, non-post-tensioned reinforcement in segmentally constructed hollow rectangular compression members shall be neglected in computations of member strength.

\subsection*{8.16.5 Slenderness Effects in Compression Members}

\subsection*{8.16.5.1 General Requirements}
8.16.5.1.1 The design of compression members shall be based on forces and moments determined from an analysis of the structure. Such an analysis shall include the influence of axial loads and variable moment of inertia on member stiffness and fixed-end moments, the effect of deflections on the moments and forces, and the effect of the duration of the loads.
8.16.5.1.2 In lieu of the procedure described in Article 8.16.5.1.1, slenderness effects of compression members may be evaluated in accordance with the approximate procedure in Article 8.16.5.2.

\subsection*{8.16.5.2 Approximate Evaluation of Slenderness Effects}
8.16.5.2.1 The unsupported length, \(\ell_{u}\), of a compression member shall be the clear distance between slabs, girders, or other members capable of providing lateral
support for the compression member. Where haunches are present, the unsupported length shall be measured to the lower extremity of the haunch in the plane considered.
8.16.5.2.2 The radius of gyration, \(r\), may be assumed equal to 0.30 times the overall dimension in the direction in which stability is being considered for rectangular compression members, and 0.25 times the diameter for circular compression members. For other shapes, r may be computed for the gross concrete section.
8.16.5.2.3 For compression members braced against sidesway, the effective length factor, \(k\), shall be taken as 1.0 , unless an analysis shows that a lower value may be used. For compression members not braced against sidesway, k shall be determined with due consideration of cracking and reinforcement on relative stiffness and shall be greater than 1.0.
8.16.5.2.4 For compression members braced against sidesway, the effects of slenderness may be neglected when \(\mathrm{k} \ell_{\mathrm{u}} / \mathrm{r}\) is less than \(34-\left(12 \mathrm{M}_{\mathrm{lb}} / \mathrm{M}_{2 \mathrm{~b}}\right)\).
8.16.5.2.5 For compression members not braced against sidesway, the effects of slenderness may be neglected when \(\mathrm{k} \ell_{\mathrm{u}} / \mathrm{r}\) is less than 22.
8.16.5.2.6 For all compression members where \(\mathrm{k} \ell_{\mathrm{u}} / \mathrm{r}\) is greater than 100, an analysis as defined in Article 8.16.5.1 shall be made.
8.16.5.2.7 Compression members shall be designed using the factored axial load \(\mathrm{P}_{\mathrm{u}}\), derived from a conventional elastic analysis and a magnified factored moment, \(\mathrm{M}_{\mathrm{c}}\), defined by
\[
\begin{equation*}
\mathrm{M}_{\mathrm{c}}=\delta_{\mathrm{b}} \mathrm{M}_{2 \mathrm{~b}}+\delta_{\mathrm{s}} \mathrm{M}_{2 \mathrm{~s}} \tag{8-40}
\end{equation*}
\]
where
\[
\begin{align*}
& \delta_{b}=\frac{C_{m}}{1-\frac{P_{u}}{\phi P_{c}}} \geq 1.0 \tag{8-41}\\
& \delta_{\mathrm{s}}=\frac{1}{1-\frac{\sum \mathrm{P}_{\mathrm{u}}}{\phi \sum \mathrm{P}_{\mathrm{c}}}} \geq 1.0 \tag{8-41A}
\end{align*}
\]
and
\[
\begin{equation*}
\mathrm{P}_{\mathrm{c}}=\frac{\pi^{2} \mathrm{EI}}{\left(\mathrm{k} \ell_{\mathrm{u}}\right)^{2}} \tag{8-42}
\end{equation*}
\]

For members braced against sidesway, \(\delta_{s}\) shall be taken as 1.0 . For members not braced against sidesway, \(\delta_{b}\) shall be evaluated as for a braced member and \(\delta_{s}\) for an unbraced member.

In lieu of a more precise calculation, EI may be taken either as
\[
\begin{equation*}
E I=\frac{\frac{E_{c} I_{g}}{5}+E_{s} I_{s}}{1+\beta_{d}} \tag{8-43}
\end{equation*}
\]
or conservatively as
\[
\begin{equation*}
\mathrm{EI}=\frac{\frac{\mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}}{2.5}}{1+\beta_{\mathrm{d}}} \tag{8-44}
\end{equation*}
\]
where \(\beta_{d}\) is the ratio of maximum dead load moment to maximum total load moment and is always positive. For members braced against sidesway and without transverse loads between supports, \(C_{m}\) may be taken as
\[
\begin{equation*}
\mathrm{C}_{\mathrm{m}}=0.6+0.4\left(\mathrm{M}_{1 \mathrm{~b}} / \mathrm{M}_{2 \mathrm{~b}}\right) \tag{8-45}
\end{equation*}
\]
but not less than 0.4.
For all other cases, \(\mathrm{C}_{\mathrm{m}}\) shall be taken as 1.0.
8.16.5.2.8 If computations show that there is no moment at either end of a compression member braced or unbraced against sidesway or that computed end eccentricities are less than \((0.6+0.03 \mathrm{~h})\) inches, \(\mathrm{M}_{2 \mathrm{~b}}\) and \(\mathrm{M}_{2 \mathrm{~s}}\) in Equation (8-40) shall be based on a minimum eccentricity of \((0.6+0.03 \mathrm{~h})\) inches about each principal axis separately. The ratio \(M_{1 b} / M_{2 b}\) in Equation (8-45) shall be determined by either of the following:
(a) When the computed end eccentricities are less than \((0.6+0.03 \mathrm{~h})\) inches, the computed end moments may be used to evaluate \(\mathrm{M}_{1 \mathrm{~b}} / \mathrm{M}_{2 \mathrm{~b}}\) in Equation (8-45).
(b) If computations show that there is essentially no moment at either end of the member, the ratio \(\mathrm{M}_{1 b} / \mathrm{M}_{2 \mathrm{~b}}\) shall be equal to one.
8.16.5.2.9 In structures that are not braced against sidesway, the flexural members framing into the compression member shall be designed for the total magnified end moments of the compression member at the joint.
8.16.5.2.10 When compression members are subject to bending about both principal axes, the moment about each axis shall be magnified by \(\delta\), computed from the corresponding conditions of restraint about that axis.
8.16.5.2.11 When a group of compression members on one level comprise a bent, or when they are connected integrally to the same superstructure, and collectively resist the sidesway of the structure, the value of \(\delta_{s}\) shall be computed for the member group with \(\Sigma P_{u}\) and \(\Sigma P_{c}\) equal to the summations for all columns in the group.

\subsection*{8.16.6 Shear}

\subsection*{8.16.6.1 Shear Strength}
8.16.6.1.1 Design of cross sections subject to shear shall be based on
\[
\begin{equation*}
\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{n}} \tag{8-46}
\end{equation*}
\]
where \(V_{u}\) is the factored shear force at the section considered and \(V_{n}\) is the nominal shear strength computed by,
\[
\begin{equation*}
V_{n}=V_{c}+V_{s} \tag{8-47}
\end{equation*}
\]
where \(V_{c}\) is the nominal shear strength provided by the concrete in accordance with Article 8.16.6.2, and \(V_{s}\) is the nominal shear strength provided by the shear reinforcement in accordance with Article 8.16.6.3. Whenever applicable, effects of torsion* shall be included.
8.16.6.1.2 When the reaction, in the direction of applied shear, introduces compression into the end regions of a member, sections located less than a distance \(d\) from the face of support may be designed for the same shear, \(V_{u}\), as that computed at a distance d. An exception occurs when major concentrated loads are imposed between that point and the face of support. In that case, sections closer

\footnotetext{
*The design criteria for combined torsion and shear given in "Building Code Requirements for Reinforced Concrete" ACI 318 may be used.
}
than d to the support shall be designed for V at a distance d plus the major concentrated loads.

\subsection*{8.16.6.2 Shear Strength Provided by Concrete}

\subsection*{8.16.6.2.1 Shear in Beams and One-Way Slabs and Footings}

For members subject to shear and flexure only, \(\mathrm{V}_{\mathrm{c}}\) shall be computed by,
\[
\begin{equation*}
V_{c}=\left(1.9 \sqrt{f_{c}^{\prime}}+2,500 \rho_{w} \frac{V_{u} d}{M_{u}}\right) b_{w} d \tag{8-48}
\end{equation*}
\]
or,
\[
\begin{equation*}
V_{c}=2 \sqrt{f_{c}^{\prime}} b_{w} d \tag{8-49}
\end{equation*}
\]
where \(b_{w}\) is the width of web and \(d\) is the distance from the extreme compression fiber to the centroid of the longitudinal tension reinforcement. Whenever applicable, effects of torsion shall be included. For a circular section, \(b_{w}\) shall be the diameter and d need not be less than the distance from the extreme compression fiber to the centroid of the longitudinal reinforcement in the opposite half of the member. For tapered webs, \(b_{w}\) shall be the average width or 1.2 times the minimum width, whichever is smaller.

Note:
(a) \(\mathrm{V}_{\mathrm{c}}\) shall not exceed \(3.5 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}\) when using more detailed calculations.
(b) The quantity \(V_{u} d / M_{u}\) shall not be greater than 1.0 where \(M_{u}\) is the factored moment occurring simultaneously with \(\mathrm{V}_{\mathrm{u}}\) at the section being considered.

\subsection*{8.16.6.2.2 Shear in Compression Members}

For members subject to axial compression, \(\mathrm{V}_{\mathrm{c}}\) may be computed by:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=2\left(1+\frac{\mathrm{N}_{\mathrm{u}}}{2,000 \mathrm{~A}_{\mathrm{g}}}\right) \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\left(\mathrm{b}_{\mathrm{w}} \mathrm{~d}\right) \tag{8-50}
\end{equation*}
\]
or,
\[
\begin{equation*}
V_{c}=2 \sqrt{f_{c}^{\prime}} b_{w} d \tag{8-51}
\end{equation*}
\]

Note:
The quantity \(N_{u} / A_{g}\) shall be expressed in pounds per square inch.

\subsection*{8.16.6.2.3 Shear in Tension Members}

For members subject to axial tension, shear reinforcement shall be designed to carry total shear, unless a more detailed calculation is made using:
\[
\begin{equation*}
v_{c}=2\left(1+\frac{N_{u}}{500 A_{g}}\right) \sqrt{f_{c}^{\prime}}\left(b_{w} d\right) \tag{8-52}
\end{equation*}
\]

Note:
(a) \(\mathrm{N}_{\mathrm{u}}\) is negative for tension.
(b) The quantity \(\mathrm{N}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}}\) shall be expressed in pounds per square inch.

\subsection*{8.16.6.2.4 Shear in Lightweight Concrete}

The provisions for shear stress, \(\mathrm{v}_{\mathrm{c}}\), carried by the concrete apply to normal weight concrete. When lightweight aggregate concretes are used, one of the following modifications shall apply:
(a) When \(f_{c t}\) is specified, the shear strength, \(V_{c}\), shall be modified by substituting \(f_{c l} / 6.7\) for \(\sqrt{f_{c}^{\prime}}\), but the value of \(f_{c t} / 6.7\) used shall not exceed \(\sqrt{f_{c}^{\prime}}\).
(b) When \(\mathrm{f}_{\mathrm{ct}}\) is not specified, \(\mathrm{V}_{\mathrm{c}}\) shall be multiplied by 0.75 for "all lightweight" concrete, and 0.85 for "sandlightweight" concrete. Linear interpolation may be used when partial sand replacement is used.

\subsection*{8.16.6.3 Shear Strength Provided by Shear Reinforcement}
8.16.6.3.1 Where factored shear force \(V_{u}\) exceeds shear strength \(\phi \mathrm{V}_{\mathrm{c}}\), shear reinforcement shall be provided to satisfy Equations (8-46) and (8-47), but not less than that required by Article 8.19. Shear strength \(\mathrm{V}_{\mathrm{s}}\) shall be computed in accordance with Articles 8.16.6.3.2 through 8.16.6.3.10.
8.16.6.3.2 When shear reinforcement perpendicular to the axis of the member is used:
\[
\begin{equation*}
V_{s}=\frac{A_{v} f_{y} d}{s} \tag{8-53}
\end{equation*}
\]
where \(A_{v}\) is the area of shear reinforcement within a distance s .
8.16.6.3.3 When inclined stirrups are used:
\[
\begin{equation*}
V_{\mathrm{s}}=\frac{\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{y}}(\sin \alpha+\cos \alpha) \mathrm{d}}{\mathrm{~s}} \tag{8-54}
\end{equation*}
\]
8.16.6.3.4 When a single bar or a single group of parallel bars all bent up at the same distance from the support is used:
\[
\begin{equation*}
V_{s}=A_{v} f_{y} \sin \alpha \leq 3 \sqrt{f_{c}^{\prime}} b_{w} d \tag{8-55}
\end{equation*}
\]
8.16.6.3.5 When shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bentup bars at different distances from the support, shear strength \(\mathrm{V}_{\mathrm{s}}\) shall be computed by Equation (8-54).
8.16.6.3.6 Only the center three-fourths of the inclined portion of any longitudinal bent bar shall be considered effective for shear reinforcement.
8.16.6.3.7 Where more than one type of shear reinforcement is used to reinforce the same portion of the member, shear strength \(\mathrm{V}_{\mathrm{s}}\) shall be computed as the sum of the \(V_{s}\) values computed for the various types.
8.16.6.3.8 When shear strength \(V_{s}\) exceeds \(4 \sqrt{f_{c}^{\prime}}\) \(\mathrm{b}_{\mathrm{w}} \mathrm{d}\), spacing of shear reinforcement shall not exceed onehalf the maximum spacing given in Article 8.19.3.
8.16.6.3.9 Shear strength \(\mathrm{V}_{\mathrm{s}}\) shall not be taken greater than \(8 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}\).
8.16.6.3.10 When flexural reinforcement, located within the width of a member used to compute the shear strength, is terminated in a tension zone, shear reinforcement shall be provided in accordance with Article 8.24.1.4.

\subsection*{8.16.6.4 Shear Friction}
8.16.6.4.1 Provisions for shear-friction are to be applied where it is appropriate to consider shear transfer across a given plane, such as: an existing or potential crack, an interface between dissimilar materials, or an interface between two concretes cast at different times.
8.16.6.4.2 Design of cross sections subject to shear transfer as described in Article 8.16.6.4.1 shall be based on Equation (8-46), where shear strength \(V_{n}\) is calculated in accordance with provisions of Article 8.16.6.4.3 or 8.16.6.4.4.
8.16.6.4.3 A crack shall be assumed to occur along the shear plane considered. Required area of shear-friction reinforcement \(\mathrm{A}_{\mathrm{vf}}\) across the shear plane may be designed using either Article 8.16.6.4.4 or any other shear transfer design methods that result in prediction of strength in substantial agreement with results of comprehensive tests. Provisions of Articles 8.16.6.4.5 through 8.16.6.4.9 shall apply for all calculations of shear transfer strength.

\subsection*{8.16.6.4.4 Shear-Friction Design Method}
(a) When the shear-friction reinforcement is perpendicular to the shear plane, shear strength, \(V_{n}\), shall be computed by:
\[
\begin{equation*}
V_{n}=A_{v f} f_{y} \mu \tag{8-56}
\end{equation*}
\]
where \(\mu\) is the coefficient of friction in accordance with Article (c).
(b) When the shear-friction reinforcement is inclined to the shear plane, such that the shear force produces tension in shear-friction reinforcement, shear strength \(\mathrm{V}_{\mathrm{n}}\) shall be computed by:
\[
\begin{equation*}
V_{n}=A_{v f} f_{y}\left(\mu \sin \alpha_{f}+\cos \alpha_{f}\right) \tag{8-56A}
\end{equation*}
\]
where \(\alpha_{f}\) is the angle between the shear-friction reinforcement and the shear plane.
(c) Coefficient of friction \(\mu\) in Equations (8-56) and (8-56A) shall be:

Concrete placed monolithically \(1.4 \lambda\)
Concrete placed against hardened concrete with surface intentionally roughened as specified in Article 8.16.6.4.8
. . \(1.0 \lambda\)
Concrete placed against hardened concrete not intentionally roughened
Concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars (see Article 8.16.6.4.9) \(.0 .7 \lambda\)
where \(\lambda=1.0\) for normal weight concrete; 0.85 for "sand lightweight" concrete; and 0.75 for "all lightweight" concrete. Linear interpolation may be applied when partial sand replacement is used.
8.16.6.4.5 Shear strength \(V_{n}\) shall not be taken greater than \(0.2 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{A}_{\mathrm{cv}}\) nor \(800 \mathrm{~A}_{\mathrm{cv}}\) in pounds, where \(\mathrm{A}_{\mathrm{cv}}\) is the area of the concrete section resisting shear transfer.
8.16.6.4.6 Net tension across the shear plane shall be resisted by additional reinforcement. Permanent net compression across the shear plane may be taken as additive to the force in the shear-friction reinforcement, \(A_{v f} f_{y}\), when calculating required \(\mathrm{A}_{\mathrm{vf}}\).
8.16.6.4.7 Shear-friction reinforcement shall be appropriately placed along the shear plane and shall be anchored to develop the specified yield strength on both sides by embedment, hooks, or welding to special devices.
8.16.6.4.8 For the purpose of Article 8.16.6.4, when concrete is placed against previously hardened concrete, the interface for shear transfer shall be clean and free of laitance. If \(\mu\) is assumed equal to \(1.0 \lambda\), the interface shall be roughened to a full amplitude of approximately \(1 / 4\) inch.
8.16.6.4.9 When shear is transferred between asrolled steel and concrete using headed studs or welded reinforcing bars, steel shall be clean and free of paint.

\subsection*{8.16.6.5 Horizontal Shear Strength for Composite Concrete Flexural Members}
8.16.6.5.1 In a composite member, full transfer of horizontal shear forces shall be assured at contact surfaces of interconnected elements.
8.16.6.5.2 Design of cross sections subject to horizontal shear may be in accordance with provisions of Article 8.16.6.5.3 or 8.16.6.5.4, or any other shear transfer design method that results in prediction of strength in substantial agreement with results of comprehensive tests.
8.16.6.5.3 Design of cross sections subject to horizontal shear may be based on:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{u}} \leq \phi \mathrm{V}_{\mathrm{nh}} \tag{8-57}
\end{equation*}
\]
where \(V_{u}\) is the factored shear force at the section considered, \(\mathrm{V}_{\mathrm{nh}}\) is the nominal horizontal shear strength in accordance with the following, and where \(d\) is for the entire composite section.
(a) When contact surface is clean, free of laitance, and intentionally roughened, shear strength \(\mathrm{V}_{\text {nh }}\) shall not be taken greater than \(80 \mathrm{~b}_{\mathrm{v}} \mathrm{d}\), in pounds.
(b) When minimum ties are provided in accordance with Article 8.16.6.5.5, and contact surface is clean and free of laitance, but not intentionally roughened, shear strength \(V_{n h}\) shall not be taken greater than \(80 \mathrm{~b}_{\mathrm{v}} \mathrm{d}\), in pounds.
(c) When minimum ties are provided in accordance with Article 8.16.6.5.5, and contract surface is clean, free of laitance, and intentionally roughened to a full amplitude of approximately \(1 / 4\) inch, shear strength \(V_{\text {nh }}\) shall not be taken greater than \(350 \mathrm{~b}_{\mathrm{v}} \mathrm{d}\), in pounds.
(d) For each percent of tie reinforcement crossing the contact surface in excess of the minimum required by Article 8.16.6.5.5, shear strength \(\mathrm{V}_{\mathrm{nh}}\) may be increased by \(\left(160 f_{y} / 40,000\right) b_{v} d\), in pounds.
8.16.6.5.4 Horizontal shear may be investigated by computing, in any segment not exceeding one-tenth of the span, the change in compressive or tensile force to be transferred, and provisions made to transfer that force as horizontal shear between interconnected elements. The factored horizontal shear force shall not exceed horizon-
tal shear strength \(\phi \mathrm{V}_{\mathrm{nh}}\) in accordance with Article 8.16.6.5.3, except that the length of the segment considered shall be substituted for \(d\).

\subsection*{8.16.6.5.5 Ties for Horizontal Shear}
(a) When required, a minimum area of tie reinforcement shall be provided between interconnected elements. Tie area shall not be less than \(50 b_{v} s / f_{y}\), and tie spacing, \(s\), shall not exceed four times the least web width of the support element, nor 24 inches.
(b) Ties for horizontal shear may consist of single bars or wire, multiple leg stirrups, or vertical legs of welded wire fabric. All ties shall be adequately anchored into interconnected elements by embedment or hooks.

\subsection*{8.16.6.6 Special Provisions for Slabs and Footings}
8.16.6.6.1 Shear strength of slabs and footings in the vicinity of concentrated loads or reactions shall be governed by the more severe of two conditions:
(a) Beam action for the slab or footing, with a critical section extending in a plane across the entire width and located at a distance \(d\) from the face of the concentrated load or reaction area. For this condition, the slab or footing shall be designed in accordance with Articles 8.16.6.1 through 8.16.6.3 except at footings supported on piles, the shear on the critical section shall be determined in accordance with Article 4.4.11.3.
(b) Two-way action for the slab or footing, with a critical section perpendicular to the plane of the member and located so that its perimeter \(b_{0}\) is a minimum, but need not approach closer than \(\mathrm{d} / 2\) to the perimeter of the concentrated load or reaction area. For this condition, the slab or footing shall be designed in accordance with Articles 8.16.6.6.2 and 8.16.6.6.3.
8.16.6.6.2 Design of slab or footing for two-way action shall be based on Equation (8-46), where shear strength \(V_{n}\) shall not be taken greater than shear strength \(\mathrm{V}_{\mathrm{c}}\) given by Equation (8-58), unless shear reinforcement is provided in accordance with Article 8.16.6.6.3.
\[
\begin{equation*}
V_{c}=\left(2+\frac{4}{\beta_{c}}\right) \sqrt{f_{c}^{\prime}} b_{o} d \leq 4 \sqrt{f_{c}^{\prime}} b_{o} d \tag{8-58}
\end{equation*}
\]
\(\beta_{c}\) is the ratio of long side to short side of concentrated load or reaction area, and \(b_{0}\) is the perimeter of the critical section defined in Article 8.16.6.6.1(b).
8.16.6.6.3 Shear reinforcement consisting of bars or wires may be used in slabs and footings in accordance with the following provisions:
(a) Shear strength \(V_{n}\) shall be computed by Equation (8-47), where shear strength \(\mathrm{V}_{\mathrm{c}}\) shall be in accordance with paragraph (d) and shear strength \(\mathrm{V}_{\mathrm{s}}\) shall be in accordance with paragraph (e).
(b) Shear strength shall be investigated at the critical section defined in Article 8.16.6.6.1(b), and at successive sections more distant from the support.
(c) Shear strength \(V_{n}\) shall not be taken greater than 6 \(\sqrt{f_{c}^{\prime}} b_{o} d\), where \(b_{o}\) is the perimeter of the critical section defined in paragraph (b).
(d) Shear strength \(V_{c}\) at any section shall not be taken greater than \(2 \sqrt{f_{c}^{\prime}} b_{0} d\), where \(b_{0}\) is the perimeter of the critical section defined in paragraph (b).
(e) Where the factored shear force \(V_{u}\) exceeds the shear strength \(\phi \mathrm{V}_{\mathrm{c}}\) as given in paragraph (d), the required area \(A_{v}\) and shear strength \(V_{s}\) of shear reinforcement shall be calculated in accordance with Article 8.16.6.3.

\subsection*{8.16.6.7 Special Provisions for Slabs of Box Culverts}
8.16.6.7.1 For slabs of box culverts under 2 feet or more fill, shear strength \(V_{c}\) may be computed by:
\[
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=\left(2.14 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}+4,600 \rho \frac{\mathrm{~V}_{\mathrm{u}} \mathrm{~d}}{\mathrm{M}_{\mathrm{u}}}\right) \mathrm{bd} \tag{8-59}
\end{equation*}
\]
but \(V_{c}\) shall not exceed \(4 \sqrt{f_{c}^{\prime}}\) bd. For single cell box culverts only, \(\mathrm{V}_{\mathrm{c}}\) for slabs monolithic with walls need not be taken less than \(3 \sqrt{f_{c}^{\prime}}\) bd, and \(V_{c}\) for slabs simply supported need not be taken less than \(2.5 \sqrt{f_{c}^{\prime}}\) bd. The quantity \(V_{u} d / M_{u}\) shall not be taken greater than 1.0 where \(M_{u}\) is the factored moment occurring simultaneously with \(\mathrm{V}_{\mathrm{u}}\) at the section considered. For slabs of box culverts under less than 2 feet of fill, applicable provisions of Articles 3.24 and 6.4 should be used.

\subsection*{8.16.6.8 Special Provisions for Brackets and Corbels*}
8.16.6.8.1 Provisions of Article 8.16.6.8 shall apply to brackets and corbels with a shear span-to-depth ratio \(\mathrm{a}_{\mathrm{v}} / \mathrm{d}\) not greater than unity, and subject to a horizontal tensile force \(N_{u c}\) not larger than \(V_{u}\). Distance \(d\) shall be measured at the face of support.

\footnotetext{
*These provisions do not apply to beam ledges. The PCA publication, "Notes on ACI 318-83" contains an example design of beam ledgesPart 16, example 16-3.
}
8.16.6.8.2 Depth at the outside edge of bearing area shall not be less than 0.5 d .
8.16.6.8.3 The section at the face of the support shall be designed to resist simultaneously a shear \(\mathrm{V}_{\mathrm{u}}\), a moment \(\left(V_{u} a_{v}+N_{u c}(h-d)\right.\)), and a horizontal tensile force \(N_{u c}\). Distance \(h\) shall be measured at the face of support.
(a) In all design calculations in accordance with Article 8.16 .6 .8 , the strength reduction factor \(\phi\) shall be taken equal to 0.85 .
(b) Design of shear-friction reinforcement \(\mathrm{A}_{\mathrm{vf}}\) to resist shear \(\mathrm{V}_{\mathrm{u}}\) shall be in accordance with Article 8.16.6.4. For normal weight concrete, shear strength \(V_{n}\) shall not be taken greater than \(0.2 f_{c}^{\prime} b_{w} d\) nor \(800 b_{w}\) d in pounds. For "all lightweight" or "sand-lightweight" concrete, shear strength \(\mathrm{V}_{\mathrm{n}}\) shall not be taken greater than (0.2 \(\left.0.07 \mathrm{a}_{\mathrm{v}} / \mathrm{d}\right) \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{d}\) nor \(\left(800-280 \mathrm{a}_{\mathrm{v}} / \mathrm{d}\right) \mathrm{b}_{\mathrm{w}} \mathrm{d}\) in pounds.
(c) Reinforcement \(A_{f}\) to resist moment \(\left(V_{u} a_{v}+\right.\) \(\mathrm{N}_{\mathrm{uc}}(\mathrm{h}-\mathrm{d})\)) shall be computed in accordance with Articles 8.16.2 and 8.16.3.
(d) Reinforcement \(A_{n}\) to resist tensile force \(N_{u c}\) shall be determined from \(N_{u c} \leq \phi A_{n} f_{y}\). Tensile force \(N_{u c}\) shall not be taken less than \(0.2 \mathrm{~V}_{\mathrm{u}}\) unless special provisions are made to avoid tensile forces. Tensile force \(\mathrm{N}_{\mathrm{uc}}\) shall be regarded as a live load even when tension results from creep, shrinkage, or temperature change.
(e) Area of primary tension reinforcement \(\mathrm{A}_{s}\) shall be made equal to the greater of \(\left(A_{f}+A_{n}\right)\) or:
\[
\frac{2 \mathrm{~A}_{\mathrm{vf}}}{3}+\mathrm{A}_{\mathrm{n}}
\]

FIGURE 8.16.6.8
8.16.6.8.4 Closed stirrups or ties parallel to \(\mathrm{A}_{\mathrm{s}}\), with a total area \(\mathrm{A}_{\mathrm{h}}\) not less than \(0.5\left(\mathrm{~A}_{\mathrm{s}}-\mathrm{A}_{\mathrm{n}}\right)\), shall be uniformly distributed within two-thirds of the effective depth adjacent to \(\mathrm{A}_{\mathrm{s}}\).
8.16.6.8.5 Ratio \(\rho=\mathrm{A}_{s} / \mathrm{bd}\) shall not be less than \(0.04\left(\mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{y}}\right)\).
8.16.6.8.6 At front face of bracket or corbel, primary tension reinforcement \(A_{s}\) shall be anchored by one of the following:
(a) a structural weld to a transverse bar of at least equal size; weld to be designed to develop specified yield strength \(f_{y}\) of \(A_{s}\) bars,
(b) bending primary tension bars \(\mathrm{A}_{\mathrm{s}}\) back to form a horizontal loop, or
(c) some other means of positive anchorage.
8.16.6.8.7 Bearing area of load on bracket or corbel shall not project beyond straight portion of primary tension bars \(\mathrm{A}_{5}\), nor project beyond interior face of transverse anchor bar (if one is provided).

\subsection*{8.16.7 Bearing Strength}
8.16.7.1 The bearing stress, \(f_{b}\), on concrete shall not exceed \(0.85 \phi \mathrm{f}_{\mathrm{c}}^{\prime}\) except as provided in Articles 8.16.7.2, 8.16.7.3, and 8.16.7.4.
8.16.7.2 When the supporting surface is wider on all sides than the loaded area, the allowable bearing stress on the loaded area may be multiplied by \(\sqrt{\mathrm{A}_{2} / \mathrm{A}_{1}}\), but not by more than 2 .
8.16.7.3 When the supporting surface is sloped or stepped, \(\mathrm{A}_{2}\) may be taken as the area of the lower base of the largest frustum of a right pyramid or cone contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal.
8.16.7.4 When the loaded area is subjected to high edge stresses due to deflection or eccentric loading, the allowable bearing stress on the loaded area, including any increase due to the supporting surface being larger than the loaded area, shall be multiplied by a factor of 0.75 .

\subsection*{8.16.8 Serviceability Requirements}

\subsection*{8.16.8.1 Application}

For flexural members designed with reference to load factors and strengths by Strength Design Method, stresses
at service load shall be limited to satisfy the requirements for fatigue in Article 8.16.8.3, and for distribution of reinforcement in Article 8.16.8.4. The requirements for control of deflections in Article 8.9 shall also be satisfied.

\subsection*{8.16.8.2 Service Load Stresses}

For investigation of stresses at service loads to satisfy the requirements of Articles 8.16.8.3 and 8.16.8.4, the straight-line theory of stress and strain in flexure shall be used and the assumptions given in Article 8.15 .3 shall apply.

\subsection*{8.16.8.3 Fatigue Stress Limits}

The range between a maximum tensile stress and minimum stress in straight reinforcement caused by live load plus impact at service load shall not exceed:
\[
\begin{equation*}
\mathrm{f}_{\mathrm{f}}=21-0.33 \mathrm{f}_{\min }+8(\mathrm{r} / \mathrm{h}) \tag{8-60}
\end{equation*}
\]
where:
\(\mathrm{f}_{\mathrm{f}}=\) stress range in kips per square inch;
\(\mathrm{f}_{\text {min }}=\) algebraic minimum stress level, tension positive, compression negative in kips per square inch;
\(\mathrm{r} / \mathrm{h}=\) ratio of base radius to height of rolled-on transverse deformations; when the actual value is not known, use 0.3.

Bends in primary reinforcement shall be avoided in regions of high stress range.

Fatigue stress limits need not be considered for concrete deck slabs with primary reinforcement perpendicular to traffic and designed in accordance with the approximate methods given under Article 3.24.3, Case A.

Fatigue stress limits for welded splices and mechanical connections that are subjected to repetitive loads shall conform with the requirements of Article 8.32.2.5.

\subsection*{8.16.8.4 Distribution of Flexural Reinforcement}

To control flexural cracking of the concrete, tension reinforcement shall be well distributed within maximum flexural zones. When the design yield strength, \(f_{y}\), for tension reinforcement exceeds \(40,000 \mathrm{psi}\), the bar sizes and spacing at maximum positive and negative moment sections shall be chosen so that the calculated stress in the reinforcement at service load \(\mathrm{f}_{\mathrm{s}}\), in ksi does not exceed the value computed by:
\[
\begin{equation*}
\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{z}}{\left(\mathrm{~d}_{\mathrm{c}} \mathrm{~A}\right)^{1 / 3}} \leq 0.6 \mathrm{f}_{\mathrm{y}} \tag{8-61}
\end{equation*}
\]
where:

A = effective tension area, in square inches, of concrete surrounding the flexural tension reinforcement and having the same centroid as that reinforcement, divided by the number of bars or wires. When the flexural reinforcement consists of several bar or wire sizes, the number of bars or wires shall be computed as the total area of reinforcement divided by the area of the largest bar or wire used. For calculation purposes, the thickness of clear concrete cover used to compute A shall not be taken greater than 2 in .
\(\mathrm{d}_{\mathrm{c}}=\) distance measured from extreme tension fiber to center of the closest bar or wire in inches. For
calculation purposes, the thickness of clear concrete cover used to compute \(d_{c}\) shall not be taken greater than 2 inches.

The quantity \(z\) in Equation (8-61) shall not exceed 170 kips per inch for members in moderate exposure conditions and 130 kips per inch for members in severe exposure conditions. Where members are exposed to very aggressive exposure or corrosive environments, such as deicer chemicals, protection should be provided by increasing the denseness or imperviousness to water or furnishing other protection such as a waterproofing protecting system, in addition to satisfying Equation (8-61).

\section*{Part D \\ REINFORCEMENT}

\subsection*{8.17 REINFORCEMENT OF FLEXURAL MEMBERS}

\subsection*{8.17.1 Minimum Reinforcement}
8.17.1. At any section of a flexural member where tension reinforcement is required by analysis, the reinforcement provided shall be adequate to develop a moment at least 1.2 times the cracking moment calculated on the basis of the modulus of rupture for normal weight concrete specified in Article 8.15.2.1.1.
\[
\begin{equation*}
\phi \mathrm{M}_{\mathrm{n}} \geq 1.2 \mathrm{M}_{\mathrm{cr}} \tag{8-62}
\end{equation*}
\]
8.17.1.2 The requirements of Article 8.17.1.1 may be waived if the area of reinforcement provided at a section is at least one-third greater than that required by analysis based on the loading combinations specified in Article 3.22.

\subsection*{8.17.2 Distribution of Reinforcement}

\subsection*{8.17.2.1 Flexural Tension Reinforcement in Zones of Maximum Tension}
8.17.2.1.1 Where flanges of T-girders and box-girders are in tension, tension reinforcement shall be distributed over an effective tension flange width equal to onetenth the girder span length or a width as defined in Article 8.10.1, whichever is smaller. If the actual slab width, cen-ter-to-center of girder webs, exceeds the effective tension flange width, and for excess portions of the deck slab overhang, additional longitudinal reinforcement with area
not less than \(0.4 \%\) of the excess slab area shall be provided in the excess portions of the slab.
8.17.2.1.2 For integral bent caps of T-girder and boxgirder construction, tension reinforcement shall be placed within a width not to exceed the web width plus an overhanging slab width on each side of the bent cap web equal to one-fourth the average spacing of the intersecting girder webs or a width as defined in Article 8.10.1.4 for integral bent caps, whichever is smaller.
8.17.2.1.3 If the depth of the side face of a member exceeds 3 feet, longitudinal skin reinforcement shall be uniformly distributed along both side faces of the member for a distance \(\mathrm{d} / 2\) nearest the flexural tension reinforcement. The area of skin reinforcement \(A_{\text {sk }}\) per foot of height on each side face shall be \(\geq 0.012\) (\(\mathrm{d}-30\)). The maximum spacing of skin reinforcement shall not exceed the lesser of d/6 and 12 inches. Such reinforcement may be included in strength computations if a strain compatibility analysis is made to determine stresses in the individual bars or wires. The total area of longitudinal skin reinforcement in both faces need not exceed one-half of the required flexural tensile reinforcement.

\subsection*{8.17.2.2 Transverse Deck Slab Reinforcement in T-Girders and Box Girders}

At least one-third of the bottom layer of the transverse reinforcement in the deck slab shall extend to the exterior face of the outside girder web in each group and be an-
chored by a standard \(90^{\circ}\) hook. If the slab extends beyond the last girder web, such reinforcement shall extend into the slab overhang and shall have an anchorage beyond the exterior face of the girder web not less than that provided by a standard hook.

\subsection*{8.17.2.3 Bottom Slab Reinforcement for Box Girders}
8.17.2.3.1 Minimum distributed reinforcement of \(0.4 \%\) of the flange area shall be placed in the bottom slab parallel to the girder span. A single layer of reinforcement may be provided. The spacing of such reinforcement shall not exceed 18 inches.
8.17.2.3.2 Minimum distributed reinforcement of \(0.5 \%\) of the cross-sectional area of the slab, based on the least slab thickness, shall be placed in the bottom slab transverse to the girder span. Such reinforcement shall be distributed over both surfaces with a maximum spacing of 18 inches. All transverse reinforcement in the bottom slab shall extend to the exterior face of the outside girder web in each group and be anchored by a standard \(90^{\circ}\) hook.

\subsection*{8.17.3 Lateral Reinforcement of Flexural Members}
8.17.3.1 Compression reinforcement used to increase the strength of flexural members shall be enclosed by ties or stirrups which shall be at least No. 3 in size for longitudinal bars that are No. 10 or smaller, and at least No. 4 in size for No. 11, No. 14, No. 18, and bundled longitudinal bars. Welded wire fabric of equivalent area may be used instead of bars. The spacing of ties shall not exceed 16 longitudinal bar diameters. Such stirrups or ties shall be provided throughout the distance where the compression reinforcement is required. This paragraph does not apply to reinforcement located in a compression zone which has not been considered as compression reinforcement in the design of the member.
8.17.3.2 Torsion reinforcement, where required, shall consist of closed stirrups, closed ties, or spirals, combined with longitudinal bars. See Article 8.15.5.1.1 or 8.16.6.1.1.
8.17.3.3 Closed stirrups or ties may be formed in one piece by overlapping the standard end hooks of ties or stirrups around a longitudinal bar, or may be formed in one or two pieces by splicing with Class \(C\) splices (lap of \(1.7 \ell_{d}\)).
8.17.3.4 In seismic areas, where an earthquake that could cause major damage to construction has a high probability of occurrence, lateral reinforcement shall be
designed and detailed to provide adequate strength and ductility to resist expected seismic movements.

\subsection*{8.17.4 Reinforcement for Hollow Rectangular Compression Members}
8.17.4.1 The area of longitudinal reinforcement in the cross section shall not be less than 0.01 times the gross area of concrete in the cross section.
8.17.4.2 Two layers of reinforcement shall be provided in each wall of the cross section, one layer near each face of the wall. The areas of reinforcement in the two layers shall be approximately equal.
8.17.4.3 The center-to-center lateral spacing of longitudinal reinforcing bars shall be no greater than 1.5 times the wall thickness, or 18 inches, whichever is less.
8.17.4.4 The center-to-center longitudinal spacing of lateral reinforcing bars shall be no greater than 1.25 times the wall thickness, or 12 inches, whichever is less.
8.17.4.5 Cross ties shall be provided between layers of reinforcement in each wall. The cross ties shall include a standard \(135^{\circ}\) hook at one end, and a standard \(90^{\circ}\) hook at the other end. Cross ties shall be located at bar grid intersections, and the hooks of all ties shall enclose both lateral and longitudinal bars at the intersections. Each longitudinal reinforcing bar and each lateral reinforcing bar shall be enclosed by the hook of a cross tie at a spacing not to exceed 24 inches.
8.17.4.6 For segmentally constructed members, additional cross ties shall be provided along the top and bottom edges of each segment. The cross ties shall be placed so as to link the ends of each pair of internal and external longitudinal reinforcing bars in the walls of the cross section.
8.17.4.7 Lateral reinforcing bars may be joined at the corners of the cross section by overlapping \(90^{\circ}\) bends. Straight lap splices of lateral reinforcing bars are not permitted unless the overlapping bars are enclosed over the length of the splice by the hooks of at least four cross ties located at intersections of the lateral bars and longitudinal bars.
8.17.4.8 When details permit, the longitudinal reinforcing bars in the corners of the cross section shall be enclosed by closed hoops. If closed hoops cannot be provided, then pairs of " \(U\) " shaped bars with legs at least twice as long as the wall thickness, and orientated \(90^{\circ}\) to one another, may be substituted.
8.17.4.9 Post-tensioning ducts located in the corners of the cross section shall be anchored into the corner regions with closed hoops, or by stirrups having a \(90^{\circ}\) bend at each end which encloses at least one longitudinal bar near the outer face of the cross section.

\subsection*{8.18 REINFORCEMENT OF COMPRESSION MEMBERS}

\subsection*{8.18.1 Maximum and Minimum Longitudinal Reinforcement}
8.18.1.1 The area of longitudinal reinforcement for compression members shall not exceed 0.08 times the gross area, \(\mathrm{A}_{\mathrm{g}}\), of the section.
8.18.1.2 The minimum area of longitudinal reinforcement shall not be less than 0.01 times the gross area, \(A_{g}\), of the section. When the cross section is larger than that required by consideration of loading, a reduced effective area may be used. The reduced effective area shall not be less than that which would require \(1 \%\) of longitudinal reinforcement to carry the loading. The minimum number of longitudinal reinforcing bars shall be six for bars in a circular arrangement and four for bars in a rectangular arrangement. The minimum size of bars shall be No. 5.

\subsection*{8.18.2 Lateral Reinforcement}

\subsection*{8.18.2.1 General}

In a compression member that has a larger cross section than that required by conditions of loading, the lateral reinforcement requirements may be waived where structural analysis or tests show adequate strength and feasibility of construction.

\subsection*{8.18.2.2 Spirals}

Spiral reinforcement for compression members shall conform to the following:
8.18.2.2.1 Spirals shall consist of evenly spaced continuous bar or wire, with a minimum diameter of \(3 / 8\) inch.
8.18.2.2.2 The ratio of spiral reinforcement to total volume of core, \(\rho_{\mathrm{s}}\), shall not be less than the value given by:
\[
\begin{equation*}
\rho_{\mathrm{s}}=0.45\left(\frac{\mathrm{~A}_{\mathrm{g}}}{\mathrm{~A}_{\mathrm{c}}}-1\right) \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \tag{8-63}
\end{equation*}
\]
where \(f_{y}\) is the specified yield strength of spiral reinforcement but not more than \(60,000 \mathrm{psi}\).
8.18.2.2.3 The clear spacing between spirals shall not exceed 3 inches or be less than 1 inch or \(1 \frac{1}{3}\) times the maximum size of coarse aggregate used.
8.18.2.2.4 Anchorage of spiral reinforcement shall be provided by \(1 \frac{1}{2}\) extra turns of spiral bar or wire at each end of a spiral unit.
8.18.2.2.5 Spirals shall extend from top of footing or other support to the level of the lowest horizontal reinforcement in members supported above.
8.18.2.2.6 Splices in spiral reinforcement shall be lap splices of 48 bar or wire diameters but not less than 12 inches, or shall be welded.
8.18.2.2.7 Spirals shall be of such size and so assembled to permit handling and placing without distortion from designed dimensions.
8.18.2.2.8 Spirals shall be held firmly in place by attachment to the longitudinal reinforcement and true to line by vertical spacers.

\subsection*{8.18.2.3 Ties}

Tie reinforcement for compression members shall conform to the following:
8.18.2.3.1 All bars shall be enclosed by lateral ties which shall be at least No. 3 in size for longitudinal bars that are No. 10 or smaller, and at least No. 4 in size for No. 11 , No. 14, No. 18, and bundled longitudinal bars. Deformed wire or welded wire fabric of equivalent area may be used instead of bars.
8.18.2.3.2 The spacing of ties shall not exceed the least dimension of the compression member or 12 inches. When two or more bars larger than No. 10 are bundled together, tie spacing shall be one-half that specified above.
8.18.2.3.3 Ties shall be located not more than half a tie spacing from the face of a footing or from the nearest longitudinal reinforcement of a cross-framing member.
8.18.2.3.4 No longitudinal bar shall be more than 2 feet, measured along the tie, from a restrained bar on either side. A restrained bar is one which has lateral support provided by the corner of a tie having an included angle of not more than \(135^{\circ}\). Where longitudinal bars are lo-
cated around the perimeter of a circle, a complete circular tie may be used.

\subsection*{8.18.2.4 Seismic Requirements}

In seismic areas, where an earthquake which could cause major damage to construction has a high probability of occurrence, lateral reinforcement for column piers shall be designed and detailed to provide adequate strength and ductility to resist expected seismic movements.

\subsection*{8.19 LIMITS FOR SHEAR REINFORCEMENT}

\subsection*{8.19.1 Minimum Shear Reinforcement}
8.19.1.1 A minimum area of shear reinforcement shall be provided in all flexural members, except slabs and footings, where
(a) For design by Strength Design, factored shear force \(V_{u}\) exceeds one-half the shear strength provided by concrete \(\phi \mathrm{V}_{\mathrm{c}}\).
(b) For design by Service Load Design, design shear stress v exceeds one-half the permissible shear stress carried by concrete \(\mathrm{v}_{\mathrm{c}}\).
8.19.1.2 Where shear reinforcement is required by Article 8.19.1.1, or by analysis, the area provided shall not be less than:
\[
\begin{equation*}
A_{v}=\frac{50 b_{w} s}{f_{y}} \tag{8-64}
\end{equation*}
\]
where \(b_{w}\) and \(s\) are in inches.
8.19.1.3 Minimum shear reinforcement requirements may be waived if it is shown by test that the required ultimate flexural and shear capacity can be developed when shear reinforcement is omitted.

\subsection*{8.19.2 Types of Shear Reinforcement}

\subsection*{8.19.2.1 Shear reinforcement may consist of:}
(a) Stirrups perpendicular to the axis of the member or making an angle of \(45^{\circ}\) or more with the longitudinal tension reinforcement.
(b) Welded wire fabric with wires located perpendicular to the axis of the member.
(c) Longitudinal reinforcement with a bent portion making an angle of \(30^{\circ}\) or more with the longitudinal tension reinforcement.
(d) Combinations of stirrups and bent longitudinal reinforcement.
(e) Spirals.
8.19.2.2 Shear reinforcement shall be developed at both ends in accordance with the requirements of Article 8.27.

\subsection*{8.19.3 Spacing of Shear Reinforcement}

Spacing of shear reinforcement placed perpendicular to the axis of the member shall not exceed \(\mathrm{d} / 2\) or 24 inches. Inclined stirrups and bent longitudinal reinforcement shall be so spaced that every \(45^{\circ}\) line extending toward the reaction from the mid-depth of the member, \(\mathrm{d} / 2\), to the longitudinal tension reinforcement shall be crossed by at least one line of shear reinforcement.

\subsection*{8.20 SHRINKAGE AND TEMPERATURE REINFORCEMENT}
8.20.1 Reinforcement for shrinkage and temperature stresses shall be provided near exposed surfaces of walls and slabs not otherwise reinforced. The total area of reinforcement provided shall be at least \(1 / 8\) square inch per foot in each direction.
8.20.2 The spacing of shrinkage and temperature reinforcement shall not exceed three times the wall or slab thickness, or 18 inches.

\subsection*{8.21 SPACING LIMITS FOR REINFORCEMENT}
8.21.1 For cast-in-place concrete the clear distance between parallel bars in a layer shall not be less than 1.5 bar diameters, 1.5 times the maximum size of the coarse aggregate, or \(11 / 2\) inches
8.21.2 For precast concrete (manufactured under plant control conditions) the clear distance between parallel bars in a layer shall be not less than 1 bar diameter, \(1 / 3\) times the maximum size of the coarse aggregate, or 1 inch.
8.21.3 Where positive or negative reinforcement is placed in two or more layers, bars in the upper layers shall be placed directly above those in the bottom layer with the clear distance between layers not less than 1 inch.
8.21.4 The clear distance limitation between bars shall also apply to the clear distance between a contact lap splice and adjacent splices or bars.
8.21.5 Groups of parallel reinforcing bars bundled in contact to act as a unit shall be limited to 4 in any one bundle. Bars larger than No. 11 shall be limited to two in any one bundle in beams. Bundled bars shall be located within stirrups or ties. Individual bars in a bundle cut off within the span of a member shall terminate at points at least 40-bar diameters apart. Where spacing limitations are based on bar diameter, a unit of bundled bars shall be treated as a single bar of a diameter derived from the equivalent total area.
8.21.6 In walls and slabs the primary flexural reinforcement shall be spaced not farther apart than 1.5 times the wall or slab thickness, or 18 inches.

\subsection*{8.22 PROTECTION AGAINST CORROSION}
8.22.1 The following minimum concrete cover shall be provided for reinforcement:
\(\left.\begin{array}{cc} & \begin{array}{c}\text { Minimum } \\ \text { Cover }\end{array} \\ \text { (inches) }\end{array}\right\}\)
8.22.2 For bundled bars, the minimum concrete cover shall be equal to the equivalent diameter of the bundle, but need not be greater than 2 inches, except for concrete cast against and permanently exposed to earth in which case the minimum cover shall be 3 inches.
8.22.3 In corrosive or marine environments or other severe exposure conditions, the amount of concrete protection shall be suitably increased, by increasing the denseness and imperviousness to water of the protecting

TABLE 8.23.2.1 Minimum Diameters of Bend
\begin{tabular}{lr}
\hline \multicolumn{1}{c}{ Bar Size } & Minimum Diameter \\
\hline Nos. 3 through 8 & 6-bar diameters \\
Nos. 9,10 , and 11 & 8-bar diameters \\
Nos. 14 and 18 & 10-bar diameters \\
\hline
\end{tabular}
concrete or other means. Other means of positive corrosion protection may consist of, but not be limited to, epoxy-coated bars, special concrete overlays, and impervious membranes; or a combination of these means.*
8.22.4 Exposed reinforcement, inserts, and plates intended for bonding with future extensions shall be protected from corrosion.

\subsection*{8.23 HOOKS AND BENDS}

\subsection*{8.23.1 Standard Hooks}

The term "standard hook" as used herein shall mean one of the following:
(1) \(180^{\circ}\) bend plus \(4 \mathrm{~d}_{\mathrm{b}}\) extension, but not less than \(2 \frac{1}{2}\) inches at free end of bar.
(2) \(90^{\circ}\) bend plus \(12 \mathrm{~d}_{\mathrm{b}}\) extension at free end of bar.
(3) For stirrup and tie hooks:
(a) No. 5 bar and smaller, \(90^{\circ}\) bend plus \(6 \mathrm{~d}_{\mathrm{b}}\) extension at free end of bar, or
(b) No. 6, No. 7, and No. 8 bar, \(90^{\circ}\) bend plus \(12 \mathrm{~d}_{\mathrm{b}}\) extension at free end of bar, or
(c) No. 8 bar and smaller, \(135^{\circ}\) bend plus \(6 \mathrm{~d}_{\mathrm{b}}\) extension at free end of bar.

\subsection*{8.23.2 Minimum Bend Diameters}
8.23.2.1 Diameter of bend measured on the inside of the bar, other than for stirrups and ties, shall not be less than the values given in Table 8.23.2.1.
8.23.2.2 The inside diameter of bend for stirrups and ties shall not be less than 4 bar diameters for sizes No. 5 and smaller. For bars larger than size No. 5 diameter of bend shall be in accordance with Table 8.23.2.1.
8.23.2.3 The inside diameter of bend in smooth or deformed welded wire fabric for stirrups and ties shall not be less than 4-wire diameters for deformed wire larger than D6 and 2-wire diameters for all other wires. Bends with inside

\footnotetext{
*For additional information on corrosion protection methods, refer to National Cooperative Highway Research Report 297, "Evaluation of Bridge Deck Protective Strategies."
}
diameters of less than 8 -wire diameters shall not be less than 4 -wire diameters from the nearest welded intersection.

\subsection*{8.24 DEVELOPMENT OF FLEXURAL REINFORCEMENT}

\subsection*{8.24.1 General}
8.24.1.1 The calculated tension or compression in the reinforcement at each section shall be developed on each side of that section by embedment length, hook or mechanical device, or a combination thereof. Hooks may be used in developing bars in tension only.
8.24.1.2 Critical sections for development of reinforcement in flexural members are at points of maximum stress and at points within the span where adjacent reinforcement terminates or is bent. The provisions of Article 8.24.2.3 must also be satisfied.
8.24.1.2.1 Reinforcement shall extend beyond the point at which it is no longer required to resist flexure for a distance equal to the effective depth of the member, 15 bar diameters, or \(1 / 20\) of the clear span, whichever is greater, except at supports of simple spans and at the free ends of cantilevers.
8.24.1.2.2 Continuing reinforcement shall have an embedment length not less than the development length \(\ell_{\mathrm{d}}\) beyond the point where bent or terminated tension reinforcement is no longer required to resist flexure.
8.24.1.3 Tension reinforcement may be developed by bending across the web in which it lies or by making it continuous with the reinforcement on the opposite face of the member.
8.24.1.4 Flexural reinforcement within the portion of the member used to calculate the shear strength shall not be terminated in a tension zone unless one of the following conditions is satisfied:
8.24.1.4.1 The shear at the cutoff point does not exceed two-thirds of that permitted, including the shear strength of shear reinforcement provided.
8.24.1.4.2 Stirrup area in excess of that required for shear is provided along each terminated bar over a distance from the termination point equal to three-fourths the effective depth of the member. The excess stirrup area, \(A_{v}\), shall not be less than \(60 \mathrm{~b}_{\mathrm{w}} \mathrm{s} / \mathrm{f}_{\mathrm{y}}\). Spacing, s , shall not exceed \(\mathrm{d} /\left(8 \beta_{\mathrm{b}}\right)\) where \(\beta_{\mathrm{b}}\) is the ratio of the area of reinforcement cut off to the total area of tension reinforcement at the section.
8.24.1.4.3 For No. 11 bars and smaller, the continuing bars provide double the area required for flexure at the cutoff point and the shear does not exceed three-fourths that permitted.
8.24.1.5 Adequate end anchorage shall be provided for tension reinforcement in flexural members where reinforcement stress is not directly proportional to moment, such as: sloped, stepped, or tapered footings; brackets; deep flexural members; or members in which the tension reinforcement is not parallel to the compression face.

\subsection*{8.24.2 Positive Moment Reinforcement}
8.24.2.1 At least one-third the positive moment reinforcement in simple members and one-fourth the positive moment reinforcement in continuous members shall extend along the same face of the member into the support. In beams, such reinforcement shall extend into the support at least 6 inches.
8.24.2.2 When a flexural member is part of the lateral load resisting system, the positive moment reinforcement required to be extended into the support by Article 8.24.2.1 shall be anchored to develop the specified yield strength, \(f_{y}\), in tension at the face of the support.
8.24.2.3 At simple supports and at points of inflection, positive moment tension reinforcement shall be limited to a diameter such that \(\ell_{d}\) computed for \(f_{y}\) by Article 8.25 satisfies Equation (8-65); except Equation (8-65) need not be satisfied for reinforcement terminating beyond center line of simple supports by a standard hook, or a mechanical anchorage at least equivalent to a standard hook.
\[
\begin{equation*}
\ell_{\mathrm{d}} \leq \frac{\mathrm{M}}{\mathrm{~V}}+\ell_{\mathrm{a}} \tag{8-65}
\end{equation*}
\]
where M is the computed moment capacity assuming all positive moment tension reinforcement at the section to be fully stressed. V is the maximum shear force at the section. \(\ell_{\mathrm{a}}\) at a support shall be the embedment length beyond the center of the support. At a point of inflection, \(\ell_{\mathrm{a}}\) shall be limited to the effective depth of the member or \(12 d_{b}\), whichever is greater. The value M/V in the development length limitation may be increased by \(30 \%\) when the ends of the reinforcement are confined by a compressive reaction.

\subsection*{8.24.3 Negative Moment Reinforcement}
8.24.3.1 Negative moment reinforcement in a continuous, restrained, or cantilever member, or in any member of a rigid frame, shall be anchored in or through the
supporting member by embedment length, hooks, or mechanical anchorage.
8.24.3.2 Negative moment reinforcement shall have an embedment length into the span as required by Article 8.24.1.
8.24.3.3 At least one-third of the total tension reinforcement provided for negative moment at the support shall have an embedment length beyond the point of inflection not less than the effective depth of the member, 12bar diameters or \(1 / 16\) of the clear span, whichever is greater.

\subsection*{8.25 DEVELOPMENT OF DEFORMED BARS AND DEFORMED WIRE IN TENSION}

The development length, \(\ell_{\mathrm{d}}\), in inches shall be computed as the product of the basic development length defined in Article 8.25 .1 and the applicable modification factor or factors defined in Article 8.25.2 and 8.25.3, but \(\ell_{\mathrm{d}}\) shall be not less than that specified in Article 8.25.4.
8.25.1 The basic development length shall be:

No. 11 bars and smaller \(0.04 \mathrm{~A}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}\) but not less than \(.0 .0004 \mathrm{~d}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}\)

No. 14 bars

No. 18 bars
\(\cdot \frac{0.11 f_{y}}{\sqrt{f_{c}^{\prime}}}\)
deformed wire \(\cdot \frac{0.03 \mathrm{~d}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}}\)
8.25.2 The basic development length shall be multiplied by the following applicable factor or factors:

\subsection*{8.25.2.1 Top reinforcement so placed that more than 12 inches of concrete is cast below the reinforcement 1.4}

\subsection*{8.25.2.2 Lightweight aggregate} concrete when \(f_{c t}\) is specified \(\frac{6.7 \sqrt{f_{c}^{\prime}}}{f_{c t}}\) but not less than 1.0 When \(f_{c t}\) is not specified
"all lightweight" concrete1.33
"sand lightweight" concrete 1.18

Linear interpolation may be applied when partial sand replacement is used.
8.25.2 3 Bars coated with epoxy with cover less than \(3 \mathrm{~d}_{\mathrm{b}}\) or clear spacing between bars
less than \(6 \mathrm{~d}_{\mathrm{b}}\)1.5
All other cases 1.15

The product obtained when combining the factor for top reinforcement with the applicable factor for epoxy coated reinforcement need not be taken greater than 1.7
8.25.3 The basic development length, modified by the appropriate factors of Article 8.25.2, may be multiplied by the following factors when:
8.25.3.1 Reinforcement being developed in the length under consideration is spaced laterally at least 6 inches on center with at least 3 inches clear cover measured in the direction of the spacing . 0.8
8.25.3.2 Anchorage or development for reinforcement strength is not specifically required or reinforcement in flexural members is in excess of that required by analysis
\[
\left(\mathrm{A}_{\mathrm{s}} \text { required)/(} \mathrm{A}_{\mathrm{s}} \text { provided }\right)
\]
8.25.3.3 Reinforcement is enclosed within a spiral of not less than \(1 / 4\) inch in diameter and not more than 4 inch pitch .0 .75
8.25.4 The development length, \(\ell_{d}\), shall not be less than 12 inches except in the computation of lap splices by Article 8.32.3 and development of shear reinforcement by Article 8.27.

\subsection*{8.26 DEVELOPMENT OF DEFORMED BARS IN COMPRESSION}

The development length, \(\ell_{\mathrm{d}}\), in inches, for deformed bars in compression shall be computed as the product of the basic development length of Article 8.26.1 and ap-
plicable modification factors of 8.26 .2 , but \(\ell_{\mathrm{d}}\) shall not be less than 8 inches.
8.26.1 The basic development length shall be \(0.02 \mathrm{~d}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}} / \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\)
but not less than \(0.0003 \mathrm{~d}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}\)
8.26.2 The basic development length may be multiplied by applicable factors when:
8.26.2.1 Anchorage or development for reinforcement strength is not specifically required, or reinforcement is in excess of that required by analysis (A \(\mathrm{A}_{\mathrm{s}}\) required)/ (A \(\mathrm{A}_{\mathrm{s}}\) provided)
8.26.2.2 Reinforcement is enclosed in a spiral of not less than \(1 / 4\) inch in diameter and not more than 4-inch pitch .0 .75

\subsection*{8.27 DEVELOPMENT OF SHEAR REINFORCEMENT}
8.27.1 Shear reinforcement shall extend at least to the centroid of the tension reinforcement, and shall be carried as close to the compression and tension surfaces of the member as cover requirements and the proximity of other reinforcement permit. Shear reinforcement shall be anchored at both ends for its design yield strength. For composite flexural members, all beam shear reinforcement shall be extended into the deck slab or otherwise shall be adequately anchored to assure full beam design shear capacity.
8.27.2 The ends of single leg, single \(U\), or multiple \(U\) stirrups shall be anchored by one of the following means:
8.27.2.1 A standard hook plus an embedment of the stirrup leg length of at least \(0.5 \ell_{d}\) between the mid-depth of the member \(\mathrm{d} / 2\) and the point of tangency of the hook.
8.27.2.2 An embedment length of \(\ell_{d}\) above or below the mid-depth of the member on the compression side but not less than 24-bar or wire diameters or, for deformed bars or deformed wire, 12 inches.
8.27.2.3 Bending around the longitudinal reinforcement through at least \(180^{\circ}\). Hooking or bending stirrups around the longitudinal reinforcement shall be considered effective anchorage only when the stirrups make an angle of at least \(45^{\circ}\) with the longitudinal reinforcement.
8.27.2.4 For each leg of welded smooth wire fabric forming single \(U\)-stirrups, either:
8.27.2.4.1 Two longitudinal wires at 2 -inch spacing along the member at the top of the U .
8.27.2.4.2 One longitudinal wire located not more than \(\mathrm{d} / 4\) from the compression face and a second wire closer to the compression face and spaced at least 2 inches from the first wire. The second wire may be located on the stirrup leg beyond a bend or on a bend with an inside diameter of bend of not less than 8 -wire diameters.
8.27.2.5 For each end of a single-leg stirrup of welded smooth or welded deformed wire fabric, there shall be two longitudinal wires at a minimum spacing of 2 inches and with the inner wire at least the greater of \(\mathrm{d} / 4\) or 2 inches from mid-depth of member \(d / 2\). Outer longitudinal wire at the tension face shall not be farther from the face than the portion of primary flexural reinforcement closest to the face.
8.27.3 Pairs of U-stirrups or ties so placed as to form a closed unit shall be considered properly spliced when the laps are \(1.7 \ell_{\mathrm{d}}\).
8.27.4 Between the anchored ends, each bend in the continuous portion of a single \(U\) - or multiple \(U\)-stirrup shall enclose a longitudinal bar.
8.27.5 Longitudinal bars bent to act as shear reinforcement, if extended into a region of tension, shall be continuous with the longitudinal reinforcement and, if extended into a region of compression, shall be anchored beyond the mid-depth, \(\mathrm{d} / 2\), as specified for development length in Article 8.25 for that part of the stress in the reinforcement required to satisfy Equation (8-8) or Equation (8-54).

\subsection*{8.28 DEVELOPMENT OF BUNDLED BARS}

The development length of individual bars within a bundle, in tension or compression, shall be that for the individual bar, increased by \(20 \%\) for a three-bar bundle, and \(33 \%\) for a four-bar bundle.

\subsection*{8.29 DEVELOPMENT OF STANDARD HOOKS IN TENSION}
8.29.1 Development length \(\ell_{\mathrm{dh}}\) in inches, for deformed bars in tension terminating in a standard hook (Article 8.23.1) shall be computed as the product of the basic development length \(\ell_{\mathrm{hb}}\) of Article 8.29.2 and the applicable modification factor or factors of Article 8.29.3, but \(\ell_{\mathrm{dh}}\) shall not be less than \(8 \mathrm{~d}_{\mathrm{b}}\) or 6 inches, whichever is greater.

FIGURE 8.29.1 Hooked-Bar Details for Development of Standard Hooks
8.29.2 Basic development length \(\ell_{\mathrm{hb}}\) for a hooked bar with \(f_{y}\) equal to \(60,000 \mathrm{psi}\) shall be .. \(1,200 \mathrm{~d}_{\mathrm{b}} / \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}\)
8.29.3 Basic development length \(\ell_{\mathrm{hb}}\) shall be multiplied by applicable modification factor or factors for:
8.29.3.1 Bar yield strength:

Bars with \(f_{y}\) other than 60,000 psi
...fy/60,000
8.29.3.2 Concrete cover:

For No. 11 bar and smaller, side cover (normal to plane of hook) not less than \(2 \frac{1}{2}\) inches, and for \(90^{\circ}\) hook, cover on bar extension beyond hook not less than 2 inches . 0.7
8.29.3.3 Ties or stirrups:

For No. 11 bar and smaller, hook enclosed vertically or horizontally within ties or stir-rup-ties spaced along the full development length \(\ell_{d \mathrm{~d}}\) not greater than \(3 \mathrm{~d}_{\mathrm{b}}\), where \(\mathrm{d}_{\mathrm{b}}\) is diameter of hooked bar .. 0.8
8.29.3.4 Excess reinforcement:

Where anchorage or development for \(f_{y}\) is not specifically required, reinforcement in excess of that required by analysis . . . (\(\mathrm{A}_{\mathrm{s}}\) required)/(\(\mathrm{A}_{\mathrm{s}}\) provided)
8.29.3.5 Lightweight aggregate concrete 1.3

FIGURE 8.29.4 Hooked-Bar Tie Requirements

\subsection*{8.29.3.6 Epoxy-coated reinforcement hooked bars with epoxy coating . 1.2}
8.29.4 For bars being developed by a standard hook at discontinuous ends of members with both side cover and top (or bottom) cover over hook less than \(2 \frac{1}{2}\) inches, hooked bar shall be enclosed within ties or stirrups spaced along the full development length \(\ell_{\mathrm{dh}}\), not greater than \(3 \mathrm{~d}_{\mathrm{b}}\), where \(d_{b}\) is the diameter of the hooked bar. For this case, the factor of Article 8.29.3.3 shall not apply.
8.29.5 Hooks shall not be considered effective in developing bars in compression.

\subsection*{8.30 DEVELOPMENT OF WELDED WIRE FABRIC IN TENSION}

\subsection*{8.30.1 Deformed Wire Fabric}
8.30.1.1 The development length, \(\ell_{d}\), in inches of welded deformed wire fabric measured from the point of critical section to the end of wire shall be computed as the product of the basic development length of Article 8.30.1.2 or 8.30.1.3 and the applicable modification factor or factors of Articles 8.25 .2 and 8.25 .3 but \(\ell_{d}\) shall not be less than 8 inches except in computation of lap splices by Article 8.32 .5 and development of shear reinforcement by Article 8.27.
8.30.1.2 The basic development length of welded deformed wire fabric, with at least one cross wire within the development length not less than 2 inches from the point of critical section, shall be:
\[
\begin{equation*}
0.03 \mathrm{~d}_{\mathrm{b}}\left(\mathrm{f}_{\mathrm{y}}-20,000\right) / \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}} * \tag{8-66}
\end{equation*}
\]

\footnotetext{
*The 20,000 has units of psi.
}
but not less than,
\[
\begin{equation*}
0.20 \frac{\mathrm{~A}_{\mathrm{w}}}{\mathrm{~s}_{\mathrm{w}}} \cdot \frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}} \tag{8-67}
\end{equation*}
\]
8.30.1.3 The basic development length of welded deformed wire fabric, with no cross wires within the development length, shall be determined as for deformed wire in accordance with Article 8.25.

\subsection*{8.30.2 Smooth Wire Fabric}

The yield strength of welded smooth wire fabric shall be considered developed by embedment of two cross wires with the closer cross wire not less than 2 inches from the point of critical section. However, development length \(\ell_{d}\) measured from the point of critical section to outermost cross wire shall not be less than:
\[
\begin{equation*}
0.27 \frac{A_{w}}{s_{w}} \cdot \frac{f_{y}}{\sqrt{f_{c}^{\prime}}} \tag{8-68}
\end{equation*}
\]
modified by \(\left(\mathrm{A}_{s}\right.\) required)/(\(\mathrm{A}_{s}\) provided) for reinforcement in excess of that required by analysis and by factor of Article 8.25 .2 for lightweight aggregate concrete, but \(\ell_{d}\) shall not be less than 6 inches except in computation of lap splices by Article 8.32.6.

\subsection*{8.31 MECHANICAL ANCHORAGE}
8.31.1 Any mechanical device shown by tests to be capable of developing the strength of reinforcement without damage to concrete may be used as anchorage.
8.31.2 Development of reinforcement may consist of a combination of mechanical anchorage plus additional embedment length of reinforcement between point of maximum bar stress and the mechanical anchorage.

\subsection*{8.32 SPLICES OF REINFORCEMENT}

Splices of reinforcement shall be made only as shown on the design drawings or as specified, or as authorized by the Engineer.

\subsection*{8.32.1 Lap Splices}
8.32.1.1 Lap splices shall not be used for bars larger than No. 11, except as provided in Articles 8.32.4.1 and 4.4.11.4.1.
8.32.1.2 Lap splices of bundled bars shall be based on the lap splice length required for individual bars within
a bundle. The length of lap, as prescribed in Article 8.32.3 or 8.32 .4 shall be increased \(20 \%\) for a three-bar bundle and \(33 \%\) for a four-bar bundle. Individual bar splices within the bundle shall not overlap.
8.32.1.3 Bars spliced by noncontact lap splices in flexural members shall not be spaced transversely farther apart than one-fifth the required length of lap or 6 inches.
8.32.1.4 The length, \(\ell_{\mathrm{d}}\), shall be the development length for the specified yield strength, \(f_{y}\), as given in Article 8.25 .

\subsection*{8.32.2 Welded Splices and Mechanical Connections}
8.32.2.1 Welded splices or other mechanical connections may be used. Except as provided herein, all welding shall conform to the latest edition of the American Welding Society publication, "Structural Welding Code Reinforcing Steel."
8.32.2.2 A full welded splice shall develop in tension at least \(125 \%\) of the specified yield strength of the bar.
8.32.2.3 A full-mechanical connection shall develop in tension or compression, as required, at least \(125 \%\) of the specified yield strength of the bar.
8.32.2.4 Welded splices and mechanical connections not meeting requirements of Articles 8.32.2.2 and 8.32.2.3 may be used in accordance with Article 8.32.3.4.
8.32.2.5 For welded or mechanical connections that are subject to repetitive loads, the range of stress, \(f_{f}\), between a maximum tensile stress and a minimum stress in a reinforcing bar caused by live load plus impact at service load shall not exceed:
\begin{tabular}{lr}
\hline & \begin{tabular}{c}
\(\mathrm{f}_{\mathrm{f}}\) \\
for greater than \\
Type of Splice
\end{tabular} \\
\hline Grout-filled sleeve, with or without epoxy & \\
\(\quad\) coated bar: & 18 ksi \\
Cold-swaged coupling sleeves without & \\
\(\quad\) threaded ends, and with or without & \\
\(\quad\) epoxy-coated bar; \\
Integrally-forged coupler with upset NC \\
\(\quad\) threads; \\
Steel sleeve with a wedge; \\
One-piece taper-threaded coupler; and \\
Single V-groove direct butt weld: \\
All other types of splices: & \\
\hline
\end{tabular}
except that, for total cycles of loading, \(\mathrm{N}_{\text {cyc }}\), less than 1 million cycles, \(\mathrm{f}_{\mathrm{f}}\) may be increased by the quantity 24 \(\left(6-\log N_{c y c}\right)\) in ksi to a total not greater than the value of \(\mathrm{f}_{\mathrm{f}}\) given by Equation (\(8-60\)) in Article 8.16.8.3. Higher values of \(f_{f}\), up to the value given by Equation (\(8-60\)), may be used if justified by fatigue test data on splices that are the same as those which will be placed in service.

\subsection*{8.32.3 Splices of Deformed Bars and Deformed Wire in Tension}
8.32.3.1 The minimum length of lap for tension lap splices shall be as required for Class A, B, or C splice, but not less than 12 inches.
\begin{tabular}{|c|c|}
\hline Class A splice & \(\ell_{\text {d }}\) \\
\hline Class B splice & \(1.3 \ell_{\text {d }}\) \\
\hline Class C splice & \(1.7 \ell_{\text {d }}\) \\
\hline
\end{tabular}
8.32.3.2 Lap splices of deformed bars and deformed wire in tension shall conform to Table 8.32.3.2.
8.32.3.3 Welded splices or mechanical connections used where the area of reinforcement provided is less than twice that required by analysis shall meet the requirements of Article 8.32.2.2 or 8.32.2.3.
8.32.3.4 Welded splices or mechanical connections used where the area of reinforcement provided is at least twice that required by analysis shall meet the following:
8.32.3.4.1 Splices shall be staggered at least 24 inches and in such manner as to develop at every section at least twice the calculated tensile force at that section but not less than 20,000 psi for the total area of reinforcement provided.
8.32.3.4.2 In computing tensile force developed at each section, spliced reinforcement may be rated at the specified splice strength. Unspliced reinforcement shall be rated at that fraction of \(\mathrm{f}_{\mathrm{y}}\) defined by the ratio of the shorter actual development length to \(\ell_{d}\) required to develop the specified yield strength \(\mathrm{f}_{\mathrm{y}}\).

TABLE 8.32.3.2 Tension Lap Splices
\begin{tabular}{lccc}
\hline & \multicolumn{3}{c}{\begin{tabular}{l}
Maximum Percent of \(A_{s}\) \\
Spliced mithin Required \\
Lap Length
\end{tabular}} \\
\cline { 2 - 4 } (As provided)/(As required) & 50 & 75 & 100 \\
\hline Equal to or Greater than 2 & \begin{tabular}{l}
Class A \\
Cess than 2
\end{tabular} & \begin{tabular}{l}
Class A
\end{tabular} & \begin{tabular}{c}
Class B \\
Class B
\end{tabular} \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice location.
8.32.3.5 Splices in tension tie members shall be made with a full-welded splice or a full-mechanical connection in accordance with Article 8.32.2.2 or 8.32.2.3. Splices in adjacent bars shall be staggered at least 30 inches.

\subsection*{8.32.4 Splices of Bars in Compression}

\subsection*{8.32.4.1 Lap Splices in Compression}

The minimum length of lap for compression lap splices shall be \(0.0005 f_{y} \mathrm{~d}_{\mathrm{b}}\) in inches, but not less than 12 inches. When the specified concrete strength, \(\mathrm{f}_{\mathrm{c}}{ }^{\prime}\), is less than \(3,000 \mathrm{psi}\), the length of lap shall be increased by one-third.

When bars of different size are lap spliced in compression, splice length shall be the larger of: development length of the larger bar, or splice length of smaller bar. Bar sizes No. 14 and No. 18 may be lap spliced to No. 11 and smaller bars.

In compression members where ties along the splice have an effective area not less than 0.0015 hs , the lap splice length may be multiplied by 0.83 , but the lap length shall not be less than 12 inches. The effective area of the ties shall be the area of the legs perpendicular to dimension \(h\).

In compression members when spirals are used for lateral restraint along the splice, the lap splice length may be multiplied by 0.75 , but the lap length shall not be less than 12 inches.

\subsection*{8.32.4.2 End-Bearing Splices}

In bars required for compression only, the compressive stress may be transmitted by bearing of square cut ends held in concentric contact by a suitable device. Bar ends shall terminate in flat surfaces within \(11_{2}{ }^{\circ}\) of a right angle to the axis of the bars and shall be fitted within \(3^{\circ}\) of full bearing after assembly. End-bearing splices shall be used only in members containing closed ties, closed stirrups, or spirals.

\subsection*{8.32.4.3 Welded Splices or Mechanical Connections}

Welded splices or mechanical connections used in compression shall meet the requirements of Article 8.32.2.2 or 8.32.2.3.

\subsection*{8.32.5 Splices of Welded Deformed Wire Fabric in Tension}
8.32.5.1 The minimum length of lap for lap splices of welded deformed wire fabric measured between the ends of each fabric sheet shall not be less than \(1.7 \ell_{d}\) or 8 inches, and the overlap measured between the outermost
cross wires of each fabric sheet shall not be less than 2 inches.
8.32.5.2 Lap splices of welded deformed wire fabric, with no cross wires within the lap splice length, shall be determined as for deformed wire in accordance with Article 8.32.3.1.

\subsection*{8.32.6 Splices of Welded Smooth Wire Fabric in Tension}

The minimum length of lap for lap splices of welded smooth wire fabric shall be in accordance with the following:
8.32.6.1 When the area of reinforcement provided is less than twice that required by analysis at the splice location, the length of overlap measured between the outermost cross wires of each fabric sheet shall not be less than one spacing of cross wires plus 2 inches or less than 1.5 \(\ell_{\mathrm{d}}\), or 6 inches.
8.32.6.2 When the area of reinforcement provided is at least twice that required by analysis at the splice location, the length of overlap measured between the outermost cross wires of each fabric sheet shall not be less than \(1.5 \ell_{\mathrm{d}}\) or 2 inches.```

[^0]: *The specifications of Section 8 are patterned after and are in general conformity with the provisions of ACI Standard 318 for reinforced concrete design and its commentary, ACI 318 R, published by the American Concrete Institute.

