
GLOBAL

EDITION

Digital Fundamentals
 ELEVENTH EDITION

 Thomas L. Floyd

Thomas L. Floyd

Digital
Fundamentals

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Eleventh Edition Global Edition

Product Manager: Lindsey Prudhomme Gill

Program Manager: Maren Beckman

Project Manager: Rex Davidson

Editorial Assistant: Nancy Kesterson

Team Lead Program Manager: Laura Weaver

Team Lead Project Manager: JoEllen Gohr

Head of Learning Asset Acquisition, Global Editions: Laura Dent

Acquisitions Editor, Global Editions: Karthik Subramanian

Project Editor, Global Editions: K.K. Neelakantan

Senior Production Manufacturing Controller, Global Editions: Trudy Kimber

Director of Marketing: David Gesell

Senior Marketing Coordinator: Stacey Martinez

Senior Marketing Assistant: Les Roberts

Procurement Specialist: Deidra M. Skahill

Media Project Manager: Noelle Chun

Media Project Coordinator: April Cleland

Media Production Manager, Global Editions: Vikram Kumar

Creative Director: Andrea Nix

Art Director: Diane Y. Ernsberger

Cover Designer: Lumina Datamatics Ltd.

Cover Image: © echo3005/Shutterstock

Full-Service Project Management: Sherrill Redd/iEnergizer Aptara®, Inc.

Credits and acknowledgments for materials borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page

within text.

Pearson Education Limited

Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:

www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The right of Thomas L. Floyd to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents

Act 1988.

Authorized adaptation from the United States edition, entitled Digital Fundamentals,11th edition, ISBN 978-0-13-273796-8, by Thomas L. Floyd, published

by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in

the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any

trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-07598-8

ISBN 13: 978-1-292-07598-3

Typeset by Aptara®, Inc. in Times Roman.

Printed and bound by Courier Kendallville in The United States of America.

33

PREFACE

This eleventh edition of Digital Fundamentals continues a long tradition of presenting

a strong foundation in the core fundamentals of digital technology. This text

provides basic concepts reinforced by plentiful illustrations, examples, exercises,

and applications. Applied Logic features, Implementation features, troubleshooting

sections, programmable logic and PLD programming, integrated circuit technologies,

and the special topics of signal conversion and processing, data transmission, and data

processing and control are included in addition to the core fundamentals. New topics

and features have been added to this edition, and many other topics have been enhanced.

The approach used in Digital Fundamentals allows students to master the all-important

fundamental concepts before getting into more advanced or optional topics. The range

of topics provides the flexibility to accommodate a variety of program requirements.

For example, some of the design-oriented or application-oriented topics may not be

appropriate in some courses. Some programs may not cover programmable logic and

PLD programming, while others may not have time to include data transmission or data

processing. Also, some programs may not cover the details of “inside-the-chip” circuitry.

These and other areas can be omitted or lightly covered without affecting the coverage of

the fundamental topics. A background in transistor circuits is not a prerequisite for this

textbook, and the coverage of integrated circuit technology (inside-the-chip circuits) is

optionally presented.

New in This Edition

• Newpagelayoutanddesignforbettervisualappearanceandeaseofuse

• Revisedandimprovedtopics

• Obsoletedeviceshavebeendeleted.

• TheApplied Logic features (formerly System Applications) have been revised and

new topics added. Also, the VHDL code for PLD implementation is introduced and

illustrated.

• Anewboxedfeature,entitledImplementation, shows how various logic functions

can be implemented using fixed-function devices or by writing a VHDL program for

PLD implementation.

• BooleansimpliicationcoveragenowincludestheQuine-McCluskeymethodandthe
Espresso method is introduced.

• AdiscussionofMooreandMealystatemachineshasbeenadded.

• Thechapteronprogrammablelogichasbeenmodiiedandimproved.

• Adiscussionofmemoryhierarchyhasbeenadded.

• Anewchapterondatatransmission,includinganextensivecoverageofstandard
busses has been added.

• Thechapteroncomputershasbeencompletelyrevisedandisnowentitled“Data
Processing and Control.”

• AmoreextensivecoverageanduseofVHDL.Thereisatutorialonthewebsiteat
www.pearsonglobaleditions.com/floyd

• MoreemphasisonDlip-lops

4 Preface

Standard Features

• Full-colorformat

• Core fundamentals are presented without being intermingled with advanced or
peripheral topics.

• InfoNotes are sidebar features that provide interesting information in a condensed

form.

• Achapteroutline,chapterobjectives,introduction,andkeytermslistappearonthe
opening page of each chapter.

• Withinthechapter,thekeytermsarehighlightedincolorboldface.Eachkeytermis
defined at the end of the chapter as well as in the comprehensive glossary at the end

of the book. Glossary terms are indicated by black boldface in the text.

• Remindersinformstudentswheretoindtheanswerstothevariousexercisesand
problems throughout each chapter.

• Sectionintroductionandobjectivesareat thebeginningofeachsectionwithina
chapter.

• Checkupexercisesconcludeeachsectioninachapterwithanswersattheendofthe
chapter.

• EachworkedexamplehasaRelated Problem with an answer at the end of the

 chapter.

• Hands-On Tips interspersed throughout provide useful and practical information.

• Multisimiles(newerversions)onthewebsiteprovidecircuitsthatarereferencedin
the text for optional simulation and troubleshooting.

• Theoperationandapplicationoftestinstruments,includingtheoscilloscope,logic
analyzer, function generator, and DMM, are covered.

• Troubleshootingsectionsinmanychapters

• Introductiontoprogrammablelogic

• Chaptersummary

• True/Falsequizatendofeachchapter

• Multiple-choiceself-testattheendofeachchapter

• Extensivesectionalizedproblemsetsattheendofeachchapterwithanswerstoodd-
numbered problems at the end of the book.

• Troubleshooting,appliedlogic,andspecialdesignproblemsareprovidedinmany
chapters.

• CoverageofbipolarandCMOSICtechnologies.Chapter15isdesignedasa“loating
chapter” to provide optional coverage of IC technology (inside-the-chip circuitry) at

any point in the course. Chapter 15 is online at www.pearsonglobaleditions.com/floyd

Accompanying Student Resources

• Multisim Circuits. The MultiSim files on the website includes selected circuits from

the text that are indicated by the icon in Figure P-1.

Otherstudentresourcesavailableonthewebsite:

 1. Chapter 15, “Integrated Circuit Technologies”

 2. VHDL tutorial

FIGURE P-1

 Preface 5

 3. Verilog tutorial

 4. MultiSim tutorial

 5. AlteraQuartusIItutorial

 6. Xilinx ISE tutorial

 7. Five-variable Karnaugh map tutorial

 8. Hamming code tutorial

 9. Quine-McCluskeymethodtutorial

 10. Espresso algorithm tutorial

11. Selected VHDL programs for downloading

12. ProgrammingtheelevatorcontrollerusingAlteraQuartusII

Using Website VHDL Programs

VHDL programs in the text that have a corresponding VHDL file on the website are indi-

cated by the icon in Figure P-2. These website VHDL files can be downloaded and used

inconjunctionwiththePLDdevelopmentsoftware(AlteraQuartusIIorXilinxISE)to
implement a circuit in a programmable logic device.

Instructor Resources

• Image Bank This is a download of all the images in the text.

• Instructor’s Resource Manual Includes worked-out solutions to chapter problems,

solutions to Applied Logic Exercises, and a summary of Multisim simulation results.

• TestGen This computerized test bank contains over 650 questions.

• Download Instructor Resources from the Instructor Resource Center

 To access supplementary materials online, instructors need to request an instructor

access code. Go to www.pearsonglobaleditions.com/floyd to register for an instruc-

tor access code. Within 48 hours of registering, you will receive a confirming e-mail

includinganinstructoraccesscode.Onceyouhavereceivedyourcode,locateyour
text in the online catalog and click on the Instructor Resources button on the left side

ofthecatalogproductpage.Selectasupplement,andaloginpagewillappear.Once
you have logged in, you can access instructor material for all Pearson textbooks. If

you have any difficulties accessing the site or downloading a supplement, please

contact Customer Service at http://247pearsoned.custhelp.com/.

Illustration of Book Features

Chapter Opener Each chapter begins with an opener, which includes a list of the sections

inthechapter,chapterobjectives,introduction,alistofkeyterms,andawebsitereference
for chapter study aids. A typical chapter opener is shown in Figure P-3.

Section Opener Each section in a chapter begins with a brief introduction that includes a

generaloverviewandsectionobjectives.AnillustrationisshowninFigureP-4.

Section Checkup Each section ends with a review consisting of questions or exercises that

emphasize the main concepts presented in the section. This feature is shown in Figure P-4.

Answers to the Section Checkups are at the end of the chapter.

Worked Examples and Related Problems There is an abundance of worked out examples

that help to illustrate and clarify basic concepts or specific procedures. Each example ends

FIGURE P-2

6 Preface

FIGURE P-3

CHAPTER OUTLINE

3–1 The Inverter

3–2 The AND Gate

3–3 The OR Gate

3–4 The NAND Gate

3–5 The NOR Gate

3–6 The Exclusive-OR and Exclusive-NOR Gates

3–7 Programmable Logic

3–8 Fixed-Function Logic Gates

3–9 Troubleshooting

CHAPTER OBJECTIVES

■ Describe the operation of the inverter, the AND

gate, and the OR gate

■ Describe the operation of the NAND gate and the

NOR gate

■ Express the operation of NOT, AND, OR, NAND,

and NOR gates with Boolean algebra

■ Describe the operation of the exclusive-OR and

exclusive-NOR gates

■ Use logic gates in simple applications

■ Recognize and use both the distinctive shape logic

gate symbols and the rectangular outline logic gate

symbols of ANSI/IEEE Standard 91-1984/Std.

91a-1991

■ Construct timing diagrams showing the proper time

relationships of inputs and outputs for the various

logic gates

■ Discuss the basic concepts of programmable logic

■ Make basic comparisons between the major IC

technologies—CMOS and bipolar (TTL)

■ Explain how the different series within the CMOS

and bipolar (TTL) families differ from each other

■ Define propagation delay time, power dissipation,
speed-power product, and fan-out in relation to

logic gates

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonhighered.com/careersresources/

INTRODUCTION

The emphasis in this chapter is on the operation,

 application, and troubleshooting of logic gates. The

relationship of input and output waveforms of a gate

using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates

are in accordance with ANSI/IEEE Standard 91-1984/

Std. 91a-1991. This standard has been adopted by

private industry and the military for use in internal

documentation as well as published literature.

■ Inverter

■ Truth table

■ Boolean algebra

■ Complement

■ AND gate

■ OR gate

■ NAND gate

■ NOR gate

■ Exclusive-OR gate

■ Exclusive-NOR gate

■ AND array

■ Fuse

■ Antifuse

■ EPROM

■ EEPROM

■ Flash

■ SRAM

■ Target device

■ JTAG

■ VHDL

■ CMOS

■ Bipolar

■ Propagation delay

time

■ Fan-out

■ Unit load

■ List specific fixed-function integrated circuit devices

that contain the various logic gates

■ Troubleshoot logic gates for opens and shorts by

using the oscilloscope

KEY TERMS

Key terms are in order of appearance in the chapter.

Logic Gates

3CHAPTER

FIGURE P-4

SECTION 5–1 CHECKUP

Answers are at the end of the chapter.

 1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the

following input conditions:

(a) A = 1, B = 0, C = 1, D = 0 (b) A = 1, B = 1, C = 0, D = 1

(c) A = 0, B = 1, C = 1, D = 1

 2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input

conditions:

(a) A = 1, B = 0 (b) A = 1, B = 1

(c) A = 0, B = 1 (d) A = 0, B = 0

 3. Develop the truth table for a certain 3-input logic circuit with the output expression

X = ABC + ABC + A B C + ABC + ABC.

 4. Draw the logic diagram for an exclusive-NOR circuit.

For every Boolean expression there
is a logic circuit, and for every logic
circuit there is a Boolean expression.

5–2 Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a

Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-

ered in Chapter 4 is also included.

After completing this section, you should be able to

u Implement a logic circuit from a Boolean expression

u Implement a logic circuit from a truth table

u Minimize a logic circuit

From a Boolean Expression to a Logic Circuit

Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE,

with a domain of five variables. The first term is formed by ANDing A with B, and the

second term is formed by ANDing C, D, and E. The two terms are then ORed to form the

output X. These operations are indicated in the structure of the expression as follows:

 AND

X = AB + CDE

 OR

Note that in this particular expression, the AND operations forming the two individual

terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term

AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then

required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

InfoNote

Many control programs require

logic operations to be performed

by a computer. A driver program

is a control program that is used

with computer peripherals. For

example, a mouse driver requires

logic tests to determine if a button

has been pressed and further

logic operations to determine if

it has moved, either horizontally

or vertically. Within the heart of a

microprocessor is the arithmetic

logic unit (ALU), which performs

these logic operations as directed

by program instructions. All of the

logic described in this chapter can

also be performed by the ALU,

given the proper instructions.

 Preface 7

FIGURE P-5 Solution

All the intermediate waveforms and the final output waveform are shown in the timing

diagram of Figure 5–34(c).

Related Problem

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.

EXAMPLE 5–15

Determine the output waveform X for the circuit in Example 5–14, Figure 5–34(a), directly from the output expression.

Solution

The output expression for the circuit is developed in Figure 5–35. The SOP form indicates that the output is HIGH when A

is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A

B

C

D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

FIGURE 5–35

The result is shown in Figure 5–36 and is the same as the one obtained by the intermediate-waveform method in Example

5–14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A

B

C

D

BC

AC AC

CD

X = AC + BC + CD

FIGURE 5–36

Related Problem

Repeat this example if all the input waveforms are inverted.

SECTION 5–5 CHECKUP

 1. One pulse with tW = 50 ms is applied to one of the inputs of an exclusive-OR cir-

cuit. A second positive pulse with tW = 10 ms is applied to the other input beginning

15 ms after the leading edge of the first pulse. Show the output in relation to the

inputs.

 2. The pulse waveforms A and B in Figure 5–31 are applied to the exclusive-NOR cir-

cuit in Figure 5–32. Develop a complete timing diagram.

with a Related Problem that reinforces or expands on the example by requiring the student

to work through a problem similar to the example. A typical worked example with Related

Problem is shown in Figure P-5.

Troubleshooting Section Many chapters include a troubleshooting section that relates to

the topics covered in the chapter and that emphasizes troubleshooting techniques and the

use of test instruments and circuit simulation. A portion of a typical troubleshooting section

is illustrated in Figure P-6.

FIGURE P-6 SECTION 7–6 CHECKUP

 1. Explain the difference in operation between an astable multivibrator and a monosta-

ble multivibrator.

 2. For a certain astable multivibrator, tH = 15 ms and T = 20 ms. What is the duty

cycle of the output?

7–7 Troubleshooting

It is standard practice to test a new circuit design to be sure that it is operating as specified.

New fixed-function designs are “breadboarded” and tested before the design is finalized.

The term breadboard refers to a method of temporarily hooking up a circuit so that its

operation can be verified and any design flaws worked out before a prototype unit is built.

After completing this section, you should be able to

u Describe how the timing of a circuit can produce erroneous glitches

u Approach the troubleshooting of a new design with greater insight and awareness

of potential problems

The circuit shown in Figure 7–61(a) generates two clock waveforms (CLK A and CLK B)

that have an alternating occurrence of pulses. Each waveform is to be one-half the fre-

quency of the original clock (CLK), as shown in the ideal timing diagram in part (b).

CLK

CLK B

CLK A

CLK A

CLK B

CLK

Q

(a)

D

C

Q

Q

Q

(b)

FIGURE 7–61 Two-phase clock generator with ideal waveforms. Open file F07-61 and

verify the operation.

When the circuit is tested with an oscilloscope or logic analyzer, the CLK A and CLK B

waveforms appear on the display screen as shown in Figure 7–62(a). Since glitches occur

on both waveforms, something is wrong with the circuit either in its basic design or in the

way it is connected. Further investigation reveals that the glitches are caused by a race

condition between the CLK signal and the Q and Q signals at the inputs of the AND gates.

As displayed in Figure 7–62(b), the propagation delays between CLK and Q and Q create

a short-duration coincidence of HIGH levels at the leading edges of alternate clock pulses.

Thus, there is a basic design flaw.

The problem can be corrected by using a negative edge-triggered flip-flop in place of

the positive edge-triggered device, as shown in Figure 7–63(a). Although the propaga-

tion delays between CLK and Q and Q still exist, they are initiated on the trailing edges

of the clock (CLK), thus eliminating the glitches, as shown in the timing diagram of

Figure 7–63(b).

CLK A

CLK B

(a) Oscilloscope display of CLK A and CLK B waveforms with

glitches indicated by the “spikes”.

CLK

Q

CLK A

(b) Oscilloscope display showing propagation delay that creates

glitch on CLK A waveform

tPHL

FIGURE 7–62 Oscilloscope displays for the circuit in Figure 7–61.

Q

CLK

CLK B

CLK A

CLK A

CLK

Q

(b)

CLK B

(a)

Q

Q

D

C

FIGURE 7–63 Two-phase clock generator using negative edge-triggered flip-flop to

eliminate glitches. Open file F07-63 and verify the operation.

SECTION 7–7 CHECKUP

 1. Can a negative edge-triggered J-K flip-flop be used in the circuit of Figure 7–63?

 2. What device can be used to provide the clock for the circuit in Figure 7–63?

Glitches that occur in digital systems are very fast (extremely short in duration) and can be difficult to
see on an oscilloscope, particularly at lower sweep rates. A logic analyzer, however, can show a glitch
easily. To look for glitches using a logic analyzer, select “latch” mode or (if available) transitional
sampling. In the latch mode, the analyzer looks for a voltage level change. When a change occurs,
even if it is of extremely short duration (a few nanoseconds), the information is “latched” into the
analyzer’s memory as another sampled data point. When the data are displayed, the glitch will show
as an obvious change in the sampled data, making it easy to identify.

8 Preface

Applied Logic Appearing at the end of many chapters, this feature presents a practical

application of the concepts and procedures covered in the chapter. In most chapters, this

feature presents a “real-world” application in which analysis, troubleshooting, design,

VHDL programming, and simulation are implemented. Figure P-7 shows a portion of a

typical Applied Logic feature.

FIGURE P-7

End of Chapter

The following features are at the end of each chapter:

• Summary

• Keytermglossary

• True/falsequiz

• Self-test

• Problemsetthatincludessomeorallofthefollowingcategoriesinadditiontocoreprob-

lems: Troubleshooting, Applied Logic, Design, and Multisim Troubleshooting Practice.

• AnswerstoSectionCheckups

• AnswerstoRelatedProblemsforExamples

• AnswerstoTrue/Falsequiz

• AnswerstoSelf-Test

End of Book

Thefollowingfeaturesareattheendofthebook.

• Answerstoselectedodd-numberedproblems

• Comprehensiveglossary

• Index

Applied Logic

Elevator Controller: Part 2

In this section, the elevator controller that was introduced in the Applied Logic in Chap-

ter 9 will be programmed for implementation in a PLD. Refer to Chapter 9 to review the

elevator operation. The logic diagram is repeated in Figure 10–62 with labels changed to

facilitate programming.

CallCode

Floor
Counter

CALL/REQ FF

Q

J K

1

FlrCodeIn

CALL/REQ Code Register

FLRCALL/FLRCNT
Comparator

7-Segment
Decoder

7-segment
display of

floor number

Timer

Enable

QOut

Sensor

(Floorpulse)
CLK

FlrCodeCall

FlrCodeCnt

H0

H1

a-g

H2

FLRCODE

STOP/OPEN

CLOSE

SetCount
Sys Clk Clk

FRCLOUT

FRCNT

UP

DOWN

UP DOWN

PanelCode

FRIN

Request

CLK

CLK

CallEn

Not CallEn

Call
FlrCodeOut

FIGURE 10–62 Programming model of the elevator controller.

The VHDL program code for the elevator controller will include component definitions

for the Floor Counter, the FLRCALL/FLRCNT Comparator, the Code Register, the Timer,

the Seven-Segment Decoder, and the CALL/REQ Flip-Flop. The VHDL program codes

for these six components are as follows. (Blue annotated notes are not part of the program.)

Floor Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity FLOORCOUNTER is

 port (UP, DOWN, Sensor: in std_logic;

 FLRCODE: out std_logic_vector(2 downto 0));

end entity FLOORCOUNTER;

architecture LogicOperation of FLOORCOUNTER is

signal FloorCnt: unsigned(2 downto 0) := “000”;

begin

process(UP, DOWN, Sensor, FloorCnt)

begin

FLRCODE 6= std_logic_vector(FloorCnt);

if (Sensor’EVENT and Sensor = ‘1’) then

if UP = ‘1’ and DOWN = ‘0’ then

FloorCnt 6= FloorCnt + 1;

elsif Up = ‘0’ and DOWN = ‘1’ then

FloorCnt 6= FloorCnt - 1;

end if;

end if;

end process;

end architecture LogicOperation;

FLRCALL/FLRCNT Comparator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity FLRCALLCOMPARATOR is

 port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

UP, DOWN, STOP: inout std_logic;

end entity FLRCALLCOMPARATOR;

architecture LogicOperation of FLRCALLCOMPARATOR is

begin

STOP 6= ‘1’ when (FlrCodeCall = FlrCodeCnt) else ‘0’;

UP 6= ‘1’ when (FlrCodeCall 7 FlrCodeCnt) else ‘0’;

DOWN 6= ‘1’ when (FlrCodeCall 6 FlrCodeCnt) else ‘0’;

end architecture LogicOperation;

ieee.numeric_std_all is included to enable casting of

unsigned identifier. Unsigned FloorCnt is converted to

std_logic_vector.

Floor count is initialized to 000.

Numeric unsigned FloorCnt is con-

verted to std_logic_vector data type

and sent to std_logic_vector output

FLRCODE.

Sensor event high pulse causes the

floor count to increment when UP

is set high or decrement by one

when DOWN is set low.

UP, DOWN: Floor count

 direction signals

Sensor: Elevator car floor

sensor

FLRCODE: 3-digit floor

count
¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

FlrCodeCall, FlrCodeCnt:

Compared values

UP, DOWN, STOP: Output

control signals

STOP, UP, and DOWN

signals are set or reset

based on =, 7, and 6

relational comparisons.

¸̋
˛

¸
˚
˚
˝
˚
˚
˛

 Preface 9

To the Student

Digital technology pervades almost everything in our daily lives. For example, cell phones

and other types of wireless communications, television, radio, process controls, automotive

electronics, consumer electronics, aircraft navigation— to name only a few applications—

depend heavily on digital electronics.

A strong grounding in the fundamentals of digital technology will prepare you for

the highly skilled jobs of the future.The single most important thing you can do is to
understand the core fundamentals. From there you can go anywhere.

In addition, programmable logic is important in many applications and that topic in

introduced in this book and example programs are given along with an online tutorial.

Ofcourse,efficienttroubleshootingisaskillthatisalsowidelysoughtafterbypotential
employers. Troubleshooting and testing methods from traditional prototype testing to more

advanced techniques such as boundary scan are covered.

To the Instructor

Generally, time limitations or program emphasis determines the topics to be covered in a

course. It is not uncommon to omit or condense topics or to alter the sequence of certain

topics in order to customize the material for a particular course. This textbook is specifi-

cally designed to provide great flexibility in topic coverage.

Certain topics are organized in separate chapters, sections, or features such that if they are

omitted the rest of the coverage is not affected. Also, if these topics are included, they flow

seamlessly with the rest of the coverage. The book is organized around a core of fundamental

topics that are, for the most part, essential in any digital course. Around this core, there are other

topics that can be included or omitted, depending on the course emphasis and/or other factors.

Even within the core, selected topics can be omitted. Figure P-8 illustrates this concept.

Core

Fundamentals

Programmable Logic

and

PLD programming

Troubleshooting Applied Logic

Integrated

Circuit

Technologies

Special Topics

FIGURE P-8

u Core Fundamentals The fundamental topics of digital technology should be cov-

ered in all programs. Linked to the core are several “satellite” topics that may be

considered for omission or inclusion, depending on your course goals. All topics

presented in this text are important in digital technology, but each block surrounding

the core can be omitted, depending on your particular goals, without affecting the

core fundamentals.

u Programmable Logic and PLD Programming Although they are important topics,

programmable logic and VHDL can be omitted; however, it is highly recommended

that you cover this topic if at all possible. You can cover as little or as much as you

consider appropriate for your program.

u Troubleshooting Troubleshooting sections appear in many chapters and include

the application and operation of laboratory instruments.

u Applied Logic Selected real-world applications appear in many chapters.

u Integrated Circuit Technologies Chapter 15 is an online chapter. Some or all of the

topics in Chapter 15 can be covered at selected points if you wish to discuss details of

the circuitry that make up digital integrated circuits. Chapter 15 can be omitted with-

out any impact on the rest of the book.

u Special Topics These topics are Signal Interfacing and Processing, Data Transmis-

sion, and Data Processing and Control in Chapters 12, 13, and 14 respectively, as

well as selected topics in other chapters. These are topics that may not be essential

for your course or are covered in another course. Also, within each block in Figure

P-8 you can choose to omit or deemphasize some topics because of time constraints

or other priorities in your particular program. For example in the core fundamentals,

theQuine-McCluskeymethod,cyclicredundancycode,carrylook-aheadadders,or
sequential logic design could possibly be omitted. Additionally, any or all of Multi-

simfeaturesthroughoutthebookcanbetreatedasoptional.Othertopicsmayalsobe
candidates for omission or light coverage. Whether you choose a minimal coverage

of only core fundamentals, a full-blown coverage of all the topics, or anything in

between, this book can be adapted to your needs.

Acknowledgments

This revision of Digital Fundamentals has been made possible by the work and skills of

many people. I think that we have accomplished what we set out to do, and that was to further

improve an already very successful textbook and make it even more useful to the student and

instructor by presenting not only basics but also up-to-date and leading-edge technology.

Those at Pearson Education who have, as always, contributed a great amount of time,

talent, and effort to move this project through its many phases in order to produce the
book as you see it, include, but are not limited to, Rex Davidson, Lindsey Gill, and Vern

Anthony.LoisPorterhasdoneanotherexcellentjobofmanuscriptediting.DougJoksch
contributed the VHDL programming. Gary Snyder revised and updated the Multisim

circuit files. My thanks and appreciation go to all of these and others who were indirectly

involvedintheproject.
In the revision of this and all textbooks, I depend on expert input from many users

as well as nonusers. My sincere thanks to the following reviewers who submitted many

valuable suggestions and provided lots of constructive criticism:

10 Preface

Dr. Cuiling Gong,

Texas Christian University;

Jonathan White,

Harding University;

Zane Gastineau,

Harding University; and

Dr. Eric Bothur,

Midlands Technical College.

I also want to thank all of the members of the Pearson sales force whose efforts have

helped make this text available to a large number of users. In addition, I am grateful to all

of you who have adopted this text for your classes or for your own use. Without you we

would not be in business. I hope that you find this eleventh edition of Digital Fundamentals

to be even better than earlier editions and that it will continue to be a valuable learning tool

and reference for the student.

Tom Floyd

Pearsonwould like to thank and acknowledge SanjayH.S., M.S. Ramaiah Institute
of Technology for his contributions to the Global Edition, and Moumita Mitra Manna,

Bangabasi College, and Piyali Sengupta for reviewing the Global Edition.

CONTENTS

CHAPTER 1 Introductory Concepts 15

1-1 Digital and Analog Quantities 16

1-2 Binary Digits, Logic Levels, and Digital Waveforms 19

1-3 Basic Logic Functions 25

1-4 Combinational and Sequential Logic Functions 27

1-5 Introduction to Programmable Logic 34

1-6 Fixed-Function Logic Devices 40

1-7 Test and Measurement Instruments 43

1-8 Introduction to Troubleshooting 54

CHAPTER 2 Number Systems, Operations, and Codes 65

2-1 Decimal Numbers 66

2-2 Binary Numbers 67

2-3 Decimal-to-Binary Conversion 71

2-4 Binary Arithmetic 74

2-5 Complements of Binary Numbers 77

2-6 Signed Numbers 79

2-7 Arithmetic Operations with Signed Numbers 85

2-8 Hexadecimal Numbers 92

2-9 Octal Numbers 98

2-10 Binary Coded Decimal (BCD) 100

2-11 Digital Codes 104

2-12 Error Codes 109

CHAPTER 3 Logic Gates 125

3-1 The Inverter 126

3-2 The AND Gate 129

3-3 The OR Gate 136

3-4 The NAND Gate 140

3-5 The NOR Gate 145

3-6 The Exclusive-OR and Exclusive-NOR Gates 149

3-7 Programmable Logic 153

3-8 Fixed-Function Logic Gates 160

3-9 Troubleshooting 170

CHAPTER 4 Boolean Algebra and Logic Simplification 191

4-1 Boolean Operations and Expressions 192

4-2 Laws and Rules of Boolean Algebra 193

4-3 DeMorgan’s Theorems 199

11

12 Contents

4-4 Boolean Analysis of Logic Circuits 203

4-5 Logic Simplification Using Boolean Algebra 205

4-6 Standard Forms of Boolean Expressions 209

4-7 Boolean Expressions and Truth Tables 216

4-8 The Karnaugh Map 219

4-9 Karnaugh Map SOP Minimization 222

4-10 Karnaugh Map POS Minimization 233

4-11 The Quine-McCluskey Method 237

4-12 Boolean Expressions with VHDL 240

Applied Logic 244

CHAPTER 5 Combinational Logic Analysis 261

5-1 Basic Combinational Logic Circuits 262

5-2 Implementing Combinational Logic 267

5-3 The Universal Property of NAND and NOR gates 272

5-4 Combinational Logic Using NAND and NOR Gates 274

5-5 Pulse Waveform Operation 279

5-6 Combinational Logic with VHDL 283

5-7 Troubleshooting 288

Applied Logic 294

CHAPTER 6 Functions of Combinational Logic 313

6-1 Half and Full Adders 314

6-2 Parallel Binary Adders 317

6-3 Ripple Carry and Look-Ahead Carry Adders 324

6-4 Comparators 327

6-5 Decoders 331

6-6 Encoders 341

6-7 Code Converters 345

6-8 Multiplexers (Data Selectors) 347

6-9 Demultiplexers 356

6-10 Parity Generators/Checkers 358

6-11 Troubleshooting 362

Applied Logic 365

CHAPTER 7 Latches, Flip-Flops, and Timers 387

7-1 Latches 388

7-2 Flip-Flops 395

7-3 Flip-Flop Operating Characteristics 406

7-4 Flip-Flop Applications 409

7-5 One-Shots 414

7-6 The Astable Multivibrator 423

7-7 Troubleshooting 427

Applied Logic 429

 Contents 13

CHAPTER 8 Shift Registers 449

8-1 Shift Register Operations 450

8-2 Types of Shift Register Data I/Os 451

8-3 Bidirectional Shift Registers 462

8-4 Shift Register Counters 465

8-5 Shift Register Applications 469

8-6 Logic Symbols with Dependency Notation 476

8-7 Troubleshooting 478

Applied Logic 480

CHAPTER 9 Counters 497

9-1 Finite State Machines 498

9-2 Asynchronous Counters 500

9-3 Synchronous Counters 507

9-4 Up/Down Synchronous Counters 515

9-5 Design of Synchronous Counters 519

9-6 Cascaded Counters 527

9-7 Counter Decoding 531

9-8 Counter Applications 534

9-9 Logic Symbols with Dependency Notation 539

9-10 Troubleshooting 541

Applied Logic 545

CHAPTER 10 Programmable Logic 561

10-1 Simple Programmable Logic Devices (SPLDs) 562

10-2 Complex Programmable Logic Devices (CPLDs) 567

10-3 Macrocell Modes 574

10-4 Field-Programmable Gate Arrays (FPGAs) 577

10-5 Programmable Logic software 585

10-6 Boundary Scan Logic 595

10-7 Troubleshooting 602

Applied Logic 608

CHAPTER 11 Data Storage 627

11-1 Semiconductor Memory Basics 628

11-2 The Random-Access Memory (RAM) 633

11-3 The Read-Only Memory (ROM) 646

11-4 Programmable ROMs 652

11-5 The Flash Memory 655

11-6 Memory Expansion 660

11-7 Special Types of Memories 666

11-8 Magnetic and Optical Storage 670

11-9 Memory Hierarchy 676

11-10 Cloud Storage 680

11-11 Troubleshooting 683

14 Contents

CHAPTER 12 Signal Conversion and Processing 697

12-1 Analog-to-Digital Conversion 698

12-2 Methods of Analog-to-Digital Conversion 704

12-3 Methods of Digital-to-Analog Conversion 715

12-4 Digital Signal Processing 723

12-5 The Digital Signal Processor (DSP) 724

CHAPTER 13 Data Transmission 739

13-1 Data Transmission Media 740

13-2 Methods and Modes of Data Transmission 745

13-3 Modulation of Analog Signals with Digital Data 750

13-4 Modulation of Digital Signals with Analog Data 753

13-5 Multiplexing and Demultiplexing 759

13-6 Bus Basics 764

13-7 Parallel Buses 769

13-8 The Universal Serial Bus (USB) 775

13-9 Other Serial Buses 778

13-10 Bus Interfacing 784

CHAPTER 14 Data Processing and Control 801

14-1 The Computer System 802

14-2 Practical Computer System Considerations 806

14-3 The Processor: Basic Operation 812

14-4 The Processor: Addressing Modes 817

14-5 The Processor: Special Operations 823

14-6 Operating Systems and Hardware 828

14-7 Programming 831

14-8 Microcontrollers and Embedded Systems 838

14-9 System on Chip (SoC) 844

ON WEBSITE: http://www.pearsonglobaleditions.com/floyd

CHAPTER 15 Integrated Circuit Technologies 855

15-1 Basic Operational Characteristics and Parameters 856

15-2 CMOS Circuits 863

15-3 TTL (Bipolar) Circuits 868

15-4 Practical Considerations in the Use of TTL 873

15-5 Comparison of CMOS and TTL Performance 880

15-6 Emitter-Coupled Logic (ECL) Circuits 881

15-7 PMOS, NMOS, and E2CMOS 883

ANSWERS TO ODD-NUMBERED PROBLEMS A-1

GLOSSARY A-31

INDEX A-42

15

CHAPTER OUTLINE

1–1 Digital and Analog Quantities

1–2 Binary Digits, Logic Levels, and Digital

Waveforms

1–3 Basic Logic Functions

1–4 Combinational and Sequential Logic Functions

1–5 Introduction to Programmable Logic

1–6 Fixed-Function Logic Devices

1–7 Test and Measurement Instruments

1–8 Introduction to Troubleshooting

CHAPTER OBJECTIVES

■ Explain the basic differences between digital and

analog quantities

■ Show how voltage levels are used to represent

digital quantities

■ Describe various parameters of a pulse waveform

such as rise time, fall time, pulse width, frequency,

period, and duty cycle

■ Explain the basic logic functions of NOT, AND,

and OR

■ Describe several types of logic operations and

explain their application in an example system

■ Describe programmable logic, discuss the

various types, and describe how PLDs are

programmed

■ Identify fixed-function digital integrated circuits

according to their complexity and the type of circuit

packaging

■ Identify pin numbers on integrated circuit packages

■ Recognize various instruments and understand

how they are used in measurement and

troubleshooting digital circuits and systems

■ Describe basic troubleshooting methods

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The term digital is derived from the way operations

are performed, by counting digits. For many years,

applications of digital electronics were confined

to computer systems. Today, digital technology is

 applied in a wide range of areas in addition to com-

puters. Such applications as television, communi-

cations systems, radar, navigation and guidance

systems, military systems, medical instrumentation,

industrial process control, and consumer electron-

ics use digital techniques. Over the years digital

 technology has progressed from vacuum-tube circuits

■ Analog

■ Digital

■ Binary

■ Bit

■ Pulse

■ Duty cycle

■ Clock

■ Timing diagram

■ Data

■ Serial

■ Parallel

■ Logic

■ Input

■ Output

■ Gate

■ NOT

■ Inverter

■ AND

■ OR

■ Programmable logic

■ SPLD

■ CPLD

■ FPGA

■ Microcontroller

■ Embedded system

■ Compiler

■ Integrated circuit (IC)

■ Fixed-function logic

■ Troubleshooting

KEY TERMS

Key terms are in order of appearance in the chapter.

Introductory Concepts

1 CHAPTER

16 Introductory Concepts

1–1 Digital and Analog Quantities

Electronic circuits can be divided into two broad categories, digital and analog. Digital

electronics involves quantities with discrete values, and analog electronics involves quan-

tities with continuous values. Although you will be studying digital fundamentals in this

book, you should also know something about analog because many applications require

both; and interfacing between analog and digital is important.

After completing this section, you should be able to

u Define analog

u Define digital

u Explain the difference between digital and analog quantities

u State the advantages of digital over analog

u Give examples of how digital and analog quantities are used in electronics

An analog* quantity is one having continuous values. A digital quantity is one having

a discrete set of values. Most things that can be measured quantitatively occur in nature in

analog form. For example, the air temperature changes over a continuous range of values.

During a given day, the temperature does not go from, say, 70� to 71� instantaneously; it

takes on all the infinite values in between. If you graphed the temperature on a typical sum-

mer day, you would have a smooth, continuous curve similar to the curve in Figure 1–1.

Other examples of analog quantities are time, pressure, distance, and sound.

to discrete transistors to complex integrated circuits,

many of which contain millions of transistors, and

many of which are programmable.

This chapter introduces you to digital electronics

and provides a broad overview of many important

concepts, components, and tools.

*All bold terms are important and are defined in the end-of-book glossary. The blue bold terms are key terms

and are included in a Key Term glossary at the end of each chapter.

1

100

A.M.

95

90

85

80

75

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P.M.

Temperature

(°F)

70

Time of day

FIGURE 1–1 Graph of an analog quantity (temperature versus time).

Rather than graphing the temperature on a continuous basis, suppose you just take a

temperature reading every hour. Now you have sampled values representing the temperature

at discrete points in time (every hour) over a 24-hour period, as indicated in Figure 1–2.

 Digital and Analog Quantities 17

You have effectively converted an analog quantity to a form that can now be digitized by

 representing each sampled value by a digital code. It is important to realize that Figure 1–2

itself is not the digital representation of the analog quantity.

The Digital Advantage

Digital representation has certain advantages over analog representation in electronics applica-

tions. For one thing, digital data can be processed and transmitted more efficiently and reli-

ably than analog data. Also, digital data has a great advantage when storage is necessary. For

example, music when converted to digital form can be stored more compactly and reproduced

with greater accuracy and clarity than is possible when it is in analog form. Noise (unwanted

voltage fluctuations) does not affect digital data nearly as much as it does analog signals.

An Analog System

A public address system, used to amplify sound so that it can be heard by a large audience, is

one simple example of an application of analog electronics. The basic diagram in Figure 1–3

illustrates that sound waves, which are analog in nature, are picked up by a microphone and

converted to a small analog voltage called the audio signal. This voltage varies continuously as

the volume and frequency of the sound changes and is applied to the input of a linear amplifier.

The output of the amplifier, which is an increased reproduction of input voltage, goes to the

speaker(s). The speaker changes the amplified audio signal back to sound waves that have a

much greater volume than the original sound waves picked up by the microphone.

1

100

A.M.

95

90

85

80

75

70

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

P.M.

Time of day

Temperature

(°F)

FIGURE 1–2 Sampled-value representation (quantization) of the analog quantity in

Figure 1–1. Each value represented by a dot can be digitized by representing it as a digital

code that consists of a series of 1s and 0s.

Audio signal

Amplified audio signal

Speaker

Microphone

Original sound waves

Reproduced

sound waves

Linear amplifier

FIGURE 1–3 A basic audio public address system.

18 Introductory Concepts

Mechatronics

Both digital and analog electronics are used in the control of various mechanical systems.

The interdisciplinary field that comprises both mechanical and electronic components is

known as mechatronics.

Mechatronic systems are found in homes, industry, and transportation. Most home appliances

consist of both mechanical and electronic components. Electronics controls the operation of a

washing machine in terms of water flow, temperature, and type of cycle. Manufacturing indus-

tries rely heavily on mechatronics for process control and assembly. In automotive and other

types of manufacturing, robotic arms perform precision welding, painting, and other functions

on the assembly line. Automobiles themselves are mechatronic machines; a digital computer

controls functions such as braking, engine parameters, fuel flow, safety features, and monitoring.

Figure 1–5(a) is a basic block diagram of a mechatronic system. A simple robotic arm is

shown in Figure 1–5(b), and robotic arms on an automotive assembly line are shown in part (c).

Digital data

CD drive

10110011101

Analog

reproduction

of music audio

signal
Speaker

Sound

waves

Digital-to-analog

converter
Linear amplifier

FIGURE 1–4 Basic block diagram of a CD player. Only one channel is shown.

Electromechanical

interface
Robotic unit

Electronic controls

(a) Mechatronic system block diagram

FIGURE 1–5 Example of a mechatronic system and application. Part (b) Beawolf/Fotolia;

Part (c) Small Town Studio/Fotolia.

(b) Robotic arm (c) Automotive assembly line

A System Using Digital and Analog Methods

The compact disk (CD) player is an example of a system in which both digital and analog

circuits are used. The simplified block diagram in Figure 1–4 illustrates the basic principle.

Music in digital form is stored on the compact disk. A laser diode optical system picks up

the digital data from the rotating disk and transfers it to the digital-to-analog converter

(DAC). The DAC changes the digital data into an analog signal that is an electrical repro-

duction of the original music. This signal is amplified and sent to the speaker for you to

enjoy. When the music was originally recorded on the CD, a process, essentially the reverse

of the one described here, using an analog-to-digital converter (ADC) was used.

 Binary Digits, Logic Levels, and Digital Waveforms 19

SECTION 1–1 CHECKUP

Answers are at the end of the chapter.

 1. Define analog.

 2. Define digital.

 3. Explain the difference between a digital quantity and an analog quantity.

 4. Give an example of a system that is analog and one that is a combination of both

digital and analog. Name a system that is entirely digital.

 5. What does a mechatronic system consist of?

1–2 Binary Digits, Logic Levels, and Digital Waveforms

Digital electronics involves circuits and systems in which there are only two possible

states. These states are represented by two different voltage levels: A HIGH and a LOW.

The two states can also be represented by current levels, bits and bumps on a CD or DVD,

etc. In digital systems such as computers, combinations of the two states, called codes, are

used to represent numbers, symbols, alphabetic characters, and other types of information.

The two-state number system is called binary, and its two digits are 0 and 1. A binary digit

is called a bit.

After completing this section, you should be able to

u Define binary

u Define bit

u Name the bits in a binary system

u Explain how voltage levels are used to represent bits

u Explain how voltage levels are interpreted by a digital circuit

u Describe the general characteristics of a pulse

u Determine the amplitude, rise time, fall time, and width of a pulse

u Identify and describe the characteristics of a digital waveform

u Determine the amplitude, period, frequency, and duty cycle of a digital waveform

u Explain what a timing diagram is and state its purpose

u Explain serial and parallel data transfer and state the advantage and disadvantage

of each

Binary Digits

Each of the two digits in the binary system, 1 and 0, is called a bit, which is a contraction

of the words binary digit. In digital circuits, two different voltage levels are used to repre-

sent the two bits. Generally, 1 is represented by the higher voltage, which we will refer to

as a HIGH, and a 0 is represented by the lower voltage level, which we will refer to as a

LOW. This is called positive logic and will be used throughout the book.

HIGH � 1 and LOW � 0

The movement of the arm in any quadrant and to any specified position is accomplished with

some type of digital control such as a microcontroller.

InfoNote

The concept of a digital computer

can be traced back to Charles

Babbage, who developed a crude

mechanical computation device in

the 1830s. John Atanasoff was the

first to apply electronic processing

to digital computing in 1939. In

1946, an electronic digital compu-

ter called ENIAC was implemented

with vacuum-tube circuits. Even

though it took up an entire room,

ENIAC didn’t have the computing

power of your handheld calculator.

20 Introductory Concepts

Another system in which a 1 is represented by a LOW and a 0 is represented by a HIGH is

called negative logic.

Groups of bits (combinations of 1s and 0s), called codes, are used to represent numbers,

letters, symbols, instructions, and anything else required in a given application.

Logic Levels

The voltages used to represent a 1 and a 0 are called logic levels. Ideally, one voltage level

represents a HIGH and another voltage level represents a LOW. In a practical digital circuit,

however, a HIGH can be any voltage between a specified minimum value and a specified

maximum value. Likewise, a LOW can be any voltage between a specified minimum and a

specified maximum. There can be no overlap between the accepted range of HIGH levels

and the accepted range of LOW levels.

Figure 1–6 illustrates the general range of LOWs and HIGHs for a digital circuit. The

variable VH(max) represents the maximum HIGH voltage value, and VH(min) represents the

minimum HIGH voltage value. The maximum LOW voltage value is represented by VL(max),

and the minimum LOW voltage value is represented by VL(min). The voltage values between

VL(max) and VH(min) are unacceptable for proper operation. A voltage in the unacceptable

range can appear as either a HIGH or a LOW to a given circuit. For example, the HIGH

input values for a certain type of digital circuit technology called CMOS may range from

2 V to 3.3 V and the LOW input values may range from 0 V to 0.8 V. If a voltage of 2.5 V

is applied, the circuit will accept it as a HIGH or binary 1. If a voltage of 0.5 V is applied,

the circuit will accept it as a LOW or binary 0. For this type of circuit, voltages between

0.8 V and 2 V are unacceptable.

Digital Waveforms

Digital waveforms consist of voltage levels that are changing back and forth between the

HIGH and LOW levels or states. Figure 1–7(a) shows that a single positive-going pulse

is generated when the voltage (or current) goes from its normally LOW level to its HIGH

level and then back to its LOW level. The negative-going pulse in Figure 1–7(b) is gener-

ated when the voltage goes from its normally HIGH level to its LOW level and back to its

HIGH level. A digital waveform is made up of a series of pulses.

HIGH

(binary 1)

LOW

(binary 0)

VH(max)

VH(min)

VL(max)

VL (min)

Unacceptable

FIGURE 1–6 Logic level ranges

of voltage for a digital circuit.

Falling or

leading edge

(b) Negative–going pulse

HIGH

Rising or

trailing edge

LOW

(a) Positive–going pulse

HIGH

Rising or

leading edge

Falling or

trailing edge

LOW
t
0

t
1

t
0

t
1

FIGURE 1–7 Ideal pulses.

The Pulse

As indicated in Figure 1–7, a pulse has two edges: a leading edge that occurs first at time t0

and a trailing edge that occurs last at time t1. For a positive-going pulse, the leading edge

is a rising edge, and the trailing edge is a falling edge. The pulses in Figure 1–7 are ideal

because the rising and falling edges are assumed to change in zero time (instantaneously).

In practice, these transitions never occur instantaneously, although for most digital work

you can assume ideal pulses.

Figure 1–8 shows a nonideal pulse. In reality, all pulses exhibit some or all of these

characteristics. The overshoot and ringing are sometimes produced by stray inductive and

Research
Comment on Text
If ZL is bigger than ZS you get overshoot. If it's the other way around you get undershoot. Positive or negative reflection coefficient.

 Binary Digits, Logic Levels, and Digital Waveforms 21

capacitive effects. The droop can be caused by stray capacitive and circuit resistance, form-

ing an RC circuit with a low time constant.

The time required for a pulse to go from its LOW level to its HIGH level is called the

rise time (tr), and the time required for the transition from the HIGH level to the LOW level

is called the fall time (tf). In practice, it is common to measure rise time from 10% of the

pulse amplitude (height from baseline) to 90% of the pulse amplitude and to measure the

fall time from 90% to 10% of the pulse amplitude, as indicated in Figure 1–8. The bottom

10% and the top 10% of the pulse are not included in the rise and fall times because of

the nonlinearities in the waveform in these areas. The pulse width (tW) is a measure of the

duration of the pulse and is often defined as the time interval between the 50% points on

the rising and falling edges, as indicated in Figure 1–8.

Waveform Characteristics

Most waveforms encountered in digital systems are composed of series of pulses, some-

times called pulse trains, and can be classified as either periodic or nonperiodic. A periodic

pulse waveform is one that repeats itself at a fixed interval, called a period (T). The

 frequency (f) is the rate at which it repeats itself and is measured in hertz (Hz). A non-

periodic pulse waveform, of course, does not repeat itself at fixed intervals and may be

composed of pulses of randomly differing pulse widths and/or randomly differing time

intervals between the pulses. An example of each type is shown in Figure 1–9.

90%

50%

10%

Base line

Pulse width

Rise time Fall time

Amplitude tW

tr tf

Undershoot

Ringing

Overshoot

Ringing

Droop

FIGURE 1–8 Nonideal pulse characteristics.

T1

Period = T1
= T2

= T3 = . . . = Tn

T2 T3

Frequency = 1
T

(a) Periodic (square wave) (b) Nonperiodic

FIGURE 1–9 Examples of digital waveforms.

The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The

relationship between frequency and period is expressed as follows:

 f �
1

T
 Equation 1–1

 T �
1

f
 Equation 1–2

22 Introductory Concepts

An important characteristic of a periodic digital waveform is its duty cycle, which is the

ratio of the pulse width (tW) to the period (T). It can be expressed as a percentage.

 Duty cycle � ¢ tW

T
≤100% Equation 1–3

EXAMPLE 1–1

A portion of a periodic digital waveform is shown in Figure 1–10. The measurements

are in milliseconds. Determine the following:

(a) period (b) frequency (c) duty cycle

10 10 11
t (ms)

T
t
W

FIGURE 1–10

Solution

(a) The period (T) is measured from the edge of one pulse to the corresponding edge

of the next pulse. In this case T is measured from leading edge to leading edge, as

indicated. T equals 10 ms.

(b) f =

1

T
=

1

10 ms
= 100 Hz

(c) Duty cycle = ¢ tW

T
≤100% = ¢ 1 ms

10 ms
≤100% = 10%

Related Problem*

A periodic digital waveform has a pulse width of 25 ms and a period of 150 ms. Deter-

mine the frequency and the duty cycle.

*Answers are at the end of the chapter.

A Digital Waveform Carries Binary Information

Binary information that is handled by digital systems appears as waveforms that represent

sequences of bits. When the waveform is HIGH, a binary 1 is present; when the waveform

is LOW, a binary 0 is present. Each bit in a sequence occupies a defined time interval called

a bit time.

The Clock

In digital systems, all waveforms are synchronized with a basic timing waveform called the

clock. The clock is a periodic waveform in which each interval between pulses (the period)

equals the time for one bit.

An example of a clock waveform is shown in Figure 1–11. Notice that, in this case, each

change in level of waveform A occurs at the leading edge of the clock waveform. In other

cases, level changes occur at the trailing edge of the clock. During each bit time of the

clock, waveform A is either HIGH or LOW. These HIGHs and LOWs represent a sequence

InfoNote

The speed at which a computer

can operate depends on the type

of microprocessor used in the

 system. The speed specifica-

tion, for example 3.5 GHz, of

a computer is the maximum

clock frequency at which the

 microprocessor can run.

 Binary Digits, Logic Levels, and Digital Waveforms 23

of bits as indicated. A group of several bits can contain binary information, such as a num-

ber or a letter. The clock waveform itself does not carry information.

Timing Diagrams

A timing diagram is a graph of digital waveforms showing the actual time relationship of

two or more waveforms and how each waveform changes in relation to the others. By look-

ing at a timing diagram, you can determine the states (HIGH or LOW) of all the waveforms

at any specified point in time and the exact time that a waveform changes state relative

to the other waveforms. Figure 1–12 is an example of a timing diagram made up of four

waveforms. From this timing diagram you can see, for example, that the three waveforms

A, B, and C are HIGH only during bit time 7 (shaded area) and they all change back LOW

at the end of bit time 7.

Bit

time

Bit sequence
represented by

waveform A

1

0

0

1
A

1 1 1 1 1 0

Clock

00000

FIGURE 1–11 Example of a clock waveform synchronized with a waveform representation

of a sequence of bits.

Clock

A

B

C

1 2 3 4 5 6 7 8

A, B, and C HIGH

FIGURE 1–12 Example of a timing diagram.

InfoNote

Universal Serial Bus (USB) is a

serial bus standard for device

interfacing. It was originally devel-

oped for the personal computer

but has become widely used on

many types of handheld and

mobile devices. USB is expected

to replace other serial and parallel

ports. USB operated at 12 Mbps

(million bits per second) when

first introduced in 1995, but it now

provides transmission speeds of

up to 5 Gbps.

Data Transfer

Data refers to groups of bits that convey some type of information. Binary data, which

are represented by digital waveforms, must be transferred from one device to another

within a digital system or from one system to another in order to accomplish a given

purpose. For example, numbers stored in binary form in the memory of a computer must

be transferred to the computer’s central processing unit in order to be added. The sum of

the addition must then be transferred to a monitor for display and/or transferred back to

the memory. As illustrated in Figure 1–13, binary data are transferred in two ways: serial

and parallel.

When bits are transferred in serial form from one point to another, they are sent one bit

at a time along a single line, as illustrated in Figure 1–13(a). During the time interval from

t0 to t1, the first bit is transferred. During the time interval from t1 to t2, the second bit is

transferred, and so on. To transfer eight bits in series, it takes eight time intervals.

24 Introductory Concepts

When bits are transferred in parallel form, all the bits in a group are sent out on separate

lines at the same time. There is one line for each bit, as shown in Figure 1–13(b) for the

example of eight bits being transferred. To transfer eight bits in parallel, it takes one time

interval compared to eight time intervals for the serial transfer.

To summarize, an advantage of serial transfer of binary data is that a minimum of only

one line is required. In parallel transfer, a number of lines equal to the number of bits to be

transferred at one time is required. A disadvantage of serial transfer is that it takes longer to

transfer a given number of bits than with parallel transfer at the same clock frequency. For

example, if one bit can be transferred in 1 ms, then it takes 8 ms to serially transfer eight

bits but only 1 ms to parallel transfer eight bits. A disadvantage of parallel transfer is that it

takes more lines than serial transfer.

Sending
device

1 0 1 1 0 0 1 0

t0 t1 t2 t3 t4 t5 t6 t7

0

t0 t1

1

0

0

1

1

0

1

t0 to t1 is first.(a) Serial transfer of 8 bits of binary data. Interval The beginning time is t0.(b) Parallel transfer of 8 bits of binary data.

Receiving
device

Receiving
device

Sending
device

FIGURE 1–13 Illustration of serial and parallel transfer of binary data. Only the data lines

are shown.

EXAMPLE 1–2

(a) Determine the total time required to serially transfer the eight bits contained in

waveform A of Figure 1–14, and indicate the sequence of bits. The left-most bit is

the first to be transferred. The 1 MHz clock is used as reference.

(b) What is the total time to transfer the same eight bits in parallel?

Clock

A

FIGURE 1–14

Solution

(a) Since the frequency of the clock is 1 MHz, the period is

T =

1

f
=

1

1 MHz
= 1 ms

 It takes 1 ms to transfer each bit in the waveform. The total transfer time for 8 bits is

8 * 1 ms = 8 Ms

 Basic Logic Functions 25

 To determine the sequence of bits, examine the waveform in Figure 1–14 during

each bit time. If waveform A is HIGH during the bit time, a 1 is transferred. If

waveform A is LOW during the bit time, a 0 is transferred. The bit sequence is

illustrated in Figure 1–15. The left-most bit is the first to be transferred.

1 0 0 1 0 01 1

FIGURE 1–15

(b) A parallel transfer would take 1 Ms for all eight bits.

Related Problem

If binary data are transferred on a USB at the rate of 480 million bits per second

(480 Mbps), how long will it take to serially transfer 16 bits?

SECTION 1–2 CHECKUP

 1. Define binary.

 2. What does bit mean?

 3. What are the bits in a binary system?

 4. How are the rise time and fall time of a pulse measured?

 5. Knowing the period of a waveform, how do you find the frequency?

 6. Explain what a clock waveform is.

 7. What is the purpose of a timing diagram?

 8. What is the main advantage of parallel transfer over serial transfer of binary data?

1–3 Basic Logic Functions

In its basic form, logic is the realm of human reasoning that tells you a certain proposi-

tion (declarative statement) is true if certain conditions are true. Propositions can be

classified as true or false. Many situations and processes that you encounter in your

daily life can be expressed in the form of propositional, or logic, functions. Since such

functions are true/false or yes/no statements, digital circuits with their two-state char-

acteristics are applicable.

After completing this section, you should be able to

u List three basic logic functions

u Define the NOT function

u Define the AND function

u Define the OR function

Several propositions, when combined, form propositional, or logic, functions. For exam-

ple, the propositional statement “The light is on” will be true if “The bulb is not burned out”

is true and if “The switch is on” is true. Therefore, this logical statement can be made: The

light is on only if the bulb is not burned out and the switch is on. In this example the first

statement is true only if the last two statements are true. The first statement (“The light is on”)

26 Introductory Concepts

is then the basic proposition, and the other two statements are the conditions on which the

proposition depends.

In the 1850s, the Irish logician and mathematician George Boole developed a math-

ematical system for formulating logic statements with symbols so that problems can be

written and solved in a manner similar to ordinary algebra. Boolean algebra, as it is known

today, is applied in the design and analysis of digital systems and will be covered in detail

in Chapter 4.

The term logic is applied to digital circuits used to implement logic functions. Several

kinds of digital logic circuits are the basic elements that form the building blocks for such

complex digital systems as the computer. We will now look at these elements and discuss

their functions in a very general way. Later chapters will cover these circuits in detail.

Three basic logic functions (NOT, AND, and OR) are indicated by standard distinctive

shape symbols in Figure 1–16. Alternate standard symbols for these logic functions will be

introduced in Chapter 3. The lines connected to each symbol are the inputs and outputs.

The inputs are on the left of each symbol and the output is on the right. A circuit that per-

forms a specified logic function (AND, OR) is called a logic gate. AND and OR gates can

have any number of inputs, as indicated by the dashes in the figure.

NOT ORAND

FIGURE 1–16 The basic logic functions and symbols.

In logic functions, the true/false conditions mentioned earlier are represented by a

HIGH (true) and a LOW (false). Each of the three basic logic functions produces a unique

response to a given set of conditions.

NOT

The NOT function changes one logic level to the opposite logic level, as indicated in

 Figure 1–17. When the input is HIGH (1), the output is LOW (0). When the input is LOW,

the output is HIGH. In either case, the output is not the same as the input. The NOT func-

tion is implemented by a logic circuit known as an inverter.

HIGH (1) LOW (0) HIGH (1)LOW (0)

FIGURE 1–17 The NOT function.

AND

The AND function produces a HIGH output only when all the inputs are HIGH, as indi-

cated in Figure 1–18 for the case of two inputs. When one input is HIGH and the other

input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW.

The AND function is implemented by a logic circuit known as an AND gate.

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

FIGURE 1–18 The AND function.

 Combinational and Sequential Logic Functions 27

OR

The OR function produces a HIGH output when one or more inputs are HIGH, as indicated

in Figure 1–19 for the case of two inputs. When one input is HIGH or the other input is

HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the output

is LOW. The OR function is implemented by a logic circuit known as an OR gate.

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
HIGH (1)

FIGURE 1–19 The OR function.

SECTION 1–3 CHECKUP

 1. When does the NOT function produce a HIGH output?

 2. When does the AND function produce a HIGH output?

 3. When does the OR function produce a HIGH output?

 4. What is an inverter?

 5. What is a logic gate?

1–4 Combinational and Sequential Logic Functions

The three basic logic functions AND, OR, and NOT can be combined to form various other

types of more complex logic functions, such as comparison, arithmetic, code conversion,

encoding, decoding, data selection, counting, and storage. A digital system is an arrange-

ment of the individual logic functions connected to perform a specified operation or pro-

duce a defined output. This section provides an overview of important logic functions and

illustrates how they can be used in a specific system.

After completing this section, you should be able to

u List several types of logic functions

u Describe comparison and list the four arithmetic functions

u Describe code conversion, encoding, and decoding

u Describe multiplexing and demultiplexing

u Describe the counting function

u Describe the storage function

u Explain the operation of the tablet-bottling system

The Comparison Function

Magnitude comparison is performed by a logic circuit called a comparator, covered in

Chapter 6. A comparator compares two quantities and indicates whether or not they are

equal. For example, suppose you have two numbers and wish to know if they are equal

or not equal and, if not equal, which is greater. The comparison function is represented in

28 Introductory Concepts

Figure 1–20. One number in binary form (represented by logic levels) is applied to input A, and

the other number in binary form (represented by logic levels) is applied to input B. The

outputs indicate the relationship of the two numbers by producing a HIGH level on the

proper output line. Suppose that a binary representation of the number 2 is applied to input

A and a binary representation of the number 5 is applied to input B. (The binary represen-

tation of numbers and symbols is discussed in Chapter 2.) A HIGH level will appear on

the A 6 B (A is less than B) output, indicating the relationship between the two numbers

(2 is less than 5). The wide arrows represent a group of parallel lines on which the bits are

transferred.

The Arithmetic Functions

Addition

Addition is performed by a logic circuit called an adder, covered in Chapter 6. An adder

adds two binary numbers (on inputs A and B with a carry input Cin) and generates a sum

(�) and a carry output (Cout), as shown in Figure 1–21(a). Figure 1–21(b) illustrates the

addition of 3 and 9. You know that the sum is 12; the adder indicates this result by pro-

ducing 2 on the sum output and 1 on the carry output. Assume that the carry input in this

example is 0.

Two
binary
numbers

Outputs

A

B
A < B

A = B

A > B

Comparator

A

B
A < B

A = B

A > B

Comparator

(a) Basic magnitude comparator

Binary
code for 2

HIGH

LOW

(b) Example: A is less than B (2 < 5) as indicated by

LOW

Binary
code for 5

the HIGH output (A < B)

FIGURE 1–20 The comparison function.

Binary
code for 2

Binary 1

Binary
code for 12

Adder

Binary
code for 3

Binary
code for 9

Binary 0

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

Sum

(a) Basic adder

Σ

Adder

A

B
Cout

Cin

Σ

(b) Example: A plus B (3 + 9 = 12)

FIGURE 1–21 The addition function.

InfoNote

In a microprocessor, the arith-

metic logic unit (ALU) performs

the operations of add, subtract,

multiply, and divide as well as the

logic operations on digital data as

directed by a series of instructions.

A typical ALU is constructed of

many thousands of logic gates.

Subtraction

Subtraction is also performed by a logic circuit. A subtracter requires three inputs: the

two numbers that are to be subtracted and a borrow input. The two outputs are the differ-

ence and the borrow output. When, for instance, 5 is subtracted from 8 with no borrow

input, the difference is 3 with no borrow output. You will see in Chapter 2 how subtrac-

tion can actually be performed by an adder because subtraction is simply a special case

of addition.

 Combinational and Sequential Logic Functions 29

Multiplication

Multiplication is performed by a logic circuit called a multiplier. Numbers are always mul-

tiplied two at a time, so two inputs are required. The output of the multiplier is the product.

Because multiplication is simply a series of additions with shifts in the positions of the

partial products, it can be performed by using an adder in conjunction with other circuits.

Division

Division can be performed with a series of subtractions, comparisons, and shifts, and thus it

can also be done using an adder in conjunction with other circuits. Two inputs to the divider

are required, and the outputs generated are the quotient and the remainder.

The Code Conversion Function

A code is a set of bits arranged in a unique pattern and used to represent specified informa-

tion. A code converter changes one form of coded information into another coded form.

Examples are conversion between binary and other codes such as the binary coded decimal

(BCD) and the Gray code. Various types of codes are covered in Chapter 2, and code con-

verters are covered in Chapter 6.

The Encoding Function

The encoding function is performed by a logic circuit called an encoder, covered in Chap-

ter 6. The encoder converts information, such as a decimal number or an alphabetic char-

acter, into some coded form. For example, one certain type of encoder converts each of the

decimal digits, 0 through 9, to a binary code. A HIGH level on the input corresponding to

a specific decimal digit produces logic levels that represent the proper binary code on the

output lines.

Figure 1–22 is a simple illustration of an encoder used to convert (encode) a calculator

keystroke into a binary code that can be processed by the calculator circuits.

Binary

code for 9

Encoder9

8 9

4 5 6

1 2 3

0 . +/–

7

Calculator keypad

8
7
6
5
4
3
2
1
0

HIGH

FIGURE 1–22 An encoder used to encode a calculator keystroke into a binary code

for storage or for calculation.

The Decoding Function

The decoding function is performed by a logic circuit called a decoder, covered in Chapter 6.

The decoder converts coded information, such as a binary number, into a noncoded form,

such as a decimal form. For example, one particular type of decoder converts a 4-bit binary

code into the appropriate decimal digit.

Figure 1–23 is a simple illustration of one type of decoder that is used to activate a

7-segment display. Each of the seven segments of the display is connected to an output

line from the decoder. When a particular binary code appears on the decoder inputs, the

appropriate output lines are activated and light the proper segments to display the decimal

digit corresponding to the binary code.

30 Introductory Concepts

The Data Selection Function

Two types of circuits that select data are the multiplexer and the demultiplexer. The multi-

plexer, or mux for short, is a logic circuit that switches digital data from several input lines

onto a single output line in a specified time sequence. Functionally, a multiplexer can be

represented by an electronic switch operation that sequentially connects each of the input

lines to the output line. The demultiplexer (demux) is a logic circuit that switches digital

data from one input line to several output lines in a specified time sequence. Essentially,

the demux is a mux in reverse.

Multiplexing and demultiplexing are used when data from several sources are to be

transmitted over one line to a distant location and redistributed to several destinations. Fig-

ure 1–24 illustrates this type of application where digital data from three sources are sent

out along a single line to three terminals at another location.

Decoder

Binary-coded input

7-segment display

FIGURE 1–23 A decoder used to convert a special binary code into a 7-segment

decimal readout.

Multiplexer
A

Switching
sequence

control input

B

C

∆t2

∆t3

∆t1

∆t2

∆t3

∆t1

Demultiplexer
D

E

F

Data from
 A to D

Data from
B to E

Data from
C to F

Data from
A to D

∆t1 ∆t2 ∆t3 ∆t1

Switching
sequence

control input

FIGURE 1–24 Illustration of a basic multiplexing/demultiplexing application.

InfoNote

The internal computer memories,

RAM and ROM, as well as the

smaller caches are semiconduc-

tor memories. The registers in a

microprocessor are constructed of

semiconductor flip-flops. Opto-

magnetic disk memories are used

in the internal hard drive and for

the CD-ROM.

In Figure 1–24, data from input A are connected to the output line during time interval �t1

and transmitted to the demultiplexer that connects them to output D. Then, during interval

�t2, the multiplexer switches to input B and the demultiplexer switches to output E. During

interval �t3, the multiplexer switches to input C and the demultiplexer switches to output F.

To summarize, during the first time interval, input A data go to output D. During the

second time interval, input B data go to output E. During the third time interval, input C

data go to output F. After this, the sequence repeats. Because the time is divided up among

several sources and destinations where each has its turn to send and receive data, this pro-

cess is called time division multiplexing (TDM).

The Storage Function

Storage is a function that is required in most digital systems, and its purpose is to retain binary

data for a period of time. Some storage devices are used for short-term storage and some

 Combinational and Sequential Logic Functions 31

are used for long-term storage. A storage device can “memorize” a bit or a group of bits and

retain the information as long as necessary. Common types of storage devices are flip-flops,

registers, semiconductor memories, magnetic disks, magnetic tape, and optical disks (CDs).

Flip-flops

A flip-flop is a bistable (two stable states) logic circuit that can store only one bit at a time,

either a 1 or a 0. The output of a flip-flop indicates which bit it is storing. A HIGH output

indicates that a 1 is stored and a LOW output indicates that a 0 is stored. Flip-flops are

implemented with logic gates and are covered in Chapter 7.

Registers

A register is formed by combining several flip-flops so that groups of bits can be stored.

For example, an 8-bit register is constructed from eight flip-flops. In addition to storing

bits, registers can be used to shift the bits from one position to another within the register

or out of the register to another circuit; therefore, these devices are known as shift registers.

Shift registers are covered in Chapter 8.

The two basic types of shift registers are serial and parallel. The bits are stored in a serial shift

register one at a time, as illustrated in Figure 1–25. A good analogy to the serial shift register

is loading passengers onto a bus single file through the door. They also exit the bus single file.

0 0 0 00101
Initially, the register contains only invalid

data or all zeros as shown here.

1 0 0 0010
First bit (1) is shifted serially into the
register.

0 1 0 001
Second bit (0) is shifted serially into
register and first bit is shifted right.

1 0 1 00
Third bit (1) is shifted into register and
the first and second bits are shifted right.

0 1 0 1
Fourth bit (0) is shifted into register and
the first, second, and third bits are shifted
right. The register now stores all four bits
and is full.

Serial bits
on input line

FIGURE 1–25 Example of the operation of a 4-bit serial shift register. Each block

represents one storage “cell” or flip-flop.

0 0 0 0
Initially, the register is empty,
containing only nondata zeros.

0 1 0 1
All bits are shifted in and
stored simultaneously.

0 1 0 1Parallel bits
on input lines

FIGURE 1–26 Example of the operation of a 4-bit parallel shift register.

The bits are stored in a parallel register simultaneously from parallel lines, as shown in

Figure 1–26. For this case, a good analogy is loading and unloading passengers on a roller

coaster where they enter all of the cars in parallel and exit in parallel.

32 Introductory Concepts

Semiconductor Memories

Semiconductor memories are devices typically used for storing large numbers of bits. In

one type of memory, called the read-only memory or ROM, the binary data are perma-

nently or semipermanently stored and cannot be readily changed. In the random-access

memory or RAM, the binary data are temporarily stored and can be easily changed. Memo-

ries are covered in Chapter 11.

Magnetic Memories

Magnetic disk memories are used for mass storage of binary data. An example is a com-

puter’s internal hard disk. Magnetic tape is still used to some extent in memory applications

and for backing up data from other storage devices.

Optical Memories

CDs, DVDs, and Blu-ray Discs are storage devices based on laser technology. Data are

represented by pits and lands on concentric tracks. A laser beam is used to store the data on

the disc and to read the data from the disc.

The Counting Function

The counting function is important in digital systems. There are many types of digital

counters, but their basic purpose is to count events represented by changing levels or

pulses. To count, the counter must “remember” the present number so that it can go to

the next proper number in sequence. Therefore, storage capability is an important charac-

teristic of all counters, and flip-flops are generally used to implement them. Figure 1–27

illustrates the basic idea of counter operation. Counters are covered in Chapter 9.

Counter

Parallel

output lines

1 2 3 4 5

Input pulses
Sequence of binary codes that represent

the number of input pulses counted.

Binary
code
for 1

Binary
code
for 2

Binary
code
for 3

Binary
code
for 4

Binary
code
for 5

FIGURE 1–27 Illustration of basic counter operation.

A Process Control System

A system for bottling vitamin tablets is shown in the block diagram of Figure 1–28. This

example system shows how the various logic functions that have been introduced can be

used together to form a total system. To begin, the tablets are fed into a large funnel-type

hopper. The narrow neck of the hopper creates a serial flow of tablets into a bottle on

the conveyor belt below. Only one tablet at a time passes the sensor, so the tablets can

be counted. The system controls the number of tablets into each bottle and displays a

continually updated readout of the total number of tablets bottled.

General Operation

The maximum number of tablets per bottle is entered from the keypad, changed to a code

by the Encoder, and stored in Register A. Decoder A changes the code stored in the register

to a form appropriate for turning on the display. Code converter A changes the code to a

binary number and applies it to the A input of the Comparator (Comp).

An optical sensor in the neck of the hopper detects each tablet that passes and produces

a pulse. This pulse goes to the Counter and advances it by one count; thus, any time during

the filling of a bottle, the binary state of the counter represents the number of tablets in the

bottle. The binary count is transferred from the counter to the B input of the comparator

(Comp). The A input of the comparator is the binary number for the maximum tablets per

bottle. Now, let’s say that the present number of tablets per bottle is 50. When the binary

 Combinational and Sequential Logic Functions 33

number in the counter reaches 50, the A = B output of the comparator goes HIGH, indicat-

ing that the bottle is full.

The HIGH output of the comparator causes the valve in the neck of the hopper to close and

stop the flow of tablets. At the same time, the HIGH output of the comparator activates the

conveyor, which moves the next empty bottle into place under the hopper. When the bottle is in

place, the conveyor control issues a pulse that resets the counter to zero. As a result, the output

of the comparator goes back LOW and causes the hopper valve to restart the flow of tablets.

For each bottle filled, the maximum binary number in the counter is transferred to the

A input of the Adder. The B input of the adder comes from Register B that stores the total

number of tablets bottled up through the last bottle filled. The adder produces a new cumu-

lative sum that is then stored in register B, replacing the previous sum. This keeps a running

total of the tablets bottled during a given run.

The cumulative sum stored in register B goes to Decoder B, which detects when Regis-

ter B has reached its maximum capacity and enables the MUX, which converts the binary

from parallel to serial form for transmission to the remote DEMUX. The DEMUX converts

the data back to parallel form for storage.

Binary code for
actual number of
tablets in bottle

HIGH causes new
sum to be stored.

8 9

4 5 6

1 2 3

0 . #

7

Binary code for preset number
of tablets per bottle

Number of
tablets per bottleKeypad for entering

number of tablets

per bottle

HIGH closes valve
and advances
conveyor. LOW
keeps valve open.

One pulse
from sensor
for each tablet
advances
counter by 1.

New total
sum

The binary code representing the number of tablets bottled each time

Register B has reached the maximum accumulated count.

Current total sum

Valve

Sensor

To computer for accumulation and storage of total

number of tablets bottled over time

Pulse resets counter to zero
when next bottle is in place.

DEMUX

Comp
A

B

A = B

Adder

A

B Cout

Σ

Encoder

Code
converter

A

Decoder
B

MUX

Counter

Conveyor
control

Switching sequence
control input

Register
A

Tablets / bottle

Decoder
A

Register
B

FIGURE 1–28 Block diagram of a tablet-bottling system.

34 Introductory Concepts

1–5 Introduction to Programmable Logic

Programmable logic requires both hardware and software. Programmable logic devices

can be programmed to perform specified logic functions and operations by the manu-

facturer or by the user. One advantage of programmable logic over fixed-function logic

(covered in Section 1–6) is that the devices use much less board space for an equiva-

lent amount of logic. Another advantage is that, with programmable logic, designs can

be readily changed without rewiring or replacing components. Also, a logic design can

generally be implemented faster and with less cost with programmable logic than with

fixed-function logic. To implement small segments of logic, it may be more efficient to

use fixed-function logic.

After completing this section, you should be able to

u State the major types of programmable logic and discuss the differences

u Discuss the programmable logic design process

Programmable Logic Devices (PLDs)

Many types of programmable logic are available, ranging from small devices that can

replace a few fixed-function devices to complex high-density devices that can replace

thousands of fixed-function devices. Two major categories of user-programmable logic are

PLD (programmable logic device) and FPGA (field-programmable gate array), as indi-

cated in Figure 1–29. PLDs are either SPLDs (simple PLDs) or CPLDs (complex PLDs).

SECTION 1–4 CHECKUP

 1. What does a comparator do?

 2. What are the four basic arithmetic operations?

 3. Describe encoding and give an example.

 4. Describe decoding and give an example.

 5. Explain the basic purpose of multiplexing and demultiplexing.

 6. Name four types of storage devices.

 7. What does a counter do?

SPLDs CPLDs

PLDs FPGAs

Programmable logic

FIGURE 1–29 Programmable logic hierarchy.

 Introduction to Programmable Logic 35

Simple Programmable Logic Device (SPLD)

The SPLD was the original PLD and is still available for small-scale applications. Generally,

an SPLD can replace up to ten fixed-function ICs and their interconnections, depending

on the type of functions and the specific SPLD. Most SPLDs are in one of two categories:

PAL and GAL. A PAL (programmable array logic) is a device that can be programmed one

time. It consists of a programmable array of AND gates and a fixed array of OR gates, as

shown in Figure 1–30(a). A GAL (generic array logic) is a device that is basically a PAL

that can be reprogrammed many times. It consists of a reprogrammable array of AND gates

and a fixed array of OR gates with programmable ouputs, as shown in Figure 1–30(b). A

typical SPLD package is shown in Figure 1–31 and generally has from 24 to 28 pins.

Complex Programmable Logic Device (CPLD)

As technology progressed and the amount of circuitry that could be put on a chip (chip

density) increased, manufacturers were able to put more than one SPLD on a single chip

and the CPLD was born. Essentially, the CPLD is a device containing multiple SPLDs and

can replace many fixed-function ICs. Figure 1–32 shows a basic CPLD block diagram with

four logic array blocks (LABs) and a programmable interconnection array (PIA). Depend-

ing on the specific CPLD, there can be from two to sixty-four LABs. Each logic array block

is roughly equivalent to one SPLD.

(a) PAL

Fixed OR
array and

output logic

Programmable
AND array

Fixed OR
array and

programmable
output logic

Reprogrammable
AND array

(b) GAL

FIGURE 1–30 Block diagrams of simple programmable logic devices (SPLDs).

FIGURE 1–31 A typical SPLD

package.

PIA

LAB LAB

LAB LAB

FIGURE 1–32 General block diagram of a CPLD.

Generally, CPLDs can be used to implement any of the logic functions discussed ear-

lier, for example, decoders, encoders, multiplexers, demultiplexers, and adders. They are

available in a variety of configurations, typically ranging from 44 to 160 pin packages.

Examples of CPLD packages are shown in Figure 1–33.

36 Introductory Concepts

Field-Programmable Gate Array (FPGA)

An FPGA is generally more complex and has a much higher density than a CPLD,

although their applications can sometimes overlap. As mentioned, the SPLD and the CPLD

are closely related because the CPLD basically contains a number of SPLDs. The FPGA,

however, has a different internal structure (architecture), as illustrated in Figure 1–34. The

three basic elements in an FPGA are the logic block, the programmable interconnections,

and the input/output (I/O) blocks.

(a) 80-pin PQFP (b) 128-pin PQFP

FIGURE 1–33 Typical CPLD plastic quad flat packages (PQFP).

block

I/O
block

I/O
block

I/O
block

I/O
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

I/O I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

Programmable
interconnections

FIGURE 1–34 Basic structure of an FPGA.

The logic blocks in an FPGA are not as complex as the logic array blocks (LABs) in a

CPLD, but generally there are many more of them. When the logic blocks are relatively

simple, the FPGA architecture is called fine-grained. When the logic blocks are larger and

 Introduction to Programmable Logic 37

more complex, the architecture is called coarse-grained. The I/O blocks are on the outer

edges of the structure and provide individually selectable input, output, or bidirectional

access to the outside world. The distributed programmable interconnection matrix provides

for interconnection of the logic blocks and connection to inputs and outputs. Large FPGAs

can have tens of thousands of logic blocks in addition to memory and other resources. A

typical FPGA ball-grid array package is shown in Figure 1–35. These types of packages

can have over 1000 input and output pins.

The Programming Process

An SPLD, CPLD, or FPGA can be thought of as a “blank slate” on which you implement a

specified circuit or system design using a certain process. This process requires a software

development package installed on a computer to implement a circuit design in the program-

mable chip. The computer must be interfaced with a development board or programming

fixture containing the device, as illustrated in Figure 1–36.

(a) Top view (b) Bottom view

FIGURE 1–35 A typical ball-grid array (BGA) package.

PLD development board

Programmable logic device

FIGURE 1–36 Basic setup for programming a PLD or FPGA. Graphic entry of a logic

circuit is shown for illustration. Text entry such as VHDL can also be used. (Photo courtesy

of Digilent, Inc.)

Several steps, called the design flow, are involved in the process of implementing a digi-

tal logic design in a programmable logic device. A block diagram of a typical programming

process is shown in Figure 1–37. As indicated, the design flow has access to development

software.

38 Introductory Concepts

Design Entry

This is the first programming step. The circuit or system design must be entered into the

design application software using text-based entry, graphic entry (schematic capture), or

state diagram description. Design entry is device independent. Text-based entry is accom-

plished with a hardware description language (HDL) such as VHDL, Verilog, or AHDL.

Graphic (schematic) entry allows prestored logic functions to be selected, placed on the

screen, and then interconnected to create a logic design. State-diagram entry requires spec-

ification of both the states through which a sequential logic circuit progresses and the

conditions that produce each state change. VHDL will be used in this textbook to illustrate

text-based entry of a digital design. A VHDL tutorial is available on the website.

Once a design has been entered, it is compiled. A compiler is a program that controls

the design flow process and translates source code into object code in a format that can be

logically tested or downloaded to a target device. The source code is created during design

entry, and the object code is the final code that actually causes the design to be imple-

mented in the programmable device.

Functional Simulation

The entered and compiled design is simulated by software to confirm that the logic circuit

functions as expected. The simulation will verify that correct outputs are produced for a

specified set of inputs. A device-independent software tool for doing this is generally called

a waveform editor. Any flaws demonstrated by the simulation would be corrected by going

back to design entry and making appropriate changes.

Synthesis

Synthesis is where the design is translated into a netlist, which has a standard form and is

device independent.

Download

Development

software

Compiler

Design entry

HDL or graphic

Functional
simulation

Synthesis

Implementation

Timing
simulation

FIGURE 1–37 Basic programmable logic design flow block diagram.

 Introduction to Programmable Logic 39

Implementation

Implementation is where the logic structures described by the netlist are mapped into the

actual structure of the specific device being programmed. The implementation process is

called fitting or place and route and results in an output called a bitstream, which is device

dependent.

Timing Simulation

This step comes after the design is mapped into the specific device. The timing simula-

tion is basically used to confirm that there are no design flaws or timing problems due to

propagation delays.

Download

Once a bitstream has been generated for a specific programmable device, it has to be down-

loaded to the device to implement the software design in hardware. Some programmable

devices have to be installed in a special piece of equipment called a device programmer or

on a development board. Other types of devices can be programmed while in a system—

called in-system programming (ISP)—using a standard JTAG (Joint Test Action Group)

interface. Some devices are volatile, which means they lose their contents when reset or

when power is turned off. In this case, the bitstream data must be stored in a memory and

reloaded into the device after each reset or power-off. Also, the contents of an ISP device

can be manipulated or upgraded while it is operating in a system. This is called “on-the-

fly” reconfiguration.

The Microcontroller

A microcontroller is different than a PLD. The internal circuits of a microcontroller are

fixed, and a program (series of instructions) directs the microcontroller operation in order

to achieve a specific outcome. The internal circuitry of a PLD is programmed into it, and

once programmed, the circuitry performs required operations. Thus, a program determines

microcontroller operation, but in a PLD a program determines the logic function. Micro-

controllers are generally programmed with either the C language or the BASIC language.

A microcontroller is basically a special-purpose small computer. Microcontrollers are

generally used for embedded system applications. An embedded system is a system that is

designed to perform one or a few dedicated functions within a larger system. By contrast,

a general-purpose computer, such as a laptop, is designed to perform a wide range of func-

tions and applications.

Embedded microcontrollers are used in many common applications. The embedded

microcontroller is part of a complete system, which may include additional electronics and

mechanical parts. For example, a microcontroller in a television set displays the input from

the remote unit on the screen and controls the channel selection, audio, and various menu

adjustments like brightness and contrast. In an automobile a microcontroller takes engine

sensor inputs and controls spark timing and fuel mixture. Other applications include home

appliances, thermostats, cell phones, and toys.

SECTION 1–5 CHECKUP

 1. List three major categories of programmable logic devices and specify their

 acronyms.

 2. How does a CPLD differ from an SPLD?

 3. Name the steps in the programming process.

 4. Briefly explain each step named in question 3.

 5. What are the two main functional characteristics of a microcontroller?

40 Introductory Concepts

1–6 Fixed-Function Logic Devices

All the logic elements and functions that have been discussed are generally available in

integrated circuit (IC) form. Digital systems have incorporated ICs for many years because

of their small size, high reliability, low cost, and low power consumption. Despite the trend

toward programmable logic, fixed-function logic continues to be used although on a more

limited basis in specific applications. It is important to be able to recognize the IC pack-

ages and to know how the pin connections are numbered, as well as to be familiar with

the way in which circuit complexities and circuit technologies determine the various IC

classifications.

After completing this section, you should be able to

u Recognize the difference between through-hole devices and surface-mount

 fixed-function devices

u Identify dual in-line packages (DIP)

u Identify small-outline integrated circuit packages (SOIC)

u Identify plastic leaded chip carrier packages (PLCC)

u Identify leadless ceramic chip carrier packages (LCC)

u Determine pin numbers on various types of IC packages

u Explain the complexity classifications for fixed-function ICs

A monolithic integrated circuit (IC) is an electronic circuit that is constructed entirely

on a single small chip of silicon. All the components that make up the circuit—transistors,

diodes, resistors, and capacitors—are an integral part of that single chip. Fixed-function

logic and programmable logic are two broad categories of digital ICs. In fixed-function

logic devices, the logic functions are set by the manufacturer and cannot be altered.

Figure 1–38 shows a cutaway view of one type of fixed-function IC package with the

circuit chip shown within the package. Points on the chip are connected to the package pins

to allow input and output connections to the outside world.

Plastic
case

Pins

Chip

FIGURE 1–38 Cutaway view of one type of fixed-function IC package (dual in-line

package) showing the chip mounted inside, with connections to input and output pins.

IC Packages

Integrated circuit (IC) packages are classified according to the way they are mounted on

printed circuit boards (PCBs) as either through-hole mounted or surface mounted. The

through-hole type packages have pins (leads) that are inserted through holes in the PCB

and can be soldered to conductors on the opposite side. The most common type of through-

hole package is the dual in-line package (DIP) shown in Figure 1–39(a).

 Fixed-Function Logic Devices 41

Another type of IC package uses surface-mount technology (SMT). Surface mounting

is a space-saving alternative to through-hole mounting. The holes through the PCB are

unnecessary for SMT. The pins of surface-mounted packages are soldered directly to con-

ductors on one side of the board, leaving the other side free for additional circuits. Also, for

a circuit with the same number of pins, a surface-mounted package is much smaller than a

dual in-line package because the pins are placed closer together. An example of a surface-

mounted package is the small-outline integrated circuit (SOIC) shown in Figure 1–39(b).

Various types of SMT packages are available in a range of sizes, depending on the

number of leads (more leads are required for more complex circuits and lead configura-

tions). Examples of several types are shown in Figure 1–40. As you can see, the leads of the

SSOP (shrink small-outline package) are formed into a “gull-wing” shape. The leads of the

PLCC (plastic-leaded chip carrier) are turned under the package in a J-type shape. Instead

of leads, the LCC (leadless ceramic chip) has metal contacts molded into its ceramic body.

The LQFP (low-profile quad flat package) also has gull-wing leads. Both the CSP (chip

scale package) and the FBGA (fine-pitch ball grid array) have contacts embedded in the

bottom of the package.

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

FIGURE 1–39 Examples of through-hole and surface-mounted devices. The DIP is larger

than the SOIC with the same number of leads. This particular DIP is approximately 0.785 in.

long, and the SOIC is approximately 0.385 in. long.

(c) LCC (350 � 350 mils)(a) SSOP (153 � 193 mils) (b) PLCC (350 � 350 mils)

(d) LQFP (7 � 7 mm) (e) Laminate CSP bottom view

 (3.5 � 3.5 mm)

(f) FBGA bottom view

 (4 � 4 mm)

FIGURE 1–40 Examples of SMT package configurations. Parts (e) and (f) show bottom

views.

42 Introductory Concepts

Pin Numbering

All IC packages have a standard format for numbering the pins (leads). The dual in-

line packages (DIPs) and the shrink small-outline packages (SSOP) have the numbering

arrangement illustrated in Figure 1–41(a) for a 16-pin package. Looking at the top of the

package, pin 1 is indicated by an identifier that can be either a small dot, a notch, or a bev-

eled edge. The dot is always next to pin 1. Also, with the notch oriented upward, pin 1 is

always the top left pin, as indicated. Starting with pin 1, the pin numbers increase as you

go down, then across and up. The highest pin number is always to the right of the notch or

opposite the dot.

The PLCC and LCC packages have leads arranged on all four sides. Pin 1 is indicated by

a dot or other index mark and is located at the center of one set of leads. The pin numbers

increase going counterclockwise as viewed from the top of the package. The highest pin

number is always to the right of pin 1. Figure 1–41(b) illustrates this format for a 20-pin

PLCC package.

(a) DIP or SSOP

Notch

Pin 1

identifier

Pin 1

identifier

3 19

9 13

14

18

8

4

(b) PLCC or LCC

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

FIGURE 1–41 Pin numbering for two examples of standard types of IC packages.

Top views are shown.

Complexity Classifications for Fixed-Function ICs

Fixed-function digital ICs are classified according to their complexity. They are listed here

from the least complex to the most complex. The complexity figures stated here for SSI,

MSI, LSI, VLSI, and ULSI are generally accepted, but definitions may vary from one

source to another.

• Small-scale integration (SSI) describes fixed-function ICs that have up to ten equiv-

alent gate circuits on a single chip, and they include basic gates and flip-flops.

• Medium-scale integration (MSI) describes integrated circuits that have from 10 to

100 equivalent gates on a chip. They include logic functions such as encoders, decoders,

counters, registers, multiplexers, arithmetic circuits, small memories, and others.

• Large-scale integration (LSI) is a classification of ICs with complexities of from

more than 100 to 10,000 equivalent gates per chip, including memories.

• Very large-scale integration (VLSI) describes integrated circuits with complexities

of from more than 10,000 to 100,000 equivalent gates per chip.

• Ultra large-scale integration (ULSI) describes very large memories, larger micro-

processors, and larger single-chip computers. Complexities of more than 100,000

equivalent gates per chip are classified as ULSI.

Integrated Circuit Technologies

The types of transistors with which all integrated circuits are implemented are either MOSFETs

(metal-oxide semiconductor field-effect transistors) or bipolar junction transistors. A circuit

 Test and Measurement Instruments 43

technology that uses MOSFETs is CMOS (complementary MOS). One type of fixed-

function digital circuit technology uses bipolar junction transistors and is sometimes

called TTL (transistor-transistor logic). BiCMOS uses a combination of both CMOS

and bipolar.

All gates and other functions can be implemented with either type of circuit technology.

SSI and MSI circuits are generally available in both CMOS and bipolar. LSI, VLSI, and

ULSI are generally implemented with CMOS because it requires less area on a chip and

consumes less power. There is more on these integrated technologies in Chapter 3. Refer to

Chapter 15 Integrated Circuit Technologies on the website for a thorough coverage.

SECTION 1–6 CHECKUP

 1. What is an integrated circuit?

 2. Define the terms DIP, SMT, SOIC, SSI, MSI, LSI, VLSI and ULSI.

 3. Generally, in what classification does a fixed-function IC with the following number

of equivalent gates fall?

(a) 10

(b) 75

(c) 500

(d) 15,000

(e) 200,000

1–7 Test and Measurement Instruments

A variety of instruments are available for use in troubleshooting and testing. Some common

types of instruments are introduced and discussed in this section.

After completing this section, you should be able to

u Distinguish between an analog and a digital oscilloscope

u Recognize common oscilloscope controls

u Determine amplitude, period, and frequency of a pulse waveform with an oscilloscope

u Discuss the logic analyzer and some common formats

u Describe the purpose of the digital multimeter (DMM), the dc power supply, the

logic probe, and the logic pulser

The Oscilloscope

The oscilloscope (scope for short) is one of the most widely used instruments for general

testing and troubleshooting. The scope is basically a graph-displaying device that traces

the graph of a measured electrical signal on its screen. In most applications, the graph

shows how signals change over time. The vertical axis of the display screen represents

voltage, and the horizontal axis represents time. Amplitude, period, and frequency of a

signal can be measured using the oscilloscope. Also, the pulse width, duty cycle, rise

time, and fall time of a pulse waveform can be determined. Most scopes can display

at least two signals on the screen at one time, enabling their time relationship to be

observed. A typical digital oscilloscopes with a voltage probe connected is shown in

Figure 1–42.

InfoNote

The analog scope was the earli-

est type of oscilloscope, but it has

largely been replaced by the digital

scope although analog scopes may

still occasionally be found. The

analog scope used a cathode ray

tube (CRT) to display waveforms by

sweeping an electron beam across

the screen and controlling its up

and down motion according to the

measured waveform. Analog scopes

were more limited in features than

digital scopes in terms of storing

and displaying waveform details.

44 Introductory Concepts

FIGURE 1–42 Typical digital oscilloscope with voltage probe. Used with permission from

Tektronix, Inc.

Vertical circuits

Trigger circuits Horizontal circuits

Oscilloscope

Probe

Board under test

1010011010

ADC

Processor

Acquisition circuits

Reconstruction
and display

circuits

1010011010

Memory

FIGURE 1–43 Block diagram of a digital oscilloscope. (Photo courtesy of Digilent, Inc.)

A digital scope converts the measured waveform to digital information by a sampling

process in an analog-to-digital converter (ADC). The digital information is then used to

reconstruct the waveform on the screen. Figure 1–43 shows a basic block diagram for a

digital oscilloscope.

 Test and Measurement Instruments 45

Oscilloscope Controls

A front panel view of a typical four-channel digital oscilloscope is shown in Figure 1–44

(Some scopes have only two channels). Instruments vary depending on model and manu-

facturer, but most have certain common features. For example, each of the four vertical

sections contain a Position control, a channel menu button, and a scale (volts/div) control.

The horizontal section also contains a scale (sec/div) control.

Some of the main oscilloscope controls are now discussed. Refer to the user manual for

complete details of your particular scope.

Vertical Controls

In the vertical section of the scope in Figure 1–44, there are identical controls for each

of the four channels (1, 2, 3, and 4). The Position control lets you position a displayed

waveform up or down vertically on the screen. The buttons on the right side of the screen

provide for the selection of several items that appear on the screen, such as the coupling

modes (ac, dc, or ground), coarse or fine adjustment for the scale (volts/div), signal inver-

sion, and other parameters. The volts/div control adjusts the number of volts represented

by each vertical division on the screen. The volts/div setting for each channel is displayed

on the bottom of the screen.

Trigger controls

Horizontal controls

Vertical controls

Channel inputs

FIGURE 1–44 A typical digital oscilloscope front panel. Numbers below screen indicate

the values for each division on the vertical (voltage) and horizontal (time) scales and can

be varied using the vertical and horizontal controls on the scope. Used with permission from

Tektronix, Inc.

Horizontal Controls

In the horizontal section, the controls apply to all channels. The Position control lets you

move a displayed waveform left or right horizontally on the screen. The Menu buttons

provide for the selection of several items that appear on the screen such as the main time

base, expanded view of a portion of a waveform, and other parameters. The sec/div control

adjusts the time represented by each horizontal division or main time base. The sec/div set-

ting is displayed at the bottom of the screen.

Trigger Controls

In the Trigger control section, the Level control determines the point on the triggering

waveform where triggering occurs to initiate the sweep to display input waveforms. The

46 Introductory Concepts

Trig Menu button provides for the selection of several items that appear on the screen,

including edge or slope triggering, trigger source, trigger mode, and other parameters.

There is also an input for an external trigger signal.

Triggering stabilizes a waveform on the screen or properly triggers on a pulse that

occurs only one time or randomly. Also, it allows you to observe time delays between two

waveforms. Figure 1–45 compares a triggered to an untriggered signal. The untriggered

signal tends to drift across the screen, producing what appears to be multiple waveforms.

(a) Untriggered waveform display (b) Triggered waveform display

FIGURE 1–45 Comparison of an untriggered and a triggered waveform on an

oscilloscope.

Coupling a Signal into the Scope

Coupling is the method used to connect a signal voltage to be measured into the oscil-

loscope. DC and AC coupling are usually selected from the Vertical menu on a scope. DC

coupling allows a waveform including its dc component to be displayed. AC coupling

blocks the dc component of a signal so that you see the waveform centered at 0 V. The

Ground mode allows you to connect the channel input to ground to see where the 0 V

 reference is on the screen. Figure 1–46 illustrates the result of DC and AC coupling using

a pulse waveform that has a dc component.

0 V

(a) DC coupled waveform

0 V

(b) AC coupled waveform

FIGURE 1–46 Displays of the same waveform having a dc component.

The voltage probe, shown connected to the oscilloscope in Figure 1–42, is essential for

connecting a signal to the scope. Since all instruments tend to affect the circuit being mea-

sured due to loading, most scope probes provide a high series resistance to minimize load-

ing effects. Probes that have a series resistance ten times larger than the input resistance of

the scope are called * 10 probes. Probes with no series resistance are called * 1 probes.

The oscilloscope adjusts its calibration for the attenuation of the type of probe being used.

For most measurements, the * 10 probe should be used. However, if you are measuring

very small signals, a * 1 may be the best choice.

The probe has an adjustment that allows you to compensate for the input capacitance of

the scope. Most scopes have a probe compensation output that provides a calibrated square

 Test and Measurement Instruments 47

wave for probe compensation. Before making a measurement, you should make sure that

the probe is properly compensated to eliminate any distortion introduced. Typically, there

is a screw or other means of adjusting compensation on a probe. Figure 1–47 shows scope

waveforms for three probe conditions: properly compensated, undercompensated, and

overcompensated. If the waveform appears either over- or undercompensated, adjust the

probe until the properly compensated square wave is achieved.

Properly compensated Undercompensated Overcompensated

FIGURE 1–47 Probe compensation conditions.

EXAMPLE 1–3

Based on the readouts, determine the amplitude and the period of the pulse waveform on

the screen of a digital oscilloscope as shown in Figure 1–48. Also, calculate the frequency.

Ch1 10 s1 V

FIGURE 1–48

Solution

The volts/div setting is 1 V. The pulses are three divisions high. Since each division

represents 1 V, the pulse amplitude is

Amplitude = (3 div)(1 V/div) = 3 V

The sec/div setting is 10 ms. A full cycle of the waveform (from beginning of one pulse

to the beginning of the next) covers four divisions; therefore, the period is

Period = (4 div)(10 ms/div) = 40 Ms

The frequency is calculated as

f =

1

T
=

1

40 ms
= 25 kHz

Related Problem

For a volts/div setting of 4 V and sec/div setting of 2 ms, determine the amplitude and

period of the pulse shown on the screen in Figure 1–48.

48 Introductory Concepts

Oscilloscope Specifications

Several key specifications define the performance of a digital oscilloscope.

Bandwidth

The bandwidth describes the frequency range of an input signal that can be processed

by the oscilloscope without being significantly distorted. Bandwidth is the frequency at

which a sinusoidal input signal is attenuated to 70.7 percent of its original amplitude. As

a rule of thumb, use a scope with a minimum bandwidth of at least twice the highest fre-

quency component in the input signal.

Pulse signals have sharp rising and falling edges and are composed of high-frequency

harmonics. For example, a 10 MHz pulse waveform such as a square wave contains a

10 MHz sine wave (fundamental) and a large number of significant higher-frequency sine

waves called harmonics. In order to accurately capture the shape of the signal, the oscillo-

scope must have a bandwidth to capture several of these harmonics. If a sufficient number

of harmonics are not captured, the resulting signal will be distorted and an incorrect mea-

surement will result.

Sampling Rate

The sampling rate is the rate at which the analog-to-digital converter (ADC) in the oscil-

loscope is clocked to digitize the incoming signal. The sampling rate and bandwidth are not

directly related, but the sampling rate should be at least five times the bandwidth. Figure 1–49

illustrates the difference between a low sampling rate and a much higher sampling rate. Part

(a) shows how a sampling rate that is too low distorts the shape of the rising edge. In part (b),

the higher sampling rate results in a much more accurate representation of the rising edge.

When the sampling rate is sufficiently high, the signal can be precisely reproduced.

(a) Low sampling rate

t

(b) Higher sampling rate

t

FIGURE 1–49 Example of sampling a waveform. The dashed lines represent the clock

(sampling) rate. The incoming signal is black and the resulting representation is blue.

The red dots are the points at which the waveform values are sampled.

Record Length

The record length is the number of samples (data points) that the oscilloscope can capture

and store. The capacity of acquisition memory determines the maximum record length.

The memory must be able to store all the data points that are sampled during a certain time

interval. The relationship between acquisition time, sampling rate, and record length is

Acquisition time =

Record length

Sampling rate

Both the acquisition time (length of time that samples are taken) and/or sampling rate

are limited by the record length of the oscilloscope. For example, if the record length is

1 Msample (1 million samples) and the sampling rate is 200 Msample/s, the oscilloscope

acquisition time is 1 Msample , 200 Msample/s = 5 ms. Therefore, one 5 ms segment of

the sampled signal can be captured and stored at a time.

 Test and Measurement Instruments 49

Resolution

The resolution is the number of bits used to digitally represent a sampled value. The num-

ber of discrete voltage levels used to represent a signal is defined as 2x, where x is the reso-

lution in bits. For example, if the resolution is four bits, 24
= 16 levels can be represented.

If the resolution is eight bits, 28
= 256 levels can be represented. The more levels that are

used to represent a signal, the higher the resolution and thus a more accurate representation

is obtained. Also, the higher the resolution, the smaller the signal that can be measured.

Vertical Sensitivity

The vertical sensitivity indicates how much the oscilloscope’s vertical amplifier can amplify

a signal. Vertical sensitivity is usually given in volts, millivolts (mV), or microvolts (mV)

per vertical division on the screen.

Horizontal Accuracy

The horizontal accuracy or time base indicates how accurately the horizontal system can

display the timing of a signal, usually expressed as a percentage. The time base is shown

on the horizontal axis of the screen in units of seconds per division.

The Logic Analyzer

Logic analyzers are used for measurements of multiple digital signals and measurement

situations with difficult trigger requirements. Basically, the logic analyzer came about as

a result of microprocessors in which troubleshooting or debugging required many more

inputs than an oscilloscope offered. Many oscilloscopes have two input channels and some

are available with four. Logic analyzers are typically available with from 16 to 136 input

channels. Generally, an oscilloscope is used either when amplitude, frequency, and other

timing parameters of a few signals at a time or when parameters such an rise and fall times,

overshoot, and delay times need to be measured. The logic analyzer is used when the logic

levels of a large number of signals need to be determined and for the correlation of simul-

taneous signals based on their timing relationships. A typical logic analyzer is shown in

Figure 1–50, and a simplified block diagram is in Figure 1–51.

FIGURE 1–50 Typical logic analyzer. Used with permission from Tektronix, Inc.

50 Introductory Concepts

Data Acquisition

The large number of signals that can be acquired at one time is a major factor that distin-

guishes a logic analyzer from an oscilloscope. Generally, the two types of data acquisition

in a logic analyzer are the timing acquisition and the state acquisition. Timing acquisi-

tion is used primarily when the timing relationships among the various signals need to be

determined. State acquisition is used when you need to view the sequence of states as they

appear in a system under test.

It is often helpful to have correlated timing and state data, and most logic analyzers can

simultaneously acquire that data. For example, a problem may initially be detected as an

invalid state. However, the invalid condition may be caused by a timing violation in the

system under test. Without both types of information available at the same time, isolating

the problem could be very difficult.

Channel Count and Memory Depth

Logic analyzers contain a real-time acquisition memory in which sampled data from all

the channels are stored as they occur. Two features that are of primary importance are the

channel count and the memory depth. The acquisition memory can be thought of as having

a width equal to the number of channels and a depth that is the number of bits that can be

captured by each channel during a certain time interval.

Channel count determines the number of signals that can be acquired simultaneously.

In certain types of systems, a large number of signals are present, such as on the data bus

in a microprocessor-based system. The depth of the acquisition memory (record length)

determines the amount of data from a given channel that you can view at any given time.

Analysis and Display

Once data has been sampled and stored in the acquisition memory, it can typically be used

in several different display and analysis modes. The waveform display is much like the

display on an oscilloscope where you can view the time relationship of multiple signals.

The listing display indicates the state of the system under test by showing the values of the

input waveforms (1s and 0s) at various points in time (sample points). Typically, this data

can be displayed in hexadecimal or other formats. Figure 1–52 shows simplified versions

of these two display modes. The listing display samples correspond to the sampled points

shown in red on the waveform display. You will study binary and hexadecimal (hex) num-

bers in the next chapter.

Two more modes that are useful in computer and microprocessor-based system testing

are the instruction trace and the source code debug. The instruction trace determines and

displays instructions that occur, for example, on the data bus in a microprocessor-based

system. In this mode the op-codes and the mnemonics (English-like names) of instructions

Clock
circuits

Input buffer
and

sampling

Acquisition
memory

Trigger logic
and memory

control

Channel
inputs

Analysis
and

display

FIGURE 1–51 Simplified block diagram of a logic analyzer.

 Test and Measurement Instruments 51

are generally displayed as well as their corresponding memory address. Many logic ana-

lyzers also include a source code debug mode, which essentially allows you to see what is

actually going on in the system under test when a program instruction is executed.

Probes

Three basic types of probes are used with logic analyzers. One is a multichannel probe, as

shown in Figure 1–53, that can be attached to points on a circuit board under test. Another

type of multichannel probe, similar to the one shown, plugs into dedicated sockets mounted

on a circuit board. A third type is a single-channel clip-on probe.

1

(a) Waveform display (b) Listing display

2 3 4 5 6 7 8

Sample

1

2

3

4

5

6

7

8

Binary

1111

1110

1101

1100

1011

1010

1001

1000

Hex

F

E

D

C

B

A

9

8

Time

1 ns

10 ns

20 ns

30 ns

40 ns

50 ns

60 ns

70 ns

FIGURE 1–52 Two logic analyzer display modes.

FIGURE 1–53 A typical multichannel logic analyzer probe. Used with permission from

Tektronix, Inc.

Signal Generators

Logic Signal Source

These instruments are also known as pulse generators and function generators. They are

specifically designed to generate digital signals with precise edge placement and ampli-

tudes and to produce the streams of 1s and 0s needed to test computer buses, microproces-

sors, and other digital systems.

52 Introductory Concepts

Arbitrary Waveform Generators and Function Generators

The arbitrary waveform generator can be used to generate standard signals like sine waves,

triangular waves, and pulses as well as signals with various shapes and characteristics.

Waveforms can be defined by mathematical or graphical input. A typical arbitrary wave-

form generator is shown in Figure 1–54(a).

(a) Arbitrary waveform generator (b) Function generator

FIGURE 1–54 Typical signal generators. Used with permission from Tektronix, Inc.

The function generator, shown in part (b), provides pulse, sine, and triangular wave-

forms, often with programmable capability. Signal generators have logic-compatible out-

puts to provide the proper level and drive for inputs to digital circuits.

The Digital Multimeter (DMM)

The digital multimeter (DMM) is a versatile instrument found on virtually all workbenches.

All DMMs can make basic ac and dc voltage, current, and resistance measurements. Volt-

age and resistance measurements are the principal quantities measured with DMMs. For

current measurements, the leads are switched to a separate set of jacks and placed in series

with the current path. In this mode, the meter acts like a short circuit, so serious problems

can occur if the meter is incorrectly placed in parallel.

In addition to the basic measurements, most DMMs can also test diodes and capacitors and

frequently will have other capabilities such as frequency measurements. Most new DMMs

have an autoranging feature, meaning that the user is not required to select a range for making

a measurement. If the range is not set automatically, the user needs to set the range switch for

voltage measurements higher than the expected reading to avoid damage to the meter.

In digital circuits, DMMs are the preferred instrument for setting dc power supply volt-

ages or checking the supply voltage on various points in the circuit. Because digital signals

are nonsinusoidal, the DMM is generally not used for measurements of digital signals

(although the average or rms value can be determined in some cases). For signal measure-

ments, the oscilloscope is the preferred instrument.

In addition, DMMs are used in digital circuits for testing continuity between points in

a circuit and checking resistors with the ohmmeter function. For checking a circuit path or

looking for a short, DMMs are the instrument of choice. Many DMMs sound a beep or tone

when there is continuity between the leads, making it handy to trace paths without having

to look at the display. If the DMM is not equipped with a continuity test, the ohmmeter

function can be used instead. Measurements of continuity or resistance are never done in

“live” circuits, as any circuit voltage will disrupt the readings and can be dangerous.

Typical test bench and handheld DMMs are shown in Figure 1–55.

The DC Power Supply

This instrument is an indispensable instrument on any test bench. The power supply con-

verts ac power from the standard wall outlet into regulated dc voltage. All digital circuits

require dc voltage. Most logic circuits require from 1.2 V to 5 V to operate. The power

supply is used to power circuits during design, development, and troubleshooting when in-

system power is not available. A typical test bench dc power supply is shown in Figure 1–56.

 Test and Measurement Instruments 53

(a) Bench-type DMM (b) Handheld DMM

FIGURE 1–55 Typical DMMs. Used with permission from (a) B + K Precision®; (b) Fluke

FIGURE 1–56 Typical bench-type dc power supply. Used with permission from Tektronix, Inc.

The Logic Probe and Logic Pulser

The logic probe is a convenient, inexpensive handheld tool that provides a means of trou-

bleshooting a digital circuit by sensing various conditions at a point in a circuit. A probe

can detect high-level voltage, low-level voltage, single pulses, repetitive pulses, and opens

on a PCB. The probe lamp indicates the condition that exists at a certain point, as indicated

in the figure.

The logic pulser produces a repetitive pulse waveform that can be applied to any point

in a circuit. You can apply pulses at one point in a circuit with the pulser and check another

point for resulting pulses with a logic probe.

SECTION 1–7 CHECKUP

 1. What is the basic function of an oscilloscope?

 2. Name two main differences between an oscilloscope and a logic analyzer?

 3. What does the volts/div control on an oscilloscope do?

 4. What does the sec/div control on an oscilloscope do?

 5. What is record length in relation to a digital oscilloscope?

 6. What is the purpose of a function generator?

54 Introductory Concepts

1–8 Introduction to Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure

in a system. To be an effective troubleshooter, you must understand how the system works

and be able to recognize incorrect performance. Troubleshooting can be at the system level,

the circuit board level, or the component level. Today, troubleshooting down to the board

level is usually sufficient. Once a board is determined to be defective, it is usually replaced

with a new one. However, if the circuit board is to be saved, component-level troubleshoot-

ing may be necessary.

After completing this section, you should be able to

u Describe the steps in a troubleshooting procedure

u Discuss the half-splitting method

u Discuss the signal-tracing method

Basic Hardware Troubleshooting Methods

Troubleshooting at a system level requires good detective work. When a problem occurs,

the list of potential causes is usually quite large. You must gather a sufficient amount of

detailed information and systematically narrow the list of potential causes to determine the

problem. As a general guide to troubleshooting a system, the following steps should be

followed:

 1. Gather information on the problem.

 2. Identify the symptoms and possible failures.

 3. Isolate point(s) of failure.

 4. Apply proper tools to determine the cause of the problem.

 5. Fix the problem.

Check the Obvious

After collecting information on the problem, make sure to first check for obvious faults:

absence of DC power, blown fuses, tripped circuit breakers, faulty burned out indica-

tors such as lamps, loose connectors, broken or loose wires, switches in the wrong

position, physical damages, boards not properly inserted, wire fragments or solder

splashes shorting components, and poor quality contacts on printed circuit boards. For

any troubleshooting task, you must have a system/circuit diagram. Other useful docu-

ments are a table of signal characteristics and a prewritten troubleshooting guide for

the specific system.

Proper grounding is important when you set up to take measurements or work on a system. Properly
grounding the oscilloscope protects you from shock, and grounding yourself protects circuits from
damage. Grounding the oscilloscope means to connect it to earth ground by plugging the three-
prong power cord into a grounded outlet. Grounding yourself means using a wrist-type grounding
strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value
resistor between the strap and ground for protection against accidental contact with a voltage source.

For accurate measurements, make sure that the ground in the circuit you are testing is the same
as the scope ground. This can be done by connecting the ground lead on the scope probe to a known
ground point in the circuit, such as the metal chassis or a ground point on the circuit.

 Introduction to Troubleshooting 55

Replacement

Assume that a given system has multiple circuit boards. The simplest and quickest way to fix

a problem is by replacing the circuit boards one by one with a known good board until the

problem is corrected. This approach, of course, requires that duplicate boards be available.

Another drawback to this approach is that an outside source may be causing the fault, such

as a short in a connector; and by replacing the board, the fault is transferred to the new board.

Reproducing the Symptoms

Once the symptoms of a faulty system are identified, find a way to reproduce the problem.

If the problem can be reproduced, it can be isolated and resolved. In some systems, the

symptom may be self-evident, but in others it may have to be induced by application of a

level or signal at a given point. Once this is done, then a systematic approach can be used

to isolate the cause or causes of a problem. You should always consider the possibility that

there is more than one fault.

If the symptoms are intermittent, the task of troubleshooting becomes more difficult.

For example, in some cases a component may be temperature sensitive and fail only when

the temperature is too high or too low. In these cases, the temperature can be varied by the

simple process of blowing cool air on the component of concern to lower the temperature

or using a heat gun to raise it, while monitoring the operation of the system.

Half-Splitting Method

In this procedure, you check for the presence or absence of a signal at a point halfway

between input and output. If the signal is present, you know the fault is in the second half. If

the signal is absent, you know the fault is in the first half. Then you split the defective half

in half and check for a signal. The process is continued until a certain area of the system has

been isolated. This may be a single circuit board in a system with many circuit boards or a

component on a given circuit board. In a large system, this procedure can save a lot of time

over moving down the line checking each block or stage as you go. This method is usually

best applied in large complex systems. Figure 1–57 is a simple illustration of this method.

The system is represented with the four green blocks. Additional steps are added to left or

right for additional blocks.

Starting point

Signal missing

or incorrect?

A B

TP 1

C D

YES NOSignal missing

or incorrect?

YES NO

Signal missing

or incorrect?

YES NO

Fault is in

Block B.

Fault is in

Block C.

FIGURE 1–57 Concept of the half-splitting method. The blue arrows indicate the test points.

Signal-Tracing Method

Signal tracing is the procedure of tracking signals as they progress through a system from

input to output. Signal tracing can be used with half-splitting, where you check for a signal

at each point from where the absence of a signal was detected. Signal tracing can also begin

56 Introductory Concepts

at the output where there is an incorrect or absent signal and go back toward the input from

point to point until a correct signal is found. Also, you can begin at the input and check the

signal and move toward the output from point to point until the correct signal is lost. In

both cases, the fault would be between the point and the output. Of course, you must know

what the signal is supposed to look like in order to know if anything is wrong. Figure 1–58

illustrates the concept of signal tracing.

Signal Substitution and Injection

Signal substitution is used when the system being tested has been separated from its signal

source. A generator signal is used to replace the normal signal that comes from the source

when the system or portion of a system is recombined with the part that normally produces

the input signal. Signal injection can be used to insert a signal at certain points in the system

using the half-splitting approach.

Starting point

Signal missing

or incorrect?

A B

TP 1

C D

YES NO Signal missing

or incorrect?

YES NO

Signal missing

or incorrect?

YES NO

Signal missing

or incorrect?

YES NO

Fault is in

Block A.

Check

input

source.
Fault is in

Block B.

Fault is in

Block C.

Fault is in

Block D.

Symptom:

No output

FIGURE 1–58 Concept of the signal-tracing method. Input to output is shown. The same

applies if you start at the output and go toward the input.

SECTION 1–8 CHECKUP

 1. List five steps in the troubleshooting procedure.

 2. Name two troubleshooting methods.

 3. List five obvious things to look for in a failed system.

 4. Is it important to know about the relationship between a cause and a symptom?

SUMMARY

• Ananalogquantityhascontinuousvalues.

• Adigitalquantityhasadiscretesetofvalues.

• Abinarydigitiscalledabit.

• Apulseischaracterizedbyrisetime,falltime,pulsewidth,andamplitude.

• Thefrequencyofaperiodicwaveformisthereciprocaloftheperiod.Theformulasrelating
frequency and period are

f =

1

T
 and T =

1

f

 Key Terms 57

• Thedutycycleofapulsewaveformistheratioofthepulsewidthtotheperiod,expressedby
the following formula as a percentage:

Duty cycle = ¢ tW

T
≤100%

• Atimingdiagramisanarrangementoftwoormorewaveformsshowingtheirrelationshipwith
respect to time.

• ThreebasiclogicoperationsareNOT,AND,andOR.Thestandardsymbolsforthesearegiven
in Figure 1–59.

NOT ORAND

FIGURE 1–59

• Thebasiclogicfunctionsarecomparison,arithmetic,codeconversion,decoding,encoding,data
selection, storage, and counting.

• TwotypesofSPLDs(simpleprogrammablelogicdevices)arePAL(programmablearraylogic)
and GAL (generic array logic).

• TheCPLD(complexprogrammablelogicdevice)containsmultipleSPLDswithprogrammable
interconnections.

• TheFPGA(field-programmablegatearray)hasadifferentinternalstructurethantheCPLDand
is generally used for more complex circuits and systems.

• ThetwobroadphysicalcategoriesofICpackagesarethrough-holemountedandsurfacemounted.

• Threefamiliesoffixed-functionintegratedcircuitsareCMOS,bipolar,andBiCMOS.

• BipolarisalsoknownasTTL(transistor-transistorlogic).

• ThecategoriesofICsintermsofcircuitcomplexityareSSI(small-scaleintegration),MSI
(medium-scale integration), LSI, VLSI, and ULSI (large-scale, very large-scale, and ultra large-

scale integration).

• Commoninstrumentsusedintestingandtroubleshootingdigitalcircuitsaretheoscilloscope,
logic analyzer, arbitrary waveform generator, data pattern generator, function generator, dc

power supply, digital multimeter, logic probe, and logic pulser.

• Twobasicmethodsoftroubleshootingarethehalf-splittingmethodandthesignal-tracingmethod.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Analog Being continuous or having continuous values.

AND A basic logic operation in which a true (HIGH) output occurs only when all the input con-

ditions are true (HIGH).

Binary Having two values or states; describes a number system that has a base of two and utilizes

1 and 0 as its digits.

Bit A binary digit, which can be either a 1 or a 0.

Clock The basic timing signal in a digital system; a periodic waveform used to synchronize operation.

Compiler A program that controls the design flow process and translates source code into object

code in a format that can be logically tested or downloaded to a target device.

CPLD A complex programmable logic device that consists basically of multiple SPLD arrays

with programmable interconnections.

Data Information in numeric, alphabetic, or other form.

Digital Related to digits or discrete quantities; having a set of discrete values.

Duty cycle The ratio of the pulse width to the period of a digital waveform, expressed as a percentage.

58 Introductory Concepts

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. An analog quantity is one having continuous values.

 2. A digital quantity has no discrete values.

 3. There are two digits in the binary system.

 4. The term bit is short for binary digit.

 5. In positive logic, a LOW level represents a binary 1.

 6. A periodic wave repeats itself at a fixed interval.

 7. A timing diagram shows the timing relationship of two or more digital waveforms.

 8. An AND function is implemented by a logic circuit known as an inverter.

 9. A flip-flop is a bistable logic circuit that can store only two bits at a time.

 10. Two broad types of digital integrated circuits are fixed- function and programmable.

SELF-TEST

Answers are at the end of the chapter.

 1. A quantity having discrete numerical values is

(a) an analog quantity (b) a digital quantity

(c) a binary quantity (d) a natural quantity

Embedded system Generally, a single-purpose system, such as a processor, built into a larger

 system for the purpose of controlling the system.

Fixed-function logic A category of digital integrated circuits having functions that cannot be altered.

FPGA Field-programmable gate array.

Gate A logic circuit that performs a basic logic operation such as AND or OR.

Input The signal or line going into a circuit.

Integrated circuit (IC) A type of circuit in which all of the components are integrated on a single

chip of semiconductive material of extremely small size.

Inverter A NOT circuit; a circuit that changes a HIGH to a LOW or vice versa.

Logic In digital electronics, the decision-making capability of gate circuits, in which a HIGH

 represents a true statement and a LOW represents a false one.

Microcontroller An integrated circuit consisting of a complete computer on a single chip and

used for specified control functions.

NOT A basic logic operation that performs inversions.

OR A basic logic operation in which a true (HIGH) output occurs when one or more of the input

conditions are true (HIGH).

Output The signal or line coming out of a circuit.

Parallel In digital systems, data occurring simultaneously on several lines; the transfer or

processing of several bits simultaneously.

Programmable logic A category of digital integrated circuits capable of being programmed to

perform specified functions.

Pulse A sudden change from one level to another, followed after a time, called the pulse width, by

a sudden change back to the original level.

Serial Having one element following another, as in a serial transfer of bits; occurring in sequence

rather than simultaneously.

SPLD Simple programmable logic device.

Timing diagram A graph of digital waveforms showing the time relationship of two or more

waveforms.

Troubleshooting The technique or process of systematically identifying, isolating, and

 correcting a fault in a circuit or system.

 Problems 59

 2. The term bit means

(a) a small amount of data (b) a 1 or a 0

(c) binary digit (d) both answers (b) and (c)

 3. The time interval between the 50% points on the rising and falling edges is

(a) rise time (b) fall time

(c) pulse width (d) period

 4. A pulse in a certain waveform has a frequency of 50 Hz. It repeats itself every

(a) 1 ms (b) 20 ms (c) 50 ms (d) 100 ms

 5. In a certain digital waveform, the period is four times the pulse width. The duty cycle is

(a) 25% (b) 50% (c) 75% (d) 100%

 6. An inverter

(a) performs the NOT operation (b) changes a HIGH to a LOW

(c) changes a LOW to a HIGH (d) does all of the above

 7. The output of an OR gate is LOW when

(a) any input is HIGH (b) all inputs are HIGH

(c) no inputs are HIGH (d) Both (a) and (b)

 8. The output of an AND gate is LOW when

(a) any input is LOW (b) all inputs are HIGH

(c) no inputs are HIGH (d) Both (a) and (c)

 9. The device used to convert a binary number to a 7-segment display format is the

(a) multiplexer (b) encoder

(c) decoder (d) register

 10. An example of a data storage device is

(a) the logic gate (b) the flip-flop (c) the comparator

(d) the register (e) both answers (b) and (d)

 11. VHDL is a

(a) logic device (b) PLD programming language

(c) computer language (d) very high density logic

 12. A CPLD is a

(a) controlled program logic device (b) complex programmable logic driver

(c) complex programmable logic device (d) central processing logic device

 13. An FPGA is a

(a) field-programmable gate array (b) fast programmable gate array

(c) field-programmable generic array (d) flash process gate application

 14. A fixed-function IC package containing four AND gates is an example of

(a) MSI (b) SMT (c) SOIC (d) SSI

 15. An LSI device has a circuit complexity of from

(a) 10 to 100 equivalent gates (b) more than 100 to 10,000 equivalent gates

(c) 2000 to 5000 equivalent gates (d) more than 10,000 to 100,000 equivalent gates

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 1–1 Digital and Analog Quantities

 1. Name two advantages of digital data as compared to analog data.

 2. Which quantities are more affected by noise: analog or digital?

 3. List any three common products that measure analog quantities.

Section 1–2 Binary Digits, Logic Levels, and Digital Waveforms

 4. Can a digital system exist over a complete interval of time? Why or why not?

 5. Define the sequence of bits (1s and 0s) represented by each of the following sequences of levels:

(a) HIGH, HIGH, LOW, LOW, LOW, LOW, HIGH, HIGH

(b) HIGH, LOW, HIGH, LOW, HIGH, LOW, HIGH, LOW

60 Introductory Concepts

 6. List the sequence of levels (HIGH and LOW) that represent each of the following bit sequences:

(a) 1 0 0 0 0 1 0 1 (b) 1 1 1 1 0 0 1 1

 7. For the pulse shown in Figure 1–60, graphically determine the following:

(a) rise time (b) fall time (c) pulse width (d) amplitude

Volts

10

5

0
0 1 2 3 4

t (s)µ

FIGURE 1–60

 8. Can the digital waveform in Figure 1–61 be called a pulse train?

 9. What is the frequency of the waveform in Figure 1–61?

 10. Is the pulse waveform in Figure 1–61 periodic or nonperiodic?

 11. Determine the duty cycle of the waveform in Figure 1–61.

1

t (ms)0

V

3 5 7 9 11 13 15 17

FIGURE 1–61

 12. Determine the bit sequence represented by the waveform in Figure 1–62. A bit time is 1 ms in

this case.

 13. What is the total serial transfer time for the eight bits in Figure 1–62? What is the total parallel

transfer time?

 14. What is the period if the clock frequency is 4 kHz?

8 s0 1 s 2 s 3 s 4 s 5 s 6 s 7 s µµµµµµµµ

FIGURE 1–62

Section 1–3 Basic Logic Functions

 15. Form a single logical statement from the following information:

(a) The light is ON if SW1 is closed.

(b) The light is ON if SW2 is closed.

(c) The light is OFF if both SW1 and SW2 are open.

 16. The output of a logic gate is an inversion of the input. What type of logic gate is it?

 17. A basic 2-input logic circuit has a HIGH on one input and a LOW on the other, and the output is

HIGH. Identify the circuit.

 18. A basic 3-input logic circuit has a LOW on one input and a HIGH on the other two inputs, and

the output is LOW. What type of logic circuit is it?

 Problems 61

(a)

0

2
4

2

Select inputs

1

HIGH

 LOW

HIGH

LOW
0 0 1

(d)

HIGH

LOW

LOW

4

2

(c)

8

4

2

(b)

FIGURE 1–63

Section 1–4 Combinational and Sequential Logic Functions

 19. Name the logic function of each block in Figure 1–63 based on your observation of the inputs

and outputs.

 20. A pulse waveform with a frequency of 20 kHz is applied to the input of a counter. During 40 ms,

how many pulses are counted?

 21. Consider a register that can store eight bits. Assume that it has been reset so that it contains

zeros in all positions. If you transfer four alternating bits (0101) serially into the register, begin-

ning with a 1 and shifting to the right, what will the total content of the register be as soon as

the fourth bit is stored?

Section 1–5 Introduction to Programmable Logic

 22. Describe each of the following programming steps:

(a) Synthesis (b) Implementation (c) Compiler

 23. What do each of the following stand for?

(a) SPLD (b) CPLD (c) HDL (d) FPGA (e) GAL

 24. Define each of the following PLD programming terms:

(a) design entry (b) simulation (c) compilation (d) download

 25. Describe the process of place-and-route.

Section 1–6 Fixed-Function Logic Devices

 26. How are integrated circuit packages classified?

 27. What are LSI circuits?

 28. Label the pin numbers on the packages in Figure 1–64. Top views are shown.

(a) (b)

FIGURE 1–64

Section 1–7 Test and Measurement Instruments

 29. A pulse is displayed on the screen of an oscilloscope, and you measure the base line as 2 V and

the top of the pulse as 10 V. What is the amplitude?

 30. A waveform is measured on the oscilloscope and its amplitude covers two vertical divisions. If

the vertical control is set at 1 V/div, what is the total amplitude of the waveform?

 31. The period of a pulse waveform measures four horizontal divisions on an oscilloscope. If the

time base is set at 2 ms/div, what is the frequency of the waveform?

62 Introductory Concepts

 32. What record length is required if an oscilloscope has a sampling rate of 12 Msamples/s and the

input waveform is sampled for 2 ms?

Section 1–8 Introduction to Troubleshooting

 33. Define troubleshooting.

 34. Explain the half-splitting method of troubleshooting.

 35. Explain the signal-tracing method of troubleshooting.

 36. Discuss signal substitution and injection.

 37. Give some examples of the type of information that you look for when a system is reported to

have failed.

 38. If the symptom in a particular system is no output, name two possible general causes.

 39. If the symptom of a particular system is an incorrect output, name two possible causes.

 40. What obvious things should you look for before starting the troubleshooting process?

 41. How would you isolate a fault in a system?

 42. Name two common instruments used in troubleshooting.

 43. Assume that you have isolated the problem down to a specific circuit board. What are your

options at this point?

ANSWERS

SECTION CHECKUPS

Section 1–1 Digital and Analog Quantities

 1. Analog means continuous.

 2. Digital means discrete.

 3. A digital quantity has a discrete set of values and an analog quantity has continuous values.

 4. A public address system is analog. A CD player is analog and digital. A computer is all digital.

 5. A mechatronic system consists of both mechanical and electronic components.

Section 1–2 Binary Digits, Logic Levels, and Digital Waveforms

 1. Binary means having two states or values.

 2. A bit is a binary digit.

 3. The bits are 1 and 0.

 4. Rise time: from 10% to 90% of amplitude. Fall time: from 90% to 10% of amplitude.

 5. Frequency is the reciprocal of the period.

 6. A clock waveform is a basic timing waveform from which other waveforms are derived.

 7. A timing diagram shows the time relationship of two or more waveforms.

 8. Parallel transfer is faster than serial transfer.

Section 1–3 Basic Logic Functions

 1. When the input is LOW

 2. When all inputs are HIGH

 3. When any or all inputs are HIGH

 4. An inverter is a NOT circuit.

 5. A logic gate is a circuit that performs a logic operation (AND, OR).

Section 1–4 Combinational and Sequential Logic Functions

 1. A comparator compares the magnitudes of two input numbers.

 2. Add, subtract, multiply, and divide

 Answers 63

 3. Encoding is changing a familiar form such as decimal to a coded form such as binary.

 4. Decoding is changing a code to a familiar form such as binary to decimal.

 5. Multiplexing puts data from many sources onto one line. Demultiplexing takes data from one

line and distributes it to many destinations.

 6. Flip-flops, registers, semiconductor memories, magnetic disks

 7. A counter counts events with a sequence of binary states.

Section 1–5 Introduction to Programmable Logic

 1. Simple programmable logic device (SPLD), complex programmable logic device (CPLD), and

field-programmable gate array (FPGA)

 2. A CPLD is made up of multiple SPLDs.

 3. Design entry, functional simulation, synthesis, implementation, timing simulation, and

 download

 4. Design entry: The logic design is entered using development software. Functional

 simulation: The design is software simulated to make sure it works logically. Synthesis:

The design is translated into a netlist. Implementation: The logic developed by the netlist is

mapped into the programmable device. Timing simulation: The design is software simu-

lated to confirm that there are no timing problems. Download: The design is placed into the

 programmable device.

 5. The microcontroller has fixed internal circuits and its operation is directed by a program.

Section 1–6 Fixed-Function Logic Devices

 1. An IC is an electronic circuit with all components integrated on a single silicon chip.

 2. DIP—dual in-line package; SMT—surface-mount technology;

SOIC—small-outline integrated circuit; SSI—small-scale integration; MSI—medium-scale

integration; LSI—large-scale integration; VLSI—very large-scale integration; ULSI—ultra

large-scale integration

 3. (a) SSI

(b) MSI

(c) LSI

(d) VLSI

(e) ULSI

Section 1–7 Test and Measurement Instruments

 1. The oscilloscope measures, processes, and displays electrical waveforms.

 2. The logic analyzer has more channels than the oscillosope and has more than one data display

format.

 3. The volts/div control sets the voltage for each division on the screen.

 4. The sec/div control sets the time for each division on the screen.

 5. The function generator produces various types of waveforms.

 6. The record length is the maximum number of samples that can be acquired during a given time

interval.

Section 1–8 Introduction to Troubleshooting

 1. Gather information, identify symptoms and possible causes, isolate point(s) of failure, apply

proper tools to determine cause, and fix problem.

 2. Half-splitting and signal tracing

 3. Blown fuse, absence of DC power, loose connections, broken wires, loosely connected circuit

board

 4. Yes

64 Introductory Concepts

RELATED PROBLEMS FOR EXAMPLES

1–1 f = 6.67 kHz; Duty cycle = 16.7%

1–2 Serial transfer: 3.33 ns

1–3 Amplitude = 12 V; T = 8 ms

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. T 5. F 6. T 7. T 8. F 9. F 10. T

SELF-TEST

 1. (b) 2. (c) 3. (a) 4. (b) 5. (a) 6. (d) 7. (b) 8. (a) 9. (d)

 10. (e) 11. (c) 12. (a) 13. (d) 14. (d) 15. (b)

65

CHAPTER OUTLINE

2–1 Decimal Numbers

2–2 Binary Numbers

2–3 Decimal-to-Binary Conversion

2–4 Binary Arithmetic

2–5 Complements of Binary Numbers

2–6 Signed Numbers

2–7 Arithmetic Operations with Signed Numbers

2–8 Hexadecimal Numbers

2–9 Octal Numbers

2–10 Binary Coded Decimal (BCD)

2–11 Digital Codes

2–12 Error Codes

CHAPTER OBJECTIVES

■ Review the decimal number system

■ Count in the binary number system

■ Convert from decimal to binary and from binary

to decimal

■ Apply arithmetic operations to binary numbers

■ Determine the 1’s and 2’s complements of a binary

number

■ Express signed binary numbers in sign-magnitude,

1’s complement, 2’s complement, and floating-point

format

■ Carry out arithmetic operations with signed binary

numbers

■ Convert between the binary and hexadecimal

number systems

■ Add numbers in hexadecimal form

■ Convert between the binary and octal number

systems

■ Express decimal numbers in binary coded decimal

(BCD) form

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The binary number system and digital codes are

fundamental to computers and to digital electronics

in general. In this chapter, the binary number system

and its relationship to other number systems such as

decimal, hexadecimal, and octal are presented. Arith-

metic operations with binary numbers are covered to

provide a basis for understanding how computers and

many other types of digital systems work. Also, digital

codes such as binary coded decimal (BCD), the Gray

code, and the ASCII are covered. The parity method

for detecting errors in codes is introduced. The TI-36X

calculator is used to illustrate certain operations. The

procedures shown may vary on other types.

■ LSB

■ MSB

■ Byte

■ Floating-point number

■ Hexadecimal

■ Octal

■ BCD

■ Alphanumeric

■ ASCII

■ Parity

■ Cyclic redundancy

check (CRC)

■ Add BCD numbers

■ Convert between the binary system and the Gray

code

■ Interpret the American Standard Code for

Information Interchange (ASCII)

■ Explain how to detect code errors

■ Discuss the cyclic redundancy check (CRC)

KEY TERMS

Key terms are in order of appearance in the chapter.

Number Systems,
Operations, and Codes

2CHAPTER

66 Number Systems, Operations, and Codes

2–1 Decimal Numbers

You are familiar with the decimal number system because you use decimal numbers every

day. Although decimal numbers are commonplace, their weighted structure is often not

understood. In this section, the structure of decimal numbers is reviewed. This review

will help you more easily understand the structure of the binary number system, which is

important in computers and digital electronics.

After completing this section, you should be able to

u Explain why the decimal number system is a weighted system

u Explain how powers of ten are used in the decimal system

u Determine the weight of each digit in a decimal number

In the decimal number system each of the ten digits, 0 through 9, represents a certain

quantity. As you know, the ten symbols (digits) do not limit you to expressing only ten

 different quantities because you use the various digits in appropriate positions within a

number to indicate the magnitude of the quantity. You can express quantities up through

nine before running out of digits; if you wish to express a quantity greater than nine, you

use two or more digits, and the position of each digit within the number tells you the mag-

nitude it represents. If, for example, you wish to express the quantity twenty-three, you use

(by their respective positions in the number) the digit 2 to represent the quantity twenty and

the digit 3 to represent the quantity three, as illustrated below.

The digit 2 has a weight of The digit 3 has a weight

10 in this position. of 1 in this position.

 2 3

 2 * 10 + 3 * 1

 20 + 3

 23

The position of each digit in a decimal number indicates the magnitude of the quantity

represented and can be assigned a weight. The weights for whole numbers are positive

powers of ten that increase from right to left, beginning with 100
= 1.

c 105 104 103 102 101 100

For fractional numbers, the weights are negative powers of ten that decrease from left to

right beginning with 10-1.

102 101 100.10-1 10-2 10-3
c

 Decimal point

The value of a decimal number is the sum of the digits after each digit has been multi-

plied by its weight, as Examples 2–1 and 2–2 illustrate.

The decimal number system has
ten digits.

The decimal number system has
a base of 10.

The value of a digit is determined by
its position in the number.

 Binary Numbers 67

EXAMPLE 2–1

Express the decimal number 47 as a sum of the values of each digit.

Solution

The digit 4 has a weight of 10, which is 101, as indicated by its position. The digit 7 has

a weight of 1, which is 100, as indicated by its position.

 47 = (4 * 101) + (7 * 100)

 = (4 * 10) + (7 * 1) = 40 � 7

Related Problem*

Determine the value of each digit in 939.

*Answers are at the end of the chapter.

CALCULATOR SESSION

Powers of Ten

Find the value of 103.

TI-36X Step 1: 1 0 yx

 Step 2: 3 =

 1000

EXAMPLE 2–2

Express the decimal number 568.23 as a sum of the values of each digit.

Solution

The whole number digit 5 has a weight of 100, which is 102, the digit 6 has a weight of 10,

which is 101, the digit 8 has a weight of 1, which is 100, the fractional digit 2 has a weight

of 0.1, which is 10-1, and the fractional digit 3 has a weight of 0.01, which is 10-2.

 568.23 = (5 * 102) + (6 * 101) + (8 * 100) + (2 * 10-1) + (3 * 10-2)

 = (5 * 100) + (6 * 10) + (8 * 1) + (2 * 0.1) + (3 * 0.01)

 = 500 � 60 � 8 � 0.2 � 0.03

Related Problem

Determine the value of each digit in 67.924.

SECTION 2–1 CHECKUP

Answers are at the end of the chapter.

 1. What weight does the digit 7 have in each of the following numbers?

(a) 1370 (b) 6725 (c) 7051 (d) 58.72

 2. Express each of the following decimal numbers as a sum of the products obtained by

multiplying each digit by its appropriate weight:

(a) 51 (b) 137 (c) 1492 (d) 106.58

2–2 Binary Numbers

The binary number system is another way to represent quantities. It is less complicated than

the decimal system because the binary system has only two digits. The decimal system with

its ten digits is a base-ten system; the binary system with its two digits is a base-two system.

The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates

its weight, or value within the number, just as the position of a decimal digit determines the

value of that digit. The weights in a binary number are based on powers of two.

68 Number Systems, Operations, and Codes

After completing this section, you should be able to

u Count in binary

u Determine the largest decimal number that can be represented by a given number

of bits

u Convert a binary number to a decimal number

Counting in Binary

To learn to count in the binary system, first look at how you count in the decimal system.

You start at zero and count up to nine before you run out of digits. You then start another

digit position (to the left) and continue counting 10 through 99. At this point you have

exhausted all two-digit combinations, so a third digit position is needed to count from 100

through 999.

A comparable situation occurs when you count in binary, except that you have only two

digits, called bits. Begin counting: 0, 1. At this point you have used both digits, so include

another digit position and continue: 10, 11. You have now exhausted all combinations of

two digits, so a third position is required. With three digit positions you can continue to

count: 100, 101, 110, and 111. Now you need a fourth digit position to continue, and so on.

A binary count of zero through fifteen is shown in Table 2–1. Notice the patterns with

which the 1s and 0s alternate in each column.

The binary number system has two
digits (bits).

The binary number system has
a base of 2.

InfoNote

In processor operations, there

are many cases where adding

or subtracting 1 to a number

stored in a counter is necessary.

Processors have special

instructions that use less time

and generate less machine code

than the ADD or SUB instructions.

For the Intel processors, the INC

(increment) instruction adds 1

to a number. For subtraction, the

corresponding instruction is DEC

(decrement), which subtracts 1

from a number.

As you have seen in Table 2–1, four bits are required to count from zero to 15. In general,

with n bits you can count up to a number equal to 2n - 1.

Largest decimal number = 2n - 1

For example, with five bits (n = 5) you can count from zero to thirty-one.

25 - 1 = 32 - 1 = 31

With six bits (n = 6) you can count from zero to sixty-three.

26 - 1 = 64 - 1 = 63

The value of a bit is determined by
its position in the number.

CALCULATOR SESSION

Powers of Two

Find the value of 25.

TI-36X Step 1: 2 yx

 Step 2: 5 =

 32

TABLE 2–1

Decimal

Number Binary Number

 0 0 0 0 0

 1 0 0 0 1

 2 0 0 1 0

 3 0 0 1 1

 4 0 1 0 0

 5 0 1 0 1

 6 0 1 1 0

 7 0 1 1 1

 8 1 0 0 0

 9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

 Binary Numbers 69

An Application

Learning to count in binary will help you to basically understand how digital circuits can

be used to count events. Let’s take a simple example of counting tennis balls going into a

box from a conveyor belt. Assume that nine balls are to go into each box.

The counter in Figure 2–1 counts the pulses from a sensor that detects the passing of a

ball and produces a sequence of logic levels (digital waveforms) on each of its four par-

allel outputs. Each set of logic levels represents a 4-bit binary number (HIGH = 1 and

LOW = 0), as indicated. As the decoder receives these waveforms, it decodes each set of

four bits and converts it to the corresponding decimal number in the 7-segment display.

When the counter gets to the binary state of 1001, it has counted nine tennis balls, the dis-

play shows decimal 9, and a new box is moved under the conveyor belt. Then the counter

goes back to its zero state (0000), and the process starts over. (The number 9 was used only

in the interest of single-digit simplicity.)

Counter Decoder

1st ball

2nd ball

9th ball
1 0 1 0 1 0 1 0 10

0 1 1 0 0 1 1 0 00

0 0 0 1 1 1 1 0 00

0 0 0 0 0 0 0 1 10

Ball count 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

FIGURE 2–1 Illustration of a simple binary counting application.

The Weighting Structure of Binary Numbers

A binary number is a weighted number. The right-most bit is the LSB (least significant bit)

in a binary whole number and has a weight of 20
= 1. The weights increase from right to

left by a power of two for each bit. The left-most bit is the MSB (most significant bit); its

weight depends on the size of the binary number.

Fractional numbers can also be represented in binary by placing bits to the right of the

binary point, just as fractional decimal digits are placed to the right of the decimal point.

The left-most bit is the MSB in a binary fractional number and has a weight of 2-1
= 0.5.

The fractional weights decrease from left to right by a negative power of two for each bit.

The weight structure of a binary number is

2n-1
c 23 22 21 20 . 2-1 2-2

c 2-n

 Binary point

where n is the number of bits from the binary point. Thus, all the bits to the left of the

binary point have weights that are positive powers of two, as previously discussed for whole

numbers. All bits to the right of the binary point have weights that are negative powers of

two, or fractional weights.

The powers of two and their equivalent decimal weights for an 8-bit binary whole num-

ber and a 6-bit binary fractional number are shown in Table 2–2. Notice that the weight

doubles for each positive power of two and that the weight is halved for each negative

power of two. You can easily extend the table by doubling the weight of the most signifi-

cant positive power of two and halving the weight of the least significant negative power of

two; for example, 29
= 512 and 2-7

= 0.0078125.

The weight or value of a bit increases
from right to left in a binary number.

InfoNote

Processors use binary numbers

to select memory locations. Each

location is assigned a unique

number called an address. Some

microprocessors, for example,

have 32 address lines which can

select 232 (4,294,967,296) unique

locations.

70 Number Systems, Operations, and Codes

TABLE 2–2

Binary weights.

Positive Powers of Two

(Whole Numbers)

Negative Powers of Two

(Fractional Number)

28 27 26 25 24 23 22 21 20 221 222 223 224 225 226

256 128 64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 1/64

0.5 0.25 0.125 0.625 0.03125 0.015625

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that

are 1 and discarding the weights of all bits that are 0.

Add the weights of all 1s in a binary
number to get the decimal value.

EXAMPLE 2–3

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1, and then find the sum of the weights to get

the decimal number.

 Weight: 26 25 24 23 22 21 20

 Binary number: 1 1 0 1 1 0 1

 1101101 = 26 + 25 + 23 + 22 + 20

 = 64 + 32 + 8 + 4 + 1 = 109

Related Problem

Convert the binary number 10010001 to decimal.

EXAMPLE 2–4

Convert the fractional binary number 0.1011 to decimal.

Solution

Determine the weight of each bit that is a 1, and then sum the weights to get the decimal

fraction.

 Weight: 2-1 2-2 2-3 2-4

 Binary number: 0 . 1 0 1 1

 0.1011 = 2-1 + 2-3 + 2-4

 = 0.5 + 0.125 + 0.0625 = 0.6875

Related Problem

Convert the binary number 10.111 to decimal.

SECTION 2–2 CHECKUP

 1. What is the largest decimal number that can be represented in binary with eight bits?

 2. Determine the weight of the 1 in the binary number 10000.

 3. Convert the binary number 10111101.011 to decimal.

 Decimal-to-Binary Conversion 71

Repeated Division-by-2 Method

A systematic method of converting whole numbers from decimal to binary is the repeated

division-by-2 process. For example, to convert the decimal number 12 to binary, begin by

dividing 12 by 2. Then divide each resulting quotient by 2 until there is a 0 whole-number

quotient. The remainders generated by each division form the binary number. The first

remainder to be produced is the LSB (least significant bit) in the binary number, and the

2–3 Decimal-to-Binary Conversion

In Section 2–2 you learned how to convert a binary number to the equivalent decimal num-

ber. Now you will learn two ways of converting from a decimal number to a binary number.

After completing this section, you should be able to

u Convert a decimal number to binary using the sum-of-weights method

u Convert a decimal whole number to binary using the repeated division-by-2

method

u Convert a decimal fraction to binary using the repeated multiplication-by-2

method

Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is to deter-

mine the set of binary weights whose sum is equal to the decimal number. An easy way

to remember binary weights is that the lowest is 1, which is 20, and that by doubling any

weight, you get the next higher weight; thus, a list of seven binary weights would be 64, 32,

16, 8, 4, 2, 1 as you learned in the last section. The decimal number 9, for example, can be

expressed as the sum of binary weights as follows:

9 = 8 + 1 or 9 = 23 + 20

Placing 1s in the appropriate weight positions, 23 and 20, and 0s in the 22 and 21 positions

determines the binary number for decimal 9.

 23 22 21 20

 1 0 0 1 Binary number for decimal 9

To get the binary number for a given
decimal number, find the binary
weights that add up to the decimal
number.

EXAMPLE 2–5

Convert the following decimal numbers to binary:

(a) 12 (b) 25

(c) 58 (d) 82

Solution

(a) 12 = 8 + 4 = 23 + 22 1100

(b) 25 = 16 + 8 + 1 = 24 + 23 + 20 11001

(c) 58 = 32 + 16 + 8 + 2 = 25 + 24 + 23 + 21 111010

(d) 82 = 64 + 16 + 2 = 26 + 24 + 21 1010010

Related Problem

Convert the decimal number 125 to binary.

To get the binary number for a given
decimal number, divide the decimal
number by 2 until the quotient is 0.
Remainders form the binary number.

72 Number Systems, Operations, and Codes

last remainder to be produced is the MSB (most significant bit). This procedure is illus-

trated as follows for converting the decimal number 12 to binary.

Remainder

0

0

1

1

Stop when the

whole-number quotient is 0.
1 1 0 0

MSB LSB

1

2
= 0

3

2
= 1

6

2
= 3

12

2
= 6

EXAMPLE 2–6

Related Problem

Convert decimal number 39 to binary.

CALCULATOR SESSION

Conversion of a Decimal

Number to a Binary Number

Convert decimal 57 to binary.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 5 7

 BIN

 Step 3: 3rd X

 111001

Convert the following decimal numbers to binary:

(a) 19 (b) 45

Solution

(a) Remainder

19

2
= 9 1

9

2
= 4 1

4

2
= 2 0

2

2
= 1 0

1

2
= 0 1

 1 0 0 1 1

 MSB LSB

(b) Remainder

45

2
= 22 1

22

2
= 11 0

11

2
= 5 1

5

2
= 2 1

2

2
= 1 0

1

2
= 0 1

 1 0 1 1 0 1

 MSB LSB

 Decimal-to-Binary Conversion 73

Converting Decimal Fractions to Binary

Examples 2–5 and 2–6 demonstrated whole-number conversions. Now let’s look at

fractional conversions. An easy way to remember fractional binary weights is that the

most significant weight is 0.5, which is 2-1, and that by halving any weight, you get

the next lower weight; thus a list of four fractional binary weights would be 0.5, 0.25,

0.125, 0.0625.

Sum-of-Weights

The sum-of-weights method can be applied to fractional decimal numbers, as shown in the

following example:

0.625 = 0.5 + 0.125 = 2-1 + 2-3
= 0.101

There is a 1 in the 2-1 position, a 0 in the 2-2 position, and a 1 in the 2-3 position.

Repeated Multiplication by 2

As you have seen, decimal whole numbers can be converted to binary by repeated divi-

sion by 2. Decimal fractions can be converted to binary by repeated multiplication by 2.

For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying

0.3125 by 2 and then multiplying each resulting fractional part of the product by 2 until

the fractional product is zero or until the desired number of decimal places is reached.

The carry digits, or carries, generated by the multiplications produce the binary number.

The first carry produced is the MSB, and the last carry is the LSB. This procedure is

illustrated as follows:

{
{

{
{

0

1

0

1

MSB LSB

Carry

0.3125 � 2 � 0.625

0.625 � 2 � 1.25

0.25 � 2 � 0.50

0.50 � 2 � 1.00

Continue to the desired number of decimal places

or stop when the fractional part is all zeros.

.0 1 0 1

SECTION 2–3 CHECKUP

 1. Convert each decimal number to binary by using the sum-of-weights method:

(a) 23 (b) 57 (c) 45.5

 2. Convert each decimal number to binary by using the repeated division-by-2 method

(repeated multiplication-by-2 for fractions):

(a) 14 (b) 21 (c) 0.375

74 Number Systems, Operations, and Codes

2–4 Binary Arithmetic

Binary arithmetic is essential in all digital computers and in many other types of digital

systems. To understand digital systems, you must know the basics of binary addition, sub-

traction, multiplication, and division. This section provides an introduction that will be

expanded in later sections.

After completing this section, you should be able to

u Add binary numbers

u Subtract binary numbers

u Multiply binary numbers

u Divide binary numbers

Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = 10 Sum of 0 with a carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the addition of two

1s yields a binary two (10). When binary numbers are added, the last condition creates a

sum of 0 in a given column and a carry of 1 over to the next column to the left, as illustrated

in the following addition of 11 + 1:

 Carry Carry

 1 1

 0 1 1

 + 0 0 1

 1 0 0

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middle

column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to the left. In the left column,

1 + 0 + 0 = 1.

When there is a carry of 1, you have a situation in which three bits are being added (a bit

in each of the two numbers and a carry bit). This situation is illustrated as follows:

Carry bits

 1 + 0 + 0 = 01 Sum of 1 with a carry of 0

 1 + 1 + 0 = 10 Sum of 0 with a carry of 1

 1 + 0 + 1 = 10 Sum of 0 with a carry of 1

 1 + 1 + 1 = 11 Sum of 1 with a carry of 1

In binary 1 � 1 � 10, not 2.

EXAMPLE 2–7

Add the following binary numbers:

(a) 11 + 11 (b) 100 + 10

(c) 111 + 11 (d) 110 + 100

 Binary Arithmetic 75

Binary Subtraction

The four basic rules for subtracting bits are as follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1 0 - 1 with a borrow of 1

When subtracting numbers, you sometimes have to borrow from the next column to the

left. A borrow is required in binary only when you try to subtract a 1 from a 0. In this case,

when a 1 is borrowed from the next column to the left, a 10 is created in the column being

subtracted, and the last of the four basic rules just listed must be applied. Examples 2–8

and 2–9 illustrate binary subtraction; the equivalent decimal subtractions are also shown.

In binary 10 � 1 � 1, not 9.

EXAMPLE 2–8

Perform the following binary subtractions:

(a) 11 - 01 (b) 11 - 10

Solution

(a)

11

-01

10

3

-1

2

(b)

11

-10

01

3

-2

1

No borrows were required in this example. The binary number 01 is the same as 1.

Related Problem

Subtract 100 from 111.

Solution

The equivalent decimal addition is also shown for reference.

(a)

11

+ 11

110

3

+ 3

6

(b)

100

+ 10

110

4

+ 2

6

(c)

111

+ 11

1010

7

+ 3

10

(d)

110

+ 100

1010

6

+ 4

10

Related Problem

Add 1111 and 1100.

EXAMPLE 2–9

Subtract 011 from 101.

Solution

101

-011

010

5

-3

2

76 Number Systems, Operations, and Codes

Binary Division

Division in binary follows the same procedure as division in decimal, as Example 2–11

illustrates. The equivalent decimal divisions are also given.

Let’s examine exactly what was done to subtract the two binary numbers since a borrow

is required. Begin with the right column.

Left column: Middle column:

When a 1 is borrowed, Borrow 1 from next column

a 0 is left, so 0 � 0 � 0. to the left, making a 10 in

this column, then 10 � 1 � 1.

1
0
101 Right column:

�0 11 1 � 1 � 0

0 10

↓

↓

↓

Related Problem

Subtract 101 from 110.

Binary Multiplication

The four basic rules for multiplying bits are as follows:

 0 * 0 = 0

 0 * 1 = 0

 1 * 0 = 0

 1 * 1 = 1

Multiplication is performed with binary numbers in the same manner as with decimal num-

bers. It involves forming partial products, shifting each successive partial product left one

place, and then adding all the partial products. Example 2–10 illustrates the procedure; the

equivalent decimal multiplications are shown for reference.

Binary multiplication of two bits is
the same as multiplication of the
decimal digits 0 and 1.

EXAMPLE 2–10

Perform the following binary multiplications:

(a) 11 * 11 (b) 101 * 111

Solution

(a)

11

* 11

11

+11

1001

3

* 3

9

(b)

 111

* 101

111

000

 +111

100011

7

* 5

35

Related Problem

Multiply 1101 * 1010.

Partial

products
u Partial

products
µ

A calculator can be used to perform
arithmetic operations with binary
numbers as long as the capacity of
the calculator is not exceeded. EXAMPLE 2–11

Perform the following binary divisions:

(a) 110 , 11 (b) 110 , 10

 Complements of Binary Numbers 77

SECTION 2–4 CHECKUP

 1. Perform the following binary additions:

(a) 1101 + 1010 (b) 10111 + 01101

 2. Perform the following binary subtractions:

(a) 1101 2 0100 (b) 1001 2 0111

 3. Perform the indicated binary operations:

(a) 110 * 111 (b) 1100 , 011

2–5 Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important because

they permit the representation of negative numbers. The method of 2’s complement arith-

metic is commonly used in computers to handle negative numbers.

After completing this section, you should be able to

u Convert a binary number to its 1’s complement

u Convert a binary number to its 2’s complement using either of two methods

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s,

as illustrated below:

1 0 1 1 0 0 1 0 Binary number

T T T T T T T T

0 1 0 0 1 1 0 1 1>s complement

The simplest way to obtain the 1’s complement of a binary number with a digital circuit

is to use parallel inverters (NOT circuits), as shown in Figure 2–2 for an 8-bit binary number.

Change each bit in a number to get
the 1’s complement.

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

FIGURE 2–2 Example of inverters used to obtain the 1’s complement of a binary number.

Solution

(a)

10

11�110

11

000

2

3�6

6

0

(b)

11

10�110

10

10

3

2�6

6

0

10

00

Related Problem

Divide 1100 by 100.

78 Number Systems, Operations, and Codes

An alternative method of finding the 2’s complement of a binary number is as follows:

 1. Start at the right with the LSB and write the bits as they are up to and including the

first 1.

 2. Take the 1’s complements of the remaining bits.

Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement.

2>s complement = (1>s complement) + 1

Add 1 to the 1’s complement to get
the 2’s complement.

Change all bits to the left of the least
significant 1 to get 2’s complement.

The 2’s complement of a negative binary number can be realized using inverters and an

adder, as indicated in Figure 2–3. This illustrates how an 8-bit number can be converted to

its 2’s complement by first inverting each bit (taking the 1’s complement) and then adding

1 to the 1’s complement with an adder circuit.

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Adder

Negative number

1’s complement

Input bits

Output bits (sum)

2’s complement

Carry

in

1

(add 1)

FIGURE 2–3 Example of obtaining the 2’s complement of a negative binary number.

EXAMPLE 2–12

Find the 2’s complement of 10110010.

Solution

10110010

01001101

+ 1

01001110

Binary number

1>s complement

Add 1

2>s complement

Related Problem

Determine the 2’s complement of 11001011.

EXAMPLE 2–13

Find the 2’s complement of 10111000 using the alternative method.

Solution

10111000 Binary number

01001000 2>s complement

Related Problem

Find the 2’s complement of 11000000.

e e

These bits stay the same.c
1’s complements

of original bits c

 Signed Numbers 79

To convert from a 1’s or 2’s complement back to the true (uncomplemented) binary form,

use the same two procedures described previously. To go from the 1’s complement back to

true binary, reverse all the bits. To go from the 2’s complement form back to true binary,

take the 1’s complement of the 2’s complement number and add 1 to the least significant bit.

SECTION 2–5 CHECKUP

 1. Determine the 1’s complement of each binary number:

(a) 00011010 (b) 11110111 (c) 10001101

 2. Determine the 2’s complement of each binary number:

 (a) 00010110 (b) 11111100 (c) 10010001

2–6 Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative

numbers. A signed binary number consists of both sign and magnitude information. The

sign indicates whether a number is positive or negative, and the magnitude is the value of

the number. There are three forms in which signed integer (whole) numbers can be repre-

sented in binary: sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s

complement is the most important and the sign-magnitude is the least used. Noninteger and

very large or small numbers can be expressed in floating-point format.

After completing this section, you should be able to

u Express positive and negative numbers in sign-magnitude

u Express positive and negative numbers in 1’s complement

u Express positive and negative numbers in 2’s complement

u Determine the decimal value of signed binary numbers

u Express a binary number in floating-point format

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the

number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign

bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-

mented) binary for both positive and negative numbers. For example, the decimal number

+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

00011001

Sign bit Magnitude bits

The decimal number 225 is expressed as

10011001

Notice that the only difference between +25 and 225 is the sign bit because the magnitude

bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits as the

corresponding positive number but the sign bit is a 1 rather than a zero.

u

c c

80 Number Systems, Operations, and Codes

The Decimal Value of Signed Numbers

Sign-Magnitude

Decimal values of positive and negative numbers in the sign-magnitude form are determined

by summing the weights in all the magnitude bit positions where there are 1s and ignoring

those positions where there are zeros. The sign is determined by examination of the sign bit.

1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive

sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the cor-

responding positive numbers. For example, using eight bits, the decimal number 225 is

expressed as the 1’s complement of +25 (00011001) as

11100110

In the 1’s complement form, a negative number is the 1’s complement of the cor-

responding positive number.

2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the sign-

magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the

corresponding positive numbers. Again, using eight bits, let’s take decimal number 225 and

express it as the 2’s complement of +25 (00011001). Inverting each bit and adding 1, you get

-25 = 11100111

In the 2’s complement form, a negative number is the 2’s complement of the cor-

responding positive number.

InfoNote

Processors use the 2’s

complement for negative integer

numbers in arithmetic operations.

The reason is that subtraction

of a number is the same as

adding the 2’s complement of

the number. Processors form the

2’s complement by inverting the

bits and adding 1, using special

instructions that produce the same

result as the adder in Figure 2–3.

EXAMPLE 2–14

Express the decimal number 239 as an 8-bit number in the sign-magnitude, 1’s com-

plement, and 2’s complement forms.

Solution

First, write the 8-bit number for +39.

00100111

In the sign-magnitude form, 239 is produced by changing the sign bit to a 1 and

leaving the magnitude bits as they are. The number is

10100111

In the 1’s complement form, 239 is produced by taking the 1’s complement of +39

(00100111).

11011000

In the 2’s complement form, 239 is produced by taking the 2’s complement of +39

(00100111) as follows:

11011000 1>s complement
+ 1

 11011001 2>s complement

Related Problem

Express +19 and 219 as 8-bit numbers in sign-magnitude, 1’s complement, and 2’s

complement.

 Signed Numbers 81

EXAMPLE 2–15

Determine the decimal value of this signed binary number expressed in sign-magnitude:

10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:

26 25 24 23 22 21 20

0 0 1 0 1 0 1

Summing the weights where there are 1s,

16 + 4 + 1 = 21

The sign bit is 1; therefore, the decimal number is 221.

Related Problem

Determine the decimal value of the sign-magnitude number 01110111.

1’s Complement

Decimal values of positive numbers in the 1’s complement form are determined by sum-

ming the weights in all bit positions where there are 1s and ignoring those positions where

there are zeros. Decimal values of negative numbers are determined by assigning a nega-

tive value to the weight of the sign bit, summing all the weights where there are 1s, and

adding 1 to the result.

EXAMPLE 2–16

Determine the decimal values of the signed binary numbers expressed in 1’s complement:

(a) 00010111 (b) 11101000

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 0 0 1 0 1 1 1

 Summing the weights where there are 1s,

16 + 4 + 2 + 1 = �23

(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of 227 or 2128.

-27 26 25 24 23 22 21 20

1 1 1 0 1 0 0 0

 Summing the weights where there are 1s,

-128 + 64 + 32 + 8 = -24

 Adding 1 to the result, the final decimal number is

-24 + 1 = �23

Related Problem

Determine the decimal value of the 1’s complement number 11101011.

82 Number Systems, Operations, and Codes

From these examples, you can see why the 2’s complement form is preferred for rep-

resenting signed integer numbers: To convert to decimal, it simply requires a summation

of weights regardless of whether the number is positive or negative. The 1’s complement

system requires adding 1 to the summation of weights for negative numbers but not for

positive numbers. Also, the 1’s complement form is generally not used because two repre-

sentations of zero (00000000 or 11111111) are possible.

Range of Signed Integer Numbers

We have used 8-bit numbers for illustration because the 8-bit grouping is common in most

computers and has been given the special name byte. With one byte or eight bits, you can

represent 256 different numbers. With two bytes or sixteen bits, you can represent 65,536

different numbers. With four bytes or 32 bits, you can represent 4.295 * 109 different

numbers. The formula for finding the number of different combinations of n bits is

Total combinations = 2n

For 2’s complement signed numbers, the range of values for n-bit numbers is

Range = -(2n-1) to +(2n-1 - 1)

where in each case there is one sign bit and n 2 1 magnitude bits. For example, with four bits

you can represent numbers in 2’s complement ranging from 2(23) = 28 to 23 2 1 = +7.

Similarly, with eight bits you can go from 2128 to +127, with sixteen bits you can go from

2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are deter-

mined by summing the weights in all bit positions where there are 1s and ignoring those

positions where there are zeros. The weight of the sign bit in a negative number is given a

negative value.

EXAMPLE 2–17

Determine the decimal values of the signed binary numbers expressed in 2’s complement:

(a) 01010110 (b) 10101010

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 1 0 1 0 1 1 0

 Summing the weights where there are 1s,

64 + 16 + 4 + 2 = �86

(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of 227
= 2128.

-27 26 25 24 23 22 21 20

1 0 1 0 1 0 1 0

 Summing the weights where there are 1s,

-128 + 32 + 8 + 2 = �86

Related Problem

Determine the decimal value of the 2’s complement number 11010111.

The range of magnitude values
represented by binary numbers
depends on the number of bits (n).

 Signed Numbers 83

232,768 to +32,767, and so on. There is one less positive number than there are negative

numbers because zero is represented as a positive number (all zeros).

Floating-Point Numbers

To represent very large integer (whole) numbers, many bits are required. There is also a

problem when numbers with both integer and fractional parts, such as 23.5618, need to be

represented. The floating-point number system, based on scientific notation, is capable of

representing very large and very small numbers without an increase in the number of bits

and also for representing numbers that have both integer and fractional components.

A floating-point number (also known as a real number) consists of two parts plus a

sign. The mantissa is the part of a floating-point number that represents the magnitude of

the number and is between 0 and 1. The exponent is the part of a floating-point number

that represents the number of places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in understanding the basic concept of floating-point

numbers. Let’s consider a decimal number which, in integer form, is 241,506,800. The

mantissa is .2415068 and the exponent is 9. When the integer is expressed as a floating-

point number, it is normalized by moving the decimal point to the left of all the digits so

that the mantissa is a fractional number and the exponent is the power of ten. The floating-

point number is written as

0.2415068 * 109

For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985

in three forms: single-precision, double-precision, and extended-precision. These all have the

same basic formats except for the number of bits. Single-precision floating-point numbers

have 32 bits, double-precision numbers have 64 bits, and extended-precision numbers have 80

bits. We will restrict our discussion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers

In the standard format for a single-precision binary number, the sign bit (S) is the left-most

bit, the exponent (E) includes the next eight bits, and the mantissa or fractional part (F)

includes the remaining 23 bits, as shown next.

 32 bits

S Exponent (E) Mantissa (fraction, F)

 1 bit 8 bits 23 bits

In the mantissa or fractional part, the binary point is understood to be to the left of

the 23 bits. Effectively, there are 24 bits in the mantissa because in any binary number the

left-most (most significant) bit is always a 1. Therefore, this 1 is understood to be there

although it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-

ing 127 to the actual exponent. The purpose of the bias is to allow very large or very

small numbers without requiring a separate sign bit for the exponents. The biased exponent

allows a range of actual exponent values from 2126 to +128.

To illustrate how a binary number is expressed in floating-point format, let’s use

1011010010001 as an example. First, it can be expressed as 1 plus a fractional binary num-

ber by moving the binary point 12 places to the left and then multiplying by the appropriate

power of two.

1011010010001 = 1.011010010001 * 212

Assuming that this is a positive number, the sign bit (S) is 0. The exponent, 12, is expressed

as a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is

expressed as the binary number 10001011. The mantissa is the fractional part (F) of the

binary number, .011010010001. Because there is always a 1 to the left of the binary point

InfoNote

In addition to the CPU (central

processing unit), computers

use coprocessors to perform

complicated mathematical

calculations using floating-point

numbers. The purpose is to increase

performance by freeing up the CPU

for other tasks. The mathematical

coprocessor is also known as the

floating-point unit (FPU).

84 Number Systems, Operations, and Codes

in the power-of-two expression, it is not included in the mantissa. The complete floating-

point number is

 S E F

0 10001011 01101001000100000000000

Next, let’s see how to evaluate a binary number that is already in floating-point format.

The general approach to determining the value of a floating-point number is expressed by

the following formula:

Number = (-1)S(1 + F)(2E-127)

To illustrate, let’s consider the following floating-point binary number:

 S E F

1 10010001 10001110001000000000000

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

 Number = (-1)1 (1.10001110001)(2145-127)

 = (-1)(1.10001110001)(218) = -1100011100010000000

This floating-point binary number is equivalent to 2407,688 in decimal. Since the expo-

nent can be any number between 2126 and +128, extremely large and small numbers can

be expressed. A 32-bit floating-point number can replace a binary integer number having

129 bits. Because the exponent determines the position of the binary point, numbers con-

taining both integer and fractional parts can be represented.

There are two exceptions to the format for floating-point numbers: The number 0.0 is repre-

sented by all 0s, and infinity is represented by all 1s in the exponent and all 0s in the mantissa.

EXAMPLE 2–18

Convert the decimal number 3.248 * 104 to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary.

3.248 * 104
= 32480 = 1111110111000002 = 1.11111011100000 * 214

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-

tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased

exponent is

14 + 127 = 141 = 100011012

The complete floating-point number is

0 10001101 11111011100000000000000

Related Problem

Determine the binary value of the following floating-point binary number:

0 10011000 10000100010100110000000

SECTION 2–6 CHECKUP

 1. Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.

 2. Express the decimal number 233 as an 8-bit binary number in the 1’s complement

system.

 3. Express the decimal number 246 as an 8-bit binary number in the 2’s complement

system.

 4. List the three parts of a signed, floating-point number.

 Arithmetic Operations with Signed Numbers 85

2–7 Arithmetic Operations with Signed Numbers

In the last section, you learned how signed numbers are represented in three different forms. In

this section, you will learn how signed numbers are added, subtracted, multiplied, and divided.

Because the 2’s complement form for representing signed numbers is the most widely used

in computers and microprocessor-based systems, the coverage in this section is limited to 2’s

complement arithmetic. The processes covered can be extended to the other forms if necessary.

After completing this section, you should be able to

u Add signed binary numbers

u Define overflow

u Explain how computers add strings of numbers

u Subtract signed binary numbers

u Multiply signed binary numbers using the direct addition method

u Multiply signed binary numbers using the partial products method

u Divide signed binary numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum.

There are four cases that can occur when two signed binary numbers are added.

 1. Both numbers positive

 2. Positive number with magnitude larger than negative number

 3. Negative number with magnitude larger than positive number

 4. Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples. The equivalent decimal

numbers are shown for reference.

Both numbers positive:

00000111

+ 00000100

00001011

7

+ 4

11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111

 + 11111010

1 00001001

15

+ -6

9

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented)

binary.

Negative number with magnitude larger than positive number:

00010000

+ 11101000

11111000

16

 + -24

-8

The sum is negative and therefore in 2’s complement form.

Both numbers negative:

11111011

+ 11110111

1 11110010

-5

+ -9

-14

The final carry bit is discarded. The sum is negative and therefore in 2’s complement form.

Addition of two positive numbers
yields a positive number.

Addition of a positive number and
a smaller negative number yields a
positive number.

Addition of a positive number and
a larger negative number or two
negative numbers yields a negative
number in 2’s complement.

Discard carry

Discard carry

86 Number Systems, Operations, and Codes

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend)

from +9 (the minuend) is equivalent to adding 26 to +9. Basically, the subtraction opera-

tion changes the sign of the subtrahend and adds it to the minuend. The result of a subtrac-

tion is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s

complement.

In a computer, the negative numbers are stored in 2’s complement form so, as you can

see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds

the number of bits in the two numbers, an overflow results as indicated by an incorrect sign

bit. An overflow can occur only when both numbers are positive or both numbers are nega-

tive. If the sign bit of the result is different than the sign bit of the numbers that are added,

overflow is indicated. The following 8-bit example will illustrate this condition.

01111101 125

 + 00111010 + 58

10110111 183

Sign incorrect

Magnitude incorrect

In this example the sum of 183 requires eight magnitude bits. Since there are seven mag-

nitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which pro-

duces the overflow indication.

Numbers Added Two at a Time

Now let’s look at the addition of a string of numbers, added two at a time. This can be accom-

plished by adding the first two numbers, then adding the third number to the sum of the first

two, then adding the fourth number to this result, and so on. This is how computers add strings

of numbers. The addition of numbers taken two at a time is illustrated in Example 2–19.

•
EXAMPLE 2–19

Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011

95 01011111

+ 14 + 00001110

109 01101101

+ 18 + 00010010

127 01111111

Add 1st two numbers

1st sum

Add 3rd number

2nd sum

Add 4th number

Final sum

Related Problem

Add 00110011, 10111111, and 01100011. These are signed numbers.

Subtraction is addition with the sign
of the subtrahend changed.

 Arithmetic Operations with Signed Numbers 87

For example, when you take the 2’s complement of the positive number 00000100

(+ 4), you get 11111100, which is 24 as the following sum-of-weights evaluation

shows:

-128 + 64 + 32 + 16 + 8 + 4 = -4

As another example, when you take the 2’s complement of the negative number 11101101

(219), you get 00010011, which is +19 as the following sum-of-weights evaluation

shows:

16 + 2 + 1 = 19

Since subtraction is simply an addition with the sign of the subtrahend changed, the

process is stated as follows:

To subtract two signed numbers, take the 2’s complement of the subtrahend and

add. Discard any final carry bit.

Example 2–20 illustrates the subtraction process.

When you subtract two binary
numbers with the 2’s complement
method, it is important that both
numbers have the same number
of bits.

EXAMPLE 2–20

Perform each of the following subtractions of the signed numbers:

(a) 00001000 2 00000011 (b) 00001100 2 11110111

(c) 11100111 2 00010011 (d) 10001000 2 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a) In this case, 8 2 3 = 8 + (23) = 5.

00001000

+ 11111101

1 00000101

Minuend (+8)

2>s complement of subtrahend (-3)

Difference (+5)

(b) In this case, 12 2 (29) = 12 + 9 = 21.

00001100

+ 00001001

00010101

Minuend (+12)

2>s complement of subtrahend (+9)

Difference (+21)

(c) In this case, 225 2 (+19) = 225 + (219) = 244.

11100111

+ 11101101

1 11010100

Minuend (-25)

2>s complement of subtrahend (-19)

Difference (-44)

(d) In this case, 2120 2 (230) = 2120 + 30 = 290.

10001000

+ 00011110

10100110

Minuend (-120)

2>s complement of subtrahend (+30)

Difference (-90)

Related Problem

Subtract 01000111 from 01011000.

Discard carry

Discard carry

88 Number Systems, Operations, and Codes

Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product.

These are illustrated in the following decimal multiplication:

8

* 3

24

Multiplicand

Multiplier

Product

The multiplication operation in most computers is accomplished using addition. As you have

already seen, subtraction is done with an adder; now let’s see how multiplication is done.

Direct addition and partial products are two basic methods for performing multiplica-

tion using addition. In the direct addition method, you add the multiplicand a number of

times equal to the multiplier. In the previous decimal example (8 * 3), three multiplicands

are added: 8 + 8 + 8 = 24. The disadvantage of this approach is that it becomes very

lengthy if the multiplier is a large number. For example, to multiply 350 * 75, you must

add 350 to itself 75 times. Incidentally, this is why the term times is used to mean multiply.

When two binary numbers are multiplied, both numbers must be in true (uncomple-

mented) form. The direct addition method is illustrated in Example 2–21 adding two binary

numbers at a time.

Multiplication is equivalent to
adding a number to itself a number
of times equal to the multiplier.

EXAMPLE 2–21

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier)

using the direct addition method.

Solution

Since both numbers are positive, they are in true form, and the product will be positive. The

decimal value of the multiplier is 4, so the multiplicand is added to itself four times as follows:

01001101 1st time

+ 01001101 2nd time

10011010 Partial sum

+ 01001101 3rd time

11100111 Partial sum

+ 01001101 4th time

100110100 Product

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the

bits in the product are magnitude bits.

Related Problem

Multiply 01100001 by 00000110 using the direct addition method.

The partial products method is perhaps the more common one because it reflects

the way you multiply longhand. The multiplicand is multiplied by each multiplier digit

beginning with the least significant digit. The result of the multiplication of the multi-

plicand by a multiplier digit is called a partial product. Each successive partial product

is moved (shifted) one place to the left and when all the partial products have been pro-

duced, they are added to get the final product. Here is a decimal example.

239

* 123

717

478

+ 239

29,397

Multiplicand

Multiplier

1st partial product (3 * 239)

2nd partial product (2 * 239)

3rd partial product (1 * 239)

Final product

 Arithmetic Operations with Signed Numbers 89

The sign of the product of a multiplication depends on the signs of the multiplicand and

the multiplier according to the following two rules:

• If the signs are the same, the product is positive.

• If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as follows:

Step 1: Determine if the signs of the multiplicand and multiplier are the same or differ-

ent. This determines what the sign of the product will be.

Step 2: Change any negative number to true (uncomplemented) form. Because most

computers store negative numbers in 2’s complement, a 2’s complement oper-

ation is required to get the negative number into true form.

Step 3: Starting with the least significant multiplier bit, generate the partial products.

When the multiplier bit is 1, the partial product is the same as the multiplicand.

When the multiplier bit is 0, the partial product is zero. Shift each successive

partial product one bit to the left.

Step 4: Add each successive partial product to the sum of the previous partial products

to get the final product.

Step 5: If the sign bit that was determined in step 1 is negative, take the 2’s comple-

ment of the product. If positive, leave the product in true form. Attach the sign

bit to the product.

EXAMPLE 2–22

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Solution

Step 1: The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The

sign bit of the product will be 1 (negative).

Step 2: Take the 2’s complement of the multiplier to put it in true form.

11000101 h 00111011

Step 3 and 4: The multiplication proceeds as follows. Notice that only the magnitude

bits are used in these steps.

1010011

* 0111011

1010011

+ 1010011

11111001

+ 0000000

011111001

+ 1010011

1110010001

+ 1010011

100011000001

+ 1010011

1001100100001

+ 0000000

1001100100001

Multiplicand

Multiplier

1st partial product

2nd partial product

Sum of 1st and 2nd

3rd partial product

Sum

4th partial product

Sum

5th partial product

Sum

6th partial product

Sum

7th partial product

Final product

90 Number Systems, Operations, and Codes

Division

The numbers in a division are the dividend, the divisor, and the quotient. These are illus-

trated in the following standard division format.

dividend

divisor
= quotient

The division operation in computers is accomplished using subtraction. Since subtraction

is done with an adder, division can also be accomplished with an adder.

The result of a division is called the quotient; the quotient is the number of times that

the divisor will go into the dividend. This means that the divisor can be subtracted from the

dividend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21

- 7

14

- 7

7

- 7

0

Dividend

1st subtraction of divisor

1st partial remainder

2nd subtraction of divisor

2nd partial remainder

3rd subtraction of divisor

Zero remainder

In this simple example, the divisor was subtracted from the dividend three times before a

remainder of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according

to the following two rules:

• If the signs are the same, the quotient is positive.

• If the signs are different, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented)

form. The basic steps in a division process are as follows:

Step 1: Determine if the signs of the dividend and divisor are the same or different. This

determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2: Subtract the divisor from the dividend using 2’s complement addition to get

the first partial remainder and add 1 to the quotient. If this partial remainder is

positive, go to step 3. If the partial remainder is zero or negative, the division

is complete.

Step 3: Subtract the divisor from the partial remainder and add 1 to the quotient. If the

result is positive, repeat for the next partial remainder. If the result is zero or

negative, the division is complete.

Continue to subtract the divisor from the dividend and the partial remainders until there is

a zero or a negative result. Count the number of times that the divisor is subtracted and you

have the quotient. Example 2–23 illustrates these steps using 8-bit signed binary numbers.

Step 5: Since the sign of the product is a 1 as determined in step 1, take the 2’s com-

plement of the product.

1001100100001 h 0110011011111

Attach the sign bit

1 0110011011111

Related Problem

Verify the multiplication is correct by converting to decimal numbers and performing

the multiplication.

 Arithmetic Operations with Signed Numbers 91

EXAMPLE 2–23

Divide 01100100 by 00011001.

Solution

Step 1: The signs of both numbers are positive, so the quotient will be positive. The

quotient is initially zero: 00000000.

Step 2: Subtract the divisor from the dividend using 2’s complement addition

(remember that final carries are discarded).

01100100

+ 11100111

01001011

Dividend

2>s complement of divisor

Positive 1st partial remainder

 Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3: Subtract the divisor from the 1st partial remainder using 2’s complement

addition.

01001011

+ 11100111

00110010

1st partial remainder

2>s complement of divisor

Positive 2nd partial remainder

 Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4: Subtract the divisor from the 2nd partial remainder using 2’s complement

addition.

00110010

+ 11100111

00011001

2nd partial remainder

2>s complement of divisor

Positive 3rd partial remainder

 Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5: Subtract the divisor from the 3rd partial remainder using 2’s complement

addition.

00011001

+ 11100111

00000000

3rd partial remainder

2>s complement of divisor

Zero remainder

 Add 1 to quotient: 00000011 + 00000001 = 00000100 (final quotient). The

process is complete.

Related Problem

Verify that the process is correct by converting to decimal numbers and performing the

division.

SECTION 2–7 CHECKUP

 1. List the four cases when numbers are added.

 2. Add the signed numbers 00100001 and 10111100.

 3. Subtract the signed numbers 00110010 from 01110111.

 4. What is the sign of the product when two negative numbers are multiplied?

 5. Multiply 01111111 by 00000101.

 6. What is the sign of the quotient when a positive number is divided by a negative number?

 7. Divide 00110000 by 00001100.

92 Number Systems, Operations, and Codes

2–8 Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a compact

way of displaying or writing binary numbers because it is very easy to convert between

binary and hexadecimal. As you are probably aware, long binary numbers are difficult to

read and write because it is easy to drop or transpose a bit. Since computers and micropro-

cessors understand only 1s and 0s, it is necessary to use these digits when you program in

“machine language.” Imagine writing a sixteen bit instruction for a microprocessor system

in 1s and 0s. It is much more efficient to use hexadecimal or octal; octal numbers are covered

in Section 2–9. Hexadecimal is widely used in computer and microprocessor applications.

After completing this section, you should be able to

u List the hexadecimal characters

u Count in hexadecimal

u Convert from binary to hexadecimal

u Convert from hexadecimal to binary

u Convert from hexadecimal to decimal

u Convert from decimal to hexadecimal

u Add hexadecimal numbers

u Determine the 2’s complement of a hexadecimal number

u Subtract hexadecimal numbers

The hexadecimal number system has a base of sixteen; that is, it is composed of 16

numeric and alphabetic characters. Most digital systems process binary data in groups

that are multiples of four bits, making the hexadecimal number very convenient because

each hexadecimal digit represents a 4-bit binary number (as listed in Table 2–3).

The hexadecimal number system
consists of digits 0–9 and letters A–F.

TABLE 2–3

Decimal Binary Hexadecimal

 0 0000 0

 1 0001 1

 2 0010 2

 3 0011 3

 4 0100 4

 5 0101 5

 6 0110 6

 7 0111 7

 8 1000 8

 9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Ten numeric digits and six alphabetic characters make up the hexadecimal number sys-

tem. The use of letters A, B, C, D, E, and F to represent numbers may seem strange at

first, but keep in mind that any number system is only a set of sequential symbols. If

you understand what quantities these symbols represent, then the form of the symbols

 Hexadecimal Numbers 93

 themselves is less important once you get accustomed to using them. We will use the sub-

script 16 to designate hexadecimal numbers to avoid confusion with decimal numbers.

Sometimes you may see an “h” following a hexadecimal number.

Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with another col-

umn and continue as follows:

c, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, c

With two hexadecimal digits, you can count up to FF16, which is decimal 255. To count

beyond this, three hexadecimal digits are needed. For instance, 10016 is decimal 256, 10116

is decimal 257, and so forth. The maximum 3-digit hexadecimal number is FFF16, or deci-

mal 4095. The maximum 4-digit hexadecimal number is FFFF16, which is decimal 65,535.

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break

the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit

group with the equivalent hexadecimal symbol.

InfoNote

With memories in the gigabyte

(GB) range, specifying a memory

address in binary is quite

cumbersome. For example, it takes

32 bits to specify an address in

a 4 GB memory. It is much easier

to express a 32-bit code using

8 hexadecimal digits.

EXAMPLE 2–24

Convert the following binary numbers to hexadecimal:

(a) 1100101001010111 (b) 111111000101101001

Solution

(a) 1100101001010111 (b) 00111111000101101001

 C A 5 7 = CA5716 3 F 1 6 9 = 3F16916

 Two zeros have been added in part (b) to complete a 4-bit group at the left.

Related Problem

Convert the binary number 1001111011110011100 to hexadecimal.

e ee ee ee e e
T TT TT TT T T

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process and replace

each hexadecimal symbol with the appropriate four bits.

Hexadecimal is a convenient way
to represent binary numbers.

EXAMPLE 2–25

Determine the binary numbers for the following hexadecimal numbers:

(a) 10A416 (b) CF8E16 (c) 974216

Solution

(a) 1 0 A 4 (b) C F 8 E (c) 9 7 4 2

 1000010100100 1100111110001110 1001011101000010

 In part (a), the MSB is understood to have three zeros preceding it, thus forming a

4-bit group.

Related Problem

Convert the hexadecimal number 6BD3 to binary.

f f fT T T f f f fT T T T f f f fT T T T

94 Number Systems, Operations, and Codes

It should be clear that it is much easier to deal with a hexadecimal number than with the

equivalent binary number. Since conversion is so easy, the hexadecimal system is widely

used for representing binary numbers in programming, printouts, and displays.

Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert the

hexadecimal number to binary and then convert from binary to decimal.

Conversion between hexadecimal
and binary is direct and easy.

EXAMPLE 2–26

Convert the following hexadecimal numbers to decimal:

(a) 1C16 (b) A8516

Solution

Remember, convert the hexadecimal number to binary first, then to decimal.

(a) 1 C

00011100 = 24 + 23 + 22
= 16 + 8 + 4 = 2810

(b) A 8 5

101010000101 = 211 + 29 + 27 + 22 + 20
= 2048 + 512 + 128 + 4 + 1 = 269310

Related Problem

Convert the hexadecimal number 6BD to decimal.

f f fT T T

f fT T

EXAMPLE 2–27

Convert the following hexadecimal numbers to decimal:

(a) E516 (b) B2F816

Solution

Recall from Table 2–3 that letters A through F represent decimal numbers 10 through

15, respectively.

(a) E516 = (E * 16) + (5 * 1) = (14 * 16) + (5 * 1) = 224 + 5 = 22910

(b) B2F816 = (B * 4096) + (2 * 256) + (F * 16) + (8 * 1)

 = (11 * 4096) + (2 * 256) + (15 * 16) + (8 * 1)

 = 45,056 + 512 + 240 + 8 = 45,81610

Related Problem

Convert 60A16 to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply

the decimal value of each hexadecimal digit by its weight and then take the sum of these

products. The weights of a hexadecimal number are increasing powers of 16 (from right to

left). For a 4-digit hexadecimal number, the weights are

163 162 161 160

4096 256 16 1

A calculator can be used to
perform arithmetic operations with
hexadecimal numbers.

CALCULATOR SESSION

Conversion of a Hexadecimal

Number to a Decimal Number

Convert hexadecimal 28A to

decimal.

 HEX

TI-36X Step 1: 3rd (

 A

 Step 2: 2 8 3rd 1/x

 DEC

 Step 3: 3rd EE

 650

 Hexadecimal Numbers 95

Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal

number, formed by the remainders of the divisions. The first remainder produced is the least

significant digit (LSD). Each successive division by 16 yields a remainder that becomes a

digit in the equivalent hexadecimal number. This procedure is similar to repeated division

by 2 for decimal-to-binary conversion that was covered in Section 2–3. Example 2–28

illustrates the procedure. Note that when a quotient has a fractional part, the fractional part

is multiplied by the divisor to get the remainder.

EXAMPLE 2–28

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution

Hexadecimal

remainder

� 40 0.625 � 16 � 10 �

� 2 0.5 � 16 � 8 �

� 0 0.125 � 16 � 2 �

Stop when whole number Hexadecimal number

quotient is zero.
MSD LSD

2 8 A

.125
2

16

.5
40

16

.625
650

16
A

8

2

Related Problem

Convert decimal 2591 to hexadecimal.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadeci-

mal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits

A through F are equivalent to decimal numbers 10 through 15. When adding two hexadeci-

mal numbers, use the following rules. (Decimal numbers are indicated by a subscript 10.)

 1. In any given column of an addition problem, think of the two hexadecimal digits in

terms of their decimal values. For instance, 516 = 510 and C16 = 1210.

 2. If the sum of these two digits is 1510 or less, bring down the corresponding hexa-

decimal digit.

 3. If the sum of these two digits is greater than 1510, bring down the amount of the sum

that exceeds 1610 and carry a 1 to the next column.

CALCULATOR SESSION

Conversion of a Decimal

Number to a Hexadecimal

Number

Convert decimal 650 to hexadecimal.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 6 5 0

 HEX

 Step 3: 3rd (

 28A

EXAMPLE 2–29

Add the following hexadecimal numbers:

(a) 2316 + 1616 (b) 5816 + 2216 (c) 2B16 + 8416 (d) DF16 + AC16

Solution

(a)

2316

+ 1616

3916

 right column: 316 + 616 = 310 + 610 = 910 = 916

 left column: 216 + 116 = 210 + 110 = 310 = 316

96 Number Systems, Operations, and Codes

Related Problem

Add 4C16 and 3A16.

(b)

5816

+ 2216

7A16

 right column: 816 + 216 = 810 + 210 = 1010 = A16

 left column: 516 + 216 = 510 + 210 = 710 = 716

(c)

2B16

+ 8416

AF16

 right column: B16 + 416 = 1110 + 410 = 1510 = F16

 left column: 216 + 816 = 210 + 810 = 1010 = A16

(d)

DF16

+ AC16

18B16

 right column: F16 + C16 = 1510 + 1210 = 2710

 2710 2 1610 = 1110 = B16 with a 1 carry

 left column: D16 + A16 + 116 = 1310 + 1010 + 110 = 2410

 2410 2 1610 = 810 = 816 with a 1 carry

Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary numbers.

Since a hexadecimal number can be used to represent a binary number, it can also be used

to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 is

the most common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1: Convert the hexadecimal number to binary. Take the 2’s complement of

the binary number. Convert the result to hexadecimal. This is illustrated

in Figure 2–4.

Example:

2’s complement
in hexadecimal

2’s complement
in binary

BinaryHexadecimal

D611010110001010102A

FIGURE 2–4 Getting the 2’s complement of a hexadecimal number, Method 1.

Example:

2’s complement
in hexadecimal

1’s complement
in hexadecimal

plus 1

Subtract from
maximum

Hexadecimal

D6D5 + 1FF – 2A2A

FIGURE 2–5 Getting the 2’s complement of a hexadecimal number, Method 2.

Method 2: Subtract the hexadecimal number from the maximum hexadecimal

number and add 1. This is illustrated in Figure 2–5.

 Hexadecimal Numbers 97

Method 3: Write the sequence of single hexadecimal digits. Write the sequence in

reverse below the forward sequence. The 1’s complement of each hex

digit is the digit directly below it. Add 1 to the resulting number to get the

2’s complement. This is illustrated in Figure 2–6.

Example:

2’s complement
in hexadecimal

D6

1’s complement
in hexadecimal

plus 1

D5 + 1
2
D

3
C

4
B

0
F

Hexadecimal

2A

1
E

2
D

3
C

4
B

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

0
F

1
E

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

FIGURE 2–6 Getting the 2’s complement of a hexadecimal number, Method 3.

EXAMPLE 2–30

Subtract the following hexadecimal numbers:

(a) 8416 - 2A16 (b) C316 - 0B16

Solution

(a) 2A16 = 00101010

 2’s complement of 2A16 = 11010110 = D616 (using Method 1)

8416

+ D616

15A16

Add

Drop carry, as in 2>s complement addition

 The difference is 5A16.

(b) 0B16 = 00001011

 2’s complement of 0B16 = 11110101 = F516 (using Method 1)

C316

+ F516

1B816

Add

Drop carry

 The difference is B816.

Related Problem

Subtract 17316 from BCD16.

SECTION 2–8 CHECKUP

 1. Convert the following binary numbers to hexadecimal:

(a) 10110011 (b) 110011101000

 2. Convert the following hexadecimal numbers to binary:

(a) 5716 (b) 3A516 (c) F80B16

 3. Convert 9B3016 to decimal.

 4. Convert the decimal number 573 to hexadecimal.

98 Number Systems, Operations, and Codes

 5. Add the following hexadecimal numbers directly:

(a) 1816 + 3416 (b) 3F16 + 2A16

 6. Subtract the following hexadecimal numbers:

(a) 7516 - 2116 (b) 9416 - 5C16

2–9 Octal Numbers

Like the hexadecimal number system, the octal number system provides a convenient way

to express binary numbers and codes. However, it is used less frequently than hexadecimal

in conjunction with computers and microprocessors to express binary quantities for input

and output purposes.

After completing this section, you should be able to

u Write the digits of the octal number system

u Convert from octal to decimal

u Convert from decimal to octal

u Convert from octal to binary

u Convert from binary to octal

The octal number system is composed of eight digits, which are

0, 1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, c

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not

used. To distinguish octal numbers from decimal numbers or hexadecimal numbers, we

will use the subscript 8 to indicate an octal number. For instance, 158 in octal is equivalent

to 1310 in decimal and D in hexadecimal. Sometimes you may see an “o” or a “Q” follow-

ing an octal number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, each successive digit position is an

increasing power of eight, beginning in the right-most column with 80. The evaluation of

an octal number in terms of its decimal equivalent is accomplished by multiplying each

digit by its weight and summing the products, as illustrated here for 23748.

 Weight: 83 82 81 80

 Octal number: 2 3 7 4

 23748 = (2 * 83) + (3 * 82) + (7 * 81) + (4 * 80)

 = (2 * 512) + (3 * 64) + (7 * 8) + (4 * 1)

 = 1024 + 192 + 56 + 4 = 127610

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-

by-8 method, which is similar to the method used in the conversion of decimal numbers to

binary or to hexadecimal. To show how it works, let’s convert the decimal number 359 to

The octal number system has a
base of 8.

 Octal Numbers 99

octal. Each successive division by 8 yields a remainder that becomes a digit in the equiva-

lent octal number. The first remainder generated is the least significant digit (LSD).

7

4

5

Remainder

� 44 0.875 � 8 �

� 5 0.5 � 8 �

� 0 0.625 � 8 �

Stop when whole number Octal number
quotient is zero.

MSD LSD

5 4 7

.625
5

8

.5
44

8

.875
359

8

Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very easy to

convert from octal to binary. Each octal digit is represented by three bits as shown in

Table 2–4.

CALCULATOR SESSION

Conversion of a Decimal

Number to an Octal Number

Convert decimal 439 to octal.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 4 3 9

 OCT

 Step 3: 3rd)

 667

Octal is a convenient way to
represent binary numbers, but
it is not as commonly used as
hexadecimal.

TABLE 2–4

Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit with the

appropriate three bits.

EXAMPLE 2–31

Convert each of the following octal numbers to binary:

(a) 138 (b) 258 (c) 1408 (d) 75268

Solution

(a) 1 3 (b) 2 5 (c) 1 4 0 (d) 7 5 2 6

 001011 010101 001100000 111101010110

Related Problem

Convert each of the binary numbers to decimal and verify that each value agrees with

the decimal value of the corresponding octal number.

V VT T V VT T V V VT T T V V V VT T T T

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary

conversion. The procedure is as follows: Start with the right-most group of three bits and,

moving from right to left, convert each 3-bit group to the equivalent octal digit. If there

are not three bits available for the left-most group, add either one or two zeros to make a

complete group. These leading zeros do not affect the value of the binary number.

100 Number Systems, Operations, and Codes

U U

T T

U U U

T T T

U U U U
T T T T

U U U U

T T T T

EXAMPLE 2–32

Convert each of the following binary numbers to octal:

(a) 110101 (b) 101111001 (c) 100110011010 (d) 11010000100

Solution

(a) 110101 (b) 101111001

 6 5 = 658 5 7 1 = 5718

(c) 100110011010 (d) 011010000100

 4 6 3 2 = 46328 3 2 0 4 = 32048

Related Problem

Convert the binary number 1010101000111110010 to octal.

SECTION 2–9 CHECKUP

 1. Convert the following octal numbers to decimal:

(a) 738 (b) 1258

 2. Convert the following decimal numbers to octal:

(a) 9810 (b) 16310

 3. Convert the following octal numbers to binary:

(a) 468 (b) 7238 (c) 56248

 4. Convert the following binary numbers to octal:

(a) 110101111 (b) 1001100010 (c) 10111111001

2–10 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary

code. There are only ten code groups in the BCD system, so it is very easy to convert

between decimal and BCD. Because we like to read and write in decimal, the BCD code

provides an excellent interface to binary systems. Examples of such interfaces are keypad

inputs and digital readouts.

After completing this section, you should be able to

u Convert each decimal digit to BCD

u Express decimal numbers in BCD

u Convert from BCD to decimal

u Add BCD numbers

The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means

that each decimal digit, 0 through 9, is represented by a binary code of four bits. The desig-

nation 8421 indicates the binary weights of the four bits (23, 22, 21, 20). The ease of conver-

sion between 8421 code numbers and the familiar decimal numbers is the main advantage

In BCD, 4 bits represent each
decimal digit.

 Binary Coded Decimal (BCD) 101

of this code. All you have to remember are the ten binary combinations that represent the

ten decimal digits as shown in Table 2–5. The 8421 code is the predominant BCD code, and

when we refer to BCD, we always mean the 8421 code unless otherwise stated.

TABLE 2–5

Decimal/BCD conversion.

Decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes

You should realize that, with four bits, sixteen numbers (0000 through 1111) can be repre-

sented but that, in the 8421 code, only ten of these are used. The six code combinations that

are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the

appropriate 4-bit code, as shown by Example 2–33.

EXAMPLE 2–33

Convert each of the following decimal numbers to BCD:

(a) 35 (b) 98 (c) 170 (d) 2469

Solution

(a) 3 5 (b) 9 8

 00110101 10011000

(c) 1 7 0 (d) 2 4 6 9

 000101110000 0010010001101001

Related Problem

Convert the decimal number 9673 to BCD.

f fT T f fT T

f f fT T T f f f fT T T T

Convert each of the following BCD codes to decimal:

(a) 10000110 (b) 001101010001 (c) 1001010001110000

Solution

(a) 10000110 (b) 001101010001 (c) 1001010001110000

 8 6 3 5 1 9 4 7 0

Related Problem

Convert the BCD code 10000010001001110110 to decimal.

e e e e

T T T T

e e

T T

e e e

T T T

EXAMPLE 2–34

It is equally easy to determine a decimal number from a BCD number. Start at the

right-most bit and break the code into groups of four bits. Then write the decimal digit

represented by each 4-bit group.

102 Number Systems, Operations, and Codes

Applications

Digital clocks, digital thermometers, digital meters, and other devices with seven-segment

displays typically use BCD code to simplify the displaying of decimal numbers. BCD is

not as efficient as straight binary for calculations, but it is particularly useful if only limited

processing is required, such as in a digital thermometer.

BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the most

important operation because the other three operations (subtraction, multiplication, and

division) can be accomplished by the use of addition. Here is how to add two BCD

numbers:

Step 1: Add the two BCD numbers, using the rules for binary addition in Section 2–4.

Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated,

it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six

invalid states and return the code to 8421. If a carry results when 6 is added,

simply add the carry to the next 4-bit group.

Example 2–35 illustrates BCD additions in which the sum in each 4-bit column is equal

to or less than 9, and the 4-bit sums are therefore valid BCD numbers. Example 2–36 illus-

trates the procedure in the case of invalid sums (greater than 9 or a carry).

An alternative method to add BCD numbers is to convert them to decimal, perform the

addition, and then convert the answer back to BCD.

InfoNote

BCD is sometimes used for

arithmetic operations in processors.

To represent BCD numbers in

a processor, they usually are

“packed,” so that eight bits have

two BCD digits. Normally, a

processor will add numbers as if

they were straight binary. Special

instructions are available for

computer programmers to correct

the results when BCD numbers

are added or subtracted. For

example, in Assembly Language,

the programmer will include a

DAA (Decimal Adjust for Addition)

instruction to automatically correct

the answer to BCD following an

addition.

EXAMPLE 2–35

Add the following BCD numbers:

(a) 0011 + 0100 (b) 00100011 + 00010101

(c) 10000110 + 00010011 (d) 010001010000 + 010000010111

Solution

The decimal number additions are shown for comparison.

(a)

0011

+ 0100

0111

3

+ 4

7

(b)

0010

+ 0001

0011

0011

 0101

1000

23

+ 15

38

(c)

1000

+ 0001

1001

0110

 0011

1001

86

+ 13

99

(d)

0100

+ 0100

1000

0101

 0001

0110

0000

 0111

0111

450

+ 417

867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are

valid BCD numbers.

Related Problem

Add the BCD numbers: 1001000001000011 + 0000100100100101.

EXAMPLE 2–36

Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001

(c) 00010110 + 00010101 (d) 01100111 + 01010011

 Binary Coded Decimal (BCD) 103

Solution

The decimal number additions are shown for comparison.

(a) 1001 9

 1 0100 14

 1101 Invalid BCD number (.9) 13

 1 0110 Add 6

 0001 0011 Valid BCD number

 T T
 1 3

(b) 1001 9

 1 1001 1 9

 1 0010 Invalid because of carry 18

 1 0110 Add 6

 0001 1000 Valid BCD number

 T T
 1 8

(c) 0001 0110 16

 1 0001 0101 1 15

 0010 1011 Right group is invalid (.9), 31

 left group is valid.

 1 0110 Add 6 to invalid code. Add

 carry, 0001, to next group.

 0011 0001 Valid BCD number

 T T
 3 1

(d) 0110 0111 67

 1 0101 0011 1 53

 1011 1010 Both groups are invalid (.9) 120

 1 0110 1 0110 Add 6 to both groups

 0001 0010 0000 Valid BCD number

 T T T

 1 2 0

Related Problem

Add the BCD numbers: 01001000 + 00110100.

ee
ee

ee
ee e

SECTION 2–10 CHECKUP

 1. What is the binary weight of each 1 in the following BCD numbers?

(a) 0010 (b) 1000 (c) 0001 (d) 0100

 2. Convert the following decimal numbers to BCD:

(a) 6 (b) 15 (c) 273 (d) 849

 3. What decimal numbers are represented by each BCD code?

(a) 10001001 (b) 001001111000 (c) 000101010111

 4. In BCD addition, when is a 4-bit sum invalid?

104 Number Systems, Operations, and Codes

2–11 Digital Codes

Many specialized codes are used in digital systems. You have just learned about the BCD

code; now let’s look at a few others. Some codes are strictly numeric, like BCD, and oth-

ers are alphanumeric; that is, they are used to represent numbers, letters, symbols, and

instructions. The codes introduced in this section are the Gray code, the ASCII code, and

the Unicode.

After completing this section, you should be able to

u Explain the advantage of the Gray code

u Convert between Gray code and binary

u Use the ASCII code

u Discuss the Unicode

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific

weights assigned to the bit positions. The important feature of the Gray code is that it

exhibits only a single bit change from one code word to the next in sequence. This property

is important in many applications, such as shaft position encoders, where error suscepti-

bility increases with the number of bit changes between adjacent numbers in a sequence.

Table 2–6 is a listing of the 4-bit Gray code for decimal numbers 0 through 15. Binary

numbers are shown in the table for reference. Like binary numbers, the Gray code can have

any number of bits. Notice the single-bit change between successive Gray code words.

For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to

0110, while the binary code changes from 0011 to 0100, a change of three bits. The only

bit change in the Gray code is in the third bit from the right: the other bits remain the same.

The single bit change characteristic
of the Gray code minimizes the
chance for error.

TABLE 2–6

Four-bit Gray code.

Decimal Binary Gray Code Decimal Binary Gray Code

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules

explain how to convert from a binary number to a Gray code word:

 1. The most significant bit (left-most) in the Gray code is the same as the corresponding

MSB in the binary number.

 2. Going from left to right, add each adjacent pair of binary code bits to get the next

Gray code bit. Discard carries.

 Digital Codes 105

For example, the conversion of the binary number 10110 to Gray code is as follows:

1- + S 0- + S 1- + S 1- + S 0 Binary

T T T T T
1 1 1 0 1 Gray

The Gray code is 11101.

Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are some differ-

ences. The following rules apply:

 1. The most significant bit (left-most) in the binary code is the same as the correspond-

ing bit in the Gray code.

 2. Add each binary code bit generated to the Gray code bit in the next adjacent position.

Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 1 0 1 1 Gray

1 0 0 1 0 Binary

The binary number is 10010.

� ↓

↓

� ↓

↓

� ↓

↓

� ↓↓

↓

EXAMPLE 2–37

(a) Convert the binary number 11000110 to Gray code.

(b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

1- + S 1- + S 0- + S 0- + S 0- + S 1- + S 1- + S 0

 T T T T T T T T
 1 0 1 0 0 1 0 1

(b) Gray code to binary:

1 0 1 0 1 1 1 1

1 1 0 0 1 0 1 0

Related Problem

(a) Convert binary 101101 to Gray code.

(b) Convert Gray code 100111 to binary.

↓� ↓

↓

�

↓

↓� ↓

↓

� ↓

↓

� ↓

↓

�

↓

↓�

↓

↓

An Application

The concept of a 3-bit shaft position encoder is shown in Figure 2–7. Basically, there are

three concentric rings that are segmented into eight sectors. The more sectors there

are, the more accurately the position can be represented, but we are using only eight

to illustrate. Each sector of each ring is either reflective or nonreflective. As the rings

rotate with the shaft, they come under an IR emitter that produces three separate IR

beams. A 1 is indicated where there is a reflected beam, and a 0 is indicated where

there is no reflected beam. The IR detector senses the presence or absence of reflected

106 Number Systems, Operations, and Codes

(a) Binary code (b) Gray code

000

001

111110

101

100

011 010

1

1

0

000

001

100101

111

110

010 011

1

1

1IR
emitter/detector

IR beams

Reflected Nonreflected

IR
emitter/detector

FIGURE 2–7 A simplified illustration of how the Gray code solves the error problem in

shaft position encoders. Three bits are shown to illustrate the concept, although most shaft

encoders use more than 10 bits to achieve a higher resolution.

beams and produces a corresponding 3-bit code. The IR emitter/detector is in a fixed

position. As the shaft rotates counterclockwise through 360°, the eight sectors move

under the three beams. Each beam is either reflected or absorbed by the sector surface

to represent a binary or Gray code number that indicates the shaft position.

In Figure 2–7(a), the sectors are arranged in a straight binary pattern, so that the detector

output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a reflective

sector, the output is 1; when a beam is aligned over a nonreflective sector, the output is 0. If

one beam is slightly ahead of the others during the transition from one sector to the next, an

erroneous output can occur. Consider what happens when the beams are on the 111 sector and

about to enter the 000 sector. If the MSB beam is slightly ahead, the position would be incor-

rectly indicated by a transitional 011 instead of a 111 or a 000. In this type of application, it

is virtually impossible to maintain precise mechanical alignment of the IR emitter/detector

beams; therefore, some error will usually occur at many of the transitions between sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code.

As shown in Figure 2–7(b), the Gray code assures that only one bit will change between

adjacent sectors. This means that even though the beams may not be in precise alignment,

there will never be a transitional error. For example, let’s again consider what happens when

the beams are on the 111 sector and about to move into the next sector, 101. The only two

possible outputs during the transition are 111 and 101, no matter how the beams are aligned.

A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also letters and other symbols. In

the strictest sense, alphanumeric codes are codes that represent numbers and alphabetic

characters (letters). Most such codes, however, also represent other characters such as sym-

bols and various instructions necessary for conveying information.

At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of the

alphabet, for a total of 36 items. This number requires six bits in each code combination because

five bits are insufficient (25
= 32). There are 64 total combinations of six bits, so there are

28 unused code combinations. Obviously, in many applications, symbols other than just num-

bers and letters are necessary to communicate completely. You need spaces, periods, colons,

semicolons, question marks, etc. You also need instructions to tell the receiving system what to

do with the information. With codes that are six bits long, you can handle decimal numbers, the

alphabet, and 28 other symbols. This should give you an idea of the requirements for a basic

alphanumeric code. The ASCII is a common alphanumeric code and is covered next.

 Digital Codes 107

ASCII

ASCII is the abbreviation for American Standard Code for Information Interchange. Pro-

nounced “askee,” ASCII is a universally accepted alphanumeric code used in most comput-

ers and other electronic equipment. Most computer keyboards are standardized with the

ASCII. When you enter a letter, a number, or control command, the corresponding ASCII

code goes into the computer.

ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually,

ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00

through 7F in hexadecimal. The first thirty-two ASCII characters are nongraphic com-

mands that are never printed or displayed and are used only for control purposes. Examples

of the control characters are “null,” “line feed,” “start of text,” and “escape.” The other

characters are graphic symbols that can be printed or displayed and include the letters of

the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs, and other

commonly used symbols.

Table 2–7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary

representations for each character and symbol. The left section of the table lists the names

of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed

in the rest of the table (20 through 7F hexadecimal).

InfoNote

A computer keyboard has a

dedicated microprocessor that

constantly scans keyboard

circuits to detect when a key has

been pressed and released. A

unique scan code is produced by

computer software representing

that particular key. The scan

code is then converted to an

alphanumeric code (ASCII) for

use by the computer.

EXAMPLE 2–38

Use Table 2–7 to determine the binary ASCII codes that are entered from the compu-

ter’s keyboard when the following C language program statement is typed in. Also

express each code in hexadecimal.

if (x 7 5)

Solution

The ASCII code for each symbol is found in Table 2–7.

Symbol Binary Hexadecimal

i 1101001 6916

f 1100110 6616

Space 0100000 2016

(0101000 2816

x 1111000 7816

> 0111110 3E16

5 0110101 3516

) 0101001 2916

Related Problem

Use Table 2–7 to determine the sequence of ASCII codes required for the following

C program statement and express each code in hexadecimal:

if (y 6 8)

The ASCII Control Characters

The first thirty-two codes in the ASCII table (Table 2–7) represent the control characters.

These are used to allow devices such as a computer and printer to communicate with each

other when passing information and data. The control key function allows a control char-

acter to be entered directly from an ASCII keyboard by pressing the control key (CTRL)

and the corresponding symbol.

108

T
A

B
L

E
 2

–
7

A
m

e
ri
c
a
n
 S

ta
n
d
a
rd

 C
o
d
e
 f
o
r

In
fo

rm
a
ti
o
n
 I
n
te

rc
h
a
n
g
e
 (

A
S

C
II
).

C
o
n

tr
o
l

C
h

a
ra

ct
er

s
G

ra
p

h
ic

 S
y
m

b
o
ls

N
a
m

e
D

ec
B

in
a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

N
U

L

0

0
0
0
0
0
0
0

0
0

sp
ac

e
3
2

0
1
0
0
0
0
0

2
0

@
6
4

1
0
0
0
0
0
0

4
0

9

9
6

1
1
0
0
0
0
0

6
0

S
O

H

1

0
0
0
0
0
0
1

0
1

!
3
3

0
1
0
0
0
0
1

2
1

A
6
5

1
0
0
0
0
0
1

4
1

a

9
7

1
1
0
0
0
0
1

6
1

S
T

X

2

0
0
0
0
0
1
0

0
2

”
3
4

0
1
0
0
0
1
0

2
2

B
6
6

1
0
0
0
0
1
0

4
2

b

9
8

1
1
0
0
0
1
0

6
2

E
T

X

3

0
0
0
0
0
1
1

0
3

#
3
5

0
1
0
0
0
1
1

2
3

C
6
7

1
0
0
0
0
1
1

4
3

c

9
9

1
1
0
0
0
1
1

6
3

E
O

T

4

0
0
0
0
1
0
0

0
4

$
3
6

0
1
0
0
1
0
0

2
4

D
6
8

1
0
0
0
1
0
0

4
4

d
1
0
0

1
1
0
0
1
0
0

6
4

E
N

Q

5

0
0
0
0
1
0
1

0
5

%
3
7

0
1
0
0
1
0
1

2
5

E
6
9

1
0
0
0
1
0
1

4
5

e
1
0
1

1
1
0
0
1
0
1

6
5

A
C

K

6

0
0
0
0
1
1
0

0
6

&
3
8

0
1
0
0
1
1
0

2
6

F
7
0

1
0
0
0
1
1
0

4
6

f
1
0
2

1
1
0
0
1
1
0

6
6

B
E

L

7

0
0
0
0
1
1
1

0
7

’
3
9

0
1
0
0
1
1
1

2
7

G
7
1

1
0
0
0
1
1
1

4
7

g
1
0
3

1
1
0
0
1
1
1

6
7

B
S

8

0
0
0
1
0
0
0

0
8

(
4
0

0
1
0
1
0
0
0

2
8

H
7
2

1
0
0
1
0
0
0

4
8

h
1
0
4

1
1
0
1
0
0
0

6
8

H
T

9

0
0
0
1
0
0
1

0
9

)
4
1

0
1
0
1
0
0
1

2
9

I
7
3

1
0
0
1
0
0
1

4
9

i
1
0
5

1
1
0
1
0
0
1

6
9

L
F

1
0

0
0
0
1
0
1
0

0
A

*
4
2

0
1
0
1
0
1
0

2
A

J
7
4

1
0
0
1
0
1
0

4
A

j
1
0
6

1
1
0
1
0
1
0

6
A

V
T

1
1

0
0
0
1
0
1
1

0
B

1
4
3

0
1
0
1
0
1
1

2
B

K
7
5

1
0
0
1
0
1
1

4
B

k
1
0
7

1
1
0
1
0
1
1

6
B

F
F

1
2

0
0
0
1
1
0
0

0
C

,
4
4

0
1
0
1
1
0
0

2
C

L
7
6

1
0
0
1
1
0
0

4
C

l
1
0
8

1
1
0
1
1
0
0

6
C

C
R

1
3

0
0
0
1
1
0
1

0
D

2
4
5

0
1
0
1
1
0
1

2
D

M
7
7

1
0
0
1
1
0
1

4
D

m
1
0
9

1
1
0
1
1
0
1

6
D

S
O

1
4

0
0
0
1
1
1
0

0
E

.
4
6

0
1
0
1
1
1
0

2
E

N
7
8

1
0
0
1
1
1
0

4
E

n
1
1
0

1
1
0
1
1
1
0

6
E

S
I

1
5

0
0
0
1
1
1
1

0
F

/
4
7

0
1
0
1
1
1
1

2
F

O
7
9

1
0
0
1
1
1
1

4
F

o
1
1
1

1
1
0
1
1
1
1

6
F

D
L

E
1
6

0
0
1
0
0
0
0

1
0

0
4
8

0
1
1
0
0
0
0

3
0

P
8
0

1
0
1
0
0
0
0

5
0

p
1
1
2

1
1
1
0
0
0
0

7
0

D
C

1
1
7

0
0
1
0
0
0
1

1
1

1
4
9

0
1
1
0
0
0
1

3
1

Q
8
1

1
0
1
0
0
0
1

5
1

q
1
1
3

1
1
1
0
0
0
1

7
1

D
C

2
1
8

0
0
1
0
0
1
0

1
2

2
5
0

0
1
1
0
0
1
0

3
2

R
8
2

1
0
1
0
0
1
0

5
2

r
1
1
4

1
1
1
0
0
1
0

7
2

D
C

3
1
9

0
0
1
0
0
1
1

1
3

3
5
1

0
1
1
0
0
1
1

3
3

S
8
3

1
0
1
0
0
1
1

5
3

s
1
1
5

1
1
1
0
0
1
1

7
3

D
C

4
2
0

0
0
1
0
1
0
0

1
4

4
5
2

0
1
1
0
1
0
0

3
4

T
8
4

1
0
1
0
1
0
0

5
4

t
1
1
6

1
1
1
0
1
0
0

7
4

N
A

K
2
1

0
0
1
0
1
0
1

1
5

5
5
3

0
1
1
0
1
0
1

3
5

U
8
5

1
0
1
0
1
0
1

5
5

u
1
1
7

1
1
1
0
1
0
1

7
5

S
Y

N
2
2

0
0
1
0
1
1
0

1
6

6
5
4

0
1
1
0
1
1
0

3
6

V
8
6

1
0
1
0
1
1
0

5
6

v
1
1
8

1
1
1
0
1
1
0

7
6

E
T

B
2
3

0
0
1
0
1
1
1

1
7

7
5
5

0
1
1
0
1
1
1

3
7

W
8
7

1
0
1
0
1
1
1

5
7

w
1
1
9

1
1
1
0
1
1
1

7
7

C
A

N
2
4

0
0
1
1
0
0
0

1
8

8
5
6

0
1
1
1
0
0
0

3
8

X
8
8

1
0
1
1
0
0
0

5
8

x
1
2
0

1
1
1
1
0
0
0

7
8

E
M

2
5

0
0
1
1
0
0
1

1
9

9
5
7

0
1
1
1
0
0
1

3
9

Y
8
9

1
0
1
1
0
0
1

5
9

y
1
2
1

1
1
1
1
0
0
1

7
9

S
U

B
2
6

0
0
1
1
0
1
0

1
A

:
5
8

0
1
1
1
0
1
0

3
A

Z
9
0

1
0
1
1
0
1
0

5
A

z
1
2
2

1
1
1
1
0
1
0

7
A

E
S

C
2
7

0
0
1
1
0
1
1

1
B

;
5
9

0
1
1
1
0
1
1

3
B

[
9
1

1
0
1
1
0
1
1

5
B

{
1
2
3

1
1
1
1
0
1
1

7
B

F
S

2
8

0
0
1
1
1
0
0

1
C

<
6
0

0
1
1
1
1
0
0

3
C

\
9
2

1
0
1
1
1
0
0

5
C

|
1
2
4

1
1
1
1
1
0
0

7
C

G
S

2
9

0
0
1
1
1
0
1

1
D

5
6
1

0
1
1
1
1
0
1

3
D

]
9
3

1
0
1
1
1
0
1

5
D

}
1
2
5

1
1
1
1
1
0
1

7
D

R
S

3
0

0
0
1
1
1
1
0

1
E

>
6
2

0
1
1
1
1
1
0

3
E

^
9
4

1
0
1
1
1
1
0

5
E

,
1
2
6

1
1
1
1
1
1
0

7
E

U
S

3
1

0
0
1
1
1
1
1

1
F

?
6
3

0
1
1
1
1
1
1

3
F

_
9
5

1
0
1
1
1
1
1

5
F

D
el

1
2
7

1
1
1
1
1
1
1

7
F

 Error Codes 109

Extended ASCII Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that

were adopted by IBM for use in their PCs (personal computers). Because of the popularity

of the PC, these particular extended ASCII characters are also used in applications other

than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal

80 to hexadecimal FF and can be grouped into the following general categories: foreign

(non-English) alphabetic characters, foreign currency symbols, Greek letters, mathematical

symbols, drawing characters, bar graphing characters, and shading characters.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages

of the world by assigning each character a unique numeric value and name utilizing the

universal character set (UCS). It is applicable in computer applications dealing with multi-

lingual text, mathematical symbols, or other technical characters.

Unicode has a wide array of characters, and their various encoding forms are used in many

environments. While ASCII basically uses 7-bit codes, Unicode uses relatively abstract “code

points”—non-negative integer numbers—that map sequences of one or more bytes, using

different encoding forms and schemes. To permit compatibility, Unicode assigns the first 128

code points to the same characters as ASCII. One can, therefore, think of ASCII as a 7-bit

encoding scheme for a very small subset of Unicode and of the UCS.

Unicode consists of about 100,000 characters, a set of code charts for visual reference,

an encoding methodology and set of standard character encodings, and an enumeration

of character properties such as uppercase and lowercase. It also consists of a number of

related items, such as character properties, rules for text normalization, decomposition,

collation, rendering, and bidirectional display order (for the correct display of text contain-

ing both right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).

SECTION 2–11 CHECKUP

 1. Convert the following binary numbers to the Gray code:

(a) 1100 (b) 1010 (c) 11010

 2. Convert the following Gray codes to binary:

(a) 1000 (b) 1010 (c) 11101

 3. What is the ASCII representation for each of the following characters? Express each

as a bit pattern and in hexadecimal notation.

 (a) K (b) r (c) $ (d) 1

2–12 Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error are dis-

cussed. The parity method of error detection is introduced, and the cyclic redundancy

check is discussed. Also, the Hamming code for error detection and correction is presented.

After completing this section, you should be able to

u Determine if there is an error in a code based on the parity bit

u Assign the proper parity bit to a code

u Explain the cyclic redundancy (CRC) check

u Describe the Hamming code

110 Number Systems, Operations, and Codes

Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain

either an even or an odd number of 1s. A parity bit is attached to a group of bits to make

the total number of 1s in a group always even or always odd. An even parity bit makes the

total number of 1s even, and an odd parity bit makes the total odd.

A given system operates with even or odd parity, but not both. For instance, if a system

operates with even parity, a check is made on each group of bits received to make sure the

total number of 1s in that group is even. If there is an odd number of 1s, an error has occurred.

As an illustration of how parity bits are attached to a code, Table 2–8 lists the parity bits

for each BCD number for both even and odd parity. The parity bit for each BCD number is in

the P column.

A parity bit tells if the number of 1s
is odd or even.

TABLE 2–8

The BCD code with parity bits.

Even Parity Odd Parity

P BCD P BCD

0 0000 1 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending

on system design. Notice that the total number of 1s, including the parity bit, is always even

for even parity and always odd for odd parity.

Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of errors, which

is very unlikely) but cannot check for two errors in one group. For instance, let’s assume that

we wish to transmit the BCD code 0101. (Parity can be used with any number of bits; we are

using four for illustration.) The total code transmitted, including the even parity bit, is

Even parity bit

00101

 BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

Even parity bit

00001

 Bit error

When this code is received, the parity check circuitry determines that there is only a single

1 (odd number), when there should be an even number of 1s. Because an even number of

1s does not appear in the code when it is received, an error is indicated.

An odd parity bit also provides in a similar manner for the detection of a single error in

a given group of bits.

e

 Error Codes 111

EXAMPLE 2–39

Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (c) 101101

(d) 1000111001001 (e) 101101011111

Solution

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. The

parity bit will be the left-most bit (color).

(a) 01010 (b) 1111000 (c) 0101101

(d) 0100011100101 (e) 1101101011111

Related Problem

Add an even parity bit to the 7-bit ASCII code for the letter K.

EXAMPLE 2–40

An odd parity system receives the following code groups: 10110, 11010, 110011,

110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of 1s is incorrect. The

following groups are in error: 110011 and 1100010101010.

Related Problem

The following ASCII character is received by an odd parity system: 00110111. Is it correct?

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a widely used code used for detecting one- and

two-bit transmission errors when digital data are transferred on a communication link.

The communication link can be between two computers that are connected to a network

or between a digital storage device (such as a CD, DVD, or a hard drive) and a PC. If it is

properly designed, the CRC can also detect multiple errors for a number of bits in sequence

(burst errors). In CRC, a certain number of check bits, sometimes called a checksum, are

appended to the data bits (added to end) that are being transmitted. The transmitted data

are tested by the receiver for errors using the CRC. Not every possible error can be identi-

fied, but the CRC is much more efficient than just a simple parity check.

CRC is often described mathematically as the division of two polynomials to generate a

remainder. A polynomial is a mathematical expression that is a sum of terms with positive

exponents. When the coefficients are limited to 1s and 0s, it is called a univariate polynomial.

An example of a univariate polynomial is 1x3 + 0x2 + 1x1 + 1x0 or simply x3 + x1 + x0,

which can be fully described by the 4-bit binary number 1011. Most cyclic redundancy checks

use a 16-bit or larger polynomial, but for simplicity the process is illustrated here with four bits.

Modulo-2 Operations

Simply put, CRC is based on the division of two binary numbers; and, as you know, division

is just a series of subtractions and shifts. To do subtraction, a method called modulo-2 addi-

tion can be used. Modulo-2 addition (or subtraction) is the same as binary addition with the

carries discarded, as shown in the truth table in Table 2–9. Truth tables are widely used to

describe the operation of logic circuits, as you will learn in Chapter 3. With two bits, there

is a total of four possible combinations, as shown in the table. This particular table describes

the modulo-2 operation also known as exclusive-OR and can be implemented with a logic

TABLE 2–9

Modulo-2 operation.

Input Bits Output Bit

0 0 0

0 1 1

1 0 1

1 1 0

112 Number Systems, Operations, and Codes

gate that will be introduced in Chapter 3. A simple rule for modulo-2 is that the output is 1

if the inputs are different; otherwise, it is 0.

CRC Process

The process is as follows:

 1. Select a fixed generator code; it can have fewer bits than the data bits to be checked.

This code is understood in advance by both the sending and receiving devices and

must be the same for both.

 2. Append a number of 0s equal to the number of bits in the generator code to the data bits.

 3. Divide the data bits including the appended bits by the generator code bits using

modulo-2.

 4. If the remainder is 0, the data and appended bits are sent as is.

 5. If the remainder is not 0, the appended bits are made equal to the remainder bits in

order to get a 0 remainder before data are sent.

 6. At the receiving end, the receiver divides the incoming appended data bit code by

the same generator code as used by the sender.

 7. If the remainder is 0, there is no error detected (it is possible in rare cases for multi-

ple errors to cancel). If the remainder is not 0, an error has been detected in the trans-

mission and a retransmission is requested by the receiver.

Figure 2–8 illustrates the CRC process.

Remainder � 0

(a) Transmitting end of communication link

Remainder � 0

Append data

bits with

remainder

(initially

with x zeros).

Divide using

modulo-2

subtraction.

Send.

Check

remainder.

Data bits plus

appended bitsData bits plus appended bits

y data bits

x-bit generator code

Remainder � 0

(b) Receiving end of communication link

Remainder � 0

Divide using

modulo-2

subtraction.

Error(s).

Request

retransmission.

No errors.

Process the

data bits.

Check

remainder.

Data bits

x-bit generator code

Data bits plus appended bits

FIGURE 2–8 The CRC process.

 Error Codes 113

EXAMPLE 2–41

Determine the transmitted CRC for the following byte of data (D) and generator code

(G). Verify that the remainder is 0.

D: 11010011

G: 1010

Solution

Since the generator code has four data bits, add four 0s (blue) to the data byte. The

appended data (D9) is

D� = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation until

all bits have been used.

D�

G
=

110100110000

1010

110100110000

1010

 1110

 1010

 1000

 1010

 1011

 1010

 1000

 1010

 100

Remainder = 0100. Since the remainder is not 0, append the data with the four

remainder bits (blue). Then divide by the generator code (red). The transmitted CRC is

110100110100.

110100110100

1010

1110

1010

1000

1010

1011

1010

1010

1010

00

Remainder = 0

Related Problem

Change the generator code to 1100 and verify that a 0 remainder results when the CRC

process is applied to the data byte (11010011).

114 Number Systems, Operations, and Codes

EXAMPLE 2–42

During transmission, an error occurs in the second bit from the left in the appended data

byte generated in Example 2–41. The received data is

D� = 100100110100

Apply the CRC process to the received data to detect the error using the same generator

code (1010).

Solution

100100110100

1010

 1100

 1010

 1101

 1010

 1111

 1010

 1010

 1010

 0100

Remainder = 0100. Since it is not zero, an error is indicated.

Related Problem

Assume two errors in the data byte as follows: 10011011. Apply the CRC process to

check for the errors using the same received data and the same generator code.

Hamming Code

The Hamming code is used to detect and correct a single-bit error in a transmitted code.

To accomplish this, four redundancy bits are introduced in a 7-bit group of data bits. These

redundancy bits are interspersed at bit positions 2n (n = 0, 1, 2, 3) within the original data

bits. At the end of the transmission, the redundancy bits have to be removed from the data

bits. A recent version of the Hamming code places all the redundancy bits at the end of the

data bits, making their removal easier than that of the interspersed bits. A coverage of the

classic Hamming code is available on the website.

SECTION 2–12 CHECKUP

 1. Which odd-parity code is in error?

(a) 1011 (b) 1110 (c) 0101 (d) 1000

 2. Which even-parity code is in error?

 (a) 11000110 (b) 00101000 (c) 10101010 (d) 11111011

 3. Add an even parity bit to the end of each of the following codes.

 (a) 1010100 (b) 0100000 (c) 1110111 (d) 1000110

 4. What does CRC stand for?

 5. Apply modulo-2 operations to determine the following:

 (a) 1 + 1 (b) 1 2 1 (c) 1 2 0 (d) 0 + 1

 Summary 115

SUMMARY

• Abinarynumberisaweightednumberinwhichtheweightofeachwholenumberdigitis
a positive power of two and the weight of each fractional digit is a negative power of two.

The whole number weights increase from right to left—from least significant digit to most

significant.

• Abinarynumbercanbeconvertedtoadecimalnumberbysummingthedecimalvaluesofthe
weights of all the 1s in the binary number.

• Adecimalwholenumbercanbeconvertedtobinarybyusingthesum-of-weightsorthere-

peated division-by-2 method.

• Adecimalfractioncanbeconvertedtobinarybyusingthesum-of-weightsortherepeated
multiplication-by-2 method.

• Thebasicrulesforbinaryadditionareasfollows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

• Thebasicrulesforbinarysubtractionareasfollows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1

• The1’scomplementofabinarynumberisderivedbychanging1sto0sand0sto1s.

• The2’scomplementofabinarynumbercanbederivedbyadding1tothe1’scomplement.

• Binarysubtractioncanbeaccomplishedwithadditionbyusingthe1’sor2’scomplement
method.

• Apositivebinarynumberisrepresentedbya0signbit.

• Anegativebinarynumberisrepresentedbya1signbit.

• Forarithmeticoperations,negativebinarynumbersarerepresentedin1’scomplementor
2’s complement form.

• Inanadditionoperation,anoverflowispossiblewhenbothnumbersarepositiveorwhen
both numbers are negative. An incorrect sign bit in the sum indicates the occurrence of an

overflow.

• Thehexadecimalnumbersystemconsistsof16digitsand characters, 0 through 9 followed by

A through F.

• Onehexadecimaldigitrepresentsa4-bitbinarynumber,anditsprimaryusefulnessisinsimpli-
fying bit patterns and making them easier to read.

• Adecimalnumbercanbeconvertedtohexadecimalbytherepeateddivision-by-16method.

• Theoctalnumbersystemconsistsofeightdigits,0through7.

• Adecimalnumbercanbeconvertedtooctalbyusingtherepeateddivision-by-8method.

• Octal-to-binaryconversionisaccomplishedbysimplyreplacingeachoctaldigitwithits3-bit
binary equivalent. The process is reversed for binary-to-octal conversion.

• AdecimalnumberisconvertedtoBCDbyreplacingeachdecimaldigitwiththeappropriate
4-bit binary code.

• TheASCIIisa7-bitalphanumericcodethatisusedincomputersystemsforinputandoutputof
information.

• Aparitybitisusedtodetectanerrorinacode.

• TheCRC(cyclicredundancycheck)isbasedonpolynomialdivisionusingmodulo-2
 operations.

116 Number Systems, Operations, and Codes

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. The octal number system is a weighted system with eight digits.

 2. The binary number system is a weighted system with two digits.

 3. MSB stands for most significant bit.

 4. In hexadecimal, 9 1 1 = 10.

 5. The 1’s complement of the binary number 1010 is 0101.

 6. The 2’s complement of the binary number 1111 is 0000.

 7. The right-most bit in a signed binary number is the sign bit.

 8. The hexadecimal number system has 16 characters, six of which are alphabetic characters.

 9. BCD stands for binary coded decimal.

 10. An error in a given code can be detected by verifying the parity bit.

 11. CRC stands for cyclic redundancy check.

 12. The modulo-2 sum of 11 and 10 is 100.

SELF-TEST

Answers are at the end of the chapter.

 1. 3 * 101 + 4 * 100 is

(a) 0.34 (b) 3.4 (c) 34 (d) 340

 2. The decimal equivalent of 1000 is

(a) 2 (b) 4 (c) 6 (d) 8

 3. The binary number 11011101 is equal to the decimal number

(a) 121 (b) 221 (c) 441 (d) 256

 4. The decimal number 21 is equivalent to the binary number

(a) 10101 (b) 10001 (c) 10000 (d) 11111

 5. The decimal number 250 is equivalent to the binary number

(a) 11111010 (b) 11110110 (c) 11111000 (d) 11111011

 6. The sum of 1111 1 1111 in binary equals

(a) 0000 (b) 2222 (c) 11110 (d) 11111

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Alphanumeric Consisting of numerals, letters, and other characters.

ASCII American Standard Code for Information Interchange; the most widely used alphanumeric

code.

BCD Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9, is

represented by a group of four bits.

Byte A group of eight bits.

Cyclic redundancy check (CRC) A type of error detection code.

Floating-point number A number representation based on scientific notation in which the

number consists of an exponent and a mantissa.

Hexadecimal Describes a number system with a base of 16.

LSB Least significant bit; the right-most bit in a binary whole number or code.

MSB Most significant bit; the left-most bit in a binary whole number or code.

Octal Describes a number system with a base of eight.

Parity In relation to binary codes, the condition of evenness or oddness of the number of 1s in a

code group.

 Problems 117

 7. The difference of 1000 2 100 equals

(a) 100 (b) 101 (c) 110 (d) 111

 8. The 1’s complement of 11110000 is

(a) 11111111 (b) 11111110 (c) 00001111 (d) 10000001

 9. The 2’s complement of 11001100 is

(a) 00110011 (b) 00110100 (c) 00110101 (d) 00110110

 10. The decimal number 1122 is expressed in the 2’s complement form as

(a) 01111010 (b) 11111010 (c) 01000101 (d) 10000101

 11. The decimal number 234 is expressed in the 2’s complement form as

(a) 01011110 (b) 10100010 (c) 11011110 (d) 01011101

 12. A single-precision floating-point binary number has a total of

(a) 8 bits (b) 16 bits (c) 24 bits (d) 32 bits

 13. In the 2’s complement form, the binary number 10010011 is equal to the decimal number

(a) 219 (b) +109 (c) +91 (d) 2109

 14. The binary number 101100111001010100001 can be written in octal as

(a) 54712308 (b) 54712418 (c) 26345218 (d) 231625018

 15. The binary number 10001101010001101111 can be written in hexadecimal as

(a) AD46716 (b) 8C46F16 (c) 8D46F16 (d) AE46F16

 16. The binary number for F7A916 is

(a) 1111011110101001 (b) 1110111110101001

(c) 1111111010110001 (d) 1111011010101001

 17. The BCD number for decimal 473 is

(a) 111011010 (b) 110001110011 (c) 010001110011 (d) 010011110011

 18. Refer to Table 2–7. The command STOP in ASCII is

(a) 1010011101010010011111010000 (b) 1010010100110010011101010000

(c) 1001010110110110011101010001 (d) 1010011101010010011101100100

 19. The code that has an even-parity error is

(a) 1010011 (b) 1101000 (c) 1001000 (d) 1110111

 20. In the cyclic redundancy check, the absence of errors is indicated by

(a) Remainder = generator code (b) Remainder = 0

(c) Remainder = 1 (d) Quotient = 0

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 2–1 Decimal Numbers

 1. What is the weight of 7 in each of the following decimal numbers?

(a) 1947 (b) 1799 (c) 1979

 2. Express each of the following decimal numbers as a power of ten:

(a) 1000 (b) 10000000 (c) 1000000000

 3. Give the value of each digit in the following decimal numbers:

(a) 263 (b) 5436 (c) 234543

 4. How high can you count with six decimal digits?

Section 2–2 Binary Numbers

 5. Convert the following binary numbers to decimal:

(a) 001 (b) 010 (c) 101 (d) 110

(e) 1010 (f) 1011 (g) 1110 (h) 1111

 6. Convert the following binary numbers into decimal:

(a) 100001 (b) 100111 (c) 101010 (d) 111001

(e) 1100000 (f) 11111101 (g) 11110010 (h) 11111111

118 Number Systems, Operations, and Codes

 7. Convert each binary number to decimal:

(a) 110011.11 (b) 101010.01 (c) 1000001.111

(d) 1111000.101 (e) 1011100.10101 (f) 1110001.0001

(g) 1011010.1010 (h) 1111111.11111

 8. What is the highest decimal number that can be represented by each of the following numbers

of binary digits (bits)?

(a) two (b) three (c) four (d) five (e) six

(f) seven (g) eight (h) nine (i) ten (j) eleven

 9. How many bits are required to represent the following decimal numbers?

(a) 5 (b) 10 (c) 15 (d) 20

(e) 100 (f) 120 (g) 140 (h) 160

 10. Generate the binary sequence for each decimal sequence:

(a) 0 through 7 (b) 8 through 15 (c) 16 through 31

(d) 32 through 63 (e) 64 through 75

Section 2–3 Decimal-to-Binary Conversion

 11. Convert each decimal number to binary by using the sum-of-weights method:

(a) 12 (b) 15 (c) 25 (d) 50

(e) 65 (f) 97 (g) 127 (h) 198

 12. Convert each decimal fraction to binary using the sum-of-weights method:

(a) 0.26 (b) 0.762 (c) 0.0975

 13. Convert each decimal number to binary using repeated division by 2:

(a) 13 (b) 17 (c) 23 (d) 30

(e) 35 (f) 40 (g) 49 (h) 60

 14. Convert each decimal fraction to binary using repeated multiplication by 2:

(a) 0.76 (b) 0.456 (c) 0.8732

Section 2–4 Binary Arithmetic

 15. Add the binary numbers:

(a) 10 + 10 (b) 10 + 11 (c) 100 + 11

(d) 111 + 101 (e) 1111 + 111 (f) 1111 + 1111

 16. Use direct subtraction on the following binary numbers:

(a) 10 - 1 (b) 100 - 11 (c) 110 - 100

(d) 1111 - 11 (e) 1101 - 101 (f) 110000 - 1111

 17. Perform the following binary multiplications:

(a) 11 * 10 (b) 101 * 11 (c) 111 * 110

(d) 1100 * 101 (e) 1110 * 1110 (f) 1111 * 1100

 18. Divide the binary numbers as indicated:

(a) 110 , 11 (b) 1010 , 10 (c) 1111 , 101

Section 2–5 Complements of Binary Numbers

 19. What are two ways of representing zero in 1’s complement form?

 20. How is zero represented in 2’s complement form?

 21. Determine the 1’s complement of each binary number:

(a) 100 (b) 111 (c) 1100

(d) 10111011 (e) 1001010 (f) 10101010

 22. Determine the 2’s complement of each binary number using either method:

(a) 11 (b) 110 (c) 1010 (d) 1001

(e) 101010 (f) 11001 (g) 11001100 (h) 11000111

 Problems 119

Section 2–6 Signed Numbers

 23. Express each decimal number in binary as an 8-bit sign-magnitude number:

(a) +29 (b) 285 (c) +100 (d) 2123

 24. Express each decimal number as an 8-bit number in the 1’s complement form:

(a) 234 (b) +57 (c) 299 (d) +115

 25. Express each decimal number as an 8-bit number in the 2’s complement form:

(a) +12 (b) 268 (c) +101 (d) 2125

 26. Determine the decimal value of each signed binary number in the sign-magnitude form:

(a) 10011001 (b) 01110100 (c) 10111111

 27. Determine the decimal value of each signed binary number in the 1’s complement form:

(a) 10011001 (b) 01110100 (c) 10111111

 28. Determine the decimal value of each signed binary number in the 2’s complement form:

(a) 10011001 (b) 01110100 (c) 10111111

 29. Express each of the following sign-magnitude binary numbers in single-precision floating-

point format:

(a) 0111110000101011 (b) 100110000011000

 30. Determine the values of the following single-precision floating-point numbers:

(a) 1 10000001 01001001110001000000000

(b) 0 11001100 10000111110100100000000

Section 2–7 Arithmetic Operations with Signed Numbers

 31. Convert each pair of decimal numbers to binary and add using the 2’s complement form:

(a) 33 and 15 (b) 56 and 227 (c) 246 and 25 (d) 2110 and 284

 32. Perform each addition in the 2’s complement form:

(a) 00010110 + 00110011 (b) 01110000 + 10101111

 33. Perform each addition in the 2’s complement form:

(a) 10001100 + 00111001 (b) 11011001 + 11100111

 34. Perform each subtraction in the 2’s complement form:

(a) 00110011 2 00010000 (b) 01100101 2 11101000

 35. Multiply 01101010 by 11110001 in the 2’s complement form.

 36. Divide 10001000 by 00100010 in the 2’s complement form.

Section 2–8 Hexadecimal Numbers

 37. Convert each hexadecimal number to binary:

(a) 4616 (b) 5416 (c) B416 (d) 1A316

(e) FA16 (f) ABC16 (g) ABCD16

 38. Convert each binary number to hexadecimal:

(a) 1111 (b) 1011 (c) 11111

(d) 10101010 (e) 10101100 (f) 10111011

 39. Convert each hexadecimal number to decimal:

(a) 4216 (b) 6416 (c) 2B16 (d) 4D16

(e) FF16 (f) BC16 (g) 6F116 (h) ABC16

 40. Convert each decimal number to hexadecimal:

(a) 10 (b) 15 (c) 32 (d) 54

(e) 365 (f) 3652 (g) 7825 (h) 8925

 41. Perform the following additions:

(a) 2516 + 3316 (b) 4316 + 6216 (c) A416 + F516 (d) FC16 + AE16

 42. Perform the following subtractions:

(a) 6016 2 3916 (b) A516 2 9816 (c) F116 2 A616 (d) AC16 2 1016

120 Number Systems, Operations, and Codes

Section 2–9 Octal Numbers

 43. Convert each octal number to decimal:

(a) 148 (b) 538 (c) 678 (d) 1748

(e) 6358 (f) 2548 (g) 26738 (h) 77778

 44. Convert each decimal number to octal by repeated division by 8:

(a) 23 (b) 45 (c) 65 (d) 84

(e) 124 (f) 156 (g) 654 (h) 9999

 45. Convert each octal number into binary:

(a) 178 (b) 268 (c) 1458 (d) 4568

(e) 6538 (f) 7778

 46. Convert each binary number to octal:

(a) 100 (b) 110 (c) 1100

(d) 1111 (e) 11001 (f) 11110

(g) 110011 (h) 101010 (i) 10101111

Section 2–10 Binary Coded Decimal (BCD)

 47. Convert each of the following decimal numbers to 8421 BCD:

(a) 10 (b) 13 (c) 18 (d) 21 (e) 25 (f) 36

(g) 44 (h) 57 (i) 69 (j) 98 (k) 125 (l) 156

 48. Convert each of the decimal numbers in Problem 47 to straight binary, and compare the

number of bits required with that required for BCD.

 49. Convert the following decimal numbers to BCD:

(a) 104 (b) 128 (c) 132 (d) 150 (e) 186

(f) 210 (g) 359 (h) 547 (i) 1051

 50. Convert each of the BCD numbers to decimal:

(a) 0001 (b) 0110 (c) 1001

(d) 00011000 (e) 00011001 (f) 00110010

(g) 01000101 (h) 10011000 (i) 100001110000

 51. Convert each of the BCD numbers to decimal:

(a) 10000000 (b) 001000110111

(c) 001101000110 (d) 010000100001

(e) 011101010100 (f) 100000000000

(g) 100101111000 (h) 0001011010000011

(i) 1001000000011000 (j) 0110011001100111

 52. Add the following BCD numbers:

(a) 0010 + 0001 (b) 0101 + 0011

(c) 0111 + 0010 (d) 1000 + 0001

(e) 00011000 + 00010001 (f) 01100100 + 00110011

(g) 01000000 + 01000111 (h) 10000101 + 00010011

 53. Add the following BCD numbers:

(a) 1000 + 0110 (b) 0111 + 0101

(c) 1001 + 1000 (d) 1001 + 0111

(e) 00100101 + 00100111 (f) 01010001 + 01011000

(g) 10011000 + 10010111 (h) 010101100001 + 011100001000

 54. Convert each pair of decimal numbers to BCD, and add as indicated:

(a) 4 + 3 (b) 5 + 2 (c) 6 + 4 (d) 17 + 12

(e) 28 + 23 (f) 65 + 58 (g) 113 + 101 (h) 295 + 157

Section 2–11 Digital Codes

 55. In a certain application a 4-bit binary sequence cycles from 1111 to 0000 periodically. There

are four bit changes, and because of circuit delays, these changes may not occur at the same

 Answers 121

instant. For example, if the LSB changes first, the number will appear as 1110 during the

transition from 1111 to 0000 and may be misinterpreted by the system. Illustrate how the Gray

code avoids this problem.

 56. Convert each binary number to Gray code:

(a) 11011 (b) 1001010 (c) 1111011101110

 57. Convert each Gray code to binary:

(a) 1010 (b) 00010 (c) 11000010001

 58. Convert each of the following decimal numbers to ASCII. Refer to Table 2–7.

(a) 1 (b) 3 (c) 6 (d) 10 (e) 18

(f) 29 (g) 56 (h) 75 (i) 107

 59. Determine each ASCII character. Refer to Table 2–7.

(a) 0011000 (b) 1001010 (c) 0111101

(d) 0100011 (e) 0111110 (f) 1000010

 60. Decode the following ASCII coded message:

1001000 1100101 1101100 1101100 1101111 0101110

0100000 1001000 1101111 1110111 0100000 1100001

1110010 1100101 0100000 1111001 1101111 1110101

0111111

 61. Write the message in Problem 60 in hexadecimal.

 62. Convert the following statement to ASCII:

30 INPUT A, B

Section 2–12 Error Codes

 63. Determine which of the following even parity codes are in error:

(a) 100110010 (b) 011101010 (c) 10111111010001010

 64. Determine which of the following odd parity codes are in error:

(a) 11110110 (b) 00110001 (c) 01010101010101010

 65. Attach the proper even parity bit to each of the following bytes of data:

(a) 10100100 (b) 00001001 (c) 11111110

 66. Apply modulo-2 to the following:

(a) 1100 + 1011 (b) 1111 + 0100 (c) 10011001 + 100011100

 67. Verify that modulo-2 subtraction is the same as modulo-2 addition by adding the result of each

operation in problem 66 to either of the original numbers to get the other number. This will

show that the result is the same as the difference of the two numbers.

 68. Apply CRC to the data bits 10110010 using the generator code 1010 to produce the transmitted

CRC code.

 69. Assume that the code produced in problem 68 incurs an error in the most significant bit during

transmission. Apply CRC to detect the error.

ANSWERS

SECTION CHECKUPS

Section 2–1 Decimal Numbers

 1. (a) 1370: 10 (b) 6725: 100 (c) 7051: 1000 (d) 58.72: 0.1

 2. (a) 51 = (5 * 10) + (1 * 1)

(b) 137 = (1 * 100) + (3 * 10) + (7 * 1)

(c) 1492 = (1 * 1000) + (4 * 100) + (9 * 10) + (2 * 1)

(d) 106.58 = (1 * 100) + (0 * 10) + (6 * 1) + (5 * 0.1) + (8 * 0.01)

122 Number Systems, Operations, and Codes

Section 2–2 Binary Numbers

 1. 28 - 1 = 255

 2. Weight is 16.

 3. 10111101.011 = 189.375

Section 2–3 Decimal-to-Binary Conversion

 1. (a) 23 = 10111 (b) 57 = 111001 (c) 45.5 = 101101.1

 2. (a) 14 = 1110 (b) 21 = 10101 (c) 0.375 = 0.011

Section 2–4 Binary Arithmetic

 1. (a) 1101 + 1010 = 10111 (b) 10111 + 01101 = 100100

 2. (a) 1101 - 0100 = 1001 (b) 1001 - 0111 = 0010

 3. (a) 110 * 111 = 101010 (b) 1100 , 011 = 100

Section 2–5 Complements of Binary Numbers

 1. (a) 1’s comp of 00011010 = 11100101 (b) 1’s comp of 11110111 = 00001000

(c) 1’s comp of 10001101 = 01110010

 2. (a) 2’s comp of 00010110 = 11101010 (b) 2’s comp of 11111100 = 00000100

(c) 2’s comp of 10010001 = 01101111

Section 2–6 Signed Numbers

 1. Sign-magnitude: +9 = 00001001

 2. 1’s comp: -33 = 11011110

 3. 2’s comp: -46 = 11010010

 4. Sign bit, exponent, and mantissa

Section 2–7 Arithmetic Operations with Signed Numbers

 1. Cases of addition: positive number is larger, negative number is larger, both are positive, both

are negative

 2. 00100001 + 10111100 = 11011101

 3. 01110111 - 00110010 = 01000101

 4. Sign of product is positive.

 5. 00000101 * 01111111 = 01001111011

 6. Sign of quotient is negative.

 7. 00110000 , 00001100 = 00000100

Section 2–8 Hexadecimal Numbers

 1. (a) 10110011 = B316 (b) 110011101000 = CE816

 2. (a) 5716 = 01010111 (b) 3A516 = 001110100101

(c) F8OB16 = 1111100000001011

 3. 9B3016 = 39,72810

 4. 57310 = 23D16

 5. (a) 1816 + 3416 = 4C16 (b) 3F16 + 2A16 = 6916

 6. (a) 7516 - 2116 = 5416 (b) 9416 - 5C16 = 3816

Section 2–9 Octal Numbers

 1. (a) 738 = 5910 (b) 1258 = 8510

 2. (a) 9810 = 1428 (b) 16310 = 2438

 Answers 123

 3. (a) 468 = 100110 (b) 7238 = 111010011 (c) 56248 = 101110010100

 4. (a) 110101111 = 6578 (b) 1001100010 = 11428 (c) 10111111001 = 27718

Section 2–10 Binary Coded Decimal (BCD)

 1. (a) 0010: 2 (b) 1000: 8 (c) 0001: 1 (d) 0100: 4

 2. (a) 610 = 0110 (b) 1510 = 00010101 (c) 27310 = 001001110011

(d) 84910 = 100001001001

 3. (a) 10001001 = 8910 (b) 001001111000 = 27810 (c) 000101010111 = 15710

 4. A 4-bit sum is invalid when it is greater than 910.

Section 2–11 Digital Codes

 1. (a) 11002 = 1010 Gray (b) 10102 = 1111 Gray (c) 110102 = 10111 Gray

 2. (a) 1000 Gray = 11112 (b) 1010 Gray = 11002 (c) 11101 Gray = 101102

 3. (a) K: 1001011 S 4B16 (b) r: 1110010 S 7216

(c) $: 0100100 S 2416 (d) + : 0101011 S 2B16

Section 2–12 Error Codes

 1. (c) 0101 has an error.

 2. (d) 11111011 has an error.

 3. (a) 10101001 (b) 01000001 (c) 11101110 (d) 10001101

 4. Cyclic redundancy check

 5. (a) 0 (b) 0 (c) 1 (d) 1

RELATED PROBLEMS FOR EXAMPLES

 2–1 9 has a value of 900, 3 has a value of 30, 9 has a value of 9.

 2–2 6 has a value of 60, 7 has a value of 7, 9 has a value of 9/10 (0.9), 2 has a value of 2/100

(0.02), 4 has a value of 4/1000 (0.004).

 2–3 10010001 = 128 + 16 + 1 = 145

 2–4 10.111 = 2 + 0.5 + 0.25 + 0.125 = 2.875

 2–5 125 = 64 + 32 + 16 + 8 + 4 + 1 = 1111101

 2–6 39 = 100111

 2–7 1111 + 1100 = 11011

 2–8 111 - 100 = 011

 2–9 110 - 101 = 001

 2–10 1101 * 1010 = 10000010

 2–11 1100 , 100 = 11

 2–12 00110101

 2–13 01000000

 2–14 See Table 2–10.

TABLE 2–10

Sign-Magnitude 1’s Comp 2’s Comp

+19 00010011 00010011 00010011

-19 10010011 11101100 11101101

 2–15 01110111 = +11910

 2–16 11101011 = -2010

 2–17 11010111 = -4110

124 Number Systems, Operations, and Codes

 2–18 11000010001010011000000000

 2–19 01010101

 2–20 00010001

 2–21 1001000110

 2–22 (83)(-59) = -4897 (10110011011111 in 2’s comp)

 2–23 100 , 25 = 4 (0100)

 2–24 4F79C16

 2–25 01101011110100112

 2–26 6BD16 = 011010111101 = 210 + 29 + 27 + 25 + 24 + 23 + 22 + 20

 = 1024 + 512 + 128 + 32 + 16 + 8 + 4 + 1 = 172510

 2–27 60A16 = (6 * 256) + (0 * 16) + (10 * 1) = 154610

 2–28 259110 = A1F16

 2–29 4C16 + 3A16 = 8616

 2–30 BCD16 - 17316 = A5A16

 2–31 (a) 0010112 = 1110 = 138 (b) 0101012 = 2110 = 258

(c) 0011000002 = 9610 = 1408 (d) 1111010101102 = 392610 = 75268

 2–32 12507628

 2–33 1001011001110011

 2–34 82,27610

 2–35 1001100101101000

 2–36 10000010

 2–37 (a) 111011 (Gray) (b) 1110102

 2–38 The sequence of codes for if (y < 8) is 691666162016281679163C1638162916

 2–39 01001011

 2–40 Yes

 2–41 A 0 remainder results

 2–42 Errors are indicated.

TRUE/FALSE QUIZ

 1. T 2. T 3. T 4. F 5. T 6. F 7. F 8. T 9. T 10. T

 11. T 12. F

SELF-TEST

 1. (c) 2. (d) 3. (b) 4. (a) 5. (a) 6. (c) 7. (a) 8. (c)

 9. (b) 10. (a) 11. (c) 12. (d) 13. (d) 14. (b) 15. (c) 16. (a)

 17. (c) 18. (a) 19. (b) 20. (b)

125

CHAPTER OUTLINE

3–1 The Inverter

3–2 The AND Gate

3–3 The OR Gate

3–4 The NAND Gate

3–5 The NOR Gate

3–6 The Exclusive-OR and Exclusive-NOR Gates

3–7 Programmable Logic

3–8 Fixed-Function Logic Gates

3–9 Troubleshooting

CHAPTER OBJECTIVES

■ Describe the operation of the inverter, the AND

gate, and the OR gate

■ Describe the operation of the NAND gate and the

NOR gate

■ Express the operation of NOT, AND, OR, NAND,

and NOR gates with Boolean algebra

■ Describe the operation of the exclusive-OR and

exclusive-NOR gates

■ Use logic gates in simple applications

■ Recognize and use both the distinctive shape logic

gate symbols and the rectangular outline logic gate

symbols of ANSI/IEEE Standard 91-1984/Std.

91a-1991

■ Construct timing diagrams showing the proper time

relationships of inputs and outputs for the various

logic gates

■ Discuss the basic concepts of programmable logic

■ Make basic comparisons between the major IC

technologies—CMOS and bipolar (TTL)

■ Explain how the different series within the CMOS

and bipolar (TTL) families differ from each other

■ Define propagation delay time, power dissipation,
speed-power product, and fan-out in relation to

logic gates

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The emphasis in this chapter is on the operation,

 application, and troubleshooting of logic gates. The

relationship of input and output waveforms of a gate

using timing diagrams is thoroughly covered.

Logic symbols used to represent the logic gates

are in accordance with ANSI/IEEE Standard 91-1984/

Std. 91a-1991. This standard has been adopted by

private industry and the military for use in internal

documentation as well as published literature.

■ Inverter

■ Truth table

■ Boolean algebra

■ Complement

■ AND gate

■ OR gate

■ NAND gate

■ NOR gate

■ Exclusive-OR gate

■ Exclusive-NOR gate

■ AND array

■ Fuse

■ Antifuse

■ EPROM

■ EEPROM

■ Flash

■ SRAM

■ Target device

■ JTAG

■ VHDL

■ CMOS

■ Bipolar

■ Propagation delay

time

■ Fan-out

■ Unit load

■ List specific fixed-function integrated circuit devices

that contain the various logic gates

■ Troubleshoot logic gates for opens and shorts by

using the oscilloscope

KEY TERMS

Key terms are in order of appearance in the chapter.

Logic Gates

3CHAPTER

126 Logic Gates

3–1 The Inverter

The inverter (NOT circuit) performs the operation called inversion or complementation. The

inverter changes one logic level to the opposite level. In terms of bits, it changes a 1 to a 0

and a 0 to a 1.

After completing this section, you should be able to

u Identify negation and polarity indicators

u Identify an inverter by either its distinctive shape symbol or its rectangular outline

symbol

u Produce the truth table for an inverter

u Describe the logical operation of an inverter

Standard logic symbols for the inverter are shown in Figure 3–1. Part (a) shows the

distinctive shape symbols, and part (b) shows the rectangular outline symbols. In this

textbook, distinctive shape symbols are generally used; however, the rectangular outline

symbols are found in many industry publications, and you should become familiar with

them as well. (Logic symbols are in accordance with ANSI/IEEE Standard 91-1984 and

its supplement Standard 91a-1991.)

Both fixed-function logic and programmable

logic are discussed in this chapter. Because inte-

grated circuits (ICs) are used in all applications,

the logic function of a device is generally of greater

importance to the technician or technologist than

the details of the component-level circuit operation

within the IC package. Therefore, detailed cover-

age of the devices at the component level can

be treated as an optional topic. Digital integrated

circuit technologies are discussed in Chapter 15

on the website, all or parts of which may be intro-

duced at appropriate points throughout the text.

Suggestion: Review Section 1–3 before you start

this chapter.

(a) Distinctive shape symbols

with negation indicators

(b) Rectangular outline symbols

with polarity indicators

1

1

FIGURE 3–1 Standard logic symbols for the inverter (ANSI/IEEE Std. 91-1984/

Std. 91a-1991).

The Negation and Polarity Indicators

The negation indicator is a “bubble” () that indicates inversion or complementation when

it appears on the input or output of any logic element, as shown in Figure 3–1(a) for the

inverter. Generally, inputs are on the left of a logic symbol and the output is on the right.

When appearing on the input, the bubble means that a 0 is the active or asserted input state,

and the input is called an active-LOW input. When appearing on the output, the bubble

means that a 0 is the active or asserted output state, and the output is called an active-

LOW output. The absence of a bubble on the input or output means that a 1 is the active or

asserted state, and in this case, the input or output is called active-HIGH.

 The Inverter 127

The polarity or level indicator is a “triangle” () that indicates inversion when it

appears on the input or output of a logic element, as shown in Figure 3–1(b). When appear-

ing on the input, it means that a LOW level is the active or asserted input state. When

appearing on the output, it means that a LOW level is the active or asserted output state.

Either indicator (bubble or triangle) can be used both on distinctive shape symbols and

on rectangular outline symbols. Figure 3–1(a) indicates the principal inverter symbols used

in this text. Note that a change in the placement of the negation or polarity indicator does

not imply a change in the way an inverter operates.

Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW level will appear on its output.

When a LOW level is applied to its input, a HIGH will appear on its output. This operation

is summarized in Table 3–1, which shows the output for each possible input in terms of

levels and corresponding bits. A table such as this is called a truth table.

Inverter Operation

Figure 3–2 shows the output of an inverter for a pulse input, where t1 and t2 indicate the

corresponding points on the input and output pulse waveforms.

When the input is LOW, the output is HIGH; when the input is HIGH, the output

is LOW, thereby producing an inverted output pulse.

TABLE 3–1

Inverter truth table.

Input Output

LOW (0) HIGH (1)

HIGH (1) LOW (0)

HIGH (1) HIGH (1)

LOW (0)
t1 t2

Input pulse

LOW (0)
t1 t2

Output pulse

FIGURE 3–2 Inverter operation with a pulse input. Open file F03-02 to verify inverter

operation. A Multisim tutorial is available on the website.

Timing Diagrams

Recall from Chapter 1 that a timing diagram is basically a graph that accurately displays

the relationship of two or more waveforms with respect to each other on a time basis. For

example, the time relationship of the output pulse to the input pulse in Figure 3–2 can be

shown with a simple timing diagram by aligning the two pulses so that the occurrences of

the pulse edges appear in the proper time relationship. The rising edge of the input pulse

and the falling edge of the output pulse occur at the same time (ideally). Similarly, the fall-

ing edge of the input pulse and the rising edge of the output pulse occur at the same time

(ideally). This timing relationship is shown in Figure 3–3. In practice, there is a very small

delay from the input transition until the corresponding output transition. Timing diagrams

are especially useful for illustrating the time relationship of digital waveforms with mul-

tiple pulses.

A timing diagram shows how two or
more waveforms relate in time.

t1 t2

Input

Output

FIGURE 3–3 Timing diagram

for the case in Figure 3–2.

EXAMPLE 3–1

A waveform is applied to an inverter in Figure 3–4. Determine the output waveform

corresponding to the input and show the timing diagram. According to the placement of

the bubble, what is the active output state?

 0
Input Output

1

FIGURE 3–4

128 Logic Gates

Logic Expression for an Inverter

In Boolean algebra, which is the mathematics of logic circuits and will be covered thor-

oughly in Chapter 4, a variable is generally designated by one or two letters although there

can be more. Letters near the beginning of the alphabet usually designate inputs, while let-

ters near the end of the alphabet usually designate outputs. The complement of a variable

is designated by a bar over the letter. A variable can take on a value of either 1 or 0. If a

given variable is 1, its complement is 0 and vice versa.

The operation of an inverter (NOT circuit) can be expressed as follows: If the input vari-

able is called A and the output variable is called X, then

X = A

This expression states that the output is the complement of the input, so if A = 0, then X = 1,

and if A = 1, then X = 0. Figure 3–6 illustrates this. The complemented variable A can

be read as “A bar” or “not A.”

An Application

Figure 3–7 shows a circuit for producing the 1’s complement of an 8-bit binary number.

The bits of the binary number are applied to the inverter inputs and the 1’s complement of

the number appears on the outputs.

Solution

The output waveform is exactly opposite to the input (inverted), as shown in Figure 3–5,

which is the basic timing diagram. The active or asserted output state is 0.

1

0
Input

1

0
Output

FIGURE 3–5

Related Problem*

If the inverter is shown with the negative indicator (bubble) on the input instead of the

output, how is the timing diagram affected?

*Answers are at the end of the chapter.

Boolean algebra uses variables and
operators to describe a logic circuit.

X = AA

FIGURE 3–6 The inverter

complements an input variable.

1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

0

Binary number

1’s complement

FIGURE 3–7 Example of a 1’s complement circuit using inverters.

 The AND Gate 129

Operation of an AND Gate

An AND gate produces a HIGH output only when all of the inputs are HIGH. When any

of the inputs is LOW, the output is LOW. Therefore, the basic purpose of an AND gate is to

determine when certain conditions are simultaneously true, as indicated by HIGH levels on

all of its inputs, and to produce a HIGH on its output to indicate that all these conditions are

SECTION 3–1 CHECKUP

Answers are at the end of the chapter.

 1. When a 1 is on the input of an inverter, what is the output?

 2. An active-HIGH pulse (HIGH level when asserted, LOW level when not) is required

on an inverter input.

(a) Draw the appropriate logic symbol, using the distinctive shape and the negation

indicator, for the inverter in this application.

(b) Describe the output when a positive-going pulse is applied to the input of an

inverter.

3–2 The AND Gate

The AND gate is one of the basic gates that can be combined to form any logic func-

tion. An AND gate can have two or more inputs and performs what is known as logical

multiplication.

After completing this section, you should be able to

u Identify an AND gate by its distinctive shape symbol or by its rectangular outline

symbol

u Describe the operation of an AND gate

u Generate the truth table for an AND gate with any number of inputs

u Produce a timing diagram for an AND gate with any specified input waveforms

u Write the logic expression for an AND gate with any number of inputs

u Discuss examples of AND gate applications

The term gate was introduced in Chapter 1 and is used to describe a circuit that performs

a basic logic operation. The AND gate is composed of two or more inputs and a single out-

put, as indicated by the standard logic symbols shown in Figure 3–8. Inputs are on the left,

and the output is on the right in each symbol. Gates with two inputs are shown; however,

an AND gate can have any number of inputs greater than one. Although examples of both

distinctive shape symbols and rectangular outline symbols are shown, the distinctive shape

symbol, shown in part (a), is used predominantly in this book.

InfoNote

Logic gates are one of the funda-

mental building blocks of digital

systems. Most of the functions

in a computer, with the exception

of certain types of memory, are

implemented with logic gates used

on a very large scale. For example,

a microprocessor, which is the

main part of a computer, is made

up of hundreds of thousands or

even millions of logic gates.

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the

AND (&) qualifying symbol

&

FIGURE 3–8 Standard logic symbols for the AND gate showing two inputs (ANSI/IEEE

Std. 91-1984/Std. 91a-1991).

An AND gate can have more than
two inputs.

130 Logic Gates

true. The inputs of the 2-input AND gate in Figure 3–8 are labeled A and B, and the output

is labeled X. The gate operation can be stated as follows:

For a 2-input AND gate, output X is HIGH only when inputs A and B are HIGH;

X is LOW when either A or B is LOW, or when both A and B are LOW.

Figure 3–9 illustrates a 2-input AND gate with all four possibilities of input combina-

tions and the resulting output for each.

AND Gate Truth Table

The logical operation of a gate can be expressed with a truth table that lists all input combina-

tions with the corresponding outputs, as illustrated in Table 3–2 for a 2-input AND gate. The

truth table can be expanded to any number of inputs. Although the terms HIGH and LOW tend

to give a “physical” sense to the input and output states, the truth table is shown with 1s and

0s; a HIGH is equivalent to a 1 and a LOW is equivalent to a 0 in positive logic. For any AND

gate, regardless of the number of inputs, the output is HIGH only when all inputs are HIGH.

The total number of possible combinations of binary inputs to a gate is determined by

the following formula:

 N � 2n Equation 3–1

where N is the number of possible input combinations and n is the number of input vari-

ables. To illustrate,

For two input variables: N = 22
= 4 combinations

For three input variables: N = 23
= 8 combinations

For four input variables: N = 24
= 16 combinations

You can determine the number of input bit combinations for gates with any number of

inputs by using Equation 3–1.

TABLE 3–2

Truth table for a 2-input
AND gate.

Inputs Output

A B X

0 0 0

0 1 0

1 0 0

1 1 1

1 = HIGH, 0 = LOW

For an AND gate, all HIGH inputs
produce a HIGH output.

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
LOW (0)

FIGURE 3–9 All possible logic levels for a 2-input AND gate. Open file F03-09 to verify

AND gate operation.

TABLE 3–3

Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

EXAMPLE 3–2

(a) Develop the truth table for a 3-input AND gate.

(b) Determine the total number of possible input combinations for a 4-input AND gate.

Solution

(a) There are eight possible input combinations (23
= 8) for a 3-input AND gate. The

input side of the truth table (Table 3–3) shows all eight combinations of three bits.

The output side is all 0s except when all three input bits are 1s.

(b) N = 24
= 16. There are 16 possible combinations of input bits for a 4-input

AND gate.

Related Problem

Develop the truth table for a 4-input AND gate.

 The AND Gate 131

AND Gate Operation with Waveform Inputs

In most applications, the inputs to a gate are not stationary levels but are voltage waveforms

that change frequently between HIGH and LOW logic levels. Now let’s look at the operation of

AND gates with pulse waveform inputs, keeping in mind that an AND gate obeys the truth table

operation regardless of whether its inputs are constant levels or levels that change back and forth.

Let’s examine the waveform operation of an AND gate by looking at the inputs with

respect to each other in order to determine the output level at any given time. In Figure 3–10,

inputs A and B are both HIGH (1) during the time interval, t1, making output X HIGH (1)

during this interval. During time interval t2, input A is LOW (0) and input B is HIGH (1),

so the output is LOW (0). During time interval t3, both inputs are HIGH (1) again, and

therefore the output is HIGH (1). During time interval t4, input A is HIGH (1) and input B

is LOW (0), resulting in a LOW (0) output. Finally, during time interval t5, input A is LOW

(0), input B is LOW (0), and the output is therefore LOW (0). As you know, a diagram of

input and output waveforms showing time relationships is called a timing diagram.

1
A

0 1 1 0

1
B

1 1 0 0

1
X

0 1 0 0

t
1

t
2

t
3

t
4

t
5

A

B
X

FIGURE 3–10 Example of AND gate operation with a timing diagram showing input and

output relationships.

EXAMPLE 3–3

If two waveforms, A and B, are applied to the AND gate inputs as in Figure 3–11, what

is the resulting output waveform?

HIGH

LOW
B

A

B
X

HIGH

LOW

HIGH

LOW

A and B are both HIGH during these four time intervals;

therefore, X is HIGH.

A

X

FIGURE 3–11

Solution

The output waveform X is HIGH only when both A and B waveforms are HIGH as

shown in the timing diagram in Figure 3–11.

Related Problem

Determine the output waveform and show a timing diagram if the second and fourth

pulses in waveform A of Figure 3–11 are replaced by LOW levels.

132 Logic Gates

Remember, when analyzing the waveform operation of logic gates, it is important to

pay careful attention to the time relationships of all the inputs with respect to each other

and to the output.

EXAMPLE 3–4

For the two input waveforms, A and B, in Figure 3–12, show the output waveform with

its proper relation to the inputs.

A
HIGH

LOW
Inputs

B
HIGH

LOW

HIGH

LOW
Output

A

B
X

X

FIGURE 3–12

Solution

The output waveform is HIGH only when both of the input waveforms are HIGH as

shown in the timing diagram.

Related Problem

Show the output waveform if the B input to the AND gate in Figure 3–12 is always

HIGH.

EXAMPLE 3–5

For the 3-input AND gate in Figure 3–13, determine the output waveform in relation to

the inputs.

 B

 A

 C

 X

A

C

XB

FIGURE 3–13

Solution

The output waveform X of the 3-input AND gate is HIGH only when all three input

waveforms A, B, and C are HIGH.

Related Problem

What is the output waveform of the AND gate in Figure 3–13 if the C input is always

HIGH?

 The AND Gate 133

Logic Expressions for an AND Gate

The logical AND function of two variables is represented mathematically either by placing

a dot between the two variables, as A # B, or by simply writing the adjacent letters without

the dot, as AB. We will normally use the latter notation.

EXAMPLE 3–6

Use Multisim to simulate a 3-input AND gate with input waveforms that cycle through binary numbers 0 through 9.

Solution

Use the Multisim word generator in the up counter mode to provide the combination of waveforms representing the binary

sequence, as shown in Figure 3–14. The first three waveforms on the oscilloscope display are the inputs, and the bottom

waveform is the output.

Related Problem

Use Multisim software to create the setup and simulate the 3-input AND gate as illustrated in this example.

FIGURE 3–14

134 Logic Gates

Boolean multiplication follows the same basic rules governing binary multiplication,

which were discussed in Chapter 2 and are as follows:

 0 # 0 = 0

 0 # 1 = 0

 1 # 0 = 0

 1 # 1 = 1

Boolean multiplication is the same as the AND function.

The operation of a 2-input AND gate can be expressed in equation form as follows: If one

input variable is A, if the other input variable is B, and if the output variable is X, then the

Boolean expression is

X = AB

Figure 3–15(a) shows the AND gate logic symbol with two input variables and the output

variable indicated.

InfoNote

Processors can utilize all of the

basic logic operations when it is

necessary to selectively manipulate

certain bits in one or more bytes

of data. Selective bit manipulations

are done with a mask. For exam-

ple, to clear (make all 0s) the right

four bits in a data byte but keep

the left four bits, ANDing the data

byte with 11110000 will do the

job. Notice that any bit ANDed with

zero will be 0 and any bit ANDed

with 1 will remain the same. If

10101010 is ANDed with the mask

11110000, the result is 10100000.

When variables are shown together
like ABC, they are ANDed.

X = AB
A

B

(a)

ABX = C
A

C

(b)

B X = ABCD

A

C

(c)

B

D

FIGURE 3–15 Boolean expressions for AND gates with two, three, and four inputs.

To extend the AND expression to more than two input variables, simply use a new letter

for each input variable. The function of a 3-input AND gate, for example, can be expressed

as X = ABC, where A, B, and C are the input variables. The expression for a 4-input AND

gate can be X = ABCD, and so on. Parts (b) and (c) of Figure 3–15 show AND gates with

three and four input variables, respectively.

You can evaluate an AND gate operation by using the Boolean expressions for the output.

For example, each variable on the inputs can be either a 1 or a 0; so for the 2-input AND

gate, make substitutions in the equation for the output, X = AB, as shown in Table 3–4. This

evaluation shows that the output X of an AND gate is a 1 (HIGH) only when both inputs are

1s (HIGHs). A similar analysis can be made for any number of input variables.

Applications

The AND Gate as an Enable/Inhibit Device

A common application of the AND gate is to enable (that is, to allow) the passage of a

signal (pulse waveform) from one point to another at certain times and to inhibit (prevent)

the passage at other times.

A simple example of this particular use of an AND gate is shown in Figure 3–16, where

the AND gate controls the passage of a signal (waveform A) to a digital counter. The pur-

pose of this circuit is to measure the frequency of waveform A. The enable pulse has a

width of precisely 1 ms. When the enable pulse is HIGH, waveform A passes through the

gate to the counter; and when the enable pulse is LOW, the signal is prevented from passing

through the gate (inhibited).

During the 1 millisecond (1 ms) interval of the enable pulse, pulses in waveform A pass

through the AND gate to the counter. The number of pulses passing through during the

1 ms interval is equal to the frequency of waveform A. For example, Figure 3–16 shows

six pulses in one millisecond, which is a frequency of 6 kHz. If 1000 pulses pass through

the gate in the 1 ms interval of the enable pulse, there are 1000 pulses/ms, or a frequency

of 1 MHz.

TABLE 3–4

A B AB � X

0 0 0 # 0 = 0

0 1 0 # 1 = 0

1 0 1 # 0 = 0

1 1 1 # 1 = 1

 The AND Gate 135

The counter counts the number of pulses per second and produces a binary output

that goes to a decoding and display circuit to produce a readout of the frequency. The

enable pulse repeats at certain intervals and a new updated count is made so that if

the frequency changes, the new value will be displayed. Between enable pulses, the

counter is reset so that it starts at zero each time an enable pulse occurs. The current

frequency count is stored in a register so that the display is unaffected by the resetting

of the counter.

A Seat Belt Alarm System

In Figure 3–17, an AND gate is used in a simple automobile seat belt alarm system to

detect when the ignition switch is on and the seat belt is unbuckled. If the ignition switch

is on, a HIGH is produced on input A of the AND gate. If the seat belt is not properly

buckled, a HIGH is produced on input B of the AND gate. Also, when the ignition switch

is turned on, a timer is started that produces a HIGH on input C for 30 s. If all three con-

ditions exist—that is, if the ignition is on and the seat belt is unbuckled and the timer

is running—the output of the AND gate is HIGH, and an audible alarm is energized to

remind the driver.

Reset to zero
between enable pulses.

A

Enable

1 ms

1 ms

Counter

Register,
decoder,

and
frequency

display

FIGURE 3–16 An AND gate performing an enable/inhibit function for a frequency

counter.

Ignition
switch

Seat
belt

Ignition on = HIGH for 30 s

A

B

C

HIGH

LOW

HIGH

LOW

= On

= Off

= Unbuckled

= Buckled

Audible
alarm
circuit

Timer

HIGH activates
alarm.

FIGURE 3–17 A simple seat belt alarm circuit using an AND gate.

SECTION 3–2 CHECKUP

 1. When is the output of an AND gate HIGH?

 2. When is the output of an AND gate LOW?

 3. Describe the truth table for a 5-input AND gate.

136 Logic Gates

3–3 The OR Gate

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the

≥ 1

OR (≥ 1) qualifying symbol

FIGURE 3–18 Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE

Std. 91-1984/Std. 91a-1991).

The OR gate is another of the basic gates from which all logic functions are constructed.

An OR gate can have two or more inputs and performs what is known as logical addition.

After completing this section, you should be able to

u Identify an OR gate by its distinctive shape symbol or by its rectangular outline

symbol

u Describe the operation of an OR gate

u Generate the truth table for an OR gate with any number of inputs

u Produce a timing diagram for an OR gate with any specified input waveforms

u Write the logic expression for an OR gate with any number of inputs

u Discuss an OR gate application

An OR gate has two or more inputs and one output, as indicated by the standard logic

symbols in Figure 3–18, where OR gates with two inputs are illustrated. An OR gate can

have any number of inputs greater than one. Although both distinctive shape and rectangular

outline symbols are shown, the distinctive shape OR gate symbol is used in this textbook.

An OR gate can have more than two
inputs.

Operation of an OR Gate

An OR gate produces a HIGH on the output when any of the inputs is HIGH. The output is

LOW only when all of the inputs are LOW. Therefore, an OR gate determines when one or

more of its inputs are HIGH and produces a HIGH on its output to indicate this condition.

The inputs of the 2-input OR gate in Figure 3–18 are labeled A and B, and the output is

labeled X. The operation of the gate can be stated as follows:

For a 2-input OR gate, output X is HIGH when either input A or input B is HIGH,

or when both A and B are HIGH; X is LOW only when both A and B are LOW.

The HIGH level is the active or asserted output level for the OR gate. Figure 3–19 illus-

trates the operation for a 2-input OR gate for all four possible input combinations.

For an OR gate, at least one HIGH
input produces a HIGH output.

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

FIGURE 3–19 All possible logic levels for a 2-input OR gate. Open file F03-19 to verify

OR gate operation.

 The OR Gate 137

OR Gate Truth Table

The operation of a 2-input OR gate is described in Table 3–5. This truth table can be

expanded for any number of inputs; but regardless of the number of inputs, the output is

HIGH when one or more of the inputs are HIGH.

OR Gate Operation with Waveform Inputs

Now let’s look at the operation of an OR gate with pulse waveform inputs, keeping in

mind its logical operation. Again, the important thing in the analysis of gate operation

with pulse waveforms is the time relationship of all the waveforms involved. For example,

in Figure 3–20, inputs A and B are both HIGH (1) during time interval t1, making output X

HIGH (1). During time interval t2, input A is LOW (0), but because input B is HIGH (1), the

output is HIGH (1). Both inputs are LOW (0) during time interval t3, so there is a LOW

(0) output during this time. During time interval t4, the output is HIGH (1) because input

A is HIGH (1).

TABLE 3–5

Truth table for a 2-input
OR gate.

Inputs Output

A B X

0 0 0

0 1 1

1 0 1

1 1 1

1 = HIGH, 0 = LOW

1A 0 0 1

1B 1 0 0

1X 1 0 1

t
1

t
2

t
3

t
4

A

B
X

FIGURE 3–20 Example of OR gate operation with a timing diagram showing input and

output time relationships.

In this illustration, we have applied the truth table operation of the OR gate to each of

the time intervals during which the levels are nonchanging. Examples 3–7 through 3–9

further illustrate OR gate operation with waveforms on the inputs.

EXAMPLE 3–7

If the two input waveforms, A and B, in Figure 3–21 are applied to the OR gate, what is

the resulting output waveform?

Input B

A

B
X

Input A

Output X

When either input or both inputs are HIGH,

the output is HIGH.

FIGURE 3–21

138 Logic Gates

Solution

The output waveform X of a 2-input OR gate is HIGH when either or both input wave-

forms are HIGH as shown in the timing diagram. In this case, both input waveforms are

never HIGH at the same time.

Related Problem

Determine the output waveform and show the timing diagram if input A is changed

such that it is HIGH from the beginning of the existing first pulse to the end of the exist-

ing second pulse.

Solution

When either or both input waveforms are HIGH, the output is HIGH as shown by the

output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if the middle pulse of

input A is replaced by a LOW level.

EXAMPLE 3–8

For the two input waveforms, A and B, in Figure 3–22, show the output waveform with

its proper relation to the inputs.

 B
Inputs

 A

Output

A

B
X

 X

FIGURE 3–22

EXAMPLE 3–9

For the 3-input OR gate in Figure 3–23, determine the output waveform in proper time

relation to the inputs.

 B

 A

 C

 X

A

C

XB

FIGURE 3–23

Solution

The output is HIGH when one or more of the input waveforms are HIGH as indicated

by the output waveform X in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input C is always LOW.

 The OR Gate 139

Logic Expressions for an OR Gate

The logical OR function of two variables is represented mathematically by a + between

the two variables, for example, A + B. The plus sign is read as “OR.”

Addition in Boolean algebra involves variables whose values are either binary 1 or

binary 0. The basic rules for Boolean addition are as follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

Boolean addition is the same as the OR function.

Notice that Boolean addition differs from binary addition in the case where two 1s are

added. There is no carry in Boolean addition.

The operation of a 2-input OR gate can be expressed as follows: If one input variable is

A, if the other input variable is B, and if the output variable is X, then the Boolean expres-

sion is

X = A + B

Figure 3–24(a) shows the OR gate logic symbol with two input variables and the output

variable labeled.

When variables are separated by 1,
they are ORed.

X = A + B
A

B

(a)

A

C
B

(b)

X = A + B + C

A

C

(c)

B

D
X = A + B + C + D

FIGURE 3–24 Boolean expressions for OR gates with two, three, and four inputs.

To extend the OR expression to more than two input variables, a new letter is used for

each additional variable. For instance, the function of a 3-input OR gate can be expressed

as X = A + B + C. The expression for a 4-input OR gate can be written as X = A +

B + C + D, and so on. Parts (b) and (c) of Figure 3–24 show OR gates with three and four

input variables, respectively.

OR gate operation can be evaluated by using the Boolean expressions for the output X

by substituting all possible combinations of 1 and 0 values for the input variables, as shown

in Table 3–6 for a 2-input OR gate. This evaluation shows that the output X of an OR gate

is a 1 (HIGH) when any one or more of the inputs are 1 (HIGH). A similar analysis can be

extended to OR gates with any number of input variables.

An Application

A simplified portion of an intrusion detection and alarm system is shown in Figure

3–25. This system could be used for one room in a home—a room with two windows

and a door. The sensors are magnetic switches that produce a HIGH output when open

and a LOW output when closed. As long as the windows and the door are secured,

the switches are closed and all three of the OR gate inputs are LOW. When one of the

windows or the door is opened, a HIGH is produced on that input to the OR gate and

the gate output goes HIGH. It then activates and latches an alarm circuit to warn of the

intrusion.

InfoNote

A mask operation that is used in

computer programming to selec-

tively make certain bits in a data

byte equal to 1 (called setting) while

not affecting any other bit is done

with the OR operation. A mask is

used that contains a 1 in any posi-

tion where a data bit is to be set. For

example, if you want to force the

sign bit in an 8-bit signed number

to equal 1, but leave all other bits

unchanged, you can OR the data

byte with the mask 10000000.

TABLE 3–6

A B A � B � X

0 0 0 + 0 = 0

0 1 0 + 1 = 1

1 0 1 + 0 = 1

1 1 1 + 1 = 1

140 Logic Gates

= Open

= Closed

HIGH

LOW

Open door/window
sensors

Alarm
circuit

HIGH activates
alarm.

FIGURE 3–25 A simplified intrusion detection system using an OR gate.

SECTION 3–3 CHECKUP

 1. When is the output of an OR gate HIGH?

 2. When is the output of an OR gate LOW?

 3. Describe the truth table for a 3-input OR gate.

3–4 The NAND Gate

The NAND gate is a popular logic element because it can be used as a universal gate; that

is, NAND gates can be used in combination to perform the AND, OR, and inverter opera-

tions. The universal property of the NAND gate will be examined thoroughly in Chapter 5.

After completing this section, you should be able to

u Identify a NAND gate by its distinctive shape symbol or by its rectangular outline

symbol

u Describe the operation of a NAND gate

u Develop the truth table for a NAND gate with any number of inputs

u Produce a timing diagram for a NAND gate with any specified input waveforms

u Write the logic expression for a NAND gate with any number of inputs

u Describe NAND gate operation in terms of its negative-OR equivalent

u Discuss examples of NAND gate applications

The term NAND is a contraction of NOT-AND and implies an AND function with a

complemented (inverted) output. The standard logic symbol for a 2-input NAND gate and

its equivalency to an AND gate followed by an inverter are shown in Figure 3–26(a), where

the symbol K means equivalent to. A rectangular outline symbol is shown in part (b).

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NAND gate and its (b) Rectangular outline, 2-input NAND

&

NOT/AND equivalent gate with polarity indicator

FIGURE 3–26 Standard NAND gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

The NAND gate is the same as the
AND gate except the output is
inverted.

 The NAND Gate 141

Operation of a NAND Gate

A NAND gate produces a LOW output only when all the inputs are HIGH. When any

of the inputs is LOW, the output will be HIGH. For the specific case of a 2-input NAND

gate, as shown in Figure 3–26 with the inputs labeled A and B and the output labeled X, the

operation can be stated as follows:

For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH;

X is HIGH when either A or B is LOW, or when both A and B are LOW.

This operation is opposite that of the AND in terms of the output level. In a NAND gate,

the LOW level (0) is the active or asserted output level, as indicated by the bubble on the

output. Figure 3–27 illustrates the operation of a 2-input NAND gate for all four input

combinations, and Table 3–7 is the truth table summarizing the logical operation of the

2-input NAND gate.

TABLE 3–7

Truth table for a 2-input
NAND gate.

Inputs Output

A B X

0 0 1

0 1 1

1 0 1

1 1 0

1 = HIGH, 0 = LOW.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
LOW (0)

FIGURE 3–27 Operation of a 2-input NAND gate. Open file F03-27 to verify NAND gate

operation.

NAND Gate Operation with Waveform Inputs

Now let’s look at the pulse waveform operation of a NAND gate. Remember from the truth

table that the only time a LOW output occurs is when all of the inputs are HIGH.

EXAMPLE 3–10

If the two waveforms A and B shown in Figure 3–28 are applied to the NAND gate

inputs, determine the resulting output waveform.

B

A

B

X

A

X

Bubble indicates

an active-LOW

output.

A and B are both HIGH during these

four time intervals; therefore, X is LOW.

FIGURE 3–28

Solution

Output waveform X is LOW only during the four time intervals when both input wave-

forms A and B are HIGH as shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform B is

inverted.

142 Logic Gates

Negative-OR Equivalent Operation of a NAND Gate

Inherent in a NAND gate’s operation is the fact that one or more LOW inputs produce a

HIGH output. Table 3–7 shows that output X is HIGH (1) when any of the inputs, A and

B, is LOW (0). From this viewpoint, a NAND gate can be used for an OR operation that

requires one or more LOW inputs to produce a HIGH output. This aspect of NAND opera-

tion is referred to as negative-OR. The term negative in this context means that the inputs

are defined to be in the active or asserted state when LOW.

For a 2-input NAND gate performing a negative-OR operation, output X is HIGH

when either input A or input B is LOW, or when both A and B are LOW.

When a NAND gate is used to detect one or more LOWs on its inputs rather than all

HIGHs, it is performing the negative-OR operation and is represented by the standard

logic symbol shown in Figure 3–30. Although the two symbols in Figure 3–30 represent

the same physical gate, they serve to define its role or mode of operation in a particular

application, as illustrated by Examples 3–12 and 3–13.

EXAMPLE 3–11

Show the output waveform for the 3-input NAND gate in Figure 3–29 with its proper

time relationship to the inputs.

B

A

C
X

A

X

B

C

FIGURE 3–29

Solution

The output waveform X is LOW only when all three input waveforms are HIGH as

shown in the timing diagram.

Related Problem

Determine the output waveform and show the timing diagram if input waveform A is

inverted.

NAND Negative-OR

FIGURE 3–30 ANSI/IEEE

standard symbols representing

the two equivalent operations of

a NAND gate.

EXAMPLE 3–12

Two tanks store certain liquid chemicals that are required in a manufacturing process. Each

tank has a sensor that detects when the chemical level drops to 25% of full. The sensors

produce a HIGH level of 5 V when the tanks are more than one-quarter full. When the vol-

ume of chemical in a tank drops to one-quarter full, the sensor puts out a LOW level of 0 V.

It is required that a single green light-emitting diode (LED) on an indicator panel

show when both tanks are more than one-quarter full. Show how a NAND gate can be

used to implement this function.

Solution

Figure 3–31 shows a NAND gate with its two inputs connected to the tank level sensors

and its output connected to the indicator panel. The operation can be stated as follows:

If tank A and tank B are above one-quarter full, the LED is on.

 The NAND Gate 143

As long as both sensor outputs are HIGH (5 V), indicating that both tanks are more

than one-quarter full, the NAND gate output is LOW (0 V). The green LED circuit is

connected so that a LOW voltage turns it on. The resistor limits the LED current.

Related Problem

How can the circuit of Figure 3–31 be modified to monitor the levels in three tanks

rather than two?

Level sensor

HIGH

Level sensor

HIGH

Green light

indicates both

tanks are

greater than

1/4 full.

LOW

+V

Tank A

Tank B

FIGURE 3–31

EXAMPLE 3–13

For the process described in Example 3–12 it has been decided to have a red LED dis-

play come on when at least one of the tanks falls to the quarter-full level rather than

have the green LED display indicate when both are above one quarter. Show how this

requirement can be implemented.

Solution

Figure 3–32 shows a NAND gate operating as a negative-OR gate to detect the occurrence

of at least one LOW on its inputs. A sensor puts out a LOW voltage if the volume in its tank

goes to one-quarter full or less. When this happens, the gate output goes HIGH. The red

LED circuit in the panel is connected so that a HIGH voltage turns it on. The operation can

be stated as follows: If tank A or tank B or both are below one-quarter full, the LED is on.

Red light

indicates

one or both

tanks are less

than 1/4 full.

HIGH

LOW

HIGH

Tank A

Tank B

FIGURE 3–32

144 Logic Gates

Notice that, in this example and in Example 3–12, the same 2-input NAND gate is

used, but in this example it is operating as a negative-OR gate and a different gate sym-

bol is used in the schematic. This illustrates the different way in which the NAND and

equivalent negative-OR operations are used.

Related Problem

How can the circuit in Figure 3–32 be modified to monitor four tanks rather than two?

Solution

The output waveform X is HIGH any time an input waveform is LOW as shown in the

timing diagram.

Related Problem

Determine the output waveform if input waveform A is inverted before it is applied to

the gate.

EXAMPLE 3–14

For the 4-input NAND gate in Figure 3–33, operating as a negative-OR gate, determine

the output with respect to the inputs.

A

C

D

X

B
A
B
C
D

X

Bubbles indicate

active-LOW inputs.

FIGURE 3–33

Logic Expressions for a NAND Gate

The Boolean expression for the output of a 2-input NAND gate is

X = AB

This expression says that the two input variables, A and B, are first ANDed and then

complemented, as indicated by the bar over the AND expression. This is a description

in equation form of the operation of a NAND gate with two inputs. Evaluating this

expression for all possible values of the two input variables, you get the results shown

in Table 3–8.

Once an expression is determined for a given logic function, that function can be evalu-

ated for all possible values of the variables. The evaluation tells you exactly what the

output of the logic circuit is for each of the input conditions, and it therefore gives you

a complete description of the circuit’s logic operation. The NAND expression can be

extended to more than two input variables by including additional letters to represent the

other variables.

TABLE 3–8

A B AB � X

0 0 0 # 0 = 0 = 1

0 1 0 # 1 = 0 = 1

1 0 1 # 0 = 0 = 1

1 1 1 # 1 = 1 = 0

A bar over a variable or variables
indicates an inversion.

 The NOR Gate 145

SECTION 3–4 CHECKUP

 1. When is the output of a NAND gate LOW?

 2. When is the output of a NAND gate HIGH?

 3. Describe the functional differences between a NAND gate and a negative-OR gate.

Do they both have the same truth table?

 4. Write the output expression for a NAND gate with inputs A, B, and C.

3–5 The NOR Gate

The NOR gate, like the NAND gate, is a useful logic element because it can also be used

as a universal gate; that is, NOR gates can be used in combination to perform the AND,

OR, and inverter operations. The universal property of the NOR gate will be examined

thoroughly in Chapter 5.

After completing this section, you should be able to

u Identify a NOR gate by its distinctive shape symbol or by its rectangular outline

symbol

u Describe the operation of a NOR gate

u Develop the truth table for a NOR gate with any number of inputs

u Produce a timing diagram for a NOR gate with any specified input waveforms

u Write the logic expression for a NOR gate with any number of inputs

u Describe NOR gate operation in terms of its negative-AND equivalent

u Discuss examples of NOR gate applications

The term NOR is a contraction of NOT-OR and implies an OR function with an inverted

(complemented) output. The standard logic symbol for a 2-input NOR gate and its equiva-

lent OR gate followed by an inverter are shown in Figure 3–34(a). A rectangular outline

symbol is shown in part (b).

The NOR is the same as the OR
except the output is inverted.

Operation of a NOR Gate

A NOR gate produces a LOW output when any of its inputs is HIGH. Only when all of its

inputs are LOW is the output HIGH. For the specific case of a 2-input NOR gate, as shown

in Figure 3–34 with the inputs labeled A and B and the output labeled X, the operation can

be stated as follows:

For a 2-input NOR gate, output X is LOW when either input A or input B is

HIGH, or when both A and B are HIGH; X is HIGH only when both A and B are

LOW.

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NOR gate and its NOT/OR
 equivalent

(b) Rectangular outline, 2-input
NOR gate with polarity indicator

≥1

FIGURE 3–34 Standard NOR gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

146 Logic Gates

TABLE 3–9

Truth table for a 2-input
NOR gate.

Inputs Output

A B X

0 0 1

0 1 0

1 0 0

1 1 0

1 = HIGH, 0 = LOW.

This operation results in an output level opposite that of the OR gate. In a NOR gate, the

LOW output is the active or asserted output level as indicated by the bubble on the output.

Figure 3–35 illustrates the operation of a 2-input NOR gate for all four possible input com-

binations, and Table 3–9 is the truth table for a 2-input NOR gate.

NOR Gate Operation with Waveform Inputs

The next two examples illustrate the operation of a NOR gate with pulse waveform inputs.

Again, as with the other types of gates, we will simply follow the truth table operation to

determine the output waveforms in the proper time relationship to the inputs.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
LOW (0)

FIGURE 3–35 Operation of a 2-input NOR gate. Open file F03-35 to verify NOR gate

operation.

EXAMPLE 3–15

If the two waveforms shown in Figure 3–36 are applied to a NOR gate, what is the

resulting output waveform?

A

B

X

A

B
X

FIGURE 3–36

Solution

Whenever any input of the NOR gate is HIGH, the output is LOW as shown by the

output waveform X in the timing diagram.

Related Problem

Invert input B and determine the output waveform in relation to the inputs.

EXAMPLE 3–16

Show the output waveform for the 3-input NOR gate in Figure 3–37 with the proper

time relation to the inputs.

A

X

A

C

XB

C

B

FIGURE 3–37

 The NOR Gate 147

Solution

The output X is LOW when any input is HIGH as shown by the output waveform X in

the timing diagram.

Related Problem

With the B and C inputs inverted, determine the output and show the timing diagram.

Negative-AND Equivalent Operation of the NOR Gate

A NOR gate, like the NAND, has another aspect of its operation that is inherent in the way

it logically functions. Table 3–9 shows that a HIGH is produced on the gate output only

when all of the inputs are LOW. From this viewpoint, a NOR gate can be used for an AND

operation that requires all LOW inputs to produce a HIGH output. This aspect of NOR

operation is called negative-AND. The term negative in this context means that the inputs

are defined to be in the active or asserted state when LOW.

For a 2-input NOR gate performing a negative-AND operation, output X is HIGH

only when both inputs A and B are LOW.

When a NOR gate is used to detect all LOWs on its inputs rather than one or more

HIGHs, it is performing the negative-AND operation and is represented by the standard

symbol in Figure 3–38. Remember that the two symbols in Figure 3–38 represent the same

physical gate and serve only to distinguish between the two modes of its operation. The

following three examples illustrate this.

NOR Negative-AND

FIGURE 3–38 Standard

symbols representing the two

equivalent operations of a

NOR gate.

EXAMPLE 3–18

As part of an aircraft’s functional monitoring system, a circuit is required to indicate the sta-

tus of the landing gears prior to landing. A green LED display turns on if all three gears are

properly extended when the “gear down” switch has been activated in preparation for land-

ing. A red LED display turns on if any of the gears fail to extend properly prior to landing.

When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is

retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

Solution

Power is applied to the circuit only when the “gear down” switch is activated. Use a NOR

gate for each of the two requirements as shown in Figure 3–40. One NOR gate operates as

a negative-AND to detect a LOW from each of the three landing gear sensors. When all

three of the gate inputs are LOW, the three landing gears are properly extended and the

LOW

LOW
HIGH

FIGURE 3–39

EXAMPLE 3–17

A device is needed to indicate when two LOW levels occur simultaneously on its inputs

and to produce a HIGH output as an indication. Specify the device.

Solution

A 2-input NOR gate operating as a negative-AND gate is required to produce a HIGH

output when both inputs are LOW, as shown in Figure 3–39.

Related Problem

A device is needed to indicate when one or two HIGH levels occur on its inputs and to

produce a LOW output as an indication. Specify the device.

148 Logic Gates

Related Problem

What type of gate should be used to detect if all three landing gears are retracted after

takeoff, assuming a LOW output is required to activate an LED display?

resulting HIGH output from the negative-AND gate turns on the green LED display. The

other NOR gate operates as a NOR to detect if one or more of the landing gears remain

retracted when the “gear down” switch is activated. When one or more of the landing

gears remain retracted, the resulting HIGH from the sensor is detected by the NOR gate,

which produces a LOW output to turn on the red LED warning display.

+V

Red LED

Gear retracted

Green LED

All gear extended

Landing gear sensors

Extended = LOW
Retracted = HIGH

FIGURE 3–40

When driving a load such as an LED with a logic gate, consult the manufacturer’s data sheet for
maximum drive capabilities (output current). A regular IC logic gate may not be capable of handling
the current required by certain loads such as some LEDs. Logic gates with a buffered output, such
as an open-collector (OC) or open-drain (OD) output, are available in many types of IC logic gate
configurations. The output current capability of typical IC logic gates is limited to the mA or relatively
low mA range. For example, standard TTL can handle output currents up to 16 mA but only when the
output is LOW. Most LEDs require currents in the range of about 10 mA to 50 mA.

EXAMPLE 3–19

For the 4-input NOR gate operating as a negative-AND in Figure 3–41, determine the

output relative to the inputs.

B

D

X

A

C

A

B

C

D

X

FIGURE 3–41

 The Exclusive-OR and Exclusive-NOR Gates 149

Logic Expressions for a NOR Gate

The Boolean expression for the output of a 2-input NOR gate can be written as

X = A + B

This equation says that the two input variables are first ORed and then complemented, as

indicated by the bar over the OR expression. Evaluating this expression, you get the results

shown in Table 3–10. The NOR expression can be extended to more than two input vari-

ables by including additional letters to represent the other variables.

Solution

Any time all of the input waveforms are LOW, the output is HIGH as shown by output

waveform X in the timing diagram.

Related Problem

Determine the output with input D inverted and show the timing diagram.

TABLE 3–10

A B A � B � X

0 0 0 + 0 = 0 = 1

0 1 0 + 1 = 1 = 0

1 0 1 + 0 = 1 = 0

1 1 1 + 1 = 1 = 0

SECTION 3–5 CHECKUP

 1. When is the output of a NOR gate HIGH?

 2. When is the output of a NOR gate LOW?

 3. Describe the functional difference between a NOR gate and a negative-AND gate.

Do they both have the same truth table?

 4. Write the output expression for a 3-input NOR with input variables A, B, and C.

3–6 The Exclusive-OR and Exclusive-NOR Gates

Exclusive-OR and exclusive-NOR gates are formed by a combination of other gates already

discussed, as you will see in Chapter 5. However, because of their fundamental importance

in many applications, these gates are often treated as basic logic elements with their own

unique symbols.

After completing this section, you should be able to

u Identify the exclusive-OR and exclusive-NOR gates by their distinctive shape

symbols or by their rectangular outline symbols

u Describe the operations of exclusive-OR and exclusive-NOR gates

u Show the truth tables for exclusive-OR and exclusive-NOR gates

u Produce a timing diagram for an exclusive-OR or exclusive-NOR gate with any

specified input waveforms

u Discuss examples of exclusive-OR and exclusive-NOR gate applications

The Exclusive-OR Gate

Standard symbols for an exclusive-OR (XOR for short) gate are shown in Figure 3–42.

The XOR gate has only two inputs. The exclusive-OR gate performs modulo-2 addition

(introduced in Chapter 2). The output of an exclusive-OR gate is HIGH only when the two

InfoNote

Exclusive-OR gates connected to

form an adder circuit allow a proc-

essor to perform addition, subtrac-

tion, multiplication, and division in

its Arithmetic Logic Unit (ALU). An

exclusive-OR gate combines basic

AND, OR, and NOT logic.

150 Logic Gates

inputs are at opposite logic levels. This operation can be stated as follows with reference to

inputs A and B and output X:

For an exclusive-OR gate, output X is HIGH when input A is LOW and input B is

HIGH, or when input A is HIGH and input B is LOW; X is LOW when A and B

are both HIGH or both LOW.

The four possible input combinations and the resulting outputs for an XOR gate are

illustrated in Figure 3–43. The HIGH level is the active or asserted output level and occurs

only when the inputs are at opposite levels. The operation of an XOR gate is summarized

in the truth table shown in Table 3–11.

A

B
X

A

B
X

= 1

(b) Rectangular outline(a) Distinctive shape

FIGURE 3–42 Standard logic symbols for the exclusive-OR gate.

For an exclusive-OR gate, opposite
inputs make the output HIGH.

TABLE 3–11

Truth table for an exclusive-
OR gate.

Inputs Output

A B X

0 0 0

0 1 1

1 0 1

1 1 0

LOW (0)

LOW (0)
LOW (0)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
LOW (0)

FIGURE 3–43 All possible logic levels for an exclusive-OR gate. Open file F03-43 to

verify XOR gate operation.

EXAMPLE 3–20

A certain system contains two identical circuits operating in parallel. As long as both are

operating properly, the outputs of both circuits are always the same. If one of the circuits

fails, the outputs will be at opposite levels at some time. Devise a way to monitor and

detect that a failure has occurred in one of the circuits.

Solution

The outputs of the circuits are connected to the inputs of an XOR gate as shown in

Figure 3–44. A failure in either one of the circuits produces differing outputs, which

cause the XOR inputs to be at opposite levels. This condition produces a HIGH on the

output of the XOR gate, indicating a failure in one of the circuits.

HIGH

LOW

HIGH (indicates failure)

Circuit A

Circuit B

FIGURE 3–44

Related Problem

Will the exclusive-OR gate always detect simultaneous failures in both circuits of

Figure 3–44? If not, under what condition?

 The Exclusive-OR and Exclusive-NOR Gates 151

The Exclusive-NOR Gate

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Figure 3–45. Like the

XOR gate, an XNOR has only two inputs. The bubble on the output of the XNOR symbol

indicates that its output is opposite that of the XOR gate. When the two input logic levels

are opposite, the output of the exclusive-NOR gate is LOW. The operation can be stated as

follows (A and B are inputs, X is the output):

For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is

HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both

HIGH or both LOW.

A

B
X

A

B
X

= 1

(b) Rectangular outline(a) Distinctive shape

FIGURE 3–45 Standard logic symbols for the exclusive-NOR gate.

The four possible input combinations and the resulting outputs for an XNOR gate are

shown in Figure 3–46. The operation of an XNOR gate is summarized in Table 3–12.

Notice that the output is HIGH when the same level is on both inputs.

TABLE 3–12

Truth table for an exclusive-
NOR gate.

Inputs Output

A B X

0 0 1

0 1 0

1 0 0

1 1 1

Operation with Waveform Inputs

As we have done with the other gates, let’s examine the operation of XOR and XNOR

gates with pulse waveform inputs. As before, we apply the truth table operation during

each distinct time interval of the pulse waveform inputs, as illustrated in Figure 3–47 for

an XOR gate. You can see that the input waveforms A and B are at opposite levels during

time intervals t2 and t4. Therefore, the output X is HIGH during these two times. Since both

inputs are at the same level, either both HIGH or both LOW, during time intervals t1 and t3,

the output is LOW during those times as shown in the timing diagram.

A

B
X

A

B

X

1 0 0 1

1 1 0 0

0 1 0 1

t
1

t
2

t
3

t
4

FIGURE 3–47 Example of exclusive-OR gate operation with pulse waveform inputs.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
HIGH (1)

FIGURE 3–46 All possible logic levels for an exclusive-NOR gate. Open file F03-46

to verify XNOR gate operation.

152 Logic Gates

An Application

An exclusive-OR gate can be used as a two-bit modulo-2 adder. Recall from Chapter 2 that

the basic rules for binary addition are as follows: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and

1 + 1 = 10. An examination of the truth table for an XOR gate shows that its output is the

binary sum of the two input bits. In the case where the inputs are both 1s, the output is the

sum 0, but you lose the carry of 1. In Chapter 6 you will see how XOR gates are combined

to make complete adding circuits. Table 3–13 illustrates an XOR gate used as a modulo-2

adder. It is used in CRC systems to implement the division process that was described in

Chapter 2.

EXAMPLE 3–21

Determine the output waveforms for the XOR gate and for the XNOR gate, given the

input waveforms, A and B, in Figure 3–48.

A

B

XOR

XNOR

A

B

FIGURE 3–48

Solution

The output waveforms are shown in Figure 3–48. Notice that the XOR output is HIGH

only when both inputs are at opposite levels. Notice that the XNOR output is HIGH

only when both inputs are the same.

Related Problem

Determine the output waveforms if the two input waveforms, A and B, are inverted.

Input Bits Output (Sum)

A B g

0 0 0

0 1 1

1 0 1

TABLE 3–13

An XOR gate used to add two bits.

0

0

1

1

0

1

0

1

0

1

1

0 (without

the 1 carry bit)

 Programmable Logic 153

SECTION 3–6 CHECKUP

 1. When is the output of an XOR gate HIGH?

 2. When is the output of an XNOR gate HIGH?

 3. How can you use an XOR gate to detect when two bits are different?

3–7 Programmable Logic

Programmable logic was introduced in Chapter 1. In this section, the basic concept of

the programmable AND array, which forms the basis for most programmable logic, is

discussed, and the major process technologies are covered. A programmable logic device

(PLD) is one that does not initially have a fixed-logic function but that can be programmed

to implement just about any logic design. As you have learned, two types of PLD are the

SPLD and CPLD. In addition to the PLD, the other major category of programmable logic

is the FPGA. Also, basic VHDL programming is introduced.

After completing this section, you should be able to

u Describe the concept of a programmable AND array

u Discuss various process technologies for programming a PLD

u Discuss downloading a design to a programmable logic device

u Discuss text entry and graphic entry as two methods for programmable logic design

u Explain in-system programming

u Write VHDL descriptions of logic gates

The AND Array

Most types of PLDs use some form of AND array. Basically, this array consists of AND

gates and a matrix of interconnections with a programmable link at each cross point, as

shown in Figure 3–49(a). Programmable links allow a connection between a row line and

a column line in the interconnection matrix to be opened or left intact. For each input to an

AND gate, only one programmable link is left intact in order to connect the desired variable

to the gate input. Figure 3–49(b) illustrates an array after it has been programmed.

BBAA

X1

X2

X3

BBAA

X1 = AB

X2 = AB

X3 = AB

(b) Programmed(a) Unprogrammed

Programmable link

FIGURE 3–49 Concept of a programmable AND array.

154 Logic Gates

Related Problem

How many rows, columns, and AND gate inputs are required for three input variables

in a 3-AND gate array?

BBAA

X1

X2

X3

FIGURE 3–50

EXAMPLE 3–22

Show the AND array in Figure 3–49(a) programmed for the following outputs:

X1 = AB, X2 = AB, and X3 = A B

Solution

See Figure 3–50.

Programmable Link Process Technologies

A process technology is the physical method by which a link is made. Several different

process technologies are used for programmable links in PLDs.

Fuse Technology

This was the original programmable link technology. It is still used in some SPLDs. The fuse

is a metal link that connects a row and a column in the interconnection matrix. Before pro-

gramming, there is a fused connection at each intersection. To program a device, the selected

fuses are opened by passing a current through them sufficient to “blow” the fuse and break the

connection. The intact fuses remain and provide a connection between the rows and columns.

The fuse link is illustrated in Figure 3–51. Programmable logic devices that use fuse technol-

ogy are one-time programmable (OTP).

(a) Fuse intact before
programming

(b) Programming
current

(c) Fuse open after
programming

FIGURE 3–51 The programmable fuse link.

Antifuse Technology

An antifuse programmable link is the opposite of a fuse link. Instead of breaking the con-

nection, a connection is made during programming. An antifuse starts out as an open circuit

 Programmable Logic 155

whereas the fuse starts out as a short circuit. Before programming, there are no connec-

tions between the rows and columns in the interconnection matrix. An antifuse is basically

two conductors separated by an insulator. To program a device with antifuse technology,

a programmer tool applies a sufficient voltage across selected antifuses to break down the

insulation between the two conductive materials, causing the insulator to become a low-

resistance link. The antifuse link is illustrated in Figure 3–52. An antifuse device is also a

one-time programmable (OTP) device.

(a) Antifuse is open before
programming.

Contacts

Insulator

(b) Programming voltage
breaks down insulation
layer to create contact.

+

(c) Antifuse is effectively
shorted after programming.

–

FIGURE 3–52 The programmable antifuse link.

EPROM Technology

In certain programmable logic devices, the programmable links are similar to the memory

cells in EPROMs (electrically programmable read-only memories). This type of PLD is pro-

grammed using a special tool known as a device programmer. The device is inserted into

the programmer, which is connected to a computer running the programming software. Most

EPROM-based PLDs are one-time programmable (OTP). However, those with windowed

packages can be erased with UV (ultraviolet) light and reprogrammed using a standard PLD

programming fixture. EPROM process technology uses a special type of MOS transistor,

known as a floating-gate transistor, as the programmable link. The floating-gate device utilizes

a process called Fowler-Nordheim tunneling to place electrons in the floating-gate structure.

In a programmable AND array, the floating-gate transistor acts as a switch to connect the

row line to either a HIGH or a LOW, depending on the input variable. For input variables

that are not used, the transistor is programmed to be permanently off (open). Figure 3–53

shows one AND gate in a simple array. Variable A controls the state of the transistor in the

first column, and variable B controls the transistor in the third column. When a transistor is

off, like an open switch, the input line to the AND gate is at +V (HIGH). When a transistor

is on, like a closed switch, the input line is connected to ground (LOW). When variable A

BBAA

X = AB

+V

+V

Transistor permanently
programmed off

Transistor turned on or off

by state of input A

Transistor turned on or off

by state of input B

FIGURE 3–53 A simple AND array with EPROM technology. Only one gate in the array is

shown for simplicity.

156 Logic Gates

or B is 0 (LOW), the transistor is on, keeping the input line to the AND gate LOW. When A

or B is 1 (HIGH), the transistor is off, keeping the input line to the AND gate HIGH.

EEPROM Technology

Electrically erasable programmable read-only memory technology is similar to EPROM

because it also uses a type of floating-gate transistor in E2CMOS cells. The difference

is that EEPROM can be erased and reprogrammed electrically without the need for UV

light or special fixtures. An E2CMOS device can be programmed after being installed on a

printed circuit board (PCB), and many can be reprogrammed while operating in a system.

This is called in-system programming (ISP). Figure 3–53 can also be used as an example

to represent an AND array with EEPROM technology.

Flash Technology

Flash technology is based on a single transistor link and is both nonvolatile and reprogram-

mable. Flash elements are a type of EEPROM but are faster and result in higher density

devices than the standard EEPROM link. A detailed discussion of the flash memory element

can be found in Chapter 11.

SRAM Technology

Many FPGAs and some CPLDs use a process technology similar to that used in SRAMs

(static random-access memories). The basic concept of SRAM-based programmable logic

arrays is illustrated in Figure 3–54(a). A SRAM-type memory cell is used to turn a transis-

tor on or off to connect or disconnect rows and columns. For example, when the memory

cell contains a 1 (green), the transistor is on and connects the associated row and column

lines, as shown in part (b). When the memory cell contains a 0 (blue), the transistor is off

so there is no connection between the lines, as shown in part (c).

BBAA

X = AB

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell 1

SRAM
cell 0

(b) Transistor on (c) Transistor off

(a) SRAM-based programmable array

FIGURE 3–54 Concept of an AND array with SRAM technology.

InfoNote

Most system-level designs incor-

porate a variety of devices such

as RAMs, ROMs, controllers, and

processors that are interconnected

by a large quantity of general-

purpose logic devices often

referred to as “glue” logic. PLDs

have come to replace many of the

SSI and MSI “glue” devices. The

use of PLDs provides a reduction

in package count.

For example, in memory

systems, PLDs can be used for

memory address decoding and to

generate memory write signals as

well as other functions.

 Programmable Logic 157

SRAM technology is different from the other process technologies discussed because it

is a volatile technology. This means that a SRAM cell does not retain data when power is

turned off. The programming data must be loaded into a memory; and when power is turned

on, the data from the memory reprograms the SRAM-based PLD.

The fuse, antifuse, EPROM, EEPROM, and flash process technologies are nonvolatile,

so they retain their programming when the power is off. A fuse is permanently open, an

antifuse is permanently closed, and floating-gate transistors used in EPROM and EEPROM-

based arrays can retain their on or off state indefinitely.

Device Programming

The general concept of programming was introduced in Chapter 1, and you have seen

how interconnections can be made in a simple array by opening or closing the program-

mable links. SPLDs, CPLDs, and FPGAs are programmed in essentially the same way.

The devices with OTP (one-time programmable) process technologies (fuse, antifuse, or

EPROM) must be programmed with a special hardware fixture called a programmer. The

programmer is connected to a computer by a standard interface cable. Development soft-

ware is installed on the computer, and the device is inserted into the programmer socket.

Most programmers have adapters that allow different types of packages to be plugged in.

EEPROM, flash, and SRAM-based programmable logic devices are reprogrammable

and can be reconfigured multiple times. Although a device programmer can be used for

this type of device, it is generally programmed initially on a PLD development board, as

shown in Figure 3–55. A logic design can be developed using this approach because any

necessary changes during the design process can be readily accomplished by simply repro-

gramming the PLD. A PLD to which a software logic design can be downloaded is called a

target device. In addition to the target device, development boards typically provide other

circuitry and connectors for interfacing to the computer and other peripheral circuits. Also,

test points and display devices for observing the operation of the programmed device are

included on the development board.

PLD development board

Programmable logic device

FIGURE 3–55 Programming setup for reprogrammable logic devices. (Photo courtesy of

Digilent, Inc.)

Design Entry

As you learned in Chapter 1, design entry is where the logic design is programmed into the

development software. The two main ways to enter a design are by text entry or graphic

(schematic) entry, and manufacturers of programmable logic provide software packages to

support their devices that allow for both methods.

158 Logic Gates

Text entry in most development software, regardless of the manufacturer, supports two

or more hardware development languages (HDLs). For example, all software packages

support both IEEE standard HDLs, VHDL, and Verilog. Some software packages also sup-

port certain proprietary languages such as AHDL.

In graphic (schematic) entry, logic symbols such as AND gates and OR gates are

placed on the screen and interconnected to form the desired circuit. In this method you

use the familiar logic symbols, but the software actually converts each symbol and inter-

connections to a text file for the computer to use; you do not see this process. A simple

example of both a text entry screen and a graphic entry screen for an AND gate is shown

in Figure 3–56. As a general rule, graphic entry is used for less-complex logic circuits

and text entry, although it can also be used for very simple logic, is used for larger, more

complex implementation.

(a) VHDL text entry

(b) Equivalent graphic (schematic) entry

FIGURE 3–56 Examples of design entry of an AND gate.

In-System Programming (ISP)

Certain CPLDs and FPGAs can be programmed after they have been installed on a system

printed circuit board (PCB). After a logic design has been developed and fully tested on a

development board, it can then be programmed into a “blank” device that is already soldered

onto a system board in which it will be operating. Also, if a design change is required, the

device on the system board can be reconfigured to incorporate the design modifications.

In a production situation, programming a device on the system board minimizes handling

and eliminates the need for keeping stocks of preprogrammed devices. It also rules out the

possibility of wrong parts being placed in a product. Unprogrammed (blank) devices can

 Programmable Logic 159

be kept in the warehouse and programmed on-board as needed. This minimizes the capital

a business needs for inventories and enhances the quality of its products.

JTAG

The standard established by the Joint Test Action Group is the commonly used name for

IEEE Std. 1149.1. The JTAG standard was developed to provide a simple method, called

boundary scan, for testing programmable devices for functionality as well as testing circuit

boards for bad connections—shorted pins, open pins, bad traces, and the like. Also, JTAG

has been used as a convenient way of configuring programmable devices in-system. As the

demand for field-upgradable products increases, the use of JTAG as a convenient way of

reprogramming CPLDs and FPGAs increases.

JTAG-compliant devices have internal dedicated hardware that interprets instructions

and data provided by four dedicated signals. These signals are defined by the JTAG stan-

dard to be TDI (Test Data In), TDO (Test Data Out), TMS (Test Mode Select), and TCK

(Test Clock). The dedicated JTAG hardware interprets instructions and data on the TDI and

TMS signals, and drives data out on the TDO signal. The TCK signal is used to clock the

process. A JTAG-compliant PLD is represented in Figure 3–57.

JTAG-compliant PLD

System PCB

TDO

TMS

TDI

TCK

JTAG
interface

JTAG hardware

inside the PLD

FIGURE 3–57 Simplified illustration of in-system programming via a JTAG interface.

Embedded Processor

Another approach to in-system programming is the use of an embedded microprocessor

and memory. The processor is embedded within the system along with the CPLD or FPGA

and other circuitry, and it is dedicated to the purpose of in-system configuration of the

programmable device.

As you have learned, SRAM-based devices are volatile and lose their programmed data

when the power is turned off. It is necessary to store the programming data in a PROM (pro-

grammable read-only memory), which is nonvolatile. When power is turned on, the embedded

processor takes control of transferring the stored data from the PROM to the CPLD or FPGA.

Also, an embedded processor is sometimes used for reconfiguration of a programmable

device while the system is running. In this case, design changes are done with software, and

the new data are then loaded into a PROM without disturbing the operation of the system. The

processor controls the transfer of the data to the device “on-the-fly” at an appropriate time.

VHDL Descriptions of Logic Gates

Hardware description languages (HDLs) differ from software programming languages because

HDLs include ways of describing logic connections and characteristics. An HDL implements

a logic design in hardware (PLD), whereas a software programming language, such as C or

BASIC, instructs existing hardware what to do. The two standard HDLs used for programming

160 Logic Gates

PLDs are VHDL and Verilog. Both of these HDLs have their advocates, but VHDL will be used

in this textbook. A VHDL tutorial is available on the website.

Figure 3–58 shows VHDL programs for gates described in this chapter. Two gates are

left as Checkup exercises. VHDL has an entity/architecture structure. The entity defines

the logic element and its inputs/outputs or ports; the architecture describes the logic oper-

ation. Keywords that are part of the VHDL syntax are shown bold for clarity.

FIGURE 3–58 Logic gates described with VHDL.

X

X = A

A

entity Inverter is

 port (A: in bit; X: out bit);

end entity Inverter;

architecture NOTfunction of Inverter is

begin

 X 6= not A;

end architecture NOTfunction;

(a) Inverter

A

B
X

X = AB

entity ANDgate is

 port (A, B: in bit; X: out bit);

end entity ANDgate;

architecture ANDfunction of ANDgate is

begin

 X 6= A and B;

end architecture ANDfunction;

(b) AND gate

X

X = A + B

A

B

entity ORgate is

 port (A, B: in bit; X: out bit);

end entity ORgate;

architecture ORfunction of ORgate is

begin

 X 6= A or B;

end architecture ORfunction;

(c) OR gate

X = ABC

A

C
XB

entity NANDgate is

 port (A, B, C: in bit; X: out bit);

end entity NANDgate;

architecture NANDfunction of NANDgate is

begin

 X 6= A nand B nand C;

end architecture NANDfunction;

(d) NAND gate

X = AB AB

A

B
X

+

entity XNORgate is

 port (A, B: in bit; X: out bit);

end entity XNORgate;

architecture XNORfunction of XNORgate is

begin

 X 6= A xnor B;

end architecture XNORfunction;

(e) XNOR gate

SECTION 3–7 CHECKUP

 1. List six process technologies used for programmable links in programmable logic.

 2. What does the term volatile mean in relation to PLDs and which process technology

is volatile?

 3. What are two design entry methods for programming PLDs and FPGAs?

 4. Define JTAG.

 5. Write a VHDL description of a 3-input NOR gate.

 6. Write a VHDL description of an XOR gate.

3–8 Fixed-Function Logic Gates

Fixed-function logic integrated circuits have been around for a long time and are avail-

able in a variety of logic functions. Unlike a PLD, a fixed-function IC comes with logic

functions that cannot be programmed in and cannot be altered. The fixed-function logic

is on a much smaller scale than the amount of logic that can be programmed into a PLD.

Although the trend in technology is definitely toward programmable logic, fixed-function

logic is used in specialized applications where PLDs are not the optimum choice. Fixed-

 Fixed-Function Logic Gates 161

function logic devices are sometimes called “glue logic” because of their usefulness in

tying together larger units of logic such as PLDs in a system.

After completing this section, you should be able to

u List common 74 series gate logic functions

u List the major integrated circuit technologies and name some integrated circuit

families

u Obtain data sheet information

u Define propagation delay time

u Define power dissipation

u Define unit load and fan-out

u Define speed-power product

All of the various fixed-function logic devices currently available are implemented in

two major categories of circuit technology: CMOS (complementary metal-oxide semi-

conductor) and bipolar (also known as TTL, transistor-transistor logic). A type of bipo-

lar technology that is available in very limited devices is ECL (emitter-coupled logic).

BiCMOS is another integrated circuit technology that combines both bipolar and CMOS.

CMOS is the most dominant circuit technology.

74 Series Logic Gate Functions

The 74 series is the standard fixed-function logic devices. The device label format includes

one or more letters that indentify the type of logic circuit technology family in the IC

package and two or more digits that identify the type of logic function. For example,

74HC04 is a fixed-function IC that has six inverters in a package as indicated by 04. The

letters, HC, following the prefix 74 identify the circuit technology family as a type of

CMOS logic.

Type of IC technology family

Type of logic function

74xxyy

AND Gate

Figure 3–59 shows three configurations of fixed-function AND gates in the 74 series. The

74xx08 is a quad 2-input AND gate device, the 74xx11 is a triple 3-input AND gate device,

VCC

14

7
GND

1

2
3

4

5
6

9

10
8

12

13
11

(a) 74xx08

FIGURE 3–59 74 series AND gate devices with pin numbers.

VCC

14

7
GND

1

13
12

9

11
8

(b) 74xx11

3

2

10

4
5

6

VCC

14

7
GND

1

4
5

6

8

(c) 74xx21

2

9

12
13

10

162 Logic Gates

and the 74xx21 is a dual 4-input AND gate device. The label xx can represent any of the

integrated circuit technology families such as HC or LS. The numbers on the inputs and

outputs are the IC package pin numbers.

NAND Gate

Figure 3–60 shows four configurations of fixed-function NAND gates in the 74 series. The

74xx00 is a quad 2-input NAND gate device, the 74xx10 is a triple 3-input NAND gate

device, the 74xx20 is a dual 4-input NAND gate device, and the 74xx30 is a single 8-input

NAND gate device.

VCC

14

7
GND

1

2
3

4

5
6

9

10
8

12

13
11

(a) 74xx00

FIGURE 3–60 74 series NAND gate devices with package pin numbers.

VCC

14

7
GND

1

13
12

9

11
8

(b) 74xx10

3

2

10

4
5

6

VCC

14

7
GND

1

4
5

6

8

(c) 74xx20

2

9

12
13

10

VCC

14

7
GND

1

3

4

(d) 74xx30

2

5

12

11

6

8

OR Gate

Figure 3–61 shows a fixed-function OR gate in the 74 series. The 74xx32 is a quad 2-input

OR gate device.

NOR Gate

Figure 3–62 shows two configurations of fixed-function NOR gates in the 74 series. The

74xx02 is a quad 2-input NOR gate device, and the 74xx27 is a triple 3-input NOR gate

device.

VCC

14

7
GND

1

2
3

4

5
6

9

10
8

12

13
11

74xx32

FIGURE 3–61 74 series OR

gate device.

VCC

14

7
GND

2

3
1

5

6
4

8

9
10

11

12
13

(a) 74xx02

VCC

14

7
GND

1
2

13
12

6

(b) 74xx27

8

3
4
5

9
10
11

FIGURE 3–62 74 series NOR gate devices.

 Fixed-Function Logic Gates 163

XOR Gate

Figure 3–63 shows a fixed-function XOR (exclusive-OR) gate in the 74 series. The 74xx86

is a quad 2-input XOR gate.

IC Packages

All of the 74 series CMOS are pin-compatible with the same types of devices in bipolar.

This means that a CMOS digital IC such as the 74HC00 (quad 2-input NAND), which con-

tains four 2-input NAND gates in one IC package, has the identical package pin numbers for

each input and output as does the corresponding bipolar device. Typical IC gate packages,

the dual in-line package (DIP) for plug-in or feedthrough mounting and the small-outline

integrated circuit (SOIC) package for surface mounting, are shown in Figure 3–64. In some

cases, other types of packages are also available. The SOIC package is significantly smaller

than the DIP. Packages with a single gate are known as little logic. Most logic gate func-

tions are available and are implemented in a CMOS circuit technology. Typically, the gates

have only two inputs and have a different designation than multigate devices. For example,

the 74xx1G00 is a single 2-input NAND gate.

VCC

14

7
GND

1

2
3

4

5
6

9

10
8

12

13
11

74xx86

FIGURE 3–63 74 series XOR

gate.

14 13 12 11 10 9 8

1 2 3 4 5 6 7

0.335 – 0.334 in.

0.228 – 0.244 in.

Lead no.1
identifier

14 13 12 11 10 9 8

1 2 3 4 5 6 7

0.740 – 0.770 in.

0.250 ± 0.010 in.

0.050 in. TYP

0.053 – 0.069 in.

0.014 – 0.020 in. TYP

(b) 14-pin small outline package (SOIC) for surface mounting

Pin no.1

identifiers

(dot or notch)

(a) 14-pin dual in-line package (DIP) for feedthrough mounting

0.145 – 0.200 in.

0.125 – 0.150 in.

0.014 – 0.023 in. TYP

0.060 in. TYP

0.100 ± 0.010 in. TYP

14

1

14

1

FIGURE 3–64 Typical dual in-line (DIP) and small-outline (SOIC) packages showing pin

numbers and basic dimensions.

Handling Precautions for CMOS

CMOS logic is very sensitive to static charge and can be damaged by ESD (electrostatic discharge)
if not handled properly as follows:

1. Store and ship in conductive foam.

2. Connect instruments to earth ground.

3. Connect wrist to earth ground through a large series resistor.

4. Do not remove devices from circuit with power on.

5. Do not apply signal voltage when power is off.

164 Logic Gates

The type of integrated circuit technology has nothing to do with the logic function itself.

For example, the 74HC00, 74HCT00, and 74LS00 are all quad 2-input NAND gates with

identical package pin configurations. The differences among these three logic devices are

in the electrical and performance characteristics such as power consumption, dc supply

voltage, switching speed, and input/output voltage levels. CMOS and bipolar circuits are

implemented with two different types of transistors. Figures 3–65 and 3–66 show partial

data sheets for the 74HC00A quad 2-input NAND gate in CMOS and in bipolar technolo-

gies, respectively.

Performance Characteristics and Parameters

Several things define the performance of a logic circuit. These performance characteris-

tics are the switching speed measured in terms of the propagation delay time, the power

74 Series Logic Circuit Families

Although many logic circuit families have become obsolete and some are rapidly on the

decline, others are still very active and available. CMOS is the most available and most

popular type of logic circuit technology, and the HC (high-speed CMOS) family is the

most recommended for new projects. For bipolar, the LS (low-power schottky) family is

the most widely used. The HCT, which a variation of the HC family, is compatible with

bipolar devices such as LS.

Table 3–14 lists many logic circuit technology families. Because the active status of any

given logic family is always in flux, check with a manufacturer, such as Texas Instruments,

for information on active/nonactive status and availability for a logic function in a given

circuit technology.

TABLE 3–14

74 series logic families based on circuit technology.

Circuit Type Description Circuit Technology

ABT Advanced BiCMOS BiCMOS

AC Advanced CMOS CMOS

ACT Bipolar compatible AC CMOS

AHC Advanced high-speed CMOS CMOS

AHCT Bipolar compatible AHC CMOS

ALB Advanced low-voltage BiCMOS BiCMOS

ALS Advanced low-power Schottky Bipolar

ALVC Advanced low-voltage CMOS CMOS

AUC Advanced ultra-low-voltage CMOS CMOS

AUP Advanced ultra-low-power CMOS CMOS

AS Advanced Schottky Bipolar

AVC Advanced very-low-power CMOS CMOS

BCT Standard BiCMOS BiCMOS

F Fast Bipolar

FCT Fast CMOS technology CMOS

HC High-speed CMOS CMOS

HCT Bipolar compatible HC CMOS

LS Low-power Schottky Bipolar

LV-A Low-voltage CMOS CMOS

LV-AT Bipolar compatible LV-A CMOS

LVC Low-voltage CMOS CMOS

LVT Low-voltage biCMOS BiCMOS

S Schottky Bipolar

High-speed logic has a short
 propagation delay time.

 Fixed-Function Logic Gates 165

• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 A
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance With the JEDEC Standard No. 7A
 Requirements
• Chip Complexity: 32 FETs or 8 Equivalent Gates

The MC54/74HC00A is identical in pinout to the LS00. The device inputs are compatible with Standard
CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

Power Dissipation Capacitance (Per Buffer)CPD

ParameterSymbol Condition

VCC

V –55 to 25°C Unit

1.50
2.10
3.15
4.20

Parameter Value UnitSymbol

DC Supply Voltage (Referenced to GND) – 0.5 to + 7.0 VVCC

DC Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 VVin

DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 VVout

DC Input Current, per Pin ± 20 mAIin

DC Output Current, per Pin ± 25 mAIout

DC Supply Current, VCC and GND Pins ± 50 mAICC

Power Dissipation in Still Air, Plastic or Ceramic DIP† 750
500
450

mWPD
SOIC Package†

TSSOP Package†

Storage Temperature °CTstg –65 to + 150

Lead Temperature, 1 mm from Case for 10 Seconds °CTL

260

300

Plastic DIP, SOIC or TSSOP Package

Ceramic DIP

* Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

† Derating — Plastic DIP: – 10 mW/°C from 65° to 125° C

Ceramic DIP: – 10 mW/°C from 100° to 125° C

SOIC Package: – 7 mW/°C from 65° to 125° C

TSSOP Package: – 6.1 mW/°C from 65° to 125° C

DC Supply Voltage (Referenced to GND) 6.0 VVCC 2.0

DC Input Voltage, Output Voltage (Referenced to GND) VVin, Vout VCC0

Operating Temperature, All Package Types °CTA +125–55

Input Rise and Fall Time VCC = 2.0 V

 VCC = 4.5 V

VCC = 6.0 V

nst r, t f 1000

500

400

0

0

0

Parameter Max UnitSymbol in

Minimum High-Level Input VoltageVIH Vout = 0.1V or VCC – 0.1V

 Iout ″ 20 A

2.0

3.0

4.5

6.0

1.50

2.10

3.15

4.20

1.50

2.10

3.15

4.20

V

0.50

0.90

1.35

1.80

Maximum Low-Level Input VoltageVIL Vout = 0.1V or VCC – 0.1V

 Iout ″ 20 A

2.0

3.0

4.5

6.0

0.50

0.90

1.35

1.80

0.50

0.90

1.35

1.80

V

1.9

4.4

5.9

Minimum High-Level Output VoltageVOH Vin = VIH or VIL

 Iout ″ 20 A

2.0

4.5

6.0

1.9

4.4

5.9

1.9

4.4

5.9

V

2.20

3.70

5.20

Vin = VIH or VIL 3.0

4.5

6.0

2.48

3.98

5.48

2.34

3.84

5.34

 Iout ″ 2.4mA

 Iout ″ 4.0mA

 Iout ″ 5.2mA

0.1

0.1

0.1

Maximum Low-Level Output VoltageVOL Vin = VIH or VIL

 Iout ″ 20 A

2.0

4.5

6.0

0.1

0.1

0.1

0.1

0.1

0.1

V

0.40

0.40

0.40

Vin = VIH or VIL 3.0

4.5

6.0

0.26

0.26

0.26

0.33

0.33

0.33

 Iout ″ 2.4mA

 Iout ″ 4.0mA

 Iout ″ 5.2mA

±1.0Maximum Input Leakage CurrentIin Vin = VCC or GND 6.0 ±0.1 ±1.0 A

40Maximum Quiescent Supply

Current (per Package)

ICC Vin = VCC or GND

Iout = 0 A

6.0 1.0 10 A

″85°C ″125°C

Guaranteed Limit

DC CHARACTERISTICS (Voltages Referenced to GND)

ParameterSymbol

VCC

V –55 to 25°C Unit

110

55

22

19

Maximum Propagation Delay, Input A or B to Output YtPLH,

tPHL

2.0

3.0

4.5

6.0

75

30

15

13

95

40

19

16

ns

″ 85°C ″125°C

Guaranteed Limit

AC CHARACTERISTICS (CL = 50 pF, Input tr = t f = 6 ns)

110

36

22

19

Maximum Output Transition Time, Any OutputtTLH,

tTHL

2.0

3.0

4.5

6.0

75

27

15

13

95

32

19

16

ns

10Maximum Input CapacitanceCin 10 10 pF

22

Typical @ 25°C, VCC = 5.0 V, VEE = 0 V

pF

MAXIMUM RATINGS*

RECOMMENDED OPERATING CONDITIONS

Quad 2-Input NAND Gate High-Performance Silicon–Gate CMOS

MC54/74HC00A

J SUFFIX
CERAMIC PACKAGE

CASE 632-08

N SUFFIX
PLASTIC PACKAGE

CASE 646-06

D SUFFIX
SOIC PACKAGE
CASE 751A-03

DT SUFFIX
TSSOP PACKAGE

CASE 948G-01

ORDERING INFORMATION

MC54HCXXAJ Ceramic
MC74HCXXAN Plastic
MC74HCXXAD SOIC
MC74HCXXADT TSSOP

14

1

14

1

14

1

14

1

FUNCTION TABLE

Inputs Output

A

L
L
H
H

B

L
H
L
H

Y

H
H
H
L

Y1
3

A1 1

B1
2

Y2
6

A2 4

B2
5

Y3
8

A3 9

B3
10

Y4
11

A4 12

B4
13

Y = AB

PIN 14 = VCC

PIN 7 = GND

LOGIC DIAGRAM

14

VCC

13

B4

12

A4

11

Y4

10

B3

9

A3

8

Y3

1

A1 B1 Y1 A2 B2 Y2 GND

2 3 4 5 6 7

Pinout: 14–Load Packages (Top View)

MC54/74HC00A

µ

µ

µ

µ

µ

µ

µ

µ

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥

≥ ≥

≥ ≥

FIGURE 3–65 CMOS logic. Partial data sheet for a 54/74HC00A quad 2-input NAND

gate. The 54 prefix indicates military grade and the 74 prefix indicates commercial grade.

166 Logic Gates

VCC = MAX, VIN = 2.7 V

V

V

QUAD 2-INPUT NAND GATE

QUAD 2-INPUT NAND GATE

LOW POWER SCHOTTKY

J SUFFIX
CERAMIC

CASE 632-08

N SUFFIX
PLASTIC

CASE 646-06

D SUFFIX
SOIC

CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ Ceramic
SN74LSXXN Plastic
SN74LSXXD SOIC

14

1

14

1

14

1

VCC

1

GND

2 3 4 5 6 7

ParameterSymbol Test ConditionsMin Unit

Input HIGH VoltageVIH Guaranteed Input HIGH Voltage for

All Inputs

2.0 V

NOTE 1: Not more than one output should be shorted at a time, nor for more than 1 second.

Typ Max

Limits

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

• ESD > 3500 Volts

14 13 12 11 10 9 8

SN54/74LS00

SN54/74LS00

0.7
Input LOW VoltageVIL

Guaranteed Input LOW Voltage for

All Inputs
V

54

0.874

Input Clamp Diode VoltageVIK VCC = MIN, IIN = –18 mAV–0.65 –1.5

Ouput HIGH VoltageVOH
VCC = MIN, IOH = MAX, VIN = VIH

or VIL per Truth Table

54

74

2.5

2.7

3.5

3.5

V

V
Ouput LOW VoltageVOL

IOL = 4.0 mA54, 74

74

0.25

0.35

0.4

0.5

VCC = VCC MIN, VIN = VIL

or VIH per Truth TableIOL = 8.0 mA

20
Input HIGH CurrentIIH

0.1

Input LOW CurrentIIL VCC = MAX, IN = 0.4 VmA–0.4

 A

mA VCC = MAX, VIN = 7.0 V

Short Circuit Current (Note 1)IOS VCC = MAXmA–100–20

1.6

Power Supply Current

Total, Output HIGHICC

4.4

mA VCC = MAX

Total, Output LOW

ParameterSymbol Test ConditionsMin Unit

Turn-Off Delay, Input to OutputtPLH VCC = 5.0 V

CL = 15 pF

9.0 ns

Typ Max

Limits

AC CHARACTERISTICS (TA = 25°C)

15

Turn-On Delay, Input to OutputtPHL 10 ns15

ParameterSymbol Min Unit

Supply VoltageVCC 4.5

4.75

V

Typ Max

GUARANTEED OPERATING RANGES

54

74

5.0

5.0

5.5

5.25

Operating Ambient

Temperature Range

TA –55

0

°C54

74

25

25

125

70

Output Current — HighIOH mA54, 74 –0.4

Output Current — LowIOL mA54

74

4.0

8.0

µ

FIGURE 3–66 Bipolar logic. Partial data sheet for a 54/74LS00 quad 2-input NAND gate.

 dissipation, the fan-out or drive capability, the speed-power product, the dc supply voltage,

and the input/output logic levels.

Propagation Delay Time

This parameter is a result of the limitation on switching speed or frequency at which a logic

circuit can operate. The terms low speed and high speed, applied to logic circuits, refer to

the propagation delay time. The shorter the propagation delay, the higher the switching

speed of the circuit and thus the higher the frequency at which it can operate.

Propagation delay time, tP, of a logic gate is the time interval between the transition

of an input pulse and the occurrence of the resulting transition of the output pulse. There

are two different measurements of propagation delay time associated with a logic gate that

apply to all the types of basic gates:

• tPHL: The time between a specified reference point on the input pulse and a corre-

sponding reference point on the resulting output pulse, with the output changing from

the HIGH level to the LOW level (HL).

• tPLH: The time between a specified reference point on the input pulse and a corre-

sponding reference point on the resulting output pulse, with the output changing from

the LOW level to the HIGH level (LH).

For the HCT family CMOS, the propagation delay is 7 ns, for the AC family it is 5 ns,

and for the ALVC family it is 3 ns. For standard-family bipolar (TTL) gates, the typical

propagation delay is 11 ns and for F family gates it is 3.3 ns. All specified values are depen-

dent on certain operating conditions as stated on a data sheet.

 Fixed-Function Logic Gates 167

Related Problem

One type of logic gate has a specified maximum tPLH and tPHL of 10 ns. For another

type of gate the value is 4 ns. Which gate can operate at the highest frequency?

EXAMPLE 3–23

Show the propagation delay times of an inverter.

Solution

An input/output pulse of an inverter is shown in Figure 3–67, and the propagation delay

times, tPHL and tPLH, are indicated. In this case, the delays are measured between the

50% points of the corresponding edges of the input and output pulses. The values of

tPHL and tPLH are not necessarily equal but in many cases they are the same.

tPHL tPHL

50%

50%

Input

H

L

Output

H

L

FIGURE 3–67

DC Supply Voltage (VCC)

The typical dc supply voltage for CMOS logic is either 5 V, 3.3 V, 2.5 V, or 1.8 V, depend-

ing on the category. An advantage of CMOS is that the supply voltages can vary over a

wider range than for bipolar logic. The 5 V CMOS can tolerate supply variations from 2 V

to 6 V and still operate properly although propagation delay time and power dissipation

are significantly affected. The 3.3 V CMOS can operate with supply voltages from 2 V to

3.6 V. The typical dc supply voltage for bipolar logic is 5.0 V with a minimum of 4.5 V and

a maximum of 5.5 V.

Power Dissipation

The power dissipation, PD, of a logic gate is the product of the dc supply voltage and

the average supply current. Normally, the supply current when the gate output is LOW is

greater than when the gate output is HIGH. The manufacturer’s data sheet usually desig-

nates the supply current for the LOW output state as ICCL and for the HIGH state as ICCH.

The average supply current is determined based on a 50% duty cycle (output LOW half the

time and HIGH half the time), so the average power dissipation of a logic gate is

 PD � VCC a ICCH � ICCL

2
b Equation 3–2

CMOS gates have very low power dissipations compared to the bipolar family. How-

ever, the power dissipation of CMOS is dependent on the frequency of operation. At zero

frequency the quiescent power is typically in the microwatt/gate range, and at the maximum

operating frequency it can be in the low milliwatt range; therefore, power is sometimes

specified at a given frequency. The HC family, for example, has a power of 2.75 mW/gate at

0 Hz (quiescent) and 600 mW/gate at 1 MHz.

A lower power dissipation means less
current from the dc supply.

168 Logic Gates

Power dissipation for bipolar gates is independent of frequency. For example, the ALS

family uses 1.4 mW/gate regardless of the frequency and the F family uses 6 mW/gate.

Input and Output Logic Levels

VIL is the LOW level input voltage for a logic gate, and VIH is the HIGH level input volt-

age. The 5 V CMOS accepts a maximum voltage of 1.5 V as VIL and a minimum voltage

of 3.5 V as VIH. Bipolar logic accepts a maximum voltage of 0.8 V as VIL and a minimum

voltage of 2 V as VIH.

VOL is the LOW level output voltage and VOH is the HIGH level output voltage. For

5 V CMOS, the maximum VOL is 0.33 V and the minimum VOH is 4.4 V. For bipolar

logic, the maximum VOL is 0.4 V and the minimum VOH is 2.4 V. All values depend on

operating conditions as specified on the data sheet.

Speed-Power Product (SPP)

This parameter (speed-power product) can be used as a measure of the performance of a

logic circuit taking into account the propagation delay time and the power dissipation. It is

especially useful for comparing the various logic gate series within the CMOS and bipolar

technology families or for comparing a CMOS gate to a TTL gate.

The SPP of a logic circuit is the product of the propagation delay time and the power

dissipation and is expressed in joules (J), which is the unit of energy. The formula is

 SPP � tpPD Equation 3–3

EXAMPLE 3–24

A certain gate has a propagation delay of 5 ns and ICCH = 1 mA and ICCL = 2.5 mA

with a dc supply voltage of 5 V. Determine the speed-power product.

Solution

 PD = VCC ¢ ICCH + ICCL

2
≤ = 5 V ¢ 1 mA + 2.5 mA

2
≤ = 5 V(1.75 mA) = 8.75 mW

 SPP = (5 ns) (8.75 mW) = 43.75 pJ

Related Problem

If the propagation delay of a gate is 15 ns and its SPP is 150 pJ, what is its average

power dissipation?

Fan-Out and Loading

The fan-out of a logic gate is the maximum number of inputs of the same series in an

IC family that can be connected to a gate’s output and still maintain the output voltage

levels within specified limits. Fan-out is a significant parameter only for bipolar logic

because of the type of circuit technology. Since very high impedances are associated

with CMOS circuits, the fan-out is very high but depends on frequency because of

capacitive effects.

Fan-out is specified in terms of unit loads. A unit load for a logic gate equals one input

to a like circuit. For example, a unit load for a 74LS00 NAND gate equals one input to

another logic gate in the 74LS family (not necessarily a NAND gate). Because the current

from a LOW input (IIL) of a 74LS00 gate is 0.4 mA and the current that a LOW output

(IOL) can accept is 8.0 mA, the number of unit loads that a 74LS00 gate can drive in the

LOW state is

Unit loads =

IOL

IIL

=

8.0 mA

0.4 mA
= 20

A higher fan-out means that a gate
output can be connected to more
gate inputs.

 Fixed-Function Logic Gates 169

Figure 3–68 shows LS logic gates driving a number of other gates of the same circuit

technology, where the number of gates depends on the particular circuit technology. For

example, as you have seen, the maximum number of gate inputs (unit loads) that a 74LS

family bipolar gate can drive is 20.

Driving gate

1

2

20

Load gate

FIGURE 3–68 The LS family NAND gate output fans out to a maximum of 20 LS family

gate inputs.

Unused gate inputs for bipolar (TTL) and CMOS should be connected to the appropriate logic level
(HIGH or LOW). For AND/NAND, it is recommended that unused inputs be connected to VCC (through
a 1.0 kV resistor with bipolar) and for OR/NOR, unused inputs should be connected to ground.

Bipolar (TTL) CMOS/BipolarCMOS

+VCC

Unused

Used inputs

+VCC

Used

Unused

SECTION 3–8 CHECKUP

 1. How is fixed-function logic different than PLD logic?

 2. List the two types of IC technologies that are the most widely used.

 3. Identify the following IC logic designators:

(a) LS (b) HC (c) HCT

 4. Which IC technology generally has the lowest power dissipation?

 5. What does the term hex inverter mean? What does quad 2-input NAND mean?

 6. A positive pulse is applied to an inverter input. The time from the leading edge of the

input to the leading edge of the output is 10 ns. The time from the trailing edge of the input

to the trailing edge of the output is 8 ns. What are the values of tPLH and tPHL?

 7. A certain gate has a propagation delay time of 6 ns and a power dissipation of 3 mW.

Determine the speed-power product?

 8. Define ICCL and ICCH.

 9. Define VIL and VIH.

 10. Define VOL and VOH.

170 Logic Gates

Conditions for Testing Gates

When testing a NAND gate or an AND gate, always make sure that the inputs that are not

being pulsed are HIGH to enable the gate. When checking a NOR gate or an OR gate,

always make sure that the inputs that are not being pulsed are LOW. When checking an

XOR or XNOR gate, the level of the nonpulsed input does not matter because the pulses on

the other input will force the inputs to alternate between the same level and opposite levels.

Troubleshooting an Open Input

Troubleshooting this type of failure is easily accomplished with an oscilloscope and func-

tion generator, as demonstrated in Figure 3–70 for the case of a quad 2-input NAND gate

package. When measuring digital signals with a scope, always use dc coupling.

3–9 Troubleshooting

Troubleshooting is the process of recognizing, isolating, and correcting a fault or failure

in a circuit or system. To be an effective troubleshooter, you must understand how the

circuit or system is supposed to work and be able to recognize incorrect performance. For

example, to determine whether or not a certain logic gate is faulty, you must know what the

output should be for given inputs.

After completing this section, you should be able to

u Test for internally open inputs and outputs in IC gates

u Recognize the effects of a shorted IC input or output

u Test for external faults on a PCB board

u Troubleshoot a simple frequency counter using an oscillosope

Internal Failures of IC Logic Gates

Opens and shorts are the most common types of internal gate failures. These can occur on

the inputs or on the output of a gate inside the IC package. Before attempting any trouble-

shooting, check for proper dc supply voltage and ground.

Effects of an Internally Open Input

An internal open is the result of an open component on the chip or a break in the tiny

wire connecting the IC chip to the package pin. An open input prevents a signal on that

input from getting to the output of the gate, as illustrated in Figure 3–69(a) for the case

of a 2-input NAND gate. An open TTL (bipolar) input acts effectively as a HIGH level,

so pulses applied to the good input get through to the NAND gate output as shown in

Figure 3–69(b).

HIGH

Open input

No pulses

(a) Application of pulses to the open input will produce no pulses

Open input

(b) Application of pulses to the good input will produce output pulses for
bipolar NAND and AND gates because an open input typically acts as a
HIGH. It is uncertain for CMOS.

on the output.

FIGURE 3–69 The effect of an open input on a NAND gate.

 Troubleshooting 171

The first step in troubleshooting an IC that is suspected of being faulty is to make sure

that the dc supply voltage (VCC) and ground are at the appropriate pins of the IC. Next,

apply continuous pulses to one of the inputs to the gate, making sure that the other input is

HIGH (in the case of a NAND gate). In Figure 3–70(a), start by applying a pulse waveform

to pin 13, which is one of the inputs to the suspected gate. If a pulse waveform is indicated

on the output (pin 11 in this case), then the pin 13 input is not open. By the way, this also

proves that the output is not open. Next, apply the pulse waveform to the other gate input

(pin 12), making sure the other input is HIGH. There is no pulse waveform on the output at

pin 11 and the output is LOW, indicating that the pin 12 input is open, as shown in Figure

3–70(b). The input not being pulsed must be HIGH for the case of a NAND gate or AND

gate. If this were a NOR gate, the input not being pulsed would have to be LOW.

Effects of an Internally Open Output

An internally open gate output prevents a signal on any of the inputs from getting to the

output. Therefore, no matter what the input conditions are, the output is unaffected. The

level at the output pin of the IC will depend upon what it is externally connected to. It could

be either HIGH, LOW, or floating (not fixed to any reference). In any case, there will be no

signal on the output pin.

Troubleshooting an Open Output

Figure 3–71 illustrates troubleshooting an open NOR gate output. In part (a), one of the

inputs of the suspected gate (pin 11 in this case) is pulsed, and the output (pin 13) has no

pulse waveform. In part (b), the other input (pin 12) is pulsed and again there is no pulse

waveform on the output. Under the condition that the input that is not being pulsed is at a

LOW level, this test shows that the output is internally open.

Shorted Input or Output

Although not as common as an open, an internal short to the dc supply voltage, ground,

another input, or an output can occur. When an input or output is shorted to the supply volt-

age, it will be stuck in the HIGH state. If an input or output is shorted to ground, it will be

+VCC

GND

Scope
probeScope

probe

HIGH

GND

+VCC

(a) Pin 13 input and pin 11 output OK (b) Pin 12 input is open.

Scope
probeScope

probe

Square wave

from function

generator

Square wave

from function

generator

HIGH

FIGURE 3–70 Troubleshooting a NAND gate for an open input.

172 Logic Gates

stuck in the LOW state (0 V). If two inputs or an input and an output are shorted together,

they will always be at the same level.

External Opens and Shorts

Many failures involving digital ICs are due to faults that are external to the IC package.

These include bad solder connections, solder splashes, wire clippings, improperly etched

printed circuit boards (PCBs), and cracks or breaks in wires or printed circuit intercon-

nections. These open or shorted conditions have the same effect on the logic gate as the

internal faults, and troubleshooting is done in basically the same ways. A visual inspection

of any circuit that is suspected of being faulty is the first thing a technician should do.

LOW

+VCC

GND

(a) Pulse input on pin 11. No pulse output.

Scope
probeScope

probe

+VCC

GND

(b) Pulse input on pin 12. No pulse output.

Scope
probeScope

probe
LOW

Square wave

from function

generator

Square wave

from function

generator

FIGURE 3–71 Troubleshooting a NOR gate for an open output.

EXAMPLE 3–25

You are checking a 74LS10 triple 3-input NAND gate IC that is one of many ICs

located on a PCB. You have checked pins 1 and 2 and they are both HIGH. Now you

apply a pulse waveform to pin 13, and place your scope probe first on pin 12 and then

on the connecting PCB trace, as indicated in Figure 3–72. Based on your observation of

the scope screen, what is the most likely problem?

Solution

The waveform with the probe in position 1 shows that there is pulse activity on the gate

output at pin 12, but there are no pulses on the PCB trace as indicated by the probe in

position 2. The gate is working properly, but the signal is not getting from pin 12 of the

IC to the PCB trace.

Most likely there is a bad solder connection between pin 12 of the IC and the PCB,

which is creating an open. You should resolder that point and check it again.

Related Problem

If there are no pulses at either probe position 1 or 2 in Figure 3–72, what fault(s) does

this indicate?

 Troubleshooting 173

In most cases, you will be troubleshooting ICs that are mounted on PCBs or proto-

type assemblies and interconnected with other ICs. As you progress through this book,

you will learn how different types of digital ICs are used together to perform system

functions. At this point, however, we are concentrating on individual IC gates. This

limitation does not prevent us from looking at the system concept at a very basic and

simplified level.

To continue the emphasis on systems, Examples 3–26 and 3–27 deal with troubleshoot-

ing the frequency counter that was introduced in Section 3–2.

+VCC

GND

Input from
function

generator

HIGH

HIGH

2

1

Input

Output
on pin 12

Input

Output
on trace

FIGURE 3–72

EXAMPLE 3–26

After trying to operate the frequency counter shown in Figure 3–73, you find that it

constantly reads out all 0s on its display, regardless of the input frequency. Determine

the cause of this malfunction. The enable pulse has a width of 1 ms.

Figure 3–73(a) gives an example of how the frequency counter should be working

with a 12 kHz pulse waveform on the input to the AND gate. Part (b) shows that the

display is improperly indicating 0 Hz.

Solution

Three possible causes are

 1. A constant active or asserted level on the counter reset input, which keeps the

counter at zero.

 2. No pulse signal on the input to the counter because of an internal open or short in

the counter. This problem would keep the counter from advancing after being

reset to zero.

174 Logic Gates

 3. No pulse signal on the input to the counter because of an open AND gate output

or the absence of input signals, again keeping the counter from advancing from

zero.

The first step is to make sure that VCC and ground are connected to all the right

places; assume that they are found to be okay. Next, check for pulses on both inputs to

the AND gate. The scope indicates that there are proper pulses on both of these inputs.

A check of the counter reset shows a LOW level which is known to be the unasserted

level and, therefore, this is not the problem. The next check on pin 3 of the 74LS08

shows that there are no pulses on the output of the AND gate, indicating that the gate

output is open. Replace the 74LS08 IC and check the operation again.

Related Problem

If pin 2 of the 74LS08 AND gate is open, what indication should you see on the fre-

quency display?

2

1
3

+5 V

14

74LS08

7

1
4

2

1
3

+5 V

14

74LS08

7

1
4

Reset pulse

Input signal

Enable input

(b) The counter is not measuring a frequency.

Reset pulse

Input signal

Enable input

(a) The counter is working properly.

Frequency

counter

kHz

Frequency

counter

Hz

FIGURE 3–73

 Troubleshooting 175

Solution

Recall from Section 3–2 that the input pulses were allowed to pass through the AND

gate for exactly 1 ms. The number of pulses counted in 1 ms is equal to the frequency in

hertz. Therefore, the 1 ms interval, which is produced by the enable pulse on pin 2 of

the AND gate, is very critical to an accurate frequency measurement. The enable pulses

are produced internally by a precision oscillator circuit. The pulse must be exactly 1 ms

in width and in this case it occurs every 3 ms to update the count. Just prior to each

enable pulse, the counter is reset to zero so that it starts a new count each time.

Since the counter appears to be counting more pulses than it should to produce a

frequency readout that is too high, the enable pulse is the primary suspect. Exact time-

interval measurements must be made on the oscilloscope.

An input pulse waveform of exactly 10 kHz is applied to pin 1 of the AND gate and

the frequency counter incorrectly shows 12 kHz. The first scope measurement, on the

output of the AND gate, shows that there are 12 pulses for each enable pulse. In the

second scope measurement, the input frequency is verified to be precisely 10 kHz

(period = 100 ms). In the third scope measurement, the width of the enable pulse is

found to be 1.2 ms rather than 1 ms.

The conclusion is that the enable pulse is out of calibration for some reason.

Related Problem

What would you suspect if the readout were indicating a frequency less than it should be?

EXAMPLE 3–27

The frequency counter shown in Figure 3–74 appears to measure the frequency of input

signals incorrectly. It is found that when a signal with a precisely known frequency is

applied to pin 1 of the AND gate, the oscilloscope display indicates a higher frequency.

Determine what is wrong. The readings on the screen indicate time per division.

Frequency

counter

kHz

Reset pulse

74LS08

2

1
3

+5 V

Input signal

Enable input

14

7

2

3
1
4

50 �s .2 ms

.2 ms

1

FIGURE 3–74

176 Logic Gates

Proper grounding is very important when setting up to take measurements or work on a circuit.
Properly grounding the oscilloscope protects you from shock and grounding yourself protects your
circuits from damage. Grounding the oscilloscope means to connect it to earth ground by plugging the
three-prong power cord into a grounded outlet. Grounding yourself means using a wrist-type ground-
ing strap, particularly when you are working with CMOS logic. The wrist strap must have a high-value
resistor between the strap and ground for protection against accidental contact with a voltage source.

Also, for accurate measurements, make sure that the ground in the circuit you are testing is the
same as the scope ground. This can be done by connecting the ground lead on the scope probe to a
known ground point in the circuit, such as the metal chassis or a ground point on the PCB. You can
also connect the circuit ground to the GND jack on the front panel of the scope.

SECTION 3–9 CHECKUP

 1. What are the most common types of failures in ICs?

 2. If two different input waveforms are applied to a 2-input bipolar NAND gate and the

output waveform is just like one of the inputs, but inverted, what is the most likely

problem?

 3. Name two characteristics of pulse waveforms that can be measured on the oscilloscope.

SUMMARY

• Theinverteroutputisthecomplementoftheinput.

• TheANDgateoutputisHIGHonlywhenalltheinputsareHIGH.

• TheORgateoutputisHIGHwhenanyoftheinputsisHIGH.

• TheNANDgateoutputisLOWonlywhenalltheinputsareHIGH.

• TheNANDcanbeviewedasanegative-ORwhoseoutputisHIGHwhenanyinputisLOW.

• TheNORgateoutputisLOWwhenanyoftheinputsisHIGH.

• TheNORcanbeviewedasanegative-ANDwhoseoutputisHIGHonlywhenalltheinputsare
LOW.

• Theexclusive-ORgateoutputisHIGHwhentheinputsarenotthesame.

• Theexclusive-NORgateoutputisLOWwhentheinputsarenotthesame.

• Distinctiveshapesymbolsandtruthtablesforvariouslogicgates(limitedto2inputs)areshown
in Figure 3–75.

0
0
1
1

0
1
0
1

1
0
0
0

0
1
0
1

1
0
0
0

NOR Negative-AND

0
0
1
1

0
0
1
1

0
1
0
1

1
1
1
0

NAND

0
0
1
1

0
1
0
1

1
1
1
0

Negative-OR

Note: Active states are shown in yellow.

AND

0
0
1
1

0
1
0
1

0
0
0
1

OR

0
0
1
1

0
1
0
1

0
1
1
1

0
0
1
1

0
1
0
1

1
0
0
1

0
0
1
1

0
1
0
1

0
1
1
0

Exclusive-OR Exclusive-NOR

0
1

1
0

Inverter

FIGURE 3–75

 Key Terms 177

• Mostprogrammablelogicdevices(PLDs)arebasedonsomeformofANDarray.

• Programmablelinktechnologiesarefuse,antifuse,EPROM,EEPROM,flash,andSRAM.

• APLDcanbeprogrammedinahardwarefixturecalledaprogrammerormountedona
development printed circuit board.

• PLDshaveanassociatedsoftwaredevelopmentpackageforprogramming.

• Twomethodsofdesignentryusingprogrammingsoftwarearetextentry(HDL)andgraphic
(schematic) entry.

• ISPPLDscanbeprogrammedaftertheyareinstalledinasystem,andtheycanberepro-

grammed at any time.

• JTAGstandsforJointTestActionGroupandisaninterfacestandard(IEEEStd.1149.1)used
for programming and testing PLDs.

• Anembeddedprocessorisusedtofacilitatein-systemprogrammingofPLDs.

• InPLDs,thecircuitisprogrammedinandcanbechangedbyreprogramming.

• Theaveragepowerdissipationofalogicgateis

PD = VCC ¢ ICCH + ICCL

2
≤

• Thespeed-powerproductofalogicgateis

SPP = tpPD

• Asarule,CMOShasalowerpowerconsumptionthanbipolar.

• Infixed-functionlogic,thecircuitcannotbealtered.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

AND array An array of AND gates consisting of a matrix of programmable interconnections.

AND gate A logic gate that produces a HIGH output only when all of the inputs are HIGH.

Antifuse A type of PLD nonvolatile programmable link that can be left open or can be shorted

once as directed by the program.

Bipolar A class of integrated logic circuits implemented with bipolar transistors; also known as TTL.

Boolean algebra The mathematics of logic circuits.

CMOS Complementary metal-oxide semiconductor; a class of integrated logic circuits that is

 implemented with a type of field-effect transistor.

Complement The inverse or opposite of a number. LOW is the complement of HIGH, and 0 is

the complement of 1.

EEPROM A type of nonvolatile PLD reprogrammable link based on electrically erasable

 programmable read-only memory cells and can be turned on or off repeatedly by programming.

EPROM A type of PLD nonvolatile programmable link based on electrically programmable

read-only memory cells and can be turned either on or off once with programming.

Exclusive-NOR (XNOR) gate A logic gate that produces a LOW only when the two inputs are at

opposite levels.

Exclusive-OR (XOR) gate A logic gate that produces a HIGH output only when its two inputs

are at opposite levels.

Fan-out The number of equivalent gate inputs of the same family series that a logic gate can drive.

Flash A type of PLD nonvolatile reprogrammable link technology based on a single transistor cell.

Fuse A type of PLD nonvolatile programmable link that can be left shorted or can be opened once

as directed by the program.

Inverter A logic circuit that inverts or complements its input.

JTAG Joint Test Action Group; an interface standard designated IEEE Std. 1149.1.

NAND gate A logic gate that produces a LOW output only when all the inputs are HIGH.

178 Logic Gates

NOR gate A logic gate in which the output is LOW when one or more of the inputs are HIGH.

OR gate A logic gate that produces a HIGH output when one or more inputs are HIGH.

Propagation delay time The time interval between the occurrence of an input transition and the

occurrence of the corresponding output transition in a logic circuit.

SRAM A type of PLD volatile reprogrammable link based on static random-access memory cells

and can be turned on or off repeatedly with programming.

Target device A PLD mounted on a programming fixture or development board into which a

software logic design is to be downloaded.

Truth table A table showing the inputs and corresponding output(s) of a logic circuit.

Unit load A measure of fan-out. One gate input represents one unit load to the output of a gate

within the same IC family.

VHDL A standard hardware description language that describes a function with an entity/

architecture structure.

TRUE/FALSE QUIZ

SELF-TEST

Answers are at the end of the chapter.

 1. When the input to an inverter is LOW (0), the output is

(a) HIGH or 0 (b) LOW or 0 (c) HIGH or 1 (d) LOW or 1

 2. An inverter performs an operation known as

(a) complementation (b) assertion (c) inversion (d) both answers (a) and (c)

 3. The output of an AND gate with inputs A, B and C is 0 (LOW) when

(a) A = 0, B = 0, C = 0 (b) A = 0, B = 1, C = 1 (c) both answers (a) and (b)

 4. The output of an OR gate with inputs A, B and C is 0 (LOW) when

(a) A = 0, B = 0, C = 0 (b) A = 0, B = 1, C = 1 (c) both answers (a) and (b)

 5. A pulse is applied to each input of a 2-input NAND gate. One pulse goes HIGH at t = 0 and

goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at

t = 3 ms. The output pulse can be described as follows:

(a) It goes LOW at t = 0 and back HIGH at t = 3 ms.

(b) It goes LOW at t = 0.8 ms and back HIGH at t = 3 ms.

(c) It goes LOW at t = 0.8 ms and back HIGH at t = 1 ms.

(d) It goes LOW at t = 0.8 ms and back LOW at t = 1 ms.

 6. A pulse is applied to each input of a 2-input NOR gate. One pulse goes HIGH at t = 0 and

goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at

t = 3 ms. The output pulse can be described as follows:

(a) It goes LOW at t = 0 and back HIGH at t = 3 ms.

(b) It goes LOW at t = 0.8 ms and back HIGH at t = 3 ms.

(c) It goes LOW at t = 0.8 ms and back HIGH at t = 1 ms.

(d) It goes HIGH at t = 0.8 ms and back LOW at t = 1 ms.

Answers are at the end of the chapter.

 1. An inverter performs a NOT operation.

 2. A NOT gate cannot have more than one input.

 3. If any input to an OR gate is zero, the output is zero.

 4. If all inputs to an AND gate are 1, the output is 0.

 5. A NAND gate can be considered as an AND gate followed by a NOT gate.

 6. A NOR gate can be considered as an OR gate followed by an inverter.

 7. The output of an exclusive-OR is 0 if the inputs are opposite.

 8. Two types of fixed-function logic integrated circuits are bipolar and NMOS.

 9. Once programmed, PLD logic can be changed.

 10. Fan-out is the number of similar gates that a given gate can drive.

 Problems 179

 7. A pulse is applied to each input of an exclusive-OR gate. One pulse goes HIGH at t = 0 and

goes back LOW at t = 1 ms. The other pulse goes HIGH at t = 0.8 ms and goes back LOW at

t = 3 ms. The output pulse can be described as follows:

(a) It goes HIGH at t = 0 and back LOW at t = 3 ms.

(b) It goes HIGH at t = 0 and back LOW at t = 0.8 ms.

(c) It goes HIGH at t = 1 ms and back LOW at t = 3 ms.

(d) both answers (b) and (c)

 8. A positive-going pulse is applied to an inverter. The time interval from the leading edge of the

input to the leading edge of the output is 7 ns. This parameter is

(a) speed-power product (b) propagation delay, tPHL

(c) propagation delay, tPLH (d) pulse width

 9. Most PLDs utilize an array of

(a) NOT gates

(b) NOR gates

(c) OR gates

(d) AND gates

 10. The rows and columns of the interconnection matrix in an SPLD are connected using

(a) fuses (b) switches

(c) gates (d) transistors

 11. An antifuse is formed using

(a) two insulators separated by a conductor (b) two conductors separated by an insulator

(c) an insulator packed beside a conductor (d) two conductors connected in a series

 12. An EPROM can be programmed using

(a) transistors (b) diodes

(c) a multiprogrammer (d) a device programmer

 13. Two ways to enter a logic design using PLD development software are

(a) text and numeric (b) text and graphic

(c) graphic and coded (d) compile and sort

 14. JTAG stands for

(a) Joint Test Action Group (b) Java Top Array Group

(c) Joint Test Array Group (d) Joint Time Analysis Group

 15. In-system programming of a PLD typically utilizes

(a) an embedded clock generator (b) an embedded processor

(c) an embedded PROM (d) both (a) and (b)

(e) both (b) and (c)

 16. To measure the period of a pulse waveform, you must use

(a) a DMM (b) a logic probe

(c) an oscilloscope (d) a logic pulser

 17. Once you measure the period of a pulse waveform, the frequency is found by

(a) using another setting (b) measuring the duty cycle

(c) finding the reciprocal of the period (d) using another type of instrument

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 3–1 The Inverter

 1. The input waveform shown in Figure 3–76 is applied to a system of two inverters connected in

a series. Draw the output waveform across each inverter in proper relation to the input.

HIGH

LOW
 VIN

FIGURE 3–76

180 Logic Gates

 2. A combination of inverters is shown in Figure 3–77. If a LOW is applied to point A, determine

the net output at points E and F.

A

B C D

E

F

FIGURE 3–77

 3. If the waveform in Figure 3–76 is applied to point A in Figure 3–77, determine the waveforms

at points B through F.

Section 3–2 The AND Gate

 4. Draw the rectangular outline symbol for a 3-input AND gate.

 5. Determine the output, X, for a 2-input AND gate with the input waveforms shown in Figure

3–78. Show the proper relationship of output to inputs with a timing diagram.

A

B
X

FIGURE 3–78

 6. The waveforms in Figure 3–79 are applied to points A and B of a 2-input AND gate followed

by an inverter. Draw the output waveform.

A

B

FIGURE 3–79

 7. The input waveforms applied to a 3-input AND gate are as indicated in Figure 3–80. Show the

output waveform in proper relation to the inputs with a timing diagram.

B
C

X

A

B

C

A

FIGURE 3–80

 8. The input waveforms applied to a 4-input AND gate are as indicated in Figure 3–81. The

output of the AND gate is fed to an inverter. Draw the net output waveform of this system.

B

D

X

A

C

FIGURE 3–81

 Problems 181

Section 3–3 The OR Gate

 9. Draw the rectangular outline symbol for a 3-input OR gate.

 10. Write the expression for a 4-input OR gate with inputs A, B, C, D, and output X.

 11. Determine the output for a 2-input OR gate when the input waveforms are as in Figure 3–79

and draw a timing diagram.

 12. Repeat Problem 7 for a 3-input OR gate.

 13. Repeat Problem 8 for a 4-input OR gate.

 14. For the waveforms given in Figure 3–82, A and B are ANDed with output F, D and E are ANDed

with output G, and C, F, and G are ORed. Draw the net output waveform.

A

B

C

D

E

FIGURE 3–82

 15. Draw the rectangular outline symbol for a 4-input OR gate.

 16. Show the truth table for a system of a 3-input OR gate followed by an inverter.

Section 3–4 The NAND Gate

 17. For the set of input waveforms in Figure 3–83, determine the output for the gate shown and

draw the timing diagram.

A

B
X

FIGURE 3–83

 18. Determine the gate output for the input waveforms in Figure 3–84 and draw the timing

diagram.

A

B

C

A

C
X B

FIGURE 3–84

 19. Determine the output waveform in Figure 3–85.

B

D

A

C

A

B

C

 D

X

FIGURE 3–85

182 Logic Gates

 20. As you have learned, the two logic symbols shown in Figure 3–86 represent equivalent

operations. The difference between the two is strictly from a functional viewpoint. For the

NAND symbol, look for two HIGHs on the inputs to give a LOW output. For the negative-

OR, look for at least one LOW on the inputs to give a HIGH on the output. Using these

two functional viewpoints, show that each gate will produce the same output for the given

inputs.

A

B

A

B
X

A

B
X

FIGURE 3–86

Section 3–5 The NOR Gate

 21. Repeat Problem 17 for a 2-input NOR gate.

 22. Determine the output waveform in Figure 3–87 and draw the timing diagram.

A

C

A

C
X BB

FIGURE 3–87

 23. Repeat Problem 19 for a 4-input NOR gate.

 24. The NAND and the negative-OR symbols represent equivalent operations, but they are func-

tionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a

LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH

output. Using these two functional points of view, show that both gates in Figure 3–88 will

produce the same output for the given inputs.

A

B

A

B
X

A

B
X

FIGURE 3–88

Section 3–6 The Exclusive-OR and Exclusive-NOR Gates

 25. How does an exclusive-OR gate differ from an OR gate in its logical operation?

 26. Repeat Problem 17 for an exclusive-OR gate.

 27. Repeat Problem 17 for an exclusive-NOR gate.

 28. Determine the output of an exclusive-NOR gate for the inputs shown in Figure 3–79 and draw

a timing diagram.

 Problems 183

Section 3–7 Programmable Logic

 29. In the simple programmed AND array with programmable links in Figure 3–89, determine the

Boolean output expressions.

BBAA

X1

X2

X3

FIGURE 3–89

 30. Determine by row and column number which fusible links must be blown in the program-

mable AND array of Figure 3–90 to implement each of the following product terms:

X1 = ABC, X2 = ABC, X3 = ABC.

BBAA

X1

CC

1 2 3 4 5 6

X2

X3

1

2

3

4

5

6

7

8

9

FIGURE 3–90

 31. Describe a 4-input AND gate using VHDL.

 32. Describe a 5-input NOR gate using VHDL.

184 Logic Gates

Section 3–8 Fixed-Function Logic Gates

 33. In the comparison of certain logic devices, it is noted that the power dissipation for one particular

type increases as the frequency increases. Is the device bipolar or CMOS?

 34. Using the data sheets in Figures 3–65 and 3–66, determine the following:

(a) 74LS00 power dissipation at maximum supply voltage and a 50% duty cycle

(b) Minimum HIGH level output voltage for a 74LS00

(c) Maximum propagation delay for a 74LS00

(d) Maximum LOW level output voltage for a 74HC00A

(e) Maximum propagation delay for a 74HC00A

 35. Determine tPLH and tPHL from the oscilloscope display in Figure 3–91. The readings indicate

volts/div and sec/div for each channel.

Ch1 2 V

Input

Output

5 nsCh2 2 V

FIGURE 3–91

 36. Gate A has tPLH = tPHL = 6 ns. Gate B has tPLH = tPHL = 10 ns. Which gate can be operated

at a higher frequency?

 37. If a logic gate operates on a dc supply voltage of 15 V and draws an average current of 4 mA,

what is its power dissipation?

 38. The variable ICCH represents the dc supply current from VCC when all outputs of an IC are

HIGH. The variable ICCL represents the dc supply current when all outputs are LOW. For a

74LS00 IC, determine the typical power dissipation when all four gate outputs are HIGH.

(See data sheet in Figure 3–66.)

Section 3–9 Troubleshooting

 39. Examine the conditions indicated in Figure 3–92, and identify the faulty gates.

(f)

0

(a)

0
1

1
1

1

0

(b)

1

(c)

0

0

(d)

0

0
0

0

1

0
1

0

(e)

0
1

1

FIGURE 3–92

 40. Determine the faulty gates in Figure 3–93 by analyzing the timing diagrams.

(a)

A

B

X

(b)

A

B

X

(c)

A

B

X

(d)

A

B

X

FIGURE 3–93

 Problems 185

 41. Using an oscilloscope, you make the observations indicated in Figure 3–94. For each observa-

tion determine the most likely gate failure.

GND

(b)

+VCC

InputHIGHHIGH

GND

+VCC

InputHIGH

GND

CC

HIGH

+V

Input

+VCC

Input
HIGH

GND

(a)

FIGURE 3–94

 42. The seat belt alarm circuit in Figure 3–17 has malfunctioned. You find that when the ignition

switch is turned on and the seat belt is unbuckled, the alarm comes on and will not go off. What

is the most likely problem? How do you troubleshoot it?

 43. Every time the ignition switch is turned on in the circuit of Figure 3–17, the alarm comes on

for thirty seconds, even when the seat belt is buckled. What is the most probable cause of this

malfunction?

 44. What failure(s) would you suspect if the output of a 3-input NAND gate stays HIGH no matter

what the inputs are?

186 Logic Gates

Special Design Problems

 45. Modify the frequency counter in Figure 3–16 to operate with an enable pulse that is active-

LOW rather than HIGH during the 1 ms interval.

 46. Assume that the enable signal in Figure 3–16 has the waveform shown in Figure 3–95. Assume

that waveform B is also available. Devise a circuit that will produce an active-HIGH reset pulse

to the counter only during the time that the enable signal is LOW.

Enable

B

FIGURE 3–95

 47. Design a circuit to fit in the beige block of Figure 3–96 that will cause the headlights of an

automobile to be turned off automatically 15 s after the ignition switch is turned off, if the light

switch is left on. Assume that a LOW is required to turn the lights off.

Ignition

switch

HIGH = On

LOW = Off

Light

switch

HIGH = On

LOW = Off

LOW turns off the lights.

Headlight

control

FIGURE 3–96

 48. Modify the logic circuit for the intrusion alarm in Figure 3–25 so that two additional rooms,

each with two windows and one door, can be protected.

 49. Further modify the logic circuit from Problem 48 for a change in the input sensors where

Open = LOW and Closed = HIGH.

 50. Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a

vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is

exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure

or the temperature is excessive. Design a circuit for this application.

 51. In a certain automated manufacturing process, electrical components are automatically inserted

in a PCB. Before the insertion tool is activated, the PCB must be properly positioned, and

the component to be inserted must be in the chamber. Each of these prerequisite conditions is

indicated by a HIGH voltage. The insertion tool requires a LOW voltage to activate it. Design a

circuit to implement this process.

Multisim Troubleshooting Practice

 52. Open file P03-52. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 53. Open file P03-53. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 54. Open file P03-54. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 55. Open file P03-55. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 3–1 The Inverter

 1. When the inverter input is 1, the output is 0.

 2. (a)

(b) A negative-going pulse is on the output (HIGH to LOW and back HIGH).

 Answers 187

Section 3–2 The AND Gate

 1. An AND gate output is HIGH only when all inputs are HIGH.

 2. An AND gate output is LOW when one or more inputs are LOW.

 3. Five-input AND: X = 1 when ABCDE = 11111, and X = 0 for all other combinations of

ABCDE.

Section 3–3 The OR Gate

 1. An OR gate output is HIGH when one or more inputs are HIGH.

 2. An OR gate output is LOW only when all inputs are LOW.

 3. Three-input OR: X = 0 when ABC = 000, and X = 1 for all other combinations of ABC.

Section 3–4 The NAND Gate

 1. A NAND gate output is LOW only when all inputs are HIGH.

 2. A NAND gate output is HIGH when one or more inputs are LOW.

 3. NAND: active-LOW output for all HIGH inputs; negative-OR: active-HIGH output for one or

more LOW inputs. They have the same truth tables.

 4. X = ABC

Section 3–5 The NOR Gate

 1. A NOR gate output is HIGH only when all inputs are LOW.

 2. A NOR gate output is LOW when one or more inputs are HIGH.

 3. NOR: active-LOW output for one or more HIGH inputs; negative-AND: active-HIGH output

for all LOW inputs. They have the same truth tables.

 4. X = A + B + C

Section 3–6 The Exclusive-OR and Exclusive-NOR Gates

 1. An XOR gate output is HIGH when the inputs are at opposite levels.

 2. An XNOR gate output is HIGH when the inputs are at the same levels.

 3. Apply the bits to the XOR gate inputs; when the output is HIGH, the bits are different.

Section 3–7 Programmable Logic

 1. Fuse, antifuse, EPROM, EEPROM, flash, and SRAM

 2. Volatile means that all the data are lost when power is off and the PLD must be reprogrammed;

SRAM-based

 3. Text entry and graphic entry

 4. JTAG is Joint Test Action Group; the IEEE Std. 1149.1 for programming and test interfacing.

 5. entity NORgate is

 port (A, B, C: in bit; X: out bit);

 end entity NORgate;

 architecture NORfunction of NORgate is

begin

 X <= A nor B nor C;

 end architecture NORfunction;

 6. entity XORgate is

 port (A, B: in bit; X: out bit);

 end entity XORgate;

 architecture XORfunction of XORgate is

begin

 X <= A xor B;

 end architecture XORfunction;

Section 3–8 Fixed-Function Logic Gates

 1. Fixed-function logic cannot be changed. PLDs can be programmed for any logic function.

 2. CMOS and bipolar (TTL)

188 Logic Gates

 3. (a) LS—Low-power Schottky

(b) HC—High-speed CMOS

(c) HCT—HC CMOS TTL compatible

 4. Lowest power—CMOS

 5. Six inverters in a package; four 2-input NAND gates in a package

 6. tPLH = 10 ns; tPHL = 8 ns

 7. 18 pJ

 8. ICCL—dc supply current for LOW output state; ICCH—dc supply current for HIGH output state

 9. VIL—LOW input voltage; VIH—HIGH input voltage

 10. VOL—LOW output voltage; VOH—HIGH output voltage

Section 3–9 Troubleshooting

 1. Opens and shorts are the most common failures.

 2. An open input which effectively makes input HIGH

 3. Amplitude and period

RELATED PROBLEMS FOR EXAMPLES

 3–1 The timing diagram is not affected.

 3–2 See Table 3–15.

TABLE 3–15

Inputs Output Inputs Output

ABCD X ABCD X

0000 0 1000 0

0001 0 1001 0

0010 0 1010 0

0011 0 1011 0

0100 0 1100 0

0101 0 1101 0

0110 0 1110 0

0111 0 1111 1

 3–3 See Figure 3–97.

A

B

X

FIGURE 3–97

 3–4 The output waveform is the same as input A.

 3–5 See Figure 3–98.

 3–6 Results are the same as example.

 3–7 See Figure 3–99.

A

B

C

X

C = HIGH

FIGURE 3–98

A

B

X

FIGURE 3–99

 Answers 189

 3–8 See Figure 3–100.

 3–9 See Figure 3–101.

A

B

X

FIGURE 3–100

A

B

C

X

C = LOW

FIGURE 3–101

 3–10 See Figure 3–102.

 3–11 See Figure 3–103.

A

B

X

FIGURE 3–102

A

B

X

C

FIGURE 3–103

 3–12 Use a 3-input NAND gate.

 3–13 Use a 4-input NAND gate operating as a negative-OR gate.

 3–14 See Figure 3–104.

A

B

C

D

X

FIGURE 3–104

 3–15 See Figure 3–105.

 3–16 See Figure 3–106.

A

B

X

FIGURE 3–105

A

B

C

X

FIGURE 3–106

190 Logic Gates

 3–17 Use a 2-input NOR gate.

 3–18 A 3-input NAND gate.

 3–19 The output is always LOW. The output is a straight line.

 3–20 The exclusive-OR gate will not detect simultaneous failures if both circuits produce the

same outputs.

 3–21 The outputs are unaffected.

 3–22 6 columns, 9 rows, and 3 AND gates with three inputs each

 3–23 The gate with 4 ns tPLH and tPHL can operate at the highest frequency.

 3–24 10 mW

 3–25 The gate output or pin 13 input is internally open.

 3–26 The display will show an erratic readout because the counter continues until reset.

 3–27 The enable pulse is too short or the counter is reset too soon.

TRUE/FALSE QUIZ

 1. T 2. T 3. F 4. F 5. T

 6. T 7. F 8. F 9. T 10. T

SELF-TEST

 1. (c) 2. (d) 3. (c) 4. (a) 5. (c) 6. (a) 7. (d) 8. (b) 9. (d)

 10. (a) 11. (b) 12. (d) 13. (b) 14. (a) 15. (d) 16. (c) 17. (c)

191

CHAPTER OUTLINE

4–1 Boolean Operations and Expressions

4–2 Laws and Rules of Boolean Algebra

4–3 DeMorgan’s Theorems

4–4 Boolean Analysis of Logic Circuits

4–5 Logic Simplification Using Boolean Algebra

4–6 Standard Forms of Boolean Expressions

4–7 Boolean Expressions and Truth Tables

4–8 The Karnaugh Map

4–9 Karnaugh Map SOP Minimization

4–10 Karnaugh Map POS Minimization

4–11 The Quine-McCluskey Method

4–12 Boolean Expressions with VHDL

 Applied Logic

CHAPTER OBJECTIVES

■ Apply the basic laws and rules of Boolean algebra

■ Apply DeMorgan’s theorems to Boolean expressions

■ Describe gate combinations with Boolean

expressions

■ Evaluate Boolean expressions

■ Simplify expressions by using the laws and rules of

Boolean algebra

■ Convert any Boolean expression into a sum-

of-products (SOP) form

■ Convert any Boolean expression into a product

of-sums (POS) form

■ Relate a Boolean expression to a truth table

■ Use a Karnaugh map to simplify Boolean expressions

■ Use a Karnaugh map to simplify truth table functions

■ Utilize “don’t care” conditions to simplify logic functions

■ Use the Quine-McCluskey method to simplify

Boolean expressions

■ Write a VHDL program for simple logic

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In 1854, George Boole published a work titled An
Investigation of the Laws of Thought, on Which Are
Founded the Mathematical Theories of Logic and
Probabilities. It was in this publication that a “logi-

cal algebra,” known today as Boolean algebra, was

formulated. Boolean algebra is a convenient and

systematic way of expressing and analyzing the

operation of logic circuits. Claude Shannon was

the first to apply Boole’s work to the analysis and

design of logic circuits. In 1938, Shannon wrote a

thesis at MIT titled A Symbolic Analysis of Relay
and Switching Circuits.

This chapter covers the laws, rules, and theorems

of Boolean algebra and their application to digital cir-

cuits. You will learn how to define a given circuit with

a Boolean expression and then evaluate its operation.

You will also learn how to simplify logic circuits using

the methods of Boolean algebra, Karnaugh maps,

and the Quine-McCluskey method.

Boolean expressions using the hardware descrip-

tion language VHDL are also covered.

■ Variable

■ Complement

■ Sum term

■ Product term

■ Sum-of-products (SOP)

■ Product-of-sums

(POS)

■ Karnaugh map

■ Minimization

■ “Don’t care”

■ Apply Boolean algebra and the Karnaugh map

method in an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Boolean Algebra and
Logic Simplification

 4CHAPTER

192 Boolean Algebra and Logic Simplification

4–1 Boolean Operations and Expressions

Boolean algebra is the mathematics of digital logic. A basic knowledge of Boolean algebra

is indispensable to the study and analysis of logic circuits. In the last chapter, Boolean

operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and

NOR gates were introduced.

After completing this section, you should be able to

u Define variable

u Define literal

u Identify a sum term

u Evaluate a sum term

u Identify a product term

u Evaluate a product term

u Explain Boolean addition

u Explain Boolean multiplication

Variable, complement, and literal are terms used in Boolean algebra. A variable is a sym-

bol (usually an italic uppercase letter or word) used to represent an action, a condition, or

data. Any single variable can have only a 1 or a 0 value. The complement is the inverse of a

variable and is indicated by a bar over the variable (overbar). For example, the complement

of the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The complement of the

variable A is read as “not A” or “A bar.” Sometimes a prime symbol rather than an overbar is

used to denote the complement of a variable; for example, B9 indicates the complement of B.

In this book, only the overbar is used. A literal is a variable or the complement of a variable.

Boolean Addition

Recall from Chapter 3 that Boolean addition is equivalent to the OR operation. The basic

rules are illustrated with their relation to the OR gate in Figure 4–1.

InfoNote

In a microprocessor, the

arithmetic logic unit (ALU)

performs arithmetic and Boolean

logic operations on digital

data as directed by program

instructions. Logical operations

are equivalent to the basic gate

operations that you are familiar

with but deal with a minimum

of 8 bits at a time. Examples

of Boolean logic instructions

are AND, OR, NOT, and XOR,

which are called mnemonics.

An assembly language program

uses the mnemonics to specify

an operation. Another program

called an assembler translates the

mnemonics into a binary code

that can be understood by the

microprocessor.

 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1

FIGURE 4–1

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is pro-

duced by an OR operation with no AND operations involved. Some examples of sum terms

are A + B, A + B, A + B + C, and A + B + C + D.

A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term

is equal to 0 only if each of the literals is 0.
The OR operation is the Boolean
equivalent of addition.

EXAMPLE 4–1

Determine the values of A, B, C, and D that make the sum term A + B + C + D equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0,

B = 1 so that B = 0, C = 0, and D = 1 so that D = 0.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

 Laws and Rules of Boolean Algebra 193

Related Problem*

Determine the values of A and B that make the sum term A + B equal to 0.

*Answers are at the end of the chapter.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND operation.

The basic rules are illustrated with their relation to the AND gate in Figure 4–2.
The AND operation is the Boolean
equivalent of multiplication.

 0 • 0 = 0 0 • 1 = 0 1 • 0 = 0 1 • 1 = 1

FIGURE 4–2

In Boolean algebra, a product term is the product of literals. In logic circuits, a product

term is produced by an AND operation with no OR operations involved. Some examples of

product terms are AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product term

is equal to 0 when one or more of the literals are 0.

EXAMPLE 4–2

Determine the values of A, B, C, and D that make the product term ABCD equal to 1.

Solution

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1,

B = 0 so that B = 1, C = 1, and D = 0 so that D = 1.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

Related Problem

Determine the values of A and B that make the product term A B equal to 1.

SECTION 4–1 CHECKUP

Answers are at the end of the chapter.

 1. If A = 0, what does A equal?

 2. Determine the values of A, B, and C that make the sum term A + B + C equal to 0.

 3. Determine the values of A, B, and C that make the product term ABC equal to 1.

4–2 Laws and Rules of Boolean Algebra

As in other areas of mathematics, there are certain well-developed rules and laws that must

be followed in order to properly apply Boolean algebra. The most important of these are

presented in this section.

After completing this section, you should be able to

u Apply the commutative laws of addition and multiplication

u Apply the associative laws of addition and multiplication

u Apply the distributive law

u Apply twelve basic rules of Boolean algebra

194 Boolean Algebra and Logic Simplification

Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and multiplication,

the associative laws for addition and multiplication, and the distributive law—are the same

as in ordinary algebra. Each of the laws is illustrated with two or three variables, but the

number of variables is not limited to this.

Commutative Laws

The commutative law of addition for two variables is written as

 A � B � B � A Equation 4–1

This law states that the order in which the variables are ORed makes no difference. Remember,

in Boolean algebra as applied to logic circuits, addition and the OR operation are the same.

Figure 4–3 illustrates the commutative law as applied to the OR gate and shows that it doesn’t

matter to which input each variable is applied. (The symbol K means “equivalent to.”)

A

B
 B + A

B
 A + B

A

FIGURE 4–3 Application of commutative law of addition.

The commutative law of multiplication for two variables is

 AB � BA Equation 4–2

This law states that the order in which the variables are ANDed makes no difference.

 Figure 4–4 illustrates this law as applied to the AND gate. Remember, in Boolean algebra

as applied to logic circuits, multiplication and the AND function are the same.

A

B
BA

B
AB

A

FIGURE 4–4 Application of commutative law of multiplication.

Associative Laws

The associative law of addition is written as follows for three variables:

 A � (B � C) � (A � B) � C Equation 4–3

This law states that when ORing more than two variables, the result is the same regardless of

the grouping of the variables. Figure 4–5 illustrates this law as applied to 2-input OR gates.

B + C
B

C

A + (B + C)
A

A + B
B

C
(A + B) + C

A

FIGURE 4–5 Application of associative law of addition. Open file F04-05 to verify.

A Multisim tutorial is available on the website.

The associative law of multiplication is written as follows for three variables:

 A(BC) � (AB)C Equation 4–4

This law states that it makes no difference in what order the variables are grouped when AND-

ing more than two variables. Figure 4–6 illustrates this law as applied to 2-input AND gates.

 Laws and Rules of Boolean Algebra 195

Distributive Law

The distributive law is written for three variables as follows:

 A(B � C) � AB � AC Equation 4–5

This law states that ORing two or more variables and then ANDing the result with a single

variable is equivalent to ANDing the single variable with each of the two or more variables

and then ORing the products. The distributive law also expresses the process of factoring in

which the common variable A is factored out of the product terms, for example, AB + AC =

A(B + C). Figure 4–7 illustrates the distributive law in terms of gate implementation.

BC
B

C

A(BC)
A

AB
B

C
(AB)C

A

FIGURE 4–6 Application of associative law of multiplication. Open file F04-06 to verify.

B + C
C

A
X

B

 X = A(B + C)

AB
B

X

A

C

A
AC

 X = AB + AC

FIGURE 4–7 Application of distributive law. Open file F04-07 to verify.

Rules of Boolean Algebra

Table 4–1 lists 12 basic rules that are useful in manipulating and simplifying Boolean

expressions. Rules 1 through 9 will be viewed in terms of their application to logic gates.

Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously

discussed.

TABLE 4–1

Basic rules of Boolean algebra.

1. A + 0 = A 7. A # A = A

2. A + 1 = 1 8. A # A = 0

3. A # 0 = 0 9. A = A

4. A # 1 = A 10. A + AB = A

5. A + A = A 11. A + AB = A + B

6. A + A = 1 12. (A + B)(A + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.

Rule 1: A 1 0 5 A A variable ORed with 0 is always equal to the variable. If the input

variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which

is also equal to A. This rule is illustrated in Figure 4–8, where the lower input is fixed at 0.

 X = A + 0 = A

X = 0
 A = 0

 0
X = 1

 A = 1

 0

FIGURE 4–8

196 Boolean Algebra and Logic Simplification

Rule 2: A 1 1 5 1 A variable ORed with 1 is always equal to 1. A 1 on an input to an

OR gate produces a 1 on the output, regardless of the value of the variable on the other

input. This rule is illustrated in Figure 4–9, where the lower input is fixed at 1.

 X = A + 1 = 1

X = 1
 A = 0

 1
X = 1

 A = 1

 1

FIGURE 4–9

 X = A • 0 = 0

X = 0
 A = 1

 0
X = 0

 A = 0

 0

FIGURE 4–10

Rule 3: A ~ 0 5 0 A variable ANDed with 0 is always equal to 0. Any time one input to

an AND gate is 0, the output is 0, regardless of the value of the variable on the other input.

This rule is illustrated in Figure 4–10, where the lower input is fixed at 0.

Rule 4: A ~ 1 5 A A variable ANDed with 1 is always equal to the variable. If A is 0, the

output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs

are now 1s. This rule is shown in Figure 4–11, where the lower input is fixed at 1.

 X = A • 1 = A

X = 0
 A = 0

 1
X = 1

 A = 1

 1

FIGURE 4–11

Rule 5: A 1 A 5 A A variable ORed with itself is always equal to the variable. If A is 0,

then 0 + 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Figure 4–12, where both

inputs are the same variable.

 X = A + A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

FIGURE 4–12

Rule 6: A 1 A
–
 5 1 A variable ORed with its complement is always equal to 1. If A is

0, then 0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. See Figure 4–13, where

one input is the complement of the other.

 X = A + A = 1

X = 1
 A = 1

 A = 0
X = 1

 A = 0

 A = 1

FIGURE 4–13

 Laws and Rules of Boolean Algebra 197

Rule 7: A ~ A 5 A A variable ANDed with itself is always equal to the variable. If

A = 0, then 0 #0 = 0; and if A = 1, then 1 #1 = 1. Figure 4–14 illustrates this rule.

 X = A • A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

FIGURE 4–14

Rule 8: A ~ A
–
 5 0 A variable ANDed with its complement is always equal to 0. Either A

or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will

be 0 also. Figure 4–15 illustrates this rule.

 A = 1
A = 0

A = 1 A = 0
A = 1

A = 0

A = A

FIGURE 4–16

X = 0
 A = 1

 A = 0
X = 0

 A = 0

 A = 1

 X = A • A = 0

FIGURE 4–15

Rule 9: A
––
 5 A The double complement of a variable is always equal to the variable. If

you start with the variable A and complement (invert) it once, you get A. If you then take

A and complement (invert) it, you get A, which is the original variable. This rule is shown

in Figure 4–16 using inverters.

Rule 10: A 1 AB 5 A This rule can be proved by applying the distributive law, rule 2,

and rule 4 as follows:

 A + AB = A # 1 + AB = A(1 + B) Factoring (distributive law)

 = A # 1 Rule 2: (1 + B) = 1

 = A Rule 4: A # 1 = A

The proof is shown in Table 4–2, which shows the truth table and the resulting logic circuit

simplification.

B

A

A
straight connection

A

0

0

1

1

B

0

1

0

1

AB

0

0

0

1

A � AB

0

0

1

1

equal

TABLE 4–2

Rule 10: A + AB = A. Open file T04-02 to verify.

198 Boolean Algebra and Logic Simplification

Rule 11: A 1 A
–
B 5 A 1 B This rule can be proved as follows:

 A + AB = (A + AB) + AB Rule 10: A = A + AB

 = (AA + AB) + AB Rule 7: A = AA

 = AA + AB + AA + AB Rule 8: adding AA = 0

 = (A + A)(A + B) Factoring

 = 1 # (A + B) Rule 6: A + A = 1

 = A + B Rule 4: drop the 1

The proof is shown in Table 4–3, which shows the truth table and the resulting logic

circuit simplification.

Rule 12: (A 1 B)(A 1 C) 5 A 1 BC This rule can be proved as follows:

 (A + B)(A + C) = AA + AC + AB + BC Distributive law

 = A + AC + AB + BC Rule 7: AA = A

 = A(1 + C) + AB + BC Factoring (distributive law)

 = A # 1 + AB + BC Rule 2: 1 + C = 1

 = A(1 + B) + BC Factoring (distributive law)

 = A # 1 + BC Rule 2: 1 + B = 1

 = A + BC Rule 4: A # 1 = A

The proof is shown in Table 4–4, which shows the truth table and the resulting logic circuit

simplification.

B

A

A

B

A

0

0

1

1

B

0

1

0

1

A + B

0

1

1

1

equal

AB

0

1

0

0

A + AB

0

1

1

1

TABLE 4–3

Rule 11: A + AB = A + B. Open file T04-03 to verify.

B

A

C

C

B

A

equal

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

A B C (A + B)(A + C)A + B A + C BC A + BC

TABLE 4–4

Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify.

 DeMorgan’s Theorems 199

SECTION 4–2 CHECKUP

 1. Apply the associative law of addition to the expression A + (B + C + D).

 2. Apply the distributive law to the expression A(B + C + D).

4–3 DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important

part of Boolean algebra. In practical terms, DeMorgan’s theorems provide mathematical

verification of the equivalency of the NAND and negative-OR gates and the equivalency of

the NOR and negative-AND gates, which were discussed in Chapter 3.

After completing this section, you should be able to

u State DeMorgan’s theorems

u Relate DeMorgan’s theorems to the equivalency of the NAND and negative-OR

gates and to the equivalency of the NOR and negative-AND gates

u Apply DeMorgan’s theorems to the simplification of Boolean expressions

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements

of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the

complements of the individual variables.

The formula for expressing this theorem for two variables is

 XY � X � Y Equation 4–6

DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements

of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the

complements of the individual variables.

The formula for expressing this theorem for two variables is

 X � Y � X Y Equation 4–7

Figure 4–17 shows the gate equivalencies and truth tables for Equations 4–6

and 4–7.

As stated, DeMorgan’s theorems also apply to expressions in which there are more than

two variables. The following examples illustrate the application of DeMorgan’s theorems

to 3-variable and 4-variable expressions.

To apply DeMorgan’s theorem, break
the bar over the product of variables
and change the sign from AND to
OR.

200 Boolean Algebra and Logic Simplification

Each variable in DeMorgan’s theorems as stated in Equations 4–6 and 4–7 can also repre-

sent a combination of other variables. For example, X can be equal to the term AB + C, and Y

can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two variables

as stated by XY = X + Y to the expression (AB + C)(A + BC), you get the following result:

(AB + C)(A + BC) = (AB + C) + (A + BC)

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of

which you can again apply DeMorgan’s theorem X + Y = X Y individually, as follows:

(AB + C) + (A + BC) = (AB)C + A(BC)

fg04_01500

X + Y
X

Y
XY

X

Y

NAND Negative-OR

XY
X

Y
X + Y

X

Y

NOR Negative-AND

Output

XY X + Y

0

0

1

1

0

1

0

1

1

1

1

0

1

1

1

0

Inputs

X Y

0

0

1

1

0

1

0

1

Output

X YX + Y

1

0

0

0

1

0

0

0

Inputs

X Y

FIGURE 4–17 Gate equivalencies and the corresponding truth tables that illustrate

DeMorgan’s theorems. Notice the equality of the two output columns in each table. This

shows that the equivalent gates perform the same logic function.

EXAMPLE 4–3

Apply DeMorgan’s theorems to the expressions XYZ and X + Y + Z.

Solution

 XYZ = X + Y + Z

 X + Y + Z = X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression X + Y + Z.

EXAMPLE 4–4

Apply DeMorgan’s theorems to the expressions WXYZ and W + X + Y + Z.

Solution

 WXYZ = W + X + Y + Z

 W + X + Y + Z = W X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression W X Y Z.

 DeMorgan’s Theorems 201

Notice that you still have two terms in the expression to which DeMorgan’s theorem can

again be applied. These terms are AB and BC. A final application of DeMorgan’s theorem

gives the following result:

(AB)C + A(BC) = (A + B)C + A(B + C)

Although this result can be simplified further by the use of Boolean rules and laws,

 DeMorgan’s theorems cannot be used any more.

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean

algebra to the specific expression

A + BC + D(E + F)

Step 1: Identify the terms to which you can apply DeMorgan’s theorems, and think of

each term as a single variable. Let A + BC = X and D(E + F) = Y.

Step 2: Since X + Y = X Y,

(A + BC) + (D(E + F)) = (A + BC)(D(E + F))

Step 3: Use rule 9 (A = A) to cancel the double bars over the left term (this is not part

of DeMorgan’s theorem).

(A + BC)(D(E + F)) = (A + BC)(D(E + F))

Step 4: Apply DeMorgan’s theorem to the second term.

(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Step 5: Use rule 9 (A = A) to cancel the double bars over the E + F part of the term.

(A + BC)(D + E + F) = (A + BC)(D + E + F)

The following three examples will further illustrate how to use DeMorgan’s theorems.

EXAMPLE 4–5

Apply DeMorgan’s theorems to each of the following expressions:

(a) (A + B + C)D

(b) ABC + DEF

(c) AB + CD + EF

Solution

(a) Let A + B + C = X and D = Y. The expression (A + B + C)D is of the form

XY = X + Y and can be rewritten as

(A + B + C)D = A + B + C + D

 Next, apply DeMorgan’s theorem to the term A + B + C.

A + B + C + D = A B C + D

(b) Let ABC = X and DEF = Y. The expression ABC + DEF is of the form

X + Y = X Y and can be rewritten as

ABC + DEF = (ABC)(DEF)

 Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.

(ABC)(DEF) = (A + B + C)(D + E + F)

202 Boolean Algebra and Logic Simplification

(c) Let AB = X, CD = Y, and EF = Z. The expression AB + CD + EF is of the

form X + Y + Z = X Y Z and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)

 Next, apply DeMorgan’s theorem to each of the terms AB, CD, and EF.

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Related Problem

Apply DeMorgan’s theorems to the expression ABC + D + E.

EXAMPLE 4–6

Apply DeMorgan’s theorems to each expression:

(a) (A + B) + C

(b) (A + B) + CD

(c) (A + B)C D + E + F

Solution

(a) (A + B) + C = (A + B)C = (A + B)C

(b) (A + B) + CD = (A + B)CD = (A B)(C + D) = AB(C + D)

(c) (A + B)C D + E + F = ((A + B)C D)(E + F) = (A B + C + D)EF

Related Problem

Apply DeMorgan’s theorems to the expression AB(C + D) + E.

EXAMPLE 4–7

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting

point, use DeMorgan’s theorems and any other rules or laws that are applicable to

develop an expression for the exclusive-NOR gate.

Solution

Start by complementing the exclusive-OR expression and then applying DeMorgan’s

theorems as follows:

AB + AB = (AB)(AB) = (A + B)(A + B) = (A + B)(A + B)

Next, apply the distributive law and rule 8 (A # A = 0).

(A + B)(A + B) = AA + A B + AB + BB = A B + AB

The final expression for the XNOR is A B + AB. Note that this expression equals 1 any

time both variables are 0s or both variables are 1s.

Related Problem

Starting with the expression for a 4-input NAND gate, use DeMorgan’s theorems to

develop an expression for a 4-input negative-OR gate.

 Boolean Analysis of Logic Circuits 203

Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that

shows the output for all possible values of the input variables can be developed. The proce-

dure requires that you evaluate the Boolean expression for all possible combinations of values

for the input variables. In the case of the circuit in Figure 4–18, there are four input variables

(A, B, C, and D) and therefore sixteen (24
= 16) combinations of values are possible.

Evaluating the Expression

To evaluate the expression A(B + CD), first find the values of the variables that make the

expression equal to 1, using the rules for Boolean addition and multiplication. In this case,

the expression equals 1 only if A = 1 and B + CD = 1 because

A(B + CD) = 1 # 1 = 1

SECTION 4–3 CHECKUP

 1. Apply DeMorgan’s theorems to the following expressions:

(a) ABC + (D + E) (b) (A + B)C (c) A + B + C + DE

4–4 Boolean Analysis of Logic Circuits

Boolean algebra provides a concise way to express the operation of a logic circuit formed

by a combination of logic gates so that the output can be determined for various combina-

tions of input values.

After completing this section, you should be able to

u Determine the Boolean expression for a combination of gates

u Evaluate the logic operation of a circuit from the Boolean expression

u Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left-most

inputs and work toward the final output, writing the expression for each gate. For the example

circuit in Figure 4–18, the Boolean expression is determined in the following three steps:

 1. The expression for the left-most AND gate with inputs C and D is CD.

 2. The output of the left-most AND gate is one of the inputs to the OR gate and B is the

other input. Therefore, the expression for the OR gate is B + CD.

 3. The output of the OR gate is one of the inputs to the right-most AND gate and A is the

other input. Therefore, the expression for this AND gate is A(B + CD), which is the

final output expression for the entire circuit.

A combinational logic circuit can be
described by a Boolean equation.

CD
D

B
B + CD

C

A
A(B + CD)

FIGURE 4–18 A combinational logic circuit showing the development of the Boolean

expression for the output.

A combinational logic circuit can be
described by a truth table.

204 Boolean Algebra and Logic Simplification

Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1

or CD = 1 or if both B and CD equal 1 because

 B + CD = 1 + 0 = 1

 B + CD = 0 + 1 = 1

 B + CD = 1 + 1 = 1

The term CD = 1 only if C = 1 and D = 1.

To summarize, the expression A(B + CD) = 1 when A = 1 and B = 1 regardless of

the values of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of B.

The expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table Format

The first step is to list the sixteen input variable combinations of 1s and 0s in a binary

sequence as shown in Table 4–5. Next, place a 1 in the output column for each combination

of input variables that was determined in the evaluation. Finally, place a 0 in the output

column for all other combinations of input variables. These results are shown in the truth

table in Table 4–5.

TABLE 4–5

Truth table for the logic circuit in Figure 4–18.

Inputs Output

A B C D A(B � CD)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

EXAMPLE 4–8

Use Multisim to generate the truth table for the logic circuit in Figure 4–18.

Solution

Construct the circuit in Multisim and connect the Multisim Logic Converter to the inputs and output, as shown in Figure 4–19.

Click on the conversion bar, and the truth table appears in the display as shown.

You can also generate the simplified Boolean expression from the truth table by clicking on .

 Logic Simplification Using Boolean Algebra 205

SECTION 4–4 CHECKUP

 1. Replace the AND gates with OR gates and the OR gate with an AND gate in Figure 4–18.

Determine the Boolean expression for the output.

 2. Construct a truth table for the circuit in Question 1.

4–5 Logic Simplification Using Boolean Algebra

A logic expression can be reduced to its simplest form or changed to a more convenient form

to implement the expression most efficiently using Boolean algebra. The approach taken in

this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and

simplify an expression. This method depends on a thorough knowledge of Boolean algebra

and considerable practice in its application, not to mention a little ingenuity and cleverness.

After completing this section, you should be able to

u Apply the laws, rules, and theorems of Boolean algebra to simplify general

 expressions

A simplified Boolean expression uses the fewest gates possible to implement a given

expression. Examples 4–9 through 4–12 illustrate Boolean simplification.

Truth table

Boolean expression

FIGURE 4–19

Related Problem

Open Multisim. Create the setup and do the conversions shown in this example.

EXAMPLE 4–9

Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C)

206 Boolean Algebra and Logic Simplification

Solution

The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as

follows:

AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

AB + AC + B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

B + AC

At this point the expression is simplified as much as possible. Once you gain experience

in applying Boolean algebra, you can often combine many individual steps.

Related Problem

Simplify the Boolean expression AB + A(B + C) + B(B + C).

Figure 4–20 shows that the simplification process in Example 4–9 has significantly

reduced the number of logic gates required to implement the expression. Part (a) shows that

five gates are required to implement the expression in its original form; however, only two

gates are needed for the simplified expression, shown in part (b). It is important to realize

that these two gate circuits are equivalent. That is, for any combination of levels on the A,

B, and C inputs, you get the same output from either circuit.

Simplification means fewer gates for
the same function.

B

C

A

AB + A(B + C) + B(B + C)

C

B + AC

A

B

(a) (b)
These two circuits are equivalent.

FIGURE 4–20 Gate circuits for Example 4–9. Open file F04-20 to verify equivalency.

EXAMPLE 4–10

Simplify the following Boolean expression:

[AB(C + BD) + A B]C

Note that brackets and parentheses mean the same thing: the term inside is multiplied

(ANDed) with the term outside.

 Logic Simplification Using Boolean Algebra 207

Solution

Step 1: Apply the distributive law to the terms within the brackets.

(ABC + ABBD + A B)C

Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.

(ABC + A # 0 # D + A B)C

Step 3: Apply rule 3 (A # 0 # D = 0) to the second term within the parentheses.

(ABC + 0 + A B)C

Step 4: Apply rule 1 (drop the 0) within the parentheses.

(ABC + A B)C

Step 5: Apply the distributive law.

ABCC + A BC

Step 6: Apply rule 7 (CC = C) to the first term.

ABC + A BC

Step 7: Factor out BC.

BC(A + A)

Step 8: Apply rule 6 (A + A = 1).

BC # 1

Step 9: Apply rule 4 (drop the 1).

BC

Related Problem

Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4–11

Simplify the following Boolean expression:

ABC + AB C + A B C + ABC + ABC

Solution

Step 1: Factor BC out of the first and last terms.

BC(A + A) + AB C + A B C + ABC

Step 2: Apply rule 6 (A + A = 1) to the term in parentheses, and factor AB from the

second and last terms.

BC # 1 + AB(C + C) + A B C

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term

in parentheses.

BC + AB # 1 + A B C

Step 4: Apply rule 4 (drop the 1) to the second term.

BC + AB + A B C

208 Boolean Algebra and Logic Simplification

Step 5: Factor B from the second and third terms.

BC + B(A + A C)

Step 6: Apply rule 11 (A + A C = A + C) to the term in parentheses.

BC + B(A + C)

Step 7: Use the distributive and commutative laws to get the following expression:

BC + AB + B C

Related Problem

Simplify the Boolean expression ABC + A BC + ABC + A B C.

EXAMPLE 4–12

Simplify the following Boolean expression:

AB + AC + A BC

Solution

Step 1: Apply DeMorgan’s theorem to the first term.

(AB)(AC) + A BC

Step 2: Apply DeMorgan’s theorem to each term in parentheses.

(A + B)(A + C) + A BC

Step 3: Apply the distributive law to the two terms in parentheses.

A A + A C + A B + B C + A BC

Step 4: Apply rule 7 (A A = A) to the first term, and apply rule 10

[A B + A BC = A B(1 + C) = A B] to the third and last terms.

A + A C + A B + B C

Step 5: Apply rule 10 [A + A C = A(1 + C) = A] to the first and second terms.

A + A B + B C

Step 6: Apply rule 10 [A + A B = A(1 + B) = A] to the first and second terms.

A + B C

Related Problem

Simplify the Boolean expression AB + AC + A B C.

EXAMPLE 4–13

Use Multisim to perform the logic simplification shown in Figure 4–20.

Solution

Step 1: Connect the Multisim Logic Converter to the circuit as shown in Figure 4–21.

Step 2: Generate the truth table by clicking on .

Step 3: Generate the simplified Boolean expression by clicking on .

Step 4: Generate the simplified logic circuit by clicking on .

 Standard Forms of Boolean Expressions 209

SECTION 4–5 CHECKUP

 1. Simplify the following Boolean expressions:

(a) A + AB + ABC (b) (A + B)C + ABC (c) ABC(BD + CDE) + AC

 2. Implement each expression in Question 1 as originally stated with the appropriate logic

gates. Then implement the simplified expression, and compare the number of gates.

4–6 Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of two stan-

dard forms: the sum-of-products form or the product-of-sums form. Standardization makes

the evaluation, simplification, and implementation of Boolean expressions much more sys-

tematic and easier.

After completing this section, you should be able to

u Identify a sum-of-products expression

u Determine the domain of a Boolean expression

u Convert any sum-of-products expression to a standard form

u Evaluate a standard sum-of-products expression in terms of binary values

u Identify a product-of-sums expression

FIGURE 4–21

Related Problem

Open Multisim. Create the setup and perform the logic simplification illustrated in this

example.

210 Boolean Algebra and Logic Simplification

u Convert any product-of-sums expression to a standard form

u Evaluate a standard product-of-sums expression in terms of binary values

u Convert from one standard form to the other

The Sum-of-Products (SOP) Form

A product term was defined in Section 4–1 as a term consisting of the product (Boolean

multiplication) of literals (variables or their complements). When two or more product

terms are summed by Boolean addition, the resulting expression is a sum-of-products

(SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC

Also, an SOP expression can contain a single-variable term, as in A + A BC + BCD.

Refer to the simplification examples in the last section, and you will see that each of the

final expressions was either a single product term or in SOP form. In an SOP expression, a

single overbar cannot extend over more than one variable; however, more than one variable

in a term can have an overbar. For example, an SOP expression can have the term A B C

but not ABC.

Domain of a Boolean Expression

The domain of a general Boolean expression is the set of variables contained in the expres-

sion in either complemented or uncomplemented form. For example, the domain of the

expression AB + ABC is the set of variables A, B, C and the domain of the expression

ABC + CDE + BCD is the set of variables A, B, C, D, E.

AND/OR Implementation of an SOP Expression

Implementing an SOP expression simply requires ORing the outputs of two or more AND

gates. A product term is produced by an AND operation, and the sum (addition) of two or

more product terms is produced by an OR operation. Therefore, an SOP expression can

be implemented by AND-OR logic in which the outputs of a number (equal to the number

of product terms in the expression) of AND gates connect to the inputs of an OR gate, as

shown in Figure 4–22 for the expression AB + BCD + AC. The output X of the OR gate

equals the SOP expression.

An SOP expression can be
implemented with one OR gate and
two or more AND gates.

A

B

X = AB + BCD + AC
B

D

A

C

C

FIGURE 4–22 Implementation of the SOP expression AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression

NAND gates can be used to implement an SOP expression. By using only NAND gates,

an AND/OR function can be accomplished, as illustrated in Figure 4–23. The first level

of NAND gates feed into a NAND gate that acts as a negative-OR gate. The NAND and

negative-OR inversions cancel and the result is effectively an AND/OR circuit.

 Standard Forms of Boolean Expressions 211

Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-

niques. For example, the expression A(B + CD) can be converted to SOP form by applying

the distributive law:

A(B + CD) = AB + ACD

A

B

X = AB + BCD + AC
B

D

A

C

C

FIGURE 4–23 This NAND/NAND implementation is equivalent to the AND/OR in

Figure 4–22.

EXAMPLE 4–14

Convert each of the following Boolean expressions to SOP form:

(a) AB + B(CD + EF) (b) (A + B)(B + C + D) (c) (A + B) + C

Solution

(a) AB + B(CD + EF) = AB + BCD + BEF

(b) (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD

(c) (A + B) + C = (A + B)C = (A + B)C = AC + BC

Related Problem

Convert ABC + (A + B)(B + C + AB) to SOP form.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not con-

tain all of the variables in the domain of the expression. For example, the expression

ABC + ABD + ABCD has a domain made up of the variables A, B, C, and D. However,

notice that the complete set of variables in the domain is not represented in the first two

terms of the expression; that is, D or D is missing from the first term and C or C is missing

from the second term.

A standard SOP expression is one in which all the variables in the domain appear in

each product term in the expression. For example, ABCD + A BCD + ABC D is a stan-

dard SOP expression. Standard SOP expressions are important in constructing truth tables,

covered in Section 4–7, and in the Karnaugh map simplification method, which is covered

in Section 4–8. Any nonstandard SOP expression (referred to simply as SOP) can be con-

verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the

domain can be expanded to standard form to include all variables in the domain and their

complements. As stated in the following steps, a nonstandard SOP expression is converted

into standard form using Boolean algebra rule 6 (A + A = 1) from Table 4–1: A variable

added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a

missing variable and its complement. This results in two product terms. As you

know, you can multiply anything by 1 without changing its value.

212 Boolean Algebra and Logic Simplification

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the

domain in either complemented or uncomplemented form. In converting a

product term to standard form, the number of product terms is doubled for each

missing variable, as Example 4–15 shows.

EXAMPLE 4–15

Convert the following Boolean expression into standard SOP form:

ABC + A B + ABCD

Solution

The domain of this SOP expression is A, B, C, D. Take one term at a time. The first term, ABC, is missing variable D or D,

so multiply the first term by D + D as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result.

The second term, A B, is missing variables C or C and D or D, so first multiply the second term by C + C as follows:

A B = A B(C + C) = A BC + A B C

The two resulting terms are missing variable D or D, so multiply both terms by D + D as follows:

 A B = A BC + A B C = A BC(D + D) + A B C(D + D)

 = A BCD + A BCD + A B CD + A B C D

In this case, four standard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

ABC + A B + ABCD = ABCD + ABCD + A BCD + A BCD + A B CD + A B C D + ABCD

Related Problem

Convert the expression WXY + XYZ + WXY to standard SOP form.

Binary Representation of a Standard Product Term

A standard product term is equal to 1 for only one combination of variable values. For

example, the product term ABCD is equal to 1 when A = 1, B = 0, C = 1, D = 0, as

shown below, and is 0 for all other combinations of values for the variables.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

In this case, the product term has a binary value of 1010 (decimal ten).

Remember, a product term is implemented with an AND gate whose output is 1 only if each

of its inputs is 1. Inverters are used to produce the complements of the variables as required.

An SOP expression is equal to 1 only if one or more of the product terms in the

expression is equal to 1.

EXAMPLE 4–16

Determine the binary values for which the following standard SOP expression is equal to 1:

ABCD + AB CD + A B C D

Solution

The term ABCD is equal to 1 when A = 1, B = 1, C = 1, and D = 1.

ABCD = 1 # 1 # 1 # 1 = 1

 Standard Forms of Boolean Expressions 213

The term AB CD is equal to 1 when A = 1, B = 0, C = 0, and D = 1.

AB CD = 1 # 0 # 0 # 1 = 1 # 1 # 1 # 1 = 1

The term A B C D is equal to 1 when A = 0, B = 0, C = 0, and D = 0.

A B C D = 0 # 0 # 0 # 0 = 1 # 1 # 1 # 1 = 1

The SOP expression equals 1 when any or all of the three product terms is 1.

Related Problem

Determine the binary values for which the following SOP expression is equal to 1:

XYZ + XYZ + XYZ + XYZ + XYZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4–1 as a term consisting of the sum (Boolean addition)

of literals (variables or their complements). When two or more sum terms are multiplied,

the resulting expression is a product-of-sums (POS). Some examples are

 (A + B)(A + B + C)

 (A + B + C)(C + D + E)(B + C + D)

 (A + B)(A + B + C)(A + C)

A POS expression can contain a single-variable term, as in A(A + B + C)(B + C + D).

In a POS expression, a single overbar cannot extend over more than one variable; however,

more than one variable in a term can have an overbar. For example, a POS expression can

have the term A + B + C but not A + B + C.

Implementation of a POS Expression

Implementing a POS expression simply requires ANDing the outputs of two or more OR

gates. A sum term is produced by an OR operation, and the product of two or more sum

terms is produced by an AND operation. Therefore, a POS expression can be implemented by

logic in which the outputs of a number (equal to the number of sum terms in the expression)

of OR gates connect to the inputs of an AND gate, as Figure 4–24 shows for the expression

(A + B)(B + C + D)(A + C). The output X of the AND gate equals the POS expression.

A

B

X = (A + B)(B + C + D)(A + C)
B

D

A

C

C

FIGURE 4–24 Implementation of the POS expression (A + B)(B + C + D)(A + C).

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all

of the variables in the domain of the expression. For example, the expression

(A + B + C)(A + B + D)(A + B + C + D)

has a domain made up of the variables A, B, C, and D. Notice that the complete set of vari-

ables in the domain is not represented in the first two terms of the expression; that is, D or

D is missing from the first term and C or C is missing from the second term.

214 Boolean Algebra and Logic Simplification

A standard POS expression is one in which all the variables in the domain appear in

each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as

POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in the domain can

be expanded to standard form to include all variables in the domain and their complements.

As stated in the following steps, a nonstandard POS expression is converted into standard

form using Boolean algebra rule 8 (A # A = 0) from Table 4–1: A variable multiplied by

its complement equals 0.

Step 1: Add to each nonstandard product term a term made up of the product of the

missing variable and its complement. This results in two sum terms. As you

know, you can add 0 to anything without changing its value.

Step 2: Apply rule 12 from Table 4–1: A + BC = (A + B)(A + C)

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain

in either complemented or uncomplemented form.

EXAMPLE 4–17

Convert the following Boolean expression into standard POS form:

(A + B + C)(B + C + D)(A + B + C + D)

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time. The first term, A + B + C, is missing variable

D or D, so add DD and apply rule 12 as follows:

A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D)

The second term, B + C + D, is missing variable A or A, so add AA and apply rule 12 as follows:

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D)

The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:

(A + B + C)(B + C + D)(A + B + C + D) =

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Related Problem

Convert the expression (A + B)(B + C) to standard POS form.

Binary Representation of a Standard Sum Term

A standard sum term is equal to 0 for only one combination of variable values. For exam-

ple, the sum term A + B + C + D is 0 when A = 0, B = 1, C = 0, and D = 1, as

shown below, and is 1 for all other combinations of values for the variables.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term

is implemented with an OR gate whose output is 0 only if each of its inputs is 0. Inverters

are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the expres-

sion is equal to 0.

 Standard Forms of Boolean Expressions 215

Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present

in the equivalent standard POS expression. Also, the binary values that are not represented

in the SOP expression are present in the equivalent POS expression. Therefore, to convert

from standard SOP to standard POS, the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the

binary numbers that represent the product terms.

Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express

in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4–18

Determine the binary values of the variables for which the following standard POS

expression is equal to 0:

(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The term A + B + C + D is equal to 0 when A = 0, B = 0, C = 0, and D = 0.

A + B + C + D = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 0, B = 1, C = 1, and D = 0.

A + B + C + D = 0 + 1 + 1 + 0 = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 1, B = 1, C = 1, and D = 1.

A + B + C + D = 1 + 1 + 1 + 1 = 0 + 0 + 0 + 0 = 0

The POS expression equals 0 when any of the three sum terms equals 0.

Related Problem

Determine the binary values for which the following POS expression is equal to 0:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

Is this a standard POS expression?

EXAMPLE 4–19

Convert the following SOP expression to an equivalent POS expression:

A B C + ABC + ABC + ABC + ABC

Solution

The evaluation is as follows:

000 + 010 + 011 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of eight

(23) possible combinations. The SOP expression contains five of these combinations, so

the POS must contain the other three which are 001, 100, and 110. Remember, these are

the binary values that make the sum term 0. The equivalent POS expression is

(A + B + C)(A + B + C)(A + B + C)

216 Boolean Algebra and Logic Simplification

Related Problem

Verify that the SOP and POS expressions in this example are equivalent by substituting

binary values into each.

SECTION 4–6 CHECKUP

 1. Identify each of the following expressions as SOP, standard SOP, POS, or standard

POS:

(a) AB + ABD + ACD (b) (A + B + C)(A + B + C)

(c) ABC + ABC (d) (A + C)(A + B)

 2. Convert each SOP expression in Question 1 to standard form.

 3. Convert each POS expression in Question 1 to standard form.

4–7 Boolean Expressions and Truth Tables

All standard Boolean expressions can be easily converted into truth table format using

binary values for each term in the expression. The truth table is a common way of present-

ing, in a concise format, the logical operation of a circuit. Also, standard SOP or POS

expressions can be determined from a truth table. You will find truth tables in data sheets

and other literature related to the operation of digital circuits.

After completing this section, you should be able to

u Convert a standard SOP expression into truth table format

u Convert a standard POS expression into truth table format

u Derive a standard expression from a truth table

u Properly interpret truth table data

Converting SOP Expressions to Truth Table Format

Recall from Section 4–6 that an SOP expression is equal to 1 only if at least one of the

product terms is equal to 1. A truth table is simply a list of the possible combinations of

input variable values and the corresponding output values (1 or 0). For an expression with a

domain of two variables, there are four different combinations of those variables (22
= 4).

For an expression with a domain of three variables, there are eight different combinations

of those variables (23
= 8). For an expression with a domain of four variables, there are

sixteen different combinations of those variables (24
= 16), and so on.

The first step in constructing a truth table is to list all possible combinations of binary

values of the variables in the expression. Next, convert the SOP expression to standard

form if it is not already. Finally, place a 1 in the output column (X) for each binary value

that makes the standard SOP expression a 1 and place a 0 for all the remaining binary values.

This procedure is illustrated in Example 4–20.

EXAMPLE 4–20

Develop a truth table for the standard SOP expression A BC + AB C + ABC.

Solution

There are three variables in the domain, so there are eight possible combinations of

binary values of the variables as listed in the left three columns of Table 4–6. The

binary values that make the product terms in the expressions equal to 1 are

 Boolean Expressions and Truth Tables 217

Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to

0. To construct a truth table from a POS expression, list all the possible combinations of

binary values of the variables just as was done for the SOP expression. Next, convert the

POS expression to standard form if it is not already. Finally, place a 0 in the output column

(X) for each binary value that makes the expression a 0 and place a 1 for all the remaining

binary values. This procedure is illustrated in Example 4–21.

A BC: 001; AB C: 100; and ABC: 111. For each of these binary values, place a 1 in the

output column as shown in the table. For each of the remaining binary combinations,

place a 0 in the output column.

Related Problem

Create a truth table for the standard SOP expression ABC + ABC.

Inputs Output

Product TermA B C X

0 0 0 0

0 0 1 1 A BC

0 1 0 0

0 1 1 0

1 0 0 1 AB C

1 0 1 0

1 1 0 0

1 1 1 1 ABC

TABLE 4–6

EXAMPLE 4–21

Determine the truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Solution

There are three variables in the domain and the eight possible binary values are listed in

the left three columns of Table 4–7. The binary values that make the sum terms in the

expression equal to 0 are A + B + C: 000; A + B + C: 010; A + B + C: 011;

A + B + C: 101; and A + B + C: 110. For each of these binary values, place a 0 in

the output column as shown in the table. For each of the remaining binary combina-

tions, place a 1 in the output column.

Inputs Output

Sum TermA B C X

0 0 0 0 (A + B + C)

0 0 1 1

0 1 0 0 (A + B + C)

0 1 1 0 (A + B + C)

1 0 0 1

1 0 1 0 (A + B + C)

1 1 0 0 (A + B + C)

1 1 1 1

TABLE 4–7

218 Boolean Algebra and Logic Simplification

Notice that the truth table in this example is the same as the one in Example 4–20.

This means that the SOP expression in the previous example and the POS expression in

this example are equivalent.

Related Problem

Develop a truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)

Determining Standard Expressions from a Truth Table

To determine the standard SOP expression represented by a truth table, list the binary val-

ues of the input variables for which the output is 1. Convert each binary value to the corre-

sponding product term by replacing each 1 with the corresponding variable and each 0 with

the corresponding variable complement. For example, the binary value 1010 is converted

to a product term as follows:

1010 h ABCD

If you substitute, you can see that the product term is 1:

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

To determine the standard POS expression represented by a truth table, list the binary

values for which the output is 0. Convert each binary value to the corresponding sum term

by replacing each 1 with the corresponding variable complement and each 0 with the cor-

responding variable. For example, the binary value 1001 is converted to a sum term as

follows:

1001 h A + B + C + D

If you substitute, you can see that the sum term is 0:

A + B + C + D = 1 + 0 + 0 + 1 = 0 + 0 + 0 + 0 = 0

EXAMPLE 4–22

From the truth table in Table 4–8, determine the standard SOP expression and the

equivalent standard POS expression.

Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

TABLE 4–8

 The Karnaugh Map 219

Solution

There are four 1s in the output column and the corresponding binary values are 011,

100, 110, and 111. Convert these binary values to product terms as follows:

011 h ABC

100 h AB C

110 h ABC

111 h ABC

The resulting standard SOP expression for the output X is

X = ABC + AB C + ABC + ABC

For the POS expression, the output is 0 for binary values 000, 001, 010, and 101.

Convert these binary values to sum terms as follows:

000 h A + B + C

001 h A + B + C

010 h A + B + C

101 h A + B + C

The resulting standard POS expression for the output X is

X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Related Problem

By substitution of binary values, show that the SOP and the POS expressions derived in

this example are equivalent; that is, for any binary value each SOP and POS term should

either both be 1 or both be 0, depending on the binary value.

SECTION 4–7 CHECKUP

 1. If a certain Boolean expression has a domain of five variables, how many binary

values will be in its truth table?

 2. In a certain truth table, the output is a 1 for the binary value 0110. Convert this binary

value to the corresponding product term using variables W, X, Y, and Z.

 3. In a certain truth table, the output is a 0 for the binary value 1100. Convert this binary

value to the corresponding sum term using variables W, X, Y, and Z.

4–8 The Karnaugh Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and,

if properly used, will produce the simplest SOP or POS expression possible, known as

the minimum expression. As you have seen, the effectiveness of algebraic simplification

depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on

your ability to apply them. The Karnaugh map, on the other hand, provides a “cookbook”

method for simplification. Other simplification techniques include the Quine-McCluskey

method and the Espresso algorithm.

After completing this section, you should be able to

u Construct a Karnaugh map for three or four variables

u Determine the binary value of each cell in a Karnaugh map

u Determine the standard product term represented by each cell in a Karnaugh map

u Explain cell adjacency and identify adjacent cells

220 Boolean Algebra and Logic Simplification

A Karnaugh map is similar to a truth table because it presents all of the possible values

of input variables and the resulting output for each value. Instead of being organized into

columns and rows like a truth table, the Karnaugh map is an array of cells in which each

cell represents a binary value of the input variables. The cells are arranged in a way so

that simplification of a given expression is simply a matter of properly grouping the cells.

Karnaugh maps can be used for expressions with two, three, four, and five variables, but we

will discuss only 3-variable and 4-variable situations to illustrate the principles. A discus-

sion of 5-variable Karnaugh maps is available on the website.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table,

is equal to the total number of possible input variable combinations. For three variables, the

number of cells is 23
= 8. For four variables, the number of cells is 24

= 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells, as shown in Figure 4–25(a). In this

case, A, B, and C are used for the variables although other letters could be used. Binary

values of A and B are along the left side (notice the sequence) and the values of C are across

the top. The value of a given cell is the binary values of A and B at the left in the same row

combined with the value of C at the top in the same column. For example, the cell in the

upper left corner has a binary value of 000 and the cell in the lower right corner has a binary

value of 101. Figure 4–25(b) shows the standard product terms that are represented by each

cell in the Karnaugh map.

The purpose of a Karnaugh map is to
simplify a Boolean expression.

0 1

00

01

11

10

0 1

00

01

11

10

(a) (b)

AB
C

AB
C

ABC ABC

ABC ABC

ABC ABC

ABC ABC

FIGURE 4–25 A 3-variable Karnaugh map showing Boolean product terms for each cell.

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure 4–26(a).

Binary values of A and B are along the left side and the values of C and D are across the

top. The value of a given cell is the binary values of A and B at the left in the same row

combined with the binary values of C and D at the top in the same column. For example,

the cell in the upper right corner has a binary value of 0010 and the cell in the lower right

corner has a binary value of 1010. Figure 4–26(b) shows the standard product terms that

are represented by each cell in the 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-variable change

between adjacent cells. Adjacency is defined by a single-variable change. In the 3-variable

map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110 cell. The 010 cell is

not adjacent to the 001 cell, the 111 cell, the 100 cell, or the 101 cell.

Physically, each cell is adjacent to the cells that are immediately next to it on any of

its four sides. A cell is not adjacent to the cells that diagonally touch any of its corners.

Also, the cells in the top row are adjacent to the corresponding cells in the bottom row and

Cells that differ by only one variable
are adjacent.

Cells with values that differ by more
than one variable are not adjacent.

 The Karnaugh Map 221

the cells in the outer left column are adjacent to the corresponding cells in the outer right

column. This is called “wrap-around” adjacency because you can think of the map as wrap-

ping around from top to bottom to form a cylinder or from left to right to form a cylinder.

Figure 4–27 illustrates the cell adjacencies with a 4-variable map, although the same rules

for adjacency apply to Karnaugh maps with any number of cells.

00 01

00

01

11

10

(a)

AB
CD

11 10 00 01

00

01

11

10

(b)

AB
CD

11 10

ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

ABCD ABCD

FIGURE 4–26 A 4-variable Karnaugh map.

00 01 11 10
00

01

11

10

CD
AB

FIGURE 4–27 Adjacent cells on a Karnaugh map are those that differ by only one

variable. Arrows point between adjacent cells.

The Quine-McCluskey Method

Minimizing Boolean functions using Karnaugh maps is practical only for up to four or five

variables. Also, the Karnaugh map method does not lend itself to be automated in the form

of a computer program.

The Quine-McCluskey method is more practical for logic simplification of functions

with more than four or five variables. It also has the advantage of being easily implemented

with a computer or programmable calculator.

The Quine-McCluskey method is functionally similar to Karnaugh mapping, but the

tabular form makes it more efficient for use in computer algorithms, and it also gives a way

to check that the minimal form of a Boolean function has been reached. This method is

sometimes referred to as the tabulation method. An introduction to the Quine-McCluskey

method is provided in Section 4–11.

Espresso Algorithm

Although the Quine-McCluskey method is well suited to be implemented in a computer

program and can handle more variables than the Karnaugh map method, the result is still

far from efficient in terms of processing time and memory usage. Adding a variable to

the function will roughly double both of these parameters because the truth table length

increases exponentially with the number of variables. Functions with a large number of

222 Boolean Algebra and Logic Simplification

variables have to be minimized with other methods such as the Espresso logic minimizer,

which has become the de facto world standard. An Espresso algorithm tutorial is available

on the website.

Compared to the other methods, Espresso is essentially more efficient in terms of reduc-

ing memory usage and computation time by several orders of magnitude. There is essen-

tially no restrictions to the number of variables, output functions, and product terms of a

combinational logic function. In general, tens of variables with tens of output functions can

be handled by Espresso.

The Espresso algorithm has been incorporated as a standard logic function minimiza-

tion step in most logic synthesis tools for programmable logic devices. For implementing

a function in multilevel logic, the minimization result is optimized by factorization and

mapped onto the available basic logic cells in the target device, such as an FPGA (Field-

Programmable Gate Array).

SECTION 4–8 CHECKUP

 1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol-

lowing locations:

(a) upper left corner (b) lower right corner

(c) lower left corner (d) upper right corner

 2. What is the standard product term for each cell in Question 1 for variables X, Y, and Z?

 3. Repeat Question 1 for a 4-variable map.

 4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z.

4–9 Karnaugh Map SOP Minimization

As stated in the last section, the Karnaugh map is used for simplifying Boolean expressions

to their minimum form. A minimized SOP expression contains the fewest possible terms

with the fewest possible variables per term. Generally, a minimum SOP expression can be

implemented with fewer logic gates than a standard expression. In this section, Karnaugh

maps with up to four variables are covered.

After completing this section, you should be able to

u Map a standard SOP expression on a Karnaugh map

u Combine the 1s on the map into maximum groups

u Determine the minimum product term for each group on the map

u Combine the minimum product terms to form a minimum SOP expression

u Convert a truth table into a Karnaugh map for simplification of the represented

expression

u Use “don’t care” conditions on a Karnaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for each

product term in the expression. Each 1 is placed in a cell corresponding to the value of

a product term. For example, for the product term ABC, a 1 goes in the 101 cell on a

3-variable map.

 Karnaugh Map SOP Minimization 223

When an SOP expression is completely mapped, there will be a number of 1s on the

Karnaugh map equal to the number of product terms in the standard SOP expression. The

cells that do not have a 1 are the cells for which the expression is 0. Usually, when working

with SOP expressions, the 0s are left off the map. The following steps and the illustration

in Figure 4–28 show the mapping process.

Step 1: Determine the binary value of each product term in the standard SOP expres-

sion. After some practice, you can usually do the evaluation of terms mentally.

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell

having the same value as the product term.

0 1

00

01

11

10

AB
C

ABC + ABC + ABC + ABC

1

1

1 1
000 001 110 100

FIGURE 4–28 Example of mapping a standard SOP expression.

EXAMPLE 4–23

Map the following standard SOP expression on a Karnaugh map:

A BC + ABC + ABC + ABC

Solution

Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in

Figure 4–29 for each standard product term in the expression.

A BC + ABC + ABC + ABC

0 0 1 0 1 0 1 1 0 1 1 1

0 1

00

01

11

10

AB
C

1

1

1

1

ABC

ABC

ABC

ABC

FIGURE 4–29

Related Problem

Map the standard SOP expression ABC + ABC + AB C on a Karnaugh map.

224 Boolean Algebra and Logic Simplification

Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a Karnaugh map. If an

expression is not in standard form, then it must be converted to standard form by the proce-

dure covered in Section 4–6 or by numerical expansion. Since an expression should be eval-

uated before mapping anyway, numerical expansion is probably the most efficient approach.

Numerical Expansion of a Nonstandard Product Term

Recall that a nonstandard product term has one or more missing variables. For example,

assume that one of the product terms in a certain 3-variable SOP expression is AB. This

term can be expanded numerically to standard form as follows. First, write the binary value

of the two variables and attach a 0 for the missing variable C: 100. Next, write the binary

value of the two variables and attach a 1 for the missing variable C: 101. The two resulting

binary numbers are the values of the standard SOP terms AB C and ABC.

As another example, assume that one of the product terms in a 3-variable expression is

B (remember that a single variable counts as a product term in an SOP expression). This

term can be expanded numerically to standard form as follows. Write the binary value of

the variable; then attach all possible values for the missing variables A and C as follows:

B

010

011

110

111

EXAMPLE 4–24

Map the following standard SOP expression on a Karnaugh map:

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

Solution

Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in

Figure 4–30 for each standard product term in the expression.

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0

00 01 11 10

00

01

11

10

CD

AB

1

1

1 1

1 1

1

ABCD

ABCD

ABCDABCD

ABCD
ABCD

ABCD

FIGURE 4–30

Related Problem

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABC D + ABCD

 Karnaugh Map SOP Minimization 225

The four resulting binary numbers are the values of the standard SOP terms ABC,

 ABC, ABC, and ABC.

EXAMPLE 4–25

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

Solution

The SOP expression is obviously not in standard form because each product term does not

have three variables. The first term is missing two variables, the second term is missing

one variable, and the third term is standard. First expand the terms numerically as follows:

A + AB + ABC

000 100 110

001 101

010

011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the

3-variable Karnaugh map in Figure 4–31.

0 1

00

01

11

10

AB
C

1

1

11

1

11

FIGURE 4–31

Related Problem

Map the SOP expression BC + A C on a Karnaugh map.

EXAMPLE 4–26

Map the following SOP expression on a Karnaugh map:

B C + AB + ABC + ABCD + A B CD + ABCD

Solution

The SOP expression is obviously not in standard form because each product term does

not have four variables. The first and second terms are both missing two variables, the

third term is missing one variable, and the rest of the terms are standard. First expand the

terms by including all combinations of the missing variables numerically as follows:

B C + AB + ABC + ABCD + A B CD + ABCD

0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1

0 0 0 1 1 0 0 1 1 1 0 1

1 0 0 0 1 0 1 0

1 0 0 1 1 0 1 1

226 Boolean Algebra and Logic Simplification

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the few-

est possible variables is called minimization. After an SOP expression has been mapped,

a minimum SOP expression is obtained by grouping the 1s and determining the minimum

SOP expression from the map.

Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those

adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize

the number of groups.

 1. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the

case of a 3-variable map, 23
= 8 cells is the maximum group.

 2. Each cell in a group must be adjacent to one or more cells in that same group, but all

cells in the group do not have to be adjacent to each other.

 3. Always include the largest possible number of 1s in a group in accordance with rule 1.

 4. Each 1 on the map must be included in at least one group. The 1s already in a group can

be included in another group as long as the overlapping groups include noncommon 1s.

Map each of the resulting binary values by placing a 1 in the appropriate cell of the

4-variable Karnaugh map in Figure 4–32. Notice that some of the values in the expanded

expression are redundant.

00 01 11 10

00

01

11

10

CD

AB

1

1

11

1

111

FIGURE 4–32

Related Problem

Map the expression A + CD + ACD + ABCD on a Karnaugh map.

EXAMPLE 4–27

Group the 1s in each of the Karnaugh maps in Figure 4–33.

0 1

00

01

11

10

AB
C

00 01 11 10

00

01

11

10

CD

AB

1

1

11

1

111

(a)

0 1

00

01

11

10

AB
C

1

1

1

1

11

(b) (c)

00 01 11 10

00

01

11

10

CD

AB

(d)

1

1

1

1

1

1

11

1

11

1 1 1

1

FIGURE 4–33

 Karnaugh Map SOP Minimization 227

Solution

The groupings are shown in Figure 4–34. In some cases, there may be more than one way to group the 1s to form maximum

groupings.

Wrap-around adjacency

CD

AB

(d)

00 01 11 10

00

01

11

10 1

1

11

1

11

1 1 1

1

Wrap-around adjacency

00 01 11 10

00

01

11

10

CD

AB

(c)

1

1

11

1

111

00

01

11

10

AB
C

(b)

0 1

1

1

1

1

11

0 1

00

01

11

10

AB
C

(a)

1

1

1

1

FIGURE 4–34

Related Problem

Determine if there are other ways to group the 1s in Figure 4–34 to obtain a minimum number of maximum

 groupings.

Determining the Minimum SOP Expression from the Map

When all the 1s representing the standard product terms in an expression are properly

mapped and grouped, the process of determining the resulting minimum SOP expression

begins. The following rules are applied to find the minimum product terms and the mini-

mum SOP expression:

 1. Group the cells that have 1s. Each group of cells containing 1s creates one product

term composed of all variables that occur in only one form (either uncomple-

mented or complemented) within the group. Variables that occur both uncomple-

mented and complemented within the group are eliminated. These are called

contradictory variables.

 2. Determine the minimum product term for each group.

(a) For a 3-variable map:

 (1) A 1-cell group yields a 3-variable product term

 (2) A 2-cell group yields a 2-variable product term

 (3) A 4-cell group yields a 1-variable term

 (4) An 8-cell group yields a value of 1 for the expression

(b) For a 4-variable map:

 (1) A 1-cell group yields a 4-variable product term

 (2) A 2-cell group yields a 3-variable product term

 (3) A 4-cell group yields a 2-variable product term

 (4) An 8-cell group yields a 1-variable term

 (5) A 16-cell group yields a value of 1 for the expression

 3. When all the minimum product terms are derived from the Karnaugh map, they are

summed to form the minimum SOP expression.

228 Boolean Algebra and Logic Simplification

EXAMPLE 4–28

Determine the product terms for the Karnaugh map in Figure 4–35 and write the result-

ing minimum SOP expression.

00 01 11 10

00

01

11

10

CD

AB

1

11

1

111

1111

AC

B

ACD

FIGURE 4–35

Solution

Eliminate variables that are in a grouping in both complemented and uncomplemented

forms. In Figure 4–35, the product term for the 8-cell group is B because the cells

within that group contain both A and A, C and C, and D and D, which are eliminated.

The 4-cell group contains B, B, D, and D, leaving the variables A and C, which form the

product term AC. The 2-cell group contains B and B, leaving variables A, C, and D

which form the product term ACD. Notice how overlapping is used to maximize the

size of the groups. The resulting minimum SOP expression is the sum of these product

terms:

B + AC + ACD

Related Problem

For the Karnaugh map in Figure 4–35, add a 1 in the lower right cell (1010) and deter-

mine the resulting SOP expression.

EXAMPLE 4–29

Determine the product terms for each of the Karnaugh maps in Figure 4–36 and write the resulting minimum SOP expression.

0 1

00

01

11

10

AB
C

(a)

ABC BC

AB

1

1

1

1

00

01

11

10

AB
C

(b)

AC

AC

B

0 1

1

1

1

1

11

00 01 11 10

00

01

11

10

CD

AB

(c)
ABD

AB

AC

1

1

11

1

111

CD

AB

(d)

00 01 11 10

00

01

11

10

ABC

D

BC

1

1

11

1

11

1 1 1

1

FIGURE 4–36

 Karnaugh Map SOP Minimization 229

Solution

The resulting minimum product term for each group is shown in Figure 4–36. The minimum SOP expressions for each of

the Karnaugh maps in the figure are

(a) AB + BC + A B C

(b) B + A C + AC

(c) AB + A C + ABD

(d) D + ABC + BC

Related Problem

For the Karnaugh map in Figure 4–36(d), add a 1 in the 0111 cell and determine the resulting SOP expression.

EXAMPLE 4–30

Use a Karnaugh map to minimize the following standard SOP expression:

ABC + ABC + A BC + A B C + AB C

Solution

The binary values of the expression are

101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells as shown in Figure 4–37.

00

01

11

10

AB
C

AC

B

0 1

11

1

1

1

FIGURE 4–37

Notice the “wrap around” 4-cell group that includes the top row and the bottom row

of 1s. The remaining 1 is absorbed in an overlapping group of two cells. The group of

four 1s produces a single variable term, B. This is determined by observing that within

the group, B is the only variable that does not change from cell to cell. The group of two

1s produces a 2-variable term AC. This is determined by observing that within the

group, A and C do not change from one cell to the next. The product term for each

group is shown. The resulting minimum SOP expression is

B + AC

Keep in mind that this minimum expression is equivalent to the original standard expression.

Related Problem

Use a Karnaugh map to simplify the following standard SOP expression:

XYZ + XYZ + XYZ + XYZ + XY Z + XYZ

230 Boolean Algebra and Logic Simplification

Mapping Directly from a Truth Table

You have seen how to map a Boolean expression; now you will learn how to go directly

from a truth table to a Karnaugh map. Recall that a truth table gives the output of a Boolean

expression for all possible input variable combinations. An example of a Boolean expres-

sion and its truth table representation is shown in Figure 4–39. Notice in the truth table that

the output X is 1 for four different input variable combinations. The 1s in the output column

of the truth table are mapped directly onto a Karnaugh map into the cells corresponding to

the values of the associated input variable combinations, as shown in Figure 4–39. In the

figure you can see that the Boolean expression, the truth table, and the Karnaugh map are

simply different ways to represent a logic function.

“Don’t Care” Conditions

Sometimes a situation arises in which some input variable combinations are not allowed.

For example, recall that in the BCD code covered in Chapter 2, there are six invalid

combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states

EXAMPLE 4–31

Use a Karnaugh map to minimize the following SOP expression:

B C D + ABC D + ABC D + A BCD + ABCD + A BCD + ABCD + ABCD + ABCD

Solution

The first term B C D must be expanded into AB C D and A B C D to get the standard

SOP expression, which is then mapped; the cells are grouped as shown in Figure 4–38.

CD

AB
00 01 11 10

00

01

11

10

D

BC

1

1

11

11

1 1

1

1

FIGURE 4–38

Notice that both groups exhibit “wrap around” adjacency. The group of eight is

formed because the cells in the outer columns are adjacent. The group of four is formed

to pick up the remaining two 1s because the top and bottom cells are adjacent. The

product term for each group is shown. The resulting minimum SOP expression is

D + BC

Keep in mind that this minimum expression is equivalent to the original standard

expression.

Related Problem

Use a Karnaugh map to simplify the following SOP expression:

W X Y Z + WXYZ + WX YZ + WYZ + WX Y Z

 Karnaugh Map SOP Minimization 231

0 1

00

01

11

10

AB

C

1

1

1

1

X = ABC + ABC + ABC + ABC

X

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

0

0

0

1

0

1

1

A B C

Inputs Output

FIGURE 4–39 Example of mapping directly from a truth table to a Karnaugh map.

will never occur in an application involving the BCD code, they can be treated as “don’t

care” terms with respect to their effect on the output. That is, for these “don’t care” terms

either a 1 or a 0 may be assigned to the output; it really does not matter since they will

never occur.

The “don’t care” terms can be used to advantage on the Karnaugh map. Figure 4–40

shows that for each “don’t care” term, an X is placed in the cell. When grouping the 1s, the

Xs can be treated as 1s to make a larger grouping or as 0s if they cannot be used to advan-

tage. The larger a group, the simpler the resulting term will be.

Inputs Output

00 01 11 10

00

01

11

10

CD

AB

ABCD

BCD

ABC A

Don’t cares

(b)

XXXX

XX

Without “don’t cares” Y = ABC + ABCD

With “don’t cares” Y = A + BCD

1

11

0

0

0

0

0

0

0

1

1

1

X

X

X

X

X

X

(a) Truth table

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

A B C D Y

FIGURE 4–40 Example of the use of “don’t care” conditions to simplify an expression.

The truth table in Figure 4–40(a) describes a logic function that has a 1 output only

when the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t cares” are used as

1s, the resulting expression for the function is A + BCD, as indicated in part (b). If the

“don’t cares” are not used as 1s, the resulting expression is AB C + ABCD; so you can see

the advantage of using “don’t care” terms to get the simplest expression.

232 Boolean Algebra and Logic Simplification

EXAMPLE 4–32

In a 7-segment display, each of the seven segments is activated for various digits. For

example, segment a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in

Figure 4–41. Since each digit can be represented by a BCD code, derive an SOP expres-

sion for segment a using the variables ABCD and then minimize the expression using a

Karnaugh map.

Segment a

b

c

f

e

d

g

FIGURE 4–41 7-segment display.

Solution

The expression for segment a is

a = A B C D + A BCD + A BCD + ABCD + ABCD + ABCD + AB C D + AB CD

Each term in the expression represents one of the digits in which segment a is used. The

Karnaugh map minimization is shown in Figure 4–42. X’s (don’t cares) are entered for

those states that do not occur in the BCD code.

00 01 11 10

00

01

11

10

CD

AB

C

A

BD

1

111

11 1

XX X X

1 XX

BD

FIGURE 4–42

From the Karnaugh map, the minimized expression for segment a is

a = A + C + BD + B D

Related Problem

Draw the logic diagram for the segment-a logic.

SECTION 4–9 CHECKUP

 1. Lay out Karnaugh maps for three and four variables.

 2. Group the 1s and write the simplified SOP expression for the Karnaugh map in

Figure 4–29.

 3. Write the original standard SOP expressions for each of the Karnaugh maps in Fig-

ure 4–36.

 Karnaugh Map POS Minimization 233

4–10 Karnaugh Map POS Minimization

In the last section, you studied the minimization of an SOP expression using a Karnaugh

map. In this section, we focus on POS expressions. The approaches are much the same

except that with POS expressions, 0s representing the standard sum terms are placed on the

Karnaugh map instead of 1s.

After completing this section, you should be able to

u Map a standard POS expression on a Karnaugh map

u Combine the 0s on the map into maximum groups

u Determine the minimum sum term for each group on the map

u Combine the minimum sum terms to form a minimum POS expression

u Use the Karnaugh map to convert between POS and SOP

Mapping a Standard POS Expression

For a POS expression in standard form, a 0 is placed on the Karnaugh map for each sum

term in the expression. Each 0 is placed in a cell corresponding to the value of a sum term.

For example, for the sum term A + B + C, a 0 goes in the 010 cell on a 3-variable map.

When a POS expression is completely mapped, there will be a number of 0s on the

Karnaugh map equal to the number of sum terms in the standard POS expression. The cells

that do not have a 0 are the cells for which the expression is 1. Usually, when working with

POS expressions, the 1s are left off. The following steps and the illustration in Figure 4–43

show the mapping process.

Step 1: Determine the binary value of each sum term in the standard POS expression.

This is the binary value that makes the term equal to 0.

Step 2: As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-

sponding cell.

0 1

00

01

11

10

AB

C
(A + B + C)(A + B + C)(A + B + C)(A + B + C)

000 010 110 101

0

0

0

0

FIGURE 4–43 Example of mapping a standard POS expression.

EXAMPLE 4–33

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh map in Figure 4–44 for each standard

sum term in the expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

1100 1011 0010 1111 0011

234 Boolean Algebra and Logic Simplification

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an SOP expres-

sion except that you group 0s to produce minimum sum terms instead of grouping 1s to

produce minimum product terms. The rules for grouping the 0s are the same as those for

grouping the 1s that you learned in Section 4–9.

00 01 11 10

00

01

11

10

CD

AB

0

0

0

0

0

A + B + C + D

A + B + C + D

A + B + C + D

A + B + C + DA + B + C + D

FIGURE 4–44

Related Problem

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

EXAMPLE 4–34

Use a Karnaugh map to minimize the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Also, derive the equivalent SOP expression.

Solution

The combinations of binary values of the expression are

(0 + 0 + 0)(0 + 0 + 1)(0 + 1 + 0)(0 + 1 + 1)(1 + 1 + 0)

Map the standard POS expression and group the cells as shown in Figure 4–45.

0 1

00

01

11

10

AB

C

A

B + C

0

0

0

0

0

1

1 1

AC

AB

FIGURE 4–45

 Karnaugh Map POS Minimization 235

Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in

the 4-cell group. The sum term for each blue group is shown in the figure and the result-

ing minimum POS expression is

A(B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard

POS expression.

Grouping the 1s as shown by the gray areas yields an SOP expression that is equiva-

lent to grouping the 0s.

AC + AB = A(B + C)

Related Problem

Use a Karnaugh map to simplify the following standard POS expression:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

EXAMPLE 4–35

Use a Karnaugh map to minimize the following POS expression:

(B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The first term must be expanded into A + B + C + D and A + B + C + D to get a standard POS expression, which is

then mapped; and the cells are grouped as shown in Figure 4–46. The sum term for each group is shown and the resulting

minimum POS expression is

(C + D)(A + B + D)(A + B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard POS expression.

00 01 11 10

00

01

11

10

CD

AB

A + B + D

C + D

A + B + C

0

0

0

0

0

0

FIGURE 4–46

Related Problem

Use a Karnaugh map to simplify the following POS expression:

(W + X + Y + Z)(W + X + Y + Z)(W + X + Y + Z)(W + X + Z)

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the equivalent SOP form

directly from the Karnaugh map. Also, given a mapped SOP expression, an equivalent POS

expression can be derived directly from the map. This provides a good way to compare

236 Boolean Algebra and Logic Simplification

both minimum forms of an expression to determine if one of them can be implemented

with fewer gates than the other.

For a POS expression, all the cells that do not contain 0s contain 1s, from which the SOP

expression is derived. Likewise, for an SOP expression, all the cells that do not contain

1s contain 0s, from which the POS expression is derived. Example 4–36 illustrates this

conversion.

EXAMPLE 4–36

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP

expression, and a minimum SOP expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The 0s for the standard POS expression are mapped and grouped to obtain the minimum POS expression in Figure 4–47(a).

In Figure 4–47(b), 1s are added to the cells that do not contain 0s. From each cell containing a 1, a standard product term is

obtained as indicated. These product terms form the standard SOP expression. In Figure 4–47(c), the 1s are grouped and a

minimum SOP expression is obtained.

00 01 11 10

00

01

11

10

CD

AB

0

0

0

0

0 0

A + B + C

B + C + D

B + C + D

(a) Minimum POS: (A + B + C)(B + C + D)(B + C + D)

00 01 11 10

00

01

11

10

CD

AB

0

0

0

0

0 0

11 1

11 1

1 11

1

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD ABCD ABCD

ABCD

ABCD

(b) Standard SOP:

 ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +

ABCD + ABCD + ABCD + ABCD

00 01 11 10

00

01

11

10

CD

AB

(c) Minimum SOP: AC + BC + BD + BCD

BD

BCD

AC

BC

0

0

0

0 01

11 1

11 10

1 11

FIGURE 4–47

Related Problem

Use a Karnaugh map to convert the following expression to minimum SOP form:

(W + X + Y + Z)(W + X + Y + Z)(W + X + Y + Z)(W + X + Z)

 The Quine-McCluskey Method 237

SECTION 4–10 CHECKUP

 1. What is the difference in mapping a POS expression and an SOP expression?

 2. What is the standard sum term for a 0 in cell 1011?

 3. What is the standard product term for a 1 in cell 0010?

4–11 The Quine-McCluskey Method

For Boolean functions up to four variables, the Karnaugh map method is a powerful minimi-

zation method. When there are five variables, the Karnaugh map method is difficult to apply

and completely impractical beyond five. The Quine-McCluskey method is a formal tabular

method for applying the Boolean distributive law to various terms to find the minimum sum

of products by eliminating literals that appear in two terms as complements. (For example,

ABCD + ABC D = ABC). A Quine-McCluskey method tutorial is available on the website.

After completing this section, you should be able to

u Describe the Quine-McCluskey method

u Reduce a Boolean expression using the Quine-McCluskey method

Unlike the Karnaugh mapping method, Quine-McCluskey lends itself to the computer-

ized reduction of Boolean expressions, which is its principal use. For simple expressions,

with up to four or perhaps even five variables, the Karnaugh map is easier for most people

because it is a graphic method.

To apply the Quine-McCluskey method, first write the function in standard minterm

(SOP) form. To illustrate, we will use the expression

X = A B CD + A BCD + AB C D + A B CD + ABC D + AB C D + AB CD + ABCD

and represent it as binary numbers on the truth table shown in Table 4–9. The minterms that

appear in the function are listed in the right column.

TABLE 4–9

ABCD X Minterm

0000 0

0001 1 m1

0010 0

0011 1 m3

0100 1 m4

0101 1 m5

0110 0

0111 0

1000 0

1001 0

1010 1 m10

1011 0

1100 1 m12

1101 1 m13

1110 0

1111 1 m15

The second step in applying the Quine-McCluskey method is to arrange the minterms in

the original expression in groups according to the number of 1s in each minterm, as shown

in Table 4–10. In this example, there are four groups of minterms. (Note that if m0 had been

in the original expression, there would be five groups.)

238 Boolean Algebra and Logic Simplification

In Table 4–11, minterm m4 and minterm m12 are identical except for the A position. Both

minterms are checked and x100 is entered in the First Level column . Follow this proce-

dure for groups 2 and 3. In these groups, m5 and m13 are combined and so are m12 and m13

(notice that m12 was previously used with m4 and is used again). For groups 3 and 4, both

m13 and m15 are added to the list in the First Level column .

In this example, minterm m10 does not have a check mark because no other minterm

meets the requirement of being identical except for one position. This term is called an

essential prime implicant, and it must be included in our final reduced expression.

The terms listed in the First Level have been used to form a reduced table (Table 4–12)

with one less group than before. The number of 1s remaining in the First Level are counted

and used to form three new groups.

Terms in the new groups are compared against terms in the adjacent group down. You

need to compare these terms only if the x is in the same relative position in adjacent groups;

otherwise go on. If the two expressions differ by exactly one position, a check mark is

Third, compare adjacent groups, looking to see if any minterms are the same in every

position except one. If they are, place a check mark by those two minterms, as shown in

Table 4–11. You should check each minterm against all others in the following group, but

it is not necessary to check any groups that are not adjacent. In the column labeled First

Level, you will have a list of the minterm names and the binary equivalent with an x as the

placeholder for the literal that differs. In the example, minterm m1 in Group 1 (0001) is

identical to m3 in Group 2 (0011) except for the C position, so place a check mark by these

two minterms and enter 00x1 in the column labeled First Level. Minterm m4 (0100) is iden-

tical to m5 (0101) except for the D position, so check these two minterms and enter 010x in

the last column. If a given term can be used more than once, it should be. In this case, notice

that m1 can be used again with m5 in the second row with the x now placed in the B position.

TABLE 4–10

Number of 1s Minterm ABCD

1 m1 0001

m4 0100

2 m3 0011

m5 0101

m10 1010

m12 1100

3 m13 1101

4 m15 1111

TABLE 4–11

Number of 1s

in Minterm Minterm ABCD First Level

1 m1 0001 ✓ (m1, m3) 00x1

m4 0100 ✓ (m1, m5) 0x01

2 m3 0011 ✓ (m4, m5) 010x

m5 0101 ✓ (m4, m12) x100

m10 1010 (m5, m13) x101

m12 1100 ✓ (m12, m13) 110x

3 m13 1101 ✓ (m13, m15) 11x1

4 m15 1111 ✓

 The Quine-McCluskey Method 239

TABLE 4–12

First Level Number of 1s in First Level Second Level

(m1, m3) 00x1 1 (m4, m5, m12, m13) x10x

(m1, m5) 0x01 (m4, m5, m12, m13) x10x

(m4, m5) 010x ✓

(m4, m12) x100 ✓

(m5, m13) x101 ✓ 2

(m12, m13) 110x ✓

(m13, m15) 11x1 3

placed next to both terms as before and all of the minterms are listed in the Second Level

list. As before, the one position that has changed is entered as an x in the Second Level.

For our example, notice that the third term in Group 1 and the second term in Group 2

meet this requirement, differing only with the A literal. The fourth term in Group 1 also can

be combined with the first term in Group 2, forming a redundant set of minterms. One of

these can be crossed off the list and will not be used in the final expression.

With complicated expressions, the process described can be continued. For our exam-

ple, we can read the Second Level expression as BC. The terms that are unchecked will

form other terms in the final reduced expression. The first unchecked term is read as A BD.

The next one is read as A CD. The last unchecked term is ABD. Recall that m10 was an

essential prime implicant, so is picked up in the final expression. The reduced expression

using the unchecked terms is:

X = BC + A BD + A CD + ABD + ABCD

Although this expression is correct, it may not be the minimum possible expression.

There is a final check that can eliminate any unnecessary terms. The terms for the expres-

sion are written into a prime implicant table, with minterms for each prime implicant

checked, as shown in Table 4–13.

TABLE 4–13

Minterms

Prime Implicants m1 m3 m4 m5 m10 m12 m13 m15

B C (m4, m5, m12, m13) ✓ ✓ ✓ ✓

A B D (m1, m3) ✓ ✓

A C D (m1, m5) ✓ ✓

ABD (m13, m15) ✓ ✓

ABC D (m10) ✓

If a minterm has a single check mark, then the prime implicant is essential and must

be included in the final expression. The term ABD must be included because m15 is only

covered by it. Likewise m10 is only covered by ABCD, so it must be in the final expression.

Notice that the two minterms in A CD are covered by the prime implicants in the first two

rows, so this term is unnecessary. The final reduced expression is, therefore,

X = BC + A BD + ABD + ABCD

SECTION 4–11 CHECKUP

 1. What is a minterm?

 2. What is an essential prime implicant?

240 Boolean Algebra and Logic Simplification

4–12 Boolean Expressions with VHDL

The ability to create simple and compact code is important in a VHDL program. By

simplifying a Boolean expression for a given logic function, it is easier to write and

debug the VHDL code; in addition, the result is a clearer and more concise program.

Many VHDL development software packages contain tools that automatically optimize

a program when it is compiled and converted to a downloadable file. However, this does

not relieve you from creating program code that is clear and concise. You should not

only be concerned with the number of lines of code, but you should also be concerned

with the complexity of each line of code. In this section, you will see the difference in

VHDL code when simplification methods are applied. Also, three levels of abstraction

used in the description of a logic function are examined. A VHDL tutorial is available

on the website.

After completing this section, you should be able to

u Write VHDL code to represent a simplified logic expression and compare it to the

code for the original expression

u Relate the advantages of optimized Boolean expressions as applied to a target device

u Understand how a logic function can be described at three levels of abstraction

u Relate VHDL approaches to the description of a logic function to the three levels

of abstraction

Boolean Algebra in VHDL Programming

The basic rules of Boolean algebra that you have learned in this chapter should be applied

to any applicable VHDL code. Eliminating unnecessary gate logic allows you to create

compact code that is easier to understand, especially when someone has to go back later

and update or modify the program.

In Example 4–37, DeMorgan’s theorems are used to simplify a Boolean expression,

and VHDL programs for both the original expression and the simplified expression are

compared.

EXAMPLE 4–37

First, write a VHDL program for the logic described by the following Boolean expres-

sion. Next, apply DeMorgan’s theorems and Boolean rules to simplify the expression.

Then write a program to reflect the simplified expression.

X = (AC + BC + D) + BC

Solution

The VHDL program for the logic represented by the original expression is

entity OriginalLogic is

 port (A, B, C, D: in bit; X: out bit);

end entity OriginalLogic;

architecture Expression1 of OriginalLogic is

begin

 X ,5 not((A and C) or not(B and not C) or D) or not(not(B and C));

end architecture Expression1;

Four inputs and one output are

described.

The original logic contains four

inputs, 3 AND gates, 2 OR

gates, and 3 inverters.

 Boolean Expressions with VHDL 241

By selectively applying DeMorgan’s theorem and the laws of Boolean algebra, you

can reduce the Boolean expression to its simplest form.

 (AC + BC + D) + BC = (AC)(BC)D + BC Apply DeMorgan

 = (AC)(BC)D + BC Cancel double complements

 = (A + C)BC D + BC Apply DeMorgan and factor

 = ABC D + BC D + BC Distributive law

 = BC D(1 + A) + BC Factor

 = BC D + BC Rule: 1 + A = 1

The VHDL program for the logic represented by the reduced expression is

entity ReducedLogic is

 port (B, C, D: in bit; X: out bit);

end entity ReducedLogic;

architecture Expression2 of ReducedLogic is

begin

 X ,5 (B and not C and not D) or (B and C);

end architecture Expression2;

3 inputs and 1 output are described.

The simplified logic contains

three inputs, 3 AND gates,

1 OR gate, and 2 inverters.

As you can see, Boolean simplification is applicable to even simple VHDL programs.

Related Problem

Write the VHDL architecture statement for the expression X = (A + B + C)D as

stated. Apply any applicable Boolean rules and rewrite the VHDL statement.

Example 4–38 demonstrates a more significant reduction in VHDL code complexity,

using a Karnaugh map to reduce an expression.

EXAMPLE 4–38

(a) Write a VHDL program to describe the following SOP expression.

(b) Minimize the expression and show how much the VHDL program is simplified.

X = A B C D + A B C D + A B C D + ABC D + A BC D + AB C D

+ A BC D + ABC D + ABC D + AB C D + AB CD + AB CD

Solution

(a) The VHDL program for the SOP expression without minimization is large and

hard to follow as you can see in the following VHDL code. Code such as this is

subject to error. The VHDL program for the original SOP expression is as follows:

entity OriginalSOP is

 port (A, B, C, D: in bit; X: out bit);

end entity OriginalSOP;

architecture Equation1 of OriginalSOP is

begin

X ,5 (not A and not B and not C and not D) or

 (not A and not B and not C and D) or

 (not A and B and not C and not D) or

 (not A and B and C and not D) or

 (not A and not B and C and not D) or

 (A and not B and not C and not D) or

 (A and not B and C and not D) or

 (A and B and C and not D) or

 (A and B and not C and not D) or

242 Boolean Algebra and Logic Simplification

As you have seen, the simplification of Boolean logic is important in the design of

any logic function described in VHDL. Target devices have finite capacity and therefore

require the creation of compact and efficient program code. Throughout this chapter, you

have learned that the simplification of complex Boolean logic can lead to the elimination

of unnecessary logic as well as the simplification of VHDL code.

Levels of Abstraction

A given logic function can be described at three different levels. It can be described by a

truth table or a state diagram, by a Boolean expression, or by its logic diagram (schematic).

 (A and not B and not C and D) or

 (not A and B and not C and D) or

 (A and B and not C and D);

end architecture Equation1;

(b) Now, use a four-variable Karnaugh map to reduce the original SOP expression to a

minimum form. The original SOP expression is mapped in Figure 4–48.

CD

AB
00 01 11 10

00

01

11

10

D

C

1

1

11

1

1

1

1

1

1

1 1

FIGURE 4–48

The original SOP Boolean expression that is plotted on the Karnaugh map in Figure

4–48 contains twelve 4-variable terms as indicated by the twelve 1s on the map. Recall

that only the variables that do not change within a group remain in the expression for

that group. The simplified expression taken from the map is developed next.

Combining the terms from the Karnaugh map, you get the following simplified

expression, which is equivalent to the original SOP expression.

X = C + D

Using the simplified expression, the VHDL code can be rewitten with fewer terms,

making the code more readable and easier to modify. Also, the logic implemented in a

target device by the reduced code consumes much less space in the PLD. The VHDL

program for the simplified SOP expression is as follows:

entity SimplifiedSOP is

 port (A, B, C, D: in bit; X: out bit);

end entity SimplifiedSOP;

architecture Equation2 of SimplifiedSOP is

begin

X ,5 not C or not D

end architecture Equation2;

Related Problem

Write a VHDL architecture statement to describe the logic for the expression

X = A(BC + D)

 Boolean Expressions with VHDL 243

The truth table and state diagram are the most abstract ways to describe a logic function.

A Boolean expression is the next level of abstraction, and a schematic is the lowest level

of abstraction. This concept is illustrated in Figure 4–49 for a simple logic circuit. VHDL

provides three approaches for describing functions that correspond to the three levels of

abstraction.

• ThedatalowapproachisanalogoustodescribingalogicfunctionwithaBoolean
expression. The data flow approach specifies each of the logic gates and how the data

flows through them. This approach was applied in Examples 4–37 and 4–38.

• The structural approach is analogous to using a logic diagram or schematic to
describe a logic function. It specifies the gates and how they are connected, rather

than how signals (data) flow through them. The structural approach is used to develop

VHDL code for describing logic circuits in Chapter 5.

• Thebehavioralapproachisanalogoustodescribingalogicfunctionusingastate
diagram or truth table. However, this approach is the most complex; it is usually

restricted to logic functions whose operations are time dependent and normally

require some type of memory.

SECTION 4–12 CHECKUP

 1. What are the advantages of Boolean logic simplification in terms of writing a VHDL

program?

 2. How does Boolean logic simplification benefit a VHDL program in terms of the

target device?

 3. Name the three levels of abstraction for a combinational logic function and state the

corresponding VHDL approaches for describing a logic function.

Logic function

0

0

0

0

0

0

0

0

0

1

A B C XD

1 1 1 11

The truth table or state diagramHighest level:

The Boolean expression, which can be

derived from a truth table or schematic

Middle level:

A

B

X

C

D

X = AB + CD

The logic diagram (schematic)Lowest level:

000

010

110101

001

100

FIGURE 4–49 Illustration of the three levels of abstraction for describing a logic function.

244 Boolean Algebra and Logic Simplification

Applied Logic

Seven-Segment Display

Seven-segment displays are used in many types of products that you see every day. A

7-segment display was used in the tablet-bottling system that was introduced in Chap-

ter 1. The display in the bottling system is driven by logic circuits that decode a binary

coded decimal (BCD) number and activate the appropriate digits on the display. BCD-

to-7-segment decoder/drivers are readily available as single IC packages for activating

the ten decimal digits.

In addition to the numbers from 0 to 9, the 7-segment display can show certain letters.

For the tablet-bottling system, a requirement has been added to display the letters A, b, C,

d, and E on a separate common-anode 7-segment display that uses a hexadecimal keypad

for both the numerical inputs and the letters. These letters will be used to identify the type

of vitamin tablet that is being bottled at any given time. In this application, the decoding

logic for displaying the five letters is developed.

The 7-Segment Display

Two types of 7-segment displays are the LED and the LCD. Each of the seven segments in

an LED display uses a light-emitting diode to produce a colored light when there is current

through it and can be seen in the dark. An LCD or liquid-crystal display operates by polar-

izing light so that when a segment is not activated by a voltage, it reflects incident light and

appears invisible against its background; however, when a segment is activated, it does not

reflect light and appears black. LCD displays cannot be seen in the dark.

The seven segments in both LED and LCD displays are arranged as shown in Figure 4–50

and labeled a, b, c, d, e, f, and g as indicated in part (a). Selected segments are activated to

create each of the ten decimal digits as well as certain letters of the alphabet, as shown in part

(b). The letter b is shown as lowercase because a capital B would be the same as the digit 8.

Similarly, for d, a capital letter would appear as a 0.

9:00

(b) Formation of the ten digits

 and certain letters

(a) Segment arrangement

b

c

f

e

d

g

a

FIGURE 4–50 Seven-segment display.

Exercise

1. List the segments used to form the digit 2.

2. List the segments used to form the digit 5.

3. List the segments used to form the letter A.

4. List the segments used to form the letter E.

5. Is there any one segment that is common to all digits?

6. Is there any one segment that is common to all letters?

 Applied Logic 245

Display Logic

The segments in a 7-segment display can be used in the formation of various letters as

shown in Figure 4–50(b). Each segment must be activated by its own decoding circuit that

detects the code for any of the letters in which that segment is used. Because a common-

anode display is used, the segments are turned on with a LOW (0) logic level and turned

off with a HIGH (1) logic level. The active segments are shown for each of the letters re-

quired for the tablet-bottling system in Table 4–14. Even though the active level is LOW

(lighting the LED), the logic expressions are developed exactly the same way as discussed

in this chapter, by mapping the desired output (1, 0, or X) for every possible input, group-

ing the 1s on the map, and reading the SOP expression from the map. In effect, the reduced

logic expression is the logic for keeping a given segment OFF. At first, this may sound

confusing, but it is simple in practice and it avoids an output current capability issue with

bipolar (TTL) logic (discussed in Chapter 15 on the website).

TABLE 4–14

Active segments for each of the five
letters used in the system display.

Letter Segments Activated

A a, b, c, e, f, g

b c, d, e, f, g

C a, d, e, f

d b, c, d, e, g

E a, d, e, f, g

A block diagram of a 7-segment logic and display for generating the five letters is

shown in Figure 4–51(a), and the truth table is shown in part (b). The logic has four hexa-

decimal inputs and seven outputs, one for each segment. Because the letter F is not used as

an input, we will show it on the truth table with all outputs set to 1 (OFF).

Hexadecimal-

to-7-segment

decoder

(a) (b)

a
b
c
d
e
f
g

H3

H2

H1

H0

Hexadecimal Inputs

Letter

A

b

C

d

E

F

1

1

1

1

1

1

H3

0

0

1

1

1

1

H2

1

1

0

0

1

1

H1

0

1

0

1

0

1

H0

Segment Ouputs

0

1

0

1

0

1

a

0

1

1

0

1

1

b

0

0

1

0

1

1

c

1

0

0

0

0

1

d

0

0

0

0

0

1

e

0

0

0

1

0

1

f

0

0

1

0

0

1

g

FIGURE 4–51 Hexadecimal-to-7-segment decoder for letters A through E, used in the

system.

Karnaugh Maps and the Invalid BCD Code Detector

To develop the simplified logic for each segment, the truth table information in Figure

4–51 is mapped onto Karnaugh maps. Recall that the BCD numbers will not be shown on

the letter display. For this reason, an entry that represents a BCD number will be entered

as an “X” (“don’t care”) on the K-maps. This makes the logic much simpler but would put

some strange outputs on the display unless steps are taken to eliminate that possibility.

Because all of the letters are invalid BCD characters, the display is activated only when

an invalid BCD code is entered into the keypad, thus allowing only letters to be displayed.

246 Boolean Algebra and Logic Simplification

Expressions for the Segment Logic

Using the table in 4–51(b), a standard SOP expression can be written for each segment and

then minimized using a K-map. The desired outputs from the truth table are entered in the

appropriate cells representing the hex inputs. To obtain the minimum SOP expressions for

the display logic, the 1s and Xs are grouped.

Segment a Segment a is used for the letters A, C, and E. For the letter A, the hexadecimal

code is 1010 or, in terms of variables, H3H2H1H0. For the letter C, the hexadecimal code is

1100 or H3H2H1H0. For the letter E, the code is 1110 or H3H2H1H0. The complete standard

SOP expression for segment a is

a = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

Because a LOW is the active output state for each segment logic circuit, a 0 is entered on

the Karnaugh map in each cell that represents the code for the letters in which the segment

is on. The simplification of the expression for segment a is shown in Figure 4–52(a) after

grouping the 1s and Xs.

Segment b Segment b is used for the letters A and d. The complete standard SOP expres-

sion for segment b is

b = H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment b is shown in Figure 4–52(b).

Segment c Segment c is used for the letters A, b, and d. The complete standard SOP ex-

pression for segment c is

c = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment c is shown in Figure 4–52(c).

(a) (b) (c)

H3H2

H1H0

H0

a = H0

00 01 11 10

00

01

11

10

X

X

0

X

X

X

1

X

X

X

1

1

X

X

0

0

01 11 10

X

X

0

X

X

0

H3H2

H1H0

H1H0 H2H1H1H0

00

00

01

11

10

X

X

1

X

X

1

X

1

X

1

b = H1H0 + H1H0 + H2H1

01 11 10

X

X

0

X

X

0

H3H2

H1H0

H1H0 H2H1

00

00

01

11

10

X

X

1

X

X

0

c = H1H0 + H2H1

X

1

X

1

FIGURE 4–52 Minimization of the expressions for segments a, b, and c.

Exercise

 7. Develop the minimum expression for segment d.

 8. Develop the minimum expression for segment e.

 9. Develop the minimum expression for segment f.

10. Develop the minimum expression for segment g.

The Logic Circuits

From the minimum expressions, the logic circuits for each segment can be implemented.

For segment a, connect the H0 input directly (no gate) to the a segment on the display. The

segment b and segment c logic are shown in Figure 4–53 using AND or OR gates. Notice

that two of the terms (H2H1 and H1H0) appear in the expressions for both b and c logic so

two of the AND gates can be used in both, as indicated.

 Applied Logic 247

Exercise

11. Show the logic for segment d.

12. Show the logic for segment e.

13. Show the logic for segment f.

14. Show the logic for segment g.

cb

H2

H1

H0

FIGURE 4–53 Segment-b and

segment-c logic circuits.

Describing the Decoding Logic with VHDL

The 7-segment decoding logic can be described using VHDL for implementation in a pro-

grammable logic device (PLD). The logic expressions for segments a, b, and c of the

display are as follows:

 a = H0

 b = H1H0 + H1H0 + H2H1

 c = H1H0 + H2H1

u The VHDL code for segment a is

entity SEGLOGIC is

 port (H0: in bit; SEGa: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGa ,5 H0;

end architecture LogicFunction;

u The VHDL code for segment b is

entity SEGLOGIC is

 port (H0, H1, H2: in bit; SEGb: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGb ,5 (not H1 and not H0) or (H1 and H0) or (H2 and H1);

end architecture LogicFunction;

u The VHDL code for segment c is

entity SEGLOGIC is

 port (H0, H1, H2: in bit; SEGc: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGc ,5 (not H1 and not H0) or (H2 and H1);

end architecture LogicFunction;

248 Boolean Algebra and Logic Simplification

FIGURE 4–54 Multisim circuit screen for decoder and display.

Exercise

15. Write the VHDL code for segments d, e, f, and g.

Simulation

The decoder simulation using Multisim is shown in Figure 4–54 with the letter E selected.

Subcircuits are used for the segment logic to be developed as activities or in the lab. The

purpose of simulation is to verify proper operation of the circuit.

Open file AL04 in the Applied Logic folder on the website. Run the simulation of

the decoder and display using your Multisim software. Observe the operation for the

specified letters.

SUMMARY

• GatesymbolsandBooleanexpressionsfortheoutputsofaninverterand2-inputgatesare
shown in Figure 4–55.

A A
A

B
AB

A

B
AB

A

B
A + B

A

B
A + B

FIGURE 4–55

Putting Your Knowledge to Work

How would you modify the decoder for a common-cathode 7-segment display?

 True/False Quiz 249

• Commutativelaws: A + B = B + A

 AB = BA

• Associativelaws: A + (B + C) = (A + B) + C

 A(BC) = (AB)C

• Distributivelaw: A(B + C) = AB + AC

• Booleanrules: 1. A + 0 = A

2. A + 1 = 1

3. A #0 = 0

4. A #1 = A

5. A + A = A

6. A + A = 1

 7. A #A = A

 8. A # A = 0

 9. A = A

10. A + AB = A

11. A + AB = A + B

12. (A + B)(A + C) = A + BC

• DeMorgan’stheorems:

1. The complement of a product is equal to the sum of the complements of the terms in the product.

XY = X + Y

2. The complement of a sum is equal to the product of the complements of the terms in the sum.

X + Y = X Y

• Karnaughmapsfor3variableshave8cellsandfor4variableshave16cells.

• Quinn-McCluskeyisamethodforsimplificationofBooleanexpressions.

• ThethreelevelsofabstractioninVHDLaredataflow,structural,andbehavioral.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Complement The inverse or opposite of a number. In Boolean algebra, the inverse function,

 expressed with a bar over a variable. The complement of a 1 is 0, and vice versa.

“Don’t care” A combination of input literals that cannot occur and can be used as a 1 or a 0 on

a Karnaugh map for simplification.

Karnaugh map An arrangement of cells representing the combinations of literals in a Boolean

expression and used for a systematic simplification of the expression.

Minimization The process that results in an SOP or POS Boolean expression that contains the

fewest possible literals per term.

Product-of-sums (POS) A form of Boolean expression that is basically the ANDing of ORed terms.

Product term The Boolean product of two or more literals equivalent to an AND operation.

Sum-of-products (SOP) A form of Boolean expression that is basically the ORing of ANDed terms.

Sum term The Boolean sum of two or more literals equivalent to an OR operation.

Variable A symbol used to represent an action, a condition, or data that can have a value of

1 or 0, usually designated by an italic letter or word.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. Variable, complement, and literal are all terms used in Boolean algebra.

 2. Addition in Boolean algebra is equivalent to the NOR function.

 3. Multiplication in Boolean algebra is equivalent to the AND function.

 4. The commutative law, associative law, and distributive law are all laws in Boolean algebra.

 5. The complement of 0 is 0 itself.

 6. When a Boolean variable is multiplied by its complement, the result is the variable.

250 Boolean Algebra and Logic Simplification

 7. “The complement of a product of variables is equal to the sum of the complements of each

variable” is a statement of DeMorgan’s theorem.

 8. SOP means sum-of-products.

 9. Karnaugh maps can be used to simplify Boolean expressions.

 10. A 3-variable Karnaugh map has six cells.

 11. VHDL is a type of hardware definition language.

 12. A VHDL program consists of an entity and an architecture.

SELF-TEST

Answers are at the end of the chapter.

 1. A variable is a symbol in Boolean algebra used to represent

(a) data (b) a condition

(c) an action (d) answers (a), (b), and (c)

 2. The Boolean expression A + B + C is

(a) a sum term (b) a literal term

(c) an inverse term (d) a product term

 3. The Boolean expression ABCD is

(a) a sum term (b) a literal term

(c) an inverse term (d) a product term

 4. The domain of the expression ABCD + AB + CD + B is

(a) A and D (b) B only

(c) A, B, C, and D (d) none of these

 5. According to the associative law of addition,

(a) A + B = B + A (b) A = A + A

(c) (A + B) + C = A + (B + C) (d) A + 0 = A

 6. According to commutative law of multiplication,

(a) AB = BA (b) A = AA

(c) (AB)C = A(BC) (d) A0 = A

 7. According to the distributive law,

(a) A(B + C) = AB + AC (b) A(BC) = ABC

(c) A(A + 1) = A (d) A + AB = A

 8. Which one of the following is not a valid rule of Boolean algebra?

(a) A + 1 = 1 (b) A = A

(c) AA = A (d) A + 0 = A

 9. Which of the following rules states that if one input of an AND gate is always 1, the output is

equal to the other input?

(a) A + 1 = 1 (b) A + A = A

(c) A #A = A (d) A #1 = A

 10. According to DeMorgan’s theorems, the complement of a product of variables is equal to

(a) the complement of the sum (b) the sum of the complements

(c) the product of the complements (d) answers (a), (b), and (c)

 11. The Boolean expression X = (A + B)(C + D) represents

(a) two ORs ANDed together (b) two ANDs ORed together

(c) A 4-input AND gate (d) a 4-input OR gate

 12. An example of a sum-of-products expression is

(a) A + B(C + D) (b) AB + AC + ABC

(c) (A + B + C)(A + B + C) (d) both answers (a) and (b)

 13. An example of a product-of-sums expression is

(a) A(B + C) + AC (b) (A + B)(A + B + C)

(c) A + B + BC (d) both answers (a) and (b)

 14. An example of a standard SOP expression is

(a) AB + ABC + ABD (b) ABC + ACD

(c) AB + AB + AB (d) ABCD + AB + A

 Problems 251

 15. A 4-variable Karnaugh map has

(a) four cells (b) eight cells

(c) sixteen cells (d) thirty-two cells

 16. In a 4-variable Karnaugh map, a 2-variable product term is produced by

(a) a 2-cell group of 1s (b) an 8-cell group of 1s

(c) a 4-cell group of 1s (d) a 4-cell group of 0s

 17. The Quine-McCluskey method can be used to

(a) replace the Karnaugh map method (b) simplify expressions with 5 or more variables

(c) both (a) and (b) (d) none of the above

 18. VHDL is a type of

(a) programmable logic (b) hardware description language

(c) programmable array (d) logical mathematics

 19. In VHDL, a port is

(a) a type of entity (b) a type of architecture

(c) an input or output (d) a type of variable

 20. Using VDHL, a logic circuit’s inputs and outputs are described in the

(a) architecture (b) component

(c) entity (d) data flow

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 4–1 Boolean Operations and Expressions

 1. Using Boolean notation, write an expression that is a 0 only when all of its variables (A, B, C,

and D) are 0s.

 2. Write an expression that is a 1 when one or more of its variables (A, B, C, D, and E) are 0s.

 3. Write an expression that is a 0 when one or more of its variables (A, B, and C) are 0s.

 4. Evaluate the following operations:

(a) 0 + 0 + 0 + 0 (b) 0 + 0 + 0 + 1 (c) 1 + 1 + 1 + 1

(d) 1 # 1 + 0 # 0 + 1 (e) 1 # 0 # 1 # 0 (f) 1 # 0 + 1 # 0 + 0 # 1 + 0 # 1

 5. Find the values of the variables that make each product term 1 and each sum term 0.

(a) ABC (b) A + B + C (c) A B C (d) A + B + C

(e) A + B + C (f) A + B + C

 6. Find the value of X for all possible values of the variables.

(a) X = A + B + C (b) X = (A + B)C (c) X = (A + B)(B + C)

(d) X = (A + B) + (AB + BC) (e) X = (A + B)(A + B)

Section 4–2 Laws and Rules of Boolean Algebra

 7. Identify the law of Boolean algebra upon which each of the following equalities is based:

(a) A + AB + ABC + ABCD = ABCD + ABC + AB + A

(b) A + AB + ABC + ABCD = DCBA + CBA + BA + A

(c) AB(CD + CD + EF + EF) = ABCD + ABCD + ABEF + ABEF

 8. Identify the Boolean rule(s) on which each of the following equalities is based:

(a) AB + CD + EF = AB + CD + EF (b) AAB + ABC + ABB = ABC

(c) A(BC + BC) + AC = A(BC) + AC (d) AB(C + C) + AC = AB + AC

(e) AB + ABC = AB (f) ABC + AB + ABCD = ABC + AB + D

Section 4–3 DeMorgan’s Theorems

 9. Apply DeMorgan’s theorems to each expression:

(a) A + B (b) AB (c) A + B + C (d) ABC

(e) A(B + C) (f) AB + CD (g) AB + CD (h) (A + B)(C + D)

252 Boolean Algebra and Logic Simplification

 10. Apply DeMorgan’s theorems to each expression:

(a) AB(C + D) (b) AB(CD + EF)

(c) (A + B + C + D) + ABCD (d) (A + B + C + D)(AB CD)

(e) AB(CD + EF)(AB + CD)

 11. Apply DeMorgan’s theorems to the following:

(a) (ABC)(EFG) + (HIJ)(KLM) (b) (A + BC + CD) + BC

(c) (A + B)(C + D)(E + F)(G + H)

Section 4–4 Boolean Analysis of Logic Circuits

 12. Write the Boolean expression for each of the logic gates in Figure 4–56.

A

C
B

(d)

X X
A

B

(c)

XA

(b)

X
A

B

(a)

FIGURE 4–56

 13. Write the Boolean expression for each of the logic circuits in Figure 4–57.

B

C
X

A

 (d)

A

D

B
C

B

X

A

C

 (b) (a)

X

(c)

A

B

X

FIGURE 4–57

 14. Draw the logic circuit represented by each of the following expressions:

(a) A + B + C + D (b) ABCD

(c) A + BC (d) ABC + D

 15. Draw the logic circuit represented by each expression:

(a) AB + AB (b) ABCD

(c) A + BC (d) ABC + D

 16. (a) Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs,

ASSERT and READY, are both LOW.

(b) Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input,

LOAD, is LOW and the input, READY, is HIGH.

 17. Develop the truth table for each of the circuits in Figure 4–58.

(a) (b)

CAMI

VCR

Record

RDY

ENABLE

RTS

SEND

BUSY

FIGURE 4–58

 18. Construct a truth table for each of the following Boolean expressions:

(a) A + B + C (b) ABC (c) AB + BC + CA

(d) (A + B)(B + C)(C + A) (e) AB + BC + CA

Section 4–5 Logic Simplification Using Boolean Algebra

 19. Using Boolean algebra techniques, simplify the following expressions as much as possible:

(a) A(A + B) (b) A(A + AB) (c) BC + BC

(d) A(A + AB) (e) ABC + ABC + A BC

 Problems 253

 20. Using Boolean algebra, simplify the following expressions:

(a) (A + B)(A + C) (b) AB + ABC + ABCD + ABCDE

(c) BC + BCD + B (d) (B + B)(BC + BCD)

(e) BC + (B + C)D + BC

 21. Using Boolean algebra, simplify the following expressions:

(a) CE + C(E + F) + E(E + G) (b) B CD + (B + C + D) + B C DE

(c) (C + CD)(C + CD)(C + E) (d) BCDE + BC(DE) + (BC)DE

(e) BCD[BC + D(CD + BD)]

 22. Determine which of the logic circuits in Figure 4–59 are equivalent.

C

A

(c)

A

A

C

X
X

(d)

D

B

B

B

D

C

A

(a)

C C

A

A

C

A

X

(b)

X

D

B

A
B

B

D

B

FIGURE 4–59

Section 4–6 Standard Forms of Boolean Expressions

 23. Convert the following expressions to sum-of-product (SOP) forms:

(a) (C + D)(A + D) (b) A (AD + C) (c) (A + C)(CD + AC)

 24. Convert the following expressions to sum-of-product (SOP) forms:

(a) BC + DE(BC + DE) (b) BC(C D + CE) (c) B + C[BD + (C + D)E]

 25. Define the domain of each SOP expression in Problem 23 and convert the expression to stand-

ard SOP form.

 26. Convert each SOP expression in Problem 24 to standard SOP form.

 27. Determine the binary value of each term in the standard SOP expressions from Problem 25.

 28. Determine the binary value of each term in the standard SOP expressions from Problem 26.

 29. Convert each standard SOP expression in Problem 25 to standard POS form.

 30. Convert each standard SOP expression in Problem 26 to standard POS form.

Section 4–7 Boolean Expressions and Truth Tables

 31. Develop a truth table for each of the following standard SOP expressions:

(a) ABC + A BC + ABC (b) X Y Z + X Y Z + X YZ + XYZ + XYZ

 32. Develop a truth table for each of the following standard SOP expressions:

(a) A BCD + ABC D + A B CD + A B C D

(b) WXYZ + WXYZ + W XYZ + W XYZ + WXY Z

 33. Develop a truth table for each of the SOP expressions:

(a) AB + ABC + A C + ABC (b) X + YZ + WZ + XYZ

254 Boolean Algebra and Logic Simplification

 34. Develop a truth table for each of the standard POS expressions:

(a) (A + B + C)(A + B + C)(A + B + C)

(b) (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

 35. Develop a truth table for each of the standard POS expressions:

(a) (A + B)(A + C)(A + B + C)

(b) (A + B)(A + B + C)(B + C + D)(A + B + C + D)

 36. For each truth table in Table 4–15, derive a standard SOP and a standard POS expression.

Section 4–8 The Karnaugh Map

 37. Draw a 3-variable Karnaugh map and label each cell according to its binary value.

 38. Draw a 4-variable Karnaugh map and label each cell according to its binary value.

 39. Write the standard product term for each cell in a 3-variable Karnaugh map.

Section 4–9 Karnaugh Map SOP Minimization

 40. Use a Karnaugh map to find the minimum SOP form for each expression:

(a) A B C + A BC + ABC (b) AC(B + C)

(c) A(BC + BC) + A(BC + BC) (d) A B C + AB C + ABC + ABC

 41. Use a Karnaugh map to simplify each expression to a minimum SOP form:

(a) A B C + ABC + ABC + ABC (b) AC[B + B(B + C)]

(c) DEF + DEF + D E F

 42. Expand each expression to a standard SOP form:

(a) AB + ABC + ABC (b) A + BC

(c) AB CD + ACD + BCD + ABCD (d) AB + AB CD + CD + BCD + ABCD

 43. Minimize each expression in Problem 42 with a Karnaugh map.

 44. Use a Karnaugh map to reduce each expression to a minimum SOP form:

(a) A + BC + CD

(b) A B C D + A B CD + ABCD + ABCD

(c) AB(C D + CD) + AB(C D + CD) + AB CD

(d) (A B + AB)(CD + CD)

(e) A B + AB + C D + CD

X

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

1

0

1

1

0

1

0

0

0

1

1

0

0

1

(d)

A B C DX

(c)

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1

1

0

1

0

1

1

0

0

1

0

0

1

0

0

0

(a)

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

0

0

1

1

0

1

(b)

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

0

0

1

1

1

TABLE 4–15

 Problems 255

 45. Reduce the function specified in truth Table 4–16 to its minimum SOP form by using a

 Karnaugh map.

 46. Use the Karnaugh map method to implement the minimum SOP expression for the logic

 function specified in truth Table 4–17.

 47. Solve Problem 46 for a situation in which the last six binary combinations are not allowed.

0

0

0

0

1

1

1

1

Inputs

0

0

1

1

0

0

1

1

A B C

0

1

0

1

0

1

0

1

X

1

1

0

1

1

1

0

1

Output

TABLE 4–16

Inputs Output

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

A B C D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

X

0

1

1

0

0

0

1

1

1

0

1

0

1

1

0

1

TABLE 4–17

Section 4–10 Karnaugh Map POS Minimization

 48. Use a Karnaugh map to find the minimum POS for each expression:

(a) (A + B + C)(A + B + C)(A + B + C)

(b) (X + Y)(X + Z)(X + Y + Z)(X + Y + Z)

(c) A(B + C)(A + C)(A + B + C)(A + B + C)

 49. Use a Karnaugh map to simplify each expression to minimum POS form:

(a) (A + B + C + D)(A + B + C + D)(A + B + C + D)

(b) (X + Y)(W + Z)(X + Y + Z)(W + X + Y + Z)

 50. For the function specified in Table 4–16, determine the minimum POS expression using a

Karnaugh map.

 51. Determine the minimum POS expression for the function in Table 4–17.

 52. Convert each of the following POS expressions to minimum SOP expressions using a

 Karnaugh map:

(a) (A + B)(A + C)(A + B + C)

(b) (A + B)(A + B + C)(B + C + D)(A + B + C + D)

Section 4–11 The Quine-McCluskey Method

 53. List the minterms in the expression

X = ABC + A BC + ABC + ABC + ABC

 54. List the minterms in the expression

X = A B C D + A B CD + AB CD + ABC D + ABCD + ABCD + AB CD

 55. Create a table for the number of 1s in the minterms for the expression in Problem 54 (similar to

Table 4–10).

 56. Create a table of first level minterms for the expression in Problem 54 (similar to Table 4–11).

256 Boolean Algebra and Logic Simplification

 57. Create a table of second level minterms for the expression in Problem 54 (similar to Table 4–12).

 58. Create a table of prime implicants for the expression in Problem 54 (similar to Table 4–13).

 59. Determine the final reduced expression for the expression in Problem 54.

Section 4–12 Boolean Expressions with VHDL

 60. Write a VHDL program for the logic circuit in Figure 4–60.

A

X

C
B

D

F
E

G

I
H

FIGURE 4–60

 61. Write a program in VHDL for the expression

Y = ABC + A BC + AB C + ABC

Applied Logic

 62. If you are required to choose a type of digital display for low light conditions, will you select

LED or LCD 7-segment displays? Why?

 63. Explain the purpose of the invalid code detector.

 64. For segment c, how many fewer gates and inverters does it take to implement the minimum

SOP expression than the standard SOP expression?

 65. Repeat Problem 64 for the logic for segments d through g.

Special Design Problems

 66. The logic for segments b and c in Figure 4–53 produces LOW outputs to activate the segments.

If a type of 7-segment display is used that requires a HIGH to activate a segment, modify the

logic accordingly.

 67. Redesign the logic for segment a in the Applied Logic to include the letter F in the display.

 68. Repeat Problem 67 for segments b through g.

 69. Design the invalid code detector.

Multisim Troubleshooting Practice

 70. Open file P04-70. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 71. Open file P04-71. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 72. Open file P04-72. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 4–1 Boolean Operations and Expressions

 1. A = 0 = 1

 2. A = 1, B = 1, C = 0; A + B + C = 1 + 1 + 0 = 0 + 0 + 0 = 0

 3. A = 1, B = 0, C = 1; ABC = 1 # 0 # 1 = 1 # 1 # 1 =

Section 4–2 Laws and Rules of Boolean Algebra

 1. A + (B + C + D) = (A + B + C) + D

 2. A(B + C + D) = AB + AC + AD

 Answers 257

Section 4–3 DeMorgan’s Theorems

 1. (a) ABC + (D + E) = A + B + C + DE (b) (A + B)C = A B + C

(c) A + B + C + DE = A B C + D + E

Section 4–4 Boolean Analysis of Logic Circuits

 1. (C + D)B + A

 2. Abbreviated truth table: The expression is a 1 when A is 1 or when B and C are 1s or when B

and D are 1s. The expression is 0 for all other variable combinations.

Section 4–5 Logic Simplification Using Boolean Algebra

 1. (a) A + AB + ABC = A (b) (A + B)C + ABC = C(A + B)

(c) ABC(BD + CDE) + AC = A(C + BDE)

 2. (a) Original: 2 AND gates, 1 OR gate, 1 inverter; Simplified: No gates (straight connection)

(b) Original: 2 OR gates, 2 AND gates, 1 inverter; Simplified: 1 OR gate, 1 AND gate, 1 inverter

(c) Original: 5 AND gates, 2 OR gates, 2 inverters; Simplified: 2 AND gates, 1 OR gate,

2 inverters

Section 4–6 Standard Forms of Boolean Expressions

 1. (a) SOP (b) standard POS (c) standard SOP (d) POS

 2. (a) ABC D + ABCD + ABCD + ABCD + ABCD + ABCD + A BCD + ABCD

(c) Already standard

 3. (b) Already standard

(d) (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Section 4–7 Boolean Expressions and Truth Tables

 1. 25
= 32 2. 0110 h WXYZ 3. 1100 h W + X + Y + Z

Section 4–8 The Karnaugh Map

 1. (a) upper left cell: 000 (b) lower right cell: 101

(c) lower left cell: 100 (d) upper right cell: 001

 2. (a) upper left cell: X Y Z (b) lower right cell: XYZ

(c) lower left cell: XY Z (d) upper right cell: X YZ

 3. (a) upper left cell: 0000 (b) lower right cell: 1010

(c) lower left cell: 1000 (d) upper right cell: 0010

 4. (a) upper left cell: W X Y Z (b) lower right cell: WXYZ

(c) lower left cell: WX Y Z (d) upper right cell: W XYZ

Section 4–9 Karnaugh Map SOP Minimization

 1. 8-cell map for 3 variables; 16-cell map for 4 variables

 2. AB + BC + A BC

 3. (a) A B C + ABC + ABC + ABC

(b) A B C + A BC + ABC + ABC + AB C + ABC

(c) A B C D + A B CD + ABC D + ABCD + ABCD + ABCD + AB CD + ABCD

(d) A B C D + ABC D + ABC D + AB C D + ABCD + ABCD + ABCD + A BCD +
ABCD + ABCD + ABCD

Section 4–10 Karnaugh Map POS Minimization

 1. In mapping a POS expression, 0s are placed in cells whose value makes the standard sum term

zero; and in mapping an SOP expression 1s are placed in cells having the same values as the

product terms.

258 Boolean Algebra and Logic Simplification

 2. 0 in the 1011 cell: A + B + C + D

 3. 1 in the 0010 cell: A BCD

Section 4–11 The Quine-McCluskey Method

 1. A minterm is a product term in which each variable appears once, either complemented or

uncomplemented.

 2. An essential prime implicant is a product term that cannot be further simplified by combining

with other terms.

Section 4–12 Boolean Expressions with VHDL

 1. Simplification can make a VHDL program shorter, easier to read, and easier to modify.

 2. Code simplification results in less space used in a target device, thus allowing capacity for

more complex circuits.

 3. Truth table: Behavioral

 Boolean expression: Data flow

 Logic diagram: Structural

RELATED PROBLEMS FOR EXAMPLES

 4–1 A + B = 0 when A = 1 and B = 0.

 4–2 A B = 1 when A = 0 and B = 0.

 4–3 XYZ

 4–4 W + X + Y + Z

 4–5 ABCD E

 4–6 (A + B + CD)E

 4–7 ABCD = A + B + C + D

 4–8 Results should be same as example.

 4–9 AB

 4–10 CD

 4–11 ABC + AC + A B

 4–12 A + B + C

 4–13 Results should be same as example.

 4–14 ABC + AB + AC + AB + B C

 4–15 WXYZ + WXYZ + WXYZ + W XYZ + WXYZ + WXY Z

 4–16 011, 101, 110, 010, 111. Yes

 4–17 (A + B + C)(A + B + C)(A + B + C)(A + B + C)

 4–18 010, 100, 001, 111, 011. Yes

 4–19 SOP and POS expressions are equivalent.

 4–20 See Table 4–18.

 4–21 See Table 4–19.

TABLE 4–18

A B C X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

TABLE 4–19

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

 Answers 259

 4–22 The SOP and POS expressions are equivalent.

 4–23 See Figure 4–61.

 4–24 See Figure 4–62.

0 1

00

01

11

10

AB
C

1

11

FIGURE 4–61

00 01

00

01

11

10

AB
CD

11 10

1

111

FIGURE 4–62

0 1

00

01

11

10

AB
C

1

1

1

1

FIGURE 4–63

00 01

00

01

11

10

AB
CD

11 10

1

111 1

111 1

1

1

FIGURE 4–64

 4–25 See Figure 4–63.

 4–26 See Figure 4–64.

 4–27 No other ways

 4–28 X = B + AC + ACD + CD

 4–29 X = D + ABC + BC + AB

 4–30 Q = X + Y

 4–31 Q = X Y Z + WXZ + WYZ

 4–32 See Figure 4–65.

 4–33 See Figure 4–66.

a

A

B

C

D

FIGURE 4–65

00 01

00

01

11

10

AB
CD

11 10

0

0

00

FIGURE 4–66

260 Boolean Algebra and Logic Simplification

 4–34 (X + Y)(X + Z)(X + Y + Z)

 4–35 (X + Y + Z)(W + X + Z)(W + X + Y + Z)(W + X + Y + Z)

 4–36 Y Z + X Z + W Y + X YZ

 4–37 architecture RelProb_1 of Example4_37 is

begin

 X ,5 (not A or B or C) and D;

end architecture RelProb_1;

architecture RelProb_2 of Example4_37 is

begin

 X ,5 (not A and D or B and D or C and D);

end architecture RelProb_2;

 4–38 architecture RelProb of Example4_38 is

begin

 X ,5 not(A and ((B and C) or not D))

end architecture RelProb;

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. T 5. F 6. F

 7. T 8. T 9. T 10. F 11. F 12. T

SELF-TEST

 1. (d) 2. (a) 3. (d) 4. (c) 5. (c) 6. (a) 7. (a)

 8. (b) 9. (d) 10. (b) 11. (a) 12. (b) 13. (b) 14. (c)

 15. (c) 16. (c) 17. (c) 18. (b) 19. (c) 20. (c)

261

CHAPTER OUTLINE

5–1 Basic Combinational Logic Circuits

5–2 Implementing Combinational Logic

5–3 The Universal Property of NAND and

NOR Gates

5–4 Combinational Logic Using NAND and

NOR Gates

5–5 Pulse Waveform Operation

5–6 Combinational Logic with VHDL

5–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Analyze basic combinational logic circuits, such

as AND-OR, AND-OR-Invert, exclusive-OR, and

exclusive-NOR

■ Use AND-OR and AND-OR-Invert circuits to

implement sum-of-products (SOP) and product-of-

sums (POS) expressions

■ Write the Boolean output expression for any

combinational logic circuit

■ Develop a truth table from the output expression for

a combinational logic circuit

■ Use the Karnaugh map to expand an output

expression containing terms with missing variables

into a full SOP form

■ Design a combinational logic circuit for a given

Boolean output expression

■ Design a combinational logic circuit for a given

truth table

■ Simplify a combinational logic circuit to its minimum

form

■ Use NAND gates to implement any combinational

logic function

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In Chapters 3 and 4, logic gates were discussed on an

individual basis and in simple combinations. You were

introduced to SOP and POS implementations, which

are basic forms of combinational logic. When logic gates

are connected together to produce a specified output for

certain specified combinations of input variables, with no

storage involved, the resulting circuit is in the category

of combinational logic. In combinational logic, the out-

put level is at all times dependent on the combination

of input levels. This chapter expands on the material

introduced in earlier chapters with a coverage of the

analysis, design, and troubleshooting of various combi-

national logic circuits. The VHDL structural approach is

introduced and applied to combinational logic.

■ Universal gate

■ Negative-OR

■ Negative-AND

■ Component

■ Signal

■ Node

■ Signal tracing

■ Use NOR gates to implement any combinational

logic function

■ Analyze the operation of logic circuits with pulse inputs

■ Write VHDL programs for simple logic circuits

■ Troubleshoot faulty logic circuits

■ Troubleshoot logic circuits by using signal tracing

and waveform analysis

■ Apply combinational logic to an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Combinational
Logic Analysis

5CHAPTER

262 Combinational Logic Analysis

5–1 Basic Combinational Logic Circuits

In Chapter 4, you learned that SOP expressions are implemented with an AND gate for each

product term and one OR gate for summing all of the product terms. As you know, this SOP

implementation is called AND-OR logic and is the basic form for realizing standard Boolean

functions. In this section, the AND-OR and the AND-OR-Invert are examined; the exclusive-

OR and exclusive-NOR gates, which are actually a form of AND-OR logic, are also covered.

After completing this section, you should be able to

u Analyze and apply AND-OR circuits

u Analyze and apply AND-OR-Invert circuits

u Analyze and apply exclusive-OR gates

u Analyze and apply exclusive-NOR gates

AND-OR Logic

Figure 5–1(a) shows an AND-OR circuit consisting of two 2-input AND gates and one

2-input OR gate; Figure 5–1(b) is the ANSI standard rectangular outline symbol. The Boolean

expressions for the AND gate outputs and the resulting SOP expression for the output X are

shown on the diagram. In general, an AND-OR circuit can have any number of AND gates,

each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5–1. The interme-

diate AND gate outputs (the AB and CD columns) are also shown in the table.

AND-OR logic produces an SOP
expression.

A

B

C

D CD

AB SOP

X = AB + CD

(a) Logic diagram (ANSI standard distinctive
shape symbols)

A

B

C

D

X

(b) ANSI standard rectangular outline symbol

&

&

≥1

FIGURE 5–1 An example of AND-OR logic. Open file F05-01 to verify the operation.

A Multisim tutorial is available on the website.

TABLE 5–1

Truth table for the AND-OR logic in Figure 5–1.

Inputs Output

A B C D AB CD X

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 1 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

Basic Combinational Logic Circuits 263

An AND-OR circuit directly implements an SOP expression, assuming the complements

(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5–1

is stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and

input B are HIGH (1) or both input C and input D are HIGH (1).

EXAMPLE 5–1

In a certain chemical-processing plant, a liquid chemical is used in a manufacturing

process. The chemical is stored in three different tanks. A level sensor in each tank

produces a HIGH voltage when the level of chemical in the tank drops below a speci-

fied point.

Design a circuit that monitors the chemical level in each tank and indicates when the

level in any two of the tanks drops below the specified point.

Solution

The AND-OR circuit in Figure 5–2 has inputs from the sensors on tanks A, B, and C as

shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks tanks A

and C, and gate G3 checks tanks B and C. When the chemical level in any two of the

tanks gets too low, one of the AND gates will have HIGHs on both of its inputs, causing

its output to be HIGH; and so the final output X from the OR gate is HIGH. This HIGH

input is then used to activate an indicator such as a lamp or audible alarm, as shown in

the figure.

Low-level
indicator

X

G3

G2

G1

A B C

FIGURE 5–2

Related Problem*

Write the Boolean SOP expression for the AND-OR logic in Figure 5–2.

*Answers are at the end of the chapter.

AND-OR-Invert Logic

When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-

Invert circuit. Recall that AND-OR logic directly implements SOP expressions. POS expres-

sions can be implemented with AND-OR-Invert logic. This is illustrated as follows, starting

with a POS expression and developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 5–3(a) shows an AND-OR-Invert circuit with four inputs

and the development of the POS output expression. The ANSI standard rectangular outline

symbol is shown in part (b). In general, an AND-OR-Invert circuit can have any number of

AND gates, each with any number of inputs.

264 Combinational Logic Analysis

The operation of the AND-OR-Invert circuit in Figure 5–3 is stated as follows:

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if both input

A and input B are HIGH (1) or both input C and input D are HIGH (1).

A truth table can be developed from the AND-OR truth table in Table 5–1 by simply chang-

ing all 1s to 0s and all 0s to 1s in the output column.

A

B

C

D CD

AB POS

AB + CD = (A + B)(C + D)

A

B

C

D

X

(b)

&

&

≥1

AB + CD

(a)

FIGURE 5–3 An AND-OR-Invert circuit produces a POS output. Open file F05-03

to verify the operation.

EXAMPLE 5–2

The sensors in the chemical tanks of Example 5–1 are being replaced by a new model

that produces a LOW voltage instead of a HIGH voltage when the level of the chemical

in the tank drops below a critical point.

Modify the circuit in Figure 5–2 to operate with the different input levels and still

produce a HIGH output to activate the indicator when the level in any two of the tanks

drops below the critical point. Show the logic diagram.

Solution

The AND-OR-Invert circuit in Figure 5–4 has inputs from the sensors on tanks A, B,

and C as shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks

tanks A and C, and gate G3 checks tanks B and C. When the chemical level in any two

of the tanks gets too low, each AND gate will have a LOW on at least one input, caus-

ing its output to be LOW and, thus, the final output X from the inverter is HIGH. This

HIGH output is then used to activate an indicator.

X

G3

G2

G1

A B C

Low-level
indicator

FIGURE 5–4

Related Problem

Write the Boolean expression for the AND-OR-Invert logic in Figure 5–4 and show

that the output is HIGH (1) when any two of the inputs A, B, and C are LOW (0).

Basic Combinational Logic Circuits 265

Exclusive-OR Logic

The exclusive-OR gate was introduced in Chapter 3. Although this circuit is considered a

type of logic gate with its own unique symbol, it is actually a combination of two AND

gates, one OR gate, and two inverters, as shown in Figure 5–5(a). The two ANSI standard

exclusive-OR logic symbols are shown in parts (b) and (c).

The XOR gate is actually a
combination of other gates.

A

X = AB + AB

(b) ANSI distinctive(a) Logic diagram

B

X
A

B
X

A

B

= 1

(c) ANSI rectangular

shape symbol outline symbol

FIGURE 5–5 Exclusive-OR logic diagram and symbols. Open file F05-05 to verify the

operation.

The output expression for the circuit in Figure 5–5 is

X = AB + AB

Evaluation of this expression results in the truth table in Table 5–2. Notice that the output

is HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-

tor � is often used, so the expression X = AB + AB can be stated as “X is equal to A

exclusive-OR B” and can be written as

X = A � B

Exclusive-NOR Logic

As you know, the complement of the exclusive-OR function is the exclusive-NOR, which

is derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = A B + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.

The exclusive-NOR can be implemented by simply inverting the output of an exclusive-

OR, as shown in Figure 5–6(a), or by directly implementing the expression A B + AB, as

shown in part (b).

TABLE 5–2

Truth table for an exclusive-
OR.

A B X

0 0 0

0 1 1

1 0 1

1 1 0

A

B

X

XOR

(a) X = AB + AB

A

B X

AB

(b) X = AB + AB

AB

FIGURE 5–6 Two equivalent ways of implementing the exclusive-NOR. Open files

F05-06 (a) and (b) to verify the operation.

266 Combinational Logic Analysis

Related Problem

How would you verify that a correct even-parity bit is generated for each combination

of the four data bits?

EXAMPLE 5–3

Use exclusive-OR gates to implement an even-parity code generator for an original

4-bit code.

Solution

Recall from Chapter 2 that a parity bit is added to a binary code in order to provide

error detection. For even parity, a parity bit is added to the original code to make the

total number of 1s in the code even. The circuit in Figure 5–7 produces a 1 output

when there is an odd number of 1s on the inputs in order to make the total number of

1s in the output code even. A 0 output is produced when there is an even number of 1s

on the inputs.

A0

A1

Data bits Even parity bit

Data bits

A2

A3

FIGURE 5–7 Even-parity generator.

EXAMPLE 5–4

Use exlusive-OR gates to implement an even-parity checker for the 5-bit code generated

by the circuit in Example 5–3.

Solution

The circuit in Figure 5–8 produces a 1 output when there is an error in the five-bit code

and a 0 when there is no error.

A0

A1

Data bits

Even parity bit
Error

A2

A3

FIGURE 5–8 Even-parity checker.

Related Problem

How would you verify that an error is indicated when the input code is incorrect?

Implementing Combinational Logic 267

SECTION 5–1 CHECKUP

Answers are at the end of the chapter.

 1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert circuit for each of the

following input conditions:

(a) A = 1, B = 0, C = 1, D = 0 (b) A = 1, B = 1, C = 0, D = 1

(c) A = 0, B = 1, C = 1, D = 1

 2. Determine the output (1 or 0) of an exclusive-OR gate for each of the following input

conditions:

(a) A = 1, B = 0 (b) A = 1, B = 1

(c) A = 0, B = 1 (d) A = 0, B = 0

 3. Develop the truth table for a certain 3-input logic circuit with the output expression

X = ABC + ABC + A B C + ABC + ABC.

 4. Draw the logic diagram for an exclusive-NOR circuit.

For every Boolean expression there
is a logic circuit, and for every logic
circuit there is a Boolean expression.

5–2 Implementing Combinational Logic

In this section, examples are used to illustrate how to implement a logic circuit from a

Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-

ered in Chapter 4 is also included.

After completing this section, you should be able to

u Implement a logic circuit from a Boolean expression

u Implement a logic circuit from a truth table

u Minimize a logic circuit

From a Boolean Expression to a Logic Circuit

Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE,

with a domain of five variables. The first term is formed by ANDing A with B, and the

second term is formed by ANDing C, D, and E. The two terms are then ORed to form the

output X. These operations are indicated in the structure of the expression as follows:

 AND

X = AB + CDE

 OR

Note that in this particular expression, the AND operations forming the two individual

terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term

AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then

required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.

As another example, let’s implement the following expression:

X = AB(CD + EF)

InfoNote

Many control programs require

logic operations to be performed

by a computer. A driver program

is a control program that is used

with computer peripherals. For

example, a mouse driver requires

logic tests to determine if a button

has been pressed and further

logic operations to determine if

it has moved, either horizontally

or vertically. Within the heart of a

microprocessor is the arithmetic

logic unit (ALU), which performs

these logic operations as directed

by program instructions. All of the

logic described in this chapter can

also be performed by the ALU,

given the proper instructions.

268 Combinational Logic Analysis

AB

B

X = AB + CDE

A

E
D

CDE

C

FIGURE 5–9 Logic circuit for X 5 AB 1 CDE.

E

A

D

B
C

C

D

A

B

E

F EF

CD X = AB(CD + EF)

CD + EF

D

F
ABEF

ABCD

 X = ABCD + ABEF

(b) Sum-of-products implementation of the circuit in part (a)(a)

FIGURE 5–10 Logic circuits for X = AB(CD + EF) = ABCD + ABEF.

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed.

The term CD + EF is formed by first ANDing C and D and ANDing E and F, and

then ORing these two terms. This structure is indicated in relation to the expression as

follows:

 AND

 NOT

 OR

X = AB(CD + EF)

 AND

Before you can implement the final expression, you must create the sum term CD + EF;

but before you can get this term; you must create the product terms CD and EF; but before

you can get the term CD, you must create D. So, as you can see, the logic operations must

be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

 1. One inverter to form D

 2. Two 2-input AND gates to form CD and EF

 3. One 2-input OR gate to form CD + EF

 4. One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 5–10(a). Notice that there is a

maximum of four gates and an inverter between an input and output in this circuit (from

input D to output). Often the total propagation delay time through a logic circuit is a major

consideration. Propagation delays are additive, so the more gates or inverters between input

and output, the greater the propagation delay time.

Unless an intermediate term, such as CD + EF in Figure 5–10(a), is required as an out-

put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to

reduce the overall propagation delay time. The expression is converted to SOP as follows,

and the resulting circuit is shown in Figure 5–10(b).

AB(CD + EF) = ABCD + ABEF

Implementing Combinational Logic 269

TABLE 5–3

Inputs Output

Product TermA B C X

0 0 0 0

0 0 1 0
0 1 0 0

0 1 1 1 ABC

1 0 0 1 AB C
1 0 1 0
1 1 0 0
1 1 1 0

From a Truth Table to a Logic Circuit

If you begin with a truth table instead of an expression, you can write the SOP expression

from the truth table and then implement the logic circuit. Table 5–3 specifies a logic function.

The Boolean SOP expression obtained from the truth table by ORing the product terms

for which X 5 1 is

X = ABC + AB C

The first term in the expression is formed by ANDing the three variables A, B, and C. The

second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters to

form the A, B, and C variables; two 3-input AND gates to form the terms ABC and AB C;

and one 2-input OR gate to form the final output function, ABC + AB C.

The implementation of this logic function is illustrated in Figure 5–11.

EXAMPLE 5–5

Design a logic circuit to implement the operation specified in the truth table of Table 5–4.

TABLE 5–4

Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ABC

1 0 0 0

1 0 1 1 ABC

1 1 0 1 ABC

1 1 1 0

A

B X = ABC + ABC

C

A
ABC

B

C
ABC

FIGURE 5–11 Logic circuit for X = ABC + AB C. Open file F05-11 to verify the

operation.

Solution

Notice that X 5 1 for only three of the input conditions. Therefore, the logic expression is

X = ABC + ABC + ABC

270 Combinational Logic Analysis

EXAMPLE 5–6

Develop a logic circuit with four input variables that will only produce a 1 output when

exactly three input variables are 1s.

Solution

Out of sixteen possible combinations of four variables, the combinations in which there are

exactly three 1s are listed in Table 5–5, along with the corresponding product term for each.

TABLE 5–5

A B C D Product Term

0 1 1 1 ABCD

1 0 1 1 ABCD

1 1 0 1 ABCD

1 1 1 0 ABCD

The product terms are ORed to get the following expression:

X = ABCD + ABCD + ABCD + ABCD

This expression is implemented in Figure 5–13 with AND-OR logic.

A
ABC

ABC

A

ABC
X

BC

BC

Related Problem

Determine if the logic circuit of Figure 5–12 can be simplified.

FIGURE 5–12 Open file F05-12 to

verify the operation.

ABCD

X

ABCD

ABCD

ABCD

D C B A FIGURE 5–13 Open file

F05-13 to verify the operation.

The logic gates required are three inverters, three 3-input AND gates and one 3-input

OR gate. The logic circuit is shown in Figure 5–12.

Implementing Combinational Logic 271

EXAMPLE 5–8

Minimize the combinational logic circuit in Figure 5–16. Inverters for the comple-

mented variables are not shown.

Related Problem

Determine if the logic circuit of Figure 5–13 can be simplified.

X

A

A
B
C

B

C

D

A

B

C

D

A

B

C

D

FIGURE 5–16

EXAMPLE 5–7

Reduce the combinational logic circuit in Figure 5–14 to a minimum form.

A

B

C

D

X

FIGURE 5–14

Open file F05-14 to

verify that this circuit is

equivalent to the gate

in Figure 5–15.

Solution

The expression for the output of the circuit is

X = (A B C)C + A B C + D

Applying DeMorgan’s theorem and Boolean algebra,

 X = (A + B + C)C + A + B + C + D

 = AC + BC + CC + A + B + C + D

 = AC + BC + C + A + B + C + D

 = C(A + B + 1) + A + B + D

 X = A + B + C + D

The simplified circuit is a 4-input OR gate as shown in Figure 5–15.

A
B
C
D

X

FIGURE 5–15

Related Problem

Verify the minimized expression A 1 B 1 C 1 D using a Karnaugh map.

272 Combinational Logic Analysis

Solution

The output expression is

X = AB C + ABC D + A B CD + A B C D

Expanding the first term to include the missing variables D and D,

 X = AB C(D + D) + ABC D + A B CD + A B C D

 = AB CD + AB C D + ABC D + A B CD + A B C D

This expanded SOP expression is mapped and simplified on the Karnaugh map in Fig-

ure 5–17(a). The simplified implementation is shown in part (b). Inverters are not shown.

1

(a)

AB
CD

00 01 11 10

00

01

11

10

BC

ACD1

1

1

(b)

X

B

C

A
C
D

1

FIGURE 5–17

Related Problem

Develop the POS equivalent of the circuit in Figure 5–17(b). See Section 4–10.

SECTION 5–2 CHECKUP

 1. Implement the following Boolean expressions as they are stated:

(a) X = ABC + AB + AC (b) X = AB(C + DE)

 2. Develop a logic circuit that will produce a 1 on its output only when all three inputs

are 1s or when all three inputs are 0s.

 3. Reduce the circuits in Question 1 to minimum SOP form.

5–3 The Universal Property of NAND and NOR Gates

Up to this point, you have studied combinational circuits implemented with AND gates,

OR gates, and inverters. In this section, the universal property of the NAND gate and the

NOR gate is discussed. The universality of the NAND gate means that it can be used as

an inverter and that combinations of NAND gates can be used to implement the AND,

OR, and NOR operations. Similarly, the NOR gate can be used to implement the inverter

(NOT), AND, OR, and NAND operations.

After completing this section, you should be able to

u Use NAND gates to implement the inverter, the AND gate, the OR gate, and

the NOR gate

u Use NOR gates to implement the inverter, the AND gate, the OR gate, and

the NAND gate

The Universal Property of NAND and NOR Gates 273

The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the AND,

the OR, and the NOR functions. An inverter can be made from a NAND gate by connecting

all of the inputs together and creating, in effect, a single input, as shown in Figure 5–18(a)

for a 2-input gate. An AND function can be generated by the use of NAND gates alone,

as shown in Figure 5–18(b). An OR function can be produced with only NAND gates, as

illustrated in part (c). Finally, a NOR function is produced as shown in part (d).

AAA A

(a) One NAND gate used as an inverter

AB
A

B

A

B
AB = AB

(b) Two NAND gates used as an AND gate

AB

A + B
A

B

A

B

A

(c) Three NAND gates used as an OR gate

AB = A + B

B

G
1

G
2

G
3

A + B
A

B

A

B

(d) Four NAND gates used as a NOR gate

A + B

A

B

G
1

G
2

G
3

G
4

AB = A + B

FIGURE 5–18 Universal application of NAND gates. Open files F05-18(a), (b), (c), and

(d) to verify each of the equivalencies.

In Figure 5–18(b), a NAND gate is used to invert (complement) a NAND output to form

the AND function, as indicated in the following equation:

X = AB = AB

In Figure 5–18(c), NAND gates G1 and G2 are used to invert the two input variables

before they are applied to NAND gate G3. The final OR output is derived as follows by

application of DeMorgan’s theorem:

X = A B = A + B

In Figure 5–18(d), NAND gate G4 is used as an inverter connected to the circuit of part (c)

to produce the NOR operation A + B.

The NOR Gate as a Universal Logic Element

Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and

NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting

all of the inputs together to effectively create a single input, as shown in Figure 5–19(a)

with a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated

in Figure 5–19(b). An AND gate can be constructed by the use of NOR gates, as shown in

Combinations of NAND gates can be
used to produce any logic function.

Combinations of NOR gates can be
used to produce any logic function.

274 Combinational Logic Analysis

Figure 5–19(c). In this case the NOR gates G1 and G2 are used as inverters, and the final

output is derived by the use of DeMorgan’s theorem as follows:

X = A + B = AB

Figure 5–19(d) shows how NOR gates are used to form a NAND function.

SECTION 5–3 CHECKUP

 1. Use NAND gates to implement each expression:

(a) X = A + B (b) X = AB

 2. Use NOR gates to implement each expression:

(a) X = A + B (b) X = AB

5–4 Combinational Logic Using NAND and NOR Gates

In this section, you will see how NAND and NOR gates can be used to implement a logic

function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent opera-

tion called the negative-OR and that the NOR gate exhibits an equivalent operation called

the negative-AND. You will see how the use of the appropriate symbols to represent the

equivalent operations makes “reading” a logic diagram easier.

After completing this section, you should be able to

u Use NAND gates to implement a logic function

u Use NOR gates to implement a logic function

u Use the appropriate dual symbol in a logic diagram

AAA A

(a) One NOR gate used as an inverter

A

B
A + B

(b) Two NOR gates used as an OR gate

A + B
A

B

A + B

A

B

(c) Three NOR gates used as an AND gate

AB
A

B
A + B = AB

A

B

G
1

G
2

G
3

A

B

A

B

(d) Four NOR gates used as a NAND gate

AB

A

B

AB

G
1

G
2

G
4

G
3

AB

FIGURE 5–19 Universal application of NOR gates. Open files F05-19(a), (b), (c), and (d)

to verify each of the equivalencies.

Combinational Logic Using NAND and NOR Gates 275

NAND Logic

As you have learned, a NAND gate can function as either a NAND or a negative-OR

because, by DeMorgan’s theorem,

AB = A + B

NAND negative-OR

Consider the NAND logic in Figure 5–20. The output expression is developed in the

following steps:

 X = (AB)(CD)

 = (A + B)(C + D)

 = (A + B) + (C + D)

 = A B + C D

 = AB + CD

A

B

C

D

G2

G3

G1 X = AB + CD

CD

AB

FIGURE 5–20 NAND logic for X 5 AB 1 CD.

As you can see in Figure 5–20, the output expression, AB 1 CD, is in the form of two

AND terms ORed together. This shows that gates G2 and G3 act as AND gates and that

gate G1 acts as an OR gate, as illustrated in Figure 5–21(a). This circuit is redrawn in

part (b) with NAND symbols for gates G2 and G3 and a negative-OR symbol for gate G1.

Notice in Figure 5–21(b) the bubble-to-bubble connections between the outputs of

gates G2 and G3 and the inputs of gate G1. Since a bubble represents an inversion, two

�

A
G2B

G3
C

D

AB CD+

(c) AND-OR equivalent

G1

A
G2B

G3
C

D

G1 AB CD+

(b) Equivalent NAND/Negative-OR logic diagram

Bubbles cancel

Bubbles cancel

A
G2B

G3
C

D

G1

G2 acts as AND

AB CD+

G3 acts as AND

G1 acts as OR

(a) Original NAND logic diagram showing effective

gate operation relative to the output expression

FIGURE 5–21 Development of the AND-OR equivalent of the circuit in Figure 5–20.

276 Combinational Logic Analysis

connected bubbles represent a double inversion and therefore cancel each other. This

inversion cancellation can be seen in the previous development of the output expres-

sion AB 1 CD and is indicated by the absence of barred terms in the output expres-

sion. Thus, the circuit in Figure 5–21(b) is effectively an AND-OR circuit, as shown in

Figure 5–21(c).

NAND Logic Diagrams Using Dual Symbols

All logic diagrams using NAND gates should be drawn with each gate represented by

either a NAND symbol or the equivalent negative-OR symbol to reflect the operation of the

gate within the logic circuit. The NAND symbol and the negative-OR symbol are called

dual symbols. When drawing a NAND logic diagram, always use the gate symbols in such

a way that every connection between a gate output and a gate input is either bubble-to-

bubble or nonbubble-to-nonbubble. In general, a bubble output should not be connected to

a nonbubble input or vice versa in a logic diagram.

Figure 5–22 shows an arrangement of gates to illustrate the procedure of using the

appropriate dual symbols for a NAND circuit with several gate levels. Although using all

NAND symbols as in Figure 5–22(a) is correct, the diagram in part (b) is much easier to

“read” and is the preferred method. As shown in Figure 5–22(b), the output gate is repre-

sented with a negative-OR symbol. Then the NAND symbol is used for the level of gates

right before the output gate and the symbols for successive levels of gates are alternated as

you move away from the output.

(a) Several Boolean steps are required to arrive at final output expression.

D

E

F

C

A

B

=

=

=

=

AB
ABC

ABCD

EF

(ABCD)EF

(ABCD) + EF

ABCD + EF

(AB + C)D + EF

(AB + C)D + EF

D

E

F

(AB + C)D + EF

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

C

A

B

AND

AND

OR
AND

OR

(ABC)D

Bubble cancels bar

Bubble
cancels
bar

Bubble
cancels bar

Bubble adds
bar to C

EF

AB + C
AB

FIGURE 5–22 Illustration of the use of the appropriate dual symbols in a NAND logic

diagram.

The shape of the gate indicates the way its inputs will appear in the output expression

and thus shows how the gate functions within the logic circuit. For a NAND symbol, the

inputs appear ANDed in the output expression; and for a negative-OR symbol, the inputs

appear ORed in the output expression, as Figure 5–22(b) illustrates. The dual-symbol dia-

gram in part (b) makes it easier to determine the output expression directly from the logic

diagram because each gate symbol indicates the relationship of its input variables as they

appear in the output expression.

Combinational Logic Using NAND and NOR Gates 277

EXAMPLE 5–10

Implement each expression with NAND logic using appropriate dual symbols:

(a) ABC 1 DE (b) ABC + D + E

Solution

See Figure 5–25.

(b)

A
B
C

D
E

Bubble cancels bar

(a)

A
B
C

Bubbles add bars to D and E

D

E

ABC + DE

Bubble cancels bar

Bubble cancels bar

ABC

DE

ABC

ABC + D + E

FIGURE 5–25

Related Problem

Convert the NAND circuits in Figure 5–25(a) and (b) to equivalent AND-OR logic.

NOR Logic

A NOR gate can function as either a NOR or a negative-AND, as shown by DeMorgan’s theorem.

A + B = A B

NOR negative-AND

EXAMPLE 5–9

Redraw the logic diagram and develop the output expression for the circuit in Figure 5–23 using the appropriate dual symbols.

B

A

C

D

E

F

X

G2

G1

G4

G5

G3

FIGURE 5–23

Solution

Redraw the logic diagram in Figure 5–23 with the use of equivalent negative-OR symbols as shown in Figure 5–24. Writing

the expression for X directly from the indicated logic operation of each gate gives X = (A + B)C + (D + E)F.

B

A

C

D

E

F

A + B

D + E

(D + E)F

X = (A + B)C + (D + E)F

(A + B)CG
2

G
1

G
4

G
5

G
3

FIGURE 5–24

Related Problem

Derive the output expression from Figure 5–23 and show it is equivalent to the expression in the solution.

278 Combinational Logic Analysis

Consider the NOR logic in Figure 5–26. The output expression is developed as follows:

X = A + B + C + D = (A + B)(C + D) = (A + B)C + D)

As you can see in Figure 5–26, the output expression (A 1 B)(C 1 D) consists of two

OR terms ANDed together. This shows that gates G2 and G3 act as OR gates and gate G1

acts as an AND gate, as illustrated in Figure 5–27(a). This circuit is redrawn in part (b) with

a negative-AND symbol for gate G1.

A

B
G2

C

D

(a)

acts as OR

acts as AND

acts as OR

G2

G1

G3

(A + B)(C + D)

A

B

C

D

(A + B)(C + D)

(b)

G1

Bubbles cancel

Bubbles cancel

G3

G1

G2

G3

FIGURE 5–27

NOR Logic Diagram Using Dual Symbols

As with NAND logic, the purpose for using the dual symbols is to make the logic diagram

easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5–28. When the

circuit in part (a) is redrawn with dual symbols in part (b), notice that all output-to-input

D

E

F

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

(a) Final output expression is obtained after several Boolean steps.

C

A

B

OR

OR

AND
OR

AND

D

E

F

C

A

B

=
=
=
=

A + B + C
A + B + C + D

E + F

A + B + C + D + E + F

(A + B + C + D)(E + F)

(A + B + C + D)(E + F)

((A + B)C + D)(E + F)

((A + B)C + D)(E + F)

(A + B)C
(A + B)C + D

[(A + B)C + D](E + F)

E + F

A + B

A + B

Bubble adds bar to C

Bubble
cancels
bar

Bubble
cancels bar

Bubble cancels bar

FIGURE 5–28 Illustration of the use of the appropriate dual symbols in a NOR logic

diagram.

A

B
G2

C

D
G3

G1 X = (A + B)(C + D)

FIGURE 5–26 NOR logic for X 5 (A 1 B)(C 1 D).

Pulse Waveform Operation 279

connections between gates are bubble-to-bubble or nonbubble-to-nonbubble. Again, you

can see that the shape of each gate symbol indicates the type of term (AND or OR) that it

produces in the output expression, thus making the output expression easier to determine

and the logic diagram easier to analyze.

EXAMPLE 5–11

Using appropriate dual symbols, redraw the logic diagram and develop the output

expression for the circuit in Figure 5–29.

E

D

F

G5

X

B

A

C

G3

G4

G2

G1

FIGURE 5–29

Solution

Redraw the logic diagram with the equivalent negative-AND symbols as shown in Fig-

ure 5–30. Writing the expression for X directly from the indicated operation of each gate,

X = (A B + C)(D E + F)

B

A

C

D

E

F

AB

DE

DE + F

X = (AB + C)(DE + F) = (AB + C)(DE + F)

AB + C

G5

G3
G2

G1

G4

FIGURE 5–30

Related Problem

Prove that the output of the NOR circuit in Figure 5–29 is the same as for the circuit in

Figure 5–30.

SECTION 5–4 CHECKUP

 1. Implement the expression X = (A + B + C)DE by using NAND logic.

 2. Implement the expression X = A B C + (D + E) with NOR logic.

5–5 Pulse Waveform Operation

General combinational logic circuits with pulse waveform inputs are examined in this sec-

tion. Keep in mind that the operation of each gate is the same for pulse waveform inputs as

for constant-level inputs. The output of a logic circuit at any given time depends on the inputs

at that particular time, so the relationship of the time-varying inputs is of primary importance.

After completing this section, you should be able to

u Analyze combinational logic circuits with pulse waveform inputs

u Develop a timing diagram for any given combinational logic circuit with specified

inputs

280 Combinational Logic Analysis

The operation of any gate is the same regardless of whether its inputs are pulsed or

constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth

table of a circuit. The examples in this section illustrate the analysis of combinational logic

circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in analyzing com-

binational circuits with pulse waveform inputs:

 1. The output of an AND gate is HIGH only when all inputs are HIGH at the same

time.

 2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

 3. The output of a NAND gate is LOW only when all inputs are HIGH at the same

time.

 4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

EXAMPLE 5–12

Determine the final output waveform X for the circuit in Figure 5–31, with input wave-

forms A, B, and C as shown.

B

A

C

X = A(B + C) = AB + AC

X
B

C

X

A

Y

Y

Inputs

FIGURE 5–31

Solution

The output expression, AB + AC, indicates that the output X is LOW when both A and

B are HIGH or when both A and C are HIGH or when all inputs are HIGH. The output

waveform X is shown in the timing diagram of Figure 5–31. The intermediate wave-

form Y at the output of the OR gate is also shown.

Related Problem

Determine the output waveform if input A is a constant HIGH level.

EXAMPLE 5–13

Draw the timing diagram for the circuit in Figure 5–32 showing the outputs of G1, G2,

and G3 with the input waveforms, A, and B, as indicated.

A

 X = AB + AB

B
G2

G3

G1

FIGURE 5–32

Pulse Waveform Operation 281

Solution

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as

shown in Figure 5–33. Notice that this is an exclusive-NOR circuit. The intermediate

outputs of gates G2 and G3 are also shown in Figure 5–33.

A

B

X

G
2

output

G
3

output

FIGURE 5–33

Related Problem

Determine the output X in Figure 5–32 if input B is inverted.

EXAMPLE 5–14

Determine the output waveform X for the logic circuit in Figure 5–34(a) by first finding

the intermediate waveform at each of points Y1, Y2, Y3, and Y4. The input waveforms are

shown in Figure 5–34(b).

A

B

Y2

Y1

Y4

Y3

C

D

X

(a)

A

B

C

D

Y
1

Y
2

Y
3

Y
4

X

(b)

(c)

FIGURE 5–34

282 Combinational Logic Analysis

Solution

All the intermediate waveforms and the final output waveform are shown in the timing

diagram of Figure 5–34(c).

Related Problem

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.

EXAMPLE 5–15

Determine the output waveform X for the circuit in Example 5–14, Figure 5–34(a), directly from the output expression.

Solution

The output expression for the circuit is developed in Figure 5–35. The SOP form indicates that the output is HIGH when A

is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A

B

C

D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

FIGURE 5–35

The result is shown in Figure 5–36 and is the same as the one obtained by the intermediate-waveform method in Example

5–14. The corresponding product terms for each waveform condition that results in a HIGH output are indicated.

A

B

C

D

BC

AC AC

CD

X = AC + BC + CD

FIGURE 5–36

Related Problem

Repeat this example if all the input waveforms are inverted.

SECTION 5–5 CHECKUP

 1. One pulse with tW = 50 ms is applied to one of the inputs of an exclusive-OR cir-

cuit. A second positive pulse with tW = 10 ms is applied to the other input beginning

15 ms after the leading edge of the first pulse. Show the output in relation to the

inputs.

 2. The pulse waveforms A and B in Figure 5–31 are applied to the exclusive-NOR cir-

cuit in Figure 5–32. Develop a complete timing diagram.

Combinational Logic with VHDL 283

5–6 Combinational Logic with VHDL

The purpose of describing logic using VHDL is so that it can be programmed into a PLD.

The data flow approach to writing a VHDL program was described in Chapter 4. In this

section, both the data flow approach using Boolean expressions and the structural approach

are used to develop VHDL code for describing logic circuits. The VHDL component is

introduced and used to illustrate structural descriptions. Some aspects of software develop-

ment tools are discussed.

After completing this section, you should be able to

u Describe a VHDL component and discuss how it is used in a program

u Apply the structural approach and the data flow approach to writing VHDL code

u Describe two basic software development tools

Structural Approach to VHDL Programming

The structural approach to writing a VHDL description of a logic function can be com-

pared to installing IC devices on a circuit board and interconnecting them with wires. With

the structural approach, you describe logic functions and specify how they are connected

together. The VHDL component is a way to predefine a logic function for repeated use in

a program or in other programs. The component can be used to describe anything from a

simple logic gate to a complex logic function. The VHDL signal can be thought of as a way

to specify a “wire” connection between components.

Figure 5–37 provides a simplified comparison of the structural approach to a hardware

implementation on a circuit board.

Output defined

in port statement

Signals

VHDL
component

VHDL
component

VHDL
component

Inputs defined in port statementInterconnections

Inputs Output

(a) Hardware implementation with fixed-function logic (b) VHDL structural implementation

Logic
device

A

Logic
device

B

Logic
device

C

FIGURE 5–37 Simplified comparison of the VHDL structural approach to a hardware

implementation. The VHDL signals correspond to the interconnections on the circuit

board, and the VHDL components correspond to the 74 series IC devices.

VHDL Components

A VHDL component describes predefined logic that can be stored as a package declaration

in a VHDL library and called as many times as necessary in a program. You can use compo-

nents to avoid repeating the same code over and over within a program. For example, you

can create a VHDL component for an AND gate and then use it as many times as you wish

without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. This

is similar to having, for example, a storage bin of ICs available when you are constructing

a circuit. Every time you need to use one in your circuit, you reach into the storage bin and

place it on the circuit board.

284 Combinational Logic Analysis

The VHDL program for any logic function can become a component and used whenever

necessary in a larger program with the use of a component declaration of the following

general form. Component is a VHDL keyword.

component name_of_component is

 port (port definitions);

end component name_of_component;

For simplicity, let’s assume that there are predefined VHDL descriptions of a 2-input AND

gate with the entity name AND_gate and a 2-input OR gate with the entity name OR_gate,

as shown in Figure 5–38.

X
A

B

entity AND_gate is

port (A, B: in bit; X: out bit);

end entity AND_gate;

architecture ANDfunction of AND_gate is

begin

 X <= A and B;

end architecture ANDfunction;

A

B
X

2-input AND gate

entity OR_gate is

port (A, B: in bit; X: out bit);

end entity OR_gate;

architecture ORfunction of OR_gate is

begin

 X <= A or B;

end architecture ORfunction;2-input OR gate

FIGURE 5–38 Predefined programs for a 2-input AND gate and a 2-input OR gate

to be used as components in the structural approach.

Using Components in a Program

Assume that you are writing a program for a logic circuit that has several AND gates.

Instead of rewriting the program in Figure 5–38 over and over, you can use a component

declaration to specify the AND gate. The port statement in the component declaration must

correspond to the port statement in the entity declaration of the AND gate.

component AND_gate is

 port (A, B: in bit; X: out bit);

end component AND_gate;

To use a component in a program, you must write a component instantiation statement for

each instance in which the component is used. You can think of a component instantiation

as a request or call for the component to be used in the main program. For example, the

simple SOP logic circuit in Figure 5–39 has two AND gates and one OR gate. Therefore,

the VHDL program for this circuit will have two components and three component

instantiations or calls.

OUT3

IN1
G1

IN2

IN3

IN4
G2

G3

OUT1

OUT2

FIGURE 5–39

Combinational Logic with VHDL 285

Signals

In VHDL, signals are analogous to wires that interconnect components on a circuit board.

The signals in Figure 5–39 are named OUT1 and OUT2. Signals are the internal connec-

tions in the logic circuit and are treated differently than the inputs and outputs. Whereas

the inputs and outputs are declared in the entity declaration using the port statement, the

signals are declared within the architecture using the signal statement. Signal is a VHDL

keyword.

The Program

The program for the logic in Figure 5–39 begins with an entity declaration as follows:

entity AND_OR_Logic is

 port (IN1, IN2, IN3, IN4: in bit; OUT3: out bit);

end entity AND_OR_Logic;

The architecture declaration contains the component declarations for the AND gate and

the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is

component AND_gate is

 port (A, B: in bit; X: out bit);

end component AND_gate;

component OR_gate is

 port (A, B: in bit; X: out bit);

end component OR_gate;

signal OUT1, OUT2: bit;

begin

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

G2: AND_gate port map (A 5. IN3, B 5. IN4, X 5. OUT2);

G3: OR_gate port map (A 5. OUT1, B 5. OUT2, X 5. OUT3);

end architecture LogicOperation;

Component Instantiations

Let’s look at the component instantiations. First, notice that the component instantia-

tions appear between the keyword begin and the end architecture statement. For

each instantiation an identifier is defined, such as G1, G2, and G3 in this case. Then

the component name is specified. The keyword port map essentially makes all the

connections for the logic function using the operator 5.. For example, the first

instantiation,

G1: AND_gate port map (A 5. IN1, B 5. IN2, X 5. OUT1);

can be explained as follows: Input A of AND gate G1 is connected to input IN1, input B of the

gate is connected to input IN2, and the output X of the gate is connected to the signal OUT1.

The three instantiation statements together completely describe the logic circuit in Fig-

ure 5–39, as illustrated in Figure 5–40.

Although the data flow approach using Boolean expressions would have been easier

and probably the best way to describe this particular circuit, we have used this simple

circuit to explain the concept of the structural approach. Example 5–16 compares the

structural and data flow approaches to writing a VHDL program for an SOP logic circuit.

Component declaration for the

AND gate

Component declaration for the

OR gate

Signal declaration

Component instantiations describe

how the three gates are connected.

286 Combinational Logic Analysis

OUT3

IN1

G1

IN2

G2

G3

OUT1

OUT2

A => IN1

A

B
X

B => IN2

A

B
X

A => IN3

B => IN4 X => OUT2

X => OUT1

OUT1

OUT2

A

B
X

A => OUT1

B => OUT2IN3

IN4

X => OUT3

FIGURE 5–40 Illustration of the instantiation statements and port mapping applied to the

AND-OR logic. Signals are shown in red.

EXAMPLE 5–16

Write a VHDL program for the SOP logic circuit in Figure 5–41 using the structural

approach and compare with the data flow approach. Assume that VHDL components

for a 3-input NAND gate and for a 2-input NAND are available. Notice the NAND gate

G4 is shown as a negative-OR.

OUT4

IN1
G1

IN3

OUT1
IN2

IN7
G3

IN8

IN4
G2

IN6
IN5

OUT2

OUT3

G4

FIGURE 5–41

Solution

The structural approach:

The components and component instantiations are highlighted. Lines preceded by two

hyphens are comment lines and are not part of the program.

--Program for the logic circuit in Figure 5–41

entity SOP_Logic is

 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

--component declaration for 3-input NAND gate

component NAND_gate3 is

 port (A, B, C: in bit X: out bit);

end component NAND_gate3;

--component declaration for 2-input NAND gate

component NAND_gate2 is

 port (A, B: in bit; X: out bit);

end component NAND_gate2;

signal OUT1, OUT2, OUT3: bit;

Combinational Logic with VHDL 287

begin

G1: NAND_gate3 port map (A 5. IN1, B 5. IN2, C 5. IN3, X 5. OUT1);

G2: NAND_gate3 port map (A 5. IN4, B 5. IN5, C 5. IN6, X 5. OUT2);

G3: NAND_gate2 port map (A 5. IN7, B 5. IN8, X 5. OUT3);

G4: NAND_gate3 port map (A 5. OUT1, B 5. OUT2, C 5. OUT3, X 5. OUT4);

end architecture LogicOperation;

The data flow approach:

The program for the logic circuit in Figure 5–41 using the data flow approach is

written as follows:

entity SOP_Logic is

 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is

begin

 OUT4 ,5 (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and IN8);

end architecture LogicOperation;

As you can see, the data flow approach results in a much simpler code for this particu-

lar logic function. However, in situations where a logic function consists of many blocks

of complex logic, the structural approach might have an advantage over the data flow

approach.

Related Problem

If another NAND gate is added to the circuit in Figure 5–41 with inputs IN9 and IN10,

write a component instantiation to add to the program.

Applying Software Development Tools

A software development package must be used to implement an HDL design in a target device.

Once the logic has been described using an HDL and entered via a software tool called a code

or text editor, it can be tested using a simulation to verify that it performs properly before actu-

ally programming the target device. Using software development tools allows for the design,

development, and testing of combinational logic before it is committed to hardware.

Typical software development tools allow you to input VHDL code on a text-based

editor specific to the particular development tool that you are using. The VHDL code for

a combinational logic circuit has been written using a text-based editor for illustration

and appears on the computer screen as shown in Figure 5–42. Many code editors provide

enhanced features such as the highlighting of keywords.

After the program has been written into the text editor, it is passed to the compiler. The com-

piler takes the high-level VHDL code and converts it into a file that can be downloaded to the

target device. Once the program has been compiled, you can create a simulation for testing. Sim-

ulated input values are inserted into the logic design and allow for verification of the output(s).

You specify the input waveforms on a software tool called a waveform editor, as shown in

Figure 5–43. The output waveforms are generated by a simulation of the VHDL code that you

entered on the text editor in Figure 5–42. The waveform simulation provides the resulting out-

puts X and Y for the inputs A, B, C, and D in all sixteen combinations from 0 0 0 02 to 1 1 1 12.

Recall from Chapter 3 that there are several performance characteristics of logic circuits

to be considered in the creation of any digital system. Propagation delay, for example,

determines the speed or frequency at which a logic circuit can operate. A timing simulation

can be used to mimic the propagation delay through the logic design in the target device.

288 Combinational Logic Analysis

Waveform Editor

Name:

D

50.0 ns 100.0 ns 150.0 ns 200.0 ns 250.0 ns 300.0 ns

C

B

A

Y

X

1

1

0

0

1

1

FIGURE 5–43 A typical waveform editor tool showing the simulated waveforms for the

logic circuit described by the VHDL code in Figure 5–42.

SECTION 5–6 CHECKUP

 1. What is a VHDL component?

 2. State the purpose of a component instantiation in a program architecture.

 3. How are interconnections made between components in VHDL?

 4. The use of components in a VHDL program represents what approach?

5–7 Troubleshooting

The preceding sections have given you some insight into the operation of combina-

tional logic circuits and the relationships of inputs and outputs. This type of under-

standing is essential when you troubleshoot digital circuits because you must know

what logic levels or waveforms to look for throughout the circuit for a given set of

input conditions.

In this section, an oscilloscope is used to troubleshoot a fixed-function logic circuit

when a device output is connected to several device inputs. Also, an example of signal

tracing and waveform analysis methods is presented using a scope or logic analyzer for

locating a fault in a combinational logic circuit.

Text Editor

entity Combinational is

 port (A, B, C, D: in bit; X, Y: out bit);

end entity Combinational;

architecture Example of Combinational is

begin

 X <= (A and B) or not C;

 Y <= C or not D;

end architecture Example;

File Edit View Project Assignments Processing Tools Window

FIGURE 5–42 A VHDL program for a combinational logic circuit after entry on a generic

text editor screen that is part of a software development tool.

Troubleshooting 289

After completing this section, you should be able to

u Define a circuit node

u Use an oscilloscope to find a faulty circuit node

u Use an oscilloscope to find an open input or output

u Use an oscilloscope to find a shorted input or output

u Discuss how to use an oscilloscope or a logic analyzer for signal tracing in a

combinational logic circuit

In a combinational logic circuit, the output of a driving device may be connected to two

or more load devices as shown in Figure 5–44. The interconnecting paths share a common

electrical point known as a node.

Driving

device

Load

device 1

Load

device 2

Load

device 3

Load

device n

Node

FIGURE 5–44 Illustration of a node in a logic circuit.

The driving device in Figure 5–44 is driving the node, and the other devices repre-

sent loads connected to the node. A driving device can drive a number of load device

inputs up to its specified fan-out. Several types of failures are possible in this situa-

tion. Some of these failure modes are difficult to isolate to a single bad device because

all the devices connected to the node are affected. Common types of failures are the

following:

 1. Open output in driving device. This failure will cause a loss of signal to all load

devices.

 2. Open input in a load device. This failure will not affect the operation of any of the

other devices connected to the node, but it will result in loss of signal output from the

faulty device.

 3. Shorted output in driving device. This failure can cause the node to be stuck in the

LOW state (short to ground) or in the HIGH state (short to VCC).

 4. Shorted input in a load device. This failure can also cause the node to be stuck in the

LOW state (short to ground) or in the HIGH state (short to VCC).

290 Combinational Logic Analysis

Troubleshooting Common Faults

Open Output in Driving Device

In this situation there is no pulse activity on the node. With circuit power on, an open node

will normally result in a “floating” level, as illustrated in Figure 5–45.

1 14

2 13

3 12

4 11

5 10

6 9

7 8

74HC00 pin diagram
from data sheet

Output pin of this
gate in IC1 is open

If there is no pulse activity at the output pin on IC1, there is an internal open. If
there is pulse activity directly on the output pin but not on the node interconnections,
the connection between the pin and the board is open.

IC1

7
4

H
C

0
0

IC2 IC3

7
4

H
C

0
0

7
4

H
C

0
0

There are pulses on
one input with the

other input HIGH.

No pulse activity is indicated
at any point on the node. Scope
may indicate "floating" level.

HIGH

FIGURE 5–45 Open output in driving device. Assume a HIGH is on one input.

When troubleshooting logic circuits, begin with a visual check, looking for obvious problems.
In addition to components, visual inspection should include connectors. Edge connectors are
frequently used to bring power, ground, and signals to a circuit board. The mating surfaces of
the connector need to be clean and have a good mechanical fit. A dirty connector can cause
intermittent or complete failure of the circuit. Edge connectors can be cleaned with a common
pencil eraser and wiped clean with a Q-tip soaked in alcohol. Also, all connectors should be
checked for loose-fitting pins.

Open Input in a Load Device

If the check for an open driver output in IC1 is negative (there is pulse activity), then a

check for an open input in a load device should be performed. Check the output of each

device for pulse activity, as illustrated in Figure 5–46. If one of the inputs that is nor-

mally connected to the node is open, no pulses will be detected on that device’s output.

Output or Input Shorted to Ground

When the output is shorted to ground in the driving device or the input to a load device

is shorted to ground, it will cause the node to be stuck LOW, as previously mentioned.

A quick check with a scope probe will indicate this, as shown in Figure 5–47. A short

to ground in the driving device’s output or in any load input will cause this symptom,

and further checks must therefore be made to isolate the short to a particular device.

Signal Tracing and Waveform Analysis

Although the methods of isolating an open or a short at a node point are useful from time

to time, a more general troubleshooting technique called signal tracing is of value in just

Troubleshooting 291

IC2 IC3
1 14

2 13

3 12

4 11

5 10

6 9

7 8

74HC00 pin diagram
from data sheet

IC1

7
4

H
C

0
0

7
4

H
C

0
0

7
4

H
C

0
0

HIGH

Pin 4 input of this
gate in IC2 is open

Check the output pin of each device connected to the node with other device inputs HIGH.
No pulse activity on an output indicates an open input or open output.

HIGH HIGH

FIGURE 5–46 Open input in a load device.

about every troubleshooting situation. Waveform measurement is accomplished with an

oscilloscope or a logic analyzer.

Basically, the signal tracing method requires that you observe the waveforms and their

time relationships at all accessible points in the logic circuit. You can begin at the inputs

and, from an analysis of the waveform timing diagram for each point, determine where an

incorrect waveform first occurs. With this procedure you can usually isolate the fault to a

specific device. A procedure beginning at the output and working back toward the inputs

can also be used.

The general procedure for signal tracing starting at the inputs is outlined as follows:

• Withinasystem,deinethesectionoflogicthatissuspectedofbeingfaulty.

• Startattheinputstothesectionoflogicunderexamination.Weassume,forthisdis-

cussion, that the input waveforms coming from other sections of the system have

been found to be correct.

IC1

7
4
H

C
0
0

IC2 IC3

7
4
H

C
0
0

7
4
H

C
0
0

1 14
2 13
3 12
4 11
5 10
6 9
7 8

HIGH

There is a LOW level at all
points connected to the node.

FIGURE 5–47 Shorted output in the driving device or shorted input in a load.

292 Combinational Logic Analysis

• Foreachdevice,beginningattheinputandworkingtowardtheoutputofthelogic
circuit, observe the output waveform of the device and compare it with the input

waveforms by using the oscilloscope or the logic analyzer.

• Determineiftheoutputwaveformiscorrect,usingyourknowledgeofthelogical
operation of the device.

• Iftheoutputisincorrect,thedeviceundertestmaybefaulty.PulltheICdevicethat
is suspected of being faulty, and test it out-of-circuit. If the device is found to be

faulty, replace the IC. If it works correctly, the fault is in the external circuitry or in

another IC to which the tested one is connected.

• Iftheoutputiscorrect,gotothenextdevice.Continuecheckingeachdeviceuntilan
incorrect waveform is observed.

Figure 5–48 is an example that illustrates the general procedure for a specific logic

circuit in the following steps:

Step 1: Observe the output of gate G1 (test point 5) relative to the inputs. If it is

correct, check the inverter next. If the output is not correct, the gate or its

TP1

TP2

TP5

TP3

TP6

TP5

TP3

TP7

Step 1

If correct, go to step 2.

If incorrect, test IC2 and connections.

Step 2

If correct, go to step 3.

If incorrect, test IC1 and connections.

Step 3

If correct, go to step 4.

If incorrect, test IC2 and connections.

TP1

TP2

Scope is externally triggered from test point 1 (TP1).

12

13
11 TP5 10

TP3

TP4

9
8

12 2

1

13

TP6

TP7

5

4
6

TP8

TP9

3

TP6 TP7

TP8

TP9

TP8

TP4

Step 4

If correct, go to step 5.

If incorrect, test IC2 and connections.

Step 5

If correct, circuit is OK.

If incorrect, test IC2 and connections.

TP3 TP4 TP6

TP8

TP9

TP5

TP1

TP2

G1
G2

G3

G4

7
4

H
C

0
0

IC2IC1

7
4

H
C

0
4

TP7

FIGURE 5–48 Example of signal tracing and waveform analysis in a portion of a printed

circuit board. TP indicates test point.

Troubleshooting 293

connections are bad; or, if the output is LOW, the input to gate G2 may be

shorted.

Step 2: Observe the output of the inverter (TP6) relative to the input. If it is correct,

check gate G2 next. If the output is not correct, the inverter or its connections

are bad; or, if the output is LOW, the input to gate G3 may be shorted.

Step 3: Observe the output of gate G2 (TP7) relative to the inputs. If it is correct, check

gate G3 next. If the output is not correct, the gate or its connections are bad; or,

if the output is LOW, the input to gate G4 may be shorted.

Step 4: Observe the output of gate G3 (TP8) relative to the inputs. If it is correct, check

gate G4 next. If the output is not correct, the gate or its connections are bad; or,

if the output is LOW, the input to gate G4 (TP7) may be shorted.

Step 5: Observe the output of gate G4 (TP9) relative to the inputs. If it is correct, the

circuit is okay. If the output is not correct, the gate or its connections are bad.

EXAMPLE 5–17

Determine the fault in the logic circuit of Figure 5–49(a) by using waveform analysis. You have observed the waveforms

shown in green in Figure 5–49(b). The red waveforms are correct and are provided for comparison.

A

B

C

D

(a)

G2

G3

A

B

C

D

G
1

output

G
2

output

G
3

output

(b)

G
4

output

Inverter
output

G4

G1

FIGURE 5–49

Solution

 1. Determine what the correct waveform should be for each gate. The correct waveforms are shown in red, superim-

posed on the actual measured waveforms, in Figure 5–49(b).

 2. Compare waveforms gate by gate until you find a measured waveform that does not match the correct waveform.

In this example, everything tested is correct until gate G3 is checked. The output of this gate is not correct as the differences in

the waveforms indicate. An analysis of the waveforms indicates that if the D input to gate G3 is open and acting as a HIGH, you will

get the output waveform measured (shown in red). Notice that the output of G4 is also incorrect due to the incorrect input from G3.

Replace the IC containing G3, and check the circuit’s operation again.

Related Problem

For the inputs in Figure 5–49(b), determine the output waveform for the logic circuit (output of G4) if the inverter has an

open output.

294 Combinational Logic Analysis

As you know, testing and troubleshooting logic circuits often require observing and comparing two
digital waveforms simultaneously, such as an input and the output of a device, on an oscilloscope.
For digital waveforms, the scope should always be set to DC coupling on each channel input to
avoid “shifting” the ground level. You should determine where the 0 V level is on the screen for
both channels.

To compare the timing of the waveforms, the scope should be triggered from only one channel
(don’t use vertical mode or composite triggering). The channel selected for triggering should always
be the one that has the lowest frequency waveform, if possible.

SECTION 5–7 CHECKUP

 1. List four common internal failures in logic gates.

 2. One input of a NOR gate is externally shorted to +VCC. How does this condition af-

fect the gate operation?

 3. Determine the output of gate G4 in Figure 5–49(a), with inputs as shown in part (b),

for the following faults:

(a) one input to G1 shorted to ground

(b) the inverter input shorted to ground

(c) an open output in G3

Applied Logic

Tank Control

A storage tank system for a pancake syrup manufacturing company is shown in Figure 5–50.

The control logic allows a volume of corn syrup to be preheated to a specified temperature

to achieve the proper viscosity prior to being sent to a mixing vat where ingredients such as

sugar, flavoring, preservative, and coloring are added. Level and temperature sensors in the

tank and the flow sensor provide the inputs for the logic.

System Operation and Analysis

The tank holds corn syrup for use in a pancake syrup manufacturing process. In prepa-

ration for mixing, the temperature of the corn syrup when released from the tank into a

mixing vat must be at a specified value for proper viscosity to produce required flow char-

acteristics. This temperature can be selected via a keypad input. The control logic main-

tains the temperature at this value by turning a heater on and off. The analog output from

the temperature transducer (Tanalog) is converted to an 8-bit binary code by an analog-to-

digital converter and then to an 8-bit BCD code. A temperature controller detects when the

temperature falls below the specified value and turns the heater on. When the temperature

reaches the specified value, the heater is turned off.

The level sensors produce a HIGH when the corn syrup is at or above the minimum or at the

maximum level. The valve control logic detects when the maximum level (Lmax) or minimum

level (Lmin) has been reached and when mixture is flowing into the tank (Finlet). Based on these

inputs, the control logic opens or closes each valve (Vinlet and Voutlet). New corn syrup can be

Applied Logic 295

added to the tank via the inlet valve only when the minimum level is reached. Once the inlet

valve is opened, the level in the tank must reach the maximum point before the inlet valve is

closed. Also, once the outlet valve is opened, the level must reach the minimum point before

the outlet valve is closed. New syrup is always cooler than the syrup in the tank. Syrup cannot

be released from the tank while it is being filled or its temperature is below the specified value.

Inlet Valve Control The conditions for which the inlet valve is open, allowing the tank

to fill, are

u The solution level is at minimum (Lmin).
u The tank is filling (Finlet) but the maximum level has not been reached (Lmax).

Table 5–6 is the truth table for the inlet valve. A HIGH (1) is the active level for the

inlet valve to be open (on).

Monitoring

and control

logic

Finlet
Vinlet

Voutlet

T
Lmax

Lmin

Tanalog

Outlet

valve
To mixing vat

Temperature

transducer

Level

sensors

Heater

Flow sensor

Inlet valve

FIGURE 5–50 Tank with level and temperature sensors and controls.

TABLE 5–6

Truth table for inlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet Vinlet

0 0 0 1 Level below minimum. No inlet flow.

0 0 1 1 Level below minimum. Inlet flow.

0 1 0 0 Level above min and below max. No inlet flow.

0 1 1 1 Level above min and below max. Inlet flow.

1 0 0 X Invalid

1 0 1 X Invalid

1 1 0 0 Level at maximum. No inlet flow.

1 1 1 0 Level at maximum. Inlet flow.

Exercise

1. Explain why the two conditions indicated in the truth table are invalid.

2. Under how many input conditions is the inlet valve open?

3. Once the level drops below minimum and the tank starts refilling, when does the

inlet valve turn off?

296 Combinational Logic Analysis

From the truth table, an expression for the inlet valve control output can be written.

Vinlet = LmaxLminFinlet + LmaxLminFinlet + LmaxLminFinlet

The SOP expression for the inlet valve logic can be reduced to the following simplified

expression using Boolean methods:

Vinlet = Lmin + LmaxFinlet

Exercise

4. Using a K-map, prove that the simplified expression is correct.

5. Using the simplified expression, draw the logic diagram for the inlet valve control.

Outlet Valve Control The conditions for which the outlet valve is open allowing the tank

to drain are

u The syrup level is above minimum and the tank is not filling.
u The temperature of the syrup is at the specified value.

Table 5–7 is the truth table for the outlet valve. A HIGH (1) is the active level for the

outlet valve to be open (on). (Note: T is both an input and an output, T 5 Temp).

TABLE 5–7

Truth table for outlet valve control.

Inputs Output

DescriptionLmax Lmin Finlet T Voutlet

0 0 0 0 0 Level below minimum. No inlet flow. Temp low.

0 0 0 1 0 Level below minimum. No inlet flow. Temp correct.

0 0 1 0 0 Level below minimum. Inlet flow. Temp low.

0 0 1 1 0 Level below minimum. Inlet flow. Temp correct.

0 1 0 0 0 Level above min and below max. No inlet flow. Temp low.

0 1 0 1 1 Level above min and below max. No inlet flow. Temp

correct.

0 1 1 0 0 Level above min and below max. Inlet flow. Temp low.

0 1 1 1 0 Level above min and below max. Inlet flow. Temp

correct

1 0 0 0 X Invalid

1 0 0 1 X Invalid

1 0 1 0 X Invalid

1 0 1 1 X Invalid

1 1 0 0 0 Level at maximum. No inlet flow. Temp low.

1 1 0 1 1 Level at maximum. No inlet flow. Temp correct.

1 1 1 0 0 Level at maximum. Inlet flow. Temp low.

1 1 1 1 0 Level at maximum. Inlet flow. Temp correct.

Exercise

6. Why does the outlet valve control require four inputs and the inlet valve only three?

7. Under how many input conditions is the outlet valve open?

8. Once the level reaches maximum and the tank starts draining, when does the outlet

valve turn off?

From the truth table, an expression for the outlet valve control can be written.

Voutlet = LmaxLminFinlet T + LmaxLminFinletT

Applied Logic 297

The SOP expression for the outlet valve logic can be reduced to the following simplified

expression:

Voutlet = LminFinletT

Exercise

 9. Using a K-map, prove that the simplified expression is correct.

10. Using the simplified expression, draw the logic diagram for the outlet valve control.

Temperature Control The temperature control logic accepts an 8-bit BCD code repre-

senting the measured temperature and compares it to the BCD code for the specified tem-

perature. A block diagram is shown in Figure 5–51.

Analog-to-

digital

converter

Binary-to-

BCD

converter

Temperature-

control logic
Tanalog T

8-bit

binary code

8-bit BCD for

measured temperature

8-bit BCD for

specified temperature

FIGURE 5–51 Block diagram for temperature control circuit.

When the measured temperature and the specified temperature are the same, the two

BCD codes are equal and the T output is LOW (0). When the measured temperature falls

below the specified value, there is a difference in the BCD codes and the T output is HIGH

(1), which turns on the heater. The temperature control logic can be implemented with

exclusive-OR gates, as shown in Figure 5–52. Each pair of corresponding bits from the two

T

BCD for specified

temperature (TS)

BCD for

measured

temperature

(TM)

TM1

TS1TS2TS3TS4TS5TS6TS7TS8

TM2

TM3

TM4

TM5

TM6

TM7

TM8

FIGURE 5–52 Logic diagram of the temperature control logic.

298 Combinational Logic Analysis

BCD codes is applied to an exclusive-OR gate. If the bits are the same, the output of the

XOR gate is 0; and if they are different, the output of the XOR gate is 1. When one or more

XOR outputs equal 1, the T output of the OR gate equals 1, causing the heater to turn on.

VHDL Code for Tank Control Logic

The control logic for the inlet valve, outlet valve, and temperature is described with VHDL

using the data flow approach (which is based on the Boolean description of the logic).

Exercise 11 requires the structural approach (which is based on the gates and how they are

connected) for comparison.

entity TankControl is

 port (Finlet, Lmax, Lmin, TS1, TS2, TS3, TS4, TS5, TS6, TS7, TS8, TM1, TM2,

 TM3, TM4, TM5, TM6, TM7, TM8: in bit; Vinlet, Voutlet, T: out bit);

end entity TankControl;

architecture ValveTempLogic of Tank Control is

begin

 Vinlet ,5 not Lmin or (not Lmax and Finlet);

 Voutlet ,5 Lmin and not Finlet and T;

 T ,5 (TS1 xor TM1) or (TS2 xor TM2) or (TS3 xor TM3) or (TS4 xor TM4)

 or (TS5 xor TM5) or (TS6 xor TM6) or (TS7 xor TM7) or (TS8 xor TM8);

end architecture ValveTempLogic;

Exercise

11. Write the VHDL code for the tank control logic using the structural approach.

Simulation of the Valve Control Logic

The inlet and outlet valve control logic simulation screen is shown in Figure 5–53. SPDT

switches are used to represent the level and flow sensor inputs and the temperature indica-

tion. Probes are used to indicate the output states.

FIGURE 5–53 Multisim circuit screen for the valve control logic.

Key Terms 299

Open file AL05 in the Applied Logic folder on the website. Run the simulation of the

valve-control logic using your Multisim software and observe the operation. Create

a new Multisim file, connect the temperature control logic, and run the simulation.

Putting Your Knowledge to Work

If the temperature of the syrup can never be more than 9°C below the specified value, can

the temperature control circuit be simplified? If so, how?

SUMMARY

• AND-ORlogicproducesanoutputexpressioninSOPform.

• AND-OR-InvertlogicproducesacomplementedSOPform,whichisactuallyaPOSform.

• Theoperationalsymbolforexclusive-ORis � . An exclusive-OR expression can be stated in

two equivalent ways:

AB + AB = A � B

• Todoananalysisofalogiccircuit,startwiththelogiccircuit,anddeveloptheBooleanoutput
expression or the truth table or both.

• ImplementationofalogiccircuitistheprocessinwhichyoustartwiththeBooleanoutput
expressions or the truth table and develop a logic circuit that produces the output function.

• AllNANDorNORlogicdiagramsshouldbedrawnusingappropriatedualsymbolsso
that bubble outputs are connected to bubble inputs and nonbubble outputs are connected to

 nonbubble inputs.

• Whentwonegationindicators(bubbles)areconnected,theyeffectivelycanceleachother.

• AVHDLcomponentisapredefinedlogicfunctionstoredforusethroughoutaprogramorin
other programs.

• Acomponentinstantiationisusedtocallforacomponentinaprogram.

• AVHDLsignaleffectivelyactsasaninternalinterconnectioninaVHDLstructuraldescription.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Component A VHDL feature that can be used to predefine a logic function for multiple use

throughout a program or programs.

Negative-AND The dual operation of a NOR gate when the inputs are active-LOW.

Negative-OR The dual operation of a NAND gate when the inputs are active-LOW.

Node A common connection point in a circuit in which a gate output is connected to one or more

gate inputs.

Signal A waveform; a type of VHDL object that holds data.

Signal tracing A troubleshooting technique in which waveforms are observed in a step-by-step

manner beginning at the input and working toward the output or vice versa. At each point the

 observed waveform is compared with the correct signal for that point.

Universal gate Either a NAND gate or a NOR gate. The term universal refers to the property of

a gate that permits any logic function to be implemented by that gate or by a combination of that

kind.

300 Combinational Logic Analysis

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. AND-OR logic can have only two 2-input AND gates.

 2. AOI is an acronym for AND-OR-Invert.

 3. If the inputs of an exclusive-OR gate are the same, the output is LOW (0).

 4. If the inputs of an exclusive-NOR gate are different, the output is HIGH (1).

 5. A parity generator cannot be implemented using exclusive-OR gates.

 6. NAND gates can be used to produce the AND functions.

 7. NOR gates cannot be used to produce the OR functions.

 8. Any SOP expression can be implemented using only NAND gates.

 9. The dual symbol for a NAND gate is a negative-AND symbol.

 10. Negative-OR is equivalent to NAND.

SELF-TEST

Answers are at the end of the chapter.

 1. The output expression for an AND-OR circuit having one AND gate with inputs A, B and C

and one AND gate with inputs D, E and F is

(a) ABCDEF (b) A + B + C + D + E + F

(c) ABC + DEF (d) (A + B + C)(D + E + F)

 2. A logic circuit with an output X = AB + ABC consists of

(a) two AND gates and one OR gate

(b) two AND gates, one OR gate and an inverter

(c) two AND gates, two OR gates and two inverters

(d) two AND gates, one OR gate and three inverters

 3. To implement the expression X Y Z + X Y Z + X Y Z + X YZ + X Y Z, it takes

(a) five AND gates, one OR gate, and eight inverters

(b) four AND gates, two OR gates, and six inverters

(c) five AND gates, three OR gates, and seven inverters

(d) five AND gates, one OR gate, and seven inverters

 4. The expression ABCD + ABCD + AB CD

(a) cannot be simplified (b) can be simplified to ABC + AB

(c) can be simplified to ABCD + ABC (d) None of these answers is correct.

 5. The output expression for an AND-OR-Invert circuit having one AND gate with inputs A, B, C

and another AND gate with inputs D, E, F is

(a) ABC 1 DEF (b) (A + B + C)(D + E + F)

(c) (A + B + C)(D + E + F) (d) A + B + C + D + E + F

 6. An exclusive-NOR function is expressed as

(a) A B + AB (b) AB + AB

(c) (A + B)(A + B) (d) (A + B)(A + B)

 7. The AND operation can be produced with

(a) two NAND gates (b) three NAND gates

(c) one NOR gate (d) three NOR gates

 8. The OR operation can be produced with

(a) two NOR gates (b) three NAND gates

(c) four NAND gates (d) both answers (a) and (b)

 9. When using dual symbols in a logic diagram,

(a) bubble outputs are connected to bubble inputs

(b) the NAND symbols produce the AND operations

(c) the negative-OR symbols produce the OR operations

(d) All of these answers are true.

(e) None of these answers is true.

Problems 301

 10. All Boolean expressions can be implemented with

(a) NAND gates only

(b) NOR gates only

(c) combinations of NAND and NOR gates

(d) combinations of AND gates, OR gates, and inverters

(e) any of these

 11. A VHDL component

(a) can be used once in each program

(b) is a predefined description of a logic function

(c) can be used multiple times in a program

(d) is part of a data flow description

(e) answers (b) and (c)

 12. A VHDL component is called for use in a program by using a

(a) signal (b) variable

(c) component instantiation (d) architecture declaration

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 5–1 Basic Combinational Logic Circuits

 1. Draw the ANSI distinctive shape logic diagram for a 4-wide, 3-input AND-OR-Invert circuit.

Also draw the ANSI standard rectangular outline symbol.

 2. Write the output expression for each circuit in Figure 5–54.

(a)

X

(b)

A

B

C

X

A

B

C

D

FIGURE 5–54

A

X
B

(b)

A

X
B

(a)

A

X

B

(d)

A
X

B

(c)

A

X

B

(e)

C

A

B

C

(f)

X

FIGURE 5–55

 3. Write the output expression for each circuit as it appears in Figure 5–55.

302 Combinational Logic Analysis

 4. Write the output expression for each circuit as it appears in Figure 5–56 and then change each

circuit to an equivalent AND-OR configuration.

 5. Develop the truth table for each circuit in Figure 5–55.

 6. Develop the truth table for each circuit in Figure 5–56.

 7. Show that an exclusive-NOR circuit produces a POS output.

(a) (b)

(d)(c)

(e)

(f)

C

A

B

D

X

A

B

C

E

D

X X

A

B

D

C

X

A

B

C

D

D

C

X

A

B

E

F

H

G

X

A

B

C

E

D

FIGURE 5–56

Section 5–2 Implementing Combinational Logic

 8. Develop an AND-OR-Invert logic circuit for a power drive which switches on (logic 1) when

the guard is in place (logic 1) and switches off (logic 0) when the motor is too hot (logic 0).

 9. An AOI (AND-OR-Invert) logic chip has two 4-input AND gates connected to a 2-input NOR

gate. Write the Boolean expression for the circuit (assume the inputs are labeled A through H).

 10. Use AND gates, OR gates, or combinations of both to implement the following logic

 expressions as stated:

(a) X = A + B + C

(b) X = ABC

(c) X = A + BC

(d) X = AB + CD

(e) X = (A + B)(C + D)

(f) X = A + BCD

(g) X = ABC + BCD + DEF

(h) X = ABC(D + E + F) + AC(C + D + E)

Problems 303

 11. Use AND gates, OR gates, and inverters as needed to implement the following logic expres-

sions as stated:

(a) X = AB + BC

(b) X = A(B + C)

(c) X = AB + AB

(d) X = ABC + B(EF + G)

(e) X = A[BC(A + B + C + D)]

(f) X = B(CDE + EFG)(AB + C)

 12. Use NAND gates, NOR gates, or combinations of both to implement the following logic

expressions as stated:

(a) X = AB + CD + (A + B)(ACD + BE)

(b) X = ABC D + DEF + AF

(c) X = A[B + C(D + E)]

 13. Implement a logic circuit for the truth table in Table 5–8.

TABLE 5–8

Inputs Output

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

 14. Implement a logic circuit for the truth table in Table 5–9.

TABLE 5–9

Inputs Output

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

304 Combinational Logic Analysis

 15. Simplify the circuit in Figure 5–57 as much as possible, and verify that the simplified circuit is

equivalent to the original by showing that the truth tables are identical.

 16. Repeat Problem 15 for the circuit in Figure 5–58.

A

X

C

B

FIGURE 5–57

A

X

B

C

FIGURE 5–58

 17. Minimize the gates required to implement the functions in each part of Problem 11 in SOP form.

 18. Minimize the gates required to implement the functions in each part of Problem 12 in SOP

form.

 19. Minimize the gates required to implement the function of the circuit in each part of Figure

5–56 in SOP form.

Section 5–3 The Universal Property of NAND and NOR Gates

 20. Implement the logic circuits in Figure 5–54 using only NAND gates.

 21. Implement the logic circuit in Figure 5–58 using only NAND gates.

 22. Repeat Problem 20 using only NOR gates.

 23. Repeat Problem 21 using only NOR gates.

Section 5–4 Combinational Logic Using NAND and NOR Gates

 24. Show how the following expressions can be implemented as stated using only NOR gates:

(a) X = ABC (b) X = ABC (c) X = A + B

(d) X = A + B + C (e) X = AB + CD (f) X = (A + B)(C + D)

(g) X = AB[C(DE + AB) + BCE]

 25. Repeat Problem 24 using only NAND gates.

 26. Implement each function in Problem 10 by using only NAND gates.

 27. Implement each function in Problem 11 by using only NAND gates.

Section 5–5 Pulse Waveform Operation

 28. The output of the logic circuit and input waveforms in Figure 5–59 is passed through an

inverter. Draw the output waveform.

B X

A
A

B

FIGURE 5–59

 29. For the logic circuit in Figure 5–60, draw the output waveform in proper relationship to the

inputs.

A

B

A

B X

FIGURE 5–60

Problems 305

 30. For the input waveforms in Figure 5–61, what logic circuit will generate the output waveform

shown?

A

B

C

X

Inputs

Output

FIGURE 5–61

A

B

C

D

E

F

X

A

B

C
D

F
E

1

2

3

4
5

FIGURE 5–63

A

B

C

D

E

X

100 ns pulse width

25 ns minimum

X

A

B

C

D

E

G1

G2

G3

G4

FIGURE 5–64

 31. Repeat Problem 30 for the waveforms in Figure 5–62.

 32. For the circuit in Figure 5–63, draw the waveforms at the numbered points in the proper rela-

tionship to each other.

A

B

C

X

Inputs

Output

FIGURE 5–62

 33. Assuming a propagation delay through each gate of 10 nanoseconds (ns), determine if the

desired output waveform X in Figure 5–64 (a pulse with a minimum tW 5 25 ns positioned as

shown) will be generated properly with the given inputs.

Section 5–6 Combinational Logic with VHDL

 34. Describe a 2-input NAND gate with VHDL.

 35. Describe a 3-input AND gate with VHDL.

 36. Write a VHDL program using the data flow approach (Boolean expressions) to describe the

logic circuit in Figure 5–54(b).

 37. Write VHDL programs using the data flow approach (Boolean expressions) for the logic

 circuits in Figure 5–55(e) and (f).

306 Combinational Logic Analysis

 38. Write a VHDL program using the structural approach for the logic circuit in Figure 5–56(d).

Assume component declarations for each type of gate are already available.

 39. Repeat Problem 38 for the logic circuit in Figure 5–56(f).

 40. Describe the logic represented by the truth table in Table 5–8 using VHDL by first converting it

to SOP form.

 41. Develop a VHDL program for the logic in Figure 5–65, using both the data flow and the struc-

tural approach. Compare the resulting programs.

A

B

C

D

E

G2

G1

G4

G3

X

FIGURE 5–65

G4

X

A
B

C

D

E

G2

G1

G3

G5

FIGURE 5–66

 42. Develop a VHDL program for the logic in Figure 5–66, using both the data flow and the struc-

tural approach. Compare the resulting programs.

 43. Given the following VHDL program, create the truth table that describes the logic circuit.

entity CombLogic is

 port (A, B, C, D: in bit; X: out bit);

end entity CombLogic;

architecture Example of CombLogic is

 begin

 X ,5 not((not A and not B) or (not A and not C) or (not A and not D) or

 (not B and not C) or (not B and not D) or (not D and not C));

end architecture Example;

 44. Describe the logic circuit shown in Figure 5–67 with a VHDL program, using the data flow

approach.

 45. Repeat Problem 44 using the structural approach.

X

A1

A2

B1

B2

G1

G2

G3

G4

G5
G6

G7

FIGURE 5–67

Problems 307

Section 5–7 Troubleshooting

 46. For the logic circuit and the input waveforms in Figure 5–68, the indicated output waveform is

observed. Determine if this is the correct output waveform.

A

B

C

D

A

B

C

D

X

FIGURE 5–68

A

B

C

D

E

X

A

B

C

D

E

G2

G1

G4

G3

FIGURE 5–69

A

B

F

E

C

D

G
1

G
2

G
3

G
4 X

F

X

E

D

C

B

A

FIGURE 5–70

 47. The output waveform in Figure 5–69 is incorrect for the inputs that are applied to the circuit.

Assuming that one gate in the circuit has failed, with its output either an apparent constant HIGH

or a constant LOW, determine the faulty gate and the type of failure (output open or shorted).

 48. Repeat Problem 47 for the circuit in Figure 5–70, with input and output waveforms as shown.

 49. By examining the connections in Figure 5–71, determine the driving gate and load gate(s).

Specify by device and pin numbers.

74HC0074HC001 2

FIGURE 5–71

308 Combinational Logic Analysis

 50. Figure 5–72(a) is a logic circuit under test. Figure 5–72(b) shows the waveforms as observed

on a logic analyzer. The output waveform is incorrect for the inputs that are applied to the cir-

cuit. Assuming that one gate in the circuit has failed, with its output either an apparent constant

HIGH or a constant LOW, determine the faulty gate and the type of failure.

A

B

X

(b)

C

D

E

F

X

A

B

C

D

E

F

G1

G2

G3

G4

(a)

FIGURE 5–72

A

B

C

D

E

G4

X

A
B

C

D

E

G2

G1

G3

G5

FIGURE 5–73

A

B

X

C

D

E

F

TP

TP

A

B

C

D

E

F

FIGURE 5–74

 51. The logic circuit in Figure 5–73 has the input waveforms shown.

(a) Determine the correct output waveform in relation to the inputs.

(b) Determine the output waveform if the output of gate G3 is open.

(c) Determine the output waveform if the upper input to gate G5 is shorted to ground.

 52. The logic circuit in Figure 5–74 has only one intermediate test point available besides the output,

as indicated. For the inputs shown, you observe the indicated waveform at the test point. Is this

waveform correct? If not, what are the possible faults that would cause it to appear as it does?

Applied Logic

 53. Describe the function of each of the three sensors in the tank.

 54. Implement the inlet valve logic using NOR gates and inverters.

 55. Repeat Problem 54 for the outlet valve logic.

 56. Implement the temperature control logic using XNOR gates.

 57. Design a circuit to enable an additive to be introduced into the syrup through another inlet only

when the temperature is at the specified value and the syrup level is at the low-level sensor.

Answers 309

Special Design Problems

 58. (a) Design a logic circuit to produce a HIGH output only if the input, represented by a 4-bit

binary number, is greater than twelve or less than three. First develop the truth table and

then draw the logic diagram.

(b) Describe the logic using VHDL.

 59. (a) Develop the logic circuit necessary to meet the following requirements:

A battery-powered lamp in a room is to be operated from two switches, one at the back

door and one at the front door. The lamp is to be on if the front switch is on and the back

switch is off, or if the front switch is off and the back switch is on. The lamp is to be off if

both switches are off or if both switches are on. Let a HIGH output represent the on condi-

tion and a LOW output represent the off condition.

(b) Describe the logic using VHDL.

 60. (a) Develop the NAND logic for a hexadecimal keypad encoder that will convert each key

closure to binary.

(b) Describe the logic using VHDL.

Multisim Troubleshooting Practice

 61. Open file P05-61. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 62. Open file P05-62. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 63. Open file P05-63. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 64. Open file P05-64. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 5–1 Basic Combinational Logic Circuits

 1. (a) AB + CD = 1 # 0 + 1 # 0 = 1 (b) AB + CD = 1 # 1 + 0 # 1 = 0

(c) AB + CD = 0 # 1 + 1 # 1 = 0

 2. (a) AB + AB = 1 # 0 + 1 # 0 = 1 (b) AB + AB = 1 # 1 + 1 # 1 = 0

(c) AB + AB = 0 # 1 + 0 # 1 = 1 (d) AB + AB = 0 # 0 + 0 # 0 = 0

 3. X = 1 when ABC = 000, 011, 101, 110, and 111; X = 0 when ABC = 001, 010, and 100

 4. X = AB + A B; the circuit consists of two AND gates, one OR gate, and two inverters. See

Figure 5–6(b) for diagram.

Section 5–2 Implementing Combinational Logic

 1. (a) X = ABC + AB + AC: three AND gates, one OR gate

(b) X = AB(C + DE): three AND gates, one OR gate

 2. X = ABC + A B C; two AND gates, one OR gate, and three inverters

 3. (a) X = AB(C + 1) + AC = AB + AC

(b) X = AB(C + DE) = ABC + ABDE

Section 5–3 The Universal Property of NAND and NOR Gates

 1. (a) X = A + B: a 2-input NAND gate with A and B on its inputs.

(b) X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an

inverter.

 2. (a) X = A + B: a 2-input NOR with inputs A and B, followed by one NOR used as an

inverter.

(b) X = AB: a 2-input NOR with A and B on its inputs.

310 Combinational Logic Analysis

Section 5–4 Combinational Logic Using NAND and NOR Gates

 1. X = (A + B + C)DE: a 3-input NAND with inputs, A, B, and C, with its output connected to

a second 3-input NAND with two other inputs, D and E

 2. X = A B C + (D + E): a 3-input NOR with inputs A, B, and C, with its output connected to a

second 3-input NOR with two other inputs, D and E

Section 5–5 Pulse Waveform Operation

 1. The exclusive-OR output is a 15 ms pulse followed by a 25 ms pulse, with a separation of 10 ms

between the pulses.

 2. The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are

LOW.

Section 5–6 Combinational Logic with VHDL

 1. A VHDL component is a predefined program describing a specified logic function.

 2. A component instantiation is used to call for a specified component in a program architecture.

 3. Interconnections between components are made using VHDL signals.

 4. Components are used in the structural approach.

Section 5–7 Troubleshooting

 1. Common gate failures are input or output open; input or output shorted to ground.

 2. Input shorted to VCC causes output to be stuck LOW.

 3. (a) G4 output is HIGH until rising edge of seventh pulse, then it goes LOW.

(b) G4 output is the same as input D.

(c) G4 output is the inverse of the G2 output shown in Figure 5–49(b).

RELATED PROBLEMS FOR EXAMPLES

 5–1 X = AB + AC + BC

 5–2 X = AB + AC + BC

 If A = 0 and B = 0, X = 0 # 0 + 0 # 1 + 0 # 1 = 0 = 1

 If A = 0 and C = 0, X = 0 # 1 + 0 # 0 + 1 # 0 = 0 = 1

 If B = 0 and C = 0, X = 1 # 0 + 1 # 0 + 0 # 0 = 0 = 1

 5–3 Determine the even-parity output for all 16 input combinations. Each combination should

have an even number of 1s including the parity bit.

 5–4 Apply codes with odd number of 1s and verify output is 1.

 5–5 Cannot be simplified

 5–6 Cannot be simplified

 5–7 X = A + B + C + D is valid.

 5–8 See Figure 5–75.

X = C (A + B)(B + D)

A

B

D

C

FIGURE 5–75

Answers 311

 5–11 X = (A + B + C) + (D + E + F) = (A + B + C)(D + E + F) = (A B + C)(D E + F)

 5–12 See Figure 5–77.

 5–13 See Figure 5–78.

 5–9 X = (ABC)(DEF) = (AB)C + (DE)F = (A + B)C + (D + E)F

 5–10 See Figure 5–76.

ABC + DE

B
C

E

B

D

E

ABC + D + E
D

A

(b)

C

A

(a)

FIGURE 5–76

A
HIGH

B

C

X

FIGURE 5–77

A

B

X

FIGURE 5–78

 5–14 See Figure 5–79.

 5–15 See Figure 5–80.

A

B

C

D

Y1

X

Y2

Y3

Y4

FIGURE 5–79

A

B

C

D

X

FIGURE 5–80

 5–16 G5: NAND_gate2 port map (A 5. IN9, B 5. IN10, X 5. OUT5);

 5–17 See Figure 5–81.

A

B

C

D

G4

FIGURE 5–81

312 Combinational Logic Analysis

TRUE/FALSE QUIZ

 1. F 2. T 3. T 4. F 5. F

 6. T 7. F 8. T 9. F 10. T

SELF-TEST

 1. (c) 2. (d) 3. (a) 4. (a) 5. (c) 6. (a) 7. (a) 8. (d)

 9. (d) 10. (e) 11. (e) 12. (c)

313

CHAPTER OUTLINE

6–1 Half and Full Adders

6–2 Parallel Binary Adders

6–3 Ripple Carry and Look-Ahead Carry Adders

6–4 Comparators

6–5 Decoders

6–6 Encoders

6–7 Code Converters

6–8 Multiplexers (Data Selectors)

6–9 Demultiplexers

6–10 Parity Generators/Checkers

6–11 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Distinguish between half-adders and full-adders

■ Use full-adders to implement multibit parallel binary

adders

■ Explain the differences between ripple carry and

look-ahead carry parallel adders

■ Use the magnitude comparator to determine the

relationship between two binary numbers and use

cascaded comparators to handle the comparison of

larger numbers

■ Implement a basic binary decoder

■ Use BCD-to-7-segment decoders in display

systems

■ Apply a decimal-to-BCD priority encoder in a

simple keyboard application

■ Convert from binary to Gray code, and Gray code

to binary by using logic devices

■ Apply data selectors/multiplexers in multiplexed

displays and as a function generator

■ Use decoders as demultiplexers

■ Explain the meaning of parity

■ Use parity generators and checkers to detect bit

errors in digital systems

■ Describe a simple data communications system

■ Write VHDL programs for several logic functions

■ Identify glitches, common bugs in digital systems

KEY TERMS

Key terms are in order of appearance in the chapter.

Functions of
Combinational Logic

6

■ Half-adder

■ Full-adder

■ Cascading

■ Ripple carry

■ Look-ahead carry

■ Comparator

■ Decoder

■ Encoder

■ Priority encoder

■ Multiplexer (MUX)

■ Demultiplexer

(DEMUX)

■ Parity bit

■ Glitch

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In this chapter, several types of combinational

logic functions are introduced including adders,

comparators, decoders, encoders, code converters,

multiplexers (data selectors), demultiplexers, and

parity generators/checkers. VHDL implementation

of each logic function is provided, and examples

of fixed-function IC devices are included. Each

 device introduced may also be available in other

logic families.

CHAPTER

314 Functions of Combinational Logic

6–1 Half and Full Adders

Adders are important in computers and also in other types of digital systems in which

numerical data are processed. An understanding of the basic adder operation is funda-

mental to the study of digital systems. In this section, the half-adder and the full-adder are

introduced.

After completing this section, you should be able to

u Describe the function of a half-adder

u Draw a half-adder logic diagram

u Describe the function of the full-adder

u Draw a full-adder logic diagram using half-adders

u Implement a full-adder using AND-OR logic

The Half-Adder

Recall the basic rules for binary addition as stated in Chapter 2.

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

The operations are performed by a logic circuit called a half-adder.

The half-adder accepts two binary digits on its inputs and produces two binary

digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6–1.

A half-adder adds two bits and
produces a sum and an output carry.

Σ

A

B Cout

Σ Sum

Carry

OutputsInput bits

FIGURE 6–1 Logic symbol for a half-adder. Open file F06-01 to verify operation.

A Multisim tutorial is available on the website.

Half-Adder Logic

From the operation of the half-adder as stated in Table 6–1, expressions can be derived for

the sum and the output carry as functions of the inputs. Notice that the output carry (Cout)

is a 1 only when both A and B are 1s; therefore, Cout can be expressed as the AND of the

input variables.

 Cout � AB Equation 6–1

Now observe that the sum output (©) is a 1 only if the input variables, A and B, are not

equal. The sum can therefore be expressed as the exclusive-OR of the input variables.

 π � A ¢ B Equation 6–2

From Equations 6–1 and 6–2, the logic implementation required for the half-adder func-

tion can be developed. The output carry is produced with an AND gate with A and B on the

TABLE 6–1

Half-adder truth table.

A B Cout π

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

© = sum

Cout = output carry

A and B = input variables (operands)

 Half and Full Adders 315

inputs, and the sum output is generated with an exclusive-OR gate, as shown in Figure 6–2.

Remember that the exclusive-OR can be implemented with AND gates, an OR gate, and

inverters.

Cout = AB

Σ = A ⊕ B = AB + AB

A

B

FIGURE 6–2 Half-adder logic diagram.

The Full-Adder

The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output

and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an

input carry. A logic symbol for a full-adder is shown in Figure 6–3, and the truth table in

Table 6–2 shows the operation of a full-adder.

A full-adder has an input carry while
the half-adder does not.

TABLE 6–2

Full-adder truth table.

A B Cin Cout π

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cin = input carry, sometimes designated as CI

Cout = output carry, sometimes designated as CO

© = sum

A and B = input variables (operands)

Σ
A

Cin

Cout

Σ Sum

Output carry

Input
bits

B

Input carry

FIGURE 6–3 Logic symbol for a full-adder. Open file F06-03 to verify operation.

Full-Adder Logic

The full-adder must add the two input bits and the input carry. From the half-adder you

know that the sum of the input bits A and B is the exclusive-OR of those two variables,

A � B. For the input carry (Cin) to be added to the input bits, it must be exclusive-ORed

with A � B, yielding the equation for the sum output of the full-adder.

 π � (A ¢ B) ¢ Cin Equation 6–3

316 Functions of Combinational Logic

This means that to implement the full-adder sum function, two 2-input exclusive-OR gates

can be used. The first must generate the term A � B, and the second has as its inputs the

output of the first XOR gate and the input carry, as illustrated in Figure 6–4(a).

Cin

B

A

Σ = (A ⊕ B) ⊕ Cin

A ⊕ B

(a) Logic required to form the sum of three bits

Cin

B

A A ⊕ B

(A ⊕ B)Cin

AB

Cout = AB + (A ⊕ B)Cin

(b) Complete logic circuit for a full-adder (each half-adder is enclosed
by a shaded area)

Σ = (A ⊕ B) ⊕ Cin

FIGURE 6–4 Full-adder logic. Open file F06-04 to verify operation.

(b) Full-adder logic symbol

Input
carry, Cin

AB

(a) Arrangement of two half-adders to form a full-adder

A ⊕ B
Σ

A

B Cout

Σ
Sum
(A ⊕ B) ⊕ Cin

Output carry, Cout

Σ

A

B Cout

Σ

Half-adder Half-adder

AB + (A ⊕ B)Cin

(A ⊕ B)Cin
Σ

A

Cin

Cout

Σ

B

A

B

FIGURE 6–5 Full-adder implemented with half-adders.

The output carry is a 1 when both inputs to the first XOR gate are 1s or when both inputs

to the second XOR gate are 1s. You can verify this fact by studying Table 6–2. The output

carry of the full-adder is therefore produced by input A ANDed with input B and A � B

ANDed with Cin. These two terms are ORed, as expressed in Equation 6–4. This function

is implemented and combined with the sum logic to form a complete full-adder circuit, as

shown in Figure 6–4(b).

 Cout � AB � (A ¢ B)Cin Equation 6–4

Notice in Figure 6–4(b) there are two half-adders, connected as shown in the block

diagram of Figure 6–5(a), with their output carries ORed. The logic symbol shown in Fig-

ure 6–5(b) will normally be used to represent the full-adder.

EXAMPLE 6–1

For each of the three full-adders in Figure 6–6, determine the outputs for the inputs shown.

(a)

Σ
A

Cin

Cout

Σ

B

1

0

0

(b)

Σ
A

Cin

Cout

Σ

B

1

0

1

(c)

Σ
A

Cin

Cout

Σ

B

1

1

0

FIGURE 6–6

 Parallel Binary Adders 317

Solution

(a) The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry

 Therefore, © = 1 and Cout = 0.

(b) The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1

 Therefore, © = 0 and Cout = 1.

(c) The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1

 Therefore, © = 0 and Cout = 1.

Related Problem*

What are the full-adder outputs for A = 1, B = 1, and Cin = 1?

*Answers are at the end of the chapter.

SECTION 6–1 CHECKUP

Answers are at the end of the chapter.

 1. Determine the sum (©) and the output carry (Cout) of a half-adder for each set of

input bits:

(a) 01 (b) 00 (c) 10 (d) 11

 2. A full-adder has Cin = 1. What are the sum (©) and the output carry (Cout) when

A = 1 and B = 1?

6–2 Parallel Binary Adders

Two or more full-adders are connected to form parallel binary adders. In this section,

you will learn the basic operation of this type of adder and its associated input and output

functions.

After completing this section, you should be able to

u Use full-adders to implement a parallel binary adder

u Explain the addition process in a parallel binary adder

u Use the truth table for a 4-bit parallel adder

u Apply two 74HC283s for the addition of two 8-bit numbers

u Expand the 4-bit adder to accommodate 8-bit or 16-bit addition

u Use VHDL to describe a 4-bit parallel adder

As you learned in Section 6–1, a single full-adder is capable of adding two 1-bit num-

bers and an input carry. To add binary numbers with more than one bit, you must use

additional full-adders. When one binary number is added to another, each column gener-

ates a sum bit and a 1 or 0 carry bit to the next column to the left, as illustrated here with

2-bit numbers.

InfoNote

Addition is performed by

processors on two numbers at a

time, called operands. The source

operand is a number that is to be

added to an existing number called

the destination operand, which is

held in an ALU register, such as

the accumulator. The sum of the

two numbers is then stored back

in the accumulator. Addition is

performed on integer numbers or

floating-point numbers using ADD

or FADD instructions respectively.

318 Functions of Combinational Logic

To add two binary numbers, a full-adder (FA) is required for each bit in the numbers. So

for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so

on. The carry output of each adder is connected to the carry input of the next higher-order

adder, as shown in Figure 6–7 for a 2-bit adder. Notice that either a half-adder can be used

for the least significant position or the carry input of a full-adder can be made 0 (grounded)

because there is no carry input to the least significant bit position.

1
1

1

+ 01

100
In this case, the

carry bit from

second column

becomes a sum bit.

Carry bit from right column

In Figure 6–7 the least significant bits (LSB) of the two numbers are represented by A1

and B1. The next higher-order bits are represented by A2 and B2. The three sum bits are

©1, ©2, and ©3. Notice that the output carry from the left-most full-adder becomes the

most significant bit (MSB) in the sum, ©3.

A2 B2 A1 B1

0

(MSB) Σ2Σ3 Σ1 (LSB)

FA1FA2

General format, addition
of two 2-bit numbers:

A2A1

+ B2B1

Σ3Σ2Σ1

A

Σ

BA

Σ

B Cin Cin

Cout Cout

FIGURE 6–7 Block diagram of a basic 2-bit parallel adder using two full-adders.

Open file F06-07 to verify operation.

EXAMPLE 6–2

Determine the sum generated by the 3-bit parallel adder in Figure 6–8 and show the

intermediate carries when the binary numbers 101 and 011 are being added.

1

Σ2 Σ1

0

1

0

Σ3Σ4

01

1001

11

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

FA1FA2FA3

FIGURE 6–8

 Parallel Binary Adders 319

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with

four full-adder stages as shown in Figure 6–9. Again, the LSBs (A1 and B1) in each number

being added go into the right-most full-adder; the higher-order bits are applied as shown

to the successively higher-order adders, with the MSBs (A4 and B4) in each number being

applied to the left-most full-adder. The carry output of each adder is connected to the carry

input of the next higher-order adder as indicated. These are called internal carries.

Solution

The LSBs of the two numbers are added in the right-most full-adder. The sum bits and

the intermediate carries are indicated in blue in Figure 6–8.

Related Problem

What are the sum outputs when 111 and 101 are added by the 3-bit parallel adder?

A2 B2 A1 B1

Σ2 Σ1

(LSB)FA1FA2

A3 B3A4 B4

Σ3
Σ4

C4

(a) Block diagram

C0

C1C2C3

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4
Output
carry

Binary
number A

Input
carry

4-bit
sum

(b) Logic symbol

Binary
number B

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

(MSB) FA4 FA3

FIGURE 6–9 A 4-bit parallel adder.

In keeping with most manufacturers’ data sheets, the input labeled C0 is the input carry

to the least significant bit adder; C4, in the case of four bits, is the output carry of the most

significant bit adder; and ©1 (LSB) through ©4 (MSB) are the sum outputs. The logic

symbol is shown in Figure 6–9(b).

In terms of the method used to handle carries in a parallel adder, there are two types:

the ripple carry adder and the carry look-ahead adder. These are discussed in Section 6–3.

Truth Table for a 4-Bit Parallel Adder

Table 6–3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be called

function tables or functional truth tables. The subscript n represents the adder bits and

can be 1, 2, 3, or 4 for the 4-bit adder. Cn-1 is the carry from the previous adder. Carries

C1, C2, and C3 are generated internally. C0 is an external carry input and C4 is an output.

Example 6–3 illustrates how to use Table 6–3.

TABLE 6–3

Truth table for each stage of
a 4-bit parallel adder.

Cn� 1 An Bn πn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

EXAMPLE 6–3

Use the 4-bit parallel adder truth table (Table 6–3) to find the sum and output carry for

the addition of the following two 4-bit numbers if the input carry (Cn-1) is 0:

A4A3A2A1 = 1100 and B4B3B2B1 = 1100

320 Functions of Combinational Logic

Solution

For n = 1: A1 = 0, B1 = 0, and Cn-1 = 0. From the 1st row of the table,

©1 = 0 and C1 = 0

For n = 2: A2 = 0, B2 = 0, and Cn-1 = 0. From the 1st row of the table,

©2 = 0 and C2 = 0

For n = 3: A3 = 1, B3 = 1, and Cn-1 = 0. From the 4th row of the table,

©3 = 0 and C3 = 1

For n = 4: A4 = 1, B4 = 1, and Cn-1 = 1. From the last row of the table,

©4 = 1 and C4 = 1

C4 becomes the output carry; the sum of 1100 and 1100 is 11000.

Related Problem

Use the truth table (Table 6–3) to find the result of adding the binary numbers 1011

and 1010.

IMPLEMENTATION: 4-BIT PARALLEL ADDER

Fixed-Function Device The 74HC283 and the 74LS283 are 4-bit parallel adders with

identical package pin configurations. The logic symbol and package pin configuration are

shown in Figure 6–10. Go to ti.com for data sheet information.

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(4)

(1)

(13)

(10)

(7) (9)

VCC

(8)

GND

(b) Logic symbol

VCC16

Σ3

A3

B3

GND

B4

C4

B2

Σ2

A2

B1

C0

Σ1

Σ4

A1 A4

(a) Pin diagram

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Σ

(16)

FIGURE 6–10 The 74HC283/74LS283 4-bit parallel adder.

Programmable Logic Device (PLD) A 4-bit adder can be described using VHDL and

implemented in a PLD. First, the data flow approach is used to describe the full adder,

which is shown in Figure 6–4(b), for use as a component. (Blue text comments are not part

of the program.)

entity FullAdder is

 port (A, B, CIN: in bit; SUM, COUT: out bit);

end entity FullAdder;

Inputs and outputs declared

 Parallel Binary Adders 321

architecture LogicOperation of FullAdder is

begin

SUM 6= (A xor B) xor CIN;

COUT 6= ((A xor B) and CIN) or (A and B);

end architecture LogicOperation;

Next, the FullAdder program code is used as a component in a VHDL structural approach

to the 4-bit full-adder in Figure 6–9(a).

entity 4BitFullAdder is

 port (A1, A2, A3, A4, B1, B2, B3, B4, C0: in bit; S1, S2, S3, S4, C4: out bit);

end entity 4BitFullAdder;

architecture LogicOperation of 4BitFullAdder is

 component FullAdder is

 port (A, B, CIN: in bit; SUM, COUT: out bit);

 end component FullAdder;

 signal Cl, C2, C3: bit;

begin

FA1: FullAdder port map (A =7 A1, B =7 B1, CIN =7 C0, SUM =7 S1, COUT =7 Cl);

FA2: FullAdder port map (A =7 A2, B =7 B2, CIN =7 C1, SUM =7 S2, COUT =7 C2);

FA3: FullAdder port map (A =7 A3, B =7 B3, CIN =7 C2, SUM =7 S3, COUT =7 C3);

FA4: FullAdder port map (A =7 A4, B =7 B4, CIN =7 C3, SUM =7 S4, COUT =7 C4);

end architecture LogicOperation;

Boolean expressions for

the outputs¸
˝
˛

A1-A4: Inputs

B1-B4: Inputs

C0: Carry input

S1-S4: Sum outputs

C4: Carry output

¸
˚
˝
˚
˛

Full-adder component

 declaration

Instantiations for each of

the four full adders

¸
˚

˝
˚

˛

Adder Expansion

The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by

using two 4-bit adders. The carry input of the low-order adder (C0) is connected to ground

because there is no carry into the least significant bit position, and the carry output of the

low-order adder is connected to the carry input of the high-order adder, as shown in Fig-

ure 6–11. This process is known as cascading. Notice that, in this case, the output carry is

designated C8 because it is generated from the eighth bit position. The low-order adder is

Adders can be expanded to handle
more bits by cascading.

Σ8 Σ7 Σ6 Σ5

1234

C8

Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

Σ4 Σ3 Σ2 Σ1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ

AB

Σ

FIGURE 6–11 Cascading of two 4-bit adders to form an 8-bit adder.

322 Functions of Combinational Logic

the one that adds the lower or less significant four bits in the numbers, and the high-order

adder is the one that adds the higher or more significant four bits in the 8-bit numbers.

Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers.

EXAMPLE 6–4

Show how two 74HC283 adders can be connected to form an 8-bit parallel adder. Show output bits for the following 8-bit

input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

Solution

Two 74HC283 4-bit parallel adders are used to implement the 8-bit adder. The only connection between the two 74HC283s

is the carry output (pin 9) of the low-order adder to the carry input (pin 7) of the high-order adder, as shown in Figure 6–12.

Pin 7 of the low-order adder is grounded (no carry input).

The sum of the two 8-bit numbers is

©9©8©7©6©5©4©3©2©1 = 101010111

Σ

A

1

2

3

4

1

0

0

1

B

1

2

3

4

0

1

1

1

C0

Σ

1

2

3

4

1

1

1

0

C40
1

Σ

A

1

2

3

4

1

1

0

1

B

1

2

3

4

1

0

0

1

C0

Σ

1

2

3

4

1

0

1

0

C4
1

Low-order adder High-order adder

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(4)

(1)

(13)

(10)

(4)

(1)

(13)

(10)

(7)(9) (9)(7)

A1

A2

A3

A4

B1

B2

B3

B4

Σ1

Σ2

Σ3

Σ4

A5

A6

A7

A8

B5

B6

B7

B8

Σ5

Σ6

Σ7

Σ8

Σ9

FIGURE 6–12 Two 74HC283 adders connected as an 8-bit parallel adder (pin

numbers are in parentheses).

Related Problem

Use 74HC283 adders to implement a 12-bit parallel adder.

An Application

An example of full-adder and parallel adder application is a simple voting system that

can be used to simultaneously provide the number of “yes” votes and the number of “no”

votes. This type of system can be used where a group of people are assembled and there is

a need for immediately determining opinions (for or against), making decisions, or voting

on certain issues or other matters.

In its simplest form, the system includes a switch for “yes” or “no” selection at each

position in the assembly and a digital display for the number of yes votes and one for the

number of no votes. The basic system is shown in Figure 6–13 for a 6-position setup, but it

can be expanded to any number of positions with additional 6-position modules and addi-

tional parallel adder and display circuits.

 Parallel Binary Adders 323

In Figure 6–13 each full-adder can produce the sum of up to three votes. The sum

and output carry of each full-adder then goes to the two lower-order inputs of a parallel

binary adder. The two higher-order inputs of the parallel adder are connected to ground

(0) because there is never a case where the binary input exceeds 0011 (decimal 3). For

this basic 6-position system, the outputs of the parallel adder go to a BCD-to-7-segment

decoder that drives the 7-segment display. As mentioned, additional circuits must be

included when the system is expanded.

The resistors from the inputs of each full-adder to ground assure that each input is LOW

when the switch is in the neutral position (CMOS logic is used). When a switch is moved

to the “yes” or to the “no” position, a HIGH level (VCC) is applied to the associated full-

adder input.

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Parallel adder 1

Σ
A

Cin

Cout

Σ

B

Σ
A

Cin

Cout

Σ

B

Full-adder 1

Full-adder 2

BCD
to

7-segment
decoder

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES logic

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Parallel adder 2

Σ

A

Cin

Cout

Σ

B

Σ
A

Cin

Cout

Σ

B

Full-adder 3

Full-adder 4

BCD
to

7-segment
decoder

330 Ω resistors (typical)

NO logic

1.0 k�

VCC

Six-Position Adder Module

Switches

NO

YES

100 kΩ resistors should be connected from the inputs of the

CMOS full-adders to ground.

FIGURE 6–13 A voting system using full-adders and parallel binary adders.

324 Functions of Combinational Logic

SECTION 6–2 CHECKUP

 1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit parallel adder. The input

carry is 1. Determine the sum (©) and the output carry.

 2. How many 74HC283 adders would be required to add two binary numbers each rep-

resenting decimal numbers up through 100010?

6–3 Ripple Carry and Look-Ahead Carry Adders

As mentioned in the last section, parallel adders can be placed into two categories based

on the way in which internal carries from stage to stage are handled. Those categories are

ripple carry and look-ahead carry. Externally, both types of adders are the same in terms of

inputs and outputs. The difference is the speed at which they can add numbers. The look-

ahead carry adder is much faster than the ripple carry adder.

After completing this section, you should be able to

u Discuss the difference between a ripple carry adder and a look-ahead carry adder

u State the advantage of look-ahead carry addition

u Define carry generation and carry propagation and explain the difference

u Develop look-ahead carry logic

u Explain why cascaded 74HC283s exhibit both ripple carry and look-ahead carry

properties

The Ripple Carry Adder

A ripple carry adder is one in which the carry output of each full-adder is connected to

the carry input of the next higher-order stage (a stage is one full-adder). The sum and the

output carry of any stage cannot be produced until the input carry occurs; this causes a time

delay in the addition process, as illustrated in Figure 6–14. The carry propagation delay

for each full-adder is the time from the application of the input carry until the output carry

occurs, assuming that the A and B inputs are already present.

1

1

1

1

1

1

MSB

010111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

01

1

A

Σ

B Cin

Cout

LSB

1
1

8 ns8 ns8 ns8 ns

FA1FA2FA3FA4

32 ns

FIGURE 6–14 A 4-bit parallel ripple carry adder showing “worst-case” carry propagation

delays.

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is

applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces

an output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output

 Ripple Carry and Look-Ahead Carry Adders 325

carry is produced by FA1 followed by an output carry from FA2, and so on. As you can

see in Figure 6–14, the input carry to the least significant stage has to ripple through all the

adders before a final sum is produced. The cumulative delay through all the adder stages is

a “worst-case” addition time. The total delay can vary, depending on the carry bit produced

by each full-adder. If two numbers are added such that no carries (0) occur between stages,

the addition time is simply the propagation time through a single full-adder from the appli-

cation of the data bits on the inputs to the occurrence of a sum output; however, worst-case

addition time must always be assumed.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required for the

carries to propagate, or ripple, through all the stages of a parallel adder. One method of speed-

ing up the addition process by eliminating this ripple carry delay is called look-ahead carry

addition. The look-ahead carry adder anticipates the output carry of each stage, and based on

the inputs, produces the output carry by either carry generation or carry propagation.

Carry generation occurs when an output carry is produced (generated) internally by

the full-adder. A carry is generated only when both input bits are 1s. The generated carry,

Cg, is expressed as the AND function of the two input bits, A and B.

 Cg � AB Equation 6–5

Carry propagation occurs when the input carry is rippled to become the output carry.

An input carry may be propagated by the full-adder when either or both of the input bits are

1s. The propagated carry, Cp, is expressed as the OR function of the input bits.

 Cp � A � B Equation 6–6

The conditions for carry generation and carry propagation are illustrated in Figure 6–15.

The three arrowheads symbolize ripple (propagation).

0 1 1

1

Generated
carry

1

Propagated
carry

1

Propagated carry/
Generated carry

1011111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

10

A

Σ

B Cin

Cout

1

Propagated
carry

FIGURE 6–15 Illustration of conditions for carry generation and carry propagation.

The output carry of a full-adder can be expressed in terms of both the generated carry

(Cg) and the propagated carry (Cp). The output carry (Cout) is a 1 if the generated carry is

a 1 OR if the propagated carry is a 1 AND the input carry (Cin) is a 1. In other words, we

get an output carry of 1 if it is generated by the full-adder (A = 1 AND B = 1) or if the

adder propagates the input carry (A = 1 OR B = 1) AND Cin = 1. This relationship is

expressed as

 Cout � Cg � CpCin Equation 6–7

Now let’s see how this concept can be applied to a parallel adder, whose individual

stages are shown in Figure 6–16 for a 4-bit example. For each full-adder, the output carry is

326 Functions of Combinational Logic

Based on this analysis, we can now develop expressions for the output carry, Cout, of

each full-adder stage for the 4-bit example.

Full-adder 1:

Cout1 = Cg1 + Cp1Cin1

Full-adder 2:

 Cin2 = Cout1

 Cout2 = Cg2 + Cp2Cin2 = Cg2 + Cp2Cout1 = Cg2 + Cp2(Cg1 + Cp1Cin1)

 = Cg2 + Cp2Cg1 + Cp2Cp1Cin1

Full-adder 3:

Cin3 = Cout2

 Cout3 = Cg3 + Cp3Cin3 = Cg3 + Cp3Cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

= Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1

Full-adder 4:

Cin4 = Cout3

Cout4 = Cg4 + Cp4Cin4 = Cg4 + Cp4Cout3

= Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

= Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1

Notice that in each of these expressions, the output carry for each full-adder stage is

dependent only on the initial input carry (Cin1), the Cg and Cp functions of that stage, and

the Cg and Cp functions of the preceding stages. Since each of the Cg and Cp functions can

be expressed in terms of the A and B inputs to the full-adders, all the output carries are

immediately available (except for gate delays), and you do not have to wait for a carry to

ripple through all the stages before a final result is achieved. Thus, the look-ahead carry

technique speeds up the addition process.

The Cout equations are implemented with logic gates and connected to the full-adders to

create a 4-bit look-ahead carry adder, as shown in Figure 6–17.

A2 B2

Cin2

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FA1FA2FA3FA4

Cout4

A4 B4

Cin4

A3 B3

Cin3

A1 B1

Cin1

Cout3 Cout2 Cout1

Full-adder 4

Cg4 = A4B4

Cp4 = A4 + B4

Full-adder 3

Cg3 = A3B3

Cp3 = A3 + B3

Full-adder 2

Cg2 = A2B2

Cp2 = A2 + B2

Full-adder 1

Cg1 = A1B1

Cp1 = A1 + B1

FIGURE 6–16 Carry generation and carry propagation in terms of the input bits to

a 4-bit adder.

dependent on the generated carry (Cg), the propagated carry (Cp), and its input carry (Cin).

The Cg and Cp functions for each stage are immediately available as soon as the input bits

A and B and the input carry to the LSB adder are applied because they are dependent only

on these bits. The input carry to each stage is the output carry of the previous stage.

 Comparators 327

Combination Look-Ahead and Ripple Carry Adders

As with most fixed-function IC adders, the 74HC283 4-bit adder that was introduced in

Section 6–2 is a look-ahead carry adder. When these adders are cascaded to expand their

capability to handle binary numbers with more than four bits, the output carry of one adder

is connected to the input carry of the next. This creates a ripple carry condition between

the 4-bit adders so that when two or more 74HC283s are cascaded, the resulting adder is

actually a combination look-ahead and ripple carry adder. The look-ahead carry operation

is internal to each MSI adder and the ripple carry feature comes into play when there is a

carry out of one of the adders to the next one.

A

Σ

B

Cin

A4 B4 A3 B3 A2 B2 A1 B1

Σ4(MSB) Σ1(LSB)

A

Σ

B

Cin

A

Σ

B

Cin

A

Σ

B

Cin Cin1

Cg4

Cp4

Cg3

Cp3

Cg2

Cp2

Cg1

Cp1

Cout3

Cout2

Cout1

Cout4

Σ3 Σ2

FIGURE 6–17 Logic diagram for a 4-stage look-ahead carry adder.

SECTION 6–3 CHECKUP

 1. The input bits to a full-adder are A = 1 and B = 0. Determine Cg and Cp.

 2. Determine the output carry of a full-adder when Cin = 1, Cg = 0, and Cp = 1.

6–4 Comparators

The basic function of a comparator is to compare the magnitudes of two binary quantities

to determine the relationship of those quantities. In its simplest form, a comparator circuit

determines whether two numbers are equal.

After completing this section, you should be able to

u Use the exclusive-NOR gate as a basic comparator

u Analyze the internal logic of a magnitude comparator that has both equality and

inequality outputs

u Apply the 74HC85 comparator to compare the magnitudes of two 4-bit numbers

u Cascade 74HC85s to expand a comparator to eight or more bits

u Use VHDL to describe a 4-bit magnitude comparator

328 Functions of Combinational Logic

In order to compare binary numbers containing two bits each, an additional exclusive-

NOR gate is necessary. The two least significant bits (LSBs) of the two numbers are com-

pared by gate G1, and the two most significant bits (MSBs) are compared by gate G2, as

shown in Figure 6–19. If the two numbers are equal, their corresponding bits are the same,

and the output of each exclusive-NOR gate is a 1. If the corresponding sets of bits are not

equal, a 0 occurs on that exclusive-NOR gate output.

Equality

As you learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator

because its output is a 0 if the two input bits are not equal and a 1 if the input bits are equal.

Figure 6–18 shows the exclusive-NOR gate as a 2-bit comparator.

0
1

0
The input bits are not equal.

1
1

1
The input bits are equal.

1
0

0
The input bits are equal.

0
0

1
The input bits are not equal.

FIGURE 6–18 Basic comparator operation.

General format: Binary number A → A1A0

Binary number B → B1B0

A0

B0

A1

B1

A = B
HIGH indicates equality.

G1

G2MSBs

LSBs

FIGURE 6–19 Logic diagram for equality comparison of two 2-bit numbers. Open

file F06-19 to verify operation.

In order to produce a single output indicating an equality or inequality of two numbers,

an AND gate can be combined with XNOR gates, as shown in Figure 6–19. The output of

each exclusive-NOR gate is applied to the AND gate input. When the two input bits for

each exclusive-NOR are equal, the corresponding bits of the numbers are equal, producing

a 1 on both inputs to the AND gate and thus a 1 on the output. When the two numbers are

not equal, one or both sets of corresponding bits are unequal, and a 0 appears on at least

one input to the AND gate to produce a 0 on its output. Thus, the output of the AND gate

indicates equality (1) or inequality (0) of the two numbers. Example 6–5 illustrates this

operation for two specific cases.

A comparator determines if two
 binary numbers are equal or
 unequal.

EXAMPLE 6–5

Apply each of the following sets of binary numbers to the comparator inputs in Figure 6–20, and determine the output by

following the logic levels through the circuit.

(a) 10 and 10 (b) 11 and 10

A0 = 1

B0 = 0

A1 = 1

B1 = 1

0 → not equal

0

1

(b)

A0 = 0

B0 = 0

A1 = 1

B1 = 1

1 → equal

1

1

(a)

FIGURE 6–20

 Comparators 329

As you know from Chapter 3, the basic comparator can be expanded to any number of

bits. The AND gate sets the condition that all corresponding bits of the two numbers must

be equal if the two numbers themselves are equal.

Inequality

In addition to the equality output, fixed-function comparators can provide additional out-

puts that indicate which of the two binary numbers being compared is the larger. That is,

there is an output that indicates when number A is greater than number B (A 7 B) and an

output that indicates when number A is less than number B (A 6 B), as shown in the logic

symbol for a 4-bit comparator in Figure 6–21.

To determine an inequality of binary numbers A and B, you first examine the highest-

order bit in each number. The following conditions are possible:

 1. If A3 = 1 and B3 = 0, number A is greater than number B.

 2. If A3 = 0 and B3 = 1, number A is less than number B.

 3. If A3 = B3, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general pro-

cedure used in a comparator is to check for an inequality in a bit position, starting with

the highest-order bits (MSBs). When such an inequality is found, the relationship of the

two numbers is established, and any other inequalities in lower-order bit positions must be

ignored because it is possible for an opposite indication to occur; the highest-order indica-

tion must take precedence.

Solution

(a) The output is 1 for inputs 10 and 10, as shown in Figure 6–20(a).

(b) The output is 0 for inputs 11 and 10, as shown in Figure 6–20(b).

Related Problem

Repeat the process for binary inputs of 01 and 10.

InfoNote

In a computer, the cache is a very

fast intermediate memory between

the central processing unit (CPU)

and the slower main memory. The

CPU requests data by sending

out its address (unique location)

in memory. Part of this address

is called a tag. The tag address

comparator compares the tag from

the CPU with the tag from the

cache directory. If the two agree,

the addressed data is already in the

cache and is retrieved very quickly.

If the tags disagree, the data

must be retrieved from the main

memory at a much slower rate.

A0

A1

A2

A3

B0

B1

B2

B3

A

0

3

B

0

3

COMP

A > B

A = B

A < B

FIGURE 6–21 Logic symbol for

a 4-bit comparator with inequality

indication.

EXAMPLE 6–6

Determine the A = B, A 7 B, and A 6 B outputs for the input numbers shown on the

comparator in Figure 6–22.

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

FIGURE 6–22

Solution

The number on the A inputs is 0110 and the number on the B inputs is 0011. The A + B

output is HIGH and the other outputs are LOW.

Related Problem

What are the comparator outputs when A3A2A1A0 = 1001 and B3B2B1B0 = 1010?

330 Functions of Combinational Logic

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

(10)

(12)

(13)

(15)

(11)

(14)

(1)

(4)

(3)

(2)

(9)

(5)

(6)

(7)
Outputs

Cascading
inputs

VCC(16), GND(8)

B3

A < Bin

A = Bin

A > Bin

A > Bout

A = Bout

A < Bout

GND

VCC

A3

B2

A2

A1

B1

A0

B0

(a) Pin diagram (b) Logic symbol

A

0

3

B

0

3

COMP

A > B

A = B

A < B

A > B

A = B

A < B

FIGURE 6–23 The 74HC85/74LS85 4-bit magnitude comparator.

A1

B1

A0

B0

A2

B2

A3

B3

A = B

FIGURE 6–24

IMPLEMENTATION: 4-BIT MAGNITUDE COMPARATOR

Fixed-Function Device The 74HC85/74LS85 pin diagram and logic symbol are

shown in Figure 6–23. Notice that this device has all the inputs and outputs of the

generalized comparator previously discussed and, in addition, has three cascading

inputs: A 6 B, A = B, A . B. These inputs allow several comparators to be cascaded

for comparison of any number of bits greater than four. To expand the comparator,

the A 6 B, A = B, and A 7 B outputs of the lower-order comparator are connected

to the corresponding cascading inputs of the next higher-order comparator. The low-

est-order comparator must have a HIGH on the A = B input and LOWs on the A 6 B

and A 7 B inputs.

Programmable Logic Device (PLD) A 4-bit magnitude comparator can be described

using VHDL and implemented in a PLD. The following VHDL program uses the data flow

approach to implement a simplified comparator (A = B output only) in Figure 6–24. (The

blue comments are not part of the program.)

entity 4BitComparator is

 port (A0, A1, A2, A3, B0, B1, B2, B3: in bit; AequalB: out bit);

end entity 4BitComparator;

architecture LogicOperation of 4BitComparator is

begin

AequalB 6= (A0 xnor B0) and (A1 xnor B1) and

(A2 xnor B2) and (A3 xnor B);

end architecture LogicOperation;

Output in terms of a

Boolean expression¸
˝
˛

Inputs and outputs declared

 Decoders 331

EXAMPLE 6–7

Use 74HC85 comparators to compare the magnitudes of two 8-bit numbers. Show the

comparators with proper interconnections.

Solution

Two 74HC85s are required to compare two 8-bit numbers. They are connected as

shown in Figure 6–25 in a cascaded arrangement.

A

0

3

B

0

3

COMP

Outputs+5 V

A4

A5

A6

A7

B4

B5

B6

B7

A

0

3

B

0

3

COMP

A > B

A = B

A < B

A > B

A = B

A < B

A0

A1

A2

A3

B0

B1

B2

B3

LSBs MSBs

A > B

A = B

A < B

A > B

A = B

A < B

74HC8574HC85

FIGURE 6–25 An 8-bit magnitude comparator using two 74HC85s.

Related Problem

Expand the circuit in Figure 6–25 to a 16-bit comparator.

Most CMOS devices contain protection circuitry to guard against damage from high static voltages or
electric fields. However, precautions must be taken to avoid applications of any voltages higher than
maximum rated voltages. For proper operation, input and output voltages should be between ground
and VCC. Also, remember that unused inputs must always be connected to an appropriate logic level
(ground or VCC). Unused outputs may be left open.

SECTION 6–4 CHECKUP

 1. The binary numbers A = 1011 and B = 1010 are applied to the inputs of a 74HC85.

Determine the outputs.

 2. The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit

comparator in Figure 6–25. Determine the states of the outputs on each comparator.

6–5 Decoders

A decoder is a digital circuit that detects the presence of a specified combination of bits

(code) on its inputs and indicates the presence of that code by a specified output level. In

its general form, a decoder has n input lines to handle n bits and from one to 2n output lines

to indicate the presence of one or more n-bit combinations. In this section, three fixed-

function IC decoders are introduced. The basic principles can be extended to other types

of decoders.

332 Functions of Combinational Logic

After completing this section, you should be able to

u Define decoder

u Design a logic circuit to decode any combination of bits

u Describe the 74HC154 binary-to-decimal decoder

u Expand decoders to accommodate larger numbers of bits in a code

u Describe the 74HC42 BCD-to-decimal decoder

u Describe the 74HC47 BCD-to-7-segment decoder

u Discuss zero suppression in 7-segment displays

u Use VHDL to describe various types of decoders

u Apply decoders to specific applications

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-

cuit. An AND gate can be used as the basic decoding element because it produces a HIGH

output only when all of its inputs are HIGH. Therefore, you must make sure that all of the

inputs to the AND gate are HIGH when the binary number 1001 occurs; this can be done

by inverting the two middle bits (the 0s), as shown in Figure 6–26.

1

1

(a)

1

0

0

1

1

A1

A2

(b)

A0

A1

A2

A3

(LSB)

(MSB)

X = A3A2A1A0

FIGURE 6–26 Decoding logic for the binary code 1001 with an active-HIGH output.

InfoNote

An instruction tells the processor

what operation to perform.

Instructions are in machine

code (1s and 0s) and, in order

for the processor to carry out

an instruction, the instruction

must be decoded. Instruction

decoding is one of the steps in

instruction pipelining, which are as

follows: Instruction is read from

the memory (instruction fetch),

instruction is decoded, operand(s)

is (are) read from memory

(operand fetch), instruction is

executed, and result is written back

to memory. Basically, pipelining

allows the next instruction to begin

processing before the current one

is completed.

The logic equation for the decoder of Figure 6–26(a) is developed as illustrated in Figure

6–26(b). You should verify that the output is 0 except when A0 = 1, A1 = 0, A2 = 0, and

A3 = 1 are applied to the inputs. A0 is the LSB and A3 is the MSB. In the representation of

a binary number or other weighted code in this book, the LSB is the right-most bit in a hori-

zontal arrangement and the topmost bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6–26, a LOW output will

indicate the presence of the proper binary code, which is 1001 in this case.

EXAMPLE 6–8

Determine the logic required to decode the binary number 1011 by producing a HIGH

level on the output.

Solution

The decoding function can be formed by complementing only the variables that appear

as 0 in the desired binary number, as follows:

X = A3A2A1A0 (1011)

This function can be implemented by connecting the true (uncomplemented) variables

A0, A1, and A3 directly to the inputs of an AND gate, and inverting the variable A2

before applying it to the AND gate input. The decoding logic is shown in Figure 6–27.

 Decoders 333

The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are

required (24
= 16). This type of decoder is commonly called either a 4-line-to-16-line

decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder because for

any given code on the inputs, one of the sixteen outputs is activated. A list of the sixteen

binary codes and their corresponding decoding functions is given in Table 6–4.

Related Problem

Develop the logic required to detect the binary code 10010 and produce an active-LOW

output.

A2

A0

A1

A2

A3

X = A3A2A1A0

FIGURE 6–27 Decoding logic for producing a HIGH output when 1011 is on the

inputs.

TABLE 6–4

Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

Decimal

Digit

Binary Inputs Decoding

Function

Outputs

A3 A2 A1 A0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 0 0 0 0 A3A2A1A0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 0 0 0 1 A3A2A1A0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 2 0 0 1 0 A3A2A1A0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 3 0 0 1 1 A3A2A1A0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

 4 0 1 0 0 A3A2A1A0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

 5 0 1 0 1 A3A2A1A0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

 6 0 1 1 0 A3A2A1A0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

 7 0 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

 8 1 0 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

 9 1 0 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

If an active-LOW output is required for each decoded number, the entire decoder can be

implemented with NAND gates and inverters. In order to decode each of the sixteen binary

codes, sixteen NAND gates are required (AND gates can be used to produce active-HIGH

outputs).

A logic symbol for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs is

shown in Figure 6–28. The BIN/DEC label indicates that a binary input makes the corre-

sponding decimal output active. The input labels 8, 4, 2, and 1 represent the binary weights

of the input bits (23222120).

334 Functions of Combinational Logic

BIN/DEC
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

4

8

FIGURE 6–28 Logic symbol for a 4-line-to-16-line (1-of-16) decoder. Open file F06-28 to

verify operation.

(a) Pin diagram (b) Logic symbol

(16)

(17)

(13)

(14)

(15)

(1)

(2)

(3)

(4)

(9)

(10)

(11)

(5)

(6)

(7)

(8)

OUT15

OUT12

OUT13

OUT14

OUT1

OUT2

OUT3

OUT4

OUT9

OUT10

OUT11

OUT5

OUT6

OUT7

OUT8

OUT0

EN

&
(18)

(21)

(20)

(23)

(22)

(19)
CS2

CS1

A0

A1

A2

A3

BIN/DEC

4

8

1

2

241OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

GND

VCC

A0

A1

A2

A3

CS2

CS1

OUT15

OUT14

OUT13

OUT12

OUT11

232

223

214

205

196

187

178

169

1510

1411

1312

FIGURE 6–29 The 74HC154 1-of-16 decoder.

IMPLEMENTATION: 1-OF-16 DECODER

Fixed-Function Device The 74HC154 is a good example of a fixed-function IC decoder.

The logic symbol is shown in Figure 6–29. There is an enable function (EN) provided on

this device, which is implemented with a NOR gate used as a negative-AND. A LOW level

on each chip select input, CS1 and CS2, is required in order to make the enable gate output

(EN) HIGH. The enable gate output is connected to an input of each NAND gate in the

decoder, so it must be HIGH for the NAND gates to be enabled. If the enable gate is not

activated by a LOW on both inputs, then all sixteen decoder outputs (OUT) will be HIGH

regardless of the states of the four input variables, A0, A1, A2, and A3.

 Decoders 335

Programmable Logic Device (PLD) The 1-of-16 decoder can be described using VHDL

and implemented as hardware in a PLD. The decoder consists of sixteen 5-input NAND

gates for decoding, a 2-input negative-AND for the enable function, and four inverters.

The following VHDL program code uses the data flow approach. (Blue text comments are

not part of the program.)

entity 1of16Decoder is

 port (A0, A1, A2, A3, CS1, CS2: in bit; OUT0, OUT1, OUT2,

 OUT3, OUT4, OUT5, OUT6, OUT7, OUT8, OUT9, OUT10,

 OUT11, OUT12, OUT13, OUT14, OUT15: out bit);

end entity 1of16Decoder;

architecture LogicOperation of 1of16Decoder is

signal EN: bit;

begin

 OUT0 6= not(not A0 and not A1 and not A2 and not A3 and EN);

 OUT1 6= not(A0 and not A1 and not A2 and not A3 and EN);

 OUT2 6= not(not A0 and A1 and not A2 and not A3 and EN);

 OUT3 6= not(A0 and A1 and not A2 and not A3 and EN);

 OUT4 6= not(not A0 and not A1 and A2 and not A3 and EN);

 OUT5 6= not(A0 and not A1 and A2 and not A3 and EN);

 OUT6 6= not(not A0 and A1 and A2 and not A3 and EN);

 OUT7 6= not(A0 and A1 and A2 and not A3 and EN);

 OUT8 6= not(not A0 and not A1 and not A2 and A3 and EN);

 OUT9 6= not(A0 and not A1 and not A2 and A3 and EN);

 OUT10 6= not(not A0 and A1 and not A2 and A3 and EN);

 OUT11 6= not(A0 and A1 and not A2 and A3 and EN);

 OUT12 6= not(not A0 and not A1 and A2 and A3 and EN);

 OUT13 6= not(A0 and not A1 and A2 and A3 and EN);

 OUT14 6= not(not A0 and A1 and A2 and A3 and EN);

 OUT15 6= not(A0 and A1 and A2 and A3 and EN);

 EN 6= not CS1 and not CS2;

end architecture LogicOperation;

Boolean

 expressions

for the sixteen

outputs

Inputs and outputs

declared

EXAMPLE 6–9

A certain application requires that a 5-bit number be decoded. Use 74HC154 decoders

to implement the logic. The binary number is represented by the format A4A3A2A1A0.

Solution

Since the 74HC154 can handle only four bits, two decoders must be used to form a

5-bit expansion. The fifth bit, A4, is connected to the chip select inputs, CS1 and CS2,

of one decoder, and A4 is connected to the CS1 and CS2 inputs of the other decoder, as

shown in Figure 6–30. When the decimal number is 15 or less, A4 = 0, the low-order

decoder is enabled, and the high-order decoder is disabled. When the decimal number

is greater than 15, A4 = 1 so A4 = 0, the high-order decoder is enabled, and the low-

order decoder is disabled.

¸

˚

˝

˚

˛

336 Functions of Combinational Logic

Related Problem

Determine the output in Figure 6–30 that is activated for the binary input 10110.

BIN/DEC

1

2

4

8

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

High-order
BIN/DEC

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

OUT11

OUT12

OUT13

OUT14

OUT15

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

OUT11

OUT12

OUT13

OUT14

OUT15

1

2

4

8

Low-order

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A0

A1

A2

A3

ENEN

A4

74HC154 74HC154

A4

& &
CS1

CS2

CS1

CS2

FIGURE 6–30 A 5-bit decoder using 74HC154s.

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible deci-

mal digit indications. It is frequently referred as a 4-line-to-10-line decoder or a 1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously dis-

cussed, except that only ten decoding gates are required because the BCD code represents

only the ten decimal digits 0 through 9. A list of the ten BCD codes and their corresponding

decoding functions is given in Table 6–5. Each of these decoding functions is implemented

with NAND gates to provide active-LOW outputs. If an active-HIGH output is required,

AND gates are used for decoding. The logic is identical to that of the first ten decoding

gates in the 1-of-16 decoder (see Table 6–4).

TABLE 6–5

BCD decoding functions.

Decimal

Digit

BCD Code Decoding

FunctionA3 A2 A1 A0

0 0 0 0 0 A3A2A1A0

1 0 0 0 1 A3A2A1A0

2 0 0 1 0 A3A2A1A0

3 0 0 1 1 A3A2A1A0

4 0 1 0 0 A3A2A1A0

5 0 1 0 1 A3A2A1A0

6 0 1 1 0 A3A2A1A0

7 0 1 1 1 A3A2A1A0

8 1 0 0 0 A3A2A1A0

9 1 0 0 1 A3A2A1A0

 Decoders 337

IMPLEMENTATION: BCD-TO-DECIMAL DECODER

Fixed-Function Device The 74HC42 is a fixed-function IC decoder with four BCD in-

puts and ten active-LOW decimal outputs. The logic symbol is shown in Figure 6–31.

BCD/DEC
OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

1

2

4

8

A0

A1

A2

A3

74HC42

(11)

(10)

(9)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(15)

(14)

(13)

(12)

FIGURE 6–31 The 74HC42 BCD-to-decimal decoder.

Programmable Logic Device (PLD) The logic of the BCD-to-decimal decoder is similar

to the 1-of-16 decoder except simpler. In this case, there are ten gates and four inverters

instead of sixteen gates and four inverters. This decoder does not have an enable function.

Using the data flow approach, the VHDL program code for the 1-of-16 decoder can be

simplified to implement the BCD-to-decimal decoder.

entity BCDdecoder is

 port (A0, A1, A2, A3: in bit; OUT0, OUT1, OUT2, OUT3,

 OUT4, OUT5, OUT6, OUT7, OUT8, OUT9: out bit);

end entity BCDdecoder;

architecture LogicOperation of BCDdecoder is

begin

 OUT0 6= not(not A0 and not A1 and not A2 and not A3);

 OUT1 6= not(A0 and not A1 and not A2 and not A3);

 OUT2 6= not(not A0 and A1 and not A2 and not A3);

 OUT3 6= not(A0 and A1 and not A2 and not A3);

 OUT4 6= not(not A0 and not A1 and A2 and not A3);

 OUT5 6= not(A0 and not A1 and A2 and not A3);

 OUT6 6= not(not A0 and A1 and A2 and not A3);

 OUT7 6= not(A0 and A1 and A2 and not A3);

 OUT8 6= not(not A0 and not A1 and not A2 and A3);

 OUT9 6= not(A0 and not A1 and not A2 and A3);

end architecture LogicOperation;

Boolean expressions

for the ten outputs

Inputs and outputs

declared

EXAMPLE 6–10

If the input waveforms in Figure 6–32(a) are applied to the inputs of the 74HC42, show

the output waveforms.

¸
˝
˛

338 Functions of Combinational Logic

The BCD-to-7-Segment Decoder

The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs

to drive 7-segment display devices to produce a decimal readout. The logic diagram for a

basic 7-segment decoder is shown in Figure 6–33.

 A0

 A1

 A2

t1 t2 t3 t4 t5 t6 t7 t8 t9

 A3

t10t0

0

1

2

3

4

5

6

7

8

9

Decimal
outputs

(a)

(b)

BCD
inputs

FIGURE 6–32

Solution

The output waveforms are shown in Figure 6–32(b). As you can see, the inputs are

sequenced through the BCD for digits 0 through 9. The output waveforms in the timing

diagram indicate that sequence on the decimal-value outputs.

Related Problem

Construct a timing diagram showing input and output waveforms for the case where

the BCD inputs sequence through the decimal numbers as follows: 0, 2, 4, 6, 8, 1, 3, 5,

and 9.

A0

A1

A2

A3

1

2

4

8

a

b

c

d

e

f

g

BCD/7-seg

Output lines
connect to
7-segment
display device

BCD
input

FIGURE 6–33 Logic symbol for a BCD-to-7-segment decoder/driver with active-LOW

outputs. Open file F06-33 to verify operation.

 Decoders 339

BI/RBO

VCC16

GND

C

B

LT

D

A

RBI

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

a

BI/RBO

b

c

d

e

f

g

BCD/7-seg

VCC

1

2

4

8

BCD
inputs

LT

RBI

LT

RBI

BI/RBO

GND

(16)

(4)

(13)

(12)

(11)

(10)

(9)

(15)

(14)

(1)

(2)

(6)

(7)

(3)

(5)

(8)

(b) Logic symbol

a

g

f

c

e

d

b

(a) Pin diagram

FIGURE 6–34 The 74HC47 BCD-to-7-segment decoder/driver.

IMPLEMENTATION: BCD-TO-7-SEGMENT DECODER/DRIVER

Fixed-Function Device The 74HC47 is an example of an IC device that decodes a BCD

input and drives a 7-segment display. In addition to its decoding and segment drive capabil-

ity, the 74HC47 has several additional features as indicated by the LT, RBI, BI /RBO func-

tions in the logic symbol of Figure 6–34. As indicated by the bubbles on the logic symbol,

all of the outputs (a through g) are active-LOW as are the LT (lamp test), RBI (ripple blank-

ing input), and BI / RBO (blanking input/ripple blanking output) functions. The outputs can

drive a common-anode 7-segment display directly. Recall that 7-segment displays were

discussed in Chapter 4. In addition to decoding a BCD input and producing the appropriate

7-segment outputs, the 74HC47 has lamp test and zero suppression capability.

Lamp Test When a LOW is applied to the LT input and the BI>RBO is HIGH, all of the

seven segments in the display are turned on. Lamp test is used to verify that no segments

are burned out.

Zero Suppression Zero suppression is a feature used for multidigit displays to blank

out unnecessary zeros. For example, in a 6-digit display the number 6.4 may be displayed

as 006.400 if the zeros are not blanked out. Blanking the zeros at the front of a number is

called leading zero suppression and blanking the zeros at the back of the number is called

trailing zero suppression. Keep in mind that only nonessential zeros are blanked. With zero

suppression, the number 030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression in the 74HC47 is accomplished using the RBI and BI /RBO functions.

RBI is the ripple blanking input and RBO is the ripple blanking output on the 74HC47;

these are used for zero suppression. BI is the blanking input that shares the same pin with

RBO; in other words, the BI /RBO pin can be used as an input or an output. When used as

a BI (blanking input), all segment outputs are HIGH (nonactive) when BI is LOW, which

overrides all other inputs. The BI function is not part of the zero suppression capability of

the device.

All of the segment outputs of the decoder are nonactive (HIGH) if a zero code (0000) is

on its BCD inputs and if its RBI is LOW. This causes the display to be blank and produces

a LOW RBO.

Programmable Logic Device (PLD) The VHDL program code is the same as for the

74HC42 BCD-to-decimal decoder, except the 74HC47 has fewer outputs.

340 Functions of Combinational Logic

Zero Suppression for a 4-Digit Display

The logic diagram in Figure 6–35(a) illustrates leading zero suppression for a whole num-

ber. The highest-order digit position (left-most) is always blanked if a zero code is on its

BCD inputs because the RBI of the most-significant decoder is made LOW by connecting

it to ground. The RBO of each decoder is connected to the RBI of the next lowest-order

decoder so that all zeros to the left of the first nonzero digit are blanked. For example, in

part (a) of the figure the two highest-order digits are zeros and therefore are blanked. The

remaining two digits, 3 and 0 are displayed.

Zero suppression results in leading
or trailing zeros in a number not
showing on a display.

Blanked

(a) Illustration of leading zero suppression

Blanked

(b) Illustration of trailing zero suppression

Blanked Blankeddp

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 1 1

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 0 1

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 1 1

8 4 2 1RBI LT

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

FIGURE 6–35 Examples of zero suppression using a BCD-to-7-segment decoder/driver.

The logic diagram in Figure 6–35(b) illustrates trailing zero suppression for a fractional

number. The lowest-order digit (right-most) is always blanked if a zero code is on its BCD

inputs because the RBI is connected to ground. The RBO of each decoder is connected to

the RBI of the next highest-order decoder so that all zeros to the right of the first nonzero

digit are blanked. In part (b) of the figure, the two lowest-order digits are zeros and there-

fore are blanked. The remaining two digits, 5 and 7 are displayed. To combine both leading

and trailing zero suppression in one display and to have decimal point capability, additional

logic is required.

 Encoders 341

SECTION 6–5 CHECKUP

 1. A 3-line-to-8-line decoder can be used for octal-to-decimal decoding. When a binary

101 is on the inputs, which output line is activated?

 2. How many 74HC154 1-of-16 decoders are necessary to decode a 6-bit binary

number?

 3. Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive

a common-cathode 7-segment LED display?

6–6 Encoders

An encoder is a combinational logic circuit that essentially performs a “reverse” decoder

function. An encoder accepts an active level on one of its inputs representing a digit, such

as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encod-

ers can also be devised to encode various symbols and alphabetic characters. The process

of converting from familiar symbols or numbers to a coded format is called encoding.

After completing this section, you should be able to

u Determine the logic for a decimal-to-BCD encoder

u Explain the purpose of the priority feature in encoders

u Describe the 74HC147 decimal-to-BCD priority encoder

u Use VHDL to describe a decimal-to-BCD encoder

u Apply the encoder to a specific application

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs corre-

sponding to the BCD code, as shown in Figure 6–36. This is a basic 10-line-to-4-line encoder.

DEC/BCD

0

1

2

3

4

5

6

7

9

1

2

4

8

Decimal
input

BCD
output

8

FIGURE 6–36 Logic symbol for a decimal-to-BCD encoder.

The BCD (8421) code is listed in Table 6–6. From this table you can determine the

relationship between each BCD bit and the decimal digits in order to analyze the logic. For

instance, the most significant bit of the BCD code, A3, is always a 1 for decimal digit 8 or

9. An OR expression for bit A3 in terms of the decimal digits can therefore be written as

A3 = 8 + 9

342 Functions of Combinational Logic

Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function

as follows:

A2 = 4 + 5 + 6 + 7

Bit A1 is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as

A1 = 2 + 3 + 6 + 7

Finally, A0 is always a 1 for decimal digit 1, 3, 5, 7, or 9. The expression for A0 is

A0 = 1 + 3 + 5 + 7 + 9

Now let’s implement the logic circuitry required for encoding each decimal digit to a

BCD code by using the logic expressions just developed. It is simply a matter of ORing

the appropriate decimal digit input lines to form each BCD output. The basic encoder logic

resulting from these expressions is shown in Figure 6–37.

Decimal Digit

BCD Code

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

TABLE 6–6

A0

1
(LSB)

A1

A2

A3 (MSB)

2

3

4
5
6
7

8

9

FIGURE 6–37 Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is not

needed because the BCD outputs are all LOW when there are no HIGH inputs.

InfoNote

An assembler can be thought of

as a software encoder because

it interprets the mnemonic

instructions with which a program

is written and carries out the

applicable encoding to convert

each mnemonic to a machine code

instruction (series of 1s and 0s)

that the processor can understand.

Examples of mnemonic

instructions for a processor are

ADD, MOV (move data), MUL

(multiply), XOR, JMP (jump), and

OUT (output to a port).

The basic operation of the circuit in Figure 6–37 is as follows: When a HIGH appears

on one of the decimal digit input lines, the appropriate levels occur on the four BCD output

lines. For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this

condition will produce a HIGH on outputs A0 and A3 and LOWs on outputs A1 and A2,

which is the BCD code (1001) for decimal 9.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously discussed.

A priority encoder also offers additional flexibility in that it can be used in applications

that require priority detection. The priority function means that the encoder will produce a

BCD output corresponding to the highest-order decimal digit input that is active and will

ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both

active, the BCD output is 0110 (which represents decimal 6).

 Encoders 343

16

GND

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

1

2

4

8

HPRI/BCD

VCC

GND

(16)

(11)

(12)

(13)

(1)

(2)

(4)

(3)

(5)

(9)

(7)

(6)

(14)

(8)

D1

D2

D3

D4

D5

D6

D7

D8
(10)

D9

A0

A1

A2

A3

D4

D5

D6

D7

D8

A2

A1

VCC

NC

A3

D3

D2

D1

D9

A0

(a) Pin diagram (b) Logic diagram

FIGURE 6–38 The 74HC147 decimal-to-BCD encoder (HPRI means highest value input

has priority.

IMPLEMENTATION: DECIMAL-TO-BCD ENCODER

Fixed-Function Device The 74HC147 is a priority encoder with active-LOW inputs (0)

for decimal digits 1 through 9 and active-LOW BCD outputs as indicated in the logic sym-

bol in Figure 6–38. A BCD zero output is represented when none of the inputs is active.

The device pin numbers are in parentheses.

Programmable Logic Device (PLD) The logic of the decimal-to-BCD encoder shown in

Figure 6–38 can be described in VHDL for implementation in a PLD. The data flow approach

is used in this case.

entity DecBCDencoder is

 port (D1, D2, D3, D4, D5, D6, D7, D8, D9:

 in bit; A0, A1, A2, A3: out bit);

end entity DecBCDencoder;

architecture LogicFunction of DecBCDencoder is

begin

 A0 6= (D1 or D3 or D5 or D7 or D9);

 A1 6= (D2 or D3 or D6 or D7);

 A2 6= (D4 or D5 or D6 or D7);

 A3 6= (D8 or D9);

end architecture LogicFunction;

Boolean expressions for the

four BCD outputs

¸
˚
˚
˝
˚
˚
˛

Inputs and outputs declared

EXAMPLE 6–11

If LOW levels appear on pins, 1, 4, and 13 of the 74HC147 shown in Figure 6–38, indi-

cate the state of the four outputs. All other inputs are HIGH.

Solution

Pin 4 is the highest-order decimal digit input having a LOW level and represents deci-

mal 7. Therefore, the output levels indicate the BCD code for decimal 7 where A0 is the

LSB and A3 is the MSB. Output A0 is LOW, A1 is LOW, A2 is LOW, and A3 is HIGH.

Related Problem

What are the outputs of the 74HC147 if all its inputs are LOW? If all its inputs are HIGH?

¸
˝
˛

344 Functions of Combinational Logic

An Application

The ten decimal digits on a numeric keypad must be encoded for processing by the logic

circuitry. In this example, when one of the keys is pressed, the decimal digit is encoded to

the corresponding BCD code. Figure 6–39 shows a simple keyboard encoder arrangement

using a priority encoder. The keys are represented by ten push-button switches, each with a

pull-up resistor to +V. The pull-up resistor ensures that the line is HIGH when a key is not

depressed. When a key is depressed, the line is connected to ground, and a LOW is applied

to the corresponding encoder input. The zero key is not connected because the BCD output

represents zero when none of the other keys is depressed.

The BCD complement output of the encoder goes into a storage device, and each suc-

cessive BCD code is stored until the entire number has been entered. Methods of storing

BCD numbers and binary data are covered in Chapter 11.

HPRI/BCD

1
2
3
4
5
6
7
8
9

1
2
4
8

A0

A1

A2

A3

987

+V

65

321

0

All BCD complement lines are HIGH indicating a 0.

No encoding is necessary; however, this line may be

connected to other circuits that detect the key press.

BCD complement

4

R7 R8 R9

R4 R5 R6

R1 R2 R3

R0

Priority encoder

FIGURE 6–39 A simplified keyboard encoder.

SECTION 6–6 CHECKUP

 1. Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit in

Figure 6–37.

(a) What are the states of the output lines?

(b) Does this represent a valid BCD code?

(c) What is the restriction on the encoder logic in Figure 6–37?

 2. (a) What is the A3 A2 A1 A0 output when LOWs are applied to pins 1 and 5 of the

74HC147 in Figure 6–38?

(b) What does this output represent?

 Code Converters 345

6–7 Code Converters

In this section, we will examine some methods of using combinational logic circuits to

convert from one code to another.

After completing this section, you should be able to

u Explain the process for converting BCD to binary

u Use exclusive-OR gates for conversions between binary and Gray codes

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion

process is as follows:

 1. The value, or weight, of each bit in the BCD number is represented by a binary

number.

 2. All of the binary representations of the weights of bits that are 1s in the BCD number

are added.

 3. The result of this addition is the binary equivalent of the BCD number.

A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to produce

the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to

understand the relationship between BCD and binary. For instance, you already know that

the decimal number 87 can be expressed in BCD as

1000 0111
()* ()*

 8 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That

is, the left-most group has a weight of 10, and the right-most group has a weight of 1.

Within each group, the binary weight of each bit is as follows:

Tens Digit Units Digit

Weight: 80 40 20 10 8 4 2 1

Bit designation: B3 B2 B1 B0 A3 A2 A1 A0

The binary equivalent of each BCD bit is a binary number representing the weight of

that bit within the total BCD number. This representation is given in Table 6–7.

TABLE 6–7

Binary representations of BCD bit weights.

BCD Bit BCD Weight

(MSB) Binary Representation (LSB)

64 32 16 8 4 2 1

A0 1 0 0 0 0 0 0 1

A1 2 0 0 0 0 0 1 0

A2 4 0 0 0 0 1 0 0

A3 8 0 0 0 1 0 0 0

B0 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

B2 40 0 1 0 1 0 0 0

B3 80 1 0 1 0 0 0 0

346 Functions of Combinational Logic

If the binary representations for the weights of all the 1s in the BCD number are added,

the result is the binary number that corresponds to the BCD number. Example 6–12 illus-

trates this.

EXAMPLE 6–12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to

binary.

Solution

Write the binary representations of the weights of all 1s appearing in the numbers, and

then add them together.

80 40 20 10 8 4 2 1

0 0 1 0 0 1 1 1

0000001

0000010

0000100

+ 0010100

0011011

1

2

4

20

Binary number for decimal 27

80 40 20 10 8 4 2 1

1 0 0 1 1 0 0 0

0001000

0001010

+ 1010000

1100010

8

10

80

Binary number for decimal 98

Related Problem

Show the process of converting 01000001 in BCD to binary.

Open file EX06-12 and run the simulation to observe the operation of a

BCD-to-binary logic circuit.

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR

gates can be used for these conversions. Programmable logic devices (PLDs) can also be

programmed for these code conversions. Figure 6–40 shows a 4-bit binary-to-Gray code

converter, and Figure 6–41 illustrates a 4-bit Gray-to-binary converter.

B0

B1

B2

B3

G0

G1

G2

G3

(LSB)

(MSB)

Binary Gray

FIGURE 6–40 Four-bit binary-to-

Gray conversion logic. Open file

F06-40 to verify operation.

G0

G1

G2

G3

(LSB)

(MSB)

Gray

B0

B1

B2

B3

Binary

FIGURE 6–41 Four-bit Gray-to-

binary conversion logic. Open file

F06-41 to verify operation.

 Multiplexers (Data Selectors) 347

EXAMPLE 6–13

(a) Convert the binary number 0101 to Gray code with exclusive-OR gates.

(b) Convert the Gray code 1011 to binary with exclusive-OR gates.

Solution

(a) 01012 is 0111 Gray. See Figure 6–42(a).

(b) 1011 Gray is 11012. See Figure 6–42(b).

(a)

1

0

1

0

1

1

1

0

Binary Gray

(b)

1

1

0

1

1

0

1

1

BinaryGray

FIGURE 6–42

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

SECTION 6–7 CHECKUP

 1. Convert the BCD number 10000101 to binary.

 2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

6–8 Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several sources to

be routed onto a single line for transmission over that line to a common destination. The

basic multiplexer has several data-input lines and a single output line. It also has data-select

inputs, which permit digital data on any one of the inputs to be switched to the output line.

Multiplexers are also known as data selectors.

After completing this section, you should be able to

u Explain the basic operation of a multiplexer

u Describe the 74HC153 and the 74HC151 multiplexers

u Expand a multiplexer to handle more data inputs

u Use the multiplexer as a logic function generator

u Use VHDL to describe 4-input and 8-input multiplexers

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6–43. Notice that

there are two data-select lines because with two select bits, any one of the four data-input

lines can be selected.

In a multiplexer, data are switched
from several lines to one line.

348 Functions of Combinational Logic

In Figure 6–43, a 2-bit code on the data-select (S) inputs will allow the data on the

selected data input to pass through to the data output. If a binary 0 (S1 = 0 and S0 = 0)

is applied to the data-select lines, the data on input D0 appear on the data-output line.

If a binary 1 (S1 = 0 and S0 = 1) is applied to the data-select lines, the data on input

D1 appear on the data output. If a binary 2 (S1 = 1 and S0 = 0) is applied, the data

on D2 appear on the output. If a binary 3 (S1 = 1 and S0 = 1) is applied, the data on

D3 are switched to the output line. A summary of this operation is given in Table 6–8.

Data
output

YD0

D1

D2

MUX

1

2

0

D3 3

S1

Data
select

Data
inputs

1

S0 0

FIGURE 6–43 Logic symbol for a 1-of-4 data selector/multiplexer.

TABLE 6–8

Data selection for a 1-of-4-multiplexer.

Data-Select Inputs

Input SelectedS1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Now let’s look at the logic circuitry required to perform this multiplexing operation. The

data output is equal to the state of the selected data input. You can therefore, derive a logic

expression for the output in terms of the data input and the select inputs.

The data output is equal to D0 only if S1 = 0 and S0 = 0: Y = D0S1S0.

The data output is equal to D1 only if S1 = 0 and S0 = 1: Y = D1S1S0.

The data output is equal to D2 only if S1 = 1 and S0 = 0: Y = D2S1S0.

The data output is equal to D3 only if S1 = 1 and S0 = 1: Y = D3S1S0.

When these terms are ORed, the total expression for the data output is

Y = D0S1S0 + D1S1S0 + D2S1S0 + D3S1S0

The implementation of this equation requires four 3-input AND gates, a 4-input OR gate,

and two inverters to generate the complements of S1 and S0, as shown in Figure 6–44.

Because data can be selected from any one of the input lines, this circuit is also referred to

as a data selector.

InfoNote

A bus is a multiple conductor

pathway along which electrical

signals are sent from one part

of a computer to another. In

computer networks, a shared

bus is one that is connected to

all the microprocessors in the

system in order to exchange

data. A shared bus may contain

memory and input/output devices

that can be accessed by all the

microprocessors in the system.

Access to the shared bus is

controlled by a bus arbiter (a

multiplexer of sorts) that allows

only one microprocessor at a time

to use the system’s shared bus.

 Multiplexers (Data Selectors) 349

S0

S1

D0

D1

D2

D3

Y

S0

S1

FIGURE 6–44 Logic diagram for a 4-input multiplexer. Open file F06-44 to

verify operation.

EXAMPLE 6–14

The data-input and data-select waveforms in Figure 6–45(a) are applied to the multi-

plexer in Figure 6–44. Determine the output waveform in relation to the inputs.

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1

D0

(a)

(b)

D1

D2

D3

S0

S1

Y

D0 D1 D2 D3 D0 D1 D2 D3

FIGURE 6–45

Solution

The binary state of the data-select inputs during each interval determines which data

input is selected. Notice that the data-select inputs go through a repetitive binary

sequence 00, 01, 10, 11, 00, 01, 10, 11, and so on. The resulting output waveform is

shown in Figure 6–45(b).

Related Problem

Construct a timing diagram showing all inputs and the output if the S0 and S1 wave-

forms in Figure 6–45 are interchanged.

350 Functions of Combinational Logic

IMPLEMENTATION: DATA SELECTOR/MULTIPLEXER

Fixed-Function Device The 74HC153 is a dual four-input data selector/multiplexer.

The pin diagram is shown in Figure 6–46(a). The inputs to one of the multiplexers are

1I0 through 1I3 and the inputs to the second multiplexer are 2I0 through 2I3. The data

select inputs are S0 and S1 and the active-LOW enable inputs are 1E and 2E. Each of

the multiplexers has an active-LOW enable input.

The ANSI/IEEE logic symbol with dependency notation is shown in Figure 6–46(b).

The two multiplexers are indicated by the partitioned outline, and the inputs common to

both multiplexers are inputs to the notched block (common control block) at the top. The

G0
3 dependency notation indicates an AND relationship between the two select inputs (A

and B) and the inputs to each multiplexer block.

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

1Y
(7)

2Y
(9)

1G
(1)

1I0
(6)

1I1

1I2

(5)

(4)

MUXEN

0

1

2

1I3
(3)

3

0
(14)

(2)
1

A

B

(b) Logic symbol(a) Pin diagram

S1

1I3

1I2

1I1

1I0

1Y

GND

VCC

2E

S0

2I3

2I2

2I1

2I0

2Y

2G
(15)

2I0
(10)

2I1

2I2

(11)

(12)

2I3
(13)

1E
G 0–

3

FIGURE 6–46 The 74HC153 dual four-input data selector/multiplexer.

Programmable Logic Device (PLD) The logic for a four-input multiplexer like the one

shown in the logic diagram of Figure 6–44 can be described with VHDL. The data flow

approach is used for this particular circuit. Keep in mind that once you have written the

VHDL program for a given logic, the code is then downloaded into a PLD device and

 becomes actual hardware just as fixed-function devices are hardware.

entity FourInputMultiplexer is

 port (S0, S1, D0, D1, D2, D3; in bit; Y: out bit);

end entity FourInputMultiplexer;

architecture LogicFunction of FourInputMultiplexer is

begin

 Y 6= (D0 and not S0 and not S1) or (Dl and S0 and not S1)

or (D2 and not S0 and S1) or (D3 and S0 and S1);

end architecture LogicFunction;

Boolean expression

for the output¸
˝
˛

Inputs and outputs declared

 Multiplexers (Data Selectors) 351

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8GND

(a) Pin diagram (b) Logic symbol

(5)

(6)

(11)

(10)

(7)

S0

S1

MUX

0

(4)

(3)

(9)
S2

D0

D1

0

1

2

(1)

(15)

(2)
D2

D3

D4

3

4

2

(13)

(12)

(14)
D5

D6

D7

6

7

5

ENEnable

Y

Y

G 0

–

7

D3

D2

D1

D0

Y

Y

ENABLE

VCC

D4

D5

D6

D7

S0

S1

S2

FIGURE 6–47 The 74HC151 eight-input data selector/multiplexer.

IMPLEMENTATION: EIGHT-INPUT DATA SELECTOR/MULTIPLEXER

Fixed-Function Device The 74HC151 has eight data inputs (D0–D7) and, therefore,

three data-select or address input lines (S0–S2). Three bits are required to select any one

of the eight data inputs (23
= 8). A LOW on the Enable input allows the selected input

data to pass through to the output. Notice that the data output and its complement are both

available. The pin diagram is shown in Figure 6–47(a), and the ANSI/IEEE logic symbol

is shown in part (b). In this case there is no need for a common control block on the logic

symbol because there is only one multiplexer to be controlled, not two as in the 74HC153.

The G

0
7 label within the logic symbol indicates the AND relationship between the data-

select inputs and each of the data inputs 0 through 7.

Programmable Logic Device (PLD) The logic for the eight-input multiplexer is imple-

mented by first writing the VHDL code. For the 74HC151, eight 5-input AND gates, one

8-input OR gate, and four inverters are required.

entity EightInputMUX is

 port (S0, S1, S2, D0, D1, D2, D3, D4, D5, D6, D7,

 EN: in bit; Y: inout bit; YI: out bit);

end entity EightInputMUX;

architecture LogicOperation of EightInputMUX is

 signal AND0, AND1, AND2, AND3, AND4, AND5, AND6, AND7: bit;

 begin

 AND0 6= not S0 and not S1 and not S2 and D0 and not EN;

 AND1 6= S0 and not S1 and not S2 and D1 and not EN;

 AND2 6= not S0 and S1 and not S2 and D2 and not EN;

 AND3 6= S0 and S1 and not S2 and D3 and not EN;

 AND4 6= not S0 and not S1 and S2 and D4 and not EN;

 AND5 6= S0 and not S1 and S2 and D5 and not EN;

 AND6 6= not S0 and S1 and S2 and D6 and not EN;

 AND7 6= S0 and S1 and S2 and D7 and not EN;

 Y 6= AND0 or AND1 or AND2 or AND3 or AND4 or AND5 or AND6 or AND7;

 YI 6= not Y;

end architecture LogicOperation;

Boolean

expressions for

internal AND

gate outputs

¸̋
˛Boolean expressions for

fixed outputs

Inputs and outputs declared

Internal signals (outputs of

AND gates) declared

¸
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

¸
˝
˛

352 Functions of Combinational Logic

Related Problem

Determine the codes on the select inputs required to select each of the following data

inputs: D0, D4, D8, and D13.

EXAMPLE 6–15

Use 74HC151s and any other logic necessary to multiplex 16 data lines onto a single

data-output line.

Solution

An expansion of two 74HC151s is shown in Figure 6–48. Four bits are required to select

one of 16 data inputs (24
= 16). In this application the Enable input is used as the most

significant data-select bit. When the MSB in the data-select code is LOW, the left 74HC151

is enabled, and one of the data inputs (D0 through D7) is selected by the other three data-

select bits. When the data-select MSB is HIGH, the right 74HC151 is enabled, and one of

the data inputs (D8 through D15) is selected. The selected input data are then passed through

to the negative-OR gate and onto the single output line.

1/6 74HC04

74HC151

Y

1/4 74HC00

MUX
EN

0

2

0

1

2

3

4

5

6

7

G

74HC151

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

S
0

S
1

S
2

S
3

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

MUX
EN

0

0

1

2

3

4

5

6

7

0––
7

2

G
0––
7

Y
Y

FIGURE 6–48 A 16-input multiplexer.

Applications

A 7-Segment Display Multiplexer

Figure 6–49 shows a simplified method of multiplexing BCD numbers to a 7-segment dis-

play. In this example, 2-digit numbers are displayed on the 7-segment readout by the use

of a single BCD-to-7-segment decoder. This basic method of display multiplexing can be

extended to displays with any number of digits. The 74HC157 is a quad 2-input multiplexer.

The basic operation is as follows. Two BCD digits (A3A2A1A0 and B3B2B1B0) are applied

to the multiplexer inputs. A square wave is applied to the data-select line, and when it is

LOW, the A bits (A3A2A1A0) are passed through to the inputs of the 74HC47 BCD-to-7-

segment decoder. The LOW on the data-select also puts a LOW on the A1 input of the

74HC139 2-line-to-4-line decoder, thus activating its 0 output and enabling the A-digit

display by effectively connecting its common terminal to ground. The A digit is now on

and the B digit is off.

 Multiplexers (Data Selectors) 353

When the data-select line goes HIGH, the B bits (B3B2B1B0) are passed through to the

inputs of the BCD-to-7-segment decoder. Also, the 74HC139 decoder’s 1 output is acti-

vated, thus enabling the B-digit display. The B digit is now on and the A digit is off. The

cycle repeats at the frequency of the data-select square wave. This frequency must be high

enough to prevent visual flicker as the digit displays are multiplexed.

A Logic Function Generator

A useful application of the data selector/multiplexer is in the generation of combinational logic

functions in sum-of-products form. When used in this way, the device can replace discrete

gates, can often greatly reduce the number of ICs, and can make design changes much easier.

To illustrate, a 74HC151 8-input data selector/multiplexer can be used to implement any

specified 3-variable logic function if the variables are connected to the data-select inputs

and each data input is set to the logic level required in the truth table for that function.

For example, if the function is a 1 when the variable combination is A2A1A0, the 2 input

(selected by 010) is connected to a HIGH. This HIGH is passed through to the output when

this particular combination of variables occurs on the data-select lines. Example 6–16 will

help clarify this application.

Data
select

EN

G1

A
0

B
0

A
1

B
1

A
2

B
2

MUX1

1

A
3

B
3

BCD/7-seg

74HC157 74HC47

c

d

f

a

e

g

b

Common-cathode
displays

B digit
(MSD)

A digit
(LSD)

G1 (EN)

1Y0

*Additional buffer drive
 circuitry may be required.

*

B1

*

A1

LOW enables LSD
HIGH enables MSD

LOWs enable common-anode
7-seg display.

74HC139

A

B

C

D

Decoder

1–
2

LOW selects A3 A2 A1 A0

1Y1

1Y3

1Y4

HIGH selects B3 B2 B1 B0

LSD BCD: A3 A2 A1 A0

MSD BCD: B3 B2 B1 B0

FIGURE 6–49 Simplified 7-segment display multiplexing logic.

354 Functions of Combinational Logic

The implementation of this function with logic gates would require four 3-input

AND gates, one 4-input OR gate, and three inverters unless the expression can be

simplified.

Related Problem

Use the 74HC151 to implement the following expression:

Y = A2A1A0 + A2A1A0 + A2A1A0

EXAMPLE 6–16

Implement the logic function specified in Table 6–9 by using a 74HC151 8-input data

selector/multiplexer. Compare this method with a discrete logic gate implementation.

Inputs Output

A2 A1 A0 Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

TABLE 6–9

Solution

Notice from the truth table that Y is a 1 for the following input variable combinations:

001, 011, 101, and 110. For all other combinations, Y is 0. For this function to be imple-

mented with the data selector, the data input selected by each of the above-mentioned

combinations must be connected to a HIGH (5 V). All the other data inputs must be

connected to a LOW (ground), as shown in Figure 6–50.

A0

A1

A2

Input
variables

MUX

0

0

1

2

3

4

2

6

7

5

EN

Y = A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

74HC151

G 0–
7

+5 V

FIGURE 6–50 Data selector/multiplexer connected as a 3-variable logic function

generator.

 Multiplexers (Data Selectors) 355

Example 6–16 illustrated how the 8-input data selector can be used as a logic function

generator for three variables. Actually, this device can be also used as a 4-variable logic

function generator by the utilization of one of the bits (A0) in conjunction with the data

inputs.

A 4-variable truth table has sixteen combinations of input variables. When an 8-bit data

selector is used, each input is selected twice: the first time when A0 is 0 and the second time

when A0 is 1. With this in mind, the following rules can be applied (Y is the output, and A0

is the least significant bit):

 1. If Y = 0 both times a given data input is selected by a certain combination of the

input variables, A3A2A1, connect that data input to ground (0).

 2. If Y = 1 both times a given data input is selected by a certain combination of the

input variables, A3A2A1, connect the data input to +V (1).

 3. If Y is different the two times a given data input is selected by a certain combination

of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

 4. If Y is different the two times a given data input is selected by a certain combination

of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

EXAMPLE 6–17

Implement the logic function in Table 6–10 by using a 74HC151 8-input data selector/

multiplexer. Compare this method with a discrete logic gate implementation.

Decimal

Digit

Inputs Output

A3 A2 A1 A0 Y

 0 0 0 0 0 0

 1 0 0 0 1 1

 2 0 0 1 0 1

 3 0 0 1 1 0

 4 0 1 0 0 0

 5 0 1 0 1 1

 6 0 1 1 0 1

 7 0 1 1 1 1

 8 1 0 0 0 1

 9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 0

15 1 1 1 1 1

TABLE 6–10

Solution

The data-select inputs are A3A2A1. In the first row of the table, A3A2A1 = 000 and Y = A0.

In the second row, where A3A2A1 again is 000, Y = A0. Thus, A0 is connected to the 0

input. In the third row of the table, A3A2A1 = 001 and Y = A0. Also, in the fourth row,

when A3A2A1 again is 001, Y = A0. Thus, A0 is inverted and connected to the 1 input.

This analysis is continued until each input is properly connected according to the speci-

fied rules. The implementation is shown in Figure 6–51.

If implemented with logic gates, the function would require as many as ten 4-input

AND gates, one 10-input OR gate, and four inverters, although possible simplification

would reduce this requirement.

356 Functions of Combinational Logic

Related Problem

In Table 6–10, if Y = 0 when the inputs are all zeros and is alternately a 1 and a 0 for the

remaining rows in the table, use a 74HC151 to implement the resulting logic function.

A1

A2

MUX

0

A3

0

1

2

3

4

2

6

7

5

EN

Y = A3A2A1A0 + A3A2A1A0 + A3A2A1A0

G 0–
7

74HC151

A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0

+5 V

FIGURE 6–51 Data selector/multiplexer connected as a 4-variable logic function

generator.

SECTION 6–8 CHECKUP

 1. In Figure 6–44, D0 = 1, D1 = 0, D2 = 1, D3 = 0, S0 = 1, and S1 = 0. What is

the output?

 2. Identify each device.

(a) 74HC153 (b) 74HC151

 3. A 74HC151 has alternating LOW and HIGH levels on its data inputs beginning with

D0 = 0. The data-select lines are sequenced through a binary count (000, 001, 010,

and so on) at a frequency of 1 kHz. The enable input is LOW. Describe the data out-

put waveform.

 4. Briefly describe the purpose of each of the following devices in Figure 6–49:

(a) 74HC157 (b) 74HC47 (c) 74HC139

6–9 Demultiplexers

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital

information from one line and distributes it to a given number of output lines. For this rea-

son, the demultiplexer is also known as a data distributor. As you will learn, decoders can

also be used as demultiplexers.

After completing this section, you should be able to

u Explain the basic operation of a demultiplexer

u Describe how a 4-line-to-16-line decoder can be used as a demultiplexer

u Develop the timing diagram for a demultiplexer with specified data and data

 selection inputs

 Demultiplexers 357

Figure 6–52 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input

line goes to all of the AND gates. The two data-select lines enable only one gate at a time,

and the data appearing on the data-input line will pass through the selected gate to the

associated data-output line.

S0

S1

D0

D1

D2

D3

Data
output
linesSelect

lines

Data
input

FIGURE 6–52 A 1-line-to-4-line demultiplexer.

In a demultiplexer, data are switched
from one line to several lines.

EXAMPLE 6–18

The serial data-input waveform (Data in) and data-select inputs (S0 and S1) are shown in

Figure 6–53. Determine the data-output waveforms on D0 through D3 for the demulti-

plexer in Figure 6–52.

S0

S1

D0

D1

D2

D3

Data
in

1

1

0

0

10

11

FIGURE 6–53

Solution

Notice that the select lines go through a binary sequence so that each successive input

bit is routed to D0, D1, D2, and D3 in sequence, as shown by the output waveforms in

Figure 6–53.

Related Problem

Develop the timing diagram for the demultiplexer if the S0 and S1 waveforms are both

inverted.

4-Line-to-16-Line Decoder as a Demultiplexer

We have already discussed a 4-line-to-16-line decoder (Section 6–5). This device and other

decoders can also be used in demultiplexing applications. The logic symbol for this device

when used as a demultiplexer is shown in Figure 6–54. In demultiplexer applications, the

input lines are used as the data-select lines. One of the chip select inputs is used as the data-

input line, with the other chip select input held LOW to enable the internal negative-AND

gate at the bottom of the diagram.

358 Functions of Combinational Logic

Data
in

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

(17)

(16)

(15)

(14)

(13)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)DEMUX

0

3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0––
15

G

(20)

(21)

(22)
S

0

(23)

S
1

S
2

S
3

Data
select
lines

&

(19)

(18)

EN

FIGURE 6–54 The decoder used as a demultiplexer.

SECTION 6–9 CHECKUP

 1. Generally, how can a decoder be used as a demultiplexer?

 2. The demultiplexer in Figure 6–54 has a binary code of 1010 on the data-select lines,

and the data-input line is LOW. What are the states of the output lines?

6–10 Parity Generators/Checkers

Errors can occur as digital codes are being transferred from one point to another within

a digital system or while codes are being transmitted from one system to another. The

errors take the form of undesired changes in the bits that make up the coded informa-

tion; that is, a 1 can change to a 0, or a 0 to a 1, because of component malfunctions or

electrical noise. In most digital systems, the probability that even a single bit error will

occur is very small, and the likelihood that more than one will occur is even smaller.

Nevertheless, when an error occurs undetected, it can cause serious problems in a digital

system.

After completing this section, you should be able to

u Explain the concept of parity

u Implement a basic parity circuit with exclusive-OR gates

u Describe the operation of basic parity generating and checking logic

u Discuss the 74HC280 9-bit parity generator/checker

u Use VHDL to describe a 9-bit parity generator/checker

u Discuss how error detection can be implemented in a data transmission system

The parity method of error detection in which a parity bit is attached to a group of

information bits in order to make the total number of 1s either even or odd (depending on

the system) was covered in Chapter 2. In addition to parity bits, several specific codes also

provide inherent error detection.

 Parity Generators/Checkers 359

Basic Parity Logic

In order to check for or to generate the proper parity in a given code, a basic principle can

be used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of

an odd number of 1s is always 1.

Therefore, to determine if a given code has even parity or odd parity, all the bits in that

code are summed. As you know, the modulo-2 sum of two bits can be generated by an

exclusive-OR gate, as shown in Figure 6–55(a); the modulo-2 sum of four bits can be

formed by three exclusive-OR gates connected as shown in Figure 6–55(b); and so on.

When the number of 1s on the inputs is even, the output X is 0 (LOW). When the number

of 1s is odd, the output X is 1 (HIGH).

A parity bit indicates if the number
of 1s in a code is even or odd for the
purpose of error detection.

X
A1

A0

(b) Summing of four bits

A1

A0
X

(a) Summing of two bits

A3

A2

FIGURE 6–55

IMPLEMENTATION: 9-BIT PARITY GENERATOR/CHECKER

Fixed-Function Device The logic symbol and function table for a 74HC280 are shown

in Figure 6–56. This particular device can be used to check for odd or even parity on a

9-bit code (eight data bits and one parity bit), or it can be used to generate a parity bit for a

binary code with up to nine bits. The inputs are A through I; when there is an even number

of 1s on the inputs, the © Even output is HIGH and the © Odd output is LOW.

(5)

(6)
(13)

(1)

(11)

(12)

(a) Traditional logic symbol

(2)

Data
input

(10)

(9)

(8)

Σ Odd

Σ Even

F

G

D

E

H

C

B

A

(b) Function table

(4)
I

Number of Inputs
A–I that Are High

Outputs

L

H

H

L

0, 2, 4, 6, 8

1, 3, 5, 7, 9

S OddS Even

FIGURE 6–56 The 74HC280 9-bit parity generator/checker.

Parity Checker When this device is used as an even parity checker, the number of input

bits should always be even; and when a parity error occurs, the © Even output goes LOW

and the © Odd output goes HIGH. When it is used as an odd parity checker, the number

of input bits should always be odd; and when a parity error occurs, the © Odd output goes

LOW and the © Even output goes HIGH.

360 Functions of Combinational Logic

A Data Transmission System with Error Detection

A simplified data transmission system is shown in Figure 6–58 to illustrate an application

of parity generators/checkers, as well as multiplexers and demultiplexers, and to illustrate

the need for data storage in some applications.

In this application, digital data from seven sources are multiplexed onto a single line

for transmission to a distant point. The seven data bits (D0 through D6) are applied to the

multiplexer data inputs and, at the same time, to the even parity generator inputs. The ©

Odd output of the parity generator is used as the even parity bit. This bit is 0 if the number

of 1s on the inputs A through I is even and is a 1 if the number of 1s on A through I is odd.

This bit is D7 of the transmitted code.

The data-select inputs are repeatedly cycled through a binary sequence, and each data

bit, beginning with D0, is serially passed through and onto the transmission line (Y). In

this example, the transmission line consists of four conductors: one carries the serial data

and three carry the timing signals (data selects). There are more sophisticated ways of

sending the timing information, but we are using this direct method to illustrate a basic

principle.

entity ParityCheck is

 port (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9: in bit;

 X: out bit);

end entity ParityCheck;

architecture LogicOperation of ParityCheck is

begin

 X 6= ((A0 xor A1) xor (A2 xor A3)) xor ((A4 xor A5) xor

 (A6 xor A7)) xor (A8 xor A9);

end architecture LogicOperation;

A0

A1

A2

A3

A4

A5

A6

A7

A8

A

X

9

FIGURE 6–57

Parity Generator If this device is used as an even parity generator, the parity bit is

taken at the © Odd output because this output is a 0 if there is an even number of input

bits and it is a 1 if there is an odd number. When used as an odd parity generator, the

parity bit is taken at the © Even output because it is a 0 when the number of inputs bits

is odd.

Programmable Logic Device (PLD) The 9-bit parity generator/checker can be described

using VHDL and implemented in a PLD. We will expand the 4-bit logic circuit in Figure

6–55(b) as shown in Figure 6–57. The data flow approach is used.

Inputs and output declared

Output defined by

Boolean expression

¸
˝
˛

¸
˝
˛

 Parity Generators/Checkers 361

At the demultiplexer end of the system, the data-select signals and the serial data stream

are applied to the demultiplexer. The data bits are distributed by the demultiplexer onto

the output lines in the order in which they occurred on the multiplexer inputs. That is, D0

comes out on the D0 output, D1 comes out on the D1 output, and so on. The parity bit comes

out on the D7 output. These eight bits are temporarily stored and applied to the even parity

checker. Not all of the bits are present on the parity checker inputs until the parity bit D7

comes out and is stored. At this time, the error gate is enabled by the data-select code 111.

If the parity is correct, a 0 appears on the © Even output, keeping the Error output at 0. If

the parity is incorrect, all 1s appear on the error gate inputs, and a 1 on the Error output

results.

This particular application has demonstrated the need for data storage. Storage devices

will be introduced in Chapter 7 and covered in Chapter 11.

The timing diagram in Figure 6–59 illustrates a specific case in which two 8-bit words

are transmitted, one with correct parity and one with an error.

EVEN parity
generator

Σ Odd

Y

Even parity bit

D7

0

EVEN parity
checker

Storage

Error = 1

Error gate

Four-conductor transmission line

&

5

6

3

4

7

2

1

2

0

EN

0

G

MUX

0–
7

F

G

D

E

H

C

B

A

5

6

3

4

7

2

1
2

0
DEMUX

G0–
7

D0

D1

D2

D3

D4

D5

D6

D7

F

G

D

E

H

C

B

A

Σ Even

D0

D1

D2

D3

D4

D5

D6

S2

S1

S0

II

(Even parity bit)

FIGURE 6–58 Simplified data transmission system with error detection.

InfoNote

Microprocessors perform internal

parity checks as well as parity checks

of the external data and address

buses. In a read operation, the

external system can transfer the parity

information together with the data

bytes. The microprocessor checks

whether the resulting parity is even

and sends out the corresponding

signal. When it sends out an address

code, the microprocessor does not

perform an address parity check, but

it does generate an even parity bit for

the address.

362 Functions of Combinational Logic

 S0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 D0 D1 D2 D3 D4 D5 D6 P D0 D1 D2 D3 D4 D5 D6 P

 S1

 S2

Data stream at
DEMUX input

Error

Bit received
incorrectly
(0 was transmitted)

FIGURE 6–59 Example of data transmission with and without error for the system

in Figure 6–58.

SECTION 6–10 CHECKUP

 1. Add an even parity bit to each of the following codes:

(a) 110100 (b) 01100011

 2. Add an odd parity bit to each of the following codes:

(a) 1010101 (b) 1000001

 3. Check each of the even parity codes for an error.

(a) 100010101 (b) 1110111001

6–11 Troubleshooting

In this section, the problem of decoder glitches is introduced and examined from a trouble-

shooting standpoint. A glitch is any undesired voltage or current spike (pulse) of very short

duration. A glitch can be interpreted as a valid signal by a logic circuit and may cause

improper operation.

After completing this section, you should be able to

u Explain what a glitch is

u Determine the cause of glitches in a decoder application

u Use the method of output strobing to eliminate glitches

The 74HC138 is used as a 3-line-to-8-line decoder (binary-to-octal) in Figure 6–60

to illustrate how glitches occur and how to identify their cause. The A2A1A0 inputs of the

decoder are sequenced through a binary count, and the resulting waveforms of the inputs

and outputs can be displayed on the screen of a logic analyzer, as shown in Figure 6–60.

A2 transitions are delayed from A1 transitions and A1 transitions are delayed from A0 transi-

tions. This commonly occurs when waveforms are generated by a binary counter, as you

will learn in Chapter 9.

The output waveforms are correct except for the glitches that occur on some of the

output signals. A logic analyzer or an oscilloscope can be used to display glitches, which

are normally very difficult to see. Generally, the logic analyzer is preferred, especially

for low repetition rates (less than 10 kHz) and/or irregular occurrence because most logic

analyzers have a glitch capture capability. Oscilloscopes can be used to observe glitches

with reasonable success, particularly if the glitches occur at a regular high repetition rate

(greater than 10 kHz).

 Troubleshooting 363

The points of interest indicated by the highlighted areas on the input waveforms in

Figure 6–60 are displayed as shown in Figure 6–61. At point 1 there is a transitional

state of 000 due to delay differences in the waveforms. This causes the first glitch

on the 0 output of the decoder. At point 2 there are two transitional states, 010 and

000. These cause the glitch on the 2 output of the decoder and the second glitch on

EN

3

2

1

0

74HC138

4

5

6

7

&

4

2

1

BIN/OCT

 A
0

 A
1

 A
2

+VCC

Point 1 Point 2 Point 3 Point 4

 A
0

 A
1

 A
2

_
0
_
1
_
2
_
3
_
4
_
5
_
6
_
7

glitch glitch

glitch

glitch glitch

glitch

FIGURE 6–60 Decoder waveforms with output glitches.

A0

A1

A2

0

2

010 000

A1 HIGH; A0, A2 LOW A0, A1, A2 LOW

Point 2: waveforms on expanded time base

A0

A1

A2

4

100

A0, A1 LOW; A2 HIGH

Point 3: waveforms on expanded time base

A0

A1

A2

0

000

A0, A1, A2 LOW

Point 1: waveforms on expanded time base

A0

A1

A2

6

110

A0, A1 LOW; A2 HIGH

Point 4: waveforms on expanded time base

A0 LOW; A1, A2 HIGH

100

4

 A0

glitch glitch

glitch

glitch glitch

glitch

0

1

2

3

4

5

6

7

 A1

 A2

FIGURE 6–61 Decoder waveform displays showing how transitional input states produce

glitches in the output waveforms.

364 Functions of Combinational Logic

the 0 output, respectively. At point 3 the transitional state is 100, which causes the

first glitch on the 4 output of the decoder. At point 4 the two transitional states, 110

and 100, result in the glitch on the 6 output and the second glitch on the 4 output,

respectively.

One way to eliminate the glitch problem is a method called strobing, in which the

decoder is enabled by a strobe pulse only during the times when the waveforms are not in

transition. This method is illustrated in Figure 6–62.

74HC138

 A
0

 A
1

 A
2

EN

3

2

1

0

4

5

6

7

&

4

2

1

BIN/OCT

Strobe

 A0

 A1

 A2

_
0
_
1
_
2
_
3
_
4
_
5
_
6
_
7

Strobe

FIGURE 6–62 Application of a strobe waveform to eliminate glitches on decoder

outputs.

In addition to glitches that are the result of differences in propagation delays, as you have seen
in the case of a decoder, other types of unwanted noise spikes can also be a problem. Current
and voltage spikes on the VCC and ground lines are caused by the fast switching waveforms in
digital circuits. This problem can be minimized by proper printed circuit board layout. Switching
spikes can be absorbed by decoupling the circuit board with a 1 mF capacitor from VCC to ground.
Also, smaller decoupling capacitors (0.022 mF to 0.1 mF) should be distributed at various points
between VCC and ground over the circuit board. Decoupling should be done especially near devices
that are switching at higher rates or driving more loads such as oscillators, counters, buffers, and
bus drivers.

SECTION 6–11 CHECKUP

 1. Define the term glitch.

 2. Explain the basic cause of glitches in decoder logic.

 3. Define the term strobe.

 Applied Logic 365

Applied Logic

Traffic Signal Controller: Part 1

The control logic is developed for a traffic signal at the intersection of a busy main street and

a lightly used side street. The system requirements are established, and a general block dia-

gram is developed. Also, a state diagram is introduced to define the sequence of operation.

The combinational logic unit of the controller is developed in this chapter, and the remaining

units are developed in Chapter 7.

Timing Requirements

The control logic establishes the sequencing of the lights for a traffic signal at the inter-

section of a busy main street and an occasionally used side street. The following are the

timing requirements:

u The green light for the main street will stay on for a minimum of 25 s or as long as

there is no vehicle on the side street.
u The green light for the side street will stay on until there is no vehicle on the side

street up to a maximum of 25 s.
u The yellow caution light will stay on for 4 s between changes from green to red on

both the main street and the side street.

The State Diagram

From the timing requirements, a state diagram can be developed to describe the complete

operation. A state diagram graphically shows the sequence of states, the conditions for

each state, and the requirements for transitions from one state to the next.

Defining the Variables The variables that determine how the system sequences through

the various states are defined as follows:

u Vs A vehicle is present on the side street.
u TL The 25 s timer (long timer) is on.
u TS The 4 s timer (short timer) is on.

A complemented variable indicates the opposite condition.

State Descriptions A state diagram is shown in Figure 6–63. Each of the four states is

assigned a 2-bit Gray code as indicated. A looping arrow means that the system remains in

a state, and an arrow between states means that the system transitions to the next state. The

Boolean expression or variable associated with each of the arrows in the state diagram indi-

cate the condition under which the system remains in a state or transitions to the next state.

First State The Gray code is 00. In this state, the light is green on the main street and

red on the side street for 25 s when the long timer is on or there is no vehicle on the side

street. This condition is expressed as TL + Vs. The system transitions to the next state

when the long timer goes off and there is a vehicle on the side street. This condition is

expressed as TLVs.

Second State The Gray code is 01. In this state, the light is yellow on the main street and

red on the side street. The system remains in this state for 4 s when the short timer is on.

This condition is expressed as TS. The system transitions to the next state when the short

timer goes off. This condition is expressed as TS.

366 Functions of Combinational Logic

Third State The Gray code is 11. In this state, the light is red on the main street and

green on the side street for 25 s when the long timer is on as long as there is a vehicle on

the side street. This condition is expressed as TLVs. The system transitions to the next state

when the long timer goes off or when there is no vehicle on the side street. This condition

is expressed as TL + Vs.

Fourth State The Gray code is 10. In this state, the light is red on the main street and

yellow on the side street. The system remains in this state for 4 s when the short timer is

on. This condition is expressed as TS. The system transitions back to the first state when

the short timer goes off. This condition is expressed as TS.

Exercise

1. How long can the system remain in the first state?

2. How long can the system remain in the fourth state?

3. Write the expression for the condition that produces a transition from the first state

to the second state.

4. Write the expression for the condition that keeps the system in the second state.

Block Diagram

The traffic signal controller consists of three units: combinational logic, sequential logic,

and timing circuits, as shown in Figure 6–64. The combinational logic unit provides out-

puts to turn the signal lights on and off. It also provides trigger outputs to start the long and

short timers. The input sequence to this logic represents the four states described by the

state diagram. The timing circuits unit provides the 25 s and the 4 s timing outputs. A fre-

quency divider in the timing circuits unit divides the system clock down to a 1 Hz clock for

use in producing the 25 s and 4 s signals. The sequential logic unit produces the sequence

of 2-bit Gray codes representing the four states.

TL + Vs

TLVsTS

TL + Vs TS

TS

TLVs

Third state
11

Main: red
Side:green

Fourth state
10

Main: red
Side: yellow

First state
00

Main: green
Side: red

Second state
01

Main: yellow
Side: red

TS

FIGURE 6–63 State diagram for the traffic signal control.

 Applied Logic 367

Red

Yellow

Green

Main

Red

Yellow

Green

Side

Combinational logic

Sequential logic

Long trigger

Short trigger

G0

G1

Gray
code

Vehicle
sensor

input

System

clock

Long
timer

Short
timer

Timing circuits

Traffic signal controller logic

Traffic light
interface unit

FIGURE 6–64 Block diagram of the traffic signal controller.

The Combinational Logic

The combinational logic consists of a state decoder, light output logic, and trigger logic, as

shown in Figure 6–65.

Red

Yellow

Green

Main

Red

Yellow

Green

Side

Light output logicState decoder

S2

S3

S4

G0

G1

State
inputs

(Gray code)

State
outputs

Light outputs

to traffic light

interface unit

S1

L2

L3

L4

L1

MR

MY

MG

SR

SY

SG

Trigger logic

Long trig

Short trig

To
timing
circuits

T1 T2 T3 T4

FIGURE 6–65 Block diagram of the combinational logic unit.

State Decoder This logic decodes the 2-bit Gray code from the sequential logic to deter-

mine which of the four states the system is in. The inputs to the state decoder are the two

Gray code bits G1 and G0. There are four state outputs S1, S2, S3, and S4. For each of the

368 Functions of Combinational Logic

four input codes, one and only one of the outputs is activated. The Boolean expressions for

the state outputs in terms of the inputs are

 S1 = G1G0

 S2 = G1G0

 S3 = G1G0

 S4 = G1G0

The truth table for the state decoder logic is shown in Table 6–11, and the logic diagram is

shown in Figure 6–66.

TABLE 6–11

Truth table for the state decoder.

State Inputs (Gray Code) State Outputs

G1 G0 S1 S2 S3 S4

0 0 1 0 0 0

0 1 0 1 0 0

1 1 0 0 1 0

1 0 0 0 0 1

G0

G1

S1

S2

S3

S4

Gray code
state inputs

State outputs

FIGURE 6–66 State decoder logic.

Light Output Logic This logic has the four state outputs (S1–S4) of the state decoder as its

inputs (L1–L4) and produces six outputs to turn the traffic lights on and off. These outputs

are designated MR, MY, MG (main red, main yellow, main green) and SR, SY, SG (side red,

side yellow, side green).

The state diagram shows that the main red is on in the third state (L3) or in the fourth

state (L4), so the Boolean expression is

MR = L3 + L4

The main yellow is on in the second state (L2), so the expression is

MY = L2

The main green is on in the first state (L1), so the expression is

MG = L1

 Applied Logic 369

Similarly, the state diagram is used to obtain the following expressions for the side street:

 SR = L1 + L2

 SY = L4

 SG = L3

The logic circuit is shown in Figure 6–67.

L3

L4

MR

SR

SY

SG

MYL2

MGL1

FIGURE 6–67 Light output logic.

Exercise

5. Show the logic diagram for the light output logic using specific IC devices with pin

numbers.

6. Develop a truth table for the light output logic.

Trigger Logic The trigger logic produces two outputs, the long trigger output and the

short trigger output. The long trigger output initiates the 25 s timer on a LOW-to-HIGH

transition at the beginning of the first or third states. The short trigger output initiates the 4 s

timer on a LOW-to-HIGH transition at the beginning of the second or fourth states. The

Boolean expressions for this logic are

 LongTrig = T1 + T3

 ShortTrig = T2 + T4

Equivalently,

 LongTrig = T1 + T3

 ShortTrig = T1 + T3

The logic circuit is shown in Figure 6–68.

T1

T3

LongTrig

T2

T4

ShortTrig

FIGURE 6–68 Trigger logic.

Exercise

7. Show the logic diagram for the trigger logic using specific IC devices with pin

numbers.

8. Develop a truth table for the trigger logic.

9. Show the complete combinational logic by combining the state decoder, light out-

put logic, and trigger logic. Include specific IC devices and pin numbers.

370 Functions of Combinational Logic

u The VHDL program code for the trigger logic is as follows:

entity TriggerLogic is

 port (T1, T2, T3, T4: in bit; LongTrig, ShortTrig: out bit);

end entity TriggerLogic;

architecture LogicOperation of TriggerLogic is

begin

 LongTrig 6= T1 or T3;

 ShortTrig 6= T2 or T4;

end architecture LogicOperation;

u The VHDL program code for the light output logic is as follows:

entity LightOutputLogic is

 port (L1, L2, L3, L4: in bit; MR, MY, MG, SR, SY, SG: out bit);

end entity LightOutputLogic;

architecture LogicOperation of LightOutputLogic is

begin

 MR 6= L3 or L4;

 MY 6= L2;

 MG 6= L1;

 SR 6= L1 or L2;

 SY 6= L4;

 SG 6= L3;

end architecture LogicOperation;

VHDL Descriptions

The VHDL program for the combinational logic unit of the traffic signal controller can be

written using the data flow approach to describe each of the three functional blocks of the

combinational logic unit. These functional blocks are the state decoder, the light output

logic, and the trigger logic, as shown in Figure 6–65.

u The VHDL program code for the state decoder is as follows:

entity StateDecoder is

 port (G0, G1: in bit; S1, S2, S3, S4: out bit);

end entity StateDecoder;

architecture LogicOperation of StateDecoder is

begin

 S1 6= not G0 and not G1;

 S2 6= G0 and not G1;

 S3 6= G0 and G1;

 S4 6= not G0 and G1;

end architecture LogicOperation;

G0, G1: Gray code inputs

S1–S4: State outputs

Boolean expressions for

state decoder outputs

Boolean expressions for

light output logic outputs

Inputs and outputs

 declared

Inputs and out-

puts declared

Boolean expressions for

trigger logic outputs

Development of the traffic signal controller will continue in the Applied Logic in

Chapter 7.

¸̊
˚̋

˚̊
˚̨

¸̊
˚̊

˚̋
˚̊

˚̊
˚̨

¸̋
˛

 Key Terms 371

Simulation

Open Multisim file AL06 in the Applied Logic folder on the website. Run the simula-

tion for the combinational logic unit of the traffic signal controller and observe the

operation for each of the four states in the light sequence.

Putting Your Knowledge to Work

There is a requirement for a pedestrian push button that would activate the yellow caution

light for 4 s and the red light for 15 s on both the main street and the side street. (a) Modify

the state diagram for this additional feature. (b) Develop the additional logic required.

SUMMARY

• Half-adderandfull-adderoperationsaresummarizedintruthTables6–12and6–13.

Inputs Carry In Carry Out Sum

A B Cin Cout π

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

TABLE 6–13

Inputs Carry Out Sum

A B Cout π

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

TABLE 6–12

• Combinationlogicfunctionsincludecomparators,decoders,encoders,codeconverters,
 multiplexers, demultiplexers, and parity generators/checkers.

• Softwareversionsofstandardlogicfunctionsfromthe74XXseriesareavailableforuseina
programmable logic design.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Cascading Connecting two or more similar devices in a manner that expands the capability of

one device.

Comparator A digital circuit that compares the magnitudes of two quantities and produces an

output indicating the relationship of the quantities.

Decoder A digital circuit that converts coded information into a familiar or noncoded form.

Demultiplexer (DEMUX) A circuit that switches digital data from one input line to several out-

put lines in a specified time sequence.

Encoder A digital circuit that converts information to a coded form.

Full-adder A digital circuit that adds two bits and an input carry to produce a sum and an output

carry.

Glitch A voltage or current spike of short duration, usually unintentionally produced and unwanted.

372 Functions of Combinational Logic

Half-adder A digital circuit that adds two bits and produces a sum and an output carry. It cannot

handle input carries.

Look-ahead carry A method of binary addition whereby carries from preceding adder stages are

anticipated, thus eliminating carry propagation delays.

Multiplexer (MUX) A circuit that switches digital data from several input lines onto a single out-

put line in a specified time sequence.

Parity bit A bit attached to each group of information bits to make the total number of 1s odd or

even for every group of bits.

Priority encoder An encoder in which only the highest value input digit is encoded and any other

active input is ignored.

Ripple carry A method of binary addition in which the output carry from each adder becomes the

input carry of the next higher-order adder.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. A half-adder adds two binary bits.

 2. A half-adder has a carry output only.

 3. A full adder adds two bits and produces two outputs.

 4. A full-adder can be realized only by using 2-input XOR gates.

 5. When the input bits are both 1 and the input carry bit is 1, the sum output of a full adder is 1.

 6. The output of a comparator is 0 when the two binary inputs given are equal.

 7. A decoder detects the presence of a specified combination of input bits.

 8. The 4-line-to-10-line decoder and the 1-of-10 decoder are two different types.

 9. An encoder essentially performs a reverse decoder function.

 10. A multiplexer is a logic circuit that allows digital information from a single source to be routed

onto several lines.

SELF-TEST

Answers are at the end of the chapter.

 1. A half-adder is characterized by

(a) two inputs and two outputs (b) three inputs and two outputs

(c) two inputs and three outputs (d) two inputs and one output

 2. A full-adder is characterized by

(a) two inputs and two outputs (b) three inputs and two outputs

(c) two inputs and three outputs (d) two inputs and one output

 3. The inputs to a full adder are A = 1, B = 0, Cin = 1. The outputs are

(a) © = 0, Cout = 1 (b) © = 1, Cout = 0

(c) © = 0, Cout = 0 (d) © = 1, Cout = 1

 4. A 3-bit parallel adder can add

(a) three 2-bit binary numbers (b) two 3-bit binary numbers

(c) three bits at a time (d) three bits in sequence

 5. To expand a 2-bit parallel adder to a 4-bit parallel adder, you must

(a) use two 2-bit adders with no interconnections

(b) use two 2-bit adders and connect the sum outputs of one to the bit inputs of the other

(c) use four 2-bit adders with no interconnections

(d) use two 2-bit adders with the carry output of one connected to the carry input of the other

 6. If a 74HC85 magnitude comparator has A = 1000 and B = 1010, the outputs are

(a) A 7 B = 0, A 6 B = 0, A = B = 0 (b) A 7 B = 0, A 6 B = 0, A = B = 1

(c) A 7 B = 0, A 6 B = 1, A = B = 0 (d) A 7 B = 0, A 6 B = 1, A = B = 1

 Problems 373

 7. If a 1-of-16 decoder with active-LOW outputs exhibits a LOW on the decimal 12 output, what

are the inputs?

(a) A3A2A1A0 = 1010 (b) A3A2A1A0 = 1110

(c) A3A2A1A0 = 1100 (d) A3A2A1A0 = 0100

 8. A BCD-to-7 segment decoder has 0100 on its inputs. The active outputs are

(a) a, c, f, g (b) b, c, f, g

(c) b, c, e, f (d) b, d, e, g

 9. If an octal-to-binary priority encoder has its 0, 2, 5, and 6 inputs at the active level, the active-

HIGH binary output is

(a) 110 (b) 010

(c) 101 (d) 000

 10. In general, a multiplexer has

(a) one data input, several data outputs, and selection inputs

(b) one data input, one data output, and one selection input

(c) several data inputs, several data outputs, and selection inputs

(d) several data inputs, one data output, and selection inputs

 11. Data distributors are basically the same as

(a) decoders (b) demultiplexers

(c) multiplexers (d) encoders

 12. Which of the following codes exhibit even parity?

(a) 10011000 (b) 01111000

(c) 11111111 (d) 11010101

(e) all (f) both answers (b) and (c)

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 6–1 Half and Full Adders

 1. For the full-adder of Figure 6–4, determine the outputs for each of the following inputs

(a) A = 0, B = 1, Cin = 0 (b) A = 1, B = 0, Cin = 1

(c) A = 0, B = 0, Cin = 0

 2. What are the half-adder inputs that will produce the following outputs:

(a) © = 0, Cout = 0 (b) © = 1, Cout = 0

(c) © = 0, Cout = 1

 3. Determine the outputs of a full-adder for each of the following inputs:

(a) A = 1, B = 0, Cin = 0 (b) A = 0, B = 0, Cin = 1

(c) A = 0, B = 1, Cin = 1 (d) A = 1, B = 1, Cin = 1

Section 6–2 Parallel Binary Adders

 4. For the parallel adder in Figure 6–69, determine the complete sum by analysis of the logical

operation of the circuit. Verify your result by longhand addition of the two input numbers.

Σ1Σ3Σ4

1 0 1 1 1 0

Σ2

0

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FIGURE 6–69

374 Functions of Combinational Logic

 5. Repeat Problem 4 for the circuit and input conditions in Figure 6–70.

1 0 0 0

0

11 1 0 1

Σ1Σ3 Σ2Σ5Σ6 Σ4

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

AA

Σ

B Cin

Cout Σ

B Cin

Cout

1

FIGURE 6–70

A1 B1 A0 B0

Σ1 Σ0

A2 B2A3

Add/Subt.

B3

Σ2
Σ3

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FIGURE 6–71

 6. The circuit shown in Figure 6–71 is a 4-bit circuit that can add or subtract numbers in a form

used in computers (positive numbers in true form; negative numbers in complement form). (a)

Explain what happens when the Add /Subt. input is HIGH. (b) What happens when Add /Subt.

is LOW?

 7. For the circuit in Figure 6–71, assume the inputs are Add /Subt. 5 1, A = 1010, and B = 1101.

What is the output?

 8. The input waveforms in Figure 6–72 are applied to a 2-bit adder. Determine the waveforms for

the sum and the output carry in relation to the inputs by constructing a timing diagram.

A1

A2

B1

B2

Cin

FIGURE 6–72

 Problems 375

 9. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel

adder. Determine the resulting sequence of bits on each sum output.

 A1 1010

 A2 1100

 A3 0101

 A4 1101

 B1 1001

 B2 1011

 B3 0000

 B4 0001

 10. In the process of checking a 74HC283 4-bit parallel adder, the following logic levels are observed

on its pins: 1-HIGH, 2-HIGH, 3-HIGH, 4-HIGH, 5-LOW, 6-LOW, 7-LOW, 9-HIGH, 10-LOW,

11-HIGH, 12-LOW, 13-HIGH, 14-HIGH, and 15-HIGH. Determine if the IC is functioning properly.

Section 6–3 Ripple Carry and Look-Ahead Carry Adders

 11. Each of the eight full-adders in an 8-bit parallel ripple carry adder exhibits the following propa-

gation delay:

 A to © and Cout: 20 ns

 B to © and Cout: 20 ns

 Cin to ©: 30 ns

 Cin to Cout: 25 ns

 Determine the maximum total time for the addition of two 8-bit numbers.

 12. Show the additional logic circuitry necessary to make the 4-bit look-ahead carry adder in

 Figure 6–17 into a 5-bit adder.

Section 6–4 Comparators

 13. The waveforms in Figure 6–73 are applied to the comparator as shown. Determine the output

(A = B) waveform.

A0

A1

B0

B1

A0

A1

B0

B1

COMP
0

1

0

1

A

B

A = B

FIGURE 6–73

A0

A1

A2

A3

COMP

0

3

A

A > B

B0

B1

B2

B3

0

3

B

A > B

A = B

A < B

VCC A = B

A < B

A0

A1

A2

A3

B0

B1

B2

B3

74HC85

FIGURE 6–74

 14. For the 4-bit comparator in Figure 6–74, plot each output waveform for the inputs shown. The

outputs are active-HIGH.

376 Functions of Combinational Logic

 15. For each set of binary numbers, determine the output states for the comparator of Figure 6–21.

(a) A3A2A1A0 = 1010

 B3B2B1B0 = 1101

(b) A3A2A1A0 = 1101

 B3B2B1B0 = 1101

(c) A3A2A1A0 = 1001

 B3B2B1B0 = 1000

Section 6–5 Decoders

 16. When a LOW is on the output of each of the decoding gates in Figure 6–75, what is the binary

code appearing on the inputs? The MSB is A3.

A0

A1

A2
A3

A0

A1

A2

A3

(b)(a)

(d)(c)

A0

A1

A2

A3

A0

A1
A2
A3

FIGURE 6–75

 17. Show the decoding logic for each of the following codes if an active-HIGH (1) output is

required:

(a) 1101 (b) 1000 (c) 11011 (d) 11100

(e) 101010 (f) 111110 (g) 000101 (h) 1110110

 18. Solve Problem 17, given that an active-LOW (0) output is required.

 19. You wish to detect only the presence of the codes 1010, 1100, 0001, and 1011. An active-

HIGH output is required to indicate their presence. Develop the minimum decoding logic with

a single output that will indicate when any one of these codes is on the inputs. For any other

code, the output must be LOW.

 20. If the input waveforms are applied to the decoding logic as indicated in Figure 6–76, sketch the

output waveform in proper relation to the inputs.

A0

A1

A2

A0

A1

A2

Y

FIGURE 6–76

 Problems 377

 21. BCD numbers are applied sequentially to the BCD-to-decimal decoder in Figure 6–77. Draw

a timing diagram, showing each output in the proper relationship with the others and with the

inputs.

A0

A1

A2

A0

A1

A2

A3

BCD/DEC

1

2

4

8
A3

0

3

1

2

4

5

6

7

8

9

74HC42

FIGURE 6–77

A0

A1

A2

A3

A0

A1

A2

A3

1

2

4

8

a

b

c

d

e

f

g

BCD/7-seg

FIGURE 6–78

 22. A 7-segment decoder/driver drives the display in Figure 6–78. If the waveforms are applied as

indicated, determine the sequence of digits that appears on the display.

Section 6–6 Encoders

 23. For the decimal-to-BCD encoder logic of Figure 6–37, assume that the 9 input and the 3 input

are both HIGH. What is the output code? Is it a valid BCD (8421) code?

 24. A 74HC147 encoder has LOW levels on pins 2, 5, and 12. What BCD code appears on the

outputs if all the other inputs are HIGH?

Section 6–7 Code Converters

 25. Convert each of the following decimal numbers to BCD and then to binary.

(a) 4 (b) 7 (c) 12 (d) 23 (e) 34

 26. Show the logic required to convert a 10-bit binary number to Gray code and use that logic to

convert the following binary numbers to Gray code:

(a) 1010111100 (b) 1111000011 (c) 1011110011 (d) 1000000001

 27. Show the logic required to convert a 10-bit Gray code to binary and use that logic to convert

the following Gray code words to binary:

(a) 1010111100 (b) 1111000011 (c) 1011110011 (d) 1000000001

378 Functions of Combinational Logic

Section 6–8 Multiplexers (Data Selectors)

 28. For the multiplexer in Figure 6–79, determine the output for the following input states: D0 = 1,

D1 = 0, D2 = 0, D3 = 1, S0 = 0, S1 = 1.

S1

D0

D1

D2

S0

D3

1

0

1

2

MUX

Y

0

3

G
0–
3

FIGURE 6–79

S1

S0

FIGURE 6–80

 29. If the data-select inputs to the multiplexer in Figure 6–79 are sequenced as shown by the wave-

forms in Figure 6–80, determine the output waveform with the data inputs specified in Problem 28.

 30. The waveforms in Figure 6–81 are observed on the inputs of a 74HC151 8-input multiplexer.

Sketch the Y output waveform.

Enable

S1

D0

D1

D2

S0

D3

S2

D4

D5

D6

D7

Select
inputs

Data
inputs

FIGURE 6–81

Section 6–9 Demultiplexers

 31. Develop the total timing diagram (inputs and outputs) for a 74HC154 used in a demultiplexing

application in which the inputs are as follows: The data-select inputs are repetitively sequenced

through a straight binary count beginning with 0000, and the data input is a serial data stream

carrying BCD data representing the decimal number 2468. The least significant digit (8) is first

in the sequence, with its LSB first, and it should appear in the first 4-bit positions of the output.

 Problems 379

Section 6–10 Parity Generators/Checkers

 32. The waveforms in Figure 6–82 are applied to the 4-bit parity logic. Determine the output wave-

form in proper relation to the inputs. For how many bit times does even parity occur, and how

is it indicated? The timing diagram includes eight bit times.

A0

A1

A2

A3

Bit
time

FIGURE 6–82

 33. Determine the © Even and the © Odd outputs of a 74HC280 9-bit parity generator/checker for

the inputs in Figure 6–83. Refer to the function table in Figure 6–56.

A0

A1

A2

A3

EVEN

ODD

A4

A5

A6

A7

FIGURE 6–83

Section 6–11 Troubleshooting

 34. The full-adder in Figure 6–84 is tested under all input conditions with the input waveforms

shown. From your observation of the © and Cout waveforms, is it operating properly, and if

not, what is the most likely fault?

Σ

A

B

Σ

Cin

Cout

Σ

A

B

Cin

Cout

FIGURE 6–84

380 Functions of Combinational Logic

 35. List the possible faults for each decoder/display in Figure 6–85.

1
2
4
8

1
0
0
1

(a)

BCD/7-seg

1

BCD/7-seg

2
4
8

0
0
0
1

(b)

b

a

c

d
e

f
g

b

a

c

d
e

f
g

0
1
1
0

1
2
4
8

(c)

BCD/7-seg

b

a

c

d
e

f
g

FIGURE 6–85

1 4 3 2 1 Cin4 3 2

134

A0

7-bit binary output

2Cout

B A

Σ

1 4 3 2 1 Cin4 3 2

134 2Cout

B A

Σ

A1A2A3B0B1B2B3

BCD tens digit BCD units digit

643216 8 4 2 1

FIGURE 6–86

 36. Develop a systematic test procedure to check out the complete operation of the keyboard

encoder in Figure 6–39.

 37. You are testing a BCD-to-binary converter consisting of 4-bit adders as shown in Figure 6–86.

First verify that the circuit converts BCD to binary. The test procedure calls for applying BCD

numbers in sequential order beginning with 010 and checking for the correct binary output.

What symptom or symptoms will appear on the binary outputs in the event of each of the fol-

lowing faults? For what BCD number is each fault first detected?

(a) The A1 input is open (top adder).

(b) The Cout is open (top adder).

(c) The ©4 output is shorted to ground (top adder).

(d) The 32 output is shorted to ground (bottom adder).

 Problems 381

 38. For the 7-segment display multiplexing system in Figure 6–49, determine the most likely cause

or causes for each of the following symptoms:

(a) The B-digit (MSD) display does not turn on at all.

(b) Neither 7-segment display turns on.

(c) The f-segment of both displays appears to be on all the time.

(d) There is a visible flicker on the displays.

 39. Develop a systematic procedure to fully test the 74HC151 data selector IC.

 40. During the testing of the data transmission system in Figure 6–58, a code is applied to the D0

through D6 inputs that contains an odd number of 1s. A single bit error is deliberately intro-

duced on the serial data transmission line between the MUX and the DEMUX, but the system

does not indicate an error (error output = 0). After some investigation, you check the inputs

to the even parity checker and find that D0 through D6 contain an even number of 1s, as you

would expect. Also, you find that the D7 parity bit is a 1. What are the possible reasons for the

system not indicating the error?

 41. In general, describe how you would fully test the data transmission system in Figure 6–58, and

specify a method for the introduction of parity errors.

Applied Logic

 42. Use a 74HC00 (quad NAND gates) and any other devices that may be required to produce

active-HIGH outputs for the given inputs of the state decoder.

 43. Implement the light output logic with the 74HC00 if active-LOW outputs are required.

Special Design Problems

 44. Modify the design of the 7-segment display multiplexing system in Figure 6–49 to accommo-

date two additional digits.

 45. Using Table 6–2, write the SOP expressions for the © and Cout of a full-adder. Use a Karnaugh

map to minimize the expressions and then implement them with inverters and AND-OR logic.

Show how you can replace the AND-OR logic with 74HC151 data selectors.

 46. Implement the logic function specified in Table 6–14 by using a 74HC151 data selector.

 47. Using two of the 6-position adder modules from Figure 6–13, design a 12-position voting

system.

 48. The adder block in the tablet-bottling system in Figure 6–87 performs the addition of the 8-bit

binary number from the counter and the 16-bit binary number from Register B. The result from

TABLE 6–14

Inputs Output

A3 A2 A1 A0 Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

382 Functions of Combinational Logic

the adder goes back into Register B. Use 74HC283s to implement this function and draw a

complete logic diagram including pin numbers. This is similar to the system in Section 1–4.

 49. Use 74HC85s to implement the comparator block in the tablet-bottling system in Figure 6–87

and draw a complete logic diagram including pin numbers. The comparator compares the 8-bit

binary number (actually only seven bits are required) from the BCD-to-binary converter with

the 8-bit binary number from the counter.

 50. Two BCD-to-7-segment decoders are used in the tablet-bottling system in Figure 6–87. One is

required to drive the 2-digit tablets/bottle display and the other to drive the 5-digit total tablets

bottled display. Use 74HC47s to implement each decoder and draw a complete logic diagram

including pin numbers.

 51. The encoder shown in the system block diagram of Figure 6–87 encodes each decimal key

 closure and converts it to BCD. Use a 74HC147 to implement this function and draw a

 complete logic diagram including pin numbers.

 52. The system in Figure 6–87 requires two code converters. The BCD-to-binary converter changes

the 2-digit BCD number in Register A to an 8-bit binary code (actually only 7 bits are required

because the MSB is always 0). Use appropriate fixed-function IC code converters to implement

the BCD-to-binary converter function and draw a complete logic diagram including pin numbers.

Multisim Troubleshooting Practice

 53. Open file P06-53. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

8 9

4 5 6

1 2 3

0 . #

7

Keypad

Total tablets bottled

Switching sequence
control input

Valve

Sensor

Conveyor
control

Tablets/bottle

4 bits

8 bits

8 bits

8 bits

16 bits

16 bits

Encoder

Decimal

to BCD

Register A

2-digit BCD

Decoder
A

BCD to
7-seg

Code
converter

BCD to
binary

Comp
A

B

A = B

Decoder
B

BCD to
7-seg

Code
converter

Binary
to BCD

Register B

16-bit binary

Adder

A

B Cout

Σ
Counter

8-bit binary

MUX

FIGURE 6–87

 Answers 383

 54. Open file P06-54. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 55. Open file P06-55. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 56. Open file P06-56. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 6–1 Half and Full Adders

 1. (a) © = 1, Cout = 0

(b) © = 0, Cout = 0

(c) © = 1, Cout = 0

(d) © = 0, Cout = 1

 2. © = 1, Cout = 1

Section 6–2 Parallel Binary Adders

 1. Cout©4©3©2©1 = 11001

 2. Three 74HC283s are required to add two 10-bit numbers.

Section 6–3 Ripple Carry and Look-Ahead Carry Adders

 1. Cg = 0, Cp = 1

 2. Cout = 1

Section 6–4 Comparators

 1. A 7 B = 1, A 6 B = 0, A = B = 0 when A = 1011 and B = 1010

 2. Right comparator: A 6 B = 1; A = B = 0; A 7 B = 0

 Left comparator: A 6 B = 0; A = B = 0; A 7 B = 1

Section 6–5 Decoders

 1. Output 5 is active when 101 is on the inputs.

 2. Four 74HC154s are used to decode a 6-bit binary number.

 3. Active-HIGH output drives a common-cathode LED display.

Section 6–6 Encoders

 1. (a) A0 = 1, A1 = 1, A2 = 0, A3 = 1

(b) No, this is not a valid BCD code.

(c) Only one input can be active for a valid output.

 2. (a) A3 = 0, A2 = 1, A1 = 1, A0 = 1

(b) The output is 0111, which is the complement of 1000 (8).

Section 6–7 Code Converters

 1. 10000101 (BCD) = 10101012

 2. An 8-bit binary-to-Gray converter consists of seven exclusive-OR gates in an arrangement like

that in Figure 6–40 but with inputs B0–B7.

Section 6–8 Multiplexers (Data Selectors)

 1. The output is 0.

 2. (a) 74HC153: Dual 4-input data selector/multiplexer

 (b) 74HC151: 8-input data selector/multiplexer

384 Functions of Combinational Logic

 3. The data output alternates between LOW and HIGH as the data-select inputs sequence through

the binary states.

 4. (a) The 74HC157 multiplexes the two BCD codes to the 7-segment decoder.

(b) The 74HC47 decodes the BCD to energize the display.

(c) The 74HC139 enables the 7-segment displays alternately.

Section 6–9 Demultiplexers

 1. A decoder can be used as a multiplexer by using the input lines for data selection and an

Enable line for data input.

 2. The outputs are all HIGH except D10, which is LOW.

Section 6–10 Parity Generators/Checkers

 1. (a) Even parity: 1110100 (b) Even parity: 001100011

 2. (a) Odd parity: 11010101 (b) Odd parity: 11000001

 3. (a) Code is correct, four 1s. (b) Code is in error, seven 1s

Section 6–11 Troubleshooting

 1. A glitch is a very short-duration voltage spike (usually unwanted).

 2. Glitches are caused by transition states.

 3. Strobe is the enabling of a device for a specified period of time when the device is not in transition.

RELATED PROBLEMS FOR EXAMPLES

 6–1 © = 1, Cout = 1

 6–2 ©1 = 0, ©2 = 0, ©3 = 1, ©4 = 1

 6–3 1011 + 1010 = 10101

 6–4 See Figure 6–88.

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Lowest-order adder

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Highest-order adder

FIGURE 6–88

 6–5 See Figure 6–89.

A0 = 1

B0 = 0

A1 = 0

B1 = 1 0

0

0 → not equal

FIGURE 6–89

 6–6 A 7 B = 0, A = B = 0, A 6 B = 1

 Answers 385

 6–7 See Figure 6–90.

 6–8 See Figure 6–91.

 6–9 Output 22

A

0

3

B

0

3

A > B

A = B

A < B

A > B

A = B

A < B

+5 V

A

0

3

B

0

3

A > B

A = B

A < B

A > B

A = B

A < B

A

0

3

B

0

3

A > B

A = B

A < B

A > B

A = B

A < B

A

0

3

B

0

3

A > B

A = B

A < B

A > B

A = B

A < B

Highest-order comparatorLowest-order comparator

Comp Comp Comp Comp

FIGURE 6–90

X

A0

A1

A2

A3

A4

FIGURE 6–91

 6–10 See Figure 6–92.

 6–11 All inputs LOW: A0 = 0, A1 = 1, A2 = 1, A3 = 0

A0

A1

A2

A3

0

1

2

3

4

5

6

7

8

9

FIGURE 6–92

7

7

 All inputs HIGH: All outputs HIGH.

 6–12 BCD 01000001

00000001 1

00101000 40

Binary 00101001 41

 6–13 Seven exclusive-OR gates

 6–14 See Figure 6–93.

S1

S0

Y

FIGURE 6–93

386 Functions of Combinational Logic

TRUE/FALSE QUIZ

 1. T 2. F 3. F 4. F 5. T

 6. F 7. T 8. F 9. T 10. F

SELF-TEST

 1. (a) 2. (b) 3. (a) 4. (b) 5. (d) 6. (c)

 7. (c) 8. (b) 9. (a) 10. (d) 11. (b) 12. (f)

 6–15 D0: S3 = 0, S2 = 0, S1 = 0, S0 = 0

 D4: S3 = 0, S2 = 1, S1 = 0, S0 = 0

 D8: S3 = 1, S2 = 0, S1 = 0, S0 = 0

 D13: S3 = 1, S2 = 1, S1 = 0, S0 = 1

 6–16 See Figure 6–94.

G

0

2

0
1
2
3

Y = A2A1A0 + A2A1A0 + A2A1A0

4
5
6
7

EN

74HC151

A0

+5 V

A1

A2

0–
7

MUX

FIGURE 6–94

6–17 See Figure 6–95.

G

0

2
0
1
2
3

Y

4
5
6
7

EN

74HC151

A1

A2

A3

A0

0–
7

MUX

= A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

FIGURE 6–95

 6–18 See Figure 6–96.

S0

S1

D0

D1

D2

D3

FIGURE 6–96

387

CHAPTER OUTLINE

7–1 Latches

7–2 Flip-Flops

7–3 Flip-Flop Operating Characteristics

7–4 Flip-Flop Applications

7–5 One-Shots

7–6 The Astable Multivibrator

7–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Use logic gates to construct basic latches

■ Explain the difference between an S-R latch

and a D latch

■ Recognize the difference between a latch

and a flip-flop

■ Explain how D and J-K flip-flops differ

■ Understand the significance of propagation

delays, set-up time, hold time, maximum operating

frequency, minimum clock pulse widths, and power

dissipation in the application of flip-flops

■ Apply flip-flops in basic applications

■ Explain how retriggerable and nonretriggerable

one-shots differ

■ Connect a 555 timer to operate as either an astable

multivibrator or a one-shot

■ Describe latches, flip-flops, and timers using VHDL

■ Troubleshoot basic flip-flop circuits

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

This chapter begins a study of the fundamentals of

sequential logic. Bistable, monostable, and astable

logic devices called multivibrators are covered. Two

categories of bistable devices are the latch and the

flip-flop. Bistable devices have two stable states,

called SET and RESET; they can retain either of

these states indefinitely, making them useful as stor-

age devices. The basic difference between latches

and flip-flops is the way in which they are changed

from one state to the other. The flip-flop is a basic

building block for counters, registers, and other

 sequential control logic and is used in certain types of

memories. The monostable multivibrator, commonly

known as the one-shot, has only one stable state.

A one-shot produces a single controlled-width pulse

when activated or triggered. The astable multivibrator

has no stable state and is used primarily as an oscil-

lator, which is a self-sustained waveform generator.

Pulse oscillators are used as the sources for timing

waveforms in digital systems.

■ Clock

■ Edge-triggered flip-flop

■ D flip-flop

■ Synchronous

■ J-K flip-flop

■ Toggle

■ Preset

■ Clear

■ Propagation delay time

■ Set-up time

■ Hold time

■ Power dissipation

■ One-shot

■ Monostable

■ Timer

■ Astable

Latches, Flip-Flops,
and Timers

7CHAPTER

■ Latch

■ Bistable

■ SET

■ RESET

KEY TERMS

Key terms are in order of appearance in the chapter.

388 Latches, Flip-Flops, and Timers

7–1 Latches

The latch is a type of temporary storage device that has two stable states (bistable) and

is normally placed in a category separate from that of flip-flops. Latches are similar to

flip-flops because they are bistable devices that can reside in either of two states using a

feedback arrangement, in which the outputs are connected back to the opposite inputs. The

main difference between latches and flip-flops is in the method used for changing their state.

After completing this section, you should be able to

u Explain the operation of a basic S-R latch

u Explain the operation of a gated S-R latch

u Explain the operation of a gated D latch

u Implement an S-R or D latch with logic gates

u Describe the 74HC279A and 74HC75 quad latches

The S-R (SET-RESET) Latch

A latch is a type of bistable logic device or multivibrator. An active-HIGH input S-R

(SET-RESET) latch is formed with two cross-coupled NOR gates, as shown in Figure

7–1(a); an active-LOW input S@R latch is formed with two cross-coupled NAND gates, as

shown in Figure 7–1(b). Notice that the output of each gate is connected to an input of the

opposite gate. This produces the regenerative feedback that is characteristic of all latches

and flip-flops.

InfoNote

Latches are sometimes used for

multiplexing data onto a bus. For

example, data being input to a

computer from an external source

have to share the data bus with

data from other sources. When the

data bus becomes unavailable to

the external source, the existing

data must be temporarily stored,

and latches placed between the

external source and the data bus

may be used to do this.

(a) Active-HIGH input S-R latch

R

S

Q

Q

(b) Active-LOW input S-R latch

S

R

Q

Q

FIGURE 7–1 Two versions of SET-RESET (S-R) latches. Open files F07-01(a) and (b)

and verify the operation of both latches. A Multisim tutorial is available on the website.

To explain the operation of the latch, we will use the NAND gate S@R latch in

Figure 7–1(b). This latch is redrawn in Figure 7–2 with the negative-OR equivalent

symbols used for the NAND gates. This is done because LOWs on the S and R lines

are the activating inputs.

The latch in Figure 7–2 has two inputs, S and R, and two outputs, Q and Q. Let’s start

by assuming that both inputs and the Q output are HIGH, which is the normal latched state.

Since the Q output is connected back to an input of gate G2, and the R input is HIGH, the

output of G2 must be LOW. This LOW output is coupled back to an input of gate G1, ensur-

ing that its output is HIGH.

When the Q output is HIGH, the latch is in the SET state. It will remain in this state

indefinitely until a LOW is temporarily applied to the R input. With a LOW on the R input

and a HIGH on S, the output of gate G2 is forced HIGH. This HIGH on the Q output is

coupled back to an input of G1, and since the S input is HIGH, the output of G1 goes LOW.

This LOW on the Q output is then coupled back to an input of G2, ensuring that the Q

output remains HIGH even when the LOW on the R input is removed. When the Q output

is LOW, the latch is in the RESET state. Now the latch remains indefinitely in the RESET

state until a momentary LOW is applied to the S input.

Q

Q

S

R

G1

G2

FIGURE 7–2 Negative-OR

equivalent of the NAND gate

S@R latch in Figure 7–1(b).

A latch can reside in either of its two
states, SET or RESET.

 Latches 389

In normal operation, the outputs of a latch are always complements of each other.

When Q is HIGH, Q is LOW, and when Q is LOW, Q is HIGH.

An invalid condition in the operation of an active-LOW input S@R latch occurs when

LOWs are applied to both S and R at the same time. As long as the LOW levels are

simultaneously held on the inputs, both the Q and Q outputs are forced HIGH, thus

violating the basic complementary operation of the outputs. Also, if the LOWs are

released simultaneously, both outputs will attempt to go LOW. Since there is always

some small difference in the propagation delay time of the gates, one of the gates will

dominate in its transition to the LOW output state. This, in turn, forces the output of

the slower gate to remain HIGH. In this situation, you cannot reliably predict the next

state of the latch.

Figure 7–3 illustrates the active-LOW input S@R latch operation for each of the four

possible combinations of levels on the inputs. (The first three combinations are valid, but

the last is not.) Table 7–1 summarizes the logic operation in truth table form. Operation of

the active-HIGH input NOR gate latch in Figure 7–1(a) is similar but requires the use of

opposite logic levels.

SET means that the Q output is
HIGH.

RESET means that the Q output is
LOW.

Q

Q

S

R

G1

G2
1

0

Simultaneous LOWs on both inputs

Output states are uncertain

when input LOWs go back

HIGH at approximately

the same time.

1

0
1

1

(d) Invalid condition

(b) Two possibilities for the RESET operation

Q

Q

S

R

G1

G2

1 Outputs do
not change
state. Latch
remains SET if
previously SET and
remains RESET if
previously RESET.

HIGHS on both inputs

(c) No-change condition

1

(a) Two possibilities for the SET operation

Q

Q

S

R

1

0

1

1

0

No transitions
occur because
latch is
already SET.

Latch starts out SET (Q = 1).

Q

Q

S

R G2

1

0

1

1

0

1

0
(HIGH)

Momentary LOW

Latch starts out RESET (Q = 0).

Outputs make
transitions when
S goes LOW and
remain in same
state after S
goes back HIGH.

G1

Q

Q

S

R

G1

G2
1

0

1
0

1

Latch starts out RESET (Q = 0).

No transitions occur
because latch is
already RESET.

Q

Q

S

R

G1

G2
1

0

1
1

0

1

0

Outputs make
transitions when R
goes LOW and remain
in same state after R
goes back HIGH.

Latch starts out SET (Q = 1).

G2

G1

FIGURE 7–3 The three modes of basic S@R latch operation (SET, RESET, no-change)

and the invalid condition.

390 Latches, Flip-Flops, and Timers

Logic symbols for both the active-HIGH input and the active-LOW input latches are

shown in Figure 7–4.

TABLE 7–1

Truth table for an active-LOW input S@R latch.

Inputs Outputs

S R Q Q Comments

1 1 NC NC No change. Latch remains in present state.

0 1 1 0 Latch SET.

1 0 0 1 Latch RESET.

0 0 1 1 Invalid condition

Q

Q

S

R

S

R

Q

Q

S

R

S-R latch

(a) Active-HIGH input

S-R latch

(b) Active-LOW input

FIGURE 7–4 Logic symbols for the S-R and S@R latch.

Example 7–1 illustrates how an active-LOW input S@R latch responds to conditions on

its inputs. LOW levels are pulsed on each input in a certain sequence and the resulting Q

output waveform is observed. The S = 0, R = 0 condition is avoided because it results in

an invalid mode of operation and is a major drawback of any SET-RESET type of latch.

EXAMPLE 7–1

If the S and R waveforms in Figure 7–5(a) are applied to the inputs of the latch in

 Figure 7–4(b), determine the waveform that will be observed on the Q output. Assume

that Q is initially LOW.

S

(a) R

Q(b)

FIGURE 7–5

Solution

See Figure 7–5(b).

Related Problem*

Determine the Q output of an active-HIGH input S-R latch if the waveforms in

 Figure 7–5(a) are inverted and applied to the inputs.

*Answers are at the end of the chapter.

 Latches 391

An Application

The Latch as a Contact-Bounce Eliminator

A good example of an application of an S@R latch is in the elimination of mechanical switch

contact “bounce.” When the pole of a switch strikes the contact upon switch closure, it

physically vibrates or bounces several times before finally making a solid contact. Although

these bounces are very short in duration, they produce voltage spikes that are often not

acceptable in a digital system. This situation is illustrated in Figure 7–6(a).

S

R

Q

R

S

+VCC

(a) Switch contact bounce

+V

0

1

2

R

(b) Contact-bounce eliminator circuit

1

2

R1

+VCC

R2

Position
1 to 2

Position
2 to 1

Erratic transition voltage
due to contact bounce

FIGURE 7–6 The S@R latch used to eliminate switch contact bounce.

An S@R latch can be used to eliminate the effects of switch bounce as shown in Figure

7–6(b). The switch is normally in position 1, keeping the R input LOW and the latch RESET.

When the switch is thrown to position 2, R goes HIGH because of the pull-up resistor to VCC,

and S goes LOW on the first contact. Although S remains LOW for only a very short time

before the switch bounces, this is sufficient to set the latch. Any further voltage spikes on

the S input due to switch bounce do not affect the latch, and it remains SET. Notice that the

Q output of the latch provides a clean transition from LOW to HIGH, thus eliminating the

voltage spikes caused by contact bounce. Similarly, a clean transition from HIGH to LOW

is made when the switch is thrown back to position 1.

IMPLEMENTATION: S@R LATCH

Fixed-Function Device The 74HC279A is a quad S@R latch represented by the logic dia-

gram of Figure 7–7(a) and the pin diagram in part (b). Notice that two of the latches each

have two S inputs.

(5)

1S1

1Q

(2)

(1)

(6)

1R

2S

3Q

4Q

2R
2Q

1S2
(4)

(9)

(13)

(7)

(3)

(14)

3S1
(11)

(10)

(15)

3R

4S

4R

3S2
(12)

(a) Logic diagram

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

VCC 4S 4R 4Q 3S2 3S1 3R 3Q

1R 1S1 1S2 1Q 2R 2S 2Q GND

(b) Pin diagram

FIGURE 7–7 The 74HC279A quad S@R latch.

392 Latches, Flip-Flops, and Timers

EXAMPLE 7–2

Determine the Q output waveform if the inputs shown in Figure 7–9(a) are applied to a

gated S-R latch that is initially RESET.

S

(a)

R

Q
(b)

EN

FIGURE 7–9

S

QR

Q

(b) Logic symbol

EN

S

R

EN

Q

Q

(a) Logic diagram

FIGURE 7–8 A gated S-R latch.

The Gated S-R Latch

A gated latch requires an enable input, EN (G is also used to designate an enable input). The

logic diagram and logic symbol for a gated S-R latch are shown in Figure 7–8. The S and R

inputs control the state to which the latch will go when a HIGH level is applied to the EN input.

The latch will not change until EN is HIGH; but as long as it remains HIGH, the output is con-

trolled by the state of the S and R inputs. The gated latch is a level-sensitive device. In this cir-

cuit, the invalid state occurs when both S and R are simultaneously HIGH and EN is also HIGH.

Programmable Logic Device (PLD) An S@R latch can be described using VHDL and

implemented as hardware in a PLD. VHDL statements and keywords not used in previous

chapters are introduced in this chapter. These are library, use, std_logic, all, and inout.

The data flow approach is used in this program to describe a single S@R latch. (The blue

comments are not part of the program.)

entity SRLatch is

 port (SNot, RNot: in std_logic; Q, QNot: inout std_logic);

end entity SRLatch;

architecture LogicOperation of SRLatch is

begin

 Q 6= QNot nand SNot;

 QNot 6= Q nand RNot;

end architecture LogicOperation;

The two inputs SNot and RNot are defined as std_logic from the IEEE library. The inout

keyword allows the Q and QNot outputs of the latch to be used also as inputs for cross-coupling.

SNot: SET complement

RNot: RESET

 complement
Q: Latch output

QNot: Latch output

complement
Boolean expressions

define the outputs
r

 Latches 393

Solution

The Q waveform is shown in Figure 7–9(b). When S is HIGH and R is LOW, a HIGH on

the EN input sets the latch. When S is LOW and R is HIGH, a HIGH on the EN input resets

the latch. When both S and R are LOW, the Q output does not change from its present state.

Related Problem

Determine the Q output of a gated S-R latch if the S and R inputs in Figure 7–9(a) are

inverted.

The Gated D Latch

Another type of gated latch is called the D latch. It differs from the S-R latch because it

has only one input in addition to EN. This input is called the D (data) input. Figure 7–10

contains a logic diagram and logic symbol of a D latch. When the D input is HIGH and the

EN input is HIGH, the latch will set. When the D input is LOW and EN is HIGH, the latch

will reset. Stated another way, the output Q follows the input D when EN is HIGH.

EXAMPLE 7–3

Determine the Q output waveform if the inputs shown in Figure 7–11(a) are applied to

a gated D latch, which is initially RESET.

D

(a)

Q
(b)

EN

FIGURE 7–11

Solution

The Q waveform is shown in Figure 7–11(b). When D is HIGH and EN is HIGH, Q

goes HIGH. When D is LOW and EN is HIGH, Q goes LOW. When EN is LOW, the

state of the latch is not affected by the D input.

Related Problem

Determine the Q output of the gated D latch if the D input in Figure 7–11(a) is inverted.

D

Q

Q

(b) Logic symbol

EN

D

EN

Q

Q

(a) Logic diagram

FIGURE 7–10 A gated D latch. Open file F07-10 and verify the operation.

394 Latches, Flip-Flops, and Timers

SECTION 7–1 CHECKUP

Answers are at the end of the chapter.

 1. List three types of latches.

 2. Develop the truth table for the active-HIGH input S-R latch in Figure 7–1(a).

 3. What is the Q output of a D latch when EN = 1 and D = 1?

IMPLEMENTATION: GATED D LATCH

Fixed-Function Device An example of a gated D latch is the 74HC75 represented by the

logic symbol in Figure 7–12(a). The device has four latches. Notice that each active-HIGH

EN input is shared by two latches and is designated as a control input (C). The truth table

for each latch is shown in Figure 7–12(b). The X in the truth table represents a “don’t care”

condition. In this case, when the EN input is LOW, it does not matter what the D input is

because the outputs are unaffected and remain in their prior states.

Programmable Logic Device (PLD) The gated D latch can be described using VHDL

and implemented as hardware in a PLD. The data flow approach is used in this program to

describe a single D latch.

library ieee;

use ieee.std_logic_1164.all;

entity DLatch1 is

 port (D, EN: in std_logic; Q, QNot: inout std_logic);

end entity DLatch1;

architecture LogicOperation of DLatch1 is

begin

 Q 6= QNot nand (D nand EN);

 QNot 6= Q nand (not D nand EN);

end architecture LogicOperation;

(13)

(14)

(a) Logic symbol

Inputs

Comments

0

1

X

D EN

1

1

0

Outputs

RESET

SET

No change

(b) Truth table (each latch)

2Q

3Q
(10)

1D1D 1Q
(16)

(1)
1Q

2Q
(15)

(11)
3Q

4Q
(9)

(8)
4Q

(2)

EN
C1

C2

(4)

3D3D
(6)

EN
C3

C4

4D4D
(7)

2D2D
(3)

0

1

Q0

Q Q

1

0

Q0

Note: Q0 is the prior output level before the indicated

input conditions were established.

FIGURE 7–12 The 74HC75 quad D latch.

Boolean expressions

define the outputs
r

D: Data input
EN: Enable

Q: Latch output

QNot: Latch output

complement

 Flip-Flops 395

7–2 Flip-Flops

Flip-flops are synchronous bistable devices, also known as bistable multivibrators. In this

case, the term synchronous means that the output changes state only at a specified point

(leading or trailing edge) on the triggering input called the clock (CLK), which is designated

as a control input, C; that is, changes in the output occur in synchronization with the clock.

Flip-flops are edge-triggered or edge-sensitive whereas gated latches are level-sensitive.

After completing this section, you should be able to

u Define clock

u Define edge-triggered flip-flop

u Explain the difference between a flip-flop and a latch

u Identify an edge-triggered flip-flop by its logic symbol

u Discuss the difference between a positive and a negative edge-triggered flip-flop

u Discuss and compare the operation of D and J-K edge-triggered flip-flops and ex-

plain the differences in their truth tables

u Discuss the asynchronous inputs of a flip-flop

An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at

the negative edge (falling edge) of the clock pulse and is sensitive to its inputs only at this

transition of the clock. Two types of edge-triggered flip-flops are covered in this section: D

and J-K. The logic symbols for these flip-flops are shown in Figure 7–13. Notice that each

type can be either positive edge-triggered (no bubble at C input) or negative edge-triggered

(bubble at C input). The key to identifying an edge-triggered flip-flop by its logic symbol is

the small triangle inside the block at the clock (C) input. This triangle is called the dynamic

input indicator.

The dynamic input indicator �
means the flip-flop changes state
only on the edge of a clock pulse.

D

Q

Q

(a) D

C

J

QK

Q

(b) J-K

C

D

Q

Q

C

J

QK

Q

C

Dynamic input
indicator

FIGURE 7–13 Edge-triggered flip-flop logic symbols (top: positive edge-triggered;

bottom: negative edge-triggered).

The D Flip-Flop

The D input of the D flip-flop is a synchronous input because data on the input are trans-

ferred to the flip-flop’s output only on the triggering edge of the clock pulse. When D is

HIGH, the Q output goes HIGH on the triggering edge of the clock pulse, and the flip-flop

D flip-flop but D as variable.

396 Latches, Flip-Flops, and Timers

is SET. When D is LOW, the Q output goes LOW on the triggering edge of the clock pulse,

and the flip-flop is RESET.

This basic operation of a positive edge-triggered D flip-flop is illustrated in Figure 7–14,

and Table 7–2 is the truth table for this type of flip-flop. Remember, the flip-flop cannot

change state except on the triggering edge of a clock pulse. The D input can be changed at

any time when the clock input is LOW or HIGH (except for a very short interval around the

triggering transition of the clock) without affecting the output. Just remember, Q follows D

at the triggering edge of the clock.

InfoNote

Semiconductor memories consist

of large numbers of individual

cells. Each storage cell holds a 1

or a 0. One type of memory is the

Static Random Access Memory or

SRAM, which uses flip-flops for

the storage cells because a flip-flop

will retain either of its two states

indefinitely as long as dc power

is applied, thus the term static.

This type of memory is classified

as a volatile memory because

all the stored data are lost when

power is turned off. Another type

of memory, the Dynamic Random

Access Memory or DRAM, uses

capacitance rather than flip-flops

as the basic storage element and

must be periodically refreshed in

order to maintain the stored data.

D
Q

(a) D = 1 flip-flop SETS on positive clock

edge. (If already SET, it remains SET.)

C
t0

1

CLK

t0

1

0
D

Q

(b) D = 0 flip-flop RESETS on positive

clock edge. (If already RESET, it remains

RESET.)

C
t0

0

t0

1

0

Q Q

FIGURE 7–14 Operation of a positive edge-triggered D flip-flop.

TABLE 7–2

Truth table for a positive edge-triggered D flip-flop.

Inputs Outputs

D CLK Q Q Comments

0 c 0 1 RESET

1 c 1 0 SET

c = clock transition LOW to HIGH

The operation and truth table for a negative edge-triggered D flip-flop are the same as

those for a positive edge-triggered device except that the falling edge of the clock pulse is

the triggering edge.

D

Q

Q

C

FIGURE 7–15

(a)

(b)

D

Q

CLK

Q
1

0

1

0

1

0

1

0
1 2 3 4 5 6

FIGURE 7–16

EXAMPLE 7–4

Determine the Q and Q output waveforms of the flip-flop in Figure 7–15 for the D and CLK inputs in Figure 7–16(a). Assume

that the positive edge-triggered flip-flop is initially RESET.

 Flip-Flops 397

The J-K Flip-Flop

The J and K inputs of the J-K flip-flop are synchronous inputs because data on these inputs

are transferred to the flip-flop’s output only on the triggering edge of the clock pulse. When

J is HIGH and K is LOW, the Q output goes HIGH on the triggering edge of the clock

pulse, and the flip-flop is SET. When J is LOW and K is HIGH, the Q output goes LOW on

the triggering edge of the clock pulse, and the flip-flop is RESET. When both J and K are

LOW, the output does not change from its prior state. When J and K are both HIGH, the

flip-flop changes state. This called the toggle mode.

This basic operation of a positive edge-triggered flip-flop is illustrated in Figure 7–17,

and Table 7–3 is the truth table for this type of flip-flop. Remember, the flip-flop cannot

change state except on the triggering edge of a clock pulse. The J and K inputs can be

changed at any time when the clock input is LOW or HIGH (except for a very short interval

around the triggering transition of the clock) without affecting the output.

Solution

 1. At clock pulse 1, D is LOW, so Q remains LOW (RESET).

 2. At clock pulse 2, D is LOW, so Q remains LOW (RESET).

 3. At clock pulse 3, D is HIGH, so Q goes HIGH (SET).

 4. At clock pulse 4, D is LOW, so Q goes LOW (RESET).

 5. At clock pulse 5, D is HIGH, so Q goes HIGH (SET).

 6. At clock pulse 6, D is HIGH, so Q remains HIGH (SET).

Once Q is determined, Q is easily found since it is simply the complement of Q. The resulting waveforms for Q and Q are

shown in Figure 7–16(b) for the input waveforms in part (a).

Related Problem

Determine Q and Q for the D input in Figure 7–16(a) if the flip-flop is a negative edge-triggered device.

J

K

Q

(a) J = 1, K = 0 flip-flop SETS on positive clock

edge. (If already SET, it remains SET.)

C
t0

1

0

CLK

t0

1

0
J

K

Q

(b) J = 0, K = 1 flip-flop RESETS on positive

clock edge. (If already RESET, it remains

RESET.)

C
t0

0

1

t0

1

0

Q Q

J

K

Q = Q
0
 (no change)

(d) J = 0, K = 0 flip-flop does not change. (If SET, it

remains SET; if RESET, it remains RESET.)

C
t0

0

0 Q

J

K

Q

(c) J = 1, K = 1 flip-flop changes

state (toggle).

C
t0

1

1 Q Q

Q

FIGURE 7–17 Operation of a positive edge-triggered J-K flip-flop.

398 Latches, Flip-Flops, and Timers

TABLE 7–3

Truth table for a positive edge-triggered J-K flip-flop.

Inputs Outputs

J K CLK Q Q Comments

0 0 c Q0 Q0 No change

0 1 c 0 1 RESET

1 0 c 1 0 SET

1 1 c Q0 Q0 Toggle

c = clock transition LOW to HIGH

Q0 = output level prior to clock transition

Solution

Since this is a negative edge-triggered flip-flop, as indicated by the “bubble” at the clock input, the Q output will change

only on the negative-going edge of the clock pulse.

 1. At the first clock pulse, both J and K are HIGH; and because this is a toggle condition, Q goes HIGH.

 2. At clock pulse 2, a no-change condition exists on the inputs, keeping Q at a HIGH level.

 3. When clock pulse 3 occurs, J is LOW and K is HIGH, resulting in a RESET condition; Q goes LOW.

 4. At clock pulse 4, J is HIGH and K is LOW, resulting in a SET condition; Q goes HIGH.

 5. A SET condition still exists on J and K when clock pulse 5 occurs, so Q will remain HIGH.

The resulting Q waveform is indicated in Figure 7–18(b).

Related Problem

Determine the Q output of the J-K flip-flop if the J and K inputs in Figure 7–18(a) are inverted.

EXAMPLE 7–5

The waveforms in Figure 7–18(a) are applied to the J, K, and clock inputs as indicated. Determine the Q output, assuming

that the flip-flop is initially RESET.

(a)

J

K

(b)

1 2 3 4 5
1

0
CLK

Q

1

0

1

0

1

0
Toggle No

change
Reset Set Set

J

Q

Q

C

K

CLK

FIGURE 7–18

Edge-Triggered Operation

D Flip-Flop

A simplified implementation of an edge-triggered D flip-flop is illustrated in Figure 7–19(a)

and is used to demonstrate the concept of edge-triggering. Notice that the basic D flip-flop

differs from the gated D latch only in that it has a pulse transition detector.

 Flip-Flops 399

One basic type of pulse transition detector is shown in Figure 7–19(b). As you can

see, there is a small delay through the inverter on one input to the NAND gate so that the

inverted clock pulse arrives at the gate input a few nanoseconds after the true clock pulse.

This circuit produces a very short-duration spike on the positive-going transition of the

clock pulse. In a negative edge-triggered flip-flop the clock pulse is inverted first, thus

producing a narrow spike on the negative-going edge.

The circuit in Figure 7–19(a) is partitioned into two sections, one labeled Steering gates

and the other labeled Latch. The steering gates direct, or steer, the clock spike either to the

input to gate G3 or to the input to gate G4, depending on the state of the D input. To under-

stand the operation of this flip-flop, begin with the assumptions that it is in the RESET state

(Q = 0) and that the D and CLK inputs are LOW. For this condition, the outputs of gate

G1 and gate G2 are both HIGH. The LOW on the Q output is coupled back into one input of

gate G4, making the Q output HIGH. Because Q is HIGH, both inputs to gate G3 are HIGH

(remember, the output of gate G1 is HIGH), holding the Q output LOW. If a pulse is applied

to the CLK input, the outputs of gates G1 and G2 remain HIGH because they are disabled

by the LOW on the D input; therefore, there is no change in the state of the flip-flop—it

remains in the RESET state.

Let’s now make D HIGH and apply a clock pulse. Because the D input to gate G1 is

now HIGH, the output of gate G1 goes LOW for a very short time (spike) when CLK goes

HIGH, causing the Q output to go HIGH. Both inputs to gate G4 are now HIGH (remember,

gate G2 output is HIGH because D is HIGH), forcing the Q output LOW. This LOW on Q is

coupled back into one input of gate G3, ensuring that the Q output will remain HIGH. The

flip-flop is now in the SET state. Figure 7–20 illustrates the logic level transitions that take

place within the flip-flop for this condition.

Next, let’s make D LOW and apply a clock pulse. The positive-going edge of the clock

produces a negative-going spike on the output of gate G2, causing the Q output to go

HIGH. Because of this HIGH on Q, both inputs to gate G3 are now HIGH (remember, the

output of gate G1 is HIGH because of the LOW on D), forcing the Q output to go LOW.

This LOW on Q is coupled back into one input of gate G4, ensuring that Q will remain

HIGH. The flip-flop is now in the RESET state. Figure 7–21 illustrates the logic level tran-

sitions that occur within the flip-flop for this condition.

G1

G2

G3

G4

CLK

(b) A type of pulse transition detector

(a) A simplified logic diagram for a positive edge-triggered D flip-flop

Delay

Steering gates Latch

Q

D

Q

CLK

Pulse
transition
detector

Short pulse (spike) produced by delay
(when both gate inputs are HIGH)

FIGURE 7–19 Edge triggering. InfoNote

All logic operations that are

performed with hardware can also

be implemented in software. For

example, the operation of a J-K

flip-flop can be performed with

specific computer instructions. If

two bits were used to represent

the J and K inputs, the computer

would do nothing for 00, a data

bit representing the Q output

would be set (1) for 10, the Q

data bit would be cleared (0) for

01, and the Q data bit would be

complemented for 11. Although it

may be unusual to use a computer

to simulate a flip-flop, the point is

that all hardware operations can be

simulated using software.

The Q output of a D flip-flop
assumes the state of the D input on
the triggering edge of the clock.

400 Latches, Flip-Flops, and Timers

D
Q

Q

0

This gate is enabled.

HIGH (1)

 CLK

Triggering

edge

This spike SETS flip-flop.

This gate is disabled because D is HIGH.

0

1
Positive

spike

HIGH

G1

G2

G3

G4

0

1

0

1

0

1

1 Pulse
transition
detector

FIGURE 7–20 Flip-flop making a transition from the RESET state to the SET state on the

positive-going edge of the clock pulse.

Triggering

edge

This gate is enabled.

D Q

Q

0

LOW (0)

 CLK

This spike RESETS flip-flop.

0

1

HIGH
G1

G2

G3

G4

Pulse
transition
detector

0

1

0

1

0

1

1

This gate is disabled

because D is LOW.

FIGURE 7–21 Flip-flop making a transition from the SET state to the RESET state on the

positive-going edge of the clock pulse.

EXAMPLE 7–6

Given the waveforms in Figure 7–22(a) for the D input and the clock, determine the Q

output waveform if the flip-flop starts out RESET.

CLK

(a) D

Q(b)

D

Q

Q

C

FIGURE 7–22

Solution

The Q output goes to the state of the D input at the time of the positive-going clock

edge. The resulting output is shown in Figure 7–22(b).

Related Problem

Determine the Q output for the D flip-flop if the D input in Figure 7–22(a) is inverted.

 Flip-Flops 401

J-K Flip-Flop

Figure 7–23 shows the basic internal logic for a positive edge-triggered J-K flip-flop. The

Q output is connected back to the input of gate G2, and the Q output is connected back to

the input of gate G1. The two control inputs are labeled J and K in honor of Jack Kilby, who

invented the integrated circuit. A J-K flip-flop can also be of the negative edge-triggered

type, in which case the clock input is inverted.

K

J

Q

Q

Pulse
transition
detector

CLK

G1

G2

G3

G4

FIGURE 7–23 A simplified logic diagram for a positive edge-triggered J-K flip-flop.

Let’s assume that the flip-flop in Figure 7–24 is RESET and that the J input is HIGH and

the K input is LOW rather than as shown. When a clock pulse occurs, a leading-edge spike

indicated by ① is passed through gate G1 because Q is HIGH and J is HIGH. This will

cause the latch portion of the flip-flop to change to the SET state. The flip-flop is now SET.

If you make J LOW and K HIGH, the next clock spike indicated by ② will pass through

gate G2 because Q is HIGH and K is HIGH. This will cause the latch portion of the flip-flop

to change to the RESET state.

If you apply a LOW to both the J and K inputs, the flip-flop will stay in its present state

when a clock pulse occurs. A LOW on both J and K results in a no-change condition.

When both the J and K inputs are HIGH and the flip-flop is RESET, the HIGH on the

Q enables gate G1; so the clock spike indicated by ③ passes through to set the flip-flop.

Now there is a HIGH on Q, which allows the next clock spike to pass through gate G2 and

reset the flip-flop.

As you can see, on each successive clock spike, the flip-flop toggles to the opposite

state. Figure 7–24 illustrates the transitions when the flip-flop is in the toggle mode. A J-K

flip-flop connected for toggle operation is sometimes called a T flip-flop.

Asynchronous Preset and Clear Inputs

For the flip-flops just discussed, the D and J-K inputs are called synchronous inputs because

data on these inputs are transferred to the flip-flop’s output only on the triggering edge of

the clock pulse; that is, the data are transferred synchronously with the clock.

K

J Q

Q

G1

G2

G3

G4

Pulse
transition
detector

31

CLK

1 2 3 21 3

2

HIGH

HIGH

1 2 3

FIGURE 7–24 Transitions illustrating flip-flop operation.

In the toggle mode, a J-K flip-flop
changes state on every clock pulse.

An active preset input makes the Q
output HIGH (SET).

402 Latches, Flip-Flops, and Timers

Most integrated circuit flip-flops also have asynchronous inputs. These are inputs that

affect the state of the flip-flop independent of the clock. They are normally labeled preset

(PRE) and clear (CLR), or direct set (SD) and direct reset (RD) by some manufacturers. An

active level on the preset input will set the flip-flop, and an active level on the clear input

will reset it. A logic symbol for a D flip-flop with preset and clear inputs is shown in Figure

7–25. These inputs are active-LOW, as indicated by the bubbles. These preset and clear

inputs must both be kept HIGH for synchronous operation. In normal operation, preset and

clear would not be LOW at the same time.

Figure 7–26 shows the logic diagram for an edge-triggered D flip-flop with active-LOW

preset (PRE) and clear (CLR) inputs. This figure illustrates basically how these inputs

work. As you can see, they are connected so that they override the effect of the synchronous

input, D and the clock.

D

Q

Q

C

PRE

CLR

FIGURE 7–25 Logic symbol

for a D flip-flop with active-LOW

preset and clear inputs.

D
Q

Q

Pulse
transition
detector

CLK

PRE

CLR

FIGURE 7–26 Logic diagram for a basic D flip-flop with active-LOW preset and clear inputs.

An active clear input makes the Q
output LOW (RESET).

EXAMPLE 7–7

For the positive edge-triggered D flip-flop with preset and clear inputs in Figure 7–27,

determine the Q output for the inputs shown in the timing diagram in part (a) if Q is

initially LOW.

D

Q

Q

C

PRE

CLR

(a)

(b)

1 2 3 4 5CLK

Q

D

6 7 8 9

Preset Clear

PRE

CLR

Follows D

FIGURE 7–27 Open file F07-27 to verify the operation.

 Flip-Flops 403

Solution

 1. During clock pulses 1, 2, and 3, the preset (PRE) is LOW, keeping the flip-flop

SET regardless of the synchronous D input.

 2. For clock pulses 4, 5, 6, and 7, the output follows the input on the clock pulse

because both PRE and CLR are HIGH.

 3. For clock pulses 8 and 9, the clear (CLR) input is LOW, keeping the flip-flop

RESET regardless of the synchronous inputs.

The resulting Q output is shown in Figure 7–27(b).

Related Problem

If you interchange the PRE and CLR waveforms in Figure 7–27(a), what will the Q

output look like?

Let’s look at two specific edge-triggered flip-flops. They are representative of the vari-

ous types of flip-flops available in fixed-function IC form and, like most other devices, are

available in CMOS and in bipolar (TTL) logic families.

Also, you will learn how VHDL is used to describe the types of flip-flops.

IMPLEMENTATION: D FLIP-FLOP

Fixed-Function Device The 74HC74 dual D flip-flop contains two identical D flip-flops

that are independent of each other except for sharing VCC and ground. The flip-flops are

positive edge-triggered and have active-LOW asynchronous preset and clear inputs. The

logic symbols for the individual flip-flops within the package are shown in Figure 7–28(a),

and an ANSI/IEEE standard single block symbol that represents the entire device is shown

in part (b). The pin numbers are shown in parentheses.

2CLK
(11)

D

1Q

1Q

C

1PRE

1CLR

(6)

1D

1CLK

(5)

(3)

(2)

(4)

(1)

D

2Q

2Q

C

2PRE

2CLR

(8)

2D

2CLK

(9)

(11)

(12)

(10)

(13)

S

C1

(8)

1CLK
(3)

1D
(2)

(4)

(1)

(10)

2D
(12)

2CLR
(13)

(5)

(6)

(9)

1PRE 1Q

1CLR

2PRE

1Q

2Q

2Q

1D

R

(b) Single block logic symbol

Note: The S and R inside the

block indicate that PRE

SETS and CLR RESETS.(a) Individual logic symbols

S

R

S

R

FIGURE 7–28 The 74HC74 dual positive edge-triggered D flip-flop.

404 Latches, Flip-Flops, and Timers

Programmable Logic Device (PLD) The positive edge-triggered D flip-flop can be

described using VHDL and implemented as hardware in a PLD. In this program, the

behavioral approach will be used for the first time because it lends itself to describing

sequential operations. A new VHDL statement, wait until rising_edge, is introduced.

This statement allows the program to wait for the rising edge of a clock pulse to process

the D input to create the desired results. Also the if then else statement is introduced. The

keyword process is a block of code placed between the begin and end statements of the

architecture to allow statements to be sequentially processed. The program code for a

single D flip-flop is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity dffl is

 port (D, Clock, Pre, Clr: in std_logic; Q: inout std_logic);

end entity dffl;

architecture LogicOperation of dffl is

begin

process

 begin

 wait until rising_edge (Clock);

 if Clr = ‘1’ then

 if Pre = ‘1’ then

 if D = ‘1’ then

 Q 6= ‘1’;

 else

 Q 6= ‘0’;

 end if;

 else

 Q 6= ‘1’;

 end if;

 else

 Q 6= ‘0’;

 end if;

 end process;

end architecture LogicOperation;

D: Flip-flop input

Clock: System clock

Pre: Preset input

Clr: Clear input

Q: Flip-flop output

Q is set HIGH when Pre input is LOW.

Q is set LOW when Clr input is LOW.

Check for Preset and Clear conditions
$

%

&

Q input follows D input when Clr and Pre inputs

are HIGH.

IMPLEMENTATION: J-K FLIP-FLOP

Fixed-Function Device The 74HC112 dual J-K flip-flop has two identical flip-flops that

are negative edge-triggered and have active-LOW asynchronous preset and clear inputs.

The logic symbols are shown in Figure 7–29.

Programmable Logic Device (PLD) The negative edge-triggered J-K flip-flop can be

described using VHDL and implemented as hardware in a PLD. In this program, the be-

havioral approach will be used. A new VHDL statement, if falling edge then, is intro-

duced. This statement allows the program to wait for the falling edge of a clock pulse

 Flip-Flops 405

to process the J and K inputs to create the desired results. The following program code

describes a single J-K flip-flop with no preset or clear inputs.

library ieee;

use ieee.std_logic_1164.all;

entity JKFlipFlop is

 port (J, K, Clock: in std_logic; Q, QNot: inout std_logic);

end entity JKFlipFlop;

architecture LogicOperation of JKFlipFlop is

signal J1, K1: std_logic;

begin

process (J, K, Clock, J1, K1, Q, QNot)

 begin

 if falling_edge(Clock) and Clock = ‘0’ then

 J1 6= not (J and not Clock and QNot);

 K1 6= not (K and not Clock and Q);

 end if;

 Q 6= J1 nand QNot;

 QNot 6= K1 nand Q;

end process;

end architecture LogicOperation;

Inputs and outputs

 declared

Defines the outputs in terms of J1 and

K1 with Boolean expressions

$

%

&

Identifies with Boolean expressions

the inputs (J1 and K1) to the latch

 portion of the flip-flop$

%

&

$

%

&

1K

J

1Q

1Q

C

1PRE

1CLR

(6)

1J

1CLK

(5)

(1)

(2)

(4)

(15)

2Q

2Q

C

2PRE

2CLR

(7)

2CLK

(9)

(13)

J2J
(12)

(10)

(14)

1CLK
(1)

(4)

(3)

(5)

(6)

1PRE

1Q

1CLR
1Q

2CLK
(13)

(7)

1J
(2)

(10)

2J
(12)

2CLR
(14)

(9)2PRE
2Q

2Q

(b) Single block logic symbol(a) Individual logic symbols

K1K
(3)

K2K
(11)

(15)

2K
(11)

S

C1

1J

1K

R

S

R

S

R

FIGURE 7–29 The 74HC112 dual negative edge-triggered J-K flip-flop.

EXAMPLE 7–8

The 1J, 1K, 1CLK, 1PRE, and 1CLR waveforms in Figure 7–30(a) are applied to one of

the negative edge-triggered flip-flops in a 74HC112 package. Determine the 1Q output

waveform.

406 Latches, Flip-Flops, and Timers

Solution

The resulting 1Q waveform is shown in Figure 7–30(b). Notice that each time a LOW

is applied to the 1PRE or 1CLR, the flip-flop is set or reset regardless of the states of the

other inputs.

Related Problem

Determine the 1Q output waveform if the waveforms for 1PRE and 1CLR are inter-

changed.

(a)

(b)

(1CLK)

(1Q)

(1CLR)

(1PRE)

(1J)

(1K)

Pin 15

Pin 5

Pin 4

Pin 3

Pin 2

Pin 1

FIGURE 7–30

SECTION 7–2 CHECKUP

 1. Describe the main difference between a gated D latch and an edge-triggered D flip-

flop.

 2. How does a J-K flip-flop differ from a D flip-flop in its basic operation?

 3. Assume that the flip-flop in Figure 7–22 is negative edge-triggered. Describe the

output waveform for the same CLK and D waveforms.

7–3 Flip-Flop Operating Characteristics

The performance, operating requirements, and limitations of flip-flops are specified

by several operating characteristics or parameters found on the data sheet for the

device. Generally, the specifications are applicable to all CMOS and bipolar (TTL)

flip-flops.

After completing this section, you should be able to

u Define propagation delay time

u Explain the various propagation delay time specifications

u Define set-up time and discuss how it limits flip-flop operation

u Define hold time and discuss how it limits flip-flop operation

u Discuss the significance of maximum clock frequency

u Discuss the various pulse width specifications

u Define power dissipation and calculate its value for a specific device

u Compare various series of flip-flops in terms of their operating parameters

 Flip-Flop Operating Characteristics 407

Propagation Delay Times

A propagation delay time is the interval of time required after an input signal has been

applied for the resulting output change to occur. Four categories of propagation delay times

are important in the operation of a flip-flop:

 1. Propagation delay tPLH as measured from the triggering edge of the clock pulse to the

LOW-to-HIGH transition of the output. This delay is illustrated in Figure 7–31(a).

 2. Propagation delay tPHL as measured from the triggering edge of the clock pulse to the

HIGH-to-LOW transition of the output. This delay is illustrated in Figure 7–31(b).

50% point on triggering edge

50% point on LOW-to-HIGH

transition of Q

tPLH

CLK

Q

(a)

tPHL

Q

CLK 50% point

50% point on HIGH-to-LOW

transition of Q

(b)

FIGURE 7–31 Propagation delays, clock to output.

 3. Propagation delay tPLH as measured from the leading edge of the preset input to the

LOW-to-HIGH transition of the output. This delay is illustrated in Figure 7–32(a)

for an active-LOW preset input.

 4. Propagation delay tPHL as measured from the leading edge of the clear input to the

HIGH-to-LOW transition of the output. This delay is illustrated in Figure 7–32(b)

for an active-LOW clear input.

tPHL

(a) (b)

CLR

Q50% point

tPLH

Q

PRE
50% point

50% point

50% point

FIGURE 7–32 Propagation delays, preset input to output and clear input to output.

Set-up Time

The set-up time (ts) is the minimum interval required for the logic levels to be maintained

constantly on the inputs (J and K, or D) prior to the triggering edge of the clock pulse in

order for the levels to be reliably clocked into the flip-flop. This interval is illustrated in

Figure 7–33 for a D flip-flop.

408 Latches, Flip-Flops, and Timers

Hold Time

The hold time (th) is the minimum interval required for the logic levels to remain on the

inputs after the triggering edge of the clock pulse in order for the levels to be reliably

clocked into the flip-flop. This is illustrated in Figure 7–34 for a D flip-flop.

50% point

50% point on triggering edge

Set-up time (ts)

CLK

D

FIGURE 7–33 Set-up time (ts). The logic level must be present on the D input for a time

equal to or greater than ts before the triggering edge of the clock pulse for reliable data

entry.

Hold time (th)

CLK

D

50% point on

triggering edge

50% point

FIGURE 7–34 Hold time (th). The logic level must remain on the D input for a time equal

to or greater than th after the triggering edge of the clock pulse for reliable data entry.

Maximum Clock Frequency

The maximum clock frequency (fmax) is the highest rate at which a flip-flop can be reli-

ably triggered. At clock frequencies above the maximum, the flip-flop would be unable to

respond quickly enough, and its operation would be impaired.

Pulse Widths

Minimum pulse widths (tW) for reliable operation are usually specified by the manufacturer

for the clock, preset, and clear inputs. Typically, the clock is specified by its minimum

HIGH time and its minimum LOW time.

Power Dissipation

The power dissipation of any digital circuit is the total power consumption of the device.

For example, if the flip-flop operates on a +5 V dc source and draws 5 mA of current, the

power dissipation is

P = VCC * ICC = 5 V * 5 mA = 25 mW

The power dissipation is very important in most applications in which the capacity of

the dc supply is a concern. As an example, let’s assume that you have a digital system that

requires a total of ten flip-flops, and each flip-flop dissipates 25 mW of power. The total

power requirement is

PT = 10 * 25 mW = 250 mW = 0.25 W

 Flip-Flop Applications 409

An advantage of CMOS is that it can operate over a wider range of dc supply voltages (typically 2 V
to 6 V) than bipolar and, therefore, less expensive power supplies that do not have precise regula-
tion can be used. Also, batteries can be used as secondary or primary sources for CMOS circuits. In
addition, lower voltages mean that the IC dissipates less power. The drawback is that the perform-
ance of CMOS is degraded with lower supply voltages. For example, the guaranteed maximum clock
frequency of a CMOS flip-flop is much less at VCC = 2 V than at VCC = 6 V.

This tells you the output capacity required of the dc supply. If the flip-flops operate on

+5 V dc, then the amount of current that the supply must provide is

I =

250 mW

5 V
= 50 mA

You must use a +5 V dc supply that is capable of providing at least 50 mA of current.

Comparison of Specific Flip-Flops

Table 7–4 provides a comparison, in terms of the operating parameters discussed in this

section, of four CMOS and bipolar (TTL) flip-flops of the same type but with different IC

families (HC, AHC, LS, and F).

TABLE 7–4

Comparison of operating parameters for four IC families of flip-flops of the same
type at 25°C.

CMOS Bipolar (TTL)

Parameter 74HC74A 74AHC74 74LS74A 74F74

tPHL (CLK to Q) 17 ns 4.6 ns 40 ns 6.8 ns

tPLH (CLK to Q) 17 ns 4.6 ns 25 ns 8.0 ns

tPHL(CLR to Q) 18 ns 4.8 ns 40 ns 9.0 ns

tPLH (PRE to Q) 18 ns 4.8 ns 25 ns 6.1 ns

ts (set-up time) 14 ns 5.0 ns 20 ns 2.0 ns

th (hold time) 3.0 ns 0.5 ns 5 ns 1.0 ns

tW (CLK HIGH) 10 ns 5.0 ns 25 ns 4.0 ns

tW (CLK LOW) 10 ns 5.0 ns 25 ns 5.0 ns

tW (CLR/PRE) 10 ns 5.0 ns 25 ns 4.0 ns

fmax 35 MHz 170 MHz 25 MHz 100 MHz

Power, quiescent 0.012 mW 1.1 mW

Power, 50% duty cycle 44 mW 88 mW

SECTION 7–3 CHECKUP

 1. Define the following:

(a) set-up time (b) hold time

 2. Which specific flip-flop in Table 7–4 can be operated at the highest frequency?

7–4 Flip-Flop Applications

In this section, three general applications of flip-flops are discussed to give you an idea of

how they can be used. In Chapters 8 and 9, flip-flop applications in registers and counters

are covered in detail.

410 Latches, Flip-Flops, and Timers

After completing this section, you should be able to

u Discuss the application of flip-flops in data storage

u Describe how flip-flops are used for frequency division

u Explain how flip-flops are used in basic counter applications

Parallel Data Storage

A common requirement in digital systems is to store several bits of data from parallel lines

simultaneously in a group of flip-flops. This operation is illustrated in Figure 7–35(a) using

four flip-flops. Each of the four parallel data lines is connected to the D input of a flip-flop.

The clock inputs of the flip-flops are connected together, so that each flip-flop is triggered

by the same clock pulse. In this example, positive edge-triggered flip-flops are used, so the

data on the D inputs are stored simultaneously by the flip-flops on the positive edge of the

clock, as indicated in the timing diagram in Figure 7–35(b). Also, the asynchronous reset

(R) inputs are connected to a common CLR line, which initially resets all the flip-flops.

Q0

Parallel
data

inputs

Q1

Q2

Q3

D0

D1

D2

D3

CLK

D0

D1

D2

D3

CLK

Q0

Q1

Q2

Q3

(b)

(a)

Parallel
data

outputs

Flip-flops
cleared

Data
stored

D

C

R

D

C

R

D

C

R

D

C

CLR

CLR

0

1

1
0

0

0

0

0

R

FIGURE 7–35 Example of flip-flops used in a basic register for parallel data storage.

This group of four flip-flops is an example of a basic register used for data storage. In

digital systems, data are normally stored in groups of bits (usually eight or multiples thereof)

that represent numbers, codes, or other information. Registers are covered in Chapter 8.

 Flip-Flop Applications 411

Frequency Division

Another application of a flip-flop is dividing (reducing) the frequency of a periodic wave-

form. When a pulse waveform is applied to the clock input of a D or J-K flip-flop that is

connected to toggle (D = Q or J = K = 1), the Q output is a square wave with one-half

the frequency of the clock input. Thus, a single flip-flop can be applied as a divide-by-2

device, as is illustrated in Figure 7–36 for both a D and a J-K flip-flop. As you can see in

part (c), the flip-flop changes state on each triggering clock edge (positive edge-triggered in

this case). This results in an output that changes at half the frequency of the clock waveform.

Further division of a clock frequency can be achieved by using the output of one flip-

flop as the clock input to a second flip-flop, as shown in Figure 7–37. The frequency of

the QA output is divided by 2 by flip-flop B. The QB output is, therefore, one-fourth the

frequency of the original clock input. Propagation delay times are not shown on the timing

diagrams.

By connecting flip-flops in this way, a frequency division of 2n is achieved, where n is

the number of flip-flops. For example, three flip-flops divide the clock frequency by 23
= 8;

four flip-flops divide the clock frequency by 24
= 16; and so on.

CLK

Q

(c)

Q

HIGH

CLK

J

C

K

Q

CLK

D

C

(a) (b)

QQ

FIGURE 7–36 The D flip-flop and J-K flip-flop as a divide-by-2 device. Q is one-half the

frequency of CLK. Open file F07-36 and verify the operation.

Q
A

A

CLK

Flip-flop A

Q
B

Flip-flop B

CLK

Q
A

Q
B

D

C

D

C

Q
B

Q

FIGURE 7–37 Example of two D flip-flops used to divide the clock frequency by 4. QA

is one-half and QB is one-fourth the frequency of CLK. Open file F07-37 and verify the

operation.

412 Latches, Flip-Flops, and Timers

Related Problem

How many flip-flops are required to divide a frequency by thirty-two?

EXAMPLE 7–9

Develop the fout waveform for the circuit in Figure 7–38 when an 8 kHz square wave

input is applied to the clock input of flip-flop A.

QA
D

C

Flip-flop A

f in

QB
D

C

Flip-flop B

QC
D

C

Flip-flop C

 fout

FIGURE 7–38

Solution

The three flip-flops are connected to divide the input frequency by eight (23
= 8) and

the QC (fout) waveform is shown in Figure 7–39. Since these are positive edge-triggered

flip-flops, the outputs change on the positive-going clock edge. There is one output

pulse for every eight input pulses, so the output frequency is 1 kHz. Waveforms of QA

and QB are also shown.

f in

QA

QC (fout)

QB

FIGURE 7–39

Counting

Another important application of flip-flops is in digital counters, which are covered in

detail in Chapter 9. The concept is illustrated in Figure 7–40. Negative edge-triggered J-K

flip-flops are used for illustration. Both flip-flops are initially RESET. Flip-flop A toggles

on the negative-going transition of each clock pulse. The Q output of flip-flop A clocks

flip-flop B, so each time QA makes a HIGH-to-LOW transition, flip-flop B toggles. The

resulting QA and QB waveforms are shown in the figure.

Observe the sequence of QA and QB in Figure 7–40. Prior to clock pulse 1, QA = 0 and

QB = 0; after clock pulse 1, QA = 1 and QB = 0; after clock pulse 2, QA = 0 and QB = 1;

and after clock pulse 3, QA = 1 and QB = 1. If we take QA as the least significant bit, a

2-bit sequence is produced as the flip-flops are clocked. This binary sequence repeats every

four clock pulses, as shown in the timing diagram of Figure 7–40. Thus, the flip-flops are

counting in sequence from 0 to 3 (00, 01, 10, 11) and then recycling back to 0 to begin the

sequence again.

 Flip-Flop Applications 413

HIGH

J

C

K

CLK

Flip-flop A

J

C

K

Flip-flop B

QA

QB

1 2 3 4 5 6 7 8

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 2 3 0 1 2 3

CLK

Q
A

Q
B

Binary
sequence

Binary
sequence

FIGURE 7–40 J-K flip-flops used to generate a binary count sequence (00, 01, 10, 11).

Two repetitions are shown.

Related Problem

How many flip-flops are required to produce a binary sequence representing decimal

numbers 0 through 15?

EXAMPLE 7–10

Determine the output waveforms in relation to the clock for QA, QB, and QC in the cir-

cuit of Figure 7–41 and show the binary sequence represented by these waveforms.

QAJ

C

K

QBJ

C

K

QCJ

C

K

HIGH

CLK

QC

QB

QA FIGURE 7–41

Solution

The output timing diagram is shown in Figure 7–42. Notice that the outputs change on

the negative-going edge of the clock pulses. The outputs go through the binary sequence

000, 001, 010, 011, 100, 101, 110, and 111 as indicated.

CLK

QA

QB

0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1 0QC

FIGURE 7–42

414 Latches, Flip-Flops, and Timers

The capacitor immediately begins to charge through R toward the high voltage level.

The rate at which it charges is determined by the RC time constant. When the capacitor

charges to a certain level, which appears as a HIGH to G2, the output goes back LOW.

To summarize, the output of inverter G2 goes HIGH in response to the trigger input. It

remains HIGH for a time set by the RC time constant. At the end of this time, it goes LOW.

A single narrow trigger pulse produces a single output pulse whose time duration is con-

trolled by the RC time constant. This operation is illustrated in Figure 7–43.

SECTION 7–4 CHECKUP

 1. What is a group of flip-flops used for data storage called?

 2. How must a D flip-flop be connected to function as a divide-by-2 device?

 3. How many flip-flops are required to produce a divide-by-64 device?

7–5 One-Shots

The one-shot, also known as a monostable multivibrator, is a device with only one stable

state. A one-shot is normally in its stable state and will change to its unstable state only

when triggered. Once it is triggered, the one-shot remains in its unstable state for a prede-

termined length of time and then automatically returns to its stable state. The time that the

device stays in its unstable state determines the pulse width of its output.

After completing this section, you should be able to

u Describe the basic operation of a one-shot

u Explain how a nonretriggerable one-shot works

u Explain how a retriggerable one-shot works

u Set up the 74121 and the 74LS122 one-shots to obtain a specified output pulse

width

u Recognize a Schmitt trigger symbol and explain basically what it means

u Describe the basic elements of a 555 timer

u Set up a 555 timer as a one-shot

Figure 7–43 shows a basic one-shot (monostable multivibrator) that is composed of a

logic gate and an inverter. When a pulse is applied to the trigger input, the output of gate

G1 goes LOW. This HIGH-to-LOW transition is coupled through the capacitor to the input

of inverter G2. The apparent LOW on G2 makes its output go HIGH. This HIGH is con-

nected back into G1, keeping its output LOW. Up to this point the trigger pulse has caused

the output of the one-shot, Q, to go HIGH.

Q

t1

Trigger G1

t1 t2

+V

R
t1 t2

G2 Q

t1 t2
t1 t2

Apparent LOW

C

FIGURE 7–43 A simple one-shot circuit.

A one-shot produces a single pulse
each time it is triggered.

 One-Shots 415

A typical one-shot logic symbol is shown in Figure 7–44(a), and the same symbol with

an external R and C is shown in Figure 7–44(b). The two basic types of IC one-shots are

nonretriggerable and retriggerable.

Trigger

Q

CEXT

REXT

CX
Q

Q

RX/CX

Q

+V

(a) (b)

Trigger

FIGURE 7–44 Basic one-shot logic symbols. CX and RX stand for external components.

A nonretriggerable one-shot will not respond to any additional trigger pulses from the

time it is triggered into its unstable state until it returns to its stable state. In other words,

it will ignore any trigger pulses occurring before it times out. The time that the one-shot

remains in its unstable state is the pulse width of the output.

Figure 7–45 shows the nonretriggerable one-shot being triggered at intervals greater

than its pulse width and at intervals less than the pulse width. Notice that in the second

case, the additional pulses are ignored.

A retriggerable one-shot can be triggered before it times out. The result of retriggering

is an extension of the pulse width as illustrated in Figure 7–46.

Q

Q

(a)

(b)

Trigger

tW

These pulses are

ignored by the

one-shot.

tW

Trigger

FIGURE 7–45 Nonretriggerable one-shot action.

Trigger

Q

(a)

(b)

Q

tW

tW

Retriggers

Trigger

FIGURE 7–46 Retriggerable one-shot action.

416 Latches, Flip-Flops, and Timers

Nonretriggerable One-Shot

The 74121 is an example of a nonretriggerable IC one-shot. It has provisions for external R

and C, as shown in Figure 7–47. The inputs labeled A1, A2, and B are gated trigger inputs.

The RINT input connects to a 2 k� internal timing resistor.

RI CX RX/CX

&

A1

A2

B

Q

Q

(3)

(4)

(5)

(9)

(10)

(11)

RINT

REXT /CEXT

CEXT

(6)

(1)

(a) Traditional logic symbol

A1

A2

(3)

B

(4)

(5)

1

Q

Q

(6)

(1)

(9) (10) (11)

RINT REXT /CEXTCEXT

(b) ANSI/IEEE std. 91–1984 logic symbol

(= nonlogic connection). “1 ” is the

qualifying symbol for a nonretriggerable

one-shot.

≥1

1

RI

CX

RX/CX

FIGURE 7–47 Logic symbols for the 74121 nonretriggerable one-shot.

Setting the Pulse Width

A typical pulse width of about 30 ns is produced when no external timing components

are used and the internal timing resistor (RINT) is connected to VCC, as shown in Figure

7–48(a). The pulse width can be set anywhere between about 30 ns and 28 s by the use of

external components. Figure 7–48(b) shows the configuration using the internal resistor

(2 k�) and an external capacitor. Part (c) shows the configuration using an external resis-

tor and an external capacitor. The output pulse width is set by the values of the resistor

(RINT = 2 k�, and REXT is selected) and the capacitor according to the following formula:

 tW � 0.7RCEXT Equation 7–1

where R is either RINT or REXT. When R is in kilohms (k�) and CEXT is in picofarads (pF),

the output pulse width tW is in nanoseconds (ns).

VCC

RI CX RX/CX

& 1A1

A2

B

Q

Q

RI CX RX/CX

& 1A1

A2

B

Q

Q

CEXT

RI CX RX/CX

& 1A1

A2

B

Q

Q

REXT

VCC CEXT

(a) No external components

RINT to VCC

tW ≅ 30 ns

(b) RINT and CEXT

tW = 0.7(2 k�)CEXT

(c) REXT and CEXT

tW = 0.7REXT CEXT

VCC

≥1 ≥1 ≥1

FIGURE 7–48 Three ways to set the pulse width of a 74121.

 One-Shots 417

The Schmitt-Trigger Symbol

The symbol indicates a Schmitt-trigger input. This type of input uses a special threshold

circuit that produces hysteresis, a characteristic that prevents erratic switching between states

when a slow-changing trigger voltage hovers around the critical input level. This allows reli-

able triggering to occur even when the input is changing as slowly as 1 volt/second.

Retriggerable One-Shot

The 74LS122 is an example of a retriggerable IC one-shot with a clear input. It also has

provisions for external R and C, as shown in Figure 7–49. The inputs labeled A1, A2, B1,

and B2 are the gated trigger inputs.

(= nonlogic connection). is the

qualifying symbol for a retriggerable

one-shot.

RI CX RX/CX

&≥1

A1

A2 Q

Q

(1)

(2)

(3)

(9)

(10)

(11)

RINT

REXT /CEXT

CEXT

(8)

(6)

RI

CX

RX/CX

(a) Traditional logic symbol

A
1

A
2

(1)

(2)

(3)
Q

Q

(8)

(6)

(9) (10) (11)

RINT REXT /CEXTCEXT

(b) ANSI/IEEE std. 91–1984 logic symbol

(4)
B1

B2

(5)
CLR

(4)
B

1

B
2

(5)
CLR

FIGURE 7–49 Logic symbol for the 74LS122 retriggerable one-shot.

A minimum pulse width of approximately 45 ns is obtained with no external compo-

nents. Wider pulse widths are achieved by using external components. A general formula

for calculating the values of these components for a specified pulse width (tW) is

 tW � 0.32RCEXT ¢1 �
0.7

R
≤ Equation 7–2

where 0.32 is a constant determined by the particular type of one-shot, R is in k� and

is either the internal or the external resistor, CEXT is in pF, and tW is in ns. The internal

resistance is 10 k� and can be used instead of an external resistor. (Notice the difference

between this formula and that for the 74121, shown in Equation 7–1.)

EXAMPLE 7–11

A certain application requires a one-shot with a pulse width of approximately 100 ms.

Using a 74121, show the connections and the component values.

Solution

Arbitrarily select REXT = 39 k� and calculate the necessary capacitance.

 tW = 0.7REXTCEXT

 CEXT =

tW

0.7REXT

where CEXT is in pF, REXT is in k�, and tW is in ns. Since 100 ms = 1 * 108 ns,

CEXT =

1 * 108 ns

0.7(39 k�)
= 3.66 * 10-6 pF = 3.66 MF

418 Latches, Flip-Flops, and Timers

A standard 3.3 mF capacitor will give an output pulse width of 91 ms. The proper con-

nections are shown in Figure 7–50. To achieve a pulse width closer to 100 ms, other

combinations of values for REXT and CEXT can be tried. For example, REXT = 68 k�

and CEXT = 2.2 mF gives a pulse width of 105 ms.

3.3 F

RI CX RX/CX

&

tW = 91 ms

A1

A2

B

Q

Q

 VCC

1

39 k�µ

≥1

FIGURE 7–50

Related Problem

Use an external capacitor in conjunction with RINT to produce an output pulse width of

10 ms from the 74121.

EXAMPLE 7–12

Determine the values of REXT and CEXT that will produce a pulse width of 1 ms when

connected to a 74LS122.

Solution

Assume a value of CEXT = 560 pF and then solve for REXT. The pulse width must be

expressed in ns and CEXT in pF. REXT will be in k�.

 tw = 0.32REXTCEXT a1 +
0.7

REXT

b = 0.32REXTCEXT + 0.7 a 0.32REXTCEXT

REXT

b
 = 0.32REXTCEXT + (0.7)(0.32)CEXT

 REXT =

tW - (0.7)(0.32)CEXT

0.32CEXT

=

tW

0.32CEXT

- 0.7

 =
1000 ns

(0.32)560 pF
- 0.7 = 4.88 k�

Use a standard value of 4.7 k�.

Related Problem

Show the connections and component values for a 74LS122 one-shot with an output

pulse width of 5 ms. Assume CEXT = 560 pF.

An Application

One practical one-shot application is a sequential timer that can be used to illuminate a

series of lights. This type of circuit can be used, for example, in a lane change directional

indicator for highway construction projects or in sequential turn signals on automobiles.

 One-Shots 419

Figure 7–51 shows three 74LS122 one-shots connected as a sequential timer. This par-

ticular circuit produces a sequence of three 1 s pulses. The first one-shot is triggered by

a switch closure or a low-frequency pulse input, producing a 1 s output pulse. When the

first one-shot (OS 1) times out and the 1 s pulse goes LOW, the second one-shot (OS 2) is

triggered, also producing a 1 s output pulse. When this second pulse goes LOW, the third

one-shot (OS 3) is triggered and the third 1 s pulse is produced. The output timing is illus-

trated in the figure. Variations of this basic arrangement can be used to produce a variety

of timed outputs.

68 Fµ
47 k�

RI CX RX/CX

&

OS 3

68 F
47 k�

RI CX RX/CX

&

RI CX RX/CX

&
Q

68 F

OS 2OS 1

Q1

Q2

Q3

1 s 1 s 1 s

VCC

Q Q

A1

A2

B1

B2

CLR

A1

A2

B1

B2

CLR

A1

A2

B1

B2

CLR

47 k�
µ µ

≥1 ≥1 ≥1

FIGURE 7–51 A sequential timing circuit using three 74LS122 one-shots.

The 555 Timer as a One-Shot

The 555 timer is a versatile and widely used IC device because it can be configured in two

different modes as either a monostable multivibrator (one-shot) or as an astable multivibra-

tor (pulse oscillator). The astable multivibrator is discussed in Section 7–6.

The 555 Timer Operation

A functional diagram showing the internal components of a 555 timer is shown in

 Figure 7–52. The comparators are devices whose outputs are HIGH when the voltage on

the positive (+) input is greater than the voltage on the negative (-) input and LOW when

the - input voltage is greater than the + input voltage. The voltage divider consisting of

three 5 k� resistors provides a trigger level of 1�3 VCC and a threshold level of 2�3 VCC. The

control voltage input (pin 5) can be used to externally adjust the trigger and threshold lev-

els to other values if necessary. When the normally HIGH trigger input momentarily goes

below 1�3 VCC, the output of comparator B switches from LOW to HIGH and sets the S-R

latch, causing the output (pin 3) to go HIGH and turning the discharge transistor Q1 off.

The output will stay HIGH until the normally LOW threshold input goes above 2�3 VCC and

causes the output of comparator A to switch from LOW to HIGH. This resets the latch,

causing the output to go back LOW and turning the discharge transistor on. The external

reset input can be used to reset the latch independent of the threshold circuit. The trigger

and threshold inputs (pins 2 and 6) are controlled by external components connected to

produce either monostable or astable action.

420 Latches, Flip-Flops, and Timers

Monostable (One-Shot) Operation

An external resistor and capacitor connected as shown in Figure 7–53 are used to set up the

555 timer as a nonretriggerable one-shot. The pulse width of the output is determined by

the time constant of R1 and C1 according to the following formula:

 tW � 1.1R1C1 Equation 7–3

The control voltage input is not used and is connected to a decoupling capacitor C2 to pre-

vent noise from affecting the trigger and threshold levels.

VCC

R
5 k�

Output

+

–

+

–

Output
buffer

Latch

Comparator B

(8)

Discharge
transistor

ResetGND

Comparator A

R
5 k�

R
5 k�

Discharge

Trigger

Control
voltage

Threshold
(6)

(5)

(2)

(7)

(1) (4)

(3)

Q1

R

S

Q

555

FIGURE 7–52 Internal functional diagram of a 555 timer (pin numbers are in parentheses).

C2

0.01 F
(decoupling optional)

RESET

555

VCC

DISCH

THRESH

TRIG

(7)

(6)

(2)

(3)

(5)

R1

(4) (8)

GND

(1)

OUT

CONT

+VCC

C1 µ

FIGURE 7–53 The 555 timer connected as a one-shot.

Before a trigger pulse is applied, the output is LOW and the discharge transistor Q1

is on, keeping C1 discharged as shown in Figure 7–54(a). When a negative-going trigger

pulse is applied at t0, the output goes HIGH and the discharge transistor turns off, allowing

capacitor C1 to begin charging through R1 as shown in part (b). When C1 charges to 1�3 VCC,

 One-Shots 421

the output goes back LOW at t1 and Q1 turns on immediately, discharging C1 as shown in

part (c). As you can see, the charging rate of C1 determines how long the output is HIGH.

VCC

R
5 k�

Output
R

S
Q

+

–

+

–

B

(8)

A

R
5 k�

R
5 k�

HIGH

Trigger

(6)

(5)

(2)

(7)

(1) (4)

(3)

Q1

LOW

LOW

HIGH LOW

ON

C1

R1

0 V

(a) Prior to triggering. (The current path is indicated by the red arrow.)

R
5 k�

Output
R

S
Q

+

–

+

–

B

(8)

A

R
5 k�

R
5 k�

(6)

(5)

(2)

(7)

(1) (4)

(3)

Q1

LOW

t0

OFF

at t0

Charging

(b) When triggered

VCC

R
5 k�

Output
R

S
Q

+

–

+

–

B

(8)

A

R
5 k�

R
5 k�

HIGH

(6)

(5)

(2)

(7)

(1) (4)

(3)

Q1

LOW

R1

Discharging

at t1

(c) At end of charging interval

VC1

0

1.1R1C1

t0
VCC

0

VC1

2
–
3

555 555

555

C1

C1

t0

t0

VCC

R1

t1

t0 t1

t0 t1

t1

ON

at t1

FIGURE 7–54 One-shot operation of the 555 timer.

EXAMPLE 7–13

What is the output pulse width for a 555 monostable circuit with R1 = 2.2 k� and

C1 = 0.01 mF?

Solution

From Equation 7–3 the pulse width is

tW = 1.1R1C1 = 1.1(2.2 k�)(0.01 mF) = 24.2 Ms

Related Problem

For C1 = 0.01 mF, determine the value of R1 for a pulse width of 1 ms.

422 Latches, Flip-Flops, and Timers

One-Shot with VHDL

An example of a VHDL program code for a one-shot is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity OneShot is

 port (Enable, Clk: in std_logic;

 Duration: in integer range 0 to 25;

 QOut: buffer std_logic);

end entity OneShot;

architecture OneShotBehavior of OneShot is

begin

 Counter: process (Enable, Clk, Duration)

 variable Flag : boolean := true;

 variable Cnt : integer range 0 to 25;

 variable SetCount : integer range 0 to 25;

 begin

 SetCount := Duration;

 if (Clk’EVENT and Clk = ‘1’) then

 if Enable = ‘0’ then

 Flag := true;

 end if;

 if Enable = ‘1’ and Flag then

 Cnt := 1;

 Flag :=False;

 end if;

 if cnt = SetCount then

 Qout 6= ‘0’;

 Cnt := 0;

 Flag := false;

 else

 if Cnt 7 0 then

 Cnt := Cnt + 1;

 Qout 6= ‘1’;

 end if;

 end if;

 end if;

 end process;

end architecture OneShotBehavior;

In normal operation, a one-shot produces only a single pulse, which can be difficult to measure
on an oscilloscope because the pulse does not occur regularly. To obtain a stable display for
test purposes, it is useful to trigger the one-shot from a pulse generator that is set to a longer
period than the expected pulse width and trigger the oscilloscope from the same pulse. For very
long pulses, either store the waveform using a digital storage oscilloscope or shorten the time
constant by some known factor. For example, replace a 1000 mF capacitor with a 1 mF capaci-
tor to shorten the time by a factor of 1000. A faster pulse is easier to see and measure with an
 oscilloscope.

 The Astable Multivibrator 423

The 555 Timer as an Astable Multivibrator

A 555 timer connected to operate as an astable multivibrator is shown in Figure 7–56.

Notice that the threshold input (THRESH) is now connected to the trigger input (TRIG).

The external components R1, R2, and C1 form the timing network that sets the frequency of

oscillation. The 0.01 mF capacitor, C2, connected to the control (CONT) input is strictly for

decoupling and has no effect on the operation; in some cases it can be left off.

SECTION 7–5 CHECKUP

 1. Describe the difference between a nonretriggerable and a retriggerable one-shot.

 2. How is the output pulse width set in most IC one-shots?

 3. What is the pulse width of a 555 timer one-shot when C = 1 mF and R = 10 k�?

7–6 The Astable Multivibrator

An astable multivibrator is a device that has no stable states; it changes back and forth

(oscillates) between two unstable states without any external triggering. The resulting out-

put is typically a square wave that is used as a clock signal in many types of sequential logic

circuits. Astable multivibrators are also known as pulse oscillators.

After completing this section, you should be able to

u Describe the operation of a simple astable multivibrator using a Schmitt trigger

circuit.

u Set up a 555 timer as an astable multivibrator.

Figure 7–55(a) shows a simple form of astable multivibrator using an inverter with

hysteresis (Schmitt trigger) and an RC circuit connected in a feedback arrangement. When

power is first applied, the capacitor has no charge; so the input to the Schmitt trigger

inverter is LOW and the output is HIGH. The capacitor charges through R until the inverter

input voltage reaches the upper trigger point (UTP), as shown in Figure 7–55(b). At this

point, the inverter output goes LOW, causing the capacitor to discharge back through R,

shown in part (b). When the inverter input voltage decreases to the lower trigger point

(LTP), its output goes HIGH and the capacitor charges again. This charging/discharging

cycle continues to repeat as long as power is applied to the circuit, and the resulting output

is a pulse waveform, as indicated.

(a) (b)

UTP

LTP

Vout

Vin

R

C

VoutVin

FIGURE 7–55 Basic astable multivibrator using a Schmitt trigger.

InfoNote

Most systems require a timing

source to provide accurate clock

waveforms. The timing section

controls all system timing and

is responsible for the proper

operation of the system hardware.

The timing section usually consists

of a crystal-controlled oscillator

and counters for frequency

division. Using a high-frequency

oscillator divided down to a lower

frequency provides for greater

accuracy and frequency stability.

424 Latches, Flip-Flops, and Timers

Initially, when the power is turned on, the capacitor (C1) is uncharged and thus the

trigger voltage (pin 2) is at 0 V. This causes the output of comparator B to be HIGH and

the output of comparator A to be LOW, forcing the output of the latch, and thus the base

of Q1, LOW and keeping the transistor off. Now, C1 begins charging through R1 and R2,

as indicated in Figure 7–57. When the capacitor voltage reaches 1�3 VCC, comparator B

switches to its LOW output state; and when the capacitor voltage reaches 2�3 VCC, compara-

tor A switches to its HIGH output state. This resets the latch, causing the base of Q1 to go

HIGH and turning on the transistor. This sequence creates a discharge path for the capaci-

tor through R2 and the transistor, as indicated. The capacitor now begins to discharge,

causing comparator A to go LOW. At the point where the capacitor discharges down to
1�3 VCC, comparator B switches HIGH; this sets the latch, making the base of Q1 LOW and

turning off the transistor. Another charging cycle begins, and the entire process repeats. The

C2

0.01 F
(decoupling optional)

µ

RESET

555

VCC

DISCH

THRESH

TRIG

(7)

(6)

(2)

(3)

(5)

C1

(4) (8)

GND

(1)

OUT

CONT

+VCC

R1

R2

FIGURE 7–56 The 555 timer connected as an astable multivibrator (oscillator).

+VCC

R

R

S

Q

+

–

+

–

B

(8)

A

R

(6)

(5)

(2)

(7)

(1) (4)

(3)

Q1Discharging

Vout

VCC
2–
3

R

on off on

2 1 2 1

2 1 2 1

R1

R2

+

–
VC

C
h

a
rg

in
g

555

+VCC

VCC
1–
3

2 2 2

1 1

C1

FIGURE 7–57 Operation of the 555 timer in the astable mode.

 The Astable Multivibrator 425

result is a rectangular wave output whose duty cycle depends on the values of R1 and R2.

The frequency of oscillation is given by the following formula, or it can be found using the

graph in Figure 7–58.

 f �
1.44

(R1 � 2R2)C1

 Equation 7–4

(

F

)
C

1
µ

(R1 + 2R2)

10 M
�

1 M
�

100 k�

10 k�

1 k�

10

1.0

0.1

0.01

0.001
0.1 1.0 10 100 1.0k 10k 100k

f (Hz)

100

FIGURE 7–58 Frequency of oscillation as a function of C1 and R1 + 2R2. The sloped

lines are values of R1 + 2R2.

By selecting R1 and R2, the duty cycle of the output can be adjusted. Since C1 charges

through R1 + R2 and discharges only through R2, duty cycles approaching a minimum

of 50 percent can be achieved if R2 W R1 so that the charging and discharging times are

approximately equal.

An expression for the duty cycle is developed as follows. The time that the output is

HIGH (tH) is how long it takes C1 to charge from 1�3 VCC to 2�3 VCC. It is expressed as

 tH � 0.7(R1 � R2)C1 Equation 7–5

The time that the output is LOW (tL) is how long it takes C1 to discharge from 1�3 VCC to
2�3 VCC. It is expressed as

 tL � 0.7R2C1 Equation 7–6

The period, T, of the output waveform is the sum of tH and tL. This is the reciprocal of f in

Equation 7–4.

T = tH + tL = 0.7(R1 + 2R2)C1

Finally, the duty cycle is

 Duty cycle =

tH

T
=

tH

tH + tL

 Duty cycle � ¢ R1 � R2

R1 � 2R2

≤100% Equation 7–7

To achieve duty cycles of less than 50 percent, the circuit in Figure 7–56 can be modi-

fied so that C1 charges through only R1 and discharges through R2. This is achieved with a

diode, D1, placed as shown in Figure 7–59. The duty cycle can be made less than 50 percent

by making R1 less than R2. Under this condition, the expression for the duty cycle is

 Duty cycle � ¢ R1

R1 � R2

≤100% Equation 7–8

426 Latches, Flip-Flops, and Timers

C2

0.01 Fµ

RESET

555

VCC

DISCH

THRESH

TRIG

(7)

(6)

(2)

(3)

(5)

+VCC

R1

(4) (8)

GND

(1)

OUT

CONT

R2

+

−

D1

C1

FIGURE 7–59 The addition of diode D1 allows the duty cycle of the output to be adjusted

to less than 50 percent by making R1 , R2.

EXAMPLE 7–14

A 555 timer configured to run in the astable mode (pulse oscillator) is shown in Figure

7–60. Determine the frequency of the output and the duty cycle.

C2

0.01 F

RESET

555

VCC

DISCH

THRESH

TRIG

+5.5 V

R1

2.2 k�

GND

OUT

CONT

R2

C1

0.022 F

4.7 k�

µµ

FIGURE 7–60 Open file F07-60 to verify operation.

Solution

Use Equations 7–4 and 7–7.

 f =

1.44

(R1 + 2R2)C1

=

1.44

(2.2 k� + 9.4 k�)0.022 mF
= 5.64 kHz

 Duty cycle = ¢ R1 + R2

R1 + 2R2

≤100% = ¢ 2.2 k� + 4.7 k�

2.2 k� + 9.4 k�
≤100% = 59.5%

Related Problem

Determine the duty cycle in Figure 7–60 if a diode is connected across R2 as indicated

in Figure 7–59.

 Troubleshooting 427

SECTION 7–6 CHECKUP

 1. Explain the difference in operation between an astable multivibrator and a monosta-

ble multivibrator.

 2. For a certain astable multivibrator, tH = 15 ms and T = 20 ms. What is the duty

cycle of the output?

7–7 Troubleshooting

It is standard practice to test a new circuit design to be sure that it is operating as specified.

New fixed-function designs are “breadboarded” and tested before the design is finalized.

The term breadboard refers to a method of temporarily hooking up a circuit so that its

operation can be verified and any design flaws worked out before a prototype unit is built.

After completing this section, you should be able to

u Describe how the timing of a circuit can produce erroneous glitches

u Approach the troubleshooting of a new design with greater insight and awareness

of potential problems

The circuit shown in Figure 7–61(a) generates two clock waveforms (CLK A and CLK B)

that have an alternating occurrence of pulses. Each waveform is to be one-half the fre-

quency of the original clock (CLK), as shown in the ideal timing diagram in part (b).

CLK

CLK B

CLK A

CLK A

CLK B

CLK

Q

(a)

D

C

Q

Q

Q

(b)

FIGURE 7–61 Two-phase clock generator with ideal waveforms. Open file F07-61 and

verify the operation.

When the circuit is tested with an oscilloscope or logic analyzer, the CLK A and CLK B

waveforms appear on the display screen as shown in Figure 7–62(a). Since glitches occur

on both waveforms, something is wrong with the circuit either in its basic design or in the

way it is connected. Further investigation reveals that the glitches are caused by a race

condition between the CLK signal and the Q and Q signals at the inputs of the AND gates.

As displayed in Figure 7–62(b), the propagation delays between CLK and Q and Q create

a short-duration coincidence of HIGH levels at the leading edges of alternate clock pulses.

Thus, there is a basic design flaw.

The problem can be corrected by using a negative edge-triggered flip-flop in place of

the positive edge-triggered device, as shown in Figure 7–63(a). Although the propaga-

tion delays between CLK and Q and Q still exist, they are initiated on the trailing edges

of the clock (CLK), thus eliminating the glitches, as shown in the timing diagram of

Figure 7–63(b).

428 Latches, Flip-Flops, and Timers

CLK A

CLK B

(a) Oscilloscope display of CLK A and CLK B waveforms with

glitches indicated by the “spikes”.

CLK

Q

CLK A

(b) Oscilloscope display showing propagation delay that creates

glitch on CLK A waveform

tPHL

FIGURE 7–62 Oscilloscope displays for the circuit in Figure 7–61.

Q

CLK

CLK B

CLK A

CLK A

CLK

Q

(b)

CLK B

(a)

Q

Q

D

C

FIGURE 7–63 Two-phase clock generator using negative edge-triggered flip-flop to

eliminate glitches. Open file F07-63 and verify the operation.

SECTION 7–7 CHECKUP

 1. Can a negative edge-triggered J-K flip-flop be used in the circuit of Figure 7–63?

 2. What device can be used to provide the clock for the circuit in Figure 7–63?

Glitches that occur in digital systems are very fast (extremely short in duration) and can be difficult to
see on an oscilloscope, particularly at lower sweep rates. A logic analyzer, however, can show a glitch
easily. To look for glitches using a logic analyzer, select “latch” mode or (if available) transitional
sampling. In the latch mode, the analyzer looks for a voltage level change. When a change occurs,
even if it is of extremely short duration (a few nanoseconds), the information is “latched” into the
analyzer’s memory as another sampled data point. When the data are displayed, the glitch will show
as an obvious change in the sampled data, making it easy to identify.

 Applied Logic 429

Applied Logic

Traffic Signal Controller: Part 2

The combinational logic unit of the traffic signal controller was completed in Chapter 6.

Now, the timing circuits and sequential logic are developed. Recall that the timing circuits

produce a 25 s time interval for the red and green lights and a 4 s interval for the yellow

caution light. These outputs will be used by the sequential logic. The block diagram of the

complete traffic signal controller is shown in Figure 7–64.

Traffic light
interface unit

Combinational logic

Sequential logic

Long trigger

Short trigger

G1

G0
Vehicle
sensor

input

Long
timer

Short
timer

System

clock

Timing circuits

Traffic signal control logic

MR

MY

MG

SR

SY

SG

FIGURE 7–64 Block diagram of the traffic signal controller.

Timing Circuits

The timing circuits unit of the traffic signal controller consists of a 25 s timer and a

4 s timer and a clock generator. One way to implement this unit is with two 555 timers

configured as one-shots and one 555 timer configured as an astable multivibrator (oscil-

lator), as discussed earlier in this chapter. Component values are calculated based on the

formulas given.

Another way to implement the timing circuits is shown in Figure 7–65. An exter-

nal 24 MHz system clock (arbitrary value) is divided down to an accurate 1 Hz clock

by the frequency divider. The 1 Hz clock is then used to establish the 25 s and the 4 s

intervals by counting the 1 Hz pulses. This approach lends itself better to a VHDL

description.

430 Latches, Flip-Flops, and Timers

4 s timer Short timerShort trigger

25 s timer Long timerLong trigger

System clock
Frequency

divider 1 Hz

To sequential

logic

FIGURE 7–65 Block diagram of the timing circuits unit.

24 MHz

Combinational logic

Trigger logic

State decoder
(SD)

MR = Sig3 or Sig4

Light output logic

MY = Sig2

SR = Sig2 or Sig1

Sig 2

S1

S2

S3

S4

Sig 3

Sig 4

MG = Sig1

SY = Sig4;

SG = Sig3

LongTime LongTime = Sig1 or Sig3;

Side

Main

Red

Yellow

Green

Red

Yellow

Green

Sig 1

ShortTime

LongTrig

ShortTrig ShortTime = not(Sig1 or Sig3)

Vehicle sensor

Frequency divider
(FD)

System clock

VSin

Gray1

Gray0

ClkIn

Clock

ClkIn

ClkOut
Clk

SequentialLogic

StateDecoder

Sequential logic
(SL)

Timing circuits TimerCircuits

1 Hz

FreqDivide

Timer circuits (TC)

G1G1

G0G0

SG

MR

MY

MG

SR

SY

TS TL

TS TL

TSin TLin

VS

Clk

FIGURE 7–66 Programming model for the traffic signal controller.

Frequency Divider The purpose of the frequency divider is to produce a 1 Hz clock for

the timer circuits. The input ClkIn in this application is a 24.00 MHz oscillator that drives

the program code. SetCount is used to initialize the count for a 1 Hz interval. The program

Exercise

1. Determine the values for the resistor and capacitor in a 25 s 555 timer.

2. Determine the values for the resistor and capacitor in a 4 s 555 timer.

3. What is the purpose of the frequency divider?

Controller Programming with VHDL

A programming model for the traffic signal controller is shown in Figure 7–66, where all

the input and output labels are given. Notice that the Timing circuits block is split into two

parts; the Frequency divider and the Timer circuits; and the Combinational logic block

is divided into the State decoder and two logic sections (Light output logic and Trigger

logic). This model will be used to develop the VHDL program codes.

 Applied Logic 431

FreqDivide counts up from zero to the value assigned to SetCount (one-half the oscillator

speed) and inverts the output identifier ClkOut.

The integer value Cnt is set to zero prior to operation. The clock pulses are counted

and compared to the value assigned to SetCount. When the number of pulses counted

reaches the value in SetCount, the output ClkOut is checked to see if it is currently

set to a 1 or 0. If ClkOut is currently 0, ClkOut is assigned a 1; otherwise, ClkIn is set

to 1. Cnt is assigned a value of 0 and the process repeats. Toggling the output ClkOut

each time the value of SetCount is reached creates a 1 Hz clock output with a 50%

duty cycle.

The VHDL program code for the frequency divider is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity FreqDivide is

port(Clkln, in std_logic;

 ClkOut: buffer std_logic);

end entity FreqDivide;

architecture FreqDivide Behavior of FreqDivide is

begin

 FreqDivide: process(Clkln)

 variable Cnt: integer := 0;

 variable SetCount: integer;

begin

 SetCount := 12000000; -- 1/2 duty cycle

 if (ClkIn‘EVENT and ClkIn = ‘1’) then

 if (Cnt = SetCount) then

 if ClkOut = ‘0’ then

 ClkOut 6= ‘1’; --Output high 50%

 else

 ClkOut 6= ‘0’; --Output Low 50%

 end if;

 Cnt := 0;

 else

 Cnt := Cnt + 1;

 end if;

 end if;

end process;

end architecture FreqDivideBehavior;

Timer Circuits The program TimerCircuits uses two one-shot instances consisting of a

25 s timer (TLong) and a 4 s timer (TShort). The 25 s and the 4 s timers are triggered by

long trigger (LongTrig) and short trigger (ShortTrig). In the VHDL program, countdown

timers driven by a 1 Hz clock input (Clk) replicate the one-shot components TLong and

TShort. The values stored in SetCountLong and SetCountShort are assigned to the Dura-

tion inputs of one-shot components TLong and TShort, setting the 25-second and 4-second

timeouts. When Enable is set LOW, the one-shot timer is initiated and output QOut is set

HIGH. When the one-shot timers time out, QOut is set LOW. The output of one-shot com-

ponent TLong is sent to TimerCircuits identifier TL. The output of one-shot component

TShort is sent to TimerCircuits identifier TS.

Clkln: 24.00 MHz clock driver
ClkOut: Output at 1 Hz

Cnt: Counts up to value in SetCount
SetCount: Holds 1�2 timer interval value

SetCount is assigned a value equal

to half the system clock to produce a

1 Hz output. In this case, a 24 MHz

system clock is used.

 The if statement causes program to

wait for a clock event and clock 5 1

to start operation.

Check that the terminal value in

SetCount has been reached at which

time ClkOut is toggled and Cnt is

reset to 0.

 If terminal value has not been reached, Cnt is incremented.

w

432 Latches, Flip-Flops, and Timers

The diagram in Figure 7–68 shows how two D flip-flops can be used to implement the

Gray code counter. Outputs from the input logic provide the D inputs to the flip-flops so

they sequence through the proper states.

The VHDL program code for the timing circuits is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity TimerCircuits is

 port(LongTrig, ShortTrig, Clk: in std_logic;

 TS, TL: buffer std_logic);

end entity TimerCircuits;

architecture TimerBehavior of TimerCircuits is

component OneShot is

 port(Enable, Clk: in std_logic;

 Duration :in integer range 0 to 25;

 QOut :buffer std_logic);

end component OneShot;

signal SetCountLong, SetCountShort: integer range 0 to 25;

begin

 SetCountLong 6= 25;

 SetCountShort 6= 4;

 TLong:OneShot port map(Enable=7LongTrig, Clk=7Clk, Duration=7SetCountLong, QOut=7TL);

 TShort:OneShotport map(Enable=7ShortTrig, Clk=7Clk, Duration=7SetCountShort, QOut=7TS);

end architecture TimerBehavior;

LongTrig: Long timeout timer enable input

ShortTrig: Short timeout timer enable input
Clk: 1 Hz Clock input
TS: Short timer timeout signal
TL: Long timer timeout signal

Component declaration for OneShot.

SetCountLong: Holds long timer duration
SetCountShort: Holds short timer duration

Long and short count times are hard-coded

to 25 and 4 based on a 1 Hz clock. Instantiation

TLong
 Instantiation

TShort

u
r

Sequential Logic

The sequential logic unit controls the sequencing of the traffic lights, based on inputs from

the timing circuits and the side street vehicle sensor. The sequential logic produces a 2-bit

Gray code sequence for each of the four states that were described in Chapter 6.

The Counter The sequential logic consists of a 2-bit Gray code counter and the associ-

ated input logic, as shown in Figure 7–67. The counter produces the four-state sequence on

outputs G0 and G1. Transitions from one state to the next are determined by the short timer

(TS), the long timer (TL), and vehicle sensor (Vs) inputs.

Input logic
G0

G1

TS

TL

Vs

CLK

2-bit Gray
code counter

TS : Short timer (4 s)

TL : Long timer (25 s)

Vs : Vehicle sensor for the side street

To state
decoder

FIGURE 7–67 Block diagram of the sequential logic.

 Applied Logic 433

D1

Input logic

D0

C

10 kHz clock

G0

G1

TS

TL

Vs

C

Q1

To state
decoder

Q0

FIGURE 7–68 Sequential logic diagram with two D flip-flops used to implement the 2-bit

Gray code counter.

The D flip-flop transition table is shown in Table 7–5. A next-state table developed

from the state diagram in Chapter 6 Applied Logic is shown in Table 7–6. The subject of

counter design is covered further in Chapter 8.

TABLE 7–5

D flip-flop transition table. QN is the output before
clock pulse. QN+1 is output after clock pulse.

Output Transitions Flip-Flop Input

QN QN�1 D

0 h 0 0

0 h 1 1

1 h 0 0

1 h 1 1

TABLE 7–6

Next-state table for the counter.

Present State Next State FF Inputs

Q1 Q0 Q1 Q0 Input Conditions D1 D0

0 0 0 0 TL + Vs 0 0

0 0 0 1 TLVs 0 1

0 1 0 1 TS 0 1

0 1 1 1 TS 1 1

1 1 1 1 TL Vs 1 1

1 1 1 0 TL + Vs 1 0

1 0 1 0 TS 1 0

1 0 0 0 TS 0 0

434 Latches, Flip-Flops, and Timers

The Input Logic Using Tables 7–5 and 7–6, the conditions required for each flip-flop

to go to the 1 state can be determined. For example, G0 goes from 0 to 1 when the

present state is 00 and the condition on input D0 is TLVs, as indicated on the second row

of Table 7–6. D0 must be a 1 to make G0 go to a 1 or to remain a 1 on the next clock

pulse. A Boolean expression describing the conditions that make D0 a 1 is derived from

Table 7–6 as follows:

D0 = G1G0TLVs + G1G0TS + G1G0TS + G1G0TLVs

In the two middle terms, the TS and the TS variables cancel, leaving the expression

D0 = G1G0TLVs + G1G0 + G1G0TLVs

Also, from Table 7–6, an expression for D1 can be developed as follows:

D1 = G1G0TS + G1G0TLVs + G1G0TL + G1G0Vs + G1G0TS

Based on the minimized expression for D0 and D1, the complete sequential logic diagram

is shown in Figure 7–69.

TL

Vs

TS

G0

C

D0 Q0

C

D1 Q1 G1

Gray
code

Clock

FIGURE 7–69 Complete diagram for the sequential logic.

Exercise

4. State the Boolean law and rule that permits the cancellation of TS and TS in the

expression for D0.

5. Use the Karnaugh map to reduce the D0 expression further to a minimum form.

6. Use Boolean laws, rules, and/or the Karnaugh map to reduce the D1 expression to

a minimum form.

7. Do your minimized expressions for D0 and D1 agree with the logic shown in

 Figure 7–69?

The Sequential Logic with VHDL

The program SequentialLogic describes the Gray code logic needed to drive the traf-

fic signal controller based on input from the timing circuits and the side street vehicle

sensor. The sequential logic code produces a 2-bit Gray code sequence for each of the

 Applied Logic 435

four sequence states. The component definition dff is used to instantiate two D flip-flop

instances DFF0 and DFF1. DFF0 and DFF1 produce the two-bit Gray code. The Gray

code output sequences the traffic signal controller through each of four states. Internal

variables D0 and D1 store the results of the D0 and D1 Boolean expressions developed

in this chapter. The stored results in D0 and D1 are assigned to D flip-flops DFF0 and

DFF1 along with the system clock to drive outputs G0 and G1 from the D flip-flop Q

outputs.

The VHDL program code for the sequential logic is as follows:

The Complete Traffic Signal Controller

The program TrafficLights completes the traffic signal controller. Components FreqDi-

vide, TimerCircuits, SequentialLogic, and StateDecoder are used to compose the com-

pleted system. Signal CLKin from the TrafficLights program source code is the clock

input to the FreqDivide component. The frequency divided output ClkOut is stored as

local variable Clock and is the divided clock input to the TimerCircuits and Sequential-

Logic components. TimerCircuits is controlled by local variables LongTime and Short-

Time, which are controlled by the outputs Sig1 and Sig3 from component StateDecoder.

StateDecoder also provides outputs Sig1 through Sig4 to control the traffic lights MG, SG,

MY, SY, MR, and SR. TimerCircuit timeout signals TS and TL are stored in variables

TLin (timer long in) and TSin (timer short in).

Signals TSin and TLin from TimerCircuits are used along with vehicle sensor VSin

as inputs to the SequentialLogic component. The outputs from SequentialLogic G0

and G1 are stored in variables Gray0 and Gray1 as inputs to component StateDecoder.

Component StateDecoder returns signals S1 through S4 which are in turn passed to

variables Sig1 through Sig4. The light output logic and trigger logic developed in

Chapter 6 are not used as components in this program, but are stated as logic expres-

sions. The values stored in variables Sig1 through Sig4 provide the logic for outputs

MG, SG, MY, SY, MR, SR; and local timer triggers LongTime and ShortTime are sent

to TimerCircuits.

library ieee;

use ieee.std_logic_1164.all;

entity SequentialLogic is

port(VS, TL, TS, Clk: in std_logic; G0, G1: inout std_logic);

end entity SequentialLogic;

architecture SequenceBehavior of SequentialLogic is

component dff is

port (D, Clk: in std_logic; Q: out std_logic);

end component dff;

signal D0, D1: std_logic;

begin

D1 6= (G0 and not TS) or (G1 and TS);

D0 6= (not G1 and not TL and VS) or (not G1 and G0)

 or (G0 and TL and VS);

DFF0: dff port map(D=7 D0, Clk =7 Clk, Q =7 G0);

DFF1: dff port map(D=7 D1, Clk =7 Clk, Q =7 G1);

end architecture SequenceBehavior;

VS: Vehicle sensor input
TL: Long timer input
TS: Short timer input
Clk: System clock
G0: Gray code output bit 0
G1: Gray code output bit 1
D0: Logic for DFlipFlop DFF0
D1: Logic for DFlipFlop DFF1

Component declaration

for D flip-flop (dff)

Logic definitions for D flip-

flop inputs D0 and D1 derived

from Boolean expressions de-

veloped in this chapter.

Component instantiations

s
s

r

436 Latches, Flip-Flops, and Timers

The VHDL program code for the traffic signal controller is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity TrafficLights is

port(VSin, ClkIn: in std_logic; MR, SR, MY, SY, MG, SG: out std_logic);

end entity TrafficLights;

architecture TrafficLightsBehavior of TrafficLights is

component StateDecoder is

port(G0, G1: in std_logic; S1, S2, S3, S4: out std_logic);

end component StateDecoder;

component SequentialLogic is

port(VS, TL, TS, Clk: in std_logic; G0, G1: inout std_logic);

end component SequentialLogic;

component TimerCircuits is

port(LongTrig, ShortTrig, Clk: In std_logic; TS, TL: buffer std_logic);

end component TimerCircuits;

component FreqDivide is

port(Clkin: in std_logic; ClkOut: buffer std_logic);

end component FreqDivide;

signal Sig1, Sig2, Sig3, Sig4, Gray0, Gray1: std_logic;

signal LongTime, ShortTime, TLin, TSin, Clock: std_logic;

begin

MR 6= Sig3 or Sig4;

SR 6= Sig2 or Sig1;

MY 6= Sig2;

SY 6= Sig4;

MG 6= Sig1;

SG 6= Sig3;

LongTime 6= Sig1 or Sig3;

ShortTime 6= not(Sig1 or Sig3);

SD: StateDecoder port map (G0 =7 Gray0, G1 =7 Gray1, S1 =7 Sig1, S2 =7 Sig2, S3 =7 Sig3, S4 =7 Sig4);

SL: SequentialLogic port map (VS =7 VSin, TL =7 TLin, TS =7 TSin, Clk =7 Fout, G0 =7 Gray0, G1 =7 Gray1);

TC: TimerCircuits port map (LongTrig=7LongTime, ShortTrig=7ShortTime, Clk=7Clock, TS=7TSin, TL=7TLin);

FD: FreqDivide port map (Clkln =7 CLKin, ClkOut =7-Clock);

end architecture TrafficLightsBehavior;

VSin : Vehicle sensor input
CLKin : System Clock
MR : Main red light output
SR : Side red light output
MY : Main yellow light output
SY : Side yellow light output
MG : Main green light output
SG : Side green light output

Component declaration for StateDecoder

Component declaration for SequentialLogic

Component declaration for TimerCircuits

Component declaration for FreqDivider

Logic definitions for the

light output logic

Sig1-4 : Return values from StateDecoder

Gray0-1 : SequentialLogic Gray code return

LongTime : Trigger input to TimerCircuits

ShortTime : Trigger input to TimerCircuits

TLin : Store TimerCircuits long timeout

TSin : Store TimerCircuits Short timeout

Clock : Divided clock from FreqDivide

Logic definitions for the trigger logic

Component

instantiations

s
s

s
s

w
r s
Simulation

Open file AL07 in the Applied Logic folder on the website. Run the traffic signal

 controller simulation using your Multisim software and observe the operation. Lights

will appear randomly when first turned on. Simulation times may vary.

Putting Your Knowledge to Work

Add your modification for the pedestrian input developed in Chapter 6 and run a simulation.

 True/False Quiz 437

SUMMARY

• Latchesarebistabledeviceswhosestatenormallydependsonasynchronousinputs.

• Edge-triggeredflip-flopsarebistabledeviceswithsynchronousinputswhosestatedependson
the inputs only at the triggering transition of a clock pulse. Changes in the outputs occur at the

triggering transition of the clock.

• Monostablemultivibrators(one-shots)haveonestablestate.Whentheone-shotistriggered,the
output goes to its unstable state for a time determined by an RC circuit.

• Astablemultivibratorshavenostablestatesandareusedasoscillatorstogeneratetimingwave-

forms in digital systems.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Astable Having no stable state. An astable multivibrator oscillates between two quasi-stable

states.

Bistable Having two stable states. Flip-flops and latches are bistable multivibrators.

Clear An asynchronous input used to reset a flip-flop (make the Q output 0).

Clock The triggering input of a flip-flop.

D flip-flop A type of bistable multivibrator in which the output assumes the state of the D input

on the triggering edge of a clock pulse.

Edge-triggered flip-flop A type of flip-flop in which the data are entered and appear on the out-

put on the same clock edge.

Hold time The time interval required for the control levels to remain on the inputs to a flip-flop

after the triggering edge of the clock in order to reliably activate the device.

J-K flip-flop A type of flip-flop that can operate in the SET, RESET, no-change, and toggle

modes.

Latch A bistable digital circuit used for storing a bit.

Monostable Having only one stable state. A monostable multivibrator, commonly called a one-

shot, produces a single pulse in response to a triggering input.

One-shot A monostable multivibrator.

Power dissipation The amount of power required by a circuit.

Preset An asynchronous input used to set a flip-flop (make the Q output 1).

Propagation delay time The interval of time required after an input signal has been applied for

the resulting output change to occur.

RESET The state of a flip-flop or latch when the output is 0; the action of producing a RESET

state.

SET The state of a flip-flop or latch when the output is 1; the action of producing a SET state.

Set-up time The time interval required for the control levels to be on the inputs to a digital circuit,

such as a flip-flop, prior to the triggering edge of a clock pulse.

Synchronous Having a fixed time relationship.

Timer A circuit that can be used as a one-shot or as an oscillator.

Toggle The action of a flip-flop when it changes state on each clock pulse.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. A latch has one stable state.

 2. A latch is considered to be in the RESET state when the Q output is low.

438 Latches, Flip-Flops, and Timers

SELF-TEST

Answers are at the end of the chapter.

 1. An active HIGH input S-R latch is formed by the cross-coupling of

(a) two NOR gates (b) two NAND gates (c) two OR gates (d) two AND gates

 2. Which of the following is not true for an active LOW input S-R latch?

(a) S = 1, R = 1, Q = NC, Q = NC (b) S = 0, R = 1, Q = 1, Q = 0

(c) S = 1, R = 0, Q = 1, Q = 0 (d) S = 0, R = 0, Q = 1, Q = 1

 3. For what combinations of the inputs D and EN will a D latch reset?

(a) D = LOW, EN = LOW

(b) D = LOW, EN = HIGH

(c) D = HIGH, EN = LOW

(d) D = HIGH, EN = HIGH

 4. A flip-flop changes its state during the

(a) complete operational cycle

(b) falling edge of the clock pulse

(c) rising edge of the clock pulse

(d) both answers (b) and (c)

 5. The purpose of the clock input to a flip-flop is to

(a) clear the device

(b) set the device

(c) always cause the output to change states

(d) cause the output to assume a state dependent on the controlling (J-K or D) inputs.

 6. For an edge-triggered D flip-flop,

(a) a change in the state of the flip-flop can occur only at a clock pulse edge

(b) the state that the flip-flop goes to depends on the D input

(c) the output follows the input at each clock pulse

(d) all of these answers

 7. A feature that distinguishes the J-K flip-flop from the D flip-flop is the

(a) toggle condition (b) preset input

(c) type of clock (d) clear input

 8. A flip-flop is SET when

(a) J = 0, K = 0 (b) J = 0, K = 1

(c) J = 1, K = 0 (d) J = 1, K = 1

 9. A J-K flip-flop with J = 1 and K = 1 has a 10 kHz clock input. The Q output is

(a) constantly HIGH (b) constantly LOW

(c) a 10 kHz square wave (d) a 5 kHz square wave

 10. A one-shot is a type of

(a) monostable multivibrator (b) astable multivibrator

(c) timer (d) answers (a) and (c)

(e) answers (b) and (c)

 3. A gated D latch cannot be used to change state.

 4. Flip-flops and latches are both bistable devices.

 5. An edge-triggered D flip-flop changes state whenever the D input changes.

 6. A clock input is necessary for an edge-triggered flip-flop.

 7. When both the J and K inputs are HIGH, an edge-triggered J-K flip-flop changes state on each

clock pulse.

 8. A one-shot is also known as an astable multivibrator.

 9. When triggered, a one-shot produces a single pulse.

 10. The 555 timer cannot be used as a pulse oscillator.

 Problems 439

 11. The output pulse width of a nonretriggerable one-shot depends on

(a) the trigger intervals (b) the supply voltage

(c) a resistor and capacitor (d) the threshold voltage

 12. An astable multivibrator

(a) requires a periodic trigger input (b) has no stable state

(c) is an oscillator (d) produces a periodic pulse output

(e) answers (a), (b), (c), and (d) (f) answers (b), (c), and (d) only

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 7–1 Latches

 1. If the waveforms in Figure 7–70 are applied to an active-HIGH S-R latch, draw the resulting Q

output waveform in relation to the inputs. Assume that Q starts LOW.

QR

QS
S

R

FIGURE 7–70

 2. Solve Problem 1 for the input waveforms in Figure 7–71 applied to an active-LOW

S - R latch.

S

R

FIGURE 7–71

S

R

FIGURE 7–72

 3. Solve Problem 1 for the input waveform in Figure 7–72.

 4. For a gated S-R latch, determine the Q and Q outputs for the inputs in Figure 7–73. Show them

in proper relation to the enable input. Assume that Q starts LOW.

Q

QS

R

EN

R

S

EN

FIGURE 7–73

440 Latches, Flip-Flops, and Timers

 5. Determine the output of a gated D latch for the inputs in Figure 7–74.

CLK

J

K

J

QK

Q

(a)

CLK C

J

QK

Q

(b)

CLK C

FIGURE 7–77

 9. The Q output of an edge-triggered D flip-flop is shown in relation to the clock signal in Figure

7–78. Determine the input waveform on the D input that is required to produce this output if

the flip-flop is a positive edge-triggered type.

EN

D

FIGURE 7–74

EN

D

FIGURE 7–75

 6. Determine the output of a gated D latch for the inputs in Figure 7–75.

 7. For a gated D latch, the waveforms shown in Figure 7–76 are observed on its inputs. Draw

the timing diagram showing the output waveform you would expect to see at Q if the latch is

initially RESET.

EN

D

FIGURE 7–76

Section 7–2 Flip-Flops

 8. Two edge-triggered J-K flip-flops are shown in Figure 7–77. If the inputs are as shown, draw

the Q output of each flip-flop relative to the clock, and explain the difference between the two.

The flip-flops are initially RESET.

CLK

Q

FIGURE 7–78

CLK

D

FIGURE 7–79

 10. Draw the Q output relative to the clock for a D flip-flop with the inputs as shown in

Figure 7–79. Assume positive edge-triggering and Q initially LOW.

 Problems 441

 11. Solve Problem 10 for the inputs in Figure 7–80.

 14. Determine the Q waveform relative to the clock if the signals shown in Figure 7–83 are applied

to the inputs of the J-K flip-flop. Assume that Q is initially LOW.

CLK

D

FIGURE 7–80

 12. For a positive edge-triggered D flip-flop with the input as shown in Figure 7–81, determine the

Q output relative to the clock. Assume that Q starts LOW.

CLK

D

FIGURE 7–81

CLK

D

FIGURE 7–82

 13. Solve Problem 12 for the input in Figure 7–82.

CLK

J

K

PRE

CLR

J

Q

Q

C

K

PRE

CLR

FIGURE 7–83

 15. For a negative edge-triggered J-K flip-flop with the inputs in Figure 7–84, develop the Q output

waveform relative to the clock. Assume that Q is initially LOW.

CLK

J

K

FIGURE 7–84

442 Latches, Flip-Flops, and Timers

 16. The following serial data are applied to the flip-flop through the AND gates as indicated in

Figure 7–85. Determine the resulting serial data that appear on the Q output. There is one clock

pulse for each bit time. Assume that Q is initially 0 and that PRE and CLR are HIGH. Right-

most bits are applied first.

J1: 1 0 1 0 0 1 1; J2: 0 1 1 1 0 1 0; J3: 1 1 1 1 0 0 0; K1: 0 0 0 1 1 1 0; K2: 1 1 0 1 1 0 0;

K3: 1 0 1 0 1 0 1

 17. For the circuit in Figure 7–85, complete the timing diagram in Figure 7–86 by showing the Q

output (which is initially LOW). Assume PRE and CLR remain HIGH.

J

QK

QJ2

J1

J3

K2

K1

K3

CLR

PRE

CLK C

FIGURE 7–85

CLK

J1

J2

J3

K1

K2

K3

FIGURE 7–86

 18. Solve Problem 17 with the same J and K inputs but with the PRE and CLR inputs as shown in

Figure 7–87 in relation to the clock.

CLR

PRE

CLK

FIGURE 7–87

Section 7–3 Flip-Flop Operating Characteristics

 19. What determines the power dissipation of a flip-flop?

 20. Typically, a flip-flop is limited in its operation due to hold time and setup time. Explain how.

 21. The datasheet of a certain flip-flop specified that the minimum HIGH time for the clock pulse

is 20 ns and the minimum LOW time is 40 ns. What is the maximum operating frequency?

 22. The flip-flop in Figure 7–88 is initially RESET. Show the relation between Q output and the

clock pulse if the propagation delay tPLH (clock to Q) is 5 ns.

Q

Q

HIGH

30 ns

CLK

D

C

FIGURE 7–88

 23. The direct current required by a particular flip-flop that operates on a +4 V dc source is found

to be 8 mA. A certain digital device uses 16 of these flip-flops. Determine the current capacity

required for the +4 V dc supply and the total power dissipation of the system.

 Problems 443

 24. For the circuit in Figure 7–89, determine the maximum frequency of the clock signal for

reliable operation if the set-up time for each flip-flop is 3 ns and the propagation delays (tPLH

and tPHL) from clock to output are 6 ns for each flip-flop.

C

0.1 F

R1

2.0 k�

+VCC

(4) (8)

(7)(2)

(6)

(5)(3)

Output

555

(1)

R2

4.3 k�

µ

FIGURE 7–91

QB

QB

QA

QA

HIGH

CLK

Flip-flop A Flip-flop B

JB

KB

JA

KA

CC

FIGURE 7–89

Section 7–4 Flip-Flop Applications

 25. A D flip-flop is connected as shown in Figure 7–90. Determine the Q output in relation to the

clock. What specific function does this device perform?

CLK

QD

C

FIGURE 7–90

 26. For the circuit in Figure 7–89, develop a timing diagram for eight clock pulses, showing the QA

and QB outputs in relation to the clock.

Section 7–5 One-Shots

 27. Determine the pulse width of a 74121 one-shot if the external resistor is 1 kV and the external

capacitor is 1 pF.

 28. An output pulse of 3 ms duration is to be generated by a 74LS122 one-shot. Using a capacitor

of 50,000 pF, determine the value of external resistance required.

 29. Create a one-shot using a 555 timer that will produce a 0.5 s output pulse.

Section 7–6 The Astable Multivibrator

 30. A 555 timer is configured to run as an astable multivibrator as shown in Figure 7–91.

Determine its frequency.

444 Latches, Flip-Flops, and Timers

 31. Determine the values of the external resistors for a 555 timer used as an astable multivibrator

with an output frequency of 10 kHz, if the external capacitor C is 0.004 mF and the duty cycle

is to be approximately 80%.

Section 7–7 Troubleshooting

 32. The flip-flop in Figure 7–92 is tested under all input conditions as shown. Is it operating prop-

erly? If not, what is the most likely fault?

+V

Q
J

K

(a)

C

+V

Q
J

K

(b)

C

Q
J

K

(c)

C

+V

Q
J

K

(d)

C

FIGURE 7–92

 33. A 74HC00 quad NAND gate IC is used to construct a gated S-R latch on a protoboard in the

lab as shown in Figure 7–93. The schematic in part (a) is used to connect the circuit in part (b).

When you try to operate the latch, you find that the Q output stays HIGH no matter what the

inputs are. Determine the problem.

(4)

(5)
(6)

(9)
(8)(10)

(2)
(3)

(12)

(13)
(1) (11)

R

S

EN

Q

Q

R

S

EN

+5 V GND

(a) (b)

7
4
H

C
0
0

FIGURE 7–93

 Problems 445

 34. Determine if the flip-flop in Figure 7–94 is operating properly, and if not, identify the most

probable fault.

Q

J

C

K Q

Q

J

CLK

K

FIGURE 7–94

 35. The parallel data storage circuit in Figure 7–35 does not operate properly. To check it out, you

first make sure that VCC and ground are connected, and then you apply LOW levels to all the D

inputs and pulse the clock line. You check the Q outputs and find them all to be LOW; so far,

so good. Next you apply HIGHs to all the D inputs and again pulse the clock line. When you

check the Q outputs, they are still all LOW. What is the problem, and what procedure will you

use to isolate the fault to a single device?

 36. The flip-flop circuit in Figure 7–95(a) is used to generate a binary count sequence. The gates

form a decoder that is supposed to produce a HIGH when a binary zero or a binary three state

occurs (00 or 11). When you check the QA and QB outputs, you get the display shown in part

(b), which reveals glitches on the decoder output (X) in addition to the correct pulses. What is

causing these glitches, and how can you eliminate them?

QBQA

CLK

(a)

X

CLK

QA

QB

X

(b)

G1

G2

G3

QBQA

GlitchGlitch

C

D

C

D

FIGURE 7–95

 37. Determine the QA, QB and X outputs over six clock pulses in Figure 7–95(a) for each of the

following faults in the bipolar (TTL) circuits. Start with both QA and QB LOW.

(a) D input open (b) QB output open

(c) clock input to flip-flop B shorted (d) gate G2 output open

 38. Two 74121 one-shots are connected on a circuit board as shown in Figure 7–96. After observ-

ing the oscilloscope display, do you conclude that the circuit is operating properly? If not, what

is the most likely problem?

Applied Logic

 39. Using 555 timers, redesign the timing circuits portion of the traffic signal controller for an

approximate 5 s caution light and 30 s red and green lights.

 40. Repeat Problem 39 using 74121 one-shots.

 41. Repeat Problem 39 using 74122 one-shots.

 42. Implement the input logic in the sequential circuit unit of the traffic signal controller using only

NAND gates.

 43. Specify how you would change the time interval for the green light from 25 s to 60 s.

446 Latches, Flip-Flops, and Timers

Special Design Problems

 44. Design a basic counting circuit that produces a binary sequence from zero through seven by

using negative edge-triggered J-K flip-flops.

 45. In the shipping department of a softball factory, the balls roll down a conveyor and through a

chute single file into boxes for shipment. Each ball passing through the chute activates a switch

circuit that produces an electrical pulse. The capacity of each box is 32 balls. Design a logic

circuit to indicate when a box is full so that an empty box can be moved into position.

 46. List the design changes that would be necessary in the traffic signal controller to add a 15 s

left turn arrow for the main street. The turn arrow will occur after the red light and prior to the

green light. Modify the state diagram from Chapter 6 to show these changes.

Multisim Troubleshooting Practice

 47. Open file P07-47. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 48. Open file P07-48. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 49. Open file P07-49. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 50. Open file P07-50. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 51. Open file P07-51. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

Ch1 5 V

74121 74121

47 k�

0.47 F

47 k�

0.22 F

VCC GND

1

2

µ µ

1 2

Ch2 5 V 1 ms

FIGURE 7–96

ANSWERS

SECTION CHECKUPS

Section 7–1 Latches

 1. Three types of latches are S-R, gated S-R, and gated D.

 2. SR = 00, NC; SR = 01, Q = 0; SR = 10, Q = 1; SR = 11, invalid

 3. Q = 1

Section 7–2 Flip-Flops

 1. The output of a gated D latch can change any time the gate enable (EN) input is active. The

output of an edge-triggered D flip-flop can change only on the triggering edge of a clock pulse.

 2. The output of a J-K flip-flop is determined by the state of its two inputs whereas the output of a

D flip-flop follows the input.

 3. Output Q goes HIGH on the trailing edge of the first clock pulse, LOW on the trailing edge of

the second pulse, HIGH on the trailing edge of the third pulse, and LOW on the trailing edge of

the fourth pulse.

 Answers 447

Section 7–3 Flip-Flop Operating Characteristics

 1. (a) Set-up time is the time required for input data to be present before the triggering edge of

the clock pulse.

 (b) Hold time is the time required for data to remain on the inputs after the triggering edge of

the clock pulse.

 2. The 74AHC74 can be operated at the highest frequency, according to Table 7–4.

Section 7–4 Flip-Flop Applications

 1. A group of data storage flip-flops is a register.

 2. For divide-by-2 operation, the flip-flop must toggle (D = Q).

 3. Six flip-flops are used in a divide-by-64 device.

Section 7–5 One-Shots

 1. A nonretriggerable one-shot times out before it can respond to another trigger input. A retrig-

gerable one-shot responds to each trigger input.

 2. Pulse width is set with external R and C components.

 3. 11 ms.

Section 7–6 The Astable Multivibrator

 1. An astable multivibrator has no stable state. A monostable multivibrator has one stable state.

 2. Duty cycle = (15 ms/20 ms)100% = 75%

Section 7–7 Troubleshooting

 1. Yes, a negative edge-triggered J-K flip-flop can be used.

 2. An astable multivibrator using a 555 timer can be used to provide the clock.

RELATED PROBLEMS FOR EXAMPLES

 7–1 The Q output is the same as shown in Figure 7–5(b).

 7–2 See Figure 7–97.

S

Uncertainty

EN

R

Q

FIGURE 7–97

1CLK

1
0D

Q

1
0

Q

2 3 4 5 6

FIGURE 7–99

EN

Q

D

FIGURE 7–98

 7–3 See Figure 7–98.

 7–4 See Figure 7–99.

 7–5 See Figure 7–100.

 7–6 See Figure 7–101.

CLK

J

K

Q

1 2 3 4 5

FIGURE 7–100

CLK

D

Q

FIGURE 7–101

448 Latches, Flip-Flops, and Timers

 7–13 R1 = 91 k�

 7–14 Duty cycle � 32%

TRUE/FALSE QUIZ

 1. F 2. T 3. F 4. T 5. F 6. T 7. T 8. F 9. T 10. F

SELF-TEST

 1. (a) 2. (c) 3. (b) 4. (d) 5. (d) 6. (d)

 7. (a) 8. (c) 9. (d) 10. (d) 11. (c) 12. (f)

 7–7 See Figure 7–102.

1CLK

PRE

CLR

Q

D

2 3 4 5 6 7 8 9

FIGURE 7–102

 7–8 See Figure 7–103.

PIN 1 (1CLK)

PIN 2 (1J)

PIN 3 (1K)

PIN 4 (1CLR)

PIN 5 (1Q)

PIN 15 (1PRE)

FIGURE 7–103

 7–9 25
= 32. Five flip-flops are required.

 7–10 Sixteen states require four flip-flops (24
= 16).

 7–11 CEXT = 7143 pF connected from CX to RX/CX of the 74121 with no external resistor.

 7–12 CEXT = 560 pF, REXT = 27 k�. See Figure 7–104.

RI CX RX/CX

&≥1

Q

Q

REXT

27 k�

+5 V

(1)

(2)

(3)

(4)

(5)

(9) (10) (11)

N/C

Output pulse

Trigger

(8)

(6)

+5 V

74LS122

CEXT

560 pF

FIGURE 7–104

449

CHAPTER OUTLINE

8–1 Shift Register Operations

8–2 Types of Shift Register Data I/Os

8–3 Bidirectional Shift Registers

8–4 Shift Register Counters

8–5 Shift Register Applications

8–6 Logic Symbols with Dependency Notation

8–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Identify the basic forms of data movement in shift

registers

■ Explain how serial in/serial out, serial in/parallel

out, parallel in/serial out, and parallel in/parallel

out shift registers operate

■ Describe how a bidirectional shift register operates

■ Determine the sequence of a Johnson counter

■ Set up a ring counter to produce a specified

sequence

■ Construct a ring counter from a shift register

■ Use a shift register as a time-delay device

■ Use a shift register to implement a serial-to-parallel

data converter

■ Implement a basic shift-register-controlled

keyboard encoder

■ Interpret ANSI/IEEE Standard 91-1984 shift

register symbols with dependency notation

■ Use shift registers in a system application

KEY TERMS

Key terms are in order of appearance in the chapter.

Shift Registers

8

■ Register

■ Stage

■ Load

■ Bidirectional

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

Shift registers are a type of sequential logic circuit

used primarily for the storage of digital data and

 typically do not possess a characteristic internal

sequence of states. There are exceptions, however,

and these are covered in Section 8–4.

In this chapter, the basic types of shift registers are

studied and several applications are presented. Also,

a troubleshooting method is introduced.

CHAPTER

450 Shift Registers

8–1 Shift Register Operations

Shift registers consist of arrangements of flip-flops and are important in applications

involving the storage and transfer of data in a digital system. A register has no specified

sequence of states, except in certain very specialized applications. A register, in general, is

used solely for storing and shifting data (1s and 0s) entered into it from an external source

and typically possesses no characteristic internal sequence of states.

After completing this section, you should be able to

u Explain how a flip-flop stores a data bit

u Define the storage capacity of a shift register

u Describe the shift capability of a register

A register is a digital circuit with two basic functions: data storage and data movement.

The storage capability of a register makes it an important type of memory device. Figure 8–1

illustrates the concept of storing a 1 or a 0 in a D flip-flop. A 1 is applied to the data input as

shown, and a clock pulse is applied that stores the 1 by setting the flip-flop. When the 1 on the

input is removed, the flip-flop remains in the SET state, thereby storing the 1. A similar pro-

cedure applies to the storage of a 0 by resetting the flip-flop, as also illustrated in Figure 8–1.

A register can consist of one or
more flip-flops used to store and
shift data.

Q1 1

When a 1 is on D,

Q becomes a 1 at the

triggering edge of CLK

or remains a 1 if already

in the SET state.

1 is stored and appears on output.

CLK

D

C

Q 0

When a 0 is on D,

Q becomes a 0 at the

triggering edge of CLK

or remains a 0 if already

in the RESET state.

CLK

0 D

C

0 is stored and appears on output.

FIGURE 8–1 The flip-flop as a storage element.

The storage capacity of a register is the total number of bits (1s and 0s) of digital data

it can retain. Each stage (flip-flop) in a shift register represents one bit of storage capacity;

therefore, the number of stages in a register determines its storage capacity.

The shift capability of a register permits the movement of data from stage to stage

within the register or into or out of the register upon application of clock pulses. Figure 8–2

Data outData in

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out (c) Parallel in/serial out

Data in

Data out

(e) Parallel in/parallel out

Data in

Data out

(d) Serial in/parallel out

Data out

Data in

(f) Rotate right (g) Rotate left

FIGURE 8–2 Basic data movement in shift registers. (Four bits are used for illustration. The

bits move in the direction of the arrows.)

 Types of Shift Register Data I/Os 451

SECTION 8–1 CHECKUP

Answers are at the end of the chapter.

 1. What determines the storage capacity of a shift register?

 2. What two principal functions are performed by a shift register?

Table 8–1 shows the entry of the four bits 1010 into the register in Figure 8–3, begin-

ning with the least significant bit. The register is initially clear. The 0 is put onto the data

input line, making D = 0 for FF0. When the first clock pulse is applied, FF0 is reset, thus

storing the 0.

8–2 Types of Shift Register Data I/Os

In this section, four types of shift registers based on data input and output (inputs/outputs)

are discussed: serial in/serial out, serial in/parallel out, parallel in/serial out, and parallel

in/parallel out.

After completing this section, you should be able to

u Describe the operation of four types of shift registers

u Explain how data bits are entered into a shift register

u Describe how data bits are shifted through a register

u Explain how data bits are taken out of a shift register

u Develop and analyze timing diagrams for shift registers

Serial In/Serial Out Shift Registers

The serial in/serial out shift register accepts data serially—that is, one bit at a time on a

single line. It produces the stored information on its output also in serial form. Let’s first

look at the serial entry of data into a typical shift register. Figure 8–3 shows a 4-bit device

implemented with D flip-flops. With four stages, this register can store up to four bits of

data.

D

C

Q0
Serial

data

input

FF0

CLK

D

C

Q1

FF1

D

C

Q2

FF2

D

C

Q3

FF3

Serial data output

Serial data output
Q3

FIGURE 8–3 Serial in/serial out shift register.

InfoNote

Frequently, it is necessary to clear

an internal register in a processor.

For example, a register may be

cleared prior to an arithmetic or

other operation. One way that

registers in a processor are cleared

is using software to subtract the

contents of the register from itself.

The result, of course, will always

be zero. For example, a processor

instruction that performs this

operation is SUB AL,AL. with this

instruction, the register named AL

is cleared.

illustrates the types of data movement in shift registers. The block represents any arbitrary

4-bit register, and the arrows indicate the direction of data movement.

452 Shift Registers

Next the second bit, which is a 1, is applied to the data input, making D = 1 for FF0

and D = 0 for FF1 because the D input of FF1 is connected to the Q0 output. When the

second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0 to set;

and the 0 that was in FF0 is shifted into FF1.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is applied. The

0 is entered into FF0, the 1 stored in FF0 is shifted into FF1, and the 0 stored in FF1 is

shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This time

the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1, the 1 stored in FF1 is

shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes the serial entry

of the four bits into the shift register, where they can be stored for any length of time as long

as the flip-flops have dc power.

If you want to get the data out of the register, the bits must be shifted out serially to the

Q3 output, as Table 8–2 illustrates. After CLK4 in the data-entry operation just described,

the LSB, 0, appears on the Q3 output. When clock pulse CLK5 is applied, the second bit

appears on the Q3 output. Clock pulse CLK6 shifts the third bit to the output, and CLK7

shifts the fourth bit to the output. While the original four bits are being shifted out, more

bits can be shifted in. All zeros are shown being shifted in, after CLK8.

For serial data, one bit at a time is
transferred.

TABLE 8–2

Shifting a 4-bit code out of the shift register in Figure 8–3.
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 1 0 1 0

5 0 1 0 1

6 0 0 1 0

7 0 0 0 1

8 0 0 0 0

TABLE 8–1

Shifting a 4-bit code into the shift register in Figure 8–3.
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 1 0 1 0

EXAMPLE 8–1

Show the states of the 5-bit register in Figure 8–4(a) for the specified data input and

clock waveforms. Assume that the register is initially cleared (all 0s).

Solution

The first data bit (1) is entered into the register on the first clock pulse and then shifted

from left to right as the remaining bits are entered and shifted. The register contains

Q4Q3Q2Q1Q0 = 11010 after five clock pulses. See Figure 8–4(b).

 Types of Shift Register Data I/Os 453

*Answers are at the end of the chapter.

Data

input

Data

output

Q4

CLK

CLK

Data

input

0

1

0

1

1

1 1 0 1 0

(b)

Data bits stored

after five

clock pulses

(a)

D

C

D

C

D

C

D

C

D

C

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q4

FF0 FF1 FF2 FF3 FF4

FIGURE 8–4 Open file F08-04 to verify operation. A Multisim tutorial is available on

the website.

Related Problem*

Show the states of the register if the data input is inverted. The register is initially

cleared.

A traditional logic block symbol for an 8-bit serial in/serial out shift register is shown in

Figure 8–5. The “SRG 8” designation indicates a shift register (SRG) with an 8-bit capacity.

CLK

Data in

Q7

Q7

C

SRG 8

FIGURE 8–5 Logic symbol for an 8-bit serial in/serial out shift register.

454 Shift Registers

Serial In/Parallel Out Shift Registers

Data bits are entered serially (least-significant bit first) into a serial in/parallel out shift

register in the same manner as in serial in/serial out registers. The difference is the way

in which the data bits are taken out of the register; in the parallel output register, the out-

put of each stage is available. Once the data are stored, each bit appears on its respective

output line, and all bits are available simultaneously, rather than on a bit-by-bit basis as

with the serial output. Figure 8–6 shows a 4-bit serial in/parallel out shift register and its

logic block symbol.

Data input

CLK

(a)

D

C

D

C

D

C

D

C

Q3Q2Q1Q0

CLK

Data input

C

D
SRG 4

Q0 Q1 Q2 Q3

(b)

FIGURE 8–6 A serial in/parallel out shift register.

EXAMPLE 8–2

Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in

Figure 8–7(a). The register initially contains all 1s.

(a)

Data in

CLK

0 11 0

(b)

Q1

Q0

Q2

Q3

Q0 Q1 Q2 Q3

D

C

SRG 4

FIGURE 8–7

Solution

The register contains 0110 after four clock pulses. See Figure 8–7(b).

Related Problem

If the data input remains 0 after the fourth clock pulse, what is the state of the register

after three additional clock pulses?

 Types of Shift Register Data I/Os 455

IMPLEMENTATION: 8-BIT SERIAL IN/PARALLEL OUT SHIFT REGISTER

Fixed-Function Device The 74HC164 is an example of a fixed-function IC shift register

having serial in/parallel out operation. The logic block symbol is shown in Figure 8–8.

This device has two gated serial inputs, A and B, and an asynchronous clear (CLR) input

that is active-LOW. The parallel outputs are Q0 through Q7.

(1)

C

SRG 8

Q0 Q1 Q2 Q3

(2)

(9)

(8)

A

B

CLR

CLK

Q4 Q5 Q6 Q7

(3) (4) (5) (6) (10) (11) (12) (13)

FIGURE 8–8 The 74HC164 8-bit serial in/parallel out shift register.

CLR

Serial

inputs

A

B

CLK

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Outputs

Clear Clear

FIGURE 8–9 Sample timing diagram for a 74HC164 shift register.

A sample timing diagram for the 74HC164 is shown in Figure 8–9. Notice that

the serial input data on input A are shifted into and through the register after input B

goes HIGH.

456 Shift Registers

Programmable Logic Device (PLD) The 8-bit serial in/parallel out shift register can be

described using VHDL and implemented as hardware in a PLD. The program code is as

follows. (Blue comments are not part of the program.)

library ieee;

use ieee.std_logic_1164.all;

entity SerInParOutShift is

 port (D0, Clock, Clr: in std_logic; Q0, Q1, Q2, Q3,

Q4, Q5, Q6, Q7: inout std_logic);

end entity SerInParOutShift;

architecture LogicOperation of SerInParOutShift is

component dffl is

 port (D, Clock: in std_logic; Q: inout std_logic);

end component dff1;

begin

FF0: dff1 port map(D=7D0 and Clr, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7Q0 and Clr, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7Q1 and Clr, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7Q2 and Clr, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7Q3 and Clr, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7Q4 and Clr, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7Q5 and Clr, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7Q6 and Clr, Clock=7Clock, Q=7Q7);

end architecture LogicOperation;

D0: Data input

Clock: System clock

Clr: Clear

Q0–Q7: Register outputs

Instantiations

describe how

the flip-flops

are connected

to form the

register.

¸
˚

˚
˚

˚
˚

˝
˚

˚
˚

˚
˛

D flip-flop with preset and

clear inputs was described in

Chapter 7 and is used as a

component.

¸
˚

˝
˚

˛

Parallel In/Serial Out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously into their respec-

tive stages on parallel lines rather than on a bit-by-bit basis on one line as with serial data

inputs. The serial output is the same as in serial in/serial out shift registers, once the data

are completely stored in the register.

Figure 8–10 illustrates a 4-bit parallel in/serial out shift register and a typical logic sym-

bol. There are four data-input lines, D0, D1, D2, and D3, and a SHIFT /LOAD input, which

allows four bits of data to load in parallel into the register. When SHIFT /LOAD is LOW,

gates G1 through G4 are enabled, allowing each data bit to be applied to the D input of its

respective flip-flop. When a clock pulse is applied, the flip-flops with D = 1 will set and

those with D = 0 will reset, thereby storing all four bits simultaneously.

When SHIFT /LOAD is HIGH, gates G1 through G4 are disabled and gates G5 through

G7 are enabled, allowing the data bits to shift right from one stage to the next. The OR gates

allow either the normal shifting operation or the parallel data-entry operation, depending

on which AND gates are enabled by the level on the SHIFT /LOAD input. Notice that FF0

has a single AND to disable the parallel input, D0. It does not require an AND/OR arrange-

ment because there is no serial data in.

For parallel data, multiple bits are
transferred at one time.

 Types of Shift Register Data I/Os 457

D0 D1 D3

C

D

D0 D1 D2 D3

CCLK

Serial data out

CLK

G2

C

D

G5

Q0

C

D

G3G6

D2

C

D
Q1

Serial

data

out

Data in

SRG 4

G4G7

Q2 Q3

(a) Logic diagram

(b) Logic symbol

SHIFT/LOAD

SHIFT/LOAD

G1

FF0 FF1 FF2 FF3

FIGURE 8–10 A 4-bit parallel in/serial out shift register. Open file F08-10 to verify

operation.

EXAMPLE 8–3

Show the data-output waveform for a 4-bit register with the parallel input data and the

clock and SHIFT /LOAD waveforms given in Figure 8–11(a). Refer to Figure 8–10(a)

for the logic diagram.

CLK 3 5 6

10 10

Last data bit

D0 D1 D2 D3

0101

CLK

Data out (Q3)

421

SHIFT/LOAD

SHIFT/LOAD(a)

Data out (Q3)(b)

C

SRG 4

FIGURE 8–11

458 Shift Registers

Solution

On clock pulse 1, the parallel data (D0D1D2D3 = 1010) are loaded into the register,

making Q3 a 0. On clock pulse 2 the 1 from Q2 is shifted onto Q3; on clock pulse 3 the

0 is shifted onto Q3; on clock pulse 4 the last data bit (1) is shifted onto Q3; and on clock

pulse 5, all data bits have been shifted out, and only 1s remain in the register (assuming

the D0 input remains a 1). See Figure 8–11(b).

Related Problem

Show the data-output waveform for the clock and SHIFT /LOAD inputs shown in

 Figure 8–11(a) if the parallel data are D0D1D2D3 = 0101.

IMPLEMENTATION: 8-BIT PARALLEL LOAD SHIFT REGISTER

Fixed-Function Device The 74HC165 is an example of a fixed-function IC shift reg-

ister that has a parallel in/serial out operation (it can also be operated as serial in/serial

out). Figure 8–12 shows a typical logic block symbol. A LOW on the SHIFT /LOAD input

(SH /LD) enables asynchronous parallel loading. Data can be entered serially on the SER

input. Also, the clock can be inhibited anytime with a HIGH on the CLK INH input. The

serial data outputs of the register are Q7 and its complement Q7. This implementation is

different from the synchronous method of parallel loading previously discussed, demon-

strating that there are usually several ways to accomplish the same function.

Figure 8–13 is a timing diagram showing an example of the operation of a 74HC165

shift register.

Programmable Logic Device (PLD) The 8-bit parallel load shift register is a parallel in/

serial out device and can be implemented in a PLD with the following VHDL code:

library ieee:

use ieee.std_logic_1164.all;

entity ParSerShift is

port (D0, D1, D2, D3, D4, D5, D6, D7, SHLD, Clock:

in std_logic; Q, QNot: inout std_logic);

end entity ParSerShift;

architecture LogicOperation of ParSerShift is

signal S1, S2, S3, S4, S5, S6, S7,

Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7: std_logic;

function ShiftLoad (A,B,C: in std_logic)return std_logic is

begin

return ((A and B) or (not B and C));

end function ShiftLoad;

D0-D7: Parallel input

SHLD: Shift Load input

Clock: System clock

Q: Serial output

QNot: Inverted serial output

Q0-Q7: Intermediate

variables for flip-flop stages

S1-S7: Shift load signals

from function ShiftLoad
Function ShiftLoad

provides the AND-OR

function shown in Figure

8–10 to allow the parallel

load of data or data shift

from one flip-flop stage to

the next.

¸
˚
˝
˚
˛

D0 D1 D2 D3

SER

D4 D5 D6 D7

CLK INH

CCLK Q7

Q7SH/LD SRG 8
(1)

(10)

(15)

(2)

(11) (12) (13) (14) (3) (4) (5) (6)
(9)

(7)

FIGURE 8–12 The 74HC165 8-bit parallel load shift register.

 Types of Shift Register Data I/Os 459

Load

CLK

D0

Data

11 0 1 0 1 0 1

0 0 1 0 1 0 1 0

D1

D2

D3

D4

D5

D6

D7

Inhibit Serial shift

1

0

1

0

1

0

1

1

CLK INH

SER 0 (LOW)

SH/LD

Q7

Q7

component dff1 is

port (D, Clock: in std_logic;

Q: inout std_logic);

end component dff1;

begin

SL1:S1 6=ShiftLoad(Q0, SHLD, D1);

SL2:S2 6=ShiftLoad(Q1, SHLD, D2);

SL3:S3 6=ShiftLoad(Q2, SHLD, D3);

SL4:S4 6=ShiftLoad(Q3, SHLD, D4);

SL5:S5 6=ShiftLoad(Q4, SHLD, D5);

SL6:S6 6=ShiftLoad(Q5, SHLD, D6);

SL7:S7 6=ShiftLoad(Q6, SHLD, D7);

FF0: dff1 port map(D=7D0 and not SHLD, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7S1, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7S2, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7S3, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7S4, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7S5, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7S6, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7S7, Clock=7Clock, Q=7Q);

QNot 6=not Q;

end architecture LogicOperation;

D flip-flop component used as

storage for shift register

¸
˚

˝
˚

˛

ShiftLoad instances

SL1–SL7 allow eight bits

of data to load into

flip-flop stages FF0–FF7 or

to shift through the register

providing the parallel load

serial out function.

¸̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˝̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˛

FIGURE 8–13 Sample timing

diagram for a 74HC165 shift

register.

460 Shift Registers

Parallel In/Parallel Out Shift Registers

Parallel entry and parallel output of data have been discussed. The parallel in/parallel out

register employs both methods. Immediately following the simultaneous entry of all data

bits, the bits appear on the parallel outputs. Figure 8–14 shows a parallel in/parallel out

shift register.

D

C

CLK

D0

D

C

D1

D

C

D2

D

C

D3

Parallel data inputs

Q0 Q1 Q2 Q3

Parallel data outputs

FIGURE 8–14 A parallel in/parallel out register.

IMPLEMENTATION: 4-BIT PARALLEL-ACCESS SHIFT REGISTER

Fixed-Function Device The 74HC195 can be used for parallel in/parallel out operation.

Because it also has a serial input, it can be used for serial in/serial out and serial in/parallel

out operations. It can be used for parallel in/serial out operation by using Q3 as the output.

A typical logic block symbol is shown in Figure 8–15.

Q0

SH/LD

CLK

(15)

Q1

(14)

Q2

(13)

Q3

(12)

D0

(4)

D1

(5)

D2

(6)

D3

(7)

K

J

CLR

(2)

(3)

(9)

(1)

(10)

Serial

inputs

C

SRG 4

FIGURE 8–15 The 74HC195 4-bit parallel access shift register.

When the SHIFT /LOAD input (SH /LD) is LOW, the data on the parallel inputs are

entered synchronously on the positive transition of the clock. When (SH /LD) is HIGH,

stored data will shift right (Q0 to Q3) synchronously with the clock. Inputs J and K are the

serial data inputs to the first stage of the register (Q0); Q3 can be used for serial output data.

The active-LOW clear input is asynchronous.

 Types of Shift Register Data I/Os 461

Programmable Logic Device (PLD) The VHDL code for a 4-bit parallel in/parallel

out shift register is as follows:

library ieee;

use ieee.std logic_1164.all;

entity ParInParOut is

 port (D0, D1, D2, D3, Clock: in std_logic;

 Q0, Q1, Q2, Q3: inout std_logic);

end entity ParInParOut;

architecture LogicOperation of ParInParOut is

 component dff1 is

 port (D, Clock: in std_logic;

 Q: inout std_logic);

end component dff1;

begin

 FF0: dff1 port map (D=7D0, Clock=7Clock, Q=7Q0);

 FF1: dff1 port map (D=7D1, Clock=7Clock, Q=7Q1);

 FF2: dff1 port map (D=7D2, Clock=7Clock, Q=7Q2);

 FF3: dff1 port map (D=7D3, Clock=7Clock, Q=7Q3);

end architecture LogicOperation;

Load

Parallel

data

inputs

Serial shift

Serial

inputs

Parallel

outputs

Clear

Serial shift

CLR

CLK

J

K

SH/LD

D0

D1

D2

D3

Q0

Q1

Q2

Q3

FIGURE 8–16 Sample timing diagram for a 74HC195 shift register.

The timing diagram in Figure 8–16 illustrates the operation of this register.

462 Shift Registers

SECTION 8–2 CHECKUP

 1. Develop the logic diagram for the shift register in Figure 8–3, using J-K flip-flops to

replace the D flip-flops.

 2. How many clock pulses are required to enter a byte of data serially into an 8-bit shift

register?

 3. The bit sequence 1101 is serially entered (least-significant bit first) into a 4-bit parallel

out shift register that is initially clear. What are the Q outputs after two clock pulses?

 4. How can a serial in/parallel out register be used as a serial in/serial out register?

 5. Explain the function of the SHIFT /LOAD input.

 6. Is the parallel load operation in a 74HC165 shift register synchronous or asynchro-

nous? What does this mean?

 7. In Figure 8–14, D0 = 1, D1 = 0, D2 = 0, and D3 = 1. After three clock pulses, what

are the data outputs?

 8. For a 74HC195, SH /LD = 1, J = 1, and K = 1. What is Q0 after one clock pulse?

8–3 Bidirectional Shift Registers

A bidirectional shift register is one in which the data can be shifted either left or right. It

can be implemented by using gating logic that enables the transfer of a data bit from one

stage to the next stage to the right or to the left, depending on the level of a control line.

After completing this section, you should be able to

u Explain the operation of a bidirectional shift register

u Discuss the 74HC194 4-bit bidirectional universal shift register

u Develop and analyze timing diagrams for bidirectional shift registers

A 4-bit bidirectional shift register is shown in Figure 8–17. A HIGH on the RIGHT/LEFT

control input allows data bits inside the register to be shifted to the right, and a LOW

Q0 Q1 Q2 Q3

RIGHT/LEFT

Serial

data in
G1 G5 G2 G6 G3 G7 G4 G8

CLK

D

C

D

C

D

C

D

C

FIGURE 8–17 Four-bit bidirectional shift register. Open file F08-17 to verify the

operation.

 Bidirectional Shift Registers 463

enables data bits inside the register to be shifted to the left. An examination of the gating

logic will make the operation apparent. When the RIGHT/LEFT control input is HIGH,

gates G1 through G4 are enabled, and the state of the Q output of each flip-flop is passed

through to the D input of the following flip-flop. When a clock pulse occurs, the data bits

are shifted one place to the right. When the RIGHT/LEFT control input is LOW, gates G5

through G8 are enabled, and the Q output of each flip-flop is passed through to the D input

of the preceding flip-flop. When a clock pulse occurs, the data bits are then shifted one

place to the left.

EXAMPLE 8–4

Determine the state of the shift register of Figure 8–17 after each clock pulse for the

given RIGHT /LEFT control input waveform in Figure 8–18(a). Assume that Q0 = 1,

Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW.

(right) (left) (right) (left)RIGHT/LEFT

CLK

Q0 1

Q1 1

Q2 0

Q3

0 0 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1 0

1 1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 01

(a)

(b)

FIGURE 8–18

Solution

See Figure 8–18(b).

Related Problem

Invert the RIGHT /LEFT waveform, and determine the state of the shift register in

 Figure 8–17 after each clock pulse.

IMPLEMENTATION: 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

Fixed-Function Device The 74HC194 is an example of a universal bidirectional shift

register in integrated circuit form. A universal shift register has both serial and parallel

input and output capability. A logic block symbol is shown in Figure 8–19, and a sample

timing diagram is shown in Figure 8–20.

Parallel loading, which is synchronous with a positive transition of the clock, is accom-

plished by applying the four bits of data to the parallel inputs and a HIGH to the S0 and S1

inputs. Shift right is accomplished synchronously with the positive edge of the clock when

S0 is HIGH and S1 is LOW. Serial data in this mode are entered at the shift-right serial

input (SR SER). When S0 is LOW and S1 is HIGH, data bits shift left synchronously with

the clock, and new data are entered at the shift-left serial input (SL SER). Input SR SER

goes into the Q0 stage, and SL SER goes into the Q3 stage.

464 Shift Registers

(1)

CLK

(15)

Q0

(14)

Q1

(13)

Q2

(12)

Q3

(3)

D0

(4)

D1

(5)

D2

(6)

D3

CLR
(9)

(10)

(2)
SR SER

(7)
SL SER

(11)

S0

S1

C

SRG 4

Parallel

data

inputs

Shift right

Mode

control

inputs

Parallel

outputs

Clear Load

Shift left Inhibit

Clear

CLR

S1

SR SER

SL SER

D0

D1

D2

D3

Q0

Q1

Q2

Q3

S0

CLK

Serial

data

inputs

FIGURE 8–20 Sample timing diagram for a 74HC194 shift register.

Programmable Logic Device (PLD) The following code describes a 4-bit bidirectional

shift register with a serial input:

library ieee;

use ieee.std_logic_1164.all;

entity FourBitBiDirSftReg is

port (R_L, DataIn, Clock: in std_logic;

 Q0, Q1, Q2, Q3: buffer std_logic);

end entity FourBitBiDirSftReg;

R_L: Right/left

DataIn: Serial input data

Clock: System clock

Q0-Q3: Register outputs

FIGURE 8–19 The 74HC194 4-bit

bidirectional universal shift register.

architecture LogicOperation of FourBitBiDirSftReg is

component dff1 is

 port(D,Clock: in std_logic; Q: out std_logic);

end component dff1;

signal D0, D1, D2, D3: std_logic;

begin

 DO 6= (DataIn and R_L) or (not R_L and Q1);

 D1 6= (Q0 and R_L) or (not R_L and Q2);

 D2 6= (Q1 and R_L) or (not R_L and Q3);

 D3 6= (Q2 and R_L) or (not R_L and DataIn);

FF0: dff1 port map(D =7 D0, Clock =7 Clock, Q =7 Q0);

FF1: dff1 port map(D =7 D1, Clock =7 Clock, Q =7 Q1);

FF2: dff1 port map(D =7 D2, Clock =7 Clock, Q =7 Q2);

FF3: dff1 port map(D =7 D3, Clock =7 Clock, Q =7 Q3);

end architecture LogicOperation;

 Shift Register Counters 465

SECTION 8–3 CHECKUP

 1. Assume that the 4-bit bidirectional shift register in Figure 8–17 has the following

contents: Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 0. There is a 1 on the serial data-input

line. If RIGHT /LEFT is HIGH for three clock pulses and LOW for two more clock

pulses, what are the contents after the fifth clock pulse?

8–4 Shift Register Counters

A shift register counter is basically a shift register with the serial output connected back to

the serial input to produce special sequences. These devices are often classified as counters

because they exhibit a specified sequence of states. Two of the most common types of shift

register counters, the Johnson counter and the ring counter, are introduced in this section.

After completing this section, you should be able to

u Discuss how a shift register counter differs from a basic shift register

u Explain the operation of a Johnson counter

u Specify a Johnson sequence for any number of bits

u Explain the operation of a ring counter and determine the sequence of any specific

ring counter

The Johnson Counter

In a Johnson counter the complement of the output of the last flip-flop is connected back

to the D input of the first flip-flop (it can be implemented with other types of flip-flops

as well). If the counter starts at 0, this feedback arrangement produces a characteristic

sequence of states, as shown in Table 8–3 for a 4-bit device and in Table 8–4 for a 5-bit

device. Notice that the 4-bit sequence has a total of eight states, or bit patterns, and that

the 5-bit sequence has a total of ten states. In general, a Johnson counter will produce a

modulus of 2n, where n is the number of stages in the counter.

¸
˝
˛ D flip-flop component declaration

¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

Describes the internal signals

with Boolean equations

Internal flip-flop inputs

Describes how the

flip-flops are connected

466 Shift Registers

The implementations of the 4-stage and 5-stage Johnson counters are shown in Figure 8–21.

The implementation of a Johnson counter is very straightforward and is the same regardless

of the number of stages. The Q output of each stage is connected to the D input of the next

TABLE 8–3

Four-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

TABLE 8–4

Five-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4

0 0 0 0 0 0

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 1 1 1 1 1

6 0 1 1 1 1

7 0 0 1 1 1

8 0 0 0 1 1

9 0 0 0 0 1

D

C

CLK

FF0

D

C

FF1

Q0 Q1 Q2
D

C

FF2

Q3

D

C

FF3

D

C

CLK

FF0

D

C

FF1

Q0 Q1 Q2
D

C

FF2

Q4

D

C

FF3

D

C

FF4

Q3

(a) Four-bit Johnson counter

(b) Five-bit Johnson counter

FIGURE 8–21 Four-bit and 5-bit Johnson counters.

 Shift Register Counters 467

stage (assuming that D flip-flops are used). The single exception is that the Q output of the

last stage is connected back to the D input of the first stage. As the sequences in Table 8–3

and 8–4 show, if the counter starts at 0, it will “fill up” with 1s from left to right, and then

it will “fill up” with 0s again.

Diagrams of the timing operations of the 4-bit and 5-bit counters are shown in Figures

8–22 and 8–23, respectively.

CLK

Q0

1 2 3 4 5 6 7 8

Q1

Q2

Q3

FIGURE 8–22 Timing sequence for a 4-bit Johnson counter.

1 2 3 4 7 8 9 105 6CLK

Q0

Q1

Q3

Q4

Q2

FIGURE 8–23 Timing sequence for a 5-bit Johnson counter.

The Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advantage

that decoding gates are not required. In the case of a 10-bit ring counter, there is a unique

output for each decimal digit.

A logic diagram for a 10-bit ring counter is shown in Figure 8–24. The sequence for this

ring counter is given in Table 8–5. Initially, a 1 is preset into the first flip-flop, and the rest of

the flip-flops are cleared. Notice that the interstage connections are the same as those for a

PRE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

CLR

CLK

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

FIGURE 8–24 A 10-bit ring counter. Open file F08-24 to verify operation.

468 Shift Registers

Johnson counter, except that Q rather than Q is fed back from the last stage. The ten outputs

of the counter indicate directly the decimal count of the clock pulse. For instance, a 1 on Q0

represents a zero, a 1 on Q1 represents a one, a 1 on Q2 represents a two, a 1 on Q3 represents a

three, and so on. You should verify for yourself that the 1 is always retained in the counter and

simply shifted “around the ring,” advancing one stage for each clock pulse.

Modified sequences can be achieved by having more than a single 1 in the counter, as

illustrated in Example 8–5.

TABLE 8–5

Ten-bit ring counter sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

EXAMPLE 8–5

If a 10-bit ring counter similar to Figure 8–24 has the initial state 1010000000, deter-

mine the waveform for each of the Q outputs.

Solution

See Figure 8–25.

1 2 3 4 7 8 9 105 6CLK

Q0

Q1

Q3

Q4

Q2

Q5

Q6

Q8

Q9

Q7

FIGURE 8–25

 Shift Register Applications 469

Related Problem

If a 10-bit ring counter has an initial state 0101001111, determine the waveform for

each Q output.

SECTION 8–4 CHECKUP

 1. How many states are there in an 8-bit Johnson counter sequence?

 2. Write the sequence of states for a 3-bit Johnson counter starting with 000.

8–5 Shift Register Applications

Shift registers are found in many types of applications, a few of which are presented in this

section.

After completing this section, you should be able to

u Use a shift register to generate a time delay

u Implement a specified ring counter sequence using a 74HC195 shift register

u Discuss how shift registers are used for serial-to-parallel conversion of data

u Define UART

u Explain the operation of a keyboard encoder and how registers are used in this

application

Time Delay

A serial in/serial out shift register can be used to provide a time delay from input to output

that is a function of both the number of stages (n) in the register and the clock frequency.

When a data pulse is applied to the serial input as shown in Figure 8–26, it enters the first

stage on the triggering edge of the clock pulse. It is then shifted from stage to stage on each

successive clock pulse until it appears on the serial output n clock periods later. This time-

delay operation is illustrated in Figure 8–26, in which an 8-bit serial in/serial out shift register

is used with a clock frequency of 1 MHz to achieve a time delay (td) of 8 ms (8 3 1 ms). This

time can be adjusted up or down by changing the clock frequency. The time delay can also be

increased by cascading shift registers and decreased by taking the outputs from successively

lower stages in the register if the outputs are available, as illustrated in Example 8–6.

Q7

Q7

Data out

CLK
1 MHz

Data in

CLK

Data in

Data out

td = 8 s

1 sµ

µ

C

SRG 8

FIGURE 8–26 The shift register as a time-delay device.

InfoNote

Microprocessors have special

instructions that can emulate

a serial shift register. The

accumulator register can shift

data to the left or right. A right

shift is equivalent to a divide-by-2

operation and a left shift is

equivalent to a multiply-by-2

operation. Data in the accumulator

can be shifted left or right with

the rotate instructions; ROR is the

rotate right instruction, and ROL

is the rotate left instruction. Two

other instructions treat the carry

flag bit as an additional bit for the

rotate operation. These are the

RCR for rotate carry right and RCL

for rotate carry left.

470 Shift Registers

Related Problem

Determine the clock frequency required to obtain a time delay of 24 ms to the Q7 output

in Figure 8–27.

EXAMPLE 8–6

Determine the amount of time delay between the serial input and each output in Figure

8–27. Show a timing diagram to illustrate.

Solution

The clock period is 2 ms. Thus, the time delay can be increased or decreased in 2 ms incre-

ments from a minimum of 2 ms to a maximum of 16 ms, as illustrated in Figure 8–28.

CLR

CLK
500 kHz

Data in

Q7Q6Q5Q4Q3Q2Q1Q0

* Data shifts from Q0 toward Q7.

C

SRG 8*

FIGURE 8–27

2 s

4 s

6 s

8 s

10 s

12 s

14 s

16 s

CLK

Data in

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Data
outputs

µ

µ

µ

µ

µ

µ

µ

µ

FIGURE 8–28 Timing diagram showing time delays for the register in Figure 8–27.

 Shift Register Applications 471

IMPLEMENTATION: A RING COUNTER

Fixed-Function Device If the output is connected back to the serial input, a shift register

can be used as a ring counter. Figure 8–29 illustrates this application with a 74HC195 4-bit

shift register.

Initially, a bit pattern of 1000 (or any other pattern) can be synchronously preset into

the counter by applying the bit pattern to the parallel data inputs, taking the SH /LD input

LOW, and applying a clock pulse. After this initialization, the 1 continues to circulate

through the ring counter, as the timing diagram in Figure 8–30 shows.

C

SRG 4

Q0 Q1

CLR

CLK

Q2 Q3

K

J

SH /LD

D0 D1 D2 D3

HIGH LOW

(3)

(4) (5) (6) (7)

(2)

(9)

(1)

(10)

(15) (14) (13) (12)

FIGURE 8–29 74HC195 connected as a ring counter.

SH /LD

CLK

Q0

Q1

Q2

Q3

FIGURE 8–30 Timing diagram showing two complete cycles of the ring counter in Figure

8–29 when it is initially preset to 1000.

Programmable Logic Device (PLD) The VHDL code for a 4-bit ring counter using D flip-

flops is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity RingCtr is

 port (I, Clr, Clock: in std_logic;

Q0, Q1, Q2, Q3: inout std_logic);

end entity RingCtr;

architecture LogicOperation of RingCtr is

I: Serial input bit to clock data into

the shift register

Clr: Ring counter clear input

Clock: System clock

Q0-Q3: Ring counter output stages

472 Shift Registers

Serial-to-Parallel Data Converter

Serial data transmission from one digital system to another is commonly used to reduce the

number of wires in the transmission line. For example, eight bits can be sent serially over

one wire, but it takes eight wires to send the same data in parallel.

Serial data transmission is widely used by peripherals to pass data back and forth to a

computer. For example, USB (universal serial bus) is used to connect keyboards printers,

scanners, and more to the computer. All computers process data in parallel form, thus the

requirement for serial-to-parallel conversion. A simplified serial-to-parallel data converter,

in which two types of shift registers are used, is shown in Figure 8–31.

Q1 Q2 Q3 Q4 Q5 Q6 Q7Q0

D1 D2 D3 D4 D5 D6 D7

C

SRG 8

C

D0

LOAD

Data-input
register

J

K

EN

TC

TC•CLKOne-shot

Q Q

Serial
data in Control flip-flop

CLK

CLR

CLR

CLK GEN

Parallel data out

D

C

SRG 8

Data-output
register

Q

C

C

CTR DIV 8

HIGH

FIGURE 8–31 Simplified logic diagram of a serial-to-parallel converter.

To illustrate the operation of this serial-to-parallel converter, the serial data for-

mat shown in Figure 8–32 is used. It consists of eleven bits. The first bit (start bit) is

always 0 and always begins with a HIGH-to-LOW transition. The next eight bits (D7

through D0) are the data bits (one of the bits can be parity), and the last one or two

bits (stop bits) are always 1s. When no data are being sent, there is a continuous HIGH

on the serial data line.

component dff1 is

 port (D, Clock, Pre, Clr: in std_logic;

 Q: inout std_logic);

end component dff1;

begin

 FF0: dff1 port map(D=7 Q3, Clock=7Clock, Q=7Q0, Pre=7 not I, Clr=7‘1’);

 FF1: dff1 port map(D=7 Q0, Clock=7Clock, Q=7Q1, Pre=7‘1’, Clr=7not Clr);

 FF2: dff1 port map(D=7 Q1, Clock=7Clock, Q=7Q2, Pre=7‘1’, Clr=7not Clr);

 FF3: dff1 port map(D=7 Q2, Clock=7Clock, Q=7Q3, Pre=7‘1’, Clr=7not Clr);

end architecture LogicOperation;

¸
˚
˚
˝
˚
˚
˛

D flip-flop component used as storage

for shift register

¸̊
˚̊

˝̊
˚̊

˛

FF0-FF3 flip-flop instan-

tiations show how flip-

flops are connected and

represent one flip-flop

for each state in the ring

counter sequence. FF0 Pre

input acts as a serial input

when I is high. FF1-FF3

Clr input clears flip-flop

stages when Clr is low.

 Shift Register Applications 473

The HIGH-to-LOW transition of the start bit sets the control flip-flop, which enables

the clock generator. After a fixed delay time, the clock generator begins producing a pulse

waveform, which is applied to the data-input register and to the divide-by-8 counter. The

clock has a frequency precisely equal to that of the incoming serial data, and the first clock

pulse after the start bit occurs during the first data bit.

The timing diagram in Figure 8–33 illustrates the following basic operation: The eight

data bits (D7 through D0) are serially shifted into the data-input register. Shortly after the

Start
bit (0)

Stop
bit (1)

Stop
bit (1)

D7 D6 D5 D4 D3 D2 D1 D0
t

FIGURE 8–32 Serial data format.

Start
bit Stop bits

D7 D6 D5 D4 D3 D2 D1 D0

Serial
data in

Control
flip-flop

Q0

Q

CLK

Q1

Q2

Q3

Q4

Q5

Q6

Q7

TC•CLK

CLR

D0

D1

D2

D3

D4

D5

D6

D7

Data
output

register

Data
input

register

1 0 0 1 1 0 1 0

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

Load data out register

FIGURE 8–33 Timing diagram illustrating the operation of the serial-to-parallel data

converter in Figure 8–31.

474 Shift Registers

eighth clock pulse, the terminal count (TC) goes from LOW to HIGH, indicating the coun-

ter is at the last state. This rising edge is ANDed with the clock pulse, which is still HIGH,

producing a rising edge at TC # CLK. This parallel loads the eight data bits from the data-

input shift register to the data-output register. A short time later, the clock pulse goes LOW

and this HIGH-to-LOW transition triggers the one-shot, which produces a short-duration

pulse to clear the counter and reset the control flip-flop and thus disable the clock genera-

tor. The system is now ready for the next group of eleven bits, and it waits for the next

HIGH-to-LOW transition at the beginning of the start bit.

By reversing the process just stated, parallel-to-serial data conversion can be accomplished.

Since the serial data format must be produced, start and stop bits must be added to the sequence.

Universal Asynchronous Receiver Transmitter (UART)

As mentioned, computers and microprocessor-based systems often send and receive data in

a parallel format. Frequently, these systems must communicate with external devices that

send and/or receive serial data. An interfacing device used to accomplish these conversions

is the UART (Universal Asynchronous Receiver Transmitter). Figure 8–34 illustrates the

UART in a general microprocessor-based system application.

UART
Micro-

processor
system

Parallel
data bus

External
device

(printer, communications
system, etc.)

Serial data out

Serial data in

FIGURE 8–34 UART interface.

A UART includes both serial-to-parallel and parallel-to-serial conversion, as shown in

the block diagram in Figure 8–35. The data bus is basically a set of parallel conductors

along which data move between the UART and the microprocessor system. Buffers inter-

face the data registers with the data bus.

Receiver
data register

Transmitter
data register

Buffers

Data bus

CLK

Transmitter

parallel in/serial

out shift register

Receiver

serial in/parallel

out shift register

Serial data out Serial data in

CLK

FIGURE 8–35 Basic UART block diagram.

 Shift Register Applications 475

The UART receives data in serial format, converts the data to parallel format, and places

them on the data bus. The UART also accepts parallel data from the data bus, converts the

data to serial format, and transmits them to an external device.

Keyboard Encoder

The keyboard encoder is a good example of the application of a shift register used as a

ring counter in conjunction with other devices. Recall that a simplified computer keyboard

encoder without data storage was presented in Chapter 6.

Figure 8–36 shows a simplified keyboard encoder for encoding a key closure in a 64-key

matrix organized in eight rows and eight columns. Two parallel in/parallel out 4-bit shift

Q0 Q1 Q2 Q3 Q4 Q5

D0 D1 D2 D3 D4 D5

Q5 Q6 Q7Q4Q1 Q2 Q3

D4 D5 D6 D7D1 D2 D3

Q

COLUMN encoder

1 2 3 4 5 6 7 8

1 2 4

ROW encoder

1 2 3 4 5 6 7 8

1 2 4

Key code register

Q
C

Clock inhibit

+V

One-shots To ROM

Switch closure

Q

D0

Q0

J

K

C

J

K

C

SRG 4 SRG 4
CLK

(5 kHz)

Power on LOAD

SH/LD +VCC
Ring counter

CC

FIGURE 8–36 Simplified keyboard encoding circuit.

476 Shift Registers

8–6 Logic Symbols with Dependency Notation

Two examples of ANSI/IEEE Standard 91-1984 symbols with dependency notation for

shift registers are presented. Two specific IC shift registers are used as examples.

After completing this section, you should be able to

u Understand and interpret the logic symbols with dependency notation for the

74HC164 and the 74HC194 shift registers

The logic symbol for a 74HC164 8-bit serial in/parallel out shift register is shown in

Figure 8–37. The common control inputs are shown on the notched block. The clear (CLR)

input is indicated by an R (for RESET) inside the block. Since there is no dependency

prefix to link R with the clock (C1), the clear function is asynchronous. The right arrow

symbol after C1 indicates data flow from Q0 to Q7. The A and B inputs are ANDed, as

indicated by the embedded AND symbol, to provide the synchronous data input, 1D, to the

first stage (Q0). Note the dependency of D on C, as indicated by the 1 suffix on C and the

1 prefix on D.

Figure 8–38 is the logic symbol for the 74HC194 4-bit bidirectional universal shift

register. Starting at the top left side of the control block, note that the CLR input is active-

LOW and is asynchronous (no prefix link with C). Inputs S0 and S1 are mode inputs that

SECTION 8–5 CHECKUP

 1. In the keyboard encoder, how many times per second does the ring counter scan the

keyboard?

 2. What is the 6-bit ROW/COLUMN code (key code) for the top row and the left-most

column in the keyboard encoder?

 3. What is the purpose of the diodes in the keyboard encoder? What is the purpose of

the resistors?

registers are connected as an 8-bit ring counter with a fixed bit pattern of seven 1s and one

0 preset into it when the power is turned on. Two priority encoders (introduced in Chapter

6) are used as eight-line-to-three-line encoders (9 input HIGH, 8 output unused) to encode

the ROW and COLUMN lines of the keyboard matrix. A parallel in/parallel out register

(key code) stores the ROW/COLUMN code from the priority encoders.

The basic operation of the keyboard encoder in Figure 8–36 is as follows: The ring

counter “scans” the rows for a key closure as the clock signal shifts the 0 around the coun-

ter at a 5 kHz rate. The 0 (LOW) is sequentially applied to each ROW line, while all other

ROW lines are HIGH. All the ROW lines are connected to the ROW encoder inputs, so the

3-bit output of the ROW encoder at any time is the binary representation of the ROW line

that is LOW. When there is a key closure, one COLUMN line is connected to one ROW

line. When the ROW line is taken LOW by the ring counter, that particular COLUMN line

is also pulled LOW. The COLUMN encoder produces a binary output corresponding to the

COLUMN in which the key is closed. The 3-bit ROW code plus the 3-bit COLUMN code

uniquely identifies the key that is closed. This 6-bit code is applied to the inputs of the key

code register. When a key is closed, the two one-shots produce a delayed clock pulse to

parallel-load the 6-bit code into the key code register. This delay allows the contact bounce

to die out. Also, the first one-shot output inhibits the ring counter to prevent it from scan-

ning while the data are being loaded into the key code register.

The 6-bit code in the key code register is now applied to a ROM (read-only memory)

to be converted to an appropriate alphanumeric code that identifies the keyboard character.

ROMs are studied in Chapter 11.

 Logic Symbols with Dependency Notation 477

determine the shift-right, shift-left, and parallel load modes of operation, as indicated by

the 0
3 dependency designation following the M. The 0

3 represents the binary states of 0, 1,

2, and 3 on the S0 and S1 inputs. When one of these digits is used as a prefix for another

input, a dependency is established. The 1 S >2 d symbol on the clock input indicates the

following: 1 S indicates that a right shift (Q0 toward Q3) occurs when the mode inputs (S0, S1)

are in the binary 1 state (S0 = 1, S1 = 0), 2 d indicates that a left shift (Q3 toward Q0)

occurs when the mode inputs are in the binary 2 state (S0 = 0, S1 = 1). The shift-right

serial input (SR SER) is both mode-dependent and clock-dependent, as indicated by 1, 4D.

The parallel inputs (D0, D1, D2, and D3) are all mode-dependent (prefix 3 indicates parallel

load mode) and clock-dependent, as indicated by 3, 4D. The shift-left serial input (SL SER)

is both mode-dependent and clock-dependent, as indicated by 2, 4D.

The four modes for the 74HC194 are summarized as follows:

Do nothing: S0 = 0, S1 = 0 (mode 0)

Shift right: S0 = 1, S1 = 0 (mode 1, as in 1, 4D)

Shift left: S0 = 0, S1 = 1 (mode 2, as in 2, 4D)

Parallel load: S0 = 1, S1 = 1 (mode 3, as in 3, 4D)

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

1D

SRG 8(9)

&A

B

(1)

(2)

CLR

CLK

(3)

(4)

(5)

(6)

(10)

(11)

(12)

(13)

C1/

R

(8)

FIGURE 8–37 Logic symbol for the 74HC164.

1, 4DSR SER

D0

D1

D2

D3

SL SER

(2)

(3)

(4)

(5)

(6)

(7)

(15)

(14)

(13)

(12)

Q1

Q0

Q2

Q3

3, 4D

3, 4D

3, 4D

3, 4D

2, 4D

CLK

S1

S0

CLR R

0

1
M

SRG 4(1)

(9)

(10)

(11)
C4

1 /2

0–
3

FIGURE 8–38 Logic symbol for the 74HC194.

478 Shift Registers

SECTION 8–6 CHECKUP

 1. In Figure 8–38, are there any inputs that are dependent on the mode inputs being in

the 0 state?

 2. Is the parallel load synchronous with the clock?

8–7 Troubleshooting

A traditional method of troubleshooting sequential logic and other more complex systems

uses a procedure of “exercising” the circuit under test with a known input waveform (stim-

ulus) and then observing the output for the correct bit pattern.

After completing this section, you should be able to

u Explain the procedure of “exercising” as a troubleshooting technique

u Discuss exercising of a serial-to-parallel converter

The serial-to-parallel data converter in Figure 8–31 is used to illustrate the “exercising”

procedure. The main objective in exercising the circuit is to force all elements (flip-flops

and gates) into all of their states to be certain that nothing is stuck in a given state as a

result of a fault. The input test pattern, in this case, must be designed to force each flip-

flop in the registers into both states, to clock the counter through all of its eight states, and

to take the control flip-flop, the clock generator, the one-shot, and the AND gate through

their paces.

The input test pattern that accomplishes this objective for the serial-to-parallel data con-

verter is based on the serial data format in Figure 8–32. It consists of the pattern 10101010

in one serial group of data bits followed by 01010101 in the next group, as shown in Figure

8–39. These patterns are generated on a repetitive basis by a special test-pattern generator.

The basic test setup is shown in Figure 8–40.

S
ta

rt 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

S
to

p

S
ta

rt
S

to
p

S
to

p
S

to
p

FIGURE 8–39 Sample test pattern.

After both patterns have been run through the circuit under test, all the flip-flops in the

data-input register and in the data-output register have resided in both SET and RESET

states, the counter has gone through its sequence (once for each bit pattern), and all the

other devices have been exercised.

To check for proper operation, each of the parallel data outputs is observed for an alter-

nating pattern of 1s and 0s as the input test patterns are repetitively shifted into the data-

input register and then loaded into the data-output register. The proper timing diagram is

shown in Figure 8–41. The outputs can be observed in pairs with a dual-trace oscilloscope,

or all eight outputs can be observed simultaneously with a logic analyzer configured for

timing analysis.

If one or more outputs of the data-output register are incorrect, then you must back

up to the outputs of the data-input register. If these outputs are correct, then the problem

is associated with the data-output register. Check the inputs to the data-output register

directly on the pins of the IC for an open input line. Check that power and ground are cor-

rect (look for the absence of noise on the ground line). Verify that the load line is a solid

LOW and that there are clock pulses on the clock input of the correct amplitude. Make

 Troubleshooting 479

J

K

HIGH

CLR

Test-pattern
generator

EN

CLK GEN

CLKQ

CTR DIV 8

Q

One-shot

Data-output
register

D3D2D1D0 D7D6D5D4

TC

LOAD

C

Data-input
register

C

D

Circuit under Test

Control flip-flop

CLR SRG 8

SRG 8

TC•CLK

C Q3Q2Q1Q0 Q7Q6Q5Q4

Serial
data in

C

Logic analyzer

FIGURE 8–40 Basic test setup for the serial-to-parallel data converter of Figure 8–31.

Parallel
data

output

D0

S
ta

rt

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1S
ta

rt

Input
test pattern

D1

D2

D3

D4

D5

D6

D7

D7D6D5D4D3D2D1D0 D7D6D5D4D3D2D1D0

FIGURE 8–41 Proper outputs for the circuit under test in Figure 8–40. The input test

pattern is shown.

sure that the connection to the logic analyzer did not short two output lines together. If all

of these checks pass inspection, then it is likely that the output register is defective. If the

data-input register outputs are also incorrect, the fault could be associated with the input

register itself or with any of the other logic, and additional investigation is necessary to

isolate the problem.

480 Shift Registers

When measuring digital signals with an oscilloscope, you should always use dc coupling, rather than
ac coupling. The reason that ac coupling is not best for viewing digital signals is that the 0 V level
of the signal will appear at the average level of the signal, not at true ground or 0 V level. It is much
easier to find a “floating” ground or incorrect logic level with dc coupling. If you suspect an open
ground in a digital circuit, increase the sensitivity of the scope to the maximum possible. A good
ground will never appear to have noise under this condition, but an open will likely show some noise,
which appears as a random fluctuation in the 0 V level.

SECTION 8–7 CHECKUP

 1. What is the purpose of providing a test input to a sequential logic circuit?

 2. Generally, when an output waveform is found to be incorrect, what is the next step to

be taken?

Applied Logic

Security System

A security system that provides coded access to a secured area is developed. Once a 4-digit

security code is stored in the system, access is achieved by entering the correct code on

a keypad. A block diagram for the security system is shown in Figure 8–42. The system

consists of the security code logic, the code-selection logic, and the keypad. The keypad is

a standard numeric keypad.

To lock or gate

opener interface
Keypad

Code-

selection

logic

Security

code logic

FIGURE 8–42 Block diagram of the security system.

Basic Operation

A 4-digit entry code is set into the memory with user-accessible DIP switches. Initially

pressing the # key sets up the system for the first digit in the code. For entry, the code is

entered one digit at a time on the keypad and converted to a BCD code for processing by

the security code logic. If the entered code agrees with the stored code, the output activates

the access mechanism and allows the door or gate, depending on the type of area that is

secured, to be opened.

Exercise

1. Write the BCD code sequence produced by the code generator if the 4-digit access

number 4739 is entered on the keypad.

 Applied Logic 481

The Security Code Logic

The security code logic compares the code entered on the keypad with the predetermined

code from the code-selection logic. A logic diagram of the security code logic is shown in

Figure 8–43.

In order to gain entry, first the # key on the keypad is pressed to trigger the one-shots,

thus initializing the 8-bit register C with a preset pattern (00010000). Next the four digits

of the code are entered in proper sequence on the keypad. As each digit is entered, it is

converted to BCD by the decimal-to-BCD encoder, and a clock pulse is produced by one-

shot A that shifts the 4-bit code into register A. The one-shot is triggered by a transition

on the output of the OR gate when a key is pressed. At the same time, the corresponding

digit from the code generator is shifted into register B. Also, one-shot B is triggered after

one-shot A to provide a delayed clock pulse for register C to serially shift the preloaded

pattern (00010000). The left-most three 0s are simply “fillers” and serve no purpose in the

operation of the system. The outputs of registers A and B are applied to the comparator; if

the codes are the same, the output of the comparator goes HIGH, placing shift register C

in the SHIFT mode.

Each time an entered digit agrees with the preset digit, the 1 in shift register C is

shifted right one position. On the fourth code agreement, the 1 appears on the output

of the shift register and activates the mechanism to unlock the door or open the gate.

If the code digits do not agree, the output of the comparator goes LOW, placing shift

register C in the LOAD mode so the shift register is reinitialized to the preset pattern

(00010000).

Output8-bit shift register C

HIGH

CLK

SH/LD

Decimal-to-

BCD

encoder

4-bit shift

register A

CLK

Magnitude

comparator

Keypad

#

OR gate

CLKA to memory

and code-selection

logic

Code from

code-selection

logic

4-bit shift

register B

One-shot

B

CLK

One-shot

A

FIGURE 8–43 Block diagram of the security code logic with keypad.

482 Shift Registers

Exercise

2. What is the state of shift register C after two correct code digits are entered?

3. Explain the purpose of the OR gate.

4. If the digit 4 is entered on the keypad, what appears on the outputs of register A?

The Code-Selection Logic

A logic diagram of the code-selection logic is shown in Figure 8–44. This part of the

system includes a set of DIP switches into which a 4-digit entry code is set. Initially

pressing the # key sets up the system for the first digit in the code by causing a preset

pattern to be loaded into the 4-bit shift register (0001). The four bits in the first code

digit are selected by a HIGH on the Q0 output of the shift register, enabling the four

AND gates labeled A1–A4. As each digit of the code is entered on the keypad, the clock

from the security code logic shifts the 1 in the shift register to sequentially enable each

set of four AND gates. As a result, the BCD digits in the security code appear sequen-

tially on the outputs.

Clock

D1

D2

D3

D4

C1

C2

C3

C4

B1

B2

B3

B4

A1

A2

A3

A4

DIP switches

Code digit 1 Code digit 2

4-bit shift
register

Serial
input

#

1

SH/LD CLK

Code digit 3 Code digit 4

Q0

Q1

Q2

Q3

BCD code

to security

code logic

FIGURE 8–44 Logic diagram of the code-selection logic.

 Applied Logic 483

Security System with VHDL

The security system can be described using VHDL for implementation in a PLD. The three

blocks of the system (keypad, security code logic, and code-selection logic) are combined

in the program code to describe the complete system.

The security system block diagram is shown in Figure 8–45 as a programming model. Six

program components perform the logical operations of the security system. Each component

corresponds to a block or blocks in the figure. The security system program SecuritySystem

contains the code that defines how the components interact.

OutputShift register C

EightBitShiftReg

TimeoutBTimeoutA

Enter #

CodeSelection

External Input

OneShotOneShot

Alarm

S_L

Q

Decimal-to-

BCD

encoder

Shift

register A

Clk

Magnitude

comparator

Keypad

Key(0)

Q0
Q1
Q2
Q3

Q1

Q0

Q2
Q3
Q4
Q5
Q6
Q7

BCDEncoder FourBitParSftReg

FourBitParSftReg

ComparatorFourBit

Q8

A0
A1
A2
A3

EQ
B0

D7

D0
D1
D2
D3

D6 D4 D3 D2 D1 D0D5

B1
B2
B3

Q9

Key(1)
Key(2)
Key(3) BCDout0

SftAout(0)-(3)

SftBout(0)-(3)

0 0 0 1 0 00 0

Hard-Coded Binary Value

BCDout1
BCDout2
BCDout3

MCodein(0)
MCodein(1)
MCodein(2)
MCodein(3)

MagCompare

Key(4)
Key(5)
Key(6)
Key(7)
Key(8)
Key(9)

OR gate

ORGate

Shift

register B

One-Shot BOne-Shot A

Clk

Clk

Clk Clk
EnableEnable QOut

External Clock

QOut

Q0
Q1
Q2
Q3

D0
D1
D2
D3

Code-

selection

logic

Clk ShiftIn

Bout0
Bout1
Bout2
Bout3

FIGURE 8–45 Security system block diagram as a programming model.

The security system includes a ten-bit input vector Key—one input bit for each

decimal digit—and an input Enter, representing a typical numeric keypad. Once a key

is pressed, the data stored in input array Key are sent to the decimal-to-BCD encoder

(BCDEncoder). Its 4-bit output is then sent to the inputs of the 4-bit parallel in/parallel

out shift register A (FourBitParSftReg). An external system clock applied to input Clk

drives the overall security system. The Alarm output signal is set HIGH upon a success-

ful arming operation.

Pressing the Enter key sends an initial HIGH clock signal to the code-selection logic

block (CodeSelection), which loads an initial binary value of 1000 to shift register B.

At this time, a binary 0000 is stored in shift register A, and the output of the magnitude

comparator (ComparatorFourBit) is set LOW. The code-selection logic is now ready to

present the first stored code value that is to be compared to the value of the first numeric

keypad entry. At this time a LOW on the 8-bit parallel in/serial out shift register C (Eight-

BitShiftReg) S_L input loads an initial value of 00010000.

484 Shift Registers

When a numeric key is pressed, the output of the OR gate (ORGate) clocks the first

stored value to the inputs of shift register B, and the output of the decimal-to-BCD encoder

is sent to the inputs of shift register A. If the values in shift registers A and B match, the

output of the magnitude comparator is set HIGH; and the code-selection logic is ready to

clock in the next stored code value.

At the conclusion of four successful comparisons of stored code values against four

correct keypad entries, the value 00010000 initially in shift register C will shift four places

to the right, setting the Alarm output to a HIGH. An incorrect keypad entry will not match

the stored code value in shift register B and the magnitude comparator will output a LOW.

With the comparator output LOW, the code-selection logic will reset to the first stored

code value; and the value 00010000 is reloaded into shift register C, starting the process

over again.

To clock the keypad and the stored code values through the system, two one-shots

(OneShot) are used. The one-shots allow data to stabilize before any action is taken. One-

shot A receives an Enable signal from the keypad OR gate, which initiates the first timed

process. The OR gate output is also sent to the code-selection logic, and the first code

value from the code-selection logic is sent to the inputs of shift register A. When one-shot

A times out, the selected keypad entry and the current code from the code-selection logic

are stored in shift registers A and B for comparison by the magnitude comparator, and an

Enable is sent to one-shot B. If the codes in shift registers A and B match, the value stored

in shift register C shifts one place to the right after one-shot B times out.

The six components used in the security system program SecuritySystem are shown in

Figure 8–46.

Decimal-to-BCD

encoder

(BCDEncoder)

4-bit shift registers

A and B

(FourBitParSftReg)

8-bit shift

register C

(EightBitShiftReg)

Magnitude

comparator

(ComparatorFourBit)

Code-Selection logic

(CodeSelection)

One-shots A and B

(OneShot)

Components

Security System

(SecuritySystem)

FIGURE 8–46 Security system components.

 Applied Logic 485

The VHDL program code for the security system is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity SecuritySystem is

port (key: in std_logic_vector(0 to 9); Enter: in std_logic;

 Clk: in std_logic; Alarm: out std_logic);

end entity SecuritySystem;

architecture SecuritySystemBehavior of SecuritySystem is

component BCDEncoder is

port(D: in std_logic_vector(0 to 9);

 Q: out std_logic_vector(0 to 3));

end component BCDEncoder;

component FourBitParSftReg is

port(D: in std_logic_vector(0 to 3);

 Clk: in std_logic;

 Q: out std_logic_vector(0 to 3));

end component FourBitParSftReg;

component ComparatorFourBit is

port(A, B: in std_logic_vector(0 to 3);

 EQ: out std_logic);

end component ComparatorFourBit;

component OneShot is

port(Enable, Clk: in std_logic;

 QOut: buffer std_logic);

end component OneShot;

component EightBitShiftReg is

port(S_L, Clk: in std_logic;

 D: in std_logic_vector(0 to 7);

 Q: buffer std_logic);

end component EightBitShiftReg;

component CodeSelection is

port(ShiftIn, Clk: in std_logic;

 Bout: out std_logic_vector(1 to 4));

end component CodeSelection;

signal BCDout: std_logic_vector(0 to 3);

signal SftAout: std_logic_vector(0 to 3);

signal SftBout: std_logic_vector(0 to 3);

signal MCodein: std_logic_vector(0 to 3);

signal ORgate: std_logic;

signal MagCompare: std_logic;

signal TimeoutA, TimeoutB: std_logic;

Component declaration for

EightBitShiftReg

¸
˚
˚
˚
˚
˝
˚
˚
˚
˛

Component declaration for

CodeSelection

¸
˚
˚
˝
˚
˚
˛

Component declaration for

OneShot

¸
˚
˚
˝
˚
˚
˛

Component declaration for

ComparatorFourBit

¸
˚
˚
˝
˚
˚
˛

Component declaration for

FourBitParSftReg

¸
˚
˚
˚
˚
˝
˚
˚
˚
˛

BDCout: BCD encoder return

SftAout: Shift Register A return

SftBout: Shift Register B return

MCodein: Security Code value

ORgate: OR output from 10-keypad

MagCompare: Key entry to code compare

TimeoutA/B: One-shot timer variables

Component declaration for

BCDEncoder

¸
˚
˚
˝
˚
˚
˛

Key : 10 - Key input

Enter : # - Key input

Clk : System clock

Alarm : Alarm output

486 Shift Registers

begin

ORgate 6= (Key(0) or Key(1) or Key(2) or Key(3) or Key(4)

 or key(5) or Key(6) or Key(7) or Key(8) or Key(9));

BCD: BCDEncoder

port map(D(0)=7Key(0),D(1)=7Key(1),D(2)=7Key(2),D(3)=7Key(3),

 D(4)=7Key(4),D(5)=7Key(5),D(6)=7Key(6),D(7)=7Key(7),D(8)=7Key(8),D(9)=7Key(9),

 Q(0)=7BCDout(0),Q(1)=7BCDout(1),Q(2)=7BCDout(2),Q(3)=7BCDout(3));

ShiftRegisterA: FourBitParSftReg

port map (D(0)=7BCDout(0),D(1)=7BCDout(1),D(2)=7BCDout(2),D(3)=7BCDout(3),

 Clk=7not TimeoutA,Q(0)=7SftAout(0),Q(1)=7SftAout(1),Q(2)=7SftAout(2),Q(3)=7SftAout(3));

ShiftRegisterB: FourBitParSftReg

port map (D(0)=7MCodein(0),D(1)=7MCodein(1),D(2)=7MCodein(2),D(3)=7MCodein(3),

 Clk=7not TimeoutA,Q(0)=7SftBout(0),Q(1)=7SftBout(1),Q(2)=7SftBout(2),Q(3)=>SftBout(3));

Magnitude Comparator: ComparatorFourBit port map(A=>SftAout,B=>SftBout,EQ=>MagCompare);

OSA:OneShot port map(Enable=7Enter or ORgate,Clk=7Clk,QOut=7TimeoutA);

OSB:OneShot port map(Enable=7not TimeoutA,Clk=7Clk,QOut=7TimeoutB);

ShiftRegisterC:EightBitShiftReg

port map(S_L=7MagCompare,Clk=7 TimeoutB,D(0)=7‘0’,D(1)=7‘0’,

 D(2)=7‘0’,D(3)=>‘1’,D(4)=7‘0’,D(5)=>‘0’,D(6)=7‘0’,D(7)=7‘0’,Q=7Alarm);

CodeSelectionA: CodeSelection

port map(ShiftIn=7MagCompare,Clk=7Enter or ORGate,Bout=7MCodein);

end architecture SecuritySystemBehavior;

Component

instantiations

¸̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̋
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̨

SUMMARY

• Thebasictypesofdatamovementinshiftregistersare

1. Serial in/shift right/serial out

2. Serial in/shift left/serial out

3. Parallel in/serial out

4. Serial in/parallel out

Simulation

Open File AL08 in the Applied Logic folder on the website. Run the security code logic

simulation using your Multisim software and observe the operation. A DIP switch is used

to simulate the 10-digit keypad and switch J1 simulates the # key. Switches J2–J5 are used

for test purposes to enter the code that is produced by the code selection logic in the com-

plete system. Probe lights are used only for test purposes to indicate the states of registers

A and B, the output of the comparator, and the output of register C.

Putting Your Knowledge to Work

Explain how the security code logic can be modified to accommodate a 5-digit code.

Logic definition for ORGate

 Self-Test 487

5. Parallel in/parallel out

6. Rotate right

7. Rotate left

• Shiftregistercountersareshiftregisterswithfeedbackthatexhibitspecialsequences.Examples
are the Johnson counter and the ring counter.

• TheJohnsoncounterhas2n states in its sequence, where n is the number of stages.

• Theringcounterhasn states in its sequence.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Bidirectional Having two directions. In a bidirectional shift register, the stored data can be shifted

right or left.

Load To enter data into a shift register.

Register One or more flip-flops used to store and shift data.

Stage One storage element in a register.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. Shift registers consist of an arrangement of flip-flops.

 2. A shift register cannot be used to store data.

 3. A serial shift register accepts one bit at a time on a single line.

 4. All shift registers are defined by specified sequences.

 5. A shift register counter is a shift register with the serial output connected back to the

serial input.

 6. A shift register with four stages can store a maximum count of fifteen.

 7. The Johnson counter is a special type of shift register.

 8. The modulus of an 8-bit Johnson counter is eight.

 9. A ring counter uses one flip-flop for each state in its sequence.

 10. A shift register cannot be used as a time delay device.

SELF-TEST

Answers are at the end of the chapter.

 1. A register’s functions include

(a) data storage (b) data movement

(c) neither (a) not (b) (d) both (a) and (b)

 2. To enter a byte of data serially into an 8-bit shift register, there must be

(a) one clock pulse (b) two clock pulses

(c) four clock pulses (d) eight clock pulses

 3. To parallel load a byte of data into a shift register with a synchronous load, there must be

(a) one clock pulse (b) one clock pulse for each 1 in the data

(c) eight clock pulses (d) one clock pulse for each 0 in the data

 4. The group of bits 10110101 is serially shifted (right-most bit first) into an 8-bit parallel output

shift register with an initial state of 11100100. After two clock pulses, the register contains

(a) 01011110 (b) 10110101

(c) 01111001 (d) 00101101

488 Shift Registers

 5. With a 100 kHz clock frequency, eight bits can be serially entered into a shift register in

(a) 80 ms (b) 8 ms

(c) 80 ms (d) 10 ms

 6. With a 1 MHz clock frequency, eight bits can be parallel entered into a shift register

(a) in 8 ms

(b) in the propagation delay time of eight flip-flops

(c) in 1 ms

(d) in the propagation delay time of one flip-flop

 7. A modulus-8 Johnson counter requires

(a) eight flip-flops (b) four flip-flops

(c) five flip-flops (d) twelve flip-flops

 8. A modulus-8 ring counter requires

(a) eight flip-flops (b) four flip-flops

(c) five flip-flops (d) twelve flip-flops

 9. When an 8-bit serial in/serial out shift register is used for a 24 ms time delay, the clock

frequency must be

(a) 41.67 kHz (b) 333 kHz

(c) 125 kHz (d) 8 MHz

 10. The purpose of the ring counter in the keyboard encoding circuit of Figure 8–36 is

(a) to sequentially apply a HIGH to each row for detection of key closure

(b) to provide trigger pulses for the key code register

(c) to sequentially apply a LOW to each row for detection of key closure

(d) to sequentially reverse bias the diodes in each row

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 8–1 Shift Register Operations

 1. What is a register?

 2. What is the storage capacity of a register that can retain one byte of data?

 3. What does the “shift capacity” of a register mean?

Section 8–2 Types of Shift Register Data I/Os

 4. The sequence 1011 is applied to the input of a 4-bit serial shift register that is initially cleared.

What is the state of the shift register after three clock pulses?

 5. For the data input and clock in Figure 8–47, determine the states of each flip-flop in the shift

register of Figure 8–3 and show the Q waveforms. Assume that the register contains all 1s

initially.

CLK

Serial data input

FIGURE 8–47

 6. Solve Problem 5 for the waveforms in Figure 8–48.

CLK

Serial data input

FIGURE 8–48

 Problems 489

 7. What is the state of the register in Figure 8–49 after each clock pulse if it starts in the

101001111000 state?

SRG 12

C

D

CLK

Serial data in

Serial data out

CLK

Serial data in

FIGURE 8–49

 8. For the serial in/serial out shift register, determine the data-output waveform for the data-input

and clock waveforms in Figure 8–50. Assume that the register is initially cleared.

SRG 10

C

D

CLK

Serial data in

Serial data out

CLK

Serial data in

FIGURE 8–50

 9. Solve Problem 8 for the waveforms in Figure 8–51.

CLK

Serial data in

FIGURE 8–51

 10. A leading-edge clocked serial in/serial out shift register has a data-output waveform as shown

in Figure 8–52. What binary number is stored in the 8-bit register if the first data bit out (left-

most) is the LSB?

CLK

Data out

t

Binary number

FIGURE 8–52

 11. Show a complete timing diagram including the parallel outputs for the shift register in Figure

8–6. Use the waveforms in Figure 8–50 with the register initially clear.

 12. Solve Problem 11 for the input waveforms in Figure 8–51.

 13. Develop the Q0 through Q7 outputs for a 74HC164 shift register with the input waveforms

shown in Figure 8–53.

A

CLK

B

CLR

FIGURE 8–53

490 Shift Registers

 14. The shift register in Figure 8–54(a) has SHIFT /LOAD and CLK inputs as shown in part (b).

The serial data input (SER) is a 0. The parallel data inputs are D0 = 1, D1 = 0, D2 = 1, and

D3 = 0 as shown. Develop the data-output waveform in relation to the inputs.

CLK

CLK

SER

SHIFT/LOAD

D0 D1 D2 D3

SHIFT/LOAD
Data
out

(a) (b)

SRG 4

C

1 0 1 0

FIGURE 8–54

 15. The waveforms in Figure 8–55 are applied to a 74HC165 shift register. The parallel inputs are

all 0. Determine the Q7 waveform.

CLK

SH/LD

CLK INH

SER

FIGURE 8–55

 16. Solve Problem 15 if the parallel inputs are all 1.

 17. Solve Problem 15 if the SER input is inverted.

 18. Determine all the Q output waveforms for a 74HC195 4-bit shift register when the inputs are as

shown in Figure 8–56.

J

CLK

K

CLR

D0

SH/LD

D1

D2

D3

FIGURE 8–56

 19. Solve Problem 18 if the SH /LD input is inverted and the register is initially clear.

 20. Use two 74HC195 shift registers to form an 8-bit shift register. Show the required

 connections.

Section 8–3 Bidirectional Shift Registers

 21. For the 8-bit bidirectional register in Figure 8–57, determine the state of the register after each

clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift

to the right, and a LOW enables a shift to the left. Assume that the register is initially storing

 Problems 491

the decimal number seventy-six in binary, with the right-most position being the LSB. There is

a LOW on the data-input line.

CLK

Data in

RIGHT/LEFT
CLK

RIGHT/LEFT

SRG 8

C

D

Data out

FIGURE 8–57

 22. Solve Problem 21 for the waveforms in Figure 8–58.

CLK

RIGHT/LEFT

FIGURE 8–58

 23. Use two 74HC194 4-bit bidirectional shift registers to create an 8-bit bidirectional shift

register. Show the connections.

 24. Determine the Q outputs of a 74HC194 with the inputs shown in Figure 8–59. Inputs D0, D1,

D2, and D3 are all HIGH.

CLK

CLR

S0

S1

SR SER

SL SER

FIGURE 8–59

Section 8–4 Shift Register Counters

 25. How many flip-flops are required to implement each of the following in a Johnson counter

configuration:

(a) modulus-4

(b) modulus-8

(c) modulus-12

(d) modulus-18

 26. Draw the logic diagram for a modulus-18 Johnson counter. Show the timing diagram and write

the sequence in tabular form.

 27. For the ring counter in Figure 8–60, show the waveforms for each flip-flop output with respect

to the clock. Assume that FF0 is initially SET and that the rest are RESET. Show at least ten

clock pulses.

C C C C C C C C C C

D

CLK

Q0

FF0

D
Q1

FF1

D
Q2

FF2

D
Q3

FF3

D
Q4

FF4

D
Q5

FF5

D
Q6

FF6

D
Q7

FF7

D
Q8

FF8 FF9

Q9
D

FIGURE 8–60

492 Shift Registers

 28. The waveform pattern in Figure 8–61 is required. Devise a ring counter, and indicate how it can

be preset to produce this waveform on its Q9 output. At CLK16 the pattern begins to repeat.

CLK

Q9 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 8–61

Section 8–5 Shift Register Applications

 29. Use 74HC195 4-bit shift registers to implement a 16-bit ring counter. Show the connections.

 30. What is the purpose of the power-on LOAD input in Figure 8–36?

 31. What happens when two keys are pressed simultaneously in Figure 8–36?

Section 8–7 Troubleshooting

 32. Based on the waveforms in Figure 8–62(a), determine the most likely problem with the register

in part (b) of the figure.

CLK

Data in

Q0

Q1

Q2

Q3

(a)

Q3

D

Q0

D

Q1

D

Q2

D

CLK

Data in

(b)

CCCC

FIGURE 8–62

 33. Refer to the parallel in/serial out shift register in Figure 8–10. The register is in the state where

Q0Q1Q2Q3 = 1001, and D0D1D2D3 = 1010 is loaded in. When the SHIFT /LOAD input is

taken HIGH, the data shown in Figure 8–63 are shifted out. Is this operation correct? If not,

what is the most likely problem?

1 0 1 1Q3

CLK

1

FIGURE 8–63

 34. You have found that the bidirectional register in Figure 8–17 will shift data right but not left.

What is the most likely fault?

 35. For the keyboard encoder in Figure 8–36, list the possible faults for each of the following

symptoms:

(a) The state of the key code register does not change for any key closure.

(b) The state of the key code register does not change when any key in the third row is closed.

A proper code occurs for all other key closures.

(c) The state of the key code register does not change when any key in the first column is

closed. A proper code occurs for all other key closures.

(d) When any key in the second column is closed, the left three bits of the key code (Q0Q1Q2)

are correct, but the right three bits are all 1s.

 Answers 493

 36. Develop a test procedure for exercising the keyboard encoder in Figure 8–36. Specify the

procedure on a step-by-step basis, indicating the output code from the key code register that

should be observed at each step in the test.

 37. What symptoms are observed for the following failures in the serial-to-parallel converter in

Figure 8–31:

(a) AND gate output stuck in HIGH state

(b) clock generator output stuck in LOW state

(c) third stage of data-input register stuck in SET state

(d) terminal count output of counter stuck in HIGH state

Applied Logic

 38. What is the major purpose of the security code logic?

 39. Assume the entry code is 1939. Determine the states of shift register A and shift register C after

the second correct digit has been entered in Figure 8–43.

 40. Assume the entry code is 7646 and the digits 7645 are entered. Determine the states of shift

register A and shift register C after each of the digits is entered.

Special Design Problems

 41. Specify the devices that can be used to implement the serial-to-parallel data converter in Figure

8–31. Develop the complete logic diagram, showing any modifications necessary to accommo-

date the specific devices used.

 42. Modify the serial-to-parallel converter in Figure 8–31 to provide 16-bit conversion.

 43. Design an 8-bit parallel-to-serial data converter that produces the data format in Figure 8–32.

Show a logic diagram and specify the devices.

 44. Design a power-on LOAD circuit for the keyboard encoder in Figure 8–36. This circuit must

generate a short-duration LOW pulse when the power switch is turned on.

 45. Implement the test-pattern generator used in Figure 8–40 to troubleshoot the serial-to-parallel

converter.

 46. Review the tablet-bottling system that was introduced in Chapter 1. Utilizing the knowledge

gained in this chapter, implement registers A and B in that system using specific fixed-function

IC devices.

Multisim Troubleshooting Practice

 47. Open file P08-47. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 48. Open file P08-48. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 49. Open file P08-49. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 50. Open file P08-50. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 51. Open file P08-51. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 8–1 Shift Register Operations

 1. The number of stages.

 2. Storage and data movement are two functions of a shift register.

494 Shift Registers

Section 8–2 Types of Shift Register Data I/Os

 1. FF0: data input to J0, data input to K0; FF1: Q0 to J1, Q0 to K1; FF2: Q1 to J2, Q1 to K2;

FF3: Q2 to J3, Q2 to K3

 2. Eight clock pulses

 3. 0100 after 2 clock pulses

 4. Take the serial output from the right-most flip-flop for serial out operation.

 5. When SHIFT /LOAD is HIGH, the data are shifted right one bit per clock pulse. When

SHIFT /LOAD is LOW, the data on the parallel inputs are loaded into the register.

 6. The parallel load operation is asynchronous, so it is not dependent on the clock.

 7. The data outputs are 1001.

 8. Q0 = 1 after one clock pulse

Section 8–3 Bidirectional Shift Registers

 1. 1111 after the fifth clock pulse

Section 8–4 Shift Register Counters

 1. Sixteen states are in an 8-bit Johnson counter sequence.

 2. For a 3-bit Johnson counter: 000, 100, 110, 111, 011, 001, 000

Section 8–5 Shift Register Applications

 1. 625 scans/second

 2. Q5Q4Q3Q2Q1Q0 = 011011

 3. The diodes provide unidirectional paths for pulling the ROWs LOW and preventing HIGHs

on the ROW lines from being connected to the switch matrix. The resistors pull the COLUMN

lines HIGH.

Section 8–6 Logic Symbols with Dependency Notation

 1. No inputs are dependent on the mode inputs being in the 0 state.

 2. Yes, the parallel load is synchronous with the clock as indicated by the 4D label.

Section 8–7 Troubleshooting

 1. A test input is used to sequence the circuit through all of its states.

 2. Check the input to that portion of the circuit. If the signal on that input is correct, the fault is

isolated to the circuitry between the good input and the bad output.

RELATED PROBLEMS FOR EXAMPLES

 8–1 See Figure 8–64.

CLK

Data in

Q0

Q1

Q2

Q3

Q4

0

0

The output is Q4Q3Q2Q1Q0 = 00101

after 5 clock pulses.

FIGURE 8–64

 8–2 The state of the register after three additional clock pulses is 0000.

 Answers 495

 8–3 See Figure 8–65.

CLK

SHIFT/LOAD

Q3 Unknown

1 2 3 4 5 6

FIGURE 8–65

 8–4 See Figure 8–66.

RIGHT/LEFT

CLK

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Q0

Q1

0 1 0 1 0 0 0 0 0 0Q2

Q3 1 1

FIGURE 8–66

 8–5 See Figure 8–67.

CLK 1 2 3 4 5 6 7 8 9 10

Q1

Q2

Q3

Q4

Q0

Q5

Q6

Q7

Q8

Q9

1 0 1 0 1 1 1 1 0 0 1

0 1 0 1 1 1 1 0 0 1 0

1 0 1 1 1 1 0 0 1 0 1

0 1 1 1 1 0 0 1 0 1 0

0 1 0 1 0 1 1 1 1 0 0

0 0 1 0 1 0 1 1 1 1 0

1 0 0 1 0 1 0 1 1 1

1

1 1 0 0 1 0 1 0 1 1

1

1 1 1 0 0 1 0 1 0 1

1

1 1 1 1 0 0 1 0 1 0 1

FIGURE 8–67

 8–6 f = 1>3 ms = 333 kHz

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. F 5. T 6. T 7. T 8. F 9. T 10. F

SELF-TEST

 1. (d) 2. (d) 3. (a) 4. (c) 5. (a) 6. (d) 7. (b) 8. (a) 9. (b) 10. (c)

 497

497

CHAPTER OUTLINE

9–1 Finite State Machines

9–2 Asynchronous Counters

9–3 Synchronous Counters

9–4 Up/Down Synchronous Counters

9–5 Design of Synchronous Counters

9–6 Cascaded Counters

9–7 Counter Decoding

9–8 Counter Applications

9–9 Logic Symbols with Dependency Notation

9–10 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Discuss the types of state machines

■ Describe the difference between an asynchronous

and a synchronous counter

■ Analyze counter timing diagrams

■ Analyze counter circuits

■ Explain how propagation delays affect the

operation of a counter

■ Determine the modulus of a counter

■ Modify the modulus of a counter

■ Recognize the difference between a 4-bit binary

counter and a decade counter

■ Use an up/down counter to generate forward and

reverse binary sequences

■ Determine the sequence of a counter

■ Use IC counters in various applications

■ Design a counter that will have any specified

sequence of states

■ Use cascaded counters to achieve a higher modulus

■ Use logic gates to decode any given state of a counter

■ Eliminate glitches in counter decoding

■ Explain how a digital clock operates

■ Interpret counter logic symbols that use

dependency notation

■ Troubleshoot counters for various types of faults

Counters

9CHAPTER

■ State machine

■ Asynchronous

■ Recycle

■ Modulus

■ Decade

■ Synchronous

■ Terminal count

■ State diagram

■ Cascade

KEY TERMS

Key terms are in order of appearance in the chapter.

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

As you learned in Chapter 7, flip-flops can be con-

nected together to perform counting operations. Such

a group of flip-flops is a counter, which is a type of

finite state machine. The number of flip-flops used

and the way in which they are connected determine

the number of states (called the modulus) and also

the specific sequence of states that the counter goes

through during each complete cycle.

Counters are classified into two broad categories

 according to the way they are clocked: asynchronous

and synchronous. In asynchronous counters, commonly

called ripple counters, the first flip-flop is clocked by the

external clock pulse and then each successive flip-flop

is clocked by the output of the preceding flip-flop. In

synchronous counters, the clock input is connected to all

of the flip-flops so that they are clocked simultaneously.

Within each of these two categories, counters are clas-

sified primarily by the type of sequence, the number of

states, or the number of flip-flops in the counter. VHDL

codes for various types of counters are presented.

498 Counters

9–1 Finite State Machines

A state machine is a sequential circuit having a limited (finite) number of states occuring

in a prescribed order. A counter is an example of a state machine; the number of states is

called the modulus. Two basic types of state machines are the Moore and the Mealy. The

Moore state machine is one where the outputs depend only on the internal present state.

The Mealy state machine is one where the outputs depend on both the internal present

state and on the inputs. Both types have a timing input (clock) that is not considered a con-

trolling input. A design approach to counters is presented in this section.

After completing this section, you should be able to

u Describe a Moore state machine

u Describe a Mealy state machine

u Discuss examples of Moore and Mealy state machines

General Models of Finite State Machines

A Moore state machine consists of combinational logic that determines the sequence and

memory (flip-flops), as shown in Figure 9–1(a). A Mealy state machine is shown in part (b).

Outputs

Outputs
Combinational

logic
Memory

(a) Moore machine (b) Mealy machine

Input(s)

Present state

Combinational

logic
Memory

FIGURE 9–1 Two types of sequential logic.

In the Moore machine, the combinational logic is a gate array with outputs that deter-

mine the next state of the flip-flops in the memory. There may or may not be inputs to the

combinational logic. There may also be output combinational logic, such as a decoder. If

there is an input(s), it does not affect the outputs because they always correspond to and

are dependent only on the present state of the memory. For the Mealy machine, the present

state affects the outputs, just as in the Moore machine; but in addition, the inputs also affect

the outputs. The outputs come directly from the combinational logic and not the memory.

Example of a Moore Machine

Figure 9–2(a) shows a Moore machine (modulus-26 binary counter with states 0 through

25) that is used to control the number of tablets (25) that go into each bottle in an assem-

bly line. When the binary number in the memory (flip-flops) reaches binary twenty-five

(11001), the counter recycles to 0 and the tablet flow and clock are cut off until the next

bottle is in place. The combinational logic for the state transitions sets the modulus of the

counter so that it sequences from binary state 0 to binary state 25, where 0 is the reset or

rest state and the output combinational logic decodes binary state 25. There is no input in

this case, other than the clock, so the next state is determined only by the present state,

which makes this a Moore machine. One tablet is bottled for each clock pulse. Once a

bottle is in place, the first tablet is inserted at binary state 1, the second at binary state 2,

and the twenty-fifth tablet when the binary state is 25. Count 25 is decoded and used to

stop the flow of tablets and the clock. The counter stays in the 0 state until the next bottle

is in position (indicated by a 1). Then the clock resumes, the count goes to 1, and the cycle

repeats, as illustrated by the state diagram in Figure 9–2(b).

 Finite State Machines 499

Example of a Mealy Machine

Let’s assume that the tablet-bottling system uses three different sizes of bottles: a 25-tablet

bottle, a 50-tablet bottle, and a 100-tablet bottle. This operation requires a state machine with

three different terminal counts: 25, 50, and 100. One approach is illustrated in Figure 9–3(a).

The combinational logic sets the modulus of the counter depending on the modulus-select

inputs. The output of the counter depends on both the present state and the modulus-select

inputs, making this a Mealy machine. The state diagram is shown in part (b).

Present state

Combinational

logic for state

transitions

Flip-flops

Clock

Logic for

decoding

binary state 25

Output

(binary state 25)

Bottle in place

binary

0

Bottle not in place

binary

1

binary

25

Modulus 26 counter

(a) Moore machine (b) State diagram

FIGURE 9–2 A fixed-modulus binary counter as an example of a Moore state machine.

The dashed line in the state diagram means the states between binary 1 and 25 are not

shown for simplicity.

Present state

Combinational

logic for the state

transitions

Flip-flops

25 50 100
Modulus-select inputs

Combinational

logic for

decoding count

25 or 50 or 100

Output

(final state)

(a) Mealy machine (b) State diagram

binary

0

binary

1

binary

25

binary

51

binary

50

binary

100

binary

26

Bottle not in place

Bottle in place
Input 50 =1

Input 25 =1

Input 100 =1

FIGURE 9–3 A variable-modulus binary counter as an example of a Mealy state machine.

The red arrows in the state diagram represent the recycle paths that depend on the input

number. The black dashed lines mean the interim states are not shown for simplicity.

SECTION 9–1 CHECKUP

Answers are at the end of the chapter.

 1. What characterizes a finite state machine?

 2. Name the types of finite state machines.

 3. Explain the difference between the two types of state machines.

500 Counters

9–2 Asynchronous Counters

The term asynchronous refers to events that do not have a fixed time relationship with

each other and, generally, do not occur at the same time. An asynchronous counter is one

in which the flip-flops (FF) within the counter do not change states at exactly the same time

because they do not have a common clock pulse.

After completing this section, you should be able to

u Describe the operation of a 2-bit asynchronous binary counter

u Describe the operation of a 3-bit asynchronous binary counter

u Define ripple in relation to counters

u Describe the operation of an asynchronous decade counter

u Develop counter timing diagrams

u Discuss the implementation of a 4-bit asynchronous binary counter

A 2-Bit Asynchronous Binary Counter

Figure 9–4 shows a 2-bit counter connected for asynchronous operation. Notice that the clock

(CLK) is applied to the clock input (C) of only the first flip-flop, FF0, which is always the

least significant bit (LSB). The second flip-flop, FF1, is triggered by the Q0 output of FF0.

FF0 changes state at the positive-going edge of each clock pulse, but FF1 changes only when

triggered by a positive-going transition of the Q0 output of FF0. Because of the inherent

propagation delay time through a flip-flop, a transition of the input clock pulse (CLK) and a

transition of the Q0 output of FF0 can never occur at exactly the same time. Therefore, the

two flip-flops are never simultaneously triggered, so the counter operation is asynchronous.

The clock input of an asynchronous
counter is always connected only to
the LSB flip-flop.

The Timing Diagram

Let’s examine the basic operation of the asynchronous counter of Figure 9–4 by applying four

clock pulses to FF0 and observing the Q output of each flip-flop. Figure 9–5 illustrates the

changes in the state of the flip-flop outputs in response to the clock pulses. Both flip-flops are

connected for toggle operation (D = Q) and are assumed to be initially RESET (Q LOW).

The positive-going edge of CLK1 (clock pulse 1) causes the Q0 output of FF0 to go

HIGH, as shown in Figure 9–5. At the same time the Q0 output goes LOW, but it has no

effect on FF1 because a positive-going transition must occur to trigger the flip-flop. After

the leading edge of CLK1, Q0 = 1 and Q1 = 0. The positive-going edge of CLK2 causes

Q0 to go LOW. Output Q0 goes HIGH and triggers FF1, causing Q1 to go HIGH. After the

leading edge of CLK2, Q0 = 0 and Q1 = 1. The positive-going edge of CLK3 causes Q0

to go HIGH again. Output Q0 goes LOW and has no effect on FF1. Thus, after the leading

edge of CLK3, Q0 = 1 and Q1 = 1. The positive-going edge of CLK4 causes Q0 to go

LOW, while Q0 goes HIGH and triggers FF1, causing Q1 to go LOW. After the leading

Asynchronous counters are also
known as ripple counters.

D
1 Q

1
D

0

Q
1

Q
0

CLK
C C

FF1FF0

Q
0

FIGURE 9–4 A 2-bit asynchronous binary counter. Open file F09-04 to verify operation. A

Multisim tutorial is available on the website.

 Asynchronous Counters 501

edge of CLK4, Q0 = 0 and Q1 = 0. The counter has now recycled to its original state

(both flip-flops are RESET).

In the timing diagram, the waveforms of the Q0 and Q1 outputs are shown relative to the

clock pulses as illustrated in Figure 9–5. For simplicity, the transitions of Q0, Q1, and the

clock pulses are shown as simultaneous even though this is an asynchronous counter. There

is, of course, some small delay between the CLK and the Q0 transition and between the Q0

transition and the Q1 transition.

Note in Figure 9–5 that the 2-bit counter exhibits four different states, as you would

expect with two flip-flops (22
= 4). Also, notice that if Q0 represents the least significant

bit (LSB) and Q1 represents the most significant bit (MSB), the sequence of counter states

represents a sequence of binary numbers as listed in Table 9–1.

In digital logic, Q0 is always the LSB
unless otherwise specified.

Q
0

CLK

Q0 (LSB)

1 2 3 4

Q1 (MSB)

Outputs

FIGURE 9–5 Timing diagram for the counter of Figure 9–4. As in previous chapters,

output waveforms are shown in green.

TABLE 9–1

Binary state sequence for the counter in Figure 9–4.

Clock Pulse Q1 Q0

Initially 0 0

1 0 1

2 1 0

3 1 1

4 (recycles) 0 0

TABLE 9–2

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

Since it goes through a binary sequence, the counter in Figure 9–4 is a binary counter. It

actually counts the number of clock pulses up to three, and on the fourth pulse it recycles

to its original state (Q0 = 0, Q1 = 0). The term recycle is commonly applied to counter

operation; it refers to the transition of the counter from its final state back to its original state.

A 3-Bit Asynchronous Binary Counter

The state sequence for a 3-bit binary counter is listed in Table 9–2, and a 3-bit asynchronous

binary counter is shown in Figure 9–6(a). The basic operation is the same as that of the 2-bit

502 Counters

counter except that the 3-bit counter has eight states, due to its three flip-flops. A timing

diagram is shown in Figure 9–6(b) for eight clock pulses. Notice that the counter progresses

through a binary count of zero through seven and then recycles to the zero state. This counter

can be easily expanded for higher count, by connecting additional toggle flip-flops.

Propagation Delay

Asynchronous counters are commonly referred to as ripple counters for the following

reason: The effect of the input clock pulse is first “felt” by FF0. This effect cannot get to

FF1 immediately because of the propagation delay through FF0. Then there is the propa-

gation delay through FF1 before FF2 can be triggered. Thus, the effect of an input clock

pulse “ripples” through the counter, taking some time, due to propagation delays, to reach

the last flip-flop.

To illustrate, notice that all three flip-flops in the counter of Figure 9–6 change state on

the leading edge of CLK4. This ripple clocking effect is shown in Figure 9–7 for the first

four clock pulses, with the propagation delays indicated. The LOW-to-HIGH transition of

1 2 3 4CLK

t
PLH

(CLK to Q
0
)

t
PHL

(CLK to Q
0
)

t
PLH

(Q
0
 to Q

1
)

t
PHL

(CLK to Q
0
)

t
PHL

(Q
0
 to Q

1
)

t
PLH

(Q
1
 to Q

2
)

Q
0

Q
1

Q
2

FIGURE 9–7 Propagation delays in a 3-bit asynchronous (ripple-clocked) binary counter.

Q0 (LSB)

Q2 (MSB)

D
2

Q
2

D
1

Q
1

CLK C C

FF2FF1

D
0

Q
0

C

FF0

1 2 3 4 5CLK 6 7 8

10 10 10 10 0

Q
1 10 10 1010

00 11 11

0

000

(a)

(b) Recycles back to 0

Q
1

Q
0

Q
2

FIGURE 9–6 Three-bit asynchronous binary counter and its timing diagram for one cycle.

Open file F09-06 to verify operation.

 Asynchronous Counters 503

Q0 occurs one delay time (tPLH) after the positive-going transition of the clock pulse. The

LOW-to-HIGH transition of Q1 occurs one delay time (tPLH) after the positive-going tran-

sition of Q0. The LOW-to-HIGH transition of Q2 occurs one delay time (tPLH) after the

positive-going transition of Q1. As you can see, FF2 is not triggered until two delay times

after the positive-going edge of the clock pulse, CLK4. Thus, it takes three propagation

delay times for the effect of the clock pulse, CLK4, to ripple through the counter and change

Q2 from LOW to HIGH.

This cumulative delay of an asynchronous counter is a major disadvantage in many

applications because it limits the rate at which the counter can be clocked and creates

decoding problems. The maximum cumulative delay in a counter must be less than the

period of the clock waveform.

EXAMPLE 9–1

A 4-bit asynchronous binary counter is shown in Figure 9–8(a). Each D flip-flop is

negative edge-triggered and has a propagation delay for 10 nanoseconds (ns). Develop

a timing diagram showing the Q output of each flip-flop, and determine the total propa-

gation delay time from the triggering edge of a clock pulse until a corresponding change

can occur in the state of Q3. Also determine the maximum clock frequency at which the

counter can be operated.

CLK C C C

Q
0

Q
1

Q
2

Q
3

FF0 FF1 FF2 FF3

(a)

D
0

D
1

D
2

D
3

C

(b)

CLK

Q
0

Q
1

Q
2

Q
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q
0

Q
1

Q
2

Q
3

FIGURE 9–8 Four-bit asynchronous binary counter and its timing diagram. Open file

F09-08 and verify the operation.

Solution

The timing diagram with delays omitted is as shown in Figure 9–8(b). For the total

delay time, the effect of CLK8 or CLK16 must propagate through four flip-flops before

Q3 changes, so

tp(tot) = 4 * 10 ns = 40 ns

504 Counters

Asynchronous Decade Counters

The modulus of a counter is the number of unique states through which the counter will

sequence. The maximum possible number of states (maximum modulus) of a counter is 2n,

where n is the number of flip-flops in the counter. Counters can be designed to have a num-

ber of states in their sequence that is less than the maximum of 2n. This type of sequence

is called a truncated sequence.

One common modulus for counters with truncated sequences is ten (called MOD10).

Counters with ten states in their sequence are called decade counters. A decade counter

with a count sequence of zero (0000) through nine (1001) is a BCD decade counter because

its ten-state sequence produces the BCD code. This type of counter is useful in display

applications in which BCD is required for conversion to a decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recycle before

going through all of its possible states. For example, the BCD decade counter must recycle

back to the 0000 state after the 1001 state. A decade counter requires four flip-flops (three

flip-flops are insufficient because 23
= 8).

Let’s use a 4-bit asynchronous counter such as the one in Example 9–1 and modify its

sequence to illustrate the principle of truncated counters. One way to make the counter

recycle after the count of nine (1001) is to decode count ten (1010) with a NAND gate and

connect the output of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown

in Figure 9–9(a).

Partial Decoding

Notice in Figure 9–9(a) that only Q1 and Q3 are connected to the NAND gate inputs. This

arrangement is an example of partial decoding, in which the two unique states (Q1 = 1

and Q3 = 1) are sufficient to decode the count of ten because none of the other states (zero

through nine) have both Q1 and Q3 HIGH at the same time. When the counter goes into

count ten (1010), the decoding gate output goes LOW and asynchronously resets all the

flip-flops.

The resulting timing diagram is shown in Figure 9–9(b). Notice that there is a glitch

on the Q1 waveform. The reason for this glitch is that Q1 must first go HIGH before

the count of ten can be decoded. Not until several nanoseconds after the counter goes

to the count of ten does the output of the decoding gate go LOW (both inputs are

HIGH). Thus, the counter is in the 1010 state for a short time before it is reset to 0000,

thus producing the glitch on Q1 and the resulting glitch on the CLR line that resets the

 counter.

Other truncated sequences can be implemented in a similar way, as Example 9–2

shows.

A counter can have 2n states, where
n is the number of flip-flops.

The maximum clock frequency is

fmax =

1

tp(tot)

=

1

40 ns
= 25 MHz

The counter should be operated below this frequency to avoid problems due to the

propagation delay.

Related Problem*

Show the timing diagram if all of the flip-flops in Figure 9–8(a) are positive edge-

triggered.

*Answers are at the end of the chapter.

 Asynchronous Counters 505

1 2 3 4 5 6 7 8 9 10

Q
0

Q
1

Q
2

Q
3

CLK

(b)

CLR

10 decoder

CLK C C C C

Q
0

Q
1

Q
2

Q
3

FF0 FF1 FF2 FF3

(a)

D
0

D
1

D
2

D
3

CLRCLRCLRCLR

CLR

Glitch

Glitch

Q
0

Q
1

Q
2

Q
3

FIGURE 9–9 An asynchronously clocked decade counter with asynchronous recycling.

EXAMPLE 9–2

Show how an asynchronous counter with J-K flip-flops can be implemented having a modulus of twelve with a straight

binary sequence from 0000 through 1011.

Solution

Since three flip-flops can produce a maximum of eight states, four flip-flops are required to produce any modulus greater

than eight but less than or equal to sixteen.

When the counter gets to its last state, 1011, it must recycle back to 0000 rather than going to its normal next state of

1100, as illustrated in the following sequence chart:

Normal next state

Recycles

Observe that Q0 and Q1 both go to 0 anyway, but Q2 and Q3 must be forced to 0 on the twelfth clock pulse. Figure 9–10(a)

shows the modulus-12 counter. The NAND gate partially decodes count twelve (1100) and resets flip-flop 2 and flip-flop 3.

 Q3 Q2 Q1 Q0

 0 0 0 0

 # # # #
 # # # #
 # # # #
 1 0 1 1

 1 1 0 0

506 Counters

Thus, on the twelfth clock pulse, the counter is forced to recycle from count eleven to count zero, as shown in the timing

diagram of Figure 9–10(b). (It is in count twelve for only a few nanoseconds before it is reset by the glitch on CLR.)

(a)

12 decoder

Q
0

FF0

C C C

Q
1

Q
2

Q
3

HIGH

CLK

FF1 FF2 FF3

C

J
0

K
0

J
1

K
1

J
2

K
2

J
3

K
3

CLR CLR CLR CLR

CLR

1 2 3 4 5 6 7 8 9 10 11 12

Q
0

Q
1

Q
2

Q
3

Decoder
output

(CLR)

Glitch

Glitch

CLK

(b)

FIGURE 9–10 Asynchronously clocked modulus-12 counter with asynchronous recycling.

Related Problem

How can the counter in Figure 9–10(a) be modified to make it a modulus-13 counter?

IMPLEMENTATION: 4-BIT ASYNCHRONOUS BINARY COUNTER

Fixed-Function Device The 74HC93 is an example of a specific integrated circuit asyn-

chronous counter. This device actually consists of a single flip-flop (CLK A) and a 3-bit asyn-

chronous counter (CLK B). This arrangement is for flexibility. It can be used as a divide-by-2

device if only the single flip-flop is used, or it can be used as a modulus-8 counter if only the

3-bit counter portion is used. This device also provides gated reset inputs, RO(1) and RO(2).

When both of these inputs are HIGH, the counter is reset to the 0000 state CLR.

Additionally, the 74HC93 can be used as a 4-bit modulus-16 counter (counts 0 through

15) by connecting the Q0 output to the CLK B input as shown by the logic symbol in

Figure 9–11(a). It can also be configured as a decade counter (counts 0 through 9) with

asynchronous recycling by using the gated reset inputs for partial decoding of count ten, as

shown by the logic symbol in Figure 9–11(b).

 Synchronous Counters 507

Programmable Logic Device (PLD) The VHDL code for a generic 4-bit asynchronous

binary counter using J-K flip flops with preset (PRN) and clear (CLRN) inputs is as

 follows:

C

RO(2)

RO(1)

CLK A

CCLK B

Q
0

Q
1

Q
2

Q
3

(b) 74HC93 connected as a decade counter

CTR DIV 10C

RO(2)

RO(1)

CLK A

CCLK B

Q
0

Q
1

Q
2

Q
3

(a) 74HC93 connected as a modulus-16 counter

CTR DIV 16

FIGURE 9–11 Two configurations of the 74HC93 asynchronous counter. (The qualifying

label, CTR DIV n, indicates a counter with n states.)

SECTION 9–2 CHECKUP

 1. What does the term asynchronous mean in relation to counters?

 2. How many states does a modulus-14 counter have? What is the minimum number of

flip-flops required?

9–3 Synchronous Counters

The term synchronous refers to events that have a fixed time relationship with each other.

A synchronous counter is one in which all the flip-flops in the counter are clocked at the

same time by a common clock pulse. J-K flip-flops are used to illustrate most synchronous

counters. D flip-flops can also be used but generally require more logic because of having

no direct toggle or no-change states.

library ieee;

use ieee.std_logic_1164.all;

entity AsyncFourBitBinCntr is

 port (Clock, Clr: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);

end entity AsyncFourBitBinCntr;

architecture LogicOperation of AsyncFourBitBinCntr is

component jkff is

 port (J, K, Clk, PRN, CLRN: in std_logic; Q: out std_logic);

end component jkff;

begin

 FF0: jkff port map(J=7‘1’, K=7‘1’, Clk=7Clock, CLRN=7Clr, PRN=7‘1’, Q=7Q0);

 FF1: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q0, CLRN=7Clr, PRN=7‘1’, Q=7Q1);

 FF2: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q1, CLRN=7Clr, PRN=7‘1’, Q=7Q2);

 FF3: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q2, CLRN=7Clr, PRN=7‘1’, Q=7Q3);

end architecture LogicOperation;

J-K flip-flop component

declaration

Inputs and outputs declared

Instantiations define

how each flip-flop is

connected.

t
s

508 Counters

After completing this section, you should be able to

u Describe the operation of a 2-bit synchronous binary counter

u Describe the operation of a 3-bit synchronous binary counter

u Describe the operation of a 4-bit synchronous binary counter

u Describe the operation of a synchronous decade counter

u Develop counter timing diagrams

A 2-Bit Synchronous Binary Counter

Figure 9–12 shows a 2-bit synchronous binary counter. Notice that an arrangement differ-

ent from that for the asynchronous counter must be used for the J1 and K1 inputs of FF1

in order to achieve a binary sequence. A D flip-flop implementation is shown in part (b).

J
1

Q
1

K
1

J
0

Q
1

Q
0

K
0

HIGH

CLK

C C

FF1FF0

(a) J-K flip-flop

FIGURE 9–12 2-bit synchronous binary counters.

Q
1

D
0

D
1

Q
0

CLK

C C

(b) D flip-flop

The operation of a J-K flip-flop synchronous counter is as follows: First, assume that the

counter is initially in the binary 0 state; that is, both flip-flops are RESET. When the positive

edge of the first clock pulse is applied, FF0 will toggle and Q0 will therefore go HIGH. What

happens to FF1 at the positive-going edge of CLK1? To find out, let’s look at the input con-

ditions of FF1. Inputs J1 and K1 are both LOW because Q0, to which they are connected, has

not yet gone HIGH. Remember, there is a propagation delay from the triggering edge of the

clock pulse until the Q output actually makes a transition. So, J = 0 and K = 0 when the

leading edge of the first clock pulse is applied. This is a no-change condition, and therefore

FF1 does not change state. A timing detail of this portion of the counter operation is shown

in Figure 9–13(a).

The clock input goes to each flip-flop
in a synchronous counter.

Propagation delay through FF0Q
0

 1

 0

(a)

Propagation delay through FF0

1

(c)

Propagation delay through FF0

(b)

Propagation delay through FF1

Propagation delay through FF0

(d)

Propagation delay through FF1

 0

Q
0

 1

 0

Q
0

 1

 0

Q
1

 1

 0

Q
0

 1

 0

Q
1

 1

 0

CLK3

CLK1

CLK4

CLK2

Q
1

Q
1

FIGURE 9–13 Timing details for the 2-bit synchronous counter operation (the

propagation delays of both flip-flops are assumed to be equal).

 Synchronous Counters 509

After CLK1, Q0 = 1 and Q1 = 0 (which is the binary 1 state). When the leading edge

of CLK2 occurs, FF0 will toggle and Q0 will go LOW. Since FF1 has a HIGH (Q0 = 1) on

its J1 and K1 inputs at the triggering edge of this clock pulse, the flip-flop toggles and Q1

goes HIGH. Thus, after CLK2, Q0 = 0 and Q1 = 1 (which is a binary 2 state). The timing

detail for this condition is shown in Figure 9–13(b).

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0 = 1),

and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 = 0). After

this triggering edge, Q0 = 1 and Q1 = 1 (which is a binary 3 state). The timing detail is

shown in Figure 9–13(c).

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both have a toggle

condition on their J and K inputs. The timing detail is shown in Figure 9–13(d). The counter

has now recycled to its original state, binary 0. Examination of the D flip-flop counter in

Figure 9–12(b) will show the timing diagram is the same as for the J-K flip-flop counter.

The complete timing diagram for the counters in Figure 9–12 is shown in Figure 9–14.

Notice that all the waveform transitions appear coincident; that is, the propagation delays are

not indicated. Although the delays are an important factor in the synchronous counter opera-

tion, in an overall timing diagram they are normally omitted for simplicity. Major waveform

relationships resulting from the normal operation of a circuit can be conveyed completely

without showing small delay and timing differences. However, in high-speed digital circuits,

these small delays are an important consideration in design and troubleshooting.

CLK

Q
0

Q
1

Q
2

1 2 3 4 5 6 7 8

FIGURE 9–16 Timing diagram for the counter of Figure 9–15.

A 3-Bit Synchronous Binary Counter

A 3-bit synchronous binary counter is shown in Figure 9–15, and its timing diagram is

shown in Figure 9–16. You can understand this counter operation by examining its sequence

of states as shown in Table 9–3.

Q
0

CLK

J
0

K
0

C

HIGH

FF0

Q
1

J
1

K
1

C

FF1

Q
2J

2

K
2

C

FF2Q
0
Q

1

FIGURE 9–15 A 3-bit synchronous binary counter. Open file F09-15 to verify the operation.

Q
0

CLK

Q
1

1 2 3 4
FIGURE 9–14 Timing diagram

for the counters of Figure 9–12.

510 Counters

First, let’s look at Q0. Notice that Q0 changes on each clock pulse as the counter pro-

gresses from its original state to its final state and then back to its original state. To produce

this operation, FF0 must be held in the toggle mode by constant HIGHs on its J0 and K0

inputs. Notice that Q1 goes to the opposite state following each time Q0 is a 1. This change

occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the counter to recycle.

To produce this operation, Q0 is connected to the J1 and K1 inputs of FF1. When Q0 is a 1

and a clock pulse occurs, FF1 is in the toggle mode and therefore changes state. The other

times, when Q0 is a 0, FF1 is in the no-change mode and remains in its present state.

Next, let’s see how FF2 is made to change at the proper times according to the binary

sequence. Notice that both times Q2 changes state, it is preceded by the unique condi-

tion in which both Q0 and Q1 are HIGH. This condition is detected by the AND gate and

applied to the J2 and K2 inputs of FF2. Whenever both Q0 and Q1 are HIGH, the output of

the AND gate makes the J2 and K2 inputs of FF2 HIGH, and FF2 toggles on the following

clock pulse. At all other times, the J2 and K2 inputs of FF2 are held LOW by the AND gate

output, and FF2 does not change state.

The analysis of the counter in Figure 9–15 is summarized in Table 9–4.

TABLE 9–3

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

InfoNote

The TSC or time stamp counter in

some microprocessors is used for

performance monitoring, which

enables a number of parameters

important to the overall perform-

ance of a system to be determined

exactly. By reading the TSC before

and after the execution of a proce-

dure, the precise time required for

the procedure can be determined

based on the processor cycle time.

In this way, the TSC forms the

basis for all time evaluations in

connection with optimizing system

operation. For example, it can

be accurately determined which

of two or more programming

sequences is more efficient. This

is a very useful tool for compiler

developers and system program-

mers in producing the most effec-

tive code.

TABLE 9–4

Summary of the analysis of the counter in Figure 9–15.

Outputs J-K Inputs At the Next Clock Pulse

Clock Pulse Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 FF2 FF1 FF0

Initially 0 0 0 0 0 0 0 1 1 NC* NC Toggle

1 0 0 1 0 0 1 1 1 1 NC Toggle Toggle

2 0 1 0 0 0 0 0 1 1 NC NC Toggle

3 0 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

4 1 0 0 0 0 0 0 1 1 NC NC Toggle

5 1 0 1 0 0 1 1 1 1 NC Toggle Toggle

6 1 1 0 0 0 0 0 1 1 NC NC Toggle

7 1 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

Counter recycles back to 000.

*NC indicates No Change.

A 4-Bit Synchronous Binary Counter

Figure 9–17(a) shows a 4-bit synchronous binary counter, and Figure 9–17(b) shows its

timing diagram. This particular counter is implemented with negative edge-triggered flip-

flops. The reasoning behind the J and K input control for the first three flip-flops is the

same as previously discussed for the 3-bit counter. The fourth stage, FF3, changes only

twice in the sequence. Notice that both of these transitions occur following the times that

Q0, Q1, and Q2 are all HIGH. This condition is decoded by AND gate G2 so that when a

 Synchronous Counters 511

clock pulse occurs, FF3 will change state. For all other times the J3 and K3 inputs of FF3

are LOW, and it is in a no-change condition.

A 4-Bit Synchronous Decade Counter

As you know, a BCD decade counter exhibits a truncated binary sequence and goes from

0000 through the 1001 state. Rather than going from the 1001 state to the 1010 state, it

recycles to the 0000 state. A synchronous BCD decade counter is shown in Figure 9–18.

The timing diagram for the decade counter is shown in Figure 9–19.

CLK

FF0 FF2 FF3FF1 Q
0

Q
1

Q
2

Q
3

Q
1

Q
0 G

1
G

2

Q
2

J
0

K
0

J
1

K
1

J
2

K
2

J
3

K
3

C

(a)

C C C

Q
0

Q
1

(b)

CLK

Q
0

Q
1

Q
2

Q
3

Q
0

Q
1

Q
0

Q
1

Q
2

Q
0

Q
1

Q
0

Q
1

Q
2

HIGH

FIGURE 9–17 A 4-bit synchronous binary counter and timing diagram. Times where the

AND gate outputs are HIGH are indicated by the shaded areas.

A decade counter has ten states.

Q
0

CLK

J
0

K
0

C

HIGH

FF0

Q
1

C

FF1

Q
2

C

FF2

J
1

K
1

J
2

K
2

C

J
3

K
3

Q
3

FF3

Q
3

FIGURE 9–18 A synchronous BCD decade counter. Open file F09-18 to verify operation.

512 Counters

The counter operation is shown by the sequence of states in Table 9–5. First, notice that

FF0 (Q0) toggles on each clock pulse, so the logic equation for its J0 and K0 inputs is

J0 = K0 = 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.

1 2 3 4 5CLK 6 7 8

Q
0

10 10 10 10 0

Q
1

10 10 1010

Q
2

00 11 1100

9 10

Q
3

00 00

0

0

1 1000

1

0

0

0

0

0

0

0

FIGURE 9–19 Timing diagram for the BCD decade counter (Q0 is the LSB).

TABLE 9–5

States of a BCD decade counter.

Clock Pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 (recycles) 0 0 0 0

Next, notice in Table 9–5 that FF1 (Q1) changes on the next clock pulse each time

Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1 = K1 = Q0Q3

This equation is implemented by ANDing Q0 and Q3 and connecting the gate output to the

J1 and K1 inputs of FF1.

Flip-flop 2 (Q2) changes on the next clock pulse each time both Q0 = 1 and Q1 = 1.

This requires an input logic equation as follows:

J2 = K2 = Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output to the

J2 and K2 inputs of FF2.

Finally, FF3 (Q3) changes to the opposite state on the next clock pulse each time Q0 = 1,

Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q3 = 1 (state 9). The equation for

this is as follows:

J3 = K3 = Q0Q1Q2 + Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and K3 inputs of

FF3 as shown in the logic diagram in Figure 9–18. Notice that the differences between this

 Synchronous Counters 513

decade counter and the modulus-16 binary counter in Figure 9–17(a) are the Q0Q3 AND

gate, the Q0Q3 AND gate, and the OR gate; this arrangement detects the occurrence of the

1001 state and causes the counter to recycle properly on the next clock pulse.

IMPLEMENTATION: 4-BIT SYNCHRONOUS BINARY COUNTER

Fixed-Function Device The 74HC163 is an example of an integrated circuit 4-bit syn-

chronous binary counter. A logic symbol is shown in Figure 9–20 with pin numbers in

parentheses. This counter has several features in addition to the basic functions previously

discussed for the general synchronous binary counter.

CLR

Q
0

CTR DIV 16

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(1)

LOAD
(9)

ENP
(7)

ENT
(10)

CCLK
(2)

(3) (4) (5) (6)

(14) (13) (12) (11)

TC = 15
(15)

RCO

Data outputs

Data inputs

FIGURE 9–20 The 74HC163 4-bit synchronous binary counter. (The qualifying label CTR

DIV 16 indicates a counter with sixteen states.)

First, the counter can be synchronously preset to any 4-bit binary number by applying

the proper levels to the parallel data inputs. When a LOW is applied to the LOAD input,

the counter will assume the state of the data inputs on the next clock pulse. Thus, the coun-

ter sequence can be started with any 4-bit binary number.

Also, there is an active-LOW clear input (CLR), which synchronously resets all four

flip-flops in the counter. There are two enable inputs, ENP and ENT. These inputs must

both be HIGH for the counter to sequence through its binary states. When at least one

input is LOW, the counter is disabled. The ripple clock output (RCO) goes HIGH when

the counter reaches the last state in its sequence of fifteen, called the terminal count

(TC = 15). This output, in conjunction with the enable inputs, allows these counters to be

cascaded for higher count sequences.

Figure 9–21 shows a timing diagram of this counter being preset to twelve (1100) and

then counting up to its terminal count, fifteen (1111). Input D0 is the least significant input

bit, and Q0 is the least significant output bit.

Let’s examine this timing diagram in detail. This will aid you in interpreting timing

diagrams in this chapter or on manufacturers’ data sheets. To begin, the LOW level pulse

on the CLR input causes all the outputs (Q0, Q1, Q2, and Q3) to go LOW.

Next, the LOW level pulse on the LOAD input synchronously enters the data on the

data inputs (D0, D1, D2, and D3) into the counter. These data appear on the Q outputs at the

time of the first positive-going clock edge after LOAD goes LOW. This is the preset opera-

tion. In this particular example, Q0 is LOW, Q1 is LOW, Q2 is HIGH, and Q3 is HIGH.

This, of course, is a binary 12 (Q0 is the LSB).

The counter now advances through states 13, 14, and 15 on the next three positive-

going clock edges. It then recycles to 0, 1, 2 on the following clock pulses. Notice that

514 Counters

both ENP and ENT inputs are HIGH during the state sequence. When ENP goes LOW, the

counter is inhibited and remains in the binary 2 state.

Programmable Logic Device (PLD) The VHDL code for a 4-bit synchronous decade

counter using J-K flip flops is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity FourBitSynchDecadeCounter is

 port (Clk: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);

end entity FourBitSynchDecadeCounter;

architecture LogicOperation of FourBitSynchDecadeCounter is

component jkff is

 port (J, K, Clk: in std_logic; Q: out std_logic);

end component jkff;

signal J1, J2, J3: std_logic;

begin

J1 6= Q0 and not Q3;

J2 6= Q1 and Q0;

J3 6= (Q2 and J2) or (Q0 and Q3);

FF0: jkff port map (J =7 ‘1’, K =7 ‘1’, Clk =7 Clk, Q =7 Q0);

FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);

FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);

FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);

end architecture LogicOperation;

Input and outputs

declared

Instantiations define

connections for each

flip-flop.

Component declaration for

the J-K flip-flop

D
0

Data
inputs

Outputs

D
1

D
2

D
3

Count Inhibit

Clear Preset

12 13 14 15 0 1 2

Q
0

Q
1

Q
2

Q
3

CLK

ENP

ENT

RCO

CLR

LOAD

FIGURE 9–21 Timing example for a 74HC163.

t

s
Boolean expressions for J input

of each flip-flop (J = K)
t

 Up/Down Synchronous Counters 515

SECTION 9–3 CHECKUP

 1. How does a synchronous counter differ from an asynchronous counter?

 2. Explain the function of the preset feature of counters such as the 74HC163.

 3. Describe the purpose of the ENP and ENT inputs and the RCO output for the

74HC163 counter.

9–4 Up/Down Synchronous Counters

An up/down counter is one that is capable of progressing in either direction through a

certain sequence. An up/down counter, sometimes called a bidirectional counter, can have

any specified sequence of states. A 3-bit binary counter that advances upward through

its sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it goes through the

sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of up/down

sequential operation.

After completing this section, you should be able to

u Explain the basic operation of an up/down counter

u Discuss the 74HC190 up/down decade counter

In general, most up/down counters can be reversed at any point in their sequence. For

instance, the 3-bit binary counter can be made to go through the following sequence:

 UP UP

0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.

 DOWN DOWN

Table 9–6 shows the complete up/down sequence for a 3-bit binary counter. The arrows

indicate the state-to-state movement of the counter for both its UP and its DOWN modes

of operation. An examination of Q0 for both the up and down sequences shows that FF0

toggles on each clock pulse. Thus, the J0 and K0 inputs of FF0 are

J0 = K0 = 1

¸̊ ˚̋ ˚̊ ˛ ¸˚˝˚˛

¸˝˛ ¸˝˛

TABLE 9–6

Up/Down sequence for a 3-bit binary counter.

Clock Pulse Up Q2 Q1 Q0 Down

0 [0 0 0

[

1 [0 0 1

[

2 [0 1 0

[

3 [0 1 1

[

4 [1 0 0

[

5 [1 0 1

[

6 [1 1 0

[

7 [1 1 1

[

For the up sequence, Q1 changes state on the next clock pulse when Q0 = 1. For the down

sequence, Q1 changes on the next clock pulse when Q0 = 0. Thus, the J1 and K1 inputs of

FF1 must equal 1 under the conditions expressed by the following equation:

J1 = K1 = (Q0
UP) + (Q0

DOWN)

516 Counters

For the up sequence, Q2 changes state on the next clock pulse when Q0 = Q1 = 1. For

the down sequence, Q2 changes on the next clock pulse when Q0 = Q1 = 0. Thus, the

J2 and K2 inputs of FF2 must equal 1 under the conditions expressed by the following

equation:

J2 = K2 = (Q0
Q1

UP) + (Q0
Q1

DOWN)

Each of the conditions for the J and K inputs of each flip-flop produces a toggle at the

appropriate point in the counter sequence.

Figure 9–22 shows a basic implementation of a 3-bit up/down binary counter using

the logic equations just developed for the J and K inputs of each flip-flop. Notice that the

UP/DOWN control input is HIGH for UP and LOW for DOWN.

Q
2

FF0

J
0

K
0

C

HIGH

CLK

Q
1

C

J
1

K
1

Q
1

Q
0

Q
0

FF1

Q
2

C

J
2

K
2

FF2

UP/DOWN

Q
0

• UP

Q
0

• DOWN
DOWN

UP

FIGURE 9–22 A basic 3-bit up/down synchronous counter. Open file F09-22 to verify

operation.

EXAMPLE 9–3

Show the timing diagram and determine the sequence of a 4-bit synchronous binary

up/down counter if the clock and UP/DOWN control inputs have waveforms as shown

in Figure 9–23(a). The counter starts in the all-0s state and is positive edge-triggered.

(b)

CLK

Q0

Q1

Q2

Q3

0 1

0

0

0

0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 1 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

Up Up

(a)

Down Down

UP/ DOWN

FIGURE 9–23

 Up/Down Synchronous Counters 517

Solution

The timing diagram showing the Q outputs is shown in Figure 9–23(b). From these

waveforms, the counter sequence is as shown in Table 9–7.

TABLE 9–7

Q3 Q2 Q1 Q0

0 0 0 0

0 0 0 1

0 0 1 0 UP

0 0 1 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1 DOWN

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 1 UP

0 0 1 0

0 0 0 1
DOWN

0 0 0 0

¸
˚
˝
˚
˛

¸
˚
˝
˚
˛

¸
˝
˛

¸
˝
˛

Related Problem

Show the timing diagram if the UP/DOWN control waveform in Figure 9–23(a) is

inverted.

IMPLEMENTATION: UP/DOWN DECADE COUNTER

Fixed-Function Device Figure 9–24 shows a logic diagram for the 74HC190, an example

of an integrated circuit up/down synchronous decade counter. The direction of the count is

determined by the level of the up/down input (D/U). When this input is HIGH, the counter

counts down; when it is LOW, the counter counts up. Also, this device can be preset to any

desired BCD digit as determined by the states of the data inputs when the LOAD input

is LOW.

(10)(15)

CTEN

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(4)

D/U
(5)

LOAD
(11)

CLK
(14)

C

(1) (9)

(3) (2) (6) (7)

(12)
MAX/MIN

(13)
RCO

FIGURE 9–24 The 74HC190 up/down synchronous decade counter.

518 Counters

library ieee;

use ieee.std_logic_1164.all;

entity UpDnDecadeCntr is

 port (UPDN, Clk: in std_logic; Q0, Q1, Q2, Q3: buffer std_logic);

end entity UpDnDecadeCntr;

architecture LogicOperation of UpDnDecadeCntr is

component jkff is

 port (J, K, Clk: in std_logic; Q: buffer std_logic);

end component jkff;

The MAX/MIN output produces a HIGH pulse when the terminal count nine (1001)

is reached in the UP mode or when the terminal count zero (0000) is reached in the

DOWN mode. The MAX/MIN output, the ripple clock output (RCO), and the count enable

input (CTEN) are used when cascading counters. (Cascaded counters are discussed in

Section 9–6.)

Figure 9–25 is a timing diagram that shows the 74HC190 counter preset to seven

(0111) and then going through a count-up sequence followed by a count-down sequence.

The MAX/MIN output is HIGH when the counter is in either the all-0s state (MIN) or the

1001 state (MAX).

D/U

CTEN

D
0

Data
inputs

Data
outputs

D
1

D
2

D
3

Count up Inhibit

7 8 9 0 1

Q
0

Q
1

Q
2

Q
3

Load

Count down

2 2 1 0 9 8 7

CLK

RCO

MAX /MIN

LOAD

2

FIGURE 9–25 Timing example for a 74HC190.

Programmable Logic Device (PLD) A VHDL code for an up/down decade counter using

J-K flip-flops is as follows:

UPDN: Counter direction

Clk: System clock

Q0-Q3: Counter output

J-K flip flop components

 Design of Synchronous Counters 519

SECTION 9–4 CHECKUP

 1. A 4-bit up/down binary counter is in the DOWN mode and in the 1010 state. On the

next clock pulse, to what state does the counter go?

 2. What is the terminal count of a 4-bit binary counter in the UP mode? In the DOWN

mode? What is the next state after the terminal count in the DOWN mode?

9–5 Design of Synchronous Counters

In this section, you will learn the six steps to design a counter (state machine). As you

learned in Section 9–1, sequential circuits can be classified into two types: (1) those in

which the output or outputs depend only on the present internal state (Moore state machines)

and (2) those in which the output or outputs depend on both the present state and the input

or inputs (Mealy state machines). This section is recommended for those who want an

introduction to counter design or to state machine design in general. It is not a prerequisite

for any other material.

After completing this section, you should be able to

u Develop a state diagram for a given sequence

u Develop a next-state table for a specified counter sequence

u Create a flip-flop transition table

u Use the Karnaugh map method to derive the logic requirements for a synchronous

counter

u Implement a counter to produce a specified sequence of states

Step 1: State Diagram

The first step in the design of a state machine (counter) is to create a state diagram. A state

diagram shows the progression of states through which the counter advances when it is

function UpDown(A, B, C, D: in std_logic)

 return std_logic is

begin

 return((A and B) or (C and D));

end function UpDown;

signal J1Up, J1Dn, J1, J2, J3: std_logic;

begin

 J1Up 6= UPDN and Q0; J1Dn <= not UPDN and not Q0;

 UpDn1: J1 6= UpDown(UPDN, Q0, not UPDN, not Q0);

 UpDn2: J2 6= UpDown(J1Up, Q1, J1Dn, not Q1);

 UpDn3: J3 6= UpDown(J1Up and Q1, Q2, J1Dn and not Q1, not Q2);

 FF0: jkff port map (J =7‘1’, K =7‘1’, Clk =7 Clk, Q =7 Q0);

 FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);

 FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);

 FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);

end architecture LogicOperation;

Identifiers J1, J2, and J3 complete the

up/down logic applied to the J and K

inputs of flip-flop stages FF0-FF1.

Using a function to perform operations

common to multiple tasks simplifies the

overall code design and implementation.

J1Up: Initial Up logic for FF1.

J1Dn: Initial Down logic for FF1.

J1-J3: Variable for combined UpDown applied to FF1-FF3.t
Flip-flop stages FF0-FF3 complete the

Up/Down counter.
t

Function UpDown is a helper function performing the common

logic between stages performed by the two AND gates applied

to the OR gate supplying the J K inputs of the next stage. See

Figure 9–22.

u

520 Counters

Step 2: Next-State Table

Once the sequential circuit is defined by a state diagram, the second step is to derive a

next-state table, which lists each state of the counter (present state) along with the cor-

responding next state. The next state is the state that the counter goes to from its present

state upon application of a clock pulse. The next-state table is derived from the state

diagram and is shown in Table 9–8 for the 3-bit Gray code counter. Q0 is the least sig-

nificant bit.

TABLE 9–8

Next-state table for 3-bit Gray code counter.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 1

0 1 1 0 1 0

0 1 0 1 1 0

1 1 0 1 1 1

1 1 1 1 0 1

1 0 1 1 0 0

1 0 0 0 0 0

TABLE 9–9

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X

0 ¡ 1 1 X

1 ¡ 0 X 1

1 ¡ 1 X 0

QN: present state

QN + 1: next state

X: “don’t care”

Step 3: Flip-Flop Transition Table

Table 9–9 is a transition table for the J-K flip-flop. All possible output transitions are

listed by showing the Q output of the flip-flop going from present states to next states.

QN is the present state of the flip-flop (before a clock pulse) and QN + 1 is the next state

(after a clock pulse). For each output transition, the J and K inputs that will cause the

transition to occur are listed. An X indicates a “don’t care” (the input can be either a 1

or a 0).

To design the counter, the transition table is applied to each of the flip-flops in the

counter, based on the next-state table (Table 9–8). For example, for the present state 000,

001

011

010

110

100

101

111

000

FIGURE 9–26 State diagram for a 3-bit Gray code counter.

clocked. As an example, Figure 9–26 is a state diagram for a basic 3-bit Gray code counter.

This particular circuit has no inputs other than the clock and no outputs other than the

outputs taken off each flip-flop in the counter. You may wish to review the coverage of the

Gray code in Chapter 2 at this time.

 Design of Synchronous Counters 521

Q0 goes from a present state of 0 to a next state of 1. To make this happen, J0 must be a

1 and you don’t care what K0 is (J0 = 1, K0 = X), as you can see in the transition table

(Table 9–9). Next, Q1 is 0 in the present state and remains a 0 in the next state. For this

transition, J1 = 0 and K1 = X. Finally, Q2 is 0 in the present state and remains a 0 in the

next state. Therefore, J2 = 0 and K2 = X. This analysis is repeated for each present state

in Table 9–8.

Step 4: Karnaugh Maps

Karnaugh maps can be used to determine the logic required for the J and K inputs of each

flip-flop in the counter. There is a Karnaugh map for the J input and a Karnaugh map for

the K input of each flip-flop. In this design procedure, each cell in a Karnaugh map repre-

sents one of the present states in the counter sequence listed in Table 9–8.

From the J and K states in the transition table (Table 9–9) a 1, 0, or X is entered into each

present-state cell on the maps depending on the transition of the Q output for a particular

flip-flop. To illustrate this procedure, two sample entries are shown for the J0 and the K0

inputs to the least significant flip-flop (Q0) in Figure 9–27.

0 1

00

01

11

10

Q0

Q2Q1

X

1

J0 map

0 1

00

01

11

10

Q0

Q2Q1

1

X

K0 map

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

Output

Transitions

Flip-Flop

Inputs

QN QN+1

0
0
1
1

0
1
0
1

0
1
X
X

KJ

Present State Next State

Q2 Q2Q1 Q1Q0 Q0

0 1
0 1
0 0
1 0
1 1
1 1
1 0

0 00
0
1
1
1
1
0
0

0 1
0 1
0 0
1 0

0
1
1
1

1 11
1 10
1 00
0 00

For the present state 000, Q0

makes a transition from 0 to 1

to the next state.

For the present state 101, Q0

makes a transition from 1 to 0

to the next state.

Next-state table

Flip-flop transition table

X
X
1
0

FIGURE 9–27 Examples of the mapping procedure for the counter sequence

represented in Table 9–8 and Table 9–9.

The completed Karnaugh maps for all three flip-flops in the counter are shown in

 Figure 9–28. The cells are grouped as indicated and the corresponding Boolean expres-

sions for each group are derived.

522 Counters

Step 5: Logic Expressions for Flip-Flop Inputs

From the Karnaugh maps of Figure 9–28 you obtain the following expressions for the J and

K inputs of each flip-flop:

 J0 = Q2Q1 + Q2Q1 = Q2 � Q1

 K0 = Q2Q1 + Q2Q1 = Q2 � Q1

 J1 = Q2Q0

 K1 = Q2Q0

 J2 = Q1Q0

 K2 = Q1Q0

Step 6: Counter Implementation

The final step is to implement the combinational logic from the expressions for the J and

K inputs and connect the flip-flops to form the complete 3-bit Gray code counter as shown

in Figure 9–29.

Q
2
Q

1

Q
0

0 0

1 0

00

0 1

01

11

10

Q
2
Q

1

Q
0

000

0 1

01

11

10

Q
2
Q

1

Q
0

0

00

0 1

01

11

1000

1

0

Q
2
Q

1

Q
0

0 0

1 0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

0

0

0

0 0Q
2
Q

0

X X

X X

X X

X X

X

X

X

X

X

X

X

XX X

X XX X

X X

J
2

map J
1

map J
0

map

K
2

map K
1

map K
0

map

Q
2
Q

1

Q
2
Q

1

Q
2
Q

1
Q

2
Q

0

Q
1
Q

0

Q
1
Q

0

11

1

1

1

Q
2
Q

1

FIGURE 9–28 Karnaugh maps for present-state J and K inputs.

CLK

FF0

J
0

C

Q
0

K
0

FF1

J
1

C

K
1

FF2

J
2

C

K
2

Q
0

Q
1

Q
1

Q
2

Q
2

FIGURE 9–29 Three-bit Gray code counter. Open file F09-29 to verify operation.

 Design of Synchronous Counters 523

A summary of steps used in the design of the 3-bit Gray code counter follows. In gen-

eral, these steps can be applied to any state machine.

 1. Specify the counter sequence and draw a state diagram.

 2. Derive a next-state table from the state diagram.

 3. Develop a transition table showing the flip-flop inputs required for each transition.

The transition table is always the same for a given type of flip-flop.

 4. Transfer the J and K states from the transition table to Karnaugh maps. There is a

Karnaugh map for each input of each flip-flop.

 5. Group the Karnaugh map cells to generate and derive the logic expression for each

flip-flop input.

 6. Implement the expressions with combinational logic, and combine with the flip-flops

to create the counter.

This procedure is now applied to the design of other synchronous counters in Examples

9–4 and 9–5.

EXAMPLE 9–4

Design a counter with the irregular binary count sequence shown in the state diagram of

Figure 9–30. Use D flip-flops.

001
 (1)

010
 (2)

111
 (7)

101
 (5)

FIGURE 9–30

Solution

Step 1: The state diagram is as shown. Although there are only four states, a 3-bit

counter is required to implement this sequence because the maximum binary

count is seven. Since the required sequence does not include all the possible

binary states, the invalid states (0, 3, 4, and 6) can be treated as “don’t cares”

in the design. However, if the counter should erroneously get into an invalid

state, you must make sure that it goes back to a valid state.

Step 2: The next-state table is developed from the state diagram and is given in

Table 9–10.

TABLE 9–10

Next-state table.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 1 0 1 0

0 1 0 1 0 1

1 0 1 1 1 1

1 1 1 0 0 1

524 Counters

Step 3: The transition table for the D flip-flop is shown in Table 9–11.

TABLE 9–11

Transition table for a D flip-flop.

Output Transitions Flip-Flop Input

QN QN 1 1 D

0 ¡ 0 0

0 ¡ 1 1

1 ¡ 0 0

1 ¡ 1 1

Step 4: The D inputs are plotted on the present-state Karnaugh maps in Figure 9–31.

Also “don’t cares” can be placed in the cells corresponding to the invalid

states of 000, 011, 100, and 110, as indicated by the red Xs.

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

01

11

10

0 1

X

X

X

X

0

1

X

X

X

X

0

0

X

X

X

X

1

1

1

01

1

1

0

D
2
 map D

1
 map D

0
 map

Q
2
Q

1

Q
0

Q
0

Q
1

Q
2

FIGURE 9–31

Step 5: Group the 1s, taking advantage of as many of the “don’t care” states as pos-

sible for maximum simplification, as shown in Figure 9–31. The expression

for each D input taken from the maps is as follows:

 D0 = Q0 + Q2

 D1 = Q1

 D2 = Q0 + Q2Q1

Step 6: The implementation of the counter is shown in Figure 9–32.

Q
0

CLK

Q
1

Q
2

C C

D
0

D
1

D
2

C

Q
0

Q
1

FIGURE 9–32

 Design of Synchronous Counters 525

An analysis shows that if the counter, by accident, gets into one of the invalid states

(0, 3, 4, 6), it will always return to a valid state according to the following sequences:

0 S 3 S 4 S 7, and 6 S 1.

Related Problem

Verify the analysis that proves the counter will always return (eventually) to a valid

state from an invalid state.

Step 2: The next-state table is derived from the state diagram and is shown in Table 9–12. Notice that for each present state

there are two possible next states, depending on the UP/DOWN control variable, Y.

EXAMPLE 9–5

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up

when an UP/DOWN control input is 1 and count down when the control input is 0.

Solution

Step 1: The state diagram is shown in Figure 9–33. The 1 or 0 beside each arrow indicates the state of the UP/DOWN

control input, Y.

1

001

011

010

110

100

101

111

000

0

0
1

0

1

1

0

1

Y = 1

Y = 0

0

1
0

0

1

FIGURE 9–33 State diagram for a 3-bit up/down Gray code counter.

TABLE 9–12

Next-state table for 3-bit up/down Gray code counter.

Next State

Present State Y � 0 (DOWN) Y � 1 (UP)

Q2 Q1 Q0 Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 1

0 1 1 0 0 1 0 1 0

0 1 0 0 1 1 1 1 0

1 1 0 0 1 0 1 1 1

1 1 1 1 1 0 1 0 1

1 0 1 1 1 1 1 0 0

1 0 0 1 0 1 0 0 0

Y = UP/ DOWN control input.

526 Counters

Step 3: The transition table for the J-K flip-flops is repeated in Table 9–13.

TABLE 9–13

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X

0 ¡ 1 1 X

1 ¡ 0 X 1

1 ¡ 1 X 0

Step 4: The Karnaugh maps for the J and K inputs of the flip-flops are shown in Figure 9–34. The UP/DOWN control

input, Y, is considered one of the state variables along with Q0, Q1, and Q2. Using the next-state table, the informa-

tion in the “Flip-Flop Inputs” column of Table 9–13 is transferred onto the maps as indicated for each present state

of the counter.

Q
2
Q

1

Q
0
Y

1

0

00

00 01

01

11

10

1

0 00

0 0

11 10

Q
2
Q

1

Q
0
Y

1

0

00

00 01

01

11

10 1

0 00

0 0

11 10

Q
1
Q

0
Y

Q
1
Q

0
Y

Q
1
Q

0
Y

Q
1
Q

0
Y

X X X X

X X X X

X X X X

X X X X

J
2

map

K
2

map

Q
2
Q

1

Q
0
Y

00

00 01

01

11

10

10 00

0

11 10

0 0 1

Q
2
Q

1

Q
0
Y

00

00 01

01

11

10

10 00

0

11 10

0 0 1

Q
2
Q

0
Y

Q
2
Q

0
Y

Q
2
Q

0
Y

Q
2
Q

0
Y

X X X X

X X X X

X X X X

X X X X

J
1

map

K
1

map

Q
2
Q

1

Q
0
Y

1 0

00

00 01

01

11

10

0

11 10

1

1 0

0 1

Q
2
Q

1

Q
0
Y

0

00

00 01

01

11

10

0

11 10

1

0

0 1

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

X X

X X

X X

X X

X X

X X

X X

X X

J
0

map

K
0

map

1

1

FIGURE 9–34 J and K maps for Table 9–12. The UP/DOWN control input, Y, is treated

as a fourth variable.

Step 5: The 1s are combined in the largest possible groupings, with “don’t cares” (Xs) used where possible. The groups

are factored, and the expressions for the J and K inputs are as follows:

 J0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y K0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y

 J1 = Q2Q0Y + Q2Q0Y K1 = Q2Q0Y + Q2Q0Y

 J2 = Q1Q0Y + Q1Q0Y K2 = Q1Q0Y + Q1Q0Y

Step 6: The J and K equations are implemented with combinational logic. This step is the Related Problem.

Related Problem

Specify the number of flip-flops, gates, and inverters that are required to implement the logic described in Step 5.

 Cascaded Counters 527

SECTION 9–5 CHECKUP

 1. A flip-flop is presently in the RESET state and must go to the SET state on the next

clock pulse. What must J and K be?

 2. A flip-flop is presently in the SET state and must remain SET on the next clock pulse.

What must J and K be?

 3. A binary counter is in the Q3Q2Q1Q0 = 1010 state.

(a) What is its next state?

(b) What condition must exist on each flip-flop input to ensure that it goes to the

proper next state on the clock pulse?

9–6 Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus operation. In essence,

 cascading means that the last-stage output of one counter drives the input of the next counter.

After completing this section, you should be able to

u Determine the overall modulus of cascaded counters

u Analyze the timing diagram of a cascaded counter configuration

u Use cascaded counters as a frequency divider

u Use cascaded counters to achieve specified truncated sequences

Asynchronous Cascading

An example of two asynchronous counters connected in cascade is shown in Figure 9–35

for a 2-bit and a 3-bit ripple counter. The timing diagram is shown in Figure 9–36. Notice

J0

Q
0

K0

CLK C

J1

K1

C

J2

Q
2

K2

C

J3

Q
3

K3

C

J4

K4
Q

1

Modulus-4 counter Modulus-8 counter

Q
4

C

HIGH HIGH

FIGURE 9–35 Two cascaded asynchronous counters (all J and K inputs are HIGH).

CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Q
0

Q
1

Q
2

Q
3

Q
4

FIGURE 9–36 Timing diagram for the cascaded counter configuration of Figure 9–35.

528 Counters

that the final output of the modulus-8 counter, Q4, occurs once for every 32 input clock

pulses. The overall modulus of the two cascaded counters is 4 * 8 = 32; that is, they act

as a divide-by-32 counter.

Synchronous Cascading

When operating synchronous counters in a cascaded configuration, it is necessary to use

the count enable and the terminal count functions to achieve higher-modulus operation.

On some devices the count enable is labeled simply CTEN (or some other designation

such as G), and terminal count (TC) is analogous to ripple clock output (RCO) on some IC

counters.

Figure 9–37 shows two decade counters connected in cascade. The terminal count (TC)

output of counter 1 is connected to the count enable (CTEN) input of counter 2. Counter 2

is inhibited by the LOW on its CTEN input until counter 1 reaches its last, or terminal, state

and its terminal count output goes HIGH. This HIGH now enables counter 2, so that when

the first clock pulse after counter 1 reaches its terminal count (CLK10), counter 2 goes

from its initial state to its second state. Upon completion of the entire second cycle of coun-

ter 1 (when counter 1 reaches terminal count the second time), counter 2 is again enabled

and advances to its next state. This sequence continues. Since these are decade counters,

counter 1 must go through ten complete cycles before counter 2 completes its first cycle.

In other words, for every ten cycles of counter 1, counter 2 goes through one cycle. Thus,

counter 2 will complete one cycle after one hundred clock pulses. The overall modulus of

these two cascaded counters is 10 * 10 = 100.

The overall modulus of cascaded
counters is equal to the product of
the individual moduli.

InfoNote

The time stamp counter (TSC),

mentioned in the last InfoNote, is

a 64-bit counter. It is interesting

to observe that if this counter (or

any full-modulus 64-bit counter)

is clocked at a frequency of 1 GHz,

it will take 583 years for it to go

through all of its states and reach

its terminal count. In contrast,

a 32-bit full-modulus counter

will exhaust all of its states in

approximately 4.3 seconds when

clocked at 1 GHz. The difference is

astounding.

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

CLK

TC

HIGH

CTEN

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

C

CTEN TC

ƒ
in

10

ƒ
in

100

ƒ
in

C

Counter 1 Counter 2

FIGURE 9–37 A modulus-100 counter using two cascaded decade counters.

CTR DIV 10

C1 MHz

TC

HIGH

CTEN

CTR DIV 10

CTEN TC

CTR DIV 10

C

CTEN TC

100 kHz 10 kHz 1 kHz

C

FIGURE 9–38 Three cascaded decade counters forming a divide-by-1000 frequency

divider with intermediate divide-by-10 and divide-by-100 outputs.

When viewed as a frequency divider, the circuit of Figure 9–37 divides the input clock

frequency by 100. Cascaded counters are often used to divide a high-frequency clock sig-

nal to obtain highly accurate pulse frequencies. Cascaded counter configurations used for

such purposes are sometimes called countdown chains. For example, suppose that you have

a basic clock frequency of 1 MHz and you wish to obtain 100 kHz, 10 kHz, and 1 kHz;

a series of cascaded decade counters can be used. If the 1 MHz signal is divided by 10,

the output is 100 kHz. Then if the 100 kHz signal is divided by 10, the output is 10 kHz.

Another division by 10 produces the 1 kHz frequency. The general implementation of this

countdown chain is shown in Figure 9–38.

 Cascaded Counters 529

EXAMPLE 9–6

Determine the overall modulus of the two cascaded counter configurations in Figure 9–39.

CTR DIV 8 CTR DIV 12 CTR DIV 16

(a)

CTR DIV 10 CTR DIV 4 CTR DIV 7

(b)

CTR DIV 5Input Output

Input Output

FIGURE 9–39

Solution

In Figure 9–39(a), the overall modulus for the 3-counter configuration is

8 * 12 * 16 = 1536

In Figure 9–39(b), the overall modulus for the 4-counter configuration is

10 * 4 * 7 * 5 = 1400

Related Problem

How many cascaded decade counters are required to divide a clock frequency by 100,000?

EXAMPLE 9–7

Use 74HC190 up/down decade counters connected in the UP mode to obtain a 10 kHz waveform from a 1 MHz clock.

Show the logic diagram.

Solution

To obtain 10 kHz from a 1 MHz clock requires a division factor of 100. Two 74HC190 counters must be cascaded as shown

in Figure 9–40. The left counter produces a terminal count (MAX/MIN) pulse for every 10 clock pulses. The right counter

produces a terminal count (MAX/MIN) pulse for every 100 clock pulses.

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

(11)

(4)

(5)
D/U

(14)

MAX/MIN
(12)

10 kHzCTEN

C

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

(11)

(4)

(5)

(14)

(12)

C

CLK

LOADLOAD

1 MHz

(3) (2) (6) (7) (3) (2) (6) (7)

(15) (1) (10) (9)(15) (1) (10) (9)

LOAD

D/U

CTEN

LOAD

MAX/MIN

FIGURE 9–40 A divide-by-100 counter using two 74HC190 up/down decade counters

connected for the up sequence.

Related Problem

Determine the frequency of the waveform at the Q0 output of the second counter (the one on the right) in Figure 9–40.

530 Counters

Cascaded Counters with Truncated Sequences

The preceding discussion has shown how to achieve an overall modulus (divide-by-factor)

that is the product of the individual moduli of all the cascaded counters. This can be con-

sidered full-modulus cascading.

Often an application requires an overall modulus that is less than that achieved by full-

modulus cascading. That is, a truncated sequence must be implemented with cascaded

counters. To illustrate this method, we will use the cascaded counter configuration in

Figure 9–41. This particular circuit uses four 74HC161 4-bit synchronous binary coun-

ters. If these four counters (sixteen bits total) were cascaded in a full-modulus arrange-

ment, the modulus would be

216
= 65,536

LOAD

0000

ENT RCO

C

CLK

HIGH

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

LSD 0
16

0011

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

C
16

1100

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

3
16

0110

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

MSD6
16

Output

FIGURE 9–41 A divide-by-40,000 counter using 74HC161 4-bit binary counters. Note

that each of the parallel data inputs is shown in binary order (the right-most bit D0 is the

LSB in each counter).

Let’s assume that a certain application requires a divide-by-40,000 counter (modulus

40,000). The difference between 65,536 and 40,000 is 25,536, which is the number of

states that must be deleted from the full-modulus sequence. The technique used in the cir-

cuit of Figure 9–41 is to preset the cascaded counter to 25,536 (63C0 in hexadecimal) each

time it recycles, so that it will count from 25,536 up to 65,535 on each full cycle. Therefore,

each full cycle of the counter consists of 40,000 states.

Notice in Figure 9–41 that the RCO output of the right-most counter is inverted and

applied to the LOAD input of each 4-bit counter. Each time the count reaches its terminal

value of 65,535, which is 11111111111111112, RCO goes HIGH and causes the number

on the parallel data inputs (63C016) to be synchronously loaded into the counter with the

clock pulse. Thus, there is one RCO pulse from the right-most 4-bit counter for every

40,000 clock pulses.

With this technique any modulus can be achieved by synchronous loading of the counter

to the appropriate initial state on each cycle.

SECTION 9–6 CHECKUP

 1. How many decade counters are necessary to implement a divide-by-1000 (modulus-

1000) counter? A divide-by-10,000?

 2. Show with general block diagrams how to achieve each of the following, using a flip-

flop, a decade counter, and a 4-bit binary counter, or any combination of these:

(a) Divide-by-20 counter (b) Divide-by-32 counter

(c) Divide-by-160 counter (d) Divide-by-320 counter

 Counter Decoding 531

9–7 Counter Decoding

In many applications, it is necessary that some or all of the counter states be decoded.

The decoding of a counter involves using decoders or logic gates to determine when

the counter is in a certain binary state in its sequence. For instance, the terminal count

function previously discussed is a single decoded state (the last state) in the counter

sequence.

After completing this section, you should be able to

u Implement the decoding logic for any given state in a counter sequence

u Explain why glitches occur in counter decoding logic

u Use the method of strobing to eliminate decoding glitches

Suppose that you wish to decode binary state 6 (110) of a 3-bit binary counter. When

Q2 = 1, Q1 = 1, and Q0 = 0, a HIGH appears on the output of the decoding gate, indi-

cating that the counter is at state 6. This can be done as shown in Figure 9–42. This is called

active-HIGH decoding. Replacing the AND gate with a NAND gate provides active-LOW

decoding.

EXAMPLE 9–8

Implement the decoding of binary state 2 and binary state 7 of a 3-bit synchronous

counter. Show the entire counter timing diagram and the output waveforms of the

decoding gates. Binary 2 = Q2Q1Q0 and binary 7 = Q2Q1Q0.

Solution

See Figure 9–43. The 3-bit counter was originally discussed in Section 9–3 (Figure 9–15).

HIGH

CLK

1 11

LSB MSB

Decoded 6

Q0

Q2Q1Q0

C

J2

K2

C

J1

K1

C

J0

K0

Q0

Q1

Q1

Q2

Q2

FIGURE 9–42 Decoding of state 6 (110). Open file F09-42 to verify operation.

532 Counters

Related Problem

Show the logic for decoding state 5 in the 3-bit counter.

C

Q
0

C

CLK

HIGH

LSB
Q

1
Q

2

CLK 1 2 3 4 5 6 7 8

Q
0

Q
1

Q
2

7

MSB
FF0 FF1 FF2

2

2

7

Decoded
outputs

J
2

K
2

J
1

K
1

J
0

K
0

Q
0

Q
2

C

FIGURE 9–43 A 3-bit counter with active-HIGH decoding of count 2 and count 7.

Open file F09-43 to verify operation.

Decoding Glitches

The problem of glitches produced by the decoding process was discussed in Chapter 6. As

you have learned, the propagation delays due to the ripple effect in asynchronous coun-

ters create transitional states in which the counter outputs are changing at slightly dif-

ferent times. These transitional states produce undesired voltage spikes of short duration

(glitches) on the outputs of a decoder connected to the counter. The glitch problem can also

occur to some degree with synchronous counters because the propagation delays from the

clock to the Q outputs of each flip-flop in a counter can vary slightly.

Figure 9–44 shows a basic asynchronous BCD decade counter connected to a BCD-to-

decimal decoder. To see what happens in this case, let’s look at a timing diagram in which the

propagation delays are taken into account, as shown in Figure 9–45. Notice that these delays

cause false states of short duration. The value of the false binary state at each critical transi-

tion is indicated on the diagram. The resulting glitches can be seen on the decoder outputs.

A glitch is an unwanted spike of
voltage.

 Counter Decoding 533

One way to eliminate the glitches is to enable the decoded outputs at a time after the

glitches have had time to disappear. This method is known as strobing and can be accom-

plished in the case of an active-HIGH clock by using the LOW level of the clock to enable

the decoder, as shown in Figure 9–46. The resulting improved timing diagram is shown in

Figure 9–47.

BCD/DEC

EN 9

8

4

2

1

8

7

6

5

4

3

2

1

0

CTR DIV 10

Q
0

Q
1

Q
2

Q
3

CCLK

FIGURE 9–44 A basic decade (BCD) counter and decoder.

CLK 1 2 3 4 5 6 7 8 9 10

Q
0

Q
1

Q
2

Q
3

1

2

3

4

5

6

7

8

9

0

0000 1000

Counter
outputs

Decoder
outputs

0010

0100

0000
0110

0100

0000

FIGURE 9–45 Outputs with glitches from the decoder in Figure 9–44. Glitch widths are

exaggerated for illustration and are usually only a few nanoseconds wide.

534 Counters

BCD/DEC

EN 9

8

4

2

1

8

7

6

5

4

3

2

1

0

CTR DIV 10

Q
0

Q
1

Q
2

Q
3

C

CLK/STROBE

FIGURE 9–46 The basic decade counter and decoder with strobing to eliminate glitches.

1 2 3 4 5

Decoder
outputs

6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

CLK/STROBE

FIGURE 9–47 Strobed decoder outputs for the circuit of Figure 9–46.

SECTION 9–7 CHECKUP

 1. What transitional states are possible when a 4-bit asynchronous binary counter

changes from

(a) count 2 to count 3 (b) count 3 to count 4

(c) count 1010 to count 1110 (d) count 15 to count 0

9–8 Counter Applications

The digital counter is a useful and versatile device that is found in many applications. In

this section, some representative counter applications are presented.

After completing this section, you should be able to

u Describe how counters are used in a basic digital clock system

u Explain how a divide-by-60 counter is implemented and how it is used in a digital

clock

 Counter Applications 535

u Explain how the hours counter is implemented

u Discuss the application of a counter in an automobile parking control system

u Describe how a counter is used in the process of parallel-to-serial data conversion

A Digital Clock

A common example of a counter application is in timekeeping systems. Figure 9–48 is a

simplified logic diagram of a digital clock that displays seconds, minutes, and hours. First,

a 60 Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and divided down to

a 1 Hz pulse waveform by a divide-by-60 counter formed by a divide-by-10 counter fol-

lowed by a divide-by-6 counter. Both the seconds and minutes counts are also produced by

divide-by-60 counters, the details of which are shown in Figure 9–49. These counters count

from 0 to 59 and then recycle to 0; synchronous decade counters are used in this particular

implementation. Notice that the divide-by-6 portion is formed with a decade counter with

a truncated sequence achieved by using the decoder count 6 to asynchronously clear the

counter. The terminal count, 59, is also decoded to enable the next counter in the chain.

Seconds counter (divide-by-60)Hours counter Minutes counter (divide-by-60)

Seconds

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN

C

CTR DIV 10

(0–5)

Minutes

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN
C

CTR DIV 10

(0–5)

Hours

BCD/7-seg

FF

C

(0–9)

BCD/7-seg

EN
C

(0–1)

C

CTR DIV 10

EN

CTR DIV 6

C

1 Hz60 Hz
Wave-

shaping
circuit

60 Hz ac

Divide-by-60

Q
CTR DIV 10

FIGURE 9–48 Simplified logic diagram for a 12-hour digital clock. Logic details using

specific devices are shown in Figures 9–49 and 9–50.

The hours counter is implemented with a decade counter and a flip-flop as shown in Figure

9–50. Consider that initially both the decade counter and the flip-flop are RESET, and the

decode-12 gate and decode-9 gate outputs are HIGH. The decade counter advances through all

of its states from zero to nine, and on the clock pulse that recycles it from nine back to zero, the

flip-flop goes to the SET state (J = 1, K = 0). This illuminates a 1 on the tens-of-hours dis-

play. The total count is now ten (the decade counter is in the zero state and the flip-flop is SET).

536 Counters

Next, the total count advances to eleven and then to twelve. In state 12 the Q2 output of

the decade counter is HIGH, the flip-flop is still SET, and thus the decode-12 gate output

is LOW. This activates the LOAD input of the decade counter. On the next clock pulse, the

decade counter is preset to 0001 from the data inputs, and the flip-flop is RESET (J = 0,

K = 1). As you can see, this logic always causes the counter to recycle from twelve back

to one rather than back to zero.

Automobile Parking Control

This counter example illustrates the use of an up/down counter to solve an everyday prob-

lem. The problem is to devise a means of monitoring available spaces in a one-hundred-

space parking garage and provide for an indication of a full condition by illuminating a

display sign and lowering a gate bar at the entrance.

CLR CTR DIV 6

HIGH
CTEN

C

Q
3

CTR DIV 10

Q
2

Q
1

Q
0

CTEN
TC = 9

C

CLK

units

CLR CLR

To next
counter

Q
3

Q
2

Q
1

Q
0

Decode 6

Decode 59

TC = 59
To ENABLE
of next CTR

tens

FIGURE 9–49 Logic diagram of typical divide-by-60 counter using synchronous decade

counters. Note that the outputs are in binary order (the right-most bit is the LSB).

LOAD

0 0 0 1

J

K

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

CLK

Q

Decode
12

BCD/7-seg

8 4 2 1

g f e d c b a

BCD/7-seg

8 4 2 1

g f e d c b a

To units-of-hours
display

To tens-of-hours
display

CTR DIV 10

G
2

G
1

Decode 9

FIGURE 9–50 Logic diagram for hours counter and decoders. Note that on the counter

inputs and outputs, the right-most bit is the LSB.

 Counter Applications 537

A system that solves this problem consists of optoelectronic sensors at the entrance and

exit of the garage, an up/down counter and associated circuitry, and an interface circuit that

uses the counter output to turn the FULL sign on or off as required and lower or raise the

gate bar at the entrance. A general block diagram of this system is shown in Figure 9–51.

CTR DIV 100

Entrance
sensor

Exit
sensor

UP

DOWN

Interface

Gate
activation

On/Off

Lower/Raise

Full
indication

count

Terminal

FIGURE 9–51 Functional block diagram for parking garage control.

CTR DIV 10

CTEN

D/U

C

CTR DIV 10

CTEN RCO

C

MAX /MIN

(to interface)
HIGH activates
FULL sign and
lowers gate.

S

R Q

From
entrance

sensor D/U

From
exit

sensor

FIGURE 9–52 Logic diagram for modulus-100 up/down counter for automobile parking

control.

Incrementing a counter increases its
count by one.

Decrementing a counter decreases its
count by one.

A logic diagram of the up/down counter is shown in Figure 9–52. It consists of two cas-

caded up/down decade counters. The operation is described in the following paragraphs.

The counter is initially preset to 0 using the parallel data inputs, which are not shown.

Each automobile entering the garage breaks a light beam, activating a sensor that produces

an electrical pulse. This positive pulse sets the S-R latch on its leading edge. The LOW on the

Q output of the latch puts the counter in the UP mode. Also, the sensor pulse goes through

the NOR gate and clocks the counter on the LOW-to-HIGH transition of its trailing edge.

Each time an automobile enters the garage, the counter is advanced by one (incremented).

When the one-hundredth automobile enters, the counter goes to its last state (10010). The

MAX/MIN output goes HIGH and activates the interface circuit (no detail), which lights the

FULL sign and lowers the gate bar to prevent further entry.

When an automobile exits, an optoelectronic sensor produces a positive pulse, which

resets the S-R latch and puts the counter in the DOWN mode. The trailing edge of the clock

decreases the count by one (decremented). If the garage is full and an automobile leaves, the

MAX/MIN output of the counter goes LOW, turning off the FULL sign and raising the gate.

Parallel-to-Serial Data Conversion (Multiplexing)

A simplified example of data transmission using multiplexing and demultiplexing tech-

niques was introduced in Chapter 6. Essentially, the parallel data bits on the multiplexer

inputs are converted to serial data bits on the single transmission line. A group of bits

appearing simultaneously on parallel lines is called parallel data. A group of bits appearing

on a single line in a time sequence is called serial data.

Parallel-to-serial conversion is normally accomplished by the use of a counter to provide

a binary sequence for the data-select inputs of a data selector/multiplexer, as illustrated in

Figure 9–53. The Q outputs of the modulus-8 counter are connected to the data-select

inputs of an 8-bit multiplexer.

538 Counters

Figure 9–54 is a timing diagram illustrating the operation of this circuit. The first byte

(eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes

through a binary sequence from zero to seven, each bit, beginning with D0, is sequentially

0

2

Data
Select

Q
0

Q
1

Q
2

0

1

3

5

7

2

Serial
data out

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

6

CLK

Parallel
data in

MUXCTR DIV 8

C

4

FIGURE 9–53 Parallel-to-serial data conversion logic.

CLK

Q
1

Q
2

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Data
out

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 0

0 0

0 1

1 0

1 1

1 0

0 1

1 0

Q
0

1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0

1st byte 2nd byte

Data
select

Data
in

FIGURE 9–54 Example of parallel-to-serial conversion timing for the circuit in Figure 9–53.

InfoNote

Computers contain an internal

counter that can be programmed

for various frequencies and tone

durations, thus producing “music.”

To select a particular tone, the

programmed instruction selects a

divisor that is sent to the counter.

The divisor sets the counter up to

divide the basic peripheral clock

frequency to produce an audio

tone. The duration of a tone can

also be set by a programmed

instruction; thus, a basic counter

is used to produce melodies by

controlling the frequency and dura-

tion of tones.

 Logic Symbols with Dependency Notation 539

selected and passed through the multiplexer to the output line. After eight clock pulses the

data byte has been converted to a serial format and sent out on the transmission line. When

the counter recycles back to 0, the next byte is applied to the data inputs and is sequentially

converted to serial form as the counter cycles through its eight states. This process contin-

ues repeatedly as each parallel byte is converted to a serial byte.

SECTION 9–8 CHECKUP

 1. Explain the purpose of each NAND gate in Figure 9–50.

 2. Identify the two recycle conditions for the hours counter in Figure 9–48, and explain

the reason for each.

9–9 Logic Symbols with Dependency Notation

Up to this point, the logic symbols with dependency notation specified in ANSI/IEEE Stan-

dard 91-1984 have been introduced on a limited basis. In many cases, the symbols do not

deviate greatly from the traditional symbols. A significant departure does occur, however, for

some devices, including counters and other more complex devices. Although we will continue

to use primarily the more traditional symbols throughout this book, a brief coverage of logic

symbols with dependency notation is provided. A specific IC counter is used as an example.

After completing this section, you should be able to

u Interpret logic symbols that include dependency notation

u Identify the common block and the individual elements of a counter symbol

u Interpret the qualifying symbol

u Discuss control dependency

u Discuss mode dependency

u Discuss AND dependency

Dependency notation is fundamental to the ANSI/IEEE standard. Dependency notation

is used in conjunction with the logic symbols to specify the relationships of inputs and

outputs so that the logical operation of a given device can be determined entirely from its

logic symbol without a prior knowledge of the details of its internal structure and without a

detailed logic diagram for reference. This coverage of a specific logic symbol with depen-

dency notation is intended to aid in the interpretation of other such symbols that you may

encounter in the future.

The 74HC163 4-bit synchronous binary counter is used for illustration. For comparison,

Figure 9–55 shows a traditional block symbol and the ANSI/IEEE symbol with depen-

dency notation. Basic descriptions of the symbol and the dependency notation follow.

Common Control Block

The upper block with notched corners in Figure 9–55(b) has inputs and an output that are

considered common to all elements in the device and not unique to any one of the elements.

Individual Elements

The lower block in Figure 9–55(b), which is partitioned into four abutted sections, repre-

sents the four storage elements (D flip-flops) in the counter, with inputs D0, D1, D2, and D3

and outputs Q0, Q1, Q2, and Q3.

Qualifying Symbol

The label “CTR DIV 16” in Figure 9–55(b) identifies the device as a counter (CTR) with

sixteen states (DIV 16).

540 Counters

Control Dependency (C)

As shown in Figure 9–55(b), the letter C denotes control dependency. Control inputs usu-

ally enable or disable the data inputs (D, J, K, S, and R) of a storage element. The C input

is usually the clock input. In this case the digit 5 following C (C5/2,3,4+) indicates that the

inputs labeled with a 5 prefix are dependent on the clock (synchronous with the clock). For

example, 5CT = 0 on the CLR input indicates that the clear function is dependent on the

clock; that is, it is a synchronous clear. When the CLR input is LOW (0), the counter is reset

to zero (CT = 0) on the triggering edge of the clock pulse. Also, the 5 D label at the input

of storage element [1] indicates that the data storage is dependent on (synchronous with)

the clock. All labels in the [1] storage element apply to the [2], [4], and [8] elements below

it since they are not labeled differently.

Mode Dependency (M)

As shown in Figure 9–55(b), the letter M denotes mode dependency. This label is used to

indicate how the functions of various inputs or outputs depend on the mode in which the

device is operating. In this case the device has two modes of operation. When the LOAD

input is LOW (0), as indicated by the triangle input, the counter is in a preset mode (M1) in

which the input data (D0, D1, D2, and D3) are synchronously loaded into the four flip-flops.

The digit 1 following M in M1 and the 1 in the label 1, 5 D show a dependency relationship

and indicate that input data are stored only when the device is in the preset mode (M1), in

which LOAD = 0. When the LOAD input is HIGH (1), the counter advances through its

normal binary sequence, as indicated by M2 and the 2 in C5/2,3,4+.

AND Dependency (G)

As shown in Figure 9–55(b), the letter G denotes AND dependency, indicating that an input

designated with G followed by a digit is ANDed with any other input or output having the

same digit as a prefix in its label. In this particular example, the G3 at the ENT input and

the 3CT = 15 at the RCO output are related, as indicated by the 3, and that relationship is

an AND dependency, indicated by the G. This tells us that ENT must be HIGH (no triangle

on the input) and the count must be fifteen (CT = 15) for the RCO output to be HIGH.

Also, the digits 2, 3, and 4 in the label C5/2,3,4+ indicate that the counter advances

through its states when LOAD = 1, as indicated by the mode dependency label M2, and

when ENT = 1 and ENP = 1, as indicated by the AND dependency labels G3 and G4.

The + indicates that the counter advances by one count when these conditions exist.

(2)
CLK

(10)
ENT

(7)
ENP

Q
0

Q
1

Q
2

Q
3

D
0

D
1

D
2

D
3

5CT = 0CLR

LOAD

Common
control
block

CTR DIV 16

(1)

(9)

G4

3CT = 15
(15)

(b) ANSI/IEEE Std. 91-1984 logic symbol

C5/2,3,4+

G3

M1

M2

(3) (14)

(4) (13)

(5) (12)

(6) (11)

[1]

[2]

[4]

[8]

1, 5 D

RCO

(a) Traditional block symbol

CLR

Q
0

CTR DIV 16

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(1)

LOAD
(9)

CCLK
(2)

(3) (4) (5) (6)

(14) (13) (12) (11)

(15)
RCO

ENP
(7)

ENT
(10)

FIGURE 9–55 The 74HC163 4-bit synchronous counter.

 Troubleshooting 541

SECTION 9–9 CHECKUP

 1. In dependency notation, what do the letters C, M, and G stand for?

 2. By what letter is data storage denoted?

9–10 Troubleshooting

The troubleshooting of counters can be simple or quite involved, depending on the type of

counter and the type of fault. This section will give you some insight into how to approach

the troubleshooting of sequential circuits.

After completing this section, you should be able to

u Detect a faulty counter

u Isolate faults in maximum-modulus cascaded counters

u Isolate faults in cascaded counters with truncated sequences

u Determine faults in counters implemented with individual flip-flops

Counters

The symptom for a faulty counter is usually that it does not advance its count. If this is the

case, then check power and ground on the chip. Look at these lines with a scope to make sure

there is no noise present (a noisy ground may actually be open). Check that there are clock

pulses and that they have the correct amplitude and rise time and that there is not extrane-

ous noise on the line. (Sometimes clock pulses can be loaded down by other ICs, making it

appear that the counter is faulty when it is not). If power, ground, and the clock pulses are

okay, check all inputs (including enable, load, and clear inputs), to see that they are connected

correctly and that the logic is correct. An open input can cause a counter to work correctly

some of the time—inputs should never be left open, even if they are not used. (An unused

input should be connected to an inactive level). If the counter is stuck in a state and the clock

is present, determine what input should be present to advance the counter. This may point to

a faulty input (including clear or load inputs), which can be caused by logic elsewhere in the

circuit. If inputs are all checked okay, an output may be pulled LOW or HIGH by an external

short or open (or another faulty IC), keeping the output from advancing.

Cascaded Counters with Maximum Modulus

A failure in one of the counters in a chain of cascaded counters can affect all the counters

that follow it. For example, if a count enable input opens, it effectively acts as a HIGH (for

TTL logic), and the counter is always enabled. This type of failure in one of the counters

will cause that counter to run at the full clock rate and will also cause all the succeeding

counters to run at higher than normal rates. This is illustrated in Figure 9–56 for a divide-

by-1000 cascaded counter arrangement where an open enable (CTEN) input acts as a TTL

HIGH and continuously enables the second counter. Other faults that can affect “down-

stream” counter stages are open or shorted clock inputs or terminal count outputs. In some

of these situations, pulse activity can be observed, but it may be at the wrong frequency.

Exact frequency or frequency ratio measurements must be made.

Cascaded Counters with Truncated Sequences

The count sequence of a cascaded counter with a truncated sequence, such as that in Figure

9–57, can be affected by other types of faults in addition to those mentioned for maximum-

modulus cascaded counters. For example, a failure in one of the parallel data inputs, the LOAD

input, or the inverter can alter the preset count and thus change the modulus of the counter.

542 Counters

For example, suppose the D3 input of the most significant counter in Figure 9–57 is

open and acts as a HIGH. Instead of 616 (0110) being preset into the counter, E16 (1110) is

preset in. So, instead of beginning with 63C016 (25,53610) each time the counter recycles,

the sequence will begin with E3C016 (58,30410). This changes the modulus of the counter

from 40,000 to 65,536 - 58,304 = 7232.

To check this counter, apply a known clock frequency, for example 1 MHz, and mea-

sure the output frequency at the final terminal count output. If the counter is operating

properly, the output frequency is

fout =
fin

modulus
=

1 MHz

40,000
= 25 Hz

In this case, the specific failure described in the preceding paragraph will cause the output

frequency to be

fout =
fin

modulus
=

1 MHz

7232
_ 138 Hz

TC

CTR DIV 10

TCCTEN

C

CTR DIV 10

TCCTEN

C

CTR DIV 10

TCCTEN

C

(a) Normal operation

HIGH

1 MHz

100 kHz 10 kHz 1 kHz

CTR DIV 10

TCCTEN

C

CTR DIV 10
CTEN

C

CTR DIV 10

TCCTEN

C

(b) Count Enable (CTEN) input of second counter open

HIGH

1 MHz

100 kHz 100 kHz 10 kHz

OPEN (acts as a HIGH)

FIGURE 9–56 Example of a failure that affects following counters in a cascaded arrangement.

1 MHz

0 0 0 0

0
16

1 1 0 0

C
16

0 0 1 1

3
16

0 1 1 0

6
16

138 Hz

OPEN

LOAD

CTR DIV 16

TCCTEN

C

HIGH

CTR DIV 16

TCCTEN

C
CTR DIV 16

TCCTEN

C
CTR DIV 16

TCCTEN

C

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

Least significant Most significant

FIGURE 9–57 Example of a failure in a cascaded counter with a truncated sequence.

EXAMPLE 9–9

Frequency measurements are made on the truncated counter in Figure 9–58 as indicated. Determine if the counter is work-

ing properly, and if not, isolate the fault.

 Troubleshooting 543

Solution

Check to see if the frequency measured at TC 4 is correct. If it is, the counter is working properly.

 truncated modulus = full modulus - preset count

 = 164 - 82C016

 = 65,536 - 33,472 = 32,064

The correct frequency at TC 4 is

f4 =

10 MHz

32,064
_ 312 Hz

There is a problem. The measured frequency of 637.8 Hz does not agree with the correct calculated frequency of 312 Hz.

To find the faulty counter, determine the actual truncated modulus as follows:

modulus =

fin

fout

=

10 MHz

637.8 Hz
= 15,679

Because the truncated modulus should be 32,064, most likely the counter is being preset to the wrong count when it recy-

cles. The actual preset count is determined as follows:

 truncated modulus = full modulus - preset count

 preset count = full modulus - truncated modulus

 = 65,536 - 15,679

 = 49,857

 = C2C016

This shows that the counter is being preset to C2C016 instead of 82C016 each time it recycles.

Counters 1, 2, and 3 are being preset properly but counter 4 is not. Since C16 = 11002, the D2 input to counter 4 is HIGH

when it should be LOW. This is most likely caused by an open input. Check for an external open caused by a bad solder con-

nection, a broken conductor, or a bent pin on the IC. If none can be found, replace the IC and the counter should work properly.

Related Problem

Determine what the output frequency at TC 4 would be if the D3 input of counter 3 were open.

Hz

LOAD

0
16

C
16

2
16

8
16

0 0 0 0 0 0 0 0 0 0 0 01111

CTR DIV 16

TCCTEN

C

HIGH

CTR DIV 16

TCCTEN

C

CTR DIV 16

TCCTEN

C

CTR DIV 16

TCCTEN

C

CTR1 CTR2 CTR3 CTR4
TC 4

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

MHz

FIGURE 9–58

Counters Implemented with Individual Flip-Flops

Counters implemented with individual flip-flop and gate ICs are sometimes more difficult

to troubleshoot because there are many more inputs and outputs with external connections

than there are in an IC counter. The sequence of a counter can be altered by a single open

or short on an input or output, as Example 9–10 illustrates.

544 Counters

CLK

Q
0

Q
1

Q
2

J
0

K
0

J
1

K
1

J
2

K
2

HIGH

CLK

C C C

Q
0

Q
1

FF0 FF1 FF2
Q

2

FIGURE 9–59

EXAMPLE 9–10

Suppose that you observe the output waveforms (green) that are indicated for the coun-

ter in Figure 9–59. Determine if there is a problem with the counter.

Solution

The Q2 waveform is incorrect. The correct waveform is shown as a red dashed line.

You can see that the Q2 waveform looks exactly like the Q1 waveform, so whatever is

causing FF1 to toggle appears to also be controlling FF2.

Checking the J and K inputs to FF2, you find a waveform that looks like Q0. This result

indicates that Q0 is somehow getting through the AND gate. The only way this can happen is

if the Q1 input to the AND gate is always HIGH. However, you have seen that Q1 has a cor-

rect waveform. This observation leads to the conclusion that the lower input to the AND gate

must be internally open and acting as a HIGH. Replace the AND gate and retest the circuit.

Related Problem

Describe the Q2 output of the counter in Figure 9–59 if the Q1 output of FF1 is open.

To observe the time relationship between two digital signals with a dual-trace analog oscilloscope,
the proper way to trigger the scope is with the slower of the two signals. The reason for this is that the
slower signal has fewer possible trigger points than the faster signal and there will be no ambiguity
for starting the sweep. Vertical mode triggering uses a composite of both channels and should never
be used for determining absolute time information. Since clock signals are usually the fastest signal
in a digital system, they should not be used for triggering.

SECTION 9–10 CHECKUP

 1. What failures can cause the counter in Figure 9–56 to have no pulse activity on any

of the TC outputs?

 2. What happens if the inverter in Figure 9–58 develops an open output?

 Applied Logic 545

Applied Logic

Elevator Controller: Part 1

This Applied Logic describes the operation and implementation of a service elevator con-

troller for a seven-story building. The controller consists of logic that controls the elevator

operation, a counter that determines the floor at which the elevator is located at any given

time, and a floor number display. For simplicity, there is only one floor call and one floor

request for each elevator cycle. A cycle occurs when the elevator is called to a given floor

to pick up a passenger and the passenger is delivered to a requested floor. The elevator

sequence for one cycle is shown in Figure 9–60.

Elevator in

WAIT state

Passenger calls

for elevator

(FLRCALL)

Elevator goes

to calling floor

FLR = FLRCALL

Time delay

Elevator stops,

door opens, and

passenger enters

Door closes

after time delay

Passenger

requests floor

(FLRREQ)

Elevator goes

to requested

floor

FLR = FLRREQ

Time delay

Elevator stops,

door opens, and

passenger exits

Door closes

after time delay

FIGURE 9–60 One cycle of the elevator operation.

The five states in the elevator control sequence are WAIT, DOWN, UP, STOP/OPEN,

and CLOSE. In the WAIT state, the elevator is waiting on the last floor serviced for an ex-

ternal call button (FLRCALL) on any floor to be pressed. When there is a call for the eleva-

tor from any floor, the appropriate command (UP or DOWN) is issued. When the elevator

arrives and stops at the calling floor, the door opens; the person enters and presses a number

to request a destination floor. If the number of the requested floor is less than the number

of the current floor, the elevator goes into the DOWN mode. If the number of the requested

floor is greater than the number of the current floor, the elevator goes into the UP mode. The

elevator goes to the STOP/OPEN mode at the requested floor to allow exit. After the door is

open for a specified time, it closes and then goes back to the WAIT state until another floor

call is received.

546 Counters

FLRCALL

WAIT

STOP/

OPEN

CLOSE
FLRREQ < FLR

FLRCALL < FLR FLRCALL > FLR

FLRREQ > FLR

FLR = FLRCALL + FLRREQ FLR = FLRCALL + FLRREQ

T = TIME DELAYFLRREQ = FLR

FLRCALL = FLR

UPDOWN

The following states are shown in the state diagram of Figure 9–61:

WAIT The system always begins in the WAIT state on the floor last serviced. When a

floor call (FLRCALL) signal is received, the control logic determines if the number of the

calling floor is greater than the current floor (FLRCALL 7 FLR), less than the current floor

(FLRCALL 6 FLR), or equal to the current floor (FLRCALL = FLR) and puts the system in

the UP mode, DOWN mode, or OPEN mode, respectively.

DOWN In this state, the elevator moves down toward the calling floor.

UP In this mode, the elevator moves up toward the calling floor.

STOP/OPEN This state occurs when the calling floor has been reached. When the

number of the floor where the elevator is equals the number of the calling or requested

floor, a signal is issued to stop the elevator and open the door.

CLOSE After a preset time (T) to allow entry or exit, the door closes.

The signals used by the elevator controller are defined as follows:

FLR Number of floor represented by a 3-bit binary code.

Floor sensor pulse A pulse issued at each floor to clock the floor counter to the next state.

FLRCALL Number of floor where a call for elevator service originates, represented

by a 3-bit binary code.

Call pulse A pulse issued in conjunction with FLRCALL to clock the 3-bit code into

a register.

FLRREQ Number of floor to which the passenger desires to go, represented by a

3-bit binary code.

Request pulse A pulse issued in conjunction with FLRREQ to clock the 3-bit code

into a register.

UP A signal issued to the elevator motor control to cause the elevator to move from a

lower floor to a higher floor.

DOWN A signal issued to the elevator motor control to cause the elevator to move

from a higher floor to a lower floor.

STOP A signal issued to the elevator motor control to cause the elevator to stop.

OPEN A signal issued to door motor control to cause the door to open.

CLOSE A signal issued to the door motor control to cause the door to close.

Elevator Controller Block Diagram

Figure 9–62 shows the elevator controller block diagram, which consists of controller logic,

a floor counter, and a floor number display. Assume that the elevator is on the first floor in

FIGURE 9–61 Elevator

controller state diagram.

 Applied Logic 547

the WAIT state. The floor counter contains 001, which is the first floor code. Suppose the

 FLRCALL (101) comes in from the call button on the fifth floor. Since FLRCALL 7 FLR

(101 7 001), the controller issues an UP command to the elevator motor. As the elevator moves

up, the floor counter receives a floor sensor pulse as it reaches each floor which advances its state

(001, 010, 011, 100, 101). When the fifth floor is reached and FLR = FLRCALL, the controller

logic stops the elevator and opens its door. The process is repeated for a FLRREQ input.

The floor counter sequentially tracks the number of the floor and always contains the

number of the current floor. It can count up or down and can reverse its state at any point

under the direction of the state controller and the floor sensor input. A 3-bit counter is re-

quired since there are eight floors (23
= 8) including the basement, as shown in the floor

counter state diagram in Figure 9–63.

Controller
Logic

Floor Counter

Floor Number
Display

FLRCALL

UP

FLRREQ

To elevator motor and door

DOWN

DOWN
FLR

CODE

STOP/

OPEN

UP CLOSE

Call

pulse

Request

pulse

Floor

sensor

FIGURE 9–62 Elevator

controller block diagram.

UP

UP

UP

UPUP

UP

UP

DOWN

DOWN

DOWN

DOWNDOWN

DOWN

DOWN

Basement

000

FLOOR1

001

FLOOR7

111

FLOOR3

011

FLOOR5

101

FLOOR4

100

FLOOR2

010

FLOOR6

110

FIGURE 9–63 Floor counter

state diagram.

548 Counters

Floor
Counter

CALL/REQ FF
(toggle)

CALL/REQ
Code Register

FLRCALL/FLRCNT
Comparator

7-segment
decoder

7-segment
display of

floor number

Delay
Timer

UP

Floor

sensor

pulse

CLK

CALL/REQ CALL/REQ = FLR

CALL/REQ > FLR

CALL/REQ < FLR

CODE

FLR

CODE

Preset

STOP/

OPEN

CLOSE

UP

DOWN

DOWN

FLRCALL code from call

buttons on the floors

REQ

pulse
CLK

CLK

FLRREQ code

from floor

button in the

elevator
CALL Enable

REQ Enable

CALL

pulse

FIGURE 9–64 Elevator controller logic diagram.

Operation of Elevator Controller

The elevator controller logic diagram is shown in Figure 9–64. Elevator action is initiated by

either a floor call (FLRCALL) or a floor request (FLRREQ). Keep in mind that FLRCALL

is when a person calls the elevator to come to a particular floor. FLRREQ is when a passen-

ger in the elevator requests to go to a specified floor. This simplified operation is based on a

CALL/REQ sequence; that is, a call followed by a request followed by a call.

As you know, FLRCALL and FLRREQ are 3-bit codes representing specific floors.

When a person presses a call button on a given floor, the specific 3-bit code for that floor

is placed on the inputs to the CALL/REQ code register and a CALL pulse is generated to

enter the code into the register. The same process occurs when a request button is pressed

inside the elevator. The code is input to the CALL/REQ code register, and a REQ pulse is

generated to store the code in the register.

The elevator does not know the difference between a call and a request. The comparator

determines if the destination floor number is greater than, less than, or equal to the current

 Key Terms 549

floor where the elevator is located. As a result of this comparison, either an UP command,

a DOWN command, or an OPEN command is issued to the elevator motor control. As the

 elevator moves toward the desired floor, the floor counter is either incremented at each floor

as it goes up or decremented at each floor as it goes down. Once the elevator reaches the de-

sired floor, a STOP/OPEN command is issued to the elevator motor control and to the door

control. After a preset time, the delay timer issues a CLOSE signal to the elevator door control.

As mentioned, this elevator design is limited to one floor call and one floor request per cycle.

Initialization The initial one-time setup requires that the elevator be placed at the base-

ment level and the floor counter be preset to 000. After this, the counter will automatically

move through the sequence of states determined by the elevator position.

Exercise

1. Explain the purpose of the floor counter.

2. Describe what happens during the WAIT mode.

3. How does the system know when the desired floor has been reached?

4. Discuss the limitations of the elevator design in Figure 9–64.

Implementation

The elevator controller can be implemented using fixed-function logic devices, a PLD

programmed with a VHDL (or Verilog) code, or a programmed microcontroller or mi-

croprocessor. In the Chapter 10 Applied Logic, the VHDL program code for the elevator

controller is presented. You will see how to program a PLD step by step.

Putting Your Knowledge to Work

What changes are required in the logic diagram of Figure 9–64 to upgrade the elevator

controller for a ten-story building?

SUMMARY

• Asynchronousandsynchronouscountersdifferonlyinthewayinwhichtheyareclocked.The
first stage of an asynchronous counter is driven by a clock pulse. Each succeeding stage is clocked

by the output of the previous stage. In a synchronous counter, all stages are clocked by the same

clock pulse. Synchronous counters can run at faster clock rates than asynchronous counters.

• Themaximummodulusofacounteristhemaximumnumberofpossiblestatesandisafunction
of the number of stages (flip-flops). Thus,

Maximum modulus = 2n

 where n is the number of stages in the counter. The modulus of a counter is the actual number of

states in its sequence and can be equal to or less than the maximum modulus.

• Theoverallmodulusofcascadedcountersisequaltotheproductofthemodulioftheindividual
counters.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Asynchronous Not occurring at the same time.

Cascade To connect “end-to-end” as when several counters are connected from the terminal

count output of one counter to the enable input of the next counter.

550 Counters

Decade Characterized by ten states or values.

Modulus The number of unique states through which a counter will sequence.

Recycle To undergo transition (as in a counter) from the final or terminal state back to the initial state.

State diagram A graphic depiction of a sequence of states or values.

State machine A logic system or circuit exhibiting a sequence of states conditioned by internal

logic and external inputs; any sequential circuit exhibiting a specified sequence of states. Two types

of state machine are Moore and Mealy.

Synchronous Occurring at the same time.

Terminal count The final state in a counter’s sequence.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. A state machine is a sequential circuit having a limited number of states occurring in a

prescribed order.

 2. Synchronous counters cannot be realized using J-K flip-flops.

 3. An asynchronous counter is also known as a ripple counter.

 4. A decade counter has twelve states.

 5. A counter with four stages has a maximum modulus of sixteen.

 6. To achieve a maximum modulus of 32, sixteen stages are required.

 7. If the present state is 1000, the next state of a 4-bit up/down counter in the DOWN mode is 0111.

 8. Two cascaded decade counters divide the clock frequency by 10.

 9. A counter with a truncated sequence has less than its maximum number of states.

 10. To achieve a modulus of 100, ten decade counters are required.

SELF-TEST

Answers are at the end of the chapter.

 1. A Moore state machine consists of combinational logic circuits that determine

(a) sequences (b) memory

(c) both (a) and (b) (d) neither (a) nor (b)

 2. The output of a Mealy machine depends on its

(a) inputs (b) next state

(c) present state (d) answers (a) and (c)

 3. The maximum cumulative delay of an asynchronous counter must be

(a) more than the period of the clock waveform

(b) less than the period of the clock waveform

(c) equal to the period of the clock waveform

(d) both (a) and (c)

 4. A decade counter with a count of zero (0000) through nine (1001) is known as

(a) an ASCII counter (b) a binary counter

(c) A BCD counter (d) a decimal counter

 5. The modulus of a counter is

(a) the number of flip-flops

(b) the actual number of states in its sequence

(c) the number of times it recycles in a second

(d) the maximum possible number of states

 6. A 3-bit binary counter has a maximum modulus of

(a) 3 (b) 6 (c) 8 (d) 16

 7. A 5-bit binary counter has a maximum modulus of

(a) 4 (b) 8 (c) 16 (d) 32

 8. A modulus-12 counter must have

(a) 12 flip-flops (b) 3 flip-flops

(c) 4 flip-flops (d) synchronous clocking

 Problems 551

 9. Which one of the following is an example of a counter with a truncated modulus?

(a) Modulus 8 (b) Modulus 14

(c) Modulus 16 (d) Modulus 32

 10. A 4-bit ripple counter consists of flip-flops that each have a propagation delay from clock to Q

output of 12 ns. For the counter to recycle from 1111 to 0000, it takes a total of

(a) 12 ns (b) 24 ns

(c) 48 ns (d) 36 ns

 11. A BCD counter is an example of

(a) a full-modulus counter (b) a decade counter

(c) a truncated-modulus counter (d) answers (b) and (c)

 12. Which of the following is a valid state in an 8421 BCD counter?

(a) 1010 (b) 1011

(c) 1111 (d) 1000

 13. Three cascaded modulus-10 counters have an overall modulus of

(a) 30 (b) 100

(c) 1000 (d) 10,000

 14. A 10 MHz clock frequency is applied to a cascaded counter consisting of a modulus-5 counter,

a modulus-8 counter, and two modulus-10 counters. The lowest output frequency possible is

(a) 10 kHz (b) 2.5 kHz

(c) 5 kHz (d) 25 kHz

 15. A 4-bit binary up/down counter is in the binary state of zero. The next state in the DOWN

mode is

(a) 0001 (b) 1111

(c) 1000 (d) 1110

 16. The initial count of a modulus-13 binary counter is

(a) 0000 (b) 1111

(c) 1101 (d) 1100

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 9–1 Finite State Machines

 1. Represent a decade counter with the terminal state decoded as a state machine. Identify the

type and show the block diagram and the state diagram.

 2. Identify the type of state machine for the traffic signal controller in Chapter 6. State the reason

why it is the type you specified.

Section 9–2 Asynchronous Counters

 3. For the ripple counter shown in Figure 9–65, show the complete timing diagram for eight clock

pulses, showing the clock, Q0, and Q1 waveforms.

D1 Q
1

CLK

D0 Q
0

C C

Q
0

Q
1

FIGURE 9–65

552 Counters

 5. In the counter of Problem 4, assume that each flip-flop has a propagation delay from the trig-

gering edge of the clock to a change in the Q output of 8 ns. Determine the worst-case (longest)

delay time from a clock pulse to the arrival of the counter in a given state. Specify the state or

states for which this worst-case delay occurs.

 6. Show how to connect a 74HC93 4-bit asynchronous counter for each of the following moduli:

(a) 9 (b) 11 (c) 13 (d) 14 (e) 15

Section 9–3 Synchronous Counters

 7. If the counter of Problem 5 were synchronous rather than asynchronous, what would be the

longest delay time?

 8. Show the complete timing diagram for the 5-stage synchronous binary counter in Figure 9–67. Verify

that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

 4. For the ripple counter in Figure 9–66, show the complete timing diagram for sixteen clock

pulses. Show the clock, Q0, Q1, and Q2 waveforms.

D1 Q
1

CLK

D0 Q
0

C C

D2 Q
2

C

Q
0

Q
1

Q
2

FIGURE 9–66

Q
0

CLK

J0

K0

C

HIGH

Q
1

C

J1

K1

C

J4

K4

Q
4

Q
2

C

J2

K2

Q
3

C

J3

K3

FIGURE 9–67

Q
0

CLK

J0

K0

C

HIGH

Q
1

C

Q
2

C

J1

K1

J2

K2

C

J3

K3

Q
3

FF0 FF1 FF2 FF3

Q
3

FIGURE 9–68

 9. By analyzing the J and K inputs to each flip-flop prior to each clock pulse, prove that the dec-

ade counter in Figure 9–68 progresses through a BCD sequence. Explain how these conditions

in each case cause the counter to go to the next proper state.

 Problems 553

 10. The waveforms in Figure 9–69 are applied to the count enable, clear, and clock inputs as indi-

cated. Show the counter output waveforms in proper relation to these inputs. The clear input is

asynchronous.

CLR

LOAD

ENP

ENT

CLK

FIGURE 9–71

CLK

CTR DIV 16

Q0

C

CTEN

CLK

CTEN

CLR CLR
CLR

Q1 Q2 Q3

FIGURE 9–69

CLK

CTR DIV 10

Q
0

Q
3

Q
1

Q
2

C

CLR

FIGURE 9–70

 11. A BCD decade counter is shown in Figure 9–70. The waveforms are applied to the clock and

clear inputs as indicated. Determine the waveforms for each of the counter outputs (Q0, Q1, Q2,

and Q3). The clear is synchronous, and the counter is initially in the binary 1000 state.

 12. The waveforms in Figure 9–71 are applied to a 74HC163 binary counter. Determine the Q

outputs and the RCO. The inputs are D0 = 1, D1 = 1, D2 = 0, and D3 = 1.

 13. The waveforms in Figure 9–71 are applied to a 74HC161 counter. Determine the Q outputs and

the RCO. The inputs are D0 = 1, D1 = 0, D2 = 0, and D3 = 1.

Section 9–4 Up/Down Synchronous Counters

 14. Show a complete timing diagram for a 3-bit up/down counter that goes through the following

sequence. Indicate when the counter is in the UP mode and when it is in the DOWN mode.

Assume positive edge-triggering.

0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0

 15. Develop the Q output waveforms for a 74HC190 up/down counter with the input waveforms

shown in Figure 9–72. A binary 0 is on the data inputs. Start with a count of 0000.

LOAD

CTEN

D/U

CLK

FIGURE 9–72

554 Counters

 16. Repeat Problem 15 if the D/U input signal is inverted with the other inputs the same.

 17. Repeat Problem 15 if the CTEN is inverted with the other inputs the same.

Section 9–5 Design of Synchronous Counters

 18. Determine the sequence of the counter in Figure 9–73.

0 Up

Down 3

5

7

9

11

FIGURE 9–75

CLK

D0

C

D1

C

D2

C

Q
0

Q
1

Q
2

FIGURE 9–73

HIGH

CLK

J0

C

K0

Q
0

Q
1 Q

2
Q

3

J3

C

K3

J2

C

K2

J1

C

K1

FIGURE 9–74

 19. Determine the sequence of the counter in Figure 9–74. Begin with the counter cleared.

 20. Design a counter to produce the following sequence. Use J-K flip-flops.

00, 10, 01, 11, 00, c

 21. Design a counter to produce the following binary sequence. Use J-K flip-flops.

1, 4, 3, 5, 7, 6, 2, 1, c

 22. Design a counter to produce the following binary sequence. Use J-K flip-flops.

0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 0, c

 23. Design a binary counter with the sequence shown in the state diagram of Figure 9–75.

 Problems 555

Section 9–6 Cascaded Counters

 24. For each of the cascaded counter configurations in Figure 9–76, determine the frequency of the

waveform at each point indicated by a circled number, and determine the overall modulus.

(c)

(d)

DIV 2 DIV 4 DIV 6 DIV 8
1 2 3 4 5

DIV 1639.4 kHz

DIV 3 DIV 6 DIV 8 DIV 10
1 2 3 4 5

DIV 1021 MHz

DIV 10 DIV 10 DIV 10

(b)

DIV 2
1 2 3 4

100 kHz

DIV 4 DIV 8 DIV 2

(a)

1 2 3
1 kHz

FIGURE 9–76

 25. Expand the counter in Figure 9–38 to create a divide-by-10,000 counter and a divide-

by-100,000 counter.

 26. With general block diagrams, show how to obtain the following frequencies from a 10 MHz

clock by using single flip-flops, modulus-5 counters, and decade counters:

(a) 5 MHz (b) 2.5 MHz (c) 2 MHz (d) 1 MHz (e) 500 kHz

(f) 250 kHz (g) 62.5 kHz (h) 40 kHz (i) 10 kHz (j) 1 kHz

Section 9–7 Counter Decoding

 27. Given a BCD decade counter with only the Q outputs available, show what decoding logic is

required to decode each of the following states and how it should be connected to the counter.

A HIGH output indication is required for each decoded state. The MSB is to the left.

(a) 0001 (b) 0011 (c) 0101 (d) 0111 (e) 1000

 28. For the 4-bit binary counter connected to the decoder in Figure 9–77, determine each of the

decoder output waveforms in relation to the clock pulses.

BIN/DEC
0

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Q
3

4

Q
2

2

Q
1

1

Q
0

CLK
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
EN

CTR DIV 16

FIGURE 9–77

556 Counters

 29. If the counter in Figure 9–77 is asynchronous, determine where the decoding glitches occur on

the decoder output waveforms.

 30. Modify the circuit in Figure 9–77 to eliminate decoding glitches.

 31. Analyze the counter in Figure 9–42 for the occurrence of glitches on the decode gate output. If

glitches occur, suggest a way to eliminate them.

 32. Analyze the counter in Figure 9–43 for the occurrence of glitches on the outputs of the decod-

ing gates. If glitches occur, make a design change that will eliminate them.

Section 9–8 Counter Applications

 33. Assume that the digital clock of Figure 9–48 is initially reset to 12 o’clock. Determine the

binary state of each counter after sixty-two 60 Hz pulses have occurred.

 34. What is the output frequency of each counter in the digital clock circuit of Figure 9–48?

 35. For the automobile parking control system in Figure 9–51, a pattern of entrance and exit sensor

pulses during a given 24-hour period are shown in Figure 9–78. If there were 53 cars already in the

garage at the beginning of the period, what is the state of the counter at the end of the 24 hours?

Entrance
sensor

Exit
sensor

0 24 hrs

FIGURE 9–78

 36. The binary number for decimal 57 appears on the parallel data inputs of the parallel-to-serial

converter in Figure 9–53 (D0 is the LSB). The counter initially contains all zeros and a 10 kHz

clock is applied. Develop the timing diagram showing the clock, the counter outputs, and the

serial data output.

Section 9–10 Troubleshooting

 37. For the counter in Figure 9–4, show the timing diagram for the Q0 and Q1 waveforms for each

of the following faults (assume Q0 and Q1 are initially LOW):

(a) clock input to FF0 shorted to ground

(b) Q0 output open

(c) clock input to FF1 open

(d) D input to FF0 open

(e) D input to FF1 shorted to ground

 38. Solve Problem 37 for the counter in Figure 9–12(b).

 39. Isolate the fault in the counter in Figure 9–6 by analyzing the waveforms in Figure 9–79.

 40. From the waveform diagram in Figure 9–80, determine the most likely fault in the counter of

Figure 9–15.

CLK

Q
0

Q
1

Q
2

1 2 3 4 5 6 7 8

0

FIGURE 9–79

CLK

Q
0

Q
1

Q
2

1 2 3 4 5 6 7 8

FIGURE 9–80

 Problems 557

 41. Solve Problem 40 if the Q2 output has the waveform observed in Figure 9–81. Outputs Q0 and

Q1 are the same as in Figure 9–80.

CLK

Q
2

1 2 3 4 5 6 7 8

FIGURE 9–81

 42. You apply a 5 MHz clock to the cascaded counter in Figure 9–41 and measure a frequency of

76.2939 Hz at the last RCO output. Is this correct, and if not, what is the most likely problem?

 43. Develop a table for use in testing the counter in Figure 9–41 that will show the frequency at the

final RCO output for all possible open failures of the parallel data inputs (D0, D1, D2, and D3)

taken one at a time. Use 10 MHz as the test frequency for the clock.

 44. The tens-of-hours 7-segment display in the digital clock system of Figure 9–48 continuously

displays a 1. All the other digits work properly. What could be the problem?

 45. What would be the visual indication of an open Q1 output in the tens portion of the minutes

counter in Figure 9–48? Also see Figure 9–49.

 46. One day (perhaps a Monday) complaints begin flooding in from patrons of a parking garage

that uses the control system depicted in Figures 9–51 and 9–52. The patrons say that they enter

the garage because the gate is up and the FULL sign is off but that, once in, they can find no

empty space. As the technician in charge of this facility, what do you think the problem is, and

how will you troubleshoot and repair the system as quickly as possible?

Applied Logic

 47. Propose a general design for generation of the 3-bit FLRCALL code and the Call pulse by the

pressing of a single button.

 48. Propose a general design for generation of the 3-bit FLRREQ code and the Request pulse by

the pressing of one of seven buttons.

 49. What changes are required to the logic diagram in Figure 9–64 to modify the elevator control-

ler for a four-story building?

Special Design Problems

 50. Design a modulus-1000 counter by using decade counters.

 51. Modify the design of the counter in Figure 9–41 to achieve a modulus of 30,000.

 52. Repeat Problem 51 for a modulus of 50,000.

 53. Modify the digital clock in Figures 9–48, 9–49, and 9–50 so that it can be preset to any desired time.

 54. Design an alarm circuit for the digital clock that can detect a predetermined time (hours and

minutes only) and produce a signal to activate an audio alarm.

 55. Modify the design of the circuit in Figure 9–52 for a 1000-space parking garage and a 3000-

space parking garage.

 56. Implement the parallel-to-serial data conversion logic in Figure 9–53 with specific fixed-

function devices.

 57. In Problem 19 it was found that the counter locks up and alternates between two states. It turns

out that this operation is the result of a design flaw. Redesign the counter so that when it goes

into the second of the lock-up states, it will recycle to the all-0s state on the next clock pulse.

Multisim Troubleshooting Practice

 58. Open file P09-58. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 59. Open file P09-59. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

 60. Open file P09-60. For the specified fault, predict the effect on the circuit. Then introduce the

fault and verify whether your prediction is correct.

558 Counters

ANSWERS

SECTION CHECKUPS

Section 9–1 Checkup

 1. A finite state machine is a sequential circuit having a finite number of states that occur in a

specified order.

 2. Moore state machine and Mealy state machine

 3. The Moore state machine has an output(s) that is dependent on the present internal state only.

The Mealy state machine has an output(s) that is dependent on both the present internal state

and the value of the inputs.

Section 9–2 Asynchronous Counters

 1. Asynchronous means that each flip-flop after the first one is enabled by the output of the pre-

ceding flip-flop.

 2. A modulus-14 counter has fourteen states requiring four flip-flops.

Section 9–3 Synchronous Counters

 1. All flip-flops in a synchronous counter are clocked simultaneously.

 2. The counter can be preset (initialized) to any given state.

 3. Counter is enabled when ENP and ENT are both HIGH; RCO goes HIGH when final state in

sequence is reached.

Section 9–4 Up/Down Synchronous Counters

 1. The counter goes to 1001.

 2. UP: 1111: DOWN: 0000; the next state is 1111.

Section 9–5 Design of Synchronous Counters

 1. J = 1, K = X (“don’t care”)

 2. J = X (“don’t care”), K = 0

 3. (a) The next state is 1011.

(b) Q3 (MSB): no-change or SET; Q2: no-change or RESET; Q1: no change or SET;

Q0 (LSB): SET or toggle

Section 9–6 Cascaded Counters

 1. Three decade counters produce , 1000; 4 decade counters produce , 10,000.

 2. (a) , 20: flip-flop and DIV 10

(b) , 32: flip-flop and DIV 16

(c) , 160: DIV 16 and DIV 10

(d) , 320: DIV 16 and DIV 10 and flip-flop

Section 9–7 Counter Decoding

 1. (a) No transitional states because there is a single bit change

(b) 0000, 0001, 0010, 0101, 0110, 0111

(c) No transitional states because there is a single bit change

(d) 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110

 61. Open file P09-61. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 62. Open file P09-62. For the observed behavior indicated, predict the fault in the circuit. Then

introduce the suspected fault and verify whether your prediction is correct.

 Answers 559

Section 9–8 Counter Applications

 1. Gate G1 resets flip-flop on first clock pulse after count 9. Gate G2 decodes count 12 to preset

counter to 0001.

 2. The hours decade counter advances through each state from zero to nine, and as it recycles

from nine back to zero, the flip-flop is toggled to the SET state. This produces a ten (10) on

the display. When the hours decade counter is in state 12, the decode NAND gate causes the

counter to recycle to state 1 on the next clock pulse. The flip-flop resets. This results in a one

(01) on the display.

Section 9–9 Logic Symbols with Dependency Notation

 1. C: control, usually clock; M: mode; G: AND

 2. D indicates data storage.

Section 9–10 Troubleshooting

 1. No pulses on TC outputs: CTEN of first counter shorted to ground or to a LOW; clock input of

first counter open; clock line shorted to ground or to a LOW; TC output of first counter shorted

to ground or to a LOW.

 2. With inverter output open, the counter does not recycle at the preset count but acts as a full-

modulus counter.

RELATED PROBLEMS FOR EXAMPLES

 9–1 See Figure 9–82.

CLK

Q0

Q1

Q2

Q3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 9–82

 9–2 Connect Q0 to the NAND gate as a third input (Q2 and Q3 are two of the inputs). Connect the

CLR line to the CLR input of FF0 as well as FF2 and FF3.

 9–3 See Figure 9–83.

CLK

Q0

Q1

UP/DOWN

Q2

Q3

150 14 13 12 13 14 15 0 1 0 15 14 15 0

FIGURE 9–83

 9–4 See Table 9–14.

TABLE 9–14

Present Invalid State D Inputs Next State

Q2 Q1 Q0 D2 D1 D0 Q2 Q1 Q0

0 0 0 1 1 1 1 1 1 valid state

0 1 1 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 0 1 valid state

000 S 111

011 S 000 S 111

100 S 111

110 S 101

560 Counters

 9–5 Three flip-flops, sixteen 3-input AND gates, two 4-input OR gates, four 2-input OR gates,

and one inverter

 9–6 Five decade counters are required. 105
= 100,000

 9–7 fQ0 = 1 MHz/[(10)(2)] = 50 kHz

 9–8 See Figure 9–84.

 9–9 8AC016 would be loaded. 164 - 8AC016 = 65,536 - 32,520 = 30,016

fTC4 = 10 MHz/30,016 = 333.2 Hz

 9–10 See Figure 9–85.

Q2

Q1

Q0

5

FIGURE 9–84

CLK

Q0

Q1

 Q2

0

FIGURE 9–85

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. F 5. T 6. F 7. T 8. F 9. T 10. F

SELF-TEST

 1. (c) 2. (a) 3. (b) 4. (c) 5. (b) 6. (c) 7. (d) 8. (c)

 9. (b) 10. (c) 11. (d) 12. (d) 13. (c) 14. (b) 15. (b) 16. (a)

561

CHAPTER OUTLINE

10–1 Simple Programmable Logic Devices (SPLDs)

10–2 Complex Programmable Logic Devices (CPLDs)

10–3 Macrocell Modes

10–4 Field-Programmable Gate Arrays (FPGAs)

10–5 Programmable Logic Software

10–6 Boundary Scan Logic

10–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Discuss the types of programmable logic, SPLDs

and CPLDs, and explain their basic structure

■ Describe the basic architecture of two types of

SPLDs—the PAL and the GAL

■ Explain the basic structure of a programmable logic

array (PLA)

■ Discuss the operation of macrocells

■ Distinguish between CPLDs and FPGAs

■ Explain the basic operation of a look-up table (LUT)

■ Define intellectual property and platform FPGA

■ Discuss embedded functions

■ Show a basic software design flow for a

programmable device

■ Explain the design flow elements of design entry,

functional simulation, synthesis, implementation,

timing simulation, and downloading

■ Discuss several methods of testing a programmable

logic device, including boundary scan logic

KEY TERMS

Key terms are in order of appearance in the chapter.

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The distinction between hardware and software is

hazy. Today, new digital circuits are programmed into

hardware using languages like VHDL. The density

(number of equivalent gates on a single chip) has

increased dramatically over the past few years. The

maximum number of gates in an FPGA (a type of PLD

known as a field-programmable gate array) is dou-

bling every 18 months, according to Moore’s law. At

the same time, the price for a PLD is decreasing.

PLDs, such as the FPGA, can be used in conjunction

with processors and software in an embedded system,

or the FPGA can be the sole component with all the

logic functions programmed in. An embedded system

is one that is dedicated to a single task or a very limited

number of tasks unlike the computer, which is multipur-

pose and can be programmed to perform just about any

task. With PLDs, logic is described with software and

then implemented with the internal gates of the PLD.

In this chapter, the basic architecture (internal

structure and organization) of SPLDs, CPLDs, and

FPGAs is discussed. A discussion of software devel-

opment tools covers the generic design flow for pro-

gramming a device, including design entry, functional

simulation, synthesis, implementation, timing simula-

tion, and downloading.

■ LUT

■ FPGA

■ CLB

■ Intellectual property

■ Design flow

■ Target device

■ Schematic entry

■ Text entry

■ Functional simulation

■ Compiler

■ Timing simulation

■ Downloading

■ Break point

■ Boundary scan

■ PAL

■ GAL

■ Macrocell

■ Registered

■ CPLD

■ LAB

Programmable Logic

10CHAPTER

562 Programmable Logic

10–1 Simple Programmable Logic Devices (SPLDs)

Two major types of simple programmable logic devices (SPLDs) are the PAL and the

GAL. PAL stands for programmable array logic, and GAL stands for generic array

logic. Generally, a PAL is one-time programmable (OTP), and a GAL is a type of

PAL that is reprogrammable. The term GAL is a designation originally used by Lattice

 Semiconductor and later licensed to other manufacturers. The basic structure of both

PALs and GALs is a programmable AND array and a fixed OR array, which is a basic

sum-of-products architecture.

After completing this section, you should be able to

u Describe SPLD operation

u Show how a sum-of-products expression is implemented in a PAL or GAL

u Explain simplified PAL/GAL logic diagrams

u Describe a basic PAL/GAL macrocell

SPLD: The PAL

A PAL (programmable array logic) consists of a programmable array of AND gates that

connects to a fixed array of OR gates. Generally, PALs are implemented with fuse process

technology and are, therefore, one-time programmable (OTP).

The PAL structure allows any sum-of-products (SOP) logic expression with a defined

number of variables to be implemented. As you have learned, any combinational logic

function can be expressed in SOP form. A simple PAL structure is shown in Figure 10–1

for two input variables and one output; most PALs have many inputs and many outputs.

As you learned earlier, a programmable array is essentially a grid or matrix of conductors

that form rows and columns with a programmable link at each cross point. Each program-

mable link, which is a fuse in the case of a PAL, is called a cell. Each row is connected to

the input of an AND gate, and each column is connected to an input variable or its comple-

ment. By programming the presence or absence of a fuse connection, any combination

of input variables or complements can be applied to an AND gate to form any desired

product term. The AND gates are connected to an OR gate, creating a sum-of-products

(SOP) output.

BBAA

X

FIGURE 10–1 Basic AND/OR structure of a PAL.

 Simple Programmable Logic Devices (SPLDs) 563

Implementing a Sum-of-Products Expression

An example of a simple PAL is programmed as shown in Figure 10–2 so that the product

term AB is produced by the top AND gate, AB is produced by the middle AND gate, and

A B is produced by the bottom AND gate. As you can see, the fuses are left intact to connect

the desired variables or their complements to the appropriate AND gate inputs. The fuses

are opened where a variable or its complement is not used in a given product term. The final

output from the OR gate is the SOP expression,

X = AB + AB + A B

BBAA

X = AB + AB + AB

FIGURE 10–2 PAL implementation of a sum-of-products expression.

SPLD: The GAL

The GAL is essentially a PAL that can be reprogrammed. It has the same type of AND/

OR organization that the PAL does. The basic difference is that a GAL uses a repro-

grammable process technology, such as EEPROM (E2CMOS), instead of fuses, as shown in

Figure 10–3.

BBAA

+V

X

+V

+V

+V

FIGURE 10–3 Simplified GAL array.

564 Programmable Logic

Simplified Notation for PAL/GAL Diagrams

Actual PAL and GAL devices have many AND and OR gates in addition to other elements

and are capable of handling many variables and their complements. Most PAL and GAL

diagrams that you may see on a data sheet use simplified notation, as illustrated in Fig-

ure 10–4, to keep the schematic from being too complicated.

The input variables to a PAL or GAL are usually buffered to prevent loading by a

large number of AND gate inputs to which they are connected. On the diagram, the

triangle symbol represents a buffer that produces both the variable and its complement.

The fixed connections of the input variables and buffers are shown using standard dot

notation.

PALs and GALs have a large number of programmable interconnection lines, and each

AND gate has multiple inputs. Typical PAL and GAL logic diagrams represent a multiple-

input AND gate with an AND gate symbol having a single input line with a slash and a

digit representing the actual number of inputs. Figure 10–4 illustrates this for the case of

2-input AND gates.

Programmable links in an array are indicated in a diagram by a red X at the cross

point for an intact fuse or other type of link and the absence of an X for an open fuse

or other type of link. In Figure 10–4, the 2-variable logic function AB + AB + A B is

programmed.

EXAMPLE 10–1

Show how a PAL is programmed for the following 3-variable logic function:

X = ABC + ABC + A B + AC

Solution

The programmed array is shown in Figure 10–5. The intact fusible links are indicated by small red Xs. The absence of an X

means that the fuse is open.

BBAA

A

B

Input
buffer

Fixed connection

Single line with slash represents multiple
AND gate inputs. (In this case, 2 inputs)

2

Fuse blown
(no connection)

Fuse intact
(connection)

Product
term lines

Input lines

AB

AB

AB

2

2

X = AB + AB + AB

FIGURE 10–4 A portion of a programmed PAL/GAL.

 Simple Programmable Logic Devices (SPLDs) 565

B

C

A

CBA A B C

ABC

ABC

AB

AC

X = ABC + ABC + AB + AC

3

3

3

3

FIGURE 10–5

Related Problem*

Write the expression for the output if the fusible links connecting input A to the top row and to the bottom row in

Figure 10–5 are open.

*Answers are at the end of the chapter.

PAL/GAL General Block Diagram

A block diagram of a PAL or GAL is shown in Figure 10–6. Remember, the basic difference

is that a GAL has a reprogrammable array and the PAL is one-time programmable.

Macrocells

OR array

OR
gate

Output

logic
O1

OR
gate

Output

logic
O2

OR
gate

Output

logic
O3

OR
gate

Output

logic
Om

I1

I2

I3

I4

In

Programmable
AND array

PAL: One-time
 programmable

GAL: Reprogrammable

FIGURE 10–6 General block diagram of a PAL or GAL.

566 Programmable Logic

The programmable AND array outputs go to fixed OR gates that are connected to addi-

tional output logic. An OR gate combined with its associated output logic is typically called

a macrocell. The complexity of the macrocell depends on the particular device, and in

GALs it is often reprogrammable.

Generally, SPLD package configurations range from 20 pins to 28 pins. Two factors that

you can use to help determine whether a certain PAL or GAL is adequate for a given logic

design are the number of inputs and outputs and the number of equivalent gates or density.

Other parameters to consider are the maximum operating frequency, delay times, and dc

supply voltage. Two common types of SPLD are the 16V8 and the 22V10. Various SPLD

manufacturers may have different ways of defining density, so you have to use the specified

number of equivalent gates with this in mind.

Macrocells

A macrocell generally consists of one OR gate and some associated output logic. The

macrocells vary in complexity, depending on the particular type of PAL or GAL. A macro-

cell can be configured for combinational logic, registered logic, or a combination of both.

Registered logic means that there is a flip-flop in the macrocell to provide for sequential

logic functions. The registered operation of macrocells is covered in Section 10–3.

Figure 10–7 illustrates three basic types of macrocells with combinational logic. Part

(a) shows a simple macrocell with the OR gate and an inverter with a tristate control that

can make the inverter like an open circuit to completely disconnect the output. The output

of the tristate inverter can be either LOW, HIGH, or disconnected. Part (b) is a macrocell

that can be either an input or an output. When it is used as an input, the tristate inverter

is disconnected, and the input goes to the buffer that is connected to the AND array. Part

(c) is a macrocell that can be programmed to have either an active-HIGH or an active-

LOW output, or it can be used as an input. One input to the exclusive-OR (XOR) gate

can be programmed to be either HIGH or LOW. When the programmable XOR input is

HIGH, the OR gate output is inverted because 0 � 1 = 1 and 1 � 1 = 0 . Similarly,

when the programmable XOR input is LOW, the OR gate output is not inverted because

0 � 0 = 0 and 1 � 0 = 1 .

Input/Output (I/O)

(c) Programmable polarity output

From AND
gate array

Programmable
fuse

Output

(a) Combinational output (active-LOW). An active-HIGH
 output would be shown without the bubble on the tristate
 gate symbol.

From AND
gate array

Tristate control Input/Output (I/O)

(b) Combinational input/output (active-LOW)

From AND
gate array

FIGURE 10–7 Basic types of PAL/GAL macrocells for combinational logic.

 Complex Programmable Logic Devices (CPLDs) 567

SECTION 10–1 CHECKUP

Answers are at the end of the chapter.

 1. What does PAL stand for?

 2. What does GAL stand for?

 3. What is the difference between a PAL and a GAL?

 4. Basically, what does a macrocell contain?

10–2 Complex Programmable Logic Devices (CPLDs)

The complex programmable logic device (CPLD) is basically a single device containing

multiple SPLDs and providing more capacity for larger logic designs. In this section, the

focus is the concepts of traditional CPLD architecture, keeping in mind that CPLDs may

vary somewhat in architecture and/or in parameters such as density, process technology,

power consumption, supply voltage, and speed.

After completing this section, you should be able to

u Describe a typical CPLD

u Discuss the basic CPLD architecture

u Explain how product terms are generated in CPLDs

The CPLD

A CPLD (complex programmable logic device) consists basically of multiple SPLD arrays

with programmable interconnections. Although the way CPLDs are internally organized

varies with the manufacturer, Figure 10–8 illustrates a generic CPLD. We will refer to each

I/O

I/O I/O

PIA

I/O

I/O I/O

I/O I/O

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

Logic array

block (LAB)

SPLD

FIGURE 10–8 Basic block diagram of a generic CPLD.

568 Programmable Logic

SPLD array in a CPLD as a LAB (logic array block). Other designations are sometimes

used, such as function block, logic block, or generic block. The programmable intercon-

nections are generally called the PIA (programmable interconnect array) although some

manufacturers, such as Xilinx, use the term AIM (advanced interconnect matrix) or a simi-

lar designation. The LABs and the interconnections between LABs are programmed using

software. A CPLD can be programmed for complex logic functions based on the SOP

structure of the individual LABs (actually SPLDs). Inputs can be connected to any of the

LABs, and their outputs can be interconnected to any other LABs via the PIA.

Most programmable logic manufacturers make a series of CPLDs that range in density,

process technology, power consumption, supply voltage, and speed. Manufacturers usually

specify CPLD density in terms of macrocells or logic array blocks. Densities can range

from tens of macrocells to over 1500 macrocells in packages with up to several hundred

pins. As PLDs become more complex, maximum densities will increase. Most CPLDs are

reprogrammable and use EEPROM or SRAM process technology for the programmable

links. Power consumption can range from a few milliwatts to a few hundred milliwatts. DC

supply voltages are typically from 2.5 V to 5 V, depending on the specific device.

Several manufacturers, (for example, Altera, Xilinx, Lattice, and Atmel) produce

CPLDs. As you will learn, CPLDs and other programmable logic devices are really a com-

bination of hardware and software.

Classic CPLD Architecture

The architecture of a CPLD is the way in which the internal elements are organized and

arranged. The architecture of specific CPLDs is similar to the block diagram of a generic

CPLD (shown in Figure 10–8). It has the classic PAL/GAL structure that produces SOP

functions. The density ranges from 2 LABs to 16 LABs, depending on the particular device

in the series. Remember, a LAB is roughly equivalent to one SPLD, and package sizes for

CPLDs vary from 44 pins to 208 pins. Typically, a series of CPLDs uses the EEPROM-based

process technology. In-system programmable (ISP) versions use the JTAG standard interface.

Figure 10–9 shows a general block diagram of a typical CPLD. Four LABs are shown,

but there can be up to sixteen, depending on the particular device in a series. Each of

the four LABs consists of sixteen macrocells, and multiple LABs are linked together via

the PIA, which is a programmable global (goes to all LABs) bus structure to which the

general-purpose inputs, the I/Os, and the macrocells are connected.

The Macrocell

A simplified diagram of a typical macrocell is shown in Figure 10–10. The macrocell con-

tains a small programmable AND array with five AND gates, an OR gate, a product-term

selection matrix for connecting the AND gate outputs to the OR gate, and associated logic

that can be programmed for input, combinational logic output, or registered output. This

macrocell is covered in more detail in Section 10–3.

Although based on the same concept, this macrocell differs somewhat from the macrocell

discussed in Section 10–1 in relation to SPLDs because it contains a portion of the program-

mable AND array and a product-term selection matrix. As shown in Fig ure 10–10, five AND

gates feed product terms from the PIA into the product-term selection matrix. The product term

from the bottom AND gate can be fed back inverted into the programmable array as a shared

expander for use by other macrocells. The parallel expander inputs allow borrowing of unused

product terms from other macrocells to expand an SOP expression. The product-term selection

matrix is an array of programmable connections that is used to connect selected outputs from

the AND array and from the expander inputs to the OR gate.

Shared Expanders

A complemented product term that can be used to increase the number of product terms in

an SOP expression is available from each macrocell in a LAB. Figure 10–11 illustrates how

a shared expander term from another macrocell can be used to create additional product

terms. In this case, each of the five AND gates in a macrocell array is limited to four inputs

569

8–168–16 36

16

36

16

8–168–16

8–168–16 36

16

I/O
control
block

I/O
control
block

Logic array block
(LAB A)

36

16

I/O
control
block

I/O
control
block

8–16 I/O
pins/LAB

Macrocell 1

Macrocell 2

Macrocell 16

Logic array block
(LAB B)

Logic array block
(LAB C)

Logic array block
(LAB D)

Macrocell 1

Macrocell 2

Macrocell 16

Macrocell 1

Macrocell 2

Macrocell 16

Macrocell 1

Macrocell 2

Macrocell 16

8–168–16

General-purpose inputs

PIA

FIGURE 10–9 Basic block diagram of a typical CPLD.

15 expander
product terms
from other
macrocells

36 lines from PIA

Shared
expander

Parallel expanders
from other
macrocells

Associated
logic

To I/O
control
block

Product-term
selection
matrix

FIGURE 10–10 Simplified diagram of a macrocell in a typical CPLD.

570 Programmable Logic

FEDCBA

Product-term
selection
matrix

ABCD + ABCD + ABCD

+ ABCD + ABCE + ABCF

Macrocell 1

ABCD + ABCD + ABCD

Macrocell 2

Expander terms

Expander term E + F
to Macrocell 1

Product-term
selection
matrix

EF

FIGURE 10–12 Simplified illustration of using a shared expander term from another

macrocell to increase an SOP expression. The red Xs and lines represent the connections

produced in the hardware by the software compiler running the programmed design.

A
B
C
D

ABCD

(a)

A
B
C ABC(E + F) = ABCE + ABCF

(b)

E + F
EF Product term from another

macrocell in same LAB

A 4-input AND array gate can produce

one 4-variable product term.

AND gate is expanded to produce two product terms.

FIGURE 10–11 Example of how a shared expander can be used in a macrocell

to increase the number of product terms.

and, therefore, can produce up to a 4-variable product term, as illustrated in part (a). Figure

10–11(b) shows the expansion to two product terms.

Each macrocell can produce up to five product terms generated from its AND array.

If a macrocell needs more than five product terms for its SOP output, it can use an

expander term from another macrocell. Suppose that a design requires an SOP expres-

sion that contains six product terms. Figure 10–12 shows how a product term from

 Complex Programmable Logic Devices (CPLDs) 571

ABCD + EFGH + ABCD + ABCD + EFGH

A
B
C
D

E
F
G
H

ABCD + ABCD + EFGH Parallel expander terms

FIGURE 10–13 Basic concept of the parallel expander.

another macrocell can be used to increase an SOP output. Macrocell 2, which is under-

utilized, generates a shared expander term (E + F) that connects to the fifth AND gate

in macrocell 1 to produce an SOP expression with six product terms.

Parallel Expanders

Another way to increase the number of product terms for a macrocell is by using paral-

lel expanders in which additional product terms are ORed with the terms generated by a

macrocell instead of being combined in the AND array, as in the shared expander. A given

macrocell can borrow unused product terms from neighboring macrocells. The basic con-

cept is illustrated in Figure 10–13 where a simplified circuit that can produce two product

terms borrows three additional product terms.

Figure 10–14 shows how one macrocell can borrow parallel expander terms from

another macrocell to increase the SOP output. Macrocell 2 uses three product terms from

macrocell 1 to produce an eight-term SOP expression.

LUT CPLD Architecture

This architecture differs from the classic CPLD previously discussed. As shown by the

block diagram in Figure 10–15, this device contains logic array blocks (LABs) each with

multiple logic elements (LEs). An LE is the basic logic design unit and is analogous to the

macrocell. The programmable interconnects are arranged in a row and column arrange-

ment running between the LABs, and input/output elements (IOEs) are oriented around

the perimeter. The architecture of this type of CPLD is similar to that of FPGAs, which we

discuss in Section 10–4.

A main difference between this type of CPLD and the classic AND/OR array CPLD

previously discussed is the way in which a logic function is developed. Look-up tables

(LUTs) are used instead of AND/OR arrays. An LUT is basically a type of memory that

can be programmed to produce SOP functions (discussed in more detail in Section 10–4).

These two approaches are contrasted in Figure 10–16.

As mentioned, the LUT CPLD has a row/column arrangement of interconnects instead

of the channel-type interconnects found in most classic CPLDs. These two approaches

are contrasted in Figure 10–17 and can be understood by comparing Figure 10–9 and

Figure 10–15.

Most CPLDs use a nonvolatile process technology for the programmable links. The

LUT CPLD, however, uses a SRAM-based process technology that is volatile—all pro-

grammed logic is lost when power is turned off. The memory embedded on the chip stores

the program data using nonvolatile memory technology and reconfigures the CPLD on

power up.

572 Programmable Logic

PLA (Programmable Logic Array)

As you have learned, the architecture of a CPLD is the way in which the internal ele-

ments are organized and arranged. The architecture of some PLDs is based on a PLA

(programmable logic array) structure rather than on a PAL (programmable array logic)

structure, which we have discussed. Figure 10–18 compares a simple PAL structure with

a simple PLA structure. The PAL has a programmable AND array followed by a fixed

OR array and produces an SOP expression, as shown by the example in Figure 10–18(a).

The PLA has a programmable AND array followed by a programmable OR array, as

shown by the example in Figure 10–18(b).

Specific CPLD Devices

Several manufacturers produce CPLDs. Table 10–1 lists device families from selected

companies. As time passes, a series may become obsolete or a new series may be added.

You can check the websites for the most current information.

CPLDs vary greatly in terms of complexity. Table 10–2 lists some of the parameter

ranges that are available. Keep in mind that these numbers are subject to change as technol-

ogy advances.

FEDCBA

ABCD + ABCD + ABCD

+ ABCD + ABCD +

ABCD + ABCD + ABCD

ABCD + ABCD + ABCD

Parallel expander terms
loaned to Macrocell 2

Product-term
selection
matrix

Macrocell 1

Macrocell 2

Product-term
selection
matrix

FIGURE 10–14 Simplified illustration of using parallel expander terms from another

macrocell to increase an SOP expression. The red Xs and lines represent the connections

produced in the hardware by the software complier running the programmed design.

573

LAB

IOE

Logic element

Logic element

Logic element

IOE

LAB

IOE

Logic element

Logic element

Logic element

LAB

Logic element

Logic element

Logic element

IOE

LAB

Logic element

Logic element

Logic element

LAB

Logic element

Logic element

Logic element

IOE

LAB

Logic element

Logic element

Logic element

FIGURE 10–15 Simplified block diagram of an LUT CPLD.

SOP
output

A0

A1

A2

An–1

LUT
SOP
output

1

0

0

1

1

An–1A2A1A0

(a) Look-up table logic. A 1 is stored at

each product term address.

(b) AND/OR array logic

FIGURE 10–16 Two types of logic function generation in CPLDs.

(a) Row/column interconnects (b) Channel-type interconnect

LABs

FIGURE 10–17 LUT CPLDs have row/column interconnects. Classic CPLDs have

channel-type interconnects.

574 Programmable Logic

BA BA

AB + AB + AB + AB

(a) PAL-type array

B

AB + AB

A BA

AB + AB

AB + AB

AB + AB

(b) PLA-type array

FIGURE 10–18 Comparison of a basic PLA to a basic PAL type PLD architecture.

TABLE 10–1

CPLD manufacturers.

Manufacturer Series Name Design Software Website

Altera MAX Quartus II Altera.com

Xilinx Coolrunner ISE Design Suite Xilinx.com

Lattice ispMACH ispLEVER classic Latticesemi.com

Atmel ATF ProChip Designer Atmel.com

TABLE 10–2

Selected CPLD parameters.

Feature Range

Number of macrocells 10–1700

Number of LABs 10–221

Maximum operating frequency 20.4 MHz–400 MHz

Number of I/Os 10–1156

DC operating voltage 1.8 V, 2.5 V, 3.3 V, 5 V

SECTION 10–2 CHECKUP

 1. What is a CPLD?

 2. What does LAB stand for?

 3. Describe a LAB in a typical CPLD.

 4. What is the purpose of a shared expander?

 5. What is the purpose of a parallel expander?

 6. How does a PLA differ from a PAL?

10–3 Macrocell Modes

CPLD macrocells were introduced previously. A macrocell can be configured for combina-

tional logic or registered logic outputs and inputs by programming. The term registered refers

to the use of flip-flops. In this section, you will learn about the typical macrocell, including

the combinational and the registered modes of operation. Although macrocell architecture

varies among different CPLDs, a typical macrocell architecture is used for illustration.

 Macrocell Modes 575

After completing this section, you should be able to

u Describe the operation of a typical CPLD macrocell

Logic diagrams often use the symbol shown in Figure 10–19 to represent a multiplexer.

In this case, the multiplexer has two data inputs and a select input that provides for pro-

grammable selection; the select input is usually not shown on a logic diagram.

Data output

Select (0 selects D0, 1 selects D1)

D0

D1

Data inputs

FIGURE 10–19 Commonly used symbol for a multiplexer. It can have any number of inputs.

Figure 10–20 shows a complete macrocell including the flip-flop (register). The XOR

gate provides for complementing the SOP function from the OR gate to produce a func-

tion in POS form. A 1 on the top input of the XOR gate complements the OR output, and

a 0 lets the OR output pass uncomplemented (in SOP form). MUX 1 provides for selection

of either the XOR output or an input from the I/O. MUX 2 can be programmed to select

either the global clock or a clock signal based on a product term. MUX 3 can be pro-

grammed to select either a HIGH (VCC) or a product-term enable for the flip-flop. MUX 4

can select the global clear or a product-term clear. MUX 5 is used to bypass the flip-flop

and connect the combinational logic output to the I/O or to connect the registered output

to the I/O. The flip-flop can be programmed as a D, T (toggle), or J-K flip-flop.

15 expander product
terms from other
macrocells

36 lines

from PIA

Shared
expander

Parallel expanders
from other
macrocells

To I/O

Product-
term

selection
matrix

D/T

C

EN

PRE

CLR

Q
MUX 1

MUX 2

MUX 3VCC

MUX 4

MUX 5

From
I/O

Global
clear

Global
clock

FIGURE 10–20 A CPLD macrocell.

The Combinational Mode

When a macrocell is programmed to produce an SOP combinational logic function, the

logic elements in the data path are as shown in red in Figure 10–21. As you can see, only

one mux is used and the register (flip-flop) is bypassed.

576 Programmable Logic

15 expander product
terms from other
macrocells

36 lines

from PIA

Shared
expander

Parallel expanders
from other
macrocells

To I/O

Product-
term

selection
matrix

D/T

C

EN

PRE

CLR

Q
MUX 1

MUX 2

MUX 3VCC

MUX 4

MUX 5

From
I/O

Global
clear

Global
clock

0

FIGURE 10–21 A macrocell configured for generation of an SOP logic function.

Red indicates data path.

15 expander product
terms from other
macrocells

36 lines

from PIA

Shared
expander

Parallel expanders
from other
macrocells

To I/O

Product-
term

selection
matrix

D/T

C

EN

PRE

CLR

Q
MUX 1

MUX 2

MUX 3VCC

MUX 4

MUX 5

From
I/O

Global
clear

Global
clock

0

FIGURE 10–22 A macrocell configured for generation of a registered logic function.

Red indicates data path.

The Registered Mode

When a macrocell is programmed for the registered mode with the SOP combinational

logic output providing the data input to the register and clocked by the global clock, the

elements in the data path are as shown in red in Figure 10–22. As you can see, four multi-

plexers (mux) are used and the register (flip-flop) is active.

 Field-Programmable Gate Arrays (FPGAs) 577

SECTION 10–3 CHECKUP

 1. Explain the purpose of the XOR gate in the macrocell.

 2. What are the two major modes of a macrocell?

 3. What does the term registered refer to?

 4. Besides the OR gate, XOR gate, and flip-flop, what other logic element is commonly

used in a macrocell?

10–4 Field-Programmable Gate Arrays (FPGAs)

As you have learned, the classic CPLD architecture consists of PAL/GAL or PLA-type logic

blocks with programmable interconnections. Basically, the FPGA (field-programmable gate

array) differs in architecture, does not use PAL/PLA type arrays, and has much greater

densities than CPLDs. A typical FPGA has many times more equivalent gates than a typical

CPLD. The logic-producing elements in FPGAs are generally much smaller than in CPLDs,

and there are many more of them. Also, the programmable interconnections are generally

organized in a row and column arrangement in FPGAs.

After completing this section, you should be able to

u Describe the basic structure of a field-programmable gate array (FPGA)

u Compare an FPGA to a CPLD

u Discuss look-up tables (LUTs)

u Discuss the SRAM-based FPGA

u Define the FPGA core

The three basic elements in an FPGA are the configurable logic block (CLB), the inter-

connections, and the input/output (I/O) blocks, as illustrated in Figure 10–23. The configu-

rable logic blocks (CLBs) in an FPGA are not as complex as the LABs or function blocks

(FBs) in a CPLD, but generally there are many more of them. When the CLBs are relatively

simple, the FPGA architecture is called fine grained. When the CLBs are larger and more

complex, the architecture is called coarse grained. The I/O blocks around the perimeter

of the structure provide individually selectable input, output, or bidirectional access to the

outside world. The distributed matrix of programmable interconnections provide for inter-

connection of the CLBs and connection to inputs and outputs. Large FPGAs can have tens

of thousands of CLBs in addition to memory and other resources.

Most programmable logic manufacturers make a series of FPGAs that range in density,

power consumption, supply voltage, speed, and to some degree vary in architecture. FPGAs

are reprogrammable and use SRAM or antifuse process technology for the programmable

links. Densities can range from hundreds of logic modules to hundreds of thousands of logic

modules in packages with up to over 1,000 pins. DC supply voltages are typically 1.8 V to

5 V, depending on the specific device.

Configurable Logic Blocks

Typically, an FPGA logic block consists of several smaller logic modules that are the basic

building units, somewhat analogous to macrocells in a CPLD. Figure 10–24 shows the

fundamental configurable logic blocks (CLBs) within the global row/column program-

mable interconnects that are used to connect logic blocks. Each CLB (also known as logic

array block, LAB) is made up of multiple smaller logic modules and a local programmable

interconnect that is used to connect logic modules within the CLB.

578

I/O

block

I/O

block

I/O

block

I/O

block

CLBCLB

Programmable
interconnections

I/O

block

I/O

block

I/O

block

I/O

block

block

I/O I/O

block

I/O

block

I/O

block

FPGA

I/O

block

I/O

block

I/O

block

I/O

block

CLB

CLB

CLB

CLB CLB

CLB

CLB CLB

CLB

CLB

FIGURE 10–23 Basic structure of an FPGA. CLB is configurable logic block, also known

as logic array block (LAB).

CLB

Logic module

Local
interconnect

Global column
interconnect

Logic module

Logic module

Logic module

CLB

Logic module

Local
interconnect

Logic module

Logic module

Logic module

Global row
interconnect

FIGURE 10–24 Basic configurable logic blocks (CLBs) within the global row/column

programmable interconnects.

 Field-Programmable Gate Arrays (FPGAs) 579

Logic Modules

A logic module in an FPGA logic block can be configured for combinational logic, regis-

tered logic, or a combination of both. A flip-flop is part of the associated logic and is used

for registered logic. A block diagram of a typical LUT-based logic module is shown in

Figure 10–25. As you know, an LUT (look-up table) is a type of memory that is program-

mable and used to generate SOP combinational logic functions. The LUT essentially does

the same job as the PAL or PLA does.

Logic module

I/O

SOP output
A0

A1

A2

An–1

LUT
Associated

logic

FIGURE 10–25 Basic block diagram of a logic module in an FPGA.

Generally, the organization of an LUT consists of a number of memory cells equal to 2n,

where n is the number of input variables. For example, three inputs can select up to eight

memory cells, so an LUT with three input variables can produce an SOP expression with

up to eight product terms. A pattern of 1s and 0s can be programmed into the LUT memory

cells, as illustrated in Figure 10–26 for a specified SOP function. Each 1 means the associ-

ated product term appears in the SOP output, and each 0 means that the associated product

term does not appear in the SOP output. The resulting SOP output expression is

A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

Memory
cells

A2A1A0

A1

Selection logic

A2A1A0

A2A1A0

A2A1A0

A2A1A0

1

0

0

1

0

A2A1A0 1

A2A1A0 0

A2A1A0 1

A0

A2

SOP output

LUT

FIGURE 10–26 The basic concept of an LUT programmed for a particular SOP output.

EXAMPLE 10–2

Show a basic 3-variable LUT programmed to produce the following SOP function:

A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

580 Programmable Logic

Operating Modes of a Logic Module

Typically, a logic module (LM) can be programmed for the following modes of operation:

• Normalmode

• ExtendedLUTmode

• Arithmeticmode

• Sharedarithmeticmode

In addition to these four modes, a logic module can be utilized as a register chain to cre-

ate counters and shift registers. In this section, we will discuss the normal mode and the

extended LUT mode.

The normal mode is used primarily for generating combinational logic functions. A

logic module can implement one or two combinational output functions with its two

LUTs. Examples of four LUT configurations are illustrated in Figure 10–28. Gener-

ally, two SOP functions, each with four variables or less, can be implemented in an

LM without sharing inputs. For example, you can have two 4-variable functions, one

4-variable function and one 3-variable function, or two 3-variable functions. By shar-

ing inputs, you can have any combination of a total of eight inputs up to a maximum

of six inputs for each LUT. In the normal mode, you are limited to 6-variable SOP

functions.

The extended LUT mode allows expansion to a 7-variable function, as illustrated in Fig-

ure 10–29. The multiplexer formed by the AND-OR circuit with a complemented input is

part of the dedicated logic in a logic module.

Related Problem

How many memory cells would be in an LUT with four input variables? What would be

the maximum possible number of product terms in the SOP output?

Solution

A 1 is stored for each product term in the SOP expression, as shown in Figure 10–27.

Memory
cells

A2A1A0

A1

Selection logic

A2A1A0

A2A1A0

A2A1A0

A2A1A0

0

1

0

1

1

A2A1A0 1

A2A1A0 1

A2A1A0 0

A0

A2

SOP output

FIGURE 10–27

 Field-Programmable Gate Arrays (FPGAs) 581

4-input
LUT

5-input
LUT

4-input
LUT

6-input
LUT

2-input
LUT

5-input
LUT

5-input
LUT

4-input
LUT

FIGURE 10–28 Examples of possible LUT configurations in a logic module (LM) in the

normal mode.

SOP output

5-input
LUT

5-input
LUT

LM

7 input
variables

FIGURE 10–29 Expansion of a logic module (LM) to produce a 7-variable SOP function

in the extended LUT mode.

EXAMPLE 10–3

A logic module is configured in the extended LUT mode, as shown in Figure 10–30. For the specific LUT outputs shown,

determine the final SOP output.

Solution

The SOP output expression is as follows:

A5A4A3A2A1A0 + A5A4A3A2A1A0 + A5A4A3A2A1A0 + A6A5A4A3A2A0 + A6A5A4A3A2A0 + A6A5A4A3A2A0

Related Problem

Show an LM configured in the normal mode to produce one SOP function with five product terms from one LUT and three

product terms from the other LUT.

582 Programmable Logic

SRAM-Based FPGAs

FPGAs are either nonvolatile because they are based on antifuse technology or they are

volatile because they are based on SRAM technology. (The term volatile means that all

the data programmed into the configurable logic blocks are lost when power is turned

off.) Therefore, SRAM-based FPGAs include either a nonvolatile configuration memory

embedded on the chip to store the program data and reconfigure the device each time power

is turned back on or they use an external memory with data transfer controlled by a host

processor. The concept of on-the-chip memory is illustrated in Figure 10–31(a). The con-

cept of the host processor configuration is shown in part (b).

A5A4A3A2A1 + A5A4A3A2A1 + A5A4A3A2A1

5-input
LUT

5-input
LUT

LM
A0

A1

A2

A3

A4

A5

A6

A6A5A4A3A2 + A6A5A4A3A2 + A6A5A4A3A2

FIGURE 10–30

Reprograms CLBs on

power up or resetNonvolatile

configuration

memory

(a) Volatile FPGA with on-the-chip nonvolatile configuration memory

Nonvolatile
configuration

memory

Volatile
FPGA

Host
processor

Programming
data

(b) Volatile FPGA with on-board memory and host processor

Programming
data

CLB

FIGURE 10–31 Basic concepts of volatile FPGA configurations.

 Field-Programmable Gate Arrays (FPGAs) 583

FPGA Cores

FPGAs, as we have discussed, are essentially like “blank slates” that the end user can pro-

gram for any logic design. FPGAs are available that also contain hard-core logic. A hard

core is a portion of logic in an FPGA that is put in by the manufacturer to provide a specific

function and that cannot be reprogrammed. For example, if a customer needs a small micro-

processor as part of a system design, it can be programmed into the FPGA by the customer

or it can be provided as hard core by the manufacturer. If the embedded function has some

programmable features, it is known as a soft-core function. An advantage of the hard-core

approach is that the same design can be implemented using much less of the available capac-

ity of the FPGA than if the user programmed it in the field, resulting in less space on the

chip (“real estate”) and less development time for the user. Also, hard-core functions have

been thoroughly tested. The disadvantage of the hard core is that the specifications are fixed

during manufacturing and the customer must be able to use the hard-core logic “as is.” It

cannot be changed later.

Hard cores are generally available for functions that are commonly used in digital sys-

tems, such as a microprocessor, standard input/output interfaces, and digital signal pro-

cessors. More than one hard-core function can be programmed in an FPGA. Figure 10–32

illustrates the concept of a hard core surrounded by configurable logic programmed by the

user. This is a basic embedded system because the hard-core function is embedded in the

user-programmed logic.

Remaining CLBs
are programmed
by user.

Hard core:
portion of CLBs

programmed during
manufacturing for a

specific function

FIGURE 10–32 Basic idea of a hard-core function embedded in an FPGA.

Hard core designs are generally developed by and are the property of the FPGA

manufacturer. Designs owned by the manufacturer are termed intellectual property

(IP). A company usually lists the types of intellectual property that are available on its

website. Some intellectual properties are a mix of hard core and soft core. A processor

that has some flexibility in the selection and adjustment of certain parameters by the

user is an example.

Those FPGAs containing either or both hard-core and soft-core embedded processors

and other functions are known as platform FPGAs because they can be used to implement

an entire system without the need for external support devices.

Embedded Functions

A block diagram of a typical FPGA is shown in Figure 10–33. The FPGA contains

embedded memory functions as well as digital signal processing (DSP) functions. DSP

functions, such as digital filters, are commonly used in many systems. As you can see

in the block diagram, the embedded blocks are arranged throughout the FPGA intercon-

nection matrix and input/output elements (IOEs) are placed around the FPGA perimeter.

584 Programmable Logic

Specific FPGA Devices

Several manufacturers produce FPGAs as well as CPLDs. Table 10–3 lists device families

from selected companies. Check the website for the most current information.

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs IOEs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

Embedded
memory
blocksI/O elements

Embedded
DSP
blocks

Embedded
memory
blocks

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

IOEs LABs LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABsLABsIOEs LABs LABs LABs LABs

Embedded
memory

block

I/O
elements

FIGURE 10–33 Example FPGA block diagram.

TABLE 10–3

FPGA manufacturers.

Manufacturer Series Name(s) Design Software Website

Altera Stratix Quartus II Altera.com

Aria

Cyclone

Xilinx Spartan ISE Design Suite Xilinx.com

Artix

Kintex

Virtex

Lattice iCE40 Lattice Diamond Latticesemi.com

MachX02 iCEcube2

Lattice ECP3

LatticeXP2

LatticeGC/M

Atmel AT40 IDS Atmel.com

FPGAs vary greatly in terms of complexity. Table 10–4 lists some of the parameter

ranges that are available. Keep in mind that these numbers are subject to change as technol-

ogy advances.

 Programmable Logic Software 585

TABLE 10–4

Selected FPGA parameters.

Feature Range

Number of LEs 1,500–813,000

Number of CLBs 26–359,000

Embedded memory 26 kb–63 Mb

Number of I/Os 18–1200

DC operating voltage 1.8 V, 2.5 V, 3.3 V, 5 V

10–5 Programmable Logic Software

In order to be useful, programmable logic must have both hardware and software compo-

nents combined into a functional unit. All manufacturers of SPLDs, CPLDs, and FPGAs

provide software support for each hardware device. These software packages are in a

category of software known as computer-aided design (CAD). In this section, program-

mable logic software is presented in a generic way using the traffic signal controller from

Chapters 6 and 7 Applied Logic for illustration. Tutorials for two types of software, Altera

Quartus II and Xilinx ISE, are provided on the website.

After completing this section, you should be able to

u Explain the programming process in terms of design flow

u Describe the design entry phase

u Describe the functional simulation phase

u Describe the synthesis phase

u Describe the implementation phase

u Describe the timing simulation phase

u Describe the download phase

The programming process is generally referred to as design flow. A basic design flow

diagram for implementing a logic design in a programmable device is shown in Figure

10–34. Most specific software packages incorporate these elements in one form or another

and process them automatically. The device being programmed is usually referred to as the

target device.

SECTION 10–4 CHECKUP

 1. How does an FPGA differ from a CPLD?

 2. What does CLB stand for?

 3. Describe an LUT and discuss its purpose.

 4. What is the difference between a local interconnect and a global interconnect in an

FPGA?

 5. What is an FPGA core?

 6. Define the term intellectual property in relation to an FPGA manufacturer.

 7. What produces combinational logic functions in an LM?

 8. Name the two types of embedded functions.

586 Programmable Logic

You must have four things to get started programming a device: a computer, develop-

ment software, a programmable logic device (SPLD, CPLD, or FPGA), and a way to con-

nect the device to the computer. These essentials are illustrated in Figure 10–35. Part (a)

shows a computer that meets the system requirements for the particular software you are

using. Part (b) shows the software acquired either on a CD from the device manufacturer

or downloaded from the device manufacturer’s website. Most manufacturers provide free

software that can be downloaded and used for a limited time (Examples are Altera Quartus

II and Xilinx ISE.). Part (c) shows a programmable logic device. Part (d) illustrates two

means of physically connecting the device to the computer via cable by using either the

Design entry

Synthesis

Device
programming
(downloading)

Timing
simulationFunctional

simulation

Implementation

Schematic

HDL

FIGURE 10–34 General design flow diagram for programming a SPLD, CPLD, or FPGA.

(a) Computer (b) Software (CD or Website download)

(c) Device (d) Programming hardware (programming fixture or development board with cable for

connection to computer port)

FIGURE 10–35 Essential elements for programming an SPLD, CPLD, or FPGA.

(d) photo courtesy of Digilent, Inc.

 Programmable Logic Software 587

programming fixture into which the device is inserted or the development board on which

the device is mounted. After the software has been installed on your computer, you must

become familiar with the particular software tools before attempting to connect and pro-

gram a device.

Design Entry

Assume that you have a logic circuit design that you wish to implement in a programmable

device. You can enter the design on your computer in either of two basic ways: schematic

entry or text entry. In order to use text entry, you must be familiar with an HDL such

as VHDL, Verilog, or AHDL. Most programmable logic manufacturers provide software

packages that support VHDL and Verilog because they are standard HDLs. Some also sup-

port AHDL, ABEL, or other proprietary HDLs. Schematic entry allows you to place sym-

bols of logic gates and other logic functions from a library on the screen and connect them

as required by your design. A knowlege of an HDL is not required for schematic entry.

Building a Logic Design

In addition to programming languages such as VHDL and Verilog, schematic capture can

also be used in PLD development. When you enter a complete logic circuit schematic on

the screen, it is called a “flat” schematic. Complex logic circuits may be hard to fit onto the

screen and difficult to read. You can enter logic circuits in segments, save each segment as

a block symbol, and then connect the block symbols graphically to form a complex circuit,

as shown in Figure 10–36 for the traffic signal controller (Chapters 6 and 7), which we will

use for illustration of the process. This is called a hierarchical approach.

Sequential Logic

Sequential Logic

Timing Circuits

inst

Combinational Logic

Combinational Logic

inst3

inst2

G0

G1

G0

MG

MY

MR

SG

SY

SR

Long Trigger
Short Trigger

Long Trigger

Clkin

Timing Circuits

L
o
n
g
 T

im
er

S
h
o
rt

 T
im

er

Short Trigger

G1

Vehicle
Sensor
Input

2-Bit
Gray
Code

OUTPUT MG

T
L

TL TS

T
S

Vs

Clk

OUTPUT MY

OUTPUT MRINPUT
VCC

Vs

INPUT
VCC

Clock

OUTPUT SG

OUTPUT SY

OUTPUT SR

FIGURE 10–36 Block diagram for the traffic signal controller.

The sequential logic section of the traffic signal controller is created using schematic

capture and compared to the same application created using VHDL. Figure 10–37 shows

the use of VHDL to create the sequential logic component of the system. The sequential

logic portion of the traffic light application was developed in Chapter 7. The code for the

expressions assigned to D0 and D1 are created straight from the Boolean expressions.

 D1 = G0TS + G1TS

 D0 = G1TLVs + G1G0 + G0TLVs

588 Programmable Logic

Figure 10–38(a) shows the sequential logic block created using schematic entry (also

known as schematic capture) techniques. Breaking the schematic into separate logic circuits

allows for functional compartmentalization and easier development. The Boolean expres-

sions are implemented using separate logic gates with graphical representation of wires and

I/O components needed to connect them. The completed and tested module is reduced to a

FIGURE 10–37 Text entry with VHDL description of the sequential logic for the traffic

signal controller.

Sequential Logic

Sequential Logic

inst

G0

G1

Vehicle
Sensor
Input

2-Bit
Gray
Code

T
L

T
S

Vs

Clk

(b)

FIGURE 10–38 The sequential logic using schematic entry.

(a)

 Programmable Logic Software 589

simple block symbol, as shown in Figure 10–38(b), and can be inserted as a component, as

shown in Figure 10–36. A block symbol can also be created using VHDL code.

Functional Simulation

The purpose of the functional simulation in the design flow is to make sure that the design

you entered works as it should in terms of its logic operation, before synthesizing into a

hardware design. Basically, after a logic circuit is compiled, it can then be simulated by

applying input waveforms and checking the output for all possible input combinations.

Functional simulation is accomplished graphically using a waveform editor or program-

matically using a test bench. Graphical waveform editors allow drawing of test stimulus

using waveform drawing features and drag and drop techniques.

Graphical Approach

Graphical generation tools allow for the easy creation of drawn stimulus waveforms for simple

testing applications. Graphical waveforms are created to provide the input stimulus for the

sequential logic component of the traffic signal control system as an example. Inputs Clk, TL,

TS, and VS will be created using graphical tools. Output identifiers G0 and G1 require no input

stimulus and are simply dragged and dropped into the Wave window. The clock definition is

created using the Define Clock feature to drive the system clock Clk and limit the simulation

run time. The offset, duty cycle, period, logic values, cancel, and initial edge are provided.

Inputs VS, TL, and TS are created using the same graphical techniques. You can view the

drawn stimulus waveforms prior to simulation. Typical windows are shown in Figure 10–39.

FIGURE 10–39 Functional simulation.

After you have specified the input waveforms, the simulation is ready to run. When

the simulation is started, the output waveforms for G0 and G1 will be displayed as shown

in Figure 10–40. This allows you to verify that the design is good or that it is working

properly. In this case, the output waveform is corrected to the selected input waveforms.

An incorrect output waveform would indicate a flaw in the functionality of the logic; you

would have to go back, check the original design, and then re-enter a revised design.

590 Programmable Logic

Test Bench Approach

A programmatic approach to design simulation is to create an additional program file

called a test bench. A test bench is similar in construction to the program code and is typi-

cally written in the same HDL as the original program. The test bench program can be as

complex as the original program. In this example, a test bench program is written to pro-

vide the input stimulus for the sequential logic component of the traffic signal controller.

The following test bench program is written in VHDL to simulate input waveforms for the

sequential logic module.

FIGURE 10–40 After the functional simulation is run, the output waveform should

indicate that the logic is functioning properly.

library IEEE;

use IEEE.std_logic_1164.all;

entity TestSL is

end entity TestSL;

architecture TestSLBehavior of TestSL is

component SequentialLogic is

port(VS, TL, TS, CLK: in std_logic;

 G0, G1: inout std_logic);

end component SequentialLogic;

signal VS, TL, TS, Clk, G0, G1: std_logic;

begin

 Clk_process:process

 begin

 for iterate in 1 to 10000

 loop

 CLK6=‘1’;

 wait for 50 us;

 CLK6=‘0’;

 wait for 50 us;

 end loop;

 wait;

 end process;

Input stimulus for the SequentialLogic unit under

test (UUT) is created programmatically within the

program so the entity is left blank.

Stimulus process for

CLKin input. A loop

structure is used to

limit the number clock

cycles to 10000.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

¸
˝
˛

 Programmable Logic Software 591

After the test bench simulation is run, the output waveform on the waveform editor

screen should indicate that the logic is functioning properly.

Synthesis

Once the design has been entered and functionally simulated to verify that its logical oper-

ation is correct, the compiler automatically goes through several phases to prepare the

design to be downloaded to the target device. During this synthesis phase of the design

flow, the design is optimized in terms of minimizing the number of gates, replacing logic

elements with other logic elements that can perform the same function more efficiently,

and eliminating any redundant logic. The final output from the synthesis phase is a netlist

that describes the optimized version of the logic circuit.

To demonstrate the process of design optimization, the schematic capture version

of the sequential logic section of the system is presented with redundant ORGates and

NotGates, as shown in Figure 10–41(a). The AND-OR logic that was entered in the

design entry phase, shown in Figure 10–41(a), could result in the optimized circuit

shown in Figure 10–41(b). In this illustration, the compiler removed two 2-input OR

gates and replaced them with a single 3-input OR gate. Also, one of the redundant

inverters was eliminated.

Netlist

A netlist is a connectivity list that describes components and how they are connected

together. Generally, a netlist contains references to descriptions of the components or

elements used. Each time a component, such as a logic gate, is used in a netlist, it is

called an instance. Each instance has a definition that lists the connections that can be

made to that kind of component and some basic properties of that component. These

connection points are called ports or pins. Usually, each instance will have a unique

name; for example, if you have two instances of AND gates, one might be “and1” and

the other “and2”. Aside from their names, they might otherwise be identical. Nets are

the “wires” that connect things together in the circuit. Net-based netlists usually describe

TLS_process: process

begin

 TL 6=‘0’;

 TS 6=‘1’;

 wait for 100 us;

 TL 6=‘1’;

 TS 6=‘0’;

 wait for 100 us;

 end process;

 stim_proc: process

 begin

 VS 6=‘0’;

 wait for 100 us;

 VS 6=‘1’;

 wait;

 end process;

UUT: SequentialLogic port map

(VS =7 VS, TL =7 TL, TS =7 TS, Clk =7 Clk, G0 =7 G0, G1 =7 G1);

end architecture TestSLBehavior;

Stimulus process for

TL and TS input.

Stimulus process for VSin

input.

Creating a separate stimulus

process for inputs CLK, TL, TS,

and VS allows for independent

control of the input identifiers.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˛

¸
˚
˚
˚
˚
˝
˚
˚
˚
˚
˛

592 Programmable Logic

all the instances and their attributes, then describe each net, and specify which port they

are connected to on each instance. The synthesis software generates a netlist, as shown

in Figure 10–42(a). The netlist indicates the type of information that is necessary to

describe a circuit. One format used for netlists is EDIF (Electronic Design Interchange

Format). Using the netlist, the software creates a schematic representation of the net

assignments, as shown in Figure 10–42(b).

Implementation (Software)

After the design has been synthesized, the compiler implements the design, which is basi-

cally a “mapping” of the design so that it will fit in the specific target device based on its

architecture and pin configurations. This process is called fitting or place and routing. To

accomplish the implementation phase of the design flow, the software must “know” about

the specific device and have detailed pin information. Complete data on all potential target

devices are generally stored in the software library.

Timing Simulation

This part of the design flow occurs after the implementation and before downloading to

the target device. The timing simulation verifies that the circuit works at the design fre-

quency and that there are no timing problems that will affect the overall operation. Since a

functional simulation has already been done, the circuit should work properly from a logic

(b) Logic after synthesis

FIGURE 10–41 Example of logic optimization during synthesis. The final version is

reduced by eliminating one inverter and combining two 2-input OR gates into a single

3-input OR gate.

(a) Original logic design

 Programmable Logic Software 593

point of view. The development software uses information about the specific target device,

such as propagation delays of the gates, to perform a timing simulation of the design. For

the functional simulation, the specification of the target device was not required; but for the

timing simulation, the target device must be chosen. The Waveform Editor can be used to

view the result of the timing simulation just as with the functional simulation, as illustrated

in Figure 10–43. If there are no problems with the timing, as shown in part (a), the design

is ready to download. However, suppose that the timing simulation reveals a “glitch” due to

propagation delay, as shown in Figure 10–43(b). A glitch is a very short duration spike in

the waveform. In this event, you would need to carefully analyze the design for the cause,

then re-enter the modified design, and repeat the design flow process. Remember, you have

not committed the design to hardware at this point.

(b) Schematic representation of netlist

FIGURE 10–42 Synthesis produces netlist and schematic for the optimized sequential logic.

Netlist(SequentialLogic)

Net<name>: instance<name>,<from>,<to>;

Instances: and0,and1,and2,and3,and4,or0,or1,inv0,inv1,inv2,DFF0,DFF1;

Input/outputs:l1,l2,l3,l4,O1,O2

net1: DFF0, inport2; DFF1, inport2; l1;

net2: and0, inport2; inv1, outport1; l2;

net3: inv0, outport1; and4, inport2; l3;

net4: and2, inport3, and4, inport4; l4;

net5: and2, inport2;

net6: DFF1, outport1; and0, inport1; inv2, output1; O0;

net7: DFF0, outport1; and1, inport2; and3, inport2; and4, inport1; O1;

net8: and1, inport1;

net9: and2, inport1; and3, inport1;

net10: or0, inport1;

net11: or0, inport2;

net12: or1, inport1;

net13: or1, inport2;

net14: or1, inport3;

net15: DFF1, inport1;

net16: DFF0, inport1;

end;

(a) Netlist

594 Programmable Logic

Device Programming (Downloading)

Once the functional and timing simulations have verified that the design is working properly, you

can initiate the download sequence. A bitstream is generated that represents the final design, and

it is sent to the target device to automatically configure it. Upon completion, the design is actually

in hardware and can be tested in-circuit. Figure 10–44 shows the basic concept of downloading.

Glitch

(b) Timing problem

FIGURE 10–43 Hypothetical examples of timing simulation results.

(a) Good result

11010001101111101001110

Bitstream

Target

device

FIGURE 10–44 Downloading a design to the target device. (Photo courtesy of Digilent, Inc.)

 Boundary Scan Logic 595

SECTION 10–5 CHECKUP

 1. List the phases of the design flow for programmable logic.

 2. List the essential elements for programming a CPLD or FPGA.

 3. What is the purpose of a netlist?

 4. Which comes first in the design flow, the functional simulation or the timing simulation?

10–6 Boundary Scan Logic

Boundary scan is used for both the testing and the programming of the internal logic of a

programmable device. The JTAG standard for boundary scan logic is specified by IEEE

Std. 1149.1. Most programmable logic devices are JTAG compliant. In this section, the

basic architecture of a JTAG IEEE Std. 1149.1 device is introduced and discussed in terms

of the details of its boundary scan register and control logic structure.

After completing this section, you should be able to

u Describe the required elements of a JTAG-compliant device

u List the mandatory JTAG inputs and outputs

u State the purpose of the boundary scan register

u State the purpose of the instruction register

u Explain what the bypass register is for

IEEE Std. 1149.1 Registers

All programmable logic devices that are compliant with IEEE Std. 1149.1 require the

elements shown in the simplified diagram in Figure 10–45. These are the boundary scan

register, the bypass register, the instruction register, and the TAP (test access port) logic.

Another register, the identification register, is optional and not shown in the figure.

Boundary Scan (BS) Register The interconnected BSCs (boundary scan cells) form

the boundary scan register. The serial input to the register is the TDI (test data in), and

the serial output is TDO (test data out). Data from the internal logic and the input and

output pins of the device can also be parallel shifted into the BS register. The BS regis-

ter is used to test connections between PLDs and the internal logic that has been pro-

grammed into the device.

Bypass (BP) Register This required data register (typically only one flip-flop) opti-

mizes the shifting process by shortening the path between the TDI and the TDO in case

the BS register or other data register is not used.

Instruction Register This required register stores instructions for the execution of var-

ious boundary scan operations.

Identification (ID) Register An identification register is an optional data register that is

not required by IEEE Std. 1149.1. However, it is used in some boundary scan architec-

tures to store a code that identifies the particular programmable device.

IEEE Std. 1149.1 Boundary Scan Instructions

Several standard instructions are used to control the boundary scan logic. In addition to

these, other optional instructions are available.

• BYPASS This instruction switches the BP register into the TDI/TDO path.

• EXTEST This instruction switches the BS register into the TDI/TDO path and

allows external pin tests and interconnection tests between the output of one pro-

grammable logic device and the input of another.

596 Programmable Logic

• INTEST This instruction switches the BS register into the TDI/TDO path and

allows testing of the internal programmed logic.

• SAMPLE/PRELOAD This instruction is used to sample data at the device input

pins and apply the data to the internal logic. Also, it is used to apply data (preload)

from the internal logic to the device output pins.

• IDCODE This instruction switches the optional identification register into the TDI/

TDO path so the ID code can be shifted out to the TDO.

IEEE Std. 1149.1 Test Access Port (TAP)

The Test Access Port (TAP) consists of control logic, four mandatory inputs and outputs,

and one defined optional input, Test Reset (TRST).

• Test Data In (TDI) The TDI provides for serially shifting test and programming

data as well as instructions into the boundary scan logic.

• Test Data Out (TDO) The TDO provides for serially shifting test and programming

data as well as instructions out of the boundary scan logic.

• Test Mode Select (TMS) The TMS switches between the states of the TAP controller.

• Test Clock (TCK) The TCK provides timing for the TAP controller which gener-

ates control signals for the data registers and the instruction register.

BSC BSC BSC BSC

BSCBSC

BSCBSC

BSCBSC

BSCBSC

BSCBSC

Bypass register

Instruction register

Test access port

TCK TRST TDOTMSTDI

Internal

programmable

logic

FIGURE 10–45 Greatly simplified diagram of a JTAG compliant (IEEE Std. 1149.1)

programmable logic device (CPLD or FPGA). The BSCs (boundary scan cells) form the

boundary scan register. Only a small number of BSCs are shown for illustration.

 Boundary Scan Logic 597

A block diagram of the boundary scan logic is shown in Figure 10–46. Both instruc-

tions and data are shifted in on the TDI line. The TAP controller directs instructions into

the instruction register or data into the appropriate data register. A decoded instruction from

the instruction decoder selects which data register is to be accessed via MUX 1 and also

if an instruction or data are to be shifted out on the TDO line via MUX 2. Also, a decoded

instruction provides for setting up the boundary scan register in one of five basic modes.

The boundary scan cell and its modes of operation are described next.

UPDATEIR

UPDATEDR

CLOCKIR

SHIFTIR

CLOCKDR

SHIFTDR

TMS

TAP control logic

TCK

Instruction register

Instruction
decoder

BS/ID/BP register select lines

BS register parallel data I/O select

TDO

Data/Instruction
register select lines

OE

Boundary scan (BS) register

Identification (ID) register*

Bypass (BP) register

Data registers (*optional)

TDI

MUX 2

MUX 1

FIGURE 10–46 Boundary scan logic diagram.

The Boundary Scan Cell (BSC)

The boundary scan register is made up of boundary scan cells. A block diagram of a basic

bidirectional BSC is shown in Figure 10–47. As indicated, data can be serially shifted in and

out of the BSC. Also, data can be shifted into the BSC from the internal programmable logic,

from a device input pin, or from the previous BSC. Additionally, data can be shifted out of the

BSC to the internal programmable logic, to a device output pin, or to the next BSC.

The architecture of a generic boundary scan cell is shown in Figure 10–48. The cell

consists of two identical logic circuits, each containing two flip-flops and two multiplexers.

Essentially, one circuit allows data to be shifted from the internal programmable logic or to

a device output pin. The other circuit allows data to be shifted from a device input pin or to

the internal programmable logic.

There are five modes in which the BSC can operate in terms of data flow. The first

BSC mode allows data to flow serially from the previous BSC to the next BSC, as illus-

trated in Figure 10–49. A 1 on the SHIFT input selects the SDI. The data on the SDI

line are clocked into Capture register A on the positive edge of the CLOCK. The data

are then clocked into Capture register B on the negative edge of the CLOCK and appear

598 Programmable Logic

on the SDO line. This is equivalent to serially shifting data through the boundary scan

register.

The second BSC mode allows data to flow directly from the internal programmable

logic to a device output pin, as illustrated in Figure 10–50. The 0 on the PDI/O (parallel

data I/O) control line selects the data from the internal programmable logic. The 1 on the

OE (output enable) line enables the output buffer.

Internal

programmable

logic

Data I/O

Serial data out
to next BSC

SDO

SDI

Serial data in
from previous BSC

BS
logic

BS
logic

FIGURE 10–47 A basic bidirectional BSC.

Serial data out to
next BSC

D

C

Capture register B

D

C

Update register B

Q Q

0

1

D

C

Capture register A

D

C

Update register A

Q Q

0

1

0

1

0

1

BSC

Internal

programmable

logic

SDO

SDI

Serial data in from
previous BSC

UPDATE

From TAP controller

CLOCKSHIFT

From instruction
register decoder

PDI/O

OE

I/O pin

FIGURE 10–48 Representative architecture of a typical boundary scan cell.

 Boundary Scan Logic 599

Capture register B Update register B

0

1

Capture register A

D

C

Update register A

Q

0

1

BSC

Internal

programmable

logic

SDO

SDI

UPDATECLOCKSHIFT PDI/O

OE

I/O pin

1

0

1

0

1

D

C

Q

D

C

Q D

C

Q

FIGURE 10–49 Data path for serially shifting data from one BSC to the next. There is

a 1 on the SHIFT input and a CLOCK pulse is applied. The red lines indicate data flow.

Capture register B

D

C

Update register B

Q

0

1

Capture register A

D

C

Update register A

Q

BSC

Internal

programmable

logic

SDO

SDI

UPDATECLOCKSHIFT PDI/O

OE

I/O pin0

1

D

C

Q

0

1

D

C

Q

0

1

0

1

FIGURE 10–50 Data path for transferring data from the internal programmable logic to

a device output pin. There is a 0 on the PDI/O line and a 1 on the OE line.

600 Programmable Logic

The third BSC mode allows data to flow directly from a device input pin to the internal

programmable logic, as illustrated in Figure 10–51. The 0 on the PDI/O (parallel data I/O)

control line selects the data from the input pin. The 0 on the OE (output enable) line dis-

ables the output buffer.

Serial data out to
next BSC

SDO

Capture register B

D

C

Update register B

Q

Capture register A

D

C

Update register A

Q

BSC

Internal

programmable

logic

SDI

UPDATECLOCKSHIFT PDI/O

OE

I/O pin0

1

D

C

Q

0

1

D

C

Q

0

0

0

1

0

1

FIGURE 10–51 Data path for transferring data from a device input pin to the internal

programmable logic. There is a 0 on the PDI/O line and a 0 on the OE line.

The fourth BSC mode allows data to flow from the SDI to the internal programmable

logic, as illustrated in Figure 10–52. A 1 on the SHIFT input selects the SDI. The data on

the SDI line are clocked into Capture register A on the positive edge of the CLOCK. The

data are then clocked into Capture register B on the negative edge of the CLOCK and

appear on the SDO line. A pulse on the UPDATE line clocks the data into Update register

B. A 1 on the PDI/O line selects the output of Update register B and applies it to the internal

programmable logic. The data also appear on the SDO line.

The fifth BSC mode allows data to flow from the SDI to a device output pin and to the

SDO line, as illustrated in Figure 10–53. A 1 on the SHIFT input selects the SDI. The data

on the SDI line are clocked into Capture register A on the positive edge of the CLOCK.

The data are then clocked into Capture register B on the negative edge of the CLOCK and

appear on the SDO line. A pulse on the UPDATE line clocks the data into Update register

A. With a 1 on OE, a 1 on the PDI/O line selects the output of Update register A and applies

it to the device output pin.

Boundary Scan Testing of Multiple Devices

Boundary scan testing can be applied to printed circuit boards on which multiple JTAG

(IEEE Std. 1149.1) devices are mounted to check interconnections as well as internal logic.

This concept is illustrated by tracing the path of data shown in red through the boundary

scan registers in Figure 10–54.

 Boundary Scan Logic 601

Capture register B Update register B

Capture register A Update register A

0

1

BSC

Internal

programmable

logic

SDO

SDI

UPDATECLOCKSHIFT PDI/O

OE

I/O pin

1

D

C

QD

C

Q

0

1

0

1

D

C

Q

1

0

0

1

D

C

Q

FIGURE 10–52 Data path for transferring data from the SDI to the internal programmable

logic and the SDO. There is a 1 on the SHIFT line, a 1 on the PDI/O line, and a 0 on the

OE line. A pulse is applied to the CLOCK line followed by a pulse on the UPDATE line.

Capture register B Update register B

0

1

Capture register A Update register A

BSC

Internal

programmable

logic

SDO

SDI

UPDATECLOCKSHIFT PDI/O

OE

I/O pin

1 1

1

0

1

0

1

D

C

Q D

C

Q

0

1

D

C

Q D

C

Q

FIGURE 10–53 Data path for transferring data from the SDI to a device output pin and

the SDO. There is a 1 on the SHIFT line, a 1 on the PDI/O line and a 1 on the OE line.

A pulse is applied to the CLOCK line followed by a pulse on the UPDATE line.

602 Programmable Logic

321

TDI

TMS

TCK

TDO

FIGURE 10–54 Basic concept of boundary scan testing of multiple devices and

interconnections. The test path is shown in red.

The bit is shifted into the TDI of device 1 and through the BS register of device 1 to a

cell where the connection to be tested goes to device 2. The bit is shifted out to the device

output pin and through the interconnection to the input pin of device 2. The bit continues

through the BS register of device 2 to an output pin and through the interconnection to the

input pin of device 3. It is then shifted through the BS register of device 3 to the TDO. If

the bit coming out of the TDO is the same as the bit going into the TDI, the boundary scan

cells through which it was shifted and the interconnections from device 1 to device 2 and

from device 2 to device 3 are good.

SECTION 10–6 CHECKUP

 1. List the boundary scan inputs and outputs required by IEEE Std.1149.1.

 2. What is the TAP?

 3. Name the mandatory registers in boundary scan logic.

 4. Describe five modes in which a boundary scan cell can operate in terms of data flow.

10–7 Troubleshooting

During program code development, simulation tools can be used to validate logic modules

for proper operation prior to PLD programming. Two basic ways to test a device that has

been programmed with a logic design are traditional and automated. Boundary scan is an

automated method used in this section. The focus is on simulation prior to device program-

ming and boundary scan testing once the PLD has been programmed.

After completing this section, you should be able to

u Explain troubleshooting techniques using waveform simulation

u Define break point

u Discuss boundary scan testing

 Troubleshooting 603

Troubleshooting with Waveform Simulation

As discussed, simulation waveform stimulus can be accomplished using a test bench pro-

gram or graphically using a waveform editor. The following illustration demonstrates sim-

ulation troubleshooting techniques applied to the SequentialLogic section of the traffic

signal controller created in VHDL.

Functional Simulation

Prior to download to the target device, simulation tools are useful to identify unexpected

behavior. In the following illustration, the waveform output in Figure 10–55 shows that

the sequential logic Gray code output from identifiers g0 and g1 does not respond to the

waveform test stimulus as expected. In a timing simulation, the PLD chip libraries are

loaded, and testing is conducted against a model of the target device where typically

outputs start at a zero state. In the functional simulation, the basic logic is tested. Since

functional simulation does not make assumptions about initial states, a circular depen-

dency could exist where the output of one function is used to determine the outcome of

a second where neither may be resolved. A break point can be inserted in the program

code to determine where undetermined states may exist, so they can be addressed in the

program code if needed. A break point is a flag placed within the program source code

where the application is stopped temporarily, allowing investigation of program identi-

fiers and the status of the I/O.

FIGURE 10–55

To investigate this behavior, you can insert a break point into the program code, so you

can view the condition of identifiers G0 and G1 as the simulation progresses.

In the sequential logic component of the traffic signal controller, identifiers D0 and

D1 are dependent on the output of flip-flops DFF0 and DFF1. Since D0 feeds DFF0, for

example, D0 could be in an undetermined state at startup, causing G0 to also be in an

undetermined state. The functional simulation would point this out as shown since G0

and G1 are left in an undetermined state. As shown in Figure 10–56, in this case, a break

point is set by right-clicking line number 22 and selecting “Set Breakpoint 22”. Multiple

break points may be defined as needed to investigate the behavior of the program under

simulation.

The simulation has stopped at the predefined break point inserted at identifier D0. By

examining the condition of the supporting identifiers D0, TL, VS and G1, you determine

the problem to be related to the D flip-flop components whose output value G1 is listed

as “U” or undefined. D0 is dependent on identifier G1 and the flip-flop. DFF1 is in turn

dependent on D1. The output of the flip-flop does not allow resolution of the Boolean

expressions assigned to D0 or D1.

604 Programmable Logic

Examining the D flip-flop definition, you see that the flip-flop simply writes the value

of the D input to output Q upon a rising clock edge. Figure 10–57(a) shows that the out-

put Q is not preinitialized, causing the output to start in an uninitialized state. To correct

this problem, a new signal QT is created and initialized to 0 in Figure 10–57(b). The

value of identifier D is written to signal QT upon a rising clock edge and QT is written

to output Q.

Hover over

identifiers to

view current

status

Simulation run

stopped at

break point

defined for

identifier D0.

FIGURE 10–56

Initializing the D flip-flop output to 0 allows the Boolean expressions for D0 and

D1 to resolve to a value of 1 or 0. A second simulation shows that the sequential logic

portion of the traffic signal controller is now able to output a valid Gray code, as shown

in Figure 10–58.

Signal QT allows for

the pre-initialization

of a 0 to output Q

FIGURE 10–57

(a) (b)

 Troubleshooting 605

FIGURE 10–58

TMS

TDI

TCK

Boundary-scan
cells

Programmable
logic

TDO

FIGURE 10–59 Basic concept of boundary scan logic in a programmable logic device.

Boundary Scan Testing

Limited access to test points led to the concept of placing the test points within the inte-

grated circuit devices themselves. Most CPLDs and FPGAs include boundary scan logic

as part of their internal structure independent of the functionality of the logic programmed

into the device. These devices are JTAG compliant.

A circuit, known as a boundary scan cell, is placed between the programmable logic

and each input and output pin of the device, as shown in Figure 10–59. The cells are

basically memory cells that store a 1 or a 0. The cells connected to the programmable

logic inputs are called input cells, and those connected to the programmable logic out-

puts are called output cells. Boundary scan testing is based on the JTAG standard

(IEEE Std. 1149.1). The four JTAG inputs and outputs—TDI (test data in), TDO (test

data out), TCK (test clock), and TMS (test mode select)—are known as the test access

port (TAP).

606 Programmable Logic

Intest

When boundary scan cells are used to test the internal functionality of the device, the

test mode is called Intest. The basic concept of boundary scan using Intest is as follows:

A software-driven pattern of 1s and 0s is shifted in via the TDI pin and is placed on the

programmable logic inputs. As a result of these applied input bits, the logic will produce

output bit(s) in response. The resulting output bit(s) is (are) then shifted out on the TDO pin

and checked for errors. An incorrect output, of course, indicates a fault in the programmed

logic, I/O cells, or boundary scan cells.

Figure 10–60 shows a boundary scan Intest pattern 1011 for an AND-OR logic circuit

that has been programmed into a device. Sixteen combinations of four TDI bits would test

the circuit in all possible states according to the list in Table 10–5. The 4-bit combinations

are serially shifted into the boundary scan cells, and the corresponding output is shifted out

on TDO for checking. This process is controlled by boundary scan test software.

TABLE 10–5

Boundary scan test bit
pattern for the programmed
device in Figure 10–60.

TDI TDO

0000 1

0001 1

0010 0

0011 1

0100 1

0101 1

0110 1

0111 1

1000 1

1001 1

1010 0

1011 1

1100 1

1101 1

1110 1

1111 1

TDO

TDI

TMS

1

0

1

1

1

TCK

FIGURE 10–60 Example of a bit pattern in the boundary scan Intest for the internal logic.

Extest

When boundary scan cells are used to test the external connections to the device in addi-

tion to some internal functionality, the test mode is called Extest. The basic concept of

boundary scan using Extest is as follows: A software-driven pattern of 1s and 0s is applied

to the input pins of the device and entered into the input cells. As a result of these applied

input bits, the logic will produce output bit(s) in response. The resulting output bit(s) is

(are) then taken from the output pin of the device and checked for errors. An incorrect

output, of course, indicates a fault in the input or output pin connections or interconnec-

tions, an incorrect device, or improperly installed device. Obviously, some internal faults

can also be detected in the Extest mode. For example, faults in the boundary scan cells,

I/O cells or certain faults in the programmed logic will produce an incorrect output. Fig-

ure 10–61 shows an example of a boundary scan Extest that tests the four inputs and the

output of the logic circuit.

 Troubleshooting 607

If a fault is detected in the Extest mode, it can be either external (a bad pin connec-

tion) or internal (a faulty connection, boundary scan cell, or logic element) to the device.

Therefore, in order to isolate an Extest detected fault, an Intest should be run following the

Extest. If both tests show a fault, then it is internal to the device.

In the Extest mode, it is necessary to probe contacts to the input and output pins of the

device. These pins have to be available at a connector to the circuit board or on test pads so

they can be checked by the automatic test equipment.

Boundary Scan Description Language (BSDL)

This test software is part of the JTAG standard IEEE 1149.1 and uses VHDL to describe

how the boundary scan logic is implemented in a specific device and how it operates.

BSDL provides a standard data format for describing how IEEE 1149.1 is implemented

in a JTAG-compliant device. When you use boundary scan test software tools that support

BSDL, you can usually obtain BSDL from the device manufacturer.

Each device that contains dedicated boundary scan logic is supported by a BSDL file

that describes that particular device. Certain things described in the BSDL file include the

device type and descriptions of the I/O pins and TAP (test access port) pins. BSDL also

provides a mapping of logical signals onto the physical pins and a description of the bound-

ary scan logic architecture contained in the device. A bit test pattern for testing the device

can be defined using BSDL.

TDO

TDI

TCK

TMS

1

0

1

1

1

FIGURE 10–61 Example of a bit pattern in the boundary scan Extest for external faults.

SECTION 10–7 CHECKUP

 1. Describe the purpose of a programmer-defined break point.

 2. Explain the basic concept of boundary scan.

 3. What are the two modes of boundary scan test?

 4. Name four JTAG signals used with boundary scan.

 5. What is BSDL?

608 Programmable Logic

Applied Logic

Elevator Controller: Part 2

In this section, the elevator controller that was introduced in the Applied Logic in Chap-

ter 9 will be programmed for implementation in a PLD. Refer to Chapter 9 to review the

elevator operation. The logic diagram is repeated in Figure 10–62 with labels changed to

facilitate programming.

CallCode

Floor
Counter

CALL/REQ FF

Q

J K

1

FlrCodeIn

CALL/REQ Code Register

FLRCALL/FLRCNT
Comparator

7-Segment
Decoder

7-segment
display of

floor number

Timer

Enable

QOut

Sensor

(Floorpulse)
CLK

FlrCodeCall

FlrCodeCnt

H0

H1

a-g

H2

FLRCODE

STOP/OPEN

CLOSE

SetCount
Sys Clk Clk

FRCLOUT

FRCNT

UP

DOWN

UP DOWN

PanelCode

FRIN

Request

CLK

CLK

CallEn

Not CallEn

Call
FlrCodeOut

FIGURE 10–62 Programming model of the elevator controller.

The VHDL program code for the elevator controller will include component definitions

for the Floor Counter, the FLRCALL/FLRCNT Comparator, the Code Register, the Timer,

the Seven-Segment Decoder, and the CALL/REQ Flip-Flop. The VHDL program codes

for these six components are as follows. (Blue annotated notes are not part of the program.)

 Applied Logic 609

Floor Counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity FLOORCOUNTER is

 port (UP, DOWN, Sensor: in std_logic;

 FLRCODE: out std_logic_vector(2 downto 0));

end entity FLOORCOUNTER;

architecture LogicOperation of FLOORCOUNTER is

signal FloorCnt: unsigned(2 downto 0) := “000”;

begin

process(UP, DOWN, Sensor, FloorCnt)

begin

FLRCODE 6= std_logic_vector(FloorCnt);

if (Sensor’EVENT and Sensor = ‘1’) then

if UP = ‘1’ and DOWN = ‘0’ then

FloorCnt 6= FloorCnt + 1;

elsif Up = ‘0’ and DOWN = ‘1’ then

FloorCnt 6= FloorCnt - 1;

end if;

end if;

end process;

end architecture LogicOperation;

FLRCALL/FLRCNT Comparator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity FLRCALLCOMPARATOR is

 port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

UP, DOWN, STOP: inout std_logic;

end entity FLRCALLCOMPARATOR;

architecture LogicOperation of FLRCALLCOMPARATOR is

begin

STOP 6= ‘1’ when (FlrCodeCall = FlrCodeCnt) else ‘0’;

UP 6= ‘1’ when (FlrCodeCall 7 FlrCodeCnt) else ‘0’;

DOWN 6= ‘1’ when (FlrCodeCall 6 FlrCodeCnt) else ‘0’;

end architecture LogicOperation;

ieee.numeric_std_all is included to enable casting of

unsigned identifier. Unsigned FloorCnt is converted to

std_logic_vector.

Floor count is initialized to 000.

Numeric unsigned FloorCnt is con-

verted to std_logic_vector data type

and sent to std_logic_vector output

FLRCODE.

Sensor event high pulse causes the

floor count to increment when UP

is set high or decrement by one

when DOWN is set low.

UP, DOWN: Floor count

 direction signals

Sensor: Elevator car floor

sensor

FLRCODE: 3-digit floor

count
¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

FlrCodeCall, FlrCodeCnt:

Compared values

UP, DOWN, STOP: Output

control signals

STOP, UP, and DOWN

signals are set or reset

based on =, 7, and 6

relational comparisons.

¸̋
˛

¸
˚
˚
˝
˚
˚
˛

610 Programmable Logic

Code Register

library ieee;

use ieee.std_logic_1164.all;

entity CODEREGISTER is

port (Clk: in std_logic;

FlrCodeIn: in std_logic_vector(0 to 2);

FlrCodeOut: out std_logic_vector(0 to 2));

end entity CODEREGISTER;

architecture LogicOperation of CODEREGISTER is

begin

process(Clk)

begin

if (Clk ‘event and Clk= ‘1’) then

FlrCodeOut 6= FlrCodeIn;

end if;

end process;

end architecture LogicOperation;

Timer

library ieee;

use ieee.std_logic_1164.all;

entity Timer is

 port (Enable, Clk: in std_logic;

SetCount: in integer range 0 to 1023;

QOut: inout std_logic);

end entity Timer;

architecture TimerBehavior of Timer is

begin

process(Enable, Clk)

variable Cnt: integer range 0 to 1023;

begin

if (Clk’EVENT and Clk = ‘1’) then

if Enable = ‘0’ then

Cnt := 0; QOut 6= ‘0’;

end if;

if Cnt = SetCount then

QOut 6= ‘1’;

Cnt := 0;

else

Cnt := Cnt + 1;

end if;

end if;

end process;

end architecture TimerBehavior;

Clk event high pulse sends the

FlrCodeIn floor number to FlrCodeOut.

Clk: Clk Pulse input

FlrCodeIn: 3-digit floor panel input

FlrCodeOut: 3-digit floor panel output

¸
˚
˚
˝
˚
˚
˛

¸
˝
˛

¸
˚˚
˝
˚
˚˛

Enable: Enable timer count input

Clk: Timer clock input

SetCount: Counter set input. Limit

to 1023 for ten bits.

QOut: Counter output

Integer variable Cnt range limited to 1023

for ten bits used to count from 0 to terminal

count from integer port input SetCount.

When a Clk clock event is HIGH, input

 Enable is checked for a ‘0’ to clear Cnt and

 output Qout. If Cnt is equal to SetCount,

then output QOut is set to ‘1’ ending the

count. If the terminal count in SetCount has

not been reached, Cnt is incremented by one

and the count process continues.

¸
˚
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

 Applied Logic 611

Seven Segment Decoder

library ieee;

use ieee.std_logic_1164.all;

entity SevenSegment is

port (a, b, c, d, e, f, g: out std_logic; H0, H1, H2: inout std_logic);

end entity SevenSegment;

architecture SevenSegmentBehavior of SevenSegment is

begin

a 6= H1 or (H2 and H0) or (not H2 and not H0);

b 6= not H2 or (not H0 and not H1) or (H0 and H1);

c 6= H0 or not H1 or H2;

d 6= (not H0 and not H2) or (not H2 and H1) or

 (H1 and not H0) or (H2 and not H1 and H0);

e 6= (not H0 and not H2) or (H1 and not H0);

f 6= (not H1 and H2) or (not H1 and not H0) or (H2 and not H0);

g 6= (not H2 and H1) or (H1 and not H0) or (H2 and not H1);

end architecture SevenSegmentBehavior;

CALL/REQ FF

library ieee;

use ieee.std_logic_1164.all;

entity JKFlipFlop is

port (J,K,Clk: in std_logic; Q: inout std_logic);

end entity JKFlipFlop;

architecture LogicOperation of JKFlipFlop is

signal QNot: std_logic := ‘1’;

begin

process (J, K, Clk)

begin

if (Clk’EVENT and Clk = ‘1’) then

if J = ‘1’ and K = ‘0’ then

Q 6= ‘1’;

elsif J = ‘0’ and K = ‘1’ then

Q 6= ‘0’;

elsif J = ‘1’ and K = ‘1’ then

Q 6= QNot;

end if;

end if;

end process;

QNot 6= not Q;

end architecture LogicOperation;

Seven-segment logic operation

a, b, c, d, e, f, g: Seven-segment

display element output

H0, H1, H2: Hexadecimal

count input

¸̋
˛

¸
˚

˚
˚

˚
˝

˚
˚

˚
˛

612 Programmable Logic

The complete VHDL program code for the elevator controller using the previously de-

fined components is as follows. Comments shown in green preceded by two hyphens are

for explanatory purposes and are not recognized by the program for processing purposes.

Elevator Controller

library ieee;

use ieee.std_logic_1164.all;

entity ELEVATOR is

port (CallCode, PanelCode: in std_logic_vector(2 downto 0);

Call, Request, Sensor, Clk: in std_logic;

UP, DOWN, STOPOPEN, CLOSE: inout std_logic;

a, b, c, d, e, f, g: out std_logic);

end entity ELEVATOR;

architecture LogicOperation of ELEVATOR is

component FLOORCOUNTER is

port (UP, DOWN, Sensor: in std_logic;

FLRCODE: out std_logic_vector(2 downto 0));

end component FLOORCOUNTER;

component FLRCALLCOMPARATOR is

port (FlrCodeCall, FlrCodeCnt: in std_logic_vector(2 downto 0);

UP, DOWN, STOP : inout std_logic);

end component FLRCALLCOMPARATOR;

component CODEREGISTER

port (Clk: in std_logic;

FlrCodeIn: in std_logic_vector(0 to 2);

FlrCodeOut: out std_logic_vector(0 to 2));

end component CODEREGISTER;

component Timer is

port (Enable, Clk: in std_logic;

SetCount: in integer range 0 to 1023;

QOut: inout std_logic);

end component Timer;

component SevenSegment is

Port (a, b, c, d, e, f, g: out std_logic;

H0, H1, H2: inout std_logic);

end component SevenSegment;

component JKFlipFlop

port (J, K, Clk: in std_logic;

Q: out std_logic);

end component JKFlipFlop;

CallCode: Request number from

floor

PanelCode: Request number

from car

Call: Request pulse for CallCode

Request: Request pulse for

PanelCode

Sensor: Floor level pulse input

Clk: Elevator system clock

UP, DOWN: Direction for

elevator car

STOPOPEN: Motor stop and

door open command

CLOSE: Door close command

¸
˚
˝
˚
˛

¸
˝
˛

Component definition for

FLOOR COUNTER

Component definition for

FLRCALL/FLRCNT

COMPARATOR

Component definition for

CODEREGISTER

Component defintion for Timer

Component definition for SevenSegment

Decoder

Component definition for CALL/REQ flip-flop
¸
˝
˛

¸
˝
˛

¸
˝
˛

¸̋
˛

¸
˝
˛

 Applied Logic 613

-- Signal definitions used to interconnect components and output control signals

signal FRCNT, FRCLOUT, FRIN: std_logic_vector(0 to 2);

signal CallEn: std_logic;

begin

Gnd 6= ‘0’;

process (CallEn, CallCode, PanelCode) -- Select Floor or Panel call code based on

 begin CALL/REQ

if (CallEn = ‘1’) then

FRIN 6= CallCode; -- If CALL Enabled, select code from call buttons from floor

else

FRIN 6= PanelCode; -- If CALL not Enabled, select code from elevator

end if; panel buttons

end process;

-- Component instantiations

CALLREQ: JKFlipFlop port map(J=7‘1’, K=7‘1’, Clk=7Close, Q=7 CallEn);

CODEREG: CODEREGISTER port map(Call =7 (Call and CallEn) or (Request and not

CallEn), FlrCodeIn=7 FRIN, FlrCodeOut =7 FRCLOUT);

FLCLCOMP: FLRCALLCOMPARATOR port map(FlrCodeCall=7 FRCL

FlrCodeCnt =7 FRCNT, Up=7UP, Down=7DOWN, Stop=7STOPOPEN);

FLRCNT: FLOORCOUNTER port map(UP=7UP, DOWN=7DOWN, Sensor=7Sensor,

FLRCODE=7FRCNT);

DISPLAY: SevenSegment port map(a=7a,b=7b,c=7c,d=7d,e=7e,f=7f,g=7g,

H0=7FRCNT(2),H1=7FRCNT(1),H2=7FRCNT(0));

TIMER1: Timer port map (Enable=7STOPOPEN, Clk=7 Clk,SetCount=710,

QOut=7Close);

end architecture LogicOperation;

The Programming and PLD Implementation Process

The elevator controller is implemented in a PLD using Altera Quartus II and ModelSim

software. The Altera Quartus II software package is an integrated development envi-

ronment (IDE) supplied by Altera for the creation of HDL applications combined with

the ModelSim simulation software. A short summary of the programming process and

PLD implementation follows. An expanded description of the elevator controller pro-

gramming process can be found on the website as well as an Altera Quartus II tutorial.

Altera Quartus II is available as a free download from Altera.com.

Project Creation To start the programming process, a project is created. A project allows

the IDE to identify a location to store your application and to create self-generated support

files needed to organize your application as well as to keep track of project preferences,

rules, and definitions.

Project Definition To complete the project, you will need to respond to general ques-

tions defining the location of your project, the PLD device to be used, and the primary

language. Additional questions will determine how you will simulate and verify your

application.

614 Programmable Logic

Completed Project Definition With the project definitions completed, the VHDL pro-

gram source code for the previously defined components and Elevator Controller files are

added to your project.

Compiling the Application By compiling the program at this time, part of the input and

output identifier information is automatically entered as you are now ready to make pin as-

signments to your I/O port identifiers. However, the basic design can be simulated before

making the pin assignments.

Graphical Waveform Simulation In order to simulate the elevator controller design, first

start the ModelSim application. Graphical waveform generation tools allow for the easy

creation of stimulus waveforms. Graphical waveforms are created to provide the input

stimulus to test the elevator controller application. Inputs call, request, callcode, panel-

code, sensor, and clk will be created using graphical tools. Output identifiers up, down,

stopopen, close, and seven-segment outputs a through g require no input stimulus.

Pin Assignments A pin assignment editor is used to associate an I/O port identifier with

an external pin. Many newer pin editors utilize drag-and-drop features to allow the user to

select an identifier with the mouse, then drag and drop to a graphic representation of the

target device. Pin assignments can also be accomplished using traditional text entry.

Device Programming With the pins selected and saved, the project is recompiled once

again, generating the output file to be loaded on the target device (PLD). The second com-

piling operation associates the selected pin to the program identifier. In order to program

the target device, the project board on which it is mounted must be connected to the pro-

gramming computer according to the project board manufacturer’s instructions. The target

device is typically JTAG compliant and connected through a USB port. Other JTAG com-

pliant target boards may use other inputs such as Ethernet, serial, parallel, or FireWire as

described by the manufacturer.

Downloading to the PLD With the simulation, pin assignment, and recompiling com-

plete, it is time to download the application to the development environment (project board

with PLD).

Hardware Testing With the project loaded, the application can be tested against actual

hardware.

Putting Your Knowledge to Work

Modify the elevator controller program for a building with ten floors rather than eight.

SUMMARY

• APALisaone-timeprogrammable(OTP)SPLDconsistingofaprogrammablearrayofAND
gates that connects to a fixed array of OR gates.

• ThePALstructureallowsanysum-of-products(SOP)logicexpressionwithadefinednumberof
variables to be implemented.

• TheGALisessentiallyaPALthatcanbereprogrammed.

• InaPALorGAL,amacrocellgenerallyconsistsofoneORgateandsomeassociatedoutputlogic.

• ACPLDisacomplexprogrammablelogicdevicethatconsistsbasicallyofmultipleSPLD
arrays with programmable interconnections.

• EachSPLDarrayinaCPLDiscalledalogicarrayblock(LAB).

• Amacrocellcanbeconfiguredforeitheroftwomodes:thecombinationalmodeortheregis-

tered mode.

 Key Terms 615

• AnFPGA(field-programmablegatearray)differsinarchitecture,doesnotusePAL/PLAtype
arrays, and has much greater densities than typical CPLDs.

• MostFPGAsuseeitherantifuseorSRAM-basedprocesstechnology.

• Eachconfigurablelogicblock(CLB)inanFPGAismadeupofmultiplesmallerlogicmodules
and a local programmable interconnect that is used to connect logic modules within the CLB.

• FPGAsarebasedonLUTarchitecture.

• LUTstandsforlook-up table, which is a type of memory that is programmable and used to

generate SOP combinational logic functions.

• AhardcoreisaportionoflogicembeddedinanFPGAthatisputinbythemanufacturerto
provide a specific function and which cannot be reprogrammed.

• AsoftcoreisaportionoflogicembeddedinanFPGAthathassomeprogrammablefeatures.

• Designsownedbythemanufactureraretermedintellectual property (IP).

• Theprogrammingprocessisgenerallyreferredtoasdesignflow.

• Thedevicebeingprogrammedisusuallyreferredtoasthetargetdevice.

• Insoftwarepackagesforprogrammablelogic,theoperationsarecontrolledbyanapplication
program called the compiler.

• Duringdownloading,abitstreamisgeneratedthatrepresentsthefinaldesign,anditissentto
the target device to automatically configure it.

• Amethodofinternallytestingaprogrammabledeviceiscalledboundaryscan,whichisbased
on the JTAG standard (IEEE Std. 1149.1).

• TheboundaryscanlogicinaCPLDconsistsofaboundaryscanregister,abypassregister,an
instruction register, and a test access port (TAP).

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Boundary scan A method for internally testing a PLD based on the JTAG standard (IEEE Std.

1149.1).

Break point A flag placed within a program source code to stop a program for investigation.

CLB Configurable logic block; a unit of logic in an FPGA that is made up of multiple smaller

logic modules and a local programmable interconnect that is used to connect logic modules within

the CLB.

Compiler An application program in development software packages that controls the operation

of the software.

CPLD A complex programmable logic device that consists basically of multiple SPLD arrays

with programmable interconnections.

Design flow The process or sequence of operations carried out to program a target device.

Downloading The final step in a design flow in which the logic design is implemented in the

target device.

FPGA Field-programmable gate array; a programmable logic device that uses the LUT as the

basic logic element and generally employs either antifuse or SRAM-based process technology.

Functional simulation A software process that tests the logical or functional operation of a design.

GAL A reprogrammable type of SPLD that is similar to a PAL except that it uses a reprogramma-

ble process technology, such as EEPROM (E2CMOS), instead of fuses.

Intellectual property (IP) Designs owned by a manufacturer of programmable logic devices.

LAB Logic array block; an SPLD array in a CPLD.

LUT Look-up table; a type of memory that can be programmed to produce SOP functions.

Macrocell Part of a PAL, GAL, or CPLD that generally consists of one OR gate and some associated

output logic.

PAL A type of one-time programmable SPLD that consists of a programmable array of AND

gates that connects to a fixed array of OR gates.

616 Programmable Logic

Registered A macrocell operational mode that uses a flip–flop.

Schematic entry A method of placing a logic design into software using schematic symbols.

Target device The programmable logic device that is being programmed.

Text entry A method of placing a logic design into software using a hardware description lan-

guage (HDL).

Timing simulation A software process that uses information on propagation delays and netlist

data to test both the logical operation and the worst-case timing of a design.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. A PAL consists of a programmable array of OR gates connected to a fixed array of AND gates.

 2. SPLD stands for simple programmable logic device.

 3. Typically, a macrocell consists of an AND gate and its associated output logic.

 4. CPLD stands for complex programmable logic device.

 5. An FGPA is a field programmable gate array.

 6. A typical FPGA has a greater gate density than a CPLD.

 7. Logic array blocks are found in CPLDs.

 8. The process of programming a PLD is known as design flow.

 9. The device being programmed is called a target device.

 10. Two types of programmable design entry are schematic and HDL.

SELF-TEST

Answers are at the end of the chapter.

 1. Two types of SPLDs are

(a) CPLD and PAL (b) PAL and FPGA

(c) PAL and GAL (d) GAL and SRAM

 2. A PAL is a logic device which is

(a) a one-time programmable

(b) an erasable programmable

(c) electronically erasable and programmable

(d) both (a) and (b)

 3. The factor that determines the adequacy of a GAL for a logic design is

(a) the number of inputs and outputs

(b) the number of equivalent gates or density

(c) the number of inverters involved

(d) both (a) and (b)

 4. A macrocell is part of a

(a) PAL (b) GAL (c) CPLD (d) answers (a), (b), and (c)

 5. The LUT, used in the LUT-CPLD architecture, is basically a memory that can be programmed

using

(a) POS functions (b) SOP functions

(c) product of complements (d) answers (a), (b), and (c)

 6. The term LAB stands for

(a) logic AND block (b) logic array block

(c) last asserted bit (d) logic assembly block

 7. Two modes of macrocell operation are

(a) input and output (b) registered and sequential

(c) combinational and registered (d) parallel and shared

 Self-Test 617

 8. The flip-flop used in a CPLD macrocell can be programmed as a

(a) D flip-flop (b) J-K flip-flop

(c) both (a) and (b) (d) neither (a) nor (b)

 9. A typical macrocell consists of

(a) gates, multiplexers, and a flip-flop

(b) gates and a shift register

(c) a Gray code counter

(d) a fixed logic array

 10. The basic elements of an FPGA are

(a) configurable logic blocks

(b) I/O blocks

(c) PAL arrays

(d) both (a) and (b)

 11. Nonvolatile FPGAs are generally based on

(a) fuse technology (b) antifuse technology

(c) EEPROM technology (d) SRAM technology

 12. When the configurable logic blocks in an FPGA are relatively simple, the FPGA architecture is

(a) fine grained (b) coarse grained

(c) hard core (d) soft core

 13. The logic module in an FPGA logic block can be configured for

(a) combinational logic (b) parallel mode logic

(c) registered logic (d) both (a) and (c)

 14. A logic module can be programmed for the following modes of operations:

(a) normal mode

(b) arithmetic and shared arithmetic mode

(c) extended LUT mode

(d) answers (a), (b), and (c)

 15. In a functional simulation, the user must specify the

(a) specific target device (b) output waveform

(c) input waveforms (d) HDL

 16. The final output of the synthesis phase of a design flow is the

(a) netlist (b) bitstream

(c) timing simulation (d) device pin numbers

 17. EDIF stands for

(a) electronic device interchange format

(b) electrical design integrated fixture

(c) electrically destructive input function

(d) electronic design interchange format

 18. The boundary scan TAP stands for

(a) test access point (b) test array port

(c) test access port (d) terminal access path

 19. A typical boundary scan cell contains

(a) flip–flops only

(b) flip–flops and multiplexer logic

(c) latches and flip–flops

(d) latches and an encoder

 20. The JTAG standard has the following inputs and outputs

(a) Intest, extest, TDI, TDO

(b) TDI, TDO, TCK, TMS

(c) ENT, CLK, SHF, CLR

(d) TCK, TMS, TMO, TLF

 21. The acronym BSDL stands for

(a) board standard digital logic

(b) boundary scan down load

(c) bistable digital latch

(d) boundary scan description language

618 Programmable Logic

 2. Show how the PAL-type array in Figure 10–64 should be programmed to implement each of

the following SOP expressions. Use an X to indicate a connected link.

(a) Y = ABC + ABC + ABC

(b) Y = ABC + A BC + ABC

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 10–1 Simple Programmable Logic Devices (SPLDs)

 1. Determine the Boolean output expression for the simple PAL array shown in Figure 10–63.

The Xs represent connected links.

BBAA CC

X

FIGURE 10–63

BBAA CC

X

FIGURE 10–64

 3. Modify the array in Figure 10–64 for the expression

Y = ABCD + ABCD + ABCD + A B C D

 4. Explain how a programmed polarity output in a PAL works.

Section 10–2 Complex Programmable Logic Devices (CPLDs)

 5. Describe how a CPLD differs from an SPLD.

 Problems 619

 6. Refer to the block diagram in Figure 10–9 and determine the number of

(a) inputs from the PIA to a LAB

(b) outputs from a LAB to the PIA

(c) inputs from an I/O control block to the PIA

(d) outputs from a LAB to an I/O control block

 7. Determine the product term for the AND gate in a CPLD array shown in Figure 10–65(a).

If the AND gate is expanded, as shown in Figure 10–65(b), determine the SOP output.

DE

(a)

A
B
C

(b)

A
B
C
D

X

X

FIGURE 10–65

 8. Determine the output of the macrocell logic in Figure 10–66 if ABCD + ABCD is applied to

the parallel expander input.

A
B
C
D

E
F
G
H

Parallel expander input

FIGURE 10–66

 9. Determine the output of the array in Figure 10–67. The Xs represent connected links.

BA BA

X

FIGURE 10–67

 10. Modify the array in Figure 10–67 to produce an output X = A B C + A B C + ABC + A B C

620 Programmable Logic

Section 10–3 Macrocell Modes

 12. Determine the data output for the multiplexer in Figure 10–69 for each of the following conditions:

(a) D0 = 1, D1 = 0, Select = 0

(b) D0 = 1, D1 = 0, Select = 1

DCBA

Product-term
array

1 2 16

Sum-term
array

16 macrocells

X2

X1

FIGURE 10–68

Data output

Select

D0

D1

FIGURE 10–69

 13. Determine how the macrocell in Figure 10–70 is configured (combinational or registered) and

the data bit that is on the output (to I/O) for each of the following conditions. The flip-flop is a

D type. Refer to Figure 10–69 for MUX data input arrangement.

(a) XOR output = 1, flip@flop Q output = 1, from I/O input = 1, MUX 1 select = 1,

 MUX 2 select = 0, MUX 3 select = 0, MUX 4 select = 0, and MUX 5 select = 0.

(b) XOR output = 0, flip@flop Q output = 0, from I/O input = 1, MUX 1 select = 1,

 MUX 2 select = 0, MUX 3 select = 1, MUX 4 select = 0, and MUX 5 select = 1.

 14. For the CPLD macrocell in Figure 10–71, the following conditions are programmed: MUX 1

 select = 1, MUX 2 select = 1, MUX 3 selects = 01, MUX 4 select = 0, MUX 5 select = 1,

 MUX 6 selects = 11, MUX 7 selects = 11, MUX 8 select = 1, and the OR output = 1. The

flip-flop is a D type and the MUX inputs are from D0 at the top to Dn at the bottom.

(a) Is the macrocell configured for combinational or registered logic?

(b) Which clock is applied to the flip-flop?

(c) What is the data bit on the D input to the flip-flop?

(d) What is the output of MUX 8?

 15. Repeat Problem 14 for MUX 1 select = 0.

 11. Determine the output expressions for X1 and X2 from macrocells 1 and 2 in Figure 10–68.

 Problems 621

Section 10–4 Field-Programmable Gate Arrays (FPGAs)

 16. Generally, what elements make up a configurable logic block (CLB) in an FPGA? What

 elements make up a logic module?

15 expander product
terms from other
macrocells

36 lines

from PIA

Shared
expander

Parallel expanders
from other
macrocells

To I/O

Product-
term

selection
matrix

D/T

C

EN

PRE

CLR

Q
MUX 1

MUX 2

MUX 3VCC

MUX 4

MUX 5

From
I/O

Global
clear

Global
clock

FIGURE 10–70

Product-term
array

1

To I/O

D/T

CE

CK

S

R

Q

MUX 2

MUX 7

MUX 8

From
I/O

40

 from AIM MUX 1

VCC (1)

GND (0)

PTC

Feedback
to AIM

PTA
CTS
GSR

GND

MUX 5
MUX 3

GCK0
GCK1

GCK2

MUX 4

CTC

PTC

MUX 6

CTS
GSR

PTA

GND

FIGURE 10–71

622 Programmable Logic

 18. Show how to reprogram the LUT in Figure 10–72 to produce the following SOP output:

ABC + AB C + ABC

 19. Show a logic module configured in the normal mode to produce one 4-variable SOP function

and one 2-variable SOP function.

 20. Determine the final SOP output function for the logic module shown in Figure 10–73.

Memory
cells

0

B

Selection logic

1

2

3

4

1

1

0

1

0

5 1

6 1

7 0

A

C

SOP output

FIGURE 10–72

4-input
LUT

4-input
LUT

A4A3A2A1 + A4A3A2A1

A5A3A2A1 + A5A3A2A1 + A5A3A2A1

FIGURE 10–73

Section 10–5 Programmable Logic Software

 21. Show the logic diagram that you would enter in the Graphic Editor for the circuit described by

each of the VHDL programs.

(a) entity AND_OR is

 port (A0, A1, A2, A3: in bit; X: out bit);

 end entity AND_OR;

 architecture LogicFunction of AND_OR is

 begin

 X 6= (A0 and A1) or (A2 and not A3);

 end architecture LogicFunction;

 17. Determine the output expression of the LUT for the internal conditions shown in Figure 10–72.

 Problems 623

(b) entity LogicCircuit is

 port (A, B, C, D: in bit; X: out bit);

 end entity LogicCircuit;

 architecture Function of LogicCircuit is

 begin

 X 6= (A and B) or (C and D) and

 (A and not B) and (not C and not D);

 end architecture Function;

 22. Show the logic circuit that you would enter in the Graphic Editor for the following Boolean

expression. Simplify before entering, if possible.

X = ABCD + ABCD + ABCD + ABCD + ABCD + A B C D

 23. The input waveforms for the logic circuit described in Problem 22 are as shown in the Wave-

form Editor of Figure 10–74. Determine the output waveform that is produced after running a

simulation.

Waveform Editor

Name:

A

4 s

B

C

D

X

µ1 sµ 8 sµ 12 sµ 16 sµ

0

0

0

0

X

FIGURE 10–74

 24. Repeat Problem 23 for the following Boolean expression:

X = ABCD + AB CD + ABCD + ABCD + ABCD

Section 10–6 Boundary Scan Logic

 25. In a given boundary scan cell, assume that data flow serially from the previous BCS to the next

BSC. Describe what happens as the data pass through the given BCS.

 26. Describe the conditions and what happens in a given BCS when data flow directly from the

internal programmable logic to a device output pin.

 27. Describe the conditions and what happens in a given BCD when data flow from a device input

pin to the internal programmable logic.

 28. Describe the data path for transferring data from the SDI to the internal programmable

logic.

624 Programmable Logic

TDO

TDI

TCK

TMS

FIGURE 10–75

ANSWERS

SECTION CHECKUPS

Section 10–1 Simple Programmable Logic Devices (SPLDs)

 1. PAL: Programmable Array Logic

 2. GAL: Generic Array Logic

 3. A GAL is reprogrammable. A PAL is one-time programmable.

 4. Basically, a macrocell consists of an OR gate and associated output logic including a flip-flop.

Section 10–2 Complex Programmable Logic Devices (CPLDs)

 1. CPLD: Complex Programmable Logic Device

 2. LAB: Logic Array Block

 3. A LAB consists of 16 macrocells in a typical CPLD.

 4. A shared expander is used to increase the number of product terms from a macrocell by

ANDing additional sum terms (complemented product terms) from other macrocells.

Section 10–7 Troubleshooting

 29. Develop a boundary scan test bit pattern to test the logic that is programmed into the device

shown in Figure 10–75 for all possible input combinations.

Applied Logic

 30. List the changes to Figure 10–62 required to use the elevator controller for a 16-story building

including a basement.

 31. Explain the purpose of the AND-OR logic associated with the CALL/REQ Code Register.

 32. Modify the VHLD code for the seven-segment decoder in order to add another floor to the

eight-floor building.

 Answers 625

 5. A parallel expander is used to increase the number of product terms from a macrocell by

ORing unused product terms from other macrocells in a LAB.

 6. A PLA has a programmable AND array and a programmable OR array. A PAL has a fixed

OR array.

Section 10–3 Macrocell Modes

 1. The XOR gate is used as a programmable inverter for the data. It can be programmed to invert

or not invert.

 2. Combinational and registered

 3. Registered refers to the use of a flip-flop.

 4. Multiplexer

Section 10–4 Field-Programmable Gate Arrays (FPGAs)

 1. Generally, an FPGA is organized with a row/column interconnect structure and uses LUTs

rather than AND/OR logic for generating combinational logic functions.

 2. CLB: Configurable Logic Block

 3. LUT: Look-Up Table. A programmable type of memory that is used to store and generate com-

binational logic functions.

 4. A local interconnect is used to connect logic modules within a CLB. A global interconnect is

used to connect a CLB with other CLBs.

 5. A core is a portion of logic embedded in an FPGA to provide a specific function.

 6. Intellectual property refers to the hard-core designs that are developed and owned by the FPGA

manufacturer.

 7. An LUT produces combinational logic functions in an LM.

 8. Memory and DSP (digital signal processing)

Section 10–5 Programmable Logic Software

 1. Design entry, functional simulation, synthesis, implementation, timing simulation, downloading

 2. Computer running PLD development software, a programming fixture or a development board,

and an interface cable

 3. A netlist provides information necessary to describe a circuit.

 4. The functional simulation comes before the timing simulation.

Section 10–6 Boundary Scan Logic

 1. TDI, TMS, TCK, TDO

 2. TAP: Test access port

 3. Boundary scan register, bypass register, instruction register, and TAP

 4. Transfer of data from SDI to SDO, transfer of data from internal programmable logic to device

output pin, transfer of data from device input pin to internal programmable logic, transfer of

data from SDI to internal programmable logic, and transfer of data from SDI to device output

pin and to the SDO line.

Section 10–7 Troubleshooting

 1. A break point is a user-defined location in a program where the simulation is stopped

 temporarily.

 2. Boundary scan enables the internal testing and programming of a programmable logic device

and testing of interconnections between two or more devices. It is based on the JTAG IEEE

Std. 1149.1. Boundary scan uses specific logic internal to the device for testing.

 3. Intest and Extest

 4. TDI, TDO, TCK, TMS

 5. BSDL: Boundary Scan Description Language

626 Programmable Logic

TRUE/FALSE QUIZ

 1. F 2. T 3. F 4. T 5. T

 6. T 7. F 8. T 9. T 10. T

SELF-TEST

 1. (c) 2. (a) 3. (d) 4. (d) 5. (b) 6. (b) 7. (c)

 8. (c) 9. (b) 10. (d) 11. (b) 12. (a) 13. (d) 14. (d)

 15. (c) 16. (a) 17. (d) 18. (c) 19. (b) 20. (b) 21. (d)

5-input
LUT

3-input
LUT

FIGURE 10–76

RELATED PROBLEMS FOR EXAMPLES

 10–1 X = BC + ABC + A B + C

 10–2 Sixteen; sixteen

 10–3 See Figure 10–76.

627

CHAPTER OUTLINE

11–1 Semiconductor Memory Basics

11–2 The Random-Access Memory (RAM)

11–3 The Read-Only Memory (ROM)

11–4 Programmable ROMs

11–5 The Flash Memory

11–6 Memory Expansion

11–7 Special Types of Memories

11–8 Magnetic and Optical Storage

11–9 Memory Hierarchy

11–10 Cloud Storage

11–11 Troubleshooting

CHAPTER OBJECTIVES

■ Define the basic memory characteristics

■ Explain what a RAM is and how it works

■ Explain the difference between static RAMs

(SRAMs) and dynamic RAMs (DRAMs)

■ Explain what a ROM is and how it works

■ Describe the various types of PROMs

■ Discuss the characteristics of a flash memory

■ Describe the expansion of ROMs and RAMs to

increase word length and word capacity

■ Discuss special types of memories such as FIFO

and LIFO

■ Describe the basic organization of magnetic disks

and magnetic tapes

■ Describe the basic operation of magneto-optical

disks and optical disks

■ Describe the key elements in a memory hierarchy

■ Describe several characteristics of cloud storage

■ Describe basic methods for memory testing

■ Develop flowcharts for memory testing

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

Chapter 8 covered shift registers, which are a type

of storage device. The memory devices covered

in this chapter are generally used for longer-term

 storage of larger amounts of data than registers

can provide.

Computers and other types of systems require

the permanent or semipermanent storage of large

amounts of binary data. Microprocessor-based

 systems rely on storage devices for their operation

because of the necessity for storing programs and

for retaining data during processing.

In this chapter semiconductor memories and

 magnetic and optical storage media are covered. Also,

memory hierarchy and cloud storage are discussed.

■ Memory

■ Byte

■ Word

■ Cell

■ Address

■ Capacity

■ Write

■ Read

■ RAM

■ ROM

■ SRAM

■ DRAM

■ Bus

■ PROM

■ EPROM

■ Flash memory

■ FIFO

■ LIFO

■ Hard disk

■ Blu-ray

■ Memory hierarchy

■ Cloud storage

■ Server

Data Storage

11

KEY TERMS

Key terms are in order of appearance in the chapter.

CHAPTER

628 Data Storage

11–1 Semiconductor Memory Basics

Memory is the portion of a computer or other system that stores binary data. In a com-

puter, memory is accessed millions of times per second, so the requirement for speed and

accuracy is paramount. Very fast semiconductor memory is available today in modules

with several GB (a gigabyte is one billion bytes) of capacity. These large-memory modules

use exactly the same operating principles as smaller units, so we will use smaller ones for

illustration in this chapter to simplify the concepts.

After completing this chapter, you should be able to

u Explain how a memory stores binary data

u Discuss the basic organization of a memory

u Describe the write operation

u Describe the read operation

u Describe the addressing operation

u Explain what RAMs and ROMs are

Units of Binary Data: Bits, Bytes, Nibbles, and Words

As a rule, memories store data in units that have from one to eight bits. The smallest unit

of binary data, as you know, is the bit. In many applications, data are handled in an 8-bit

unit called a byte or in multiples of 8-bit units. The byte can be split into two 4-bit units

that are called nibbles. Bytes can also be grouped into words. The term word can have two

meanings in computer terminology. In memories, it is defined as a group of bits or bytes

that acts as a single entity that can be stored in one memory location. In assembly language,

a word is specifically defined as two bytes.

The Basic Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called a cell. Memories

are made up of arrays of cells, as illustrated in Figure 11–1 using 64 cells as an example.

Each block in the memory array represents one storage cell, and its location can be identi-

fied by specifying a row and a column.

The 64-cell array can be organized in several ways based on units of data. Figure 11–1(a)

shows an 8 * 8 array, which can be viewed as either a 64-bit memory or an 8-byte memory.

Part (b) shows a 16 * 4 array, which is a 16-nibble memory, and part (c) shows a 64 * 1

InfoNote

The general definition of word is

a complete unit of information

consisting of a unit of binary

data. When applied to computer

instructions, a word is more

specifically defined as two bytes

(16 bits). As an important part

of assembly language used in

computers, the DW (Define Word)

directive means to define data

in 16-bit units. This definition

is independent of the particular

microprocessor or the size of

its data bus. Assembly language

also allows definitions of bytes

(8 bits) with the DB directive,

double words (32 bits) with the DD

directive, and quad-words (64 bits)

with the QD directive.
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(a) 8 × 8 array

1 2 3 4

(c) 64 × 1 array(b) 16 × 4 array

1

2

3

4

5

6

13

14

15

16

1

2

3

4

5

6

61

62

63

64

Memory cell

FIGURE 11–1 A 64-cell memory array organized in three different ways.

 Semiconductor Memory Basics 629

array, which is a 64-bit memory. A memory is identified by the number of words it can store

times the word size. For example, a 16k * 8 memory can store 16,384 words of eight bits

each. The inconsistency here is common in memory terminology. The actual number of

words is always a power of 2, which, in this case, is 214
= 16,384. However, it is common

practice to state the number to the nearest thousand, in this case, 16k.

Memory Address and Capacity

A representation of a small 8 * 8 memory chip is shown in Figure 11–2(a). The location of

a unit of data in a memory array is called its address. For example, in part (b), the address

of a bit in the 2-dimensional array is specified by the row and column as shown. In part (c),

the address of a byte is specified only by the row. So, as you can see, the address depends

on how the memory is organized into units of data. Personal computers have random-

access memories organized in bytes. This means that the smallest group of bits that can be

addressed is eight.

8 7 6 5 4 3 1
1

2
3

4
5

6
7

8

2

(a) Physical structure of 64-bit memory.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

(b) The address of the blue bit
is row 5, column 4.

1

2

3

4

5

6

7

8

(c) The address of the blue byte
 is row 3.

FIGURE 11–2 Examples of memory address in a 2-dimensional memory array.

Figure 11–3(a) illustrates the expansion of the 8 * 8 (64-bit) array to a 64-byte mem-

ory. The address of a byte in the array is specified by the row and column, as shown. In

this case, the smallest group of bits that can be accessed is eight. This can be viewed as a

3-dimensional array, as shown in part (b).

1
2

3

8

1 2 3 4 5 6 7 8

(a) The 8 � 8 bit array expanded to a 64 � 8 bit array. This array forms a memory module.

FIGURE 11–3 Example of memory address in an expanded (multiple) array.

1

2

3

4

5
Rows

Columns

Arrays

1
2

3
4

5
6

7
8

6

7

8

1 2 3 4 5 6 7 8

(b) The address of the blue byte is row 5, column 8.

The capacity of a memory is the total number of data units that can be stored. For

example, in the bit-organized memory array in Figure 11–2(b), the capacity is 64 bits. In

the byte-organized memory array in Figure 11–2(c), the capacity is 8 bytes, which is also

630 Data Storage

64 bits. In Figure 11–3, the capacity is 64 bytes. Computer memories typically have mul-

tiple gigabytes of internal memory. Computers usually transfer and store data as 64-bit

words, in which case all eight bits of row five in each chip in Figure 11–3(a) would be

accessed.

Memory Banks and Ranks

A bank is a section of memory within a single memory array (chip). A memory chip may

have one or more banks. Memory banks can be used for storing frequently used informa-

tion. Easier and faster access can be achieved by knowing the section of memory in which

the data are stored. A rank is a group of chips that make up a memory module that stores

data in units such as words or bytes. These terms are illustrated in Figure 11–4.

Bank

1 byte of data

1 2 3 4 5 6 7 8
Rank

64-bit (8-byte) word

FIGURE 11–4 Simple illustration of memory bank and memory rank.

Basic Memory Operations

Addressing is the process of accessing a specified location in memory. Since a memory

stores binary data, data must be put into the memory and data must be copied from the

memory when needed. The write operation puts data into a specified address in the mem-

ory, and the read operation copies data out of a specified address in the memory. The

addressing operation, which is part of both the write and the read operations, selects the

specified memory address.

Data units go into the memory during a write operation and come out of the memory

during a read operation on a set of lines called the data bus. As indicated in Figure 11–5,

the data bus is bidirectional, which means that data can go in either direction (into the

memory or out of the memory). In this case of byte-organized memories, the data bus has

at least eight lines so that all eight bits in a selected address are transferred in parallel. For

a write or a read operation, an address is selected by placing a binary code representing

the desired address on a set of lines called the address bus. The address code is decoded

internally, and the appropriate address is selected. In the case of the multiple-array memory

in Figure 11–5(b) there are two decoders, one for the rows and one for the columns. The

number of lines in the address bus depends on the capacity of the memory. For example, a

15-bit address code can select 32,768 locations (215) in the memory, a 16-bit address code

can select 65,536 locations (216) in the memory, and so on. In personal computers a 32-bit

address bus can select 4,294,967,296 locations (232), expressed as 4G.

The Write Operation

A simplified write operation is illustrated in Figure 11–6. To store a byte of data in the

memory, a code held in the address register is placed on the address bus. Once the address

code is on the bus, the address decoder decodes the address and selects the specified loca-

tion in the memory. The memory then gets a write command, and the data byte held in

the data register is placed on the data bus and stored in the selected memory address, thus

completing the write operation. When a new data byte is written into a memory address,

the current data byte stored at that address is overwritten (replaced with a new data byte).

 Semiconductor Memory Basics 631

Address
decoder

Address bus Data bus

Write

Memory array

Read

(a) Single-array memory

Row
address
decoder

Address bus Data bus

Write

Memory arrays

Read

(b) Multiple-array memory

Column address decoder

FIGURE 11–5 Block diagram of a single-array memory and a multiple-array memory

showing address bus, address decoder(s), bidirectional data bus, and read/write inputs.

7

6

5

4

3

2

1

0

Address register

Address bus

1

Address decoder

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 0 1

0

1

0

0

1

1

0

0

1

1

0

1

0

1

1

1

Data register

Data bus

2

Byte-organized memory array

3

Write

1 Address code 101 is placed on the address bus and address 5 is selected.

Data byte is placed on the data bus.

Write command causes the data byte to be stored in address 5, replacing previous data.

2

3

1 0 0 0 1 1 0 11 0 1

FIGURE 11–6 Illustration of the write operation.

632 Data Storage

The Read Operation

A simplified read operation is illustrated in Figure 11–7. Again, a code held in the address

register is placed on the address bus. Once the address code is on the bus, the address

decoder decodes the address and selects the specified location in the memory. The memory

then gets a read command, and a “copy” of the data byte that is stored in the selected

memory address is placed on the data bus and loaded into the data register, thus completing

the read operation. When a data byte is read from a memory address, it also remains stored

at that address. This is called nondestructive read.

7

6

5

4

3

2

1

0

Address decoder

Address register

Address bus

1

Data register

Data bus

3

Byte-organized memory array

2

Read

1 Address code 011 is placed on the address bus and address 3 is selected.

Read command is applied.

The contents of address 3 is placed on the data bus and shifted into data register.
The contents of address 3 is not erased by the read operation.

2

3

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

1 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1

0

1

0

0

1

1

0

0

1

1

0

1

0

1

1

1

1 1 0 0 0 0 0 10 1 1

FIGURE 11–7 Illustration of the read operation.

RAMs and ROMs

The two major categories of semiconductor memories are the RAM and the ROM. RAM

(random-access memory) is a type of memory in which all addresses are accessible in an

equal amount of time and can be selected in any order for a read or write operation. All

RAMs have both read and write capability. Because RAMs lose stored data when the

power is turned off, they are volatile memories.

ROM (read-only memory) is a type of memory in which data are stored permanently or

semipermanently. Data can be read from a ROM, but there is no write operation as in the

RAM. The ROM, like the RAM, is a random-access memory but the term RAM tradition-

ally means a random-access read/write memory. Several types of RAMs and ROMs will be

covered in this chapter. Because ROMs retain stored data even if power is turned off, they

are nonvolatile memories.

SECTION 11–1 CHECKUP

Answers are at the end of the chapter.

 1. What is the smallest unit of data that can be stored in a memory?

 2. What is the bit capacity of a memory that can store 256 bytes of data?

 The Random-Access Memory (RAM) 633

 3. What is a write operation?

 4. What is a read operation?

 5. How is a given unit of data located in a memory?

 6. Describe the difference between a RAM and a ROM.

11–2 The Random-Access Memory (RAM)

A RAM is a read/write memory in which data can be written into or read from any selected

address in any sequence. When a data unit is written into a given address in the RAM, the

data unit previously stored at that address is replaced by the new data unit. When a data unit

is read from a given address in the RAM, the data unit remains stored and is not erased by

the read operation. This nondestructive read operation can be viewed as copying the con-

tent of an address while leaving the content intact. A RAM is typically used for short-term

data storage because it cannot retain stored data when power is turned off.

After completing this section, you should be able to

u Name the two categories of RAM

u Explain what a SRAM is

u Describe the SRAM storage cell

u Explain the difference between an asynchronous SRAM and a synchronous burst

SRAM

u Explain the purpose of a cache memory

u Explain what a DRAM is

u Describe the DRAM storage cells

u Discuss the types of DRAM

u Compare the SRAM with the DRAM

The RAM Family

The two major categories of RAM are the static RAM (SRAM) and the dynamic RAM

(DRAM). SRAMs generally use latches as storage elements and can therefore store data

indefinitely as long as dc power is applied. DRAMs use capacitors as storage elements

and cannot retain data very long without the capacitors being recharged by a process called

refreshing. Both SRAMs and DRAMs will lose stored data when dc power is removed

and, therefore, are classified as volatile memories.

Data can be read much faster from SRAMs than from DRAMs. However, DRAMs can

store much more data than SRAMs for a given physical size and cost because the DRAM cell

is much simpler and more cells can be crammed into a given chip area than in the SRAM.

The basic types of SRAM are the asynchronous SRAM and the synchronous SRAM with

a burst feature. The basic types of DRAM are the Fast Page Mode DRAM (FPM DRAM),

the Extended Data Out DRAM (EDO DRAM), the Burst EDO DRAM (BEDO DRAM),

and the synchronous DRAM (SDRAM). These are shown in Figure 11–8.

Static RAMs (SRAMs)

Memory Cell

All SRAMs are characterized by latch memory cells. As long as dc power is applied to a

static memory cell, it can retain a 1 or 0 state indefinitely. If power is removed, the stored

data bit is lost.

634 Data Storage

Figure 11–9 shows a basic SRAM latch memory cell. The cell is selected by an active

level on the Select line and a data bit (1 or 0) is written into the cell by placing it on the Data

in line. A data bit is read by taking it off the Data out line.

Static
RAM

(SRAM)

Dynamic
RAM

(DRAM)

Asynchronous
SRAM

(ASRAM)

Synchronous
SRAM with
burst feature
(SB SRAM)

Extended
Data Out
DRAM

(EDO DRAM)

Burst
EDO DRAM

(BEDO
DRAM)

Fast Page
Mode

DRAM
(FPM DRAM)

Synchronous
DRAM

(SDRAM)

Random-
Access

Memory
(RAM)

FIGURE 11–8 The RAM family.

Select

Data in Data out

FIGURE 11–9 A typical SRAM latch memory cell.

Static Memory Cell Array

The memory cells in a SRAM are organized in rows and columns, as illustrated in Figure

11–10 for the case of an n * 4 array. All the cells in a row share the same Row Select line.

Each set of Data in and Data out lines go to each cell in a given column and are connected

to a single data line that serves as both an input and output (Data I/O) through the data input

and data output buffers.

To write a data unit, in this case a nibble (4 bits), into a given row of cells in the memory

array, the Row Select line is taken to its active state and four data bits are placed on the

Data I/O lines. The Write line is then taken to its active state, which causes each data bit to

be stored in a selected cell in the associated column. To read a data unit, the Read line is

taken to its active state, which causes the four data bits stored in the selected row to appear

on the Data I/O lines.

Basic Asynchronous SRAM Organization

An asynchronous SRAM is one in which the operation is not synchronized with a system

clock. To illustrate the general organization of a SRAM, a 32k * 8 bit memory is used. A

logic symbol for this memory is shown in Figure 11–11.

 The Random-Access Memory (RAM) 635

In the READ mode, the eight data bits that are stored in a selected address appear on the

data output lines. In the WRITE mode, the eight data bits that are applied to the data input

lines are stored at a selected address. The data input and data output lines (I/O0 through

I/O7) share the same lines. During READ, they act as output lines (O0 through O7) and

during WRITE they act as input lines (I0 through I7).

Tri-state Outputs and Buses

Tri-state buffers in a memory allow the data lines to act as either input or output lines and

connect the memory to the data bus in a computer. These buffers have three output states:

Row Select 1

Row Select 2

Row Select n

Row Select 0

Memory cell

Data Input/Output

Buffers and Control

Data I/O
Bit 0

Data I/O
Bit 1

Data I/O
Bit 2

Data I/O
Bit 3

FIGURE 11–10 Basic SRAM array.

RAM 32k×8

Address
lines

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A
0

32,767

OE

WE

CS [CHIP SELECT]

[WRITE]

[READ]

[OUTPUT ENABLE]

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7

Data inputs (I)
and outputs (O)

∆

∆

∆

∆

∆

∆

∆

∆

FIGURE 11–11 Logic diagram for an asynchronous 32k * 8 SRAM.

636 Data Storage

HIGH (1), LOW (0), and HIGH-Z (open). Tri-state outputs are indicated on logic symbols

by a small inverted triangle (�), as shown in Figure 11–11, and are used for compatibility

with bus structures such as those found in microprocessor-based systems.

Physically, a bus is one or more conductive paths that serve to interconnect two or

more functional components of a system or several diverse systems. Electrically, a bus is

a collection of specified voltage levels and/or current levels and signals that allow various

devices to communicate and work properly together.

A microprocessor is connected to memories and input/output devices by certain bus

structures. An address bus allows the microprocessor to address the memories, and a data

bus provides for transfer of data between the microprocessor, the memories, and the input/

output devices such as monitors, printers, keyboards, and modems. A control bus allows

the microprocessor to control data transfers and timing for the various components.

Memory Array

SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits), or multiple

bytes (words with 16, 24, 32 bits, etc.).

Figure 11–12 shows the organization of a small 32k * 8 SRAM. The memory cell array

is arranged in 256 rows and 128 columns, each with 8 bits, as shown in part (a). There are

actually 215
= 32,768 addresses and each address contains 8 bits. The capacity of this

example memory is 32,768 bytes (typically expressed as 32 kB). Although small by today’s

standards, this memory serves to introduce the basic concepts.

The SRAM in Figure 11–12(b) works as follows. First, the chip select, CS, must be

LOW for the memory to operate. (Other terms for chip select are enable or chip enable.)

Eight of the fifteen address lines are decoded by the row decoder to select one of the 256

rows. Seven of the fifteen address lines are decoded by the column decoder to select one

of the 128 8-bit columns.

Read

In the READ mode, the write enable input, WE, is HIGH and the output enable, OE, is

LOW. The input tri-state buffers are disabled by gate G1, and the column output tri-state

WE

256
rows

128 columns

8 bits

(a) Memory array configuration

Address lines

Eight

input tri-state

buffers

Row
decoder

Input
data

control
I/O7

I/O0

Address
lines

OE
G2

G1

Eight output tri-state buffers

Output
data

Column I/O

CS

(b) Memory block diagram

Column decoder

Memory arrays

256 rows ×
128 columns ×

8 bits

Memory arrays

256 rows ×
128 columns ×

8 bits

FIGURE 11–12 Basic organization of an asynchronous 32k * 8 SRAM.

 The Random-Access Memory (RAM) 637

buffers are enabled by gate G2. Therefore, the eight data bits from the selected address are

routed through the column I/O to the data lines (I/O0 though I/O7), which are acting as data

output lines.

Write

In the WRITE mode, WE is LOW and OE is HIGH. The input tri-state buffers are enabled

by gate G1, and the output tri-state buffers are disabled by gate G2. Therefore, the eight

input data bits on the data lines are routed through the input data control and the column

I/O to the selected address and stored.

Read and Write Cycles

Figure 11–13 shows typical timing diagrams for a memory read cycle and a write cycle.

For the read cycle shown in part (a), a valid address code is applied to the address lines for

a specified time interval called the read cycle time, tRC. Next, the chip select (CS) and the

output enable (OE) inputs go LOW. One time interval after the OE input goes LOW, a valid

data byte from the selected address appears on the data lines. This time interval is called the

output enable access time, tGQ. Two other access times for the read cycle are the address

access time, tAQ, measured from the beginning of a valid address to the appearance of valid

data on the data lines and the chip enable access time, tEQ, measured from the HIGH-to-

LOW transition of CS to the appearance of valid data on the data lines.

During each read cycle, one unit of data, a byte in this case, is read from the memory.

For the write cycle shown in Figure 11–13(b), a valid address code is applied to the

address lines for a specified time interval called the write cycle time, tWC. Next, the chip

tRC

Valid addressAddress

Valid data

tEQ

tGQ

tAQ

O (Data out)

(a) Read cycle (WE HIGH)

tWC

Valid addressAddress

tWD

ts(A)

CS (Chip select)

WE (Write enable)

I (Data in)

(b) Write cycle (WE LOW)

Valid data

th(D)

CS (Chip select)

OE (Output enable)

FIGURE 11–13 Timing diagrams for typical read and write cycles for the SRAM in

Figure 11–12.

638 Data Storage

select (CS) and the write enable (WE) inputs go LOW. The required time interval from the

beginning of a valid address until the WE input goes LOW is called the address setup time,

ts(A). The time that the WE input must be LOW is the write pulse width. The time that the

input WE must remain LOW after valid data are applied to the data inputs is designated

tWD; the time that the valid input data must remain on the data lines after the WE input goes

HIGH is the data hold time, th(D).

During each write cycle, one unit of data is written into the memory.

Synchronous SRAM with Burst Feature

Unlike the asynchronous SRAM, a synchronous SRAM is synchronized with the system

clock. For example, in a computer system, the synchronous SRAM operates with the same

clock signal that operates the microprocessor so that the microprocessor and memory are

synchronized for faster operation.

The fundamental concept of the synchronous feature of a SRAM can be shown with

Figure 11–14, which is a simplified block diagram of a 32k * 8 memory for purposes of

illustration. The synchronous SRAM is similar to the asynchronous SRAM in terms of

the memory array, address decoder, and read/write and enable inputs. The basic difference

is that the synchronous SRAM uses clocked registers to synchronize all inputs with the

system clock. The address, the read/write input, the chip enable, and the input data are all

latched into their respective registers on an active clock pulse edge. Once this information

is latched, the memory operation is in sync with the clock.

For the purpose of simplification, a notation for multiple parallel lines or bus lines is

introduced in Figure 11–14, as an alternative to drawing each line separately. A set of

Memory array

32k×8

Address

decoder

Burst

logic

A0 A1

A'0

A'1

Burst

control

CLK

Address

register

A0–A14

(external

address) 15 13
Data output

register is in

the pipelined

synchronous

SRAM.

There is no

Data output

register in the

flow-through

synchronous

SRAM.

15

Data input

register

8

8

8

Output

buffers

Data I/O

control

Write

register

Enable

register

8

WE

CS

OE

I/O0–I/O7

(Data I/O) 8

Data output

register

FIGURE 11–14 A basic block diagram of a synchronous SRAM with burst feature.

 The Random-Access Memory (RAM) 639

 parallel lines can be indicated by a single heavy line with a slash and the number of sepa-

rate lines in the set. For example, the following notation represents a set of 8 parallel lines:

8

The address bits A0 through A14 are latched into the Address register on the positive edge

of a clock pulse. On the same clock pulse, the state of the write enable (WE) line and chip

select (CS) are latched into the Write register and the Enable register respectively. These are

one-bit registers or simply flip-flops. Also, on the same clock pulse the input data are latched

into the Data input register for a Write operation, and data in a selected memory address are

latched into the Data output register for a Read operation, as determined by the Data I/O

control based on inputs from the Write register, Enable register, and the Output enable (OE).

Two basic types of synchronous SRAM are the flow-through and the pipelined. The

flow-through synchronous SRAM does not have a Data output register, so the output data

flow asynchronously to the data I/O lines through the output buffers. The pipelined syn-

chronous SRAM has a Data output register, as shown in Figure 11–14, so the output data

are synchronously placed on the data I/O lines.

The Burst Feature

As shown in Figure 11–14, synchronous SRAMs normally have an address burst feature,

which allows the memory to read or write up to four sequential locations using a single

address. When an external address is latched in the address register, the two lowest-order

address bits, A0 and A1, are applied to the burst logic. This produces a sequence of four

internal addresses by adding 00, 01, 10, and 11 to the two lowest-order address bits on

successive clock pulses. The sequence always begins with the base address, which is the

external address held in the address register.

The address burst logic in a typical synchronous SRAM consists of a binary counter and

exclusive-OR gates, as shown in Figure 11–15. For 2-bit burst logic, the internal burst address

sequence is formed by the base address bits A2–A14 plus the two burst address bits A=1 and A=0.

Burst control
Binary counter

Q1 Q0
CLK

Lowest-order bits
of internal burst
address

A0 A1

Lowest-order bits of
external address

A'0

A'1

FIGURE 11–15 Address burst logic.

To begin the burst sequence, the counter is in its 00 state and the two lowest-order

address bits are applied to the inputs of the XOR gates. Assuming that A0 and A1 are both

0, the internal address sequence in terms of its two lowest-order bits is 00, 01, 10, and 11.

Cache Memory

One of the major applications of SRAMs is in cache memories in computers. Cache mem-

ory is a relatively small, high-speed memory that stores the most recently used instructions

or data from the larger but slower main memory. Cache memory can also use dynamic

640 Data Storage

RAM (DRAM), which is discussed next. Typically, SRAM is several times faster than

DRAM. Overall, a cache memory gets stored information to the microprocessor much

faster than if only high-capacity DRAM is used. Cache memory is basically a cost-effective

method of improving system performance without having to resort to the expense of mak-

ing all of the memory faster.

The concept of cache memory is based on the idea that computer programs tend to get

instructions or data from one area of main memory before moving to another area. Basi-

cally, the cache controller “guesses” which area of the slow dynamic memory the CPU

(central-processing unit) will need next and moves it to the cache memory so that it is ready

when needed. If the cache controller guesses right, the data are immediately available to

the microprocessor. If the cache controller guesses wrong, the CPU must go to the main

memory and wait much longer for the correct instructions or data. Fortunately, the cache

controller is right most of the time.

Cache Analogy

There are many analogies that can be used to describe a cache memory, but comparing it

to a home refrigerator is perhaps the most effective. A home refrigerator can be thought of

as a “cache” for certain food items while the supermarket is the main memory where all

foods are kept. Each time you want something to eat or drink, you can go to the refrigera-

tor (cache) first to see if the item you want is there. If it is, you save a lot of time. If it is not

there, then you have to spend extra time to get it from the supermarket (main memory).

L1 and L2 Caches

A first-level cache (L1 cache) is usually integrated into the processor chip and has a very

limited storage capacity. L1 cache is also known as primary cache. A second-level cache

(L2 cache) may also be integrated into the processor or as a separate memory chip or set

of chips external to the processor; it usually has a larger storage capacity than an L1 cache.

L2 cache is also known as secondary cache. Some systems may have higher-level caches

(L3, L4, etc.), but L1 and L2 are the most common. Also, some systems use a disk cache

to enhance the performance of the hard disk because DRAM, although much slower than

SRAM, is much faster than the hard disk drive. Figure 11–16 illustrates L1 and L2 cache

memories in a computer system.

Main memory

(DRAM)

Microprocessor

L1 cache

(internal)

Clock (CLK)

L2 cache

(SRAM)

Cache

controller

Data bus

Address bus

FIGURE 11–16 Block diagram showing L1 and L2 cache memories in a computer

system.

Dynamic RAM (DRAM) Memory Cells

Dynamic memory cells store a data bit in a small capacitor rather than in a latch. The

advantage of this type of cell is that it is very simple, thus allowing very large memory

arrays to be constructed on a chip at a lower cost per bit. The disadvantage is that the

 The Random-Access Memory (RAM) 641

storage capacitor cannot hold its charge over an extended period of time and will lose the

stored data bit unless its charge is refreshed periodically. To refresh requires additional

memory circuitry and complicates the operation of the DRAM. Figure 11–17 shows a typi-

cal DRAM cell consisting of a single MOS transistor (MOSFET) and a capacitor.

Column (bit line)

Row

FIGURE 11–17 A MOS DRAM cell.

In this type of cell, the transistor acts as a switch. The basic simplified operation is

illustrated in Figure 11–18 and is as follows. A LOW on the R/W line (WRITE mode)

enables the tri-state input buffer and disables the output buffer. For a 1 to be written into

the cell, the DIN line must be HIGH, and the transistor must be turned on by a HIGH

on the row line. The transistor acts as a closed switch connecting the capacitor to the

bit line. This connection allows the capacitor to charge to a positive voltage, as shown

in Figure 11–18(a). When a 0 is to be stored, a LOW is applied to the DIN line. If the

capacitor is storing a 0, it remains uncharged, or if it is storing a 1, it discharges as

indicated in Figure 11–18(b). When the row line is taken back LOW, the transistor turns

off and disconnects the capacitor from the bit line, thus “trapping” the charge (1 or 0)

on the capacitor.

To read from the cell, the R/W (Read/Write) line is HIGH, enabling the output buffer

and disabling the input buffer. When the row line is taken HIGH, the transistor turns on

and connects the capacitor to the bit line and thus to the output buffer (sense amplifier),

so the data bit appears on the data-output line (DOUT). This process is illustrated in Fig-

ure 11–18(c).

For refreshing the memory cell, the R/W line is HIGH, the row line is HIGH, and the

refresh line is HIGH. The transistor turns on, connecting the capacitor to the bit line. The

output buffer is enabled, and the stored data bit is applied to the input of the refresh buf-

fer, which is enabled by the HIGH on the refresh input. This produces a voltage on the bit

line corresponding to the stored bit, thus replenishing the capacitor. This is illustrated in

Figure 11–18(d).

DRAM Organization

The major application of DRAMs is in the main memory of computers. The difference

between DRAMs and SRAMs is the type of memory cell. As you have seen, the DRAM

memory cell consists of one transistor and a capacitor and is much simpler than the SRAM

cell. This allows much greater densities in DRAMs and results in greater bit capacities for

a given chip area, although much slower access time.

Again, because charge stored in a capacitor will leak off, the DRAM cell requires a

frequent refresh operation to preserve the stored data bit. This requirement results in more

complex circuitry than in a SRAM. Several features common to most DRAMs are now

discussed, using a generic 1M * 1 bit DRAM as an example.

Address Multiplexing

DRAMs use a technique called address multiplexing to reduce the number of address lines.

Figure 11–19 shows the block diagram of a 1,048,576-bit (1 Mb) DRAM with a 1M * 1

642 Data Storage

organization. We will focus on the blue blocks to illustrate address multiplexing. The green

blocks represent the refresh logic.

The ten address lines are time multiplexed at the beginning of a memory cycle by the

row address select (RAS) and the column address select (CAS) into two separate 10-bit

address fields. First, the 10-bit row address is latched into the row address register. Next,

the 10-bit column address is latched into the column address register. The row address and

the column address are decoded to select one of the 1,048,576 addresses (220
= 1,048,576)

in the memory array. The basic timing for the address multiplexing operation is shown in

Figure 11–20.

Read and Write Cycles

At the beginning of each read or write memory cycle, RAS and CAS go active (LOW) to

multiplex the row and column addresses into the registers, and decoders. For a read cycle,

the R/W input is HIGH. For a write cycle, the R/W input is LOW. This is illustrated in

Figure 11–21.

ON

+

1
–

HIGH

Column

LOW

HIGH

Bit line

LOW

HIGH

Output buffer/

Sense amplifier

Refresh

buffer

Input

buffer

(a) Writing a 1 into the memory cell

ON

0

LOW

Column

LOW

HIGH

Bit line

LOW

LOW

Output buffer/

Sense amplifier

Refresh

buffer

Input

buffer

(b) Writing a 0 into the memory cell

ON

+

1
–

HIGH

Column

LOW

HIGH

Bit line

HIGH

HIGH

Output buffer/

Sense amplifier

Refresh

buffer

Input

buffer

(c) Reading a 1 from the memory cell

ON

+

1
–

HIGH

Column

HIGH

HIGH

Bit line

HIGH

Output buffer/

Sense amplifier

Refresh

buffer

Input

buffer

(d) Refreshing a stored 1

R/W

Refresh

Row

DIN

DOUT

R/W

Refresh

Row

DIN

DOUT

R/W

Refresh

Row

DIN

DOUT

R/W

Refresh

Row

DIN

DOUT
HIGH

I

FIGURE 11–18 Basic operation of a DRAM cell.

 The Random-Access Memory (RAM) 643

Fast Page Mode

In the normal read or write cycle described previously, the row address for a particular

memory location is first loaded by an active-LOW RAS and then the column address for

that location is loaded by an active-LOW CAS. The next location is selected by another

RAS followed by a CAS, and so on.

A “page” is a section of memory available at a single row address and consists of all the

columns in a row. Fast page mode allows fast successive read or write operations at each

column address in a selected row. A row address is first loaded by RAS going LOW and

remaining LOW while CAS is toggled between HIGH and LOW. A single row address is

selected and remains selected while RAS is active. Each successive CAS selects another

column in the selected row. So, after a fast page mode cycle, all of the addresses in the

1 2

Data
selector

Row
decoder

Memory array

1024 rows ×
1024 columns

1

2

Column
decoder

Input/Output buffers
and

Sense amplifiers

1

2

Column
address
register

Row
address
register

Refresh counter

Refresh
control

and
timing

A0/A10
A1/A11
A2/A12
A3/A13
A4/A14
A5/A15
A6/A16
A7/A17
A8/A18
A9/A19

CAS

RAS

Address
lines

DOUT

DIN

R/W E

1024

1024

1024

FIGURE 11–19 Simplified block diagram of a 1M * 1 DRAM.

Column addressRow address

Row address is latched
when RAS is LOW.

Column address is latched
when CAS is LOW.

Addresses

CAS

RAS

FIGURE 11–20 Basic timing for address multiplexing.

644 Data Storage

selected row have been read from or written into, depending on R/W. For example, a fast

page mode cycle for the DRAM in Figure 11–19 requires CAS to go active 1024 times for

each row selected by RAS.

Fast page mode operation for read is illustrated by the timing diagram in Figure 11–22.

When CAS goes to its nonasserted state (HIGH), it disables the data outputs. Therefore,

the transition of CAS to HIGH must occur only after valid data are latched by the external

system.

Refresh Cycles

As you know, DRAMs are based on capacitor charge storage for each bit in the memory

array. This charge degrades (leaks off) with time and temperature, so each bit must be peri-

odically refreshed (recharged) to maintain the correct bit state. Typically, a DRAM must

be refreshed every several milliseconds, although for some devices the refresh period can

be much longer.

A read operation automatically refreshes all the addresses in the selected row. However,

in typical applications, you cannot always predict how often there will be a read cycle,

and so you cannot depend on a read cycle to occur frequently enough to prevent data loss.

Therefore, special refresh cycles must be implemented in DRAM systems.

Burst refresh and distributed refresh are the two basic refresh modes for refresh oper-

ations. In burst refresh, all rows in the memory array are refreshed consecutively each

refresh period. For a memory with a refresh period of 8 ms, a burst refresh of all rows

occurs once every 8 ms. The normal read and write operations are suspended during a burst

Valid data

Column address

DIN

(b) Write cycle

Addresses

CAS

RAS

R/W

1 write cycle

Row address

Column address

DOUT

(a) Read cycle

Addresses

CAS

RAS

R/W

1 read cycle

Row address

Valid data

FIGURE 11–21 Timing diagrams for normal read and write cycles.

 The Random-Access Memory (RAM) 645

DOUT

Addresses

CAS

RAS

R/W

Row
address

Column 1
address

Column 2
address

Column 3
address

Column n
address

Valid
data

Valid
data

Valid
data

Valid
data

FIGURE 11–22 Fast page mode timing for a read operation.

refresh cycle. In distributed refresh, each row is refreshed at intervals interspersed between

normal read or write cycles. For example, the memory in Figure 11–19 has 1024 rows. As an

example, for an 8 ms refresh period, each row must be refreshed every 8 ms/1024 = 7.8 ms

when distributed refresh is used.

The two types of refresh operations are RAS only refresh and CAS before RAS refresh.

RAS-only refresh consists of a RAS transition to the LOW (active) state, which latches

the address of the row to be refreshed while CAS remains HIGH (inactive) throughout the

cycle. An external counter is used to provide the row addresses for this type of operation.

The CAS before RAS refresh is initiated by CAS going LOW before RAS goes LOW.

This sequence activates an internal refresh counter that generates the row address to be

refreshed. This address is switched by the data selector into the row decoder.

Types of DRAMs

Now that you have learned the basic concept of a DRAM, let’s briefly look at the major

types. These are the Fast Page Mode (FPM) DRAM, the Extended Data Out (EDO) DRAM,

the Burst Extended Data Out (BEDO) DRAM, and the Synchronous (S) DRAM.

FPM DRAM

Fast page mode operation was described earlier. Recall that a page in memory is all of the

column addresses contained within one row address.

The idea of the FPM DRAM is based on the probability that the next several memory

addresses to be accessed are in the same row (on the same page). Fortunately, this happens

a large percentage of the time. FPM saves time over pure random accessing because in FPM

the row address is specified only once for access to several successive column addresses

whereas for pure random accessing, a row address is specified for each column address.

Recall that in a fast page mode read operation, the CAS signal has to wait until the valid

data from a given address are accepted (latched) by the external system (CPU) before it

can go to its nonasserted state. When CAS goes to its nonasserted state, the data outputs are

disabled. This means that the next column address cannot occur until after the data from

the current column address are transferred to the CPU. This limits the rate at which the

columns within a page can be addressed.

EDO DRAM

The Extended Data Out DRAM, sometimes called hyper page mode DRAM, is similar to

the FPM DRAM. The key difference is that the CAS signal in the EDO DRAM does not

disable the output data when it goes to its nonasserted state because the valid data from the

646 Data Storage

current address can be held until CAS is asserted again. This means that the next column

address can be accessed before the external system accepts the current valid data. The idea

is to speed up the access time.

BEDO DRAM

The Burst Extended Data Out DRAM is an EDO DRAM with address burst capability.

Recall from the discussion of the synchronous burst SRAM that the address burst feature

allows up to four addresses to be internally generated from a single external address, which

saves some access time. This same concept applies to the BEDO DRAM.

SDRAM

Faster DRAMs are needed to keep up with the ever-increasing speed of microprocessors.

The Synchronous DRAM is one way to accomplish this. Like the synchronous SRAM

discussed earlier, the operation of the SDRAM is synchronized with the system clock,

which also runs the microprocessor in a computer system. The same basic ideas described

in relation to the synchronous burst SRAM, also apply to the SDRAM.

This synchronized operation makes the SDRAM totally different from the other asyn-

chronous DRAM types. With asynchronous memories, the microprocessor must wait for

the DRAM to complete its internal operations. However, with synchronous operation, the

DRAM latches addresses, data, and control information from the processor under control

of the system clock. This allows the processor to handle other tasks while the memory read

or write operations are in progress, rather than having to wait for the memory to do its thing

as is the case in asynchronous systems.

DDR SDRAM

DDR stands for double data rate. A DDR SDRAM is clocked on both edges of a clock pulse,

whereas a SDRAM is clocked on only one edge. Because of the double clocking, a DDR

SDRAM is theoretically twice as fast as an SDRAM. Sometimes the SDRAM is referred to

as an SDR SDRAM (single data rate SDRAM) for contrast with the DDR SDRAM.

SECTION 11–2 CHECKUP

 1. List two types of SRAM.

 2. What is a cache?

 3. Explain how SRAMs and DRAMs differ.

 4. Describe the refresh operation in a DRAM.

 5. List four types of DRAM.

11–3 The Read-Only Memory (ROM)

A ROM contains permanently or semipermanently stored data, which can be read from

the memory but either cannot be changed at all or cannot be changed without specialized

equipment. A ROM stores data that are used repeatedly in system applications, such as

tables, conversions, or programmed instructions for system initialization and operation.

ROMs retain stored data when the power is off and are therefore nonvolatile memories.

After completing this section, you should be able to

u List the types of ROMs

u Describe a basic mask ROM storage cell

u Explain how data are read from a ROM

u Discuss internal organization of a typical ROM

 The Read-Only Memory (ROM) 647

The ROM Family

Figure 11–23 shows how semiconductor ROMs are categorized. The mask ROM is the type

in which the data are permanently stored in the memory during the manufacturing process.

The PROM, or programmable ROM, is the type in which the data are electrically stored by

the user with the aid of specialized equipment. Both the mask ROM and the PROM can be

of either MOS or bipolar technology. The EPROM, or erasable PROM, is strictly a MOS

device. The UV EPROM is electrically programmable by the user, but the stored data must

be erased by exposure to ultraviolet light over a period of several minutes. The electrically

erasable PROM (EEPROM or E2PROM) can be erased in a few milliseconds. The UV

EPROM has been largely displaced by the EEPROM.

Read-Only
Memory
(ROM)

Electrically
Erasable
PROM

(EEPROM)

Mask
ROM

Erasable
PROM

(EPROM)

Ultraviolet
EPROM

(UV EPROM)

Programmable
ROM

(PROM)

FIGURE 11–23 The ROM family.

The Mask ROM

The mask ROM is usually referred to simply as a ROM. It is permanently programmed dur-

ing the manufacturing process to provide widely used standard functions, such as popular

conversions, or to provide user-specified functions. Once the memory is programmed, it

cannot be changed. Most IC ROMs utilize the presence or absence of a transistor connec-

tion at a row/column junction to represent a 1 or a 0.

Figure 11–24 shows MOS ROM cells. The presence of a connection from a row line to

the gate of a transistor represents a 1 at that location because when the row line is taken

HIGH, all transistors with a gate connection to that row line turn on and connect the HIGH

(1) to the associated column lines. At row/column junctions where there are no gate con-

nections, the column lines remain LOW (0) when the row is addressed.

Row

Column

Storing a 1

+VDD

Column

Storing a 0

+VDD

Row

FIGURE 11–24 ROM cells.

To illustrate the ROM concept, Figure 11–25 shows a small, simplified ROM array. The

blue squares represent stored 1s, and the gray squares represent stored 0s. The basic read

operation is as follows. When a binary address code is applied to the address input lines, the

648 Data Storage

corresponding row line goes HIGH. This HIGH is connected to the column lines through

the transistors at each junction (cell) where a 1 is stored. At each cell where a 0 is stored,

the column line stays LOW because of the terminating resistor. The column lines form the

data output. The eight data bits stored in the selected row appear on the output lines.

+ +

Address

input

lines

1

2

4

8

Row 0

Row 1

Row 2

Row 14

Row 15

0 1 2 6 7

Data output lines

Cell storing a 1 Cell storing a 0

Address
decoder

0

1

2

14

15

FIGURE 11–25 A representation of a 16 * 8-bit ROM array.

As you can see, the example ROM in Figure 11–25 is organized into 16 addresses, each

of which stores 8 data bits. Thus, it is a 16 * 8 (16-by-8) ROM, and its total capacity is

128 bits or 16 bytes. ROMs can be used as look-up tables (LUTs) for code conversions and

logic function generation.

EXAMPLE 11–1

Show a basic ROM, similar to the one in Figure 11–25, programmed for a 4-bit binary-

to-Gray conversion.

Solution

Review Chapter 2 for the Gray code. Table 11–1 is developed for use in programming

the ROM.

The resulting 16 * 4 ROM array is shown in Figure 11–26. You can see that a

binary code on the address input lines produces the corresponding Gray code on the

output lines (columns). For example, when the binary number 0110 is applied to the

address input lines, address 6, which stores the Gray code 0101, is selected.

Related Problem*

Using Figure 11–26, determine the Gray code output when a binary code of 1011 is

applied to the address input lines.

*Answers are at the end of the chapter.

TABLE 11–1

G3

Gray code output

Binary code

applied to

address

input lines

G2 G1 G0

B0

B1

B2

B3

1 0

Address

decoder

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

4

8

FIGURE 11–26 Representation of a ROM programmed as a binary-to-Gray code converter.

649

Binary Gray

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

650 Data Storage

Internal ROM Organization

Most IC ROMs have a more complex internal organization than that in the basic simpli-

fied example just presented. To illustrate how an IC ROM is structured, let’s use a 1024-

bit device with a 256 * 4 organization. The logic symbol is shown in Figure 11–27.

When any one of 256 binary codes (eight bits) is applied to the address lines, four data

bits appear on the outputs if the chip select inputs are LOW. (256 addresses require eight

address lines.)

ROM 256×4

Address

input

Chip

select

lines

A0

A1

A2

A3

A4

A5

A6

A7

0

CS0

CS1

&
EN

7

A
0

255

O0

O1

O2

O3

Data

output

lines

∆

∆

∆

∆

FIGURE 11–27 A 256 * 4 ROM logic symbol. The A 0
255 designator means that the 8-bit

address code selects addresses 0 through 255.

Although the 256 * 4 organization of this device implies that there are 256 rows and

4 columns in the memory array, this is not actually the case. The memory cell array is

actually a 32 * 32 matrix (32 rows and 32 columns), as shown in the block diagram in

Figure 11–28.

The ROM in Figure 11–28 works as follows. Five of the eight address lines (A0

through A4) are decoded by the row decoder (often called the Y decoder) to select one

of the 32 rows. Three of the eight address lines (A5 through A7) are decoded by the

column decoder (often called the X decoder) to select four of the 32 columns. Actu-

ally, the column decoder consists of four 1-of-8 decoders (data selectors), as shown in

Figure 11–28.

The result of this structure is that when an 8-bit address code (A0 through A7) is applied,

a 4-bit data word appears on the data outputs when the chip select lines (CS0 and CS1) are

LOW to enable the output buffers. This type of internal organization (architecture) is typi-

cal of IC ROMs of various capacities.

ROM Access Time

A typical timing diagram that illustrates ROM access time is shown in Figure 11–29. The

access time, ta, of a ROM is the time from the application of a valid address code on the

input lines until the appearance of valid output data. Access time can also be measured

from the activation of the chip select (CS) input to the occurrence of valid output data when

a valid address is already on the input lines.

InfoNote

ROM is used in a computer to

store the BIOS (Basic Input/Output

System). These are programs that

are used to perform fundamental

supervisory and support functions

for the computer. For example,

BIOS programs stored in the ROM

control certain video monitor

functions, provide for disk

formatting, scan the keyboard for

inputs, and control certain printer

functions.

 The Read-Only Memory (ROM) 651

A5

O3

32 × 32
Memory array

A6

A7

A1

A2

A0

A3

A4

32
row
lines

Row
decoder

Column decoders
(Four 1-of-8 decoders)

and I/O circuits

O2 O1 O0

Output
buffers

Row
address

Column
address

Chip

select

CS0

CS1

FIGURE 11–28 A 1024-bit ROM with a 256 * 4 organization based on a 32 * 32 array.

Previous
address

Valid address on
input lines

Address
inputs

(A0–An)

Address transition

Valid data on
output lines

Data
outputs

(O0–O7)

Data output
transition

ta

(Chip select)
CS

FIGURE 11–29 ROM access time (ta) from address change to data output with chip

select already active.

SECTION 11–3 CHECKUP

 1. What is the bit storage capacity of a ROM with a 512 * 8 organization?

 2. List the types of read-only memories.

 3. How many address bits are required for a 2048-bit memory organized as a 256 * 8

memory?

652 Data Storage

11–4 Programmable ROMs

Programmable ROMs (PROMs) are basically the same as mask ROMs once they have

been programmed. As you have learned, ROMs are a type of programmable logic device.

The difference is that PROMs come from the manufacturer unprogrammed and are custom

programmed in the field to meet the user’s needs.

After completing this section, you should be able to

u Distinguish between a mask ROM and a PROM

u Describe a basic PROM memory cell

u Discuss EPROMs including UV EPROMs and EEPROMs

u Analyze an EPROM programming cycle

PROMs

A PROM uses some type of fusing process to store bits, in which a memory link is burned

open or left intact to represent a 0 or a 1. The fusing process is irreversible; once a PROM

is programmed, it cannot be changed.

Figure 11–30 illustrates a MOS PROM array with fusible links. The fusible links are

manufactured into the PROM between the source of each cell’s transistor and its column

line. In the programming process, a sufficient current is injected through the fusible link to

burn it open to create a stored 0. The link is left intact for a stored 1.

Rows

Fusible

link

+VDD

Columns

FIGURE 11–30 MOS PROM array with fusible links. (All drains are commonly connected

to VDD.)

Three basic fuse technologies used in PROMs are metal links, silicon links, and pn junc-

tions. A brief description of each of these follows.

 1. Metal links are made of a material such as nichrome. Each bit in the memory array is

represented by a separate link. During programming, the link is either “blown” open

 Programmable ROMs 653

or left intact. This is done basically by first addressing a given cell and then forcing

a sufficient amount of current through the link to cause it to open.

 2. Silicon links are formed by narrow, notched strips of polycrystalline silicon. Pro-

gramming of these fuses requires melting of the links by passing a sufficient

amount of current through them. This amount of current causes a high temperature

at the fuse location that oxidizes the silicon and forms an insulation around the

now-open link.

 3. Shorted junction, or avalanche-induced migration, technology consists basically of

two pn junctions arranged back-to-back. During programming, one of the diode

junctions is avalanched, and the resulting voltage and heat cause aluminum ions to

migrate and short the junction. The remaining junction is then used as a forward-

biased diode to represent a data bit.

EPROMs

An EPROM is an erasable PROM. Unlike an ordinary PROM, an EPROM can be repro-

grammed if an existing program in the memory array is erased first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated

transistor gate has no electrical connections and can store an electrical charge for indefi-

nite periods of time. The data bits in this type of array are represented by the presence

or absence of a stored gate charge. Erasure of a data bit is a process that removes the

gate charge.

A typical EPROM is represented in Figure 11–31 by a logic diagram. Its operation

is representative of that of other typical EPROMs of various sizes. As the logic symbol

shows, this device has 2048 addresses (211
= 2048), each with eight bits. Notice that the

eight outputs are tri-state (§).

EPROM
2048 × 8

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

CE/PGM

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

VPP

OE

&

EN

0

10

0––––
2047A

∆

∆

∆

∆

∆

∆

∆

∆

FIGURE 11–31 The logic symbol for a 2048 * 8 EPROM.

To read from the memory, the output enable input (OE) must be LOW and the power-

down/program (CE/PGM) input LOW.

To program or write to the device, a high dc voltage is applied to VPP and OE is HIGH.

The eight data bits to be programmed into a given address are applied to the outputs (O0

654 Data Storage

through O7), and the address is selected on inputs A0 through A10. Next, a HIGH level

pulse is applied to the CE/PGM input. The addresses can be programmed in any order. A

timing diagram for the programming is shown in Figure 11–32. These signals are normally

produced by an EPROM programmer.

Two basic types of erasable PROMs are, the electrically erasable PROM (EEPROM)

and the ultraviolet erasable PROM (UV EPROM). The UV EPROM is much less used than

the EEPROM.

EEPROMs

An electrically erasable PROM can be both erased and programmed with electrical pulses.

Since it can be both electrically written into and electrically erased, the EEPROM can be

rapidly programmed and erased in-circuit for reprogramming. Two types of EEPROMs are

the floating-gate MOS and the metal nitride-oxide silicon (MNOS). The application of a

voltage on the control gate in the floating-gate structure permits the storage and removal of

charge from the floating gate.

UV EPROMs

You can recognize the UV EPROM device by the UV transparent window on the package.

The isolated gate in the FET of an ultraviolet EPROM is “floating” within an oxide insulat-

ing material. The programming process causes electrons to be removed from the floating

gate. Erasure is done by exposure of the memory array chip to high-intensity ultraviolet

radiation through the UV window on top of the package. The positive charge stored on the

gate is neutralized after several minutes to an hour of exposure time.

Program

Address n

th(A)

th(E)

th(D)

ts(D)

ts(VPP)

ts(E)

ts(A)

Data to
be programmed in

A0–A10

OE

O0–O7

CE/PGM

VPP

n + 1

FIGURE 11–32 Timing diagram for a 2048 * 8 EPROM programming cycle, with critical

setup times (ts) and hold times (th) indicated.

SECTION 11–4 CHECKUP

 1. How do PROMs differ from ROMs?

 2. What represents a data bit in an EPROM?

 3. What is the normal mode of operation for a PROM?

 The Flash Memory 655

11–5 The Flash Memory

The ideal memory has high storage capacity, nonvolatility, in-system read and write

capability, comparatively fast operation, and cost effectiveness. The traditional memory

technologies such as ROM, PROM, EPROM, EEPROM, SRAM, and DRAM individu-

ally exhibit one or more of these characteristics. Flash memory has all of the desired

characteristics.

After completing this section, you should be able to

u Discuss the basic characteristics of a flash memory

u Describe the basic operation of a flash memory cell

u Compare flash memories with other types of memories

u Discuss the USB flash drive

Flash memories are high-density read/write memories (high-density translates into

large bit storage capacity) that are nonvolatile, which means that data can be stored indefi-

nitely without power. High-density means that a large number of cells can be packed into a

given surface area on a chip; that is, the higher the density, the more bits that can be stored

on a given size chip. This high density is achieved in flash memories with a storage cell

that consists of a single floating-gate MOS transistor. A data bit is stored as charge or the

absence of charge on the floating gate depending if a 0 or a 1 is stored.

Flash Memory Cell

A single-transistor cell in a flash memory is represented in Figure 11–33. The stacked gate

MOS transistor consists of a control gate and a floating gate in addition to the drain and

source. The floating gate stores electrons (charge) as a result of a sufficient voltage applied

to the control gate. A 0 is stored when there is more charge and a 1 is stored when there is

less or no charge. The amount of charge present on the floating gate determines if the tran-

sistor will turn on and conduct current from the drain to the source when a control voltage

is applied during a read operation.

Control
gate

Floating
gate Drain

Source

MOS
transistor
symbol

–

–

–

–

–

–

–

–

–

–

–

–

Many electrons = more charge = stored 0.

–

–

Few electrons = less charge = stored 1.

FIGURE 11–33 The storage cell in a flash memory.

Basic Flash Memory Operation

There are three major operations in a flash memory: the programming operation, the read

operation, and the erase operation.

656 Data Storage

Programming

Initially, all cells are at the 1 state because charge was removed from each cell in a previous

erase operation. The programming operation adds electrons (charge) to the floating gate of

those cells that are to store a 0. No charge is added to those cells that are to store a 1. Appli-

cation of a sufficient positive voltage to the control gate with respect to the source during

programming attracts electrons to the floating gate, as indicated in Figure 11–34. Once

programmed, a cell can retain the charge for up to 100 years without any external power.

Control
gate

Floating
gate

–

–

To store a 0, a sufficient positive voltage is
applied to the control gate with respect to the
source to add charge to the floating gate during
programming.

–

–

–

–

–

–

+VPROG

+VD

0 V

–

–

To store a 1, no charge is added and the cell is
left in the erased condition.

+VD

FIGURE 11–34 Simplified illustration of storing a 0 or a 1 in a flash cell during the

programming operation.

When a 0 is read, the transistor remains off
because the charge on the floating gate prevents
the read voltage from exceeding the turn-on
threshold.

+VREAD

+VD

0 V

–

–

When a 1 is read, the transistor turns on because
the absence of charge on the floating gate
allows the read voltage to exceed the turn-on
threshold.

+VD

0 V

– –

– –

– –

– –

– –

– –

+VREAD I

Control
gate

Floating
gate

FIGURE 11–35 The read operation of a flash cell in an array.

Read

During a read operation, a positive voltage is applied to the control gate. The amount of charge

present on the floating gate of a cell determines whether or not the voltage applied to the con-

trol gate will turn on the transistor. If a 1 is stored, the control gate voltage is sufficient to turn

the transistor on. If a 0 is stored, the transistor will not turn on because the control gate volt-

age is not sufficient to overcome the negative charge stored in the floating gate. Think of the

charge on the floating gate as a voltage source that opposes the voltage applied to the control

gate during a read operation. So the floating gate charge associated with a stored 0 prevents

the control gate voltage from reaching the turn-on threshold, whereas the small or zero charge

associated with a stored 1 allows the control gate voltage to exceed the turn-on threshold.

When the transistor turns on, there is current from the drain to the source of the cell tran-

sistor. The presence of this current is sensed to indicate a 1, and the absence of this current

is sensed to indicate a 0. This basic idea is illustrated in Figure 11–35.

 The Flash Memory 657

Erase

During an erase operation, charge is removed from all the memory cells. A sufficient posi-

tive voltage is applied to the transistor source with respect to the control gate. This is

opposite in polarity to that used in programming. This voltage attracts electrons from the

floating gate and depletes it of charge, as illustrated in Figure 11–36. A flash memory is

always erased prior to being reprogrammed.

–

–

To erase a cell, a sufficient positive voltage is
applied to the source with respect to the control
gate to remove charge from the floating gate
during the erase operation.

–

–

–

–

–

–

+VERASE

0 V

–

FIGURE 11–36 Simplified illustration of removing charge from a cell during erase.

Flash Memory Array

A simplified array of flash memory cells is shown in Figure 11–37. Only one row line is

accessed at a time. When a cell in a given bit line turns on (stored 1) during a read opera-

tion, there is current through the bit line, which produces a voltage drop across the active

load. This voltage drop is compared to a reference voltage with a comparator circuit and

an output level indicating a 1 is produced. If a 0 is stored, then there is no current or little

current in the bit line and an opposite level is produced on the comparator output.

The memory stick is a storage medium that uses flash memory technology in a physi-

cal configuration smaller than a stick of chewing gum. Memory sticks are typically avail-

able up to 64 GB capacities and as a kit with a PC card adaptor. Because of its compact

design, it is ideal for use in small digital electronics products, such as laptop computers

and digital cameras.

Comparison of Flash Memories with Other Memories

Let’s compare flash memories with other types of memories with which you are already

familiar.

Flash vs. ROM, EPROM, and EEPROM

Read-only memories are high-density, nonvolatile devices. However, once programmed the

contents of a ROM can never be altered. Also, the initial programming is a time-consuming

and costly process. The EEPROM has a more complex cell structure than either the ROM

or UV EPROM and so the density is not as high, although it can be reprogrammed without

being removed from the system. Because of its lower density, the cost/bit is higher than

ROMs or EPROMs. Although the UV EPROM is a high-density, nonvolatile memory, it can

be erased only by removing it from the system and using ultraviolet light. It can be repro-

grammed only with specialized equipment.

A flash memory can be reprogrammed easily in the system because it is essentially

a READ/WRITE device. The density of a flash memory compares with the ROM and

EPROM because both have single-transistor cells. A flash memory (like a ROM, EPROM,

or EEPROM) is nonvolatile, which allows data to be stored indefinitely with power off.

658 Data Storage

Flash vs. SRAM

As you have learned, static random-access memories are volatile READ/WRITE devices.

A SRAM requires constant power to retain the stored data. In many applications, a battery

backup is used to prevent data loss if the main power source is turned off. However, since

battery failure is always a possibility, indefinite retention of the stored data in a SRAM can-

not be guaranteed. Because the memory cell in a SRAM is basically a flip-flop consisting

of several transistors, the density is relatively low.

A flash memory is also a READ/WRITE memory, but unlike the SRAM it is nonvola-

tile. Also, a flash memory has a much higher density than a SRAM.

Flash vs. DRAM

Dynamic random-access memories are volatile high-density READ/WRITE devices.

DRAMs require not only constant power to retain data but also that the stored data must be

refreshed frequently. In many applications, backup storage such as hard disk must be used

with a DRAM.

Flash memories exhibit higher densities than DRAMs because a flash memory cell con-

sists of one transistor and does not need refreshing, whereas a DRAM cell is one transistor

plus a capacitor that has to be refreshed. Typically, a flash memory consumes much less

power than an equivalent DRAM and can be used as a hard disk replacement in many

applications.

Table 11–2 provides a comparison of the memory technologies.

Row select 0

Row select 1

Row select n

Reference

Active load

+V

Comparator
Data out 0

Bit line 0

Column select 0

+V

Data out m

Bit line m

Column select m

FIGURE 11–37 Basic flash memory array.

 The Flash Memory 659

USB Flash Drive

A USB flash drive consists of a flash memory connected to a standard USB connector

housed in a small case about the size of a cigarette lighter. The USB connector can be

plugged into a port on a personal computer and obtains power from the computer. These

memories are usually rewritable and can have a storage capacity up to 512 GB (a number

which is constantly increasing), with most ranging from 2 GB to 64 GB. A typical USB

flash drive is shown in Figure 11–38(a), and a basic block diagram is shown in part (b).

TABLE 11–2

Comparison of types of memories.

Memory Type Nonvolatile High-Density

One-Transistor

Cell

In-System

Writability

Flash Yes Yes Yes Yes

SRAM No No No Yes

DRAM No Yes Yes Yes

ROM Yes Yes Yes No

EEPROM Yes No No Yes

UV EPROM Yes Yes Yes No

(a) Typical USB flash drive

USB connector

Mass memory

controller

Crystal

oscillator

Flash memory

+V

Data−

Gnd

Data+

(b) Basic block diagram

FIGURE 11–38 The USB flash drive.

The USB flash drive uses a standard USB A-type connector for connection to the com-

puter, as shown in Figure 11–39(a). Peripherals such as printers use the USB B-type con-

nector, which has a different shape and physical pin configuration. The USB icon is shown

in part (b).

4 3 2 1

(a) Type A USB connector (b) USB icon

FIGURE 11–39 Connector and symbol.

SECTION 11–5 CHECKUP

 1. What types of memories are nonvolatile?

 2. What is a major advantage of a flash memory over a SRAM or DRAM?

 3. List the three modes of operation of a flash memory.

660 Data Storage

11–6 Memory Expansion

Available memory can be expanded to increase the word length (number of bits in each

address) or the word capacity (number of different addresses) or both. Memory expansion

is accomplished by adding an appropriate number of memory chips to the address, data,

and control buses. SIMMs and DIMMs, which are types of memory expansion modules,

are introduced.

After completing this section, you should be able to

u Define word-length expansion

u Show how to expand the word length of a memory

u Define word-capacity expansion

u Show how to expand the word capacity of a memory

u Discuss types of memory modules

Word-Length Expansion

To increase the word length of a memory, the number of bits in the data bus must be

increased. For example, an 8-bit word length can be achieved by using two memories,

each with 4-bit words as illustrated in Figure 11–40(a). As you can see in part (b), the

16-bit address bus is commonly connected to both memories so that the combination

memory still has the same number of addresses (216
= 65,536) as each individual

memory. The 4-bit data buses from the two memories are combined to form an 8-bit

data bus. Now when an address is selected, eight bits are produced on the data bus—

four from each memory. Example 11–2 shows the details of 65,536 * 4 to 65,536 * 8

expansion.

16 bits

16 bits

8 bits

4 bits

4 bits

16 bits

4 bits

4 bits

16 bits

Data
bus

Address
bus

Control
bus

Data
bus

Address
bus

Control
bus

Data
bus

65,536 × 8

(a) Two separate 65,536 × 4 ROMs (b) One 65,536 × 8 ROM from two 65,536 × 4 ROMs

Address
bus

Control
bus

ROM
65,536 × 4

ROM 1

ROM 2ROM
65,536 × 4

FIGURE 11–40 Expansion of two 65,536 * 4 ROMs into a 65,536 * 8 ROM to illustrate

word-length expansion.

EXAMPLE 11–2

Expand the 65,536 * 4 ROM (64k * 4) in Figure 11–41 to form a 64k * 8 ROM.

Note that “64k” is the accepted shorthand for 65,536. Why not “65k”? Maybe it’s

because 64 is also a power-of-two.

 Memory Expansion 661

Solution

Two 64k * 4 ROMs are connected as shown in Figure 11–42. Notice that a specific

address is accessed in ROM 1 and ROM 2 at the same time. The four bits from a

selected address in ROM 1 and the four bits from the corresponding address in ROM 2

go out in parallel to form an 8-bit word on the data bus. Also notice that a LOW on the

enable line, E, which forms a simple control bus, enables both memories.

Related Problem

Describe how you would expand a 64k * 1 ROM to a 64k * 8 ROM.

AAddress

A
0

A
15

E
0

E
1

ROM
64k × 4

&
EN

O
0

O
1

O
2

O
3

Data
output

Enable

0

65,535

FIGURE 11–41 A 64k * 4 ROM.

A

A

0

65,535

0

65,535

Address
bus

A
0

A
15

ROM 1

&
EN

O
0

O
1

O
2

O
3

Data
bus

Control
bus

ROM 2

&
EN

E

O
4

O
5

O
6

O
7

FIGURE 11–42

EXAMPLE 11–3

Use the memories in Example 11–2 to form a 64k * 16 ROM.

Solution

In this case you need a memory that stores 65,536 16-bit words. Four 64k * 4 ROMs are required to do the job, as shown

in Figure 11–43.

662 Data Storage

16 bits 16 bits 16 bits 16 bits

Data
bus

A
0

A
15

Control
bus

(enable)

Address bus

ROM 1
64k × 4

&
EN

ROM 2
64k × 4

&
EN

ROM 3
64k × 4

&
EN

ROM 4
64k × 4

EN
&

16 bits

16 bits

4 bits 4 bits 4 bits 4 bits

FIGURE 11–43

Related Problem

How many 64k * 1 ROMs would be required to implement the memory shown in Figure 11–43?

m bits

m bits
Address

bus

m bits

2n bits

Control
bus

Data bus

RAM 2m × 2n

Data
in/out

RAM 2
2

m
 × n

RAM 1
2

m
 × n

Data
in/out

∆∆

n bits n bits

FIGURE 11–44 Illustration of word-length expansion with two 2m * n RAMs forming a 2m * 2n RAM.

EXAMPLE 11–4

Use 1M * 4 SRAMs to create a 1M * 8 SRAM.

Solution

Two 1M * 4 SRAMs are connected as shown in the simplified block diagram of Figure 11–45.

A ROM has only data outputs, but a RAM has both data inputs and data outputs. For

word-length expansion in a RAM (SRAM or DRAM), the data inputs and data outputs

form the data bus. Because the same lines are used for data input and data output, tri-state

buffers are required. Most RAMs provide internal tri-state circuitry. Figure 11–44 illus-

trates RAM expansion to increase the data word length.

 Memory Expansion 663

Word-Capacity Expansion

When memories are expanded to increase the word capacity, the number of addresses is

increased. To achieve this increase, the number of address bits must be increased, as illus-

trated in Figure 11–46, (where two 1M * 8 RAMs are expanded to form a 2M * 8 memory).

Data
bus

ROM 2M × 8

Address
bus

21 bits

Control
bus

20 bits

20 bits

20 bits

EN

EN

RAM 2
1M × 8

RAM 1
1M × 8

(a) Individual memories each store 1,048,576
8-bit words

(b) Memories expanded to form a 2M × 8 RAM requiring a
21-bit address bus

8 bits

8 bits

8 bits

RAM
1M × 8

RAM
1M × 8

Address
bus

Address
bus

Data
bus

8 bits

Data
bus

8 bits

Control
bus

Control
bus

20 bits

FIGURE 11–46 Illustration of word-capacity expansion.

Data
bus

R/W

E

A
19

A
0

Address
bus

0

19

SRAM 1 0

19

SRAM 2

∆
∆
∆
∆

∆
∆
∆
∆

Control
bus

A
0

1,048,575
A 0

1,048,575

Data
I/O

Data
I/O

FIGURE 11–45

Related Problem

Use 1M * 8 SRAMs to create a 1M * 16 SRAM.

664 Data Storage

Each individual memory has 20 address bits to select its 1,048,576 addresses, as

shown in part (a). The expanded memory has 2,097,152 addresses and therefore requires

21 address bits, as shown in part (b). The twenty-first address bit is used to enable the

appropriate memory chip. The data bus for the expanded memory remains eight bits wide.

Details of this expansion are illustrated in Example 11–5.

EXAMPLE 11–5

Use 512k * 4 RAMs to implement a 1M * 4 memory.

Solution

The expanded addressing is achieved by connecting the enable (E0) input to the twentieth address bit (A19), as shown in

Figure 11–47. Input E1 is used as an enable input common to both memories. When the twentieth address bit (A19) is LOW,

RAM 1 is selected (RAM 2 is disabled), and the nineteen lower-order address bits (A0–A18) access each of the addresses in

RAM 1. When the twentieth address bit (A19) is HIGH, RAM 2 is enabled by a LOW on the inverter output (RAM 1 is

disabled), and the nineteen lower-order address bits (A0 - A18) access each of the RAM 2 addresses.

20-bit
address

bus

Control
bus

4-bit
data bus

A
0

A
19

DI/O
0

&
EN

&
EN

RAM 1

RAM 2

E
0

E
1

E
0

E
1

A
18

DI/O
1

DI/O
2

DI/O
3

∆
∆
∆
∆

A
1,048,575

A
0

524,287

∆
∆
∆
∆

524,288

FIGURE 11–47

Related Problem

What are the ranges of addresses in RAM 1 and in RAM 2 in Figure 11–47?

Memory Modules

SDRAMs are available in modules consisting of multiple memory ICs arranged on a

printed circuit board (PCB). The most common type of SDRAM memory module is called

a DIMM (dual in-line memory module). Another version of the DIMM is the SODIMM

(small-outline DIMM). A type of memory module, generally found in older equipment and

essentially obsolete, is the SIMM (single in-line memory module). The SIMM has connec-

tion pins on one side of a PCB where the DIMM uses both sides of the board. DIMMs plug

into a socket on the system mother board for memory expansion. A generic representation of

a memory module is shown in Figure 11–48 with the system board connectors into which the

modules are inserted.

 Memory Expansion 665

DIMMs generally contain DDR SDRAM memory chips. DDR means double data rate,

so a DDR SDRAM transfers two blocks of data for each clock cycle rather than one like a

standard SDRAM. Three basic types of modules are DDR, DDR2, and DDR3.

• DDRmoduleshave184pinsandrequirea2.5voltagesource.

• DDR2moduleshave240pinsandrequirea1.8voltagesource.

• DDR3moduleshave240pinsandrequirea1.5voltagesource.

The DDR, DDR2, and DDR3 have transfer data rates of 1600 MB/s, 3200 MB/s, and 6400 MB/s

respectively.

FIGURE 11–48 A memory module with connectors.

Memory components are extremely sensitive to static electricity. Use the following precautions when
handling memory chips or modules such as DIMMs:

• Beforehandling,dischargeyourbody’sstaticchargebytouchingagroundedsurfaceorweara
grounding wrist strap containing a high-value resistor if available. A convenient, reliable ground
is the ac outlet ground.

• Donotremovecomponentsfromtheirantistaticbagsuntilyouarereadytoinstallthem.

• Donotlaypartsontheantistaticbagsbecauseonlytheinsideisantistatic.

• WhenhandlingDIMMs,holdbytheedgesorthemetalmountingbracket.Donottouchcompo-
nents on the boards or the edge connector pins.

• Neverslideanypartoveranytypeofsurface.
• Avoidplastic,vinyl,styrofoam,andnylonintheworkarea.

When installing DIMMs, follow these steps:

1. Line up the notches on the DIMM board with the notches in the memory socket.

2. Push firmly on the module until it is securely seated in the socket.

3. Generally, the latches on both sides of the socket will snap into place when the module is com-
pletely inserted. These latches also release the module, so it can be removed from the socket.

SECTION 11–6 CHECKUP

 1. How many 16k * 1 RAMs are required to achieve a memory with a word capacity

of 16k and a word length of eight bits?

 2. To expand the 16k * 8 memory in question 1 to a 32k * 8 organization, how many

more 16k * 1 RAMs are required?

 3. What does DIMM stand for?

666 Data Storage

11–7 Special Types of Memories

In this section, the first in–first out (FIFO) memory, the last in–first out (LIFO) memory,

the memory stack, and the charge-coupled device memory are covered.

After completing this section, you should be able to

u Describe a FIFO memory

u Describe a LIFO memory

u Discuss memory stacks

u Explain how to use a portion of RAM as a memory stack

u Describe a basic CCD memory

First In–First Out (FIFO) Memories

This type of memory is formed by an arrangement of shift registers. The term FIFO refers

to the basic operation of this type of memory, in which the first data bit written into the

memory is the first to be read out.

One important difference between a conventional shift register and a FIFO register is

illustrated in Figure 11–49. In a conventional register, a data bit moves through the register

only as new data bits are entered; in a FIFO register, a data bit immediately goes through

the register to the right-most bit location that is empty.

 = empty positions.

In a FIFO shift register, data “fall” through (go right).

X = unknown data bits.

In a conventional shift register, data stay to the left until “forced”

through by additional data.

Input

0

1

1

0

X

0

1

1

0

X

0

1

1

X

X

0

1

OutputX X

Conventional Shift Register

X

X

X

1

X Input

0

1

1

0 0

1

1

1

1

1

Output

FIFO Shift Register

0

0

0

0

FIGURE 11–49 Comparison of conventional and FIFO register operation.

Figure 11–50 is a block diagram of a FIFO serial memory. This particular memory

has four serial 64-bit data registers and a 64-bit control register (marker register). When

data are entered by a shift-in pulse, they move automatically under control of the marker

register to the empty location closest to the output. Data cannot advance into occupied

positions. However, when a data bit is shifted out by a shift-out pulse, the data bits

remaining in the registers automatically move to the next position toward the output. In

an asynchronous FIFO, data are shifted out independent of data entry, with the use of

two separate clocks.

FIFO Applications

One important application area for the FIFO register is the case in which two systems of

differing data rates must communicate. Data can be entered into a FIFO register at one rate

and taken out at another rate. Figure 11–51 illustrates how a FIFO register might be used

in these situations.

 Special Types of Memories 667

Last In–First Out (LIFO) Memories

The LIFO (last in–first out) memory is found in applications involving microprocessors

and other computing systems. It allows data to be stored and then recalled in reverse order;

that is, the last data byte to be stored is the first data byte to be retrieved.

Register Stacks

A LIFO memory is commonly referred to as a push-down stack. In some systems, it is

implemented with a group of registers as shown in Figure 11–52. A stack can consist of any

number of registers, but the register at the top is called the top-of-stack.

To illustrate the principle, a byte of data is loaded in parallel onto the top of the stack.

Each successive byte pushes the previous one down into the next register. This process is

illustrated in Figure 11–53. Notice that the new data byte is always loaded into the top reg-

ister and the previously stored bytes are pushed deeper into the stack. The name push-down

stack comes from this characteristic.

64-bit shift register

64-bit shift register

64-bit shift register

64-bit shift register

Input
buffers

Output
buffer

Marker register
and controls

Input
control
logic

Output
control
logic

Data

input

I0
I1
I2
I3

Input ready (IR)

Shift in (SI)

Output ready (OR)

Shift out (SO)

O0
O1
O2
O3

Data

output

Memory array stores

64 4-bit data words

Control lines Control lines

FIGURE 11–50 Block diagram of a typical FIFO serial memory.

FIFO register

(a) Irregular telemetry data can be stored and retransmitted at a constant rate.

(b) Data input at a slow keyboard rate can be stored and then transferred at a higher rate for processing.

(c) Data input at a constant rate can be stored and then output in bursts.

(d) Data in bursts can be stored and reformatted into a constant-rate output.

Irregular-rate data Constant-rate data

FIFO registerLower-rate data Higher-rate data

FIFO registerConstant-rate data Burst data

FIFO registerBurst data Constant-rate data

FIGURE 11–51 Examples of the FIFO register in data-rate buffering applications.

668 Data Storage

Data bytes are retrieved in the reverse order. The last byte entered is always at the top

of the stack, so when it is pulled from the stack, the other bytes pop up into the next higher

locations. This process is illustrated in Figure 11–54.

RAM Stack

Another approach to LIFO memory used in microprocessor-based systems is the allocation

of a section of RAM as the stack rather than the use of a dedicated set of registers. As you

have seen, for a register stack the data move up or down from one location to the next. In

Top-of-stack1

2

3

nth register

FIGURE 11–52 Register stack.

1 1 1 0 0 0 01

1 0 0 0 0 1 11

First data byte pushed onto stack

1 0 0 1 0 0 1 1

Second data byte pushed onto stack

1 1 1 1 0 0 0 0

Third data byte pushed onto stack

0 1 0 1 0 1 0 1

1 0 0 0 0 1 11 0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11

FIGURE 11–53 Simplified illustration of pushing data onto the stack.

1 0 0 0 0 1 111 1 1 0 0 0 01

1 0 0 0 0 1 11

0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11

1 1 1 1 0 0 0 0

Initially storing 3 data bytes.
The last byte in is at top-of-
stack.

0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1

After third byte is pulled
from stack, the second byte
that was stored pops up to
the top-of-stack.

After second byte is pulled
from stack, the first byte
that was stored pops up to
the top-of-stack.

FIGURE 11–54 Simplified illustration of pulling data from the stack.

 Special Types of Memories 669

a RAM stack, the data do not move but the top-of-stack moves under control of a register

called the stack pointer.

Consider a random-access memory that is byte organized—that is, one in which

each address contains eight bits—as illustrated in Figure 11–55. The binary address

0000000000001111, for example, can be written as 000F in hexadecimal. A 16-bit address

can have a minimum hexadecimal value of 000016 and a maximum value of FFFF16. With

this notation, a 64 kB memory array can be represented as shown in Figure 11–55. The

lowest memory address is 000016 and the highest memory address is FFFF16.

Now, consider a section of RAM set aside for use as a stack. A special separate register,

the stack pointer, contains the address of the top of the stack, as illustrated in Figure 11–56.

A 4-digit hexadecimal representation is used for the binary addresses. In the figure, the

addresses are chosen for purposes of illustration.

Now let’s see how data are pushed onto the stack. The stack pointer is initially at address

FFEE16, which is the top of the stack as shown in Figure 11–56(a). The stack pointer is

then decremented (decreased) by two to FFEC16. This moves the top of the stack to a

lower memory address, as shown in Figure 11–56(b). Notice that the top of the stack is not

stationary as in the fixed register stack but moves downward (to lower addresses) in the

RAM as data words are stored. Figure 11–56(b) shows that two bytes (one data word) are

then pushed onto the stack. After the data word is stored, the top of the stack is at FFEC16.

Figure 11–57 illustrates the POP operation for the RAM stack. The last data word stored

in the stack is read first. The stack pointer that is at FFEC is incremented (increased) by two

to address FFEE16 and a POP operation is performed as shown in part (b). Keep in mind

that RAMs are nondestructive when read, so the data word still remains in the memory

after a POP operation. A data word is destroyed only when a new word is written over it.

0000

0001

0002

0003

0004

0005

0006

0007

FFF9

FFFA

FFFB

FFFC

FFFD

FFFE

FFFF

16-bit address

(hexadecimal)

FIGURE 11–55 Representation

of a 64 kB memory with the

16-bit addresses expressed in

hexadecimal.

Small
section
of RAM

FFEE Top-of-stack

(a) The stack pointer is initially at FFEE before the data word

 0001001000110100 (1234) is pushed onto the stack.

Stack pointer

Top-of-stack

(b) The stack pointer is decremented by two and the data

 word 0001001000110100 is placed in the two locations

 prior to the original stack pointer location.

FFECFFEE

Stack pointer

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0

FIGURE 11–56 Illustration of the PUSH operation for a RAM stack.

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 0

FFEC

Top-of-stack

copied (popped) from the stack.

FFEE Top-of-stack

data word stored is copied (popped) from the stack.

Stack pointer Stack pointer
0 0 1 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0

(a) The stack pointer is at FFEC before the data word is (b) The stack pointer is incremented by two and the last

FIGURE 11–57 Illustration of the POP operation for the RAM stack.

670 Data Storage

A RAM stack can be of any depth, depending on the number of continuous memory

addresses assigned for that purpose.

CCD Memories

The CCD (charge-coupled device) memory stores data as charges on capacitors and has

the ability to convert optical images to electrical signals. Unlike the DRAM, however, the

storage cell does not include a transistor. High density is the main advantage of CCDs, and

these devices are widely used in digital imaging.

The CCD memory consists of long rows of semiconductor capacitors, called channels.

Data are entered into a channel serially by depositing a small charge for a 0 and a large

charge for a 1 on the capacitors. These charge packets are then shifted along the channel by

clock signals as more data are entered.

As with the DRAM, the charges must be refreshed periodically. This process is done by

shifting the charge packets serially through a refresh circuit. Figure 11–58 shows the basic

concept of a CCD channel. Because data are shifted serially through the channels, the CCD

memory has a relatively long access time. CCD arrays are used in many modern cameras

to capture video images in the form of light-induced charge.

Charge

movement

Substrate

FIGURE 11–58 A CCD (charge-coupled device) channel.

SECTION 11–7 CHECKUP

 1. What is a FIFO memory?

 2. What is a LIFO memory?

 3. Explain the PUSH operation in a memory stack.

 4. Explain the POP operation in a memory stack.

 5. What does the term CCD stand for?

11–8 Magnetic and Optical Storage

In this section, the basics of magnetic disks, magnetic tape, magneto-optical disks, and

optical disks are introduced. These storage media are important, particularly in computer

applications, where they are used for mass nonvolatile storage of data and programs.

After completing this section, you should be able to

u Describe a magnetic hard disk

u Discuss magnetic tape

u Discuss removable hard disks

u Explain the principle of magneto-optical disks

u Discuss the CD-ROM, CD-R, and CD-RW disks

u Describe the WORM

u Discuss the DVD-ROM

Magnetic Storage

Magnetic Hard Disks

Computers use hard disks as the internal mass storage media. Hard disks are rigid “plat-

ters” made of aluminum alloy or a mixture of glass and ceramic covered with a magnetic

coating. Hard disk drives mainly come in three diameter sizes, 3.5 in., 2.5 in., and 1.8 in.

Older formats of 8 in. and 5.25 in. are considered obsolete. A hard disk drive is hermeti-

cally sealed to keep the disks dust-free.

Typically, two or more disks are stacked on top of each other on a common shaft or

spindle that turns the assembly at several thousand rpm. A separation between each disk

allows for a magnetic read/write head that is mounted on the end of an actuator arm, as

shown in Figure 11–59. There is a read/write head for both sides of each disk since data are

recorded on both sides of the disk surface. The drive actuator arm synchronizes all the read/

write heads to keep them in perfect alignment as they “fly” across the disk surface with a

separation of only a fraction of a millimeter from the disk. A small dust particle could cause

a head to “crash,” causing damage to the disk surface.

Actuator arm

Disks

Spindle

Read/Write head

Case

FIGURE 11–59 A hard disk drive. FrameAngel/Shutterstock

Basic Read/Write Head Principles

The hard drive is a random-access device because it can retrieve stored data anywhere on

the disk in any order. A simplified diagram of the magnetic surface read/write operation is

shown in Figure 11–60. The direction or polarization of the magnetic domains on the disk

surface is controlled by the direction of the magnetic flux lines (magnetic field) produced

N
S

N
N SS N S

Magnetic
surface of disk

Track

Read
head

Write
head

+

Write
current

Voltage
pulse

FIGURE 11–60 Simplified read/write head operation.

 Magnetic and Optical Storage 671

672 Data Storage

by the write head according to the direction of a current pulse in the winding. This mag-

netic flux magnetizes a small spot on the disk surface in the direction of the magnetic field.

A magnetized spot of one polarity represents a binary 1, and one of the opposite polarity

represents a binary 0. Once a spot on the disk surface is magnetized, it remains until written

over with an opposite magnetic field.

When the magnetic surface passes a read head, the magnetized spots produce magnetic

fields in the read head, which induce voltage pulses in the winding. The polarity of these

pulses depends on the direction of the magnetized spot and indicates whether the stored bit

is a 1 or a 0. The read and write heads are usually combined in a single unit.

Hard Disk Format

A hard disk is organized or formatted into tracks and sectors, as shown in Figure 11–61(a).

Each track is divided into a number of sectors, and each track and sector has a physical

address that is used by the operating system to locate a particular data record. Hard disks

typically have from a few hundred to thousands of tracks and are available with storage

capacities of up to 1 TB or more. As you can see in the figure, there is a constant number

of tracks/sector, with outer sectors using more surface area than the inner sectors. The

arrangement of tracks and sectors on a disk is known as the format.

A hard disk stack is illustrated in Figure 11–61(b). Hard disk drives differ in the number

of disks in a stack, but there is always a minimum of two. All of the same corresponding

tracks on each disk are collectively known as a cylinder, as indicated.

Track 1

Track 2

Track 3

Track n

Sector

(a) (b)

Corresponding tracks (blue)
make a cylinder

FIGURE 11–61 Hard disk organization and formatting.

InfoNote

Data are stored on a hard drive

in the form of files. Keeping

track of the location of files

is the job of the device driver

that manages the hard drive

(sometimes referred to as hard

drive BIOS). The device driver and

thecomputer’soperatingsystem
can access two tables to keep

track of files and file names. The

first table is called the FAT (File

Allocation Table). The FAT shows

what is assigned to specific files

and keeps a record of open sectors

and bad sectors. The second table

is the Root Directory which has

file names, type of file, time and

date of creation, starting cluster

number, and other information

about the file.

Hard Disk Performance

Several basic parameters determine the performance of a given hard disk drive. A seek

operation is the movement of the read/write head to the desired track. The seek time is the

average time for this operation to be performed. Typically, hard disk drives have an average

seek time of several milliseconds, depending on the particular drive.

The latency period is the time it takes for the desired sector to spin under the head once

the head is positioned over the desired track. A worst case is when the desired sector is

just past the head position and spinning away from it. The sector must rotate almost a full

revolution back to the head position. Average latency period assumes that the disk must

make half of a revolution. Obviously, the latency period depends on the constant rotational

speed of the disk. Disk rotation speeds are different for different disk drives but typically

are from 4200 rpm to 15,000 rpm.

The sum of the average seek time and the average latency period is the access time for

the disk drive.

Removable Hard Disk

A removable hard disk drive with a capacity of 1 TB is available. Keep in mind that the tech-

nology is changing so rapidly that there most likely will be further advancements at the time

you are reading this.

Magnetic Tape

Tape is used for backup data from mass storage devices and typically is slower than disks

because data on tape is accessed serially rather than randomly. There are several types that

are available, including QIC, 8 mm, and DLT.

QIC is an abbreviation for quarter-inch cartridge and looks much like audio tape cas-

settes with two reels inside. Various QIC standards have from 28 to 108 tracks that can

store from 80 MB to 1.6 GB. More recent innovations under the Travan standard have

lengthened the tape and increased its width allowing storage capacities up to 10 GB. QIC

tape drives use read/write heads that have a single write head with a read head on each

side. This allows the tape drive to verify data just written when the tape is running in either

direction. In the record mode, the tape moves past the read/write heads at approximately

100 inches/second, as indicated in Figure 11–62.

Read head

Write head Write head

Head assembly

Track 1
Track 2

Track nMagnetic tape

(moving past head)

0.25 in. 100 in./s

FIGURE 11–62 QIC tape.

8 mm tape was originally designed for the video industry but has been adopted by the

computer industry as a reliable way to store large amounts of computer data.

DLT is an abbreviation for digital linear tape. DLT is a half-inch wide tape, which is

60% wider than 8 mm and, of course, twice as wide as standard QIC. Basically, DLT dif-

fers in the way the tape-drive mechanism works to minimize tape wear compared to other

systems. DLT offers the highest storage capacity of all the tape formats with capacities

ranging up to 800 GB.

Magneto-Optical Storage

As the name implies, magneto-optical (MO) storage devices use a combination of mag-

netic and optical (laser) technologies. A magneto-optical disk is formatted into tracks and

sectors similar to magnetic disks.

The basic difference between a purely magnetic disk and an MO disk is that the mag-

netic coating used on the MO disk requires heat to alter the magnetic polarization. There-

fore, the MO is extremely stable at ambient temperature, making data unchangeable. To

write a data bit, a high-power laser beam is focused on a tiny spot on the disk, and the

InfoNote

Tape is a viable alternative to

disk due to its lower cost per

bit. Though the density is lower

than for a disk drive, the available

surface on a tape is far greater.

The highest-capacity tape media

are generally on the same order

as the largest available disk drive

(about 1 TB—a terabyte is one

trillion bytes.) Tape has historically

offered enough advantage in cost

over disk storage to make it a

viable product, particularly for

backup, where media removability

is also important.

 Magnetic and Optical Storage 673

674 Data Storage

temperature of that tiny spot is raised above a temperature level called the Curie point

(about 200°C). Once heated, the magnetic particles at that spot can easily have their direc-

tion (polarization) changed by a magnetic field generated by the write head. Information is

read from the disk with a less-powerful laser than used for writing, making use of the Kerr

effect where the polarity of the reflected laser light is altered depending on the orientation

of the magnetic particles. Magnetic spots of one polarity represent 0s and magnetic spots

of the opposite polarity represent 1s. Basic MO operation is shown in Figure 11–63, which

represents a small cross-sectional area of a disk.

Magnetic

material

Substrate

Electromagnet

(a) Unrecorded disk

Disk

rotation

Magnetic

spot

Magnetic spot is heated

by laser and magnetized

by electromagnetic field.

Write
current

(b) Writing: A high-power laser beam heats the spot, causing the

magnetic particles to align with the electromagnetic field.

High-power

laser beam

+

–

Erase
current

(d) Erasing: The electromagnetic field is reversed as the high-

power laser beam heats the spot, causing the magnetic particles

to be restored to the original polarity.

High-power

laser beam

–

+

Lens

(c) Reading: A low-power laser beam reflects off of the reversed-

polarity magnetic particles and its polarization shifts. If the particles

are not reversed, the polarization of the reflected beam is unchanged.

Low-power

laser beam

Reflected beam

Detector

Mirror

FIGURE 11–63 Basic principle of a magneto-optical disk.

Optical Storage

CD-ROM

The most common Compact Disk–Read-Only Memory is a 120 mm diameter disk with

a sandwich of three coatings: a polycarbonate plastic on the bottom, a thin aluminum

sheet for reflectivity, and a top coating of lacquer for protection. The CD-ROM disk is

formatted in a single spiral track with sequential 2 kB sectors and has a capacity of 680

MB. Data are prerecorded at the factory in the form of minute indentations called pits

and the flat area surrounding the pits called lands. The pits are stamped into the plastic

layer and cannot be erased.

A CD player reads data from the spiral track with a low-power infrared laser, as illus-

trated in Figure 11–64. The data are in the form of pits and lands as shown. Laser light

reflected from a pit is 180° out-of-phase with the light reflected from the lands. As the disk

rotates, the narrow laser beam strikes the series of pits and lands of varying lengths, and a

photodiode detects the difference in the reflected light. The result is a series of 1s and 0s

corresponding to the configuration of pits and lands along the track.

Pit
Land Lens

Lens

Prism

Laser

Photoelectric
cell

Disk

FIGURE 11–64 Basic operation of reading data from a CD-ROM.

WORM

Write Once/Read Many (WORM) is a type of optical storage that can be written onto one

time after which the data cannot be erased but can be read many times. To write data, a low-

power laser is used to burn microscopic pits on the disk surface. 1s and 0s are represented

by the burned and nonburned areas.

CD-R

This is essentially a type of WORM. The difference is that the CD-Recordable allows mul-

tiple write sessions to different areas of the disk. The CD-R disk has a spiral track like the

CD-ROM, but instead of mechanically pressing indentations on the disk to represent data,

the CD-R uses a laser to burn microscopic spots into an organic dye surface. When heated

beyond a critical temperature with a laser during read, the burned spots change color and

reflect less light than the nonburned areas. Therefore, 1s and 0s are represented on a CD-R

by burned and nonburned areas, whereas on a CD-ROM they are represented by pits and

lands. Like the CD-ROM, the data cannot be erased once it is written.

CD-RW

The CD-Rewritable disk can be used to read and write data. Instead of the dye-based record-

ing layer in the CD-R, the CD-RW commonly uses a crystalline compound with a special

property. When it is heated to a certain temperature, it becomes crystalline when it cools;

but if it is heated to a certain higher temperature, it melts and becomes amorphous when it

cools. To write data, the focused laser beam heats the material to the melting temperature

resulting in an amorphous state. The resulting amorphous areas reflect less light than the

crystalline areas, allowing the read operation to detect 1s and 0s. The data can be erased

or overwritten by heating the amorphous areas to a temperature above the crystallization

 Magnetic and Optical Storage 675

676 Data Storage

temperature but lower than the melting temperature that causes the amorphous material to

revert to a crystalline state.

DVD-ROM

Originally DVD was an abbreviation for Digital Video Disk but eventually came to repre-

sent Digital Versatile Disk. Like the CD-ROM, DVD-ROM data are prestored on the disk.

However, the pit size is smaller than for the CD-ROM, allowing more data to be stored on

a track. The major difference between CD-ROM and DVD-ROM is that the CD is single-

sided, while the DVD has data on both sides. Also, in addition to double-sided DVD disks,

there are also multiple-layer disks that use semitransparent data layers placed over the main

data layers, providing storage capacities of tens of gigabytes. To access all the layers, the

laser beam requires refocusing going from one layer to the other.

Blu-Ray

The Blu-ray Disc (BD) is designed to eventually replace the DVD. The BD is the same

size as DVDs and CDs. The name Blu-ray refers to the blue laser used to read the disc.

DVDs use a red laser that has a longer wavelength. Information can be stored on a BD at

a greater density and video definition than is possible with a DVD. The smaller Blu-ray

laser beam can read recorded data in pits that are less than half the size of the pits on a

DVD. A Blu-ray Disc can store about five times more data than a DVD. Typical storage

capacities for conventional Blu-ray dual-layer discs are 50 GB, which is the industry

standard for feature-length video. Triple layer and quadruple layer discs (BD-XL) can

store 100 GB and 128 GB, respectively. Storage capacities up to 1 TB are currently under

development.

SECTION 11–8 CHECKUP

 1. List the major types of magnetic storage.

 2. Generally, how is a magnetic disk organized?

 3. How are data written on and read from a magneto-optical disk?

 4. List the types of optical storage.

11–9 Memory Hierarchy

A memory system performs the data storage function in a computer. The memory system

holds data temporarily during processing and also stores data and programs on a long-term

basis. A computer has several types of memory, such as registers, cache, main, and hard

disk. Other types of storage can also be used, such as magnetic tape, optical disk, and mag-

netic disk. Memory hierarchy as well as the system processor determines the processing

speed of a computer.

After completing this section, you should be able to

u Discuss several types of memory

u Define memory hierarchy

u Describe key elements in a memory hierarchy

Three key characteristics of memory are cost, capacity, and access time. Memory cost

is usually specified in cost per bit. The capacity of a memory is measured in the amount

of data (bits or bytes) it can store. The access time is the time it takes to acquire a speci-

fied unit of data from the memory. The greater the capacity, the smaller the cost and the

greater the access time. The smaller the access time, the greater the cost. The goal of using

 Memory Hierarchy 677

a memory hierarchy is to obtain the shortest possible average access time while minimiz-

ing the cost.

The speed with which data can be processed depends both on the processor speed and

on the time it takes to access stored data. Memory hierarchy is the arrangement of vari-

ous memory elements within the computer architecture to maximize processing speed and

minimize cost. Memory can be classified according to its “distance” from the processor

in terms of the number of machine cycles or access time required to get data for process-

ing. Distance is measured in time, not in physical location. Faster memory elements are

considered closer to the processor compared to slower types of memory elements. Also,

the cost per bit is much greater for the memory close to the processor than for the memory

that is further from the processor. Figure 11–65 illustrates the arrangement of elements in

a typical memory hierarchy.

Processor

Registers

Caches

Main memory

Primary storage

Secondary storage

Tertiary storage

Hard disk

Auxiliary storage

FIGURE 11–65 Typical memory hierarchy.

A primary distinction between the storage elements in Figure 11–65 is the time

required for the processor to access data and programs. This access time is known as

memory latency. The greater the latency, the further from the processor a storage ele-

ment is considered to be. For example, typical register latency can be up to 1 or 2 ns,

cache latency can be up to about 50 ns, main memory latency can be up to about 90 ns,

and hard disk latency can be up to about 20 ms. Auxiliary memory latency can range up

to several seconds.

Registers

Registers are memory elements that are located within the processor. They have a very

small latency as well as a low capacity (number of bits that can be stored). One goal of pro-

gramming is to keep as much frequently used data in the registers as possible. The number

of registers in a processor can vary from the tens to hundreds.

Caches

The next level in the hierarchy is the memory cache, which provides temporary storage.

The L1 cache is located in the processor, and the L2 cache is outside of the processor. A

programming goal is to keep as much of a program as possible in the cache, especially the

parts of a program that are most extensively used. There can be more than two caches in a

memory system.

Main Memory

Main memory generally consists of two elements: RAM (random-access memory) and

ROM (read-only memory). The RAM is a working memory that temporarily stores less

678 Data Storage

frequently used data and program instructions. The RAM is volatile, which means that the

stored contents are lost when the power is turned off. The ROM is for permanent storage

of frequently used programs and data; ROM is nonvolatile. Registers, caches, and main

memory are considered primary storage.

Hard Disk

The hard disk has a very high latency and is used for mass storage of data and programs on

a permanent basis. The hard disk is also used for virtual memory, space allocated for data

when the primary memory fills up. In effect, virtual memory simulates primary memory

with the disadvantage of high latency. Capacities range up to about 1 terabyte (TB).

1 TB = 1,000,000,000,000 B = 1012 B

In addition to the internal hard disk, secondary storage can also include off-line storage.

Off-line storage includes DVDs, CD-ROM, CD-RW, and USB flash drive. Off-line storage

is removable storage.

Auxiliary Storage

Auxiliary storage, also called tertiary storage, includes magnetic tape libraries and optical

jukeboxes. A tape library can store immense amounts of data (up to hundreds of peta-

bytes). A petabyte (PB) is

1 PB = 1,000,000,000,000,000 B = 1015 B

An optical jukebox is a robotic storage device that automatically loads and unloads

optical disks. It may have as many as 2,000 slots for disks and can store hundreds of

petabytes.

Relationship of Cost, Capacity, and Access Time

Figure 11–66 shows how capacity (the amount of data a memory can store) and cost per

unit of storage varies as the distance from the processor, in terms of access time or latency,

increases. The capacity increases and the cost decreases as access time increases.

Registers

Capacity

Cost/unit

L1 Cache L2 Cache Hard disk Auxiliary

memory

Main

memory

Access

time
Processor

FIGURE 11–66 Changes in memory capacity and cost per unit of data as latency

(access time) increases.

 Memory Hierarchy 679

Memory Hierarchy Performance

In a computer system, the overall processing speed is usually limited by the memory, not

the processor. Programming determines how well a particular memory hierarchy is uti-

lized. The goal is to process data at the fastest rate possible. Two key factors in establishing

maximum processor performance are locality and hit rate.

If a block of data is referenced, it will tend to be either referenced again soon or a nearby

data block will be referenced soon. Frequent referencing of the same data block is known

as temporal locality, and the program code should be arranged so that the piece of the data

in the cache is reused frequently. Referencing an adjacent data block is known as spatial

locality, and the program code should be arranged to use consecutive pieces of data on a

frequent basis.

A miss is a failed attempt by the processor to read or write a block of data in a given

level of memory (such as the cache). A miss causes the processor to have to go to a lower

level of memory (such as main memory), which has a longer latency. The three types of

misses are instruction read miss, data read miss, and data write miss. A successful attempt

to read or write a block of data in a given level of memory is called a hit. Hits and misses

are illustrated in Figure 11–67, where the processor is requesting data from the cache.

Request

issued

Request

issued
Data

retrieved

Data

retrieved

Registers

Caches

Main memory

Cache miss

Data not in

cache–access

main memory

Cache hit

Hard disk

Auxiliary storage

Processor

FIGURE 11–67 Illustration of a cache hit and a miss.

The hit rate is the percentage of memory accesses that find the requested data in

the given level of memory. The miss rate is the percentage of memory accesses that fail

to find the requested data in the given level of memory and is equal to 1– hit rate. The

time required to access the requested information in a given level of memory is called

the hit time. The higher the hit rate (hit to miss ratio), the more efficient the memory

hierarchy is.

SECTION 11–9 CHECKUP

 1. State the purpose of memory hierarchy.

 2. What is access time?

 3. How does memory capacity affect the cost per bit?

 4. Does higher level memory generally have lower capacity than lower level memory?

 5. What is a hit? A miss?

 6. What determines the efficiency of the memory hierarchy?

680 Data Storage

11–10 Cloud Storage

Cloud storage is a system, usually maintained by a third party, for securely storing data

in a remote location that can be conveniently accessed through the Internet. A file on a

computer can be stored on secure remote servers and accessed by various user devices

such as computers, smart phones, and tablets. Cloud storage eliminates the need for local

backup storage such as external hard drives or CDs. When you use cloud storage, you are

essentially storing your files or documents on Internet servers instead of or in addition to a

computer. The term cloud may have originated from the use of a symbol that resembled a

cloud on early network diagrams.

After completing this section, you should be able to

u Describe cloud storage

u Explain what a server is

u State the advantages of cloud storage

u Describe several properties of cloud storage

The Cloud Storage System

A cloud storage system consists of a remote network of servers (also called nodes) that

are connected to a user device through the Internet, as shown in Figure 11–68. Some

cloud storage systems accommodate only certain types of data such as e-mail or digital

pictures, while others store all types of data and range in size from small operations with a

few servers to very large operations that utilize hundreds of servers. A facility that houses

cloud storage systems is called a data center. A typical storage cloud system can serve

multiple users.

User

device

Server

(storage)

Server

(storage)

Server

(storage)

Server

(storage)

Server

(control)
Internet

FIGURE 11–68 A typical cloud storage system architecture consists of a master control

server and several storage servers that can be accessed by a user device over the Internet.

Servers typically operate within a client-server architecture, where the client is the user

that is subscribing to the cloud storage. Theoretically, a server is any computerized process

that shares a resource with one or more clients. More practically, a storage server is a com-

puter and software with a large memory capacity that responds to requests across a network

to provide file storage and access as well as services such as file sharing. The control server

 Cloud Storage 681

coordinates the activities within the storage cloud network among other servers and man-

ages user access. A server rack and data center are shown in Figure 11–69.

At its simplest level, a cloud storage system needs just one storage server connected to

the Internet. When copies of a file are sent by a client to the server over the Internet, the

data are stored. When the client wishes to retrieve the data, the storage server (node) sends

it back through a Web-based interface or allows the client to manipulate the file on the

server itself.

Most cloud storage systems have many storage servers (hundreds in some cases) to

provide both capacity and redundancy. A grouping of servers is sometimes called a clus-

ter. Depending on the system architecture, a given system may have multiple clusters. A

simple system with four storage servers illustrating file storage redundancy is shown in

Figure 11–70. When a client sends data to the cloud, it is stored in multiple servers. This

redundancy guarantees availability of data at any time to the client and makes the system

highly reliable. Redundancy is necessary because a server requires periodic maintenance

or may break down and need repairs. In addition to storage server redundancy, most cloud

storage systems use power supply redundancy so that all servers are not operating from the

same power source.

(a) A typical rack of servers (b) A typical server room in a data center

FIGURE 11–69 Cloud servers. (a) Jojje/Shutterstock (b) Oleksiy Mark/Shutterstock

User

device

Server

(storage)

Server

(storage)

Server

(storage)

Server

(storage)

Server

(control)
Internet

FIGURE 11–70 A simple cloud storage system with storage redundancy. In this case, the

data are stored on four different servers.

682 Data Storage

In addition to reliability that provides assurance that a client’s data are accurately

stored and can be retrieved at any time, a second major factor for cloud storage is security

that the data cannot be compromised. Generally, three methods are used to provide data

security:

• Encryption or encoding, which prevents the data from being read or interpreted with-

out proper decryption tools

• Authentication, which requires a name and password for access

• Authorization, which requires a list of only those people who can have access to

the data

Cloud storage has certain advantages over traditional data storage in a computer. One

advantage is that you can store and retrieve data from any physical location that has Inter-

net access. A second advantage is that you don’t have to use the same computer to store and

retrieve data or carry a physical storage device for data backup around with you. Also, the

user does not have to maintain the storage components. Another advantage of cloud storage

is that other people can access your data (data sharing).

Architecture

The term architecture relates to how a cloud storage system is structured and organized.

The primary purpose of cloud storage architecture is to deliver the service for data storage

in a specific way. Architectures vary but generically most consist of a front end, a control,

and a back end, as depicted in Figure 11–71.

Users/

clients
Internet/

network

Front end

(access

protocol)

Control

(data

handling

protocols)

Back end

(storage)

FIGURE 11–71 Generic architecture of a cloud storage system.

A cloud storage system uses various protocols within the architecture that determine

how the data are accessed and handled. A protocol is a standardized set of software regula-

tions, requirements, and procedures that control and regulate the transmission, processing,

and exchange of data among devices. For example, common Internet protocols are HTTP

(Hypertext Transfer Protocol), FTP (File Transfer Protocol), TCP/IP (Transfer Control Pro-

tocol/Internet Protocol), and SMTP (Simple Mail Transfer Protocol).

An API is an Application Programming Interface, which is essentially a protocol for

access and utilization of a cloud storage system. There are many types of APIs. For exam-

ple, a commonly used one is the REST API. REST stands for Representational State Trans-

fer. An API is a software-to-software interface, not a user interface. With APIs, applications

talk to each other “behind the scene” without user knowledge.

Cloud Storage Properties

The following cloud storage properties determine the performance of the system.

• Latency. The time between a request for data and the delivery of the data to the user is

the latency of a system. Delay is due to the time for each component of the cloud stor-

age system to respond to a request and to the time for data to be transferred to the user.

 Troubleshooting 683

• Bandwidth. Bandwidth is a measure of the range of frequencies that can be simulta-

neously transferred to the cloud and is defined as a range of frequencies that can be

handled by the system. Generally, the wider the bandwidth, the shorter the latency

and vice versa.

• Scalability. The scalability property indicates the ability of a cloud storage system to

handle increasing amounts of data in a smooth and easy manner; or it is the cloud’s

ability to improve movement of data through the system (throughput) when addi-

tional resources (typically hardware) are added. When the performance of a system

improves proportionally to the storage capacity added, the system is said to be scal-

able. Scaling vertically (scale up) occurs when resources (hardware and memory) are

added to a single server (node). Scaling horizontally (scale out) occurs when more

servers (nodes) are added to a system.

• Elasticity. Elasticity is a cloud’s ability to deal with variations in the amount of data

(load) being transferred in and out of the storage system without service interrupts.

There is a subtle difference between scalability and elasticity when describing a sys-

tem’s behavior. Essentially, scalability is a static parameter that indicates how much

the system can be expanded, and elasticity is a dynamic parameter that refers to the

implementation of scalability. For example, a storage system may be scalable from one

to 100 servers. If the system is currently operating with 20 servers (nodes) and the data

load doubles, its elasticity allows 20 more nodes to be added for a total of 40. Likewise,

if the data load decreases by half, the elasticity allows 10 nodes to be removed. A server

can be added or removed by powering it up or down in a proper manner without dis-

rupting service to the user. Elasticity results in cost efficiency because only the number

of servers required for the data load at any given time are consuming power.

• Multitenancy. The multitenancy property of a cloud storage system allows multiple

users to share the same software applications and hardware and the same data storage

mechanism but not to see each other’s data.

SECTION 11–10 CHECKUP

 1. What is a cloud storage system?

 2. What is a server?

 3. How does a user connect to a cloud storage system?

 4. Name three advantages of a cloud system.

11–11 Troubleshooting

Because memories can contain large numbers of storage cells, testing each cell can be

a lengthy and frustrating process. Fortunately, memory testing is usually an automated

process performed with a programmable test instrument or with the aid of software for in-

system testing. Most microprocessor-based systems provide automatic memory testing as

part of their system software.

After completing this section, you should be able to

u Discuss the checksum method of testing ROMs

u Discuss the checkerboard pattern method of testing RAMs

ROM Testing

Since ROMs contain known data, they can be checked for the correctness of the stored

data by reading each data word from the memory and comparing it with a data word that

684 Data Storage

is known to be correct. One way of doing this is illustrated in Figure 11–72. This process

requires a reference ROM that contains the same data as the ROM to be tested. A special

test instrument is programmed to read each address in both ROMs simultaneously and to

compare the contents. A flowchart in Figure 11–73 illustrates the basic sequence.

ROM ROM

EN EN

Enable Data Ref. Data

Address
ROM tester

ROM
under
test

Reference
ROM

FIGURE 11–72 Block diagram for a

complete contents check of a ROM.

No

Read data byte
from address n of

ROM & Ref. ROM.

Select first
address
* n = 0.

START

Do data
bytes
agree?

Next
address

n = n + 1

Compare
data bytes.

No Last
address

?

Indicate
fault.

STOP

Yes

* n is the address number.

Yes

FIGURE 11–73 Flowchart for a complete contents

check of a ROM.

Checksum Method

Although the previous method checks each ROM address for correct data, it has the disad-

vantage of requiring a reference ROM for each different ROM to be tested. Also, a failure

in the reference ROM can produce a fault indication.

In the checksum method a number, the sum of the contents of all the ROM addresses,

is stored in a designated ROM address when the ROM is programmed. To test the ROM,

the contents of all the addresses except the checksum are added, and the result is compared

with the checksum stored in the ROM. If there is a difference, there is definitely a fault. If

the checksums agree, the ROM is most likely good. However, there is a remote possibility

that a combination of bad memory cells could cause the checksums to agree.

This process is illustrated in Figure 11–74 with a simple example. The checksum in this

case is produced by taking the sum of each column of data bits and discarding the carries.

This is actually an XOR sum of each column. The flowchart in Figure 11–75 illustrates the

basic checksum test.

 Troubleshooting 685

ROM

⊕Data

1 0 0 1 1 0 1 0

1 0 1 0 0 1 1 1

0 0 0 1 1 0 1 0

0 0 1 0 1 1 0 0

1 1 0 1 0 0 0 1

1 0 0 0 0 0 1 1

0 1 0 1 1 0 0 1

FIGURE 11–74 Simplified illustration of a programmed ROM with the checksum stored

at a designated address.

No

Compare
checksum with
final XOR sum

of data.

Read
checksum
address.

Do they
agree

?

Indicate
fault.

STOP

Yes

Read
address n.

Set n = 0
Set sum = 0

START

Last
data address

?

Next
address

n = n + 1

XOR contents
of address n

with previous
sum. Update

the sum.

No Yes

FIGURE 11–75 Flowchart for a basic checksum test.

The checksum test can be implemented with a special test instrument, or it can be incor-

porated as a test routine in the built-in (system) software or microprocessor-based systems.

In that case, the ROM test routine is automatically run on system start-up.

RAM Testing

To test a RAM for its ability to store both 0s and 1s in each cell, first 0s are written into all

the cells in each address and then read out and checked. Next, 1s are written into all the

cells in each address and then read out and checked. This basic test will detect a cell that is

stuck in either a 1 state or a 0 state.

Some memory faults cannot be detected with the all-0s–all-1s test. For example, if two

adjacent memory cells are shorted, they will always be in the same state, both 0s or both 1s.

Also, the all-0s–all-1s test is ineffective if there are internal noise problems such that the

contents of one or more addresses are altered by a change in the contents of another address.

The Checkerboard Pattern Test

One way to more fully test a RAM is by using a checkerboard pattern of 1s and 0s, as illus-

trated in Figure 11–76. Notice that all adjacent cells have opposite bits. This pattern checks

for a short between two adjacent cells; if there is a short, both cells will be in the same state.

After the RAM is checked with the pattern in Figure 11–76(a), the pattern is reversed,

as shown in part (b). This reversal checks the ability of all cells to store both 1s and 0s.

686 Data Storage

A further test is to alternate the pattern one address at a time and check all the other

addresses for the proper pattern. This test will catch a problem in which the contents of an

address are dynamically altered when the contents of another address change.

A basic procedure for the checkerboard test is illustrated by the flowchart in Figure 11–77.

The procedure can be implemented with the system software in microprocessor-based

Last
address?

STOP

Yes

Check all
addresses.

Store
checkerboard

pattern at
all addresses.

START

Yes

No
All OK?

Indicate
fault.

Reverse
the pattern at
all addresses.

Check all
addresses.

No Indicate
fault.

Next
address

n = n + 1

No

Reverse the
pattern in
address n.

Check all
other addresses.

No Indicate
fault.

All OK?

Set n = 0

All OK?

Yes

Yes

FIGURE 11–77 Flowchart for basic RAM checkerboard test.

(a) (b)

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

FIGURE 11–76 The RAM checkerboard test pattern.

 Summary 687

SECTION 11–11 CHECKUP

 1. Describe the checksum method of ROM testing.

 2. Why can the checksum method not be applied to RAM testing?

 3. List the three basic faults that the checkerboard pattern test can detect in a RAM.

SUMMARY

• Typesofsemiconductormemories:

Static

DRAM

Dynamic

EPROM

Erasable
Program-

mable
ROM

EEPROM

Electrically
Erasable
PROM

FLASH

Read/write
&

Random
access

FIFO

Serial
access

LIFO

Serial
access

CCD

Serial
access

SRAM

RAM

Random-
Access

Memory

ROM

Read-
Only

Memory

Also
Random
access

• TypesofSRAMs(StaticRAMs)andDRAMs(DynamicRAMs):

Asynchronous

BEDO DRAM

Burst EDO

Asynchronous

EDO DRAM
Extended Data

Output

Synchronized
with system clock.
Burst addressing

Synchronous
SRAM with
burst featureNot synchronized

with
system clock

Faster than DRAM.
Smaller capacity
than DRAM.
Often used as
cache memory.

Asynchronous
SRAM

SDRAM

Asynchronous

Slower than SRAM.
Larger capacity
than SRAM.
Used as main
memory.

FPM DRAM
Fast Page Mode

Capacitor storage
cells. Must be
refreshed.

Synchronous

DRAM
Flip-flop
storage cells

SRAM

 systems so that either the tests are automatic when the system is powered up or they can be

initiated from the keyboard.

688 Data Storage

• Typesofmagneticstorage:

Random access

Hard disk

Magnetic
disk

Serial access

QIC

(Travan)
8 mm DLT

Tape

Magneto-

Optical

Disk

Cross between
magnetic and
optical

Prerecorded at
factory

CD-ROM CD-R

Recordable

CD-RW

Rewritable

WORM

Write once read
many

DVD-ROM Blu-ray

Digital versatile
disk

• Typesofoptical(laser)storage:

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Address The location of a given storage cell or group of cells in a memory.

Blue-ray A disc storage technology that uses a blue laser to achieve more density and definition

than a DVD.

Bus One or more interconnections that interface one or more devices based on a standardized

specification.

Byte A group of eight bits.

Capacity The total number of data units (bits, nibbles, bytes, words) that a memory can store.

Cell A single storage element in a memory.

Cloud storage A network of servers that is connected to a user device through the Internet.

DRAM Dynamic random-access memory; a type of semiconductor memory that uses capacitors

as the storage elements and is a volatile, read/write memory.

EPROM Erasable programmable read-only memory; a type of semiconductor memory device

that typically uses ultraviolet light to erase data.

FIFO First in–first out memory.

Flash memory A nonvolatile read/write random-access semiconductor memory in which data are

stored as charge on the floating gate of a certain type of FET.

Hard disk A magnetic storage device; typically, a stack of two or more rigid disks enclosed in a

sealed housing.

LIFO Last in–first out memory; a memory stack.

Memory The portion of a computer or other system that stores binary data.

Memory hierarchy The arrangement of various memory elements within a computer architecture

to achieve maximum performance.

PROM Programmable read-only memory; a type of semiconductor memory.

RAM Random-access memory; a volatile read/write semiconductor memory.

Read The process of retrieving data from a memory.

ROM Read-only memory; a nonvolatile random-access semiconductor memory.

 Self-Test 689

Server Any computerized process that shares a resource with one or more clients. A computer

and software with a large memory capacity that responds to requests across a network to provide

file storage and access as well as services such as file sharing.

SRAM Static random-access memory; a type of volatile read/write semiconductor memory.

Word A group of bits or bytes that acts as a single entity that can be stored in one memory

 location; two bytes.

Write The process of storing data in a memory.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. A nibble consists of eight bits.

 2. A memory cell can store a byte of data.

 3. The location of a unit of data in a memory array is called its address.

 4. A data bus is bidirectional in operation.

 5. RAM is a random address memory.

 6. Data stored in a static RAM is retained even after power is removed.

 7. Cache is a type of memory used for intermediate or temporary storage of data.

 8. Dynamic RAMs must be periodically refreshed to retain data.

 9. ROM is a read-only memory.

 10. A flash memory uses a flashing beam of light to store data.

 11. Registers are at the top of a memory hierarchy.

 12. Cloud storage is accessed through the Internet.

SELF-TEST

Answers are at the end of the chapter.

 1. The bit capacity of a memory that has 512 addresses and can store 8 bits at each address is

(a) 512 (b) 1024 (c) 2048 (d) 4096

 2. A 16-bit word consists of

(a) 3 bytes (b) 4 nibbles (c) 4 bytes (d) 3 bytes and 1 nibble

 3. Data are stored in a random-access memory (RAM) during the

(a) read operation (b) enable operation

(c) write operation (d) addressing operation

 4. Data that are stored at a given address in a random-access memory (RAM) are lost when

(a) power goes off (b) the data are read from the address

(c) new data are written at the address (d) answers (a) and (c)

 5. A ROM is a

(a) nonvolatile memory (b) volatile memory

(c) read/write memory (d) byte-organized memory

 6. A memory with 512 addresses has

(a) 512 address lines (b) 12 address lines

(c) 1 address line (d) 9 address lines

 7. A byte-organized memory has

(a) 1 data output line (b) 4 data output lines

(c) 8 data output lines (d) 16 data output lines

 8. The storage element of a DRAM is a

(a) resistor (b) transistor (c) capacitor (d) diode

 9. ADDRESS-BURST is a feature of

(a) synchronous SRAM (b) asynchronous SRAM

(c) fast page mode DRAM (d) synchronous DRAM

690 Data Storage

 10. In a computer, the BIOS programs are stored in the

(a) ROM (b) RAM

(c) SRAM (d) DRAM

 11. SRAM, DRAM, flash, and EEPROM are all

(a) magneto-optical storage devices (b) semiconductor storage devices

(c) magnetic storage devices (d) optical storage devices

 12. Optical storage devices employ

(a) ultraviolet light (b) electromagnetic fields

(c) optical couplers (d) lasers

 13. Memory latency is

(a) average down time (b) time to reference a block of data

(c) processor access time (d) the hit rate

 14. A facility that houses a cloud storage system is called a

(a) server (b) data center

(c) computer center (d) cloud house

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 11–1 Semiconductor Memory Basics

 1. How would you distinguish between the two memories in Figure 11–78?

 0 ––
 63

A0

A1

A2

A3

A4

A5

E

O0

O1

O2

O3

64×4 A0

A1

A2

A3

A4

A5

R/W

I/O0

I/O1

I/O2

64×4

E

(a) (b)

A 0 ––
 63
A

I/O3

FIGURE 11–78

 2. How are bits, bytes, nibbles, and words related?

 3. Explain the basic memory operations.

 4. What memory address (0 through 256) is represented by each of the following hexadecimal

numbers?

(a) 0C16 (b) 5E16 (c) DF16

Section 11–2 The Random-Access Memory (RAM)

 5. A static memory array with four rows similar to the one in Figure 11–10 is initially storing all

0s. What is its content after the following conditions? Assume a 1 selects a row.

 Row 0 = 1, Data in (Bit 0) = 1

 Row 1 = 0, Data in (Bit 1) = 1

 Row 2 = 1, Data in (Bit 2) = 0

 Row 3 = 0, Data in (Bit 3) = 1

 6. Draw a basic logic diagram for a 512 3 4-bit static RAM, showing all the inputs and outputs.

 Problems 691

 7. Assuming that a 64k * 8 SRAM has a structure similar to that of the SRAM in Figure 11–12.

determine the number of rows and 8-bit columns in its memory cell array.

 8. Redraw the block diagram in Figure 11–12 for a 64k * 8 memory.

 9. What is cache memory?

 10. What are the different types of RAM families available?

Section 11–3 The Read-Only Memory (ROM)

 11. For the ROM array in Figure 11–79, determine the outputs for all possible input combinations,

and summarize them in tabular form (Blue cell is a 1, gray cell is a 0).

A0

A1

O3 O2 O1 O0

0 1
Address
decoder

0

1

2

3

FIGURE 11–79

Address
decoder

0 1

A0

A1

O3 O2 O1 O0

A2

0

1

2

3

4

5

6

7

FIGURE 11–80

 12. Determine the truth table for the ROM in Figure 11–80.

 13. Using a procedure similar to that in Example 11–1, design a ROM for conversion of single-

digit BCD to excess-3 code.

 14. What is the total bit capacity of a ROM that has 14 address lines and 8 data outputs?

692 Data Storage

Section 11–4 Programmable ROMs

 15. Assuming that the PROM matrix in Figure 11–81 is programmed by blowing a fuse link to

create a 0, indicate the links to be blown to program an X3 look-up table, where X is a number

from 0 through 7.

28 27 26 25 24 23 22 21 20

X3

0

1

2

3

4

5

6

7

1

2

4

X

1 2 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

+V

3

FIGURE 11–81

 16. Determine the addresses that are programmed and the contents of each address after the

programming sequence in Figure 11–82 has been applied to an EPROM like the one shown in

Figure 11–31.

Section 11–6 Memory Expansion

 17. Use 16k * 4 DRAMs to build a 64k * 8 DRAM. Show the logic diagram.

 18. Using a block diagram, show how 64k * 1 dynamic RAMs can be expanded to build a

256k * 4 RAM.

 19. What is the word length and the word capacity of the memory of Problem 17? Problem 18?

Section 11–7 Special Types of Memories

 20. Complete the timing diagram in Figure 11–83 by showing the output waveforms that are

initially all LOW for a FIFO serial memory like that shown in Figure 11–50.

 21. Consider a 4096 * 8 RAM in which the last 64 addresses are used as a LIFO stack. If the first

address in the RAM is 00016, designate the 64 addresses used for the stack.

 22. In the memory of Problem 21, sixteen bytes are pushed into the stack. At what address is the

first byte in located? At what address is the last byte in located?

 Problems 693

Section 11–8 Magnetic and Optical Storage

 23. Describe the physical structure of a hard disk.

 24. Explain the basic read/write principles involved in a hard/disk.

 25. What are the parameters used to measure the performance of a hard disk?

 26. What are the differences between a CD-R and a CD-RW?

 27. What is the main difference between a CD and a DVD?

 28. What is a Blu-ray disc?

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

CE/PGM

OE

VPP

O0

O1

O2

O3

O4

O5

O6

O7

FIGURE 11–82

I3

Shift in

Shift out

I2

I0

I1

FIGURE 11–83

694 Data Storage

 39. Suppose that a checksum test is run on the memory in Figure 11–85 and each individual ROM

has a checksum at its highest address. What IC or ICs will you replace for each of the follow-

ing error messages that appear on the system’s video monitor?

(a) ADDRESSES 40–5F FAULTY (b) ADDRESSES 20–3F FAULTY

(c) ADDRESSES 00–7F FAULTY

Section 11–9 Memory Hierarchy

 29. What does memory hierarchy mean?

 30. What are the memory storage levels used in computers?

 31. Describe hit rate.

 32. If the miss rate in a certain memory is 0.2, what is the hit rate?

Section 11–10 Cloud Storage

 33. Draw a diagram of a cloud storage system with six servers.

 34. What does a server in a cloud storage system provide?

 35. What is the architecture of a cloud storage system?

 36. List five properties of a cloud storage system and briefly discuss each.

Section 11–11 Troubleshooting

 37. Determine if the contents of the ROM in Figure 11–84 are correct.

 38. A 128 * 8 ROM is implemented as shown in Figure 11–85. The decoder decodes the two most

significant address bits to enable the ROMs one at a time, depending on the address selected.

(a) Express the lowest address and the highest address of each ROM as hexadecimal numbers.

(b) Assume that a single checksum is used for the entire memory and it is stored at the highest

address. Develop a flowchart for testing the complete memory system.

(c) Assume that each ROM has a checksum stored at its highest address. Modify the flowchart

developed in part (b) to accommodate this change.

(d) What is the disadvantage of using a single checksum for the entire memory rather than a

checksum for each individual ROM?

1

1

0

1

1

1

0

1

1

1

1

1

1

1

0

0

0

1

1

0

1

1

0

1

1

1

1

1

0

0

0

0

1

0

1

0

1

0

1

0

ROM

Checksum

FIGURE 11–84

 0 ––
 31

ROM 0

EN

A0A4

 32 ––
 63

ROM 1

EN

A0A4

 64 ––
 95

ROM 2

EN

A0A4

 96 –––
 127

ROM 3

EN

A0A4

EN

2 line-to-4 line
decoder

A5A6

…A0

A6

8-bit data bus

0

1

2

3

A A A A

7-bit address bus

FIGURE 11–85

ANSWERS

SECTION CHECKUPS

Section 11–1 Semiconductor Memory Basics

 1. Bit is the smallest unit of data.

 2. 256 bytes is 2048 bits.

 Answers 695

 3. A write operation stores data in memory.

 4. A read operation takes a copy of data from memory.

 5. A unit of data is located by its address.

 6. A RAM is volatile and has read/write capability. A ROM is nonvolatile and has only read capability.

Section 11–2 The Random-Access Memory (RAM)

 1. Asynchronous and synchronous with burst feature

 2. A small fast memory between the CPU and main memory

 3. SRAMs have latch storage cells that can retain data indefinitely while power is applied.

DRAMs have capacitive storage cells that must be periodically refreshed.

 4. The refresh operation prevents data from being lost because of capacitive discharge. A stored

bit is restored periodically by recharging the capacitor to its nominal level.

 5. FPM, EDO, BEDO, Synchronous

Section 11–3 The Read-Only Memory (ROM)

 1. 512 * 8 equals 4096 bits.

 2. Mask ROM, PROM, EPROM, UV EPROM, EEPROM

 3. Eight bits of address are required for 256 byte locations (28
= 256).

Section 11–4 Programmable ROMs

 1. PROMs are field-programmable; ROMs are not.

 2. Presence or absence of stored charge

 3. Read is the normal mode of operation for a PROM.

Section 11–5 The Flash Memory

 1. Flash, ROM, EPROM, and EEPROM are nonvolatile.

 2. Flash is nonvolatile; SRAM and DRAM are volatile.

 3. Programming, read, erase

Section 11–6 Memory Expansion

 1. Eight RAMs

 2. Eight RAMs

 3. DIMM: Dual in-line memory module

Section 11–7 Special Types of Memories

 1. In a FIFO memory the first bit (or word) in is the first bit (or word) out.

 2. In a LIFO memory the last bit (or word) in is the first bit (or word) out. A stack is a LIFO.

 3. The PUSH operation or instruction adds data to the memory stack.

 4. The POP operation or instruction removes data from the memory stack.

 5. CCD is a charge-coupled device.

Section 11–8 Magnetic and Optical Storage

 1. Magnetic storage: hard disk, tape, and magneto-optical disk

 2. A magnetic disk is organized in tracks and sectors.

 3. A magneto-optical disk uses a laser beam and an electromagnet.

 4. Optical storage: CD-ROM, CD-R, CD-RW, DVD-ROM, WORM, Blu-ray Disc (BD)

Section 11–9 Memory Hierarchy

 1. The purpose of memory hierarchy is to obtain the fastest access time at the lowest cost.

 2. Access time is the time it takes a processor to retrieve (read) or write a block of data stored in

the memory.

696 Data Storage

 3. Generally, the higher the capacity the lower the cost per bit.

 4. Yes

 5. A hit is when the processor finds the requested data at the first place it looks. A miss is when

the processor fails to find the requested data and has to go to another level of memory to find it.

 6. The hit rate

Section 11–10 Cloud Storage

 1. A cloud storage system is a remote network of servers connected to a user device through the

Internet.

 2. A server is any computerized process that shares a resource with one or more clients. Practically, a

storage server is a computer and software with a large memory capacity that responds to requests

across a network to provide file storage and access as well as services such as file sharing.

 3. A user connects via Internet access.

 4. Data storage and retrieval from any physical location with Internet access, any computer can be

used and a local physical backup storage device is not necessary, and other users can be permit-

ted to access your data.

Section 11–11 Troubleshooting

 1. The contents of the ROM are added and compared with a prestored checksum.

 2. Checksum cannot be used because the contents of a RAM are not fixed.

 3. (1) a short between adjacent cells; (2) an inability of some cells to store both 1s and 0s;

(3) dynamic altering of the contents of one address when the contents of another address

change.

RELATED PROBLEMS FOR EXAMPLES

 11–1 G3G2G1G0 = 1110

 11–2 Connect eight 64k * 1 ROMs in parallel to form a 64k * 8 ROM.

 11–3 Sixteen 64k * 1 ROMs

 11–4 See Figure 11–86.

 11–5 ROM 1: 0 to 524,287; ROM 2: 524,288 to 1,048,575

G

R/W

E1

E2

I/O8

I/O15

 0 ––––––––
 1,048,575

…A0

A19

A 0 ––––––––
 1,048,575
A

I/O0

I/O7

FIGURE 11–86

TRUE/FALSE QUIZ

 1. F 2. F 3. T 4. T 5. F 6. F

 7. T 8. T 9. T 10. F 11. T 12. T

SELF-TEST

 1. (d) 2. (b) 3. (c) 4. (d) 5. (a) 6. (d) 7. (c)

 8. (c) 9. (a) 10. (a) 11. (b) 12. (d) 13. (c) 14. (b)

697

CHAPTER OUTLINE

12–1 Analog-to-Digital Conversion

12–2 Methods of Analog-to-Digital Conversion

12–3 Methods of Digital-to-Analog Conversion

12–4 Digital Signal Processing

12–5 The Digital Signal Processor (DSP)

CHAPTER OBJECTIVES

■ Explain how analog signals are converted to digital

form

■ Discuss the purpose of filtering

■ Describe the sampling process

■ State the purpose of analog-to-digital conversion

■ Explain how several types of ADCs operate

■ State the purpose of digital-to-analog conversion

■ Explain how DACs operate

■ List the essential elements in a digital signal

processing system

■ Explain the basic concepts of a digital signal

processor (DSP)

■ Describe the basic architecture of a DSP

■ Name some of the functions that a DSP performs

KEY TERMS

Key terms are in order of appearance in the chapter.

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

This chapter provides an introduction to interfacing

digital and analog systems using methods of analog-

to-digital and digital-to-analog conversions.

Digital signal processing is a technology that

is widely used in many applications, such as

automotive, consumer, graphics/imaging, industrial,

instrumentation, medical, military, telecommunica-

tions, and voice/speech applications. Digital signal

processing incorporates mathematics, software

programming, and processing hardware to manipu-

late analog signals.

■ Sampling

■ Nyquist frequency

■ Aliasing

■ Analog-to-digital

converter (ADC)

■ Quantization

■ Digital-to-analog

converter (DAC)

■ Digital signal

processor (DSP)

■ DSP core

■ MIPS

■ MFLOPS

■ MMACS

■ Pipeline

■ Fetch

■ Decode

■ Execute

Signal Conversion
and Processing

12CHAPTER

698 Signal Conversion and Processing

12–1 Analog-to-Digital Conversion

In order to process signals using digital techniques, the incoming analog signal must be

converted into digital form.

After completing this section, you should be able to

u Explain the basic process of converting an analog signal to digital

u Describe the purpose of the sample-and-hold function

u Define the Nyquist frequency

u Define the reason for aliasing and discuss how it is eliminated

u Describe the purpose of an ADC

Sampling and Filtering

An anti-aliasing filter and a sample-and-hold circuit are two functions typically found in a

digital signal processing system. The sample-and-hold function does two operations, the

first of which is sampling. Sampling is the process of taking a sufficient number of dis-

crete values at points on a waveform that will define the shape of the waveform. The more

samples you take, the more accurately you can define a waveform. Sampling converts an

analog signal into a series of impulses, each representing the amplitude of the signal at a

given instant in time. Figure 12–1 illustrates the process of sampling.

Sampling
circuit

Sampled
version of

input signal

Analog
input

signal

Sampling
pulses

FIGURE 12–1 Illustration of the sampling process.

When an analog signal is to be sampled, there are certain criteria that must be met in

order to accurately represent the original signal. All analog signals (except a pure sine

wave) contain a spectrum of component frequencies. For a pure sine wave, these frequen-

cies appear in multiples called harmonics. The harmonics of an analog signal are sine

waves of different frequencies and amplitudes. When the harmonics of a given periodic

waveform are added, the result is the original signal. Before a signal can be sampled, it

must be passed through a low-pass filter (anti-aliasing filter) to eliminate harmonic fre-

quencies above a certain value as determined by the Nyquist frequency.

Analog-to-Digital Conversion 699

The Sampling Theorem

Notice in Figure 12–1 that there are two input waveforms. One is the analog signal and the

other is the sampling pulse waveform. The sampling theorem states that, in order to rep-

resent an analog signal, the sampling frequency, fsample, must be at least twice the highest

frequency component fa(max) of the analog signal. Another way to say this is that the highest

analog frequency can be no greater than one-half the sampling frequency. The frequency

fa(max) is known as the Nyquist frequency and is expressed in Equation 12–1. In practice,

the sampling frequency should be more than twice the highest analog frequency.

 fsample + 2fa(max) Equation 12–1

To intuitively understand the sampling theorem, a simple “bouncing-ball” analogy may

be helpful. Although it is not a perfect representation of the sampling of electrical signals,

it does serve to illustrate the basic idea. If a ball is photographed (sampled) at one instant

during a single bounce, as illustrated in Figure 12–2(a), you cannot tell anything about the

path of the ball except that it is off the floor. You can’t tell whether it is going up or down

or the distance of its bounce. If you take photos at two equally-spaced instants during

one bounce, as shown in part (b), you can obtain only a minimum amount of information

about its movement and nothing about the distance of the bounce. In this particular case,

you know only that the ball has been in the air at the times the two photos were taken and

that the maximum height of the bounce is at least equal to the height shown in each photo.

If you take four photos, as shown in part (c), then the path that the ball follows during a

bounce begins to emerge. The more photos (samples) that you take, the more accurately

you can determine the path of the ball as it bounces.

(a) One sample of a ball during a
single bounce

(b) Two samples of a ball during a single
bounce. This is the absolute minimum
required to tell anything about its
movement, but generally insufficient
to describe its path.

(c) Four samples of a ball during a single
bounce form a rough picture of the path
of the ball.

FIGURE 12–2 Bouncing ball analogy of sampling theory.

The Need for Filtering

Low-pass filtering is necessary to remove all frequency components (harmonics) of the

analog signal that exceed the Nyquist frequency. If there are any frequency components

in the analog signal that exceed the Nyquist frequency, an unwanted condition known as

aliasing will occur. An alias is a signal produced when the sampling frequency is not at

least twice the signal frequency. An alias signal has a frequency that is less than the high-

est frequency in the analog signal being sampled and therefore falls within the spectrum

or frequency band of the input analog signal causing distortion. Such a signal is actually

“posing” as part of the analog signal when it really isn’t, thus the term alias.

Another way to view aliasing is by considering that the sampling pulses produce a

spectrum of harmonic frequencies above and below the sample frequency, as shown in

Figure 12–3. If the analog signal contains frequencies above the Nyquist frequency, these

frequencies overlap into the spectrum of the sample waveform as shown and interference

occurs. The lower frequency components of the sampling waveform become mixed in with

the frequency spectra of the analog waveform, resulting in an aliasing error.

700 Signal Conversion and Processing

A low-pass anti-aliasing filter must be used to limit the frequency spectrum of the analog

signal for a given sample frequency. To avoid an aliasing error, the filter must at least

eliminate all analog frequencies above the minimum frequency in the sampling spectrum,

as illustrated in Figure 12–4. Aliasing can also be avoided by sufficiently increasing the

sampling frequency. However, the maximum sampling frequency is usually limited by the

performance of the analog-to-digital converter (ADC) that follows it.

Unfiltered analog
frequency spectrum

Sampling frequency
spectrum

Overlap causes
aliasing error

f sample

f

FIGURE 12–3 A basic illustration of the condition fsample 6 2fa(max).

Filtered analog
frequency spectrum

Sampling frequency
spectrum

f sample

f

FIGURE 12–4 After low-pass filtering, the frequency spectra of the analog and the

sampling signals do not overlap, thus eliminating aliasing error.

An Application

An example of the application of sampling is in digital audio equipment. The sampling

rates used are 32 kHz, 44.1 kHz, or 48 kHz (the number of samples per second). The

48 kHz rate is the most common, but the 44.1 kHz rate is used for audio CDs and prerecorded

tapes. According to the Nyquist rate, the sampling frequency must be at least twice the audio

signal. Therefore, the CD sampling rate of 44.1 kHz captures frequencies up to about 22 kHz,

which exceeds the 20 kHz specification that is common for most audio equipment.

Many applications do not require a wide frequency range to obtain reproduced sound

that is acceptable. For example, human speech contains some frequencies near 10 kHz and,

therefore, requires a sampling rate of at least 20 kHz. However, if only frequencies up to

4 kHz (ideally requiring an 8 kHz minimum sampling rate) are reproduced, voice is very

understandable. On the other hand, if a sound signal is not sampled at a high enough rate,

the effect of aliasing will become noticeable with background noise and distortion.

Holding the Sampled Value

The holding operation is the second part of the sample-and-hold function. After filtering

and sampling, the sampled level must be held constant until the next sample occurs. This

is necessary for the ADC to have time to process the sampled value. This sample-and-hold

operation results in a “stairstep” waveform that approximates the analog input waveform,

as shown in Figure 12–5.

Analog-to-Digital Conversion 701

Analog-to-Digital Conversion

Analog-to-digital conversion is the process of converting the output of the sample-

and-hold circuit to a series of binary codes that represent the amplitude of the analog

input at each of the sample times. The sample-and-hold process keeps the amplitude

of the analog input signal constant between sample pulses; therefore, the analog-to-

digital conversion can be done using a constant value rather than having the analog

signal change during a conversion interval, which is the time between sample pulses.

Figure 12–6 illustrates the basic function of an analog-to-digital converter (ADC),

which is a circuit that performs analog-to-digital conversion. The sample intervals are

indicated by dashed lines.

Sample

Sampled version of
input signal

Hold

Sample-and-hold
Sample-and-hold approximation
of input signal

FIGURE 12–5 Illustration of a sample-and-hold operation.

.ADC 0 1 1

.

0 1 0 0 1 0 1 1 0 0 0 1 0

FIGURE 12–6 Basic function of an analog-to-digital converter (ADC) (The binary codes

and number of bits are arbitrarily chosen for illustration only). The ADC output waveform

that represents the binary codes is also shown.

Quantization

The process of converting an analog value to a code is called quantization. During the

quantization process, the ADC converts each sampled value of the analog signal to a binary

code. The more bits that are used to represent a sampled value, the more accurate is the

representation.

To illustrate, let’s quantize a reproduction of the analog waveform into four levels (0–3).

Two bits are required for four levels. As shown in Figure 12–7, each quantization level

is represented by a 2-bit code on the vertical axis, and each sample interval is numbered

along the horizontal axis. The sampled data is held for the entire sample period. This data

is quantized to the next lower level, as shown in Table 12–1 (for example, compare samples

3 and 4, which are assigned different levels).

702 Signal Conversion and Processing

If the resulting 2-bit digital codes are used to reconstruct the original waveform, you

would get the waveform shown in Figure 12–8. This operation is done by digital-to-

analog converters (DACs), which are circuits that perform digital-to-analog conver-

sions. As you can see, quite a bit of accuracy is lost using only two bits to represent

the sampled values.

Now, let’s see how more bits will improve the accuracy. Figure 12–9 shows the same

waveform with sixteen quantization levels (4 bits). The 4-bit quantization process is sum-

marized in Table 12–2.

If the resulting 4-bit digital codes are used to reconstruct the original waveform,

you would get the waveform shown in Figure 12–10. As you can see, the result is much

more like the original waveform than for the case of four quantization levels in Figure

12–8. This shows that greater accuracy is achieved with more quantization bits. Typi-

cal integrated circuit ADCs use from 12 to 24 bits, and the sample-and-hold function

is sometimes contained on the ADC chip. Several types of ADCs are introduced in the

next section.

1

Quantization
level

(Code)

0
(00)

1
(01)

2
(10)

3
(11)

2 3 4 5 6 7 8 9 10 11 12

Sample
intervals13

FIGURE 12–7 Sample-and-hold output waveform with four quantization levels.

The original analog waveform is shown in light gray for reference.

TABLE 12–1

Two-bit quantization for the waveform in Figure 12–7.

Sample Interval Quantization Level Code

 1 0 00

 2 1 01

 3 2 10

 4 1 01

 5 1 01

 6 1 01

 7 1 01

 8 2 10

 9 3 11

10 3 11

11 3 11

12 3 11

13 3 11

Analog-to-Digital Conversion 703

1 2 3 4 5 6 7 8 9 10 11 12 13

Binary
values

00

01

10

11

Sample
intervals

FIGURE 12–8 The reconstructed waveform in Figure 12–7 using four quantization levels

(2 bits). The original analog waveform is shown in light gray for reference.

1 2 3 4 5 6 7 8 9 10 11 12 13

Quantization

level (Code)

15 (1111)

Sample
intervals

14 (1110)
13 (1101)
12 (1100)
11 (1011)

10 (1010)

9 (1001)
8 (1000)
7 (0111)
6 (0110)
5 (0101)
4 (0100)

3 (0011)
2 (0010)
1 (0001)
0 (0000)

FIGURE 12–9 Sample-and-hold output waveform with sixteen quantization levels.

The original analog waveform is shown in light gray for reference.

TABLE 12–2

Four-bit quantization for the waveform in Figure 12–9.

Sample Interval Quantization Level Code

 1 0 0000

 2 5 0101

 3 8 1000

 4 7 0111

 5 5 0101

 6 4 0100

 7 6 0110

 8 10 1010

 9 14 1110

10 15 1111

11 15 1111

12 15 1111

13 14 1110

704 Signal Conversion and Processing

Binary
values

1111

Sample
intervals

1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

1 2 3 4 5 6 7 8 9 10 11 12 13

FIGURE 12–10 The reconstructed waveform in Figure 12–9 using sixteen quantization

levels (4 bits). The original analog waveform is shown in light gray for reference.

SECTION 12–1 CHECKUP

Answers are at the end of the chapter.

 1. What does sampling mean?

 2. Why must you hold a sampled value?

 3. If the highest frequency component in an analog signal is 20 kHz, what is the mini-

mum sample frequency?

 4. What does quantization mean?

 5. What determines the accuracy of the quantization process?

12–2 Methods of Analog-to-Digital Conversion

As you have seen, analog-to-digital conversion is the process by which an analog quantity

is converted to digital form. It is necessary when measured quantities must be in digital

form for processing or for display or storage. Some common types of analog-to-digital con-

verters (ADCs) are now examined. Two important ADC parameters are resolution, which is

the number of bits, and throughput, which is the sampling rate an ADC can handle in units

of samples per second (sps).

After completing this section, you should be able to

u Explain what an operational amplifier is

u Show how the op-amp can be used as an inverting amplifier or a comparator

u Explain how a flash ADC works

u Discuss dual-slope ADCs

u Describe the operation of a successive-approximation ADC

u Describe a delta-sigma ADC

u Discuss testing ADCs for a missing code, incorrect code and offset

Methods of Analog-to-Digital Conversion 705

A Quick Look at an Operational Amplifier

Before getting into analog-to-digital converters (ADCs), let’s look briefly at an element that

is common to most types of ADCs and digital-to-analog converters (DACs). This element

is the operational amplifier, or op-amp for short. This is an abbreviated coverage of the

op-amp.

An op-amp is a linear amplifier that has two inputs (inverting and noninverting) and one

output. It has a very high voltage gain and a very high input impedance, as well as a very

low output impedance. The op-amp symbol is shown in Figure 12–11(a). When used as an

inverting amplifier, the op-amp is configured as shown in part (b). The feedback resistor,

Rf, and the input resistor, Ri, control the voltage gain according to the formula in Equation

12–2, where Vout/Vin is the closed-loop voltage gain (closed loop refers to the feedback

from output to input provided by Rf). The negative sign indicates inversion.

Vout

Vin
� �

 Rf

Ri
 Equation 12–2

In the inverting amplifier configuration, the inverting input of the op-amp is approximately

at ground potential (0 V) because feedback and the extremely high open-loop gain make the

differential voltage between the two inputs extremely small. Since the noninverting input is

grounded, the inverting input is at approximately 0 V, which is called virtual ground.

When the op-amp is used as a comparator, as shown in Figure 12–11(c), two voltages

are applied to the inputs. When these input voltages differ by a very small amount, the op-

amp is driven into one of its two saturated output states, either HIGH or LOW, depending

on which input voltage is greater.

–

+
Vout

Rf

Vin

Virtual

ground

(0 V)

(b) Op-amp as an inverting amplifier

with gain of R
f
/R

i

Represents the high
internal input impedance

–

+

Vout

–

+

Vin1

Vin2

(c) Op-amp as a comparator

Noninverting input

Inverting input

Output

(a) Op-amp symbol

Ri

FIGURE 12–11 The operational amplifier (op-amp).

Flash (Simultaneous) Analog-to-Digital Converter

The flash method utilizes special high-speed comparators that compare reference voltages

with the analog input voltage. When the input voltage exceeds the reference voltage for a

given comparator, a HIGH is generated. Figure 12–12 shows a 3-bit converter that uses

seven comparator circuits; a comparator is not needed for the all-0s condition. A 4-bit con-

verter of this type requires fifteen comparators. In general, 2n − 1 comparators are required

for conversion to an n-bit binary code. The number of bits used in an ADC is its resolution.

The large number of comparators necessary for a reasonable-sized binary number is one of

the disadvantages of the flash ADC. Its chief advantage is that it provides a fast conversion

time because of a high throughput, measured in samples per second (sps).

The reference voltage for each comparator is set by the resistive voltage-divider circuit.

The output of each comparator is connected to an input of the priority encoder. The encoder

is enabled by a pulse on the EN input, and a 3-bit code representing the value of the input

appears on the encoder’s outputs. The binary code is determined by the highest-order input

having a HIGH level.

706 Signal Conversion and Processing

The frequency of the enable pulses and the number of bits in the binary code determine

the accuracy with which the sequence of binary codes represents the input of the ADC. The

signal is sampled each time the enable pulse is active.

R

R

R

R

R

R

R

R

Op-amp
comparators

Priority
encoder

D0

D1

D2

Parallel
binary
output

Enable
pulses

Input from
sample-

and-hold

+V
REF

–

+

–

+

–

+

–

+

–

+

–

+

–

+

7

6

5

4

3

2

1

0 EN

4

2

1

FIGURE 12–12 A 3-bit flash ADC.

EXAMPLE 12–1

Determine the binary code output of the 3-bit flash ADC in Figure 12–12 for the

input signal in Figure 12–13 and the encoder enable pulses shown. For this example,

VREF = +8 V.

6

5

4

3

2

1

7 8 9 10 11 121 2 3 4 5 6

7

Analog
input

voltage

V

t

Enable
pulses

8

FIGURE 12–13 Sampling of values on a waveform for conversion to binary code.

Methods of Analog-to-Digital Conversion 707

Dual-Slope Analog-to-Digital Converter

A dual-slope ADC is common in digital voltmeters and other types of measurement instru-

ments. A ramp generator (integrator) is used to produce the dual-slope characteristic. A

block diagram of a dual-slope ADC is shown in Figure 12–15.

Enable pulses
1

100

D2

D1

D0

2 3 4 5 6 7 8 9 1110 12

110 111 110 100 010 000 001 011 101 110 111

FIGURE 12–14 Resulting digital outputs for sample-and-hold values. Output D0 is the

LSB of the 3-bit binary code.

Solution

The resulting digital output sequence is listed as follows and shown in the waveform

diagram of Figure 12–14 in relation to the enable pulses:

100, 110, 111, 110, 100, 010, 000, 001, 011, 101, 110, 111

–

+

CLK

CLEAR

Control
logic

C

Counter

LatchesEN

D7 D6 D5 D4 D3 D2 D1 D0

Binary or BCD
output

Comparator

R

–

+

Integrator
(ramp generator)

Analog
input (Vin)

–VREF

SW R

C

A1

A2

Switch control

n

FIGURE 12–15 Basic dual-slope ADC.

Related Problem*

If the enable pulse frequency in Figure 12–13 were halved, determine the binary numbers

represented by the resulting digital output sequence for 6 pulses. Is any information lost?

*Answers are at the end of the chapter.

708 Signal Conversion and Processing

Figure 12–16 illustrates dual-slope conversion. Start by assuming that the counter is

reset and the output of the integrator is zero. Now assume that a positive input voltage is

applied to the input through the switch (SW) as selected by the control logic. Since the

–

+

CLK

Control
logic

C

Counts up to n and
then resets

Latches

EN

D7 D6 D5 D4 D3 D2 D1 D0

R

–

+

Vin

–VREF

SW

R

C

A1
A2

I

I

≈0 V

–V

0
t = n counts

Fixed interval

Variable
voltage

Variable
slope

–V

0

Variable time

Fixed-slope
ramp

HIGH

(a) Fixed-interval, negative-going ramp (while the counter counts up to n)

–

+

CLK

Control
logic

C

Counter
reset

Latches

EN

D7 D6 D5 D4 D3 D2 D1 D0

–

+

Vin

–VREF

R

C

A1

A2

≈0 V HIGH

(b) End of fixed-interval when the counter sends a pulse to control logic to switch SW to the –VREF input

–+

–+

–V

–

+

CLK

Control
logic

C

Counts up until
ramp equals zero

Count loaded
into latches

EN

D7 D6 D5 D4 D3 D2 D1 D0

–

+

Vin

–VREF

R

C

A1

A2

≈0 V

(c) Fixed-slope, positive-going ramp while the counter counts up again. When the ramp
 reaches 0 V, the counter stops, and the counter output is loaded into latches.

–+

n

SW

SW

R

n

R

n

FIGURE 12–16 Illustration of dual-slope conversion.

Methods of Analog-to-Digital Conversion 709

inverting input of A1 is at virtual ground, and assuming that Vin is constant for a period

of time, there will be constant current through the input resistor R and therefore through

the capacitor C. Capacitor C will charge linearly because the current is constant, and as a

result, there will be a negative-going linear voltage ramp on the output of A1, as illustrated

in Figure 12–16(a).

When the counter reaches a specified count (n), it will be reset (R), and the control logic

will switch the negative reference voltage (-VREF) to the input of A1, as shown in Figure

12–16(b). At this point the capacitor is charged to a negative voltage (-V) proportional to

the input analog voltage.

Now the capacitor discharges linearly because of the constant current from the -VREF,

as shown in Figure 12–16(c). This linear discharge produces a positive-going ramp on the

A1 output, starting at -V and having a constant slope that is independent of the charge volt-

age. As the capacitor discharges, the counter advances from its RESET state. The time it

takes the capacitor to discharge to zero depends on the initial voltage -V (proportional to

Vin) because the discharge rate (slope) is constant. When the integrator (A1) output voltage

reaches zero, the comparator (A2) switches to the LOW state and disables the clock to the

counter. The binary count is latched, thus completing one conversion cycle. The binary

count is proportional to Vin because the time it takes the capacitor to discharge depends

only on -V, and the counter records this interval of time.

Successive-Approximation Analog-to-Digital Converter

One of the most widely used methods of analog-to-digital conversion is successive-

approximation. It has a much faster conversion time than the dual-slope conversion, but

it is slower than the flash method. It also has a fixed conversion time that is the same for

any value of the analog input.

Figure 12–17 shows a basic block diagram of a 4-bit successive approximation ADC.

It consists of a DAC (DACs are covered in Section 12–3), a successive-approximation

register (SAR), and a comparator. The basic operation is as follows: The input bits of

the DAC are enabled (made equal to a 1) one at a time, starting with the most significant

bit (MSB). As each bit is enabled, the comparator produces an output that indicates

whether the input signal voltage is greater or less than the output of the DAC. If the

DAC output is greater than the input signal, the comparator’s output is LOW, caus-

ing the bit in the register to reset. If the output is less than the input signal, the 1 bit

is retained in the register. The system does this with the MSB first, then the next most

D

SAR

–

D0

Comparator

D3

D2

D1 Parallel
binary
output

CLK

Input
signal (LSB)(MSB)

Vout

Serial
binary
output

+

C

Digital-to-analog
converter
(DAC)

FIGURE 12–17 Successive-approximation ADC.

710 Signal Conversion and Processing

D
SAR

–

LOW

+8 V

+

C

1 0 0 0

22

0

21

0

20

0

+5.1 V

1

Reset

(a) MSB trial

D
SAR

–

HIGH

+4 V

+

C

0 1 0 0

21

0

20

0

+5.1 V

2
23

0

Keep

(b) 22-bit trial

D
SAR

–

LOW

+6 V

+

C

0 1 1 0

22

1

20

0

+5.1 V

3
23

0

Reset

(c) 21-bit trial

D

–

HIGH

+5 V

+

C

0 1 0 1

22

1

21

0

+5.1 V

4
23

0

Keep

(d) LSB trial (conversion complete)

DAC

2223 21 20

DAC

2223 21 20

DAC

2223 21 20

DAC

2223 21 20

20

1

23

1

22

1

21

1
SAR

FIGURE 12–18 Illustration of the successive-approximation conversion process.

Figure 12–18(a) shows the first step in the conversion cycle with the MSB = 1. The

output of the DAC is 8 V. Since this is greater than the input of 5.1 V, the output of the

comparator is LOW, causing the MSB in the SAR to be reset to a 0.

Figure 12–18(b) shows the second step in the conversion cycle with the 22 bit equal to a

1. The output of the DAC is 4 V. Since this is less than the input of 5.1 V, the output of the

comparator switches to a HIGH, causing this bit to be retained in the SAR.

Figure 12–18(c) shows the third step in the conversion cycle with the 21 bit equal to a 1.

The output of the DAC is 6 V because there is a 1 on the 22 bit input and on the 21 bit input;

4 V + 2 V = 6 V. Since this is greater than the input of 5.1 V, the output of the comparator

switches to a LOW, causing this bit to be reset to a 0.

Figure 12–18(d) shows the fourth and final step in the conversion cycle with the 20 bit

equal to a 1. The output of the DAC is 5 V because there is a 1 on the 22 bit input and on

the 20 bit input; 4 V + 1 V = 5 V.

The four bits have all been tried, thus completing the conversion cycle. At this point the

binary code in the register is 0101, which is approximately the binary value of the input of

5.1 V. Additional bits will produce an even more accurate result. Another conversion cycle

now begins, and the basic process is repeated. The SAR is cleared at the beginning of each

cycle.

significant bit, then the next, and so on. After all the bits of the DAC have been tried,

the conversion cycle is complete.

In order to better understand the operation of the successive-approximation ADC, let’s

take a specific example of a 4-bit conversion. Figure 12–18 illustrates the step-by-step

conversion of a constant input voltage (5.1 V in this case). Let’s assume that the DAC has

the following output characteristics: Vout = 8 V for the 23 bit (MSB), Vout = 4 V for the

22 bit, Vout = 2 V for the 21 bit, and Vout = 1 V for the 20 bit (LSB).

Methods of Analog-to-Digital Conversion 711

IMPLEMENTATION: ANALOG-TO-DIGITAL CONVERTER

The ADC0804 is an example of a successive-approximation ADC. A block diagram is

shown in Figure 12–19. This device operates from a +5 V supply and has a resolution

of eight bits with a conversion time of 100 ms. Also, it has an on-chip clock generator.

Optionally, an external clock can be used. The data outputs are tri-state, so they can be

interfaced with a microprocessor bus system.

The basic operation of the device is as follows: The ADC0804 contains the equivalent

of a 256-resistor DAC network. The successive-approximation logic sequences the net-

work to match the analog differential input voltage (Vin+ - Vin-) with an output from the

resistive network. The MSB is tested first. After eight comparisons (sixty-four clock peri-

ods), an 8-bit binary code is transferred to output latches, and the interrupt (INTR) output

goes LOW. The device can be operated in a free-running mode by connecting the INTR

output to the write (WR) input and holding the conversion start (CS) LOW. To ensure startup

under all conditions, a LOW WR input is required during the power-up cycle. Taking CS

low anytime after that will interrupt the conversion process.

When the WR input goes LOW, the internal successive-approximation register (SAR)

and the 8-bit shift register are reset. As long as both CS and WR remain LOW, the ADC

remains in a RESET state. Conversion starts one to eight clock periods after CS or WR

makes a LOW-to-HIGH transition.

When a LOW is at both the CS and RD inputs, the tri-state output latch is enabled and

the output code is applied to the D0–D7 lines. When either the CS or the RD input returns

to a HIGH, the D0–D7 outputs are disabled.

VCC

Digital
data
output

INTR
(5)

D7

(11)
D6

(12)
D5

(13)
D4

(14)
D3

(15)
D2

(16)
D1

(17)
D0

(18)
CLK R (out)

(19)

(8)

ANLG
GND

(10)

CS
(1)

REF/2
(9)

Vin–

(7)
Vin+

(6)
CLK IN

(4)

(3)

(2)
RD

WR

Analog
input

DGTL
GND

(20)

ADC0804

∆

∆

∆

∆

∆

∆

∆

∆

FIGURE 12–19 The ADC0804

analog-to-digital converter.

Sigma-Delta Analog-to-Digital Converter

Sigma-delta is a widely used method of analog-to-digital conversion, particularly in telecom-

munications using audio signals. The method is based on delta modulation where the differ-

ence between two successive samples (increase or decrease) is quantized; other ADC methods

were based on the absolute value of a sample. Delta modulation is a 1-bit quantization method.

The output of a delta modulator is a single-bit data stream where the relative number of 1s

and 0s indicates the level or amplitude of the input signal. The number of 1s over a given num-

ber of clock cycles establishes the signal amplitude during that interval. A maximum number

of 1s corresponds to the maximum positive input voltage. A number of 1s equal to one-half the

712 Signal Conversion and Processing

maximum corresponds to an input voltage of zero. No 1s (all 0s) corresponds to the maximum

negative input voltage. This is illustrated in a simplified way in Figure 12–20. For example,

assume that 4096 1s occur during the interval when the input signal is a positive maximum.

Since zero is the midpoint of the dynamic range of the input signal, 2048 1s occur during the

interval when the input signal is zero. There are no 1s during the interval when the input signal is

a negative maximum. For signal levels in between, the number of 1s is proportional to the level.

The Sigma-Delta ADC Functional Block Diagram

The basic block diagram in Figure 12–21 accomplishes the conversion illustrated in Figure

12–20. The analog input signal and the analog signal from the converted quantized bit

stream from the DAC in the feedback loop are applied to the summation (©) point. The dif-

ference (�) signal out of the © is integrated, and the 1-bit ADC increases or decreases the

number of 1s depending on the difference signal. This action attempts to keep the quantized

signal that is fed back equal to the incoming analog signal. The 1-bit quantizer is essen-

tially a comparator followed by a latch.

2048 1s

+MAX

4096 1s 0 1s

0

–MAX

Quantized
output from
sigma-delta

Input signal
from sample-

and-hold

FIGURE 12–20 A simplified illustration of sigma-delta analog-to-digital conversion.

1-bit
quantizer

IntegratorΣ

+Analog
input

signal

DAC

–

Quantized output
is a single bit
data stream.

∆

Summing
point

FIGURE 12–21 Partial functional block diagram of a sigma-delta ADC.

To complete the sigma-delta conversion process using one particular approach, the

single bit data stream is converted to a series of binary codes, as shown in Figure 12–22.

The counter counts the 1s in the quantized data stream for successive intervals. The code

in the counter then represents the amplitude of the analog input signal for each interval.

These codes are shifted out into the latch for temporary storage. What comes out of the

latch is a series of n-bit codes, which completely represent the analog signal.

Testing Analog-to-Digital Converters

One method for testing ADCs is shown in Figure 12–23. A DAC is used as part of the test

setup to convert the ADC output back to analog form for comparison with the test input.

Methods of Analog-to-Digital Conversion 713

.

.

.

.

.

.

.

.

.

.

1-bit
quantizer

IntegratorΣ

+Analog
input

signal

1-bit

DAC

–

∆ n-bit
counter

Latch
Binary code
output

Summing
point

FIGURE 12–22 One type of sigma-delta ADC.

ADC

Ramp
source

Analog input
ramp Binary

code

Analog output

HARDCOPY

HORIZONTALVERTICAL TRIGGER

LEVEL

TRIGGER MENU

SET LEVEL TO 50%

FORCE TRIGGER

CURSOR DISPLAYUTILITY

MEASURE ACQUIRESAVE/RECALL AUTOSET

RUN/STOP

POSITION

HORIZONTAL
MENU

SEC/DIV

5 s 5 ns

HOLDOFF

POSITION

VOLTS/DIV

CURSOR 2

CH 2
MENU

5 V 2 mV

POSITION

VOLTS/DIV

CURSOR 1

CH 1
MENU

5 V 2 mV

MATH

MENU

CH 1 CH 2 EXT TRIGPROBE COMP

5 V

MENUS

TRIGGER VIEW

DAC
0

1

2

n

FIGURE 12–23 A method for testing ADCs.

A test input in the form of a linear ramp is applied to the input of the ADC. The result-

ing binary output sequence is then applied to the DAC test unit and converted to a stairstep

ramp. The input and output ramps are compared for any deviation.

Analog-to-Digital Conversion Errors

Again, a 4-bit conversion is used to illustrate the principles. Let’s assume that the test input

is an ideal linear ramp.

Missing Code

The stairstep output in Figure 12–24(a) indicates that the binary code 1001 does not appear

on the output of the ADC. Notice that the 1000 value stays for two intervals and then the

output jumps to the 1010 value.

In a flash ADC, for example, a failure of one of the op-amp comparators can cause a

missing-code error.

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
11

1

1
0
0
0

(a) Missing code (green) (b) Incorrect codes (green) (c) Offset

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
1

0
1
0
0

0
1
0
1

0
1
0
0

0
1
0
1

1
0
0
1

1
0
0
0

1
0
0
1

1
1
0
0

1
1
0
1

1
1
0
0

1
1
0
1

1
0
0
0

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
11

1

1
0
0
0

Analog input

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

FIGURE 12–24 Illustrations of analog-to-digital conversion errors.

714 Signal Conversion and Processing

Incorrect Code

The stairstep output in Figure 12–24(b) indicates that several of the binary code words

coming out of the ADC are incorrect. Analysis indicates that the 21-bit line is stuck in the

LOW (0) state in this particular case.

Offset

Offset conditions are shown in 12–24(c). In this situation the ADC interprets the analog

input voltage as greater than its actual value.

1

+

–

+

–

+

–

+

–

+

–

Analog
ramp
input

VREF

2

4

8

15

14

3

2

1

0 EN

13

10

8

6

4

2

0

11

9

7

5

3

1

12

14

15

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
0

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
11

1

1
0
0
0

(a) (b)

 FIGURE 12–25

EXAMPLE 12–2

A 4-bit flash ADC is shown in Figure 12–25(a). It is tested with a setup like the one in

Figure 12–23. The resulting reconstructed analog output is shown in Figure 12–25(b).

Identify the problem and the most probable fault.

Solution

The binary code 0011 is missing from the ADC output, as indicated by the missing step.

Most likely, the output of comparator 3 is stuck in its inactive state (LOW).

Related Problem

Reconstruct the analog output in a test setup like in Figure 12–23 if the ADC in Figure

12–25(a) has comparator 8 stuck in the HIGH output state.

Methods of Digital-to-Analog Conversion 715

–

+

Vout

Rf

I0

I = 0

I1

I2

I3

V––
8R

I0 =

V––
4R

I1 =

V––
2R

I2 =

V––
RI3 =

20

21

22

23
V

V

V

V
Vout = If Rf

If

2R

R

4R

8R

+ –

FIGURE 12–26 A 4-bit DAC with binary-weighted inputs.

Since there is practically no current into the op-amp inverting (-) input, all of the input

currents sum together and go through Rf. Since the inverting input is at 0 V (virtual ground),

the drop across Rf is equal to the output voltage, so Vout = IfRf.

The values of the input resistors are chosen to be inversely proportional to the binary

weights of the corresponding input bits. The lowest-value resistor (R) corresponds to the

highest binary-weighted input (23). The other resistors are multiples of R (that is, 2R, 4R,

and 8R) and correspond to the binary weights 22, 21, and 20, respectively. The input cur-

rents are also proportional to the binary weights. Thus, the output voltage is proportional to

the sum of the binary weights because the sum of the input currents is through Rf.

SECTION 12–2 CHECKUP

 1. What is the fastest method of analog-to-digital conversion?

 2. Which analog-to-digital conversion method produces a single-bit data stream?

 3. Does the successive-approximation converter have a fixed conversion time?

 4. Name two types of output errors in an ADC.

12–3 Methods of Digital-to-Analog Conversion

Digital-to-analog conversion is an important part of a digital processing system. Once the

digital data has been processed, it is converted back to analog form. In this section, we will

examine the theory of operation of two basic types of digital-to-analog converters (DACs)

and learn about their performance characteristics.

After completing this section, you should be able to

u Explain the operation of a binary-weighted-input DAC

u Explain the operation of an R/2R ladder DAC

u Discuss resolution, accuracy, linearity, monotonicity, and settling time in a DAC

u Discuss the testing of DACs for nonmonotonicity, differential nonlinearity, low or

high gain, and offset error

Binary-Weighted-Input Digital-to-Analog Converter

One method of digital-to-analog conversion uses a resistor network with resistance values

that represent the binary weights of the input bits of the digital code. Figure 12–26 shows

a 4-bit DAC of this type. Each of the input resistors will either have current or have no cur-

rent, depending on the input voltage level. If the input voltage is zero (binary 0), the current

is also zero. If the input voltage is HIGH (binary 1), the amount of current depends on the

input resistor value and is different for each input resistor, as indicated in the figure.

716 Signal Conversion and Processing

–

+

Vout

D3

D2

D1

D0

25 k�

50 k�

100 k�

200 k�

10 k�

(a)

0 1 2 3 4 5 6 7 8 9 1011 12131415

D3

D2

D1

D0

+5 V
0

+5 V
0

+5 V
0

+5 V
0

(b)

Rf

FIGURE 12–27

EXAMPLE 12–3

Determine the output of the DAC in Figure 12–27(a) if the waveforms representing a sequence of 4-bit numbers in Figure

12–27(b) are applied to the inputs. Input D0 is the least significant bit (LSB).

Solution

First, determine the current for each of the weighted inputs. Since the inverting (-) input of the op-amp is at 0 V (vir-

tual ground) and a binary 1 corresponds to +5 V, the current through any of the input resistors is 5 V divided by the

resistance value.

 I
0
=

5 V

200 k�
= 0.025 mA

 I
1
=

5 V

100 k�
= 0.05 mA

 I
2
=

5 V

50 k�
= 0.1 mA

 I
3
=

5 V

25 k�
= 0.2 mA

Almost no current goes into the inverting op-amp input because of its extremely high impedance. Therefore, assume that

all of the current goes through the feedback resistor Rf. Since one end of Rf is at 0 V (virtual ground), the drop across Rf

equals the output voltage, which is negative with respect to virtual ground.

 Vout(D0) = (10 k�)(-0.025 mA) = -0.25 V

 Vout(D1) = (10 k�)(-0.05 mA) = -0.5 V

 Vout(D2) = (10 k�)(-0.1 mA) = -1 V

 Vout(D3) = (10 k�)(-0.2 mA) = -2 V

From Figure 12–27(b), the first binary input code is 0000, which produces an output voltage of 0 V. The next input code

is 0001, which produces an output voltage of -0.25 V. The next code is 0010, which produces an output voltage of -0.5 V.

The next code is 0011, which produces an output voltage of -0.25 V + -0.5 V = -0.75 V. Each successive binary code

increases the output voltage by -0.25 V, so for this particular straight binary sequence on the inputs, the output is a stairstep

waveform going from 0 V to -3.75 V in -0.25 V steps. This is shown in Figure 12–28.

Disadvantages of this type of DAC are the number of different resistor values and the

fact that the voltage levels must be exactly the same for all inputs. For example, an 8-bit

converter requires eight resistors, ranging from some value of R to 128R in binary-weighted

steps. This range of resistors requires tolerances of one part in 255 (less than 0.5%) to accu-

rately convert the input, making this type of DAC very difficult to mass-produce.

Methods of Digital-to-Analog Conversion 717

Related Problem

Reverse the input waveforms to the DAC in Figure 12–27 (D3 to D0, D2 to D1, D1 to D2, D0 to D3) and determine the output.

Vout (V)

–2.50

–2.75

–3.00

–3.25

–3.50

–3.75

0
0
0
0

–1.00

–1.25

–1.50

–1.75

–2.00

–2.25

–0.25

–0.50

–0.75

0 0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
11

0

1
11

1

Binary input

0
0
0
0

FIGURE 12–28 Output of the DAC in Figure 12–27.

The R/2R Ladder Digital-to-Analog Converter

Another method of digital-to-analog conversion is the R/2R ladder, as shown in Figure

12–29 for four bits. It overcomes one of the problems in the binary-weighted-input DAC in

that it requires only two resistor values.

–

+

Vout

Inputs

D0 D1 D2 D3

Rf = 2R

Op-amp

R8

R

R6

R

R4

R

R2

2R

R1

2R

R3

2R

R5

2R

R7

2R

fg12_02900

FIGURE 12–29 An R/2R ladder DAC.

Start by assuming that the D3 input is HIGH (+5 V) and the others are LOW (ground,

0 V). This condition represents the binary number 1000. A circuit analysis will show that

this reduces to the equivalent form shown in Figure 12–30(a). Essentially no current goes

718 Signal Conversion and Processing

0.625 V–––––––
2R

Rf

Vout = –IRf = 2R = –5 V

–+
2R

Equivalent ladder
resistance with D2,
D1, and D0 grounded

REQ = 2R
≈ 0 V

5 V–––
2R

I =

5 V––––
2R

–� �

(a) Equivalent circuit for D3 = 1, D2 = 0, D1 = 0, D0 = 0

R7

2R

+ 5 V

D3 = 1

Rf

2R

REQ = 2R

(b) Equivalent circuit for D3 = 0, D2 = 1, D1 = 0, D0 = 0

R5

2R

+ 5 V

D2 = 1

R8

R

D0 = 0
D1 = 0

D3 = 0

Rf

–+
2R

≈ 0 V

2.5 V––––
2R

I =

VTH

+ 2.5 V

R8

R

RTH

R

I ≅ 0

R7

2R

Vout = –IRf

Rf

2R

REQ

= 2R

(c) Equivalent circuit for D3 = 0, D2 = 0, D1 = 1, D0 = 0

R3

2R

+ 5 V

D1 = 1

R8

R

D0 = 0 D3 = 0

Rf

–+
2R

≈ 0 V

1.25 V–––––
2R

I =

VTH

+ 1.25 V

R8

R

RTH

R

I ≅ 0

R7

2R

Vout = –IRf

D2 = 0

R6

R
R5

2R

R7

2R

Rf

2R

(d) Equivalent circuit for D3 = 0, D2 = 0, D1 = 0, D0 = 1

R1

2R

+ 5 V
D0 = 1

R8

R

D3 = 0

Rf

–+
2R

≈ 0 V

I =

VTH
+ 0.625 V

R8

R

RTH

R

I ≅ 0

R7

2R
Vout = –IRf

D2 = 0

R6

R
R5

2R

R7

2R

D1 = 0

R3

2R

R4

R
R2

2R

≈ 0 V

R7

2R

–

+

–

+

–

+

–

+

–

+

–

+

0.625 V–––––––
2R

= –� �2R = –0.625 V

1.25 V––––––
2R

= –� �2R = –1.25 V

2.5 V–––––
2R

= –� �2R = –2.5 V

–

+

FIGURE 12–30 Analysis of the R/2R ladder DAC.

through the 2R equivalent resistance because the inverting input is at virtual ground. Thus,

all of the current (I = 5 V/2R) through R7 also goes through Rf, and the output voltage is -5 V.

The operational amplifier keeps the inverting (-) input near zero volts (L0 V) because of

negative feedback. Therefore, all current goes through Rf rather than into the inverting input.

Methods of Digital-to-Analog Conversion 719

Figure 12–30(b) shows the equivalent circuit when the D2 input is at +5 V and the oth-

ers are at ground. This condition represents 0100. If we thevenize* looking from R8, we

get 2.5 V in series with R, as shown. This results in a current through Rf of I = 2.5 V/2R,

which gives an output voltage of -2.5 V. Keep in mind that there is no current into the op-

amp inverting input and that there is no current through the equivalent resistance to ground

because it has 0 V across it, due to the virtual ground.

Figure 12–30(c) shows the equivalent circuit when the D1 input is at +5 V and the others

are at ground. This condition represents 0010. Again thevenizing looking from R8, you get

1.25 V in series with R as shown. This results in a current through Rf of I = 1.25 V/2R,

which gives an output voltage of -1.25 V.

In part (d) of Figure 12–30, the equivalent circuit representing the case where D0 is at

+5 V and the other inputs are at ground is shown. This condition represents 0001. Theve-

nizing from R8 gives an equivalent of 0.625 V in series with R as shown. The resulting

current through Rf is I = 0.625 V/2R, which gives an output voltage of -0.625 V.

Notice that each successively lower-weighted input produces an output voltage that is

halved, so that the output voltage is proportional to the binary weight of the input bits.

Performance Characteristics of Digital-to-Analog Converters

The performance characteristics of a DAC include resolution, accuracy, linearity, monoto-

nicity, and settling time, each of which is discussed in the following list:

• Resolution. The resolution of a DAC is the reciprocal of the number of discrete steps

in the output. This, of course, is dependent on the number of input bits. For example,

a 4-bit DAC has a resolution of one part in 24 - 1 (one part in fifteen). Expressed as

a percentage, this is (1/15)100 = 6.67%. The total number of discrete steps equals

2n - 1, where n is the number of bits. Resolution can also be expressed as the number

of bits that are converted.

• Accuracy. Accuracy is derived from a comparison of the actual output of a DAC with

the expected output. It is expressed as a percentage of a full-scale, or maximum, out-

put voltage. For example, if a converter has a full-scale output of 10 V and the accuracy

is ;0.1%, then the maximum error for any output voltage is (10 V)(0.001) = 10 mV.

Ideally, the accuracy should be no worse than ;1/2 of a least significant bit. For an

8-bit converter, the least significant bit is 0.39% of full scale. The accuracy should be

approximately ;0.2%.

• Linearity. A linear error is a deviation from the ideal straight-line output of a DAC.

A special case is an offset error, which is the amount of output voltage when the

input bits are all zeros.

• Monotonicity. A DAC is monotonic if it does not take any reverse steps when it is

sequenced over its entire range of input bits.

• Settling time. Settling time is normally defined as the time it takes a DAC to settle

within ;1/2 LSB of its final value when a change occurs in the input code.

*Thevenin’s theorem states that any circuit can be reduced to an equivalent voltage source in series with an

equivalent resistance.

EXAMPLE 12–4

Determine the resolution, expressed as a percentage, of the following:

(a) an 8-bit DAC

(b) a 12-bit DAC

720 Signal Conversion and Processing

Solution

(a) For the 8-bit converter,

1

28 - 1
* 100 =

1

255
* 100 = 0.392%

(b) For the 12-bit converter,

1

212 - 1
* 100 =

1

4095
* 100 = 0.0244%

Related Problem

Calculate the resolution for a 16-bit DAC.

Testing Digital-to-Analog Converters

The concept of DAC testing is illustrated in Figure 12–31. In this basic method, a sequence

of binary codes is applied to the inputs, and the resulting output is observed. The binary

code sequence extends over the full range of values from 0 to 2n - 1 in ascending order,

where n is the number of bits.

Binary test
sequence

source

DAC
Binary
code

0

1

2

n

Analog output

HARDCOPY

HORIZONTALVERTICAL TRIGGER

LEVEL

TRIGGER MENU

SET LEVEL TO 50%

FORCE TRIGGER

CURSOR DISPLAYUTILITY

MEASURE ACQUIRESAVE/RECALL AUTOSET

RUN/STOP

POSITION

HORIZONTAL
MENU

SEC/DIV

5 s 5 ns

HOLDOFF

POSITION

VOLTS/DIV

CURSOR 2

CH 2
MENU

5 V 2 mV

POSITION

VOLTS/DIV

CURSOR 1

CH 1
MENU

5 V 2 mV

MATH

MENU

CH 1 CH 2 EXT TRIGPROBE COMP

5 V

MENUS

TRIGGER VIEW

0 to 2n – 1

FIGURE 12–31 Basic test setup for a DAC.

The ideal output is a straight-line stairstep as indicated. As the number of bits in the

binary code is increased, the resolution is improved. That is, the number of discrete steps

increases, and the output approaches a straight-line linear ramp.

Digital-to-Analog Conversion Errors

Several digital-to-analog conversion errors to be checked for are shown in Figure 12–32,

which uses a 4-bit conversion for illustration purposes. A 4-bit conversion produces fifteen

discrete steps. Each graph in the figure includes an ideal stairstep ramp for comparison

with the faulty outputs.

Nonmonotonicity

The step reversals in Figure 12–32(a) indicate nonmonotonic performance, which is a

form of nonlinearity. In this particular case, the error occurs because the 21 bit in the

binary code is interpreted as a constant 0. That is, a short is causing the bit input line to

be stuck LOW.

Methods of Digital-to-Analog Conversion 721

Binary
input

Analog
output

Binary
input

Analog
output

(a) Nonmonotonic output (green)

Ideal

(c) High and low gains (green)

High gain

Low gain

0
1
1
0

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
0

0
0
0
1

1
1
1
1

0
1
1
0

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
0

0
0
0
1

1
1
1
1

Binary
input0

1
1
0

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
0

0
0
0
1

1
1
1
1

(b) Differential nonlinearity (green)

Analog
output

Binary
input

Analog
output

(d) Offset error (green)

0
1
1
0

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
0

0
0
0
1

1
1
1
1

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

FIGURE 12–32 Illustrations of several digital-to-analog conversion errors.

Differential Nonlinearity

Figure 12–32(b) illustrates differential nonlinearity in which the step amplitude is less than it

should be for certain input codes. This particular output could be caused by the 22 bit having

an insufficient weight, perhaps because of a faulty input resistor. We could also see steps with

amplitudes greater than normal if a particular binary weight were greater than it should be.

Low or High Gain

Output errors caused by low or high gain are illustrated in Figure 12–32(c). In the case of

low gain, all of the step amplitudes are less than ideal. In the case of high gain, all of the

step amplitudes are greater than ideal. This situation may be caused by a faulty feedback

resistor in the op-amp circuit.

Offset Error

An offset error is illustrated in Figure 12–32(d). Notice that when the binary input is 0000,

the output voltage is nonzero and that this amount of offset is the same for all steps in the

conversion. A faulty op-amp may be the culprit in this situation.

722 Signal Conversion and Processing

Solution

The DAC in this case is nonmonotonic. Analysis of the output reveals that the device is converting the following sequence,

rather than the actual binary sequence applied to the inputs.

0010, 0011, 0010, 0011, 0110, 0111, 0110, 0111, 1010, 1011, 1010, 1011, 1110, 1111,1110, 1111

Apparently, the 21 bit is stuck in the HIGH (1) state. To find the problem, first monitor the bit input pin to the device. If

it is changing states, the fault is internal to the DAC and it should be replaced. If the external pin is not changing states and

is always HIGH, check for an external short to +V that may be caused by a solder bridge somewhere on the circuit board.

Related Problem

Determine the output of a DAC when a straight 4-bit binary sequence is applied to the inputs and the 20 bit is stuck HIGH.

The Reconstruction Filter

The output of the DAC is a “stairstep” approximation of the original analog signal after

it has been processed by the digital signal processor (DSP), which is a special type of

microprosessor that processes data in real time. The purpose of the low-pass reconstruction

filter (sometimes called a postfilter) is to smooth out the DAC output by eliminating the

higher frequency content that results from the fast transitions of the “stairsteps,” as roughly

illustrated in Figure 12–34.

Final analog output

Reconstruction
filter

Output of the DAC

FIGURE 12–34 The reconstruction filter smooths the output of the DAC.

EXAMPLE 12–5

The DAC output in Figure 12–33 is observed when a straight 4-bit binary sequence is applied to the inputs. Identify the

type of error, and suggest an approach to isolate the fault.

Binary
input

Analog
output

0
1
1
0

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
0

0
0
0
1

1
1
1
1

0

2
3
4
5
6
7
8
9

10
11
12
13

1

14
15

FIGURE 12–33

Digital Signal Processing 723

SECTION 12–3 CHECKUP

 1. What is the disadvantage of the DAC with binary-weighted inputs?

 2. What is the resolution of a 4-bit DAC?

 3. How do you detect nonmonotonic behavior in a DAC?

 4. What effect does low gain have on a DAC output?

12–4 Digital Signal Processing

Digital signal processing converts signals that naturally occur in analog form, such as

sound, video, and information from sensors, to digital form and uses digital techniques to

enhance and modify analog signal data for various applications.

After completing this section, you should be able to

u Discuss digital signal processing

u Draw a basic block diagram of a digital signal processing system

A digital signal processing system first translates a continuously varying analog signal

into a series of discrete levels. This series of levels follows the variations of the analog

signal and resembles a staircase, as illustrated for the case of a sine wave in Figure 12–35.

The process of changing the original analog signal to a “stairstep” approximation is accom-

plished by a sample-and-hold circuit.

Each held level is converted to
a binary code by an ADC.

Hold

Sample

FIGURE 12–35 An original analog signal (sine wave) and its “stairstep” approximation.

Next, the “stairstep” approximation is quantized into binary codes that represent each

discrete step on the “stairsteps” by a process called analog-to-digital (A/D) conversion. The

circuit that performs A/D conversion is an analog-to-digital converter (ADC).

Once the analog signal has been converted to a binary coded form, it is applied to a

DSP (digital signal processor). The DSP can perform various operations on the incoming

data, such as removing unwanted interference, increasing the amplitude of some signal

frequencies and reducing others, encoding the data for secure transmissions, and detecting

and correcting errors in transmitted codes. DSPs make possible, among many other things,

the cleanup of sound recordings, the removal of echos from communications lines, the

enhancement of images from CT scans for better medical diagnosis, and the scrambling of

cellular phone conversations for privacy.

After a DSP processes a signal, the signal can be converted back to an enhanced

 version of the original analog signal. This is accomplished by a digital-to-analog

 converter (DAC). Figure 12–36 shows a basic block diagram of a typical digital signal

processing system.

724 Signal Conversion and Processing

DAC
Reconstruction

filter

Enhanced
analog
signal

10110
01101
00011
11100

DSP

10110
01101
00011
11100

Analog
signal

ADC
Sample-and-
hold circuit

Anti-aliasing
filter

FIGURE 12–36 Basic block diagram of a typical digital signal processing system.

DSPs are actually a specialized type of microprocessor but are different from general-

purpose microprocessors in a couple of significant ways. Typically, microprocessors are

designed for general-purpose functions and operate with large software packages. DSPs

are used for special-purpose applications; they are very fast number crunchers that must

work in real time by processing information as it happens using specialized algorithms

(programs). The analog-to-digital converter (ADC) in a system must take samples of the

incoming analog data often enough to catch all the relevant fluctuations in the signal ampli-

tude, and the DSP must keep pace with the sampling rate of the ADC by doing its calcula-

tions as fast as the sampled data are received. Once the digital data are processed by the

DSP, they go to the digital-to-analog converter (DAC) and reconstruction filter for conver-

sion back to analog form.

SECTION 12–4 CHECKUP

 1. What does DSP stand for?

 2. What does ADC stand for?

 3. What does DAC stand for?

 4. An analog signal is changed to a binary coded form by what circuit?

 5. A binary coded signal is changed to analog form by what circuit?

12–5 The Digital Signal Processor (DSP)

Essentially, a digital signal processor (DSP) is a special type of microprocessor that

processes data in real time. Its applications focus on the processing of digital data that

represents analog signals. A DSP, like a microprocessor, has a central processing unit

(CPU) and memory units in addition to many interfacing functions. Every time you use

your cellular telephone, you are using a DSP, and this is only one example of its many

applications.

After completing this chapter, you should be able to

u Explain the basic concepts of a DSP

u List some of the applications of DSPs

u Describe the basic functions of a DSP in a cell phone

u Discuss the TMS320C6000 series DSP

The digital signal processor (DSP) is the heart of a digital signal processing system. It

takes its input from an ADC and produces an output that goes to a DAC, as shown in Figure

12–37. As you have learned, the ADC changes an analog waveform into data in the form

of a series of binary codes that are then applied to the DSP for processing. After being pro-

cessed by the DSP, the data go to a DAC for conversion back to analog form.

The Digital Signal Processor (DSP) 725

ADC DSP
Analog

input

Digital input
from ADC

DAC

Digital output
to DAC

Analog
output

FIGURE 12–37 The DSP has a digital input and produces a digital output.

DSP Programming

DSPs are typically programmed in either assembly language or in C. Because programs

written in assembly language can usually execute faster and because speed is critical in most

DSP applications, assembly language is used much more in DSPs than in general-purpose

microprocessors. Also, DSP programs are usually much shorter than traditional micropro-

cessor programs because of their very specialized applications where much redundancy is

used. In general, the instruction sets for DSPs tend to be smaller than for microprocessors.

DSP Applications

The DSP, unlike the general-purpose microprocessor, must typically process data in real

time; that is, as it happens. Many applications in which DSPs are used cannot tolerate any

noticeable delays, requiring the DSP to be extremely fast. In addition to cell phones, digital

signal processors (DSPs) are used in multimedia computers, video recorders, CD players,

hard disk drives, digital radio modems, and other applications to improve the signal quality.

DSPs are also used in television applications. For example, television converters use DSP

to provide compatibility with various television standards.

An important application of DSPs is in signal compression and decompression. In CD

systems, for example, the music on the CD is in a compressed form so that it doesn’t use

as much storage space. It must be decompressed in order to be reproduced. Also signal

compression is used in cell phones to allow a greater number of calls to be handled simul-

taneously in a local cell.

Telecommunications

The field of telecommunications involves transferring all types of information from one

location to another, including telephone conversations, television signals, and digital

data. Among other functions, the DSP facilitates multiplexing many signals onto one

transmission channel because information in digital form is relatively easy to multiplex

and demultiplex.

At the transmitting end of a telecommunications system, DSPs are used to compress

digitized voice signals for conservation of bandwidth. Compression is the process of reduc-

ing the data rate. Generally, a voice signal is converted to digital form at 8000 samples per

second (sps), based on a Nyquist frequency of 4 kHz. If 8 bits are used to encode each

sample, the data rate is 64 kbps. In general, reducing (compressing) the data rate from 64 kbps

to 32 kbps results in no loss of sound quality. When the data are compressed to 8 kbps,

the sound quality is reduced noticeably. When compressed to the minimum of 2 kbps, the

sound is greatly distorted but still usable for some applications where only word recogni-

tion and not quality is important. At the receiving end of a telecommunications system, the

DSP decompresses the data to restore the signal to its original form.

Echoes, a problem in many long distance telephone connections, occur when a por-

tion of a voice signal is returned with a delay. For shorter distances, this delay is barely

noticeable; but as the distance between the transmitter and the receiver increases, so does

the delay time of the echo. DSPs are used to effectively cancel the annoying echo, which

results in a clear, undisturbed voice signal.

InfoNote

Sound cards used in computers

use an ADC to convert sound from

a microphone, audio CD player, or

other source into a digital signal.

The ADC sends the digital signal to

a digital signal processor (DSP).

Based on instructions from a

ROM, one function of the DSP is

to compress the digital signal so it

uses less storage space. The DSP

then sends the compressed data to

the computer’s processor which,

in turn, sends the data to a hard

drive or CD ROM for storage. To

play a recorded sound, the stored

data is retrieved by the processor

and sent to the DSP where it is

decompressed and sent to a DAC.

The output of the DAC, which is a

reproduction of the original sound

signal, is applied to the speakers.

726 Signal Conversion and Processing

Music Processing

The DSP is used in the music industry to provide filtering, signal addition and subtraction,

and signal editing in music preparation and recording. Also, another application of the DSP

is to add artificial echo and reverberation, which are usually minimized by the acoustics

of a sound studio, in order to simulate ideal listening environments from concert halls to

small rooms.

Speech Generation and Recognition

DSPs are used in speech generation and recognition to enhance the quality of man/machine

communication. The most common method used to produce computer-generated speech is

digital recording. In digital recording, the human voice is digitized and stored, usually in a

compressed form. During playback the stored voice data are uncompressed and converted

back into the original analog form. Approximately an hour of speech can be stored using

about 3 MB of memory.

Speech recognition is much more difficult to accomplish than speech generation. The

DSP is used to isolate and analyze each word in the incoming voice signal. Certain param-

eters are identified in each word and compared with previous examples of the spoken word

to create the closest match. Most systems are limited to a few hundred words at best. Also,

significant pauses between words are usually required and the system must be “trained” for

a given individual’s voice. Speech recognition is an area of tremendous research effort and

will eventually be applied in many commercial applications.

Radar

In radio detection and ranging (radar) applications, DSPs provide more accurate determi-

nation of distance using data compression techniques, decrease noise using filtering tech-

niques, thereby increasing the range, and optimize the ability of the radar system to identify

specific types of targets. DSPs are also used in similar ways in sonar systems.

Image Processing

The DSP is used in image-processing applications such as the computed tomography (CT)

and magnetic resonance imaging (MRI), which are widely used in the medical field for

looking inside the human body. In CT, X-rays are passed through a section of the body

from many directions. The resulting signals are converted to digital form and stored. This

stored information is used to produce calculated images that appear to be slices through the

human body that show great detail and permit better diagnosis.

Instead of X-rays, MRI uses magnetic fields in conjunction with radio waves to probe

inside the human body. MRI produces images, just as CT, and provides excellent discrimi-

nation between different types of tissue as well as information such as blood flow through

arteries. MRI depends entirely on digital signal processing methods.

In applications such as video telephones, digital television, and other media that provide

moving pictures, the DSP uses image compression to reduce the number of bits needed,

making these systems commercially feasible.

Filtering

DSPs are commonly used to implement digital filters for the purposes of separating signals

that have been combined with other signals or with interference and noise and for restor-

ing signals that are distorted. Although analog filters are quite adequate for some applica-

tions, the digital filter is generally much superior in terms of the performance that can be

achieved. One drawback to digital filters is that the execute time required produces a delay

from the time the analog signal is applied until the time the output appears. Analog filters

present no delay problems because as soon as the input occurs, the response appears on

the output. Analog filters are also less expensive than digital filters. Regardless of this, the

overall performance of the digital filter is far superior in many applications.

The Digital Signal Processor (DSP) 727

The DSP in a Cellular Telephone

The digital cellular telephone is an example of how a DSP can be used. Figure 12–38 shows

a simplified block diagram of a digital cell phone. The voice codec (codec is the abbreviation

for coder/decoder) contains, among other functions, the ADC and DAC necessary to convert

between the analog voice signal and a digital voice format. Sigma-delta conversion is typically

used in most cell phone applications. For transmission, the voice signal from the microphone

is converted to digital form by the ADC in the codec and then it goes to the DSP for processing.

From the DSP, the digital signal goes to the rf (radio frequency) section where it is modulated

and changed to the radio frequency for transmission. An incoming rf signal containing voice

data is picked up by the antenna, demodulated, and changed to a digital signal. It is then applied

to the DSP for processing, after which the digital signal goes to the codec for conversion back

to the original voice signal by the DAC. It is then amplified and applied to the speaker.

Amplifier Filter ADC

DACFilterAmplifier

Control

Codec

Keypad

Display

Microphone

Speaker

DSP

(modulation,
demodulation,

frequency
 conversion,
rf amplifier)

Antenna

RF section

FIGURE 12–38 Simplified block diagram of a digital cellular phone.

Functions Performed by the DSP

In a cellular phone application, the DSP performs many functions to improve and facilitate

the reception and transmission of a voice signal. Some of these DSP functions are as follows:

• Speech compression. The rate of the digital voice signal is reduced significantly for

transmission in order to meet the bandwidth requirements.

• Speech decompression. The rate of the received digital voice signal is returned to its

original rate in order to properly reproduce the analog voice signal.

• Protocol handling. The cell phone communicates with the nearest base in order to

establish the location of the cell phone, allocates time and frequency slots, and

arranges handover to another base station as the phone moves into another cell.

• Error detection and correction. During transmission, error detection and correction

codes are generated and, during reception, detect and correct errors induced in the rf

channel by noise or interference.

• Encryption. Converts the digital voice signal to a form for secure transmission and

converts it back to original form during reception.

Basic DSP Architecture

As mentioned before, a DSP is basically a specialized microprocessor optimized for speed

in order to process data in real time. Many DSPs are based on what is known as the Harvard

architecture, which consists of a central processing unit (CPU) and two memories, one for

data and the other for the program, as shown by the block diagram in Figure 12–39.

728 Signal Conversion and Processing

Program cache/program memory

(32-bit address, 256-bit data)

Register file A

Data path A

Instruction decode

Register file B

Data path B

Instruction dispatch

Program fetch
Control
registers

Control
logic

Test

Evaluation

Interrupts

CPU (DSP core)

Additional
peripherals

Data cache/data memory

(32-bit address, 8-, 16-, 32-. 64-bit data)

DMA
EMIF

.S1 .M1 .D1.L1 .M2 .S2 .L2.D2

FIGURE 12–40 General block diagram of the TMS320C6000 series DSP.

Address bus

Instruction bus

Program

memory

Data

memory

Address bus

Data bus

CPU

FIGURE 12–39 Many DSPs use the Harvard architecture (two memories).

A Specific DSP

DSPs are manufactured by several companies including Texas Instruments, Motorola, and

Analog Devices. DSPs are available for both fixed-point and floating-point processing. Recall

from Chapter 2 that these two methods differ in the way numbers are stored and manipulated.

All floating-point DSPs can also handle numbers in fixed-point format. Fixed-point DSPs are

less expensive than the floating-point versions and, generally, can operate faster. The details

of DSP architecture can vary significantly, even within the same family. Let’s look briefly at

one particular DSP series as an example of how a DSP is generally organized.

Examples of DSPs available in the TMS320C6000 series include the TMS320C62xx,

the TMS320C64xx, and the TMS320C67xx, which are part of Texas Instrument’s TMS320

family of devices. A general block diagram for these devices is shown in Figure 12–40.

The DSPs have a central processing unit (CPU), also known as the DSP core, that

contains 64 general-purpose 32-bit registers in the C64xx and 32 general-purpose 32-bit

registers in the C62xx and the C67xx. The C67xx can handle floating-point operations,

whereas the C62xx and C64xx are fixed-point devices.

Each DSP has eight functional units that contain two 16-bit multipliers and six arithme-

tic logic units (ALUs). The performance of the three DSPs in the C6000 series in terms of

The Digital Signal Processor (DSP) 729

MIPS (Million Instructions Per Second), MFLOPS (Million Floating-point Operations Per

Second), and MMACS (Million Multiply/Accumulates per Second) is shown in Table 12–3.

Data Paths in the CPU

In the CPU, the program fetch, instruction dispatch, and instruction decode sections can

provide eight 32-bit instructions to the functional units during every clock cycle. The CPU

is split into two data paths, and instruction processing occurs in both data paths A and B.

Each data path contains half of the general-purpose registers (16 in the C62xx and C67xx

or 32 in the C64xx) and four functional units. The control register and logic are used to

configure and control the various processor operations.

Functional Units

Each data path has four functional units. The M units (labeled .M1 and .M2 in Figure

12–40) are dedicated multipliers. The L units (labeled .L1 and .L2) perform arithmetic,

logic, and miscellaneous operations. The S units (labeled .S1 and .S2) perform compare,

shift, and miscellaneous arithmetic operations. The D units (labeled .D1 and .D2) perform

load, store, and miscellaneous operations.

Pipeline

A pipeline allows multiple instructions to be processed simultaneously. A pipeline opera-

tion consists of three stages through which all instructions flow: fetch, decode, execute.

Eight instructions at a time are first fetched from the program memory; they are then

decoded, and finally they are executed.

During fetch, the eight instructions (called a packet) are taken from memory in four

phases, as shown in Figure 12–41.

• Program address generate (PG). The program address is generated by the CPU.

• Program address send (PS). The program address is sent to the memory.

• Program access ready wait (PW). A memory read operation occurs.

• Program fetch packet receive (PR). The CPU receives the packet of instructions.

Program
address
generate

Program
access

ready wait

Program
fetch

 packet receive

Program
address

send

(PG) (PW) (PR)(PS)

FIGURE 12–41 The four fetch phases of the pipeline operation.

Two phases make up the instruction decode stage of pipeline operation, as shown in

Figure 12–42. The instruction dispatch (DP) phase is where the instruction packets are

split into execute packets and assigned to the appropriate functional units. The instruction

decode (DC) phase is where the instructions are decoded.

TABLE 12–3

TMS320C6000 series DSP data processing performance.

DSP Type Application

Processing

Speed

Multiply/

Accumulate

Speed

C62xx Fixed-point General-purpose 1200–2400 MIPS 300–600 MMACS

C64xx Fixed-point Special-purpose 3200–4800 MIPS 1600–2400 MMACS

C67xx Floating-point General-purpose 600–1000 MFLOPS 200–333 MMACS

Dispatch Decode

(DP) (DC)

FIGURE 12–42 The two

decode phases of the pipeline

operation.

730 Signal Conversion and Processing

The execute stage of the pipeline operation is where the instructions from the decode

stage are carried out. The execute stage has a maximum of five phases (E1 through E5), as

shown in Figure 12–43. All instructions do not use all five phases. The number of phases

used during execution depends on the type of instruction. Part of the execution of an

instruction requires getting data from the data memory.

E5E1 E3 E4E2

FIGURE 12–43 The five execute phases of pipeline operation.

Internal DSP Memory and Interfaces

As you can see in Figure 12–40, there are two internal memories, one for data and one for

program. The program memory is organized in 256 bit packets (eight 32-bit instructions)

and there are 64 kB of capacity. The data memory also has a capacity of 64 kB and can

be accessed in 8-, 16-, 32-, or 64-bit word lengths, depending on the specific device in the

series. Both internal memories are accessed with a 32-bit address. The DMA (Direct Mem-

ory Access) is used to transfer data without going through the CPU. The EMIF (External

Memory Interface) is used to support external memories when required in an application.

Additional interface is provided for serial I/O ports and other external devices.

Timers

There are two general-purpose timers in the DSP that can be used for timed events, count-

ing, pulse generation, CPU interrupts, and more.

Packaging

The TMS 3206000 series processors are available in 352-pin ball grid array (BGA) pack-

ages, as shown in Figure 12–44, and are implemented with CMOS technology.

Dot
indicates
pin A1

(a) Top view (b) Bottom view

AF
AE
AD
AC
AB
AA

Y
W
V
U
T
R
P
N
M
L
K
J

H
G
F
E
D
C
B
A

(c) Side view

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

FIGURE 12–44 A 352-pin BGA package.

Key Terms 731

SECTION 12–5 CHECKUP

 1. What is meant by the Harvard architecture?

 2. What is a DSP core?

 3. Name two categories of DSPs according to the type of numbers handled.

 4. What are the two types of internal memory?

 5. Define (a) MIPS (b) MFLOPS (c) MMACS.

 6. Basically, what does pipelining accomplish?

 7. Name the three stages of pipeline operation.

 8. What happens during the fetch phase?

SUMMARY

• Samplingconvertsananalogsignalintoaseriesofimpulses,eachrepresentingthesignalampli-
tude at a given instant in time.

• Thesamplingtheoremstatesthatthesamplingfrequencymustbeatleasttwicethehighest
sampled frequency (Nyquist frequency).

• Analog-to-digitalconversionchangesananalogsignalintoaseriesofdigitalcodes.

• Fourtypesofanalog-to-digitalconverters(ADCs)areflash(simultaneous),dual-slope,successive-
approximation, and sigma-delta.

• Digital-to-analogconversionchangesaseriesofdigitalcodesthatrepresentananalogsignal
back into the analog signal.

• Twotypesofdigital-to-analogconverters(DACs)arebinary-weightedinputandR/2R ladder.

• Digitalsignalprocessingisthedigitalprocessingofanalogsignals,usuallyinreal-time,forthe
purpose of modifying or enhancing the signal in some way.

• Ingeneral,adigitalsignalprocessingsystemconsistsofananti-aliasingfilter,asample-and-
hold circuit, an analog-to-digital converter, a DSP (digital signal processor), a digital-to-analog

converter, and a reconstruction filter.

• ADSPisaspecializedmicroprocessoroptimizedforspeedinordertoprocessdataasitoccurs
(real-time).

• MostDSPsarebasedontheHarvardarchitecture,whichmeansthatthereisadatamemoryand
a program memory.

• Apipelineoperationconsistsoffetch,decode,andexecutestages.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Aliasing The effect created when a signal is sampled at less than twice the signal frequency. Aliasing

creates unwanted frequencies that interfere with the signal frequency when the signal is recovered.

Analog-to-digital converter (ADC) A circuit used to convert an analog signal to digital form.

Decode A stage of the DSP pipeline operation in which instructions are assigned to functional

units and are decoded.

Digital signal processor (DSP) A special type of microprocessor that processes data in real time.

Digital-to-analog converter (DAC) A circuit used to convert the digital representation of an

analog signal back to the analog signal.

DSP core The central processing unit of a DSP.

Execute A stage of the DSP pipeline operation in which the decoded instructions are carried out.

732 Signal Conversion and Processing

Fetch A stage of the DSP pipeline operation in which an instruction is obtained from the program

memory.

MFLOPS Million floating-point operations per second.

MIPS Million instructions per second.

MMACS Million multiply/accumulates per second.

Nyquist frequency The highest signal frequency that can be sampled at a specified sampling

 frequency; a frequency equal to or less than half the sampling frequency.

Pipeline Part of the DSP architecture that allows multiple instructions to be processed

 simultaneously.

Quantization The process whereby a binary code is assigned to each sampled value during

analog-to-digital conversion.

Sampling The process of taking a sufficient number of discrete values at points on a waveform

that will define the shape of the waveform.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. An analog signal can be converted to a digital signal using sampling.

 2. An ADC is an analog data component.

 3. Aliasing is a desired factor in sampling.

 4. A higher sampling rate is more accurate than a lower sampling rate for a given analog signal.

 5. MIPS stands for memory instructions per second.

 6. Successful approximation is an analog-to-digital conversion method.

 7. Delta modulation is based on the difference of two successive samples.

 8. Two types of DAC are the binary-weighted input and the R/2R ladder.

 9. The process of converting an analog value to a code is called quantization.

 10. A flash ADC differs from a simultaneous ADC.

SELF-TEST

Answers are at the end of the chapter.

 1. Which of following is not a type of ADC?

(a) Flash ADC (b) Dual slope ADC

(c) Recessive approximation ADC (d) sigma-delta ADC

 2. A DAC is a

(a) digital-to-analog computer (b) digital analysis calculator

(c) data accumulation converter (d) digital-to-analog converter

 3. Aliasing results in

(a) oversampling

(b) undersampling

(c) guard-band formation

(d) perfect sampling

 4. According to the sampling theorem, the sampling frequency should be

(a) less than half the highest signal frequency

(b) greater than twice the highest signal frequency

(c) less than half the lowest signal frequency

(d) greater than the lowest signal frequency

Self-Test 733

 5. An op-amp is a linear amplifier which has

(a) one input and one output (b) one input and two outputs

(c) two inputs and one output (d) two inputs and two outputs

 6. The quantization process

(a) converts the sample-and-hold output to binary code

(b) converts a sample impulse to a level

(c) converts a sequence of binary codes to a reconstructed analog signal

(d) filters out unwanted frequencies before sampling takes place

 7. Generally, an analog signal can be reconstructed more accurately with

(a) more quantization levels (b) fewer quantization levels

(c) a higher sampling frequency (d) a lower sampling frequency

(e) either answer (a) or (c)

 8. The throughput of a flash ADC is measured in

(a) displacement per second (b) distance per second

(c) samples per minute (d) samples per second

 9. A digital voltmeter uses a

(a) flash ADC (b) successive approximation ADC

(c) sigma-delta ADC (d) dual-slope ADC

 10. The most common ADC seen in telecommunications based on audio signals is

(a) flash ADC

(b) successive approximation ADC

(c) sigma-delta ADC

(d) dual-slope ADC

 11. In a binary weighted DAC, the lowest-value resistor corresponds to

(a) the highest binary weighted input

(b) the lowest binary weighted input

(c) the first input

(d) the last input

 12. DSPs are typically programmed in

(a) assembly level languages

(b) the C programming language

(c) neither (a) nor (b)

(d) both (a) and (b)

 13. A digital signal processing system usually operates in

(a) real time (b) imaginary time

(c) compressed time (d) computer time

 14. The term Harvard architecture means

(a) a CPU and a main memory

(b) a CPU and two data memories

(c) a CPU, a program memory, and a data memory

(d) a CPU and two register files

 15. The minimum number of general-purpose registers in the TMS320C6000 series DSPs is

(a) 32 (b) 64

(c) 16 (d) 8

 16. The two internal memories in the TMS320C6000 series each have a capacity of

(a) 1 MB (b) 512 kB

(c) 64 kB (d) 32 kB

 17. In the TMS320C6000 series pipeline operation, the number of instructions processed simulta-

neously is

(a) eight (b) four

(c) two (d) one

 18. The stage of the pipeline operation in which instructions are retrieved from the memory is

called

(a) execute (b) accumulate

(c) decode (d) fetch

734 Signal Conversion and Processing

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 12–1 Analog-to-Digital Conversion

 1. The waveform shown in Figure 12–45 is applied to a sampling circuit and is sampled every

3 ms. Show the output of the sampling circuit. Assume a one-to-one voltage correspondence

between the input and output.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

9

10

11

12

13

14

15

8

V

t (ms)

FIGURE 12–45

 2. The output of the sampling circuit in Problem 1 is applied to a hold circuit. Show the output of

the hold circuit.

 3. If the output of the hold circuit in Problem 2 is quantized using two bits, what is the resulting

sequence of binary codes?

 4. Repeat Problem 3 using 4-bit quantization.

 5. (a) Reconstruct the analog signal from the 2-bit quantization in Problem 3.

(b) Reconstruct the analog signal from the 4-bit quantization in Problem 4.

 6. Graph the analog function represented by the following sequence of binary numbers:

1111, 1110, 1101, 1100, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0101, 0110, 0111, 1000,

1001, 1010, 1011, 1100, 1100, 1100, 1011, 1010, 1001.

Section 12–2 Methods of Analog-to-Digital Conversion

 7. The input voltage to a certain op-amp inverting amplifier is 5 mV, and the output is 1 V. What

is the closed-loop voltage gain?

 8. To achieve a closed-loop voltage gain of 220 with an inverting amplifier, what value of feed-

back resistor do you use if Ri = 2 k�?

 9. What is the gain of an inverting amplifier that uses a 33 k� feedback resistor if the input

 resistor is 1 k�?

 10. How many comparators are required to form a 4-bit flash converter?

 11. Determine the binary output code of a 3-bit flash ADC for the analog input signal in Figure 12–46.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

1
2
3
4
5
6
7
8

V

t (s) µ

9

FIGURE 12–46

Problems 735

 12. Repeat Problem 11 for the analog waveform in Figure 12–47.

V

8

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
t (s) µ

9

FIGURE 12–47

 13. For a certain 2-bit successive-approximation ADC, the maximum ladder output is +8 V. If a

constant +6 V is applied to the analog input, determine the sequence of binary states for the

SAR.

 14. Repeat Problem 13 for a 4-bit successive-approximation ADC.

 15. An ADC produces the following sequence of binary numbers when an analog signal is applied

to its input: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 0110, 0101, 0100, 0011, 0010,

0001, 0000.

(a) Reconstruct the input digitally.

(b) If the ADC failed so that the code 0111 were missing, what would the reconstructed output

look like?

Section 12–3 Methods of Digital-to-Analog Conversion

 16. In the 4-bit DAC in Figure 12–26, the lowest-weighted resistor has a value of 20 k�. What

should the values of the other input resistors be?

 17. Determine the output of the DAC in Figure 12–48(a) if the sequence of 4-bit numbers in part

(b) is applied to the inputs. The data inputs have a low value of 0 V and a high value of +5 V.

–

+

D0

D1

D2

D3

200 k�

100 k�

50 k�

25 k�

10 k�

Output

D0

D1

D2

D3

(a) (b)

FIGURE 12–48

 18. Repeat Problem 17 for the inputs in Figure 12–49.

D0

D1

D2

D3

FIGURE 12–49

736 Signal Conversion and Processing

 19. Determine the resolution expressed as a percentage, for each of the following DACs:

(a) 2-bit (b) 5-bit (c) 12-bit

 20. Develop a circuit for generating an 8-bit binary test sequence for the test setup in Figure 12–31.

 21. A 4-bit DAC has failed in such a way that the MSB is stuck in the 0 state. Draw the analog

output when a straight binary sequence is applied to the inputs.

 22. A straight binary sequence is applied to a 4-bit DAC, and the output in Figure 12–50 is

observed. What is the problem?

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

Output

0

Binary input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FIGURE 12–50

Section 12–4 Digital Signal Processing

 23. How can an analog signal be converted into a stair-step approximation?

 24. Fill in the appropriate functional names for the digital signal processing system block diagram

in Figure 12–51.

FIGURE 12–51

 25. Explain the purpose of analog-to-digital conversion.

Section 12–5 The Digital Signal Processor (DSP)

 26. A TMS320C62xx DSP has 32-bit instructions and is operating at 1800 MIPS. How many bytes

per second is the DSP processing?

 27. If the clock rate of a TMS320C64xx DSP is 600 MHz, how many instructions can it provide to

the CPU functional units in one second?

Answers 737

ANSWERS

SECTION CHECKUPS

Section 12–1 Analog-to-Digital Conversion

 1. Sampling is the process of converting an analog signal into a series of impulses, each

 representing the amplitude of the analog signal.

 2. A sampled value is held to allow time to convert the value to a binary code.

 3. The minimum sampling frequency is 40 kHz.

 4. Quantization is the process of converting a sampled level to a binary code.

 5. The number of bits determine quantization accuracy.

Section 12–2 Methods of Analog-to-Digital Conversion

 1. The simultaneous (flash) method is fastest.

 2. The sigma-delta method produces a single-bit data stream.

 3. Yes, successive approximation has a fixed conversion time.

 4. Missing code, incorrect code, and offset are types of ADC output errors.

Section 12–3 Methods of Digital-to-Analog Conversion

 1. In a binary-weighted DAC, each resistor has a different value.

 2. (1/(24 - 1))100% = 6.67%

 3. A step reversal indicates nonmonotonic behavior in a DAC.

 4. Step amplitudes in a DAC are less than ideal with low gain.

Section 12–4 Digital Signal Processing

 1. DSP stands for digital signal processor.

 2. ADC stands for analog-to-digital converter.

 3. DAC stands for digital-to-analog converter.

 4. The ADC changes an analog signal to binary coded form.

 5. The DAC changes a binary coded signal to analog form.

Section 12–5 The Digital Signal Processor (DSP)

 1. Harvard architecture means that there is a CPU and two memories, one for data and one for

programs.

 2. The DSP core is the CPU.

 3. DSPs can be fixed-point or floating-point.

 4. Internal memory types are data and program.

 5. (a) MIPS—million instructions per second

(b) MFLOPS—million floating-point operations per second

(c) MMACS—million multiply/accumulates per second

 6. Pipelining provides for the processing of multiple instructions simultaneously.

 7. The stages of pipeline operation are fetch, decode, and execute.

 8. During fetch, instructions are retrieved from the program memory.

 28. How many floating-point operations can a DSP do in one second if it is specified at 2000

MFLOPS?

 29. List and describe the four phases of the fetch operation in a TMS320C6000 series DSP.

 30. List and describe the two phases of the decode operation in a TMS320C6000 series DSP.

738 Signal Conversion and Processing

RELATED PROBLEMS FOR EXAMPLES

 12–1 100, 111, 100, 000, 011, 110. Yes, information is lost.

 12–2 See Figure 12–52.

 12–3 See Figure 12–53.

 12–4 (1/(216 - 1))100% = 0.00153%

 12–5 See Figure 12–54.

13

10

8

6

4

2

0

11

9

7

5

3

1

12

14

15

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

1
0
0
0

FIGURE 12–52

0
–0.25
–0.50
–0.75
–1.00

–1.50
–1.75
–2.00
–2.25
–2.50
–2.75
–3.00
–3.25
–3.50
–3.75

–1.25

D0

D1

D2

D3

0
0

0
0

1
0

0
0

0
1

0
0

1
1

0
0

0
0

1
0

1
0

1
0

0
1
1

0
1
1
1

0
0

0
0

1
1

0
0

1
0

1
0

1
1
1

0
1

0
0

1
1

1
0

1
1

0
1
1
1

1
1
1
1

FIGURE 12–53

13

10

8

6

4

2

0

11

9

7

5

3

1

12

14

15

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

1
0
0
0

Analog

output

Binary

input

FIGURE 12–54

TRUE/FALSE QUIZ

 1. T 2. F 3. F 4. T 5. F 6. F 7. T 8. T 9. T 10. F

SELF-TEST

 1. (c) 2. (d) 3. (b) 4. (b) 5. (c) 6. (a)

 7. (e) 8. (d) 9. (d) 10. (c) 11. (a) 12. (d)

 13. (a) 14. (c) 15. (a) 16. (c) 17. (a) 18. (d)

739

CHAPTER OUTLINE

13–1 Data Transmission Media

13–2 Methods and Modes of Data Transmission

13–3 Modulation of Analog Signals with Digital Data

13–4 Modulation of Digital Signals with Analog Data

13–5 Multiplexing and Demultiplexing

13–6 Bus Basics

13–7 Parallel Buses

13–8 The Universal Serial Bus (USB)

13–9 Other Serial Buses

13–10 Bus Interfacing

CHAPTER OBJECTIVES

■ Discuss various types of data transmission media

■ Describe the methods for data transmission

■ Explain data transmission modes

■ Define modulation

■ Describe the types of modulation for transmission

of digital data

■ Explain how digital signals are used to transmit

analog information

■ Define multiplexing and demultiplexing

■ Discuss the types of multiplexing and

demultiplexing

■ Discuss the types of buses

■ List bus characteristics

■ Explain bus protocols

■ Explain the multiplexed bus and tri-state outputs

■ Discuss the PCI series, AGP, ISA, IEEE-488, and

SCSI types of parallel buses

■ Describe the Universal Serial Bus (USB)

■ Discuss the RS-232/422/423/485, SPI, I2C, CAN,

Firewire, and SCSI types of serial buses

KEY TERMS

Key terms are in order of appearance in the chapter.

Data Transmission

13

■ Coaxial cable

■ EMI

■ Optical fiber

■ Electromagnetic waves

■ Bit rate

■ Baud

■ RZ

■ NRZ

■ Manchester encoding

■ Simplex

■ Half-duplex

■ Full-duplex

■ Modulation

■ PAM

■ Bus

■ Bus protocol

■ Handshake

■ GPIB

■ SCSI

■ Universal serial bus

(USB)

■ RS-232 bus

■ Tri-state buffers

VISIT THE WEBSITE

Study aids for this chapter are available at

www.pearsonglobaleditions.com/floyd

INTRODUCTION

Data transmission is the transfer of data over a me-

dium or channel from one point to one or more points.

Channels can be wire, cable, optical fibers, or wire-

less. Information (data) transmission falls into two

basic categories, analog and digital. As you know,

analog information is transmitted as a continuously

varying signal. Digital data is transmitted either as a

sequence of pulses, called baseband transmission,

or by modulating an analog signal, called broadband
transmission. Both types are generally considered

digital transmission. A modem is used in broadband

modulation and demodulation. Buses are an important

part of many data transmission systems and are cov-

ered in this chapter.

CHAPTER

740 Data Transmission

13–1 Data Transmission Media

All data transmission systems in their most basic form have a data source (sending device)

at one end and a receiving device at the other. The two devices are connected by a transmis-

sion medium, which can be wire, coaxial cable, twisted pair cable, optical fiber cable, or

space (wireless). A digital signal is a changing electrical or electromagnetic quantity that

carries information through the medium. When data are sent without modulation, usually

over wires or cables, it is called baseband transmission. When data are modulated and sent

through a wireless medium, it is called broadband transmission.

After completing this section, you should be able to

u Define a data transmission system

u Describe wire and cable transmission media

u Describe optical fiber transmission media

u Describe wireless transmission

The basic block diagram in Figure 13–1 illustrates the essential elements in a data trans-

mission system.
InfoNote

Early fundamental work in data

transmission and information

theory was done by Harry Nyquist,

Ralph Hartley, Claude Shannon,

and others.

Sending

device

Receiving

device
Transmission medium

FIGURE 13–1 Basic data transmission system.

Wire Connections

The simplest connection between sending and receiving devices is a wire or a conductive

trace on a printed circuit board (PCB). This type of connection is typically limited to inter-

nal data transmission over very short distances within the same system or between nearby

systems, such as a computer and/or peripherals. Data buses or conductive traces connect

one element to another on a PCB and between PCBs in close proximity or between parts of

a system, as illustrated in Figure 13–2.

Conductive trace
Wire interconnections

FIGURE 13–2 Conductive traces on PCBs and wire interconnections between boards.

Coaxial Cable

Coaxial cable (coax) consists of a center conductor within an insulating dielectric mate-

rial. A copper braided or foil shield surrounds the dielectric to protect the conductor against

electromagnetic interference (EMI). The shield is encased in a protective insulating jacket,

as shown in Figure 13–3. BNC (Bayonet Neill-Concelman) connectors are typically used

for coaxial connections. Coax is used in data transmission applications with data rates up

to about 1 GHz. Two common applications for coax are cable TV and Internet connections.

 Data Transmission Media 741

Twisted Pair Cable

Unshielded twisted pair (UTP) cable is used extensively for indoor telephone application

as well as some outdoor uses. It is found in many computer networks and video applica-

tions, such as security cameras, and also in the USB (universal serial bus) cable. UTP is

color-coded according to a standard 25-pair color code. Most cables use a subset of these

standard colors.

Cross talk, a type of distortion, is minimized when twisted pairs are bundled together.

The two wires in each pair are twisted so that they cross each other at nearly 90°, ideally

cancelling any electromagnetic fields generated by the signals in the wires. UTP cables are

limited to use in low-noise environments and to lower signal frequencies than coax, such as

audio and other signals up to about 1 MHz. UTP cables use standard RJ-45 connectors. A

common four-pair UTP cable is shown in Figure 13–4(a), and an RJ-45 connector is shown

in part (b). Shielded twisted pair (STP) cable encased in a metal sleeve or conduit is also

available and provides more protection from EMI.

Outer jacket Metallic shield

Center

conductor

Dielectric

FIGURE 13–3 Construction view of a coaxial cable.

(a) (b)

FIGURE 13–4 Example of an unshielded twisted pair (UTP) cable and connector.

(a) Single optical fiber (b) Fiber optic cable

Core

Cladding

Jacket

FIGURE 13–5 Optical fiber cables.

Optical Fiber Cable

The structure of a single optical fiber is shown in Figure 13–5(a). An optical fiber can be

as small as a human hair, so many single fibers can be bundled into a cable, as shown in

Figure 13–5(b).

Instead of using electrical pulses to transmit information through copper lines, fiber

optics uses light pulses transmitted through optical fibers. Fiber-optic systems have several

advantages over electrical transmission media. Advantages include faster data rates, higher

signal capacity (more signals at a time), and better transmission over longer distances;

742 Data Transmission

optical fibers are not susceptible to EMI. The main disadvantage of fiber optics is the cost,

which is higher than that of coax, UTP, and STP.

Optical fiber is commonly used as a medium for telecommunication and networking.

Because light propagates through the fiber with little attenuation compared to electrical

cables, optical fiber is useful for long-distance transmission. Data rates from 10 GHz to

40 GHz are common, although rates over 100 GHz are used.

When light is introduced at one end of an optical fiber called the core, it “bounces”

along until it emerges from the other end, as shown in Figure 13–6. The fiber is typically

made of pure glass, plastic, or other material that is surrounded by a highly reflective

 cladding that effectively acts as a mirrored surface, using a phenomenon called total inter-

nal reflection to produce an almost lossless reflection. This allows the light to move around

bends in the fiber.

FIGURE 13–6 Light propagating through an optical fiber while reflecting off the internal

surface.

Modes of Light Propagation

Two basic modes of light propagation in optical fibers are multimode and single-mode, as

illustrated in Figure 13–7. In multimode, the light entering the fiber will tend to propagate

through the core in multiple rays (modes), basically due to varying angles as each light ray

moves along. Some of the rays will go straight down the core, while others will bounce

back and forth. Still others will scatter due to the sharp angle at which they strike the

cladding, resulting in attenuation in light energy. Multimode also exhibits time dispersion,

which means that all the light rays do not arrive at the end of the fiber at exactly the same

time. In single-mode, the core is much smaller in diameter than in multimode. Light enter-

ing the fiber tends to propagate in a straight line as a single ray.

(a) Multimode (b) Single mode

FIGURE 13–7 Modes of light propagation in an optical fiber.

The diameter of the optical fiber determines the mode. There are three sizes most widely

used in data transmission: 50/125, 62.5/125 and 8.3/125. The numbers are in microns (one

micron is one millionth of a meter) and represent the diameters of the fiber core and clad-

ding, respectively. The 50/125 and the 62.5/125 are multimode fibers. The 8.3/125 is a

single-mode fiber. Single mode results in increased bandwidth and distance for transmis-

sion, but the costs are higher than for multimode.

A Fiber-Optic Data Communications Link

A simplified block diagram of a fiber-optic communications link is shown in Figure 13–8.

The source provides the electrical signal that is to be transmitted. The electrical signal is

 Data Transmission Media 743

converted to a light signal and coupled to the fiber-optic cable. At the receiving end, the light

signal is coupled out of the cable into the receiver, which converts it back to an electrical

signal. The signal is then processed and sent to the end user. The electrical signal modulates

the light intensity and produces a light signal that carries the same information as the electri-

cal signal. Special connectors are used to connect the fiber-optic cable to various equipment.

Various types of connectors are used in fiber-optic systems. Some of these are described

as follows and are shown in Figure 13–9:

• ST AnAT&Ttrademarkandisoneofthemostwidelyusedformultimodenetworks

• SC Asnap-intypemultimodeconnector

• FC Apopularsingle-modeconnectortype

• LC Asingle-modeconnector

• LX-5 SimilartoanLCconnectorexceptithasashutterovertheendoftheiber

• MT A12-iberconnectorusedforribboncables

• FDDI Allduplex,meaningtheconnectorcanaccommodatetwoopticalibersfor
two-way communication

ST SC FC

LC MT FDDI

FIGURE 13–9 Typical types of optical fiber connectors.

Fiber-optic cable

Optical connectors

Electrical

signal source
Receiver

Electrical-to-

light

conversion

Light-to-

electrical

conversion

FIGURE 13–8 Basic block diagram of a fiber-optic communications link.

Wireless Transmission

The transmission of data through air and space via electromagnetic waves without the

use of physical connections between sending and receiving systems is known as wireless

transmission. Wireless transmission generally can be categorized by the type of signal in

terms of application, frequency, or how the data are configured. Another medium of wire-

less communications is water where sonar is used. Sonar produces low-frequency sound

waves that do not fall into the electromagnetic spectrum.

744 Data Transmission

The Electromagnetic Spectrum

The spectrum of frequencies for the range of electromagnetic waves is shown in Figure 13–10.

Most data communications occur within the radio wave, microwave, and infrared frequencies.

Radio waves Microwaves Infrared

far near

Visible

light

Shorter wavelengths

higher energyWavelength

in meters

Ultraviolet

700 nm 400 nm

102 10−2 10−4 10−6 10−8 10−10 10−12

X-rays

1

FIGURE 13–10 The electromagnetic spectrum.

Three ways in which radio wave (rf) and microwave signals propagate through Earth’s

atmosphere (air) are ground wave, ionospheric, and line-of-sight. In ground wave propaga-

tion, the radio waves follow the curvature of Earth and can be up to about 2 MHz in fre-

quency; the standard AM broadcast band is an example. Radio frequencies in the 30 MHz

to 85 MHz range bounce off of the ionosphere. These signals can change with time of day

and weather conditions. Most ham radio bands are examples of where signals bounce off

the ionosphere. In line-of-sight (LOS) propagation, the receiver must be in view of the

transmitter. The distance is limited to about 100 km (horizon to horizon) from a ground-

based transmitter to a ground-based receiver. Long distances are achieved by placing a

series of repeater towers so that each tower is within the line-of-sight of the previous tower.

In the case of satellites, which use line-of-sight propagation, the distances can be extended

around the world. Figure 13–11 illustrates these types of rf and microwave propagation.

Earth

Electromagnetic wave (rf)

(a) Ground wave

Earth

Ionosphere

(b) Ionospheric

Satellite

(c) Line-of-sight (LOS)

Earth

FIGURE 13–11 Ways in which rf and microwave signals can propagate.

Communication in the infrared region of the electromagnetic spectrum can be line-of-sight

or diffused. With LOS, the transmitter and receiver must be visible to each other with no obsta-

cles in between. With diffusion, the IR waves reflect off of nearby surfaces such as buildings,

ceilings, and walls. Uses include remote control devices, weather satellites, and night vision.

SECTION 13–1 CHECKUP

Answers are at the end of the chapter.

 1. List the types of data transmission media.

 2. What is the purpose of a coax shield?

 3. Name three ways in which radio waves are propagated in wireless transmission.

 4. Which type of electromagnetic radiation has the highest frequencies?

 5. Generally, what is the difference between baseband and broadband?

 Methods and Modes of Data Transmission 745

Generally, data are processed in parallel by computers but are transmitted serially to

outside systems. For example, data from a computer to a printer are typically sent over

a USB, which is serial. Data that are sent over long distances via one of the transmission

media are typically in a serial format. In some cases, data can be sent in parallel over a

single channel by using different frequencies for each bit, so the bits can be transmitted at

the same time.

Serial-to-parallel and parallel-to-serial conversions are used in most data transmission

systems. The basic concept is shown in Figure 13–13. A simple parallel-to-serial converter

is a parallel in/serial out shift register. The parallel bits are loaded into the register and then

shifted out in serial format at a specific clock frequency that determines the data rate in bits

1

1

0

1

0

0

1

0

1 1 0 1 0 0 1 0

(a) Serial data

(b) Parallel data

FIGURE 13–12

13–2 Methods and Modes of Data Transmission

Data transmission over a communications channel can be configured in several ways. A

communication channel is the pathway over which data are sent and can be in the form of

any of the media discussed in Section 13–1. The methods by which data are transmitted

can be one bit at a time (serial) or several bits at a time (parallel), and the data can be either

synchronized or unsynchronized. The modes describe the direction of the data.

After completing this section, you should be able to

u Distinguish between serial and parallel data

u Distinguish between synchronous and asynchronous data

u Describe the three modes of data transmission

Serial and Parallel Data

Serial data transmission is when data are transmitted one bit at a time in a bit stream, as illus-

trated in Figure 13–12(a). Parallel data transmission is when data are transmitted several bits

at a time, as shown in part (b). In general, a given number of bits can be transmitted faster in

parallel than in series, resulting in higher data rates. However, when several bits are sent simul-

taneously on separate lines in parallel, slight differences in the properties of the lines can cause

skewing in the data, making the data more susceptible to error, so the data rate may need to be

reduced to prevent errors. Error detection and correction methods can be used in these cases.

Parallel-to-serial

conversion

Serial-to-parallel

conversion

FIGURE 13–13 Digital data conversions.

746 Data Transmission

per second (bps). Likewise, a serial in/parallel out shift register can be used as a serial-to-

parallel converter. The receiving device must be able to recognize each valid group of data

bits that it is receiving serially. Two types of data transmission in terms of how a receiving

device knows what a sending device is transmitting are asynchronous and synchronous.

Asynchronous Data

Data are sent in short “bursts” known as packets in asynchronous transmission. A data

packet is one complete piece of information of a longer message. Typically, many packets

make up the entire message. A data packet consists of data bits representing alphabetic or

numeric characters, a parity bit, and start/stop bits. There is a pause between data packets

so that the receiver recognizes the start bit that precedes each packet. At the end of the data

packet, there are one or more stop bits that tell the receiver the packet is complete.

In asynchronous systems, the sending and receiving devices operate with separate

oscillators having the same clock frequency. Because the separate clock frequencies may

drift over time, they are typically re-synchronized on each data packet with the start bit.

Most commonly, data are sent in small packets of perhaps 10 or 11 bits. Eight of these bits

carry the information. Between packets, when the channel is idle, there is a continuous

logic level. A data packet always begins with a start bit with the opposite logic level as the

idle period to alert the receiver that a data packet is starting. A parity bit follows the eight

data bits, and a stop bit signals the end of the packet. This is illustrated in Figure 13–14.

Idle Idle
Start

bit

Parity

bit

Stop

bit

Data bits

1 1 0 1 0 0 1 0

Packet

FIGURE 13–14 Example of a serial transmission of a data packet for a given data code.

Synchronous Data

In synchronous data transmission, both the sender and the receiver derive timing from the

same clock signal, which originates at the sender end of the system. The bits are transmit-

ted in a continuous stream with no pauses, so the receiver must have some way to recognize

where a data block starts and ends. In order for the receiver to know when to read infor-

mation bits from the channel, it must determine exactly when the data begin and the time

between bits. When this timing information is determined, the receiver is synchronized

with the transmitter. Unlike asynchronous transmission, the data blocks usually contain

more than one character of information. Synchronous transmission is generally faster than

asynchronous transmission.

One method of synchronization is by using separate channels to transmit the data and

the timing information (synchronization and clock pulses). Because the transmitter origi-

nates both the data and the timing pulses, the receiver will read the data channel only when

told to do so by the transmitter (via the timing channel), and synchronization is achieved.

The disadvantage of this method is that it requires two physical lines.

Two data formats that require separate data and timing are RZ (return to zero) and NRZ

(nonreturn to zero). In the RZ format, a single pulse during a bit time represents a 1 and the

absence of a pulse is a zero, as shown in Figure 13–15(a). In the NRZ format, a high level

during a bit time represents a 1 and a low level represents a 0. A series of 1s is represented by

a continuous high level, and a series of 0s is represented by a continuous low level. The wave-

form does not return to the low level until a zero occurs after a string of 1s and does not go

back to the high level until a 1 occurs after a string of 0s. This is illustrated in Figure 13–15(b).

Another more commonly used method of data synchronization, called biphase or Man-

chester encoding, is to embed the timing signal in the data at the transmitter so that only

 Methods and Modes of Data Transmission 747

one channel is required. The receiver extracts the embedded timing signal and uses it to

synchronize to the transmitter.

Figure 13–16 illustrates Manchester encoding. A rising edge in the biphase code is a

1 and a falling edge is a 0, as indicated by the up and down arrowheads. The edges occur

at the middle of the bit time. The biphase code is sent to the receiver, and the clock is

extracted from the data with a phase-locked loop. Sometimes a series of all 1s or all 0s are

included in the transmission to allow the receiver to synchronize.

(a) RZ format

Data

1 1 1 0 0 1 1 0 1

Clock

FIGURE 13–15 Data formats that require separate timing for synchronization.

Data

Clock

(b) NRZ format

1 1 1 0 0 1 1 0 1

Data

Clock

Biphase code

0 0 1 1 1 10 0

0 0 1 1 1 10 0

FIGURE 13–16 Example of Manchester encoded data and timing.

Synchronous Frames

Synchronous data are sent in frames that include other bits, as shown by the generic pro-

tocol in Figure 13–18. (Frame formats vary because there are numerous standards in use.)

• Preamble A group of bits at the beginning of a frame that is used to alert the receiver that

a new frame has arrived and to synchronize the receiver’s clock with the transmitted clock

Data

Clock(a)

(b)

Encoded data

and embedded

timing

1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 11

FIGURE 13–17

EXAMPLE 13–1

Determine the biphase (Manchester) code for the data and clock shown in Figure 13–17(a).

Solution

The encoded data and embedded timing are shown in Figure 13–17(b). As the arrowheads indicate, the rising edges are 1s

and the falling edges are 0s that occur in the middle of each bit time (period of the clock).

Related Problem*

If the data were all 1s, what would the Manchester code look like?

*Answers are at the end of the chapter.

748 Data Transmission

• Address fields A group of bits containing the address(s) of the sender and the

receiver. One or both addresses may be present in a given protocol.

• Control field Thisgroupofbitsidentiiesthetypeofdatabeingsent,suchashand-

shaking(establishesaconnection),iletransfers,andthesizeofthedata.

• Data field Thissequenceistheactualinformationbeingsentandcanbeofaixed
lengthoravariablelength.Ifitisaixed-lengthield,agroupofbitscalledapad is

usedtoilliniftheactualdataieldislessthantheixedield.

• Frame check Thisieldcontainsanerrorchecksuchasparity,CRC(cyclicredun-

dancy check), or checksum, which is a value computed by a simple algorithm of the

data bits in the frame.

• End frame A group of bits that tells the receiver when the end of the frame occurs.

Data Rate

Data rate is the speed of data transfer. In a serial data transmission the rate can be stated as

bit rate or baud; bit rate is the preferred measure. The bit rate is the number of bits (1s and

0s) per second (bps); the baud is the symbol rate or the number of data symbols (some-

times known as transitions or events) per second.

A symbol (transition) can consist of one or more bits. Therefore, bit rate is always

greater than or equal to the baud. The relationship between bit rate and baud is

 Bit rate = (Number of bits per symbol) (Baud)

or

 Baud =

Bit rate

Number of bits per symbol

Data can be in the form of a string of ASCII characters or other information. In the case of

ASCII characters, each character is called a symbol and is represented by eight bits. To illustrate,

assume that one symbol is transmitted every millisecond (ms). The data rate expressed as baud is

Baud = (1 symbol/ms)(1000 ms/s) = 1000 baud = 1 kbaud

The data rate in terms of bit rate is

Bit rate = (8 bits/symbol)(1000 symbols/s) = 8000 bps = 8 kbps

Preamble
Address

fields

Control

field
Data

Frame

check

End

frame

FIGURE 13–18 Basic synchronous frame structure.

EXAMPLE 13–2

A certain analog waveform is represented by sixteen-voltage levels that are being trans-

mitted. Each level (symbol) is represented by a 4-bit code. Assuming that eight symbols

are transmitted in 1 ms, express the data rate as bit rate and as baud.

Solution

 Bit rate = (4 bits/symbol)(8 symbols/ms) = 32 bits/ms = 32 Mbps

 Baud =

32 Mbps

4 bits per symbol
= 8 Mbaud

Related Problem

Determine the bit rate if a symbol is represented by 8 bits and the baud is 5000 symbols/s.

 Methods and Modes of Data Transmission 749

Transmission Efficiency

The efficiency of a data transmission channel is the ratio of data bits to total bits in a packet.

For example, in Figure 13–14 there are eight data bits, a start bit, a parity bit, and a stop bit.

The nondata bits are considered overhead bits. There are eleven total bits transmitted in a

packet so the efficiency of the transmission is

Efficiency =

Data bits

Total bits
=

8 bits

11 bits
= 0.727 or 72.7%

EXAMPLE 13–3

A certain system transmits a block of information containing ten packets each with eight data bits, a start bit, and a stop bit.

Additional “overhead” bits include a 4-bit synchronization code at the beginning of the block and a parity bit at the end of

theblock.Determinethetransmissioneficiency.

Solution

 Data bits = (8 data bits)(10 packets) = 80 bits

 Overhead bits = (1)(10 start bits) + (1)(10 stop bits) + 4 synchronization bits + 1 parity bit = 25 bits

 Total bits = Data bits + Overhead bits = 80 + 25 = 105

 Efficiency =

Data bits

Total bits
=

80

105
= 0.762 or 76.2%

Related Problem

Determinetheeficiencyifeachpackethas12databitsandthesamenumberofoverheadbitsasstatedintheexample.

Transmission Modes

Three modes that characterize data channel (media) connections are simplex, half-duplex,

and full-duplex. In the simplex mode, data flow in only one direction from the sender (trans-

mitter) to the receiver. In a computer, for example, data flow one way from the computer to

the printer. In the half-duplex mode, the data flow both ways but not at the same time in the

same channel. For example, a sender transmits information to the receiver and the receiver

responds back to the sender after it has received the information. In the full-duplex mode,

the data flow both ways simultaneously in the same channel. The bandwidth of the channel

is divided between the two directions. Figure 13–19 illustrates these three modes.

Sender Receiver

(a) Simplex (b) Half-duplex (c) Full-duplex

Sender ReceiverSender Receiver

FIGURE 13–19 Data transmission modes.

SECTION 13–2 CHECKUP

 1. Explain the difference between serial and parallel data.

 2. What is the purpose of synchronization in a data transmission system?

 3. Name three types of data formats.

 4. List the modes of data transmission?

750 Data Transmission

13–3 Modulation of Analog Signals with Digital Data

Three major classes of modulation techniques for wireless transmission of digital data

are amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying

(PSK). Another common modulation method is basically a combination of ASK and FSK

and is known as quadrature amplitude modulation (QAM). Several variations of these

main modulation techniques are also in use. All of these techniques convey information by

changing a property of an rf carrier signal, usually a sine wave for the purpose of conveying

digital information over a wireless medium.

After completing this section, you should be able to

u Describe ASK

u Describe FSK

u Describe PSK

u Describe QAM

Amplitude-Shift Keying

Amplitude-shift keying (ASK) is a form of modulation in which a digital signal varies the

amplitude of a higher frequency sine wave (carrier). In its simplest form, a sinusoidal car-

rier signal is turned on and off by the data signal and, therefore, this method is also known

as on-off keying (OOK). When the carrier is on, a binary 1 is represented, and when the

carrier is off, a binary 0 is represented. ASK is very susceptible to noise interference and

is not typically used for wireless data transmission. ASK is most commonly used in fiber

optics where the presence of light represents a binary 1 and the absence of light represents

a binary 0. Figure 13–20 illustrates the concept of ASK. The presence of the sine wave car-

rier is a 1 and the absence is a 0. When modulated by digital data (1s and 0s), this method

is sometimes known as binary amplitude-shift keying (BASK).

Original data 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1

ASK

modulated

data

FIGURE 13–20 Illustration of amplitude-shift keying (ASK).

Frequency-Shift Keying

Frequency-shift keying (FSK) is a form of modulation in which a digital signal modulates

the frequency of a higher frequency sine wave (carrier). A carrier signal with a lower fre-

quency generally represents a binary 0, and a carrier signal with a higher frequency rep-

resents a binary 1. When modulated by digital data (1s and 0s), this method is sometimes

known as binary frequency-shift keying (BFSK). Figure 13–21 illustrates FSK.

Phase-Shift Keying

Phase-shift keying (PSK) is a form of modulation in which a digital signal modulates

the phase of a higher frequency sine wave. A carrier signal of one phase generally repre-

sents a binary 1, and a carrier signal that is 180° out-of-phase represents a binary 0. When

 Modulation of Analog Signals with Digital Data 751

 modulated by digital data (1s and 0s), this method is sometimes known as binary phase-shift

keying (BPSK). In one of its many variations, PSK applications include wireless LAN and

bluetooth. Figure 13–22 illustrates PSK.

Original data 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1

FSK

modulated

data

FIGURE 13–21 Illustration of frequency-shift keying (FSK).

Original data

PSK

modulated

data

1 1 1 1 0 0 1 1 1 1 0 1 1 1 10 0 0 00 0

FIGURE 13–22 Illustration of phase-shift keying (PSK).

Amplitude

1
000

001

010

011

100

101

110

111

2

2

2

2

360°

1

1

1

0°

0°

90°

180°

270°

90°

180°

270°

Phase

FIGURE 13–23 Eight amplitude/phase combinations (modulation states) represent one

of the eight 3-bit groups. Only one cycle of each modulation state is shown.

Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is widely used in telecommunications and in digital

cable TV. Digital QAM uses a combination of PSK and ASK to send information. Quadrature

refers to a 90° phase difference. Each combination of phase and amplitude is called a modula-

tion state or symbol and represents a combination of two or more bits. To illustrate the basic

concept of QAM, let’s use what is known as 8-QAM where each of the eight modulation

states (23) represents a unique three-bit combination. As shown in Figure 13–23, in 8-QAM,

752 Data Transmission

there are two different amplitudes with a quadrature phase difference between each pair. Since

there are four quadratures (90°) in 360°, there are a total of eight different amplitude/phase

combinations or modulation states.

A digital 8-QAM data transmission can represent any combination of three bits in any

sequence. Figure 13–24 illustrates an 8-QAM transmission of the binary sequence of num-

bers 0 through 7. Depending on the carrier frequency and the time specified for each bit

group, multiple cycles of each modulation state can represent each bit group. For simplic-

ity, only two cycles per bit group are shown.

000

000001010011100101110111

001 010 011 100 101 110 111

FIGURE 13–24 Illustration of an 8-QAM transmission of the binary sequence shown.

M-QAM

There are numerous variations in QAM in terms of the number of modulation states

(M) that can be represented. For the 8-QAM just illustrated, M = 8. Higher M values

of QAM, such as 16-QAM, 64-QAM, and 256-QAM, are also commonly used. These

higher M values are achieved by using more amplitude levels and/or phases. For example,

a 64-QAM can have 16 amplitude levels and four phases and can represent 6-bit binary

groups. A 256-QAM can have 32 amplitude levels and eight phases and can represent

8-bit binary groups.

Constellation Maps

Modulated transmission of digital data can be represented by a constellation map, which is

a vector representation that graphically shows the symbol values and corresponding phases

being transmitted by a system. As you have seen, when data are transmitted, a pattern is

modulated into the signal, such as in PSK, where the bit pattern is represented by various

phase shifts. A constellation map is useful in the design and analysis of a data transmission

system and in visually understanding how the system works.

Figure 13–25 shows a 4-quadrant constellation map for a 3-bit PSK transmission. Each

green dot represents the ideal amplitude and phase of the modulated signal. The amplitude

011 (135°)

100 (180°)

101 (−135°)

110 (−90°)

−90°

0°

111 (−45°)

000 (0°)

001 (45°)

010 (90°)

90°

180°

FIGURE 13–25 Constellation map for a 3-bit PSK transmission. The phases are

0�, 45�, 90�, 135�, 180�, -45�, -90�, and -135�, as indicated.

 Modulation of Digital Signals with Analog Data 753

constant is represented by the distance of the dots from the origin. Eight different phases or

symbols represent the 3-bit binary combinations.

In an actual transmission, the medium can affect both amplitude and phase shift. In

the figure, the cluster of red dots around each green dot represents nonideal signal values.

When the signal is received, these nonideal values can be adjusted to the ideal value (near-

est green dot) as long as there is adequate separation of the clusters; there should be no con-

fusion as to which ideal value the signal belongs. If there is any overlap, errors can occur.

100 101

011

010

−90°

0°
001 000

111

110

90°

180°

FIGURE 13–26

EXAMPLE 13–4

Develop an ideal constellation map for the 8-QAM transmission represented in Figures

13–23 and 13–24.

Solution

There are four phases and four amplitudes that represent a 3-bit code in this system. The

ideal constellation map is shown in Figure 13–26. There are two amplitudes for each

phase represented by the distance from the origin.

Related Problem

How many phases and amplitudes could be used to represent a 4-bit code?

SECTION 13–3 CHECKUP

 1. List four types of modulation techniques.

 2. What parameter is changed in ASK?

 3. What parameter is changed in FSK?

 4. What is QAM?

 5. What parameter is changed in PSK?

13–4 Modulation of Digital Signals with Analog Data

As you learned in the last section, analog signals are commonly used to carry digital data.

In this section, you will see that digital signals can be used to carry analog information.

These techniques are usually referred to as pulse modulation. A pulse parameter such as

amplitude or pulse width is varied to represent an analog quantity.

754 Data Transmission

After completing this section, you should be able to

u Describe pulse amplitude modulation

u Describe pulse position modulation

u Discuss pulse code modulation

u Explain delta modulation

Pulse Amplitude Modulation

In pulse amplitude modulation (PAM), the heights or amplitudes of the pulses are varied

according to the modulating analog signal; each pulse represents a value of the analog

signal. PAM is the simplest, but least used, type of pulse modulation although it is used in

the Ethernet communications standard. A simple PAM sequence is shown in Figure 13–27.

Amplitude

t

FIGURE 13–27 A simple PAM signal.

A basic method of producing a PAM representation of an analog signal is to use a

 constant-amplitude pulse source to sample the analog wave that has a frequency lower than

the pulses, as shown in Figure 13–28 for a sine wave input; any form of analog signal can be

converted to a PAM output. The pulses turn the switch on (closed) and off (open) to sample the

waveform. When there is a pulse, the sample switch is closed; the amplitude of the sine wave

at that point goes to the hold element that maintains the initial analog value occurring at the

beginning of each pulse for the duration of the pulse. The output goes to zero between pulses.

Sample Hold

PAM output

Sample points

FIGURE 13–28 Basic method of pulse amplitude modulation.

InfoNote

Ethernet is a family of computer

networking protocols described by

the IEEE 802.3 standard. Systems

that communicate using Ethernet

divide the data into individual

packets called frames. Each frame

contains source and destination

addresses and error-checking bits.

The Ethernet standard includes

several variations that specify both

media and signaling standards,

including type of wire or cable,

data format, and data rates.

Pulse Width Modulation

In pulse width modulation (PWM), the width or duration of the pulses and duty cycle are

varied according to the modulating analog signal; each pulse represents a value of the ana-

log signal. PWM (also known as pulse duration modulation, PDM), is commonly used in

control applications. Braking systems, motor speed control, and renewable energy systems

are just three examples.

Figure 13–29 illustrates one method of PWM generation, called the intersective method,

which uses a sawtooth waveform. A triangular waveform can also be used. Again, a sine

wave input is used, but the input can be any type of analog waveform. The sawtooth inter-

 Modulation of Digital Signals with Analog Data 755

sects the sinusoidal modulating signal twice during each cycle. The sawtooth is either

increasing above the sine wave or decreasing below the sine wave. When the sawtooth is

increasing above the sine wave, a low level is generated; when it is decreasing below the

sine wave, a high level is generated. The resulting output is a series of pulses with widths

proportional to the amplitude of the sine wave.

An intersective PWM system can be implemented simply with a sawtooth or triangular

wave generator and a comparator, as shown in Figure 13–30.

Modulating

waveform

Sampling

waveform

PWM

output

FIGURE 13–29 Illustration of PWM.

+

−

Comparator

Sawtooth

generator

FIGURE 13–30 A basic method of pulse width modulation.

FIGURE 13–31 Modulating waveform.

EXAMPLE 13–5

Determine the PAM signal and the PWM signal for the modulating signal in Figure 13–31. Assume ten cycles of the sam-

pling pulse waveform or sawtooth waveform during the portion of the modulating signal shown.

756 Data Transmission

Pulse Position Modulation

In pulse position modulation (PPM), also known as pulse phase modulation, the position

of each pulse relative to a reference or timing signal is varied proportional to the modu-

lating signal waveform. The amplitude and width of the pulses in a PPM system are kept

constant. An example of a PPM signal is shown in Figure 13–33 where the PPM pulses are

shifted relative to the leading edges of the timing waveform.

Timing

PPM

FIGURE 13–33 Example of a PPM signal with timing.

As with other types of pulse modulation, there is generally more than one way to pro-

duce a modulated waveform. One method is to derive the PPM from PWM, as illustrated

in Figure 13–34. Notice that the leading (positive-going) edges of the PWM signal occur at

PWM

Differentiated

PWM

PPM

FIGURE 13–34 A method of generating PPM.

Related Problem

How would the outputs in Figure 13–32 be affected by an increase in frequency of the pulse and sawtooth waveforms?

Solution

Figure 13–32 shows the PAM and PWM results.

Sampling

waveform

PAM

output

(a) PAM

FIGURE 13–32

Sampling

waveform

PWM

output

(b) PWM

 Modulation of Digital Signals with Analog Data 757

PPM is widely used in optical communications, such as fiber optics and in certain types

of rf systems, such as radio control for model planes, boats, and cars. It is less sensitive to

channel interference than PAM or PWM because noise can alter pulse amplitude and width

but not so much the position.

PPM Encoding

A certain number of data bits (D) are encoded by a single pulse in one of 2D possible posi-

tions during a specified fixed time period (T). The data rate is D/T bits per second (bps).

Figure 13–36 illustrates the case of four time periods and two data bits per time period. There

are 2D
= 22

= 4 possible positions in each time period. As you can see, each position rep-

resents a 2-bit binary number. In the first time period, the pulse position represents 00, in the

second time period the pulse position represents 10, et cetera. Any pulse could be in any of

the four positions within each period, depending on the data being encoded. The code for this

particular set of pulse positions is 00100111; it is shown in NRZ format in the figure.

Differentiator

PWM in

PPM out

Rectifier

FIGURE 13–35 PPM system block diagram.

0 0 1 0 0 1 1 1

T

00

PPM

NRZ

01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

T T T

FIGURE 13–36 Encoding of a PPM signal.

EXAMPLE 13–6

For a PPM system with four data bits and a time period of 1 ms, determine the data rate.

How many possible pulse positions are there in each time period?

Solution

The data rate is

D

T
=

4

1 ms
= 4 Mbps

fixed intervals, while the trailing (negative-going) edges vary relative to the leading edges.

When the PWM signal is passed through a differentiator, short positive pulses (spikes) are

generated on the leading edges and short negative pulses occur on the trailing edges. The

differentiated signal is rectified to remove the positive pulses and generate the PPM wave-

form shown, which can be inverted to produce positive pulses. A simplified block diagram

of a PPM system is shown in Figure 13–35.

758 Data Transmission

Pulse Code Modulation

Pulse code modulation (PCM) involves sampling of an analog signal amplitude at regular

intervals and converting the sampled values to a digital code. (Sampling was mentioned in

Chapter 1, and the sample-and-hold process was covered in Chapter 12.) The concept of

PCM is demonstrated in Figure 13–37.

111

Modulating

signal Sample/hold

signal

Code

PCM in

NRZ

format

110

101

100

011

010

001

000

100 101 110 111 111 110 101 100 100 010 001 000 000 001 010 100

FIGURE 13–37 Concept of PCM with eight levels.

The number of possible pulse positions in each period is

2D
= 24

= 16

Related Problem

For eight data bits, what is the data rate (T = 1 ms), and what is the number of possible

pulse positions in each period?

The modulating signal is a sine wave in this illustration, and its amplitude is divided into

eight levels as shown. Each level is represented by a 3-bit binary number (23
= 8). The

sine wave is sampled at fixed intervals; and the sampled value is held until the next sample,

resulting in the green stair-step waveform that approximates the sine wave. The value at

each sample is converted to a 3-bit binary number, and a pulse sequence is generated where

each pulse represents a 1 and the absence of a pulse represents a 0. In this case, the PCM

waveform is shown in NRZ format. The higher the sampling rate and the more levels used,

the more accurate is the PCM representation.

PCM is used for digital audio in computers, Blu-ray, CD, and DVD formats. Also, it is

used in digital telephone systems. A simplified block diagram of the PCM process is shown

in Figure 13–38.

Sample-and-Hold
3-bit analog-to-

digital converter

Binary code to

PCM conversion

FIGURE 13–38 Block diagram of a PCM system.

 Multiplexing and Demultiplexing 759

Digital Data Systems

All digital data systems have certain common components and variations that depend on

the type of data format. The three main data transmission combinations are digital-to-

analog, analog-to-digital, and digital-to-digital. Figure 13–39 shows a general functional

block diagram of a data transmission system. Each block is not used in all cases, depending

on the type of data format and the type of communications channel.

From

communications

channel

Analog source

Demodulation Detection Decoding
Digital-to-analog

conversion

Clock

Analog-to-digital

conversion
Encoding

(PAM, PWM,

PPM, PCM)

Modulation

(ASK, FSK, PSK)

To

communications

channel

Carrier

signal

Digital to end user

Analog to end user

FIGURE 13–39 General function block diagram of a data transmission system.

EXAMPLE 13–7

In a PCM system with 32 levels, determine the number of code bits for each sample of

an analog signal.

Solution

Code bits = 32 = 25

Five bits represent each sample.

Related Problem

What is the number of PCM code bits for each sample if the system has 64 levels?

SECTION 13–4 CHECKUP

 1. List four types of pulse modulation methods.

 2. What parameter is used in PAM to represent the value of the modulating signal?

 3. What parameter is used in PWM to represent the value of the modulating signal?

 4. What parameter is used in PPM to represent the value of the modulating signal?

 5. What is used in PCM to represent the value of the modulating signal?

13–5 Multiplexing and Demultiplexing

This topic was introduced briefly in Chapter 1. Multiplexing (also known as muxing) is

a method used to transmit digital data from multiple sources over a single communica-

tion channel. Multiplexing is widely used in telecommunications and computer networks.

Demultiplexing (demuxing) is the process of separating data from a single channel to mul-

tiple channels. Muxing is used on the sending end of a data communication system, and

760 Data Transmission

demuxing is used on the receiving end. Two major types of multiplexing are time-division

and frequency-division. Time-division multiplexing is a type of baseband communications.

Baseband is where digital or analog signals are sent using the entire channel bandwidth.

Frequency-division multiplexing is a type of broadband communications where analog

signals of different frequencies are transmitted simultaneously.

After completing this section, you should be able to

u Describe time-division multiplexing

u Discuss frequency-division multiplexing

Time-Division Multiplexing

Time-division multiplexing (TDM) is a technique in which data from several sources are

interleaved on a time basis and sent on a single communication channel or data link. Let’s

say that there are three sources of digital data to be transmitted. Certain time slots are allot-

ted for each channel so that an element of data (bits or bytes) from source 1 is sent during

time slot 1, an element of data from source 2 is sent during time slot 2, and an element of

data from source 3 is sent during time slot 3. This is repeated for time slots that follow until

all the data have been sent. Figure 13–40 illustrates the TDM concept.

Source 1 data

Time slot 1 Time slot 2 Time slot 3 Time slot 4 Time slot 5

Time

Source 2 data Source 3 data Source 1 data Source 2 data

FIGURE 13–40 Basic concept of TDM.

1 1

t1

t2

t1

t3

t4

t2

t3

t4

2 2

3 3

4 4

MUX DEMUX

Channel

FIGURE 13–41 Simple illustration of TDM.

A simplified illustration of TDM is shown in Figure 13–41. Multiple data sources are

switched (multiplexed) in a time sequence (t1 through t4) onto a single line (communica-

tions channel), and the single stream of data is switched back onto multiple lines in a syn-

chronized time sequence. That is, data from source 1 go to the data 1 output during time

slot t1, data from source 2 go to the data 2 output during time slot t2, and so on.

Bit-Interleaved TDM

In this method, a single data bit from a source is transmitted on the channel, followed by

a data bit from another source, and so on. A time slot is reserved on the channel for each

input source. These time slots are synchronized with the sender and receiver so that the

receiver knows to which output the data bit in each time slot should go.

Bit-interleaving is demonstrated in Figure 13–42. In this case, the TDM channel data are

transmitted at a rate four times greater than the data rate of the individual sources. Samples

are sequentially taken of each data source (four in this case) during a bit time slot to deter-

mine if the bit is a 1 or a 0. The resulting values are sequentially placed onto the channel

in 1, 2, 3, 4 order, as shown. This process is repeated for each of the bit times that follow.

 Multiplexing and Demultiplexing 761

Byte-Interleaved TDM

In this method, bytes for each input source are sequentially placed onto the data channel.

As in bit-interleaving, synchronization between the mux and demux at each end of the

communications channel is required. The basic concept is shown in Figure 13–43.

Sample points

1

2

3

4

Source

data

Multiplexed

channel data

Time slot 1

1 2 3 4 1 2 3 4 1 2 3 4
Time, t

Time slot 2

Time slot 3

Time slot 4

Bit time

FIGURE 13–42 Illustration of TDM bit interleaving.

MUXData A Byte 1 Byte 2 Byte 3 Byte 4

Byte 1 Byte 2 Byte 3 Byte 4Data B
Communications channel

1 2 2 3 3 4 41

FIGURE 13–43 Basic idea of byte-interleaved TDM.

The byte-interleaved data are from two sources (in this case) and are sent at twice the

rate as either source, as illustrated in Figure 13–44. As you can see in the figure, it is neces-

sary to delay the data before multiplexing until an entire byte is complete, using a process

called buffering. Notice that a byte of Data A and a byte of Data B occur during the Byte n

interval. These two bytes are interleaved during the Byte n + 1 interval, so the multiplexed

data are one byte delayed from the input data (A and B). This continues for each successive

data byte.

Synchronous TDM

When the time slots allotted to each source are fixed, each time slot is transmitted

whether or not the source has data to send. This results in an inefficient use of the com-

munications channel because sometimes some of the time slots are empty, as illustrated

in Figure 13–45. Here, data source C is not transmitting data, so its assigned time slots

are blank.

762 Data Transmission

Statistical TDM

The statistical TDM approach improves channel efficiency by making use of all the time

slots. Only data from active sources are transmitted, so there are no blank time slots for inac-

tive sources. The time slot assignment is variable rather than fixed, as in synchronous TDM.

This method is shown in Figure 13–46 for the case where data source C is not transmitting.

If data source C becomes active, the time slots are reassigned to accommodate the data.

Data A

Byte n Byte n + 1

Byte n + 1 Byte n + 1Byte n - 1 Byte n - 1 Byte n Byte n

Byte n + 2

Data B

Multiplexed

data

channel

Source A

time slot

Source B

time slot

Source A

time slot

Source B

time slot

Source A

time slot

Source B

time slot

FIGURE 13–44 Byte-interleaved TDM with two data sources.

MUX

A B A B A B

Communications channel

Empty time slots due to

data C not transmitting
Data A Byte 1

Byte 1

Byte 2

Byte 2

Byte 3

Byte 3

Byte 4

Byte 4Data B

Data C

1 1 2 2 3 3

FIGURE 13–45 Example of a 3-source synchronous TDM with one data source inactive.

MUX

Communications channel

Data A Byte 1

Byte 1

Byte 2

Byte 2

Byte 3

Byte 3

Byte 4

Byte 4Data B

Data C

A B A B A B

1 1 2 2 3 3

A B

4 4

FIGURE 13–46 Example of a 3-source statistical TDM with one source inactive.

TDM is used by the telephone company in North America for nearly all voice traffic

with what is known as the T1 system. A T1 line can carry 24 digitized telephone conversa-

tions and is capable of transmitting data at a rate of 1.544 Mbps. A voice signal is sampled

8,000 times per second, and each sample is converted to a byte of digital data. A voice

signal requires a transmission rate of

Voice transmission rate = (8000 samples/s)(8 bits/sample) = 64 kbps

 Multiplexing and Demultiplexing 763

The number of digitized voice signals that can be multiplexed on a T1 line is

Voice signals =

1.544 Mbps

64 kbps
= 24

A T1 transmission over the channel consists of sequential 193-bit frames, as shown in

Figure 13–47. Each frame is made up of twenty-four 8-bit slots plus one signaling bit.

Transmitter Σ To communications channel

Source 2

Source 3

Source n

Modulation at ƒ2

Modulation at ƒ3

Modulation at ƒn

From communications channel Receiver

BP filter ƒ1

BP filter ƒ2

BP filter ƒ3

BP filter ƒn

Demodulation

Demodulation

Demodulation

Demodulation

Modulation at ƒ1Source 1

FIGURE 13–48 Basic FDM system. π stands for summation.

193-bit frame 193-bit frame 193-bit frame 193-bit frame

Signaling bit
Slot 1

8-bits

Slot 2

8-bits

Slot 3

8-bits

Slot 4

8-bits

Slot 23

8-bits

Slot 24

8-bits

FIGURE 13–47 T1 channel transmission.

Frequency-Division Multiplexing

Frequency-division multiplexing (FDM) is a broadband technique in which the total band-

width available to a system is divided into frequency sub-bands and information is sent in

analog form. Each sub-band is assigned to a given source. The sources can transmit at the

same time but at different frequencies. At the receiving end, the signals are demuxed using

band-pass (BP) filtering. Figure 13–48 illustrates the concept of FDM.

764 Data Transmission

As mentioned, all sources transmit at the same time but at different frequencies. The

general spectrum of a composite FDM transmission is shown in Figure 13–49. The band-

width (BW) of each source is centered around the carrier frequency for that source and is

separated from the adjacent bandwidths by the guard band.

f1 f2 f3 fn
Frequency

BW1 BW2 BW3 BWn

Overall frequency band

Guard band

FIGURE 13–49 Frequency spectrum of an FDM transmission.

SECTION 13–5 CHECKUP

 1. Discuss the reason that multiplexing is used in data communications.

 2. What is TDM?

 3. What is FDM?

 4. Which has the higher efficiency, synchronous TDM or statistical TDM?

 5. What is a guard band?

13–6 Bus Basics

The bus is an essential element for transmission of data in many types of systems. A bus

is a set of connections that carries digital information between two or more systems or

between two or more parts of a system in a specified format. For example, most computers

have both internal and external buses. Internal buses connect to various internal elements

to allow data transfer. External buses connect external peripheral devices to the computer.

After completing this section, you should be able to

u Name the internal computer buses

u Discuss the difference between internal and external buses

u Describe how parallel and serial buses operate

u List several bus characteristics

u Discuss bus protocol

u Explain how synchronous and asynchronous buses differ

The Bus

A bus allows two or more devices to communicate with each other, generally for the pur-

pose of transmitting data. A bus is a set of physical wires and connectors and a set of elec-

trical specifications. A bus can be either internal or external to a system.

The physical properties of a typical bus include the number of wires or PCB conduc-

tors (width), the configuration and length of the wires or conductors, and the types and

 Bus Basics 765

configurations of the connectors. The electrical properties of a typical bus include but

are not limited to some or all of the following: signal format, signal voltage levels, clock

frequency, data transfer speed, bandwidth, data frame format, data rate, handshaking pro-

tocol, error detection, impedances, and line termination. Each device connected to a bus

must be compatible with the bus specifications in order to communicate. A sending device

can also be a receiving device, and a receiving device can also be a sending device. Figure

13–50 illustrates the concept of a typical bus.

Bus connections

• Number of wires

• Configuration of wires

• Length of cable

Connectors

• Number of pins

• Configuration of pins

• Shape(s)

Output specifications:

• Signal characteristics

• Data rate

• Data frame format

• Handshaking protocol

• Error detection

• Impedance

Sending device

• Signal characteristics

• Data frame format

• Data rate

• Handshaking protocol

• Error detection

• Line termination

Input specifications:

Receiving device

FIGURE 13–50 Physical and electrical definition of a typical bus.

(a) Parellel bus (a) Serial bus

FIGURE 13–51 Comparison of parallel and serial buses.

Parallel and Serial Buses

Buses can be either parallel or serial. A parallel bus carries data bits simultaneously, and a

serial bus carries data bits sequentially one at a time. Figure 13–51 is a simple comparison

of parallel and serial buses showing eight bits being transmitted.

It would seem that a parallel bus would transmit data faster than a serial bus because

multiple data bits can be sent simultaneously. However, this is not always the case. As data

rates increase, things like crosstalk across parallel bus lines, timing skew between bus lines,

and EMI (electromagnetic interference) become problems that limit the speed. Serial buses

are not limited by those factors and can actually transmit data at higher rates than parallel

buses in many situations.

Internal and External Buses

Internal buses carry information within a system, that is, from one part of the system to

another part of the same system. External buses (also known as expansion buses) are used

to connect one system to another separate system. For example, a computer connects to

peripheral units such as a monitor, keyboard, mouse, and printer through external buses, as

illustrated in Figure 13–52.

766 Data Transmission

General Bus Characteristics

A bus is typically described by the following parameters:

• Width The number of bits that a bus can transmit at one time. The width of typical

buses can vary from 1 bit for a serial bus up to 64 bits for a parallel bus.

• Frequency The clock frequency at which a bus can operate

• Transfer speed The number of bytes per clock cycle

• Bandwidth The number of bytes per clock cycle times the number of clock cycles

per second; that is, transfer speed times frequency. Bus bandwidth is sometimes

called throughput.

Bus bandwidth can be specified in two ways, which result in slightly different values. The

difference depends on how the prefix M in MBps is defined. It can be defined in decimal form

as a power of ten (106
= 1,000,000) or in binary form as a power of two (220

= 1,048,576).

In the decimal form, the M stands for mega; in the binary form, the M stands for mebi (mega-

binary). This can be a point of confusion in specifications, so you should be aware of the

difference. The following two formulas provide for determination of the bus bandwidth.

Equation 13–1 is for the decimal approach, and Equation 13–2 is for the binary approach.

 Bus bandwidth �
Width (bits) : Frequency (MHz)

8 bits per byte
 Equation 13–1

 Bus bandwidth �
((Width (bits) : Frequency (MHz))/8 bits per byte)106

220

Equation 13–2

Monitor

Printer

Mouse

Keyboard

External buses

Computer

FIGURE 13–52 Example of external bus application.

EXAMPLE 13–8

Acertainbusisspeciiedwithawidthof32bitsandafrequencyof66MHz.Determine
the bus bandwidth expressed as two different values, according to the decimal and

binarydeinitionsofM.NotethatBpsisbytespersecond.

Solution

UsingthedecimaldeinitionofM(106) in the unit of MBps,

Bandwidth =

32 bits * 66 MHz

8 bits per byte
= 264 MBps

UsingthebinarydeinitionofM(220),

Bandwidth =

((32 bits * 66 MHz)/8 bits per byte) 106

220
= 252 MBps

 Bus Basics 767

Table 13–1 lists some typical buses and their characteristics.

Related Problem

What is the frequency for a bus that has a width of 64 bits and bandwidth of 125 MBps

asspeciiedindecimalform?

TABLE 13–1

Bus

Width

(bits)

Frequency

(MHz)

Transfer Speed

(bytes/cycle)

Bandwidth (MBps)

Decimal Binary

ISA (16 bit) 16 8.3 2 16.6 15.9

PCI 32 33 4 132 125.9

PCI-X 32 66 4 264 251.8

AGP 32 66 4 264 251.8

Bus Protocol

Bus protocol is a set of rules that allow two or more devices to communicate through a

bus. Buses provide for data transfer, address selection, and control. Each device connected

to a bus has an address assigned to it for identification and command signals as well as

control signals to implement the protocol. These signals allow the devices to work properly

together by identifying each other and communicating back and forth. One device can send

a request to another device and get an acknowledgement or reply.

Handshaking

The handshake is a routine by which two devices initiate and complete a bus transfer.

Figure 13–53 shows a simple handshake process, including a timing diagram, in which

Responding

device (servant)

DATA

DATA

ACK

REQD

REQD

ACK

Requesting

device (master)

1

Master sends request for data (REQD) to servant.1

Servant sends an acknowledgement (ACK) and places data on bus.2

Master receives data and removes request.3

Servant removes acknowledge and is ready for next request.4

2
4

3

FIGURE 13–53 Simple example of handshake and data transfer.

768 Data Transmission

Data in Data out

Data out

Transmit

Transmit

Receive

Receive

Data in

Differential

signal
Data signal

invertedData signal

(b) Differential

(a) Single-ended

Data signal

FIGURE 13–54 A comparison of single-ended and differential bus operation.

a requesting device (sometimes called the master) and a responding device (sometimes

called the servant) initiate and complete a data transfer.

Synchronous and Asynchronous Buses

A synchronized bus includes a clock in the control lines and has a fixed protocol that is

relative to the clock. A synchronous bus is fast but has the disadvantage that every device

connected to it must operate at the same clock frequency. Also, the physical length of the

bus may be limited because of having to carry a high-frequency clock signal.

An asynchronous bus is not clocked, so it can serve various devices with different clock

rates. The asynchronous bus uses a handshake protocol to establish communication, as

previously described.

Single-Ended vs. Differential Buses

Data communications between devices can be classified as either single-ended or differen-

tial in terms of the physical bus configuration. In general, single-ended operation is limited

in both data rate and distance (cable length). Differential operation provides much higher

data rates and longer transmission distances. Single-ended operation uses one wire for

data and one wire for ground, where the signal voltage on the wire is with respect to

ground. Differential operation uses two wires for data and one wire for ground. The data

signal is sent on one wire in the twisted pair and its complement (inversion) is sent on the

other wire. The difference between the two data wires is the differential signal. Figure

13–54 shows both single-ended and differential operation.

A single-ended transmission is simpler and lower in cost compared to a differential trans-

mission. Differential operation is much less sensitive to noise because of common-mode

 Parallel Buses 769

SECTION 13–6 CHECKUP

 1. List two factors that may limit the speed of a parallel bus.

 2. What is the basic difference between an internal and an external bus?

 3. Name four bus characteristics.

 4. What is bus protocol?

 5. Discuss the difference between single-ended and differential bus operation.

13–7 Parallel Buses

A bus is not only a set of physical connections (PCB traces or cables) but it is also a set

of signals and operating parameters that are defined in the bus specification. Any devices

connected to a given bus must be compatible with the bus specifications. In this section, we

briefly look at several important parallel bus standards. Further details and information on

each bus can be found on the Internet.

After completing this section, you should be able to

u DiscussthePCI,PCI-X,andPCI-Expressbuses

u Explain the basics of the IEEE-488 bus

u Discuss the parallel SCSI bus

The PCI Bus

The PCI (peripheral component interconnect) bus is an internal synchronous bus for inter-

connecting chips, expansion boards, and processor/memory subsystems. The original PCI

bus had a width of 32 bits and a frequency of 33 MHz. Another version has a width of

64 bits and a frequency of 66 MHz. Still later versions enable 64-bit data transfers using up

to a 133 MHz clock to enable bandwidths of up to 1066 MBps.

The original PCI standard required 5 V power and signal levels. As the standard evolved,

the option for 3.3 V was added. The latest standard provides for 3.3 V only. The 32-bit PCI

connector has 62 pins and 124 contacts (62 per side). Thirty-two of the contacts are used

for both a 32-address and 32 bits of data, which are multiplexed. The remaining pins are

used for command and control signals, power, ground, etc. A 64-bit PCI connector has an

additional 32 pins for a total of 94. The 32-bit PCI connector is shown in Figure 13–55. It

has 64 pins of which 62 are used.

The PCI-X Bus

The PCI-X bus is a high-performance enhancement of the PCI and is backward com-

patible with the PCI bus, although it is a faster bus and has some additional features. A

64-bitbus,thePCI-Xrunsatafrequencyof133MHz.ThePCI-X2.0revisionsupports
frequencies of 266 MHz and 533 MHz. Some additional features increase system reli-

ability by minimizing errors at high transfer rates. Servers are the major application for

thePCI-X.

rejection. This means that when a common noise signal appears on each line, the two noise

signals cancel due to the differential operation where the difference between them is zero.

Since the data signals are the same but opposite in phase, they are effectively added and

the data signal is reinforced while the noise signal is cancelled. Due to the twisted pair,

crosstalk is reduced at higher frequencies, thus allowing longer cables.

770 Data Transmission

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

−12 V

TCK

Gnd

TDO

+5 V

+5 V

INTB#

INTD#

PRSNT1#

Reserved

PRSNT1#

Gnd

Gnd

Reserved

Gnd

CLK

Gnd

REQ#

IOPWR

AD[31]

AD[29]

Gnd

AD[27]

AD[25]

+3.3 V

C/BE[3]#

AD[23]

Gnd

AD[21]

AD[19]

+3.3 V

AD[17]

TRST#

+12 V

TMD

TDI

+5 V

INTA#

INTC#

+5 V

Reserved

IOPWR

Reserved

Gnd

Gnd

3.3 Vaux

RST#

IOPWR

GNT#

Gnd

PME#

AD[30]

+3.3 V

AD[28]

AD[26]

Gnd

AD[24]

IDSEL

+3.3 V

AD[22]

AD[20]

Gnd

AD[18]

AD[16]

PIN SIDE A SIDE B

JTAG port pins

Interrupt lines

Indicates 7.5 or 24 W power

+5 V or +3.3 V

Indicates 7.5 or 24 V power

Key notch for 3.3 V cards

Standby power

Bus reset

33 MHz/66 MHz clock

Bus grant motherboard to card

Bus request card to motherboard

Power management event/3.3 V

Address/data bus

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

C/BE[2]#

Gnd

IRDY#

+3.3 V

DEVSEL#

Gnd

LOCK#

PERR#

+3.3 V

SERR#

+3.3 V

C/BE[1]#

AD[14]

Gnd

AD[12]

AD[10]

MGGEN/Gen

Gnd

Gnd

AD[08]

AD[07]

+3.3 V

AD[05]

AD[03]

Gnd

AD[01]

IOPWR

ACK64#

+5 V

+5 V

Bus transfer in progress

Initiator ready

Target ready

Target selected

Target halt request

Locked transaction

Parity error/SMBus clock

SMBus data

System error

Even parity over AD bus

Address/data bus

Address/data bus

For 64-bit expansion

+3.3 V

FRAME#

Gnd

TRDY#

Gnd

STOP#

+3.3 V

SMBCLK

SMBDAT

Gnd

PAR

AD[15]

+3.3 V

AD[13]

AD[11]

Gnd

AD[09]

Gnd

Gnd

C/BE[0]#

+3.3 V

AD[06]

AD[04]

Gnd

AD[02]

AD[00]

IOPWR

REQ64#

+5 V

+5 V

Key notch for +5 V cards

FIGURE 13–55 Pin layout and functional designation for a 32-bit PCI connector.

The PCI-Express Bus

The PCI-Express is also designated as PCIe or PCI-E. This bus differs from the PCI and

PCI-Xbusesinthatitdoesnotuseashared bus.BothPCIandPCI-Xuseasharedbus
configuration, as shown in Figure 13–56(a). Each PCIe device has a dedicated path, called

a lane, to a single chip known as a switch, as shown in part (b). More lanes result in a faster

data transfer. High speed makes PCI-Express ideal for video and graphics applications.

Lane(s) Lane(s)

PCI

device

PCI

device

Host

device

Host

device

Switch

Lane(s)

Shared bus

PCI

device

PCIe

device

PCIe

device

PCIe

device

(a) PCI shared bus configuration (b) PCI-Express lane configuration

FIGURE 13–56 Comparison of PCI and PCI-Express.

 Parallel Buses 771

Bidirectional data are transferred serially on each lane. For multiple-lane configura-

tions, the serial data on each lane are in parallel with the serial data on all the other lanes.

The data are transferred at one bit per cycle on a x1 connection, two bits per cycle on a x2,

and sixteen bits per cycle on a x16. The PCI-Express has a bandwidth of 4 Gbps per lane.

PCI-Express supports hot swapping in which expansion cards can be added or removed

without turning off the system. PCI and PCIe are software compatible but not hardware

compatible.

The IEEE-488 Bus

This bus standard has been around a long time and is also known as the General-Purpose

Interface Bus (GPIB). Widely used in test and measurement applications, it was devel-

oped by Hewlett-Packard in the 1960s. The IEEE 488 specifies 24 lines that are used to

transfer eight parallel data bits at a time and provide eight control signals that include

three handshake lines and five bus-management lines. Also included are eight ground

lines used for shielding and ground returns. The maximum data transfer rate for the IEEE

488 standard is 1 Mbps. A superset of this standard, called the HS488, has a maximum

data rate of 8 Mbps.

To connect test equipment to a computer using the IEEE-488 bus, an interface card is

installed in the computer, which turns the computer into a system controller. In a typical

GPIB setup, up to 14 controlled devices (test and measurement instruments) can be con-

nected to the system controller. When the system controller issues a command for a con-

trolled device to perform a specified operation, such as a frequency measurement, it is said

that the controller “talks” and the controlled device “listens.”

A listener is an instrument capable of receiving data over the GPIB when it is addressed

by the system controller (computer). Examples of listeners are printers, monitors, program-

mable power supplies, and programmable signal generators. A talker is an instrument

capable of sending data over the GPIB. Examples are DMMs and frequency counters that

can output bus-compatible data. Some instruments can send and receive data and are called

talker/listeners; examples are computers, modems, and certain measurement instruments.

The system controller can specify each of the other instruments on the bus as either a talker

or a listener for the purpose of data transfer. The controller is usually a talker/listener.

A typical GPIB arrangement is shown in Figure 13–58 as an example. The three basic

bus signal groupings are shown as the data bus, data transfer control bus, and interface

management bus.

1 lane

(a) x1

2 lanes

(b) x2 (c) x16

16 lanes
...

PCIe device

Switch

PCIe device

Switch

PCIe device

Switch

FIGURE 13–57 PCI-Express lane configurations.

A single PCI-Express lane contains two pairs of conductors. One pair of conductors

from a given device receives data and the other pair sends data in a serial format. A single

lane configuration is known as x1 and is illustrated in Figure 13–57(a). A x2 configuration

is shown in part (b), and a x16 configuration is shown in part (c). Other possible configura-

tions are x4, x8, and x32.

772 Data Transmission

DI/O1
DI/O2
DI/O3
DI/O4
DI/O5
DI/O6
DI/O7
DI/O8

IFC
ATN
SRQ
REN
EOI

DAV

NRFD

NDAC

Interface clear
Attention
Service req
Remote EN
End or identify

Data valid

Not ready for data

Not data accepted

Interface management bus

Data transfer control bus

Data busData

Instrument
A

Controller
Talker/Listener

(Computer)

Instrument
B

Talker/Listener
(DMM)

Instrument
C

Listener
(Printer)

Instrument
D

Talker
(Counter)

FIGURE 13–58 A typical IEEE 488 (GPIB) connection.

The parallel data lines are designated DI/O1 through DI/O8 (data input/output). One

byte of data is transferred on this bidirectional part of the bus. Every byte that is transferred

undergoes a handshaking operation via the data transfer control. The three active-LOW

handshaking lines indicate if data are valid (DAV), if the addressed instrument is not ready

for data (NRFD), or if the data are not accepted (NDAC). More than one instrument can

accept data at the same time, and the slowest instrument sets the rate of transfer. Figure

13–59 shows the timing diagram for the GPIB handshaking sequence, and Table 13–2

describes the handshaking signals.

DI/O1–DI/O8 1st data byte

VALIDDAV NOT VALID

2nd data byte

VALIDNOT VALID NOT VALID

Some ready

All ready

None readyNRFD

NDAC

None ready

Some ready

None accepted None accepted

Some
accepted

Some
accepted

All accepted All accepted

FIGURE 13–59 Timing diagram for the GPIB handshaking sequence.

The five signals of the interface management bus control the orderly flow of data. The

ATN (attention) line is monitored by all instruments on the bus. When ATN is active, the

system controller selects the specific interface operation, designates the talkers and the

listeners, and provides specific addressing for the listeners. Each GPIB instrument has a

specific identifying address that is used by the system controller. Table 13–3 describes the

GPIB interface management lines and their functions.

 Parallel Buses 773

TABLE 13–2

The GPIB handshaking signals.

Name Description

DAV Data Valid: After the talker detects a HIGH on the NRFD line, a LOW is placed on

this line by the talker when the data on its I/O are settled and valid.

NRFD Not Ready for Data: The listener places a LOW on this line to indicate that it is not

ready for data. A HIGH indicates that it is ready. The NRFD line will not go HIGH

until all addressed listeners are ready to accept data.

NDAC Not Data Accepted: The listener places a LOW on this line to indicate that it has

not accepted data. When it accepts data from its I/O, it releases its NDAC line. The

NDAC line to the talker does not go HIGH until the last listener has accepted data.

TABLE 13–3

The GPIB management lines.

Name Description

ATN Attention: Causes all the devices on the bus to interpret data, as a controller

command or address and activates the handshaking function.

IFC Interface Clear: Initializes the bus.

SRQ Service Request: Alerts the controller that a device needs to communicate.

REN Remote Enable: Enables devices to respond to remote program control.

EOI End or Identify: Indicates the last byte of data to be transferred.

The GPIB is limited to a maximum cable length of 15 meters, and there can be no

more than one instrument per meter with a maximum capacitive loading of 50 pF each.

The cable length limitation can be overcome by the use of bus extenders and modems. A

bus extender provides for cable-interfacing of instruments that are separated by a distance

greater than allowed by the GPIB specifications or for communicating over greater dis-

tances via modem-interfaced telephone lines.

The IEEE-488 connector and pin configuration are shown in Figure 13–60.

1324

12 1

FIGURE 13–60 The IEEE-488 (GPIB) bus connector and pin assignments.

Pin Designation Description

 1 DI01 Data input/output bit.

 2 DI02 Data input/output bit.

 3 DI03 Data input/output bit.

 4 DI04 Data input/output bit.

 5 EOI End-or-identify.

 6 DAV Data valid.

 7 NRFD Not ready for data.

 8 NDAC Not data accepted.

 9 IFC Interface clear.

10 SRQ Service request.

11 ATN Attention.

12 SHIELD

Pin Designation Description

13 DIO5 Data input/output bit.

14 DIO6 Data input/output bit.

15 DIO7 Data input/output bit.

16 DIO8 Data input/output bit.

17 REN Remote enable.

18 GND (wire twisted with DAV)

19 GND (wire twisted with NRFD)

20 GND (wire twisted with NDAC)

21 GND (wire twisted with IFC)

22 GND (wire twisted with SRQ)

23 GND (wire twisted with ATN)

24 Logic ground

774 Data Transmission

The Parallel SCSI Bus

The SCSI (small computer system interface) bus, generally pronounced “skuzy”, is a par-

allel I/O bus with a width of either 8, 16, or 32 bits, depending on the version. For many

years SCSI has been one of the most widely used buses in storage servers and data centers.

SCSI is also used for the purpose of transferring data between a computer and peripheral

devices, such as hard disks, tape drives, scanners, and CD drives. Figure 13–61 shows the

SCSI symbol.

The original version of the SCSI parallel bus standard was introduced in 1986 and des-

ignated SCSI-1. The current SCSI standard is known as SCSI-5, which was preceded by

SCSI-1, SCSI-2, SCSI-3, and SCSI-4. Later versions are backward compatible with earlier

versions. There are many variations of the SCSI standard version with designations such as

asynchronous, synchronous, fast, ultra, and wide, which have different speeds, widths, and

number of devices that can be connected, as shown in Table 13–4.

FIGURE 13–61 SCSI symbol.

TABLE 13–4

Evolution of the parallel SCSI standard.

Version

Variations

Maximum Target

Devices Connected

Bus Width Data Transfer Rates

SCSI-1 Asynchronous/Synchronous 7 8 bits 4 MBps/5 MBps

SCSI-2 Wide, Fast, Fast/Wide 7/15 8/16 bits 10 MBps/20 MBps

SCSI-3 Ultra, Ultra/Wide, Ultra2,

Ultra2/Wide, Ultra160

7/15 8/16 bits 20 MBps/40 MBps/

80 MBps/160 MBps

SCSI-4 Ultra320 15 16 bits 320 MBps

SCSI-5 Ultra640 15 8/16/32 bits 640 MBps

SCSI Signals

A parallel SCSI bus contains nine control signals in addition to data, dc voltages, and

ground. These signals are listed in Table 13–5.

TABLE 13–5

SCSI parallel bus signals.

Signal Description

BSY Busy, Bus in use

SEL Select

RST Reset

C/D Control/Data

MSG Message

REQ Request

ACK Acknowledge a request

ATN Attention

I/O Input or output

Up to eight or sixteen devices, including the host, can be connected to a SCSI bus, but

only two devices can communicate at any given time. Communication begins when an ini-

tiating device sends a request and the target device acknowledges and performs the request.

Single-ended (SE) and differential (LVD or HVD) are the three electrical specifications.

Single-ended operation is limited to a cable length of 6 meters, and differential operation

allows up to 25 meters. LVD is low-voltage differential and HVD is high-voltage differen-

tial. SCSI devices can operate either asynchronously or synchronously. The serial SCSI bus

is introduced in Section 13-9.

 The Universal Serial Bus (USB) 775

SECTION 13–7 CHECKUP

 1. What does PCI stand for?

 2. List two alternate designations for the PCI-Express bus.

 3. What is a lane?

 4. What is the IEEE designation for the GPIB?

 5. What does SCSI stand for?

13–8 The Universal Serial Bus (USB)

Although there are several serial bus standards available, the USB is one of the most widely

used. Recall that a serial bus transfers data one bit at a time. As with the parallel bus, a

serial bus is not only a set of physical connections but it is also a set of signals and operat-

ing parameters that are defined in the bus specification. As with other buses, only the basics

are introduced here. More details and information can be found on the Internet.

After completing this section, you should be able to

u Discuss the USB

u Identify and describe USB cables and connectors

u Discuss USB signals

The universal serial bus (USB) is a widely used standard serial bus for connecting

peripherals to a computer. There are typically two or more USB ports on computers and,

with USB hubs, up to 127 devices can be connected. USB allows the devices to be con-

nected or disconnected while the computer is running (hot swapping). Figure 13–62 shows

the symbol for USB.

The original USB standard was 1.0, which was followed by 1.1. USB 2.0 replaced the

two original versions and more recently USB 3.0 was introduced. The earlier versions are

still in use, especially 2.0. In terms of data rate, USB has four classifications: low-speed,

full-speed, high-speed, and super-speed. Table 13–6 shows how the data rate classifications

apply to each of the USB versions and Table 13–7 shows the data rate values.

FIGURE 13–62 USB symbol.

Cable length is an important specification for buses. Table 13–8 lists maximum cable

lengths for three USB versions and maximum total lengths when multiple cables are strung

together using USB hubs. A hub is a common connection device with multiple ports.

TABLE 13–8

USB 1.1 USB 2.0 USB 3.0

Max cable length 9.8 ft. (3.0 m) 16.4 ft. (5.0 m) 9.8 ft. (3.0 m)

Maximum total length 49.2 ft. (15 m) 82.0 ft. (25 m) 49.2 ft. (15 m)

TABLE 13–6 TABLE 13–7

 Low-Speed Full-Speed High-Speed Super-Speed

USB 1.0 • •

USB 1.1 • •

USB 2.0 • • •

USB 3.0 • • • •

Data Rate Maximum Value

Low-speed 0.1875 MBps

Full-speed 1.5 MBps

High-speed 60 MBps

Super-speed 625 MBps

776 Data Transmission

USB Cable and Connectors

USB versions up to and including 2.0 have a four-wire cable that includes a twisted pair

to reduce or eliminate noise for data transmission, a +5 V wire, and a ground wire color-

coded, as shown in Figure 13–63(a). The standard type A and type B connectors are shown

in parts (b) and (c) with pin designations. USB hosts (computer) and devices (peripherals)

have sockets, and all USB cables have a type A plug at one end and a type B plug at the

other. The sockets on a host are Type A, and the sockets on peripheral devices are Type B.

Hubs have both Type A and Type B. The USB standard also specifies smaller connectors

designated mini and micro.

(a) USB cable

(b) Type A connector (c) Type B connector

Data +
Data −
 +5 V
 Gnd

4 3 2 1
1 2

4 3

Gnd GndD+ D+D−

D−

+5 V

+5 V

FIGURE 13–63 USB cable and connectors for USB standards through 2.0.

USB Data Format

Serial data are transmitted on the twisted pair (D+ and D-) using half-duplex differential

mode to minimize EMI and improve the signal-to-noise ratio. Data are sent in packets

using NRZI (non-return-to-zero invert) encoding format with a 3.3 V level (differentially,

there are 6.6 V between the two data lines). A packet format can contain the following

fields:

Sync field All packets start with a sync (synchronization) field. The sync field con-

sists of 8 bits for low and 32 bits (full speed) for high speed and is used to synchronize

the receiver clock with that of the transmitter.

PID field The packet identification field is used to identify the type of packet that is

being transmitted. There are four bits in the PID; however, to ensure it is received

correctly, the four bits are complemented and repeated, making an 8-bit PID code.

ADDR field The address field specifies to which device the packet is sent. The seven

bits in this field allow for 127 devices to be supported. Address 0 is invalid.

Data field The data field contains up to 1024 bytes of data.

ENDP field The endpoint field is made up of four bits, allowing 16 possible end-

points. An endpoint is a data source or load. Low-speed devices, however, can only have

two additional endpoints on top of the default pipe (four endpoints max). Endpoints can

be described as sources or sinks of data.

 The Universal Serial Bus (USB) 777

CRC field Cyclic redundancy checks are performed on the data within the packet

using from 5–16 bits, depending on the type of packet.

EOP field This packet field signals the end of a packet.

Four types of USB packets are token, data, handshake, and start-of-frame, as shown

in Figure 13–64 with the packet format for each type. Each field is labeled and the

number of bits shown. The token packet indicates the type of transaction, the data

packet contains the actual data, the handshake packet acknowledges a transaction, and

the start-of-frame packet begins a new frame. The token packet, data packet, hand-

shake packet, and start-of-frame packet each have a different packet format as specified

by the PID field.

Sync
8/32

PID
8

ADDR
7

ENDP
4

CRC
5

EOP
3

(a) Token packet

Sync
8/32

PID
8

Data
0-8192

CRC
16

EOP
3

(b) Data packet

Sync
8/32

PID
8

EOP
3

(c) Handshake packet

FIGURE 13–64 Types of USB packets.

Sync
8/32

PID
8

Frame number
11

CRC
5

EOP
3

(d) Start-of-frame packet

USB 3.0

USB 3.0 is a recent version of the USB standard. The 3.0 version, known as SuperSpeed

USB, is ten times faster than USB 2.0 at 4.8 Gbps. The 3.0 connectors (types A and B) are

different then version 2.0 because they now have nine contacts instead of four. The 3.0 type

A connector looks about the same as that for 2.0 except that the extra five pins are further

inside and make contact only with a 3.0 mating connector. The connector is compatible

with a 2.0 device where the front four pins are accessible. Type A and type B connectors

for USB 3.0 along with the standard symbol are shown in Figure 13–65. There is also a

micro-B connector available.

(c) Symbol(b) Type B(a) Type A

FIGURE 13–65 USB 3.0 connectors and symbol.

USB 3.0 is, for the most part, backward compatible with USB 2.0, but the speed is

limited to the 2.0 specification. The USB 3.0 cable consists of two additional twisted pairs

for data and an additional ground, for a total of nine wires. Unlike the previous versions,

version 3.0 is full-duplex, meaning that data can be sent and received simultaneously. One

twisted pair is for receiving data, and two additional twisted pairs are for sending high-

speed data.

778 Data Transmission

The recent USB 3.1 specification increases the data rate to 10 Gbps, twice that of the

3.0. USB 3.1 is backward compatible with 3.0 and 2.0 and a new connector, type C, is

included in the specification.

Figure 13–66 shows the USB in a typical computer system. The computer acts as a host

and uses Type A connectors. The hub functions as both a host and a device.

Computer

Monitor

Hub

Printer

Scanner

Keyboard

Mouse

A B

B

B

B

A

A

A

A

A

FIGURE 13–66 Example of USB applications.

SECTION 13–8 CHECKUP

 1. What does USB stand for?

 2. What are the functions of the four pins in a USB 2.0 connector?

 3. Why are twisted pairs used in USB cables?

 4. Describe the basic differences between USB 2.0 and USB 3.0.

13–9 Other Serial Buses

Although the USB is widely used, many other serial buses are available. A few of the these

important bus standards are introduced in this section. For more detailed information on

any bus standard, search the Internet.

After completing this section, you should be able to

u Discuss the RS-232, RS-422, RS-423, and RS-485 bus standards

u Describe the SPI bus

u Discuss the I2C bus

u Explain the CAN bus

u Describe the Firewire (IEEE 1394) bus

u Discuss the serial SCSI bus

The RS-232/422/423/485 Buses

RS-232 Bus

Also known as EIA-232, the RS-232 bus was once standard on computers for connec-

tion to peripheral devices. The standard provides for single-ended data transmission in

either synchronous or asynchronous formats. It has been replaced by the USB because

 Other Serial Buses 779

of its limited speed, relatively large voltage requirements, and large connector size.

However, RS-232 devices are still used in industrial and telecommunication applica-

tions as well as scientific instrumentation. The devices connected by the RS-232 are

classified as DTE (data terminal equipment) or DCE (data communication equipment).

Since newer computers have no RS-232 ports, USB-to-RS-232 converters can be used to

connect to older RS-232 compatible peripherals, if necessary. The standard is designed

for one transmitting device and one receiving device with a maximum cable length of

50 feet between them.

The maximum RS-232 data rate is 20 kbps. The data format typically consists of seven

or eight bits of data, a start bit, a parity bit in some cases depending on the protocol, and

a stop bit. A transmitted signal level between +5 V and +15 V represents a binary 0 and

between -5 V and -15 V represents a binary 1. The data is transmitted in NRZ format, as

Figure 13–67 shows.

Protective ground11

Data carrier detect (2)12

Clear to send (2)

(a) 25-pin (b) 9-pin

13

18

25

1 Protective ground
14 Transmit data (2)

2 Transmit data
15 Transmitter clock (DCE)

3 Receive data
16 Receive data (2)

4 Request to send
17 Receiver clock

5 Clear to send

6 Data set ready
19 Request to send (2)

7 Signal ground
20 Data terminal ready

8 Data carrier detect
21 Signal quality detector

9 Test pin
22 Ring indicator

10 Test pin
23 Data signal rate detector

24 Transmitter clock (DTE)

1
6

7

8

9

Data carrier detect
Data set ready

2 Receive data
Request to send

3 Transmit data
Clear to send

4 Data terminal ready
Ring indicator

5 Signal ground

FIGURE 13–68 Standard RS-232 connectors.

+15 V

−15 V

(1)

Start bit

(0)

Stop bit

(1)

(0)
0 0 0 1 1 0 1 0

FIGURE 13–67 Example of RS-232 transmitted data format. A parity bit is not included.

The standard 25-pin connector for RS-232 is shown in Figure 13–68(a). A smaller 9-pin

connector, is shown in part (b).

RS-422/423/485

The RS-422 bus provides for differential transmission for greater distances (longer cable

length) and has higher data rates than the RS-232 bus. Also, the standard defines the num-

ber of receiving devices as ten for a line with one driver (transmitting device) compared

to one receiving device for the RS-232. The RS-423 bus is similar to the RS-232 in that

780 Data Transmission

it is single-ended, but it has a higher data rate and longer cable length. The RS-485 bus is

a differential standard and can accommodate multiple drivers and receivers. Table 13–9

summarizes some of the features of the RS (EIA) buses.

TABLE 13–9

Specifications RS-232 RS-423 RS-422 RS-485

Operation Single-ended Single-ended Differential Differential

Drivers/Receivers 1/1 1/10 1/10 32/32

Cable length 50 ft 4000 ft 4000 ft 4000 ft

Max data rate 20 kbps 100 kbps 10 Mbps 10 Mbps

Driver output signal

level (+/− min/max)

5 V/15 V 3.6 V/6 V 2 V/6 V 1.5 V/6 V

The SPI Bus

The serial-to-peripheral interface (SPI) bus is a synchronous serial communications bus

that uses four wires for communication between a “master” device and a “slave” device.

This standard was developed by Motorola; it operates in full-duplex mode up to a data rate

of 10 Mbps and can accommodate multiple slaves. The four signal wires are

 1. MOSI (master out slave in) is initiated by the master and received by the slave.

 2. MISO (master in slave out) is initiated by the slave and received by the master.

 3. SCLK (serial clock) is generated by the master for synchronizing data transfers.

 4. SS (slave select) is generated by the master to select an individual slave.

Other names are sometimes assigned to these signals such as SDI (serial data in) for MOSI

and SDO (serial data out) for MISO. Figure 13–69 shows a master with a single slave.

SlaveMaster

MOSI

MISO

SCLK

SS

MOSI

MISO

SCLK

SS

FIGURE 13–69 SPI master/slave configuration.

The SPI bus is typically used in embedded systems and on PCBs for communication

between microprocessors or microcontrollers and peripheral IC chips or between two pro-

cessors. Much PCB “real estate” can be saved compared to using an internal parallel bus

with many more connections.

SPI applications include digital audio, signal processing, and telecommunications. SPI

is used to communicate with various types of peripherals such as sensors, camera lenses,

flash memory, LCD displays, and video games. Many microprocessors and microcon-

trollers include SPI controllers that can be used as either a master or a slave.

The I2C Bus

I2C bus (pronounced I squared C) is also stated at I2C (I two C) and stands for inter-

integrated circuit. It is an internal serial bus primarily for connecting ICs on a PCB. A main

advantage is that it requires only two lines (plus ground) and therefore saves considerable

board space compared to a parallel bus. Two signals (SDA and SCL) are used to commu-

nicate between compatible devices. Data are sent serially on the SDA line, and a clock is

 Other Serial Buses 781

sent on the SCL line. Like SPI, I2C is based on the master/slave concept where the master

device drives the clock line and the slaves respond to the master. Only the master can initi-

ate a transfer over the bus, but slaves can transfer data under control of the master using

clock rates up to 100 kHz in the standard mode. Two other modes, enhanced and high-

speed, allow 400 kbps and 3.4 Mbps, respectively.

When transferring data from master to slave, the master device sends a start bit, fol-

lowed by a slave address, and a write bit. The master waits for an acknowledge (ACK) sig-

nal from the slave and then sends the data and waits for an acknowledge before sending a

stop bit, as illustrated in Figure 13–70(a). The yellow segments are from the master and the

gray elements are from the slave. Similarly, when the master requires data from the slave,

it sends a start bit followed by the address and a read bit. The slave returns an acknowledge

followed by the data. When the master receives the data, it issues an acknowledge and a

stop bit, as shown in Figure 13–70(b).

Start Write StopDataACK ACKAddress

Start Read StopDataACK ACKAddress

(a) Data transfer from master to slave

(b) Data transfer from slave to master

FIGURE 13–70 I2C data transfers. Yellow is from master. Gray is from slave.

The CAN Bus

The controller area network (CAN) bus, a differential serial bus, was developed for auto-

motive applications and is also commonly used in aerospace systems, as well as other

applications. The bus consists of a terminated twisted pair of signal lines, called CAN

H and CAN L, plus ground. Vehicles sold in the United States are required by the SAE

(Society of Automotive Engineers) to use the CAN bus protocol. The European Union has

similar requirements.

Devices, called nodes, can be connected to the bus but are not assigned specific addresses

as in the I2C bus. Two CAN specifications are in use. The standard or basic CAN 2.0A has

11-bit message identifiers and can operate up to 250 kbps, and the full CAN has 29-bit

message identifiers and can be used up to 1 Mbps. The message identifier is a label for the

contents of a message and goes to each node on the bus. Each receiving node performs a

test on the identifier to determine if it is relevant to that node and is used to arbitrate the

bus to determine if the message is of highest priority. All of the nodes on the bus can trans-

mit and receive messages. The bus is available to a node with a message with the highest

priority (dominant) and can override a message with lower priority (recessive). When the

dominant message has been processed, the recessive message is retransmitted.

The standard CAN data frame is shown in Figure 13–71. Data are transmitted in NRZ

format. The frame begins with a start-of-frame (SOF) bit followed by an arbitration field and

a control field. The arbitration field contains the message identifier and a remote transmis-

sion request (RTR) bit. The control field has two reserve bits and a data length code (DLC)

that specifies the length of the data field that follows and can contain up to 8 bytes. The

cyclic redundancy check (CRC) field provides for error detection. The acknowledge (ACK)

verifies the receipt of correct data, and the frame ends with the end-of-frame field (EOF).

SOF Arbitration field Control field Data field CRC field ACK EOF

(1 bit) Identifier (11 bits)
RTR (1 bit)

(0–8 bytes) (16 bits) (2 bits) (7 bits)Reserve (2 bits)
DLC (4 bits)

FIGURE 13–71 Standard CAN data frame format.

782 Data Transmission

An Application

An automobile typically has many control units (usually several dozen) for various sub-

systems, including the engine control unit and other control units for transmission; ABS;

cruise control; power steering; audio system; window, door, and mirror controls; airbags;

and others. Figure 13–72 is a block diagram of a partial automotive control system using

two CAN buses, one low-speed and one high-speed to control various functions throughout

the vehicle.

Microcontroller

CAN controller

Transceivers

Engine

control unit

Transmission

control unit

ABS control

unit

Airbag

control unit

Cruise

control unit

Termination

Termination

Climate

control unit
Door

control unit

Proximity

warning

control unit

Lighting

control unit

Window

control unit

Mirror

control unit

Driver

information

unit

CAN 2.0B

CAN 2.0A

CAN H

CAN H

CAN L

CAN L

FIGURE 13–72 The CAN bus in an automotive control system.

Each unit connected to the bus contains sensors and other functions that allow it to carry

out its unique purpose. For example, the ABS (antilock braking system) can receive a mes-

sage from sensors in each wheel indicating that the brake is about to lock up. A sudden

and rapid deceleration in the wheel indicates an imminent lock-up condition. The ABS unit

then sends a message that causes the valve in the brake line to release pressure to allow

acceleration. Then, when acceleration is sensed, the unit causes a pump to restore the pres-

sure. A rapid release and restore cycle occurs until the brakes are brought under control. A

pulsing of the brake pedal can be felt when the operation occurs.

As another example, part of the engine control unit’s operation is to sense parameters

such as engine temperature, oil pressure, fuel consumption, and rpm, and send messages to

the driver unit. All of the units on the bus operate as a system to keep the vehicle running

as smoothly and as safely as possible, while providing a comfortable environment for the

driver and passengers.

The Firewire Bus

Firewire, also known as IEEE-1394 and iLink, is a high-speed external serial bus devel-

oped by Apple Inc. Firewire is used in high-speed communications and real-time data

transfer. It is used in professional audio and video equipment, camcorders, DVD players,

external hard drives, and in computers used for audio and video editing, as well as in some

 Other Serial Buses 783

auto and aircraft applications. It is similar to the USB except that it has a higher data rate

and can handle more data.

Three types of connectors are used in the Firewire standard: a 4-pin connector, a 6-pin

connector, and a 9-pin connector. The cable for the 4-pin connector consists of two twisted

pairs that carry data. The cable for the 6-pin connector has the two twisted pairs for data

plus a power line and a ground line. The cable for the 9-pin connector has the same wires as

the 6-pin configuration plus two wires that provide for a grounded shield and one wire that

is currently unused. The Firewire symbol is shown in Figure 13–73(a). End views of the

three connector types are shown in part (b), and the pin designations are shown in part (c).

5 6
43

1 2
5 6 7 8 9

43 21

1234

(a)

(b)

FIGURE 13–73 Firewire symbol with cable and connector wires and pins.

4-PIN 6-PIN 9-PIN Description Wire Color

1 8 +V dc (30 V max) White

2 6 Ground Black

1 3 1 TPB—(diff signal) Orange

2 4 2 TPB+ Blue

3 5 3 TPA—(diff signal) Red

4 6 4 TPA+ Green

5 Shield

7 Unused

9 Shield

The Firewire bus address has a total of 64 bits. Ten are for bus ID, six are for node

ID, and 48 are for individual addresses. This allows up to 1023 buses, each having up to

63 nodes. The six transfer modes in the IEEE-1394 standard and its revisions are S100,

S200, S400, S800, S1600, and S3200. The S100 is the base rate of 98.304 Mbps. The

S200 is twice the base rate at 196.608 Mbps, and the S400 is four times the base rate at

393.216 Mbps. The S800 is 786.432 Mbps while the S1600 and S3200 are 16 and 32

times the base rate, respectively (1.6 Gbps and 3.2 Gbps). Firewire cable length cannot

exceed 15 ft (4.572 m). To increase this length, up to 16 cables can be connected together.

Firewire versus USB

In general, any capable node can control the bus in a Firewire system, but a single host is

used to control the bus in USB. USB networks use a tiered-star topology and Firewire uses

a tree topology. A Firewire device can communicate with any node at any time if the condi-

tions allow, but a USB 2.0 device cannot communicate with the host device unless requested

by the host. However, USB 3.0 allows Firewire-like communications between devices. USB

provides 5 V power while Firewire provides up to 30 V. As a result, Firewire can supply

more power to a device than USB. As mentioned before, Firewire is faster than USB.

Serial SCSI

Serial Attached SCSI (SAS) is a data-transfer technology for transmitting data to and

from storage devices. It has become a replacement for parallel SCSI bus technology that

is commonly used in data centers, workstations, and servers. The serial SCSI overcomes

some of the limitations of the parallel SCSI. The SAS supports up to a 12 Gbps data rate

and allows up to 65,535 devices to be connected using expanders compared to 15 devices

for parallel SCSI.

784 Data Transmission

Bus Signals

With synchronous bus control, the microprocessor (CPU) usually originates all control and

timing signals. The other devices then synchronize their operations to those control and timing

signals. With asynchronous bus control, the control and timing signals are generated jointly

by a source and a receiver using a handshaking routine. A typical handshaking sequence is

given in Figure 13–75. Handshaking routines may differ from one system to another, as you

can see by comparing this sequence with the one shown in Figure 13–53.

An important control function is called bus arbitration. Arbitration prevents two

sources from trying to use the bus at the same time.

SECTION 13–9 CHECKUP

 1. List all the buses introduced in this section.

 2. What does SPI stand for?

 3. What does I2C stand for?

 4. What does CAN stand for?

 5. What is another designation for Firewire?

13–10 Bus Interfacing

All the components in a computer or other systems are interconnected by buses, which

serve as communication paths. Physically, a bus is a set of conductive paths that serves to

interconnect two or more functional components of a system or several diverse systems.

Electrically, a bus is a collection of specified voltage levels and/or current levels and sig-

nals that allow the various devices connected to the bus to work properly together.

After completing this section, you should be able to

u Discuss the concept of a multiplexed bus

u Explain the reason for tri-state outputs

Basic Multiplexed Buses

As you have learned, in computers the microprocessor controls and communicates with the

memories and the input/output (I/O) devices via the internal bus structure, as indicated in

Figure 13–74. A bus is multiplexed so that any of the devices connected to it can either send

or receive data to or from one of the other devices. A sending device is often called a master

or source, and a receiving device is often called a servant or acceptor. At any given time,

there is only one source active. For example, the RAM may be sending data to the input/

output (I/O) interface under control of the microprocessor.

Bus

RAM
Microprocessor

(CPU)
ROM I/O Interface

FIGURE 13–74 The interconnection of microprocessor-based system components by a

bidirectional, multiplexed bus.

 Bus Interfacing 785

Connecting Devices to a Bus

Tri-state buffers are normally used to interface the outputs of a source device to a bus. Usu-

ally more than one source is connected to a bus, but only one can have access at any given

time. All the other sources must be disconnected from the bus to prevent bus contention.

Tri-state circuits are used to connect a source to a bus or disconnect it from a bus, as

illustrated in Figure 13–76(a) for the case of two sources. The select input is used to connect

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Source
A

Source
B

Source
A

Source
B

S

Select

Tri-state buffers

(a) (b)

Bus

Bus
8

lines

FIGURE 13–76 Tri-state buffer interface to a bus.

Source

Prepare to receive

Ready to receive

Data ready

Data accepted

Acceptor

1

2

3

4

FIGURE 13–75 An example of a handshaking sequence.

786 Data Transmission

either source A or source B but not both at the same time to the bus. When the select input is

LOW, source A is connected and source B is disconnected. When the select input is HIGH,

source B is connected and source A is disconnected. A switch equivalent of this action is

shown in part (b) of the figure.

When the enable input of a tri-state circuit is not active, the device is in a high-impedance

(high-Z) state and acts like an open switch. Many digital ICs provide internal tri-state buffers

for the output lines. A tri-state output is indicated by a , symbol as shown in Figure 13–77.

Tri-State Buffer Operation

Figure 13–78(a) shows the logic symbol for a noninverting tri-state buffer with an active-

HIGH enable. Part (b) of the figure shows one with an active-LOW enable.

O0

O1

O2

O3

O4

O5

O6

O7

∆

∆

∆

∆

∆

∆

∆

∆

FIGURE 13–77 Method of

indicating tri-state outputs on an

IC device.

Input

Enable

Output

(a) Active-HIGH enable

Input

Enable

Output

(b) Active-LOW enable

FIGURE 13–78 Tri-state buffer symbols.

The basic operation of a tri-state buffer can be understood in terms of switching action

as illustrated in Figure 13–79. When the enable input is active, the gate operates as a normal

noninverting circuit. That is, the output is HIGH when the input is HIGH and LOW when

the input is LOW, as shown in parts (a) and (b) respectively. The HIGH and LOW levels

represent two of the states. The buffer operates in its third state when the enable input is not

active. In this state, the circuit acts as an open switch, and the output is completely discon-

nected from the input, as shown in part (c). This is sometimes called the high-impedance or

high-Z state.

HIGH

HIGH

HIGH

(a)

LOW or
HIGH

LOW

Disconnected
(high-Z)

(c)

LOW

HIGH

LOW

(b)

FIGURE 13–79 Tri-state buffer operation.

Many microprocessors, memories, and other integrated circuit functions have tri-state

buffers that serve to interface with the buses. Such buffers are necessary when two or more

devices are connected to a common bus. To prevent the devices from interfering with each

other, the tri-state buffers are used to disconnect all devices except the ones that are com-

municating at any given time.

Bus Contention

Bus contention occurs when two or more devices try to output opposite logic levels on the

same common bus line. The most common form of bus contention is when one device has

not completely turned off before another device connected to the bus line is turned on. This

generally occurs in memory systems when switching from the READ mode to the WRITE

mode or vice versa and is the result of a timing problem.

Multiplexed I/Os

Some devices that send and receive data have combined input and output lines, called I/O

ports, that must be multiplexed onto the data bus. Bidirectional tri-state buffers interface

this type of device with the bus, as illustrated in Figure 13–80(a).

 Summary 787

Each I/O port has a pair of tri-state buffers. When the SND>RCV (Send>Receive) line

is LOW, the upper tri-state buffer in each pair is enabled and the lower one disabled. In this

state, the device is acting as a source and sending data to the bus. When the SND>RCV line

is HIGH, the lower tri-state buffer in each pair is enabled so that the device is acting as an

acceptor and receiving data from the bus. This operation is illustrated in Figure 13–80(b).

Some devices provide for multiplexed I/O operation with internal circuitry.

. . .

. . .

.

.

.

.

.

.

.

.

.

Bus

I/O 7

SND/RCV

Bus
line

LOW

I/OI/O 0

I/O 1

Sending

Bus
line

HIGH

I/O

Receiving

(a) (b)

.

.

.

FIGURE 13–80 Multiplexed I/O operation.

SECTION 13–10 CHECKUP

 1. Why are tri-state buffers required to interface digital devices to a bus?

 2. What is the purpose of a bus system?

SUMMARY

• Threeessentialelementsinadatatransmissionsystemaresendingdevice,transmissionmedia,
and receiving device.

• Thesimplestconnectionbetweensendingandreceivingdevicesisawireoraconductivetrace
on a printed circuit board (PCB).

• Acoaxialcableconsistsofacenterconductorwithinaninsulatingdielectricmaterialsurrounded
by a copper braided or foil shield encased in a protective jacket.

• BNC(BayonetNeill-Concelman)connectorsaretypicallyusedforcoaxialconnections.

• Atwistedpairminimizescrosstalkwhenbundledtogetherwithothertwistedpairsintocables.

• Insteadofusingelectricalpulsestotransmitinformationthroughcopperlines,fiberopticsuses
light pulses transmitted through optical fibers.

• Thetransmissionofdatathroughairandspacewithouttheuseofphysicalconnectionsbetween
sending and receiving systems is known as wireless transmission.

788 Data Transmission

• Mostdatacommunicationsoccurwithintheradiowave,microwave,andinfraredfrequencies.

• ThreewaysinwhichrfandmicrowavesignalspropagatethroughEarth’satmosphere(air)are
ground wave, ionospheric, and line-of-sight.

• Twotypesofdatatransmissionintermsofhowareceivingdeviceknowswhatasendingdevice
is transmitting are synchronous and asynchronous.

• TwodataformatsthatrequireseparatedataandtimingareRZ(returntozero)andNRZ
(nonreturn to zero).

• Inbiphasecoding,thetiminganddataarecombinedinonesignal;alsocalledManchester

encoding.

• Threemodesthatcharacterizedatachannel(media)connectionsaresimplex,half-duplex,and
full-duplex.

• Threemajorclassesofmodulationtechniquesforwirelesstransmissionofdigitaldataare
amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK).

• Multiplexingisamethodusedtotransmitdigitaldatafrommultiplesourcesoverasinglecom-

munication channel.

• Demultiplexingistheprocessofseparatingdatafromasinglechanneltomultiplechannels.

• Twomajortypesofmultiplexingaretime-divisionandfrequency-division.

• Thephysicalpropertiesofabusincludethenumberofconductors,theconfigurationandlength
of the conductors, and the types and configurations of the connectors.

• Theelectricalpropertiesofabusincludesignalformat,signalvoltagelevels,clockfrequency,
data transfer speed, bandwidth, data frame format, data rate, handshaking protocol, error

detection, impedances, and line termination.

• Generalbuscharacteristicsarewidth,frequency,transferspeed,andbandwidth.

• Asynchronousbuscontainsaclock,andanasynchronousbusisunclocked.

• Single-endedoperationusesonewirefordataandonewireforground,wherethesignalvoltage
on the wire is with respect to ground.

• Differentialoperationusestwowiresfordataandonewireforground.

• ThePCI(peripheralcomponentinterconnect)busisaninternalsynchronousbusforintercon-

necting chips, expansion boards, and processor/memory subsystems.

• PCI-Expressusesalaneconfigurationviaaswitchingdevice.

• InadditiontoPCIbuses,otherimportantparallelbusesareISA,IEEE-488,andSCSl.

• USBisawidelyusedstandardserialbusforconnectingperipheralstoacomputer.

• AUSBpacketcanincludethefollowingfields:synchronization,packetidentification,address,
data, end point, CRC, and end of packet.

• FourtypesofUSBpacketsaretoken,data,handshake,andstart-of-frame.

• InadditiontoUSB,someimportantserialbusesareRS-232/422/423/485,SPI,I2C, CAN,

Firewire, and serial SCSI.

• Tri-statedevicesareusedtointerfacecircuitrytoabus.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Baud The number of symbols per second in a data transmission.

Bit rate The number of bits per second in a data transmission.

Bus A set of connections and specifications for the transfer of data among two or more devices.

Bus protocol A set of rules that allow two or more devices to communicate through a bus.

Coaxial cable A type of data transmission media in which a shielded conductor is used to

minimize EMI.

Electromagnetic waves Related to the electromagnetic spectrum which includes radio waves,

microwaves,infrared,visible,ultraviolet,X-rays,andgammarays.

 True/False Quiz 789

EMI Electromagnetic interference.

Full-duplex A connection in which the data flow both ways simultaneously in the same channel.

GPIB General-purpose interface bus based on the IEEE-488 standard.

Half-duplex A connection in which the data flow both ways but not at the same time in the same

channel.

Handshake A routine by which two devices initiate and complete a bus transfer.

Manchester encoding A method of encoding called biphase in which a 1 is represented by a

positive-going transition and a 0 is represented by a negative-going transition.

Modulation The process of altering a parameter of a higher frequency signal proportional to the

amplitude of a lower frequency information-carrying signal.

NRZ Nonreturn to zero. A type of data format in which the signal level remains at one (1) for

successive 1s.

Optical fiber A type of data transmission media used for transmitting light signals.

PAM Pulse amplitude modulation. A method of modulation in which the height or amplitude of

the pulses are varied according to the modulating analog signal, and each pulse represents a value

of amplitude of the analog signal.

RS-232 A bus standard, also known as EIA-232, used in industrial and telecommunication appli-

cations as well as scientific instrumentation, but largely replaced by USB in computer applications.

RZ Return to zero. A type of data format in which the signal level goes to or remains at zero after

each data bit.

SCSI Small computer system interface bus.

Simplex A connection in which data flow in only one direction from the sender (transmitter) to

the receiver.

Tri-state buffer A circuit used to interface one device to another to prevent loading.

USB Universal serial bus. A widely used standard serial bus for connecting peripherals to a computer.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. The simplest connection between devices which receive and send data is a wire.

 2. BNC is a type of connector used for simple wires.

 3. Unshielded twisted pair cables are used for indoor telephone applications.

 4. Crosstalk increases when twisted pairs are bundled together.

 5. Optical fiber cables transmit light pulses through the fibers.

 6. Optical fibers are not suitable for networking.

 7. Communication in the infrared region can be line-of-sight or diffused.

 8. Types of rf and microwave signals that propagate through Earth’s atmosphere are ground wave,

ionospheric, and line-of-sight.

 9. In general, a given number of bits can be transmitted faster in series than in parallel.

 10. In asynchronous systems, the sending and receiving devices operate with separate oscillators

having different clock frequencies.

 11. In asynchronous transmissions, data is sent in bursts.

12. Bit rate is always less than or equal to the baud.

 13. The efficiency of a data transmission channel is the ratio of data bits to the total bits in a

packet.

 14. Three modes that characterize data channel connections are simplex, half-duplex and full-

duplex modes.

 15. In full-duplex mode, data flows in a single way only.

790 Data Transmission

SELF-TEST

Answers are at the end of the chapter.

 1. Crosstalk is minimized using

(a) wire connections (b) twisted pair cables

(c) insulated cables (d) both (a) and (b)

 2. UTP is color-coded according to

(a) a 10-pair color code (b) a 25-pair color code

(c) the resistor color code (d) the primary colors

 3. Advantages that fiber-optic systems have over electrical transmission media are

(a) higher data rate, less susceptible to noise, and longer transmission distance

(b) lower cost, higher data rate, and simplicity

(c) higher data rate, higher EMI, less distortion

(d) higher baud, availability, and reliability

 4. The modes of light propagation in optical fibers are

(a) simplex and duplex (b) multimode and single-mode

(c) synchronous and asynchronous (d) scatter and direct

 16. Quadrature amplitude modulation (QAM) is a combination of ASK and PSK.

 17. BASK stands for binary amplitude-shift keying.

 18. PSK applications include wireless LAN and bluetooth.

 19. In quadrature amplitude modulation there are eight phase quadrants.

 20. QAM is widely used in telecommunications and in digital cable TV.

 21. PPM is derived from PWM using different techniques of modulation.

 22. In pulse position modulation, the position of each pulse relative to a reference or timing signal

is varied proportional to the modulating signal waveform.

 23. Pulse code modulation involves sampling of an analog signal amplitude at regular intervals.

 24. The three main data transmission combinations are digital-to-analog, analog-to-digital, and

digital-to-digital.

 25. TDM stands for Time Division Multiplexing.

 26. FDM is a baseband technique in which the total bandwidth available to a system is divided into

frequency sub-bands and information is sent in analog form.

 27. A bus connects two or more devices to allow them to communicate.

 28. A bus is only defined by the wires and connectors.

 29. A parallel bus is always faster than a serial bus.

 30. Bus width is the width of each conductor in a parallel bus.

 31. Handshaking is not a part of the bus protocol.

32. A single-ended transmission is simpler and lower in cost compared to a differential transmission.

 33. A tri-state driver has a HIGH state, a LOW state, and a shorted state.

 34. PCI stands for peripheral computer interface.

 35. Two types of PCI buses are PCI-X and PCI-E.

 36. IEEE-488 is known as the GPIB.

 37. SCSI stands for serial computer system interface.

 38. USB is a widely used standard serial bus for connecting peripherals to a computer.

 39. The SPI bus is typically used in embedded systems and on PCBs for communications between

microprocessors or microcontrollers and peripheral IC chips or between two processors.

 40. An internal serial bus primarily for connecting ICs on a PCB is the I2C bus.

41. Most automotive systems use the Firewire bus.

 42. CAN stands for computer area node.

 Self-Test 791

 5. The electromagnetic spectrum does not include

(a) UV rays (b) radio waves

(c) microwaves (d) sonic waves

 6. The signals of ham radio bounce off the

(a) troposphere (b) hydrosphere

(c) ionosphere (d) stratosphere

 7. Night vision uses

(a) radio waves (b) IR-rays

(c) ultraviolet rays (d) x-rays

 8. An asynchronous counter has

(a) many oscillators with the same clock frequency

(b) one oscillator with a single clock frequency

(c) many oscillators with different clock frequencies

(d) both (b) and (c)

 9. All of the following are transmission modes except:

(a) simplex

(b) complex

(c) half-duplex

(d) full-duplex

 10. The Manchester code format is

(a) NRZ (b) biphase

(c) RZ (d) FDM

 11. A synchronous data frame does not contain a(n)

(a) preamble (b) data field

(c) address (d) vector field

 12. Three types of data channel connections in terms of data flow are

(a) input, output, neutral

(b) simplex, half-duplex, full-duplex

(c) simplex, duplex, triplex

(d) uniplex, diplex, biplex

 13. In FSK modulation,

(a) the frequency of a carrier signal is varied by a digital signal.

(b) the frequency of a digital signal is varied by a carrier signal.

(c) the phase of a carrier signal is varied by a digital signal.

(d) the amplitude of a carrier signal is varied by a digital signal.

 14. Types of modulation in which a parameter of a sine-wave carrier signal is varied by a digital

signal are

(a) PAM, PWM, PPM (b) QAM, PAM, ASK

(c) FSK, PSK, PPM (d) FSK, ASK, PSK

 15. QAM stands for

(a) quadrature analysis method

(b) quadrature amplitude modulation

(c) quasi-amplitude modulation

(d) quadratic amplitude modulation

 16. In QAM, the parameters that are varied are

(a) amplitude and frequency (b) phase and frequency

(c) amplitude and phase (d) pulse width and position

 17. Three methods of modulating a digital signal with analog data are

(a) PAM, PWM, PPM (b) PAM, ASK, PPM

(c) FSK, QAM, PAM (d) QAM, PAM, PWM

 18. The most likely type of modulation to be used in motor speed control is

(a) PAM (b) PPM

(c) PWM (d) QAM

 19. Pulse amplitude modulation makes use of

(a) a sample and hold circuit (b) a successive approximator

(c) a dual-slope ADC (d) an R/2R setup

792 Data Transmission

 20. PAM stands for

(a) pulse and modulator (b) peripheral analog modulators

(c) pulse amplitude modulation (d) protocol and modulation

 21. A PMW uses

(a) differentiators (b) rectifiers

(c) flip-flops (d) both (a) and (b)

 22. A certain number of data bits (D) are encoded by a single pulse in one of 2D possible positions

during a specified fixed period (T) in

(a) TDM (b) PAM (c) PPM (d) PWM

 23. Properties that define a bus include

(a) type of connectors

(b) length and type of cable or connection

(c) data rate and encoding

(d) all of these

 24. Which of the following is an encoding technique?

(a) PAM (b) ASK (c) FSK (d) PSK

 25. The method used to transmit digital data from multiple sources over a single communication

channel is called

(a) demultiplexing (b) multiplexing

(c) encoding (d) decoding

 26. PCI is the acronym for

(a) peripheral controller interface (b) peripheral computer interface

(c) protocol compatible interface (d) peripheral component interconnect

 27. In a PCI system, the individual paths from switch to peripherals are called

(a) pipes (b) lanes

(c) highways (d) channels

 28. The following is not a classification of USB:

(a) low-speed (b) full-speed

(c) high-speed (d) intermediate speed

 29. A 3.0 USB cable contains

(a) two twisted pairs (b) one twisted pair

(c) three twisted pairs (d) two straight wires

 30. Four types of USB packets are

(a) token, data, handshake, and start-of-frame

(b) token, data, handshake, and control

(c) identification, address, synchronization, and data

(d) none of these

 31. The RS-232 encoding method is

(a) RZ (b) Manchester

(c) biphase (d) NRZ

 32. The bus typically used to connect systems in an automobile is the

(a) SPI (b) CAN

(c) I2C (d) PCI

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 13–1 Data Transmission Media

 1. List the essentials of a data transmission system.

 2. Describe the wire connection in data transmissions.

 3. What is crosstalk? How can it be minimized?

 4. How is an optical fiber different from a normal wire?

 5. Describe the single mode in an optical fiber.

 Problems 793

FIGURE 13–81

 18. Describe the different transmission modes.

Section 13–3 Modulation of Analog Signals with Digital Data

 19. Determine the binary code represented by the ASK signal in Figure 13–82. Presence of a signal

is a 1 and absence of a signal is 0.

 6. List the sizes of optical fibers commonly used in different modes of data transmission.

 7. Draw a basic block diagram of a fiber optics communications link.

 8. List the types of connectors used in fiber-optic system.

 9. What are the ways in which radio waves propagate through the Earth’s surface?

Section 13–2 Methods and Modes of Data Transmission

 10. If data bits are transmitted serially at a 1 MHz rate, how many bits can be transmitted in 1 ms?

 11. If a byte of data takes 2 ms to be transmitted in parallel, what is the data rate in bits per second?

 12. Eight voltage levels are being transmitted by a system where each level (symbol) represents a 3-bit

code. Assuming that 12 symbols are transmitted in 0.5 ms, determine the bit rate and the baud.

 13. Assume a 5 bit code is used for each symbol transmitted. If the bit rate is 50 MHz, what is

the baud?

 14. A certain data packet contains a total of 20 bits of which 16 are data bits. Determine the efficiency.

 15. Show the data waveform for the bit sequence 101011100011 in NRZ and in RZ formats.

 16. For the bit sequence in Problem 15, show the Manchester code.

 17. Determine the bit sequence represented by the Manchester code in Figure 13–81.

FIGURE 13–82

 20. Show how you would represent four successive bits (1001) using FSK.

 21. Repeat Problem 20 for PSK.

 22. Refer to Figure 13–23 and determine the sequence of bits represented by the QAM signal in

Figure 13–83.

FIGURE 13–83

794 Data Transmission

 23. Sketch a constellation map for a 4-bit PSK system.

 24. Repeat Problem 23 for a 4-bit QAM system.

Section 13–4 Modulation of Digital Signals with Analog Data

 25. Describe the PAM method.

 26. Develop the PAM and PWM signals for the waveform in Figure 13–84.

 27. For a PPM system, with four data bits, and a time period of 2 ms, determine the data rate. How

many possible pulse positions are there in each time period?

 28. Show the NRZ code for the PPM signal in Figure 13–85.

T

01 10 11 01 10 11 01 10 11 01 10 11
PPM

T T T

00000000

FIGURE 13–85

 29. In a PCM code, how many bits are required to represent 8 voltage levels of a modulating

signal?

 30. Show the 4-bit PCM code in NRZ format for four successive samples of an analog waveform.

The sampled values are 1, 3, 5, and 7.

Section 13–5 Multiplexing and Demultiplexing

 31. Explain the difference between multiplexing and demultiplexing.

 32. Describe TDM technique.

 33. Why are bandpass filter used in FDM systems?

 34. What is the frequency separation called between each source in an FDM system?

Section 13–6 Bus Basics

 35. Describe the general characteristics of a bus.

 36. Describe the different types of buses.

 37. A certain bus is specified with a width of 32 bits and a frequency of 100 MHz. Determine the

bus bandwidth expressed as two different values.

 38. What is bus protocol?

 39. State an advantage of a differential bus over a single-ended bus.

Section 13–7 Parallel Buses

 40. Describe a PCI bus.

 41. ExplainhowthePCI-ExpressdiffersfromPCIandPCI-X.

(a) PAM

FIGURE 13–84

(b) PWM

 Problems 795

 42. What does x2 mean in a PCI-Express bus?

 43. The terms listener and talker are associated with which bus standard?

 44. Provide the description of each of the SCSI signals: BSY, SEL, RST, C/D, REQ, ACK, ATN,

and MSG.

 45. Consider the GPIB interface between a talker and a listener as shown in Figure 13–86(a). From

the handshaking timing diagram in part (b), determine how many data bytes are actually trans-

ferred to the listening device.

DAV

NRFD

NDAC

Transfer
bus

ListenerTalker

Data bus

(a) (b)

DAV

NRFD

NDAC

FIGURE 13–86

 46. Describe the operations depicted in the GPIB timing diagram of Figure 13–87. Develop a basic

block diagram of the system involved in this operation.

(DI/O1-DI/O8)

ATN

DAV

NRFD

NDAC

DataDataAddressDataDataAddress

001A 3F 41 001B C8 AD

FIGURE 13–87

Section 13–8 The Universal Serial Bus (USB)

 47. Identify each of the symbols in Figure 13–88.

(c)(b)(a)

FIGURE 13–88

 48. List the four types of USB packets.

 49. Describe each of the fields in the USB data packet in Figure 13–89.

Sync
8/32

PID
8

Data
0-8192

CRC
16

EOP
3

FIGURE 13–89

 50. What type of data encoding is used in USB 3.0?

 51. Determine the maximum number of bytes in a USB data field.

 52. What is the maximum separation of two USB 2.0 devices?

796 Data Transmission

FIGURE 13–90

Section 13–9 Other Serial Buses

 53. Describe how RS-232 and RS-422 differ.

 54. List the four signals in an SPI bus and describe each one.

 55. Describe the main use for the I2C bus.

 56. Fill in the field descriptions for the blank CAN bus data format in Figure 13–90.

 57. Refer to Figure 13–72 and list additional units that may appear on a CAN automotive system.

 58. What is the data rate for the IEEE-1394 bus standard in the S100 mode? What is the data rate

in the S1600 mode?

Section 13–10 Bus Interfacing

 59. In a simple serial transfer of eight data bits from a sending device to an receiving device, the

handshaking sequence in Figure 13–91 is observed on the four generic bus lines. By analyzing

the time relationships, identify the function of each signal and indicate if it originates at the

sender or at the receiver.

FIGURE 13–91

 60. Determine the signal on the bus line in Figure 13–92 for the data input and enable waveforms

shown.

Data A

Enable A

Data B

Enable B

Data A

Enable A

Data B

Enable B

Bus line

FIGURE 13–92

 61. In Figure 13–93(a), data from the two sources are being placed on the data bus under control

of the select line. The select waveform is shown in Figure 13–93(b). Determine the data bus

waveforms for the device output codes indicated.

 Answers 797

...
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0
D

7
D

6
D

5
D

4
D

3
D

2
D

1
D

0

Device 2Device 1

1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0

D
7

D
0

(a)

(b)

S

S

Bus (8 lines)

FIGURE 13–93

ANSWERS

SECTION CHECKUPS

Section 13–1 Data Transmission Media

 1. Wire, coaxial cable, twisted pair cable, optical fiber cable, and wireless

 2. The shield protects against EMI.

 3. Ground wave, ionospheric, line-of-sight

 4. Gamma radiation has the highest frequencies

 5. Baseband uses digital modulation (a series of pulses). Broadband uses a digitally modulated

analog signal.

Section 13–2 Methods and Modes of Data Transmission

 1. Serial data are one bit at a time in sequence. Parallel data are simultaneous multiple bits at a time.

 2. Synchronization allows the receiver to recognize the beginning and end of a data transmission.

 3. RZ, NRZ, biphase are three types of data format.

 4. Simplex, half-duplex, and full-duplex are three modes of data transmission.

Section 13–3 Modulation of Analog Signals with Digital Data

 1. Modulation techniques are ASK, FSK, PSK, and QAM.

 2. The amplitude of the analog signal is changed in ASK.

 3. The frequency of the analog signal is changed in FSK.

 4. QAM is quadrature amplitude modulation.

 5. The phase of the analog signal is changed in PSK.

Section 13–4 Modulation of Digital Signals with Analog Data

 1. Pulse modulation methods are PAM, PWM, PPM, and PCM

 2. Pulse amplitude

 3. Pulse width

 4. Pulse position

 5. A binary code

798 Data Transmission

Section 13–5 Multiplexing and Demultiplexing

 1. The purpose of multiplexing is to send data from several sources on a single communication

channel.

 2. TDM is time division multiplexing where data from multiple sources are interleaved on a time

basis.

 3. FDM is frequency division multiplexing where data from multiple sources are sent simultane-

ously at different frequencies.

 4. Statistical TDM has the higher efficiency.

 5. The guard band is the frequency separation between the frequency bands of the multiple

sources in FDM.

Section 13–6 Bus Basics

 1. Speed of a parallel bus can be limited by crosstalk, EMI, and clock skew.

 2. An internal bus connects parts of a single system. An external bus connects one system to

another separate system.

 3. Bus characteristics include width, frequency, transfer rate, and bandwidth.

 4. Bus protocol is a set of rules used by two or more devices to establish and maintain

communication.

 5. A single-ended system uses one wire for data and one wire for ground, where the signal

voltage on the wire is with respect to ground. In a differential system, two wires are used

for data and one wire for ground. The data signal is sent on one wire and its complement

(inversion) is sent on the other wire. The difference between the two data wires is the

differential signal.

Section 13–7 Parallel Buses

 1. PCI is peripheral component interconnect.

 2. PCI-Express is also designated PCIe and PCI-E.

 3. A lane is a dedicated path to a single chip known as a switch.

 4. GPIB is IEEE-488.

 5. SCSI is small computer system interface.

Section 13–8 The Universal Serial Bus (USB)

 1. USB is universal serial bus, a widely used standard bus.

 2. USB pins are D+, D−, +5 V, ground.

 3. The twisted pair reduces or eliminates noise.

 4. USB 3.0 can run at higher speeds than USB 2.0. USB 3.0 has shorter cable lengths than

USB 2.0.

Section 13–9 Other Serial Buses

 1. RS-232, RS-422, RS-423, RS-495, SPI, I2C, CAN, Firewire, and serial SCSI

 2. SPI is serial-to-peripheral interface.

 3. I2C is inter-integrated circuit.

 4. CAN is controller area network.

 5. Firewire is IEEE-1394.

Section 13–10 Bus Interfacing

 1. Tri-state buffers allow devices to be completely disconnected from the bus when not in use,

thus preventing interference with other devices.

 2. A bus interconnects all the devices in a system and makes communication between devices

possible.

 Answers 799

RELATED PROBLEMS FOR EXAMPLES

 13–1 See Figure 13–94.

Clock

Data

Encoded data

and embedded

timing

1 1

FIGURE 13–94

 13–2 Bit rate = 40 kbps

 13–3 Efficiency = 0.828 (82.8%)

 13–4 Eight amplitudes and eight phases can be used to represent a 4-bit code.

 13–5 There would be more pulses closer together in both cases providing a more accurate represen-

tation of the analog signal.

 13–6 Data rate = 8 Mbps; 256 pulse positions

 13–7 Six PCM code bits to represent 64 levels

 13–8 15.625 MHz

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. F 5. T 6. F 7. T 8. T 9. F

 10. F 11. T 12. F 13. T 14. T 15. F 16. T 17. T 18. T

 19. F 20. T 21. F 22. T 23. T 24. T 25. T 26. F 27. T

 28. F 29. F 30. F 31. F 32. T 33. F 34. F 35. T 36. T

 37. F 38. T 39. T 40. T 41. F 42. F

SELF-TEST

 1. (b) 2. (b) 3. (a) 4. (b) 5. (d) 6. (c) 7. (b) 8. (a)

 9. (b) 10. (b) 11. (d) 12. (b) 13. (a) 14. (d) 15. (b) 16. (c)

 17. (a) 18. (c) 19. (a) 20. (c) 21. (d) 22. (c) 23. (d) 24. (a)

 25. (b) 26. (d) 27. (b) 28. (b) 29. (c) 30. (a) 31. (d) 32. (b)

801

CHAPTER OUTLINE

14–1 The Computer System

14–2 Practical Computer System Considerations

14–3 The Processor: Basic Operation

14–4 The Processor: Addressing Modes

14–5 The Processor: Special Operations

14–6 Operating Systems and Hardware

14–7 Programming

14–8 Microcontrollers and Embedded Systems

14–9 System on Chip (SoC)

CHAPTER OBJECTIVES

■ Name the basic units of a computer

■ Name the computer buses and how they are used

■ Discuss the considerations for a practical computer

system

■ Describe the purpose of buffers, decoders, and

wait-state generators in a computer system

■ Define and explain the advantage of DMA

■ Name the basic elements of a microprocessor

■ Describe the basic architecture of a microprocessor

■ Explain basic microprocessor (CPU) operation

■ List and describe some microprocessor addressing

modes

■ Define and describe microprocessor polling,

interrupts, exceptions, and bus requests

■ Discuss the operating system of a computer

■ Explain pipelining, multitasking, and

multiprocessing

■ Describe a simple assembly language program

■ List some typical microprocessor instructions

■ Distinguish between assembly language and

machine language

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

This chapter provides a basic introduction to computers,

microprocessors, and microcontrollers. It gives you a

fundamental coverage of basic concepts related to data

■ CPU

■ Microprocessor

■ Main memory

■ Caching

■ BIOS

■ System bus

■ Signal loading

■ Buffer

■ Wait state

■ Pipelining

■ ALU

■ Program

■ Op-code

■ Operand

■ Interrupt

■ Exception

■ Interrupt vector table

■ Bus master

■ DMA

■ Hardware

■ Software

■ Operating system

■ Multitasking

■ Multiprocessing

■ Machine language

■ Assembly language

■ High-level language

■ Microcontroller

■ System on chip

Data Processing
and Control

14CHAPTER

■ Describe the architecture of a microcontroller and

explain how it differs from a microprocessor

■ Discuss embedded systems

■ Discuss some microcontroller applications

■ Describe a system on chip (SoC)

KEY TERMS

Key terms are in order of appearance in the chapter.

802 Data Processing and Control

processing and control. For the most part, a generic ap-

proach is used to present basic concepts of the topics.

The total computer system with practical considerations

is covered. Various aspects of a microprocessor and

its role as the CPU in computer systems are presented

and programming is briefly discussed. Microcontrollers

and system on chip (SoC) are also introduced, and

some applications are described.

14–1 The Computer System

General-purpose computers, with which most are familiar, and special-purpose computers are

used to control various functions or perform specific tasks in areas such as automotive, con-

sumer appliances, manufacturing processes, and navigation. The general-purpose computer

system, which can be programmed to do many different things, is the focus in this section.

After completing this section, you should be able to

u Describe the basic elements of a general-purpose computer

u Discuss each part of a computer

u Explain a peripheral device

All computer systems work with information, or data, to produce a desired result. To

accomplish this, computer systems must perform the following tasks:

• Acquireinformationfromdatasources,includinghumanoperators,sensors,memory
and storage devices, communication networks, and other computer systems

• Processinformationbyinterpreting,evaluating,manipulating,converting,format-
ting,orotherwiseworkingwithacquireddatainsomeintendedfashionasdirected
by a step-by-step set of instructions called a program

• Provideinformationinameaningfulformtodatarecipients,includinghumanopera-

tors, actuators, memory and storage devices, communication networks, and other

computer systems

Specific sections and components in computer systems accomplish each of these tasks.

Informationprocessingisperformedbythecentralprocessingunit,orCPU,whichisthe
brainofthecomputersystem.TheCPUacquiresinformationthroughtheinputsectionof
the computer system, provides information through the output section, and uses the system

memoryandstoragetostoreandretrieveinformationasneeded.TheCPUtransfersinfor-
mation to and from other sections of the computer system over special groups of signal

lines called buses. Figure 14–1 shows a block diagram of a general-purpose computer

system. Each block will be discussed in terms of its purpose and function.

Control bus

Data bus

Input/Output

ports

Address bus

Memories/Storage:

RAM, ROM, cache,

hard disk

CPU

(microprocessor)

FIGURE 14–1 Basic computer block diagram.

 The Computer System 803

The Central Processing Unit

The central processing unit (CPU) performs much of what is associated with the term

computer.Itexecutestheinstructionsequences(calledprograms) in the computer system,

directly processes much of the data that pass through the computer system, and controls

and coordinates the various sections that make up the computer system. To play such a

largeroleinthecomputersystem,theCPUconsistsoffourseparateunits:thearithmetic
logicunit(ALU),theinstructiondecoder,thetimingandcontrolunit,andtheregisterset.
TheCPUisbasicallyamicroprocessor (or simply processor). A single IC package can

contain two or more processors, forming a multicore processor.

Memory and Storage

Computer systems must have some means of storing and retrieving the information with

which they work and use two types of devices—memory devices and storage devices—to

do so. Although the usage and meanings of the terms can overlap somewhat, they primarily

differ in the construction of the devices and the information they contain. Memory devices

typically are semiconductor devices that store information electronically, interface with

the computer system through the system buses, and contain dynamic information, such as

programsandprogramvariables,thatisfrequentlyaccessedormodified.Storagedevices
typically store information on some physical medium, interface with the system through

a peripheral interface, and contain primarily static information, such as program and data

files,thatisaccessedormodifiedrelativelyinfrequently.Memorydevicesarefasterthan
storage devices; however, memory devices have lower storage capacities and higher cost

per bit than storage devices.

Memory in computer systems can be classified both by the type of memory and the

function it performs. The different types and characteristics of memory were discussed in

Chapter11.Hereweexaminethefunctionalrequirementsofmemoryincomputersystems.

Main Memory

The main memory is the computer system memory that contains programs and data asso-

ciated with them, such as program variables, the program stack, and information the oper-

atingsystemrequirestoexecutetheprogram.Theearliest8-bitprocessors(forexample,
the Intel 8080, Motorola 6800, and InMOS 6502) had 16-bit address buses that could
access 216

= 65,536bytes(64kilobytesor64kB)ofmemory.However,themainmemory
in 8-bit PCs was actually less than this because other devices in the system used part
of the address space.The16-bit computers that followedhad20-bit addressbuses that
could access 220

= 1,048,756bytes(1megabyteor1MB)ofmemory.Moderncomput-
ersrequiregigabytesofmainmemorytosupporttherequirementsoftheirgraphicaluser
interface(GUI)operatingsystemsandapplicationprograms.Mainmemorymustmeetthe
requirementsofalargestoragecapacityataneconomicalpriceandalsoallowthecom-

putersystemtomodifydatawithinit.Becauseoftheserequirements,computersystems
typically use some form of dynamic RAM (DRAM) for main memory that features large

capacity, low cost per bit, and read/write capability.

Cache Memory

Cache memory is memory that computer systems use to overcome the relatively slow

speed of main memory DRAM. Caching is a process that copies frequently accessed
instructions or data from slow main memory into faster cache memory to reduce access

timeandimprovesystemperformance.Becauseoftheserequirements,computersystems
use some form of static RAM (SRAM) for cache memory.

Basic Input/Output System (BIOS) Memory

The design of every computer system differs to some extent from other systems. The basic

input/output system (BIOS) memory contains system-specific low-level code that runs the

804 Data Processing and Control

poweronself-test(POST),installsspecializedsoftwarecalleddriverstoconfigureandpro-

videaccesstothecomputersystemhardware,andloadstheoperatingsystem.TheBIOS
memorymustretainitscontentswhenpowerisremovedsothattheBIOScodeisreadyto
runwhenthecomputerfirstpowersup.Thisrequirescomputersystemstousesomeform
ofnonvolatilememoryforBIOS.

The earliest personal computers used read-only memory (ROM) for BIOS, so any
changetotheBIOSrequiredtheusertoreplacetheROMchip(whichwasoftensocketed)
itself.Latercomputersusedalow-powerCMOSdevicewithaback-upbatterytopreserve
the contents when the system power was shut off. This allowed users to change and save

BIOSsettingswhentheymadechangestosystemhardwareconfiguration.Mostrecently,
computershaveusedEEPROMandflashdevicessothatuserscaneasilyupgradetheBIOS
firmware to the latest revision. Firmware is software programs or data that have been written

intoROM.

Content-Addressable Memory

Computersoftenusespecialized typesofmemory inaddition to those typesmentioned
previously. One specialized type of memory is the content-addressable (or associative)
memory, whose operation differs from that of conventional memory. Conventional mem-

ory returns the data stored at a specified address. Content-addressable memory returns the

address that contains a specified data value. Computers use content-addressable memory

for special data tables that support caching and paging operations.

FIFO

AnotherspecializedtypeofmemoryistheFIFO(first-in,first-out)memory.Conventional
memory, such as SRAM and DRAM, allow computers to store data and to retrieve data

fromanymemorylocationinanyorder.FIFOmemoryreturnsdataonlyintheorderin
which the data were stored. As the acronym FIFO indicates, the first data stored in memory

mustbethefirstdatatakenoutofmemory.ComputersuseFIFOmemoryforspecialdata
structures called queues.Queues temporarilystoredata forwhich thesequenceofdata
must be preserved, such as program instructions.

Input/Output Ports

Input/output(orI/O)portsare interfaces thatallowcomputers to transferdata toand
from external entities such as users, peripherals (such as mice, keyboards, video moni-

tors,scanners,printers,modems,andnetworkadapters),andothercomputers.I/Oports
varygreatlyincomplexityandcapability.AnI/Oportcanbeserialorparallel,operate
as an input, output, or both, and transfer several thousand to several billion bits per

second. Many I/O ports, such as RS-232, USB 3.0, SCSI-5, Firewire, and Ethernet
ports, conform to official or de facto standards to simplify computer system connec-

tions.These standardsareusuallydevelopedby internationalorganizationsand typi-
cally specify not only the type of connectors but also the pin assignments, electrical

signal levels, signal timing, data transmission rates, and communication protocols (i.e.,

theformat,organization,andmeaningofdatapatterns).EIA802,forexample,isthe
international standard for Ethernet communications and IEEE 1394 is the standard for

Firewire. These standards ensure that all devices that comply with the standard will be

able to communicate with each other.

ProcessorssupportI/Oportsandoperationsinoneoftwoways.Onewayismemory-
mappedI/O,inwhichtheprocessortreatsI/Oportsasmemorylocationsandexternalcir-
cuitryconvertsstandardreadandwriteoperationsintoI/Oportaccesses.Thesecondway
isdirectI/O,inwhichspecificprocessorpinsandinstructionsareexclusivelydedicatedto
datainputandoutputoperations.Ineithercase,general-purposeprocessorsrequireaddi-
tional circuitry and program code to implement specific communications standards and

protocols.SpecializedmicrocontrollersliketheMotorolaMC68360andNXPLPC2292
improve on this by incorporating additional circuitry and embedded firmware to support

 The Computer System 805

UART,I2C,Ethernet,CAN,SPIandotherpopularcommunicationstandardsontheirI/O
ports with a minimum of driver coding and external interface circuitry.

System Bus

As you have learned, computers acquire, process, and provide information. Computers
mustbeable (a) to specifywhere toacquireand return information, (b) to transfer the
information from its source to its destination, and (c) to coordinate the movement of data

within the computer system. The mechanism by which the computer accomplishes this is

the system bus, which consists of three component buses: the address bus, the data bus,

and the control bus.

The Address Bus

The address bus is the means by which a processor specifies the system location from

which data are to be read or to which data are to be written. For example, the processor sends

an address code to the memory specifying where certain data are stored. If the address bus

is32bitswide,232or4,294,967,296memorylocationscanbeaccessed.

The Data Bus

The data bus consists of signal lines over which the computer system transfers information

fromonedevicetoanother.Becausetheprocessorcanbothreaddatafromandwritedata
to system devices, each data line is bidirectional. The number of data lines determines the

widthofthedatabus,whichisafactorinhowquicklytheprocessorcanprocessdata.The
earliestmicroprocessorshad4-bitand8-bitdatabuses,butmodernprocessorshave64-bit
data buses.

The Control Bus

The control bus is the collection of signals that controls the transfer of data within the sys-

temandcoordinatestheoperationofsystemhardware.Unliketheaddressanddatabuses,
which consist of functionally identical signals that function as a group, the individual sig-

nals lines that make up the control bus vary in characteristics, nature, and function. Con-

trol signals can be unidirectional or bidirectional, can function individually or with other

controlsignals,canbeactive-HIGHoractive-LOW,canoperatesynchronouslyorasyn-

chronously, and can be edge-oriented or level-oriented. Despite this individual diversity,

computer systems and processor operations are similar enough that the signals that make

up the control bus—read, write, interrupt, and others—are also similar.

A Typical Computer System

TheblockdiagraminFigure14–2showsthemainelementsinatypicalcomputersystem
andhowtheyareinterconnected.Noticethatthecomputeritselfisconnectedwithseveral
peripheral units. For the computer to accomplish a given task, it must communicate with

the “outside world” by interfacing with people, sensing devices, or devices to be controlled

through input and output ports.

Computer Software

In addition to the hardware, a major part of a computer system is the software. The software

makes the hardware perform. The two major categories of software used in computers are

the system software and the application software.

Thesystemsoftwareiscalledtheoperatingsystem(OS)andallowstheusertointerface
withthecomputer.ThemostcommonoperatingsystemsareWindowsandMacOS.Many
other operating systems are used in special-purpose and mainframe computers.

System software performs two basic functions. It manages all the hardware and software

in a computer. For example, the operating system manages and allots space on the hard

disk. System software also provides a consistent interface between applications software

InfoNote

Grace Hopper, a mathematician and

pioneer programmer, developed

considerable troubleshooting skills

as a naval officer working with the

Harvard Mark I computer in the

1940s. She found and documented

in the Mark I’s log the first real

computer bug. It was a moth that

had been trapped in one of the

electromechanical relays inside the

machine, causing the computer

to malfunction. From then on,

when asked if anything was being

accomplished, those working on

the computer would reply that they

were “debugging” the system. The

term stuck, and finding problems

in a computer (or other electronic

system), particularly the software,

would always be known as

debugging.

806 Data Processing and Control

and hardware. This allows an applications program to work on various computers that may

differ in hardware details. The operating system on your computer allows you to have several

programs running at the same time. This is called multitasking.

Application software is used to accomplish a specific job or task, such as word process-

ing, accounting, tax preparation, circuit simulation, graphic design, to name only a very few.

Mouse

Modem

Computer

Control bus

Data bus

Address bus

Monitor Printer

Peripherals

Removable storage:
CDs, CD-RWs

Input/Output
ports

Memories/Storage:
RAM, ROM, cache,

hard disk

CPU

Keyboard

FIGURE 14–2 Basic block diagram of a typical computer system including common

peripherals. The computer itself is shown in the gray block.

SECTION 14–1 CHECKUP

Answers are at the end of the chapter.

 1. Whatarethemajorfunctionalblocksinacomputer?

 2. Whatareperipherals?

 3. Whatisthedifferencebetweencomputerhardwareandcomputersoftware?

 4. Howdoescontent-addressablememorydifferfromconventionalmemory?

 5. Compare and contrast the characteristics of the address, data, and control buses in a

computer system.

14–2 Practical Computer System Considerations

Practicalcomputerdesignsincorporatespecialcircuitrythatresolvesfourissuesthatexistin
real-world systems: shared signal lines, signal loading, device selection, and system timing.

After completing this section, you should be able to

u Identify design considerations for practical computer systems

u Explain the role and operation of buffers, decoders, and wait-state generators in

practical computer systems

 Practical Computer System Considerations 807

Figure 14–3 shows a block diagram of a practical computer system, based on the consid-

eration for shared signal lines, signal loading, device selection, and system timing.

Wait-state

generator

Data acknowledge

Address bus

Data bus

Control bus

Processor
Data

buffer

Data

buffer

System

input/output

(system I/O)

CS

Random-

access

memory

(RAM)

CS

Address

decoder

Data

buffer

Read-only

memory

(ROM)

CS

FIGURE 14–3 Block diagram of a practical computer system.

Shared Signal Lines

Whentheoutputsoftwoormoredevicesconnecttothesamesignalline,thepotentialfor
buscontentionexists.Buscontentionoccurswhendeviceoutputsattempttodriveasignal
line to different voltage levels. This causes high current to flow from one output into the

other, which can damage the devices. Typically, bus contention occurs when device outputs

are at different logic levels. However, even when devices are at the same logic level, the

variation for different devices will cause some device output voltages to be higher than oth-

ers so that bus contention will occur. Two special types of output, the tri-state output and

open collector output, allow devices to share signal lines, while avoiding bus contention.

The term tri-stateisaregisteredtrademarkofNationalSemiconductorbutisoftenused
interchangeably with the generic terms three-state or 3-state. As the name suggests, the tri-

state output adds a third output state, called the high-impedance or high-Z state, to the usual

logicLOWandHIGHstates.Thetri-stateswitchiseffectivelyaswitchthatdisconnects
the output of the tri-state device from the signal line so that it does not interfere with other

devicesfromdrivingtheline.Whenatri-statedeviceisenabled,itoutputsalogicLOW
orHIGHasotherdigitaldevices.Whenatri-statedeviceisdisabled,theoutputassumes
thehigh-Zstateandtheoutputissaidtobetri-stated.Whentri-stateoutputsshareasignal
line, only one output at a time must be enabled to ensure that bus contention will not occur.

Figure 14–4 shows the operation of tri-state outputs.

Devices that are designed to connect to processor buses, such as memory and interface

devices, typically have tri-state outputs built into them. Devices that do not have tri-state

outputs or open-collector outputs must use tri-state buffers to connect to buses.

808 Data Processing and Control

Signal Loading and Buffering

Digital outputs are affected by the inputs of the devices to which they connect. There is a

limit to the number of digital inputs that the outputs can reliably drive; this limit is called

the device fan-out.Whenthenumberofinputsexceedsthefan-outofanoutputdevice,
the operation of that output device may not meet the specified voltages or timing for that

device. The issue of inputs affecting the performance of an output to which they are con-

nected is called signal loading. To avoid problems with signal loading, special digital

devices called buffers are used to ensure that device fan-outs are not exceeded. A buffer is

a special circuit that isolates the output of a device from the loading effects of other devices.

Figure14–5illustratestheuseofbufferstopreventthenineinputdevicesfromexceed-

ingtheeight-loadfan-outoftheoutputdevice.Notethatuptoseveninputdevicescould

Input Output Output

Enable

Input

Enable

Tri-state circuit

enabled

Tri-state circuit

disabled

Logic

circuit

Logic

circuit

FIGURE 14–4 Logic devices with tri-state outputs.

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Output

device

Fan-out

= 8 loads

(a) Nine input device loads exceed

 8-load fan-out of output device

(b) Buffering of output device prevents signal loading

Buffer

Fan-out = 8 loads

Buffer

Fan-out = 8 loads

Output

device

Fan-out

= 8 loads

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

FIGURE 14–5 Buffers are used to prevent overloading of driving device.

 Practical Computer System Considerations 809

have been connected directly to the output device and a single buffer used to connect the

remaining input devices. This would have reduced the parts count, but one characteristic of

buffers is that each buffer will increase the propagation delay. If a single buffer were used,

the response of the input devices connected to the buffer would be slower than that of the

inputdevicesconnecteddirectlytotheoutputdevice.Usingtwobuffersasshownhelps
match the propagation delay to all the input devices.

ThebuffersshowninFigure14–5aresimplenoninvertingbuffers,whichmeansthatthe
buffer output signal is identical to the buffer input signal. There are other types of buffers

to ensure that devices will not degrade the performance of a device to which they are con-

nected. These buffers include tri-state buffers like those mentioned previously, inverting

buffers that invert the input signal, bidirectional buffers that can pass information through

the buffer in both directions as on the data bus, and Schmitt triggers. A Schmitt trigger is a

special device that helps prevent logic devices from acting erratically due to system noise

affecting slowly changing inputs.

Device Selection

TheprocessorusestheaddressbustoaccessROM,RAM,hardwareI/Oports,andother
systemdevices.Aquestionthatnaturallyarisesishowadeviceknowswhentheprocessor
is attempting to access it rather than some other system device. The answer is that these

devices have a special input, usually called a chip select (CS) or chip enable (CE), that

enablesthedevice.Whentheprocessormustaccessaspecificdevice,itmustassertthe
select line of the intended device.

While in theory processors could provide separate control lines to select system
devices, this is not practical for general-purpose computers because there is no way for

the system designers to know what devices a system will contain. Instead, system design-

ersusePLDsordedicatedhardwaredecoders,similartothatinFigure14–6,todecode
processor addresses and generate the device select lines. For this example, the processor

usesa16-bitaddressbuswheretheupper(mostsignificant)fourbitsareusedtogenerate
device select outputs.

Device select outputs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

D

C

B

A

Device address

from address bus

FIGURE 14–6 Address decoding for the purpose of device selection.

810 Data Processing and Control

System Timing

A final issue with practical computer systems is system timing. In a computer system, the

processor signals must meet the setup and hold times for each peripheral so that data are

properly stored and accessed. As you have seen, decoding logic or buffers in the system

can slow the processor signals. In some cases, the processor runs much faster than the

peripherals that are available; in other cases, fast peripherals are available but their cost

prohibits designers from using them. In addition, some peripherals, such as SRAM, are

inherently faster than others, such as DRAM, so the signal timing that meets the setup and

hold times for some devices will not meet the setup and hold times for others. To resolve

this issue, three different types of system buses can be used: synchronous, asynchronous,

and semisynchronous.

Synchronousbusesincludeasynchronizingclocktoensurethatsignalsfromthepro-

cessor meet the setup and hold times of the peripheral. Synchronous buses are faster than

asynchronous or semisynchronous buses.

Asynchronous buses will automatically insert wait states in a bus cycle until a signal

indicates that the bus cycle can finish. A wait state holds the state of the bus signals

foroneprocessorclockcycleso that thereadorwriteoperation is“frozen”forone
clock period when the processor is accessing memory or other devices that are slow

to respond. Several wait states may be necessary. Computer CPUs run at very high
speeds, while memory technology does not seem to be able to catch up. Typical pro-

cessorsliketheIntelCore2andtheAMDAthlon64X2runwithaclockofseveral
GHz,whilethemainmemoryclockgenerallyisintheseveralhundredtoover1000
MHzrange.Evensomesecond-levelCPUcachesrunslowerthantheprocessorcore.
Inordertominimizetheuseofwaitstates,whichslowthecomputerdown,techniques
suchasCPUcaches,instructionpipelines,instructionprefetch,andsimultaneousmul-
tithreading are used.

Semisynchronous buses are similar to asynchronous buses except that a semisyn-

chronous bus will complete the bus cycle unless a signal indicates that the processor

shouldnotcompletebuscycle.Untiltheprocessorcancompletethecycle,itwillinsert
wait states.

Memory and other peripheral devices do not, as a rule, have signals indicating when

data are ready. The signals that instruct the processor to insert wait states must be

generated by an additional logic circuit, called a wait-state generator, which can be

basically a programmable timer or shift register. The wait-state generator is clocked

by the same clock as the processor and enabled by the device select line for a specific

memory or other device. After the wait-state generator is enabled by the device select

line, it will generate a ready signal after a specific number of clock cycles. Figure 14–7

showsan8-bitparallel-in/serial-outshiftregistercircuitthatcaninsertuptosixwait
states for an asynchronous processor by delaying the ready signal to the processor by

up to six clock cycles.

Device select
Ready

Processor clock

D7

LD/SH
SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–7 A wait-state generator programmed for one wait state.

 Practical Computer System Considerations 811

Solution

The initial pattern loaded into the shift register is 111011112. This shifted pattern for

each clock and the corresponding number of wait states are

Clock1(0waitstates):111101112

Clock2(1waitstate):111110112

Clock3(2waitstates):111111012

Clock 4 (3 wait states): 111111102

OnthefourthclockafterDeviceselectgoesLOW,themostsigniicantbitof the
SEROUTlinefortheshiftregistergoesLOW.ThiscausestheReadyoutputtogo
LOW,terminatingthebuscycle.Therefore, thewait-stategenerator insertsthree

wait states.

Related Problem*

WhichdatainputlineoftheshiftregistermustbetiedLOWforthewait-stategenerator
inFigure14–8toinsertivewaitstates?

EXAMPLE 14–1

Forthewait-stategeneratorinFigure14–8,howmanywaitsstateswillbegenerated
whenthedeviceisselected?

Device select
Ready

Processor clock

D7

LD/SH
SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–8

*Answers are at the end of the chapter.

SECTION 14–2 CHECKUP

 1. Define bus contention and discuss types of devices used to prevent it.

 2. Howdoesaprocessorenablevariousdevices?

 3. Define wait state and give its purpose.

 4. Whatisthepurposeofabuffer?

The circuit of Figure 14–7, which inserts wait states for a single device, can be

expanded to support more than one device. If two or more devices have the same number

ofwaitstates,theirdeviceselectlinescanbeANDedtogether(assumingtheselectlines
areactive-LOW).

812 Data Processing and Control

Microprocessor

Register
set

Instruction
decoder

Arithmetic
logic unit

(ALU)

Timing/

Control unit

FIGURE 14–9 Elements of a

microprocessor (CPU).

Control bus

to ALU and other units

A

B

C

X

General-purpose registers

Address register

Address bus Data bus

Index register

Program counter

Data register

Accumulator

Timing and

control unit
Flag register

Instruction

decoderStack pointer

ALU

FIGURE 14–10 Basic model of a simplified processor.

14–3 The Processor: Basic Operation

Asyouhavelearned,amicroprocessorformstheCPUofacomputersystem.Amicropro-

cessor is a single integrated circuit that consists of several units, each designed for a specific

job.The specificunits, theirdesignandorganization, arecalled thearchitecture (do not

confuse the term with the VHDL element). The architecture determines the instruction set

and the process for executing those instructions.

After completing this section, you should be able to

u Namethefourbasicelementsofamicroprocessor

u Describe the fetch/execute cycle

u Explain the read and write operations

The four basic elements that are common to all microprocessors are the arithmetic logic

unit (ALU), the instructiondecoder, theregisterset,andthe timingandcontrolunit,as
shown in Figure 14–9.

Figure14–10showsasimpleblockdiagramofamicroprocessor.Theelementsshown
are common to most processors, although the internal arrangement or architecture and com-

plexityvary.Thisgenericblockdiagramofan8-bitprocessorwithasmallregistersetis
usedtoillustratefundamentaloperation.Today,processorshavedatabusesthatare64bits.

 The Processor: Basic Operation 813

The Fetch/Execute Cycle

Whenaprogramisbeingrun,theprocessorgoesthrougharepetitivecycleconsistingoftwo
fundamentalphases,asshowninFigure14–11.Onephaseiscalledfetch and the other is

called execute. During the fetch phase, an instruction is read from the memory and decoded

by the instruction decoder. During the executephase,theprocessorcarriesoutthesequence
of operations called for by the instruction. As soon as one instruction has been executed, the

processor returns to the fetch phase to get the next instruction from the memory.

Start Fetch Execute

FIGURE 14–11 The fetch/execute cycle of a processor.

Stage 2 of

execution idle

Stage 3 of

execution idle

2nd instruction

Stage 1 of

execution

Stage 2 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 2 of

execution

Stage 1 of

execution idle

Stage 3 of

execution idle

2nd instruction

Stage 2 of

execution

Stage 1 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 3 of

execution

Stage 1 of

execution idle

Stage 2 of

execution idle

2nd instruction

Stage 3 of

execution

Stage 1 of

execution idle

Stage 2 of

execution idle

(a) Nonpipelined execution of a program showing three

 stages of execution

First instruction

in program goes

through three

stages of

execution before

the next

instruction starts

execution.

Second instruction

in program goes

through three

stages of

execution before

the next

instruction starts

execution.

1st instruction

Stage 1 of

execution

Stage 2 of

execution idle

2nd instruction

Stage 1 of

execution

1st instruction

Stage 2 of

execution

3rd instruction

Stage 1 of

execution

2nd instruction

Stage 2 of

execution

4th instruction

Stage 1 of

execution

3rd instruction

Stage 2 of

execution

Stage 3 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 3 of

execution

2nd instruction

Stage 3 of

execution

First

instruction

complete

(b) Pipelined execution of a program showing three stages

1st instruction

Stage 1 of

execution

FIGURE 14–12 Illustration of pipelining.

Pipelining

Atechniquewherethemicroprocessorbeginsexecutingthenextinstructioninaprogram
before the previous instruction has been completed is called pipelining. That is, several

instructions are in the pipeline simultaneously, each at a different processing stage.

Typically, a pipeline is divided into stages or segments, and each stage can execute its

operationconcurrentlywiththeotherstages.Whenasegmentcompletesanoperation,it
passes the result to the next segment in the pipeline and fetches the next operation from the

preceding segment. The final results of each instruction emerge at the end of the pipeline

inrapidsuccession.Figure14–12isasimplifiedillustrationofnonpipelinedprocessing
compared to pipelined processing using three stages of execution.

814 Data Processing and Control

As shown in the figure, in nonpipelined processing of a program, one instruction at a

time is executed through all of its stages before the next instruction begins execution. As

you can see in part (a), all the stages of execution are idle (gray) except the one that is active

(red). In pipelined processing, as soon as one instruction has finished an execution stage,

thenextinstructionbeginsthatstage.Pipeliningresultsinmuchshorteroverallexecution
times.Oncethepipelineis“full,”therearenoidleprocessingstages.

Processor Elements

ALU

This part of the processor contains the logic to perform arithmetic and logic operations.

Data are transferred into the ALU from the accumulator and from the data register. For the

modelinFigure14–10,theaccumulatoranddataregisterare8-bitregistersthatholdone
byteofdata.EachbytetransferredintotheALUiscalledanoperand because it is operated

onbytheALU.Asanexample,Figure14–13showsan8-bitnumberfromtheaccumulator
beingaddedtoan8-bitnumberfromthedataregister.Theresultofthisadditionoperation
(sum) is put back into the accumulator and replaces the original operand that was stored

there.WhentheALUperformsanoperationontwooperands,theresultalwaysgoesinto
the accumulator to replace the previous operand.

Operand A = 310 Operand B = 510 Sum = 810

Accumulator Accumulator Data register

0000010100000011

Data register

00000101

ALU ALU

ADD

00001000

(a) ALU adds 011 and 101. (b) The sum 1000 is put into the accumulator.

FIGURE 14–13 Example of the ALU adding two operands.

As demonstrated in Figure 14–13, one function of the accumulator is to store an operand

priortoanoperationbytheALU.Anotherfunctionistostoretheresultoftheoperation
after it has been performed. The data register temporarily stores data that is to be put onto

the data bus or that has been taken off of the data bus.

Instruction Decoder and Timing/Control Unit

An instruction is a binary code that tells the processor what it is to do. An orderly arrange-

ment of many different instructions makes up a program. A program is a step-by-step

procedure used by the processor to carry out a specified task.

The instruction decoder within the processor decodes an instruction code that has been

transferred on the data bus from the memory. The instruction code is commonly known as

an op-code.Whentheop-codeisdecoded,theinstructiondecoderprovidesthetimingand
control unit with this information. The timing and control unit can then produce the proper

signalsandtimingsequencetoexecutetheinstruction.

Register Set

Processorstypicallyhavetwocategoriesofregistersfortemporarystorageofdata:general-
purpose registers and special-purpose registers. General-purpose registers are used to

 The Processor: Basic Operation 815

store any type data that may be required by a program. Special-purpose registers are
dedicated to a specific function. Some typical special-purpose registers are described

as follows.

Flag register This register is sometimes called a condition code register or status reg-

ister. It indicates the status of the contents of the accumulator or certain other conditions

withintheprocessor.Forexample,itcanindicateazeroresult,anegativeresult,theoccur-
rence of a carry, or the occurrence of an overflow from the accumulator.

Program counter Thiscounterproducesthesequenceofmemoryaddressesfromwhich
the program instructions are taken. The content of the program counter is always the mem-

ory address from which the next byte is to be taken. In some processors, the program coun-

ter is known as the instruction pointer.

Address register This register temporarily stores an address from the program counter

in order to place it on the address bus. As soon as the program counter loads an address

into the address register, it is incremented (increased by 1) to the address of the next

instruction.

Stack pointer The stack pointer is a register that is mainly used during program subrou-

tines and interrupts. It is used in conjunction with the memory stack.

Index register The index register is used as one means of addressing the memory in a

mode of addressing called indexed addressing.

The Processor and the Memory

The processor is connected to a memory with the address bus and data bus. Also, there are

certain control signals that must be sent between the processor and the memory, such as

the read and write controls. The address bus is unidirectional so the address bits go only

one way, from the processor to the memory. The data bus is bidirectional, so data bits are

transferred between the processor and memory in either direction. This is illustrated in

Figure 14–14.

Address

bus

Control

bus
Data bus

Processor

Memory

FIGURE 14–14 A processor and memory.

The Read Operation

To transfer data from the memory to the processor, a read operation must be performed,

asshowninFigure14–15,usingan8-bitdatabusanda16-bitaddressbusforillustration.
To start, the program counter contains the address of the data to be read from the memory.

This address is loaded into the address register and placed onto the address bus. The pro-

gramcounteristhenincremented(advancedbyone)tothenextaddressandwaits.Once
the address code is on the bus, the processor timing and control unit sends a read signal to

the memory. At the memory, the address bits are decoded and the desired memory location

is selected. The read signal causes the contents of the selected address to be placed on the

816 Data Processing and Control

data bus. The data are then loaded into the data register to be used by the processor, com-

pleting the read operation. In this illustration, each memory location contains one byte of

data.Whenabyteisreadfrommemory,itisnotdestroyedbutremainsinthememory.This
process of “copying” the contents of a memory location without destroying the contents is

called nondestructive read.

The Write Operation

To transfer data from the processor to the memory, a writeoperationisrequired,asillus-

tratedinFigure14–16.Adatabyteheldinthedataregisterisplacedonthedatabus,andthe
processor sends the memory a write signal. This causes the byte on the data bus to be stored

at the memory location selected by the address code. The existing contents of that particular

memory location are replaced by the new data. This completes the write operation.

READ

Memory

Memory

address

decoder

0

1

2

3

4

5

6

10001100

Data register

10001100

Address register

00000000000000101

2

1

1

Address 510 is placed on address bus and followed by the read signal.

Contents of address 510 in memory is placed on data bus and stored in data register.2

FIGURE 14–15 Illustration of the read operation.

1 Address code for address 610 is placed on address bus.

Data are placed on data bus and followed by the write signal. Data are stored at address 610 in memory.2

WRITE

Memory

Memory

address

decoder

0

1

2

3

4

5

6 10001101

1

2

Address register

00000000000000110

Data register

10001101

FIGURE 14–16 Illustration of the write operation.

 The Processor: Addressing Modes 817

Roles of the CPU

TheCPUhasthreemajorrolesinacomputersystem.ThefirstroleoftheCPUistocontrol
thesystemhardware.Specifically,theCPUdetermineshowdatamovethroughthecom-

puter system, which devices are active, and when specific operations and data transactions

occur.Incomputers,someofthiscontrolisdecentralizedbyassigningsometasks(such
as peripheral access and communications and graphics processing) to devices that can per-

formthosetasksmorequicklyandefficientlythantheCPUitself.Evenso,theCPUstill
coordinates the operation of the computer system as a whole.

Thesecondroleof theCPUis toprovidehardwaresupportfor theoperatingsystem
software. The first computers were large mainframes that were too expensive to devote

to a single user or program. The operating systems allowed these computers to support

multipleusersandprograms,buttheyrequiredspecialhardwaretoensurethatusersand
programs would not accidentally or deliberately interfere with each other. As the operat-

ing systems in personal computers evolved from single-user single-application platforms

to multitasking and multiprocessing systems, the microprocessors have incorporated the

featuresrequiredtosupportthem.
ThethirdroleoftheCPUistoexecuteapplicationprograms.TheCPUaccessesthe

system hardware and controls the flow of data through the system largely because some

applicationprogramrequiresthatitdoso.Thisrolegreatlyinfluencedthedevelopment
of many early complex instruction set computing (CISC) microprocessors. Reduced

instruction set computing (RISC) processors emphasize smaller and more efficient
instruction sets than those in CISC processors and place the burden of high-level pro-

gramming support on the compilers, which are programs that convert the source code

written by programmers to executable code that is executed by the processor.

SECTION 14–3 CHECKUP

 1. Describe the fetch/execute cycle.

 2. Namethefourelementsinamicroprocessor.

 3. WhatistheALUanditspurpose?

 4. Whathappensduringareadoperation?

 5. Whathappensduringawriteoperation?

14–4 The Processor: Addressing Modes

A processor must address the memory to obtain data or store data. There are several ways

in which the processor can generate an address when it is executing an instruction. These

ways are called addressing modes and they provide for wide programming flexibility. Each

instruction in a processor’s instruction set generally has a certain addressing mode associ-

ated with it. The type and number of addressing modes vary from one processor to another.

In this section, five common addressing modes are discussed, and generic instructions are

used for illustration.

After completing this section, you should be able to

u Explain inherent addressing

u Explain immediate addressing

u Explain direct addressing

818 Data Processing and Control

u Explain indexed addressing

u Explain relative addressing

Inherent Addressing

Inherent addressing is sometimes known as implied addressing. The one-byte instructions

usingthismodegenerallyrequirenooperand,ortheoperandisimpliedbytheop-code,
which is a mnemonic form of an instruction. An operand is the object to be manipulated

by the instruction. For example, an instruction used to clear the accumulator (CLRA) has

animpliedoperandofallzeros.Theimpliedall-zerosoperandendsupintheaccumula-

toraftertheinstructionisexecuted.Anotherexampleisahaltorwaitinstruction(WAI),
whichrequiresnooperandbecauseitsimplytellstheprocessortostopalloperations.The
sequencethattheprocessorgoesthroughinhandlinganinstructionwithinherentaddress-

ing is illustrated in Figure 14–17. The op-codes used for illustration are similar to the op-

codes of a typical processor.

READ

WAI op-code

WAITiming/

Control unit

Memory

Memory

address

decoder

Data

register

0

1

2

3

4

5

6 00111110

00111110

Address of

WAI op-code

Instruction

decoder

1
2

4
3

Address register

00000000000000110

1 Address code (610) is placed on address bus.

Data are placed on data bus and stored in data register by the read signal.2

3 Instruction is decoded.

Timing/Control unit stops processor operation.4

FIGURE 14–17 Fetch/execute cycle for the wait (WAI) instruction. This illustrates

inherent addressing.

Immediate Addressing

Immediate addressing is used in conjunction with two-byte instructions where the first

byte is the op-code and the second byte is the operand. The load accumulator (LDA)

and the add to accumulator (ADDA) instructions are two examples that use immediate

addressing.

 The Processor: Addressing Modes 819

The LDA immediate op-code is stored in one memory address, and the operand is stored

in the address immediately following the op-code. That is, the op-code and operand are

at consecutivememoryaddresses.When theLDA immediate instruction is fetchedand
executed, it tells the processor to get the contents of the next memory location (operand)

andloaditintotheaccumulator,asillustratedinFigure14–18.

Direct Addressing

For an instruction using direct addressing, the first part is the op-code and the second part

is the address of the operand, not the operand itself. For example, the LDA instruction uses

direct addressing as well as immediate addressing. LDA direct has a different op-code than

LDA immediate. Let’s assume each part is one byte for simplicity.

READ

Memory

First fetch/Execute cycle

Second fetch/Execute cycle

Memory

address

decoder

0

1

2

3

4

5

6

7

10000110

00000110

Timing/

Control unit

Program

counter

Address

register
Data register

Accumulator

LDA

immediate

op-code

Operand

Address of

operand

Address of

op-code

Instruction

decoder

LDA

immediate

10000110/00000110

00000110
0000001/00000010

00000001/0000010

1 Address of LDA immediate op-code (110) is placed on address bus.

LDA immediate op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the operand.4

Address of operand (210) is placed on address bus.5

Operand is placed on data bus and stored in data register by the read signal.6

Operand is loaded into accumulator.7

5

1

4
3

6

2

7

FIGURE 14–18 Illustration of immediate addressing. The process steps are numbered in

sequence, and the cycle operations are color-coded.

820 Data Processing and Control

The LDA direct instruction is used to illustrate direct addressing. Figure 14–19

showstheLDAdirectinstructioninmemoryaddresses1and2.Thefirstbyteisthe
op-code,andthesecondbyteistheoperandaddress.WhentheLDAdirectinstruction
is fetched and executed, it tells the processor to load the accumulator with the operand

located at the memory address specified by the second byte of the instruction. The

process is illustrated in Figure 14–19.

READ

Memory

10000110

10001001

Timing/

Control unit

Address

register
Data

register

Accumulator

LDA direct

op-code

Operand address
Address of

operand

address

Operand

address

Address of

op-code

Instruction

decoder

LDA

direct

Operand

6

00000001/0000010/00000110

First fetch/Execute cycle

Second fetch/Execute cycle

Third fetch/Execute cycle

1 Address of LDA direct op-code (110) is placed on address bus.

LDA direct op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the address of the operand.4

Address of operand address (210) is placed on address bus.5

Operand address is placed on data bus and stored in data register by the read signal.6

Operand address (610) is loaded into address register.7

Operand address (610) is placed on address register.8

Operand is placed on data bus and loaded into data register.9

Operand is loaded into accumulator.10

10

98

7

5

1

3
4

Program counter

0000001/00000010 10001001

10000110/00000110/10001001

Memory

address

decoder

0

1

2

3

4

5

6

7

00000110

2

FIGURE 14–19 Illustration of direct addressing.

Indexed Addressing

Indexed addressing is used in conjunction with the index register. An instruction using

indexedaddressingconsistsoftheop-codeandtheoffsetaddress.Whenanindexedinstruc-

tion is executed, the offset address is added to the contents of the index register to produce

 The Processor: Addressing Modes 821

anoperandaddress.InFigure14–20theLDA(loadaccumulator)instructionisagainused
to illustrate indexed addressing.

Relative Addressing

Relative addressing is used by a class of instructions known as branch instructions.

Basically,abranchinstructionallowstheCPUtogobackorskipaheadforaspecified
number of addresses in a program instead of going to the next address in sequence.
Branching instructions are used to form program loops. For a relative addressing
instruction (branch instruction), the first byte is the op-code and the second byte is the

relativeaddress.Whenabranch instruction isexecuted, the relativeaddress isadded
to the contents of the program counter to form the address to which the program is

READ

ADD

Index register

Address register

Address of

op-code

Address of

offset address

Address of

operand

Data

register
LDA

indexed

op-code

Offset address

ALU

Instruction

decoder
LDA

indexed

Accumulator

Operand

Memory

address

decoder

00000101

101001100

1

2

3

4

5

12 11001001

8

1

5

9

2

3 11

4

7

7

00000111

00000000/00000001/00001100

11001001

10100110/00000101/11001001

First fetch/Execute cycle

Second fetch/Execute cycle

Third fetch/Execute cycle

1 Address of LDA indexed op-code (010) is placed on address bus.

LDA indexed op-code is placed on data bus and stored in data register by the read signal.2

3 LDA indexed instruction is decoded.

Timing/Control unit initiates a read operation to fetch the address of the operand.4

Offset address (510) is selected at address 110.5

Offset address is placed on data bus and stored in data register by the read signal.6

Offset address is added to contents of index register (710) by the ALU to produce address of operand (1210).7

Address of operand (1210) is loaded into address register.8

Address of operand is placed on address bus.9

Operand is placed on data bus and stored in data register by the read signal.10

Operand is transferred into accumulator.11

10

6

FIGURE 14–20 Illustration of indexed addressing.

822 Data Processing and Control

Address register
Data

register

BRA relative

Relative address

BRA

op-code

Instruction

decoder

00000001/0000010/00000111 READ

Memory

address

decoder

00000101

00100000

0

1

2

3

4

5

6

7

Address of

op-code

Address of

relative

address

Branch

address

5

Memory

First fetch/Execute cycle

Second fetch/Execute cycle

1 Address of BRA relative op-code (110) is placed on address bus.

BRA op-code is placed on data bus and stored in data register by the read signal.2

3 BRA instruction is decoded.

Program count is transferred to ALU and address register.4

Address of relative address (210) is placed on address bus.5

Relative address (510) is placed on data bus and stored in data register by the read signal.6

Relative address is transferred to ALU.7

Program count and relative address are added by ALU and resulting branch address (710) is

placed in address register.

8

Program branches to specified address (710).9

9

1

4

8

3

7

2

6

ALU

ADD

0000001/00000010

Program counter

10000110/00000101

FIGURE 14–21 Illustration of relative addressing (branching).

tobranch.Figure14–21 illustrates relativeaddressingusingabranchrelativealways
(BRA) instruction that can branch both forward or backward. Forward branching is
shown.

SECTION 14–4 CHECKUP

 1. List five types of addressing.

 2. Whatisanop-code?

 3. Whatisanoperand?

 4. Explain branching.

 The Processor: Special Operations 823

14–5 The Processor: Special Operations

During normal operation the CPU fetches instructions from system memory, and these
instructions are decoded by the instruction decoder. Each decoded instruction affects the

operationofthetimingandcontrolunit,whichinturnsynchronizestheoperationofthe
CPU,systembuses,andsystemcomponentstoexecutetheinstruction.Inthissection,spe-

cific CPU operations (polling, interrupts, exceptions, and bus requests) that occur when
special circumstances or events arise that preempt normal processor operation are discussed.

After completing this section, you should be able to

u Define polling

u Define the terms interrupt and exception

u Describe the process by which a processor responds to and services an interrupt

u Explain how an interrupt service routine differs from a subroutine

u Explainwhycomputersystemsusebusrequests

A computer runs programs that limit what the computer is permitted to do and how it

will respond to situations that arise. Some situations are predictable and others are not.

Even when a situation is predictable, just when it will occur may not be. As an example,

every word processor program must respond to input from a keyboard, but the program

cannot predict just when someone will press a key.

Polling

OnetechniquetodealwithunpredictableeventsistohavetheCPUpoll,orrepeatedlycheck,
thekeyboard.Thesameoccursforotherperipheraldevicesthatmayrequireattentionfrom
theCPU.EachtimetheCPUpollsadevice,itmuststoptheprogramthatitiscurrentlypro-

cessing,gothroughthepollingsequence,provideserviceifneeded,andthenreturntothe
point where it left off in its current program. This process is inefficient and is suitable only

fordevicesthatcanbeservicedatregularandpredictableintervals.Figure14–22illustrates
polling,wheretheCPUsequentiallyselectseachperipheraldeviceviathemultiplexertosee
if it needs service.

Interrupts and Exceptions

A more efficient approach than polling is to have the processor perform its normal opera-

tionsanddeviatefromthemonlywhensomespecialeventrequirestheprocessortotake
special action to handle it. Some sources use the term exceptionforanyeventthatrequires
specialhandlingbytheprocessor.Othersourcesuseexception, software interrupt (SWI),

or trap for an event due to software and interrupt or hardware interrupt (HWI) for an event

duetohardware.Wewilluseinterrupt to refer to a hardware event and exception for a

softwareeventthatrequiretheCPUtodeviatefromitsnormaloperation.
When the processor receives an interrupt or an exception, it finishes executing

the current instruction and then runs a special sequence of instructions called an
interrupt service routine (ISR) or exception handler. An ISR similar to calling a stan-

dard programsubroutinebutwith three importantdifferences.Becausetheproces-

sor cannot know when an interrupt will occur, it automatically saves on the register

stack status information about the program that is executing at the time the interrupt

or exception occurs. The information includes the contents of the condition code

register as well as the address of the next instruction to be executed when the ISR

is finished. Sometimes the accumulator and condition code register, which make up

the program status word, are both saved. The ISR must save on the stack any other

824 Data Processing and Control

registers it may use to ensure that the interrupted process will not be affected when

it resumes executing.

Secondly, the processor obtains the address of the ISR based on the specific inter-

rupt or exception that occurs. In some systems, a programmable interrupt controller

(PIC) provides the address of the ISR over the data bus when the processor acknowl-

edgesaninterruptrequest.Othersystemsuseautovectoredinterrupts thatobtain the
address for each interrupt from entries in an interrupt vector table stored in memory.

Each vector, or ISR address, in the table specifies the starting address of an ISR. The

programmer must write the ISRs and place the starting address for each in the correct

location of the interrupt vector table. If no ISR exists for an entry in the vector inter-

rupt table, or if the interrupt vector table is not properly initialized, interrupts and
exceptions can cause the processor to behave erratically, “hang” (stop responding), or

“crash” (abort and restart).

A third difference is that the ISR uses a special return from interrupt (RTI) instruc-

tion, which restores the additional status information as well as the address of the next

instruction. RTI is used rather than a standard return from subroutine (RET) instruction,

which restores only the address of the next instruction, to exit and return processor

controltotheinterruptedprocess.BeforeexecutingtheRTIinstruction,theISRmust
restore any registers it saved on the stack.

Specific interrupts and exceptions vary with each processor, but the following list describes

some typical ones.

Reset This is sometimes called a cold boot. A cold boot completely restarts the system

sothattheprocessorrunsthepoweronself-test(POST),initializesthehardware,loads

I/O port
2

I/O port
3

I/O port
1OM

I/O port

n

Address bus

Data bus

Control bus

Peripheral
1

READY

Peripheral
2

READY

Peripheral
3

READY

Peripheral
n

READY

. . .

CPU

Multiplexer

Select

RAM R

FIGURE 14–22 Basic concept of CPU polling peripheral devices.

 The Processor: Special Operations 825

Bus Request Operations

The device in a computer that drives the address bus and the bus control signals is called

the bus master.Inasimplecomputerarchitecture,onlytheCPUcanbebusmaster,which
meansthatallcommunicationsbetweenI/OdevicesmustinvolvetheCPU.Morecomplex

RA I/O port
n

Address bus

Data bus

. . .

Interrupt request lines

* INTA – Interrupt
acknowledge

 I

PIC M ROM
I/O port

2
I/O port

3
I/O port

1

Peripheral
1

Peripheral
2

Peripheral
3

Peripheral
n

CPU

INTA* NTR

FIGURE 14–23 Basic concept of interrupt control.

the hardware drivers and operating system, and performs all other tasks necessary to

prepare the system for operation.

Software reset This is a software exception and is sometimes called a warm boot. This

alsorestarts thesystembutbypassesmanyofthehardwareinitializationtasksper-
formed by a cold boot.

Divide by zero This is a software exception and occurs when the processor attempts to

divideanumberbyzero.

System timer This is a hardware interrupt and occurs when a special timer asserts a

signalindicatingthataspeciiedtimeintervalor“timetick”(suchas1/60thofasec-

ond) has elapsed since the last occurrence.

Unrecognized instruction This is a hardware interrupt that occurs when the instruction

decoder determines that the value it contains is not a valid instruction.

As the above list shows, ISRs must perform a variety of tasks. Just what the ISR does

canbeascomplexorsimpleastheprogrammerdesires.Figure14–23showsthebasiccon-

cept of interrupts where a device called a programmable interrupt controller (PIC) is used

tomonitorperipheraldevicesforinterruptrequestsandsendtheappropriateaddresstothe
CPUsoitcantaketherequiredaction.

826 Data Processing and Control

architecturesallowotherdevices(ormultipleCPUs)totaketurnsatcontrollingthebus.
For example, a network controller card can be used to access a disk controller directly

whiletheCPUperformsothertasksthatdonotrequirethebus.Anydevicecanplacedata
onthedatabuswhentheCPUreadsfromthatdevice,butonlythebusmasterdrivesthe
address bus and control signals.

Although processors operate at high speeds, they are not always efficient at transfer-

ringdata.Whenaprocessortransfersdatafromonedevicetoanother,itmustuseabus
cycle to read in the data from the source device and use another bus cycle to write the

data back out to the destination device. The overhead in reading data into the processor

andwritingitoutagaingreatlyslowsdatatransfers.Thebusrequestoperationallows
other bus masters to take control of the system buses and rapidly transfer data between

system devices.

Bus request operations are similar to interrupts and exceptions but differ in three
importantways.Busrequestoperationsdonotcomplete thecurrent instructioncycle
before proceeding. Instructions can take hundreds or even thousands of clock cycles,

andthecircumstancesthatgeneratedthebusrequestmaybetoourgenttobedelayed.
Forexample,aCDdrivemaybeon thevergeofabufferunderrunandrequiredata
immediately to refill the buffer, or a memory controller may need to immediately refresh

the system DRAM to prevent data from being lost. Interrupts and exceptions allow

the processor to complete the current instruction cycle before processing the interrupt

or exception.

Secondly,inabusrequestoperation,theprocessorpassescontrolofthesystembuses
totherequestingdevice,whichthenhandlesallbusoperations.Theprocessorcontinuesto
execute instructions in the ISR or exception handler during interrupts.

Athirddifferenceisthatoncetheprocessorgrantsthebusrequestandrelinquishesthe
systembuses,theprocessorcannotregaincontrolofthesystemuntiltherequestingdevice
relinquishescontrolortheprocessorisreset.Thesequenceofeventsduringabusrequest
operation is as follows:

 1. Thebusmasterrequestingcontrolofthesystembusessubmitsarequestbyasserting
theprocessor’sbusrequest(BR)line.

 2. The processor tri-states the system buses and signals that it has released control of

thebusesbyassertingthebusgrant(BG)line.

 3. Therequestingbusmasterusesthesystemaddress,data,andcontrollinestotransfer
data between system devices.

 4. Aftercompletingthedatatransfers,therequestingbusmastertri-statesthesystem
busesandsignalstheendofthebusrequestoperationbyassertingthebusgrant
acknowledge(BGACK)line.

Direct Memory Access (DMA)

OneimportantclassofbusmasteristheDMA (direct memory access) controller. These

devices are designed specifically to transfer large amounts of data between system devices

inafractionofthetimethatthesystemprocessorwouldrequire.ToutilizeaDMAcon-

troller, the processor first writes the starting source address, starting destination address,

and number of bytes to transfer to registers within the DMA controller. The processor

next enables the transfer by writing to a control register within the controller, which then

initiatesthebusrequestoperation.ComputersystemstypicallyuseDMAcontrollersto
transfer data between memory and hardware peripherals, such as when loading a program

or data file from a hard drive to memory or when transferring a message from system

memory to the transmit buffer of an Ethernet controller. DMA controllers can also move

 The Processor: Special Operations 827

data between memory devices, for example, when moving data from main memory to

cache memory.

DMA speeds up data transfers between RAM and certain peripheral devices. Basi-
cally,DMAbypasses theCPU for certain typesofdata transfers, thus eliminating the
timeconsumedbynormalfetchandexecutecyclesrequiredforeachCPUreadorwrite
operation. Transfers between the disk drive and RAM are particularly suited for DMA

because of the large amount of data and the serial nature of the transfers. Generally, the

DMAcontrollercanhandledatatransfersseveraltimesfasterthantheCPU.Figure14–24
showsacomparisonofadatatransferhandledbytheCPU(parta)andonehandledby
the DMA (part b).

FIGURE 14–24 Illustration of DMA vs CPU data transfer.

Data bus

Memory read I/O write

CPU

RAM I/O port

Data bus

DMA
controller

I/O port

CPU

RAM

(b) Data transfer handled by the DMA controller

(a)DatatransferhandledbytheCPU

Busmastersother thanDMAcontrollersalsousebus requestoperations.Processors
inmultiprocessorsystemsusebusrequestoperationstoaccesssharedmemoryandother
systemresources.Memorycontrollersusebusrequestoperationstoperformbackground
memory operations, such as refreshing DRAM and ensuring that the data in main memory

and cache memory are consistent.

Figure 14–25 shows a computer system block diagram with a DMA controller and
aPIC.

828 Data Processing and Control

Read-only

memory

(ROM)

CS

CS

CS

CS
ACK RQ

Address bus

Data

buffer

Control

buffer

Random

access

memory

(RAM)

Interrupts

System

input/output

(system I/O)

PIC

Address

decoder

Wait-state

generator

0
1
2
3
4
5
6
7

BR
BG

BGACK

IRC
IACK

Processor

CS

BR
BG
BGA/CK

DMA

controller

Data bus

Control bus

Address

buffer

FIGURE 14–25 Block diagram of a typical computer.

14–6 Operating Systems and Hardware

Each computer system consists of two main components. The microprocessor, memories,

interface circuits, peripherals, power supplies, and other electronic components make up

what is collectively referred to as computer hardware. The programs that the microproces-

sor executes and that control the computer system are collectively referred to as computer

software.Onegeneralruleisanythinginacomputersystemthatyoucanphysicallytouch
is hardware, and anything that you can’t physically touch is software.

After completing this section, you should be able to

u Explain the three basic duties of an operating system

u Discuss how an operating system functions in a computer system

SECTION 14–5 CHECKUP

 1. Compare and contrast exceptions and interrupts.

 2. Compareandcontrastbusrequestsandinterrupts.

 3. Define and explain the purpose of direct memory accesses.

 Operating Systems and Hardware 829

u Compare and contrast the difference between multitasking and nonmultitasking

operating systems

u Differentiate between multitasking and multiprocessing

u Identify and discuss the issues presented by multitasking

Operating System Basics

The operating system(OS)ofacomputerisaspecialprogramthatestablishestheenvi-
ronment in which application programs operate. The operating system provides the func-

tional interface between application programs in the system, called processes, and the

computerhardware.Becausetheoperatingsystemmustworkcloselywiththecomputer
hardware, it is often written in assembly language or programming language with low-level

hardware support, such as C++.

An operating system increases the overall complexity of a computer system, but using an

operating system offers a number of advantages over running stand-alone application pro-

grams.Theoperatingsystemtestsandinitalizeshardwareinthecomputersystem,eliminat-
ingtheneedforeachapplicationtoduplicatethesefunctions.Operatingsystemsalsoprovide
a standard computing environment so that applications can execute consistently. Finally,

operating systems provide system services that allow applications access to commonly used

systemresources(suchasthereal-timeclock,I/Oports,anddatafiles),whichsimplifythe
code for applications programs. A drawback of operating systems is that processes may exe-

cute more slowly; accessing system resources through an operating system can take longer

than a program accessing them directly. An operating system has three basic duties.

 1. Toscheduleandallocatesystemresources(CPUtime,memory,accesstosystem
peripherals)

 2. To protect system processes and resources (preventing accidental or deliberate cor-

ruptionofprocesscodeanddata,unauthorizedaccesstohardwareandmemory)

 3. To provide system services (messaging between processes, low-level hardware

 drivers)

Multiple Processes

Computers can run multiple processes in two basic ways. The first way, called multitask-

ing, shares a single-core processor among multiple processes. The processor runs more

than one process but switches between them so that each process uses only part of the

processor’savailabletime.Multitaskingsystemsusedifferenttechniquestodecidewhen
toswitchbetweenprocesses.Onetechniqueallowsaprocesstorununtilitmustwaitfor
some event, such as a keypress, before it can continue and switches to another process that

is ready to run.Another technique, calledpreemptive multitasking, allows each process

to run for a specific amount of time before the operating system switches to another pro-

cess.Athirdtechnique,callednon-preemptive multitasking, allows a process to run until

itvoluntarilyrelinquishestheprocessortoanotherprocess.Figure14–26illustrateshowa
single-core processor multitasks.

Program 1

Program 2

Processing

program 1

Processing

program 2

Time slice 1 Time slice 2 Time slice 3 Time slice 4

Total time

Processing

program 1

Processing

program 2

Single-core processor

FIGURE 14–26 Simplified model of processor multitasking.

830 Data Processing and Control

The second way for a computer system to run multiple processes, called multiprocessing,

uses multiple processors, each of which can either multitask or run a single process.

Figure14–27illustratestheconceptofmultitaskedmultiprocessing.

Program 1

Program 2

Program 3

Program 4

Processing

program 3

Processing

program 1

Processing

program 2

Time slice 1 Time slice 2 Time slice 3 Time slice 4

Processing

program 1

Processing

program 2

Processing

program 4

Processing

program 3

Processing

program 4

FIGURE 14–27 Multitasked multiprocessing in a multicore processor.

Supervisor and User States

It is difficult for multiple users or processes to coexist in a computer system if processes have

unrestrictedaccesstosystemresources.Onceaprocesstakescontroloftheprocessorandis
running, it can modify or disable any software or hardware in the system that exists to control

it. The solution to this is to restrict what the process can access. Some processors use the

user/supervisor state bit so only trusted code, like the operating system, can run under certain

circumstances. For multiprocess or multiuser systems, the processor executes in supervisor

state when it first powers up, while the operating system is running, and when the processor

respondstoaninterrupt.Whentheoperatingsystemloadsandtransferscontroltoanapplica-

tion program, it first clears the user/supervisor state bit. This places the process in user state

and prevents it from accessing restricted parts of the computer system’s hardware or software.

Memory Management Unit

Onedeviceinthecomputersystemthathasnotyetbeendiscussedisthememorymanage-

ment unit, or MMU. Memory management units are very sophisticated logic devices that

handle many details associated with accessing memory in computer systems, including

memory protection, wait-state generation, address translation for handling virtual memory,

andcachecontrol.Asanexample,considerasimplifiedMMUthatsimplyprovidesmem-

oryprotection.TheprocessorcanprogramtheMMUwiththestartandendaddressesof
amemoryrange.TheMMUthenactsasacomparator.IftheMMUdetectsavalueonthe
address bus that is less than the programmed start address or greater than the programmed

end address, it will generate a hardware interrupt to the processor.

System Services

Operatingsystemsprovidesystemservicesthatallowapplicationsaccesstocommonlyused
system resources. This is essential for allowing processes to interact and communicate with

each other to share information, coordinate operations, and otherwise function in unison.

Interprocess communication uses software interrupts (also called traps).Whenoneprocess
wishestoutilizeasystemservice,itloadsspecificregisterswithvaluesandtheninvokesa
specific trap to pass control to the operating system’s exception handler for that trap.

When the process executes the trap, the processor enters supervisor mode; and the
exceptionhandlerusestheregistercontentstofulfilltherequestedservice.If,forexample,
therequestedservicewastosendseveralbytesfromoneprocesstoanother,theexception
handler would use the starting address of the data and the number of data bytes contained

in the processor registers to copy the data from the user memory of the source process to

 Programming 831

the user memory of the destination process. It would then load a condition code indicating

that the service had been completed successfully (or failed) in one of the processor registers

andwouldreturnprocessorcontroltotherequestingprocess.
Whenprocessesaremeanttointeractwithotherprocesses,theyeachmustbecarefully

designed to ensure that messages are passed at the right time and in the right order and that

theprocessescanrecoverfromcommunicationerrors.Otherwise,oneprocessmaybelieve
that it has sent out a valid message and await a response, while the intended destination

process is waiting for the first process to send a message to which it can respond. The result

is that neither process can proceed.

SECTION 14–6 CHECKUP

 1. Whatarethethreebasicdutiesofanoperatingsystem?

 2. Compare and contrast multitasking and multiprocessing.

 3. Describe how a memory management unit prevents one process from accessing the

memory space of another process.

 4. Explain how an operating system permits two processes to exchange information.

14–7 Programming

Assembly language is a way to express machine language in English-like terms, so there is

a one-to-one correspondence. Assembly language has limited applications and is not por-

table from one processor to another, so most computer programs are written in high-level

languages such as C++,JAVAandBASIC.High-levellanguagesareportableandtherefore
can be used in different computers. High-level languages must be converted to the machine

language for a specific microprocessor by a process called compiling.

After completing this section, you should be able to

u Describe some programming concepts

u Discuss the levels of programming languages

Levels of Programming Languages

A hierarchy diagram of computer programming languages relative to the computer hard-

wareisshowninFigure14–28.Atthelowestlevelisthecomputerhardware(CPU,mem-

ory,diskdrive,input/output).Nextisthemachine language that the hardware understands

becauseitiswrittenwith1sand0s(remember,alogicgatecanrecognizeonlyaLOW(0)
or a HIGH (1). The level above machine language is assembly language where the 1s and

0sare representedbyEnglish-likewords.Assembly languagesareconsidered low-level
because they are closely related to machine language and are machine dependent, which

means a given assembly language can only be used on a specific microprocessor.

The level above assembly language is high-level language, which is closer to human

language and further from machine language. An advantage of high-level language over

assembly language is that it is portable, which means that a program can run on a variety of

computers. Also, high-level language is easier to read, write, and maintain than assembly

language.Most system software (e.g.,Windows), and applications software (e.g.,word
processors and spreadsheets) are written with high-level languages.

Assembly Language

Toavoidhavingtowriteoutlongstringsof1sand0storepresentmicroprocessorinstruc-

tions, English-like terms called mnemonics or op-codes are used. Each type of micro-

processor has its own set of mnemonic instructions that represent binary codes for the

832 Data Processing and Control

instructions. All of the mnemonic instructions for a given microprocessor are called the

instruction set. Assembly language uses the instruction set to create programs for the micro-

processor; and because an assembly language is directly related to the machine language

(binary code instructions), it is classified as a low-level language. Assembly language is

one step removed from machine language.

Assembly language and the corresponding machine language that it represents is spe-

cific to the type of microprocessor or microprocessor family. Assembly language is not

portable; that is, you cannot directly run an assembly language program written for one

type of microprocessor on another type of microprocessor. For example, an assembly pro-

gram for the Motorola processors will not work on the Intel processors. Even within a

given family different microprocessors may have different instruction sets.

An assembler is a program that converts an assembly language program to machine

languagethatisrecognizedbythemicroprocessor.Also,programscalledcross-assemblers

translate an assembly language program for one type of microprocessor to an assembly

language for another type of microprocessor.

Assembly language is rarely used to create large application programs. However,

assembly language is often used in a subroutine (a small program within a larger pro-

gram) that can be called from a high-level language program. Assembly language is

useful in subroutine applications because it usually runs faster and has none of the

restrictions of a high-level language. Assembly language is also used in machine con-

trol, such as for industrial processes. Another area for assembly language is in video

game programming.

Conversion of a Program to Machine Language

All programs written in either an assembly language or a high-level language must be

convertedintomachinelanguageinorderforaparticularcomputertorecognizethepro-

gram instructions.

Assemblers

An assembler translates and converts a program written in assembly language into machine

code,as indicated inFigure14–29.The termsource program is often used to refer to

a program written in either assembly or high-level language. The term object program

refers to a machine language translation of a source program.

 Assembly language

• English-like terms representing
binary code

• Machine dependent

 High-level language

• Closer to human language
• Portable

Computer hardware (the “machine”)

• CPU
• Memory (RAM, ROM)
• Disk drives
• Input/Output

Machine language

• Binary code (1s and 0s)
• Machine dependent

FIGURE 14–28 Hierarchy of programming languages relative to computer hardware.

 Programming 833

Assembly language
program

(Source program)
Assembler

Machine language
program

(Object program)

FIGURE 14–29 Assembly to machine conversion using an assembler.

High-level language

program

(Source program)

Compiler

Machine language

program

(Object program)

FIGURE 14–30 High-level to machine conversion with a compiler.

All high-level languages, such as C++, will run on any computer. A given high-level

language is valid for any computer, but the compiler that goes with it is specific to a partic-

ulartypeofCPU.ThisisillustratedinFigure14–31,wherethesamehigh-levellanguage
program (written in C++ in this case) is converted by different machine-specific compilers.

Computer 1
Object program
(machine code)

C++
Source program

Computer 2
Object program
(machine code)

Computer 3
Object program
(machine code)

Compiler
Computer 1 with

CPU A

Compiler
Computer 2 with

CPU B

Compiler
Computer 3 with

CPU C

FIGURE 14–31 Machine independence of a program written in a high-level language.

Example of an Assembly Language Program

For a simple assembly language program, let’s say that we want the computer to add a list

of numbers from the memory and place the sum of the numbers back into the memory. A

zeroisusedasthelastnumberinthelisttoindicatetheendofthelistofnumbers.Thesteps
requiredtoaccomplishthistaskareasfollows:

 1. Clear a register (in the microprocessor) for the total or sum of the numbers.

 2. Pointtotheirstnumberinthememory(RAM).

 3. Checktoseeifthenumberiszero.Ifitiszero,allthenumbershavebeenadded.

 4. Ifthenumberisnotzero,addthenumberinthememorytothetotalintheregister.

 5. Pointtothenextnumberinthememory.

 6. Repeatsteps3,4,and5.

Compilers

A compiler is a program that compiles or translates a program written in a high-level language

andconvertsitintomachinecode,asshowninFigure14–30.Thecompilerexaminestheentire
sourceprogramandcollectsandreorganizestheinstructions.Everyhigh-levellanguagecomes
with a specific compiler for a specific computer, making the high-level language independent

of the computer on which it is used. Some high-level languages are translated using what is

called an interpreter that translates each line of program code to machine language.

834 Data Processing and Control

Aflowchartisoftenusedtodiagramthesequenceofstepsinacomputerprogram.Fig-

ure14–32showstheflowchartfortheprogramrepresentedbythesixsteps.

YesIs number
= zero?

No

Point to first
number.

Initialize total
to zero.

End
Add number

to total.

Point to next
number.

Start

FIGURE 14–32 Flowchart for adding a list of numbers.

The working portion of the assembly language program implements the addition prob-

lemshownintheflowchartinFigure14–32.Twooftheregistersinthemicroprocessor
arenamedeaxandebx.Thecommentsprecededbyasemicolonarenotrecognizedbythe
computer; they are for explanation only.

 mov eax,0 ;Replaces the contents of the eax

register with zero.

 ;Register eax will store the total of

the addition.

 mov ebx, OFFSET NumArray ;Places memory address of NumArray

into the ebx register.

next: cmp dword ptr [ebx],0 ;Compares the number stored in the ebx

register to zero.

 jz done ;If the number in the ebx register is

zero, jump to “done”.

 add eax,[ebx] ;Add the number in the ebx register to

the eax register.

 add ebx, 4

 jmp next

done: mov [ebx],eax

 call WriteInteger ;WriteInteger utility by Floyd to view

integer values

 exitProg ;exitProg utility provided by Floyd

utility to end the executable

 Programming 835

Depending on the assembler, most programs in assembly language will have a num-

ber of assembler directives that are used by the assembler to do a variety of tasks. These

tasks include setting up segments, using the appropriate instruction set, describing data

sizes,andperformingmanyother“housekeeping”functions.Tosimplifytheexplana-

tion, only two directives were shown in the preceding program. The directives were

word ptr,whichisusedtoindicatethesizeofthedatapointedtobytheebxregister,
andOFFSET.

EXAMPLE 14–2

Write the instructions for anassembly languageprogram thatwillind the largest
unsigned number in the data and place it in the last position. Assume the last data point

issignaledwithazero.

Solution

The flowchart is shown in Figure 14–33.

YesIs number
> BIG?

No

Point to first
number.

Initialize BIG

to zero.

Point to
next number.

Last
number?

Yes

End

Replace BIG

with number.

No

FIGURE 14–33 Flowchart. The variable BIG represents the largest value.

The data are assumed to be the same as before. The program listing (with comments)

is as follows:

 mov eax,0 ;initial value of BIG is in the eax

register

 mov ebx,OFFSET NumArray ;point to the location in memory where

the data are stored

836 Data Processing and Control

Types of Instructions

The programs in this section only show a few of the hundreds of variations of instruc-

tions available to programmers. Generally, an instruction set can be divided into categories,

which are described here.

Data Transfer

ThemostbasicdatatransferinstructionMOVwasintroducedintheexampleprograms.
TheMOVinstruction,forexample,canbeusedinseveralwaystocopyabyte,aword
(16 bits), or a double word (32 bits) between various sources and destinations such as
registers,memory,andI/Oports.(AbettermnemonicforMOVmighthavebeen“COPY”
becausethisiswhattheinstructionactuallydoes.)Otherdatatransferinstructionsinclude
IN(getdatafromaport),OUT(senddatatoaport),PUSH(copydataontothestack,a
separateareaofmemory),POP(copydatafromthestack),andXCHG(exchange).

Arithmetic

There are a number of instructions and variations of these instructions for addition,

subtraction, multiplication, and division. The ADD instruction was used in both exam-

ple programs. Other arithmetic instructions include INC (increment), DEC (decre-

ment),CMP(compare),SUB(subtract),MUL(multiply),andDIV(divide).Variations
of these instructions allow for carry operations and for signed or unsigned arithmetic.

These instructions allow for specification of operands located in memory, registers,

andI/Oports.

Bit Manipulation

This group of instructions includes those used for three classes of operations: logical

(Boolean)operations,shifts,androtations.ThelogicalinstructionsareNOT,AND,OR,
XOR,andTEST.Anexampleofa shift instruction isSAR(shiftarithmetic right).An
exampleofarotateinstructionisROL(rotateleft).Whenbitsareshiftedoutofanoper-
and, they are lost; but when bits are rotated out of an operand, they are looped back into

the other end. These logical, shift, and rotate instructions can operate on bytes or words

in registers or memory.

next: cmp dword ptr [ebx],eax ;is the data point larger than BIG?

 jbe check ;if the data point is smaller, go

to “check”

 mov eax, [ebx] ;otherwise, put the new largest data

point in eax

check: add ebx,4 ;point to the next number in memory

(four bytes per word)

 cmp dword ptr [ebx], 0 ;test for the last data point

 jnz next ;continue if the data point is not

a zero

 mov [ebx], eax ;save BIG in memory

 call WriteInteger ;WriteInteger utility by Floyd to

view integer values

 exitProg ;exitProg utility provided by Floyd

utility to end the executable

Related Problem

Explainhowyoucouldchangethelowcharttoindthesmallestnumberinthelist
instead of the largest.

 Programming 837

Loops and Jumps

Theseinstructionsaredesignedtoalterthenormal(oneaftertheother)sequenceofinstruc-

tions. Most of these instructions test the processor’s flags to determine which instruction should

beprocessednext.InExample14–2,theinstructionsJBEandJNZwereusedtoalterthepath.
OtherinstructionsinthisgroupincludeJMP(unconditionaljump),JA(jumpabove),JO(jump
overflow),LOOP(decrementtheCXregisterandrepeatifnotzero)andmanyothers.

Strings

A string is a contiguous(oneaftertheother)sequenceofbytesorwords.Stringsarecom-

mon in computer programs. A simple example is a sentence that the programmer wishes

to display on the screen. There are five basic string instructions that are designed to copy,

load, store, compare, or scan a string—either as a byte at a time or a word at a time. Exam-

plesofstringinstructionsareMOVSB(copyastring,onebyteatatime)andMOVSW
(copy a string, one word at a time).

Subroutine and Interrupts

A subroutine is a miniprogram that can be used repeatedly but programmed only once. For

example,ifaprogrammerneedstoconvertASCIInumbersfromakeyboardtoaBCDfor-
mat,asimpleprogrammingstructureistomaketherequiredinstructionsaseparateprocess
and “call” the process whenever necessary. Instructions in this group include CALL (begin

the subroutine) and RET (return to the main program).

Processor Control

This is a small group of instructions that allow direct control of some of the processor’s

flags and other miscellaneous tasks. An example is the STC (set carry flag) instruction.

High-Level Programming

The basic steps to take when you write a high-level computer program, regardless of the

particular programming language that you use, are as follows:

 1. Determine and specify the problem that is to be solved or task that is to be done.

 2. Create an algorithm; that is, develop a series of steps to accomplish the task.

 3. Express the steps using a particular programming language and enter them on the

software text editor.

 4. Compile (or assemble) and run the program.

A simple program will show an example of high-level programming. The following

C++ program implements the same addition problem defined by the flowchart in Figure

14–32andimplementedusingassemblylanguage.

int total = 0; //Initialize the total to zero.

int *number = NumArray; //Initialize a pointer to the array of integers.

while (*number != 0x00) //Loop while the value is not found. The

 //asterisk preceding the pointer identifier

 //number says the contents of the

 //memory location pointed to by the

 //Identifier number are being evaluated.

{

 total = total + *number; //Accumulate summation of total

 number++; //Increment pointer to next number in memory

}

cout << total; //C++ cout statement used to view integer value

838 Data Processing and Control

ThisC++programisequivalenttotheassemblyprogramthataddsaseriesofnumbers
and produces a total value.

 int total = 0; mov eax, 0

 int *number = NumArray; mov ebx, OFFSET NumArray

 while (*number != 0x00) next: cmp DWORD PTR [ebx], 0

 jz done

 {

 total = total + *number; Equivalent add eax, [ebx]

 number++; add ebx, 4

 }

 jmp next

 cout << total; mov [ebx], eax

 done: mov [ebx], eax

[C++]

 call WriteInteger

 Assembly

SECTION 14–7 CHECKUP

 1. Define program.

 2. Whatisanop-code?

 3. Whatisastring?

14–8 Microcontrollers and Embedded Systems

Although a general-purpose microprocessor can interface with a variety of devices over its

system buses, its ability to interface with the real world is limited. Most general-purpose

microprocessors must use analog-to-digital converters (ADCs), digital-to-analog convert-

ers(DACs),universalasynchronousreceiversandtransmitters(UARTs)andothercom-

munication controllers, peripheral interface adapters (PIAs), external timers, and other
specialized peripherals to process real-world information. Microcontrollers are used in
microprocessor-controlled applications called embedded systems that perform a specific

setof tasksand incorporateboth thehardwareand firmware required toperform them.
Embeddedsystemsincludepersonalelectronicdevicessuchascellphones,MP3players,
and calculators as well as consumer and industrial products as microwave ovens, auto-

mated assembly systems, and robots.

After completing this section, you should be able to

u Describe the general architecture of microcontrollers

u Discuss the types of peripherals found in common microcontrollers

u Describe how microcontroller peripherals are configured

u Describe how microcontrollers are used in various embedded systems

Microcontroller Basics

A special type of processor, called a microcontroller, sometimes abbreviated as mC or

MCU, combines a microprocessor core, memory, and common peripherals in a single
package.Microcontrollerscanrangeincomplexityfromsimpledeviceswithafewdozen
pins to very complex devices with hundreds of pins. A common aspect of all these processors

 Microcontrollers and Embedded Systems 839

is that the design of each seeks to incorporate all the elements of a microprocessor system

into a single package. A microcontroller will typically include the following functional

units:

• Amicroprocessor(calledtheprocessorcore)

• Nonvolatilememoryforprogramcode,deviceconigurationdata,andsimilardata
that must be preserved when power is removed

• RAMforprogramdata,internalregisters,peripheraldevicebuffers,andotherdata
storage

• Peripheraldevicessuchastimers,ADCs,DACs,communicationcontrollers,andI/O
ports

• Internalbusestoconnecttheprocessorcoretointernalmemory

• Internal buses to connect the processor core and internal memory to peripheral
devices

• Interfacecircuitrytoconnectthemicrocontrollerwithexternaldevices

In addition to the above list of microcontroller features, more sophisticated microcon-

trollers can also include the following:

• Aphase-lockedloop(PLL)tomultiplyalow-frequencyexternalclocktoahigher
internalfrequency,increasingthespeedofmicrocontrolleroperation

• DMAcontrollerstoimprovedatatransferbetweeninternalmemoryandperipheral
devices

• Programmablelogicresources,or“fabric”,toimplementcustomfunctions

• AJTAGinterfacetosupportdevicetestingandprogramming

• Specialpowermodesforlow-powerandstandbyoperation

Figure 14–34 shows a simplified block diagram of a typical microcontroller.

Microcontroller

Peripheral bus

A
d
d
re

ss
 b

u
s

D
at

a
b
u
s

C
o
n
tr

o
l

b
u

s

Processor

core

Address bus

Control bus

Data bus
Signal

connection

RAM

ROM

Address bus

Data bus

Control bus

Peripheral I/O

Peripheral I/O

Peripheral

Peripheral

External

bus

controller

FIGURE 14–34 Simplified microcontroller block diagram.

Microcontroller Peripherals

Microcontrollers feature a wide variety of peripherals. Manufacturers select the type

and number of peripherals, as well as the types and amounts of internal memory, to

meettherequirementsofspecificapplications,suchascommunication,automotive,and

840 Data Processing and Control

 motion-control products. For example, microcontrollers that target communication appli-

cations will include a wide variety and number of communication controllers (such as

Ethernet, I2C,USB,andUART)tosupportthetransmissionandreceptionofdatausing
multiple protocols. In contrast, microcontrollers meant for motion-control applications,

such as robotic assemblies, will include ADCs, DACs, encoders, and pulse width modula-

tors(PWMs)forpositionsensingandmotorfeedbackandcontrol.
Many pins on microcontrollers are multifunctional. This not only helps to reduce the

total pin count and cost of the device but also limits the functions that can be used at the

sametime.ThedatasheetmaystatethatacommunicationsmicrocontrollerhasfourUSB
controllers,twoUARTcontrollers,anEthernetcontroller,anexternalmemoryinterface,
and80general-purposeI/O(GPIO)lines,butitisunlikelythatadesigncanuseallofthese.
A pin on a communications microcontroller, for example, might serve as a transmit line for

USBcommunications,aclear-to-signallineforUARTcommunications,atransmitlinefor
Ethernet communications, an address line for the external bus controller, or a general-pur-

poseI/O(GPIO)pin;butitcanbeconfiguredforonlyonefunctionatatime.Sinceappli-
cations rarely can change pin functions “on the fly,” the circuit design permanently assigns

the function of each microcontroller pin. If the circuit designer must use a set of pins for an

external memory interface but also needs other functions that those pins provide, she either

must find those functions on other pins (which is why microcontrollers offer more than one

instance of a type of peripheral) or use external circuits to provide those functions.

The following describes some of the more common types of peripherals on micro-

controllers.

General-Purpose I/O (GPIO) General-purposeI/Opinsaretypicallythedefaultfunc-

tion for many microcontroller pins. As the name suggests, these pins can be configured as

input or outputs to read or write data, either as individual bits (for serial transfer of data)

orgroupsofbits(forparallertransferofdata).TypicalapplicationsforGPIOlinesareto
read individual switches, to drive LED indicators, or to select or enable latches or buffers.

Communication Controllers Communication controllers allow microcontrollers to com-

municate with other devices using specific communication protocols. Some standard com-

municationprotocolsareuniversalasynchronousreceiveandtransmit(UART),Ethernet,
universalserialbus(USB),inter-integratedcircuit(IICorI2C),serialperipheralinterface
(SPI),controllerareanetwork(CAN),andhigh-leveldatalinkcontrol(HDLC).Because
the timing, flow control, and data format of these protocols vary so widely, configuring

communication controller functions is typically much more involved than for other periph-

eral functions.

Timers Microcontroller timers can have multiple uses. These include setting the fre-

quencyforacommunicationcontroller,indicatingwhenapresettimeintervalhaselapsed,
determining the elapsed time between two events, and providing a periodic time tick for a

system real-time clock.

ADCs and DACs ADCs and DACs are the means by which digital circuits interact with

an analog world. As you know, digital circuits must use a limited set of values to represent

a continuous range of analog data. Microcontrollers use ADCs to convert analog voltage

and current measurements from sensors into digital values for processing and use DACs to

convert digital values into analog voltages and currents to control electric and electronic

circuits.

Quadrature Encoders Quadrature encoders are used to determine the speed, direc-

tion, and position of a moving object, such as a computer mouse or a stepper motor. A

quadratureencoderrepresentsthepresentpositionofatrackedobjectwithaGraycode
sequence.Whentheobjectmoves,theGraycodevaluechanges.Eachchangewillincre-

ment or decrement a counter to represent a positive or negative change in position. For

example,asystemcouldusethesequence00 S 01 S 11 S 10 S 00 to represent a posi-

tivechangesothatthesequence00 S 10 S 11 S 01 S 00 would represent a negative

change. The counter value represents the position of the tracked object in the physical

 Microcontrollers and Embedded Systems 841

system relative to the starting point or origin of the tracked object; how fast the counter

value changes reflects the speed of the tracked object. Quadrature encoders typically use

32-bitorlargercounterstopreventanunderfloworoverflowconditionthatwouldmake
it seem that the tracked device suddenly changed from a maximum or minimum position

orviceversa.Trackedobjectsrequireoneencoderforeachdimensionofmovement.An
object that moves in one dimension, such as a sliding door, needs only one encoder to

track movement along the line of travel. An object that moves in two dimensions, such as a

computermouse,requirestwoencoderstotrackmovementintheplaneoftravel.Objects
thatmoveinthreedimensions,suchassomeroboticassemblies,requirethreeencodersto
track movement in the space of travel.

Pulse Width Modulators As you know, a pulse width modulator modulates, or varies,

the pulse width of a repetitive digital signal to change the signal’s duty cycle (i.e., the

ratioofthetimethatasignalisHIGHtotheperiodofthesignal).Pulsewidthmodulators
are often used in motor control. Although motor controller circuits can use the amplitude

of winding current to set the speed of some motors, a more typical approach is to keep

the amplitude of the applied winding current constant and vary the duty cycle to control

the speed. Microcontrollers can precisely control the duty cycle to accurately set the

motor’srunningspeed.Also,microcontrollerscanchangethedutycycleveryquicklyin
response to the effects of motor speed due to line or load variations to maintain a constant

running speed.

External Memory Controllers Although most microcontrollers contain internal ROM,
RAM,EEPROM,flash,andothermemoryforcode,data,andotherprograminformation,
someapplicationsrequiremorememorythanamicrocontrollercontains.Consequently,many
microcontrollers feature external memory controllers that permit interfacing the microcon-

troller to external memory devices. Some microcontrollers do not contain any internal mem-

ory, so external memory must be used. External memory controllers often feature decoded

chipselectlinesthatallowprogrammerstoconfigurethesizeofthememoryrange,theport
size(8-,16-,or32-bits),andthenumberofwaitstatesforeachselectline;theycancontain
memory management units that provide memory protection for multitasking applications.

External memory devices are typically limited to SRAM, SDRAM, flash, and other memory

typesthatdonotrequirespecialbusoperations,asdoDRAMandEEPROM.

Configuring Peripherals

Microcontroller peripherals must be configured so that they operate the way an applica-

tionrequiresthemtodo.Configuringmeansloadingspecificregistersassociatedwiththe
peripheral with values that control the function and operation of the peripheral. The reg-

ister and values vary with each peripheral, but the registers fall into the general categories

describednext.Dependinguponthenumberofbitsrequiredtoconfiguresomeaspectof
aperipheral,somecategoriesmayshareoneregister,whileothersmayrequiremultiple
registers to contain the necessary information.

Control Registers Control registers determine how the peripheral will function. For some

peripherals a control register may select the specific peripheral as well as the characteristics

for that peripheral. For example, the control registers for a communication controller could

specifythespecificcommunicationprotocolandthedatarate,datapacketsize,errordetec-

tion method, and operating mode (interrupt-driven or polled).

Status Registers Status registers contain information about how the peripheral is oper-

ating and conditions associated with peripheral operation. Applications use status reg-

isters to detect errors, determine when the peripheral has completed some task, and

decidewhenconditionsrequiresomespecialhandling.Themicrocontrollermayauto-

matically clear some status bits when firmware corrects a detected condition, while in

other cases firmware may need to manually clear some status bits. For example, if an

ADC sets the end-of-conversion status bit to indicate it has completed converting an

analog value, reading the converted value from the ADC data register may automatically

842 Data Processing and Control

clear the bit; firmware may need to specifically clear the status bit to allow the ADC to

perform another conversion.

Data Registers Data registers contain information that the peripheral processes in some

way. The value in a data register can be data for the peripheral to process, data processed

by the peripheral, or data currently being processed. The contents of data registers might

not change unless firmware changes them, or operation of the peripheral may automati-

callyupdatethem.Forexample,theinitializationregisterforatimercontainstheinitial
count value that is loaded into the timer and may not change unless firmware writes a new

value into the register. In contrast, the timer’s count register holds the actual value of the

timer and may update each time the counter is clocked. Some peripherals have only a few

configuration registers.

The GPIO pins typically have only two registers: a control register that determines
whether a pin is an input or output and a data register that contains the signal level of

thepin.Otherperipheralscanhavemanymoreregisters.Acommunicationcontroller,for
example, can have a control register to specify the communication parameters, a status

register to monitor the operation of the controller, a transmit buffer descriptor register to

specify the memory locations of data to be transmitted, a transmit length register to specify

the number of bytes to transmit, a receive buffer descriptor register to specify the memory

locations at which received data are to be stored, a receive length register to indicate the

number of bytes received, an interrupt status register to signal communication events during

reception and transmission, and an interrupt mask register to prevent or allow recognition

ofcommunicationevents.Whenconfiguringmicrocontrollerperipherals,theprogrammer
must carefully read the user manual and understand not only the operation of each periph-

eral he intends to use but also which configuration registers must be programmed and the

configuration values to use.

As the number of products using microcontrollers has grown, manufacturers and

third-party vendors have visual development and evaluation tools to simplify the pro-

cess of programming microcontrollers. Many tools now allow programmers to use drop-

down lists, check boxes, and other visual controls to generate C or C++initialization
code by specifying the peripherals they wish to use and how the peripherals should oper-

ate.While this isconvenientandshortensdevelopment time,errorsarestillpossible.
Programmersshouldalwaysreviewthecodetoverifyitmatcheswhattheyexpected.

Microcontrollers in Embedded Systems

Personal Handheld Systems

Smartphones,digitalmediadevices,calculators,andportableGPSunitsareonlyafew
examples of portable handheld electronic devices that are microcontroller-based embed-

ded systems. Microcontrollers are widely used in these products because they can easily

interface with the input and output hardware, rapidly process data, and consume relatively

little power. Some of the most popular microcontrollers for portable handheld devices are

those based on the ARM (Advanced RISC Machine) processor.

A block diagram for a microcontroller-based programmable calculator is shown in Fig-

ure14–35.ThecalculatorincorporatesaUSBcommunicationport.TheROMcontainsthe
embedded code that implements the calculator functions and processes while the RAM

provides storage for the system stack, system data, user data, and programs.The USB
controllertransmitsandreceivesdatapertheUSBcommunicationsprotocolandinterfaces
tothehardwarethatmakesupthephysicalUSBport.Thecalculatorkeypadconnectsto
aparallelportformedbymultipleGPIOlines,andthecalculatorLCDdisplayinterfaces
with an LCD driver peripheral in the microcontroller to create the human machine inter-

face, or HMI. A timer inside the microcontroller powers down the calculator after it has

beenactiveforapresetamountoftimetosaveenergy.Othertimersinthemicrocontroller,
whicharenotshown,setthecommunicationsratefortheUSBcontroller,provideareal-
time clock, and allow the user to set time-of-day alarms.

 Microcontrollers and Embedded Systems 843

Consumer Appliances

Virtually every electronic product today is a “smart” product that can make decisions,

performapreprogrammedsequenceofevents,orbemanuallyprogrammedtodoso.A
short list of these products includes microwave ovens, coffee makers, washers and dryers,

refrigerators, ovens, home entertainment components and systems, video game systems,

and robotic vacuum cleaners.

Automobile Systems

Automobiles use microcontrollers in a number of embedded systems. Embedded systems

in modern automobiles monitor vehicle operation and control the engine, fuel system,

brakes, air bags, door locks, environmental system, instrument display, vehicle navigation,

andvirtuallyeveryaspectofvehicleoperation.Onespecificfactorthatcanaffectmicro-

controllers in automotive applications is the operating environment. Microcontrollers must

be able to operate properly when exposed to the vehicle’s temperature, humidity, vibration,

and electrical noise that they will encounter when the vehicle is operating.

Automated Systems

Two large areas of embedded applications are robotics and automation. Robotic and auto-

mated assemblies by nature must operate independently, perform repetitive tasks, process

real-world data, and respond to circumstances that arise during operation. Embedded

microcontrollersystemscanperformthesetasksverywell.Oneparticularaspectofauto-

mated systems with which the microcontroller must deal is motion control. Microcon-

trollers must use feedback from the mechanical system to properly control the speed and

acceleration of the system to ensure that it operates properly.

Figure14–36showstheblockdiagramforabasicroboticssystem.Althoughtheblock
diagram is for a system that operates along a single axis, it can be extended to three axes

for three-dimensional movement by using three microcontroller systems.

TheROMcontainstheembeddedcodethatimplementstheroboticfunctionsandpro-

cesses;theRAMprovidesstorageforthesystemstackandsystemdata.Thequadrature
encoder receives encoded information from a motor position indicator and increments or

decrements a counter depending upon how the encoded pattern changes. The pulse width

modulator supplies a pulse train to a motor driver that in turn applies the voltages to the

motorwindingstoturnthemotor.GPIOlinesdetectwhenoptical,magnetic,orothersen-

sors indicate that the mechanical assembly has reached its maximum or minimum position.

Parallel port

LCD interface

USB channel

RAM

ROM
Peripheral bus

A
d
d
re

ss
 b

u
s

D
at

a
b
u
s

C
o
n
tr

o
l

b
u
s

Microcontroller

Signal

connection

Processor

core

USB

controller

GPIO

LCD

Driver

Timer

USB

port

Interface

circuitry

Keypad

Display

Address bus

Data bus

Control bus

FIGURE 14–35 Microcontroller block diagram for programmable calculator.

844 Data Processing and Control

Whenthesystemfirstpowersup,themicrocontrollerusesthequadratureencoderand
pulse width modulator to move the mechanical assembly to its minimum, or home, posi-

tionandclearsthecountersothatzerocorrespondstothishomepositionandinitializes
thesystem.Oncethesystemisinitialized,themicrocontrollerthenmovesthemechanical
assembly as programmed by driving the pulse width modulator to move the motor forward

or backward and monitor the counter to determine how far and fast the mechanical assem-

bly has moved. In most robotic systems, the microcontroller performs a complex series of

calculations while monitoring the motor position and driving the motor to ensure that the

mechanical assembly starts, stops, and operates smoothly.

D
at

a
b
u
s

C
o
n
tr

o
l

b
u
s

Address bus

Data bus

Control signal

Encoded position

Microcontroller

Motor

controller

Upper sensor

Lower sensor

Motor

Motor

position

A
d
d
re

ss
 b

u
s

Processor

core

RAM

ROM
Quadrature

encoder

Pulse width

modulator

GPIO

Signal

connection

Control bus

Peripheral bus

FIGURE 14–36 Basic block diagram for a robotics system.

SECTION 14–8 CHECKUP

 1. Howdoesamicrocontrollerdifferfromamicroprocessor?

 2. Whataresomecommonfunctionalunitsfoundinatypicalmicrocontroller?

 3. Discuss an advantage and disadvantage of multifunctional pins on a microcontroller.

 4. Whichperipheralsallowamicrocontrollertointeractwiththerealworld?

 5. Howdoesanembeddedsystemdifferfromapersonalcomputersystem?

 6. Identify some types of embedded systems in which microcontrollers are found.

14–9 System on Chip (SoC)

The system on chip (SoC) is a major step up in complexity from the microcontroller and is

what makes smaller and more powerful mobile devices possible. A SoC contains a variety

of functional blocks integrated on a single semiconductor chip to meet specific application

requirements.ASoCgenerally includesdataprocessing,bothdigital andanalog signal
processing, data conversion, memory, interfacing, and other functions. The SoC is found in

many devices such as smart phones, tablet computers, and digital cameras. Two important

advantagesoftheSoParesmallsizeandreducedpowerconsumption,whichmakeitideal
for small mobile devices.

After completing this section, you should be able to

u Describe a typical SoC

u List the functional elements of a SoC

 System on Chip (SoC) 845

A system on chip (SoC) is an integrated circuit that combines all components of a

computer or other electronic system on a single chip. The SoC offers reduced manufactur-

ingcostsandsmallersystemconfigurations;Packagesizescanbesmallerthanadime,as
shown in Figure 14–37.

(a) (b)

FIGURE 14–37 A typical SoC ball-grid package. The bottom of the package with the BG

contacts is shown. (a) Boris Sosnovyy/Shutterstock (b) Eldad Carin/Shutterstock.

A typical SoC consists of the following functional elements, depending on the

application:

• Asingleormultiple-processor(CPU)core

• Adigitalsignalprocessor(DSP)

• Agraphicsprocessor(GPU)

• Memory(ROM,RAM,EEPROM,lash)

• AnalogfunctionssuchasADCandDAC

• I/OinterfacessuchasUSB,Firewire,I2C,USART

• Timingsourcessuchasoscillatorsandphase-lockedloops(PLL)

• Voltageregulatorsandotherpowermanagementfunctions

• Busbridges

• Variousperipherals

• Programmablelogicandapplicationspeciiclogic

In a system using a microprocessor as the CPU, a variety of other chips must be
included to achieve full system capability. The same is true for systems using a microcon-

troller,althoughasmallerchipsetmayberequiredbecausethemicrocontrollertypically
has memory and some peripherals on a single chip. Actually, the microcontroller often is

considered a SoC with limited functionality. The SoC provides all functions necessary for

agivensystemapplication,suchasacomputeronasinglechip.Figure14–38illustratesa
simplified generic SoC block diagram. Actual SoCs feature a number of functions that vary

from one manufacturer to another.

TheCPU(centralprocessingunit) ina typicalSoCmayfeatureoneormoremicro-

processors(MPUs)aswellasagraphicsprocessor(GPU).Generally,SoCsuseproces-

sors based on ARM architecture. The ARM processors, developed by Advanced RISC

Machines,Ltd.inthe1980s,wereverysimpleintermsoftransistorcountandinstruction
set. They used reduced instruction set computer (RISC) architecture which allowed them

tohavehighperformanceand lowenergyconsumption.TheGPU(graphicsprocessing
unit)handlescomplexgamesandothervideorequirementsthatarefoundonsmartphones,
tablets, and other devices.

SoCsincludevarious typesofmemorysuchasROM,SRAM,DRAM,andcacheas
well as the accompanying control functions.A DSP (digital signal processor) is also a
feature on many SoCs along with analog functions such as ADC (analog-to-digital conver-

sion)andDAC(digital-to-analogconversion)elements.Ofcourse,interfacingisacrucial
partofanysystemandallSoCsprovideavaryingnumberofstandardbusandotherI/Os.
These interfacing elements may include USB, SPI, CAN, I2C,AGP, UART, Bluetooth,

846 Data Processing and Control

Wi-Fi,Ethernet,audio,rf,aswellasothers.Thenorthbridgeisacircuitthatconnectthe
CPUtothememory,andtothePCIinternalbus.Thesouthbridgeisacircuitthatcontrols
connectionstotheI/Os.

CPU

MPU/MCU/GPU

Northbridge
Power

management

Memory controller

MMU/DMA
DSP

Southbridge

I/O

Interfaces

Programmable

logic

Memory

ROM/RAM/

EEPROM/CACHE

Rf

WiFi, 3G, 4G

Peripherals

ADC/DAC

Timing

Oscillator/PLL

Internal bus

FIGURE 14–38 Generic block diagram of a typical SoC.

SECTION 14–9 CHECKUP

 1. WhatisaSoC?

 2. List two advantages of a SoC.

 3. NameatleastfivefunctionalelementsofaSoC.

SUMMARY

• ThebasicfunctionalcomponentsofaCPUaretheALU,registerset,andtimingandcontrolunit.

• AmicroprocessorimplementsthefunctionalcomponentsofaCPUonasingleIC.

• Thethreebasiccomputerbusesaretheaddressbus,databus,andthecontrolbus.

• Examplesofperipheralcomputerdevicesincludethekeyboard,externaldiskdrives,mouse,
printer, modem, and scanner.

• ComputersystemsuseI/Oportstoaccessperipheralssuchaskeyboards,mice,videomonitors,
modems, scanners, and disk drives.

• Thethreetasksofacomputersystemaretoacquire,process,andreturndata.

• Computersystemsusedifferenttypesofmemoryforspecializedfunctions,suchascachingand
queuingdata.

 Key Terms 847

• ThefunctionsofaCPUaretocontrolsystemhardware,toprovidehardwaresupporttothe
system operating system, and to execute programs.

• Amulticoreprocessorhastwoormoremicroprocessors(cores),eachwithitsownmemory
cache on a single chip.

• Pipelining,multitasking,andmultiprocessingaretechniquesfordecreasingtheprocessingtime.

• Buffersareusedtopreventoutputloadingbutintroducepropagationdelays.

• Waitstatesareusedtocompensatefordelaysinbussignalsduetobusbuffers,addressdecod-

ers, and mismatched timing specifications between hardware.

• Twomethodsforaprocessortoexecuteconcurrentmultipleprocessesaremultitaskingand
multiprocessing.

• Thethreebasicdutiesofamultitaskingoperatingsystemaretoallocateresources,toprotect
process and system resources, and to provide system services.

• Thebasic“language”ofacomputeriscalledmachinecodeinwhichinstructionsaregivenasa
series of binary codes.

• Inassemblylanguage,machineinstructionsarereplacedwithashortalphabeticEnglishmne-

monic that has a one-to-one correspondence to machine code. Assembly language also uses

directives to allow the programmer to specify other parameters that are not translated directly

into machine code.

• Microcontrollersintegrateamicroprocessorcorewithhardwareperipheralsandarewell-suited
for embedded applications.

• Embeddedsystemsprimarilyprocessreal-worldsignalsandoperateinrealtimeratherthan
manipulate application program data.

• Asystemonchip(SoC)isanintegratedcircuitthatcombinesallcomponentsofacomputeror
other electronic system on a single chip.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

ALU Arithmetic logic unit.

Assembly language A programming language that uses English-like words and has a one-to-one

correspondence to machine language.

BIOS Thesetoflow-levelroutinesthatinitializethecomputersystemhardwareandallowhigh-
level programs to interact with the system hardware.

Buffer A device that prevents loading of an output.

Bus master Any device that can control and manage the system buses in a computer system.

Caching Theprocessofcopyingfrequentlyaccessedprograminstructionsfrommainmemory
into faster memory to increase processing speed.

CPU Central processing unit; the “brain” of a computer that processes the program instructions.

DMA Direct memory access.

Exception Anysoftwareeventthatrequiresspecialhandlingbytheprocessor.

Hardware The circuitry and physical components of a computer system, as opposed to the

instructions (called software).

High-level language A type of computer language closest to human language that is a level above

assembly language.

Interrupt Anyhardwareeventthatrequiresspecialhandlingbytheprocessor.Aneventthat
causes the current process to be temporarily stopped while a service routine is run.

Interrupt vector table A data structure in memory that contains the addresses of interrupt service

routines for the processor.

Machine language Computer instructions written in binary code that are understood by a computer;

the lowest level of programming language.

848 Data Processing and Control

Main memory Memory used by computer systems to hold the bulk of programs and associated data.

Microcontroller An semiconductor device that combines a microprocessor, memory, and various

hardware peripherals on a single IC and generally used for special or limited applications.

Microprocessor A large-scale digital integrated circuit that can be programmed to perform

arithmetic,logic,orotheroperations;theCPUofacomputer.

Multiprocessing The use of multiple processors to multitask or run multiple programs.

Multitasking Atechniquebywhichasingleprocessorrunsmultipleprogramsconcurrently.

Op-code The mnemonic representation of a computer instruction.

Operand The object to be manipulated by the instruction.

Operating system The software that controls the computer system and oversees the execution of

application software.

Pipelining Atechniquewherethemicroprocessorbeginsexecutingthenextinstructionina
program before the previous instruction has been completed.

Program Asequentialsetofcomputerinstructionsdesignedtoaccomplishagiventask(s).

Signal Loading The effect of the multiple inputs degrading the voltage or timing specifications of

an output.

Software Computer programs; programs that instruct a computer what to do in order to carry out

a given set of tasks.

System bus The interconnecting paths in a computer system including the address bus, data bus

and control bus.

System on Chip (SoC) An integrated circuit that combines all components of a computer or other

electronic system on a single chip.

Wait state Asystembusdelayequaltooneprocessorclockcycle.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. ACPUconsistsofanALU,aninstructiondecoder,andatimingandcontrolunit.

 2. CPUstandsforcomputer peripheral unit.

 3. Memory devices are semiconductor devices that store information electronically and interface

with the computer system through buses.

 4. The operating system of a computer is a software component.

 5. TheALUisakeyelementinamicroprocessor.

 6. Microprocessors generally have three types of buses: address, data, and control.

 7. TheBIOSmemorycontainsprogram-specifichigh-levelcode.

 8. A multicore processor has one processor and more than one memory.

 9. Pipeliningallowsacomputertoexecuteaprogramfaster.

 10. Three levels of computer programming languages are machine, assembly, and high level.

 11. DMA stands for direct memory access.

 12. ThesignalsassociatedwithaDMAoperationarebusrequest,busgrant,andbusgrant
acknowledge.

 13. Microprocessor and microcontroller are different names for the same thing.

 14. SomeexamplesofmicrocontrollerperipheralsareGPIOs,ADCs,andquadratureencoders.

 15. SoCstandsforsequentialoutputcomputer.

SELF-TEST

Answers are at the end of the chapter.

 1. Whichofthefollowingisaperipheralunitofacomputer?
(a) Arithmetic and logic unit (b) Control unit

(c) Memory unit (d) Keyboard

 Self-Test 849

 2. The operation of the timing and control unit in a microprocessor is affected by

(a) the instruction decoder (b) the accumulator

(c) the arithmetic logic unit (d) the register array

 3. A 10-bit address bus support

(a) 1,000,000 memory addresses (b) 1024 memory addresses

(c) 100 memory addresses (d) 1000 memory addresses

 4. A bus that is used to transfer information both to and from the microprocessor is the

(a) address bus (b) data bus

(c) both of the above (d) none of the above

 5. A system bus is composed of

(a) address bus (b) data bus

(c) system bus (d) answers (a), (b), and (c)

 6. The third output state of a tri-state device is called

(a) logic 0

(b) logic 1

(c) high-Z state

(d) none of the above

 7. During the fetch cycle of a processor

(a) instructions are read from the memory

(b) data is stored as a result

(c) the data is processed in the ALU

(d) the instructions are executed in the processor

 8. The role of the CPU is to

(a) control the system hardware

(b) provide hardware support to the operating system

(c) execute application programs

(d) answers (a), (b), and (c)

 9. High level languages are converted to machine level language through

(a) an assembler (b) a debugger

(c) a compiler (d) a translator

 10. A computer program is a list of

(a) memory addresses that contain data to be used in an operation

(b) addresses that contain instructions to be used in an operation

(c) instructions arranged to achieve a specific result

 11. A type of assembly language instruction that alters the course of the program is called a

(a) loop (b) jump

(c) both of the above (d) none of the above

 12. A wait state

(a) terminates a bus cycle

(b) halts the processor clock for one period

(c) places the microprocessor in a low-power mode

(d) delays completion of a bus cycle by one processor clock

 13. A bus request differs from an interrupt in that

(a) an interrupt requires an external bus master to complete the operation

(b) a bus request will interrupt a current instruction cycle

(c) an interrupt cannot be masked

(d) a bus request does not involve a response from the processor

 14. An operating system

(a) schedules and allocates system resources

(b) protects the system processes and resources

(c) provides system services

(d) answers (a), (b), and (c)

 15. Mnemonics or op-codes are a part of

(a) assembly level languages (b) machine level languages

(c) high level languages (d) none of the above

850 Data Processing and Control

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 14–1 The Computer System

 1. Namethebasicelementsofacomputer.

 2. NamethefunctionalunitsofaCPU.

 3. Whatisabus?

 4. Explain how the control bus signals differ from those of the address and data buses.

Section 14–2 Practical Computer System Considerations

 5. Nametwospecialtypesofoutputthatallowdevicestosharesignallineswhileavoidingbus
contention.

 6. Whatcausessignalloading?

 7. InFigure14–5,determinethenumberofloadsthattheoutputisdrivinginparts(a)and(b).

 8. Inacomputersystem,howdoestheCPUselectadevicesuchasmemoryorInput/Output?

 9. Explain the purpose of a wait state.

Section 14–3 The Processor: Basic Operation

 10. Namethebasicelementsofamicroprocessor.

 11. List three operations that a microprocessor performs.

 12. List the three microprocessor buses.

 13. Explain what happens during a fetch/execute cycle.

 14. Explain how pipelining works.

Section 14–4 The Processor: Addressing Modes

 15. Listthesequenceofeventsfortheinherentaddressingmode.

 16. Listthesequenceofeventsforthedirectaddressingmode.

 17. Listthesequenceofeventsfortheindexedaddressingmode.

 18. A processor is using the relative addressing mode to execute a branch instruction. If the binary

number for 12510 is in the program counter and the number 5510 is in the data register, to what

memoryaddresswilltheprocessorbranch?

Section 14–5 The Processor: Special Operations

 19. Describe the purpose of an interrupt vector table.

 20. Howdoesaninterruptserviceroutinedifferfromanormalsubroutine?

 21. Describethesequenceofeventsinabusrequestoperation.

 22. Define DMA and describe its purpose in a computer system.

Section 14–6 Operating Systems and Hardware

 23. Whatarethetwogroupsofsoftwarethatexecuteinacomputersystemandwhatdotheyinclude?

 24. List the three basic duties of a multitasking operating system.

 25. Identify the two ways that computers execute more than one process concurrently and describe

how they differ.

 26. Describe four difficulties that running multiple concurrent processes can create.

 27. Whatarethefunctionsofamemorymanagementunit?

Section 14–7 Programming

 28. Whatisanassembler?

 29. Drawaflowchartforaprogramthataddsthenumbersfromoneto10andsavestheresultina
memorylocationnamedTOTAL.

 Answers 851

 30. Draw a flowchart showing how you could count the number of bytes in a string and place the

countinalocationinmemorycalledCOUNT.Assumethestringstartsatalocationnamed
STARTandhasa20H(hexadecimalASCIIcodeforaspace)tosignaltheend.Youshouldnot
count the space character.

 31. Explain what happens when the instruction mov ax,[bx] is executed.

 32. Whatisacompiler?

Section 14–8 Microcontrollers and Embedded Systems

 33. Whatisamicrocontroller?

 34. Identify the functional components of the microcontroller block diagram shown in Figure 14–39.

Data bus

A
d
d
re

ss
 b

u
s

D
at

a
b
u
s

C
o
n
tr

o
l

b
u
s

Peripheral bus

Peripheral I/O

Control bus

Peripheral I/O

Address bus

2

4

6

Address bus

1

Microcontroller

3

Data bus5

6

Control bus

FIGURE 14–39

 35. Whyaremicrocontrollerssowidelyusedinembeddedapplications?

 36. Howdoesamicrocontrollerdifferfromamicroprocessor?

Section 14–9 System on Chip (SoC)

 37. HowdoesaSoCdifferfromamicrocontroller?

 38. TheprocessorsusedinSoCsaregenerallybasedonwhattypeofarchitecture?

ANSWERS

SECTION CHECKUPS

Section 14–1 The Computer System

 1. ThemajorfunctionalblocksinacomputerareCPU,memory/storage,input/outputports.

 2. Peripheralsaredevicesexternaltothecomputer.

 3. Hardware is the microprocessor, memory, hard disk, etc. Software is the program that runs the

computer.

 4. Conventional memory returns the data stored at a specified address. Content-addressable

memory returns the address that contains a specified data value.

 5. The address bus is unidirectional. The data bus is bidirectional. The control bus consists of

signals that are bidirectional and operate independently rather than as a single functional

group.

852 Data Processing and Control

Section 14–2 Practical Computer System Considerations

 1. Buscontentionistheconditionthatresultswhentwooutputsareconnectedtothesamesignal
line attempt to drive it to different voltage levels. Two types of devices intended to prevent bus

contention on shared signal lines are tri-state devices and open collector (or open drain) devices.

 2. A processor uses an address decoder to select and enable various devices.

 3. Waitstatesinacomputersystemareadditionalclockcyclesinsertedinaprocessorbuscycleto
satisfy the timing specifications of system devices.

 4. A buffer prevents excess loading of a device and allows multiple devices to share the same bus.

Section 14–3 The Processor: Basic Operation

 1. Duringafetch/executecycle,theCPUretrieves(fetches)aninstructionfrommemoryand
carries out (executes) the instruction.

 2. ThefourelementsinamicroprocessorareALU,timingandcontrolunit,registerset,and
instruction decoder.

 3. TheALUisthearithmeticlogicunit,whichcarriesoutdecodedinstructions.

 4. Duringareadoperation,dataareacquiredfrommemory.

 5. During a write operation, data are stored in memory.

Section 14–4 The Processor: Addressing Modes

 1. Addressing modes are inherent, direct, immediate, indexed, and relative.

 2. An op-code is the representation of an computer program instruction.

 3. An operand is an object that is manipulated by an instruction.

 4. Branchingoccurswhentheprocessorleavesthenormalsequenceinaprogramandbranchesto
another place in the program.

Section 14–5 The Processor: Special Operations

 1. Although the terms are sometimes used interchangeably, interrupts are generated by hardware

sources and exceptions are generated by software sources.

 2. Abusrequestcaninterruptaninstructioncycle,cannotbemasked,andallowstheexternal
device to take control of the system buses. An interrupt must permit an instruction cycle to com-

plete, can be masked, and is serviced by the processor which retains control of the system buses.

 3. A direct memory access is a data transfer operation for which a special bus master called a DMA

controller rather than the microprocessor controls the system buses. Direct memory accesses

allow data transfers to occur much more rapidly than with the microprocessor because the

controller does not attempt to process the data for each transfer as would the microprocessor.

Section 14–6 Operating Systems and Hardware

 1. The three basic duties of an operating system are to allocate system resources, to protect

processes and system resources, and to provide system services.

 2. Multitasking allows a single processor to execute multiple processes concurrently by allocating

processor time to each process. Multiprocessing allows a system to execute multiple processes

by operating more than one processor.

 3. A memory management unit prevents a process from accessing the memory space of another

by comparing the contents of the address bus against a permitted range and generating an inter-

rupt when a violation occurs so that the operating system can take appropriate action.

 4. An operating system allows processes that are restricted to their own memory spaces to

exchange information by providing a system service, activated by a software interrupt, that has

the operating system pass the information between the processes.

Section 14–7 Programming

 1. Aprogramisasequenceofcomputerinstructionsdesignedtoperformaspecifiedtask.

 2. An op-code is an instruction expressed in mnemonic form.

 3. Astringisacontiguoussequenceofbytesorwords.

 Answers 853

Section 14–8 Microcontrollers and Embedded Systems

 1. A microcontroller basically includes many elements of a computer system where a microproc-

essorisonlytheCPU.

 2. Commonfunctionalunitsfoundinatypicalmicrocontrolleraretheprocessorcore,ROM,
RAM, one or more hardware peripherals, a signal connection block between the microcontroller

functional blocks, and an external memory controller.

 3. An advantage of multifunctional pins on a microcontroller is that it reduces the number of pins

andphysicalsizeofthedevice.Adisadvantageisthatitisnotalwayspossibletohaveaccess
toallthemicrocontrollerfeaturesthatanapplicationmayrequiresothatthedesignrequires
additional external hardware.

 4. Peripheralsthatallowmicrocontrollerstointeractwiththerealworldincludetimers,ADCs,
DACs,communicationcontrollers,GPIOs,quadratureencoders,andPWMs.

 5. An embedded system is designed to interact directly with the real world and perform a specific

function. A personal computer system processes data and can be configured with application

software to perform a number of tasks.

 6. Some embedded systems in which microcontrollers are found include personal electronics,

consumer electronics, automotive systems, and communication devices.

Section 14–9 System on Chip (SoC)

 1. A SoC is a system chip, a complete computer on a single silicon chip.

 2. Smallsizeandreducedpowerconsumption.

 3. FunctionalelementsofaSoC:oneormoreprocessors;DSP;GPU;memory;ADCandDAC;
I/Ointerfaces;timingsources;power;busbridges;peripherals;andprogrammablelogic.

RELATED PROBLEMS FOR EXAMPLES

 14–1 D6mustbeLOW.

 14–2 Changefirstblock(initializationblock)to“BIG = FFFF”; this is the largest possible

unsignednumber.Changefirstquestionto“Is number 6 BIG?”

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. T 5. T 6. T 7. F 8. F 9. T 10. T 11. T

 12. F 13. F 14. T 15. F

SELF-TEST

 1. (d) 2. (a) 3. (b) 4. (b) 5. (d) 6. (c) 7. (a) 8. (d) 9. (c) 10. (c) 11. (c)

 12. (d) 13. (c) 14. (d) 15. (a)

855

CHAPTER OUTLINE

Before beginning this chapter, Section 3–8 should be

covered.

15–1 Basic Operational Characteristics and

Parameters

15–2 CMOS Circuits

15–3 TTL (Bipolar) Circuits

15–4 Practical Considerations in the Use of TTL

15–5 Comparison of CMOS and TTL Performance

15–6 Emitter-Coupled Logic (ECL) Circuits

15–7 PMOS, NMOS, and E2CMOS

CHAPTER OBJECTIVES

■ Determine the noise margin of a device from data

sheet parameters

■ Calculate the power dissipation of a device

■ Explain how propagation delay time affects the

frequency of operation or speed of a circuit

■ Interpret the speed-power product as a measure

of performance

■ Use data sheets to obtain information about a

specific device

■ Explain what the fan-out of a gate means

■ Describe how basic TTL and CMOS gates operate

at the component level

■ Recognize the difference between TTL totem-

pole outputs and TTL open-collector outputs and

understand the limitations and uses of each

■ Connect circuits in a wired-AND configuration

■ Describe the operation of tri-state circuits

■ Properly terminate unused gate inputs

■ Compare the performance of TTL and CMOS

families

■ Handle CMOS devices without risk of damage due

to electrostatic discharge

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

This chapter is intended to be used as a “floating”

chapter. That is, all or portions of this chapter can be

covered at any selected points throughout the book or

completely omitted, depending on the course objec-

tives. Section 3–8 should be covered before begin-

ning this chapter.

In Chapter 3 (Section 3–8) you learned about basic

integrated circuit logic gates. This chapter provides an

introduction to the circuit technology used to imple-

ment those gates, as well as other types of IC devices.

Two major IC technologies, CMOS and bipolar

(TTL), are covered and their operating parameters are

defined. Also, the operational characteristics of vari-

ous families within these circuit technologies are com-

pared. Other circuit technologies are also introduced. It

■ TTL

■ CMOS

■ Noise immunity

■ Noise margin

■ Power dissipation

■ Propagation delay time

■ Fan-out

■ Unit load

■ Current sourcing

■ Current sinking

■ Pull-up resistor

■ Tri-state

■ Totem pole

■ Open-collector

■ ECL

■ E2CMOS

■ State the advantages of ECL

■ Describe the PMOS and NMOS circuits

■ Describe an E2CMOS cell

KEY TERMS

Key terms are in order of appearance in the chapter.

Integrated
Circuit Technologies

15CHAPTER

856 Integrated Circuit Technologies

15–1 Basic Operational Characteristics and Parameters

When you work with digital ICs, you should be familiar not only with their logical opera-

tion but also with such operational properties as voltage levels, noise immunity, power dis-

sipation, fan-out, and propagation delay time. In this section, the practical aspects of these

properties are discussed.

After completing this section, you should be able to

u Determine the power and ground connections

u Describe the logic levels for CMOS and TTL

u Discuss noise immunity

u Determine the power dissipation of a logic circuit

u Define the propagation delay time of a logic gate

u Discuss speed-power product and explain its significance

u Discuss loading and fan-out of TTL and CMOS

DC Supply Voltage

The nominal value of the dc supply voltage for TTL (transistor-transistor logic) devices is +5 V.

TTL is also designated T2L. CMOS (complementary metal-oxide semiconductor) devices are

available in different supply voltage categories: +5 V, +3.3 V, 2.5 V, and 1.8 V. Although omit-

ted from logic diagrams for simplicity, the dc supply voltage is connected to the VCC pin of an

IC package, and ground is connected to the GND pin. Both voltage and ground are distributed

internally to all elements within the package, as illustrated in Figure 15–1 for a 14-pin package.

is important to keep in mind that the particular circuit

technology used to implement a logic gate has no

effect on the logic operation of the gate. In terms of

its truth table operation, a certain type of gate that is

 implemented with CMOS is the same as that type of

gate implemented with TTL. The only differences in the

gates are the electrical characteristics such as power

dissipation, switching speed, and noise immunity.

VCC

14

7

+5 V

(a) Single gate (b) IC dual in-line package

GND

FIGURE 15–1 Example of VCC and ground connection and distribution in an IC package.

Other pin connections are omitted for simplicity.

CMOS Logic Levels

Logic levels were discussed briefly in Chapter 1. There are four different logic-level speci-

fications: VIL, VIH, VOL, and VOH. For CMOS circuits, the ranges of input voltages (VIL)

that can represent an acceptable LOW (logic 0) are from 0 V to 1.5 V for the +5 V logic

and 0 V to 0.8 V for the 3.3 V logic. The ranges of input voltages (VIH) that can represent an

 Basic Operational Characteristics and Parameters 857

acceptable HIGH (logic 1) are from 3.5 V to 5 V for the 5 V logic and 2 V to 3.3 V for the

3.3 V logic, as indicated in Figure 15–2. The ranges of values from 1.5 V to 3.5 V for 5 V

logic and 0.8 V to 2 V for 3.3 V logic are regions of unpredictable performance, and values

in these ranges are unacceptable. When an input voltage is in one of these ranges, it can be

interpreted as either a HIGH or a LOW by the logic circuit. Therefore, CMOS gates cannot

be operated reliably when the input voltages are in these unacceptable ranges.

VOH
VOH(min)

VOL(max)

Logic 0
(LOW)

Logic 1
(HIGH)

UnacceptableUnacceptable

VIH

VIL

5 V

3.5 V

1.5 V

0 V

VIL(max)

VIH(min)

VOL

5 V

4.4 V

0.33 V

0 V

(a) +5 V CMOS

Logic 1 (HIGH)

Logic 0 (LOW)

Input Output

VOH

VOH(min)

VOL(max)

Logic 0
(LOW)

Logic 1
(HIGH)VIH

VIL

3.3 V

2 V

0.8 V

0 V

VIL(max)

VIH(min)

VOL

3.3 V

2.4 V

0.4 V

0 V

(b) +3.3 V CMOS

Logic 1
(HIGH)

Logic 0
(LOW)

Input Output

Unacceptable Unacceptable

FIGURE 15–2 Input and output logic levels for CMOS.

The ranges of CMOS output voltages (VOL and VOH) for both 5 V and 3.3 V logic are

also shown in Figure 15–2. Notice that the minimum HIGH output voltage, VOH(min), is

greater than the minimum HIGH input voltage, VIH(min). Also, notice that the maximum

LOW output voltage, VOL(max), is less than the maximum LOW input voltage, VIL(max).

TTL Logic Levels

The input and output logic levels for TTL are given in Figure 15–3. Just as for CMOS, there

are four different logic level specifications: VIL, VIH, VOL, and VOH.

Noise Immunity

Noise is unwanted voltage that is induced in electrical circuits and can present a threat to

the proper operation of the circuit. Wires and other conductors within a system can pick up

stray high-frequency electromagnetic radiation from adjacent conductors in which currents

858 Integrated Circuit Technologies

are changing rapidly or from many other sources external to the system. Also, power-line

voltage fluctuation is a form of low-frequency noise.

In order not to be adversely affected by noise, a logic circuit must have a certain amount

of noise immunity. This is the ability to tolerate a certain amount of unwanted voltage

fluctuation on its inputs without changing its output state. For example, if noise voltage

causes the input of a 5 V CMOS gate to drop below 3.5 V in the HIGH state, the input is

in the unacceptable region and operation is unpredictable (see Figure 15–2). Thus, the gate

may interpret the fluctuation below 3.5 V as a LOW level, as illustrated in Figure 15–4(a).

Similarly, if noise causes a gate input to go above 1.5 V in the LOW state, an uncertain

condition is created, as illustrated in part (b).

VOH(max)

VOL(min)

Logic 0 (LOW)

Logic 1
(HIGH)VIH

VIL

5 V

2 V

0.8 V

0 V

VIL(max)

VIH(min)

VOL

5 V

2.4 V

0.4 V

0 V
Logic 0 (LOW)

Logic 1
(HIGH)

VIL(min)

VIH(max)

VOH

VOH(min)

VOL(max)

Input Output

UnacceptableUnacceptable

FIGURE 15–3 Input and output logic levels for TTL.

VOH

VOL

Noise riding on VIL level

Unallowed
region

If excessive noise causes input to go above

VIL(max), the gate may “think” that there is a

HIGH on its input and respond accordingly.

VIL

VIL(max)

VIH

VIH(min)

Unallowed
region

If excessive noise causes input to go below

VIH (min), the gate may “think” that there is a

LOW on its input and respond accordingly.

Potential response
to excessive noise
spike on input

Potential response
to excessive noise
spike on input

Noise riding on VIH level

(b)

(a)

FIGURE 15–4 Illustration of the effects of input noise on gate operation.

 Basic Operational Characteristics and Parameters 859

Noise Margin

A measure of a circuit’s noise immunity is called the noise margin, which is expressed in

volts. There are two values of noise margin specified for a given logic circuit: the HIGH-

level noise margin (VNH) and the LOW-level noise margin (VNL). These parameters are

defined by the following equations:

 VNH � VOH(min) � VIH(min) Equation 15–1

 VNL � VIL(max) � VOL(max) Equation 15–2

Sometimes you will see the noise margin expressed as a percentage of VCC. From the equa-

tions, VNH is the difference between the lowest possible HIGH output from a driving gate

(VOH(min)) and the lowest possible HIGH input that the load gate can tolerate (VIH(min)).

Noise margin, VNL, is the difference between the maximum possible LOW input that a

gate can tolerate (VIL(max)) and the maximum possible LOW output of the driving gate

(VOL(max)). Noise margins are illustrated in Figure 15–5.

VOH(min)

4.4 V

VIH(min)

3.5 V

The voltage on this line will never
be less than 4.4 V unless noise or
improper operation is introduced.

(a) HIGH-level noise margin

VNH
VOL(max)

0.33 V

VIL(max)

1.5 V

The voltage on this line will never
exceed 0.33 V unless noise or
improper operation is introduced.

(b) LOW-level noise margin

VNL

HIGH LOW

HIGH

FIGURE 15–5 Illustration of noise margins. Values are for 5 V CMOS, but the principle

applies to any logic family.

EXAMPLE 15–1

Determine the HIGH-level and LOW-level noise margins for CMOS and for TTL by

using the information in Figures 15–2 and 15–3.

Solution

For 5 V CMOS,

 VIH(min) = 3.5 V

 VIL(max) = 1.5 V

 VOH(min) = 4.4 V

 VOL(max) = 0.33 V

 VNH = VOH(min) - VIH(min) = 4.4 V - 3.5 V = 0.9 V

 VNL = VIL(max) - VOL(max) = 1.5 V - 0.33 V = 1.17 V

For TTL,

 VIH(min) = 2 V

 VIL(max) = 0.8 V

 VOH(min) = 2.4 V

 VOL(max) = 0.4 V

 VNH = VOH(min) - VIH(min) = 2.4 V - 2 V = 0.4 V

 VNL = VIL(max) - VOL(max) = 0.8 V - 0.4 V = 0.4 V

A TTL gate is immune to up to 0.4 V of noise for both the HIGH and LOW input states.

860 Integrated Circuit Technologies

Power Dissipation

A logic gate draws current from the dc supply voltage source, as indicated in Figure 15–6.

When the gate is in the HIGH output state, an amount of current designated by ICCH is

drawn; and in the LOW output state, a different amount of current, ICCL, is drawn.

Related Problem*

Based on the preceding noise margin calculations, which family of devices, 5 V CMOS

or TTL, should be used in a high-noise environment?

*Answers are at the end of the chapter.

(a)

LOW
HIGH

(b)

HIGH
LOW

HIGH

+VCC+VCC

ICCLICCH

FIGURE 15–6 Currents from the dc supply. Conventional current direction is shown.

Electron flow notation is opposite.

As an example, if ICCH is specified as 1.5 mA when VCC is 5 V and if the gate is in a

static (nonchanging) HIGH output state, the power dissipation (PD) of the gate is

PD = VCCICCH = (5 V)(1.5 mA) = 7.5 mW

When a gate is pulsed, its output switches back and forth between HIGH and LOW, and

the amount of supply current varies between ICCH and ICCL. The average power dissipation

depends on the duty cycle and is usually specified for a duty cycle of 50%. When the duty

cycle is 50%, the output is HIGH half the time and LOW the other half. The average supply

current is therefore

 ICC �
ICCH � ICCL

2
 Equation 15–3

The average power dissipation is

 PD � VCCICC Equation 15–4

EXAMPLE 15–2

A certain gate draws 2 mA when its output is HIGH and 3.6 mA when its output is

LOW. What is its average power dissipation if VCC is 5 V and the gate is operated on a

50% duty cycle?

Solution

The average ICC is

ICC =

ICCH + ICCL

2
=

2.0 mA + 3.6 mA

2
= 2.8 mA

 Basic Operational Characteristics and Parameters 861

Power dissipation in a TTL circuit is essentially constant over its range of operating

frequencies. Power dissipation in CMOS, however, is frequency dependent. It is extremely

low under static (dc) conditions and increases as the frequency increases. These character-

istics are shown in the general curves of Figure 15–7. For example, the power dissipation

of a low-power Schottky (LS) TTL gate is a constant 2.2 mW. The power dissipation of an

HCMOS gate is 2.75 mW under static conditions and 170 mW at 100 kHz.

Propagation Delay Time

When a signal passes (propagates) through a logic circuit, it always experiences a time

delay, as illustrated in Figure 15–8. A change in the output level always occurs a short time,

called the propagation delay time, later than the change in the input level that caused it.

As mentioned in Chapter 3, there are two propagation delay times specified for logic

gates:

• tPHL: The time between a designated point on the input pulse and the corresponding

point on the output pulse when the output is changing from HIGH to LOW.

• tPLH: The time between a designated point on the input pulse and the corresponding

point on the output pulse when the output is changing from LOW to HIGH.

These propagation delay times are illustrated in Figure 15–9, with the 50% points on the

pulse edges used as references.

The propagation delay time of a gate limits the frequency at which it can be operated.

The greater the propagation delay time, the lower the maximum frequency. Thus, a higher-

speed circuit is one that has a smaller propagation delay time. For example, a gate with a

delay of 3 ns is faster than one with a 10 ns delay.

Speed-Power Product

The speed-power product provides a basis for the comparison of logic circuits when both

propagation delay time and power dissipation are important considerations in the selection

of the type of logic to be used in a certain application. The lower the speed-power product,

the better. The unit of speed-power product is the picojoule (pJ). For example, HCMOS has

a speed-power product of 1.2 pJ at 100 kHz while LS TTL has a value of 22 pJ.

Loading and Fan-Out

When the output of a logic gate is connected to one or more inputs of other gates, a load

on the driving gate is created, as shown in Figure 15–10. There is a limit to the number

of load gate inputs that a given gate can drive. This limit is called the fan-out of the gate.

Fan-out is expressed as unit loads. One gate input represents a unit load to a driving gate

of the same logic family.

CMOS Loading

Loading in CMOS differs from that in TTL because the type of transistors used in CMOS logic

present a predominantly capacitive load to the driving gate, as illustrated in Figure 15–11. In

this case, the limitations are the charging and discharging times associated with the output

The average power dissipation is

PD = VCCICC = (5 V)(2.8 mA) = 14 MW

Related Problem

A certain IC gate has an ICCH = 1.5 mA and ICCL = 2.8 mA. Determine the average

power dissipation for 50% duty cycle operation if VCC is 5 V.

C
M

O
S

TTL

0
0

f

Power

FIGURE 15–7 Power-versus-

frequency curves for TTL and

CMOS.

HIGH

Delay

Input Output

t

FIGURE 15–8 A basic

illustration of propagation delay

time.

H

Input
Output

H

L

H

L

Input

Output

H = HIGH

L = LOW
tPLH tPHL

FIGURE 15–9 Propagation

delay times.

A

B

Driving gate Load gates

FIGURE 15–10 Loading a gate

output with gate inputs.

862 Integrated Circuit Technologies

resistance of the driving gate and the input capacitance of the load gates. When the output of

the driving gate is HIGH, the input capacitance of the load gate is charging through the output

resistance of the driving gate. When the output of the driving gate is LOW, the capacitance is

discharging, as indicated in Figure 15–11.

When more load gate inputs are added to the driving gate output, the total capacitance

increases because the input capacitances effectively appear in parallel. This increase in capac-

itance increases the charging and discharging times, thus reducing the maximum frequency

at which the gate can be operated. Therefore, the fan-out of a CMOS gate depends on the

frequency of operation. The fewer the load gate inputs, the greater the maximum frequency.

TTL Loading

A TTL driving gate sources current to a load gate input in the HIGH state (IIH) and sinks

current from the load gate in the LOW state (IIL). Current sourcing and current sinking

are illustrated in simplified form in Figure 15–12, where the resistors represent the internal

input and output resistance of the gate for the two conditions.

+

–
IDISCH

LOW

(b) Discharging

+ 5 V

+

–
ICHARGE

HIGH

(a) Charging

FIGURE 15–11 Capacitive loading of a CMOS gate.

+ 5 V

LOW

(b) Current sinking

+ 5 V

HIGH

IIH

(a) Current sourcing

HIGH

HIGH

Driver

Load

LOW

IIL

FIGURE 15–12 Basic illustration of current sourcing and current sinking in logic gates.

As more load gates are connected to the driving gate, the loading on the driving gate

increases. The total source current increases with each load gate input that is added, as illus-

trated in Figure 15–13. As this current increases, the internal voltage drop of the driving gate

+ 5 V

HIGH

Total
source I

IIH(1) IIH(2) IIH(n)

VOH

FIGURE 15–13 HIGH-state TTL loading.

 CMOS Circuits 863

increases, causing the output, VOH, to decrease. If an excessive number of load gate inputs

are connected, VOH drops below VOH(min), and the HIGH-level noise margin is reduced, thus

compromising the circuit operation. Also, as the total source current increases, the power

dissipation of the driving gate increases.

The fan-out is the maximum number of load gate inputs that can be connected without

adversely affecting the specified operational characteristics of the gate. For example, low-

power Schottky (LS) TTL has a fan-out of 20 unit loads.

The total sink current also increases with each load gate input that is added, as shown

in Figure 15–14. As this current increases, the internal voltage drop of the driving gate

increases, causing VOL to increase. If an excessive number of loads are added, VOL exceeds

VOL(max), and the LOW-level noise margin is reduced.

+ 5 V

Total sink I IIL(1)

IIL(2)

IIL(n)

LOWVOL

+ 5 V

+ 5 V

FIGURE 15–14 LOW-stage TTL loading.

In TTL, the current-sinking capability (LOW output state) is the limiting factor in deter-

mining the fan-out.

SECTION 15–1 CHECKUP

Answers are at the end of the chapter.

 1. Define VIH, VIL, VOH, and VOL.

 2. Is it better to have a lower value of noise margin or a higher value?

 3. Gate A has a greater propagation delay time than gate B. Which gate can operate at a

higher frequency?

 4. How does excessive loading affect the noise margin of a gate?

15–2 CMOS Circuits

Basic internal CMOS circuitry and its operation are discussed in this section. The abbre-

viation CMOS stands for complementary metal-oxide semiconductor. The term comple-

mentary refers to the use of two types of transistors in the output circuit. An n-channel

MOSFET (MOS field-effect transistor) and a p-channel MOSFET are used.

After completing this section, you should be able to

u Identify a MOSFET by its symbol

u Discuss the switching action of a MOSFET

864 Integrated Circuit Technologies

u Describe the basic operation of a CMOS inverter circuit

u Describe the basic operation of CMOS NAND and NOR gates

u Explain the operation of a CMOS gate with an open-drain output

u Discuss the operation of tri-state CMOS gates

u List the precautions required when handling CMOS devices

The MOSFET

Metal-oxide semiconductor field-effect transistors (MOSFETs) are the active switching

elements in CMOS circuits. These devices differ greatly in construction and internal opera-

tion from bipolar junction transistors used in bipolar (TTL) circuits, but the switching

action is basically the same: they function ideally as open or closed switches, depending

on the input.

Figure 15–15(a) shows the symbols for both n-channel and p-channel MOSFETs. As

indicated, the three terminals of a MOSFET are gate, drain, and source. When the gate

voltage of an n-channel MOSFET is more positive than the source, the MOSFET is on

(saturation), and there is, ideally, a closed switch between the drain and the source. When

the gate-to-source voltage is zero, the MOSFET is off (cutoff), and there is, ideally, an open

switch between the drain and the source. This operation is illustrated in Figure 15–15(b).

The p-channel MOSFET operates with opposite voltage polarities, as shown in part (c).

Drain (D)

Gate
(G)

Source (S)

n-channel

Drain

Source

p-channel

(a) MOSFET symbols (b) n-channel switch

ON

+5 V

+5 V +5 V

S

ON

OFF

0 V

+5 V +5 V

S

OFF

GG

(c) p-channel switch

ON

0 V

+5 V +5 V

D

ON

OFF

+5 V

+5 V +5 V

D

OFF

GG

SS

D D

Gate

FIGURE 15–15 Basic symbols and switching action of MOSFETs.

Sometimes a simplified MOSFET symbol as shown in Figure 15–16 is used.

CMOS Inverter

Complementary MOS (CMOS) logic uses the MOSFET in complementary pairs as its

basic element. A complementary pair uses both p-channel and n-channel enhancement

MOSFETs, as shown in the inverter circuit in Figure 15–17.
FIGURE 15–16 Simplified

MOSFET symbol.

 CMOS Circuits 865

When a HIGH is applied to the input, as shown in Figure 15–18(a), the p-channel

MOSFET Q1 is off and the n-channel MOSFET Q2 is on. This condition connects the out-

put to ground through the on resistance of Q2, resulting in a LOW output. When a LOW

is applied to the input, as shown in Figure 15–18(b), Q1 is on and Q2 is off. This condition

connects the output to +VDD (dc supply voltage) through the on resistance of Q1, resulting

in a HIGH output.

Q1

Q2

Drain (D)

Drain (D)
Output

Source (S)

Source (S)

+VDD

Input

Gate (G)

Gate (G)

FIGURE 15–17 A CMOS inverter circuit.

Q1

Q2

LOW

OFF

+VDD

HIGH

ON

(a) HIGH input, LOW output

Q1

Q2

HIGH

ON

+VDD

LOW

OFF

(b) LOW input, HIGH output

FIGURE 15–18 Operation of a CMOS inverter.

CMOS NAND Gate

Figure 15–19 shows a CMOS NAND gate with two inputs. Notice the arrangement of the

complementary pairs (n-channel and p-channel MOSFETs).

The operation of a CMOS NAND gate is as follows:

• WhenbothinputsareLOW,Q1 and Q2 are on, and Q3 and Q4 are off. The output is

pulled HIGH through the on resistance of Q1 and Q2 in parallel.

• WheninputA is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are off.

The output is pulled HIGH through the low on resistance of Q1.

• WheninputA is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are on.

The output is pulled HIGH through the low on resistance of Q2.

• Finally,whenbothinputsareHIGH,Q1 and Q2 are off, and Q3 and Q4 are on. In this

case, the output is pulled LOW through the on resistance of Q3 and Q4 in series to ground.

866 Integrated Circuit Technologies

CMOS NOR Gate

Figure 15–20 shows a CMOS NOR gate with two inputs. Notice the arrangement of the

complementary pairs.

Q1

Q3

Q4

Q2

Input A

Input B

Output

+VDD

A B XQ1

L S H

L S H

H C H

H

L

H

L

H C

Q2

S

C

S

C

Q3

C

C

S

S

Q4

C

S

C

S L

C = cutoff (off)

S = saturation (on)

H = HIGH

L = LOW

FIGURE 15–19 A CMOS NAND gate circuit.

Q4

Q1

Q2

Input A

Input B

Output

+VDD

Q3

C = cutoff (off)

S = saturation (on)

H = HIGH

L = LOW

A B XQ1

L S H

L S L

H C L

H

L

H

L

H C

Q2

S

C

S

C

Q3

C

C

S

S

Q4

C

S

C

S L

FIGURE 15–20 A CMOS NOR gate circuit.

The operation of a CMOS NOR gate is as follows:

• WhenbothinputsareLOW,Q1 and Q2 are on, and Q3 and Q4 are off. As a result, the

output is pulled HIGH through the on resistance of Q1 and Q2 in series.

• WheninputA is LOW and input B is HIGH, Q1 and Q4 are on, and Q2 and Q3 are off.

The output is pulled LOW through the low on resistance of Q4 to ground.

• WheninputA is HIGH and input B is LOW, Q1 and Q4 are off, and Q2 and Q3 are on.

The output is pulled LOW through the on resistance of Q3 to ground.

• WhenbothinputsareHIGH,Q1 and Q2 are off, and Q3 and Q4 are on. The output is

pulled LOW through the on resistance of Q3 and Q4 in parallel to ground.

 CMOS Circuits 867

Open-Drain Gates

The term open-drain means that the drain terminal of the output transistor is unconnected

and must be connected externally to VDD through a load. An open-drain gate is the CMOS

counterpart of an open-collector TTL gate (discussed in Section 15–3). An open-drain

output circuit is a single n-channel MOSFET as shown in Figure 15–21(a). An external

pull-up resistor must be used, as shown in part (b), to produce a HIGH output state. Also,

open-drain outputs can be connected in a wired-AND configuration, a concept that is dis-

cussed in Section 15–4 in relation to TTL.

Rest
of

CMOS
circuit

Rest
of

CMOS
circuit

+V

(a) Unconnected output (b) With pull-up resistor

Rp

Output Output

FIGURE 15–21 Open-drain CMOS gates.

Tri-state CMOS Gates

Tri-state outputs are available in both CMOS and TTL logic. The tri-state output combines the

advantages of the totem-pole and open-collector circuits. As you recall, the three output states

are HIGH, LOW, and high-impedance (high-Z). When selected for normal logic-level opera-

tion, as determined by the state of the enable input, a tri-state circuit operates in the same way

as a regular gate. When a tri-state circuit is selected for high-Z operation, the output is effec-

tively disconnected from the rest of the circuit by the internal circuitry. Figure 15–22 illustrates

the operation of a tri-state circuit. The inverted triangle (�) designates a tri-state output.

HIGH LOW

∆

LOW
(enable)

LOW HIGH

∆

LOW
(enable)

X

∆

HIGH
(disable)

OPEN

(a) Enabled for normal logic operation (b) High-Z state

don't care

FIGURE 15–22 The three states of a tri-state circuit.

The circuitry in a tri-state CMOS gate, as shown in Figure 15–23, allows each of the output

transistors Q1 and Q2 to be turned off at the same time, thus disconnecting the output from the

rest of the circuit. When the enable input is LOW, the device is enabled for normal logic opera-

tion. When the enable input is HIGH, both Q1 and Q2 are off and the circuit is in the high-Z state.

Precautions for Handling CMOS

All CMOS devices are subject to damage from electrostatic discharge (ESD). Therefore,

they must be handled with special care. Review the following precautions:

 1. All CMOS devices are shipped in conductive foam to prevent electrostatic charge

buildup. When they are removed from the foam, the pins should not be touched.

 2. The devices should be placed with pins down on a grounded surface, such as a metal

plate, when removed from protective material. Do not place CMOS devices in poly-

styrene foam or plastic trays.

868 Integrated Circuit Technologies

 3. All tools, test equipment, and metal workbenches should be earth-grounded. A per-

son working with CMOS devices should, in certain environments, have his or her

wrist grounded with a length of cable and a large-value series resistor. The resistor

prevents severe shock should the person come in contact with a voltage source.

 4. Do not insert CMOS devices (or any other ICs) into sockets or PCBs with the power on.

 5. All unused inputs should be connected to the supply voltage or ground as indicated

in Figure 15–24. If left open, an input can acquire electrostatic charge and “float” to

unpredicted levels.

 6. After assembly on PCBs, protection should be provided by storing or shipping

boards with their connectors in conductive foam. The CMOS input and output pins

may also be protected with large-value resistors connected to ground.

Output
Input

Enable

Q1

Q2

+V

FIGURE 15–23 A tri-state CMOS inverter.

+V

Unused input

Unused input

FIGURE 15–24 Handling

unused CMOS inputs.

SECTION 15–2 CHECKUP

 1. What type of transistor is used in CMOS logic?

 2. What is meant by the term complementary MOS?

 3. Why must CMOS devices be handled with care?

15–3 TTL (Bipolar) Circuits

The internal circuit operation of TTL (bipolar) logic gates with totem-pole outputs is cov-

ered in this section. Also, the operation of TTL gates with open-collector outputs and the

operation of tri-state gates are covered.

After completing this section, you should be able to

u Identify a bipolar junction transistor (BJT) by its symbol

u Describe the switching action of a BJT

u Describe the basic operation of a TTL inverter circuit

u Explain what a totem-pole output is

u Describe the basic operation of a TTL NAND gate

u Explain the operation and use a TTL gate with an open-collector output

u Explain the operation of a gate with a tri-state output

 TTL (Bipolar) Circuits 869

The Bipolar Junction Transistor

The bipolar junction transistor (BJT) is the active switching element used in all TTL

circuits. Figure 15–25 shows the symbol for an npn BJT with its three terminals; base,

emitter, and collector. A BJT has two junctions, the base-emitter junction and the base-

collector junction.

The basic switching operation is as follows: When the base is approximately 0.7 V more

positive than the emitter and when sufficient current is provided into the base, the transistor

turns on and goes into saturation. In saturation, the transistor ideally acts like a closed switch

between the collector and the emitter, as illustrated in Figure 15–26(a). When the base is less

than 0.7 V more positive than the emitter, the transistor turns off and becomes an open switch

between the collector and the emitter, as shown in part (b). To summarize in general terms, a

HIGH on the base turns the transistor on and makes it a closed switch. A LOW on the base

turns the transistor off and makes it an open switch. In TTL, some BJTs have multiple emitters.

Collector (C)

Base (B)

Emitter (E)

FIGURE 15–25 The symbol for

a BJT.

+VCC

IC

ON+V

IB

+VCC +VCC

OFF0 V

+VCC

(a) Saturated (ON) transistor

and ideal switch equivalent

(b) OFF transistor and

ideal switch equivalent

FIGURE 15–26 The ideal switching action of the BJT. Conventional current direction is

shown. Electron flow notation is opposite.

TTL Inverter

The logic function of an inverter or any type of gate is always the same, regardless of the

type of circuit technology that is used. Figure 15–27 shows a standard TTL circuit for an

inverter. In this figure Q1 is the input coupling transistor, and D1 is the input clamp diode.

Transistor Q2 is called a phase splitter, and the combination of Q3 and Q4 forms the output

circuit often referred to as a totem-pole arrangement.

R2

1.6 k�

Q1
OutputInput

+VCC

R1

4 k�

R3

130 �

Q2

Q4

D2

Q3D1
R4

1.0 k�

FIGURE 15–27 A standard TTL inverter circuit.

When the input is a HIGH, the base-emitter junction of Q1 is reverse-biased, and the

base-collector junction is forward-biased. This condition permits current through R1 and

870 Integrated Circuit Technologies

the base-collector junction of Q1 into the base of Q2, thus driving Q2 into saturation. As a

result, Q3 is turned on by Q2, and its collector voltage, which is the output, is near ground

potential. Therefore, there is a LOW output for a HIGH input. At the same time, the collec-

tor of Q2 is at a sufficiently low voltage level to keep Q4 off.

When the input is LOW, the base-emitter junction of Q1 is forward-biased, and the

base-collector junction is reverse-biased. There is current through R1 and the base-emitter

junction of Q1 to the LOW input. A LOW provides a path to ground for the current. There

is no current into the base of Q2, so it is off. The collector of Q2 is HIGH, thus turning Q4

on. A saturated Q4 provides a low-resistance path from VCC to the output; therefore, there

is a HIGH on the output for a LOW on the input. At the same time, the emitter of Q2 is at

ground potential, keeping Q3 off.

Diode D1 in the TTL circuit prevents negative spikes of voltage on the input from

damaging Q1. Diode D2 ensures that Q4 will turn off when Q2 is on (HIGH input). In

this condition, the collector voltage of Q2 is equal to the base-to-emitter voltage, VBE,

of Q3 plus the collector-to-emitter voltage, VCE, of Q2. Diode D2 provides an additional

VBE equivalent drop in series with the base-emitter junction of Q4 to ensure its turn-off

when Q2 is on.

The operation of the TTL inverter for the two input states is illustrated in Figure 15–28.

In the circuit in part (a), the base of Q1 is 2.1 V above ground, so Q2 and Q3 are on. In the

circuit in part (b), the base of Q1 is about 0.7 V above ground—not enough to turn Q2 and

Q3 on.

Q1 LOW
HIGH

R1

Q4

Q3

+ 5 V

R4

R3

ON

ON

OFF

R2

≈ 0.7 V

0.7 V

2.1 V

1.4 V

Reverse
bias

D1

D2

Q2

(a) (b)

Q2LOW
(0 V)

0.7 V

IC = 0

0 V

Q1 HIGH

R1

Q4

Q3

+ 5 V

R4

R3

OFF

ON

R2

D1

D2
OFF

FIGURE 15–28 Operation of a TTL inverter.

TTL NAND Gate

A 2-input TTL NAND gate is shown in Figure 15–29. Basically, it is the same as the

inverter circuit except for the additional input emitter of Q1. In TTL technology, multiple-

emitter transistors are used for the input devices. These multiple-emitter transistors can be

compared to the diode arrangement, as shown in Figure 15–30.

Perhaps you can understand the operation of this circuit better by visualizing Q1 in

Figure 15–29 replaced by the diode arrangement in Figure 15–30. A LOW on either

input A or input B forward-biases the corresponding diode and reverse-biases D3 (Q1

base-collector junction). This action keeps Q2 off and results in a HIGH output in the

same way as described for the TTL inverter. Of course, a LOW on both inputs will do

the same thing.

 TTL (Bipolar) Circuits 871

A HIGH on both inputs reverse-biases both input diodes and forward-biases D3 (Q1

base-collector junction). This action turns Q2 on and results in a LOW output in the same

way as described for the TTL inverter. You should recognize this operation as that of the

NAND function: The output is LOW only if all inputs are HIGH.

Open-Collector Gates

In addition to the totem-pole output circuit; another type of output available in TTL inte-

grated circuits is the open-collector output. This is comparable to the open-drain output of

CMOS. A standard TTL inverter with an open-collector is shown in Figure 15–31(a). The

other types of gates are also available with open-collector outputs.

Q3

Q2

D3

R2

1.6 k�

Q1
OutputInput A

R1

4 k�

R3

130 �

R4

1.0 k�

Input B

+VCC

D1 D2

Q4

FIGURE 15–29 A TTL NAND gate circuit.

E1

E2

B

C

B

C

D1

D2

D3

E1

E2

FIGURE 15–30 Diode equivalent of a TTL multiple-emitter transistor.

Input

+VCC

Output

R1

4 k�

Q1 Q2

R2

1.6 k�

Q3

R3

1.0 k�

D1

(a) Open-collector inverter circuit

Input
Output

R1

Q1 Q2

R2
R (external)

Q3

R3

D1

(b) With external pull-up resistor

+VCC

FIGURE 15–31 TTL inverter with open-collector output.

872 Integrated Circuit Technologies

Notice that the output is the collector of transistor Q3 with nothing connected to it,

hence the name open collector. In order to get the proper HIGH and LOW logic levels out

of the circuit, an external pull-up resistor must be connected to VCC from the collector of

Q3, as shown in Figure 15–31(b). When Q3 is off, the output is pulled up to VCC through

the external resistor. When Q3 is on, the output is connected to near-ground through the

saturated transistor.

The ANSI/IEEE standard symbol that designates an open-collector output is shown in

Figure 15–32 for an inverter and is the same for an open-drain output.

Tri-state TTL Gates

Figure 15–33 shows the basic circuit for a TTL tri-state inverter. When the enable input is

LOW, Q2 is off, and the output circuit operates as a normal totem-pole configuration, in

which the output state depends on the input state. When the enable input is HIGH, Q2 is on.

There is thus a LOW on the second emitter of Q1, causing Q3 and Q5 to turn off, and diode

D1 is forward biased, causing Q4 also to turn off. When both totem-pole transistors are

off, they are effectively open, and the output is completely disconnected from the internal

circuitry, as illustrated in Figure 15–34.

Input

Enable

+VCC

Output

R1 R3 R4

Q1

Q4

Q5

D2Q3

R2

Q2
R5

D1

FIGURE 15–33 Basic tri-state inverter circuit.

R4

High-Z output

Q4

Q5

+VCC

FIGURE 15–34 An

equivalent circuit for

the tri-state output in

the high-Z state.

Schottky TTL

The basic or standard TTL NAND gate circuit was discussed earlier. It is a current-

sinking type of logic that draws current from the load when in the LOW output state

and sources negligible current to the load when in the HIGH output state. Most TTL

logic is some form of Schottky TTL, which provides a faster switching time by incor-

porating Schottky diodes to prevent the transistors from going into saturation, thereby

decreasing the time for a transistor to turn on or off. Figure 15–35 shows a Schottky

gate circuit. Notice the symbols for the Schottky transistor and Schottky diodes.

Schottky devices are designated by an S in their part number, such as 74S00. Other

types of Schottky TTL are low-power Schottky designated by LS, advanced Schottky

designated by AS, advanced low-power Schottky designated by ALS, and fast desig-

nated by F.

FIGURE 15–32 Open-collector

symbol in an inverter.

 Practical Considerations in the Use of TTL 873

+VCC

Q6

Q1

D2D1

Output

Q2

Q5

Input A

Input B

Q4

Q3

R1

2.8 k�

R2

900 �

R3

50 �

R4

3.5 k�

R6

250 �

R5

500 �

FIGURE 15–35 Schottky TTL NAND gate.

SECTION 15–3 CHECKUP

 1. An npn BJT is on when the base is more negative than the emitter. (T or F)

 2. In terms of switching action, what do the on and off states of a BJT represent?

 3. What are the two major types of output circuits in TTL?

 4. Explain how tri-state logic differs from normal, two-state logic.

15–4 Practical Considerations in the Use of TTL

Although CMOS is the more predominant IC technology in industry and commercial appli-

cations, TTL is still used but is on the decline. In educational applications, TTL is usually

preferred because it does not have the handling restrictions that CMOS does due to ESD.

Because of this, several practical considerations in the use and application of TTL circuits

will be covered using standard TTL for illustration.

After completing this section, you should be able to

u Describe current sinking and current sourcing

u Use an open-collector circuit for wired-AND operation

u Describe the effects of connecting two or more totem-pole outputs

u Use open-collector gates to drive LEDs and lamps

u Explain what to do with unused TTL inputs

Current Sinking and Current Sourcing

The concepts of current sinking and current sourcing were introduced in Section 15–1.

Now that you are familiar with the totem-pole-output circuit configuration used in TTL,

let’s look closer at the sinking and sourcing action.

Figure 15–36 shows a standard TTL inverter with a totem-pole output connected to the

input of another TTL inverter. When the driving gate is in the HIGH output state, the driver

is sourcing current to the load, as shown in Figure 15–36(a). The input to the load gate is

874 Integrated Circuit Technologies

Q1

R2R1

Q2

R4

R3

Q4

Q3

D2

D1

+5 V

Input

Q1

R2R1

Q2

R4

Q4

Q3

D2

D1

Input

R3

OFF

ON

ON

OFF

Q1

R2R1

Q2

R4

Q4

Q3

D2

D1

R3

ON
LOW

Output

Q1

R2R1

Q2

R4

Q4

Q3

R3

D1

D2

OFF
HIGH

Output

IIH = 40 A

IIL = 1.6 mA

(a) Current sourcing (IIH value is maximum)

(b) Current sinking (IIL value is maximum)

µ

+5 V

+5 V +5 V

FIGURE 15–36 Current sinking and sourcing action in TTL.

EXAMPLE 15–3

When a standard TTL NAND gate drives five TTL inputs, how much current does the

driver output source, and how much does it sink? (Refer to Figure 15–36.)

Solution

Total source current (in HIGH output state):

 IIH(max) = 40 mA per input

 IT(source) = (5 inputs)(40 mA>input) = 5(40 mA) = 200 mA

like a reverse-biased diode, so there is practically no current required by the load. Actually,

since the input is nonideal, there is a maximum of 40 mA from the totem-pole output of the

driver into the load gate input.

When the driving gate is in the LOW output state, the driver is sinking current from the

load, as shown in Figure 15–36(b). This current is 1.6 mA maximum for standard TTL and

is indicated on a data sheet with a negative value because it is out of the input.

 Practical Considerations in the Use of TTL 875

Using Open-Collector Gates for Wired-AND Operation

The outputs of open-collector gates can be wired together to form what is called a wired-AND

configuration. Figure 15–37 illustrates how four inverters are connected to produce a 4-input

negative-AND gate. A single external pull-up resistor, Rp, is required in all wired-AND circuits.

When one (or more) of the inverter inputs is HIGH, the output X is pulled LOW because

an output transistor is on and acts as a closed switch to ground, as illustrated in Figure

15–38(a). In this case only one inverter has a HIGH input, but this is sufficient to pull the

output LOW through the saturated output transistor Q1 as indicated.

For the output X to be HIGH, all inverter inputs must be LOW so that all the open-

collector output transistors are off, as indicated in Figure 15–38(b). When this condition

exists, the output X is pulled HIGH through the pull-up resistor. Thus, the output X is

HIGH only when all the inputs are LOW. Therefore, we have a negative-AND function, as

expressed in the following equation:

X = A B C D

Total sink current (in LOW output state):

 IIL(max) = -1.6 mA per input

 IT(sink) = (5 inputs)(-1.6 mA/input) = 5(-1.6 mA) = -8.0 mA

Related Problem

Repeat the calculations for an LS TTL NAND gate that drives five inputs. Refer to a

data sheet available at www.ti.com.

EXAMPLE 15–4

Refer to the data sheet available at www.ti.com, and determine the fan-out of the 7400

NAND gate.

Solution

According to the data sheet, the current parameters are as follows:

 IIH(max) = 40 mA IOH(max) = -400 mA

 IIL(max) = -1.6 mA IOL(max) = 16 mA

Fan-out for the HIGH output state is calculated as follows: Current IOH(max) is the max-

imum current that the gate can source to a load. Each load input requires an IIH(max) of

40 mA. The HIGH-state fan-out is2 IOH(max)

IIH(max)

2 = 400 mA

40 mA
= 10 unit loads

For the LOW output state, fan-out is calculated as follows: IOL(max) is the maximum

current that the gate can sink. Each load input produces an IIL(max) of -1.6 mA. The

LOW-state fan-out is 2 IOL(max)

IIL(max)

2 = 16 mA

1.6 mA
= 10 unit loads

In this case both the HIGH-state fan-out and the LOW-state fan-out are the same.

Related Problem

Determine the fan-out for a 74LS00 NAND gate.

Rp

A

B

C

D

X = ABCD

+5 V

FIGURE 15–37 A wired-AND

configuration of four inverters.

876 Integrated Circuit Technologies

LOW

LOW

HIGH

LOW

ON

OFF

OFF

Q1

Q2

Qn

(a) When one or more output transistors are
 on, the output is LOW.

+5 V

Rp

LOW

HIGH

OFF

OFF

OFF

Q1

Q2

Qn

+5 V

Rp

LOW

LOW

(b) When all output transistors are off,
 the output is HIGH.

FIGURE 15–38 Open-collector wired negative-AND operation with inverters.

A

B

C

D

E

F

G

H

X

Rp

+VCC

FIGURE 15–39

EXAMPLE 15–5

Write the output expression for the wired-AND configuration of open-collector AND

gates in Figure 15–39.

Solution

The output expression is

X = ABCDEFGH

The wired-AND connection of the four 2-input AND gates creates an 8-input AND

gate.

Related Problem

Determine the output expression if NAND gates are used in Figure 15–39.

 Practical Considerations in the Use of TTL 877

Connection of Totem-Pole Outputs

Totem-pole outputs cannot be connected together because such a connection might pro-

duce excessive current and result in damage to the devices. For example, in Figure 15–41,

when Q1 in device A and Q2 in device B are both on, the output of device A is effectively

shorted to ground through Q2 of device B.

Open-Collector Buffer/Drivers

A TTL circuit with a totem-pole output is limited in the amount of current that it can sink in

the LOW state (IOL(max)) to 16 mA for standard TTL and 8 mA for LS TTL. In many special

applications, a gate must drive external devices, such as LEDs, lamps, or relays, that may

require more current than that.

Because of their higher voltage and current-handling capability, circuits with open-

collector outputs are generally used for driving LEDs, lamps, or relays. However, totem-

pole outputs can be used, as long as the output current required by the external device does

not exceed the amount that the TTL driver can sink.

A

B

C

D

E

F

X

Rp

+5 V

FIGURE 15–40

EXAMPLE 15–6

Three open-collector AND gates are connected in a wired-AND configuration as shown

in Figure 15–40. Assume that the wired-AND circuit is driving four standard TTL

inputs (-1.6 mA each).

(a) Write the logic expression for X.

(b) Determine the minimum value of Rp if IOL(max) for each gate is 30 mA and VOL(max)

is 0.4 V.

Solution

(a) X = ABCDEF

(b) 4(1.6 mA) = 6.4 mA

 IRP
= IOL(max) - 6.4 mA = 30 mA - 6.4 mA = 23.6 mA

 RP =

VCC - VOL(max)

IRP

=

5 V - 0.4 V

23.6 mA
= 195 �

Related Problem

Show the wired-AND circuit for a 10-input AND function using 74LS09 quad 2-input

AND gates.

878 Integrated Circuit Technologies

With an open-collector TTL gate, the collector of the output transistor is connected to an

LED or incandescent lamp, as illustrated in Figure 15–42. In part (a) the limiting resistor,

RL, is used to keep the current below maximum LED current. When the output of the gate

is LOW, the output transistor is sinking current, and the LED is on. The LED is off when

the output transistor is off and the output is HIGH. A typical open-collector buffer gate can

sink up to 40 mA. In part (b) of the figure, the lamp requires no limiting resistor because the

filament is resistive. Typically, up to +30 V can be used on the open collector, depending

on the particular logic family.

Q2

Rest
of

circuit

Q1

ON

OFF

Q2

Q1

ON

OFF

Rest
of

circuit

A B

I

+5 V +5 V

FIGURE 15–41 Totem-pole outputs wired together. Such a connection may cause

excessive current through Q1 of device A and Q2 of device B and should never be used.

HIGH

HIGH
ON LOW

+5 V

RL
A

B

HIGH

HIGH
ON LOW

+20 V

A

B

+5 V

+20 V

LOW

X
OFF HIGH

+5 V

LOW

X
OFF

+20 V

HIGH

No
current

No
current

(a) Driving an LED

(b) Driving a low-current lamp

FIGURE 15–42 Some applications of open-collector drivers.

EXAMPLE 15–7

Determine the value of the limiting resistor, RL, in the open-collector circuit of Figure

15–43 if the LED current is to be 20 mA. Assume a 1.5 V drop across the LED when it

is forward-biased and a LOW-state output voltage of 0.1 V at the output of the gate.

 Practical Considerations in the Use of TTL 879

Unused TTL Inputs

An unconnected input on a TTL gate acts as a HIGH because an open input results in a reverse-

biased emitter junction on the input transistor, just as a HIGH level does. This effect is illus-

trated in Figure 15–44. However, because of noise sensitivity, it is best not to leave unused

TTL inputs unconnected (open). There are several alternative ways to handle unused inputs.

+5 V

A

RL

B

FIGURE 15–43

Solution

 VRL
= 5 V - 1.5 V - 0.1 V = 3.4 V

 RL =

VRL

I
=

3.4 V

20 mA
= 170 �

Related Problem

Determine the value of the limiting resistor, RL, if the LED requires 35 mA.

+5 V

Unconnected

+5 V

HIGH

+5 V

Reverse-biased diode
is like an open

Diode equivalent of
emitter junction with

unconnected input

TTL input transistor

FIGURE 15–44 Comparison of an open TTL input and a HIGH-level input.

Tied-Together Inputs

The most common method for handling unused gate inputs is to connect them to a used

input of the same gate. For AND gates and NAND gates, all tied-together inputs count as

one unit load in the LOW state; but for OR gates and NOR gates, each input tied to another

input counts as a separate unit load in the LOW state. In the HIGH state, each tied-together

input counts as a separate load for all types of TTL gates. In Figure 15–45(a) are two

examples of the connection of two unused inputs to a used input.

The AND and NAND gates present only a single unit load no matter how many inputs

are tied together, whereas OR and NOR gates present a unit load for each tied-together

input. This is because the NAND gate uses a multiple-emitter input transistor; so no mat-

ter how many inputs are LOW, the total LOW-state current is limited to a fixed value. The

NOR gate uses a separate transistor for each input; therefore, the LOW-state current is the

sum of the currents from all the tied-together inputs.

Inputs to VCC or Ground

Unused inputs of AND and NAND gates can be connected to VCC through a 1.0 k� resis-

tor. This connection pulls the unused inputs to a HIGH level. Unused inputs of OR and

NOR gates can be connected to ground. These methods are illustrated in Figure 15–45(b).

880 Integrated Circuit Technologies

Inputs to Unused Output

A third method of terminating unused inputs may be appropriate in some cases when an

unused gate or inverter is available. The unused gate output must be a constant HIGH for

unused AND and NAND inputs and a constant LOW for unused OR and NOR inputs, as

illustrated in Figure 15–45(c).

+5 V

Unused

Unused

Used
Used

Used
Used

Two unused inputs
connected to one used input

Two unused inputs
connected to one used input

This connection counts as:
1 unit load in LOW state
3 unit loads in HIGH state

This connection counts as:
3 unit loads in LOW state
3 unit loads in HIGH state

(a) Tied-together inputs

(b) Inputs to VCC or ground

Unused input
HIGH

Unused gate

Unused input
LOW

Unused gate

(c) Inputs to unused output

+5 V

1.0 k� 1.0 k�

FIGURE 15–45 Methods for handling unused TTL inputs.

SECTION 15–4 CHECKUP

 1. In what output state does a TTL circuit sink current from a load?

 2. Why does a TTL circuit source less current into a TTL load than it sinks?

 3. Why can TTL circuits with totem-pole outputs not be connected together?

 4. What type of TTL circuit must be used for a wired-AND configuration?

 5. Why type of TTL circuit would you use to drive a lamp?

 6. An unconnected TTL input acts as a LOW. (T or F)

15–5 Comparison of CMOS and TTL Performance

In this section, the main operational and performance characteristics of selected CMOS

series are compared with those of the major TTL series and with BiCMOS.

After completing this section, you should be able to

u Compare bipolar (TTL), BiMOS, and CMOS devices in terms of propagation

delay, maximum clock frequency, power dissipation, and drive capability

In the past, the superior characteristic of TTL (bipolar) compared to CMOS was its

relatively high speed and output current capability. These advantages of TTL have dimin-

ished to the point where CMOS is often equal or superior in many areas and has become

the dominant IC technology, although TTL is still available and in use. One family of IC

 Emitter-Coupled Logic (ECL) Circuits 881

logic devices, BiCMOS, combines CMOS logic with TTL output circuitry in an effort to

combine the advantages of both.

Table 15–1 provides a comparison of the performance of several IC logic families.

TABLE 15–1

Comparison of selected performance parameters of several 74XX IC families.

Bipolar (TTL) BiCMOS CMOS

5 V 3.3 V

F LS ALS ABT HC AC AHC LV LVC ALVC

Speed

Gate propagation

delay, tp (ns)

 3.3 10 7 3.2 7 5 3.7 9 4.3 3

FF maximum clock

freq. (MHz)

145 33 45 150 50 160 170 90 100 150

Power Dissipation

Per Gate

Bipolar: 50% dc (mW) 6 2.2 1.4

CMOS: quiescent (mW) 17 2.75 0.55 2.75 1.6 0.8 0.8

Output Drive

IOL (mA) 20 8 8 64 4 24 8 12 24 24

SECTION 15–5 CHECKUP

 1. What is a BiCMOS circuit?

 2. In general, what is the main advantage of CMOS over bipolar (TTL)?

15–6 Emitter-Coupled Logic (ECL) Circuits

Emitter-coupled logic, like TTL, is a bipolar technology. The typical ECL circuit consists

of a different amplifier input circuit, a bias circuit, and emitter-follower outputs. ECL is

much faster than TTL because the transistors do not operate in saturation and is used in

more specialized high-speed applications.

After completing this section, you should be able to

u Describe how ECL differs from TTL and CMOS

u Explain the advantages and disadvantages of ECL

An ECL OR/NOR gate is shown in Figure 15–46(a). The emitter-follower outputs pro-

vide the OR logic function and its NOR complement, as indicated by Figure 15–46(b).

Because of the low output impedance of the emitter-follower and the high input

impedance of the differential amplifier input, high fan-out operation is possible. In this

type of circuit, saturation is not possible. The lack of saturation results in higher power

consumption and limited voltage swing (less than 1 V), but it permits high-frequency

switching.

The VCC pin is normally connected to ground, and the VEE pin is connected to

-5.2 V from the power supply for best operation. Notice that in Figure 15–46(c) the

output varies from a LOW level of -1.75 V to a HIGH level of -0.9 V with respect to

ground. In positive logic, a 1 is the HIGH level (less negative), and a 0 is the LOW

level (more negative).

882 Integrated Circuit Technologies

Noise Margin

As you have learned, the noise margin of a gate is the measure of its immunity to undesired

voltage fluctuations (noise). Typical ECL circuits have noise margins from about 0.2 V to

0.25 V. These are less than for TTL and make ECL less suitable in high-noise environments.

Comparison of ECL with TTL and CMOS

Table 15–2 shows a comparison of key performance parameters for F, AHC, and ECL.

A B C

Q1 Q2 Q3

D

Q4 Q5

VBB ≅

–1.29 V

VEE

(–5.2 V)

VCC (gnd)

OR output

NOR output

Inputs

Multiple inputs
Differential
amplifier

Bias
circuit

Complementary
outputs

(a)

A
B
C
D

A + B + C + D

A + B + C + D

(b)

(c)

–0.9 V

–1.75 V

O
u
tp

u
t

V

–1.4 V –1.2 V

Input voltage

FIGURE 15–46 An ECL OR/NOR gate circuit.

TABLE 15–2

Comparison of ECL series performance parameters with F and AHC.

Bipolar (TTL) CMOS

F AHC Bipolar (ECL)

Speed

Gate propagation

delay, tp (ns)

 3.3

 3.7

0.22–1

FF maximum

clock freq. (MHz)

145

170

330–2800

Power Dissipation

Per Gate

Bipolar: 50% dc 6 mW 25 mW–73 mW

CMOS: quiescent 2.75 mW

SECTION 15–6 CHECKUP

 1. What is the primary advantage of ECL over TTL?

 2. Name two disadvantages of ECL compared with TTL.

15–7 PMOS, NMOS, and E2CMOS

The PMOS and NMOS circuits are used largely in LSI functions, such as long shift regis-

ters, large memories, and microprocessor products. Such use is a result of the low power

consumption and very small chip area required for MOS transistors. E2CMOS is used in

reprogrammable PLDs.

After completing this section, you should be able to

u Describe a basic PMOS gate

u Describe a basic NMOS gate

u Describe a basic E2CMOS cell

PMOS

One of the first high-density MOS circuit technologies to be produced was PMOS. It uti-

lizes enhancement-mode p-channel MOS transistors to form the basic gate building blocks.

Figure 15–47 shows a basic PMOS gate that produces the NOR function in positive logic.

Q1

Q2

A

B

Inputs

VGG

Q3

Output

VCC or ground

FIGURE 15–47 Basic PMOS gate.

The operation of the PMOS gate is as follows: The supply voltage VGG is a negative

voltage, and VCC is a positive voltage or ground (0 V). Transistor Q3 is permanently biased

to create a constant drain-to-source resistance. Its sole purpose is to function as a current-

limiting resistor. If a HIGH (VCC) is applied to input A or B, then Q1 or Q2 is off, and the

output is pulled down to a voltage near VGG, which represents a LOW. When a LOW volt-

age (VGG) is applied to both input A and input B, both Q1 and Q2 are turned on. This causes

the output to go to a HIGH level (near VCC). Since a LOW output occurs when either or

both inputs are HIGH, and a HIGH output occurs only when all inputs are LOW, we have

a NOR gate.

NMOS

The NMOS devices were developed as processing technology improved. The n-channel

MOS transistor is used in NMOS circuits, as shown in Figure 15–48 for a NAND gate and

a NOR gate.

 PMOS, NMOS, and E2CMOS 883

884 Integrated Circuit Technologies

In Figure 15–48(a), Q3 acts as a resistor to limit current. When a LOW (VGG or ground)

is applied to one or both inputs, then at least one of the transistors (Q1 or Q2) is off, and

the output is pulled up to a HIGH level near VCC. When HIGHs (VCC) are applied to both

A and B, both Q1 and Q2 conduct, and the output is LOW. This action, of course, identifies

this circuit as a NAND gate.

In Figure 15–48(b), Q3 again acts as a resistor. A HIGH on either input turns Q1 or Q2

on, pulling the output LOW. When both inputs are LOW, both transistors are off, and the

output is pulled up to a HIGH level.

E2CMOS

E2CMOS (electrically erasable CMOS) technology is based on a combination of CMOS

and NMOS technologies and is used in programmable devices such as PROMs and CPLDs.

An E2CMOS cell is built around a MOS transistor with a floating gate that is externally

charged or discharged by a small programming current. A schematic of this type of cell is

shown in Figure 15–49.

Q3

Q2

Q1

Output

A

B

Inputs

VCC

VGG or ground

Q3

Q1

Output

VCC

Q2

Input Input

VGG or ground

(a) NAND (b) NOR

A B

FIGURE 15–48 Two NMOS gates.

Pass transistor

Word line

Floating gate

Control gate

Cell ground

Sense transistor

Bit line

Substrate

FIGURE 15–49 An E2CMOS cell.

 Key Terms 885

When the floating gate is charged to a positive potential by removing electrons, the

sense transistor is turned on, storing a binary zero. When the floating gate is charged to

a negative potential by placing electrons on it, the sense transistor is turned off, storing a

binary 1. The control gate controls the potential of the floating gate. The pass transistor

isolates the sense transistor from the array during read and write operations that use the

word and bit lines.

The cell is programmed by applying a programming pulse to either the control gate or

the bit line of a cell that has been selected by a voltage on the word line. During the pro-

gramming cycle, the cell is first erased by applying a voltage to the control gate to make

the floating gate negative. This leaves the sense transistor in the off state (storing a 1). A

write pulse is applied to the bit line of a cell in which a 0 is to be stored. This will charge

the floating gate to a point where the sense transistor is on (storing a 0). The bit stored in

the cell is read by sensing presence or absence of a small cell current in the bit line. When

a 1 is stored, there is no cell current because the sense transistor is off. When a 0 is stored,

there is a small cell current because the sense transistor is on. Once a bit is stored in a cell,

it will remain indefinitely unless the cell is erased or a new bit is written into the cell.

SECTION 15–7 CHECKUP

 1. What is the main feature of NMOS and PMOS technology in integrated circuits?

 2. What is the mechanism for charge storage in an E2CMOS cell?

SUMMARY

• Formulas:

 15–1 VNH = VOH(min) - VIH(min) High-level noise margin

 15–2 VNL = VIL(max) - VOL(max) Low-level noise margin

 15–3 ICC =
ICCH + ICCL

2
 Average dc supply current

 15–4 PD = VCCICC Power dissipation

• Totem-poleoutputsofTTLcannotbeconnectedtogether.

• Open-collectorandopen-drainoutputscanbeconnectedforwired-AND.

• CMOSdevicesofferlowerpowerdissipationthananyoftheTTLseries.

• ATTLdeviceisnotasvulnerabletoelectrostaticdischarge(ESD)asisaCMOSdevice.

• BecauseofESD,CMOSdevicesmustbehandledwithgreatcare.

• ECListhefastesttypeoflogiccircuit.

• E2CMOS is used in PROMs and other PLDs.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

CMOS Complementary metal-oxide semiconductor; a type of integrated logic circuit that uses

n- and p-channel MOSFETs (metal-oxide semiconductor field-effect transistors).

Current sinking The action of a logic circuit in which it accepts current into its output from a load.

Current sourcing The action of a logic circuit in which it sends current from its output to a load.

ECL Emitter-coupled logic; a class of integrated logic circuits that are implemented with

 nonsaturating bipolar junction transistors.

E2CMOS Electrically erasable CMOS; the IC technology used in programmable logic devices

(PLDs).

Fan-out The number of equivalent gate inputs of the same family series that a logic gate can drive.

886 Integrated Circuit Technologies

Noise immunity The ability of a logic circuit to reject unwanted signals (noise).

Noise margin The difference between the maximum LOW output of a gate and the maximum ac-

ceptable LOW input of an equivalent gate; also, the difference between the minimum HIGH output

of a gate and the minimum HIGH input of an equivalent gate. Noise margin is sometimes expressed

as a percentage of the dc supply voltage.

Open-collector A type of output for a TTL circuit in which the collector of the output transistor

is left internally disconnected and is available for connection to an external load that requires rela-

tively high current or voltage.

Power dissipation The product of the dc supply voltage and the dc supply current in an electronic

circuit.

Propagation delay time The time interval between the occurrence of an input transition and the

occurrence of the corresponding output transition in a logic circuit.

Pull-up resistor A resistor with one end connected to the dc supply voltage used to keep a given

point in a logic circuit HIGH when in the inactive state.

Totem pole A type of output in TTL circuits.

Tri-state A type of output in logic circuits that exhibits three states: HIGH, LOW, and high Z.

TTL Transistor-transistor logic; a type of integrated circuit that uses bipolar junction transistors.

Also called bipolar.

Unit load A measure of fan-out. One gate input represents a unit load to a driving gate.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. The dc supply voltage for TTL is typically +5 V.

 2. The fan-out of a logic gate is the number of gates in an IC package.

 3. CMOS uses MOSFETs.

 4. BJT stands for binary junction transistor.

 5. An open-collector gate must be connected to an external resistor.

 6. CMOS is the dominant digital IC technology.

 7. A totem-pole output means that two or more resistors are in series.

 8. CMOS is subject to ESD.

 9. A tri-state output can be HIGH, LOW or high-impedance.

 10. Propagation delay is a measure of the speed of a logic gate.

SELF-TEST

Answers are at the end of the chapter.

 1. When the frequency of the input signal to a CMOS gate is increased, the average power dissipation

(a) decreases (b) increases

(c) does not change (d) decreases exponentially

 2. CMOS operates more reliably than TTL in a high-noise environment because of its

(a) lower noise margin (b) input capacitance

(c) higher noise margin (d) smaller power dissipation

 3. Proper handling of a CMOS device is necessary because of its

(a) fragile construction

(b) high-noise immunity

(c) susceptibility to electrostatic discharge

(d) low power dissipation

 4. Which of the following is not a TTL circuit?

(a) 74F00 (b) 74AS00

(c) 74HC00 (d) 74ALS00

 Problems 887

 5. An open TTL NOR gate input

(a) acts as a LOW (b) acts as a HIGH

(c) should be grounded (d) should be connected to VCC through a resistor

(e) answers (b) and (c) (f) answers (a) and (c)

 6. An LS TTL gate can drive a maximum of

(a) 20 unit loads (b) 10 unit loads

(c) 40 unit loads (d) unlimited unit loads

 7. If two unused inputs of a LS TTL gate are connected to an input being driven by another LS

TTL gate, the total number of remaining unit loads that can be driven by this gate is

(a) seven (b) eight

(c) seventeen (d) unlimited

 8. The main advantage of ECL over TTL or CMOS is

(a) ECL is less expensive

(b) ECL consumes less power

(c) ECL is available in a greater variety of circuit types

(d) ECL is faster

 9. ECL cannot be used in

(a) high-noise environments

(b) damp environments

(c) high-frequency applications

 10. The basic mechanism for storing a data bit in an E2CMOS cell is

(a) control gate (b) floating drain

(c) floating gate (d) cell current

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 15–1 Basic Operational Characteristics and Parameters

 1. A certain logic gate has a VOH(min) = 2.2 V, and it is driving a gate with a VIH(min) = 2.5 V.

Are these gates compatible for HIGH-state operation? Why?

 2. A certain logic gate has a VOL(max) = 0.45 V, and it is driving a gate with a VIL(max) = 0.75 V.

Are these gates compatible for LOW-state operation? Why?

 3. A TTL gate has the following actual voltage level values: VIH(min) = 2.25 V, VIL(max) = 0.65 V.

Assuming it is being driven by a gate with VOH(min) = 2.4 V and VOL(max) = 0.4 V, what are the

HIGH- and LOW-level noise margins?

 4. What is the maximum amplitude of noise spikes that can be tolerated on the inputs in both the

HIGH state and the LOW state for the gate in Problem 3?

 5. Voltage specifications for three types of logic gates are given in Table 15–3. Select the gate that

you would use in a high-noise industrial environment.

TABLE 15–3

VOH(min) VOL(max) VIH(min) VIL(max)

Gate A 2.4 V 0.4 V 2 V 0.8 V

Gate B 3.5 V 0.2 V 2.5 V 0.6 V

Gate C 4.2 V 0.2 V 3.2 V 0.8 V

 6. A certain gate draws a dc supply current from a +5 V source of 2 mA in the LOW state and

3.5 mA in the HIGH state. What is the power dissipation in the LOW state? What is the power dis-

sipation in the HIGH state? Assuming a 50% duty cycle, what is the average power dissipation?

 7. Each gate in the circuit of Figure 15–50 has a tPLH and a tPHL of 4 ns. If a positive-going pulse

is applied to the input as indicated, how long will it take the output pulse to appear?

888 Integrated Circuit Technologies

 8. For a certain gate, tPLH = 3 ns and tPHL = 2 ns. What is the average propagation delay time?

 9. Table 15–4 lists parameters for three types of gates. Basing your decision on the speed-power

product, which one would you select for best performance?

HIGH
HIGH

LOW

+5 V
0

Output

FIGURE 15–50

TABLE 15–4

tPLH tPHL PD

Gate A 1 ns 1.2 ns 15 mW

Gate B 5 ns 4 ns 8 mW

Gate C 10 ns 10 ns 0.5 mW

 10. Which gate in Table 15–4 would you select if you wanted the gate to operate at the highest pos-

sible frequency?

 11. A standard TTL gate has a fan-out of 10 unit loads. Are any of the gates in Figure 15–51 over-

loaded? If so, which ones?

A0

A1

A2

G1

G2 G3

G4

G5

G9

G8

G11

G10

G7

G6

X1

X0

FIGURE 15–51

 12. Which CMOS gate network in Figure 15–52 can operate at the highest frequency?

X0

X1

X2

A2

A3

A4

A0

A1

(a)

X0

X1

X2

A2

A3

A4

A0

A1

(b)

X0

X1

A2
A3

A4

A0

A1

(c)

FIGURE 15–52

 Problems 889

Section 15–2 CMOS Circuits

 13. Determine the state (on or off) of each MOSFET in Figure 15–53.

+5 V

(a)

HIGH

(b)

HIGH

(c)

LOW

(d)

LOW

+5 V +5 V +5 V

FIGURE 15–53

 14. The CMOS gate network in Figure 15–54 is incomplete. Indicate the changes that should be made.

*

A

B

C

D

*

Output

* unused inputs

*

FIGURE 15–54

 15. Devise a circuit, using appropriate CMOS logic gates and/or inverters, with which signals from

four different sources can be connected to a common line at different times without interfering

with each other.

Section 15–3 TTL (Bipolar) Circuits

 16. Determine which BJTs in Figure 15–55 are off and which are on.

+5 V

+5 V

(a) (b) (d)

+5 V+5 V

0 V

(c)

+5 V

0.3 V +5 V

FIGURE 15–55

 17. Determine the output state of each TTL gate in Figure 15–56.

(a)

HIGH
HIGH
LOW

(b)

HIGH

LOW

(c)

HIGH

HIGH

(d)

HIGH

HIGH

HIGH

+5 V

FIGURE 15–56

890 Integrated Circuit Technologies

 18. The TTL gate network in Figure 15–57 is incomplete. Indicate the changes that should be made.

*

A

B

C

D

*

Output

* unused inputs

*

FIGURE 15–57

Section 15–4 Practical Considerations in the Use of TTL

 19. Determine the output level of each TTL gate in Figure 15–58.

(a)

+5 V
+5 V
Open

(b)

0 V

Open

(c)

LOW

+5 V
+5 V

FIGURE 15–58

 20. For each part of Figure 15–59, tell whether each driving gate is sourcing or sinking current.

Specify the maximum current out of or into the output of the driving gate or gates in each case.

All gates are standard TTL.

LOW

LOW

(a)

HIGH

HIGH

(b)

LOW

HIGH

G1
G2

G3

G1
G2

G3

G1 G2
G3 G4

(c)

FIGURE 15–59

 21. Use open-collector inverters to implement the following logic expressions:

(a) X = A B C

(b) X = ABCD

(c) X = ABCD E F

 22. Write the logic expression for each of the circuits in Figure 15–60.

 Problems 891

 23. Determine the minimum value for the pull-up resistor in each circuit in Figure 15–60 if

IOL(max) = 40 mA and VOL(max) = 0.25 V for each gate. Assume that 10 standard TTL

unit loads are being driven from output X and the supply voltage is 5 V.

 24. A certain relay requires 60 mA. Devise a way to use open-collector NAND gates with

IOL(max) = 40 mA to drive the relay.

Section 15–5 Comparison of CMOS and TTL Performance

 25. Select the IC family with the best speed-power product in Table 15–1.

 26. Determine from Table 15–1 the logic family that is most appropriate for each of the following

requirements:

(a) shortest propagation delay time

(b) fastest flip-flop toggle rate

(c) lowest power dissipation

(d) best compromise between speed and power for a logic gate

 27. Determine the total propagation delay from each input to each output for each circuit in

Figure 15–61.

A

Rp

+V

A

B

C

D

X

(a)

Rp

A

X

(b)

B
C

D

E

F

G

Rp

X

(c)

B

C

D

E

F

G

H

+V +V

FIGURE 15–60

A

B
C

X

D

A

B

C

D

(b) 74HCXX gates(a) 74FXX gates

B

A

D

C

(c) 74AHCXX gates

X

X1

X2

X3

FIGURE 15–61

892 Integrated Circuit Technologies

Section 15–6 Emitter-Coupled Logic (ECL) Circuits

 29. What is the basic difference between ECL circuitry and TTL circuitry?

 30. Select ECL, CMOS HC series, or the appropriate TTL series for each of the following

 requirements:

(a) highest speed

(b) lowest power

(c) best compromise between high speed and low power (speed-power product)

50 ns

CLK

HC

Q

HIGH

(a)

CLK

LS

Q

60 ns

HIGH

(b)

CLK

AHC

Q

4 ns

HIGH

(c)

J

K

C

J

K

C

J

K

C

FIGURE 15–62

ANSWERS

SECTION CHECKUPS

Section 15–1 Basic Operational Characteristics and Parameters

 1. VIH: HIGH level input voltage: VIL: LOW level input voltage; VOH: HIGH level output voltage;

VOL: LOW level output voltage

 2. A higher value of noise margin is better.

 3. Gate B can operate at a higher frequency.

 4. Excessive loading reduces the noise margin of a gate.

Section 15–2 CMOS Circuits

 1. MOSFETs are used in CMOS logic.

 2. A complementary output circuit consists of an n-channel and a p-channel MOSFET.

 3. Because electrostatic discharge can damage CMOS devices

Section 15–3 TTL (Bipolar) Circuits

 1. False, the npn BJT is off.

 2. The on state of a BJT is a closed switch; the off state is an open switch.

 3. Totem-pole and open-collector are types of TTL outputs.

 4. Tri-state logic provides a high-impedance state, in which the output is disconnected from the

rest of the circuit.

 28. One of the flip-flops in Figure 15–62 may have an erratic output. Which one is it if any and why?

 Answers 893

Section 15–4 Practical Considerations in the Use of TTL

 1. Sink current occurs in a LOW output state.

 2. Source current is less than sink current because a TTL load looks like a reverse-biased diode in

the HIGH state.

 3. The totem-pole transistors cannot handle the current when one output tries to go HIGH and the

other is LOW.

 4. Wired-AND must use open-collector.

 5. Lamp driver must be open-collector.

 6. False, an unconnected TTL input generally acts as a HIGH.

Section 15–5 Comparison of CMOS and TTL Performance

 1. BiCMOS uses bipolar transistors for input and output circuitry and CMOS in between.

 2. CMOS has lower power dissipation than bipolar.

Section 15–6 Emitter-Coupled Logic (ECL) Circuits

 1. ECL is faster than TTL.

 2. ECL has more power and less noise margin than TTL.

Section 15–7 PMOS, NMOS, and E2CMOS

 1. NMOS and PMOS are high density.

 2. The floating gate is the mechanism for storing charge in an E2CMOS cell.

RELATED PROBLEMS FOR EXAMPLES

 15–1 CMOS

 15–2 10.75 mW

 15–3 IT(source) = 5(20 mA) = 100 mA

 IT(sink) = 5(-0.4 mA) = -2.0 mA

 15–4 Fan-out = 20 unit loads

 15–5 X = (AB)(CD)(EF)(GH) = (A + B)(C + D)(E + F)(G + H)

 15–6 See Figure 15–63.

 15–7 RL = 97 �

Rp

A

B

C

D

E

F

G

H

I

J

+5 V

Two 74LS09s

FIGURE 15–63

TRUE/FALSE QUIZ

 1. T 2. F 3. T 4. F 5. T

 6. T 7. F 8. T 9. T 10. T

SELF-TEST

 1. (b) 2. (c) 3. (c) 4. (c) 5. (e)

 6. (a) 7. (c) 8. (d) 9. (a) 10. (c)

A-1

Chapter 1

 1. Digital can be transmitted and stored more efficiently and

reliably.

 3. Thermometer

Sphygmomanometer

Photometer

 5. (a) 11000011 (b) 10101010

 7. (a) 550 ns (b) 600 ns (c) 2.7 ms (d) 10 V

 9. 250 Hz

 11. 50%

 13. 8 ms; 1 ms

 15. Lon = SW1 + SW2 + SW1 # SW2

 17. OR gate

 19. (a) Subtractor (b) Multiplier

 (c) Multiplexer (d) Comparator

 21. 01010000

 23. SPLD: Simple Programmable Logic Device

CPLD: Complex Programmable Logic Device

HDL: Hardware Description Language

FPGA: Field-Programmable Gate Array

GAL: Generic Array Logic

 25. Place-and-route or fitting is the process where the logic

structures described by the netlist are mapped into the actual

structure of the specific target device. This results in an

output called a bitstream.

 27. Circuits with complexities of 100 to 10,000 equivalent gates

are classified as large scale integration (LSI).

 29. 8 V

 31. 125 Hz

 33. Troubleshooting is the process of recognizing, isolating, and

correcting a fault or failure in a system.

 35. In the signal-tracing method, a signal is tracked as it

progresses through a system until a point is found where the

signal disappears or is incorrect.

 37. When a failure is reported, determine when and how the

failure occurred and what are the symptoms.

 39. An incorrect output can be caused by an incorrect dc supply

voltage, improper ground, incorrect component value, or a

faulty component.

 41. To isolate a fault in a system, apply half-splitting or signal

tracing.

 43. When a fault has been isolated to a particular circuit board,

the options are to repair the board or replace the board with a

known good board.

Chapter 2

 1. (a) 1 (b) 100 (c) 10

 3. (a) 200; 60; 3 (b) 5000; 400; 30; 6

 (c) 200000; 30000; 4000; 500; 40; 3

 5. (a) 1 (b) 2 (c) 3 (d) 6

 (e) 10 (f) 11 (g) 14 (h) 15

 7. (a) 51.75 (b) 42.25 (c) 65.875

 (d) 120.625 (e) 92.65625 (f) 113.0625

 (g) 90.625 (h) 127.96875

 9. (a) 3 bits (b) 4 bits (c) 4 bits

 (d) 5 bits (e) 7 bits (f) 7 bits

 (g) 8 bits (h) 8 bits

 11. (a) 1100 (b) 1111 (c) 11001

 (d) 110010 (e) 1000001 (f) 1100001

 (g) 1111111 (h) 11000110

 13. (a) 1101 (b) 10001 (c) 10111

 (d) 11110 (e) 100011 (f) 101000

 (g) 110001 (h) 111100

 15. (a) 100 (b) 101 (c) 111

 (d) 1100 (e) 10110 (f) 11110

 17. (a) 110 (b) 1111 (c) 101010

 (d) 111100 (e) 11000100 (f) 10110100

 19. all 0s or all 1s

 21. (a) 011 (b) 000 (c) 0011

 (d) 01000100 (e) 0110101 (f) 01010101

 23. (a) 00011101 (b) 11010101

 (c) 01100100 (d) 11111011

 25. (a) 00001100 (b) 10111100

 (c) 01100101 (d) 10000011

 27. (a) -102 (b) +116 (c) -64

 29. (a) 0 10001101 11110000101011000000000

 (b) 1 10001010 11000001100000000000000

 31. (a) 00110000 (b) 00011101

 (c) 11101011 (d) 100111110

 33. (a) 11000101 (b) 11000000

 35. 100111001010

 37. (a) 1000110 (b) 1010100 (c) 10110100

 (d) 110100011 (e) 11111010

 (f) 101010111100 (g) 1010110010111101

 39. (a) 66 (b) 100 (c) 43 (d) 77

 (e) 255 (f) 188 (g) 1777 (h) 2748

 41. (a) 5816 (b) A516

 (c) 19916 (d) 1AA16

 43. (a) 12 (b) 43 (c) 55 (d) 124

 (e) 413 (f) 172 (g) 1467 (h) 4095

 45. (a) 1111 (b) 10110

 (c) 1100101 (d) 100101110

 (e) 110101011 (f) 111111111

 47. (a) 00010000 (b) 00010011

 (c) 00011000 (d) 00100001

ANSWERS TO ODD-NUMBERED PROBLEMS

A-2 Answers to Odd-Numbered Problems

 (e) 00100101 (f) 00110110

 (g) 01000100 (h) 01010111

 (i) 01101001 (j) 10011000

 (k) 000100100101 (l) 000101010110

 49. (a) 000100000100 (b) 000100101000

 (c) 000100110010 (d) 000101010000

 (e) 000110000110 (f) 001000010000

 (g) 001101011001 (h) 010101000111

 (i) 0001000001010001

 51. (a) 80 (b) 237 (c) 346 (d) 421 (e) 754

 (f) 800 (g) 978 (h) 1683 (i) 9018 (j) 6667

 53. (a) 00010100 (b) 00010010

 (c) 00010111 (d) 00010110

 (e) 01010010 (f) 000100001001

 (g) 000110010101 (h) 0001001001101001

 55. The Gray code makes only one bit change at a time when

going from one number in the sequence to the next.

 57. (a) 1100 (b) 00011 (c) 10000011110

 59. (a) CAN (b) J (c) =

 (d) # (e) 7 (f) B

 61. 48 65 6C 6C 6F 2E 20 48 6F 77 20 61 72 65 20 79 6F 75 3F

 63. (b) is incorrect.

 65. (a) 110100100 (b) 000001001 (c) 111111110

 67. In each case, you get the other number.

 69. The remainder is 0100, indicating an error.

Chapter 3

 1. See Figure P–1.

VIN

C

D

B

E

F

FIGURE P–2

Vin

HIGH

LOW

Vout

HIGH

LOW

FIGURE P–1

 3. See Figure P–2.

A

B

X

FIGURE P–3

 5. See Figure P–3.

 7. See Figure P–4.

A

B

C

X

FIGURE P–4

OR

FIGURE P–5

 9. See Figure P–5.

A

B

Output X

FIGURE P–6

 11. See Figure P–6.

A

B

C

D

X

FIGURE P–7

 13. See Figure P–7.

A

X
B

C

D

≥ 1

FIGURE P–8

 15. See Figure P–8.

 Answers to Odd-Numbered Problems A-3

 31. entity 4InputAND is

 port (A, B, C, D: in bit; X: out bit);

 end entity 4Input AND;

 architecture Function of 4InputAND is

 begin

 X 6= A and B and C and D;

 end architecture Function;

 33. CMOS

 35. tPLH = 4.3 ns; tPHL = 10.5 ns

 37. 20 mW

 39. The gates in parts (b), (c), (e) are faulty.

 41. (a) defective output (stuck LOW or open)

 (b) Pin 4 input or pin 6 output internally open.

 43. The seat belt input to the AND gate is open.

 45. Add an inverter to the enable input line of the AND gate.

 47. See Figure P–14.

 17. See Figure P–9.

A

B

X

FIGURE P–9

A

X

B

C

D

FIGURE P–10

 19. See Figure P–10.

A

B

X

FIGURE P–11

 21. See Figure P–11.

A

X

B

C

D

FIGURE P–12

 23. See Figure P–12.

 25. XOR = AB + AB; OR = A + B

 27. See Figure P–13.

A

B

X

FIGURE P–13

 29. X1 = AB, X2 = A B, X3 = AB.

Ignition
switch

Lights
switch

Timer produces a LOW output
15 s after AND gate output goes HIGH

To
headlight
control

Timer

FIGURE P–14

Board position

Component in chamber
Activate insertion tool

FIGURE P–15

 49. The inputs are now active-LOW. Change the OR gates to

NAND gates (negative-OR) and add two inverters.

 51. See Figure P–15.

 53. Input B of NAND gate shorted to VCC.

 55. Input B of XOR gate shorted to VCC.

Chapter 4

 1. X = A + B + C + D

 3. X 5 ABCD

 5. (a) ABC = 1 when A = B = C = 1

 (b) A + B + C = 0 when A = B = C = 0

 (c) A B C = 1 when A = B = 0 and C = 1

 (d) A + B + C = 0 when A = B = 1 and C = 0

 (e) A + B + C = 0 when A = 0 and B = C = 1

 (f) A + B + C = 0 when A = B = C = 1

 7. (a) Commutative

 (b) Commutative

 (c) Distributive

A-4 Answers to Odd-Numbered Problems

 9. (a) AB (b) A + B

 (c) A B C (d) A + B + C

 (e) A + B C (f) A + B + C + D

 (g) (A + B)(C + D) (h) AB + CD

 11. (a) (A + B + C)(E + F + G)(H + I + J)(K + L + M)

 (b) ABC + BC

 (c) A B C D E F G H

 13. (a) X = ABCD (b) X = AB + C

 (c) X = AB (d) X = (A + B)C

 15. See Figure P–16.

(a) (b)

(c) (d)

AB + BC + CD + DA

AB

BC

CD

DA

A

B

C

D

D

A

B

C

AB + AB

AB

ABA

B
AB(C + D)

ABA

B

C

D

C + D
D

C

(A + B)(B + C)(C + D)(D + A)

A + B

B + C

C + D

D + A

A

B

C

D

D

A

B

C

FIGURE P–16

TABLE P–1

Inputs Output

VCR CAMI RDY RECORD

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

TABLE P–2

Inputs Output

RTS ENABLE BUSY SEND

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

TABLE P–3

A B C X

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

 17. (b) See Table P–2.

 19. (a) A (b) AB (c) C

 (d) A (e) AC + BC

 21. (a) CE + CF + EG (b) B CD + B CE

 (c) C (d) BC + DE

 (e) BCD

 23. (a) CD + AC + AD (b) AC + AD

 (c) CD + AC

 25. (a) Domain: C, D, A

Standard SOP: CDA + CD A + CDA + CDA

 (b) Domain: C, D, A

Standard SOP: CDA + CDA + C DA

 (c) Domain: C, D, A

Standard SOP: CDA + CDA + C DA

 27. (a) 101 + 100 + 111 + 011

 (b) 111 + 101 + 001

 (c) 111 + 110 + 101

 29. (a) (C + D + A)(C + D + A)(C + D + A)(C + D + A)

 (b) (C + D + A)(C + D + A)(C + D + A)

(C + D + A) + (C + D + A)

 (c) (C + D + A)(C + D + A)(C + D + A)

(C + D + A)(C + D + A)

 31. (a) See Table P–3.

 17. (a) See Table P–1.

 Answers to Odd-Numbered Problems A-5

 31. (b) See Table P–4.

TABLE P–4

X Y Z Q

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

 33. (a) See Table P–5.

TABLE P–5

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

 33. (b) See Table P–6.

TABLE P–6

W X Y Z Q

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

 35. (a) See Table P–7.

TABLE P–7

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

 35. (b) See Table P–8.

TABLE P–8

A B C D X

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

 37. See Figure P–17.

0 1

00

01

11

10

AB

C

110

000 001

010 011

111

100 101

FIGURE P–17

0 1

00

01

11

10

AB

C

ABC ABC

ABC ABC

ABC ABC

ABC ABC

FIGURE P–18

 39. See Figure P–18.

A-6 Answers to Odd-Numbered Problems

 41. (a) No simplification (b) AC

 (c) D F + EF

 43. (a) AB + AC

 (b) A + BC

 (c) BCD + ACD + BCD + ACD

 (d) AB + CD

 45. B + C

 47. A B CD + CD + BC + AD

 49. (a) No reduction

 (b) (W + X)(W + Z)(X + Y)(W + X + Y + Z)

 51. (A + B + D)(A + C + D)(A + B + C)

(B + C + D)(A + B + C + D)

 53. Minterms: 1, 3, 5, 6, 7

 55. See Table P–9.

TABLE P–9

Number of 1s Minterm ABCD

0 m0 0000

1 m1 0001

2 m5 0101

m6 0110

m9 1001

m12 1100

 57. See Table P–10.

TABLE P–10

First Level

Number of

1s in First Level Second Level

(m0, m1) 000x 0 (m0m1) 000x

(m1, m5) 0x01 1 (m1, m5, m9) xx01

(m1, m9) x001

 59. X = CD + A B C + ABCD + ABC D

 61. The VHDL program:

entity SOP is

 port(A, B, C: in bit; X: out bit);

end entity SOP;

architecture Logic of SOP is

begin

 Y 6= (A and not B and C) or (not A and not B

and C) or (A and not B and not C) or (not A and

B and C);

end architecture Logic;

 63. The purpose of the invalid code detector is to detect the

codes 1010, 1011, 1100, 1101, 1110, and 1111 to activate the

display for letters.

 65. Segment d: The minimum expression requires one 2-input

AND gate, one 3-input AND gate, one 2-input OR gate, and

2 inverters.

 Segment e: The minimum expression requires one 3-input

AND gate.

 Segment f: The minimum expression requires one 2-input

AND gate.

 Segment g: The minimum expression requires one 2-input

AND gate, one 3-input AND gate, one 2 input OR gate, and

2 inverters.

 67. See Figure P–19.

a

H3

H2

H1

H0

FIGURE P–19

 69. The invalid code detector must disable the display when any

numerical input (0–9) occurs. A HIGH enables the display

and a LOW disables it. A circuit that detects the numeric

codes and produces a LOW is shown in Figure P–20.

X

H3

H2

H1

FIGURE P–20

 71. Bottom input of U7 is open.

 3. (a) X = ABB (b) X = AB + B

 (c) X = A + B (d) X = (A + B) + AB

 (e) X = ABC (f) X = (A + B)(B + C)

 5. (a)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

 5. (b)

A B X

0 0 0

0 1 1

1 0 0

1 1 1

C
B

E
D

G

A
&

&

≥1

&

&

F

I
H

J

L
K

X X

A

B
C

D

E
F

G

H
I

J

K
L

FIGURE P–21

Chapter 5

 1. See Figure P–21.

 Answers to Odd-Numbered Problems A-7

 5. (e)

A B C X

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

 5. (c)

A B X

0 0 1

0 1 1

1 0 0

1 1 1

 5. (d)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

 5. (f)

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

 7. X = AB + AB = (A + B)(A + B)

 9. ABCD + EFGH

 11. See Figure P–22.

 13. See Figure P–23.

A

(a) X = AB + BC

X

A

C (b) X = A(B + C)

X

A
B

C

B

(c) X = AB + AB

X

A

B

(d) X = ABC + B(EF + G)

X

B
C

E
F

G
B

A
C

X

B

B
A

C
D

(e) X = A[BC(A + B + C + D)]

(f) X = B(CDE + EFG) (AB + C)

C

X
B

C

F
G

A

B

D

E

FIGURE P–22

X = AB + C

A

B

C

FIGURE P–23

 15. X = AB

 17. (a) No simplification

 (b) No simplification

 (c) X = A

 (d) X = A + B + C + EF + G

 (e) X = ABC

 (f) X = BCDE + ABEFG + BCEFG

 19. (a) X = AC + AD + BC + BD

 (b) X = ACD + BCD

 (c) X = ABD + CD + E

 (d) X = A + B + D

 (e) X = ABD + CD + E

 (f) X = A C + A D + B C + B D + E G + E H + F G + F H

 21. See Figure P–24.

 23. See Figure P–25.

 25. See Figure P–26.

 27. See Figure P–27.

 29. X = A + B; see Figure P–28.

 31. X = AB C see Figure P–29.

 33. The output pulse width is greater than the specified

 minimum.

 35. X 6= A and B and C

A

C

B

X

FIGURE P–24

A-8 Answers to Odd-Numbered Problems

X

A

C

B

FIGURE P–25

A

XX
A
B
C

 (b) X = ABC

A

(a) X = ABC

A

B

X

(c) X = A + B

A

B

X

(d) X = A + B + C

C

X

(e) X = AB + CD

C

D

A

B

A

(f) X = (A + B)(C + D)

B

C

D

X

B
C

A

E

D

B

E

B
C

B

C

X

(g) X = AB[C(DE + AB) + BCE]

FIGURE P–26

X

A

B

C

FIGURE P–29

A

B

X

FIGURE P–28

A

X

(a)

B

B

C

A

X

(b)

B

A

C

A

X

(c)

A

B

B

B

X

(d)

B

F

A
B
C

G

E A

C
B X

(e)

X
C

E
D

B

A

E

G
F

B

E

G
F

C
B

(f)

FIGURE P–27

 Answers to Odd-Numbered Problems A-9

 begin

 X 6= (A and B and C) or (D and not E);

 end architecture DataFlow;

 –Structural approach

 entity Fig5_65 is

 port(IN1, IN2, IN3, IN4, IN5: in bit; OUT: out bit);

 end entity Fig5_65;

 architecture Structure of Fig5_65 is

 component AND_gate is

 port(A, B: in bit; X: out bit);

 end component AND_gate;

 component OR_gate is

 port(A, B: in bit; X: out bit);

 end component OR_gate;

 component Inverter is

 port(A: in bit; X: out bit);

 end component Inverter;

 signal G1OUT, G2OUT, G3OUT INVOUT: bit;

 begin

 G1: AND_gate port map (A =7 IN1, B =7 IN2,

X =7 G1OUT);

 G2: AND_gate port map (A =7 G1OUT, B =7 IN3,

X => G2OUT);

 INV: Inverter port map (A =7 IN5, X =7 INVOUT);

 G3: AND_gate port map (A =7 IN4, B =7 INVOUT,

X =7 G3OUT);

 G4: OR_gate port map (A =7 G2OUT, B =7 G3OUT,

X =7 OUT);

 end architecture Structure;

 43. See Table P–11.

 37. (e) entity Circuit5_55e is

 port(A, B, C: in bit; X: out bit);

 end entity Circuit5_55e;

 architecture LogicFunction of Circuit5_55e is

 begin

 X 6= (not A and B) or B or (B and not C) or

 (not A and not C) or (B and not C) or not C;

 end architecture LogicFunction;

 (f) entity Circuit5_55f is

 port(A, B, C: in bit; X: out bit);

 end entity Circuit5_55f;

 architecture LogicFunction of Circuit5_55f is

 begin

 X 6= (A or B) and (not B or C);

 end architecture LogicFunction;

 39. Number gates from top to bottom and left to right G1, G2,

G3, etc. Relabel inputs IN1, IN2, IN3, etc, and output OUT.

 entity Circuit5_56f is

 port(IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit;

OUT: out bit);

 end entity Circuit5_56f;

 architecture LogicFunction of Circuit5_56f is

 component NAND_gate is

 port(A, B: in bit; X: out bit);

 end component NAND_gate;

 signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT,

G6OUT: bit;

 begin

 G1: NAND_gate port map (A =7 IN1, B =7 IN2,

X =7 G1OUT);

 G2: NAND_gate port map (A =7 IN3, B =7 IN4,

X =7 G2OUT);

 G3: NAND_gate port map (A =7 IN5, B =7 IN6,

X =7 G3OUT);

 G4: NAND_gate port map (A =7 IN7, B =7 IN8,

X =7 G4OUT);

 G5: NAND_gate port map (A =7 G1OUT, B =7 G2OUT,

X =7 G5OUT);

 G6: NAND_gate port map (A =7 G3OUT, B =7 G4OUT,

X =7 G6OUT);

 G7: NAND_gate port map (A =7 G5OUT, B =7 G6OUT,

X =7 OUT);

 end architecture LogicFunction;

 41. –Data flow approach

 entity Fig5_65 is

 port (A, B, C, D, E: in bit; X: out bit);

 end entity Fig5_65;

 architecture DataFlow of Fig5_65 is

TABLE P–11

Inputs Output

A B C D X

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0

0 0 1 0 0

1 0 1 0 0

0 1 1 0 0

1 1 1 0 0

0 0 0 1 0

1 0 0 1 0

0 1 0 1 0

1 1 0 1 1

0 0 1 1 0

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1

A-10 Answers to Odd-Numbered Problems

 45. The AND gates are numbered top to bottom G1, G2, G3, G4.

The OR gate is G5 and the inverters are, top to bottom. G6

and G7. Change A1, A2, B1, B2 to IN1, IN2, IN3, IN4 respec-

tively. Change X to OUT.

 entity Circuit5_67 is

 port (IN1, IN2, IN3, IN4: in bit; OUT: out bit);

 end entity Circuit5_67;

 architecture Logic of Circuit5_67 is

 component AND_gate is

 port (A, B: in bit; X: out bit);

 end component AND_gate;

 component OR_gate is

 port (A, B, C, D: in bit; X: out bit);

 end component OR_gate;

 component Inverter is

 port (A: in bit; X: out bit);

 end component Inverter;

 signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT,

G6OUT, G7OUT: bit;

 begin

 G1: AND_gate port map (A =7 IN1, B =7 IN2,

X =7 G1OUT);

 G2: AND_gate port map (A =7 IN2, B =7 G6OUT,

X =7 G2OUT);

 G3: AND_gate port map (A =7 G6OUT, B =7 G7OUT,

X =7 G3OUT);

 G4: AND_gate port map (A =7 G7OUT, B =7 IN1,

X =7 G4OUT);

 G5: OR_gate port map (A =7 G1OUT, B =7 G2OUT,

C =7 G3OUT, D =7 G4OUT, X =7 OUT);

 G6: Inverter port map (A =7 IN3, X =7 G6OUT);

 G7: Inverter port map (A =7 IN4, X =7 G7OUT);

 end architecture Logic;

 47. X = ABC + DE. Since X is the same as the G3 output,

either G1 or G2 has failed, with its output stick LOW.

 49. See Figure P–30.

Load gates

14

1

8

7

9

6

10

5

11

4

12

3

13

2

1

Load gate

Driving gate

14

1

8

7

9

6

10

5

11

4

12

3

13

2

2

FIGURE P–30

 51. (a) See Figure P–31. (b) X = E (c) X = E

A

X

FIGURE P–31

 53. The flow sensor measures the solution into the tank. The

temperature transducer measures the temperature of the

 solution. The level sensors indicate when the solution is at

the minimum or maximum level.

 55. See Figure P–32.

T

Finlet

Lmin Voutlet

NOR gate

functions as

negative-AND

FIGURE P–32

Lmin
VadditiveT

FIGURE P–33

 57. See Figure P–33.

 59. (a) X = lamp on, A = front door switch on, B = back

door switch on. See Figure P–34.

X
A

B

FIGURE P–34

 (b) entity LampCircuit is

 port (A, B: in bit; X: out bit);

 end entity LampCircuit;

 architecture Function of LampCircuit is

 begin

 X 6= A xor B;

 end architecture Function;

 61. Output of U3A shorted to ground.

 63. Output of U2A is always HIGH (shorted to VCC).

Chapter 6

 1. (a) Cout = 0, © = 1

 (b) Cout = 1, © = 0

 (c) Cout = 0, © = 0

 3. (a) © = 1, Cout = 0;

 (b) © = 1, Cout = 0;

 (c) © = 0, Cout = 1;

 (d) © = 1, Cout = 1

 5. 101111

 7. ©3©2©1©0 = 1101

 9. ©1 = 0111; ©2 = 1011; ©3 = 1110; ©4 = 1000; ©5 = 0011

 11. 200 ns

 Answers to Odd-Numbered Problems A-11

 13. A = B is HIGH when A0 = B0 and A1 = B1;

see Figure P–35.

A0

A1

B0

B1

A = B

FIGURE P–35

 15. (a) A 7 B = 0; A 6 B = 1; A = B = 0

 (b) A 7 B = 0; A 6 B = 0; A = B = 1

 (c) A 7 B = 1; A 6 B = 0; A = B = 0

 17. See Figure P–36.

 19. X = A3A2A1A0 + A3A2A1A0 + A3A2A1

 21. See Figure P–37.

 23. A3A2A1A0 = 1011, invalid BCD

1
1

0

1

(MSB)

(LSB)

1

1
1

0

1

(MSB)

1

1
(LSB)

1

0

0

(MSB)

1

0

(LSB)

(b)

1
1

0

(MSB)

1

0

(LSB)

1

0

1

1

(MSB)

1

0

(LSB)

(e)

0

1 (MSB)

1

0

(LSB)

1
1
1
1
1

1

0

1

(MSB)

1

0

(LSB)

(h)

1

1

1

(MSB)

1

1
(LSB)

(g)

1

0

0

0

0

(a) (c) (d)

(f)

FIGURE P–36

A0

A1

A2

A3

0

1

2

3

4

5

6

7

8

9

HIGH

HIGH

HIGH

FIGURE P–37

A-12 Answers to Odd-Numbered Problems

 33. See Figure P–41. 25. (a) 2 = 0010 = 00102

 (b) 8 = 1000 = 10002

 (c) 13 = 00010011 = 11012

 (d) 26 = 00100110 = 110102

 (e) 33 = 00110011 = 1000012

 27. (a) 1010000000 Gray → 1100000000 binary

 (b) 0011001100 Gray → 0010001000 binary

 (c) 1111000111 Gray → 1010000101 binary

 (d) 0000000001 Gray → 0000000001 binary

 See Figure P–38.

G0

B0

G1

B1

G2

B2

G3

B3

G4

B4

G5

B5

G6

B6

G7

B7

G8

B9

G9

B8

FIGURE P–38

 29. See Figure P–39.

S0

S1

Y

FIGURE P–39

 31. See Figure P–40.

S0

S1

S2

S3

Data in

D0

D1

D2

D3

LSD

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

MSD

1

1

1

1

1

FIGURE P–40

EVEN

ODD

A0

A1

A2

A3

A4

A5

A6

A7

Σ EVEN

Σ ODD

FIGURE P–41

 35. (a) OK

 (b) segment g burned out; output G open

 (c) segment b output stuck LOW

 37. (a) The A1 input of the top adder is open: All binary values

corresponding to a BCD number having a value of 0, 1,

4, 5, 8, or 9 will be off by 2. This will first be seen for a

BCD value of 0000 0000.

 (b) The carry out of the top adder is open: All values not

normally involving an output carry will be off by 32.

This will first be seen for a BCD value of 0000 0000.

 (c) The ©4 output of the top adder is shorted to ground:

Same binary values above 15 will be short by 16. The

first BCD value to indicate this will be 0001 1000.

 (d) The ©3 output of the bottom adder is shorted to ground:

Every other set of 16 values starting with 16 will be

short 16. The first BCD value to indicate this will be

0001 0110.

 39. 1. Place a LOW pin 7 (Enable).

 2. Apply a HIGH to D0 and a LOW to D1 through D7.

 3. Go through the binary sequence on the select inputs and

check Y and Y according to Table P–12.

TABLE P–12

S2 S1 S0 Y Y

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

 Answers to Odd-Numbered Problems A-13

 4. Repeat the binary sequence of select inputs for each set

of data inputs listed in Table P–13. A HIGH on the Y

output should occur only for the corresponding combina-

tions of select inputs shown.

 41. Apply a HIGH in turn to each Data input, D0 through D7

with LOWs on all the other inputs. For each HIGH applied to

a data input, sequence through all eight binary combinations

of select inputs (S2S1S0) and check for HIGH on the corre-

sponding data output and LOWs on all the other data outputs.

 43. See Figure P–42.

 45. © = A BCin + ABCin + AB Cin + ABCin

Cout = ABCin + ABCin + ABCin + ABCin

 See Figure P–43.

L3

L4

MR

SY

SG

1/4 74HC00 1/6 74HC04

From
state

decoder

L1

L2

SR

MG

MY

1/4 74HC00 1/6 74HC04

Output logic

FIGURE P–42

AB

Cin
0 1

00

01

11

10

1

1

1

AB

Cin
0 1

00

01

11

10 1

1

1

1

Cout = BCin + AB + ACin Σ = No simplification

1

Cin

A

Cin

Σ

B

A

B

Cout

1

Cout

MUX

G

0

2

0
1
2
3

Cin

B

A

4
5
6
7

1

EN

74HC151

0–
7

Σ

MUX

G

0
1
2
3

Cin

B

A

4
5
6
7

EN

74HC151

0–
7

FIGURE P–43

TABLE P–13

D0 D1 D2 D3 D4 D5 D6 D7 Y Y S2 S1 S0

L H L L L L L L 1 0 0 0 1
L L H L L L L L 1 0 0 1 0
L L L H L L L L 1 0 0 1 1
L L L L H L L L 1 0 1 0 0
L L L L L H L L 1 0 1 0 1
L L L L L L H L 1 0 1 1 0
L L L L L L L H 1 0 1 1 1

A-14 Answers to Odd-Numbered Problems

 47. See the block diagram in Figure P–44.

Yes

No

BCD

to

7-seg

decoder

BCD

to

7-seg

decoder

BCD

to

7-seg

decoder

BCD

to

7-seg

decoder

Six

switches

6-position

adder

module

Six

switches

6-position

adder

module

No

Yes

No

Yes

BCD

adder

BCD

adder

FIGURE P–44

74HC85

A

0

1

2

3

B

0

1

2

3

A > B

A = B

A < B

(5)

(6)

(7)

A > B

A = B

A < B

A0

A1

A2

A3

(12)

(13)

(15)

(10)

+5 V

B0

B1

B2

B3

(11)

(14)

(1)

(9)

74HC85

A

0

1

2

3

B

0

1

2

3

A > B

A = B

A < B

(6)
A > B

A = B

A < B
(2)

(3)

(4)

A4

A5

A6

A7

(12)

(13)

(15)

(10)

B4

B5

B6

B7

(11)

(14)

(1)

(9)

A = B
(2)

(3)

(4)

FIGURE P–45

 49. See Figure P–45.

 3. See Figure P–48.

R

S

Q

FIGURE P–48

D

Q

EN

FIGURE P–49

 5. See Figure P–49.

Q

D

EN

FIGURE P–50

 7. See Figure P–50.

Q

CLK

D

FIGURE P–51

 9. See Figure 51.

Q

CLK

D

FIGURE P–52

 11. See Figure P–52.

Keypad

with

active-LOW

outputs

VCC

4
(7)(1)

(2)

(3)
5

6

3
(13)

2
(12)

1
(11)

(4)
7

(5)
8

(10)
9

74HC147

(8)

(3) (4)

(9) (1) (2)

(6) (5) (6)

(4) (9) (8)

74LS04

1

2

4

8

+5 V

BCD

(16)

FIGURE P–46

 51. See Figure P–46.

 53. Cin of U1 is shorted to VCC.

 55. Input C of 4-to-16 line decoder is shorted to ground.

R

S

Q

FIGURE P–47

Chapter 7

 1. See Figure P–47.

 Answers to Odd-Numbered Problems A-15

 15. See Figure P–54.

CLK

J

K

Q

FIGURE P–54

Q

D

CLK

FIGURE P–53

 13. See Figure P-53.

CLK

J1

J2

J3

K1

K2

K3

Q

FIGURE P–55

 17. See Figure P–55.

 19. Direct current and dc supply voltage

 21. 16.66 MHz

 23. 128 mA, 512 mW

 25. divide-by-2; see Figure P–56.

CLK

Q

FIGURE P–56

 27. 0.07 ms

 29. C1 = 1 mF, R1 = 454 kæ (use 430 kæ). See Figure P–57.

R
1

V
CC

Output

RESET

+5 V

430 k�

Trigger

GND

TRIG

THRESH

DISCH

555
OUT

CONT

0.01 FC
1

C
21 Fµ µ

FIGURE P–57

 31. R1 = 9.1 kæ, R2 = 4.3 kæ.

 33. The wire from pin 6 to pin 10 and the ground wire are

reversed on the protoboard.

 35. CLR shorted to ground.

 37. See Figure P–58. Delays not shown.

CLK

QA

Upper NAND
Output

QB

Lower NAND
Output

X

(a)

Upper NAND
Output

QA

Lower NAND
Output

X

(b)

(c) X = LOW if QB = 1; X = QA if QB = 0

QB
Floating level (HIGH)

Floating level (HIGH)

Upper NAND
Output

QA

Lower NAND
Output

X

(d)

QB

FIGURE P–58

A-16 Answers to Odd-Numbered Problems

QE
J

C

K

1

J

C

K

1

J

C

K

1

Switch
pulses

J

C

K

1

J

C

K

1

Box full

FIGURE P–61

 43. Increase the REXT CEXT time constant of the 25 s one-shot by

2.4 times.

 45. See Figure P–61.

 39. See Figure P–59.

 5 s: C1 = 1 mF, R1 = 4.3 Mæ

 30 s: C1 = 2.2 mF, R1 = 12 Mæ

0.01 Fµ

R
1

C
1

V
CCRESET

+5 V

Trigger

GND

TRIG

THRESH

DISCH

555
OUT

CONT

FIGURE P–59

REXT

VCC

CEXT

RX RX/CX

CLR
Q

Q&≥ 1

FIGURE P–60

 41. See Figure P–60.

 5 s: CEXT = 1 mF; REXT = 15 Mæ

 30 s: CEXT = 10 mF; REXT = 8.2 Mæ

CLK

Q0

Data in

Q1

Q2

Q3

FIGURE P–62

21 43 65 87 109 1211 1413 1615 1817 2019

CLK

Data in

Data out

FIGURE P–63

 47. R input of U1 is shorted to VCC.

 49. The clock input is shorted to VCC or ground.

 51. The D input of U2 is shorted to ground.

Chapter 8

 1. A digital circuit for data storage and movement.

 3. Refers to movement of data within or into/out of the register.

 5. See Figure P–62.

 7. Initially: 101001111000

 CLK1: 010100111100

 CLK2: 001010011110

 CLK3: 000101001111

 CLK4: 000010100111

 CLK5: 100001010011

 CLK6: 110000101001

 CLK7: 111000010100

 CLK8: 011100001010

 CLK9: 001110000101

 CLK10: 000111000010

 CLK11: 100011100001

 CLK12: 110001110000

 9. See Figure P–63.

 Answers to Odd-Numbered Problems A-17

CLK 71 3 4 5 6 8 9 102

J

K

SH/LD

CLR

D0

D1

D2

D3

Q0

Q1

Q2

Q3

FIGURE P–68

SER

SH/LD

CLK INH

Q7

CLK 71 3 4 5 6 8 9 10 11 12 13 142

FIGURE P–67

71 3 4 5 6 8 9 10 11 12 13 142

SER

SH/LD

CLK

CLK INH

Q7

FIGURE P–66

CLK

A

Q0

B

CLR

Q1

Q2

Q3 through Q7 remain LOW.

FIGURE P–65

21 43 65 87 109 1211 1413 1615 1817 2019

CLK

Data in

Q0

Q1

Q2

Q3

FIGURE P–64

 11. See Figure P–64.

 13. See Figure P–65.

 15. See Figure P–66.

 17. See Figure P–67.

 19. See Figure P–68.

A-18 Answers to Odd-Numbered Problems

 (c) The NAND (negative-OR) gate input connected to the

first column is open or shorted.

 (d) The “2” input to the column encoder is open.

 37. (a) Contents of data output register remain constant.

 (b) Contents of both registers do not change.

 (c) Third stage output of data output register remains

HIGH.

 (d) Clock generator is disabled after each pulse by

the flip-flop being continuously SET and then

RESET.

 39. shift register A: 1001

 shift register C: 00000100

 41. Control flip-flop: 74HC76

 Clock generator: 555

 Counter: 74HC163

 Data input register: 74HC164

 Data output register: 74HC199

 One-shot: 74121

 43. See Figure P–72.

 45. See Figure P–73.

 47. The D input of FF1 is shorted to ground.

 49. The U3 Q’ output of the Johnson counter is connected to

the U2 D input.

 51. The connection between the Q output of U3 and D input of

U4 is open.

 21. Initially (76): 01001100

 CLK1: 10011000 left

 CLK2: 01001100 right

 CLK3: 00100110 right

 CLK4: 00010011 right

 CLK5: 00100110 left

 CLK6: 01001100 left

 CLK7: 00100110 right

 CLK8: 01001100 left

 CLK9: 00100110 right

 CLK10: 01001100 left

 CLK11: 10011000 left

 23. See Figure P–69.

 25. (a) 2 (b) 4

 (c) 6 (d) 9

 27. See Figure P–70.

 29. See Figure P–71.

 31. An incorrect code may be produced.

 33. D3 input open

 35. (a) No clock at switch closure because of faulty NAND

(negative-OR) gate or one-shot; open clock (C) input

to key code register; open SH/LD input to key code

register

 (b) Diode in third row open: Q2 output of ring counter

open

SH/LD

CLK

CLR

(12)

SRG 4

C

Q
3

(12)

SRG 4

C

Q
3

(12)

SRG 4

C

Q
3

(2)
(3)
(9)
(1)

(2)
(3)
(9)
(1)

(2)
(3)
(9)
(1)

(10) (10) (10)

(2)

(3)
(9)
(1)

(10)

(12)

74HC195

SRG 4

C

Q
3

K

J

K

J

K

J

K

J

74HC195 74HC195 74HC195

FIGURE P–71

D
0

D
1

D
2

D
3

Q
0 Q

1
Q

2
Q

3 (12)

S
0

S
1

CLR

SL SER

SR SER

(10)

(9)

(1)

(2)

(7)

(11)

CLK

SR SER

 SL SER

(11)

(7)

(2)

(10)

(9)

(1)
SRG 4

74HC194

C

(15) Q
0

Q
1

Q
2

Q
3

D
1

D
2

D
3

D
0

C

SRG 4

74HC194

FIGURE P–69

CLK

Q
1

Q
2

Q
0

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

FIGURE P–70

 Answers to Odd-Numbered Problems A-19

+ V

C

K

Q

Q

+ V

Power-on SET

J

C

CLK

K

J

K

S S

C T

Detects
stop
bits

+ V Stop
bits 1 2 8

SH/LD
SRG 11

Out

Start bit

C

J

Q

Q

FIGURE P–73

D
0

C C

SH/LD

CLK

Stop bits
+V

CC

SRG 4

74HC195

Q
3

SER
74HC195

SRG 8

D
1

Data bits

D
2

D
3

D
4

D
5

D
6

D
7

Start bit

Q
7

FIGURE P–72

CLK

Q0

Q1

FIGURE P–75

Logic for

decoding state 9 State 9

Binary

0

Binary

1

Clock

Modulus 10 counter

Binary

9

Present state

State diagram
Moore machine

Combinational

logic

Flip-flops

FIGURE P–74

Chapter 9

 1. See Figure P–74.

 3. See Figure P–75.

 5. Worst-case delay is 24 ns; it occurs when all flip-flops

change state from 011 to 100 or from 111 to 000.

 7. 8 ns

 9. Initially, each flip-flop is reset.

 At CLK1:

 J0 = K0 = 1 Therefore Q0 goes to a 1.

 J1 = K1 = 0 Therefore Q1 remains a 0.

 J2 = K2 = 0 Therefore Q2 remains a 0.

 J3 = K3 = 0 Therefore Q3 remains a 0.

 At CLK2:

 J0 = K0 = 1 Therefore Q0 goes to a 0.

 J1 = K1 = 1 Therefore Q1 goes to a 1.

 J2 = K2 = 0 Therefore Q2 remains a 0.

 J3 = K3 = 0 Therefore Q3 remains a 0.

A-20 Answers to Odd-Numbered Problems

Q0

J0

C

K0

Q0

Q1

Q2

Q1

Q2

CLK

Q1

J1

C

K1

Q1

Q2

J2

C

K2

Q2

Q2

Q2

Q0

Q0

FIGURE P–80

 At CLK3:

 J0 = K0 = 1 Therefore Q0 goes to a 1.

 J1 = K1 = 0 Therefore Q1 remains a 1.

 J2 = K2 = 0 Therefore Q2 remains a 0.

 J3 = K3 = 0 Therefore Q3 remains a 0.

 A continuation of this procedure for the next seven clock

pulses will show that the counter progresses through the

BCD sequence.

 11. See Figure P–76.

CLK

Q0

Q1

CLR

Q2

Q3

LOW

FIGURE P–76

CLK

Q0

Q1

Q2

Q3

ENP

ENT

LOAD

RCO

FIGURE P–77

 13. See Figure P–77.

 19. The sequence is 0000, 1111, 1110, 1101, 1010, 0101. The

counter “locks up” in the 1010 and 0101 states and alternates

between them.

 21. See Figure P–80.

CLK

Q0

Q1

CTEN

Q2

Q3

0

D/U

LOAD

FIGURE P–78

 15. See Figure P–78.

CLK

Q0

Q1

CTEN

Q2

Q3

0

0

D/U

LOAD

FIGURE P–79

 17. See Figure P–79.

 Answers to Odd-Numbered Problems A-21

C

CLK

1 MHz

CTEN

CTR DIV10

1
100 kHz

C

CTEN

CTR DIV10

10 kHz

C

CTEN

CTR DIV10

1 kHz

C

CTEN

CTR DIV10

100 Hz
TC TC TC TC

FIGURE P–82

 25. See Figure P–82 for divide-by-10,000. Add one more DIV

10 counter to create a divide-by-100,000.

Q3

J3

C

K3

Q3

CLK

Q1

Q1

Y

Q0

Y

Q2

J2

C

K2

Q2

Q1

Q3

Q1

Q1

Q3

Q1

J1

C

K1

Q1

Q0

J0

C

K0

Q0

Q2

Q3

1 1

Q2

FIGURE P–81

 23. See Figure P–81.

(MSB)

Q0

Q1

Q2

Q3

(a)

(MSB)

Q0

Q1

Q2

Q3

(b)

(MSB)

Q0

Q1

Q2

Q3

(c)

(MSB)

Q0

Q1

Q2

Q3

(d)

(MSB)

Q0

Q1

Q2

Q3

(e)

FIGURE P–83

 27. See Figure P–83.

 29. CLK2, output 0; CLK4, outputs 2, 0; CLK6, output 4; CLK8,

outputs 6, 4, 0; CLK10, output 8; CLK12, outputs 10, 8;

CLK14, output 12; CLK16, outputs 14, 12, 8

 31. A glitch of the AND gate output occurs on the 111 to 000

transition. Eliminate by ANDing CLK with counter outputs

(strobe) or use Gray code.

 33. Hours tens: 0001

 Hours units: 0010

 Minutes tens: 0000

 Minutes units: 0001

 Seconds tens: 0000

 Seconds units: 0010

 35. 68

 37. (a) Q0 and Q1 will not change from their initial state.

 (b) Normal operation. Q0 and Q1 toggle.

 (c) Q0 toggles and Q1 remains in initial state.

 (d) 0 goes HIGH and remains HIGH. Q1 does not

change.

 (e) Q0 toggles and Q1 remains LOW.

 39. The D input to FF1 is open acting as a HIGH.

 41. Q0 input to AND gate open and acting as a HIGH

 43. See Table P–14.

 45. The decode 6 gate interprets count 4 as a 6 (0110) and clears

the counter back to 0 (actually 0010 since Q1 is open). The

apparent sequence of the tens portion of the counter is 0010,

0011, 0010, 0011, 0110.

A-22 Answers to Odd-Numbered Problems

 47. See Figure P–84. The floor code is hardwired and is unique

to each floor. The fifth floor logic is shown to illustrate.

 49. (a) Change floor counter to two bits.

 (b) Change the Call/Req code register and associated logic

to two bits.

 (c) Modify the 7-segment decoder for a 2-bit code.

 51. See Figure P–85.

 53. See Figure P–86.

 55. See Figure P–87.

 57. See Figure P–88.

 59. The input of the U5 AND gate that connects to the Q output

of U2 shorted to VCC.

 61. Line to LOAD’ input always LOW.

Delay

OS

Call

Pulse

OS

CALL pulse

HARD WIRED CODE1 10

Enable

OS

+V

Call

button

Three 2-input AND gates

FLRCALL code to controller

FIGURE P–84

C

CLK

74HC161

ENP

ENT

RCO

D0
VCC

0

D1

0

D2

0

D3

0

016

C

ENP

ENT

RCO

D0

1

D1

0

D2

1

D3

1

D16

C

ENP

ENT

RCO

D0

0

D1

1

D2

0

D3

1

A16

C

ENP

ENT

RCO
D0

0

D1

0

D2

0

D3

1

816

LOAD

74HC161 74HC161 74HC161

FIGURE P–85

TABLE P–14

Stage Open Loaded Count fOUT

1 0 63C1 250.006 Hz

1 1 63C2 250.012 Hz

1 2 63C4 250.025 Hz

1 3 63C8 250.050 Hz

2 0 63D0 250.100 Hz

2 1 63E0 250.200 Hz

2 2 63C0 250 Hz

2 3 63C0 250 Hz

3 0 63C0 250 Hz

3 1 63C0 250 Hz

3 2 67C0 256.568 Hz

3 3 6BC0 263.491 Hz

4 0 73C0 278.520 Hz

4 1 63C0 250 Hz

4 2 63C0 250 Hz

4 3 E3C0 1.383 kHz

 Answers to Odd-Numbered Problems A-23

C

CTR DIV 10

CTEN

C

CTEN

C

CTR DIV 10

CTEN
MAX/MIN

CTR DIV 10
S

R

Latch
D/U

RCO RCO

D/U

For 3000-space counter, add the following:

C

CTEN

CTR DIV 3

Q0Q1

RCO

from

thousands

CTR

Decode 3 (HIGH

activates

full sign and

lowers gate.)

FIGURE P–87

Chapter 10

 1. X = A B C + ABC + ABC

 3. See Figure P–89.

 5. A CPLD basically consists of multiple SPLDs that can be

connected with a programmable interconnect array.

 7. (a) ABCD

 (b) ABC(D + E) = ABCD + ABCE

 9. X = AB + AB

 11. X1 = ABCD + ABCD + ABCD;

X2 = ABCD + ABCD + ABCD + ABCD

 13. (a) Combinational; 1

 (b) Registered; 0

Y

A B C DA B C D

FIGURE P–89

J1

C

K1

CLK

J2

C

K2

J3

C

K3

Q3

Q2

J0

C

K0

Q1Q0

FF0 FF1 FF2 FF3

1 1

FIGURE P–88

C

60 Hz

6 Hz

C

60 Hz

6 Hz

Hours CTR Minutes CTR

1 Hz1 Hz

+ V

Normal

Preset

switches
Hrs.

Min.
Fast

Normal

Hrs.

Min.
Slow

FIGURE P–86

A-24 Answers to Odd-Numbered Problems

 15. (a) Registered (b) GCK1

 (c) 0 (d) 0

 17. SOP output = A B C + A BC + ABC + ABC + ABC

 19. See Figure P–90.

4-input
LUT

2-input
LUT

FIGURE P–90

 25. Shift input = 1, data are applied to SDI, go through the

MUX, and are clocked into Capture register A on the

leading edge of the clock pulse. From the output of Capture

register A, the data go through the upper MUX and are

clocked into Capture register B on the trailing edge of the

clock pulse.

 27. PDI/O = 0 and OE = 0. The data are applied to the input

pin and go through the selected MUX to the internal

 programmable logic.

 29. 000011001010001111011

 0 000011001010001111011

 1 000011001010001111011

 3 000011001010001111011

 6 000011001010001111011

 12 000011001010001111011

 9 000011001010001111011

 2 000011001010001111011

 5 000011001010001111011

 10 000011001010001111011

 4 000011001010001111011

 8 000011001010001111011

 1 000011001010001111011

 3 000011001010001111011

 7 000011001010001111011

 15 000011001010001111011

 14 000011001010001111011

 13 000011001010001111011

 11 000011001010001111011

 31. The AND-OR logic switches either the Call code from the floor

panel or the Request code from the elevator panel and the asso-

ciated clock into the register based on the state of the flip-flop.

Chapter 11

 1. (a) read only (ROM) ie O0–O3

 (b) read/write option (RAM) ie I/O0–I/O3

 3. Write – puts a data into a specific address in the memory

Read – copies the data out of a specified address in the

memory

 5.

Bit 0 Bit 1 Bit 2 Bit 3

Row 0 0 0 0 0

Row 1 0 1 0 0

Row 2 0 0 0 0

Row 3 0 0 0 1

 7. 512 row * 128 8-bit columns

 9. a relatively small, high-speed memory that stores the most

recently used instructions or data from a larger, but slower

main memory.

(a)

A0

A1

A3

X

A2

(b)

A

B

D

X
C

FIGURE P–91

 21. See Figure P–91.

Waveform Editor

Name:

A

4 s

B

C

D

X

µ1 sµ 8 sµ 12 sµ 16 sµ

FIGURE P–92

 23. See Figure P–92.

 Answers to Odd-Numbered Problems A-25

TABLE P–15

Inputs Outputs

A1 A0 O3 O2 O1 O0

0 0 0 1 0 1

0 1 1 0 0 1

1 0 1 1 1 0

1 1 0 0 1 0

0

1

2

3

4

5

6

7

8

9

0 1

1

2

4

8

D0

D1

D2

D3

E3 E2 E1 E0

FIGURE P–93

 13. See Figure P–93.

 19. 8 bits, 64k words; 4 bits, 256k words

 21. lowest address: FC016

 highest address: FFF16

 23. A hard disk is a rigid platter made of aluminum alloy or

a mixture of glass and ceramic covered with a magnetic

coating. It generally comes in three diameter sizes. 3.5 in.,

2.5 in., and 1.8 in. A hard disk drive is hermetically sealed

to keep the disk dust-free.

 25. Seek operation, seek time and latency period.

Access time for the disk drive = average seek time + average

latency period

 27. CD is single sided while DVD can store data on both sides

and hence DVD has more space than a normal CD.

 29. Memory hierarchy refers to an arrangement of various

 memory elements within the computer architecture to

 maximize the processing speed and to minimize the cost.

 31. The Hit Rate is defined as the percentage of memory accesses

that find the requested data in the given level of memory.

 33. See Figure P–94.

 35. The architecture is the way in which a cloud storage system

is structured and organized. Generically, a cloud storage

system consists of a front end that uses access protocols, a

control that uses data handling protocols, and a back end that

provides storage.

 37. Checksum content is in error.

 39. (a) ROM 2

 (b) ROM 1

 (c) All ROMs

Server

6

Front

end/

Server

Control

From user

device

Server

1

Server

2

Server

3

Server

4

Server

5

FIGURE P–94

 15. Blown links: 1–17, 19–23, 25–31, 34, 37, 38, 40–47, 53, 55,

58, 61, 62, 63, 65, 67, 69

 17. Use eight 16k * 4 DRAMs with sixteen address lines. Two of

the address lines are decoded to enable the selected memory

chips. Four data lines go to each chip.

 11. See Table P–15.

A-26 Answers to Odd-Numbered Problems

 13. 11, 11, 11

 15. See Figure P–97.

 17. See Figure P–98.

 19. (a) 33.33% (b) 3.22%

 (c) 0.024%

 21. See Figure P–99.

 23. By using a sample-and-hold circuit.

Chapter 12

 1. See Figure P–95.

 3. 11, 11, 11, 11, 01, 11, 11, 11, 11

 5. See Figure P–96.

 7. 200

 9. -33

 11. 001, 010, 011, 101, 110, 111, 111, 111, 111, 110, 101, 101,

110, 110, 110, 101, 100, 011, 010, 001

6

4

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7

5

3

1

12

10

8

13

11

9

14

15

t (ms)

V

6

4

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

7

5

3

1

12

10

8

13

11

9

14

15

t (ms)

V

(a) (b)

FIGURE P–96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

9

10

11

12

13

14

15

8

V

t (ms)

FIGURE P–95

0
–0.25
–0.50
–0.75
–1.00

–1.50
–1.75
–2.00
–2.25
–2.50
–2.75
–3.00
–3.25
–3.50
–3.75

–1.25

Output

FIGURE P–98

0110

0100

0010

0000

0111

(b) Output if 0111 code is missing

0101

0011

0001

t

FIGURE P–97

 Answers to Odd-Numbered Problems A-27

Chapter 13

 1. The essential elements of a data transmission system are the

data source, the receiving device and the transmission medium

which transmits the data from the source to the receiver.

 3. Cross talk is a type of distortion seen in data transmission,

which can be minimized by using twisted pair cables, where

the two wires in each pair are twisted so that they cross each

other at nearly 90˚ and hence cancel any electromagnetic

fields generated by the signals in the wires.

 5. In a single mode fiber, the light travels in a straight line

as a single ray. Also, the core is much smaller in diameter

than the multimode. The single mode results in an increased

bandwidth and distance for transmission, but is costlier than

multimode fibers.

 7. See Figure P–100.

 9. Ground wave

 Ionosphere

 Line-of-sight

 11. 4 Mbps

 13. 10 Mbaud

 15. See Figure P–101.

 17. 001110011

 19. 11010111110001000001

 21. See Figure P–102.

 23. See Figure P–103.

 25. A digital-to-analog converter changes a digital code to the

corresponding analog signal.

 27. 18.75 million instructions/s

 29. 1. Program address generate (PG). The program address is

generated by the CPU.

 2. Program address send (PS). The program address is sent

to the memory.

 3. Program access ready wait (PW). A memory read

 operation occurs.

 4. Program fetch packet receive (PR). The CPU receives

the packet of instructions.

6

4

2

0

7

5

3

1

MSB stuck at 0

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

0
0
0
0

Output
amplitude

Binary
input

FIGURE P–99

Fiber optic cable

Optical connectors

Electrical

signal source
Receiver

Electrical-
to-light

conversion

Light-to-

electrical

conversion

FIGURE P–100

NRZ

RZ

1 0 1 0 1 1 1 0 0 0 1 1

FIGURE P–101

1 10 0

FIGURE P–102

90°

–90°

0°

0100 (90°)

1000 (180°)

0111 (157.5°)

0110 (135°)

0101 (112.5°)

1111 (–22.5°)

1110 (–45°)

1101 (–67.5°)

1100 (–90°)
1011 (–112.5°)

1010 (–135°)

1001 (–157°)

180°

0011 (67.5°)

0010 (45°)

0001 (22.5°)

0000 (0°)

FIGURE P–103

A-28 Answers to Odd-Numbered Problems

 25. In pulse amplitude modulation (PAM), the heights or

amplitudes of the pulses are varied according to the

modulating analog signal. Each pulse represents a value

of the analog signal. PAM is the simplest, but least used,

type of pulse modulation although it is used in the Ethernet

communications standard.

 A basic method of producing a PAM representation of an

analog signal is to use a constant-amplitude pulse source to

sample the analog wave that has a frequency lower than the

pulses for a sine wave input. Any form of analog signal can

be converted to a PAM output. The pulses turn the switch on

(closed) and off (open) to sample the waveform. When there

is a pulse, the sample switch is closed and the amplitude

of the sine wave at that point goes to the hold element that

maintains the initial analog value occurring at the beginning

of each pulse for the duration of the pulse. The output goes

to zero between pulses.

 27. Data rate = 2Mbps and pulse positions = 4

 29. Three bits

 31. Multiplexing (MUXING): A method used to transmit the

digital data from multiple sources over a single channel. It is

widely used in telecommunication and computer networks.

Muxing is used on the sending end of a data communication

system. Two major types are time-division and frequency-

division.

 Demultiplexing (DEMUXING): A method used to separate

the data from a single channel to multiple channels. Demuxing

is used on the receiving end.

 33. In FDM, band-pass filters are used on the receiving end to

separate the transmitted signals.

 35. Width: The number of bits that a bus can transmit at one

time. The width of a typical bus may vary from 1 bit for a

serial bus, till 64 bits for a parallel bus.

 Frequency: the clock frequency at which a bus can operate.

 Transfer speed: the number of bytes per clock cycle.

 Bandwidth: the number of bytes per clock cycle ie the

number of clock cycles per second. This is also called

throughput.

 37. 400 Mbps and 382 Mbps

 39. A differential bus provides much higher data rates and longer

transmission distances than does a single-ended bus.

 41. The PCI-Express bus does not use a shared bus as PCI and

PCI-X do.

 43. The terms talker and listener are associated with the IEE-488

bus (GPIB).

 45. Three data bytes are transferred because the NDAC line goes

HIGH three times, each time indicating that a data byte is

accepted.

 47. (a) SCSI

 (b) USB

 (c) Super speed USB (V 3.0)

 49. Sync Field: All packets start with a sync (synchronization)

field. The sync field consists of 8 bits for low and full speed

or 32 bits for high speed and is used to synchronize the

receiver clock with that of the transmitter.

 PID Field: The packet identification field is used to identify

the type of packet that is being transmitted. There are 4 bits

in the PID; however, to ensure it is received correctly, the

4 bits are complemented and repeated, making an 8-bit PID

code.

 Data Field: Contains up to 1024 bytes of data.

 CRC Field: Cyclic Redundancy Checks are performed on the

data within the packet using from 5 bits to 16 bits, depending

on the type of packet.

 EOP Field: This field signals the end of a packet.

 51. 1024 bytes

 53. RS-232 uses single-ended transmission. RS-422 uses dif-

ferential transmission.

 55. I2C is an internal serial bus primarily for connecting ICs on a

PC board.

 57. Other possible units on an automotive CAN system include

wiper control unit, parking control unit, entertainment system

unit, tire pressure monitor, seat position unit, heads-up

display unit.

 59. See Figure P–104.

DAV

(Source)

Data are valid

Data

(Source)

NRFD

(Receiver)

NDAC

(Receiver)

Data accepted

Ready for data

FIGURE P–104

S

LOW

1 2 1 1 1 12 2 22

LOW

HIGH

HIGH

D0

D1

D2

D3

D4

D5

D6

D7

FIGURE P–105

 61. See Figure P–105.

Chapter 14

 1. The basic elements of a computer are the CPU, memory/

storage, input/output, and buses.

 3. A bus is a conductor or set of conductors for transferring data

that meet certain specifications.

 Answers to Odd-Numbered Problems A-29

 5. Tri-state and open-collector outputs

 7. (a) Nine loads (b) Two loads

 9. The wait-state holds the state of the bus signals for one

processor clock to allow the processor to complete an access

operation.

 11. The microprocessor controls system hardware, provides

hardware support for the operating system, and executes

 application programs.

 13. During fetch, an instruction is read from memory and

 decoded. During execute, the processor carries out the

 sequence of operations called for by the instruction.

 15. (1) Address of op-code placed on address bus; (2) Op-code

(instruction) placed on data bus and stored in data register;

(3) Instruction decoded; (4) Instruction carried out.

 17. First fetch/execute cycle: (1) Address of indexed op-code

placed on address bus; (2) Indexed op-code placed on data

bus and stored in data register; (3) Indexed instruction de-

coded; (4) Address of operand fetched.

 Second fetch/execute cycle: (5) Offset address selected;

(6) Offset address placed on data bus and stored in data

 register; (7) Offset address added to contents of index

 register to produce address of operand.

 Third fetch/execute cycle: (8) Address of operand trans-

ferred to address register; (9) Address of operand placed

on address bus; (10) Operand address placed on data

bus and stored in data register; (11) Operand loaded into

 accumulator.

 19. The interrupt vector table is used in auto-vectored interrupts

to obtain the starting address for an interrupt service routine

(ISR).

 21. The sequence of events during a bus request operation is as

follows:

 1. The bus master requesting control of the system buses

submits a request by asserting the processor’s bus re-

quest (BR) line.

 2. The processor tri-states the system buses and signals that

it has released control of the buses by asserting the bus

grant (BG) line.

 3. The requesting bus master uses the system address, data,

and control lines to transfer data between system devices.

 4. After completing the data transfers, the requesting bus

master tri-states the system buses and signals the end

of the bus request operation by asserting the bus grant

acknowledge (BGACK) line.

 23. The first group consists of application software, which in-

cludes word processors, spreadsheets, computer games, and

other programs, written to accomplish some specific task.

The second group consists of system software, a major por-

tion of which is the operating system. The operating system

manages the system hardware, supervises the running of

applications software, provides a standard operating environ-

ment for programs in which they can run and interacts with

the computer hardware.

 25. Two ways in which computers execute more than one

 process are multitasking and multiprocessing.

 27. MMUs handle memory accessing including memory protec-

tion, wait state generation, address translation for virtual

memory, and cache control.

 29. One possible flow chart is shown in Figure P–106.

 31. Move contents of bx register into ax register.

 33. A microcontroller is a device that combines a microprocessor

with common peripheral units.

 35. Microcontrollers are widely used in embedded applications

because they provide the interface and processing resources

required by embedded systems.

 37. An SoC is a system on a chip and has all the components and

functions to implement a complete system such as a compu-

ter. A microcontroller is similar to a SoC but generally more

limited in available functions.

Start

Save in memory

location TOTAL

Initialize sum

to zero

Set count = 1

Add number to sum

Increment count

by 1

Count = 10?
YES

NO

Fetch first number

Fetch next number

FIGURE P–106

Chapter 15

(Chapter 15 is on the website.)

 1. No; VOH(min) 6 VIH(min)

 3. 0.15 V in HIGH state; 0.25 V in LOW state.

 5. Gate C

 7. 12 ns

 9. Gate C

 11. Yes, G2

 13. (a) on (b) off

 (c) off (d) on

A-30 Answers to Odd-Numbered Problems

 21. See Figure P–108.

 23. (a) Rp = 198 æ

 (b) Rp = 198 æ

 (c) Rp = 198 æ

 25. ALVC

 27. (a) A, B to X: 9.9 ns

 C, D to X: 6.6 ns

 (b) A to X1, X2, X3: 14 ns

 B to X1: 7 ns

 C to X2: 7 ns

 D to X3: 7 ns

 (c) A to X: 11.1 ns

 B to X: 11.1 ns

 C to X: 7.4 ns

 D to X: 7.4 ns

 29. ECL operates with nonsaturated BJTs.

 17. (a) HIGH (b) Floating

 (c) HIGH (d) High-Z

 19. (a) LOW (b) LOW

 (c) LOW

Rp

A

B

C

(a)

+V

B

D

(b)

X

A

+V

C

X

D

F

(c)

E

X

A

C

B

+V

+V

+V

+V

Rp

+V

Rp

+V

FIGURE P–108

D1

G1

D2

G2

D3

G3

D4

G4

74HC125 (Tri-state)

FIGURE P–107

 15. See Figure P–107 for one possible circuit.

A-31

acceptor A receiving device on a bus.

access time The time from the application of a valid memory

address to the appearance of valid output data.

addend In addition, the number that is added to another number

called the augend.

adder A logic circuit used to add two binary numbers.

address The location of a given storage cell or group of cells in a

memory; a unique memory location containing one byte.

address bus A one-way group of conductors from the

microprocessor to a memory, or other external device, on

which the address code is sent.

adjacency Characteristic of cells in a Karnaugh map in which

there is a single-variable change from one cell to another cell

next to it on any of its four sides.

aliasing The effect created when a signal is sampled at less

than twice the signal frequency. Aliasing creates unwanted

frequencies that interfere with the signal frequency.

alphanumeric Consisting of numerals, letters, and other

characters.

ALU Arithmetic logic unit; the key processing element of a

microprocessor that performs arithmetic and logic operations.

amplitude In a pulse waveform, the height or maximum value of

the pulse as measured from its low level.

analog Being continuous or having continuous values, as

opposed to having a set of discrete values.

analog-to-digital (A/D) conversion The process of converting an

analog signal to digital form.

analog-to-digital converter (ADC) A device used to convert an

analog signal to a sequence of digital codes.

AND A basic logic operation in which a true (HIGH) output

occurs only when all the input conditions are true (HIGH).

AND array An array of AND gates consisting of a matrix of

programmable interconnections.

AND gate A logic gate that produces a HIGH output only when

all of the inputs are HIGH.

ANSI American National Standards Institute.

antifuse A type of PLD nonvolatile programmable link that

can be left open or can be shorted once as directed by the

program.

architecture The VHDL unit that describes the internal operation

of a logic function; the internal functional arrangement

of the elements that give a device its particular operating

characteristics.

array In a PLD, a matrix formed by rows of product-term lines

and columns of input lines with a programmable cell at each

junction. In VHDL, an array is an ordered set of individual

items called elements with a single identifier name.

ASCII American Standard Code for Information Interchange; the

most widely used alphanumeric code.

ASK Amplitude shift keying; a form of modulation in which a

digital signal modulates the amplitude of a higher frequency

sine wave.

assembler A program that converts English-like mnemonics into

machine code.

assembly language A programming language that uses English-

like words and has a one-to-one correspondence to machine

language.

associative law For addition (ORing) and multiplication

(ANDing) of three or more variables, the order in which the

variables are grouped makes no difference.

astable Having no stable state. An astable multivibrator oscillates

between two quasi-stable states.

asynchronous Having no fixed time relationship; not occurring

at the same time.

asynchronous counter A type of counter in which each stage is

clocked from the output of the preceding stage.

augend In addition, the number to which the addend is added.

bandwidth The frequency at which a sinusoidal input signal is

attenuated to 70.7 percent of its original amplitude.

bank A section of memory within a single memory array (chip).

base One of the three regions in a bipolar junction transistor.

base address The beginning address of a segment of memory.

baud The number of symbols per second in a data transmission.

BCD Binary coded decimal; a digital code in which each of the

decimal digits, 0 through 9, is represented by a group of four bits.

BEDO DRAM Burst extended data output dynamic random-

access memory.

BiCMOS A family of logic circuits that combines CMOS and

bipolar logic.

bidirectional Having two directions. In a bidirectional shift

register, the stored data can be shifted right or left.

binary Having two values or states; describes a number system

that has a base of two and utilizes 1 and 0 as its digits.

BIOS Basic input/output system; a set of programs in ROM that

interfaces the I/O devices in a computer system.

bipolar A class of integrated logic circuits implemented with

bipolar transistors; also known as TTL.

bistable Having two stable states. Flip-flops and latches are

bistable multivibrators.

bit A binary digit, which can be either a 1 or 0.

bit rate The number of bits per second in a data transmission.

bitstream A series of bits describing a final design that is sent to

the target device during programming.

bit time The interval of time occupied by a single bit in a

sequence of bits; the period of the clock.

BJT Bipolar junction transistor; a semiconductor device used for

switching or amplification. A BJT has two junctions, the base-

emitter junction and the base-collector junction.

Blue-ray A disc storage technology that uses a blue laser to

achieve more density and definition than a DVD.

Boolean addition In Boolean algebra, the OR operation.

GLOSSARY

A-32 Glossary

character A symbol, letter, or numeral.

circuit An arrangement of electrical and/or electronic

components interconnected in such a way as to perform a

specified function.

CLB Configurable logic block; a unit of logic in an FPGA that

is made up of multiple smaller logic modules and a local

programmable interconntect that is used to connect logic

modules within the CLB.

clear An asynchronous input used to reset a flip-flop (make the Q

output 0); to place a register or counter in the state in which it

contains all 0s.

clock The basic timing signal in a digital system; a periodic

waveform used to synchronize operation.

cloud storage A remote network of servers that is connected to a

user device through the Internet.

CMOS Complementary metal oxide semiconductor; a class of

integrated logic circuits that is implemented with a type of

field-effect transistor.

coaxial cable A type of data transmission media in which a

shielded conductor is used to minimize EMI.

code A set of bits arranged in a unique pattern and used to

represent such information as numbers, letters, and other

symbols; in VHDL, program statements.

codec A combined coder and decoder.

collector One of the three regions in a bipolar transistor.

combinational logic A combination of logic gates interconnected

to produce a specified Boolean function with no storage or

memory capability; sometimes called combinatorial logic.

commutative law In addition (ORing) and multiplication

(ANDing) of two variables, the order in which the variables

are ORed or ANDed makes no difference.

comparator A digital circuit that compares the magnitudes

of two quantities and produces an output indicating the

relationship of the quantities.

compiler An application program in development software

packages that controls the design flow process and translates

source code into object code in a format that can be logically

tested or downloaded to a target device.

complement The inverse or opposite of a number; in Boolean

algebra, the inverse function, expressed with a bar over the

variable. The complement of a 1 is a 0, and vice versa.

component A VHDL feature that can be used to predefine the logic

function for multiple use throughout a program or programs.

contiguous Joined together.

control bus A set of conductive paths that connects the CPU to

other parts of the computer to coordinate its operations and to

communicate with external devices.

controller An instrument that can specify each of the other

instruments on the bus as either a talker or a listener for the

purpose of data transfer.

control unit The portion within the microprocessor that provides

the timing and control signals for getting data into and out of

the microprocessor and for synchronizing the execution of

instructions.

Boolean algebra The mathematics of logic circuits.

Boolean expression A formulation of variables and operators

used to express the operation of a logic circuit.

Boolean multiplication In Boolean algebra, the AND operation.

boundary scan A method for internally testing a PLD based on

the JTAG standard (IEEE Std. 1149.1).

break point A flag placed within a program source code to stop a

program for investigation.

buffer A circuit that prevents loading of an input or output.

bus A set of connections and specifications for the transfer of

data among two or more devices.

bus arbitration The process that prevents two sources from

using a bus at the same time.

bus contention An adverse condition that could occur if two or

more devices try to communicate at the same time on a bus.

bus master Any device that can control and manage the system

buses in a computer system.

bus protocol A set of rules that allow two or more devices to

communicate through a bus.

byte A group of eight bits.

cache memory A relatively small, high-speed memory that stores

the most recently used instructions or data from the larger but

slower main memory.

caching The process of copying frequently accessed program

instructions from main memory into faster memory to increase

processing speed.

capacity The total number of data units (bits, nibbles, bytes,

words) that a memory can store.

carry The digit generated when the sum of two binary digits

exceeds 1.

carry generation The process of producing an output carry in a

full-adder when both input bits are 1s.

carry propagation The process of rippling an input carry to

become the output carry in a full-adder when either or both of

the input bits are 1s and the input carry is a 1.

cascade To connect “end-to-end” as when several counters are

connected from the terminal count output of one counter to the

enable input of the next counter.

cascading Connecting two or more similar devices in a manner

that expands the capability of one device.

CCD Charge-coupled device; a type of semiconductor memory

that stores data in the form of charge packets and is serially

accessed.

CD-R CD-Recordable; an optical disk storage device on which

data can be stored once.

CD-ROM An optical disk storage device on which data are

prestored and can only be read.

CD-RW CD-Rewritable; an optical disk storage on which data

can be written and overwritten many times.

cell An area on a Karnaugh map that represents a unique

combination of variables in product form; a single storage element

in a memory; a fused cross point of a row and column in a PLD.

 Glossary A-33

demultiplexer (demux) A circuit (digital device) that switches

digital data from one input line to several output lines in a

specified time sequence.

dependency notation A notational system for logic symbols

that specifies input and output relationships, thus fully

defining a given function; an integral part of ANSI/IEEE

Std. 91-1984.

difference The result of a subtraction.

differential operation A bus operation that uses two wires for

data (one for data and one for the complement of the data) and

one wire for ground.

digit A symbol used to express a quantity.

digital Related to digits or discrete quantities; having a set of

discrete values as opposed to continuous values.

digital signal processor (DSP) A special type of microprocessor

that processes data in real time.

digital-to-analog (D/A) conversion The process of converting a

sequence of digital codes to an analog form.

digital-to-analog converter (DAC) A device in which

information in digital form is converted to analog form.

DIMM Dual in-line memory module.

diode A semiconductor device that conducts current in only one

direction.

DIP Dual in-line package; a type of IC package whose leads must

pass through holes to the other side of a PC board.

distributive law The law that states that ORing several variables

and then ANDing the result with a single variable is equivalent

to ANDing the single variable with each of the several

variables and then ORing the product.

dividend In a division operation, the quantity that is being

divided.

divisor In a division operation, the quantity that is divided into

the dividend.

DLT Digital linear tape; a type of magnetic tape format.

DMA Direct memory access; a method to directly interface a

peripheral device to memory without using the CPU for control.

domain All of the variables in a Boolean expression.

“Don’t care” A combination of input literals that cannot

occur and can be used as a 1 or a 0 on a Karnaugh map for

simplification.

downloading A design flow process in which the logic design is

transferred from software to hardware.

drain One of the terminals of a field-effect transistor.

DRAM Dynamic random-access memory; a type of

semiconductor memory that uses capacitors as the storage

elements and is a volatile, read/write memory.

DSP core The central processing unit of a digital system processor.

DTE Data terminal equipment.

duty cycle The ratio of pulse width to period expressed as a

percentage.

DVD-ROM Digital versatile disk-ROM; also known as digital

video disk-ROM; a type of optical storage device on which

data is prestored with a much higher capacity than a CD-ROM.

counter A digital circuit capable of counting electronic events,

such as pulses, by progressing through a sequence of binary

states.

CPLD A complex programmable logic device that consists

basically of multiple SPLD arrays with programmable

interconnections.

CPU Central processing unit; the main part of a computer

responsible for control and processing of data; the core of a

DSP that processes the program instructions.

cross-assembler A program that translates an assembly language

program for one type of microprocessor to an assembly

language for another type of microprocessor.

crosstalk The presence of an unwanted signal via an accidental

coupling.

current sinking The action of a circuit in which it accepts

current into its output from a load.

current sourcing The action of a circuit in which it sends current

out of its output and into a load.

cyclic redundancy check (CRC) A type of error detection code.

data Information in numeric, alphabetic, or other form.

data bus A bidirectional set of conductive paths on which data

or instruction codes are transferred into a microprocessor

or on which the result of an operation is sent out from the

microprocessor.

data center A facility that houses a cloud storage system.

data selector A circuit that selects data from several inputs one at

a time in a sequence and places them on the output; also called

a multiplexer.

data sheet A document that specifies parameter values and

operating conditions for an integrated circuit or other

device.

DCE Data communications equipment.

DDR Double data rate.

DDR SDRAM Double data rate, synchronous dynamic random-

access memory.

decade Characterized by ten states or values.

decade counter A digital counter having ten states.

decimal Describes a number system with a base of ten.

decode The process of interpreting coded information; changing

data in a coded form into a more common form; a stage of the

DSP pipeline operation in which instructions are assigned to

functional units and are decoded.

decoder A digital circuit (device) that converts coded information

into another (familiar) or noncoded form.

decrement To decrease the binary state of a counter by one.

delta modulation A method of analog-to-digital conversion

using a 1-bit quantization process.

design flow The process or sequence of operations carried out to

program a target device.

D flip-flop A type of bistable multivibrator in which the output

assumes the state of the D input on the triggering edge of a

clock pulse.

A-34 Glossary

execute A CPU process in which an instruction is carried out;

a stage of the DSP pipeline operation in which the decoded

instructions are carried out.

exponent The part of a floating-point number that represents the

number of places that the decimal point (or binary point) is to

be moved.

fall time The time interval between the 90% point and the 10%

point on the negative-going edge of a pulse.

fan-out The number of equivalent gate inputs of the same family

series that a logic gate can drive.

FDM Frequency division multiplexing; a broadband technique in

which the total bandwidth available to a system is divided into

frequency sub-bands and information is sent in analog form.

feedback The output voltage or a portion of it that is connected

back to the input of a circuit.

FET Field-effect transistor.

fetch A CPU process in which an instruction is obtained from

the memory; a stage of the DSP pipeline operation in which an

instruction is obtained from the program memory.

FIFO First in–first out memory.

Firewire A high-speed external serial bus standard developed by

Apple Inc. and used in high-speed communications and real-

time data transfer, also known as IEEE-1394.

firmware Small fixed programs and/or data structures that

internally control various electronic devices; usually stored in

ROM.

fixed-function logic A category of digital integrated circuits

having functions that cannot be altered.

flag A bit that indicates the result of an arithmetic or logic

operation or is used to alter an operation.

flash A type of PLD nonvolatile reprogrammable link technology

based on a single transistor cell.

flash ADC A simultaneous analog-to-digital converter.

flash memory A nonvolatile read/write random-access

semiconductor memory in which data is stored as charge on

the floating gate of a certain FET.

flip-flop A basic storage circuit that can store only one bit at a

time; a synchronous bistable device.

floating-point number A number representation based on

scientific notation in which the number consists of an exponent

and a mantissa.

forward bias A voltage polarity condition that allows a

semiconductor pn junction in a transistor or diode to conduct

current.

FPGA Field-programmable gate array; a programmable logic device

that uses the LUT as the basic logic elements and generally

employs either antifuse or SRAM-based process technology.

FPM DRAM Fast page mode dynamic random-access memory.

frequency (f) The number of pulses in one second for a periodic

waveform. The unit of frequency is the hertz.

FSK Frequency shift keying; a form of modulation in which a

digital signal modulates the frequency of a higher frequency

sine wave.

dynamic memory A type of semiconductor memory having

capacitive storage cells that lose stored data over a period of

time and, therefore, must be refreshed.

ECL Emitter-coupled logic; a class of integrated logic circuits

that are implemented with nonsaturating bipolar junction

transistors.

E2CMOS Electrically erasable CMOS (EECMOS); the circuit

technology used for the reprogrammable cells in a PLD.

edge-triggered flip-flop A type of flip-flop in which the data are

entered and appear on the output on the same clock edge.

EDIF Electronic design interchange format; a standard form of

netlist.

EDO DRAM Extended data output dynamic random-access

memory.

EEPROM Electrically erasable programmable read-only

memory; a type of nonvolatile PLD reprogrammable link

based on electrically-erasable programmable read-only

memory cells and can be turned on or off repeatedly by

programming.

8 mm A type of magnetic tape format.

elasticity The ability of a cloud storage system to deal with

variations in the amount of data being transferred without

service interruptions.

electromagnetic waves Related to the electromagnetic spectrum,

which includes radio waves, microwaves, infrared, visible,

ultraviolet, X-rays, and gamma rays.

embedded system Generally, a single-purpose system, such

as a processor, built into a larger system for the purpose of

controlling the system.

EMI Electromagnetic interference.

emitter One of the three regions in a bipolar junction transistor.

enable To activate or put into an operational mode; an input on a

logic circuit that permits its operation.

encoder A digital circuit (device) that converts information to a

coded form.

entity The VHDL unit that describes the inputs and outputs of a

logic function.

EPROM Erasable programmable read-only memory; A type

of PLD nonvolatile programmable link based on electrically

programmable read-only memory cells and can be turned

either on or off once with programming.

error detection The process of detecting bit errors in a digital

code.

even parity The condition of having an even number of 1s in

every group of bits.

exception Any software event that requires special handling by

the processor.

exclusive-NOR (XNOR)gate A logic gate that produces a LOW

only when the two inputs are at opposite levels.

exclusive-OR (XOR) A basic logic operation in which a HIGH

occurs when the two inputs are at opposite levels.

exclusive-OR (XOR) gate A logic gate that produces a HIGH

only when the two inputs are at opposite levels.

 Glossary A-35

HPIB Hewlett-Packard interface bus; same as GPIB (general-

purpose interface bus).

hysteresis A characteristic of a threshold-triggered circuit, such

as the Schmitt trigger, where the device turns on and off at

different input levels.

IEEE Institute of Electrical and Electronics Engineers.

IEEE 488 bus Same as GPIB (general-purpose interface bus);

a standard parallel bus used widely for test and measurement

interfacing.

IEEE 1394 A serial bus for high-speed data transfer; also known

as FireWire.

I2L Integrated injection logic; an IC technology.

implementation The software process where the logic

structures described by the netlist are mapped into the

structure of the target device; the physical realization of a

conceptual design.

increment To increase the binary state of a counter by one.

inhibit To prevent the passage of a signal from one point to

another.

input The signal or line going into a circuit; a signal that controls

the operation of a circuit.

input/output (I/O) A terminal of a device that can be used as

either an input or as an output.

instruction One step in a computer program; a unit of

information that tells the CPU what to do.

in-system programming (ISP) A method for programming

SPLDs after they are installed on a printed circuit board and

operating in a system.

integer A whole number.

integrated circuit (IC) A type of circuit in which all of the

components are integrated on a single chip of semiconductive

material of very small size.

intellectual property (IP) Designs owned by the manufacturer of

programmable logic devices or other products.

interfacing The process of making two or more electronic

devices or systems operationally compatible with each other so

that they function properly together.

interrupt Any hardware event that requires special handling

by the processor, an event that causes the current

process to be temporarily stopped while a service routine

is run.

inversion The conversion of a HIGH level to a LOW level or vice

versa; also called complementation.

inverter A NOT circuit; a circuit that changes a HIGH to a LOW

or vice versa.

I/O port Input/output port; the interface between an internal bus

and a peripheral.

IP Instruction pointer; a special register within the CPU

that holds the offset address of the next instruction to be

executed.

ISA bus Industry standard architecture bus; an internal parallel

bus standard.

full-adder A digital circuit that adds two bits and an input carry

to produce a sum and an output carry.

full-duplex A connection in which the data flow both ways

simultaneously in the same channel.

functional simulation A software process that tests the logical or

functional operation of a design.

fuse A type of PLD nonvolatile programmable link that can be

left shorted or can be opened once as directed by the program;

also called a fusible link.

GAL Generic array logic; a reprogrammable type of SPLD that is

similar to a PAL except that it uses a reprogrammable process

technology, such as EEPROM (E2 CMOS), instead of fuses.

gate A logic circuit that performs a basic logic operation, such

as AND or OR; one of the three terminals of a field-effect

transistor.

glitch A voltage or current spike of short duration, usually

unintentionally produced and unwanted.

graphic (schematic) entry A method of entering a logic

design into software by graphically creating a logic diagram

(schematic) on a design screen.

GPIB General-purpose interface bus based on the IEEE 488

standard.

Gray code An unweighted digital code characterized by a single

bit change between adjacent code numbers in a sequence.

half-adder A digital circuit that adds two bits and produces a

sum and an output carry. It cannot handle input carries.

half-duplex A connection in which the data flow both ways but

not at the same time in the same channel.

Hamming code An error detection and correction code used in

data transmission.

handshaking The process of signal interchange by which two

digital devices or systems jointly establish communication.

hard core A fixed portion of logic in an FPGA that is put in by

the manufacturer to provide a specific function.

hard disk A magnetic disk storage device; typically, a stack of

two or more rigid disks enclosed in a sealed housing.

hardware The circuitry and physical components of a computer

system (as opposed to the instructions called software).

HDL Hardware description language; a language used for

describing a logic design using software.

hexadecimal Describes a number system with a base of 16.

high-level language A type of computer language closest to

human language that is a level above assembly language.

high-Z The high-impedance state of a tri-state circuit in which

the output is effectively disconnected from the rest of the

circuit.

hit rate The percentage of memory accesses that find the

requested data in the given level of memory.

hold time The time interval required for the control levels to

remain on the inputs to a flip-flop after the triggering edge of

the clock in order to reliably activate the device.

A-36 Glossary

LSI Large-scale integration; a level of fixed-function IC

complexity in which there are from more than 100 to 10,000

equivalent gates per chip.

LUT Look-up table; a type of memory that can be programmed

to produce SOP functions.

machine code The basic binary instructions understood by the

processor.

machine language Computer instructions written in binary

code that are understood by a computer; the lowest level of

programming language.

macrocell An SOP logic array with combinational and registered

outputs; part of a PAL or GAL that generally consists of

one OR gate and some associated output logic. Multiple

interconnected macrocells form a CPLD.

magneto-optical disk A storage device that uses electro-

magnetism and a laser beam to read and write data.

magnitude The size or value of a quantity.

main memory Memory used by computer systems to store the

bulk of programs and associated data.

Manchester encoding A method of encoding called biphase in

which a 1 is represented by a positive-going transition and a 0

is represented by a negative-going transition.

mantissa The magnitude of a floating-point number.

Mealy state machine A state machine in which the outputs

depend on both the internal present state and on the inputs.

mechatronics Interdisciplinary field that comprises both

mechanical and electronic components.

memory The portion of a computer or other system that stores

binary data.

memory array An array of memory cells arranged in rows and

columns.

memory hierarchy The arrangement of various memory

elements within a computer architecture to achieve maximum

performance.

memory latency The time required to access a memory.

MFLOPS Million floating-point operations per second.

microcontroller A semiconductor device that combines a

microprocessor, memory, and various hardware peripherals on

a single IC.

microprocessor A large-scale digital integrated circuit device

that can be programmed with a series of instructions to

perform specified functions on data.

minimization The process that results in an SOP or POS Boolean

expression that contains the fewest possible terms with the

fewest possible literals per term.

minterm A product of literals in which each input variable

appears exactly once.

minuend The number from which another number is

subtracted.

MIPS Million instructions per second.

miss A failed attempt by the processor to read or write a block of

data in a given level of memory.

J-K flip-flop A type of flip-flop that can operate in the SET,

RESET, no-change, and toggle modes.

Johnson counter A type of register in which a specific prestored

pattern of 1s and 0s is shifted through the stages, creating a

unique sequence of bit patterns.

JTAG Joint test action group; the IEEE Std. 1149.1 standard

interface for in-system programming.

junction The boundary between an n region and a p region in a BJT.

Karnaugh map An arrangement of cells representing the

combinations of literals in a Boolean expression and used for a

systematic simplification of the expression.

LAB Logic array block; an SPLD array in a CPLD.

latch A bistable digital circuit used for storing a bit.

latency The time between the request for data and the delivery of

the data to the user.

latency period The time it takes for the desired sector to spin

under the head once the head is positioned over the desired

track of a magnetic hard disk.

LCC Leadless ceramic chip; an SMT package that has metallic

contacts molded into its body.

LCD Liquid crystal display.

leading edge The first transition of a pulse.

least significant bit (LSB) Generally, the right-most bit in a

binary whole number or code.

LED Light-emitting diode.

LIFO Last in–first out memory, memory stack.

listener An instrument capable of receiving data on a GPIB

(general-purpose interface bus) when it is addressed by the

computer.

literal A variable or the complement of a variable.

load To enter data into a shift register.

loading The effect of the multiple inputs degrading the voltage or

timing specifications of an output.

local bus An internal bus that connects the microprocessor to the

cache memory, the main memory, the coprocessor, and the PCI

bus controller.

local interconnect A set of lines that allows interconnections

among the eight logic elements in a logic array block without

using the row and column interconnects.

logic In digital electronics, the decision-making capability of gate

circuits, in which a HIGH represents a true statement and a

LOW represents a false one.

logic array block (LAB) A group of macrocells that can be

interconnected with other LABs or to other I/Os using a

programmable interconnect array; also called a function block.

logic element The smallest section of logic in an FPGA that

typically contains an LUT, associated logic, and a flip-flop.

look-ahead carry A method of binary addition whereby carries

from preceding adder stages are anticipated, thus eliminating

carry propagation delays.

 Glossary A-37

negative-OR An equivalent NAND gate operation in which the

HIGH is the active input when one or more of the inputs are

LOW.

netlist A detailed listing of information necessary to describe a

circuit, such as types of elements, inputs, and outputs, and all

interconnections.

nibble A group of four bits.

NMOS An n-channel metal-oxide semiconductor.

node A common connection point in a circuit in which a gate

output is connected to one or more gate inputs.

noise immunity The ability of a circuit to reject unwanted

signals.

noise margin The difference between the maximum LOW output

of a gate and the maximum acceptable LOW input of an

equivalent gate; the difference between the minimum HIGH

output of a gate and the minimum HIGH input of an equivalent

gate; the amount by which the actual signal level exceeds the

minimum acceptable level for an error-free transmission.

nonvolatile A term that describes a memory that can retain stored

data when the power is removed.

NOR gate A logic gate in which the output is LOW when any or

all of the inputs are HIGH.

NOT A basic logic operation that performs inversions.

NRZ Nonreturn to zero; a type of data format in which the signal

level remains at one (1) for successive 1s.

numeric Related to numbers.

Nyquist frequency The highest signal frequency that can be

sampled at a specified sampling frequency; a frequency equal

to or less than half the sampling frequency.

object program A machine language translation of a high-level

source program.

octal Describes a number system with a base of eight.

odd parity The condition of having an odd number of 1s in every

group of bits.

offset address The distance in number of bytes of a physical

address from the base address.

OLMC Output logic macrocell; the part of a GAL that can be

programmed for either combinational or registered outputs;

a block of logic in a GAL that contains a fixed OR gate and

other logic for handling inputs and/or outputs.

one-shot A monostable multivibrator.

op-code Operation code; the code representing a particular

microprocessor instruction; a mnemonic.

open-collector A type of output in a logic circuit in which the

collector of the output transistor is left disconnected from

any internal circuitry and is available for external connection;

normally used for driving higher-current or higher-voltage loads.

operand The object to be manipulated by the instruction.

operating system The software that controls the computer

system and oversees the execution of application software.

operational amplifier (op-amp) A device with two differential

inputs that has very high gain, very high input impedance, and

very low output impedance.

MMACS Million multiply/accumulates per second.

MMU Memory management unit; a device responsible for

handling accesses to memory requested by the CPU.

mnemonic An English-like instruction that is converted by an

assembler into a machine code for use by a processor.

modem A modulator/demodulator for interfacing digital devices

to analog transmission systems such as telephone lines.

modulation The process of altering a parameter of a higher

frequency signal proportional to the amplitude of a lower

frequency information-carrying signal.

modulus The number of unique states through which a counter

will sequence.

monostable Having only one stable state. A monostable

multivibrator, commonly called a one-shot, produces a single

pulse in response to a triggering input.

monotonic The characteristic of a DAC defined by the absence

of any incorrect step reversals; one type of digital-to-analog

linearity.

Moore state machine A state machine in which the outputs

depend only on the internal present state.

MOS Metal-oxide semiconductor; a type of transistor technology.

MOSFET Metal-oxide semiconductor field-effect transistor.

most significant bit (MSB) The left-most bit in a binary whole

number or code.

MSI Medium-scale integration; a level of fixed-function IC

complexity in which there are from 10 to 100 equivalent gates

per chip.

multicore processor A microprocessor chip with more than one

processor.

multimode The characteristic of an optical fiber in which the

light is propagated in multiple rays.

multiplexer (mux) A circuit (digital device) that switches digital

data from several input lines onto a single output line in a

specified time sequence.

multiplicand The number that is being multiplied by another number.

multiplier The number that multiplies the multiplicand.

multiprocessing A data-processing technique that uses multiple

processors to multitask or run multiple programs.

multitasking A technique by which a processor runs multiple

programs concurrently.

multitenancy The property of a cloud storage system that allows

multiple users to share the same software applications, hardware,

and data storage mechanism without seeing each other’s data.

multithreading The process of executing different parts of a

program, called threads, simultaneously.

multivibrator A class of digital circuits in which the output is

connected back to the input (an arrangement called feedback)

to produce either two stable states, one stable state, or no stable

states, depending on the configuration.

NAND gate A logic circuit in which a LOW output occurs only if

all the inputs are HIGH.

negative-AND An equivalent NOR gate operation in which the

HIGH is the active input when all inputs are LOW.

A-38 Glossary

pipeline As applied to memories, an implementation that

allows a read or write operation to be initiated before

the previous operation is completed; part of the DSP

architecture that allows multiple instructions to be processed

simultaneously.

pipelining A technique where the processor begins executing

the next instruction before the previous instruction has been

completed.

PLA Programmable logic array; an SPLD with programmable

AND and OR arrays.

platform FPGA An FPGA that contains either or both hard core

and soft core embedded processors and other functions.

PLCC Plastic leaded chip carrier; an SMT package whose leads

are turned up under its body in a J-type shape.

PLD Programmable logic device; an integrated circuit that can be

programmed with any specified logic function.

PMOS A p-channel metal-oxide semiconductor.

pointer The contents of a register (or registers) that contain an

address.

polling The process of checking a series of peripheral devices to

determine if any require service from the CPU.

port A physical interface on a computer through which data are

passed to or from peripherals.

positive logic The system of representing a binary 1 with a HIGH

and a binary 0 with a LOW.

power dissipation The product of the dc supply voltage and the

dc supply current in an electronic circuit; the amount of power

required by a circuit.

PPM Pulse position modulation; a method of modulation in

which the position of each pulse relative to a reference or

timing signal is varied proportional to the amplitude of the

modulating signal waveform.

prefetching The process of executing instructions at the same

time as other instructions are “fetched,” eliminating idle time;

also called pipelining.

preset An asynchronous input used to set a flip-flop (make the Q

output 1).

priority encoder An encoder in which only the highest value

input digit is encoded and any other active input is ignored.

probe An accessory used to connect a voltage to the input of an

oscilloscope or other instrument.

processes Instances of a computer program that are being executed.

product The result of a multiplication.

product-of-sums (POS) A form of Boolean expression that is

basically the ANDing of ORed terms.

product term The Boolean product of two or more literals

equivalent to an AND operation.

program A list of computer instructions arranged to achieve a

specific result; software.

programmable interconnect array (PIA) An array consisting

of conductors that run throughout the CPLD chip and to which

connections from the macrocells in each LAB can be made.

programmable logic A category of digital integrated circuits

capable of being programmed to perform specified functions.

optical fiber A type of data transmission media used for

transmitting light signals.

optical jukebox A type of auxiliary storage for very large

amounts of data.

OR A basic logic operation in which a true (HIGH) output occurs

when one or more of the input conditions are true (HIGH).

OR gate A logic gate that produces a HIGH output when one or

more inputs are HIGH.

oscillator An electronic circuit that is based on the principle

of regenerative feedback and produces a repetitive output

waveform; a signal source.

OTP One-time programmable.

output The signal or line coming out of a circuit.

overflow The condition that occurs when the number of bits in a

sum exceeds the number of bits in each of the numbers added.

packet A formatted block of digital data.

PAL Programmable array logic; a type of one-programmable

SPLD that consists of a programmable array of AND gates that

connects to a fixed array of OR gates.

PAM Pulse amplitude modulation; a method of modulation

in which the height or amplitude of the pulses are varied

according to the modulating analog signal, and each pulse

represents a value of amplitude of the analog signal.

parallel In digital systems, data occurring simultaneously

on several lines; the transfer or processing of several bits

simultaneously.

parallel bus A bus that consists of multiple conductors and

carries several data bits simultaneously, one on each conductor.

parity In relation to binary codes, the condition of evenness or

oddness of the number of 1s in a code group.

parity bit A bit attached to each group of information bits to

make the total number of 1s odd or even for every group of

bits.

PCI bus An internal synchronous bus for interconnecting chips,

expansion boards, and processor/memory subsystems.

PCI-Express Also designated as PCIe or PCI-E. This bus differs

from the PCI and PCI-X buses in that it does not use a shared

bus.

PCI-X A high-performance enhancement of the PCI bus that is

backward compatible with PCI.

PCM Pulse code modulation; A method of modulation that

involves sampling of an analog signal amplitude at regular

intervals and converting the sampled values to a digital code.

period (T) The time required for a periodic waveform to repeat

itself.

periodic Describes a waveform that repeats itself at a fixed interval.

peripheral A device or instrument that provides communication

with a computer or provides auxiliary services or functions for

the computer.

physical address The actual location of a data unit in memory.

PIC Programable interrupt controller; handles the interrupts on a

priority basis.

 Glossary A-39

register A digital circuit capable of storing and shifting

binary information; typically used as a temporary storage

device.

register array A set of temporary storage locations within the

microprocessor for keeping data and addresses that need to be

accessed quickly by the program.

registered A CPLD macrocell output configuration where the

output comes from a flip-flop.

relocatable code A program that can be moved anywhere within

the memory space without changing the basic code.

remainder The amount left over after a division.

RESET The state of a flip-flop or latch when the output is 0; the

action of producing a RESET state.

resolution The number of bits used to digitally represent a

sampled value.

reverse bias A voltage polarity condition that prevents a pn

junction of a transistor or diode from conducting current.

ring counter A register in which a certain pattern of 1s and 0s is

continuously recirculated.

ripple carry A method of binary addition in which the output

carry from each adder becomes the input carry of the next

higher-order adder.

ripple counter An asynchronous counter.

rise time The time required for the positive-going edge of a pulse

to go from 10% of its full value to 90% of its full value.

ROM Read-only semiconductor memory, accessed randomly;

also referred to as mask-ROM.

RS-232 A bus standard, also known as EIA-232, used in

industrial and telecommunication applications as well as

scientific instrumentation, but largely replaced by USB in

computer applications.

RS-422 A bus standard for differential data transmission.

RS-423 A bus standard for single-ended data transmission.

RS-485 A bus standard for differential data transmission.

RZ Return to zero; a type of data format in which the signal level

goes to or remains at zero after each data bit.

sampling The process of taking a sufficient number of discrete

values at points on a waveform that will define the shape of the

waveform.

sampling rate The rate at which the analog-to-digital converter

(ADC) in an oscilloscope is clocked to digitize the incoming

signal.

SAS Serial attached SCSI.

scalability The ability of a cloud storage system to handle

increasing amounts of data in a smooth manner. The ability of

a cloud storage system to improve the movement of data when

additional resources are added.

schematic (graphic) entry A method of placing a logic design

into software using schematic symbols.

Schottky A specific type of transistor-transistor logic circuit

technology.

SCSI Small computer system interface.

PROM Programmable read-only semiconductor memory; an

SPLD with a fixed AND array and programmable OR array;

used as a memory device and normally not as a logic circuit

device.

propagation delay time The time interval between the

occurrence of an input transition and the occurrence of the

corresponding output transition in a logic circuit.

protocol A standardized set of software regulations,

requirements, and procedures that control and regulate

the transmission, processing, and exchange of data among

devices.

pseudo-operation An instruction to the assembler (as opposed to

a processor).

PSK Phase shift keying; a form of modulation in which a digital

signal modulates the phase of a higher frequency sine wave.

pull-up resistor A resistor with one end connected to the dc

supply voltage used to keep a given point in a circuit HIGH

when in the inactive state.

pulse A sudden change from one level to another, followed after

a time, called the pulse width, by a sudden change back to the

original level.

pulse width (tw) The time interval between the 50% points of

the leading and trailing edges of the pulse; the duration of the

pulse.

PWM Pulse width modulation; a method of modulation in which

the width or duration of the pulses and duty cycle are varied

according to the modulating analog signal, and each pulse

width represents an amplitude value of the analog signal.

QAM Quadrature amplitude modulation; a form of modulation

that uses a combination of PSK and amplitude modulation to

send information.

QIC Quarter-inch cassette; a type of magnetic tape.

quantization The process whereby a binary code is assigned to

each sampled value during analog-to-digital conversion.

queue A high-speed memory that stores instructions or data.

quotient The result of a division.

race A condition in a logic network in which the difference in

propagation times through two or more signal paths in the

network can produce an erroneous output.

RAM Random-access memory; a volatile read/write semi-

conductor memory.

rank A group of chips that make up a memory module that stores

data in units such as words or bytes.

read The process of retrieving data from a memory.

real mode Operation of an Intel processor in a manner to emulate

the 8086’s 1 MB of memory.

record length The number of samples (data points) that an

oscilloscope can capture and store.

recycle To undergo transition (as in a counter) from the final or

terminal state back to the initial state.

refresh To renew the contents of a dynamic memory by

recharging the capacitor storage cells.

A-40 Glossary

source program A program written in either assembly or high-

level language.

speed-power product A performance parameter that is

the product of the propagation delay time and the power

dissipation in a digital circuit.

SPI Serial-to-peripheral interface bus; a synchronous serial

communications bus that uses four wires for communication

between a “master” device and a “slave” device.

SPLD Simple programmable logic device; an array of AND gates

and OR gates that can be programmed to achieve specified

logic functions. Four types are PROM, PLA, PAL, and GAL.

SRAM Static random-access memory; a type of PLD volatile

reprogrammable link based on static random-access memory

cells and can be turned on or off repeatedly with programming.

SSI Small-scale integration; a level of fixed-function IC complexity

in which there are up to 10 equivalent gates per chip.

SSOP Shrink small-outline package.

stage One storage element (flip-flop) in a register.

state diagram A graphic depiction of a sequence of states or

values.

state machine A logic system or circuit exhibiting a sequence

of states conditioned by internal logic and external inputs; any

sequential circuit exhibiting a specified sequence of states.

Two types of state machine are Moore and Mealy.

static memory A volatile semiconductor memory that uses

flip-flops as the storage cells and is capable of retaining data

without refreshing.

storage The capability of a digital device to retain bits; the

process of retaining digital data for later use.

STP Shielded twisted pair; a type of data transmission medium.

string A contiguous sequence of bytes or words.

strobing A process of using a pulse to sample the occurrence of

an event at a specified time in relation to the event.

subroutine A series of instructions that can be assembled

together and used repeatedly by a program but programmed

only once.

subtracter A logic circuit used to subtract two binary numbers.

subtrahend The number that is being subtracted from the

minuend.

sum The result when two or more numbers are added together.

sum-of-products (SOP) A form of Boolean expression that is

basically the ORing of ANDed terms.

sum term The Boolean sum of two or more literals equivalent to

an OR operation.

synchronous A condition that describes signals or systems that

are aligned or synchronized with each other in terms of timed

events, two or more systems that have the same timing signal.

synchronous counter A type of counter in which each stage is

clocked by the same pulse.

synthesis The software process where the design is translated

into a netlist.

system bus The interconnecting paths in a computer system

including the address bus, data bus and control bus.

SDRAM Synchronous dynamic random-access memory.

seek time The time for the read/write head in a hard drive to

position itself over the desired track for a read operation.

segment A 64k block of memory.

sequential circuit A digital circuit whose logic states follow a

specified time sequence.

serial Having one element following another, as in a serial

transfer of bits; occurring, as pulses, in sequence rather than

simultaneously.

serial bus A bus that carries data bits sequentially one at a time

on a single conductor.

server Any computerized process that shares a resource with one

or more clients. A computer and software with a large memory

capacity that responds to requests across a network to provide

file storage and access as well as services such as file sharing.

SET The state of a flip-flop or latch when the output is 1; the

action of producing a SET state.

set-up time The time interval required for the control levels to be

on the inputs to a digital circuit, such as a flip-flop, prior to the

triggering edge of clock pulse.

shared bus A bus, such as PCI, that is shared by multiple

devices.

signal A type of VHDL object that holds data.

signal-to-noise ratio (SNR) A measure of the signal strength

relative to background noise, usually expressed in decibels (dB).

signal tracing A troubleshooting technique in which waveforms

are observed in a step-by-step manner beginning at the input

and working toward the output or vice versa. At each point the

observed waveform is compared with the correct signal for that

point.

sign bit The left-most bit of a binary number that designates

whether the number is positive (0) or negative (1).

SIMM Single-in-line memory module.

simplex A connection in which data flows in only one direction

from the sender (transmitter) to the receiver.

single-ended operation A bus operation that uses one wire for

data and one wire for ground.

single mode The characteristic of an optical fiber in which the

light tends to propagate in a single beam or ray.

SMT Surface-mount technology; an IC package technique in

which the packages are smaller than DIPs and are mounted on

the printed surface of the PC board.

soft core A portion of logic in an FPGA; similar to hard core

except it has some programmable features.

software Computer programs; programs that instruct a computer

what to do in order to carry out a given set of tasks.

software interrupt An instruction that invokes an interrupt

service routine.

SOIC Small-outline integrated circuit; an SMT package that

resembles a small DIP but has its leads bent out in a “gull-

wing” shape.

source A sending device of a bus; one of the terminals of a field-

effect transistor.

 Glossary A-41

ULSI Ultra large-scale integration; a level of IC complexity

in which there are more than 100,000 equivalent gates per

chip.

unit load A measure of fan-out. One gate input represents a unit

load to the output of a gate within the same IC family.

universal gate Either a NAND gate or a NOR gate. The term

universal refers to the property of a gate that permits any logic

function to be implemented by that gate or by a combination of

gates of that kind.

universal shift register A register that has both serial and

parallel input and output capability.

up/down counter A counter that can progress in either direction

through a certain sequence.

USB Universal serial bus; an external serial bus standard.

UTP Unshielded twisted pair; a type of data transmission medium.

UV EPROM Ultraviolet erasable programmable ROM.

variable symbol used to represent an action, a condition, or data

that can have a value of 1 or 0, usually designated by an italic

letter or word.

VHDL A standard hardware description language; IEEE Std.

1076-1993.

VLSI Very large-scale integration; a level of IC complexity in

which there are from more than 10,000 to 100,000 equivalent

gates per chip.

volatile The characteristic of a programmable logic device that

loses programmed data when power is turned off.

wait state A system bus delay equal to one processor clock

cycle. Wait states are used to ensure that the system bus timing

satisfies the address, data, and control timing specifications of

a system.

weight The value of a digit in a number based on its position in

the number.

word A group of bits or bytes that acts as a single entity that can

be stored in one memory location; two bytes.

word capacity The number of words that a memory can store.

word length The number of bits in a word.

WORM Write once-read many; a type of optical storage device.

write The process of storing data in a memory.

zero suppression The process of blanking out leading or trailing

zeros in a digital display.

talker An instrument capable of transmitting data on a GPIB

(general-purpose interface bus).

tape library A type of auxiliary storage for very large amounts

of data.

target device A PLD mounted on a programming fixture or

development board into which a software logic design is to

be downloaded; the programmable logic device that is being

programmed.

TDM Time division multiplexing; a technique in which data from

several sources are interleaved on a time basis and sent on a

single communication channel or data link.

terminal count The final state in a counter’s sequence.

text entry A method of entering a logic design into software

using a hardware description language (HDL).

throughput The average speed with which a program is

executed.

timer A circuit that can be used as a one-shot or as an oscillator;

a circuit that produces a fixed time interval output.

timing diagram A graph of digital waveforms showing the

proper time relationship of two or more waveforms and how

each waveform changes in relation to the others.

timing simulation A software process that uses information

on propagation delays and netlist data to test both the logical

operation and the worst-case timing of a design.

toggle The action of a flip-flop when it changes state on each

clock pulse.

totem-pole A type of output in TTL circuits.

trailing edge The second transition of a pulse.

transistor A semiconductor device exhibiting current and/or

voltage gain. When used as a switching device, it approximates

an open or closed switch.

trigger A pulse used to initiate a change in the state of a logic

circuit.

tri-state A type of output in logic circuits that exhibits three

states: HIGH, LOW, and high-Z; also known as 3-state.

tri-state buffer A circuit used to interface one device to another

to prevent loading.

troubleshooting The technique of systematically identifying,

isolating, and correcting a fault in a circuit or system.

truth table A table showing the inputs and corresponding output

level of a logic circuit.

TTL Transistor-transistor logic; a class of integrated logic

circuit that uses bipolar junction transistors. Also called

bipolar.

A-42

A
ABEL (Advanced Boolean Expression

Language), 587
Abstraction, levels of, 242–243
Acceptor, 784
Access time, ROM, 650–651
Accuracy, DAC, 719
Active-HIGH decoding, 531
Active-LOW decoding, 531
ADC0804 , 711
ADCs. See Analog-to-digital converters
Addend, 85
Adders. See also Combinational logic functions

defined, 28
expansion, 321–322
full-adder, 315–317
half-adder, 314–315
look-ahead carry, 325–327
parallel binary, 317–324
in process control system, 33
ripple carry, 324–325

Addition
associative law of, 194
binary, 74–75, 317–318
Boolean, 139, 192–193
commutative law of, 194
direct, 88
function, 28
hexadecimal, 95–96
numbers two at a time, 86
overflow condition, 86
signed numbers, 85–86
sum, 85

Address access time, 637
Address bus, 630, 805
Address multiplexing, 641–642, 643
Address register, 815
Address setup time, 637
Addresses

binary memory, 93
burst logic, 639
decoding for device selection, 809
defined, 69, 629, 688
example of, 629

Addressing
direct, 819–820
immediate, 818–819
indexed, 815, 820–821
inherent, 818
modes, 817–822
relative, 821–822

Adjacency, cell, 220–221
AHDL (Altera Hardware Description Language),

38, 587
Aliasing, 699, 731
Alphabetic characters, 92
Alphanumeric codes, 106, 116
ALU (arithmetic logic unit)

combinational logic and, 267
defined, 28, 814, 847
functions, 192
use example, 814

Amplitude, 21
Analog

defined, 16, 57
methods, system using, 18
quantity, 16
sampled-value representation, 17
system, 17

Analog-to-digital conversion
defined, 701

errors, 713–714
incorrect code, 714
methods of, 704–715
missing code, 713
offset, 714
quantization, 701–704
sampling and filtering, 698–700

Analog-to-digital converters (ADCs)
defined, 18, 731
digital scope, 44
dual-slope, 707–709
flash, 705–707
function illustration, 701
implementation, 711
op-amp, 705
as peripherals, 840
resolution, 704
sigma-delta, 711–712
in sound cards, 725
successive-approximation, 709–710
testing, 712–713
throughput, 704

AND array
concept, 153
defined, 153, 177
example, 154

AND dependency, 540
AND function

Boolean multiplication as, 134
defined, 26, 57
illustrated, 26

AND gates
applications, 134–135
Boolean expressions, 134
defined, 27, 129, 177
design entry examples, 158
as enable/inhibit device, 134–135
HIGH output, 129, 130
logic expressions for, 133–134
logic symbols, 129
operation of, 129–130
operation with waveform inputs, 131–133
output, 280
seat belt alarm system application, 134
74 series, 161–162
timing diagram, 131
truth table, 130
VHDL, 160

AND-OR Invert logic
circuit operation, 264
defined, 263
example, 264
logic diagram, 263–264
truth table, 264

AND-OR logic
circuit operation, 263
defined, 262
example, 263
illustrated, 262
SOP expression implementation, 210, 263
truth table, 262

Anti-aliasing filter, 698
Antifuse technology, 154–155, 177
Application software, 806
Applied Logic

elevator controller, 545–549, 608–614
security system, 479–486
seven-segment display, 244–248
tank control, 294–299
traffic signal controller, 365–371, 429–436

Arbitrary waveform generators, 52

Arithmetic functions, 28–29
Arithmetic instructions, 836
Arithmetic logic unit. See ALU
ASCII

characters and symbols, 107, 108
control characters, 107
defined, 107, 116
example, 107
extended characters, 109

ASK (amplitude-shift keying), 750
Assemblers, 192, 342, 832
Assembly language

defined, 831–832, 847
example program, 833–836
use of, 832

Associative laws, 194–195
Astable multivibrators

defined, 387, 437
duty cycle, 425–426
555 timer as, 423–426
frequency of oscillation, 425
as pulse oscillators, 423
with Schmitt trigger, 423

Asynchronous buses, 768, 810
Asynchronous cascading, 527–528
Asynchronous counters. See also Counters

binary state sequence, 501
cascaded, 527–528
decade, 504–506
defined, 497, 500, 549
fixed-function device, 506–507
implementation, 506–507
PLD (programmable logic device), 507
propagation delay, 502–504
as ripple counters, 497, 502
3-bit binary, 501–502
2-bit binary, 500–501

Asynchronous inputs, 402
Asynchronous SRAMs. See also SRAMs (static

RAMs)
defined, 633
illustrated, 636
logic diagram, 635
memory arrays, 636
organization, 634–636
read and write cycles, 637–638
READ mode, 636–637
tri-state outputs and busses, 635–636
WRITE mode, 637

Asynchronous transmission, 746
Augend, 85
Authentication, 682
Authorization, 682
Automated systems, 843–844
Automobile parking control application, 536–537
Automobile systems, 843
Auxiliary storage, 678

B
Ball-grid array (BGA) package, 37
Bandwidth

bus, 766
defined, 48, 683

Banks, 630
Base, 869
Baseband transmission, 739, 740
Baud, 748, 788
BCD. See Binary coded decimal
BCD decade counter

decoder, 533

INDEX

 Index A-43

illustrated, 511
states of, 512
with strobing, 534
timing diagram, 512
truncated binary sequence, 511

BCD-to-7-segment decoder
defined, 338
implementation, 339
logic symbol, 338
zero suppression using, 340

BCD-to-binary conversion, 345–346
BCD-to-decimal decoder

decoding functions, 340
defined, 340
example, 337–338
implementation, 337

Behavioral approach, 243
Biased exponents, 83
BiCMOS, 43, 161
Bidirectional BSC, 597, 598
Bidirectional counters. See Up/down counters
Bidirectional shift registers

defined, 462, 487
example, 463
fixed-function device, 463–464
illustrated, 462
implementation, 463–465
PLD (programmable logic device), 464–465
universal, 463–465

Binary
addition, 74–75, 317–318
arithmetic, 74–77
in computers and digital electronics, 65
counting application, 69
counting in, 68
defined, 19, 57
division, 76–77
floating-point numbers, 83–84
memory addresses, 93
multiplication, 76
subtraction, 75–76
system, 19

Binary coded decimal (BCD)
addition, 102–103
in arithmetic operations, 102
decimal conversion, 101
defined, 29, 100, 116
8421 code, 100–101
number representation, 102

Binary decoder, 332–333
Binary digits, 19
Binary numbers

application, 69
base, 68
bits, 68
complements of, 77–79
defined, 67
signed, 79–91
weighting structure, 69

Binary representation
of BCD bit weights, 345
LSB (least significant bit), 332
product term, 212–213
sum term, 214–215

Binary-to-decimal conversion, 70
Binary-to-Gray code conversion, 104–105, 346–347
Binary-to-octal conversion, 99–100
Binary-weighted-input DAC

defined, 715
disadvantages of, 716
example, 716–717
illustrated, 715

BIOS (basic input/output system), 803–804, 847

Bipolar. See also TTL (transistor-transistor logic)
defined, 161, 177
logic, 166
power dissipation, 167

Bipolar junction transistors (BJTs), 42
Bistable devices

categories of, 387
defined, 388, 437
stable states, 387
synchronous, 395

Bistable multivibrators, 395
Bit manipulation instructions, 836
Bit rate, 748, 788
Bit time, 22
Bit-interleaved TDM, 760–761
Bits

defined, 19, 57, 68, 628
groups of, 20
least significant (LSB), 69
most significant (MSB), 69
parity, 110–111
sign, 79
weight of, 69

Bitstream, 594
BJT (bipolar junction transistor), 869
Blu-ray, 676, 688
Boole, George, 191
Boolean algebra

addition, 139, 192–193
associative laws, 194–195
commutative laws, 194
complements, 192
defined, 128, 177, 192
DeMorgan’s theorems and, 199–203
distributive law, 194, 195
laws of, 194–195
literals, 192
logic simplification using, 205–209
multiplication, 134, 193
operators, 128
product terms, 193, 211–213
rules of, 195–198
variables, 128, 192
in VHDL programming, 240–242

Boolean analysis, 203–205
Boolean expressions

defined, 195
domain of, 210
evaluating, 203–204
AND gates, 134
Karnaugh map and, 219–222
for logic circuits, 203, 267–268
mapping, 222–230
NAND gates, 144
NOR gate, 149
OR gates, 139
product-of-sums (POS), 213–215
rules for manipulating and simplifying,

195–198
simplification, 205–208
standard forms of, 209–216
sum-of-products (SOP), 210–213
truth tables and, 216–219
with VHDL, 240–243

Boundary scan
concept illustration, 602, 605
defined, 615
instructions, 595–596
logic, 595–602
logic diagram, 597
registers, 595
Test Access Port (TAP), 596–597
testing for multiple devices, 600–602

Boundary scan cell (BSC)
architecture, 597, 598
bidirectional, 597, 598
in boundary scan testing, 605
data paths, 599, 600
operation modes, 597–600

Boundary Scan Description Language (BSDL),
607

Boundary scan testing
bit pattern, 606
defined, 605
Extest, 606–607
Intest, 606

Breadboard, 427
Break point, 603, 615
Broadband transmission, 739, 740
BSC. See Boundary scan cell
BSDL (Boundary Scan Description Language),

607
Buffers

defined, 808, 847
noninverting, 809
open-collector, 877–878
use illustration, 808

Burst EDO DRAM (BEDO DRAM), 633, 646
Burst logic, 639
Burst refresh, 644
Bus arbitration, 784
Bus arbitrator, 348
Bus contention, 785, 786
Bus master, 825, 847
Buses

address, 630, 805
asynchronous, 636, 768, 810
bandwidth, 766
basics, 764–769
CAN, 781–782
characteristics, 766–767
connecting devices to, 785–786
control, 805
data, 630, 805
defined, 348, 636, 688, 764, 788
differential, 768–769
external, 765–766
Firewire, 782–783
frequency, 766
function of, 764–765
handshaking, 767–768
I2C, 780–781
interfacing, 784–787
internal, 765
internal structure, 784
multiplexed, 784
parallel, 765, 769–775
parameters, 766
physical and electrical definition of, 765
protocol, 767–768, 788
request operations, 825–826
RS-232, 778–779
RS-422, 779
RS-423, 779–780
RS-485, 780
SCSI, 774
semisynchronous, 810
serial, 765
signals, 784–785
single-ended, 768–769
SPI, 780
synchronous, 768, 810
system, 805
transfer speed, 766
USB (universal serial bus), 775–778
width, 766

A-44 Index

Bypass register, 595
Byte-interleaved TDM, 760–761
Bytes, 82, 116, 628, 688

C
Cache, 329
Cache memory

analogy, 640
block diagram, 640
defined, 639, 803
hit and miss, 679
L1 and L2 caches, 640
in memory hierarchy, 677
SRAMs in, 639–640

Caching, 803, 847
CAD (computer-aided design), 585
CAN (controller area network) bus, 781–782
Capacity

defined, 629, 688
memory, 629–630
word, 663–664

Carries
defined, 73
internal, 319

Carry generation, 325–326
Carry propagation, 325–326
Cascade counters

asynchronous, 527–528
defined, 527, 549
examples, 529
failure example, 542
with maximum modulus, 541
synchronous, 528
troubleshooting, 541–542
with truncated sequences, 530, 541–542

Cascading
asynchronous, 527–528
defined, 321, 371, 527
full-modulus, 530
synchronous, 528

CCD (charge-coupled device) memories, 670
CD-R, 675
CD-ROM, 674–675
CD-RW, 675–676
Cells

adjacency, 220–221
defined, 220, 628, 688
memory, 396
number in Karnaugh map, 220

Channel count, 50
Characters, 92
Checksum, 111
Chip enable access time, 637
Circuits, 26. See also Integrated circuits (ICs);

Logic circuits
Clear, 402, 437
Clock

defined, 22, 57, 395, 437
example waveform, 23
input, in synchronous counters, 508
synchronization, 395
two-phase generator, 427, 428
waveforms, 427

Cloud storage
architecture, 682
clusters, 681
data center, 680
defined, 680, 688
properties, 682–683
security, 682
servers, 680, 681, 689
with storage redundancy, 681
systems, 680–682

Clusters, 681
CMOS (complementary MOS)

DC supply voltage, 167, 409
defined, 43, 161, 177, 885
ECL performance comparison, 882
handling precautions, 163
inverter, 864–865, 868
loading, 861–862
logic, 165
logic gate implementation, 163
logic levels, 856–857
MOSFETs (metal-oxide semiconductor

field-effect transistors), 864
NAND gate, 865–866
NOR gate, 866
open-drain gates, 867
performance and lower voltages, 409
power dissipation, 167
precautions, 331, 867–868
protection circuitry, 331
tri-state gates, 867
TTL performance comparison, 880–881
unused gate inputs, 169

Coarse-grained FPGA, 37, 577
Coaxial cable (coax), 740–741, 788
Code conversion function, 29
Code converters

BCD-to-binary conversion, 345–346
binary-to-Gray conversion, 346–347
defined, 29, 345
Gray-to-binary conversion, 346–347
in process control system, 32

Codec, 727
Codes

alphanumeric, 106, 116
ASCII, 107–109
in computers and digital electronics, 65
cyclic redundancy check (CRC), 111–114
defined, 20, 29
digital, 104–109
8421 BCD, 100–102
error, 109–114
Gray, 104–106
Hamming, 114
types of, 29
Unicode, 109

Collector, 869
Combinational logic, 261–312

AND-OR, 262–263
AND-OR Invert, 263–264
from Boolean expression to logic circuit,

267–269
circuits, 262–267
defined, 261
exclusive-NOR, 265
exclusive-OR, 265, 266
failure types, 289
implementing, 267–272
with NAND gates, 274, 275–277
node in logic circuit, 289, 299
with NOR gates, 274, 277–279
open input in load device, 289, 290, 291
open output in driving device, 289, 290
output level, 261
pulse waveform operation, 279–282
reducing to minimum form, 271
shorted input in load device, 289, 290
shorted output in driving device, 289, 290, 291
signal tracing and waveform analysis,

290–293
troubleshooting, 288–293
from truth table to logic circuit, 269–272
with VHDL, 283–288

Combinational logic functions
adders, 314–327
code converters, 345–347
comparators, 327–331
decoders, 331–341
demultiplexers (DMUX), 356–358
encoders, 341–344
full-adder, 315–317
half-adder, 314–315
look-ahead carry adder, 325–327
multiplexers (MUX), 347–356
parallel binary adders, 317–324
parity generators/checkers, 358–362
ripple carry adder, 324–325
troubleshooting, 362–364
types of, 313

Combinational mode, 576–577
Common control block, 539
Communication controllers, 840
Commutative laws, 194
Comparators. See also Combinational

logic functions
basic operation, 328
defined, 27, 327, 371
equality, 328–329
fixed-function, 329
4-bit magnitude, 330
implementation, 330
inequality, 329–331
in process control system, 32
tag address, 329

Comparison function, 27–28
Compilers

defined, 57, 615, 833
design implementation, 592
high-level to machine conversion with, 833

Compiling, 831
Complementary, 863
Complementation, 126
Complements

1’s, 77, 80, 81, 128
2’s, 78–79, 80, 82, 96
converting, 79
defined, 177, 192, 249
double, 197
finding, 77–79
variable, 128

Complex programmable logic device. See CPLD
Components. See also VHDL

defined, 283, 299
instantiations, 285–286
keyword, 284
predefined programs used as, 284
storage, 283
using in programs, 284

Computer system
block diagram, 802, 806, 807, 828
CPU (central processing unit), 803, 817
debugging, 805
device selection, 809
general-purpose, 802
I/O ports, 804–805
memory and storage, 803–804
practical considerations, 806–811
shared signal lines, 807–808
signal loading and buffering, 808–809
system bus, 805
system timing, 810–811
tasks, 802
typical, 805

Computer-aided design (CAD), 585
Configurable logic blocks (CLBs)

defined, 577, 615

 Index A-45

illustrated, 578
logic modules, 579–582

Connectors
dirty, 290
GPIB, 773
optical fiber, 743
USB, 776

Constellation maps, 752–753
Consumer appliances, 843
Contact bounce eliminator application, 391
Content-addressable memory, 804
Control bus, 805
Control dependency, 540
Control programs, 267
Control registers, 841
Controller area network (CAN) bus, 781–782
Conversion, 697–723

analog-to-digital, 698–715
BCD/decimal, 101
BCD-to-binary, 345–346
binary-to-decimal, 70
binary-to-Gray, 104–105, 346–347
binary-to-octal, 99–100
decimal-to-binary, 71–73
decimal-to-hexadecimal, 95
decimal-to-octal, 98–99
Gray-to-binary, 105, 346–347
hexadecimal-to-binary, 93–94
hexadecimal-to-decimal, 94
octal-to-binary, 99
octal-to-decimal, 98
parallel-to-serial, 474

Counters, 497–560
applications, 534–539
asynchronous, 497, 500–507
in automobile parking control, 536–537
cascade, 527–530
decade, 504–506
decoding, 531–534
decoding glitches, 532–534
decrementing, 537
defined, 32
in digital clocks, 535
divisor, 538
faulty, symptoms of, 541
implementation, 522
implemented with individual flip-flops, 543–544
incrementing, 537
Johnson, 465–467
logic symbols with dependency notation,

539–541
modulus of, 504
next-state table, 433
operation illustration, 32
in parallel-to-serial data conversion, 537–539
in process control system, 32
ring, 465–467
ripple clocking effect, 502
shift register, 465–469
as state machines, 498–499
synchronous, 497, 507–515
time stamp (TSC), 510, 528
traffic signal controller, 432–433
troubleshooting, 541–544
up/down, 515–519

Counting
in binary, 68, 69
flip-flops in, 412–413
function, 32
in hexadecimal, 93
logic functions, 32

CPLDs (complex programmable logic devices)
architecture, 568

block diagram, 567, 569
defined, 35, 57, 567, 615
design flow diagram, 586
essential elements for programming, 586
illustrated, 35, 36
LAB (logic block array), 568
logic elements (LEs), 571
logic function generation types, 573
LUT architecture, 571
macrocell, 568
macrocell diagram, 569
manufacturers, 568, 574
parallel expanders, 571
parameters, 574
PIA (programmable interconnect array), 568
PLA (programmable gate array), 572
range of, 568
shared expanders, 568–571
specific devices, 572–574

CPU (central processing unit), 803, 817, 845, 847
CRC. See Cyclic redundancy check
Cross talk, 741
Cross-assemblers, 832
CSP (chip scale package), 41
Current sinking, 862, 873–874, 885
Current sourcing, 862, 873–874, 885
Cutoff, 864
Cyclic redundancy check (CRC)

check bits, 111
defined, 111, 116
examples, 113–114
illustrated, 112
modulo-2 operations, 111–112
process, 112

D
D flip-flops. See also Flip-flops

defined, 395, 437
edge-triggered operation, 398–401
fixed-function device, 403
in frequency division, 411
implementation, 403–404
logic diagram, 402
negative edge-triggered, 396
operation of, 396
output, 399
PLD (programmable logic device), 404
positive edge-triggered, 396
pulse transition detector, 399
synchronous inputs, 401
transition table, 433
transitions, 400
truth table, 396

DAA (Decimal Adjust for Addition), 102
DACs. See Digital-to-analog converters
Data

centers, 680
defined, 23, 57
packets, 746
selection function, 30
storage. See storage

Data acquisition, 50
Data bus, 630, 805
Data flow approach, 243
Data hold time, 637
Data rate, 748
Data registers, 842
Data selectors

applications, 352–356
defined, 347, 348
eight-input, 351
fixed function device, 350, 351
implementation, 349–350

logic diagram, 349
logic function generator, 353–356
logic symbol, 348
PLD (programmable logic device), 350, 351

Data sheets, 874
Data transfer

defined, 23
instructions, 836
parallel, 24
serial, 23

Data transmission, 739–799
asynchronous, 746
baseband, 739, 740
broadband, 739, 740
categories of, 739
data rate, 748–749
defined, 739
early work in, 740
efficiency, 749
media, 740–744
modes, 749
parallel, 745–746
serial, 745–746
synchronous, 746–748
wireless, 743–744

Data transmission system with error detection
data-select inputs, 360
illustrated, 361
overview, 360
timing diagram, 361–362

DC power supply, 52, 53
DC supply voltage, 167, 856
DDR DRAM, 646
Decade counters

asynchronous recycling, 505
defined, 504, 550
example, 505–506
illustrated, 505
partial decoding, 504
synchronous, 511–513

Decimal Adjust for Addition (DAA), 102
Decimal numbers, 66–67
Decimal value of signed numbers

1’s complement, 81
sign-magnitude, 80–81
2’s complement, 82

Decimal/BCD conversion, 101
Decimal-to-binary conversion

fractions, 73
repeated division-by-2 method, 71–72
sum-of-weights method, 71

Decimal-to-binary encoder
defined, 341
logic diagram, 342
logic symbol, 341
priority encoder, 342

Decimal-to-hexadecimal conversion, 95
Decimal-to-octal conversion, 98–99
Decode, 729, 731
Decoders. See also Combinational logic functions

BCD decade counter, 533
BCD-to-7-segment, 338–339
BCD-to-decimal, 336–338
binary, 332–333
defined, 29, 331, 371
as demultiplexers, 356, 357–358
4-bit, 333–336
illustrated, 30
implementation, 334–335
1-of-16, 334–335
in process control system, 32
strobed, 534
zero suppression for 4-digit display, 340

A-46 Index

Decoding
active-HIGH, 531
active-LOW, 531
counter, 531–534
logic functions, 29–30
partial, 504

Decrementing, counters, 537
Delta modulation, 711
DeMorgan’s theorems

application procedures, 201
applying, 199–200, 201–203
defined, 199
first theorem, 199
second theorem, 199
variables in, 200

Demultiplexers (DMUX)
decoders as, 356, 357–358
defined, 30, 356, 371
4-bit-to-16-line decoder as, 357–358
illustrated, 357
in process control system, 33

Demultiplexing, 759
Design entry

defined, 38
logic design building, 587–589
PLD (programmable logic device), 157–158
programmable logic software, 587–589
programming process, 38
schematic entry, 587, 616
text entry, 587, 616

Design flow
block diagram, 38
defined, 37, 585, 615
diagram, 586

Destination operand, 317
Device programmers, 39
Difference, 86
Differential buses, 768–769
Differential nonlinearity, 721
Digital

defined, 15, 16, 57
methods, system using, 18
quantity, 16
technology, 15–16

Digital clock application, 535–536
Digital codes

alphanumeric, 106, 116
ASCII, 107–108
extended ASCII characters, 109
Gray code, 104–106
Unicode, 109

Digital multimeter (DMM), 52, 53
Digital signal processing, 583
Digital signal processors (DSPs)

applications, 725–727
architecture, 727–728
block diagram, 724, 728
in cellular telephones, 727
data paths in CPU, 729
data processing performance, 729
defined, 724, 731
in filtering, 726
function of, 723
functional units, 729
Harvard architecture, 727–728
in image processing, 726
internal memory and interfaces, 730
as microprocessor, 724
in music processing, 726
packaging, 730
pipeline, 729–730, 732
programming, 725
in radar, 726

specific, 728–730
in speech generation and recognition, 726
in telecommunications, 725
timers, 730

Digital waveforms
binary information, 22–23
characteristics, 21–22
clock, 22–23
comparing in troubleshooting, 294
defined, 20
duty cycle, 22
example of, 21
frequency of, 21
periodic, 21
pulses, 20–21
timing, comparing, 294
timing diagrams, 23

Digital-to-analog conversion
defined, 715
differential nonlinearity, 721
errors, 720–722
low or high gain, 721
methods of, 715–723
nonmonotonicity, 720
offset error, 721

Digital-to-analog converters (DACs)
accuracy, 719
binary-weighted-input, 715–717
defined, 18, 702, 731
linearity, 719
monotonicity, 719
op-amp, 705
output as “stairstep” approximation, 722
performance characteristics of,

719–720
as peripherals, 840
R/2R ladder, 717–719
reconstruction filter, 722
resolution, 719
settling time, 719
test setup, 719
testing, 720

Digits
binary number system, 68
carry, 73
defined, 66
hexadecimal, 94
hexadecimal number system, 92

DIMMs (dual in-line memory modules), 664, 665
Diodes, 869
DIP (dual in-line package), 40, 42, 163
Direct addition, 88
Direct addressing, 819–820
Direct reset, 402
Direct set, 402
Distributed refresh, 645
Distributive law, 194, 195
Divide by zero, 825
Dividend, 90
Division

binary, 76–77
function, 29
quotient, 90
signed numbers, 90–91

Divisor, 90
DLT tape, 673
DMA (direct memory access)

computer block diagram with, 827–828
controllers, 826–827
CPU data transfer versus, 827
defined, 826, 847
speeds, 827

DMM (digital multimeter), 52, 53

Domains, of Boolean expressions, 210
“Don’t care” conditions

defined, 231, 249
Karnaugh map, 230–232
use example, 231

Double-precision floating-point numbers, 83
Download, 39
Downloading

defined, 594, 615
illustrated, 594

DRAMs (dynamic RAMs). See also RAMs
(random access memories)

address multiplexing, 641–642, 643
application of, 641
block diagram, 643
Burst EDO (BEDO), 633, 646
capacitance, 396
cell operation, 642
DDR, 646
defined, 633, 641, 688
Extended Data Out (EDO), 633, 645–646
Fast Page Mode (FPM), 633, 643–644, 645
flash versus, 658
MOS cell, 641
organization, 641–645
read and write cycles, 642
refresh cycles, 644–645
refreshing, 633
synchronous (SDRAM), 633, 646
timing for address multiplexing, 643
types of, 633

Drivers
open-collector, 877–878
programs, 267

DSP. See Digital signal processors
DSP core, 728, 731
Dual symbols

defined, 276
NAND logic diagrams using, 276–277
NOR logic diagram using, 278–279
use illustration, 276, 278

Dual-slope ADC
conversion illustration, 708
defined, 707
illustrated, 707
linear discharge, 709

Duty cycle
astable multivibrators, 425–426
defined, 22, 57

DVD-ROM, 676
Dynamic input indicator, 395
Dynamic memory, 640

E
E2CMOS, 870–871
ECL (emitter-coupled logic)

availability, 161
defined, 881, 885
noise margin, 882
OR/NOR gate circuit, 881–882
TTL and CMOS comparison, 882

Edge-sensitive flip-flops, 395
Edge-triggered flip-flops

D, 395–397, 398–400, 403–404
defined, 395, 437
J-K, 397–398, 401, 404–405
types of, 395

Edge-triggering, 399
EDIF (Electronic Design Interchange Format),

592
EEPROMs

defined, 156, 177, 647, 654
flash versus, 657

 Index A-47

technology, 156
types of, 654

EIA-232, 778
8 mm tape, 673
8421 BCD code. See also Binary coded decimal

(BCD)
applications, 102
defined, 100–101
interface examples, 100
invalid codes, 101

Elasticity, 683
Electromagnetic spectrum, 744
Electromagnetic waves, 744, 788
Elevator controller

block diagram, 546–547
floor counter state diagram, 547
implementation, 549
initialization, 549
logic diagram, 548
one cycle of operation, 545
operation of, 548–549
overview, 545
programming and PLD implementation

process, 613–614
programming model for, 608
signals, 546
state diagram, 546
VHDL program code, 608–613

Embedded microcontrollers, 39
Embedded systems, 57, 838
EMI (electromagnetic interference), 740, 789
Emitter, 869
Enable, 134–135
Encoders. See also Combinational logic

functions
application, 344
decimal-to-BCD, 341–343
defined, 29, 341, 371
illustrated, 29
implementation, 343
keyboard, illustrated, 344
logic diagram, 342
logic symbol, 341
in process control system, 32

Encoding
defined, 341
function, 29

Encryption, 682
EPROMs

defined, 155, 177, 647, 653, 688
flash versus, 657
logic symbol, 653
NMOSFET array, 653
technology, 155–156
timing diagram, 653
types of, 654

Equality comparison, 328–329
Erase operation, 655, 657
Error codes

cyclic redundancy check (CRC), 111–114
defined, 109
Hamming code, 114

Error detection
defined, 110
examples, 111
parity method for, 110–111
process, 110

Espresso algorithm, 221–222
Essential prime implicant, 237
Ethernet, 754
Even parity, 359
Exception handlers, 823–824
Exceptions, 823–825, 847

Exclusive-NOR gates
application, 152
defined, 151, 177
logic levels, 151
logic symbols, 151
operation with waveform inputs, 151
output, 151
timing diagram, 151
truth table, 151
VHDL, 160

Exclusive-NOR logic, 265
Exclusive-OR gates

defined, 149, 177
HIGH output, 149–150
logic combination, 149
logic levels, 150
logic symbols, 150
74 series, 163
truth table, 150

Exclusive-OR logic
defined, 111, 265
examples, 266
logic diagram and symbols, 265
truth table, 265

Execute, 730, 731, 813
Exponents, 83
Extended Data Out DRAM (EDO DRAM), 633,

645–646
Extended-precision floating-point

numbers, 83
External buses, 765–766
External memory controllers, 841
Extest, 606–607

F
Factoring, 195
Fall time, 21
Fan-out

defined, 168, 177, 808, 861, 885
number of inputs and, 808
unit loads, 168

Fast Page Mode DRAM (FPM DRAM)
concept, 645
defined, 643
for read operation, 644, 645

FBGA (fine-pitch ball grid array), 41
FDM (frequency-division multiplexing), 763–764
Feedback, regenerative, 388
Fetch, 729, 732, 813
FETs, 654
Field-programmable gate array. See FPGA
FIFO (first in-first out) memories

applications, 666–667
block diagram, 667
defined, 666, 688, 804
examples of, 667
register operation, 666

Filtering
low-pass, 699–700
need for, 699–700

Fine-grained FPGA, 36, 577
Finite state machines, 498–499
Firewire bus, 782–783
First in-first out memories. See FIFO memories
Fitting, 39
5-bit Johnson counter, 466–467
555 timer

as astable multivibrator, 423–426
connected as one-shot, 420
defined, 419
example, 421
functional diagram, 420
monostable operation, 420–421

as one-shot, 419–421
one-shot operation, 421
operation, 419–420
operation in astable mode, 424

Fixed-function logic devices
asynchronous binary counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional universal shift register, 463–464
complexity classifications, 42
D flip-flop, 403
data selector/multiplexer, 350
decimal-to-binary encoder, 343
defined, 39, 57
eight-input data selector/multiplexer, 351
4-bit magnitude comparator, 330
4-bit parallel adder, 320
4-bit synchronous binary counter, 513–514
gated D latch, 394
IC packages, 40–41
J-K flip-flop, 404
1-of-16, 334
parallel load shift register, 458
parallel-access shift register, 460–461
parity generator/checker, 359
pin numbering, 42
ring counter, 471
serial in/parallel out shift register, 455
S-R (SET-RESET) latch, 391
technologies, 42–43
up/down counter, 517–518

Fixed-function logic gates
overview of, 160–161
performance characteristics and parameters,

164–169
74 series families, 164
74 series functions, 161–163

Flag register, 815
Flash ADC, 705–707
Flash memory

array, 657, 658
cells, 655
defined, 655, 688
DRAM versus, 658
erase operation, 655, 657
operation, 655–657
programming operation, 655
read operation, 656
ROM, EPROM, and EEPROM versus, 657
SRAM versus, 658
storage cell illustration, 655
USB drive, 659

Flash technology, 156, 177
Flip-flop transition tables, 520–521
Flip-flops

applications, 409–414
asynchronous inputs, 402
comparison of, 409
in counting, 412–413
D, 395–397, 398–400, 403–404
defined, 31, 387
edge-sensitive, 395
edge-triggered, 395
in frequency division, 411–412
hold time, 408
inputs, logic expressions for, 522
J-K, 397–398, 401, 404–405
maximum clock frequency, 408
operating characteristics, 406–409
in parallel data storage, 410
power dissipation, 408–409
propagation delay time, 407
pulse widths, 408

A-48 Index

Flip-flops (continued)
resetting, 450
setting, 450
set-up time, 407–408
shift registers, 450
SRAM, 396
synchronous inputs, 401
T, 401
toggle, 401, 437
troubleshooting, 427–428
types of, 395

Floating-gate MOS, 654
Floating-point numbers

binary, 83–84
defined, 83, 116
double-precision, 83
exponent, 83
extended-precision, 83
forms of, 83
mantissa, 83
single-precision, 83–84

Forward-biased, 869
4-bit decoder

decoding functions, 333
defined, 333
example, 335–336
implementation, 334–335
logic symbol, 334
truth table, 333

4-bit Johnson counter, 466–467
4-bit parallel adders. See also Adders; Parallel

binary adders
defined, 319
expansion, 321–322
fixed-function device, 320
illustrated, 319
implementation, 320–321
PLD (programmable logic device), 320–321
truth table, 319–320

4-bit synchronous binary counter
fixed-function device, 513–514
implementation, 513–514
operation of, 510–511
PLD (programmable logic device), 514
timing diagram, 511

4-bit synchronous decade counter
defined, 511
illustrated, 511
operation of, 512
states of, 512
timing diagram, 512

4-line-to-10-line decoder. See 1-of-10 decoder
4-line-to-16-line decoder. See 1-of-16 decoder
4-variable Karnaugh map, 220, 221
FPGAs (field-programmable gate arrays),

577–585
block diagram, 584
coarse-grained, 37, 577
configurable logic blocks (CLBs), 577–582
cores, 583
defined, 36, 57, 577, 615
design flow diagram, 586
digital signal processing (DSP)

functions, 583
embedded functions, 583–584
essential elements for programming, 586
fine-grained, 36, 577
hard-core logic, 583
illustrated, 37
input/output (I/O) blocks, 577
interconnections, 577
logic modules, 579–582
logic-producing elements, 577

manufacturers, 584
parameters, 585
platform, 583
programming setup, 37
range of, 577
soft-core function, 583
specific devices, 584–585
SRAM-based, 582
structure, 36
structure illustration, 578
use of, 561
volatile configurations, 582

Fractions, 73
Frequency divider, 430–431
Frequency division, flip-flops in, 411–412
Frequency waveform, 21
FSK (frequency-shift keying), 750, 751
Full-adder

defined, 315, 371
implementation, 316–317
logic, 315–316
logic diagram, 316
logic symbol, 315
truth table, 315
in voting system application, 323

Full-duplex mode, 749, 789
Full-modulus cascading, 530
Function generators, 52
Function tables, 319
Functional simulation

defined, 589, 615
graphical approach, 589–590
illustrated, 589
output waveform after running, 590
programmable logic software, 589–591
in programming process, 38
test bench approach, 590–591
timing simulation and, 593
troubleshooting with, 603–605

Fuse technology, 154, 177, 652–653

G
GAL (generic array logic). See also SPLDs

(simple programmable logic devices)
array, 563
defined, 35, 563
general block diagram, 565–566
macrocells, 566
notation for diagrams, 564
programmable interconnection lines, 564

Gated D latch, 393–394
Gated S-R latch, 392–393
Gates. See Logic gates
General-purpose I/O (GPIO), 840
Glitches

capture, 362
decoding, 532–534
defined, 362, 371
eliminating with strobing, 364
interpretation, 362
looking for, 428
output, 363
timing simulation and, 593

GPIB (General-Purpose Interface Bus)
bus connector and pin assignments, 773
connection, 772
defined, 771, 789
handshaking signals, 773
listener and talker, 771
management lines, 773
setup, 771
timing diagram for handshake, 772

Graphic (schematic entry), 158

Gray code
application, 105–106
conversions, 104–105
defined, 29, 104
4-bit, 104
function illustration, 106
number of bits, 104
single bit change, 104

Gray-to-binary code conversion, 105, 346–347
Grounding, 54, 176

H
Half-adder

defined, 314, 372
logic, 314–315
logic diagram, 315
logic symbol, 314
truth table, 314

Half-duplex mode, 749, 789
Half-splitting method, 55
Hamming code, 114
Handshake, 767–768, 785, 789
Hard cores, 583
Hard disks

defined, 671, 688
files, 672
format, 672
illustrated, 671
latency period, 672–673
in memory hierarchy, 678
organization and formatting, 672
performance, 672–673
read/write head principles, 671–672
removable, 673
seek time, 672

Hardware, 828, 847
Harmonics, 698
Harvard architecture, 727–728
HC (high-speed CMOS) family, 164
HDL (hardware description language)

defined, 38, 159
types of, 159–160

Hexadecimal numbers
addition, 95–96
base, 92
characters, 92
counting with, 93
defined, 92, 116
digits, 94
numeric digits, 92
subtraction, 96–98
2’s complement of, 96

Hexadecimal-to-binary conversion, 93–94
Hexadecimal-to-decimal conversion, 94
High-level languages, 831, 833, 847
High-level programming, 837–838
High-Z state, 786, 807, 867
Hit rate, 679
Hit time, 679
Hold time

defined, 408, 437
flip-flops, 408

Horizontal accuracy, 49
Hysteresis, 417

I
I2C bus, 780–781
Identification register, 595
IEEE Std. 1149.1

boundary scan instructions, 595–596
registers, 595
Test Access Port (TAP), 596–597

 Index A-49

IEEE-488 bus
connection, 772
defined, 771
handshaking signals, 773
listener and talker, 771
management lines, 773
setup, 771
timing diagram for handshake, 772

IEEE-1394, 782–783
Immediate addressing, 818–819
Implementation

asynchronous counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional shift registers, 463–465
comparator, 330
counter, 522
D flip-flops, 403–404
data selector, 349–350
decoder, 334–335
defined, 39
encoder, 343
4-bit decoder, 334–335
4-bit parallel adder, 320–321
4-bit synchronous binary counter, 513–514
full-adder, 316–317
J-K flip-flops, 404–405
multiplexer, 350–351
1-of-10 decoder, 337
1-of-16 decoder, 334–335
parallel in/parallel out shift registers,

460–461
parallel in/serial out shift registers,

458–459
programmable logic software, 592
ring counter, 471
serial in/parallel out shift registers, 455–456
S-R (SET-RESET) latch, 391–392
timing simulation, 39
up/down counter, 517–518

Incrementing, counters, 537
Index register, 815
Indexed addressing, 815, 820–821
Inequality comparison, 329–331
Inherent addressing, 818
Inhibit, 134–135
Inputs

defined, 26, 58
internally open, 170, 171
shorted, 171–172

Instances, 591
Instruction pointer, 815
Instruction register, 595
Instructions

arithmetic, 836
bit manipulation, 836
boundary scan, 595
data transfer, 836
defined, 332
loops and jumps, 837
processor control, 837
strings, 837
subroutines and interrupts, 837
types of, 836–837

In-system programming. See ISP
Integers, 83
Integrated circuit packages

classification, 40
pin numbering, 42
74 series, 163
types of, 40–41

Integrated circuits (ICs)
in applications, 126

CMOS (complementary MOS), 863–868,
880–881

DC supply voltage, 856
defined, 40, 58
E2CMOS, 884–885
ECL (emitter-coupled logic), 881–882
fixed-function, 42
grounding and, 176
loading, 861–863
logic levels, 856–857
NMOS, 883–884
noise immunity, 857–858
noise margin, 859–860
operational characteristics and parameters,

856–863
PMOS, 883
power dissipation, 860–861
propagation delay time, 861
speed-power product (SPP), 861
technologies, 42–43, 855–893
troubleshooting, 170–176
TTL (transistor-transistor logic),

868–881
Intellectual property, 583, 615
Internal buses, 765, 784
Internal carries, 319
Interpreters, 833
Interrupt service routine (ISR),

823–824
Interrupt vector table, 824, 847
Interrupts, 823–825, 847
Intest, 606
Inversion

bar over variables indication, 144
defined, 126
negation indicator, 126
polarity indicator, 127

Inverters
application, 128
CMOS, 864–865, 868
defined, 26, 58, 177
distinctive shape symbols, 126
logic expression, 128
logic symbols, 126
NAND gates as, 272
negation indicator, 126–127
1’s complement circuit using, 128
operation, 127
polarity indicator, 126–127
propagation delay time, 167
rectangular outline symbols, 126
timing diagrams, 127–128
truth table, 127
TTL, 869–870
VHDL, 160

I/O ports
defined, 804
multiplexed, 786–787
processor support, 804–805

ISP (in-system programming)
defined, 39, 156
embedded processor, 159
JTAG (Joint Test Action Group), 159

ISR (interrupt service routine), 823–824

J
J-K flip-flops. See also Flip-flops

in counting, 413
defined, 397, 437
edge-triggered operation, 401
fixed-function device, 404
in frequency division, 411
implementation, 404–405

logic diagram, 401
operation of, 397
PLD (programmable logic device), 404–405
positive edge-triggered, 397–398
synchronous inputs, 401
transition table, 520
transitions, 401
truth table, 398

Johnson counter. See also Shift registers
defined, 465
five-bit, 466, 467
four-bit, 466, 467
timing sequence, 467

JTAG (Joint Test Action Group), 39, 159, 177
Jumps, 837
Junctions, 869

K
Karnaugh maps

cell adjacency, 220–221
cells, 220
converting between POS and SOP with,

235–237
defined, 220, 249
determining minimum expression from,

227–228
“don’t care” conditions, 230–232
Espresso method and, 221–222
4-variable, 220, 221
grouping 1’s, 226–227
POS minimization, 233–237
Quine-McCluskey method and, 221
seven-segment displays, 245
simplification, 219
simplification of POS expressions,

234–235
simplification of SOP expressions, 226–230
SOP minimization, 222–232
in synchronous counter design, 521–522
3-variable, 220

Keyboard encoder circuit
illustrated, 475
operation of, 476
shift register, 475–476

L
L1 cache, 640
L2 cache, 640
LAB (logic block array), 568, 615
Lamp test, 339
Lands, 674
Large-scale integration (LSI), 42
Last in-last out memories. See LIFO memories
Latches

defined, 387, 388, 437
gated D, 393–394
gated S-R, 392–393
for multiplexing data onto buses, 388
S-R (SET-RESET), 388–392

Latency
defined, 682
memory, 677
period, 672–673

LCC (leadless ceramic chip), 41, 42
Leading edge, 20
Leading zero suppression, 339
Least significant digit (LSD), 95
LEs (logic elements), 571
Levels of abstraction, 242–243
LIFO (last in-first out) memories

defined, 667–670, 688
POP operation, 669
PUSH operation, 669

A-50 Index

LIFO (continued)
RAM stack, 668–670
register stacks, 667, 668
top-of-stack, 667

Linearity, DAC, 719
Listener, 771
Literals, 192
Little logic, 163
Loading

CMOS, 861–862
defined, 487
parallel, 458–459, 463
signal, 808, 848
TTL, 862–863

Logic. See also Combinational logic;
Programmable logic

basic form, 25
bipolar, 166
boundary scan, 595–602
burst, 639
circuits, 26
defined, 58
little, 163
negative, 20
registered, 566, 574

Logic analyzers. See also Test/measurement
instruments

analysis and display, 50–51
block diagram, 50
channel count and memory depth, 50
data acquisition, 50
defined, 49
display modes illustration, 51
illustrated, 49
looking for glitches with, 428
probes, 51

Logic circuits
Boolean analysis of, 203–205
Boolean expression for, 203, 267–268
combinational, 262–267
DC supply voltage, 167
fan-out and loading, 168
input and output logic levels, 168
node in, 289
performance characteristics and parameters,

164–169
power dissipation, 167–168
propagation delay time, 166–167
seven-segment displays, 246–247
speed-power product (SPP), 168
troubleshooting, 290
truth table construction for, 203–205
truth tables to, 269–272

Logic diagrams
boundary scan, 597
code selection logic, 482
D flip-flop, 402
decimal-to-binary encoder, 342
equality comparison, 328
full-adder, 316
half-adder, 315
J-K flip-flop, 401
look-ahead carry adder, 327
multiplexer, 349
NAND logic, 276–277
NOR logic, 278–279
ring counter, 467
serial-to-parallel data converter, 472

Logic elements (LEs), 571
Logic expressions

AND gate, 133–134
inverter, 128
NAND gate, 144

NOR gate, 149
OR gate, 139

Logic families
CMOS, 409
HC (high-speed CMOS), 164
LS (low-power schottky), 164, 169
74 series, 164, 409
TTL, 409

Logic function generator, 353–356
Logic functions

AND, 26
arithmetic, 28–29
code conversion, 29
comparison, 27–28
counting, 32
data selection, 30
decoding, 29–30
defined, 25
encoding, 29
levels of abstraction, 242–243
NOT, 26
OR, 26, 27
storage, 30–32
symbols, 26

Logic gates
AND, 26, 129–135
conditions for testing, 170
defined, 26, 58
driving LED load with, 148
effects of internally open input,

170, 171
equivalences, 200
exclusive-NOR, 151–152
exclusive-OR, 149–150
fan-out, 168
fixed-function, 160–169
as fundamental building block, 129
input and output logic levels, 167–168
internal failures of, 170–172
logic symbol representation, 125
LS, 169
NAND, 140–145
NMOS, 884
NOR, 145–149
open input, troubleshooting, 170–171
open-collector, 871–872, 875–877
open-drain, 867
OR, 27, 136–140
PMOS, 883
power dissipation, 167–168
propagation delay time, 166
shorted input or output, 171
tri-state CMOS, 867
troubleshooting, 170–176
universal, 273, 299
VHDL descriptions of, 159–160

Logic levels
defined, 20
exclusive-NOR gate, 151
exclusive-OR gate, 150
input and output, 168

Logic modules
block diagram, 579
configuration, 579
example, 581–582
extended LUT, 580, 581
LUT, 579–581
normal mode, 580
operation modes, 580–581

Logic probes, 53
Logic pulsers, 53
Logic signal source, 51
Logic simplification

with Boolean algebra, 205–209
with “don’t care” conditions, 230–232
gates and, 206
Karnaugh map, 219–223
Karnaugh map, of POS expressions,

234–235
Karnaugh map, of SOP expressions,

226–230
Multisim, 208–209
process control system, 206

Logic symbols
BCD-to-7-segment decoder, 338
comparator with inequality indication, 329
counters, 539–541
decimal-to-binary encoder, 341
defined, 125
EPROM, 653
exclusive-NOR gate, 151
exclusive-OR gate, 150
exclusive-OR logic, 265
full-adder, 315
AND gate, 129
half-adder, 314
HIGH output, 136
inverter, 126
multiplexer, 348, 575
NAND gate, 140
nonretriggerable one-shot, 416
NOR gate, 145
1-of-16 decoder, 334
one-shot, 415
operation of, 136
OR gate, 136
retriggerable one-shot, 417
serial in/serial out shift register, 453
74HC164, 477
74HC194, 477
S-R (SET-RESET) latch, 390
truth table, 137

Look-ahead carry adder
carry generation, 325–326
carry propagation, 325–326
defined, 325, 372
logic diagram, 327
ripple carry adder combination, 327

Look-up table (LUT) CPLD
block diagram, 573
CPLD architecture, 571
row/column interconnects, 573
volatile process technology, 571

Look-up tables (LUTs)
concept illustration, 579
configurations in LM, 581
defined, 579, 615
example, 579–580
organization of, 579

Loops, 837
Low-pass filtering, 699–700
LS (low-power schottky) family,

164, 169
LSB (least significant bit), 69, 71, 116, 332

M
Machine language, 831, 847
Macrocells

combinational mode, 575–576
CPLD, 568, 569, 574–575
defined, 566, 615
illustrated, 575
modes, 574–577
registered logic and, 566
registered mode, 576
SPLD, 566

 Index A-51

Magnetic memories, 32
Magnetic storage

hard disks, 671–673
tape, 673

Magneto-optical disks, 673–674
Magnitude, comparison, 27
Main memory, 677–678, 803, 804, 848
Manchester encoding, 746–747, 789
Mantissa, 83
Mapping. See also Karnaugh maps

directly from truth table, 230, 231
nonstandard SOP expressions, 224–226
standard POS expressions, 233–234
standard SOP expressions, 222–224

Mask ROM, 647–648
Masks, 134, 139
Maximum clock frequency, 408
Mealy state machine

defined, 498
example, 499
illustrated, 499
sequential logic, 498

Mechatronics
defined, 18
example of, 18–19
system block diagram, 18

Medium-scale integration (MSI), 42
Memories

address, 629
banks, 630
basics, 628–633
BIOS, 803–804
block diagrams, 631
cache, 639–640, 803
capacity, 629–630
CCD (charge-coupled device), 670
cells, 396
comparison, 659
content-addressable, 804
defined, 628, 688
first in-first out (FIFO), 666–667, 804
flash, 655–659
key characteristics of, 676
last in-last out (LIFO), 667–670
magnetic, 32
main, 803
multiple-array, 631
nonvolatile, 632
operations, 630–632
optical, 32
processor and, 815–816
RAM (random access memory), 30, 633–646
ranks, 630
read operation, 632
ROM (read-only memory), 30, 646–655
semiconductor, 32
single-array, 631
special types of, 666–670
static, 396
system on chip (SoC), 845–846
troubleshooting, 683–687
volatile, 396
write operation, 630–631

Memory arrays
asynchronous SRAM, 636
defined, 628
2-dimensional, 629

Memory cells, 633
Memory depth, 50
Memory expansion

memory modules, 664–665
word capacity, 663–664
word length, 660–663

Memory hierarchy
auxiliary storage, 678
caches, 677
defined, 677, 688
hard disk, 678
illustrated, 677
main memory, 677–678
performance, 679
registers, 677
relationship of cost, capacity, and access

time, 678
Memory latency, 677
Memory modules

DIMMs (dual in-line memory modules),
664, 665

handling precautions, 665
illustrated, 664
SIMMs (single in-line memory

modules), 664
Metal nitride-oxide silicon (MNOS), 654
MFLOPS, 729, 732
Microcontrollers

in automated systems, 843–844
in automobile systems, 843
basics, 838–839
block diagram, 839
in consumer appliances, 843
defined, 39, 58, 848
embedded, 39
functional units, 839
peripherals, 839–842
in personal handheld systems, 842–843
use of, 838

Microprocessors
addressing modes, 817–820
ALU (arithmetic logic unit), 814
architecture, 812
block diagram, 812
bus request operations, 825
defined, 803, 812, 848
DMA (direct memory access), 826–828
elements of, 812, 814–815
exceptions, 823–825
fetch/execute cycle, 813
instruction decoder and timing/control unit,

814
interrupts, 823–825
memory and, 815–816
multicore, 803
parity checks, 361
pipelining, 813–814
polling, 823
register set, 814–815
shift register emulation, 469
special operations, 823–828

Minimization
defined, 226, 249
Espresso, 222
Karnaugh map POS, 233–237
Karnaugh map SOP, 222

Minterm, 237
Minuend, 86
MIPS, 729, 732
Miss, 679
MMACS, 729, 732
MMU (memory management units), 830
Mnemonics, 192, 831
MOD10, 504
Mode dependency, 540
Modulation

analog signals with digital data, 750–753
ASK (amplitude-shift keying), 750, 751
constellation map representation, 752–753

defined, 750, 789
digital signals with analog data, 753–759
FSK (frequency-shift keying), 750
M-QAM, 752
PAM (pulse amplitude modulation), 754
PCM (pulse code modulation), 758–759
PPM (pulse position modulation), 756–758
PSK (phase-shift keying), 750–751
PWM (pulse width modulation), 754–756
QAM (quadrature amplitude modulation),

751–752
Modulo-2 addition, 111, 149
Modulo-2 operations, 111–112
Modulus

of counters, 504
defined, 550

Monostable multivibrators, 387, 414, 437
Monotonic, 719
Moore state machine

defined, 498
example of, 498–499
illustrated, 499
sequential logic, 498

MOSFETs (metal-oxide semiconductor field-
effect transistors), 42–43, 864

M-QAM, 752
MSB (most significant bit), 69, 72, 116, 329
Multicore processors, 803
Multimode light propagation, 742
Multiplexed buses, 784
Multiplexed I/Os, 786–787
Multiplexers (MUX)

applications, 352–356
defined, 30, 347, 372
eight-input, 351
fixed-function device, 350, 351
implementation, 350–351
logic diagram, 349
logic function generator, 353–356
logic symbol, 348, 575
PLD (programmable logic device), 350, 351
in process control system, 33
seven-segment display, 352–353

Multiplexing
defined, 759
FDM (frequency-division multiplexing),

763–764
TDM (time-division multiplexing), 760–763
types of, 760
use of, 759–760

Multiplicand, 88, 89
Multiplication

associative law of, 194–195
binary, 76
Boolean, 134, 193
commutative law of, 194
function, 29
logical, 129
product, 88
signed numbers, 88–90
times, 88

Multiplier, 88, 89
Multiprocessing, 830
Multisim

logic simplification, 208–209
security system, 486
seven-segment display simulation, 248
traffic signal controller, 371, 436
valve control logic, 298–299

Multitasking
defined, 806, 829, 848
non-preemptive, 829
preemptive, 829

A-52 Index

Multitenancy, 683
Multivibrators

astable, 423–427
bistable, 395
defined, 387, 388
monostable, 414

N
NAND gates

Boolean expression, 144
CMOS, 865–866
combinational logic using, 275–277
combinations of, 273
defined, 140, 141, 177
equivalent operations of, 142
as inverters, 272
logic expressions for, 144
logic symbols, 140
LOW output, 141
LS family, 169
negative-OR equivalent operation of, 142–144
operation of, 141
operation with waveform inputs, 141–142
output, 280
quad 2-input, 165–166
74 series, 162
timing diagram, 142, 144
troubleshooting for open input, 171
truth table, 141
TTL, 870–871
universal application of, 273
universal property of, 272–274
VHDL, 160

NAND logic
bubble representation, 275–276
diagram using dual symbols, 276–277
examples, 277
AND-OR equivalent, 275
output expression, 275

NAND/NAND, 210–211
Negation indicator, 126
Negative logic, 20
Negative-AND

circuit illustration, 298
defined, 274, 277, 299
equivalent operation of NOR gate,

147–149, 277
Negative-OR

defined, 274, 299
equivalent operation of NAND gate, 142–144,

275
logic diagram, 275

Netlist, 591–592
Next-state tables, 520
Nibbles, 319, 628
NMOS, 883–884
Nodes, 289, 299
Noise immunity, 857–858, 886
Noise margin, 859–860, 882, 886
Nondestructive read, 632, 816
Nonmonotonicity, 720
Non-preemptive multitasking, 829
Nonretriggerable one-shot. See also One-shots

action illustration, 415
defined, 415
logic symbols, 416
pulse width, setting, 416
Schmitt-trigger symbol, 417

NOR gates
Boolean expression, 149
CMOS, 866
combinational logic using, 277–279
combinations of, 273–274

defined, 145, 178
logic expressions for, 149
logic symbols, 145
LOW output, 146–147
negative-AND equivalent operation of,

147–149
operation of, 145–146
operation with waveform inputs, 146–147
output, 280
74 series, 162
timing diagram, 146
truth table, 146
universal application of, 274
universal property of, 272–274

NOR logic
defined, 277–278
diagram using dual symbols, 278–279
example, 279
output expression, 278

NOT function, 26, 58
NRZ (nonreturn to zero), 746, 789
Numbers, 79–91

BCD, 100–103
binary, 67–70
decimal, 66–67
floating-point, 83–84
hexadecimal, 92–98
octal, 98–100
signed, 79–91

Nyquist frequency, 699, 732

O
Object programs, 832
Octal numbers

base, 98
conversions, 98–100
defined, 98, 116

Octal-to-binary conversion, 99
Octal-to-decimal conversion, 98
Odd parity, 110, 359
Offset error, 721
1-of-10 decoder

decoding functions, 336
defined, 336
example, 337–338
implementation, 337

1-of-16 decoder
decoding functions, 333
defined, 333
example, 335–336
fixed-function device, 334
implementation, 334–335
logic symbol, 334
PLD (programmable logic device), 335
truth table, 333

1’s complement
decimal value, 81
defined, 77
inverters, 128
negative numbers and, 80
signed numbers, 80

One-shots
application, 418–419
circuit illustration, 414
defined, 387, 414, 437
555 timer as, 419–421
logic symbols, 415
nonretriggerable, 415, 416–417
pulse produced by, 414
retriggerable, 415, 417–418
sequential timing circuit, 419
stable display, 422
trigger input, 414

triggering from pulse generator, 422
with VHDL, 422

On-off keying (OOK), 751
Op-amp (operational amplifier), 705
Op-codes, 814, 831, 848
Open-collector buffer/drivers, 877–879
Open-collector gates

defined, 872, 886
illustrated, 871
symbol, 872
for wired-AND operation, 875–877

Open-drain gates, 867
Operands, 317, 814, 818, 848
Operating system (OS)

defined, 805, 829, 848
MMU (memory management units), 830
processes, 829
supervisor and user states, 830
system services, 830–831

Optical fiber
cable, 741–743
connector types, 743
data communications link, 742–743
defined, 741, 789
illustrated, 741
light propagation, 742

Optical jukebox, 678
Optical memories, 32
Optical storage

Blu-ray, 676
CD-R, 675
CD-ROM, 674–675
CD-RW, 675–676
DVD-ROM, 676
WORM, 675

OR function
Boolean addition as, 139
defined, 27, 58
illustrated, 27

OR gates
application, 139–140
Boolean expressions, 139
defined, 27, 136, 178
intrusion detection system using, 140
logic expressions for, 139
logic symbols, 136
operation with waveform inputs, 137–139
output, 280
74 series, 162
timing diagram, 137
VHDL, 160

Oscilloscopes. See also Test/measurement
instruments

analog, 43
bandwidth, 48
block diagram, 44
coupling signals into, 46–47
defined, 43
dual-trace analog, 544
front panel illustration, 45
horizontal accuracy, 49
horizontal controls, 45
illustrated, 44
record length, 48
resolution, 49
sampling rate, 48
specifications, 48–49
trigger controls, 45–46
untriggered and triggered waveform

comparison, 46
vertical controls, 45
vertical sensitivity, 49
voltage probe, 46

 Index A-53

OTP (one-time programmable), 154, 155, 157
Output enable access time, 637
Outputs

defined, 26, 58
open, troubleshooting, 170–171
shorted, 171–172

Overflow, 86

P
Packets, 746
Pads, 748
PAL (programmable array logic). See also SPLDs

(simple programmable logic devices)
defined, 35, 562
general block diagram, 565–566
macrocells, 566
notation for diagrams, 564
AND/OR structure, 562
programmable interconnection lines, 564
SOP expression implementation, 563

PAM (pulse amplitude modulation), 754, 789
Parallel binary adders

application, 322–323
defined, 317
4-bit, 319–322
3-bit, 318–319
2-bit, 318
voting system application, 322–323

Parallel buses
defined, 765
IEEE-488, 771–773
PCI (peripheral component interconnect), 769
PCI-Express, 770–771
PCI-X, 769
SCSI, 774
serial bus comparison, 765
shared, 770

Parallel data
defined, 537
storage, 410
transfer, 24, 58
transmission, 745–746

Parallel expanders, 571, 572
Parallel in/parallel out shift registers

defined, 460
fixed-function device, 460–461
illustrated, 460
implementation, 460–461
PLD (programmable logic device), 461

Parallel in/serial out shift registers
defined, 456
example, 457–458
fixed-function device, 458
illustrated, 457
implementation, 458–459
PLD (programmable logic device), 458–459

Parallel loading, 463
Parallel-to-serial conversion

counters in, 537–539
logic symbols, 538
shift registers and, 474
timing example, 538

Parity
checks, 361
defined, 110, 116
for error detection, 110
even, 359
logic, 359
odd, 110, 359

Parity bits, 110–111, 358, 359, 372
Parity checker, 359
Parity generator, 360
Partial decoding, 504

Partial products, 88–89
PCI (peripheral component interconnect) bus,

769, 770
PCI-Express bus, 770–771
PCI-X bus, 769
PCM (pulse code modulation), 758–759
PDM (pulse duration modulation). See PWM

(pulse width modulation)
Period, 21
Periodic pulse waveform, 21
Peripherals. See also ADCs (analog-to-digital

converters); DACs (digital-to-analog
converters)

communication controllers, 840
configuring, 841–842
external memory controllers, 841
general-purpose I/O (GPIO), 840
microcontroller, 839–841
pulse width modulators, 841
quadrature encoders, 840–841
timers, 840

Personal handheld systems, 842–843
Phase splitters, 869
PIA (programmable interconnect array), 568
Pin numbering, 42
Pins, 591
Pipeline operation, 729–730, 732
Pipelining

defined, 332, 813, 848
illustrated, 813
in microprocessors, 813–814

Pits, 674
PLA (programmable logic array), 572, 574
Place and route, 39
Platform FPGAs, 583
PLCC (plastic-leaded chip carrier), 41, 42
PLDs (programmable logic devices)

asynchronous binary counter, 506–507
BCD-to-7-segment decoder, 339
BCD-to-decimal decoder, 337
bidirectional universal shift register, 464–465
D flip-flop, 404
data selector/multiplexer, 350
decimal-to-binary encoder, 343
defined, 34, 153
design entry, 157–158
eight-input data selector/multiplexer, 351
4-bit magnitude comparator, 330
4-bit parallel adder, 320–321
4-bit synchronous binary counter, 514
gated D latch, 394
graphic (schematic entry), 158
J-K flip-flop, 404–405
logic description, 561
for memory address decoding, 156
microcontroller versus, 39
1-of-16, 335
OTP, 154, 155
parallel load shift register, 458–459
parity generator/checker, 360
programmable process technologies, 154–157
programming, 157
programming setup, 37, 158
ring counter, 471–472
serial in/parallel out shift register, 456
S-R (SET-RESET) latch, 392
text entry, 158
up/down counter, 518

PMOS, 883
Polarity indicator, 127
Polling, 823, 824
Pop operation, 669
Ports, 591

POS. See Product-of-sums
Power dissipation

average, 860
bipolar gates, 167
CMOS gates, 167
defined, 167, 408, 437, 886
flip-flops, 408–409

PPM (pulse position modulation)
defined, 756
example with timing, 756
method of generating, 756
signal through differentiator, 757
system block diagram, 757

Preemptive multitasking, 829
Preset, 402, 437
Priority encoder, 342, 372
Probes

compensation, 46–47
compensation conditions, 47
logic analyzer, 51
voltage, 46

Process control system, 32–33
Processes

communication and interaction, 830–831
control of processor, 830
defined, 829
multiple, 829–830

Processors. See Microprocessors
Product terms

binary values of, 215
converting to standard SOP, 211–212
defined, 193, 249
numerical expansion of, 224–225
standard, binary representation of, 212–213

Product-of-sums (POS). See also Boolean
expressions

conversion with Karnaugh map, 235–237
converting standard SOP to, 215–216
converting to truth table format, 217–218
defined, 213, 249
form, 213
implementation of, 213
karnaugh map simplification of, 234–235
standard form, 213–215
sum terms, 214–215

Products
defined, 88
partial, 88–89
sign of, 89

Program counter, 815
Programmable interrupt controller (PIC), 824
Programmable logic, 561–626

AND array and, 153–154
boundary scan, 595–602
defined, 34, 58
design flow block diagram, 38
hierarchy, 34
troubleshooting, 602–607

Programmable logic array (PLA), 572, 574
Programmable logic devices. See PLDs

(programmable logic devices)
Programmable logic software, 585–595

design entry, 587–589
device programming, 594
functional simulation, 589–591
implementation, 592
synthesis, 591–592
timing simulation, 592–594

Programmable process technologies
antifuse, 154–155, 177
EEPROM, 156
EPROM, 155–156
flash, 156, 177

A-54 Index

Programmable (continued)
fuse, 154, 177
SRAM, 156–157

Programmable ROMs (PROMs)
array, 652
defined, 647, 652, 688
fuse technology, 652–653

Programming
high-level, 837–838
levels of languages, 831
operation, 656

Programming process
design entry, 38
download, 39
functional simulation, 38
implementation, 39
overview, 37
synthesis, 38
timing simulation, 39

Programs
assembly language, 833–836
control, 267
conversion to machine language, 832
defined, 803, 814, 848
driver, 267
object, 832
source, 832
VHDL components in, 284

Propagation delay time
asynchronous counters, 502–504
defined, 166, 178, 407, 437, 886
flip-flops, 407
inverter, 167
for logic gates, 861

Protocols, 682, 767–768, 788
PSK (phase-shift keying), 750–751
Pull-up resistors, 344, 867, 886
Pulse oscillators

defined, 423
in timing waveforms, 387

Pulse trains, 21
Pulse waveform

combinational logic and, 279–282
inputs, 279–280
operation, 279–282

Pulse width modulators, 841
Pulse widths

defined, 21
flip-flops, 408
nonretriggerable one-shot, setting, 416

Pulses
defined, 20, 58
fall time, 21
ideal, 20
leading edge, 20
nonideal, 21
rise time, 21
trailing edge, 20

Push operation, 669
PWM (pulse width modulation)

basic method, 755
defined, 754
example, 755–756
illustrated, 755

Q
QAM (quadrature amplitude modulation),

751–752
QIC tape, 673
Quad 2-input NAND gate, 165–166
Quadrature encoders, 840–841
Qualifying symbol, 539

Quantization
defined, 701, 732
four levels, 702, 703
sixteen levels, 703, 704
two-bit, 702

Queues, 804
Quine-McCluskey method

applying, 237
defined, 221, 237
minterm, 237–238

Quotients, 90

R
R/2R ladder DAC

analysis illustration, 718
analysis of, 717–719
defined, 717
illustrated, 717

RAM stack
defined, 668
depth, 670
POP operation, 669
PUSH operation, 669

RAMs (random access memories). See also
DRAMs (dynamic RAMs); SRAMs (static
RAMs)

checkerboard pattern test, 685–687
defined, 632, 633, 688
family, 633, 634
flowchart for checkerboard test, 686
testing, 685–687
types of, 633
as volatile memory, 632

Range of signed integer numbers, 82–83
Ranks, 630
Read cycle access time, 637
Read operation

asynchronous SRAM, 636–637
defined, 632, 688, 815
DRAM, 642
flash memory, 656
FPM DRAM, 644, 645
illustrated, 632, 816
nondestructive, 632, 816
processor and, 815–816

Real numbers. See Floating-point numbers
Reconstruction filter, 722
Record length, 48
Recycle, 498, 501, 550
Refresh

burst, 644
cycles, 644–645
distributed, 645
operations, 645

Refreshing, 633
Registered logic, 566, 574, 616
Registered mode, 563, 576
Registers. See also Shift registers

address, 815
boundary scan, 595
bypass, 595
clearing, 451
control, 841
data, 842
defined, 31, 450, 487
flag, 815
identification, 595
index, 815
instruction, 595
in memory hierarchy, 677
in process control system, 32, 33
program counter, 815

shift, 31
stack pointer, 815
status, 841–842
storage capacity of, 450
successive-approximation (SAR), 709
top-of-stack, 667

Relative addressing, 821–822
Remainders, in repeated division-by-2 method, 71
Removable hard disks, 673
Repeated division-by-2 method, 71–72
Repeated multiplication-by-2 method, 73
Replacement, troubleshooting method, 55
Reset, 824–825
RESET state, 388, 437
Resolution

ADC, 704
DAC, 719
defined, 49
flash ADC, 705

Retriggerable one-shot. See also One-shots
action illustration, 415
defined, 415
examples, 417–418
logic symbol, 417

Return from interrupt (RTI), 824
Reverse-biased, 869
Ring counter

defined, 467
example, 468–469
fixed-function device, 471
implementation, 471
logic diagram, 467
PLD (programmable logic device), 471–472
sequence, 468

Ripple carry adder
defined, 319, 324, 372
illustrated, 324
look-ahead carry adder combination, 327
total delay, 325

Ripple counters. See Asynchronous counters
Rise time, 21
ROM (read-only memory)

access time, 650–651
array illustration, 648
cells, 647
checksum method, 684–685
contents check, 684
defined, 632, 646, 688
EEPROM, 156, 177, 647, 654
EPROM, 155–156, 647, 653–654
family, 646
flash versus, 657
flowchart for contents check, 684
internal organization, 650, 651
mask, 647–648
as nonvolatile memory, 632
PROM, 647, 652–654
representation illustration, 649
testing, 683–685
UV EPROM, 647, 654

RS-232 bus, 778–779, 789
RS-422 bus, 779
RS-423 bus, 779–780
RS-485 bus, 780
RZ (return to zero), 746, 789

S
Sample-and-hold operation, 702, 703
Sampled-value representations, 17
Sampling

application, 700
bouncing ball analogy, 699

 Index A-55

defined, 698, 732
process illustration, 698
theorem, 699

Sampling rate, 48
SAS (Serial Attached SCSI), 783
Saturation, 864
Scalability, 683
Schematic entry, 587, 616
Schmitt triggers

astable multivibrator using, 423
defined, 809
symbol, 417

Schottky TTL, 872–873
SCSI, 774, 789
Seat belt alarm system application, 135
Security system

block diagram, 480
block diagram as programming

model, 483
code-selection logic, 482
components, 484
logic diagram of code-selection

logic, 482
operation of, 480
overview, 480
security code logic, 481–482
simulation, 486
VHDL, 483–486
VHDL program code, 485–486

Seek time, 672
Semiconductor memories, 32
Sequential logic

Mealy state machine, 498
Moore state machine, 498
optimized, schematic for, 593
schematic entry, 588
traffic signal controller, 432–434, 588, 603

Serial Attached SCSI (SAS), 783
Serial buses, 765
Serial data

defined, 537
format, 473
transmission, 745–746

Serial data transfer
defined, 23, 58
illustrated, 24

Serial in/parallel out shift registers
defined, 454
example, 454
fixed-function device, 455
illustrated, 454
implementation, 455–456
PLD (programmable logic device), 456

Serial in/serial out shift registers
defined, 451
example, 452–453
illustrated, 451
logic symbol, 453
shifting 4-bit code in, 452

Serial-to-parallel data converter
input test pattern, 478, 479
logic diagram, 472
operation of, 472–473
shift registers, 472–474
test setup, 479
timing diagram, 473

Serial-to-peripheral interface (SPI) bus, 780
Servers, 680, 681, 689
SET state, 389, 437
Settling time, DAC, 719
Set-up time

defined, 407, 437
flip-flops, 407–408

Seven-segment displays
block diagram, 245
describing logic with VHDL, 247–248
display logic, 245
expressions for segment logic, 246
function of, 244
illustrated, 244
Karnaugh maps, 245
logic circuits, 246–247
multiplexer, 352–353
simulation, 248
types of, 244
use of, 244

74 series
74AHC74 family, 409
74F74 family, 409
74HC42 decoder, 337
74HC47 decoder/driver, 339
74HC74 flip-flop, 403
74HC74A family, 409
74HC75 latch, 394
74HC85/74LS85 comparator, 330
74HC93 asynchronous binary counter,

506–507
74HC112 flip-flop, 404, 405
74HC147 encoder, 343
74HC151 data selector/multiplexer, 351
74HC153 data selector/multiplexer, 350
74HC154 decoder, 334
74HC163 counter, 513–514
74HC163 synchronous binary counter,

539–540
74HC164 shift register, 455
74HC165 shift register, 458
74HC190 up/down counter, 517–518
74HC194 shift register, 463–464
74HC195 shift register, 460–461, 471
74HC279A latch, 391
74HC280 generator/checker, 359–360
74HC283/74LS283 parallel adder, 320
74LS74A family, 409
74LS122 retriggerable one-shot, 417, 419
74121 nonretriggerable one-shot, 416
defined, 161
AND gate, 161–162
IC packages, 163
logic circuit families, 164
logic gate functions, 161–163
NAND gate, 162
NOR gate, 162
OR gate, 162
XOR gate, 163

Shannon, Claude, 191
Shared bus, 348
Shared expanders, 568–571
Shift registers

applications, 469–476
bidirectional, 462–465
counters, 465–469
data movement in, 450
defined, 449, 450
flip-flops, 450
input test pattern, 478, 479
Johnson counter, 465–467
keyboard encoder application, 475–476
logic symbols with dependency notation,

476–478
operations, 450–451
parallel, 31
parallel in/parallel out, 460–462
parallel in/serial out, 456–459
ring counter, 467–469
sample test pattern, 478

serial, 31
serial in/parallel out, 454–456
serial in/serial out, 451–453
serial-to-parallel data converter application,

472–474
shift capability, 450
stage, 450, 487
storage capacity, 450
time delay application, 469–470
troubleshooting, 478–479
types of, 451–462
UART application, 474–475
universal, 463–465

Sigma-delta ADC
conversion illustration, 712
conversion process, 713
defined, 711–712
functional block diagram, 712

Sign bit, 79
Signal generators, 51–52
Signal loading, 808, 848
Signal substitution, 56
Signal tracing

defined, 299
example steps, 292–293
illustrated, 292
method, 55–56
procedure, 291–292
in troubleshooting combinational logic,

290–293
Signals, VHDL, 285, 299
Signed numbers

addition, 85–86
arithmetic operations with, 85–91
decimal value of, 80–82
defined, 79
division, 90–91
floating-point, 83–84
multiplication, 88–90
1’s complement form, 80
range of, 82–83
sign-magnitude form, 79
subtraction, 86–87
2’s complement form, 80

Sign-magnitude
decimal value, 80
form, 79
negative numbers and, 79

SIMMs (single in-line memory
modules), 664

Simple programmable logic device. See SPLD
Simplex mode, 749, 789
Single-ended buses, 768–769
Single-mode light propagation, 742
Single-precision floating-point binary numbers,

83–84
Small-scale integration (SSI), 42
SMT (surface-mount technology), 41
Soft cores, 583
Software

application, 806
defined, 805, 828, 848
programmable logic, 585–595
reset, 825
system, 805–806

Software development tools, 287–288
SOIC (small-outline integrated circuit), 41, 163
SOP. See Sum-of-products
Source operand, 317
Source programs, 832
Spatial locality, 679
Speed-power product (SPP), 168, 861
SPI (serial-to-peripheral interface) bus, 780

A-56 Index

SPLDs (simple programmable logic devices)
defined, 35, 58
design flow diagram, 586
essential elements for programming, 586
GAL (generic array logic), 562, 563
general block diagram, 565
illustrated, 35
macrocells, 566
PAL (programmable array logic), 562–563
simplified notation for diagrams, 564
types of, 562

SPP (speed-power product), 168, 861
S-R (SET-RESET) latch

application, 391
as contact bounce eliminator, 391
defined, 388
implementation, 391–392
logic symbols, 390
modes, 389
outputs, 389
RESET state, 388
SET state, 389
truth table, 390
versions of, 388

SRAM-based FPGAs, 582
SRAMs (static RAMs). See also RAMs (random

access memories)
asynchronous, 633, 634–638
in cache memories, 639–640
defined, 156, 178, 633, 688
flash versus, 658
flip-flops, 396
memory cell, 633–634
static memory cell array, 634
synchronous, 633, 638
technology, 156–157
types of, 633

SSOP (shrink small-outline package), 41, 42
Stack pointer, 815
Stages, 450, 487
Standard POS expressions. See also Product-of-

sums (POS)
converting sum term to, 214
defined, 214
determining from truth table, 218–219
form, 213–214
mapping, 233–234

Standard SOP expressions. See also
Sum-of-products (SOP)

binary representation of product term, 212–213
converting product terms to, 211–212
defined, 211
determining from truth table, 218–219
mapping, 222–224
seven-segment displays, 246

State diagrams
defined, 519–520, 550
elevator controller, 546
illustrated, 520

State machines
counters as, 498–499
defined, 498, 550
Mealy, 498, 499
Moore, 498–499

Static memory cells
arrays, 634
defined, 633
as volatile memory, 396

Statistical TDM, 762–763
Status registers, 841–842
Storage, 627–696. See also Memories

auxiliary, 678
cloud, 680–683

function, 30–32
long-term, 31
magnetic, 671–673
magneto-optical, 673–674
media, 670–676
short-term, 30
tertiary, 678
troubleshooting, 683–687

Strings, 837
Strobing, 364, 533, 534
Structural approach, 243
Subroutines, 837
Subtraction

binary, 75–76
difference, 86
function, 28
hexadecimal, 96–98
signed numbers, 88–90

Subtrahend, 86
Successive-approximation ADC, 709–710
Sum, 85
Sum terms

converting to standard POS, 214
defined, 192, 249
standard, binary representation of, 214–215

Sum-of-products (SOP). See also Boolean
expressions; Standard SOP expressions

converting general expression to, 211
converting to standard POS, 215–216
converting to truth table format, 216–217
converting with Karnaugh map, 235–237
defined, 210, 249
form, 210–211
Karnaugh map simplification of, 226–230
mapping, 224–226
NAND/NAND implementation of,

210–211
numerical expansion of product term,

224–225
AND/OR implementation, 210, 263
PAL implementation, 563
standard form, 211–213

Sum-of-weights method
defined, 71
example, 71
fractions, 73

Synchronous bistable devices, 395
Synchronous buses, 768, 810
Synchronous cascading, 528
Synchronous counter design

counter implementation, 522
examples, 523–526
flip-flop transition table, 520–521
Karnaugh maps, 521–522
logic expression for flip-flop

inputs, 522
next-state table, 520
state diagram, 519–520
steps for designing, 519–522
summary of steps, 523

Synchronous counters. See also Counters
cascaded, 528
clock input, 508
decade, 511–513
defined, 497, 507, 550
design of, 519–527
4-bit binary, 510–511, 513–514
3-bit binary, 509–510
2-bit binary, 508–509
up/down, 515–519

Synchronous DRAM (SDRAM), 633, 646
Synchronous frames, 747–748
Synchronous inputs, 401, 437

Synchronous SRAMs. See also SRAMs
(static RAMs)

block diagram, 638
burst feature, 639
concept, 638
defined, 633, 638

Synchronous TDM, 761–762
Synchronous transmission

defined, 746
synchronization methods, 746–747
synchronous frames, 747–748

Synthesis
defined, 38
logic optimization during, 592
netlist, 591–592
programmable logic software, 591–592

System bus, 805, 848
System on chip (SoC)

block diagram, 846
CPU (central processing unit), 845
defined, 844, 845, 848
elements of, 844, 845
memories, 845–846
package illustration, 845

System software, 805–806
System timer, 825
System timing, 810–811

T
T flip-flops, 401
Tabulation method, 221
Tag address comparator, 329
Talker, 771
Tank control

inlet valve control, 295–296
outlet valve control, 296–297
overview, 294
simulation of logic, 298–299
system operation and analysis, 294–298
tank illustration, 295
temperature control, 297–298
VHDL code for logic, 298

TAP (Test Access Port), 596–597
Tape, magnetic, 673
Tape library, 678
Target devices

defined, 178, 585
finite capacity, 242

TDM (time-division multiplexing)
bit-interleaved, 760–761
byte-interleaved, 761
concept illustration, 760
defined, 30, 760
illustrated, 760
statistical, 762–763
synchronous, 761–762

Temporal locality, 679
Terminal count, 513, 550
Tertiary storage, 678
Test Access Port (TAP), 596–597
Test bench

defined, 590
functional simulation approach,

590–591
Test/measurement instruments

DC power supply, 52–53
digital multimeter (DMM), 52
logic analyzer, 49–51
logic probe and logic pulser, 53
oscilloscope, 43–49
signal generator, 51–52

Text entry, 158, 587, 616
3-bit asynchronous binary counter, 501–502

 Index A-57

3-bit synchronous binary counter
illustrated, 509
operation of, 510
state sequence, 510
summary of analysis, 510
timing diagram, 509

3-variable Karnaugh map, 220
Throughput, 704, 705
Time delay application, 469–470
Time division multiplexing. See TDM
Time stamp counter (TSC), 510, 528
Time-delay devices, shift registers as, 469–470
Timer circuits, 431–432, 437
Timers, 419, 437, 840
Times, 88
Timing diagrams

asynchronous counters, 500–501
BCD decade counter, 512
data transmission system with error detection,

361–362
defined, 23, 58, 127, 131
EPROM, 654
example, 23
exclusive-NOR gate, 151
4-bit synchronous binary counter, 511
AND gate, 131
inverter, 127–128
NAND gate, 142, 144
NOR gate, 146
OR gate, 137
read cycle, 637
serial-to-parallel data converter, 473
3-bit synchronous binary counter, 509
two equivalent operations of, 147
2-bit synchronous binary counter, 509
write cycle, 637

Timing section, 423
Timing simulation

defined, 592, 616
functional simulation and, 593
glitches and, 593
results, 594

TMS320C6000 series DSP, 728–730
Toggle, 401, 437
Tone duration, 538
Top-of-stack registers, 667
Totem-pole arrangement, 869, 886
Totem-pole outputs, 877
Traffic signal controller

block diagram, 366–367, 429, 587
combinational logic, 367–369
complete, 435–436
controller programming in VHDL, 430–432
counter, 432–433
frequency divider, 430–431
input logic, 434
light output logic, 368–369
overview, 365
programming model for, 430
sequential logic, 432–434, 588, 603
sequential logic with VHDL, 434–435
simulation, 371, 436
state decoder, 367–368
state descriptions, 365–366
state diagram, 365–366
timer circuits, 431–432
timing circuits, 429–430
timing requirements, 365
trigger logic, 369
variable definition, 365
VHDL descriptions, 370
VHDL program code, 436

Trailing edge, 20

Trailing zero suppression, 339
Transistors, 869
Traps, 830
Triggering, 544
Triggers, 414
Tri-state

CMOS gates, 867
defined, 867, 886
devices, 807
TTL gates, 872

Tri-state buffers
defined, 785, 789
interface illustration, 785
operation, 786
output states, 635–636
symbols, 786

Troubleshooting
with boundary scan testing, 605–607
cascade counters, 541–542
checking the obvious, 54
combinational logic, 288–293
combinational logic functions, 362–364
counters, 541–544
defined, 54, 58, 170
external opens and shorts, 172–175
flip-flops, 427–428
half-splitting method, 55
hardware methods, 54–56
internal failures of IC logic gates, 170–172
logic circuits, 290
logic gates, 170–176
memories, 683–687
open input, 170–171
programmable logic, 602–607
replacement, 55
reproducing the symptoms, 55
shift registers, 478–479
shorted input or output, 171–172
signal substitution and injection, 55–56
signal-tracing method, 55–56
with waveform simulation, 603–604

Truncated sequence
cascade counters with, 530, 541–542
defined, 504

Truth tables
Boolean expressions and, 216–219
constructing for logic circuits, 203–205
converting POS expressions to, 217–218
converting SOP expressions to, 216–217
D flip-flop, 396
defined, 127, 178
exclusive-NOR gate, 151
exclusive-OR gate, 150
exclusive-OR logic, 265
4-bit parallel adder, 319–320
full-adder, 315
functional, 319
AND gate, 130
half-adder, 314
inverter, 127
J-K flip-flops, 398
to logic circuits, 269–272
mapping directly from, 230
modulo-2 operation, 111
NAND gate, 141
NOR gate, 146
1-of-16 decoder, 333
OR gate, 137
AND-OR Invert logic, 264
AND-OR logic, 262
S-R latch, 390
standard expression determination from,

218–219

TTL (transistor-transistor logic)
BJT, 869
CMOS performance comparison,

880–881
connection of totem-pole outputs, 877
current sinking, 873–874
current sourcing, 873–874
defined, 161, 868, 886
ECL performance comparison, 882
inputs to unused output, 880
inputs to Vcc or ground, 879–880
inverter, 869–870
loading, 862–863
logic levels, 857
NAND gate, 870–871
open-collector buffer/drivers, 877–879
open-collector gates, 871–872,

875–877
power dissipation, 861
practical considerations in use of,

873–880
Schottky, 872–873
standard-family gates, 166
tied-together inputs, 879
tri-state gates, 872
unused inputs, 879–880
wired-AND operation, 675–677

Twisted pair cable, 741
2-bit asynchronous binary counter, 500–501
2-bit parallel binary adders, 318
2-bit synchronous binary counter

illustrated, 508
operation of, 508–509
timing details, 508
timing diagram, 509

Two-phase clock generator, 427, 428
2’s complement

decimal value, 82
defined, 78–79
of hexadecimal number, 96
for negative integer numbers, 80
signed numbers, 80

U
UART (Universal Asynchronous Receiver

Transmitter)
block diagram, 474
defined, 474
interface, 474
parallel data, 475
serial data, 475

UCS (universal character set), 109
Ultra-large-scale integration (ULSI), 42
Unicode, 109
Unit loads, 168, 178, 861, 886
Univariate polynomial, 111
Universal Asynchronous Receiver Transmitter.

See UART
Universal character set (UCS), 109
Universal gates, 273, 299
Universal serial bus. See USB
Universal shift registers, 463–465
Unrecognized instruction, 825
Up/down counters. See also Synchronous

counters
defined, 515
example, 516–517
fixed-function device, 517–518
illustrated, 516
implementation, 517–518
PLD (programmable logic device), 518
reversal, 515
sequence, 515

A-58 Index

USB (universal serial bus)
applications example, 778
cable and connectors, 776
cable length, 775
data format, 776–777
defined, 23, 775, 789
Firewire versus, 783
packets, 777
standard, 775
symbol, 775
USB. 3.0 standard, 777–778

USB flash drives, 659
UTP (unshielded twisted pair) cable, 741
UV EPROMs, 647, 654

V
Variables

ANDed, 196, 197
associative laws for, 194–195
bar over, 144
commutative laws for, 194
complement of, 128
defined, 128, 192, 249
in DeMorgan’s theorems, 200
distributive law for, 195
double complement of, 197
ORed, 195–196

Verilog, 38
Vertical mode triggering, 544
Vertical sensitivity, 49
Very-large-scale integration (VLSI), 42
VHDL

Boolean algebra in, 240–242
Boolean expressions with, 240–243
code, inputting, 287
code complexity reduction, 241–242
combinational logic with, 283–288
defined, 38, 160, 178
development software packages, 240
elevator controller program code, 608–613
example, 286–287
hardware implementation comparison, 283

“if falling edge then” statement, 404, 405
instantiation statements, 285–286
levels of abstraction, 242–243
logic gate descriptions, 159–160
one-shot with, 422
program, 285
seven-segment display logic with, 247–248
signals, 285, 299
software development tools and,

287–288
structural approach to programming, 283
tank control logic code, 298
traffic signal controller, 370
traffic signal controller programming,

430–432, 436
traffic signal controller sequential logic,

434–435
VHDL components

defined, 283, 299
instantiations, 285–286
keyword, 284
predefined programs used as, 284
storage, 283
using in programs, 284

Volatile memory, 396

W
Wait state, 810, 848
Wait-state generator, 810–811
Waveform editor, 38, 288
Waveforms

binary information, 22–23
characteristics, 21–22
clock, 22–23
defined, 20
duty cycle, 22
example of, 21
frequency of, 21
oscilloscope, 46
periodic, 21
pulses, 20–21
simulation, troubleshooting with, 603–605

strobe, 364
timing, comparing, 294
timing diagrams, 23

Weights
binary number representation,

345–346
binary numbers, 69–70
in binary-to-decimal conversion, 70
digit, 66

Wire connections, 740
Wired-AND operation, 675–677
Wireless transmission

defined, 743
electromagnetic spectrum

and, 744
signal propagation, 744

Word capacity, 663–664
Word length

examples, 660–663
expansion, 660–663
illustrated, 660, 662

Words, 628, 689
WORM, 675
Write cycle access time, 637
Write operation

asynchronous SRAM, 637
defined, 630, 689, 816
DRAM, 642
illustrated, 631, 816
processor and, 816

X
XNOR. See Exclusive-NOR gates
XOR. See Exclusive-OR gates

Z
Zero suppression

defined, 339
examples of, 340
for four-digit display, 340
leading, 339
trailing, 339

	Cover
	Title
	Copyright
	Contents
	Chapter 1 Introductory Concepts
	1–1 Digital and Analog Quantities
	1–2 Binary Digits, Logic Levels, and Digital Waveforms
	1–3 Basic Logic Functions
	1–4 Combinational and Sequential Logic Functions
	1–5 Introduction to Programmable Logic
	1–6 Fixed-Function Logic Devices
	1–7 Test and Measurement Instruments
	1–8 Introduction to Troubleshooting

	Chapter 2 Number Systems, Operations, and Codes
	2–1 Decimal Numbers
	2–2 Binary Numbers
	2–3 Decimal-to-Binary Conversion
	2–4 Binary Arithmetic
	2–5 Complements of Binary Numbers
	2–6 Signed Numbers
	2–7 Arithmetic Operations with Signed Numbers
	2–8 Hexadecimal Numbers
	2–9 Octal Numbers
	2–10 Binary Coded Decimal (BCD)
	2–11 Digital Codes
	2–12 Error Codes

	Chapter 3 Logic Gates
	3–1 The Inverter
	3–2 The AND Gate
	3–3 The OR Gate
	3–4 The NAND Gate
	3–5 The NOR Gate
	3–6 The Exclusive-OR and Exclusive-NOR Gates
	3–7 Programmable Logic
	3–8 Fixed-Function Logic Gates
	3–9 Troubleshooting

	Chapter 4 Boolean Algebra and Logic Simplification
	4–1 Boolean Operations and Expressions
	4–2 Laws and Rules of Boolean Algebra
	4–3 DeMorgan’s Theorems
	4–4 Boolean Analysis of Logic Circuits
	4–5 Logic Simplification Using Boolean Algebra
	4–6 Standard Forms of Boolean Expressions
	4–7 Boolean Expressions and Truth Tables
	4–8 The Karnaugh Map
	4–9 Karnaugh Map SOP Minimization
	4–10 Karnaugh Map POS Minimization
	4–11 The Quine-McCluskey Method
	4–12 Boolean Expressions with VHDL
	Applied Logic

	Chapter 5 Combinational Logic Analysis
	5–1 Basic Combinational Logic Circuits
	5–2 Implementing Combinational Logic
	5–3 The Universal Property of NAND and NOR Gates
	5–4 Combinational Logic Using NAND and NOR Gates
	5–5 Pulse Waveform Operation
	5–6 Combinational Logic with VHDL
	5–7 Troubleshooting
	Applied Logic

	Chapter 6 Functions of Combinational Logic
	6–1 Half and Full Adders
	6–2 Parallel Binary Adders
	6–3 Ripple Carry and Look-Ahead Carry Adders
	6–4 Comparators
	6–5 Decoders
	6–6 Encoders
	6–7 Code Converters
	6–8 Multiplexers (Data Selectors)
	6–9 Demultiplexers
	6–10 Parity Generators/Checkers
	6–11 Troubleshooting
	Applied Logic

	Chapter 7 Latches, Flip-Flops, and Timers
	7–1 Latches
	7–2 Flip-Flops
	7–3 Flip-Flop Operating Characteristics
	7–4 Flip-Flop Applications
	7–5 One-Shots
	7–6 The Astable Multivibrator
	7–7 Troubleshooting
	Applied Logic

	Chapter 8 Shift Registers
	8–1 Shift Register Operations
	8–2 Types of Shift Register Data I/Os
	8–3 Bidirectional Shift Registers
	8–4 Shift Register Counters
	8–5 Shift Register Applications
	8–6 Logic Symbols with Dependency Notation
	8–7 Troubleshooting
	Applied Logic

	Chapter 9 Counters
	9–1 Finite State Machines
	9–2 Asynchronous Counters
	9–3 Synchronous Counters
	9–4 Up/Down Synchronous Counters
	9–5 Design of Synchronous Counters
	9–6 Cascaded Counters
	9–7 Counter Decoding
	9–8 Counter Applications
	9–9 Logic Symbols with Dependency Notation
	9–10 Troubleshooting
	Applied Logic

	Chapter 10 Programmable Logic
	10–1 Simple Programmable Logic Devices (SPLDs)
	10–2 Complex Programmable Logic Devices (CPLDs)
	10–3 Macrocell Modes
	10–4 Field-Programmable Gate Arrays (FPGAs)
	10–5 Programmable Logic Software
	10–6 Boundary Scan Logic
	10–7 Troubleshooting
	Applied Logic

	Chapter 11 Data Storage
	11–1 Semiconductor Memory Basics
	11–2 The Random-Access Memory (RAM)
	11–3 The Read-Only Memory (ROM)
	11–4 Programmable ROMs
	11–5 The Flash Memory
	11–6 Memory Expansion
	11–7 Special Types of Memories
	11–8 Magnetic and Optical Storage
	11–9 Memory Hierarchy
	11–10 Cloud Storage
	11–11 Troubleshooting

	Chapter 12 Signal Conversion and Processing
	12–1 Analog-to-Digital Conversion
	12–2 Methods of Analog-to-Digital Conversion
	12–3 Methods of Digital-to-Analog Conversion
	12–4 Digital Signal Processing
	12–5 The Digital Signal Processor (DSP)

	Chapter 13 Data transmission
	13–1 Data Transmission Media
	13–2 Methods and Modes of Data Transmission
	13–3 Modulation of Analog Signals with Digital Data
	13–4 Modulation of Digital Signals with Analog Data
	13–5 Multiplexing and Demultiplexing
	13–6 Bus Basics
	13–7 Parallel Buses
	13–8 The Universal Serial Bus (USB)
	13–9 Other Serial Buses
	13–10 Bus Interfacing

	Chapter 14 Data Processing and Control
	14–1 The Computer System
	14–2 Practical Computer System Considerations
	14–3 The Processor: Basic Operation
	14–4 The Processor: Addressing Modes
	14–5 The Processor: Special Operations
	14–6 Operating Systems and Hardware
	14–7 Programming
	14–8 Microcontrollers and Embedded Systems
	14–9 System on Chip (SoC)

	Chapter 15 Integrated Circuit Technologies
	15–1 Basic Operational Characteristics and Parameters
	15–2 CMOS Circuits
	15–3 TTL (Bipolar) Circuits
	15–4 Practical Considerations in the Use of TTL
	15–5 Comparison of CMOS and TTL Performance
	15–6 Emitter-Coupled Logic (ECL) Circuits
	15–7 PMOS, NMOS, and E2CMOS

	Answers to Odd -Numbered Problems
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

