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Preface 

Over the past one hundred years or so, we have witnessed remarkable progress in 
expanding the frontiers of scientific knowledge. During this scientific journey, 
researchers have discerned many trends and themes. One of the most important 
of these has been the relentless preference of nature to discretize. Whether we 
look to the biological sciences and the double helix, or the quantization of 
electromagnetic energy, or the existence of quarks in particle physics, it appears 
nature loves to count, to compartmentalize, and to express all phenomena in 
terms of some sort of unit. With its virtually limitless capacity to control vast 
arrays of such individual elements, nature has endowed us with an amazing 
range of materials, life forms, and variegated phenomena. 

Nature's affinity for using fundamental building blocks is not the whole 
story, however. Its capability in the realm of the infinitesimal is superseded by 
its incredible ability to synthesize, to derive function, and to obtain meaning 
from among these immense arrays of discretized elements, whether they be 
material units or bits of information. Nature indeed is the supreme "system 
engineer". An oft cited analogy is that drawn from certain impressionistic 
paintings. If looked at very closely, a limited portion of the painting appears as 
nothing more than a random collection of colored dots. Looked at from a 
distance, however, the painting takes on meaning and substance. 

We therefore can think of nature as providing us with two viewpoints .One 
reflects a fundamental, building block perspective, and the other a cooperative 
phenomenon, which ties together the discrete elements, and in so doing gives rise 
to form, function, and meaning. These viewpoints are of course simplifications 
but nevertheless useful ones. The examples in nature are boundless: a nugget of 
coal consists of 10 atoms or so, an organism consists of many cells, and so 
forth. By themselves these basic units are usually unrecognizable; together these 
elements create new meaning. The designation of the building block is to some 
degree a matter of choice of course. The coal atoms consist of atomic as well as 
sub-actomic particles; the latter are not as useful in understanding the chemistry of 
coal and we therefore choose to ignore these units. On the other hand, we 
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viii Electromagnetic Analysis Using Transmission Line Variables 

perceive atomic particles as having a decisive influence on the chemical 
properties. 

Throughout the past century we have developed countless theories , many 
(but not all) of them containing fundamental units , or "building blocks", to help 
us understand natural phenomena. We have demanded of these theories self 
consistency, and of course the capability to explain known phenomena as well as 
to predict new phenomena. We have also insisted that they be consistent with 
other predictive theories. If the theory contained building blocks we have 
insisted that these units explain larger scale phenomena. In addition, although 
not absolutely necessary, we have attached extra value to theories which are 
mathematically "elegant". 

The topic of classical electromagnetism, and the very important subset of 
electromagnetic wave propagation, certainly qualifies as an eminently " superb 
theory", to use the labeling of C. Penrose [1]. Despite the lack of any apparent 
building block unit(within the classical domain), the theory has exhibited 
unsurpassed predictive capabilities. In addition, the classical electromagnetic 
theory ( essentially, Maxwell's Equations) has forged very successful links with 
other theories, such as quantum electrodynamics and relativity. We then raise the 
issue as to whether physical building blocks exist in the realm of wave 
propagation, including the classical regime? The use of the word "classical" 
would appear to contradict such an idea from the very outset. In this regard, we 
cannot point to any fundamental unit, or building block, except for its 
connections to quantum theory; in particular, the electromagnetic energy is 
quantized, with the elementary energy unit existing as a photon. In our 
discussion, however, we will forego the use of any units derived from quantum 
theory, assuming instead that the wavelength is relatively long and that the wave 
propagation remains in the classical regime. 

Despite the lack of any apparent physical building block, we nevertheless 
proceed with the discretization of wave propagation phenomena. Indeed, the 
discretization process, applied to the electromagnetic propagation medium, 
forms the basis of this book. In view of the comments of the preceding 
paragraph, however, there are valid questions as to where and how the 
discretization process is to be introduced in the area of electromagnetics. In 
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what follows we will imagine the propagation medium to be completely divided 
up into identical cells(for a given propagation velocity), with the electromagnetic 
energy confined to transmission lines, or "tracks", which separate the cells. 
Rather than relying on a fundamental building block derived from physics, the 
basic unit selected will be a mathematical one. The selection of the cell size is 
arbitrary, but we insist of course that as we reduce the size of the cell that the 
solution reduces to that of solving Maxwell's wave equation (including the 
effects of conductivity). We reiterate that the cell (and the cell size)is not an, 
irreducible, fundamental unit, but rather selected on the basis of mathematical 
convenience. The method is closely linked to numerical solutions of Maxwell's 
wave equation. 

In view of the previous comments, a question which immediately comes to 
mind is the following: is it worthwhile to re-introduce an old theory, dressed in 
new clothing, with an accompanying computer code for solving Maxwell's 
Equations? The answer is affirmative, and for two reasons. First, the transmission 
line method offers an extremely intuitive means for dealing with a wide 
assortment of electromagnetic propagation problems. Equilibrium, transient 
conductivity, and antenna problems are readily amenable to this method. From 
the outset a particular problem is viewed as a transmission line grid, rather than a 
purely numerical grid. Secondly the method provides an opportunity to 
discretize the propagation region, which can offer many new insights and may 
also be useful as a bridge to examine small scale effects when the cell size is 
allowed to shrink further in size, leaving behind the classical regime. 

Hopefully this book will fill a niche not presently satisfied by two related 
types of books. The first type, stressing numerical methods for solving 
electromagnetic problems, lacks any appeal to physical intuition ; very often the 
physics of electromagnetic propagation is lost because of the morass of 
mathematical detail, or the result of a physically unmotivated computer code. 
The second type of book, stressing transmission line techniques, has the desired 
physical appeal but is inadequate for solving two and three dimensional 
electromagnetic problems. This book bridges the gap between the two subject 
areas, illuminating the features common to both methods. Following the 
extensions and modifications to the transmission line theory, the model is applied 
to several illustrative electromagnetic problems. The book should have special 
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appeal among electrical engineers and scientists involved with electromagnetic 
propagation and wideband transmitters/antennas. Although some background in 
transmission line theory is desirable, it is not essential since the needed 
background is provided. 

What are some of the practical applications of the transmission line method? 
As alluded to in the previous paragraph, the method is particularly well suited for 
designing ultra -wideband or short pulse transmitters/ antennas. The future will 
witness an inexorable drive to expand the bandwidth of transmitters/antennas, 
driven by the relentless needs of the information age. Engineers and scientists 
will need a more sophisticated understanding of picosecond devices, and its 
interaction with the environment, and will require computer codes capable of 
accurately describing such situations. The transmission line method should 
provide the engineer with the analytic and software tools necessary for dealing 
with this new technology. Besides laying the foundation for the transmission line 
method, the book also provides examples of computer codes which illustrate the 
transmission line technique. The code for the two dimensional solution of a 
photonic switch is provided is provided as an example. 

The Chapters, outlined in the following, contain a fair amount of "new" 
material. We enclose new in quotes since the basic assumptions, embodied in 
Maxwell's Equations and elementary symmetry arguments, always represent the 
starting point. In most cases, however, the results are straightforward extensions 
of transmission line theory. 

In this book we will deal almost exclusively with transmission lines situated 
on the borders of cubical cells(or squares, in the case of 2D), mainly as a 
matter of convenience. Neat geometrical cells, such as squares or cubes, are more 
amenable to mathematically analysis, and this is the primary reason for adopting 
such cells. Other cell geometries are possible, and in fact random irregularly 
shaped cells may be more appropriate, as we shall see. In any event the 
transmission line approach leads to an iterative solution of Maxwell's equations, 
which in turn may be translated into computer code. 

Chapter I begins with a discussion of the many types of electromagnetic 
problems one can solve using transmission line matrix (TLM) techniques, 
whether they involve antennas, ultra-wideband sources, or even static potential 
problems. This is followed by a review of basic TLM theory, starring with the 
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well documented , exact correspondence of the one dimensional wave equation 
and the transmission line solution. Once one ventures into two and three 
dimensions, however, the correspondence between the wave equation and the 
TLM matrix is not as apparent. Chapter I addresses these issues, pointing out 
the close relationship between standard numerical methods and the TLM matrix. 
Mathematically, we will see that the TLM method may be regarded as a 
particular type of finite difference method. Besides applications to 
electromagnetic propagation and other branches of applied physics, more 
flexible versions of the TLM matrix may be used to describe other diverse 
phenomena, for example, the modelling of neurological activity. In Chapter II 
the geometries and notation adapted for the TLM matrix are discussed. In many 
ways they are similar to the symmetry elements used to describe solid state 
crystals, in which the unit cells occupy the entire space. A systematic procedure 
for mapping the electromagnetic properties onto the TLM matrix, i.e., the 
transmission lines and the nodes, is discussed. Once the basic framework is 
established , Chapter III examines the electromagnetic scattering equations for 
one, two, and three dimensions. The scattering equations are very important, of 
course, since they are the hub of any computer iteration used to describe 
electromagnetic propagation. In Chapter IV the TLM matrix is corrected for any 
plane wave properties which are usually present. The plane wave properties are 
studied by means of "correlations" between neighboring waves in adjacent 
transmission lines. This Chapter also deals with the inherent anisotropy present 
in the unit cells and the averaging procedures needed to remove this effect. Plane 
wave and anisotropy effects are often ignored in the standard numerical 
methods. Chapter V discusses the boundary conditions and dispersion. 
Dissimilar dielectrics, for example, will require different cell sizes, so the 
scattering at the interface becomes more complicated. The Chapter provides a 
systematic means for handling such boundary conditions. Embracing the effects 
of dispersion, as in Chapter V, does not involve any fundamental obstacle, but 
its incorporation does make great demands on computer requirements. The TLM 
method is typically aimed at solving purely electromagnetic problems, namely, 
fast transient phenomena. However the same TLM framework also may be used 
to incorporate other phenomena, such as carrier drift, recombination, and charge 
separation. Chapter VI addresses these issues. The main obstacle here is not so 
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much the difficulty in incorporating such effects, but once again the substantial 
demands placed on computer memory and speed, brought about by combining 
fast and slow phenomena. In Chapter VII, an illustrative example is selected. We 
outline a computer program, based on the TLM method, for finding the transient 
solution of a 2D semiconductor switch, whose conductivity is induced by a light 
source. In addition to the static solution (Laplace's solution), the transient 
electric field profiles and the charge distribution are obtained. The actual 
program is also provided, allowing readers to gain a better understanding of the 
transmission line method. Finally, in Chapter VHI, we utilize existing software , 
such as SPICE. Such software may be applied to the TLM method when only a 
limited number of cells is required. Aside from the cell number limitations, other 
limitations inherent in SPICE involve the neglect of plane wave behavior, grid 
anisotropy, non-uniform propagation regions, boundary conditions, etc... 
Nevertheless, elementary but useful solutions may be obtained with SPICE, 
particularly one dimensional problems, and to a lesser extent, 2D problems. 
Several SPICE examples are discussed, which include RF transformers and 
pulse sources, as well as a simple description of a semiconductor switch. For 
comparative purposes, we also derive several ID results, applicable to RF 
transformers and the like, using the TLM formulation. 

The author's interest in transmission line methods, for solving 
electromagnetic problems, stems from his long and fruitful association with the 
Army Research Laboratory (ARL), Fort Monmouth, NJ. The Author has 
benefited from many discussions with scientists and engineers at ARL, and in 
particular, wishes to thank his many colleagues at the Pulse Power Laboratory for 
their interest and suggestions. The topics discussed in this book were initiated as 
a way of analyzing very fast conduction processes in semiconductor, for use in 
fast pulse generation and ultra- wideband sources. The author is presently with 
United Silicon Carbide Corp. in New Jersey. 
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I. Introduction to Transmission Lines and Their 
Application to Electromagnetic Phenomena 

Maurice Weiner 

United Silicon Carbide, Inc. 

In recent years, an exciting new branch of research activity has emerged, dealing 
with extremely fast phenomena in semiconductors and gases. The introduction 
of high speed instrumentation and devices, with time scales often in the 1 to 
1000 picosecond range, has prompted the investigation of a variety of fast phe
nomena, including the generation of electromagnetic pulses and light, photocon
ductivity, avalanching, scattering, fast recombination, and many other physical 
processes. The research has been driven by several applications [1], [2]. These 
include ultra-wideband imaging and radar , as well as ultra-wideband comrnuni-
cations(thus avoiding the use of wires or optical fibers). In addition, the avail
ability of new, high speed instrumentation has provided researchers with a 
valuable tool for learning the fundamental properties of materials. In all the 
aforementioned applications, a central feature is the generation of electromag
netic pulses with either a narrow pulse duration or a fast risetime(or both). The 
short time interval involved (in either the risetime or the pulse duration), insures 
that a wide frequency spectrum is produced, a property which is essential for the 
cited applications. 

The understanding of fast phenomena and ultra-wideband electromagnetic 
sources is made more complicated by the very fast risetimes and by the fact 
that the wavelength of the signals being produced are often smaller or 
comparable to the characteristic length of the device or experimental 
configuration under study. As a result the use of lumped circuit variables is 
inappropriate and we must use either transmission line variables or Maxwell's 
equations directly. 

/ 
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Electromagnetic signals with very short wavelength may be generated by a 
sudden transition in the conductivity of the medium. Suppose, for example, an 
electric field bias first is applied to the medium and that subsequently the 
conductivity of a portion of the medium is suddenly increased(for example, by 
photoconductivity or avalanching). The sudden change in conductivity will 
generate electromagnetic pulses with very steep risetimes, thus producing short 
wavelength signals. In cases where light is produced (for example, when carriers 
recombine in gallium arsenide), the wavelength naturally will be smaller or at 
least comparable to the device size. In any event , the analyses often used to 
describe devices and experimental configurations do not adequately address the 
short wavelength signals which are generated, and subsequently dispersed 
throughout the device and the surrounding space. One should not underestimate 
the importance of the electromagnetic energy dispersal(which includes light 
signals). Often the physics of underlying processes are misunderstood because 
the electromagnetic energy dispersal, which delivers the physics to the detector, 
is not taken into account properly, particularly for fast phenomena. It is hoped 
the ensuing discussion will help to correct this deficiency and lead to a better 
understanding of the dispersal of ultra-wideband electromagnetic signals and 
associated phenomena. 

In this volume we endeavor to describe fast electromagnetic phenomena, 
relying on iterative rate equations which use transmission line matrix(TLM) 
variables. As with comparable numerical techniques, such as the finite 
difference method, the transmission line element must be made very small in 
order to attain accuracy, and solutions at a given time step depend on a 
knowledge of solutions at a previous time step. In terms of physical 
interpretation and intuition , however, the TLM method is far superior to that of 
finite differences or other similar numerical techniques. The physical appeal of 
the TLM method may be viewed, in a conceptual way, from the two basic 
components which comprise the TLM matrix: the transmission lines and the 
nodes which form the intersection of the lines, as noted in Fig. 1.1. With this 
model, we can conceptually separate the physics and energy dispersal of a given 
problem in electromagnetics. Accordingly, the nodes represent the physics, and 
physical processes(such as conductivity changes) are mapped onto the nodes, 
which then control the flow of energy in the lines. The other component, the 
transmission lines, are responsible for the energy distribution and storage.The 
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TLM LINE 

FIG.l. CONCEPTUAL VIEW OF TRANSMISSION LINE(TLM) 
MATRIX CONSISTING OF NODES AND TLM LINES. THE TWO 
COMPONENTS HAVE SEPARATE FUNCTIONS. THE TLM LINES 
DISTRIBUTE THE ELECTROMAGNETIC ENERGY AND THE 
NODES CONTROL THE PHYSICS. 

TLM lines may be regarded as having spatial extent, whereas the nodes are 
regarded as infinitely small. 

Within the electrical engineering community the use of transmission line 
variables to treat one dimensional electromagnetic problems has gained in 
popularity over the years. As a result, a certain comfort level has been attained 
by engineers in the use of transmission line terminology. The carryover of the 
TLM description to two and three dimensional electromagnetic problems, 
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however, has been scanty. This may not be surprising, since the 2D and 3D 
treatments are more complicated and the ID must be augmented and revised to a 
considerable degree. For example, the boundary conditions at the nodes, for the 
2D and 3D problems, result in more complicated scattering behavior. In addition 
the incorporation of concepts such as plane wave correlation and corrections for 
grid anisotropy, have not been applied to standard TLM theory. This, therefore, 
would tend to make the TLM approach, for 2D and 3D problems, less valuable. 
The necessary revisions for removing these defects, for 2D and 3D models, are 
described in detail in the ensuing Chapters. The revised theory retains the usual 
benefits of ease of interpretation in solving electromagnetic problems. 

If the required transmission line elements( and the associated nodes) are not 
too large in number, then certain classes of problems, such as one dimensional 
microwave transformers and non-uniform TLM lines, as well as very simple 2D 
problems, may be treated using commercially available software (without the 
aforementioned revisions). For this reason, SPICE, a well known example of 
such software, is discussed in Chapter VIII where we solve several types of 
TLM problems using this method. 

1.1 Simple Experimental Example 

The simple arrangement shown in Fig. 1.2 will help to illustrate the concepts 
more easily. The Figure shows a side view of two electrodes separated by semi
conductor material, with an electric field bias between the two electrodes. Sup
pose a limited region of the semiconductor, shown by the darkened region, is 
suddenly created (either with a light pulse or by a localized, fast avalanche 
breakdown). This will give rise to a electromagnetic disturbance and possibly a 
light pulse(depending on the medium), emanating from the conduction region. 
The dashed curve may be conceptually regarded as an equal amplitude contour 
of the electromagnetic disturbance at a given instant in time. As noted the dis
turbance is assumed to be asymmetric, since the amplitude will be more pro
nounced in the direction perpendicular to the bias field. One may regard the 
electromagnetic disturbance as a traveling wave created by that part of the initial 
field which is parallel to the surface of the activated conduction region. The 
wave, i.e., the disturbance, is reflected normally from the surface of the activa
tion region while undergoing an electric field inversion, so that the total field, in 
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ELECTROMAGNETIC FRONT 

ILLUMINATION REGION 

ELECTRODE 

SEMICONDUCTOR 
GAP 

FIELD DIRECTION 

FIG.1.2 CONCEPTUAL VIEW OF DISPLACEMENT CURRENT 
ARISING FROM ILLUMINATION OF A LIMITED PORTION OF A 
SEMICONDUCTOR GAP. 

the immediate vicinity of the initial conduction region, is partially or completely 
canceled (depending on the degree of conductivity). The situation changes , of 
course, if the initial wave disturbance undergoes an additional field reversal at 
the boundary of a nearby conductor, which can be one of the two electrodes or 
some auxiliary conductor( such as the grounded member of a transmission line). 
Changes in the wave disturbance can also take place, of course, due to the exis
tence of a dielectric interface. 

The final result is a complex array of waves throughout the region, in which 
the field configuration depends on the temporal and spatial properties of the 
conduction region, as well as the device geometry. Given such conditions, the 
field will change dramatically(compared to the initial uniform, static field) and 
regions of field diminution or field enhancement are likely to occur. 

In case light is produced in the semiconductor, the situation is in some 
ways easier to describe, and in other ways it is more complicated. The light 
disturbance profile will be more symmetric, compared to that of the 
electromagnetic front, because of the shorter wavelength and random nature of 
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the recombination process. However, the front of the light signal will lag the 
electromagnetic front, with the delay depending on the recombination time. The 
main complication in handling light waves is the requirement of a higher 
resolution TLM matrix, as will be discussed in later Chapters. 

As we shall see in subsequent discussions, the TLM method is extremely 
well suited to the description of conductivity generation in both solid-state and 
gaseous media. In semiconductors, for example, both the light and the 
electromagnetic fields, will contribute to the possible extension of the original 
conductivity region. Suppose the semiconductor is illuminated with a light 
signal. The light signal can extend the conductivity by means of several 
processes, all of which are linked together. First, the light signal will create 
carriers via the direct photo-ionization. Second, the light may create sufficient 
seed carriers such that an avalanche is more easily triggered. Third, a spreading 
light signal, resulting from direct recombination in the original photo-ionized 
region, may also contribute to the extension of the conductivity region. Finally, 
even without direct carrier seeding, an avalanche may be produced in a region 
which is remote from the original site of the light impingement, caused by 
augmentation of the electromagnetic field (following the upset of the initial 
static field) in various regions. The TLM method is well suited for obtaining 
such a conductivity extension 

1.2 Examples of Impulse Sources 

The types of electromagnetic problems which the TLM method can address are 
virtually without bound. It is worthwhile mentioning several generic impulse 
sources which have stimulated the development of the TLM method. It should 
be mentioned, however, that in virtually all the examples using the TLM 
method, cited here and throughout the book, the conductivity generation occurs 
by means of a light pulse impinging on a semiconductor, with the carriers pro
duced by direct photo-ionization. This is merely a convenience, and it should be 
borne in mind that any other source of conductivity(such as avalanching or 
carrier injection)may be incorporated into the TLM formulation. 

As a first example, Fig. 1.3, consider a parallel plate transmission line in 
which a portion of the upper conductor has been removed and substituted with a 
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SWITCH ELECTRODES 

FIELD LINES 
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^wi>\ INITIAL CONDUCTION REGION 
FIELD 
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GROUND ELECTRODE 

FIG. 1.3 EXTENSION OF CONDUCTIVITY REGION FOLLOWING 
ILLUMINATION NEAR ELECTRODE. SEMICONDUCTOR GAP 
INTERRUPTS UPPER CONDUCTOR OF TRANSMISSION LINE. 

semiconductor, capable of holding off voltage. The line is then charged up to 
voltage, producing a field, as indicated in the semiconductor, as well as a 
fringing field between the two conductors. The sudden creation of carriers with 
a light pulse, throughout the entire semiconductor, or even in a limited portion of 
the semiconductor, then produces a fast risetime pulse which travels down the 
line toward the output, typically an antenna. The TLM method may the be used 
to determine the instantaneous field profiles throughout the entire device region, 
which includes the dielectric as well as the semiconductor regions. If so desired 
we also may apply the TLM analysis to the dielectric region above the 
semiconductor as well. Indeed, during the "commutation" time, some 
electromagnetic energy will radiate out from the semiconductor. The TLM 
analysis and computation may be extended in straightforward fashion to 
determine the radiated signal during commutation. Another impulse source, 
which combines the functions of the energy storage, antenna, and the switch is 
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shown in Fig. 1.4. The initial electrostatic energy is stored with a bias voltage 
between the conductors of a strip transmission line. The conductors diverge as 
shown to form a composite transformer/antenna. The switch, in the form of an 
optically activated semiconductor, is situated at the low impedance end of the 
transformer. When the semiconductor is suddenly activated, an inverted pulse is 
launched toward the output of the antenna. The TLM method then may be used 
to determine the fields throughout the entire space, i.e., the semiconductor, trans
former and radiation regions. Fig. 1.5 shows another version of an impulse 
source consisting of two tapered conducting electrodes placed on a dielectric 
substrate. The region separating the two electrodes consists of an optically acti
vated semiconductor. A voltage is then placed between the two electrodes. Upon 
activating the semiconductor a transient oscillation, much the same as a Hertzian 
dipole , is established, causing a short electromagnetic burst of energy to be ra-
diated(In Fig. 1.5 the radiation patterns are shown to be the same from both sides 
of the dielectric substrate; the radiation strengths will actually differ depending 
on the dielectric constant and substrate thickness). Once again TLM methods 
may be employed for the various regions of interest. 

ANTENNA SECTION 

FIG. 1.4 PULSE SOURCE CONSISTING OF A FAST SWITCH AT THE 
LOW IMPEDANCE SIDE OF A TRANSFORMER , WHICH ALSO 
STORES THE ELECTROSTATIC ENERGY AND COUPLES TO AN 
ANTENNA. 
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FIG.1.5 PULSE SOURCE CONSISTING OF PHOTOCONDUCTTVE 
SWITCH AND BOWTTE ANTENNA. 

One can surmise that obtaining practical, quantitative, and accurate 
electromagnetic solutions for the above configurations would appear to be a 
formidable task, especially if one must rely solely on numerical analysis , based 
on Maxwell's equations, the boundary conditions, as well as the physics 
underlying various phenomena such as phtoconductivity, avalanching, 
recombination, etc... The purpose of this book is to invoke an alternative 
method, the TLM approach, which from a mathematical point of view has close 
links to standard numerical techniques but which is far superior in terms of its 
ease of physical interpretation and flexibility. The new method relies on 
transmission line variables, concepts which are readily familiar among many 
research workers, to describe the behavior of the medium. As mentioned 
previously, the medium is represented by an imaginary matrix of transmission 
lines, wherein the energy storage and dispersal is taken into account by the 
transmission lines and the all physical processes(except for the energy dispersal) 
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are mapped onto the nodes, i.e., the intersection of the transmission lines. This 
method, therefore, makes a separation between the energy dispersal and the 
physics. An outline of the transmission line model, and its relationship to 
standard numerical techniques, using finite differences, is described in the 
following sections. 

1.3 Model Outline 

The development of the transmission line model starts with Maxwell's wave 
equation [3], including the conductivity term (MKS units are employed). Thus, 

V 2E - ( l / v ^ E / d t 2 ) - iia(dE/dt) = 0 (1.1) 

where: E= Electric Field 
t=time 
H= permeability 
v= propagation velocity 
a= conductivity 

Eq.(l.l) assumes there is no true charge in the medium. A similar equation also 
holds for the magnetic field. As mentioned previously, numerical methods may 
be used to obtain solutions to Eq.(l. 1). Instead of following this path, however, 
a transmission line approach is investigated. Toward this goal, it is convenient to 
first consider the one dimensional case. Accordingly, the wave equation then be
comes 

d*E/dx2 -(l/v2)(a2E/at2)-na(aE/at) = 0 (1.2) 

where x is the distance along the propagation direction and E is transverse to the 
propagation. An important time constant associated with the wave equation is 
the relaxation time, s/cr, where s is the permittivity. The relaxation time will de
termine the choice of our cell size, denoted by length Al. In order to rmnimize 
losses over the cell length, and thus provide the necessary resolution and nu-
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merical convergence, the cell propagation time, Al/v, should be much smaller 
than the relaxation time, da. Al therefore should satisfy Al «ev /o . In addition, 
Al should be much smaller than any characteristic length associated with , for 
example, the geometry or other experimental condition. Obviously, the smaller 
the size of the cell size, the greater the resolution, although this places a greater 
burden on computer speed and memory. 

Eq.(1.2) is identical to the well known transmission line equation, which 
governs the voltage V for a one dimensional transmission line using circuit 
variables, as shown Fig. 1.6, 

dV2/dx2 - (L'C'XdV/dt2) - VG'(dV/dt) = 0 (1.3) 

Eq.(1.3) is derived from the usual relationships between voltage and current, 
taking into account the circuit parameters of capacitance, inductance, and con-
ductance( see for example reference [4]). Besides the inductance per unit length, 
L' , and capacitance per unit length, C , there is included a shunt conductance 
per unit length, G'. G' accounts for losses between conductors, e.g., the pres
ence of carriers in a semiconductor medium. Although somewhat redundant, 
Eq.(1.3) is important because of the familiarity of the circuit variables, several 
of which we will use during the subsequent discussion. 

O—a 

r 
AQOQ 

R' < 

L' 
.AQQQ 

LR' i -0 
FIG.1.6 ONE DIMENSIONAL CIRCUIT CELL CONSISTING 
OF LUMPED CIRCUIT PARAMETERS. 
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Table 1.1 exhibits the relationship between the wave equation using field 
variables, Eq.(1.2), and that using circuit variables, Eq.(1.3). An important sim
plification occurs when we select a small transmission line element (or cell) of 
length Al. It is useful to state the total capacitance , inductance, and conductance 
associated with the line element, which we identify as 

C = C'Al =sAl (1.4a) 
L = L'Al =nAl (1.4b) 
G = G ' A l = a A l (1.4c) 

TABLE 1.1 CORRESPONDENCE BETWEEN WAVE 
AND cmcurr VARIABLES 
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The total resistance R of the element is thus R=l/G. The relaxation time, e/o\ is 
equal to the "RC" discharge time for the cell, as noted from Eq.(1.4). We also 
identify the impedance of the line as 

Z0 = (n/e)1/2 = (L7C')1/2 (1.5) 

At this point we can quantify the selection of Al. In order to obtain accuracy, we 
select Al such that 

Al«v(e/a)= v(CVG') (1.6) 
where 

v = 0isy1/2 =(L'C')"1/2 (1.7) 

Eqs(1.6)-(1.7) state that the transit time delay in cell Al, equal to Al/v, is much 
smaller than the RC time of the cell. An equivalent statement is that the lumped 
resistance, R, of the element Al is much larger than the characteristic impedance, 
Z0, or 

R » Z 0 (1.8) 

By virtue of previous equations, L', C may be combined into a lossless trans
mission element, Z0, and the conductance may be combined into two resistors, 
R, located at the ends of the transmission line, as shown in Fig. 1.7, where R is 
given by 

R=2/aAl= 2/G'Al (1.9) 

A two factor appears in Eq.(1.9) since each of the two resistors, R , may be con
sidered in parallel. Another way to view the introduction of the two factor is the 
following. By focusing an a single TLM line element, we ignore the adjoining 
TLM elements, each with similar end resistors; since such adjoining resistors are 
in parallel, a two factor should be introduced when "extracting " a single ele
ment from the chain. 
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ONE DIMENSIONAL CELL CONSISTING OF LUMPED CffiCUIT 
PARAMETERS 

I 
R 

ONE DIMENSIONAL CELL CONSISTING OF A 
TRANSMISSION ELEMENT Z0 OF LENGTH Al WITH SHUNT 
RESISTORS R=2/G'A1»Z0 

FIG. 1.7 TRANSITION FROM LUMPED CIRCUIT CELL TO 
TRANSMISSION LINE CELL. 

The same transmission line element may be viewed conceptually in 3D 
terms, Fig. 1.8, as a TLM line with electrodes on two opposite surfaces and 
relatively large, terminal sheet resistors appearing at both ends of the TLM line, 
normal to the direction of propagation. The TLM height and width are identical 
As such the TLM element resembles a parallel plate transmission line. The 
fringing fields(perpendicular to page) are ignored. In a sense we regard the TLM 
lines as surrounded by a high permeability, high impedance medium. The sole 
function of the TLM line is to simulate the field in the medium. In any event, 
even without this assumption, the fringing fields in neighboring TLM lines will 
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ELECTRODES 

AI 

FIG 1.8 ELEMENTARY TLM LINE. THE TLM LINE IS SITUATED 
(CONCEPTUALLY) AT THE BOUNDARY BETWEEN CELLS. IN 
THE 3D CASE, A PAIR OF ORTHOGONAL TLM LINES IS 
PRESENT. R=2/aAl, C=e Al, L=^A1, R » Z Q =[ u / zf1. 

tend to cancel one another as the cell size is diminished. The existence of fields 
perpendicular to the page, of course, is taken into account by a separate TLM 
line, similar to that in Fig. 1.8, but rotated 90° (i.e., with the conductors parallel 
to the page). This then becomes a 3D problem; the TLM formulation for 3D con
figurations will be given in Chapters II and III. 

The previous discussion has focused on a single isolated cell. We must now 
consider a linear chain of such cells as in Fig. 1.9, consisting of coupled trans
mission line elements with lumped end resistors, R'=2/aAl, where we append a 
prime to indicate R' belongs to that of an isolated line element. For uniform line 
segments, Fig, 1.9(a), the coupled cells will have identical end resistors and at 
each junction, as alluded to previously, the parallel resistors are combined into R 
=R72=1/GA1 where R' is given by Eq.(1.9). Now suppose the cell chain is non
uniform , noted in Fig 1.9(b), so that adjacent cells have unequal resistivities(but 
the same dielectric constant). For this line, the conductances at each node will 
add and thus the corresponding resistors will add in parallel fashion, so that the 
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FIG. 1.9a COMBINING OF IDENTICAL ID CELLS. 
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FIG. 1.9b COMBINING OF CELLS WITH UNEQUAL 
RESISTTVITY. 

combined resistance, Ri2 , satisfies R12 = RiR2/(Ri+R2)- As with the uniform 
line, R t and R2 satisfy the isolated cell expressions, R1 = 2/o"iAl and R2 = 
2/tr2Al. At this point the characterization of the chain is complete, and one may 
invoke the transient theory for transmission lines. The resistance, R, initially 
very large, is activated when, for example, the effects of photoconductivity or 
avalanching occur. Once the cells are activated, propagation losses become im
portant and we may then utilize transmission line theory to determine the re
sponse. These types of problems will be discussed quantitatively in the ensuing 
Chapters. 

Although the circuits in Fig. 1.9 are useful for understanding the basic con-
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cepts, two important flaws exist. For one thing the circuit is one dimensional and 
it does not take into account conductivity and electromagnetic spreading in the 
transverse directions. The second flaw, again related to the one dimensional na
ture of the circuit, has to do with the lack of a stable solution during equilib
rium, i.e., prior to the activation of the cells, when R or Ri2, R23, etc... are very 
large. Suppose each of the cells in Fig. 1.9, which are connected in series, is ini
tially charged to a different voltage. The cells will discharge into one another, 
unless artificial means are taken to prevent such a discharge, such as the artifi
cial insertion of a series switch. A self consistent way to preserve equilibrium, 
prior to activation, is to insert an orthogonal transmission line in series; this then 
converts the one dimensional circuit into a 2D one. A similar extension to 3D 
also preserves the equilibrium. Before proving these assertions, we briefly de
scribe the 2D and 3D arrays. This will be followed by background discussion in 
transmission line theory, which will allow us to place our previous claims on a 
firmer fooling. 

Fig. 1.10 shows the circuit matrix used to describe electromagnetic and con
ductivity spreading in two dimensions. One way to view the circuit cell is to note 
that there are four square cells, with each region constant in voltage(Vi,V2, 
V3,and V4) but generally differing in value from the neighboring cell . The 
square regions ,therefore, may be considered as conductors. Separating the con
stant voltage regions are the transmission lines. In this case the line impedances, 
Zo, are the same. Initially the lines will charged up to a voltage value equal to 
the voltage difference between adjacent cells. Note that the node resistance R is 
located at the hub of the matrix and actually consists of four identical resistors, 
R, each terminating one of the four TLM lines. It is worthwhile to realize that 
any signal arriving at the node will be equally scattered among the four trans
mission lines(in the absence of any significant conductivity). This property is 
similar to that in electromagnetics, in which each region of the wave front may 
be regarded as a point source. A similar extension of the circuit may be made to 
three dimensions. In 3D, however, the iso-potential regions are cubical, and 
there are eight cubes centered about each node point(Fig.l.ll). As mentioned 
previously, the nodal resistors contain the bulk of the physics, since these time 
varying elements represent photoconductivity, avalanching, recombination, 
charge transfer, and myriad other phenomena. Also, for 3D, there are two inde
pendent , orthogonal fields associated with each cube edge. 
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FIG. 1.10 TWO DIMENSIONAL MATRIX CONSISTING OF NODE 
AT CENTER OF FOUR ISO-POTENTIAL CELLS, SEPARATED 
BY TLM LINES ZQ. 

NODE OF 
HIGHLIGHTED 
CELL 

^ 
Z 

FIG 1.11 THREE DIMENSIONAL MATRIX SHOWING EIGHT 
CELLS AND THEIR ASSOCIATED NODES . THE DARKENED 
NODE IS ASSOCIATED WITH THE HIGHLIGHTED CELL. 
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Similarly there are two transmission lines transmission line associated with 
each cube edge, which renders the analysis more complicated. A simplified 
description of the 2D matrix is given later in this Chapter. A detailed 
description of both the 2D and 3D matrices, in cellular notation, is given in 
Chapters II-IV. 

1.4 Application of Model for Small Node Resistance 

We have adopted a model in which the cell node resistance is much larger than 
the cell line impedance. Stated another way, we impose the condition that the 
transit time of the cell At is much smaller than the RC time constant. Bear in 
mind that we can always satisfy this requirement by choosing a small enough 
cell size, Al, for a given conductivity in the medium. Once conductivity is intro
duced among voltage biased cells, the cell voltages decay in a uniform fashion. 
In a simplified way, the situation may be depicted in terms of decaying waves 
(in both directions), which eventually vanish once a sufficient number of cells 
are traversed. 

Whenever an intense conductivity is introduced into the medium, the model 
prompts us to examine the cell matrix size, and to employ appropriately small 
cells . The small cell size naturally implies larger array sizes , with subsequent 
complexities in the computer simulations. What are the implications of retaining 
larger cells, which do not satisfy R»Z 0 ? The use of larger cells would of course 
simplify the computer process. 

When R is small compared to ZG in the cell matrix, the wave energy will 
slosh back and forth in the cell line, changing polarity and decaying with each 
successive time step. Within the high conductivity region, the solution using a 
large cell matrix cannot be accurately determined, although it is reassuring that 
the fields do dissipate after several time steps. So far as the region outside the 
high conductivity region is concerned, however, the waves may still be obtained 
with accuracy from the TLM model. The outside waves are repelled from the 
high conductivity region at the boundary, where the low resistance nodes exist. 

The previous comments, concerning the case when R<Z0 , will be made 
more quantitative after we discuss additional aspects of the TLM model . The 
matter is then taken up in Chapter VII where we perform simulations in which 
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R « Z0 regions exist, and also in App.7A.4 where we discuss the field 
dissipation in terms of the elementary TLM waves. 

1.5 Transmission Line Theory Background 

The discussion in the previous sections will be quantified and reconciled with 
transmission line theory. Before proceeding to this goal, however, we present a 
brief overview. The literature on transmission line theory is quite extensive(see, 
e.g., Reference [4]). In this discussion we limit ourselves to only those relation
ships which are deemed necessary for describing the technique. Before continu
ing, it is useful to describe the normal electromagnetic modes in a single seetion 
of transmission line, not coupled to any other line elements, in which the termi
nating resistors are extremely large, i.e., an open circuit. The transmission line is 
biased to the voltage difference V0 and is in an equilibrium state, as shown in 
Fig. 1.12(a) The analysis proceeds by first choosing the correct set of normal 
modes which describe the standing waves during the off-state, when the line is 
biased to voltage V0. This is not difficult to obtain, since we know that the gen
eral solution to the wave equation (Eq.(1.2)), or the equivalent Eq.(1.3) . Dis
carding the conductivity term, the solutions are a pair of waves traveling in op
posite directions with velocity, v. The simplest set of modes which satisfy the 
boundary conditions, during the off-state, are two waves each with constant am
plitude, each equal to half the bias voltage, Vo/2. The two waves travel in oppo
site directions, and are designated +V and ~ V in Fig. 1.12. +V designates the 
wave traveling in the plus x direction while ~ V is the backward wave traveling 
in the negative x direction. We adopt the convention that the voltage waves , as 
indicated by the vertical arrows, point in the direction of increasing volt-
age(potential). The direction of the electric field is of course opposite to that of 
the voltage wave. 

The voltage waves fill the entire transmission element and are constrained 
by the open circuit at both ends, where the waves are reflected so that +V con
verts to " V at one end, and vice versa at the other end. The waves obey the 
symmetry requirement and of course the waves superimpose to give the correct 
voltage at all times and at all points in the line during equilibrium, i.e., V0=

 +V 
+- y= +(Vo/2) + " (Vo/2). Thus, the general solution for the voltage consists of 
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OPEN CIRCUIT (a\ OPEN CTRCUTT 

Fig 1.12(a) STATIC FIELD IN A SINGLE TLM ELEMENT, EXPRESSED IN 
WAVE VARIABLES. +V AND "V ARE REFLECTED AT ENDS WITH NO 
CHANGE IN POLARITY OR AMPLITUDE. 

R i J • *V t t f • $ RL 

1 "V • • t < 

(b) 

FIG. 1.12(b) TLM CELL IS ACTIVATED AND OPEN CIRCUIT IS 
REPLACED WITH RL. LOSS OF AMPLITUDE OCCURS UPON 
REFLECTION. 

a forward wave(positive direction), and a backward wave(negative direction), 
and the total voltage, which is the equilibrium bias voltage, equal to the sum of 
the two waves. What happens when we depart from equilibrium, i.e., we allow 
the open circuit resistance to suddenly decreasein value, as in Fig. 1.12(b)? Just 
as before , there will exist forward and backward waves, but their amplitude 
will no longer be constant in time. As before the total voltage (which is no 
longer constant in time), will be the sum of the two waves, 

V = +V +"V (1.10) 
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In a similar manner, the associated forward and backward current amplitudes are 
denoted by +I and ~ I , respectively, and the total current is 

I = + I + ~I (1.11) 

Next we write down the relationships between the voltage and current 
waves: 

+I= + V/Z 0 (1.12) 

~I = -~V/Z0 (1.13) 

where ZG is the characteristic impedance of the line. The minus sign for the 
backward current wave is significant. Although the backward voltage wave may 
be positive, the backward wave current will be negative, and is indicative of the 
fact that the current is moving in the negative direction, away from the load. 
Next, we take note of the boundary condition which exists at the load. If RL is 
the load(assumed to be real) at either junction, then at the load V and I satisfy 

V = R L I (1.14) 

At this point we define two types of voltage coefficients. The reflection co
efficient, B, relates the reflected wave ~ V to the incident wave +V, while the 
transfer coefficient, T, relates the load voltage V to the incident wave. Thus, 

B = ' V / + V (1.15) 

T=RLI/+V (1.16) 

If Eqs.(1.10)-(1.14) are utilized then these coefficients become 

B=(RL-Z0)/(RL+Z0) (1.17) 
and 
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T= 2RL/(RL+Z0) (1.18) 

These coefficients play a pivotal role in the dispersal of the electromagnetic 
signal due to the conductivity. One should point out that RLmay include not only 
the terminating resistors, but also the characteristic impedances of any adjoining 
transmission lines. If an adjoining cell has an impedance, Zu and the junction 
resistance is R, then the load impedance seen by a wave in ZD, is the parallel 
combination given by RL = ZyRJ[R+Zi]. Note that when Zi =Z0 and R ~ oo the 
cell impedances are matched, T=1,B=0, and the wave flows to the adjoining cell 
unimpeded. 

It is natural to ask whether the transfer and reflection coefficients are 
related, based on energy flow considerations. This conjecture is indeed 
confirmed by considering the following relationship: 

(T2/RL)+(B2/Z0) =1/Z0 (1.19) 

Substitution of Eqs.(1.17)-(1.18) into Eq.(1.19) verifies the relationship. 
Eq.(1.19) has a very simple interpretation. If a wave with unit amplitude, propa
gating in line Z0, encounters a node with load impedance RL, then Eq.(1.19) 
merely states that the incident energy flow, 1/Z0, is equal to the energy flow de
livered to RL (i.e., T2/RL) plus the energy flow reflected from the load(i.e., 
B2/ZQ). Knowing one of the coefficients, however, does not automatically pro
vide us with the other. For example, calculating B from Eq.(1.19) (based on a 
knowledge of T) leaves us with an ambiguity as to the sign of B; the original 
definition of B, Eq.(1.17), must then be used. From Eq.(1.17) we see , therefore, 
that B is positive when RL exceeds Zo and negative when RL is less than Z0. 

In the previous paragraphs we depicted a situation in which a single wave 
in a transmission line was incident on the load impedance. Now suppose the 
load is nothing more than another transmission line with a differing impedance, 
and further suppose the second line also has an signal incident on the node 
separating the two transmission lines. The situation is illustrated in Fig. 1.13 
where the two TLM lines are ZA and ZB and the corresponding incident wave 
voltages are +VA and ~VB- When we apply the TLM theory to this situation, does 
our interpretation of results change in any significant manner ? We proceed 
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NODE 

FIG. 1.13 WAVES "VA AND ~VB INCIDENT ON NODE 
SEPARATING ZA AND Z„ . CONTRIBUTIONS TO "VA 
AND +VB (THE REFLECTED AND TRANSMITTED 
TERMS) ADD LINEARLY. 

by applying the TLM formulation individually to each of the two incident 
waves +VA and " VB. In the case of + VA , RL =ZB, and this produces a 
transmitted wave of [2ZB/ (ZA+ZB)] * +VA and a reflected wave [(ZB-
ZA) /ZA+ZB)] * +VA. Likewise , in the case of ~ VB, the load seen by " VB is ZA, 

and the transmitted and reflected waves are [2ZA/(ZA+ZB)] *~ VB and [(ZA-
ZB) /ZA+ZB)] * ~ VB respectively. Adding the results(linearly) in each line for 
both waves one can check out that the continuity of voltage at the node is 
preserved in the presence of two incident waves. We first obtain the two waves 
moving away from the node. The total backward wave in ZA will be 

" VA = [(ZB-ZA)/ZA+ZB)] * +VA + [2ZA/(ZA+ZB)] * " VB (1.20) 

while the forward wave in ZB will be 

+VB = [(ZA-ZB)/ZA+ZB)] * " VB + [2ZB/(ZA+ZB)] * +VA (1.21) 

We can then verify that the total voltage at the node is V=+VA +~VA = +VB+~VB-

It is worthwhile to make sure that the wave energies carried away from the 
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node , associated with VA and +VB , preserve the energy flow. We know that 
the total energy flow incident on the node, ET , is given by 

ET = (1/ZA) ( + V A ) 2 + (1/ZB) C V B ) 2 (1.22) 

It is then easy to verify that the energy carried away from the node satisfies 

ET = (1/ZA) ( + V A ) 2 + (1/ZB) C V B ) 2 = (1/ZA) fVA)2 + (1/ZB) (+VB)2 (1-23) 

using Eqs.(1.20 ) and (1.21) . We should take care to note the changes in wave 
direction in Eqs.(1.22) and (1.23). We have not included losses, represented by 
R at the node. If we do so, then in addition to the wave energies carried away 
by " VA and +VB , there will be resistive losses given by V2/R, but just as before 
V =+VA+-VA = +VB+-VB . 

1.6 Initial Conditions of Special Interest 

Before we apply the transmission line concepts and relationships to the iterative 
methods, we first check the consistency of the model under initial conditions of 
special interest. First we consider whether a ID transmission line chain , as 
shown in Fig. 1.14, is stable, i.e., remains in equilibrium even when the node re
sistors, R, are not activated and the cell lines are each biased to the same voltage. 
Toward this goal we consider the end resistors to be much larger than the char
acteristic impedance of the lines. As noted in Fig. 1.14 the three adjoining lines 
have the same characteristic impedance. For t > 0, the total load impedance seen 
by the forward wave in A will be RL=Z0, since the parallel combination of R and 
Z„ is simply Z0, since R is very large. Thus the forward wave going from line A 
to line B will be unimpeded(i.e., "matched" to B). Similarly, the backward wave 
in B will be matched to A. Similar comments apply to lines B and C. The net ef
fect is that the equilibrium conditions in line B( or any other cell in the chain) 
remain the same, with the same forward and backward waves (and with equal 
amplitudes)as in the previous time step. The equilibrium also is preserved when 
the adjoining cell impedances are unequal. Thus there is no net transfer of 
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A B C 

FORWARD WAVE IN B FOR (K+1)TH TIME STEP: 
+VB

k+' = T+VA
K+B-VB

k 

BACKWARD WAVE IN B FOR (K+1)TH TIME STEP: 
-VBk+1=T-VcK+B+VB

k 

T=2RL/(Z0+RL), B=(RL-ZO)/ (Z 0 +R L ) , RL=Z0R/(Z0+R) 

FIG 1.14 WAVES IN A AND C CELLS CONTRIBUTE TO THE 
FIELD IN B DURING THE ENSUING K+l TIME STEP ACCORDING 
TO THE ABOVE RELATIONS. LOSS AND IMPEDANCE IN EACH 
CELL ARE ASSUMED IDENTICAL. 

energy from one cell to the other. 
It is also of interest to determine the decay of the various cells for a uniform 

ID chain in which each cell is initially biased to V0 and the node resistance R is 
finite and uniform throughout the chain. Under these circumstances one may use 
Eqs.(1.17)-(1.18) to determine the decay within each cell. For large R (relative 
to the line impedance) the forward and backward waves decay by an amount (1-
Z„/R) with each time step. Because the node resistance and line impedance are 
uniform, however, we may adopt the view that there is no net transfer of energy 
from one cell to another. The cell voltage in each cell declines, to be sure, but 
the decline may be regarded as internal to the cell. The situation changes of 
course when the adjacent node resistors differ, even when the initial bias voltage 
is uniform for all the cells. Under these circumstances the fields will redistribute 
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themselves among the cells and a net transfer of energy from one cell to another 
will occur. 

What happens when the adjoining lines are initially biased to differing 
voltages, even when the node resistors are infinitely large and the cell 
impedances are uniform? The forward wave going from A to B will not be 
compensated by the backward wave going from B to A. Equilibrium therefore is 
not maintained for the one dimensional array. As mentioned before, artificial 
changes may be introduced, for example , by placing series switches between 
line elements and activating these switches at the same time that the node 
resistors is activated. Such changes are not based on any physical considerations, 
and cannot be seriously considered. The only self consistent solution is to resort 
to either 2D or 3D arrays, which we do in a later Section of this Chapter. Despite 
the lack of an initial equilibrium solution(for spatial variations in the voltage), 
however, the ID circuit is nevertheless very useful for a host of ID problems as 
well as for gaining insight into the more complicated 2D and 3D arrays. In the 
following we compare the TLM and finite difference methods for obtaining ID 
solutions. 

One Dimensional TLM Analysis. Comparison with Finite Difference 
Method 

I. 7 TLM Iteration Method 

We begin the comparison of the ID TLM and finite difference methods by first 
considering the TLM iterations. For simplicity we assume the same resistance, 
R, separating the adjoining lines, which have the same characteristic impedance 
Z0. During a given time interval the sum of the forward and backward waves, 
+V and " V, comprise the total field V. As noted previously, the field waves may 
be written in terms of the fields belonging to the prior interval. Using Fig. 1.14 
as a guide, the iterative equations for the forward and backward waves in cell B, 
during the (k+l)th step, are 
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+VB
k+1 =T +VA

k + B~VB
k (1.24) 

" VB
k+1 =T " V c

 k + B+VB
k (1.25) 

where 
T = 2RL/(Z0+RL) (1.26a) 
B = (RL-Z0)/(RL+Z0) (1.26b) 

and 
RL = ZoR/(Z0+R) (1.27) 

The integer superscripts k, k+1, attached to the cell fields, denote the time step. 
The reflection coefficient B should not be confused , of course, with the label 
of the middle cell. In order to facilitate the comparison with the finite difference 
method, we introduce the loss parameter, 

a = Z./2R (1.28) 

The scattering coefficients then become 

T = l / ( l + a ) (1.29) 

B = -a/(l+a) (1.30) 

Adding +VB
k+1 and " VB

k+I we obtain the forward iteration for the B cell, or 

VB
k+1 = [(l/(l+a)][+VA

k+-Vc
k] - [a/(l+a)]VB

k (1.31) 

In order to proceed further with the comparison with numerical methods, 
we shall need not only the forward iteration, but the "reverse " one as well, for 
which we shall have to digress. 
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1.8 Reverse TLM Iteration 

Numerical techniques involving partial differential equations often require time 
elements of t-At as well as t+At, in order to obtain correct solutions. It should 
come as no surprise, therefore, that in order to compare the numerical methods 
with the TLM method, we need to take into account reverse as well as forward 
iterations. The generic form of the two types of TLM iterations are shown in 
Eqs.(1.32)- (1.33), applicable not only to ID but 2D and 3D as well. 

FORWARD 
+Vk+1 = Z[ S.C. ] + V k + I [ S . C . r V k (1.32) 

- V
k+1 = £[ S.C. ] +V k +£[ S.C. ] " Vk (1.32b) 

REVERSE 
V " 1 = Z[ S.C. ] + V k + I [ S . C . r V k ] (1.33a) 

V 1 = I [ S.C. ] +V k + I [ S.C. ] _ Vk] (1.33b) 

where [ S.C. ] are the scattering coefficients (evaluated during the kth step) and 
die summation is over wave contributions from adjacent lines. Note the impor
tant fact that in the reverse iteration, the (k-l)th wave is determined from waves 
existing during the ensuing kth step, whereas the forward iteration relates Vk+1 

to waves existing during the prior kth step. Although Eqs.(1.32) and (1.33) ap
pear to be superficially die same, they are different. First of all, the scattering 
coefficients will differ , especially if losses are present. In addition, the two it
erations will have different node locations for the forward and reverse iterations, 
which we discuss later. 

It seems somewhat strange to consider reverse TLM iterations. One 
naturally asks the question whether it is truly necessary examine such a topic. 
There are at least two reasons, however, why it is important to take into account 
the reverse iteration. The first is that, using such an iteration, it may be possible 
to determine an earlier physical state based on the present state. The second 
reason is that the reverse iteration provides us with additional information, and 
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when we combine both forward and reverse iterations we are able to make a 
more accurate comparison with other numerical techniques, such as the finite 
difference technique. In fact we shall see that the finite difference equation may 
be "decomposed" into forward and reverse TLM iterations, both of which have 
immediate physical significance. 

Although the forward iteration is fairly straightforward, , it is not at all 
clear how one may obtain the reverse type. Table 1.2 provides a prescription , 
based on a knowledge of the waves during the kth step. Thus, we assume the 

TABLE 1.2 

HOW TO GO BACK IN TIME VIA THE REVERSED TLM 
ITERATION 

1) ASSUME WAVE Vk AND Vk ARE KNOWN(FOR THE FORWARD 
ITERATION) 

2) REVERSE DBRECTION OF ALL WAVES 

Cvk)* ->~vR
k \ rvk)*-> +vR

k 

3) AS IN FORWARD ITERATION, CALCULATE THE SCATTERING 
AMONG THE WAVES AND OBTAIN +VR

k+1 AND VR
k+1. TIME 

DEPENDENT NODES ARE EVALUATED AT THE k TH STEP 

4) DURING SCATTERING, ANY NODE RESISTORS ARE CONSIDERED 
NEGATIVE, I.E., SIGNALS ARE AMPLIFIED 

5) UPON COMPLETION OF SCATTERING , REVERT TO ORIGINAL 
DHIECTION, 
cvR

k+1)* -• - v k i , c vR
k+l>* -> v 
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forward and backward waves , +V k and _ Vk, are known in all cells, where the 
superscript denotes the time step. We then reverse the direction of all the waves; 

we denote this operation by *. Thus (+V k)* and (~ Vk)* denotes the wave reversal 
of +V k and ~ Vk during the kth step. We therefore may write the waves which 
have been reversed as ( +V k)* = " VR

k and (~ Vk)* = +VR
 k , and we should 

also take note of the obvious relationships ((+V k)* )* = (" VR
k)* = +V k, ((" Vk)* )* 

= ( V R
k)* = " Vk. The subscript R is added for clarity in this Section and in 

Table 1.2, to denote the reversed wave. In the ensuing Sections, however, we 
will drop the subscript since the reversed waves are always identified as such. 

The next phase is to calculate the scattering among the reversed TLM 
waves, treating these waves in the same manner as the usual forward iteration. 
We then proceed to calculate the waves for the next step, but with an important 
difference. During the scattering any node resistors are considered negative, i.e., 
the signals are amplified. This is to be expected, since we are going back in time 
and any attenuated signals must regain their former strength by being amplified. 
We should also note that the nodes used in the scattering are evaluated at the 
same k th time step ( with negative node resistance). The final step , after the 
completion of the scattering, is to revert to the original directions of the waves, 
so that (+VR

 k+1 )* -> "V k"' and - VR
 k+1 - > + V k"\ 

Suppose we have knowledge of the present and future TLM fields and 
nodes, but are ignorant of any prior states. Is it possible to obtain a similar 
knowledge of the previous states? The reversion to an earlier state , by means of 
the reversed iteration, is certainly achievable provided the nodes are time 
independent. With time independent nodes we presumably have a knowledge of 
the nodes throughout the medium at all times and therefore we can go back in 
time as far as we wish. 

With time dependent nodes, however, there is in general no way to 
determine the prior states, even when the node resistance is much larger than the 
line impedance. In order to attempt such an effort we must first resort to an 
examination of the fields and nodes , as well as the time and spatial gradients of 
the fields and nodes , during the present and future states. With such information 
it is conceivable we can make educated "guesses" as to the prior states. Certainly 
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the first few states just prior to the present state may be estimated by analytically 
continuing the node values back in time. Also, if we somehow know(or guess) 
the static field configurations of the initial state existed in a given, limited 
region, then this information may possibly provide clues as to such prior 
states(in this case the unknown prior states occur after activation). Further 
scrutiny of this topic, as well as questions concerning the uniqueness of the 
solution, will take us far beyond the scope of the present discussion. 

1.9 Example of Reverse Iteration for Non-Uniform Line 

Although we have considered adjacent cells to have the same impedance, Z0, the 
procedure for finding Vk_1 is exactly the same when the cell impedances differ. 
A simple example is given in Fig. 1.15 where the impedance of cells A,B,and C 
are Z0 , 2Z0 , and 3ZQ respectively, and the existing waves during the kth step 
are as shown: "(l/3)A

k and +(4/3)B
k and zero wave in cell C. The dotted arrows 

indicate the reversed waves . If we proceed to the (k+l)th step with the reversed 
waves , we obtain " (1)A

 k+1. Reversing this wave then results in + (1)A
 k_1 , as 

shown. We may confirm the result by proceeding with the forward iteration, 
which then produces the correct fields for the kth step. 

1.10 Derivation of Scattering Coefficients For Reverse Iteration 

We now return to the case where loss is included at the nodes. In our prescrip
tion for finding Vk"', we said that we replace R with -R in the scattering coeffi
cients, or, alternatively, a with -a. We now verify this assumption. Fig. 1.16 
shows the status of the waves during the (k-l)th step where Vk ' \ and Vk~l

2 are 
the waves in cells 1 and 2 respectively and the coefficients T and B are given by 
Eqs.(1.29) and (1.30). During the kth time step the backward wave in cell 1 is 

" V ^ ( - a ^ 1 + ^ y a + a ) (1.34) 
and the reversed wave is 

Cv?)* = +V,k = (-a "V^"1 + -V2
kA)*/(l+a) (1.35) 
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A 

(1/3)A 

REVERSED 
WAVES 

+(DAkl 

Zo 

B 

+(4/3)B
k 

r 
1)FD2LDS DURING KTH STEP 

3Z0 

2) FTELDS DURING (K-l) STEP 

2Z0 3ZC 

FIG 1.15 EXAMPLE OF REVERSE ITERATION FOR NON-UNIFORM LINE. 
TO FIND WAVES FOR (K-l)TH STEP, REVERSE ALL FTELDS, { (1/3)/}*= 
+(1/3)A

K, {+(4/3)B
K}*= "(4/3)B

K , THENCE PROCEED TO THE (K+1)TH STEP. 
FINALLY REVERSE ALL FIELDS AGAIN TO OBTAIN THE FIELD S FOR 
THE (K-l)TH STEP. 
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CELL1 
Z0 

SCATTERING COEFICENTS: T=l/(l+a), B= -a/(l+a), a=Z„/2R 
FIRST CELL, Kth STEP: ~Vik = ( -a +Vf* + ~ V2

k_1)/(l+a) 
REVERSED WAVE =("Vik)* = X " =(-a +V,k'1 + " Vj1"1)*/ (1+a) 
SECOND CELL, kTH STEP: +V2

k=( +V1
k'1 - of V^1) / (1+a) 

REVERSED WAVE= (+V2
k)* = " V2

k ={+Vik_1 - a" V2
k_1)*/ (1+a)} 

PROCEEDING TO THE NEXT(REVERSED) STEP, " V,k+1 , +V2
k+1 ARE 

OBTAINED. A FINAL REVERSAL IS THEN DONE TO RETRIEVE 
*V1

k- ,AND-V2
k-1: 

+V,k-1 = [(-a +V?1 + " V2
k-')/ (l+a)]BG + [ ( V " 1 - a V2

k-*)/ (l+a)]TG 

- V^"1 = [(-a +V,k-' + " V2
k-')/ (l+a)]TG +[(+V1

k"1 - a" v/"1)/ ( l+a)]BG 

TG , BG ARE UNKNOWN COEFFICIENTS. SOLVING, 
T G =l / ( l+a ) ] , BG = a/(l+a) 

FIG. 1.16 DETERMINATION OF REVERSE COEFFICIENTS. ABOVE 
IS STATUS DURING (k-l)TH STEP. PRESCRIPTION IN TABLE 1.2 
IS FOLLOWED TO OBTAIN THE REVERSE COEFFICIENTS. 

Similarly the the forward field in the second cell is 

+V 2
k= C V ^ - c f V a ^ y a + a ) (1.36) 

After reversal this wave becomes 

(+V2
k)* =-V2

k=(+V1
k- '-a-V2

k-1)*/(l+a) (1.37) 

R 
~V2 

z„ 

k-1 

CELL 2 
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We then use the reversed fields, +Vik and ~V2
k , and proceed to the next( re

verse) step, using the usual iterative Eqs.(1.24) and (1.25)(with as yet unknown 
scattering coefficients) to obtain ~Vik+1 and+V2

k+1. We then perform a final re
versal , so that ~Vik+1 and +V2

k+1 become +VikA and ~V2
k"' . The final equations 

are 

+V,k-' = [(-a+V,k l +-V2
k-1)/(l+a)]BG +[ tV,1"1 -cfV2

k-,)/(l+a)]T0 (1.38) 

-V2
k4= [(-aVf1 +-V2

k4)/(l+a)] TG + [ ( V 1 -ofV^ya+oOlBG (1.39) 

In Eqs(1.38)-(1.39), TG, BG are the as yet unknown coefficients which allow us 
to regain ""V "̂1 and "V^"1. Solving for these coefficients gives us 

TG= l/(l-ct) (1.40a) 

BG= a/(l-a) (1.40b) 

Both Eqs.(1.38) and (1.39) yield the same expressions for TG and BG , as re
quired for consistency. Note that TG and BG are identical to Eqs.(1.29)-(1.30) 
when we substitute -a for a, i.e., -R for R. As promised the reverse iterations 
require that we substitute negative values for the node resistance in the scatter
ing coefficients. This will enable us to perform the reverse iteration we need to 
complement the forward iteration in Eq.(1.31). 

It is a curious fact that to a certain degree we possess the mathematical 
tools(certainly for time independent nodes) to go back in time, as well as 
forward. The reverse iteration may be used to view earlier events, based on 
present events. Does a preference exist for one or the other process, based on 
experience.? Based on observation, the answer is yes. Nature appears to favor 
the forward direction; in the present context this corresponds to the tendency of 
electromagnetic energy to spread out in the available spatial directions. 
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1.11 Complete TLM Iteration (Combining Forward and Reverse Iterations) 

Having verified the scattering coefficients for the reverse wave, Eqs (1.40a)-
(1.40b), we can obtain the reverse iteration , which will enable us to determine 
the complete TLM equation. Referring to Fig. 1.14 , we now must now focus on 
~VA

k and + Vc
k ( instead of+VA

k and "Vc
k ) in cells A and C. We then resort to 

the our oft-stated method, and reverse the direction of waves~VA
k and + Vck, 

allow the iteration to proceed for one step, using Eqs.(1.40a)-(1.40b), and fi
nally revert to the original direction. The reverse iteration for cell B is then 

VB
k-' == [(l/(l-a)] fVA

k + + Vc
k] + [ a/(l-a)] VB

k (1.41) 

If we compare the above with VB
k+1 , Eq.(1.31), we see that a shortcut method 

for obtaining VB
k_1 exists: In Eq.(1.31) we simply replace a with -a and also 

replace any forward wave with a backward wave, and similarly any backward 
wave with a forward one. 

For purposes of comparison with numerical methods, we add VB
k"' and 

VB
k+1 obtaining 

VB
fc+1 +VB

k-' =[(VA
k + Vc

k)+a(- +VA
k - " Vck+"VA

k ++ Vc
k)+2a2VB

k]/(l-a2) 
(1.42) 

We will see shortly that the above is compatible with the iteration obtained by 
finite difference methods. We thus may regard the finite difference iteration as a 
combination of forward and backward TLM iterations. 

1.12 Finite Difference Method. Comparison with TLM Method 

We now turn to the conventional numerical technique for solving the wave 
equation, which relies on the use of finite differences(see, e.g., Reference [5]) . 
A rectangular grid for the distance x and time t coordinates is first established. 
We then perform a Taylor expansion of the second order spatial derivative of 
E(x,t) about x, and evaluated at two locations: x-Ax and x+Ax, where Ax repre
sents a small excursion from x. The results for the two locations are subtracted, 
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d*E(x,tydx2 =[ E(x+Ax,t)-2E(x,t)+E(x-Ax,t) ]/Ax2 +higher order terms (1.43) 

where Ax is the difference in the x coordinate. Similar expansions of^Efotydt2 

and dE(x,t)/& yield 

a2E(x,t)/at2 = [ E(x,t+At)-2E(x,t)+E(x,t-At) J/At2 + higher order terms (1.44) 

and 

3E(x,t)/dt = [E(x, t+At) -E(x, t- At) ]/2 At + higher order terms (1.45) 

where At is the difference in the time. Substituting Eqs.(1.43)-(1.45) into the 
wave equation and solving for E(x,y,t+At) yields the iterative equation, 

E(x,t+At) = E(x,t) - E(x, t -At) + ?c2[E(x+Ax,t) + E(x-Ax, t) - 2E(x,t)] 
-a[E(x,t+At) - E(x,t-At)] (1.46) 

where X2 = ^At2/ Ax2 (1.47a) 
a = Ato72e = ZJ2R (1.47b) 

Eq.(1.46) simplifies by setting A.=l , or Ax=vAt. The value for k is within the 
allowable range needed to insure stability for the finite difference solution. Sta
bility is assured when the "numerical" velocity, Ax/At, is greater than or equal 
to the wave velocity v (Reference [5]). Since Ax/At is set equal to v, the finite 
difference solution is automatically stable and Eq( 1.46) becomes 

E(x,t+At) = - E(x, t-At) +[E(x+Ax,t) +E(x-Ax, t)] -cc[E(x,t+At)-E(x,t-At)] (1.48) 

In order to compare the above with the TLM iteration we convert field variables 
to TLM voltage variables in the above, using the following correspondence: 
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E(x,t)-> V B \ E(x,t+At)-> VB
k+1, E(x-Ax,t)-» VA

k , etc.. (1.49) 

The finite difference equation then becomes 

VB
k+1 + V B " = VA

k +Vc
k -a[ VB

k+1
 -VB'"1] (1.50) 

Substitution of the TLM iterations for VB
k+1, VB1'"1 , Eqs.(1.31), (1.41) , into the 

above then yields an identity. The TLM and finite difference iterations are there
fore completely compatible. We should add, that from a mathematical point of 
view, there are innumerable combinations of VB

k+I and VB
kl which satisfy 

Eq(1.50). Eqs.(1.31) and (1.41) , however , are the only ones which satisfy the 
physical requirements imposed by the motion of the forward and backward TLM 
waves. We assert, therefore , that we can break up the 3 tier finite difference it
eration into a pair of two tier forward and reverse iterations, corresponding to the 
motions of forward and reverse TLM waves, and given by Eqs.(1.31) and (1.41). 
As a practical matter, of course, the forward iteration is most often used, al
though the reverse iteration may on occasion be invoked. 

Two Dimensional TLM Analysis. Comparison With Finite Difference 
Method 

The transition from ID to 2D exposes the potential advantages and flaws of the 
transmission line matrix method. One advantage, alluded to before, is that the 
2D matrix allows for static solutions without the artificial insertion of any com
ponents ( such as a switch). There is therefore a smooth passage from the static 
solution to the transient one, once the equilibrium conditions are upset. Another 
advantage has to with the fact that the transmission lines border a symmetry 
element, in this case a square( or in 3D, a cube). The symmetry elements occupy 
the entire space, which of course is essential, and in addition the elements can be 
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labeled in a natural way. The notation used for these elements is discussed in 
Chapter II. 

One shortcoming of the 2D (and 3D)matrices, which is repairable, stems 
from the lack of isotropy when using symmetry elements. Thus when using a 2D 
TLM matrix the electromagnetic energy is constrained to move along the lines 
surrounding the square element. As a result, if a signal source emanates from 
the source region O, the first arrival time of a signal reaching point B will ex
ceed that for point B, as shown in Fig. 1.17. This is because the path OA is a 
straight line while that of OB must proceed along a zigzag path. In an isotropic 
medium there is no reason why these two directions should differ. This effect is 
not surprising since the square element(or any other symmetry element, for that 
matter) is not isotropic. This and other related topics are discussed in Chapters 
II-IV , where we also modify the technique to compensate for the inherent 
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FIG.1.17 DIRECTIONAL ANISOTROPY OF 
SQUARE MATRIX. 
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anisotropy of the square symmetry element. One should also note that as the cell 
size is made smaller, the width of the earliest arriving signal is likewise smaller, 
A second shortcoming has to do with the fact that the 2D and 3D matrices do not 
possess plane wave properties. We correct the cell matrix , so as to account for 
plane wave effects, in Chapter IV. 

Despite the aforementioned limitations, we will show that the two 
dimensional matrix of transmission lines is closely linked with the finite 
difference solutions of the two dimensional wave equation. For the treatment of 
the two dimensional problem, we compare a two dimensional matrix of 
transmission lines with the two component wave equations in the x and y 
directions. In the following discussion, the 2D comparison of the finite differ
ence and TLM methods does not include losses, but this does not alter the gener
ality of the conclusions in any way. The ensuing Chapters of course include loss 
terms in the TLM iterations. We begin with the transmission line description, 
first discussing boundary conditions at the node, followed by the static and non-
static behavior. 

1.13 Boundary Conditions at 2D Node 

In the ensuing Sections we will assume the time step to be small enough so 
that the fields change very little during the step. In addition, the fields at the 
node are considered to be irrotational. As we shall see later, the rotational prop
erties come into play once the scattering to the lines about the node occurs. 

Fig. 1.18 shows the node of a 2D array. If we look at line A, for example, 
we see that it is coupled to three other transmission lines. The iso-potential 
regions which form the boundaries of the four lines emanating from the node, 
are denoted by Vi,V2,V3, and V4 . The voltage difference in the line separating 
cells 1 and 2 is VA = Va-Vi, with similar relations for the other lines. The 
complete set is: 

VA = V2-V1 (1.51a) 
VB = V4-V3, (1.51b) 
VC=V3-V,, (1.51c) 
VD-V4-V2 (1.5 Id) 
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FIG. 1.18 BOUNDARY CONDITION AT THE 2D NODE 
IS VA=Vc+VB-VD, WHERE VA=VCBD=V2-VI , Vc-Va-V* 
VB=V4-V3, V D = V 4 - V 2 . 

Since we assume the node region is small compared to the wavelengths being 
generated, we consider the field to be conservative about the node. Thus, the 
voltage path from 1 to 2 is equivalent to 1 to 3 followed by 3 to 4 and then 4 to 
2. We therefore take as our boundary condition 

VA = VB + VC-VD (1.52a) 

It is important to note that the line voltages in the above represent the total volt
age, i.e., the sum of the backward and forward voltage waves. Also note the 
negative sign for VD, which stems from the fact that the path displacement is in 
the negative direction, and therefore the voltage wave is negative. The negative 
sign for VD is completely dependent on the fact that we have selected VA as our 
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initial wave, dictating that the other three waves match VA We could just as 
well have selected 1 to 3, 3 to 4, or 2 to 4 in which case the corresponding rela
tions would be 

VC=VA+VD-VB (1.52b) 

VB = -Vc+VA+VD (1.52c) 
VD = +VB+VC-VA (1.52d) 

Again note that the negative signs indicate a path displacement in either the 
negative x or y directions. We hope that further confusion is not introduced , 
concerning sign conventions, if we also remind ourselves that the voltage dif
ference variable is always opposite in sign to the electric field, so for example, 
VA = V 2 -Vi=AV = -EAl. 

To justify the replacement of the field theory with the transmission line 
matrix, for both the static and non-static cases, we assume that in the region of 
the node , both electric and magnetic fields , as well as the time, are slowly 
varying (compared to the TLM element Al and the time step At) , so that on the 
average, the fields are irrotational. This implies that the two line integral paths 
from point 1 to point 2 , as shown in the Figure, are identical. In the case of the 
electric field, therefore, the fields are assumed to be concentrated in the TLM 
lines, and we replace the field variables with the line voltages. One should stress 
that the fields within the transmission lines themselves are rotational, as they 
must be in order to propagate as a wave. The other boundary condition at the 
node has to do with the magnetic vector associated with the electric field. The 
magnetic fields of the lines are all perpendicular to the electric fields , and thus 
the magnetic fields are perpendicular to the paper. As a boundary condition we 
insist that the magnetic field be continuous at the junction. Thus , for example, 
in line A the magnetic field will be equal to magnetic field in each of the lines 
B, C, and D. In terms of transmission line variables , of course, the magnetic 
field translates into a line current, and the boundary condition requires continuity 
of current at the node. The total current in each line, therefore, is identical. 

The above node boundary conditions are applicable to either static or non-
static problems, and the boundary conditions remain the same whether the node 
resistors are activated or not. The curl properties are automatically satisfied , as 
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will be described in a later Section. In addition, there is no constraint on the 
values of the characteristic impedances of the lines surrounding the node. 

1.14 Static Behavior About 2D Node 

The static behavior of the 2D array may be examined, once again using Fig. 1.18 
We assume the end resistors are much larger than the characteristic impedances, 
and therefore do not interfere with the assumed static conditions. The approach 
adapted is suggested by the ID TLM line segment, where we know that a single 
isolated cell at voltage V contains forward and backward waves each with am
plitude V/2. We determine whether such an arrangement in each of the 2D line 
segments is self consistent, and remains the same once the waves in each line 
are allowed to couple to other lines. To explore this, we look at line A. Initially, 
the forward wave amplitude is +VA= (V2-V2 )/2 and it sees a load impedance of 
(ZB+ZC +ZQ). The backward in A , _ VA , consists of two parts. First there is the 
contribution caused by the reflection at the node, denoted by ~ VA,R , and is 
given by 

~VA,R =[(V2 -VO^HZB+ZC+ZD-ZA] / [ZA+ZB+ZC+ZD ] (1.53) 

Next we consider the waves in B, C, and D headed in the direction of the 
node, and ask what part these waves are transferred to line A. Although one can 
consider each line individually, it is easiest to consider B,C and D as forming a 
composite line with impedance (ZB+ZC+ZD). The voltage transferred from this 
composite line into A, denoted by ~VBCD , is 

"VBCD =(V2-V0 Z A /[ZB+ZC+ZD+ZA] (1.54) 

If we add Eqs.(1.53) and(1.54) then we obtain the total backward wave in A, 

_VA=-VA R +-VBCD =(V2-V0/2 (1.55) 

But this is simply the reflected wave one would expect from an open circuit. 
The same result is obtained if we consider the voltage transfer contributions 
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from each of the individual lines, B, C, and D. Thus the initial fields remain con
stant, i.e., the solution remain stable so long as the resistors are not activated. 
Unlike the one dimensional matrix, therefore, adjoining cells with differing volt
age will remain at the same voltage without discharging into one another. 

1.15 Non-Static Example: Wave Incident on 2D Node 

Before deriving the iterative equations for the transmission line matrix, we con
sider a simple non-static case of a solitary forward wave incident on a 2 D node , 
as in Fig. (1.19). As we have mentioned before, the same boundary conditions 
and scattering equations apply to the transient situation. 

D 

+VA 

A i 

,+VC-VD 

' / 

*ipti••• 

C 

PIG. 1.19 EXAMPLE OF NON-STATIC BEHAVIOR 
FORWARD WAVE +VA IS LAUNCHED IN A, DIRECTED 
TOWARD NODE. VA = +VA -"VA=V^Vc-VD WHEN WAVE 
REACHES NODE. 
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The boundary conditions are further illustrated by supposing that a wave 
+VA is launched in line A , directed toward the node. Upon reaching the node , 
the field description dictates the conservation of voltage at the node. If VA is the 
voltage associated with the A line, and likewise VB,,VC, VD, are the node voltages 
in the other lines, then at the node we expect the following to be satisfied during 
the time step following the arrival of +VA at the node. 

V A = + V A + "VA (1.56a) 

VA = VB+Vc-VD (1.56b) 

Next, we determine how the wave scatters among the various lines. 
Although transmission line theory automatically satisfies the requirement of 
voltage conservation at the nodes, it is instructive, to verify this property, i.e., 
Eq.(1.56), taking into account both reflections and energy transfers into 
adjoining lines. To simplify matters we assume the lines all have the same 
impedance, Z0. Starring with the reflected wave, since RL = 3ZD, 

B = (ZL-Z0)/(ZL+Zo) = 1/2 (1.57) 
and thus 

"VA = B+VA = (1/2) +VA (1.58) 

Eqs.(1.57)-(1.58) allow us to calculate the total load voltage V . Thus the sum of 
the reflected and incident waves is 

VA= +VA+-VA=(3/2)+VA (1.59) 

The wave transmitted from A to B ,for example, is calculated from 
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+VB= T + V A (1.60) 
T may be obtained from 

T = [2RL/(RL+Z0)] (Zo/RL) =1/2 (1.61) 

where the (Zo/RL) is appended to T since the voltage transfer to B represents 
only a portion of the voltage delivered to RL. Combining , 

+ V B =(l /2) + V A (1.62a) 

We should note that +VB =VB (the total field) since there is as yet no backward 
wave in B. Similarly, the voltage transfer to lines C and D are 

- V c = ( l / 2 ) + V A (1.62b) 
+VD= -(1/2) +VA (1.62c) 

Again we should note that ~Vc and +VD represent the total fields Vc , VD in 
lines C and D. We should also note the minus sign in Eq.(1.62c) , since +VD is 
directed in the negative x direction. The previous equations are in agreement 
with the boundary condition, Eq.(1.56b), as expected, i.e., the total field in lines 
B,C,D is then (3/2)V. Although we have considered a solitary wave in one of the 
lines, the situation does not fundamentally change when waves from the other 
lines (C,B, or D) are simultaneously incident on the node. Under these circum
stances the waves moving away from the node , in each line, will not only con
sist of the reflected wave , but will receive contributions from the incident 
waves in the other lines, which add in linear fashion to the reflected wave, just 
as in the ID case. 

In the previous discussion, we focused on a single wave launched in one of 
the lines. The behavior of the 2D nodes when multiple coherent waves exist in 
parallel lines, however, is an important issue. Referring to Fig. 1.20, we inquire 
whether identical waves, launched simultaneously in lines R, S, T , e tc . , will 
ultimately simulate a plane wave. In other words, we ask whether the waves in 
R, S , T, transfer completely intact to lines D, E, F, without transverse 
scattering or reflection. In Chapters III and IV we examine in detail the question 
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FIG.1.20 PLANE WAVE SIMULATION WITH IDENTICAL 
FORWARD WAVES, +V. UNDER PLANE WAVE CONDITIONS , 
+V IS TRANSFERRED INTACT FROM LINE R TO LINE D, S TO 
E,ETC... 

of plane waves in 2D and 3D TLM matrices and describe the modifications 
which must be made to the TLM theory. 

1.16 Integral Rotational Properties of Field about the Node 

Although we rely on the rotational properties of the field within the TLM lines , 
the fields at the node are considered irrotational. We should therefore be con
cerned as to whether the fields about the node reflect the necessary rotational 
properties as expressed in Maxwell's Equations. In order to examine such com
patibility we utilize the integral representations of the curl equations. To ac
count for the curl properties , we will have to jump ahead slightly and allow, in a 
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simplified way, for 3D scattering. Chapters III and IV describe the 3D scattering 
in detail. 

The rotational boundary conditions at the node are addressed by first 
considering the curl equation for the magnetic field 

VxH=j+3D/dt (1.63) 

where the two contributors to the magnetic field are the conduction current den
sity j and the displacement current 8D/dt where D= sE. We first show that the 
TLM boundary conditions at the node are consistent with the above curl equa
tion when only conduction current sources are present. We focus our attention 
on Fig. 1.21 where, before the start of any current flow, we assume electrostatic 
conditions prevail. Thus the forward and backward waves in lines A and B are 
equal to one another and there is no net current. Now suppose the node resis
tance is activated. A current(e.g., in the x direction) will flow via the node re
sistance as shown. The backward wave in A will now suffer a diminution in 
amplitude, resulting from the node loss. In addition the forward wave in B ,i.e., 
the waves moving away from the node will also be lowered in amplitude , again 
because of the node activation. As a result of the differing forward and backward 
waves in A and B, a net current wave will flow in these lines , proportional to 
the difference between the initial wave moving toward the node , and the re
duced field moving away from the node. In line A this net field is (+VA -~ VA) 
and in line B it is ("VB -+VB) . In fact, if we convert the voltage waves to elec
tric field waves we can immediately determine from the Poynting vector that the 
net magnetic field is pointed into the paper in line A and emerges from the paper 
in line B. This is in accordance with the usual rule for determining the circular 
field due to a current. A more quantitative grasp of the situation may be ob
tained if we use the integral formulation of the curl equation, which for the con
duction current is 

j H - d l =fj • ds (1.64) 

where dl and ds are the usual line and area differentials . Consider for example 
all the elements of j in the x direction, with the line integral in the yz plane. 
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We can think of the curl equation as representing four separate contributions, 
one for each TLM line converging at the node with the node current branches in 
the x direction; these include lines A,B, and the two lines perpendicular to the 
paper. The contribution of each line to the integral about the x axis is expressed 
in general form as 

I = (VrV2)/Z0 =HA1 (1.65) 

where Vi is the initial wave incident on the node and V2 is the diminished wave 
moving away from the node, Al is the elementary line element, and H is the 
magnetic field associated with each of the four TLM lines surrounding the node 
in the yz plane. Naturally, each of the four lines need not have the same field, in 
which case each line will make a different contribution to the integral. We as
sume the spatial extent of E and H is equal to Al(this is discussed more in Chap
ters II and III. 

We verify the consistency of the TLM formulation with Eq.(1.64) by first 
selecting the line integral path in the yz plane. Assuming identical lines, with the 
node located at (x,y,z), the yz path selected is (y-Al/2,z-Al/2)-» (y+Al/2,z-
Al/2)-» (y+Al/2,z+Al/2)-> (y-Al/2,z+Al/2). The selected path is dictated by the 
assumed extent of the fields, Al. The integral on the left side of Eq.(1.64) is then 
given by [H(y,z-Al/2) +H(y+Al/2,z)+H(y, z+Al/2)+H(y-Al/2,z)]Al. Next we look 
at the area integral for the conduction current given by the right side of 
Eq.(1.64). The contribution of the net current in each line is given by Eq.(1.65); 
substituting for each of the four lines then yields an identity, thus verifying the 
consistency of the curl formulation with the TLM formulation(at least for the 
conduction current). 

An important point is that with the TLM formulation, although the total 
field is irrotational at the node, the formulation does in fact yield the correct ro
tational properties for a current source, in integral format, about the node. In 
Chapters II - IV we will describe the 3D notation needed to exactly calculate all 
the contributions to the line integral for the conduction current, as well the dis
placement current which follows. 

The same type of analysis can also be applied to the displacement current. 
The integral representation of the curl equation with displacement current 
sources is 
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j H - d l =Jd(eE)/&-ds (1.66) 

As before suppose we consider the displacement current sources in the x direc
tion with the line integral in the yz plane. Initially we assume the lines sur
rounding the node are not occupied with any fields. Now suppose a wave with 
amplitude ~EB (with ~EB = Vi/Al) moves into line B. During the next step the 
wave will move into the other three lines in the yz plane and in addition there 
will be a reflected wave in line B. The four waves generated in these lines will 
give rise to the magnetic fields which circle the displacement currents. As be
fore we can break up the above integral into four contributions. For example in 
line B the displacement current is obtained from the reflected wave +EB, with 
the displacement current given by SB+EB /At (the reflected wave represents the 
change in the field in line B , and therefore the displacement current) The con
tribution to the line integral for this line is then {eB

+EB /At}Al2. It is easily veri
fied 

+HBA1= {sB
+EB/At}Al2 (1.67) 

using the standard TLM relationships for At, +EB , etc... The contributions of 
the other three lines (line A and the two lines perpendicular to the paper) are 
similar but with +EB replaced by the transmitted field to the particular line. The 
curl property for the displacement current is then verified using the same path 
applied to the conduction current as before. The addition of the fields, in the four 
lines, is equivalent to the curl property for the magnetic field. Note that the fields 
in these four lines are all moving away(or radiated) from the node. In the pre
ceding we have only considered compatibility with the TLM formulation for 
only one of the two curl equations. The other, VxE = - |j.9H/9t, has a similar , 
straightforward interpretation using the TLM description. 

An intriguing feature of Maxwell's Equations, and in particular the curl 
equations, has to do with its flexibility. In a certain sense we may regard the 
equations as a "loose" fitting garment which may be filled out to its proper 
exterior form by any one of several embodiments. Equivalent modes of 
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description include the usual vector analysis, and the iterative equation 
approach, based on numerical methods or, as in our case, the TLM matrix. 

1.17 2D TLM Iteration Method for Nine Cell Core Matrix 

As with the ID approach, we obtain an important relationship, derived from the 
nature of the 2D node, which relates the field in each line, at a particular time 
step, to the fields existing in the in the prior time step, both in the same cell and 
in the surrounding cells. The relationship is obtained with the help of Fig. 1.22 
which shows a matrix of lines, using as a backdrop a finite difference grid, 
which we will use later for comparative purposes. 

We shall often refer to the nine cell matrix in Fig. 1.22 as the core matrix . 
The four TLM lines immediately surrounding the center cell will be referred to 
as inner core TLM lines. The remaining eight TLM lines which are labeled we 
shall refer to as outer core TLM lines. It will be important to observe that the 
outer core lines form common boundaries with neighboring core matrices. Later, 
when we compare the TLM results with the finite difference results, we will 
make use of the fact that the outer core TLM lines will carry less weight than 
those in the inner core. 

In examining the TLM formulation of the core matrix, we start with the 
voltage, Vi, in line at time t+At. This voltage is the result of a forward wave, 
+Vi, and a backward wave, ~Vi, with Vi = +Vi + "Vi, evaluated at the t+ At time 
step. How do these voltages relate to the voltages in the prior step at time t? 
The forward wave is a result of the of the backward, wave reflected from the left 
node, and the waves directly transmitted from lines 1L, 3, and 3U. Thus, since 
the reflection and transfer coefficients are both equal to 1/2 for a lossless 2D 
node, 

+Vt (t+At) = (1/2) +V! (t)+(l/2)[ +V1L (t)- +V3 (t)+ -V3U (t)] (1.68) 

A minus sign in front of +V3 (t) is inserted since , in coupling to line 3, the field 
direction becomes is negative. A similar relation applies to the backward wave 
in line 1, 
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FIG. 1.22 SUPERPOSITION OF TLM MATRIX AND FINITE 
DIFFERENCE GRIDS USING CORE MATRIX SET. 

"V! (t+At) = (1/2) +V, (t)+[(l/2)[ -V1R (t)- - V4U (0+ +V4 (t)] 

The total field at t+At is 

V^t+At) = +V, (t+At) + "V, (t+At) 

(1.69) 

(1.70) 

In like manner, we calculate V2(t+At) in line 2, which is the neighboring 
line. The two fields, representing lines 1 and 2, are needed in order to make a 
comparison with the results from the finite difference method. The forward , 
backward, and total fields in line 2 are: 
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+V2 (t+ A t) = (1/2)" V2 (t)+(l/2)[ +V2L (t)+ -V 3 (t)- - V3D (t)] (1.71) 
' V2 (t+A t) = (1/2) +V2 (t) +(l/2)[ - V2R (t)+ +V4D (t)- - V4 (t)] (1.72) 

V2(t+ A t) = +V2 (t +At) +" V2 (t+ A t) (1.73) 

We now form the sum of Vi(t+At) + V2(t+ At). We are required to do this since 
our interest lies in the horizontal field averaged over the two transmission lines, 
on either side of the cell. Vi(t+ A t) +V2(t+At) is of course proportional to this 
average (cell averaged properties are discussed in more detail in the next Chap
ter). The result is, from Eqs.(1.68)-(1.73), 

V^t+At) +V2(t+At) = (1/2) -V ! (t)+(l/2)[ +V1L (t)- +V3 (t)+ " V 3U (t)] 
+ (1/2) +V, (t)+[(l/2)[" VIR (t> - V4U (t)+ +V4 (t)] 
+ (1/2) " V 2 (t)+(l/2)[ +V2L (t)+ - V 3 (t)- " V 3D (t)] 
+ (1/2) +V2 (t) +(l/2)[ " V2R (t)+ +V4D (t)- - V4 (t)] (1.74) 

The above equation is the TLM iteration relating the horizontal fields at t+At to 
those at t. The expression simplifies if we assume the system is slightly per
turbed, in which case the forward and backward waves in each line are close in 
value. We can achieve the same results, however, without making such an ap
proximation, by incorporating the reverse iteration. As we have discussed previ
ously, we obtain the reverse iteration by first reversing the propagation direc
tions everywhere, then allowing the iteration to proceed forward one step, and 
finally reverting to the original propagation direction. The result is that Vi(t- A t) 
+ V2(t-A t) is identical to Eq.(1.74) except that wherever we see a forward wave 
it is replaced by a backward one, and wherever we see a backward wave it is re
placed by a forward one. The result is 

Vi(t-At) +V2(t-At) = (1/2) +V , (t)+(l/2)[ -V1L (t)-" V3 (t)+
 +V 3U (t)] 

+ (1/2)" V, (t)+[(l/2)[ +V1R (t)- +V4U (t)+ - V4 (t)] 
+ (1/2) + V 2 (t)+(l/2)[ - V2L (t)+ + V 3 (t)-

 + V 3D (t)] 
+ (1/2) " V2 (t) +(l/2)[ +V2R (t)+ * V4D (t)- + V4 (t)] (1.75) 
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In order to facilitate the comparison of the TLM result with the finite 
difference method, we add Vi(t+A t)+V2(t+At) to Vi(t-A t) +V2(t-At), giving us 

[Vi(tf At) +V2(t+At)]+[V1(t- At)+V2(t- A t)] = [V,(t) +V2(t)] 
+(l/2)[V1L(t)+V3U(t)+V1R(t)-V4U(t)] 
+[l/2) [V2L(t)-V3D(t)+V2R(t)+V4D(t)] (1.76) 

Eq.(1.76) is the three tier TLM iteration. Note that the equation does not depend 
on any forward or backward waves, but only the sums of the two waves in each 
line. We also remind ourselves that the previous equations apply only to the 
horizontal lines. In the following we enumerate the similar relations for the 
transverse lines. Corresponding to Eqs.(1.68)-(1.73), 

+V 3 (t+ A t) =(1/2) "V3 (t)+(l/2)[
 +V 3 D (t)-

 +V 2 L
 +V 3 (t)+ "V2 (t)] (1.77) 

"V3 (t+A t) = (1/2)
 +V 3 (t)+ (l/2)[ -V3U (t)+

 +V 1 L (t)-" V, (t)] (1.78) 

V3(t+ At) =
 +V 3 (t+ At) +~ V 3 (t +At) (1.79) 

+V 4 (t+ At) =(1/2) " V 4 (t)+ (1/2) [
+V4D (t) -

+V2 (t) +- V 2 R (t)] (1.80) 

" V 4 (t+A t) =(1/2)
 +V 4 (t)+(l/2)[ "V4U (t)+

 +Vi (t)- - V,R (t)] (1.81) 

V4(t+At) =
+V 4 (t+At) +" V 4 (t+A t) (1.82) 

As with Vi(t+A t) and V2(t+ A t ) , we form the sum of V3(t+ A t) and V4(t+A t) : 

V3(t+A t) +V4(t+ A t) = (1/2) "V3 (t)+(l/2)[ +V3D (t)- +V2L (t)+ " V2 (t)] 
+ (1/2) +V3 (t)+ (l/2)t "V3U (t)+ +V1L (t)- "V, (t)] 
+ (1/2) " V4 (t)+ (1/2) [+V4D (t) -+V2 (t) +-V2R (t)] 
+ (1/2) +V4 (t)+(l/2)[ "V4U (t)+ +V, (t) - "V1R (t)] (1.83) 
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The corresponding reverse iteration is 

V3(t-A t) +V4(t- A t) =(1/2) +V3 (t)+(l/2)[ ~V3D (t)-" V2L (t)+ +V2 (t)] 
+ (1/2)" V3 (t)+ (l/2)[ +V3U (t)+ "V1L (t)- +Vt (t)] 
+ (1/2) +V4 (t)+ (1/2) [" V4D (t) -" V2 (t) +

+V2R (t)] 
+ (1/2)" V4 (t)+(l/2)[ +V4U (t)+ - V, (t) - +V1R (t)] (1.84) 

We then form the three tier iteration by adding V3(t+At) +V4(t+A t) to V3(t- At) 
+V4(t-At) to give 

[V3(t+A t)+V4(t+At)]+[V3(t-A t)+V4(t-A t)]=[V3(t)+V4(t)] 
+(l/2[V3D(t)+V3U(t)-V2L(t)+V1L(t)] 
+(1/2) [V4D(t)+V4U(t)+V2R(t)-V1R(t)] (1.85) 

This completes the TLM iterations, consisting of Eqs.(1.76) and (1.85) and their 
component two tier counterparts, Eqs.(1.74),(1.75) ,and (1.83) and (1.84). 

7.18 2D Finite Difference Method. Comparison with TLM Method 

The treatment of the two dimensional problem starts out with the two component 
wave equations in the x and y directions(without loss). We again use the same 
core matrix in Fig. 1.22, but now we consider the TLM lines as a backdrop 
while the finite difference grid is in the foreground. This will help facilitate the 
comparison of the TLM and finite difference methods. Once the finite differ
ence analysis is completed , we will convert the results to TLM variables, using 
the core matrix in Fig. 1.22. 

The two components of the wave equation are: 

d*EY/dx2 + ^Ey/dy2 - ( l /v^Ey/dr2 = 0 (1.86) 

^Ex/Sx2 + ^Ex/ay2 - ( l / ^ E x / S t 2 = 0 (1.87) 
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Note that the two equations are not decoupled, i.e., because of the presence of 
the (^Ey/Sy2 and t^Ex/dx2 terms we are no longer dealing with two independ
ent plane wave equations in the x and y directions. A finite difference analysis, 
similar to that for the ID case, is carried with the help of the core matrix. Thus, 

[Ey(x+Al, y, t) +EY(x-Al,y,t)+EY(x,y+Al,t)+EY(x,y-Al,t)-4EY(x,y,t)]/Al2 

- ( l / v ^ M Ey(x,y,t+At) + Ey(x,y,t-At)] -2Ey(x,y,t)] =0 (1.88) 

[Ex(x+Al, y, t) +Ex(x-Al,y,t)+Ex(x,y+Al,t)+Ex(x,y-Al,t)-4Ex(x,y,t)]/Al2 

- ( l /vW)! Ex(x,y,t+At) + Ex(x,y,t-At)] -2Ex(x,y,t)] =0 (1.89) 

In the above equations the difference element is assumed to be the same in 
both the x and y directions and we set Ax =Ay =A1 with v=Al/At. In order to 
compare the iterations using the finite difference and transmission line 
techniques, we solve for the elements Ex(x,y, t+At) and Ey(x,y,t+At), giving 

Ey(x,y,t+At) =EY(x+Al,y,t) +Ey(x-Al, y,t)+ Ey(x,y+Al,t) +Ey(x,y-Al,t) 
-2Ey(x,y,t) -Ey(x,y,t-At) (1.90) 

Ex(x,y,t+At) =Ex(x+Al,y,t) +Ex(x-Al, y,t)+ Ex(x,y+Al,t) +Ex(x,y-Al,t) 
-2Ex(x,y,t) - Ex(x,y,t-At) (1.91) 

Eqs.(1.90)-(1.91) give the field elements at time t+At in terms of prior time 
elements occurring at t= t and at t-At, and we have chosen vAt= Al in order to 
simplify the iterations. The selection of Al is within the allowable range for a 
stable solution(Reference [5]). The numerical velocity, going from (x,y) to 
(x+Al.y+Al), is 21/2A1/At. In order to assure a stable solution the wave velocity v 
must not exceed the numerical velocity. In this case the numerical velocity 
exceeds the wave velocity by a factor 21/2, thus assuring a stable solution. 

The following approximations will further simphfy the iterative equations, 
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2EY(x,y,t) = EY(x, y+Al, t) + Ey(x,y-Al,t) (1.92a) 
2EY(x,y,t) = EY(x+Al, y, t) + EY(x-Al,y,t) (1.92b) 
2Ex(x,y,t) = Ex(x+Al,y,t) + Ex(x-Al,y t) (1.92c) 
2Ex(x,y,t) = Ex(x,y+Al,t) + Ex(x.,y-Al,t) (1.92d) 

Eqs.(1.92a)-(1.92b) state that EY(x,y,t) is the average of the fields at x+Al, 
x-Al, y+Al, and, and y-Al, as suggested by the core matrix. The same type 
averaging applies to Ex(x,y,t) as well. Substitution of Eqs.(1.92a)-(1.892d) into 
Eqs.(1.90)-(1.91)then gives 

EY(x,y,t+At) = 2EY(x,y,t) - EY(x,y,t-At) (1.93a) 

Ex(x,y,t+A t) = 2Ex(x,y,t) - Ex(x,y,t-At) (1.93b) 

The interpretation of Eqs.(1.93a)-(1.93b) is quite simple. It states that the field at 
x,y,t is the time average of the fields at times t+ A t and t -At. In fact, one may 
regard the iterative equation as the sum of two independent averaging processes. 
The first is the spatial averaging of the four cells surrounding (x,y,t), and the 
second is the temporal averaging of t+A t and t- A t. 

At this point, it is convenient to switch over from field variables to TLM 
variables, in order to facilitate the comparison. The field is assumed to be 
concentrated in the center of each cell. In order to switch variables, we imagine 
the cells to be separated from one another by the transmission lines, and for the 
fields to be concentrated now in the lines, while insuring that the averaging of 
the fields in the lines reproduces the original field at the center of the cell. 
Referring to the core matrix in Fig. 1.22, we begin with the fields at the center, 
Ex(x,y,t) and Ey(x,y,t), which are averaged over the lines, V3> V4 and "v\ V2, 
respectively, or 

Ex(x,y,t) = -[V3(x,y,t) + V4(x,y,t)]/2A1 (1.94a) 
EY (x,y,t) = -[V,(x,y,t) +V2(x,y,t]/2A1 (1.94b) 

Note that in each case, a distance of 2A1 is used since the field is averaged over 
two transmission lines(or two cells). The same definitions also apply to times 
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t+At and t-At, in which case, we merely substitute the appropriate time in 
Eqs.(1.94a)-(1.94b). Using the TLM variables, the simplified iterative equations 
become 

V,(t+At)+V2(t+At) = 2[ V,(t)+ V2(t)] - [V,(t-At)+V2(t-At)] (1.95a) 

V3(t+ At) +V4(t+At) = 2[ V3(t)+V4(t)] - [V3(t-At)+ V4(t-At] (1.95b) 

Eqs.(1.95a)-(1.95b) , however are not very useful since they do not contain 
any of the "outer" lines such as VIR, V3U , etc..., which contribute to the TLM 
iteration.The outer terms were "lost" when imposing the approximation given in 
Eq.(1.92). The omission of these terms is an oversimplification. Thus, if we do 
nothing further we will have succeeded in "approximating away" the problem! 

In order to gather in the outer terms, we make a key assumption regarding 
the fields in the vicinity of the cell. If we select our length parameter, Al, 
sufficiently small then we may regard the fields as quasi- conservative over the 
cell region(rather than the node region), and the TLM variables, which we have 
substituted for the fields, will indeed behave as voltages. This will allow us to 
state several important boundary conditions for the core matrix. In order to 
proceed we utilize Fig. 1.23, which applies to the fields Vi(t)+V2(t). This Figure 
is similar to Fig. 1.22, but now shows three alternate paths going from the (x,y-
Al) to (x,y+Al) cell, each of which presumably are equivalent to [Vi(t) +V2(t)]. 
Each path will have an associated weight factor, with the weights adding up to 
one. The three paths are listed below. 

PATH A : W , {V1(t)+V2(t))=W1{A} 
PATH B: W 2{ V4D(t) +V2R(t) +V1R(t)- V4U(t)} = W 2{B} 
PATH C: W3{-V3D(t) + V2L(t) +V1L(t) +V3U(t)}= W 3{C} 

Wi_ W2, W3 are the weights associated with the three paths. We use {A}, etc... 
as a shorthand to denote the particular path. We should note that path A is in the 
inner core of the matrix while B and C are in the outer core. We now make the 
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important assumption that the paths B and C , since they are in the outer core, 
share equally with its neighbors and therefore W2 and W3 have weights half that 
of W] .This is best seen by viewing Fig. 1.23 and considering the adjoining 9 
cell matrix whose center cell is (x+2Al, y) , instead of (x,y) , i.e, consider the 
new matrix formed by shifting the old matrix two cell length to the right. In this 
case, the path B TLM lines of the old matrix are shared with the corresponding 
path C lines belonging to the new matrix. Similar sharing occurs for the original 
path C. B and C, therefore, should have half the weight of A and thus 

W2= (1/2) W,, W3=(i/2)W! (1.96a),(1.96b) 

vj 

v3 D 

v 2 | 

(x,y-Ai) v 4 D 

V2R 

FIG.1.23 SUPERPOSITION OF TLM AND FINITE 
DIFFERENCE GRIDS SHOWING THREE POSSIBLE PATHS 
FOR THE Y DIRECTED FIELD, Vi(t)+V2(t). PATH A HAS 
TWICE THE WEIGHT OF B AND C IN THE CORE MATRIX. 
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where we have assumed that paths B and C are symmetric and thus W2 = W3 . 
What we still lack, however, are the actual values of the weights. These we 
can attain from the normalization requirement, by which we demand that the 
sum of weights equal unity Thus 

1=W! + W2 + W3 (1.97) 

In view of Eqs.( 1.96a ) and (1.96b) 

Wi=l/2 , W2 = W3=(l/4) (1.98a), (1.98b) 

The weight selection has a loose connection to the path lengths of A, B, and C. 
Since B and C have a path length twice that of A, and the corresponding aver
age fields are therefore half that of A, and this invites the argument that the cor
responding weights of B and C should also be half that of A. Although this hap
pens to be the case here, the key factor in obtaining the path weight is related to 
the neighboring core matrices and the sharing of the path with its neighbors, dis
cussed further inApp(lA.l). 

Before proceeding to the decomposition of [Vi(t) +V2(t)], based on the 
weights in Eq.(1.98), we should point out that the fact that A,B, and C are not 
the only possible paths in going from the (x,y-Ay) to the (x,y+Ay) cells. For 
example, one possible path not mentioned involves going from (x, y-Ay) to 
(x+Ax,y-Ay) thence to (x+Ax, y) thence to (x,y) and finally to (x, y+Ay). Indeed 
if one allows the path length to grow without limit the there are innumerable 
number of possible paths. App.lA.l takes into account the alternative paths, and 
describes the weighing process involved; the decisive factor in so far as the path 
weight is concerned, is whether a particular line segment is in the inner core, the 
outer core, or completely outside the core. Taking into account the higher order 
paths, however, does not change any of the results. Thus the decomposition of 
Vi(t)+V2(t), based on the weights of alternative paths(which go beyond A,B, 
and C) , is identical. We therefore utilize the results of the three paths to 
decompose Vi(t)+V2(t). In view of the weights given by Eq.(1.98), the 
distribution is as follows 
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[V,(t) +V2(t)] -> (l/2)[ [V,(t) +V2(t)] + (l/4)[ V4D(t)+V2R(t)+V1R(t)-V4U(t)] 
+ (l/4)[-V3D(t) +V2L(t) +VIL(t) +V3U(t)] (1.99) 

Substituting the above into Eq.(1.95a) then yields 

[V1(t+At)+V2(t+At)]+[V,(t-At)+V2(t-At)]=[V1(t)+V2(t)] 
+(l/2)[V1L(t)+V3U(t)+V1R(t)-V4U(t)] 
+(1/2) [V2L(t)-V3D(t)+V2R(t)+V4D(t)l (1.100) 

But Eq.(l.lOO) is exactly the TLM iteration given in Eq.(1.76). Also, the 
substitution of the TLM relations, Vj(t+ A t)+V2(t+A t) and Vi(t- A t)+V2(t- A t), 
produces an identity , just as in the ID case. Again these choices are not mathe
matically unique. However they are the only functions which physically justify 
the proper wave motions of the forward and backward waves. A similar aver
aging leads to the same conclusions for the fields in the x direction, V3(t)+V4(t). 
For this we use Fig. 1.24, which is the horizontal field counterpart of Fig. 1.23. 

1.18(a). Inclusion of 2D Losses and Final Comments 

We have not included losses in the 2D treatment, which is very similar to 
the ID case. As before, the TLM iterations for the forward and backward 
motions will not only involve reversing the propagation direction, but will also 
involve, in the case of the reverse iteration, the conversion of the resistive loss 
into a gain factor. As with the ID case, the TLM and Finite Difference methods 
for 2D, including losses, lead to identical results. We have also not discussed 
what happens when the region is non-uniform and thus TLM lines in the same 
vicinity will have different line lengths(due to differing dielectric constants). 
Although the basic approach is the same, this issue cannot be addressed unless 
concepts such as "cluster cells" and "nearest nodes", discussed in Chapter V, are 
introduced. 

The identity of the TLM and finite difference results should not be 
surprising, since we insisted that the cell size( or, alternatively, the time step) 
is sufficiently small, so that, at least locally, the fields are conservative about the 
node region. To be sure the curl equations are satisfied, as indicated in Section 
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FIG.1.24 SUPERPOSITION OF TLM AND FINITE DIFFERENCE 
GRIDS SHOWING THREE POSSIBLE PATHS FOR THE X 
DIRECTED FIELD, V3(t)+V4(t). PATH D HAS TWICE THE 
WEIGHT OF E AND F IN THE CORE MATRIX. 

1.16. The numerical technique of finite differences is therefore consistent with 
the iteration based on transmission line concepts. In a mathematical sense, the 
transmission line approach is closely related to a particular finite difference 
method, of which there are many, differing mainly in the speed of convergence 
or in program complexity. An important advantage of the TLM iteration is the 
fact alluded to previously, namely, it involves only two time steps and is 
therefore easier to apply. Other advantages of the TLM method, as mentioned 
previously, are the powerful physical and intuitive understanding which may 
be brought to bear on a wide spectrum of electromagnetic problems. With the 
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TLM method, any mathematical changes made in a computer code have an 
immediate physical interpretation. Conversely, any physical changes in a 
problem are easier to implement in the TLM iteration code. 

App. I A. 1 Effect of Additional Paths on Weighing Process 

We saw in Section(l. 18) that paths B and C , by virtue of the fact that they trav
ersed TLM lines in the outer core, possessed weights half that of the core path A. 
This arises because the outer core lines are shared with similar neighboring core 
matrices and therefore their weight is reduced by a factor of two. 

In Section (1.18 ) we considered only the three most "obvious" paths in 
going from cell (x,y- Al) to (x,y+ Al). As one might guess, there are any number 
of paths between these two cells. We should identify however the paths which 
accomplish the traversal using the minimum number of cell lengths. Indeed 
there are four additional paths, consisting of four cell lengths each, which we 
have thus far not yet specified. These four, in addition to paths B and C , make 
up all the paths consisting of four cell lengths. The four new paths , which go 
from cell (x,y- Al) to (x,y+ Al), representing Vi(t) +V2(t), are 

PathG: (x,y-Al)-Kx+Al,y-Al)^(x+Al,y)^(x,y)-Kx,y+Al) (lA.la) 
Path H: (x, y-Al)-> (x.y)-> (x+Al,y)->(x+Al,y+Al)-^(x,y+Al) (1 A. lb) 
Path I: (x, y-Al)^(x-Al,y-Al)->(x-Al,y)-»(x,y)->(x,y+Al) (1 A. lc) 
Path J: (x, y-Al)-> (x.y)-> (x-Al,y)->(x-Al,y+Al)-^(x,y+Al) (1 A. Id) 

These four paths will actually have more weight than B or C since in each case 
one of the segments involves crossing an inner core TLM line. 

We now consider all seven paths (A,B,C,G,H,I,J) in the weighing process. 
We symbolically make the following decomposition of Vi(t) +V2(t), 

Vi(t)+V2(t)=W1{A}+W2(B}+W2{C}+W3{G}+W3{H}+W3{I} +W3{J} (1A.2) 

We have implicitly made the assumption that the weights for G.FLL J are all 
equal, given by W3. As we have noted previously the paths B and C traverse 
only outer core lines and therefore W2 =Wi/2. The remaining four paths are 
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slightly more complicated. As noted in Eq.(l A. 1) ), the paths traverse both inner 
and outer core lines. In particular one of the four line segments comprising each 
path belongs to an inner core while the other three belong to the outer core. We 
therefore define the weight of each one of these paths as 

W3 =AV[W3 ] = (l/4)[ (Wi/2)+(Wj/2) +(W,/2)+(Wi)]= (5/8)Wi (1A.3) 

Note that the weight of these paths exceeds that of B or C , which arises from 
the fact that these paths traverse an inner core line rather than an outer one. Also 
note that the differences in weight exist despite the identical length(four cell 
lengths)for both types of paths. 

Having assigned weights, relative to Wj , we must now determine Wi, and 
therefore all the other weights, by requiring the weights to be normalized. Thus 

1= Wi+KWj/2) +(Wi/2)] + [(5/8)W!+(5/8)Wi +(5/8)Wi+(5/8)Wi] (1A.4) 

where Wi is the weight assigned to A, Wi/2 is weight for B and C, and (5/8)Wj 
is the weight for G,H,I, and J. Solving 

Wi =2/9 (1A.5) 

Since W2 =(1/2) Wj and W3 = (5/8)Wi 

W2= 1/9 ; W3 = 5/36 (lA.6a) ,(lA.6b) 

Before determining the distribution of Vj(t) +V2(t), resulting from the path 
weights, it will be convenient to note that the combination of certain paths sim
plifies the results. In particular, 

{G}+{H}-> {A}+{B} (lA.7a) 

{I}+{J}-> {A}+{C} (lA.7b) 
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Eq.(lA.7a) comes about because of the cancellation of V4(t) when adding paths 
G and H, leaving {A} and {B} terms. Similarly, V3(t) cancels in Eq.(lA.7b) 
when adding paths I and J, leaving {A} and {C}. At this point we can ascertain 
the distribution of Vi(t) +V2(t). Combining Eqs.(lA.2)-(lA.7), we have 

Vi(t)+V2(t) -> [W,+2W3]{A}+[W2+W3]{B}+[W2+W3]{C} (1A.8) 

Combining above and the weight values, W 1=2/9 W2=l/9 W3=5/36, we have 

Vi(t)+V2(t) -» (1/2){A}+(1/4){B}+(1/4){C} (1A.9) 

The distribution for all seven paths is therefore the same as that obtained solely 
from the paths {A} {B},and {C} 

Use of Paths G.H,I,J Alone as an Independent Set 

In simply adding the four paths G, H, I , J to A, B, and C , and then going 
through the normalization process to obtain the weight distribution, we have ac
tually done twice the amount of work that is really necessary. This is because 
G,H,I, and J form an independent set so far as describing the various paths (x,y-
Al)-> (x,y+Al) is concerned. This is because of the relationships , Eqs.(lA.7a)-
(lA.7b)), which show that A,B, and C m ay be expressed by combinations of 
G,H,I and J. As before we first find the weight W of each of the four paths; in 
this case the job is simple since they are all identical. Thus 

W =1/4 [ Paths G.H,I,J only] (1 A. 10) 

If we now simply express (x,y-Ay)-» (x,y+Ay) in terms of these variables we 
have 

[V,(t) +V2(t)] -> (1/4)[{G}+{H}+{I}+{J}] (1 A. 11) 

or, referring to Eq.(lA.7), 

[V,(t>fV2(t)]-»(l/4)[2{A}+{B}+{C}]-*(l/2){A}+(l/4){B}+(l/4){C} (1A.12) 
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But this is exactly the same result used when considering only A,B and C (or all 
seven paths at the same time). The result leads once more directly to Eqs(1.76) 
and analogously to Eq( 1.85). 

We have thus exhausted all the possibilities for paths up to four cell lengths. 
We can then perform the same type of procedure for path lengths of six cell 
lengths, but no new results or information are obtained. We should also add that 
as we go to paths of six cell segments or longer, then some of the paths will go 
outside the core matrix; for these paths any line segments outside the core matrix 
are considered to have zero weight. 

App.lA.2 Novel Applications ofTLMMethod: Description of Neurological 
Activity Using the TLM Method 

Electromagnetics, of course, is not the only field where the TLM method may 
be employed. Acoustic wave motion (or any phenomena governed by a wave 
equation)and heat diffusion are examples of other technologies where the TLM 
matrix method may be utilized. In fact, the electromagnetics application is 
probably more difficult to incorporate into the TLM formulation because of the 
vector nature of the field and because of the dual polarization associated with 
the wave. Aside from the area of physics, however, there is a branch in the 
biological sciences to which the TLM method appears to have a natural affinity. 
The possible application is the functioning of the brain, which relies on a vast 
array of nerve fibers and synapses, analogous to the transmission lines and nodes 
of the TLM matrix. 

Analogy of TLM Method and Neurological Activity 

We speculate here how the TLM method may be employed to describe neuro
logical activity, in particular that of the brain.. As we have mentioned, in the 
area of nerve cells the nerve fibers and synapses appear to play a role similar to 
transmission lines and nodal switches in the TLM model. Nerve impulses, 
which are believed to be electromagnetic in origin , are conveyed along the fi-
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bers . The synapses exist at the juncture of two or more fibers and they serve to 
control the flow of the impulses from one fiber to another. 

In the case of the brain, the degree of activation of a particular node, and its 
location, are probably central to the thought process. The activation of a 
particular region of synapses , or else the simultaneous activation of several 
regions, may be interpreted by the brain as a sensation or thought. Further the 
activation of one or more regions may contribute to the activation of an entirely 
new region. During non-waking hours, particular(or even most)synapses may be 
activated or "tuned up" periodically to maintain functionality. The "recharging" 
of a node(and its associated fibers)also is of considerable importance. 
Ultimately, how fast these nodes can be recharged will affect the speed with 
which thought processes can be handled Other factors affecting speed, in 
analogy with ordinary physical processes, include the speed with which signals 
are conducted along the neurons, and the "switching speed" of the synapses. One 
can only speculate about the creative process within the brain. It is quite possible 
that random and frequent activations of various regions in the brain occur all the 
time. A healthy and robust brain has the ability to recognize a particular type of 
node activation( i.e., a thought or idea)as a "solution to a problem" or as the 
starting point of an entirely new concept. Most of the time these activations 
come and go without being recognized for their potential value. Memory storage 
may be regarded, within the TLM framework, as the charging up of a particular 
cell(node and line), or even a region of the TLM matrix, beyond some threshold 
value. Stored information is retrieved by activation of the node or region of 
nodes. The activation of a particular region may trigger other near-by regions, 
thus giving rise to a flood of related memories. The brain also appears to rely on 
redundancy, so that multiple regions throughout the brain produce the same 
memory when activated. It is quite possible that the strength of a particular 
memory may depend as much on the number of redundant sites, rather than the 
strength of a particular site. The simultaneous activation of these regions, acting 
in "parallel", then contributes to the strength of the memory. With time, the 
particular memory fades unless periodically activated. The memory dimming 
may be brought about perhaps by the decline of the number of sites as well as 
the strength of the individual sites, which produce the memory. 

There is also the conjectural possibility of correlation among signals 
traveling along neighboring nerve fibers. Chapter IV deals with the topic of 
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correlation between waves in neighboring TLM lines; such correlations 
drastically affect the wave scattering, wherein the correlated signals move as a 
group and with less transverse scattering . By analogy, correlations within the 
brain(assuming they exist) may allow neighboring signals to travel as a group 
along paths which represent a kind of "shortcut". We may regard the wave 
correlations as giving rise to "hunches" or intuitive ideas. Again, we stress that 
wave correlation among nerve fibers is an untested idea, although Penrose(see 
reference cited in Preface) has speculated on the role of a revised quantum 
theory in explaining brain activity. 

These and other speculations concerning impulses in the brain are very 
adaptable to the TLM matrix model. The speculations mentioned in the previous 
discussion may be quantified using the TLM formulation. The application of the 
TLM matrix may be regarded either as a model or alternatively as a handy and 
adaptable mathematical formulation for the transmission of information 
contained in nerve impulses. Regarded as a model, one must then obtain 
predictions of TLM model and compare these with experimental observations. . 

Of course the nerve fibers do not form neat geometrical shapes , such as 
cubes or hexagons, as we assume in TLM analysis. The fibers appear as a 
tangled array with irregular shapes and with varying fiber lengths( Fig.lA.l). 
Despite these differences, the same type of analysis may be applied to nerve 
impulses, taking into account the random nature of the fiber shape and length. In 
some ways the irregularity of the fibers is an advantage since it removes the 
anisotropy associated with the symmetry elements of a cube or hexagon, where 
the energy is constrained to flow in only certain directions. With an irregular cell 
matrix, we are not bound to a preferred direction. We will see in later Chapters 
how this anisotropy is removed from the symmetry elements. 
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FIG 1A.1 RANDOMLY GENERATED CELLS. RANDOMNESS 
PROVIDES ISOTROPIC BEHAVIOR 
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II. Notation and Mapping of Physical Properties 

In this Chapter we proceed to develop a notation, using space symmetry and 
numbering methods, to describe the cell and transmission line elements which 
occupy the medium, as well as to describe the mapping of the fields and dy
namic physical properties onto the cells. The adopted notation is fully capable 
of describing the iterative rate equations of the interlocking transmission lines 
which represent the medium. The notation will make it possible to develop com
puter iterations to describe the electromagnetic behavior of the TLM matrix, or 
equivalently, the medium. 

We show that the combination of transmission lines and node resistors can 
simulate the complete behavior of the medium. As mentioned before, the trans
mission lines both convey and store electromagnetic (including light) energy 
while the nodes simulate any changes in the electrical properties(particularly the 
conductivity). The transmission lines and nodes are attached to the cell; the cells 
completely occupy the space, i.e., they belong to spatial symmetry elements. 
Regardless of the type of cell used, the transmission lines surround the cell, and 
form the boundaries with the neighboring cells. The nodes are formed at the in
tersection of the transmission lines. The selection of the actual cell geometry is, 
to some degree, arbitrary. If the medium is isotropic, then at the very least we 
impose the requirement that the distance between adjacent nodes remain the 
same. This insures that the delay time between nodes is unchanged, regardless of 
the particular transmission line. This limits the cells to equilateral shapes. Ex
amples of equilateral cells are shown in Fig.2.1 for the case of two dimensions. 
The examples shown, a square and hexagon, obviously satisfy the equilateral re
quirement. The nodes, shown as the small darkened circles, are located at the 
corners (or intersections) of the cells. The square cell is easiest to handle, how
ever, both conceptually and from a bookkeeping point of view, so that the mod
els to be described here will be focused almost entirely on this element(or cube, 
in the case of three dimensions). Other cell geometries should not be ignored, 
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FIG.2.1 POSSIBLE CELL STRUCTURES FOR USE IN TLM MATRIX. 

however, since they may possibly offer possible advantages. Certainly, in the 
case of anisotropic crystals, one is prompted to use non- equilateral cells. In 
this regard, we note in Fig.2.2 the same square cells as in Fig.(2.1), but elon
gated in the vertical direction. The elongated lengths of the cell are along direc
tions in which the propagation velocity is proportionately faster. The elongated 
sections insure that the same delay time is maintained between nodes. 
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FIG.2,2. NON-EQUILATERAL CELL MATRIX WITH 
ELONGATED LINES IN VERTICAL DIRECTION. 

Even with mediums which are isotropic with respect to the propagation ve
locity, the use of equilateral cells to simulate the medium still does not produce 
complete isotropic behavior, unless some corrections are introduced. The cor
rections, which are needed because of the constraint that the electromagnetic en
ergy flow along the borders of the cells, are discussed in Chapter IV. 

2.1 ID Cell Notation and Mapping of Conductivity and Field 

Before proceeding to the 2D and 3D matrices it will be instructive to look at the 
ID circuit briefly and to apply the appropriate notation to such a system. As 
noted in Fig.2.3 the cells are numbered consecutively, with n being a positive 
integer. The forward and backward waves in each cell are given by +V (n) and 
~Vk(n) respectively. The pre-superscripts , + and - , indicate the wave direction, 
+ for the forward wave (increasing n) and - the backward wave. The time step 
associated with a particular quantity, such as the field, is designated with a k in
dex and added as a superscript. Thus +Vk(n) is the horizontal forward wave in 
the nth cell during the kth time step. The superscripts normally will be omitted 
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R(n-2) . ^ C R(n-1) 
Z(n-2) ^ * S Z(n-1) 

R(n) _ ^ 
Z(n) ^ S R(»+l 

*vWV*..)> ^ 

n-1 n n +1 

FIG.2.3 NOTATION FOR ID COUPLED CELLS. BY 
CONVENTION THE nth NODE , ATTACHED TO THE 
NTH CELL, IS IN THE DHUECTION OF INCREASING n 
(TO THE "RIGHT" OF THE Z(n) CELL). 

unless they are germane to the discussion. The characteristic impedance of each 
cell is labeled by Z(n). The n label for the cell Z(n) is used to indicate not only 
the cell impedance, but is also used to locate(at least for identical cells) the loca
tion of the cell within the chain. In Fig.2.3 the cell impedances are assumed to be 
the same and thus cell lengths are identical. Later, as well as in subsequent 
Chapters, the labeling also will allow us to consider differing values of cell im-
pedance(and different line lengths), which will be necessary when treating 
nonuniform dielectrics, dispersion, and boundaries between differing dielectrics. 
Note that each cell shares two node resistors, R(n-l) and R(n). By convention 
the node resistor R(n), corresponding to the nth cell, is located in the direction of 
increasing n (i.e., located on the "right hand side "of the cell) while R(n-l) is the 
node resistor located in the direction of decreasing n. 

Having outlined the ID notation we can proceed to the calculation of the 
node resistance. There are alternate means for obtaining the effective node re
sistance all of which are more or less equivalent. One approach, already alluded 
to in Chapter 1, relies on first calculating the end resistors for each TLM ele
ment. As shown in Fig.2.4, we first focus on the nth and (n+l)th isolated cells, 
for which the end resistors are (see Section 1.3, Eq.(1.9)), 

R'(n) = 2p(n)/Al (2.1a) 
R'(n+1) = 2p(n+l)/Al (2.1b) 
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BASIC ID CHAIN 
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FOR ISOLATED CELLS: 
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R'(n)=2p(n)/AI 
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FOR A CHAIN OF CELLS, R'(n), R'(n+1) ARE PARALLEL: 

R'(n)« R'(n+1) R(n) 

R(n)=(2/Al)[ p(n) p(n+l)]/ {p(n)+ p(n+l)] 

FIG. 2.4. CALCULATION OF R(n). 
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where prime has been added to indicate this is an end resistor of an isolated 
cell, in contrast to that of a chain of cells in which the adjoining end resistors 
are combined in parallel fashion. Indeed, when considering the cell chain, the 
combined node resistance between the nth and (n+l)th cells is then 

R(n) = R'(n)R'(n+l)/[R'(n)+R'(n+l)] (2.2) 

Using Eqs.(2.1a)-(2. lb), R(n) becomes 

R(n) = (2/Al)[p(n)p(n+l)/[p(n)+p(n+l)] (2.3) 

Note that for cells with the same resistivity, 

R(n) =p(n)/Al (2.4) 

and therefore the factor of two no longer appears. 
A second technique for calculating R(n) involves taking the average of the 

conductivities of the two adjoining cells. Thus 

aAv(n) = [a(n)+cr(n+l)]/2 (2.5) 

There exists an equivalent auxiliary cell for this average conductivity, situated 
midway between the two cells with its center at the actual node location, as 
noted in Fig.2.5. Note that the auxiliary cell does not coincide with any of the 
original cells. The total node resistance for the auxiliary cell (without the two 
factor) is therefore 

R(n)= l/o-Av(n)Al (2.6) 

and the substitution of Eq.(2.5) gives 

R(n) =(2/Al)[l/(a(n)+o-(n+l))] (2.7) 

or, R(n) = (2/Ai)[p(n)p(n+l)/[p(n)+p(n+l)] (2.8) 
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AUXILIARY CELL 

n n+1 
<— A I — • 

aAV(n) =[o(n)+ a(n+l]/2) 
R(n)=l/oAV(n)Al=(2/Al)[p(n)p(n+l)]/[ p(n)+ p(n+l)] 

FIG.2.5 USE OF AUXILIARY CELL TO OBTAIN R(n). 

Note that R(n) in Eq.(2.8) is identical to that of Eq.(2.3). Thus finding the end 
resistors of each cell and then combining them in parallel, is equivalent to the 
node resistance of the single auxiliary cell formed from the neighboring cells. 

2.2 Neighboring ID Cells With Unequal Impedance 

In the previous discussion we allowed the conductivities of neighboring cells to 
differ, but constrained the line lengths to be the same. Suppose two neighbors 
have both different line length , as well as different conductivity. This can occur 
at a boundary between two different dielectrics, A and B where the line lengths 
are A1A and AIB., as shown in Fig.2.6. We note now that region B has the longer 
cell length. The notation adapted here is to employ two indices, nA and nB, to 
describe the cell location in each region and to specify the boundary between re
gions. Actually the indices nA and nB are related to one another, as we shall 
make note in the following paragraph and in Chapter V. Also, as noted in Fig.2.6 
we assume a simple boundary in which cell A fits perfectly with cell B, in the 
sense that no truncated cells are required to form the boundary. 



Notation and Mapping of Physical Properties 79 

Z(nA-l) 
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FIG.2.6 NOTATION FOR NEIGHBORING CELLS WITH 
UNEQUAL IMPEDANCE VALUES. 

With the two dissimilar dielectric regions, the use of two separate indices, 
one for each region, adds complexity. If possible, the use of a single index for 
both regions would simplify matters. As one possibility, for example, suppose 
we continued to use the same index in B as in A. At the boundary, the B cell 
would satisfy nB =nA+l and in fact we would simply continue to use the same 
integral index for the cells in region B. With this label we would know the 
number of transit time intervals required for a signal to reach the cell in question, 
but otherwise this labeling would not be very useful. As will be pointed out in 
Section 5.4 , it is more useful to employ a different single index as a label for 
the cells in both regions, one which would directly pinpoint the location for 
each type of cell, regardless of the region, in much the same fashion as a position 
coordinate. In describing the B region, however, such a cell index will in gen
eral involve non- integral numbers and , in addition, the index will increase by a 
non-integral amount for consecutive cells . We do not dwell here on this type of 
single index cell notation, however, which is taken up further in Chapter V. For 
the present we use the two index notation, designated by nA and nB, to describe 
the adjoining dielectrics as depicted in Fig.2.6. 
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If we focus on cells nA and nB , we can proceed to calculate the node resis
tance at the boundary As before there are two ways to calculate the node resis
tance, the first of which combines the end resistors at the node. The end resistors 
for the adjoining nA and nB cells are 

R'(nA) = 2p(nA)/AlA (2.9a) 

R'(nB) = 2p(nB)/AlB (2.9b) 

where the prime again indicates the resistors are the isolated cells. Combining 
these resistors in parallel fashion (for a chain)we obtain the node resistance at 
the boundary, designated by R ^ , or 

RAB = 2p(nA)p(nB)/[AlAp(nB)+AlBp(nA)] (2.10) 

Note that when A1A = A1B, the node resistance reduces to Eq.(2.8) as expected. 

The second method involves taking the average of the two conductivity cells 
at the boundary. Denoting this average by O"AVJAB , we have 

aAv,AB = [AlAcr(nA) + AlBo-(nB)]/(AlA +A1B) (2.11) 

The conductivity differs from Eq.(2.5) in as much as it is weighted by the length 
of the cell as well. The node resistance is then defined as 

RAB = 1/(O-AV,AB [(AlA+AlB)/2]) (2.12) 

where we have replaced the Al in the identical cell situation, Eq.(2.6), with the 
average of the two cell lengths at the boundary. Substituting Eq.(2.11) into the 
above and replacing a(nA) , a(nB) with l/p(nA) and l/p(nB) we obtain 

RAB = 2p(nA)p(nB)/[AlAp(nB)+AlBp(nA)] (2.13) 

which is identical to Eq(2.10). 
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FIG.2.7 TWO DIMENSIONAL MATRIX CONSISTING OF 
CIRCUIT NODE AT CENTER OF FOUR ISO-POTENTIAL 
CELLS. CELL NOTATION IS EMPLOYED. 

2.3 2D Cell Notation. Mapping of Conductivity and Field 

In this section we outline the sequential numbering system to describe the cells, 
transmission lines ,and nodes which simulate the 2D medium. Fig.2.7 shows the 
system used for a 2D, identical square cell matrix. Fig.2.8 is identical to Fig.2.7, 
but with a larger view, taking into account additional cells. In Figs.2.7 and 2.8 , 
and in the many similar figures which follow, the matrix cells will be drawn as 
though the TLM lines are identical( equal length), with the same dielectric con
stant and propagation velocity. In fact, we always allow for non-uniformity 
among the TLM lines, but for visual simplicity the lines will be drawn with 
equal length. Non-uniformity among the TLM lines also will require us to use 
node coupling approximations, which are discussed in Chapter V. 
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FIG, 2.8 2D TLM NOTATION CONVENTION-.Z^n.m) AND 
Z ^ n i ) ARE THE TWO LENES(SHADED) ASSOCIATED 
WITH THE (n,m) CELL. R(n,m) IS AT THE INTERSECTION 
OF Zxy(n,m) AND Z„(n,m). 

Each cell is labeled with a pair of number indices, (n,m), corresponding to 
the x and y directions respectively. We note that the potential of each iso-
potential cell region is labeled by V(n,m), V(n+l,m), and so forth. If Al is the 
length of the cell, and n^ m,, are the upper limits of n, m, then iioAl and moAl 
represent the dimensions of the medium. Next, we associate the transmission 
lines and node resistors with a given cell. Which transmission lines are to be as
sociated with a particular cell, to some degree, is a matter of choice. Certainly 
one cannot associate all four lines surrounding the cell, since this will leave the 
neighboring cells deficient. Associating one or three lines violates the basic 
symmetry. Associating two transmission lines with each cell, one horizontal and 
the other vertical, satisfies the spatial symmetry. However, we must choose the 
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same two lines for each cell. As shown in Figure (2.8), the two lines selected , 
the horizontal Zxy(n,m) and the vertical Zyx(n,m), belong to the (n,m) cell, and 
represent the lines located in the direction of increasing x and y (or, equivalently, 
in the increasing n and m directions). A similar notation is adopted for the volt
age waves. The voltages in the horizontal and vertical lines are designated by 
Vxyfom) and Vyx(n,m) respectively. The subscripts, for both the lines and volt
ages, designate the propagation and polarization directions respectively. To cite 
an example, Vxy(n,m), located in the Zxy(n,m) line, propagates in the x direction 
with the field in the y direction. The subscripts are of course absent when speci
fying the cell potential. It is important to realize that Vxy(n,m) and Vyx(n,m) rep
resent the difference in cell voltages, V(n, m+l)-V(n,m) and V(n+l,m)-V(n,m), 
respectively. Another important point is that there are forward and backward 
waves associated with each line and these are designated by +Vxy(n,m) and 
"Vxyfom), respectively, with Vxy(n,m) = +Vxy(n,m) + ~Vxy(n,m) and similar no
tation for Vyx(n,m) , i.e., the two waves in Zyx(n,m) are +Vyx(n,m), ~Vyx(n,m) 
with Vyx(n,m) = +Vyx(n,m) + "Vyxfom). 

In the case of the node resistors, we need only associate a single node with 
each cell. For consistency we must choose the same node for each cell, and 
adopt the convention that the node is located in the direction of increasing n and 
m in each cell(i.e., in the upper right corner of the cell) as shown in Fig.2.8. 
Each of the four nodal resistors, which are assumed to be equal, is designated by 
R(n,m) . The question naturally arises whether it is desirable to provide an addi
tional label for each of the four resistors, perhaps to allow for the possibility that 
the resistors are unequal. Such a differentiation may be useful, perhaps in the 
case of boundary conditions. For the present discussion, however, we forego the 
opportunity to differentiate the four nodal resistors. Besides the issue of added 
complexity, the node, by its very nature, has no spatial extent and, therefore, 
the four resistors should be equal. The transmission lines account for any spatial 
changes while any time varying changes in the medium(unrelated to propagation 
effects)are presumed to occur in the node resistors. Boundary conditions are 
handled by embedding the entire node in the medium which forms the boundary, 
to be discussed later. 

Next we relate the resistivity to the values of the nodal resistors. This is 
done by averaging the cell conductivities surrounding the lines and nodes and 
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then using the results to obtain the average of the inverse node resistors. The cal
culation is done for one particular direction(representing a particular set of node 
resistors), but the results are the same when the averaging is done over all resis
tors and directions. We illustrate the calculation, using Fig.2.9 , in which we 
have selected the y direction. This implies that we focus on the lines Zxy(n,m) 
and Zxy(n+l,m), since the fields are y directed in these lines. We must then cal
culate and then average two resistors, which we designate as RA(n,m) and 
RB(n+l,m), each of which is associated with auxiliary cells centered about lines 
Zxy(n,m) and Zxy(n+l,m), respectively( we temporarily assign differing labels to 
the resistors in order to perform the averaging process). In order to obtain 
RA(n,m) we first obtain the average conductivity in which the Zxy(n,m) line is 
contained. Designating this conductivity by aA(n,m) we have 

t 
AUXILIARY 
CELL A 

(n+l,m+l) 

I o t 
AUXILIARY 
CELLB 

(n+l,m) J 
FIG.2.9 AVERAGING OF CONDUCTIVITIES IN 
AUXILIARY CELLS A AND B CENTERED ABOUT 
ZxY(n,m) AND ZXY(n+l,m). AVERAGING LEADS TO 2/AaAV 

a A = [a(n,m)+cx(n,m+l)]/2 (2.14) 
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Note that c(n,m) and a(n,m+l) are simply the conductivities of the two cells 
surrounding the Zxy(n,m) line. The resistor associated with this conductivity, 
from the previous discussion, is 

RA(n,m)= 2 / A I O A (2.15) 

where the two factor appears, as mentioned before, because the loss is repre
sented by a pair of node resistors in (one at each end of the line). We next obtain 
the corresponding quantities for the Zxy(n+l,m) line, which is the second line 
with the y directed field. Designating the average conductivity about this line as 
O"B, the corresponding equations are 

a B = [a(n+l,m)+a(n+l,m+l)]/2 (2.16) 

RB(n+l,m)= 2 / A I O B (2.17) 

We next form the average of the inverse RA(n,m) and RB(n+l,m), which is 
equivalent to taking the average of the corresponding conductivities. This aver
age defines the node resistance R(n,m), or actually 1/R(n,m), so that 

(1/R(n,m)) = (1/2) [ (l/RA(n,m) +l/RB(n,m)] = (1/4)A1 [oA +cB] (2.18) 

We also note , however, that the average conductivity about the node resistor, 
designated by 0AV(n,m), is 

aAV(n,m) = [o(n,m) +a(n,m+l)+ a(n+l,m)+a(n+l,m+l)]/4 (2.19) 

Combining the previous equations, 

(l/R(n,m)) = (l/2)Alo-AV(n,m) (2.20) 

or R(n,m) = 2/AlCTAV(n,m) (2.21) 
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The node resistance R(n,m) is the sought after result which relates R(n,m) to 
the average conductivity in much the same manner as the ID relation, except for 
the factor of two, which is now present since adjoining end resistors are no 
longer combined. The result in Eq.(2.21) may seem premature since we have 
done the averaging in only in the y direction , while ignoring the x direction. We 
must therefore consider the Zyx(n,m+1) and Zyx(n,m) lines as well and perform 
a similar averaging. The reader will quickly verify, however, that the same aver
age, given by Eq.(2.21) is obtained. An "intuitive" method for obtaining the 
same expression for R(n,m), which works for 2D, is as follows. The average 
conductivity about the node, aAv(n,m), is first obtained, as seen in Fig.2.10 
where we use an auxiliary cell centered about the node. We then assume an 
equivalent circuit where a pair of parallel resistors , each equal to R(n,m), is di
rected in , say, the y direction. The combined resistance, R(n,m)/2, is then set 
equal to the equivalent resistance of the center cell, or, R(n,m)/2 = l/AlaAv(n,m), 
which is identical to Eq.(2.21). 
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aAv(n,m)=[ a(n,m)+ a(n+l,m) +a(n,m+l)+ a(n+l,m+l)]/4 
R(n,m)=2/AlaAv(n,in) 

FIG.2.10 EQUIVALENT R(n,m) WITH 
CONDUCTIVITY CENTERED AT NODE. 
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One thing to note is the special case in which the node is situated adjacent a 
conducting electrode. Under these circumstances o"Av(n,m) will be dominated 
by the electrode, even if the node itself is not embedded in the electrode, but 
rather in the dielectric. Given Eq.(2.21), the node resistor will be shorted out, 
which is counter to our intuition if the node is located outside the electrode. In 
the applications which follow, we will often disregard the effect of the conduct
ing electrode on the node resistance; in the limit of large cell densities there will 
no difference in the two choices. 

Next we interpret the fields in the medium, based on the transmission line 
description. Note that there are four iso-potential square regions surrounding the 
node, designated by V(n,m), V(n,m+1), V(n+l,m), and V(n+l,m+l). The TLM 
voltage in each of the four lines , which intersect the node , are given by the 
voltage difference between appropriate cells. Thus, in line Zxy(n,m), the TLM 
voltage Vxy(n,m) is given by V(n,m+1)-V(n,m), and similar relationships apply 
to the other lines. 

An important point to emphasize is that the width of the TLM line is purely 
conceptual, and is ideally interpreted as an extremely narrow line, concentrating 
the energy that is actually distributed in the adjoining cells. Suppose we wish to 
obtain the average field distributed throughout the medium (rather than the con
centrated field in the TLM line). First we obtain the fields corresponding to the 
TLM lines, as mentioned previously. How do we interpret the voltage difference 
in the line, so far as the distributed field is concerned? Referring to Fig. 2.11(a), 
as an example, the voltage difference in line Zxy(n,m) is assumed to be the same 
as that of the auxiliary cell shown by the dashed line. The size of the auxiliary 
cell is identical to the elementary cell, but is centered about the Zxy(n,m). One 
may regard the voltage difference in the line, Vxy(n,m), as uniformly distributed 
throughout the auxiliary cell centered about Vxy(n,m) line. A similar auxiliary 
cell is shown for Vyx(n,m) in Fig.2.11(b). 

Often we require the average field in the (n,m) cell itself (rather than the 
auxiliary cell centered about the line) Following the lead in obtaining the resis
tivity , this field is simply averaged over its neighbors. Thus , for example, the y 
directed field in the (n,m) cell, Fig.2.12, is the average of the fields in the 
Zxy(n,m) and Zxy(n,m-1) lines, with fields Vxy(n,m) and Vxy(n,m-1), respectively. 
We define the average field, VAv,xy(n,m) for the (n,m) cell as 
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FIG.2. 11(a) EQUIVALENT VERTICAL FIELD BASED ON 
AUXILIARY CELL CENTERED ABOUT ZxY(n,m) LINE, 
EQUAL TO V(n,m+1)-V(n,m). SIMILARLY, IN (b) THE 
HORIZONTAL FIELD IS V(n+l,m)-V(n,m). 
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FIG. 2.12 FTELD AVERAGED THROUGHOUT (n,m) CELL IS 
VAv,xY(n,m)= (l/2)[VXY(n,m)+VXY(n,in-l)]. SIMILARLY, 
VAV, YX(n,m)= (l/2)[VYX(n,m)+VyX(n-l,m)]. 
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VAV,xy(n,m) = (l/2)[Vxy(n,m)+Vxy(n,m-l) (2.22) 

where the first subscript AV denotes this is an average field for the (n,m) cell. It 
should be noted of course that each term on the right side is the sum of forward 
and backward waves, e.g., Vxy(n,m) = +Vxy(n,m) + ~ Vxy(n,m) , etc.. A similar 
averaging of the x directed field for the (n,m) cell gives 

VAV.yx(ii,m) = (l/2)[Vyx(n,m)+Vyx(n-l,n)] (2.23) 

2.4 3D Cell Notation. Mapping of Conductivity and Field 

We next consider a 3D matrix , in which case the elementary cell is cubic. Each 
cube, as shown in Fig.2.13(a), is labeled by the set of positive integers (n,m,q), 
corresponding to the discretization of the x,y,and z axes, respectively. The node 
associated with the (n,m,q) cell is located at a particular corner of the cube, cor
responding to the maximum values of x,y, z within the cube. The three line seg
ments of the cube, emanating from the node, indicate the locations of the trans
mission lines associated with the cell. Actually there are a total of six such 
transmission lines, two for each of the three line segments. This is so since there 
are two transverse fields(two possible polarization directions) for each line seg
ment, i.e., for each direction of propagation. The six transmission lines and fields 
associated with the (n,m,q) cell are shown in the following: 

Propagation Direction Transmission Lines Fields 

x Z^n^q), ZjT\,m,q) Vxy(n,m,q), \Jp,m,($ 

y Zyx(n,m,q), Zyz(n,m,q) Vyx(n,m,q), Vyz(n,m,q) 

z Zzx(n,ni,q), Zjy(n,m,q) Vzx(n,m,q), Vzyfom.q) 

An alternate way of classifying the impedance lines is according to the plane of 
propagation(defined by the field direction and the propagation direction), as 
shown below: 
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Propagation Plane Transmission Lines Fields 

xy Zxy(n,m,q), Zy^a.,m,q) Vxyfan^q),Vyx^m,^ 

yz ZyZ(n,m,q),Zzy(n,m,q) Vyzfon^q), V ^ n ^ q ) 

zx Z^n.m.q), ZxzCn.m.q) Vzx(n,m,q), VM(n,m,q) 

(n,m,q) NODE 

FIG. 2.13(a) ELEMENTARY CELL OF TL MATRIX. 

Zly(n,m,q) R(n,m,q) Zy2(n,m,q) ZZI(n,m,q) 

ZyxOMn.q) 
Z>,m,q) 

"X ZK(n,m,q) 

FIG.2.13(b) PROJECTION OF 3D TLM MATRK ONTO 2D GRIDS. 
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Fig.2.13(b) shows the 2D projections of the TLM lines for the (n,m,q) cell. The 
shaded lines are those belonging to the (n,m,q) cell. Each of the lines in 
Fig.2.13(b) contains the associated voltage wave, e.g., Zxy(n,m) contains 
V ^ m ) , etc... 

The notation for the designation of the TLM lines and voltages is similar to 
that of 2D. We cite Zxyfom.q) and Zjjp.,m,q) as examples. In the case of 
Zxyfon^q), (n,m,q,) of course refers to the particular cell. As with the 2D, the 
first subscript, x, indicates the direction of propagation and the second subscript, 
y, indicates the field direction, xy also defines the propagation plane Similarly, 
Z ^ n ^ q ) , has the same direction of propagation but whose field is in the z di
rection. The other four lines, Zyx(n,m,q), ZyJ(a,m,(\), Z^Jn,m,q), and Zzy(n,m,q), 
follow the same designation. Note that the remaining nine line segments of the 
cubical cell(Fig.2.13(a)), corresponding to twelve transmission lines, "belong" 
to other cells. Thus, for example, the line segment giving rise to Zxy(n,m,q-1) 
line, which runs parallel to the Z^y (n,m,q) line, belongs to the (n,m,q-l) cell. 
By constructing the neighboring cells, one may observe that the space symmetry 
is observed, i.e., all space is fully utilized. The notation for the voltage wave dif
ference in each transmission line follows the same pattern, so that in the 
Zxy(n,m,q) line, for example, the voltage wave is Vxy(n,m,q), and the voltage 
waves in the other lines follow in the same way. Fig.2.14 shows a 3D depiction 
of four of the eight cells surrounding the (n,m,q) node. The six TLM lines 
(Zxy(n,m,q), Zyx(n,m,q), etc.. ) associated with the (n,m,q) cell are highlighted. 
Although only the edges of the (n,m,q) cell are highlighted, each 3D TLM line 
should be regarded as an infinitesimal line running along the common border of 
the four surrounding cells. Thus, for example, Zxyforr^q) and Zxz(ii,m,q) run 
along the common border of the (n,m,q), (n,m,q+l), (n,m+l,q), and (n,m+l,q+l) 
cells. 

Having identified the location of the nodes and the transmission lines for 
the 3D case, we now turn our attention to the mapping of the physical properties, 
such as the resistivity and the fields. As alluded to previously, the 3D problem 
may be separated into three 2D constructions ,as noted in Fig.2.13(b). On occa
sion , we may wish to label the node resistors so as to identify to which line the 
node resistor the belongs. Hence, we may employ the designations of Rxy(n,m,q), 
Rz^nmjq), and Ryz(n,m,q). We stress, however, that the three node resistors of 
the cell are entirely equal, and unless there is the possibility of confusion, we 
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ZyZ(n,m,q) 
Z^(n,m,q) N 

Zsy(n,m,q) 

T 
Zn(n,o,q) 
Zsy(n,m,q) (n,m,q) NODE 

FIG.2.14 DEPICTION OF FOUR OF THE EIGHT CELLS 
SURROUNDING THE (n,m,q) NODE. HIGHLIGHTED EDGES 
CONTAIN THE SIX TLM LINES BELONGING TO THE (n,m,q) 
CELL. 

omit the subscripts. 
The first property to be mapped is the node resistance. The node resistor 

may be calculated by methods analogous to the 2D matrix. As before, we select 
a field direction and then calculate the average conductivities surrounding the 
lines, from which the average inverse node resistance may be calculated. If we 
select the z direction then there will be four transmission lines, converging on 
the (n,m,q) node, which will have a field in the z direction. These are: 
Zxzfon^q), Zxz(n+l,m,q) , Zyz((n,m,q), and Zyz(n,m+l,q). We temporarily label 
the equivalent end resistors for each of the four lines, as RA(n,m,q), RB(n,m,q), 
Rc(n,m,q), and RD(n,m,q). In order to obtain these end resistors we need to ob
tain the average conductivity in the line, which may be estimated from the aver
age of the conductivity of the four cells surrounding each line. For line 
ZxzOi^q), for example, the four conductivity cells are a(n,m,q) a(n,m+l,q) 
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a(n,m,q+l) and o(n,m+l,q+l). The average conductivity for this line, desig
nated by aA, is 

aA = [a(n,m,q)+a(n,m+l,q)+a(n,m,q+l) + a(n,m+l,q+l)]/4 (2.24) 

From our previous discussion, the resistor RA(n,m,q), which is at each end of 
the Zzx(n,m,q) line, is 

RA(n,m,q) = 2/AlaA (2.25) 

Similar relationships , corresponding to Eqs.(2.24) and (2.25) , may be ob
tained for the other three lines. For Zxz(n+l,m,q) the average conductivity and 
corresponding node resistance, designated by aB and RB(n,m,q) are 

o-B =[CT(n+l,m,q)+o-(n+l,m+l,q) +a(n+l,m,q+l) + a(n+l,m+l,q+l)]/4 (2.26) 

RB(n,m,q) = 2/AlaB (2.27) 

Similar relationships apply to Zyzfom.q) and Zyzfom+^q), labeled with the sub
scripts C and D respectively, are 

ac=[a(n,m,q)+a(n,m,q+l)+o-(n+l,m,q) +a(n+l,m,q+l)]/4 (2.28) 

Rc(n,m,q) = 2/Alac (2.29) 

CTD=[a(n,m+l,q)+a(n,m+l,q+l) +a(n+l,m+l,q)+cj(n+l,m+l,q+l)]/4 (2.30) 

RD(n,m,q) = 2/AlaD (2.31) 

As with the 2D we now form the average of the inverse end resistors, which then 
defines R(n,m,q) (or more precisely, 1/R(n,m,q)). Thus 

1/R(n,m,q) =[(1/RA +1/RB+ 1/Rc+ l/RD)]/4 = (1/8)A1 [oA+aB+ac+o-D] (2.32) 
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We now recall that the average conductivity centered about the node , 
<yAV(n,m,q), is 

aAV(n,m,q)=[a(n,m,q)+a(n,m+1 ,q)+a(n,m,q+ l)+a(n,m+1 ,q+1)+ 

c(n+l,m,q)+a(n+l,m+l,q) +a(n+l,m,q+l)+cr(n+l,m+l,q+l)]/8 (2.33) 

Combining Eqs(2.24)-(2.32) then gives for the node resistance 

R(n,m,q) = 2/Ak7AV(n,m,q) =2pAV(n,mq)/Al (2.34) 

which is identical to the 2D result. The above result is the same if we average 
over other directions(using other sets of end resistors) or, equivalently, if we av
erage over all the end resistors. 

Next we determine the voltages in the transmission lines, and from this the 
fields centered about the TLM lines, based on the difference in voltage between 
neighboring cells. As an example, we consider the Zxzfon^q) lines, which is a 
line, associated with the (n,m,q) cell, propagating in the x direction with the field 
in the z direction. The voltage difference for this line is Vxz(n,m,q).This differ
ence is calculated by first taking the average of the voltages of the (n,m,q) and 
(n,m+l,q) cells followed by the average of those for the (n,m,q+l) and 
(n,m+l,q+l) cells and then taking the difference between these two averages. 
This is more complicated than the 2D case where the voltage difference in the 
line is simply the difference between adjacent cell voltages. Table 2.1 gives the 
averaging for the various transmission lines belonging to the (n,m,q) cell. 

Just as we defined average fields throughout the 2D cell, we also do the 
same for 3D cell as well. For example, the y directed field in the (n,m,q) cell is 
the average of the fields of the eight lines : Zxy(n,m,q), Zxy(n,m-l,q), Zxy(n,m-
l,q), Zxyfam-^q-l), Zzy(n,m5q), Z^fom-^q), Z ^ n - l ^ q ) , and Z^n-l.m-
l,q). The average y directed field for the (n,m,q) cell defined as VAV,y(n,m,q) is 
thus 

VAV,y(n,m,q)=( l/8)[Vxy(n,m,q)+Vxy(n,m-1 ,q)+Vxy(n,m,q- O + V ^ m - l,q-l)+ 

V ^ m ^ + V ^ m - l ^ + V ^ n - l ^ q ) ^ ^ - ! ^ - ! ^ ) ] (2.35) 
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LINE 

V^fan^q) 

Vy^n^q) 

Vxyfom.q) 

V^n^q) 

VyxCn̂ q) 

V^forr^q) 

T A B L E 2.1 

A V E R A G E FIELD IN LINE 
BASED O N C E L L V O L T A G E S 

(l/2)[V(n,m,q+l)+Vn,m+l,q+l)-V(n,m,q)-V(n,m+l,q)] 

(l/2)[V(n,m,q+l)+V(n+l,m,q+l)-V(n,m,q)-V(n+l,m,q)] 

(l/2)[V(n,m+l,q)+V(n,m+l,q+l)-V(n,m,q)-V(n,m,q+l)] 

(l/2)[V(n,m+l,q)+V(n+l,m+l,q)-V(n,m,q)-V(n+l,m,q)] 

(l/2)[V(n+l,m,q)+V(n+l,m,q+l)-V(n,m,q)-V(n,m,q+l)] 

(l/2)[V(n+l,m+l,q)+V(n+l,m,q)-V(n,m,q)-V(n,m+l,q)] 

As mentioned before , each term on the right side of Eq.(2.35) consists of for
ward and backward waves. In addition, as we shall see in Chapter 4, each term 
may be split into plane wave and symmetric components, but this need not 
concern us for the moment. 

For completeness we write down the average x and z fields for the cell: 

VAv,x(n,m,q) = (l/8)[Vzx(n,m,q)+Vzx(n,m-l,q)+Vzx(n-l,m,q)+Vzx(n-l,m-l,q) 

+Vyx(n,m,q)+Vyx(n-l,m,q)+Vyx(n,m,q-l)+Vyx(n-l,m,q-l)] (2.36) 

VAv,z(n,m,q) = (l/8)[Vxz(n,m,q)+Vxz(n,m,q-l)+Vxz(n,m-l,q) +VX2(n,m-l,q-l) 

+Vyz(n,m,q)+Vyz(n-l,m,q)+Vyz(n,m,q-l)+Vyz(n-l,m,q-l)] (2.37) 
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Other Node Controlled Properties 

Besides the conductivity, what other properties may we ascribe to the nodes? 
This is a wide ranging question which can only be answered by the physics un
derlying the wave propagation The nodes embody the physics of the medium. As 
such they control the scattering of the electromagnetic waves in the medium. 
Fig.2.15 indicates the generic node function, denoted by S(n,m). In most cases 
this will amount to the conductivity control, in which case S(n,m) = R(n,m). 
However many other properties, such as signal gain, signal generation, mode 
conversion, and plane wave correlation(discussed in Chapter IV)may be con
trolled by the nodes. The following gives examples of several node controlled 
properties, assuming 2D to simplify the discussion. 

INCOMING 
SIGNAL 

SCATTERED SIGNAL 
MODIFIED BY NODE 
FUNCTION S(n,m) 

FIG. 2.15 ANY PHYSICAL PROPERTY MAY BE ASSIGNED TO THE 
NODE FUNCTION S(n,m) PROVIDED THE SCATTERING 
COEFFICIENTS ARE PROPERLY DEFINED. EXAMPLES ARE, 
BESIDES LOSS, SIGNAL GAIN AND GENERATION, MODE 
CONVERSION, AND PLANE WAVE CORRELATION. 
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2.5 Node Control of 2D Scattering Coefficients Due to Finite Node Resistance 

In Chapter I we briefly described the 2D scattering process but with the stipula
tion that the node resistance was infinitely large. Before considering other types 
of node functions, it is useful to generalize the node scattering when R is finite. 
We suppose a forward wave is incident on the node in the Zxy(n,m) line and 
then proceed to calculate the transfer of energy to any of the other three lines as 
well as the reflected energy. For this calculation Fig.2.7 is useful and to simplify 
matters we assume the TLM lines surrounding the node are all the same, de
noted by Z0. To obtain the energy dispersal we will need the scattering coeffi
cients , representing the wave transfer and reflection respectively. To obtain the 
coefficients we require the load impedance viewed by +Vxy(n,m), and designated 
by RLlxy(n,m). From inspection of the circuit, RLlxy(n,m) is given by 

RLl^fom,) = [R(n,m) RP(n,m)]/[R(n,m) +RP(n,m,)] (2.38) 
where 

RP= 3R(n,m)Zo/[R(n,m)+Z0] (2.39) 

RLlxy(n,m) may be interpreted as the parallel combination of the two resistors 
terminating Zxy(n,m)=Zo . One is the node resistance R(n,m), and the other is 
RP(n,m), which is the series connected impedances of the three other lines con
verging at the node. Having found RLlxy(n,m) we can write down the transfer 
coefficient, to any of the other three lines, as well as the reflection coefficient: 

T^fom) = (l/3)2RLlxy(n,m)Z0)/[RLlxy(n,m)+Z0] (2.40) 

B^fom) = [RLlxy(n,m)-Z0]/[ RLlxy(n,m)+Z0] (2.41) 

The subscripts for the coefficients are the same as that for the incident wave. The 
generalized notation for the scattering coefficients and node parameters is given 
in the next Chapter , but this need not concern us in the present situation. Note 
also that a (1/3) factor appears since we are interested in the energy transfer to 
only one of the three lines comprising the output. To interpret the results more 
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readily, it is useful to assume R(n,m) is small compared to Z0. The above then 
become( after expanding in powers of Zo/R(n,m)) 

T^(n,m)= (1/2) - (1/8)Z0/R(n,m) (2.42) 

Bxy(n,m) = (1/2) - (3/8)Zo/R(n,m) (2.43) 

We see from the above the obvious result that the wave amplitudes are dimin
ished by the node resistance so that the both the transfer and reflection coeffi
cients are reduced from their values of 1/2 when no loss is present. 

2.6 Simultaneous Conductivity Contributions 

We next consider simultaneous contributions to the conductivity. Strictly 
speaking this is not a new property but the formulation will prove useful when 
we consider semiconductors or any other medium with a background conductiv
ity. For concreteness we assume the two contributions. One stems from a back
ground conductivity[l], whose equivalent node resistance is denoted by 
RB(n,m)( excluding the other conductivity) and a conductivity induced by either 
light or avalanching, whose equivalent node resistance (again, excluding the 
other conductivity) is denoted by Ro(n,m). The total node resistance is then ob
tained by combining the two contributions in parallel, or 

R(n,m) = [RB(n,m,)Ro(n,m,)/[RB(n,m,)+Ro(n,m,)]] (2.44) 

Eq.(2.44) allows us to control each mechanism separately. The equivalent 
circuit at the node is shown in Fig.2.16, and as expected each R(n,m) element is 
replaced by the parallel combination of RB(n,m) and Ro(n,m). It is worthwhile 
pointing out the limiting behavior of Eq.(2.44) since some confusion might re
sult if interpreted incorrectly. If the background losses are predominant, then 
RB(n,m) is much lower than Ro(n,m) and R(n,m)=RB(n,m). On the other hand, if 
the loss due to light/avalanching is predominant, Ro(n,m,) is much lower than 
RB(n,m) and R(n,m) ~ Ro(n,m). 
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FIG. 2.16 DIVIDING OF NODE RESISTANCE, R(n,m), INTO A 
LIGHT ACTIVATED PART, Ro(n,m), AND A BACKGROUND 
PART, R„. R(n,m)= RB* Ro(n,m)/[RB+ Ro(n,m)]. 

2.7 Signal Gain 

We have seen that the nodal resistors serve to dissipate the electromagnetic sig
nal propagating throughout the medium. These same elements, as we have seen 
in Chapter I, in connection with reverse iterations, can serve also to amplify 
electromagnetic signals, i.e., provided the gain mechanism at the nodes exceeds 
any losses. In this discussion, we do not inquire as to the origin of the gain but 
merely assume that it exists. The presence of gain will of course alter the transfer 
and gain coefficients. To illustrate the gain, we again consider the 2D case and 
once more assume the TLM lines about the (n,m,) node are identical, equal to 
Zo, with the wave +Vxy(n,m) incident on the (n,m) node. We then assume the 
gain can be represented by a negative node resistance. This notion has already 
been reinforced previously when we saw that gain occurs in the reverse itera
tion, replacing R(n,m,) with -R(n,m). In this case we again assume a back-
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ground resistance, but assume the other resistive component Ro(n,m) is respon
sible for the gain or 

Ro(n,m) -» - Rc(n,m) (2.45) 

where R<j(n,m) is the resistive gain and we explicitly display the negative sign in 
R(n,m). The total node resistance is then 

R(n,m) = [RB(n,m,)RG(n,m)/[RG(n,m,)-RB(n,m,)]] (2.46) 

Note the important result that R(n,m) is negative when RB(n,m) exceeds 
Ro(n,m). When RG(n,m)~ RB(n,m) the losses and gain are exactly counterbal
anced and the node resistance is extremely large in absolute value and thus has 
very little effect on the scattering. In the event R(n,m) is negative and Z0 « 
I R(n,m)| then the scattering coefficients, Eqs.(2.42) - (2.43) become 

T ^ m ) =(1/2) +(1/8) Zo/R(n,m) (2.47) 

Bxyfom) = (1/2) + (3/8)Zo/R(n,m) (2.48) 

and we see that there is gain in the scattered waves. We should caution that in 
many situations involving signal gain, the wave is a plane wave type and the 
scattering to the transverse lines is minimal. Under plane wave conditions the 
values of Txy(n,m) and Bxy(n,m) become one dimensional in nature and the co
efficients are equal to T ^ l + Z o ^ R and Bxy=Zo/2R ( or equal to to Txy=l-Zo/2R 
and B^,= -Zo/2R when there is loss instead of gain). The plane wave modifica
tion of scattering coefficients is given in Chapter IV. 

2.8 Signal Generation. Use of Node Coupling 

Another property which may be mapped onto the nodes has to do with the gen
eration of a signal rather than the amplification of one. One example is the gen
eration of a light signal in the semiconductor. In the case of direct bandgap 
semiconductors, for example, the light will be generated by direct recombina-
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tion. One must exercise great caution in transferring this phenomena to the same 
transmission line matrix as the one originally defined . This is because in general 
the propagation velocities of the low frequency electromagnetic signal and the 
light signal will differ and, in addition, the dependence of the node resistors on 
the higher frequency light signal also will differ. This is nothing more than dis
persion, of course, which will be discussed in detail in Chapter V. In addition , 
if the generated signal has a short wavelength (relative to the cell length) then 
the field propagating in the TLM line may be nonuniform, resembling an "ac" 
signal, unless we select an extremely small time step. This of course will im
pose great demands on computer capacity. At this point, nevertheless, some idea 
of the approach needed to handle the generation of signals(the creation and dis
tribution of light, in this case) with a different wavelength, node resistance, and 
propagation velocity, is useful. 

One approach is to create a "parallel" line (or matrix in the case of 2D) 
which occupies the same space as the original line (or matrix), as shown con
ceptually in Fig.2.17, which shows a side view of the two ID lines. In this case, 

«— Al —• 

EM LINE 

LIGHT INDUCED / \ LIGHT AND CONDUCTIVITY 
CONDUCTIVITY > M V«r PRODUCED IN EM LINE 

COUPLES TO EM LINE I J COUPLES TO LIGHT LINE 

LIGHT LINE 

^ - A l • 

FIG. 2.17. INTERACTION OF LIGHT AND EM SIGNALS(ID) 
SHOWN AS PARALLEL LINES WITH NO VELOCITY 
DISPERSION, BUT WITH DISPERSION IN THE NODES. 
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since the cell length is the same, the light velocity and the electromagnetic ve
locity are equal. Although we assume the lines are non-dispersive, we can still 
consider the nodes as dispersive, with the light and EM signals viewing com
pletely different values of node resistance; in fact the light signal may view un
der certain circumstances a negative resistance , due to additional light produced 
by avalanche effects(brought about by the field in the EM grid). 

The interplay of the matrices at each node requires some explanation. Light 
created at each EM node is fed into the light matrix. In addition, conductivity 
may be produced in the EM line due to avalanching (caused by an intense EM 
field). This conductivity will likewise be transferred to the light line (with a dif
fering value due to dispersion). On the other hand, light is attenuated in the light 
matrix, which in turn creates carriers and additional conductivity, which then 
changes the values of the resistor nodes in the electromagnetic matrix. We can 
also allow for the possibility that the light line produces a "low frequency" sig
nal , which would then enter the EM matrix at the node. 

A further complication arises in situations involving different propagation 
velocities, as well as differing node resistors. This is the more typical case. In 
order to maintain the same time step between nodes of each matrix, the nodes of 
the two signals will no longer coincide. Fig.2.18 shows a side view of the two 
ID lines, in which the light velocity exceeds the electromagnetic velocity, and 
therefore the distance between nodes in the light matrix is greater. In general of 
course, the nodes will not coincide spatially. How does one treat this situation? 
To obtain the node resistance in each line, we rely on the usual relationship, dis
cussed earlier, between the resistivity and the TLM parameters, or R(nj)= 
p(n!)/Ali and R(n2)=p(n2)/Al2 where the subscripts 1 and 2 refer to the EM and 
light lines respectively. Even when the node locations happen to be close to
gether, the node resistors will of course still differ, due to node dispersion. 
Fig.2.18 illustrates the technique used to treat the coupling problem. We use a 
multiple node coupling approximation(see Chapter V), whereby light produced 
in the EM line is routed from the EM node to the nearest light node. Similarly 
any conductivity produced in the EM line, due to avalanching, may be trans
ferred (allowing for dispersion)to the light line, using the same coupling path. 
Conversely, the node conductance in the light line node carries over to its near
est neighbors in the EM line, adding to any preexisting conductance in the EM 
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MULTIPLE NODE 
COUPLING APPROXIMATION 

EM LINE TfTT^Jl 

i. -' ' . . !» . . 
LTGHT LINE 

Afe 

FIG. 2.18 INTERACTION OF LIGHT AND EM SIGNALS(ID) 
WITH DIFFERING WAVE VELOCITIES. 

line or to conduction from other sources (such as avalanching). All the nodes , in 
both the EM and light lines, participate in the coupling process, with every node 
in the EM line having a nearest neighbor in the light line and vice-versa. This 
means that in the EM line (the slower line) two or more nodes may be attached 
to the same light node as noted in Fig.2.18. Combining multicoupled waves will 
require techniques discussed in Chapter IV. 

For two interacting mediums occupying the same space, multiple node cou
pling is the most appropriate method; however, a simpler (but somewhat less ac
curate) method also is available, namely, the nearest node method. This method 
may be used to treat spatial boundary conditions, i.e., the interface between me
diums with differing propagation velocities. Here it is possible to have unat
tached "partial nodes ", as well as one to one "nearest nodes", at the interface. 
This is in contrast to the multiple node coupling, where there are no partial nodes 
and all nodes participate in the coupling. Nearest nodes, appearing at the di
electric interface, are treated in detail in Chapter V. 

Although we have alluded to only ID situations, it is easy to visu
alize the 2D interaction between the light and electromagnetic("low frequency") 
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signals. For treating node dispersion , e.g., we use two parallel matrices which 
occupy the same space, as shown in Fig.2.19, which assumes no velocity disper
sion. Each of the 2D matrices represents a different frequency( the light and 
EM frequencies), but the nodes are assumed to coincide. As in the ID case of 
Fig. 2.17, the dispersive node resistors results in the exchange of signals and 
conductivity at the node locations. The 2D matrices also are adaptable to the 
node coupling approach for differing velocities, and also for treating boundaries 
between differing propagation regions, as discussed in Chapter V. 

EM MATRIX 

LIGHT MATRIX 

LIGHT AND CONDUCTIVITY 
PRODUCED IN EM MATRIX IS 
DISTRIBUTED IN LIGHT MATRIX 

LIGHT MATRIX PRODUCES 
CONDUCTIVITY IN EM MATRIX 

FIG. 2.19 2D INTERACTION OF LIGHT AND EM SIGNALS 
SHOWN AS PARALLEL MATRIX ARRAYS(NO VELOCITY 
DISPERSION). 
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2.9 Mode Conversion 

Another property which we may assign to the node is that of mode conversion. 
This is unique to the 3D case, and has to do with the fact that for a given direc
tion of propagation there are two orthogonal fields associated with the wave. 
With mode conversion we allow for the possibility that a net portion of the wave 
energy in one mode is transferred to the orthogonal mode. Thus for example a 
portion of the wave Vxy(n,m,q) will be transferred to Vxzfoir^q). and vice versa, 
During this process, for a lossless node, the total energy among the nodes is con
served. In order to proceed further we need to resort to wave partitioning , which 
is discussed in Chapter IV. We should also mention that the mode conversion is 
often accompanied by dispersion, i.e., the two modes may have differing veloci
ties in which case we must resort to techniques discussed in Chapter V. 

Example of Mapping: Node Resistance in Photoconductive 
Semiconductor 

2.10 Semiconductor Switch Geometry(2D) 

At this point we provide a very simple example in which the electromagnetic 
and conductivity properties of a semiconductor sample are mapped onto the 
transmission line matrix. We first consider the field in a semiconductor slab 
filling the space between a pair of electrodes separated by length IQ. A constant 
voltage is superimposed on the electrodes. A portion of the top view matrix is 
shown in Figure.2.21(a) and the side view in Fig.2.21(b). To simplify, we as
sume the semiconductor is extremely wide(in the z direction) , so that there is 
no variation in that direction. We also assume there is little field fringing, and 
the field is initially uniform across the sample. We arbitrarily select 10 cells to 
span the semiconductor gap, as noted in Fig.2.20. Since the field is uniform, the 
field likewise will be distributed uniformly among the lines Zyxfom.q) and 
Zzx(n,m,q) . The fields in the horizontal lines, 5^y(n,m,q) and Z^^n^q) will be 
zero of course since we assume there is no vertical field to begin with. 
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FIG.2.20(b) SIDE VIEW OF SEMICONDUCTOR SWITCH. 

Next we map the conductivity properties. In the case of semiconductors, 
phenomena such as photoconductivity, avalanche breakdown, recombination, 
e tc . , are directly linked to the conductivity[l]. As an illustration of the map
ping we consider a single mechanism, light activated conductivity, which we 
simulate with the cell matrix in Fig.2.20. The amplitude of the light pulse, di
rected perpendicular to the face of the semiconductor, is assumed to be turned at 
time t=0, and to be constant in time thereafter. We assume a spatial dependence 
in the x direction, however, for the light impinging on top of the semiconduc
tor. The spatial dependence for the incident light power P(x) falling on each of 
the top cells, each with area Al2, is taken to be gaussion, and given by 
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P(x) = P0EXP[-a{ nAl/lo -1/2}2] (2.49) 

where a is the spread factor of the light pulse and nAl = x is the distance meas
ured from the elecrode. The total semiconductor length lo is equal to N0A1 where 
N0 is the total number of cells between electrodes. Po is the constant(in time) 
light power falling on the center cell, where the light is a maximum, and the 
power level tapers away from the center. In addition, we assume the light signal 
attenuates as it enters the semiconductor. If we assume an exponential attenua
tion then the signal follows EXP{-mAl/ho} where ho is the absorption depth of 
the light signal. Thus, the actual power deposited in the mth cell will follow an 
exponential decay in the particular cell. We can now calculate the energy depos
ited in the (n,m,q) cell during the kth time step. We simplify matters somewhat 
by assuming the semiconductor is dispersionless, so that the light signal veloc
ity is identical to that of the electromagnetic signals in the transmission lines. If 
we denote the energy deposited in the (n,m,q) cell by y(n,m,q), we have 

y(n,m,q) = PoEXP[-a{ nAl/l0 -1/2 }2]D(m)At (2.50) 
where 

D(m) = 0 if k<m (2.51) 
and 

D(m) = [EXP-(mAl/ho)][EXP(Al/ho)-l] fork>m (2.52) 

The delay nature of D(m) expressed by Eq.(2.51) is understandable, of course, 
since no conductivity will be produced until the light signal reaches the cell in 
question. Once k> m then the wave energy is deposited in the cells. Eq.(2.52) is 
the difference in the decay factor , EXP{-mAl/ho}, at depths mAl and (m-l)Al . 
The difference, D(m) , is thus proportional to the energy deposited in the mth 
cell. If U is the photon energy then the number of photons deposited in (n,m,q) is 
y(n,m,q)/U. To simplify the effect of the light signal we assume there is no lat
eral scattering of the light as it is absorbed in the semiconductor We now relate 
the number of carrier pairs produced, during At, to the deposited photons. If the 
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conversion of photons to carrier pairs is is done with efficiency, £, then during 
At the incremental change in carrier pairs is 

No. carrier pairs added in (n,m,q) cell = AN(n,m,q) =£, y (n,m,q)/U (2.53) 

From simple semiconductor transport theory[l], the added conductivity 
Aa(n,m,q) in the cell is 

Ao-(n,m,q) = eAN(n,m,q)(l/Al3){ nh(n,m,q) + |a„(n,m,q)} (2.54a) 

where e is the electron charge, AN(n,m,q)/Al3 is the added number density of 
holes and electrons pairs, and |ih(n,m,q), n„(n,m,q ) are the hole and electron 
mobilities. We are assuming that the photons create equal numbers of holes and 
electrons, and that they remain equal throughout the time scale of interest. Dur
ing this time scale, we reiterate that the carriers do not venture(either by drift or 
diffusion) outside the cell in which they were created, nor do they recombine. In 
Chapter 6 we indicate how to incorporate transport phenomena into the itera
tion. Combining the previous equations and definitions, the added conductivity 
is written as(MKS units) 

A0(n,m,q)=[e{uh(n,m,q)+^n(n,m,q)}4PoEXP[-a{nAl/lo-l/2}2]D(m)(l-r)At]/Al3U 
(2.54b) 

We have included a reflection coefficient, r, indicating that a portion of the light 
will reflect off the semiconductor surface. If k is larger than m the accumulated 
conductivity is simply 

a(n,m,q)= Aa(n,m,q)(k+l-m), (2.55) 

Again, Eq.(2.55) is justified because of the assumption that the carriers being 
produced are "frozen" in place. We make the approximation that a(n,m,q) 
«aAv(n,m,q), which should apply for large cell densities(recall that o"Av(n,m,q) 
applies to the auxiliary cell centered about the node). We now can convert 
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Eq.(2.55) into a node resistance using the relationship R(n,m) = 2/0AV(n,m,q)Al. 
The result is 

R(n,m) = 2/o"Av(n,m,q)Al «2/o-(n,m,q)Al = 
2Al2U[e{Hh(n,m,q)+n,1(n,m,q)}^P0EXP[-a{nAl/l0-l/2}2]D(m)(l-r)(k+l-m)At]-1 

(2.56) 

The above is the sought after result for the node resistance for each cell (subject 
to the approximations used), which may then be used in any computer iteration, 
such as described in Chapter VII. 

2.11 Node Resistance Profile in Semiconductor 

To reinforce the above we select a very simple example in which the experi
mental conditions resemble those of a silicon semiconductor activated with a 
short pulse from a Nd:Yag laser(either Q switched or mode locked), and pro
ceed to calculate the profile of the node resistance across the length of the semi
conductor gap. In order to simplify, we set (U/e), the photon energy (expressed 
in volts), equal to unity and further assume a conversion efficiency £=1. We as
sume a one centimeter gap between electrodes, and we arbitrarily divide up the 
semiconductor into 0.1 cm cells , so that the total length is spanned by 10 cells. 
A gaussian shaped (as described previously) light pulse, with a spread factor of 
a=4, is assumed. For illustrative purposes, 10"7 Joules of pulse energy is as
sumed to fall on the auxiliary cell surrounding the center node. For simplicity 
we assume the energy pulse has a constant power amplitude, and thus the energy 
is equal to PokAt. Regarding the absorption of light in the semiconductor, we 
assume hD - 0 . 1 cm and therefore the bulk of the light energy will be deposited 
in the top cells, i.e., m=l, since the cell length itself is 0.1 cm. In fact the light 
energy deposition in the top cell is proportional to D(l) which in view of 
Eq.(2.52) is 

D(l) = l-EXP-(Al/ho) (2.57) 
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The above is ~ 0.63 when Al/ho =1.0. For the second row, we need D(2), which 
we obtain by multiplying the above, D(l), by EXP-(Al/ho ) with the result that 
D(2)=0.23. 

For our example suppose we wish to calculate the node resistance for the 
top row, R(n,l,m). To do this we cannot assume that o"Av(n,m,q) is approximated 
by a(n,m,q), as indicated in Eq.(2.56), since the cell resolution is not sufficiently 
large. In other words, we employ aAv(n,m,q) and apply the right side of 
Eq.(2.56) to each of the four cells which contribute to aAv(n,m,q). Thus we 
must first calculate the conductivity in each cell for rows 1 and 2, using the cell 
conductivity formula of the previous Section, Eq.(2.55). We then find 
CTAv(n,m,q) using the average conductivity formula given by Eq.(2.19), which 
takes the average of the four surrounding cell conductivities. From this the node 
resistance may be calculated, using Eq.(2.21). In order to make use of the for
mulae, however, we must first specify additional semiconductor and light prop
erties. 

Additional numerical values are as follows. The value of the TLM delay 
time At(for the given cell size of 0.1cm) is specified if we know the propaga
tion velocity in the semiconductor. Selecting silicon as the semiconductor 
(which is consistent with the small absorption depth), then At for the 0.1cm cell 
becomes 11.5ps. The value of k at the end of the pulse is unspecified as yet 
since we have not yet specified P0. If we assume a light signal pulsewidth of 
46ps, then k=4, and PQ= 10"7 /(46X 10"12) = 2174 W on the center cell. Assum
ing uh(n,m,q) + jin(n,m,q) =1900 cm2/V-s for silicon, and r=0.3, we then cal
culate the node resistance for n=0 to n=10 at t= 46ps. At this time most trans
port phenomena still play a very minor role. For example, if we assume a drift 
velocity of ~ 107 cm/sec , then at the end of the 46 ps pulse, the electron carri
ers will have moved a distance of .0046 cm, a relatively small fraction of the 
0.1cm cell size. Fig.2.21 shows the profile of the node resistance across the 
gap. Note of course that the resistance is lowest in the center where the light in
tensity is greatest and proportionately more carriers are being produced. As ex
pected , therefore, the spatial profile essentially follows that of the light intensity 
profile of the incoming signal. The dotted arrows indicate the vanishing of the 
node resistances adjacent the electrodes, if we strictly follow the definition of 
0"Av(ii,m,q) in cells bordering the electrodes. 
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III. Scattering Equations 

In this Chapter we describe the flow of electromagnetic energy among the 
transmission lines, as controlled by nodes. It would appear that such a descrip
tion is a daunting task, given the potential complexities of the matrix . However, 
since we have provided unique labels to the cells and their associated transmis
sion lines and nodes (Chapter II), the actual task is less complicated than one 
might suppose. Our main goal here will be to keep account of the electromag
netic energy dispersal, using the cell notation introduced in the last Chapter. We 
also finish the task of notation, started in Chapter II, by assigning proper labels 
to the scattering coefficients and node parameters. The formal scattering equa
tions, and the associated scattering coefficients, completely control the electro
magnetic dispersal. 

In order to describe the electromagnetic and conductivity spreading it will be 
sufficient to consider a single cell, (n,m), and to relate the associated fields at 
time t + At to fields in the previous time element, t. The fields considered at time 
t include not only the (n,m) cell but the surrounding cells as well. This is fol
lowed by iterations over all the cells which occupy the space. In this regard, 
the description here overlaps to some extent with that of Chapter 1; the discus
sion however differs in two important respects. First the approach described 
herein is generalized, especially with regard to the 3D treatment. Secondly the 
notation is rendered more useful by employing numerical indices. This is an 
important issue, since the notation must be adaptable to iterative methods for use 
in computer programs. The generalized notation will then make it possible to 
develop computer codes , which in turn will determine the detailed field profiles 
throughout the entire space, extending over a multitude of cells. The result is the 
time evolution of the entire system. 

112 



Scattering Equations 113 

3.1 ID Scattering Equations 

As in previous discussions it is easiest, by way of illustration, to first consider 
the scattering in the ID case. Toward this goal we utilize Fig.3.1, borrowed from 
Chapter II, and seek the fields in the nth cell. We assume the delay time in each 
cell is identical, but do not require the cell lengths to be the same(i.e., we allow 
differing cell impedances). The forward and backward waves in the n cell, dur
ing the kth time interval, are denoted by +Vk(n) and ~Vk(n) , respectively. 
Similarly the same waves in the (n-l)th and (n+1) th cells are +Vk(n-1) , ~Vk(n-l) 
and +Vk(n+1), ~Vk(n+l) respectively. 

Our goal is to determine the fields scattered into the nth cell during the 
(k+l)th time step, based on the fields existing in the nth, (n-l)th, and (n+l)th 
cells during the kth time step. We first determine +Vk+1(n), i.e. , the forward 
wave in the nth cell during the (k+l)th interval. This wave will be the sum of 
two waves , consisting of a transmitted wave from the (n-1) cell as well as the 
reflected backward wave in the nth cell. Thus 

+Vk+1(n) = Tk(n-1,1) +Vk(n-1) + Bk(n-1,2) 'Vk(n) (3.1) 

where Tk(n-l,l)and Bk(n-1,2) are the transmission and reflection coefficients, 
respectively, of +Vk(n-1) and ~Vk(n) at the (n-l)th node. The additional argu
ment of one or two, in the scattering coefficient, is adapted to denote the fact 
that waves incident on the node are in the forward or backward directions, re
spectively. The coefficients, by definition, are: 

Tk(n-l,l) = 2 RLlk(n-l)/[RLlk(n-l) +Z(n-1)] (3.2) 

Bk(n-1,2) = [RL2k(n-l)-Z(n)]/ [RL2k(n-l)+Z(n)] (3.3) 

where RLlk(n-l) and RL2k(n-l) are the load impedances seen by the forward 
and backward waves , incident on the (n-1) node. These impedances are easily 
calculated from 
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RLlk(n-l) = Rk(n-l)Z(n)/[Rk(n-l)+Z(n)] (3.4) 

RL2k(n-l) = Rk(n-l)Z(n-l)/[Rk(n-l)+Z(n-l)] (3.5) 

where the load impedance represents the total impedance seen by the waves, and 
is made up of the parallel combination of Rk(n-l)and the characteristic imped
ance. Note that we have added the superscript k to R, RL1 , and RL2 as well as 
the scattering coefficients to denote the time step. This completes the calculation 
of the forward wave. A comparable calculation is made to determine the back
ward wave in the nth cell during the (k+l)th interval. This wave is the result of 
a backward wave transmitted from the (n+1) cell as well as a reflection of the 
forward wave, in the nth cell. The result is 

"Vk+1(n+l)= Tk(n,2)"Vk(n+l)+ Bk(n, 1)+Vk(n) (3.6) 

where Bk(n,l)andTk(n,2) and the load impedances are 

Tk(n,2) = 2RL2k(n)/[RL2k(n)+Z(n+l)] (3.7) 

Bk(n,l) =RLlk (n)-Z(n)]/ [RLlk(n)+Z(n)] (3.8) 

RLlk(n) = Rk(n)Z(n+l)/[Rk(n)+Z(n+l)] (3.9) 

RL2k(n)= Rk(n)Z(n)/[Rk(n)+Z(n)] (3.10) 

We have completed our task, therefore, of finding the forward and backward 
waves (which comprise the total field) in the nth cell during the (k+l)th time 
step, in terms of fields belonging to the kth time step, using cell notation. The 
one dimensional approach is most useful in cases when the field gradient is 
dominant in a particular direction. A frequent application involves an imped
ance transformation in a non-uniform, one dimensional transmission line, which 
is amenable to SPICE software. One dimensional problems will be discussed 
later in Chapter VIII, which covers the topic of SPICE applications. 
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3.2 2D Scattering Equations 

With the 2D matrix (and particularly the 3D) the scattering equations will natu
rally become more involved. However, by continuing to use the notation intro
duced in the previous Chapter, we will be able to describe the scattering in a 
very compact manner. We proceed by viewing a portion of the matrix in the vi
cinity of the (n,m) cell, repeated in Fig.3.2. The (n,m) cell and the surrounding 
cells and lines, pertinent to the scattering process, are shown. Our aim will be to 
determine the fields in the Z ^ ^ m ) and Z ^ m ) , for these are the two transmis
sion lines associated with the (n,m) cell. As before, we will express the fields at 
time t + At in terms of fields (in the surrounding lines) at time t. In the ensuing 

Z^n-ljin+l) Z^(n,m+1) 

Z^(n-l,m+l) 

(n-l,m) 

Z„(n-l.m-l) ^R(n-l,m-l) < Z^n,m-1) 

(n,m-l) 

Z,»(n-l,m-l) 

R(n,m-1) 

V S A A T 

Z^(n+l,m-l) 

7~fn.m-n 

FIG. 3.2 2D TLM NOTATION CONVENTION.-Z^m) AND 
Z^i^m) ARE THE TWO LINES(SHADED) ASSOCIATED 
WITH THE (n,m) CELL. R(n,m) IS AT THE INTERSECTION 
OF Z^n.m) AND Z^n.m). 
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discussion we suppress the superscript k, designating the time element, until 
such situations when it is significant, as in the iterative equations 

Take for example the Zxy(n,m) line. The forward wave, +Vxy(n,m), during 
the (k+l)th interval, results from several waves converging on the R(n-l,m) 
node during the prior interval. First, there are the transfer of waves into 
Zxy(n,m) from three neighboring lines: Zxy(n-l,m), Zyx(n-l,m), and Zyx(n-l,m+l). 
Second, there is the reflection of the backward wave at R(n-l,m) in Zxy(n,m). 
Similarly, during the (k+l)th step, the forward wave in the Zyx(n,m) line, 
+Vyx(n,m), will be the result of waves scattering at the R(n,m-1) node. The 
backward waves, on the other hand, for both the Zxy(n,m) and Zyx(n,m) lines, 
will involve scattering at the R(n,m) node. 

One can see that the scattering coefficients(i.e., both the transfer and the re
flection type)will have many possible values, depending on the transmission line 
from which the wave emanates and line to which it is directed. It will be con
venient to label these coefficients before proceeding further with the analysis. 
Since we are dealing with only the Zxy(n,m) and the Zyx(n,m) lines, we need 
only consider the nodes bounding these lines, which are, from Fig.3.2, (n,m), (n-
l,m), and (n,m-l). Table 3.1 lists the 16 scattering coefficients associated with 
the (n,m) cell, 12 of which are transfer type and 4 reflection type. For example, 
the first transfer coefficient listed is Txy(n-l,m,l). The subscripts follow that of 
the incident wave (or TLM line), indicating the propagation and field directions 
respectively. The first two arguments n-l,m identify the node while the third ar
gument, 1, simply indicates, by definition, that the wave is being coupled from 
the Zxy(n-l5m) line to the Zxy(n,m) one. As an another example, the third transfer 
coefficient listed , Tyx(n-l,m,3), has the same node, but the third argument, 3, 
denotes the transfer of the wave from the Zyx(n-l,m+l) line to the Zxy(n,m) line. 
In the case of the reflection coefficients , the first one listed, B^(n-l,m,l) refers 
to the n-l,m node and the argument 1, indicates the reflection from that node 
takes place for a backward wave in the Zxy(n,m) line.(the labeling of the 2D re
flection coefficient differs from that used in the ID notation). We emphasize 
that Table 3.1 represents the scattering into the lines Zxy(n,m) and Zyx(n,m), as
sociated with the (n,m) cell. It will also be useful to consider the scattering about 
the node (n,m) , i.e., the scattering of all waves convergent on a particular (n,m) 
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TABLE 3.1 2D SCATTERING COEFFICIENTS INTO UNIT 
CELL LINES Zxy(n,m), Z ^ n i ) (XY PLANE) 

TRANSFER TYPE 

COEFFICIENT 

Txy(n-l,m,l) 
(-)Ty*(n-l,m,2) 
Ty^n-l,!!!^) 
Txy(n,m,4) 

(-)T„0Mn£) 
Ty,(n,m,6) 
(-)Txy(n,m-l,7) 
^11,111-1,8) 
Txy(n,m-1,9) 
Txy(n,m,10) 
Ty,(mm,ll) 
(-)Txy(n,m,12) 

Bxy(ii-l,m,l) 
8 ^ , 0 1 , 2 ) 
B y j ^ m - l ^ ) 
6^(11,111,4) 

FROM 

Zxy(n-l^n) 
Z ^ n - l ^ ) 
Zy,(n-l,m+l) 
Zxy(n+l,m) 
Zyj(n,m+1) 
Zyj(n,m) 
Zxy(n,m-1) 
ZyX(n,m-l) 
Zx y(n+l,m-l) 
Z,y(n,iii) 
Zyjfom+l) 
Zxy(n+l,m) 

REFLECTION TYPE 
Zxy(n,m) 
Zxy(n,m) 
Zyx(n,m) 
Zyj(n,m) 

TO 

Zxy(n,m) 
Zxy(n,m) 
ZXy(n,m) 
Z j y ^ m ) 
ZXy(n,m) 
Z^y{n,xa) 
Zyj(n,m) 
Zyx(n,m) 
Zyj^jUl) 
Z ^ I ^ ) 
Zyx(ll,Ill) 
Zyj^^Dl) 

Zxy(n,m) 
Zjy(n,m) 
Zyx^m) 
Zyx(ll,m) 

node. Table 3.2 shows this scattering process. Note in Table 3.2 that the coeffi
cient is always represented by the same (n,m), in contrast to Table 3.1 where the 
scattering is into the two lines associated with the (n,m) cell. 

The issue of sign regarding the transfer coefficients requires some clarifica
tion. In Table 3.1, e.g., four of the transfer coefficients, Tyx(n-l,m,2), Tyx(n,m,5), 
Txyfn.m-l,?), and Txy(n,m,12), produce inverted waves with a negative polarity 
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TABLE 3.2 2D SCATTERING COEFFICIENTS ABOUT 

COEFFICIENT 

Txy(n,m,l) 
( - ^ ( 0 ^ , 2 ) 

T y ^ m ^ ) 
Tiy(n,m,4) 
{-yi^in^S) 
Tyx(n,m,6) 
(-)Txy(n,m,7) 
Tyx(n,m,8) 
Txy(ii,m,9) 
Txy(n,m,10) 
^(11,01 ,11) 
(-)Txy(n,m,12) 

Bxy(n,m,l) 
Bxy(n,m,2) 
Byx^m^) 
B y ^ n M ) 

(n,m) NODE (XY PLANE) 

TRANSFER TYPE 

FROM 

Zxy(n,m) 
Zyx^^n) 
Z y ^ m + l ) 
Zxy(n+l,m) 
Z^n^n+ l ) 
Zyj(n,m) 

Zxy(n,m) 
Z^ i^m) 
Zxy(n+l,m) 
Zxy(ii,m) 
Z y j ^ ^ + l ) 

Zxy(n+l,m) 

REFLECTION TYPE 
Zxy(n+l,m) 
Zxy(n,m) 
Zyx^m+l) 
Zyx(n>m) 

TO 

Zxy(n+l,m) 
Zxy(n+l,m) 
Zxy(n+l,m) 
Zxy(n,m) 
Zxy(n,m) 
Zxy(n,m) 
Zyx^m+l) 
Z y j t ^ m + l ) 

ZyxC^m+l) 
Z y j ^ ^ ) 

Z^O^m) 
Zyx(n,m) 

Zxy(n+l,m) 
Zjy(n,m) 
ZyX(n,m+l) 
Zyj(n,m) 

in the TLM lines. The issue then is whether to ascribe negative values to these 
coefficients or whether to simply display the negative signs in the scattering 
equations. We have selected the latter convention, so that the transfer coeffi
cients are always positive, with the scattering equations expressly displaying the 
negative signs as appropriate. Under some circumstances, however, we may 
wish to explicitly identify coefficients which produce a negative wave. To do 
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this we can use the symbol (-) immediately preceding the transfer coefficient, as 
shown in Tables 3.1 and 3.2. Thus , in Table 3.1, (-)Tyx(n-l,m,2) indicates that 
this coefficient produces a negative polarity wave as it couples from the Zyx(n-
l,m) line to the Zxy(n,m) line. To illustrate its use, Section 3.3 employs this no
tation in discussing symmetry properties among the scattering coefficients. In 
general, however, we choose not to explicitly display the (-) symbol, except for 
the following: Section 3.3, Tables 3.1 , 3.2, 3. 4, and the corresponding 3D Ta
bles, 3.5, 3.7, and 3A.2. 

The notation described allows us to identify the way in which wave energy is 
routed from one transmission line to another. The task of actually calculating the 
scattering coefficients, however, still remains. Toward this goal we define cer
tain preliminary arrays, which relate to an arbitrary node R(n,m). We start by de-
fining four arrays Rlxy(n,m), R2yx(n,m),R3xy(n,m), and R4xy(n,m). Each of these 
is a parallel combination of R(n,m) and the characteristic impedance of one of 
the four lines(indicated in the expression) surrounding the (n,m) node. The four 
arrays thus are defined as: 

Rlxy (n,m) = Zxy(n,m)R(n,m)/[Zxy(n,m)+R(n,m)] (3.11) 

R2^ (n,m) = Zyx(n,m)R(n,m)/[Zyx(n,m)+R(n,m)] (3.12) 

R3XJ, (n,m) = Zxy(n+l,m)R(n,m)/[Zxy(n+l,m)+R(n,m)] (3.13) 

R4yx (n,m) = Zyx(n,m)R(n,m+l)/[Zyx(n,m+l)+R(n,m)] (3.14) 

The xy and yx subscripts are actually redundant for the 2D node parameters and 
will be deleted in the remainder of the 2D discussion( for the sake of clarity, 
however, the subscripts are retained for the scattering coefficients). When we 
take up the 3D analysis we will resume the display of these subscripts since they 
are needed to identify the particular scattering plane. 

Next we define another set of four arrays, representing the total load im
pedance seen by each of the four waves (one for each line) incident on the (n,m) 
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node. For example let us consider the load impedance seen by a wave incident 
on the (n,m) node in the Zxy(n,m) line. The value of such an impedance, denoted 
by RLl(n,m),will comprise the parallel combination of R(n,m) and the series 
combination of R4(n,m), R3(n,m), and R2(n,m), as noted in Fig.3.3. Thus, 

RLl(,n,m)=R(n,m)[R2(n,m)+R3(n,m)+R4(n,m)]/[R2(n,m)+R3(n,m) 
+R4(n,m)+R(n,m)] (3.15) 

The load impedances for the other three lines may be calculated in like manner. 
RL2(n,m), RL3(n,m), and RL4(n,m) are the load impedances viewed by the in
cident wave in Zyx(n,m), Zxy(n+l,m) , and Zyx(n,m+1) , respectively. Thus, 

RL2(,n,m)=R(n,m)[R 1 (n,m)+R3(n,m)+R4(n,m)]/[R 1 (n,m)+R3(n,m) 
+R4(n,m)+R(n,m)] (3.16) 

RL3(,n,m)=R(n,m)[Rl(n,m)+R2(n,m)+R4(n,m)]/[Rl(n,m)+R2(n,m) 
+R4(n,m)+R(n,m)] (3.17) 

RL4(,n,m)=R(n,m)[Rl(n,m)+R2(n,m)+R3(n,m)]/[Rl(n,m)+R2(n,m) 
+R3(n,m)+R(n,m)] (3.18) 

Having calculated all the preliminary quantities, we are now in a position to 
obtain the scattering coefficients listed in Table 3.1. We cite two examples, 
Txy(n,m,10) and Byx(n,m-1,3). Txy(n,m, 10) represents, from the Table, the trans
fer of the wave from the Zxy(n,m) line to the Zyx(n,m) line. The arguments n,m 
indicate the transfer occurs at the (n,m) node while the 10 specifies that the 
transfer is from the Zxy(n,m,) line to the Zyx(n,m). The total load impedance seen 
by the wave in the Zxy(n,m) line is given by RLl(n,m), provided by Eq.(3.15). 
Using the standard expression for the transfer coefficient, Txy(n,m,10) may be 
written as 

Txyfam, 10)= {2RL1 (n,m)/[RL 1 (n,m)+Zxy(n,m)]} 
* {R2(n,m)/[R2(n,m)+R3(n,m)+R4(n,m)]} (3.19a) 
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where the expression in the second parenthesis represents the share of the volt
age transfer to Zyxfom), i.e., the ratio of the voltage transfer to Zyxfom) to that 
of the sum of voltage transfers across the three lines Zyx(n,m), Zyx(n,m+1), and 
Zxy(n+l,m). Next we consider the reflection coefficient, Byx(n,m-1,3). The ar
guments n,m-l denote the (n,m-l) node, while the 3 subscript indicates the re
flection is for the backward wave in the Z^a.m) line. Utilizing the usual ex
pression for the reflection coefficient then gives 

IV(n,m-l,3) = [RL4(n,m-l>-Zyx(n,m)]/ [RL4(n,m-l)+Zyx(n,m)] (3.19b) 

where RL4(n,m-l) is given by Eq.(3.18), but we replace m with m-1. The com
plete listing of scattering coefficients is given in Table 3.3, which represents the 
scattering about the node. The node parameters are given in Eqs.(3.11)-(3.14) 
and (3.15)-(3.18). When used in the scattering equations, the proper index is in
serted in both the scattering coefficients and the node parameters. 

Having enumerated the scattering coefficients, we are now in a position to 
write down the fields, at time t, in the lines Zxy(n,m), Zyx(n,m), in terms of the 
fields of the previous time step. Starting with the forward wave in Zxy(n,m), 
during the kth time step, the voltage is (we now use the k superscript to indicate 
the time step) 

V ^ m ) = T ^ n - l ^ l ) ^ /^ (n -1 ,m)-Tk
yx(n-1 ,m,2) V ^ n - L m ) 

+Tk
yx(n-l,m,3)-Vk

yx(n-l,m+l)+Bk
xy(n-l,m,l)-Vk

xy(n,m) (3.20) 

We now explicitly describe each term in Eq.(3.20). The first, Tkxy(n-l,m,l) 
+Vkxy(n-l,m) represents that portion of the forward wave, in the Zxy(n-l,m) line, 
that is transferred to the Zxy(n,m) line.The second term, Tk

yx(n-l,m,2)+Vk
yx(n-

l,m) represents the energy coupled from the forward wave in the vertical Zyx(n-
l,m) line to the Zxy(n,m) line, via the (n-l,m) node. A negative sign is present 
here since the +Vkyx(n-l,m) wave couples to the Zxy(n,m) in the negative direc
tion. The third , Tkyx(n-l,m,3) ~Vkyx(n-l,m+l), corresponds to the energy transfer 
of a backward wave in the vertical Zyx(n-l,m+l) line to the Zxy(n,m) line. Fi
nally the term Bkxy(n-l,m, l)"Vkxy(ii,m) represents the reflection of the backward 
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TABLE 3.3 2D SCATTERING COEFFICIENT EXPRESSIONS 
ABOUT (n,m) NODE 

Txy(n, m, 1) =2*RLl(n, m)*R3(n, m) / ((RLl(n, m)+Zxy(n, m))*(R2(n, m) 
+R3(n, m) + R4(n, m))) 

Tyx(n, m, 2)=2*RL2(n, m)*R3(n, m) /((RL2(n, m)+Zyx(n, m))*(Rl(n, m) 
+ R3(n, in) + R4(n, m))) 

Tyx(n, m, 3)=2*RL4(n,m)*R3(n-l,m)/((RL4(n, m)+Zyx(n,m+l)) * ( Rl(n,m) 
+ R2(n, m) + R3(n, m))) 

Txy(n, m, 4)=2*RL3(n, m)*Rl(n, m)/((RL3(n,m)+Zxy((n+l),m))*(Rl(n, m) 
+R2(n, m)+R4(n,m))) 

Tyx(n,m,5)=2*RL4(n,m)*Rl(n,m)/((RL4(n,m)+Zyx(n,(m+l)))*(Rl(n,m)+ 
R2(n, m) + R3(n, m))) 

Tyx(n, m, 6)=2*RL2(n, m)*Rl(n, m) /((RL2(n, m)+Zxy(n, m))*(Rl(n, m) 
+R3(n, m) + R4(n, m))) 

Txy(n, m, 7) =2*RLl(n, m)*R4(n, m)/((RLl(n, m)+Zxy(n, m)) * (R2(n,m) 
+ R3(n, m) + R4(n, m))) 

Tyx(n, m, 8) =2* RL2(n, m)*R4(n, m)/((RL2(n, m)+Zyx(n, m))* (Rl(n, m) 
+ R3(n, m) + R4(n, m))) 

Txy(n, m, 9)=2*RL3(n, m)*R4(n, m)/((RL3(n, m)+Zxy((n +l),m))*(Rl(n, m) 
+ R2(n, m) + R4(n, m))) 

Txy(n, m, 10)=2*RLl(n, m)*R2(n, m)/((RLl(n, m)+Zxy(n, m))* (R2(n,m) 
+R3(n, m) + R4(n, m))) 

Tyx(n, m, U)=2*RL4(n, m)*R2(n,m)/((RL4(n, m)+Zyx(n,(m+l)))*(Rl(n, m) 
+ R2(n, m)+R3(n, m))) 

Txy(n, m, 12) =2 *RL3(n,m)*R2(n,m)/((RL3(n,m)+Zxy((n+l),m))*(Rl(n, m) 
+R2(n, m)+R4(n, m))) 

Bxy(n, m, 1) = (RL3(n, m) - Zxy(n+1, m)) / (RL3(n, m) + Zxy(n+1, m)) 
Bxy(n, m, 2) = (RLl(n, m) - Zxy(n, m)) / (RLl(n, m) + Zxy(n, m)) 
Byx(n, m, 3) = (RL4(n, m) - Zyx(n,m+1)) / (RL4(n, m) + Zyx(n ,m+l)) 
Byx(n, m, 4) = (RL2(n, m) - Zyx(n,m)) / (RL2(n, m) + Zyx(n,m)) 
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backward wave in the Zxy(n,m) line, occurring at the (n-l,m) node. Similar rela
tionships may be expressed for the backward wave in the Zxy(n,m) line, as well 
as both the forward and backward waves in the Zyx(n,m) line. Thus, 

-\^\{n,m) = T V I M M ) "V^n+l^n) - Tk
yx(n,m,5)-Vk

yx(n,m+1) 
+Tk

yx(n,m,6)+Vk
yx(n,m)+Bk

xy(n,m,2)+Vk
xy(n,m) (3.21) 

V ^ f o m ) = -Tk
xy(n,m-1>7) V ^ m - O + T ^ m - U ) V ^ m - l ) 

+ Tk
xy(n,m-l,9)-Vk

xy(n+l,m-l)+Bk
yx(n,m-l,3)-Vk

yx(n,m) (3.22) 

-Vk+lUn,m) = Tk
xy(n,m,10)+Vk

xy(n,m) + T ^ i M n + U l ) " V ^ m + l ) 
- T ^ m , 12) T V n + l , m ) + B ^ I M M ) V ^ ( n , m ) (3.23) 

Eqs.(3.20)-(3.23) are the key set of iterative relations which completely 
determine the behavior of the medium. If the fields throughout the medium are 
known at a particular time, then the evolution of the fields following that mo
ment in time are determined by Eqs.(3.20)-(3.23). The most obvious starting 
time, of course, is during equilibrium , i.e., when the static solution is presumed 
known. As pointed out before, the node resistors during equilibrium are ex
tremely large and the waves in each line segment are totally reflected at each 
node, which behaves as an open circuit. The amplitude of the forward and back
ward waves in each line is then exactly half the equilibrium voltage difference 
between cells. The transient solution follows once the node resistance is acti
vated. 

In addition to solving transient problems, the iterative equations also may 
be used to seek out the static solution, i.e, the solution of Laplaces' equation. . 
As we will see in Chapter VII, the iterative equations produce the static solu
tion when we charge up the electrodes, by means of long input transmission 
lines. The iteration therefore covers the full gamut of the various states experi
enced by the medium, from the transient "charge-up" process(during which time 
the nodes are unactivated), the establishment of the equilibrium state, and the 
activation of the conductivity, followed by recovery. 
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3.3 Effect of Symmetry on Scattering Coefficients 

As one might surmise, symmetry introduces tremendous simplifications in the 
scattering coefficients. Before considering the general case, in which node losses 
are present, we first consider 2D symmetries present when R(n,m)=oo , i.e., when 
losses are absent. As an example, we examine Txy(n,m,l), which describes the 
wave transfer from Z^r^m) to Zxy(n+l,m). We obtain T^(n,m,l) using Table 
3.3 , with load impedance RLl(n,m) = Z^O^m) + Zyxfom+l) + Zxy(n+l,m), and 
with node parameters R3(n,m)=Zxy(n+l,m), R2(n,m)= Zyx(n,m), and 
R4(n,m)=Zyx(n,m+l). This then gives 

Txy(n,m,l)=(2Zxy(n+l,m))/[Zyx(n,m)+Zxy(n,m)+Zyx(iMn+l^Z^n+ljm)] (3.24) 

An important point to note about Eq.(3.24) is that Zxy(n+l,m) is divided by the 
sum of all four line impedances surrounding the node, a symmetric function, 
which means that the same transfer coefficient is obtained when the scattering is 
from Zyx(n,m) or Zyx(n,m+1), represented by Tyx(n,m,3) and (-)Tyx(n,m,2). Thus 

Txy(n,m,l)=Tyx(n,m,3)= (-)Tyx(n,m,2) (3.25a) 

Here we illustrate the use of the (-) symbol, placing it in front of Tyx(n,m,2) to 
indicate that the wave scattered from Zyx(n,m) into Zxy(n+l,m) is inverted. 
Eq.(3.25a) is a result of the symmetries ensuing from any contributions to the 
forward wave in the Zxy(n+l,m) line. Similarly, we can state the symmetries for 
the backward wave in Zxy(n,m), the forward wave in Zyx(n,m+1) and the back
ward wave in Zyx(n,m). This gives the result 

Txy(n,m,4)=Tyx(n,m, 6)= (-)Tyx(ii,m,5) (3.25b) 

Tyx(n,m,8)= Txy(n,m,9)= (-)Txy(n,m,7) (3.25c) 

T ^ m , ! 1)= T ^ n U O ^ (-)Txy(n,m>12) (3.25d) 

In this Section the symbol(-) is used to designate negative wave transfer 
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Without node loses, therefore, the number of transfer coefficients may be re
duced from twelve to four. We stress however that these symmetries apply only 
to the 2D case, and they do not apply to the generalized 3D scattering(which in
cludes scattering normal to the propagation plane), to be discussed later this 
Chapter 

We now turn our attention to the symmetries present in 2D scattering when 
losses are present. In this situation the degree of symmetry will be determined 
by the degree of equality of the four TLM lines surrounding the (n,m) node. The 
results are tabulated in Table 3.4, which considers scattering about the node. The 
Table, it should be emphasized, illustrates the symmetrization for specific line 
equalities. The first grouping indicates the symmetry for Zxy(n,m)= Zxy(n+l,m). 
We see that in this case the number of transfer coefficients is reduced from 
twelve to seven, and the number of reflection coefficients from four to three. To 
illustrate how the relationships are obtained, we look at the second entry, which 
states that Tyx(n,m,3)= (-)Tyx(n,m,5). From Table 3.2 we see that T^n.m^) rep
resents the wave transfer from Zyx(n+l,m) while Tyx(n,m,5) applies to the wave 
transfer from Zyx(n,m). Since Zxy(n,m) =Zxy(n+l,m), however, the calculation of 
the load impedances , as well as the voltage divisions applicable to Zxy(n,m) and 
Zxy(n+l,m), will be identical. Thus Tyx(n,m,3) and Tyx(n,m,5) will be identical. 
The (-) in front of Txy(n,m,5) , as mentioned before, is used to indicate the in
verted coupling of Zyx(n,m+1) to Z^{n,va,). We again call attention to the arbi
trary selection of the two equal TLM lines. Any other pair of lines, surrounding 
the node, could have been selected (such as Zxy(n,m) and Zyx(n,m+1) ), which 
will then generate a different set of symmetry relationships. In the next 
grouping of symmetry relationships, we assume, arbitrarily, that the three lines 
Zxy(n,m), Zyx(n,m,+1), and Zxy(n+l,m) are identical As shown in the Table, this 
then reduces the number of independent trasfer coefficients from twelve to three 
(designated in Table 3.4 by T ^ m ) , Tn(n,m), Tra(n,m) ) and the number of re
flection coefficients from four to two(designated by Bi (n,m) and Byxfom)). 

The simplifications due to symmetry are most apparent when all the lines 
are equal, i.e., when there is complete uniformity. In this case the twelve scat-



Scattering Equations 

TABLE 3.4 SYMMETRY PROPERTIES OF 2D COEFFICIENTS 
(XY PLANE) FOR SPECIFIC TLM LINE EQUALITIES. 
SCATTERING IS ABOUT (n,m) NODE 

A. TWO LINES EQUAL: Z ^ n i ) = Z^n+^m) 

^(11,111,1) =^(11,111,4) 

^(11,111,3) = ( - ) T „ ( I I , I I I , 5 ) 

^11,111,9) = ( - ^ ^ , 1 1 1 , 7 ) 

T ^ n U O ) = (-)TIJ(n,ni,12) 
T^n,m,<) = (-^(11,111,2) 
B ^ I M M ) = Bjy(n,m,2), 8 (̂11,111,3), Bp(n,m,4) 

B. THREE LINES EQUAL: Z ^ n i ) = Z^n+1,111) = ZyX(n,m+l) 

^(11,111,1) = T ^ O M M ) = y i M M ) = T ^ I M M ) = Ti(n,m) 
(-^(11,111,5) = (-)T,y(n,in,7) = (-)Ti(n,m) 
T„(ii,ni,6) = T^n,m,8) = Tn(n,m), (-^(11,111,2) = Tn(n,m) 
T^n,m,10) = T„(ii,ai,H) = Tra(n,m), (-)TIy(n,m,12) = (-)Tm(n,m) 
B,y(ii,m,l) = B^(n,m,2) = 8 (̂11,111,3) = Br(n,m), B)S(n,m,4) 

C. ALL LINES EQUAL: Z^i^m) =Zxy(n+l,m)=Zys(n,iii)= ZyX(n,m+l) 

^(11,01,1) = T ^ I M M ) = T ^ I M M ) =^(11,111,6) = T(n,m) 
V I W B ^ ) = Tsy(n,m,9) =^(11,111,10) =^(11,01,11) =T(n,m) 
(-)Tyi(n,m,2)=(-)Tyx(n,m,5)=(-)Txy(ii,iii,7)=(-)Txy(n,m,12)=(-)T(n,iii) 
Bjy(n,in,l) = B„(n,m,2) =Byi(n,m,3) = BVI(n,m,4) = B(n,m) 
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tering coefficients are all equal to one another, thus reducing the number of dif
ferent transfer scattering coefficients to one, T(n,m). Similarly, the four reflec
tion coefficients are all equal, so that only a single reflection coefficient, B(n,m), 
is needed. 

3.4 3D Scattering Equations: Coplanar Scattering 

We first start with the 3D case in which the scattered fields remain in the 
propagation plane, which of course is equivalent to the 2D matrix done previ
ously. Since we have already obtained the scattering coefficients and equations 
which pertain to the 2D matrix , the results carry over to the coplanar 3D with
out the necessity of re-deriving equations. The main changes will be the addition 
of a third index to denote the extra dimension as well as in the interpretation of 
the results. Once these results are obtained for a particular scattering plane, the 
equations for the two other planes may be obtained by simple permutation. The 
3D coplanar solution is by and large a 2D solution dressed in the clothing of 3D 
variables. The techniques are primarily useful for 2D and quasi 2D geometries, 
and where we may ignore scattering normal to the propagation plane. 

The simplest approach is to divide the matrix into the three propagation 
planes, xy,yz, and zx. We first consider scattering in the xy plane As we noted 
previously in Chapter 2, the transmission line impedances and voltages for the 
xy plane are denoted by Zxy(n,m,q), Zyxfom.q) and Vxy(n,m,q),Vyx(n,m,q) re
spectively, while the node resistance is given by R(n,m,q). As mentioned before, 
the first subscript refers to the direction of propagation while the second refers to 
the field direction. The q index, of course, represents the added z dimension. 
The procedure in the previous section is followed , using Fig.3.3 as a guide, and 
as before we first define a four element auxiliary array, consisting of the parallel 
combination of the node resistance and the characteristic impedance of each of 
the four lines. The four elements, denoted by Rlxy(n,m,q), R2yx(n,m,q) 
FG^rrj^q) , R4yx(n,m,q) are : 

Rlxyfan^q) = Zxy(n,m,q)R(n,m,q)/[Zxy(n,m,q)+R(n,m,q)] (3.26a) 
R2yx(n,m,q) = Zyx(n,m,q)R(n,m,q)/[Zyx(n,m,q)+R(n,m,q)] (3.26b) 
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(n.m.q) NODE 

FIG. 3.3(a) ELEMENTARY CELL OF TLM MATRIX 

Zjy(n,m,q) R(n,m,q) ZyZ(n,m,q) Zta(n,m,q) 

Zz),(n,m,q) 
> ZH(n,m,q) 

FIG. 3.3b PROJECTION OF 3D TLM MATRIX ONTO 2D GRIDS, 
THE ABOVE FACILITATES THE CALCULATION OF THE| 
SCATTERING COEFFICIENTS. 
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R3xy(n,m,q) = Z^{n+1 ,m,q)R(n,m,q)/[Zxy(n+1 ,m,q)+R(n,m,q)] (3.26c) 

R4yx(n,m,q) = ZyxfonH-1 ,q)R(n,m,q)/[Zyx(n,m+1 ,q)+R(n,m,q)] (3.26d) 

Unlike the 2D expressions, note that we attach the subscripts xy ,etc. in or
der to identify the particular plane involved. Following exactly the same proce
dure as before, we next write down the total impedance value seen by the wave 
incident on the (n,m,q) node in each of the four transmission lines. Using a 
similar notation as before, 

RLlxy(n,m,q)=R(n,m,q)[R2yx(n,m,q)+R3xy(n,m,q)+R4yx(n,m,q)]/Ql 
Ql=R2yx(n,m,q)+R3xy(n,m,q)+R4yx(n,m,q)+R(n,m,q) (3.27) 

RL2yx(n,m,q)=R(n,m,q)[Rlxy(n,m,q)+R3xy(n,m,q)+R4yx(n,m,q)]/Q2 
Q2=Rlxy(n,m,q)+R3xy(n,m,q)+R4yx(n,m,q)+R(n,m,q) (3.28) 

RL3xy(n,m,q)=R(n,m,q)[RlXy(n,m,q)+R2yx(n,m,q)+R4yx(n,m,q)]/Q3 
Q3= Rlxy(n,m,q)+R2yx(n,m,q)+R4yx(n,m,q)+R(n,m,q) (3.29) 

RL4yx(n,m,q)=R(n,m,q)[Rlxy(n,m,q)+R2yx(n,m,q)+R3xy(n,m,q)]/Q4 
Q4= Rlxy(n,m,q)+R2yx(n,m,q)+R3xy(n,m,q)+R(n,m,q) (3.30) 

Once the preliminary arrays are obtained, then all the scattering coefficients 
for the xy plane may be calculated, in much the same manner employed in the 
2D matrix with the main difference being the notation. As before we need only 
concentrate on those coefficients which contribute to the Zxy(n,m,q) and Zyx_ 
(n,m,q) lines. Table 3.5 lists the scattering coefficients for the xy plane. To help 
with the understanding of the notation, we use the transfer coefficient Txy(n-
l,m,q, 1) as an example, given by 

T^n-1 ,m,q, 1 )=[2RL l^n-1 ,m,q, 1 )Zxy(n-1 ,m,q)/[RLlxy(n-1 ,m,q) 
+Zxy(n-l,m,q)]]*S (3.31a) 

S= R3xy(n-l,m,q)/[R2yx(n-l,m,q)+R3xy(n-l,m,q)+R4yx(n-l,m,q)] (3.31b) 
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TABLE 3.5 3D COPLANAR SCATTERING COEFFICIENTS 
INTO UNIT CELL LINES Z iy(n,m,q) 

COEFFICIENT 
T„y(ii-l,iii,q,l) 
(-^(11-1,111^,2) 
^(11-1,111^,3) 
^(11,111^,4) 
(-)Tyx(n,m,q,S) 
T„(n,m,q,6) 

{r)T^n,m-l,q,1) 
1^(n,m-\,q,9) 
T,y(n,ni-l,q,9) 
T^(n,m,q,10) 
T^(n,m,q,l l) 
(-)T,y(ii,in,q,12) 

TRANSFER TYPE 

FROM 
Zq<n-l,m,q) 
Z^n- l .m .q ) 
Z ^ n - l . m + l ^ ) 
Zxy(n+l,iii,q) 
Zyj(n,m+l,q) 
Z^(n,m,q) 
Z,y(n,in-l,q) 
Zyxtn.m-l.q) 
Z i y(n+l,ni-l ,q) 
Zxy(n,m,q) 
Zyi(n,m+l,q) 
Z,y(n+l,in,q) 

REFLECTION TYPE 
Biy(n-l,in,q,l) 
B„(n,m,q,2) 
8^(11,111-1^,3) 
ByX(n,m,q,4) 

Zxy(n,m,q) 
Z^(n,m,q) 
ZVI(n,m,q) 
Z,i(n,m,q) 

and Z^(n,m,q) 

TO 
Z ^ n ^ q ) 
Z^n.m.q) 
Z ly(n,m,q) 
Zjy(n,ni,q) 
Z^(n,m,q) 
Ziy(n,ni,q) 
Z^n.m.q) 
Zyl(n,m,q) 
Zyx^m.q) 
Zyx(n,m,q) 
Z y i O i ^ q ) 
Z^n.m.q) 

Z,y(n,in,q) 
Z^n.m.q) 
Zyi(n,m,q) 
Zyi(n,m,q) 

where Rlxy(n,m,q) , etc., and RLlxyforr^q) are given by Eqs.(3.26)-(3.30) with 
n=n-l The first three arguments of the coefficient, n-l,m,q , identify the node re
sponsible for the scattering, xy indicates that the propagation is in the x direc
tion, while the direction of the field is along y. Finally, the fourth argument, 1, 
indicates that the wave incident on the node emanates from the Z ^ n - l ^ q , ) 
line and a portion of the wave is being transferred to the Zxy(n,m,q) line. We se
lect the reflection coefficient B^n- l , m,q, 1) as another example. We see from 
the Table 3.5 that this represents the backward wave in the Zxy(n,m,q) line, 
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which is then reflected at the (n-l,m,q) node and becomes a forward wave in 
the same line. The expression for B„y(n-l,m,q,l) is 

Bxy(n-l,m,q)=[RL3xy(n-l,m,q)-Zxy(n,m,q)]/[RL3xy(n-l,m,q) +Zxy(n,m,q)] (3.32) 

where RL3xy(n,m,q) is given by Eq.(3.29) with n=n-l. The interpretation of the 
other coefficients in Table 3.5 is similar. 

Having specified the scattering coefficients for the xy plane of the 3D ma
trix, we are now equipped to write down the iterative scattering equations which, 
except for the notation, will be very similar to Eqs.(3.20)-(3.23) of the 2D ma
trix. Fig.3.2 represents the xy portion of the cubic cell in Fig.3.4. As before, we 
focus on only two of the lines, Zxyforr^q), and Zyx(n,m,q), since these are the 
two lines associated with the (n,m,q) cell. The forward and backward waves in 
each of these lines, at time t+At, may be expressed in terms of waves existing in 
the surrounding lines at time t. At the risk of some redundancy we display the 
iterative equations, which are identical to Eqs.(3.20)-(3.23) except for the addi
tion of the third index q. 

+Vk+x^,m)=T^{n-\,m,q,\) V ^ n - l . m . q ) - 1*yx(n-l,m,q,2) V ^ n - l ^ q ) 
+Tk

yx(n-l,m,q,3rVk
yx(n-l,m+l,q)+Bk

xy(n-l,m,q,l)-Vk
xy(n,m,q) (3.33) 

- V ^ f o n ^ q ) = T\y(ii,m,q,4) "V^n+l.m.q) - Tk
yx(ii,m,q,5) V ^ m + ^ q ) 

T ^ n , , ^ ) V ^ n . m . q ) + B ^ n ^ q ^ ) V ^ n ^ q ) (3.34) 

+ V k V w q ) - T k
x y ( n , m - l , q ! 7 ) \ ^ n , m - l . q ) + T > , m - l ) q ) 8 ) y y x ( n , m - l , q ) 

Tk^ii,m-l,q,9)-Vk
xy(n+l,m-l,q)+Bk

yiI(n,m-l,q,3)--VkyX(ii,m,q) (3.35) 



Scattering Equations 133 

-Vk+1
yx(n,m,q)=Tk

xy(n,m,q,10)+Vk
xy(n,m,q)+ 1*yx(ii,m+l,q,l 1) " V ^ m + ^ q ) 

-Tk
xy(n,m,q,12)-Vk

xy(n+l,in,q)+Bk
yx(n,m,q,4)+Vk

yx(n,m,q) (3.36) 

Eqs.(3.33)-(3.36), together with Table 3.5, complete about one third of the 
task needed to fully describe the 3D matrix. The listing of the scattering coeffi
cients is identical to that in Table 3.3 , if we suppress the q index. Similar equa
tions and Tables must be obtained for the yz and zx planes. Fortunately the re
maining task is facilitated a great deal by symmetry conditions. For the yz plane, 
the transformation x->y, y-»z, and z-»x enables one to write down similar scat
tering coefficients and iterative equations and the Table for the scattering coeffi
cients. In a similar manner we use transformation x-»z, y-»x, and z-»y for the 
zx plane. The transformation properties are summarized in Table 3.6a. Extra 
care must be exercised when transforming wave voltages in the iterative equa
tions, or scattering coefficients, containing the node arguments (n,m,q). Al
though the node location (n,m,q) does not change under transformation, any 
fields or coefficients which contain the indices ±1 exhibit obvious changes 
during transformation. Thus , for example, in going from the xy plane to the yz 
plane, Vx^n-^m^-^VyzC^m-^q) and similarly Txy(n-l,m,q,l)->Tyz(n,m-
l,q,13). The transformation properties may be written in a more general form. 
Thus, for example, Vxy(n+An,m+Am,q+Aq) -» V^n+A^m+An^+Am) as noted 
in Table 3.6, where Am , An , Aq may be zero or plus or minus one. Also note 
the changes in the routing index s. When going from the xy plane to the yz plane 
the transfer coefficients change according to s-» s+12, while for the zx plane 
s-»s+24 . In the case of the reflection coefficients s-»s+4 and s-»s+8 for the yz 
and zx planes respectively. Also note in Table 3.6b that the node parameters 
(e.g., Rlxy(n-l,m,q), R L l ^ n - l ^ q ) ) transform to the yz and zx planes in the 
same manner as the scattering coefficients. This completes the coplaner results, 
which is essentially a generalization of the2D discussion. Next, we examine the 
3D case, in which we allow scattering to any of the three spatial directions. 
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TABLE 3.6a. 3D COPLANAR SCATTERING COEFFICIENTS 
AND WAVE VOLTAGES FOR YZ AND ZX PLANES 

SPECIAL CASE:An, Am, Aq =0 

XY PLANE YZ PLANE ZX PLANE 

-> 
X 

V^n.m.q) 
V y ^ n ^ q ) 
Tjy(n,in,q,s) 
Tyx(n,in,q,s 
8^0,01^,8) 
8^(0,01^,8) 

-» 
-» 
-» 
-> 
-> 
-» 

V^n.m.q) 
Vjy(n,m,q) 
^(0 ,10^,8+12) 
T,y(o,m,q,s+12) 
8^(0,01^,8+4) 
Bzy(D,m,q,s+4) 

VM(o,m,q) 
VH(o,m,q) 
TM(o,m,q,s+24) 
T„(fl,m,q,s+24) 
B„(o,m,q,s+8) 
8^(0,01^,8+8) 

GENERAL TRANSFORMATION: Ao, Am, Aq =0 or +1 

Vjy(n+An,m+Am, q+Aq) -»Vyz(n+Aq,ni+An, q+Am) V„(n+Am,m+Aq, q+An) 
Vyj(n+Am,m+Aq, q+An) -»Vly(n+Aq,m+An, q+Am) V^n+Am.m+Aq, q+An) 
Tw(n+An,m+Am,q+Aq,s) -»Tyz(n+Aq,m+An,q+Am,s+12) TM(n+Am,m+Aq, q+An,s+24) 
Tyl(n+An,m+Am,q+Aq,s)-»Tzy(n+Aq,m+An, q+Am,s+12) Tm(n+Am,m+Aq, q+An,s+24) 
Bjy(n+An,m+Am, q+Aq,s)->Byj(n+Aq4n+An, q+Am,s+4) BM(n+Am,m+Aq, q+An^+8) 
Byl(n+An,m+Am, q+Aq,s)->Bzy(n+Aq,m+An, q+Am,s+4) Bjj,(n+Am^n+Aq, q+An^+8) 



Scattering Equations 135 

TABLE 3.6b 3D COPLANAR TRANSFORMATION OF NODE PARAMETERS 

GENERAL TRANSFORMATION : An, Am, Aq =0 or ±1 

XY PLANE YZ PLANE ZX PLANE 

RLl^n+An.m+Am, q+Aq) ->RLlyl(n+Aq,m+An, q+Am) RLlZI(n+Am,m+Aq, q+An) 

RL3ly(n+An,m+Am,q+Aq)->RL3yz(n+Aq,m+An, q+Am) RL32I(n+Am,m+Aq, q+An) 

RL2yi(n+An,m+Am, q+Aq) -»RL2zy(n+Aq,m+An, q+Am) RL2IZ(n+Am,m+Aq, q+An) 

RL4yl(n+An,m+Am, q+Aq)-»RL4iy(n+Aq,m+An, q+Am) RL4IZ(n+Am,m+Aq, q+An) 

Rljy(n+An,m+Am, q+Aq) ->Rlyz(n+Aq,m+An, q+Am) RlZj(n+Am,m+Aq, q+An) 

R3^,(n+An,m+Am, q+Aq^RS^n+Aq^+An, q+Am) R3ZI(n+Am,m+Aq, q+An) 

R2yl(n+An,m+Am, q+Aq)-»R2zy(n+Aq,m+An, q+Am) R2H(n+Ain,m+Aq, q+An) 

R4yl(n+An,m+Am, q+Aq)->R4jj,(n+Aq,m+An, q+Am) R4IZ(n+Am,m+Aq, q+An) 

General Scattering, Including Scattering Normal 
to Propagation Plane 

Until this point the discussion has concentrated exclusively on scattered 
waves which remain in the same propagation plane as the incident wave. We 
remind ourselves that the propagation plane is formed by the direction of propa
gation and by the field direction. We illustrate the directional behavior of the 
waves by looking at the by now familiar Fig.3.4(a). A wave +Vxy(n,m,q) is inci
dent on the R(n,m,q) node. The scattered waves are then +Vxy(n+l,m,q), 
~Vyx(n,m,q) , +Vyx(n,m+l,q), and -Vxy(n,m,q). As noted before, the scattered 
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waves are all in the xy plane, as is the incident wave, i.e., the scattering is copla-
nar. This type scattering is incomplete, however, and in fact is contradictory to 
our experience with scattered electromagnetic waves; one also should expect 
waves scattered normal to the propagation plane. This notion may be reinforced 
using several different arguments. First and foremost, of course, the scattering 
must be consistent with Maxwell's equations. As we observed in Section 1.16, 
we required normal scattering in order to complete the curl property of Max
well's equations. Conversely if we omit normal scattering, then we are con
fronted with unphysical gaps in the magnetic field loops (and the same for the 
displacement field) which are at variance with Maxwell's equations. 
There are also related arguments for normal scattering, based on the self consis
tency of the TLM formulation. One such argument involves looking at the mag
netic field vector associated with +Vxy(n,m,q). denoted by +HX2(n,m,q), which of 
course is perpendicular to +Vxy(n,m,q). and is in the xz plane. At the node we 
make the same assumption regarding the magnetic field as that for the electric 
field. For sufficiently small cell size, the magnetic field at the node, which in
cludes any reflected wave, is equal to the sum of the waves scattered to the 
three other lines(Fig.3.4(b)). This allows the magnetic field +Hxz(n,m,q) to scat
ter in coplanar fashion to ZTO(n+l,m,q), Zzx(n,m,q+1), and Zzx^rr^q). The mag
netic field scattered into the Zja{a+\,Ta,o^ line, +Hxz(n+l,m,q), is no surprise; this 
is simply the field accompanying +Vxy(n+l,m,q). However, the magnetic fields 
in lines Zzx(n,m,q+1) and Zzx(n,m,q), denoted by +H2x(n,m,q+1) and "HzxO îr^q), 
are precisely those which would accompany any electric field waves if it were 
scattered perpendicular to the plane in Fig.3.4(a), and denoted by +Vzy(n,m,q+1) 
and "Vzy^mjq). The necessity for the latter waves is also compelling, based on 
symmetry arguments. Both physically and mathematically coplanar scattering 
is incomplete and there is no reason why +Vxy(n,m,q) should not scatter nor
mally into the Zzy(n,m,q) and Zzy(n,m,q+1) lines as well. A similar argument 
may also be made for the scattering of the incident magnetic field normal to the 
propagation plane. The incident magnetic field, +Hxz(n,m,q) undergoes scatter
ing into the Zyz(n,m,q) and ZyzO^m+^q) lines and these fields are precisely those 
which accompany the electric field waves scattered into the. Zyx(n,m,q) and 
Zyx(n,m+l,q) lines. 
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+VYX(n,m+l,q) y 

U 
+Hzx(n,m,q+l) c. 

INPUT +VXY(n+l,m,q) INPUT 
+Hxz(n,m,q) 

+Hxz(n,m,q+1) 

(a) (b) 

Vxy(n,m,q) H7A(n,m,q) 

FIG.3.4COPLANAR SCATTERING OF +VxY(n,m,q) AND 
ASSOCIATED ^xzO^rnq). INCORPORATION OF MAGNETIC FIELD 
IMPLIES SCATTERING NORMAL TO PROPAGATION PLANE. 

3.5 Equivalent TIM Circuit. Quasi-Coupling Effect 

Based on the comments in the previous paragraph, it would appear that the scat
tering, including losses, is controlled by the equivalent node circuit in Fig.3.5 
which shows a wave +Vxy(n,m,q) incident on the (n,m,q) node. The circuit ap
plies if line impedances surrounding the node obey certain symmetry conditions; 
for example, if the TLM lines surrounding the node have the same impedance. 
In the event the such symmetry conditions are lacking, however, then the inci
dent +Vxy(n,m,q) wave will exhibit aplanar scattering not only to the z direction 
but to the y direction as well. The equivalent circuit therefore must be revised. 
A first order revision of the circuit is shown in Fig.3.6 and is used to account 
for first order "quasi" coupling to the Z y ^ m ^ a n d Zyz^m+^q) lines.A quan
titative description of quasi-coupling, and the conditions for its existence, are 
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R4zY(n,m,q) 

+VXY(n,m,q) 

ZxY(n,m,q) 

7 
R(n,m,q) 

R3xY(n,ni,q) 

R2zY(n,m,q) 
R2YX(n,m,q) 

FIG. 3.5 EQUIVALENT CIRCUIT FOR SCATTERING 
OF BOTH COPLANAR AND APLANAR WAVES , WITH 
QUASI-COUPLING EXCLUDED (ZERO ORDER 
APPROXIMATION .̂ 

subsequently discussed in Sections 3.7 and 3.8. Regarding the circuit in Fig.3.6, 
we shall also see that the appropriate node parameters, Rlyz(n,m,q) and 
RSyzfon^q) also must be taken into account to obtain the coupling to 
Zyz(n,m,q) and Zyzfom+l.q) and in order to properly calculate the load imped
ances and the scattering coefficients. These node parameters vanish in the ab
sence of quasi-coupling to the Zyz(n,m,q) and Zy^rvm+^q) lines. The equiva
lent circuit of Fig.3.6, as well as a follow-on, modified version of the circuit, 
yield both the aplanar(including quasi-coupling) and coplanar scattering, and are 
discussed in detail The resultant scattering coefficients and iterative equations 
are then obtained. We should remark that the use of the quasi-coupling circuits 
does add complexity to the TLM formulation and, therefore, before discussing 
quasi-coupling in detail, we should describe the implications for neglecting this 
type scattering. 
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A 

R3YZ(n,m,q)/2 

R4ZY(n,m,q) J *•» jf \ R4YZ(n,m,q) 

/ 
+VXY(n,ni,q) — • 

C 
ZXv(n,m,q) 

R3xY(n,m,q) 

R(n,m,q) ^ v ^ ^ V ^ T " ^ z * (n>m><0 

RlYZ(n,m,q)/2 D R2YX(n,m,q) 

FIG. 3.6 EQUIVALENT CIRCUIT FOR SCATTERING OF BOTH 
COPLANAR AND APLANAR WAVES. NODAL PLANES 
INTERSECT AT MIDPOINTS. THE TERMINAL PAIRS, A,B 
AND C,D REPRESENT FIRST ORDER QUASI- COUPLING 
PORTS TO THE ZYZ(n,m,q) AND ZYZ(n,m+l,q) LINES. 

3.6 Neglect of Quasi-Coupling 

Under what conditions is it possible to neglect the quasi-coupling effect and to 
use the simple circuit in Fig.3.5, even when there is inequality in the surround
ing lines, brought about by a gradient in the dielectric constant? We address this 
issue by first supposing that the cell size is much smaller than the characteristic 
length associated with the change in the dielectric constant(we can define this 
length, e.g., as the number of cell lengths needed for s to change by an amount 
(1/e ). We assume, for concreteness a small gradient of the dielectric constant in 
the z direction. We then suppose that waves traveling in the x direction reach the 
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yz plane at about the same time. Consider these waves to be +Vxy(n,m,q), 
+Vxy(n,m,q+1) and +Vxy(n,m,q-1). They then impinge on the (n,m,q), (n,m,q+l), 
and ( n,m,q-l) nodes respectively. If we assume that no quasi-coupling occurs, 
the only scattering is that belonging to the coplanar and normal aplanar type. 
We then focus on the two aplanar waves scattered at the (n,m,q-l) and (n,m,q+l) 
nodes, namely the forward wave +Vzy(n,m,q), and the backward one 
~Vzy(n,m,q+l). We note that these are z directed waves and they converge on the 
(n,m,q) node at about the same time. These two waves will then undergo copla
nar scattering in the yz plane, and will contribute to the waves in the Zyz(n,m,q) 
and Zy2(n,m+l,q) lines, consisting of the backward wave "V'yzfon^q) and the 
forward one +Vyz(n,m+l,q). These are the waves achieved previously in a single 
time step via quasi-coupling. In this case however, two time steps, instead of 
one, are required to convey wave energy to these lines. It is important to note 
that each of the waves is made up of two contributions(from the Zzy(n,m,q) and 
Zzy(n,m,q+1) lines). For a small gradient the two contributions will have mostly 
opposite polarity, so that field cancellation occurs, and the total field delivered to 
Zyzfom^andZyzfom+^q) will be small. 

What therefore, is the main impact in ignoring quasi-coupling? Without 
quasi-coupling, as mentioned previously, the outputs to 'Vyx{n,m,q) and 
+Vyz(n,m+l,q) will lag behind, with the delay on the order of one transit time. 
Without doubt, however, the greatest difference occurs when one is presented 
with a well defined dielectric boundary, In this case , waves traveling in a TLM 
line, situated along the dielectric interface, will experience a large impedance 
gradient. In this case the quasi-coupling effects are magnified and the neglect of 
quasi-coupling will result in field distortion near the boundary. Usually, the ef
fect of ignoring quasi-coupling can be made mitigated by further shrinking the 
size of the cell. As a practical matter, however, it is not always possible to select 
an arbitrarily small cell and in such cases it is better to incorporate quasi-
coupling , especially when dielectric interfaces are present. 

In the following we discuss the quasi-coupling circuit to improve the accu
racy. Unfortunately the broken symmetry, caused by a non-uniformity in the di
electric constant, requires "messy" solutions involving successive approxima
tions. If one utilizes the approach of using extremely small cells, thereby re-
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ducing the effect of ignoring quasi-coupling, the reader may opt to bypass the 
ensuing discussion on quasi-coupling and go directly to Section 3.12, which 
describes the complete set of iterative equations. The quasi- coupling effects 
may be suppressed in the iterative equations by setting equal to zero any terms 
with the subscript Q. 

3.7 Simple Quasi-Coupling Circuit: First Order Approximation 

It is first useful to classify quasi-coupling according to the approximations used. 
With the zero order approximation, the circuit of Fig.3.5 applies and in this case 
both the node parameters and the voltages for quasi-coupling vanish. In the case 
of the first order quasi-coupling, we utilize the circuit in Fig. 3.6 and we proceed 
with the help of Fig.3.7, which shows an on -axis view (x axis) of the 
+Vxy(n,m,q) wave. We concentrate for the moment on the coupling to waves per
pendicular to the propagation plane of +Vxy(n,m,q). This includes the aplanar 
coupling to the Zzy(n,m,q+1) and Zzy(n,ni,q), which has been discussed previ
ously and is well understood. It is not at all clear, however, what degree of cou
pling exists, if any, to the Zyz(n,m,q) and Zy2;(n,m+l,q) lines. In order to pro
ceed, we make the reasonable assumption, based on symmetry arguments, that 
the incident field +Vxy(n,m,q) at the (n,m,q) node is located midway between the 
various lines. From Fig.3.7 there are two distinct paths which yield the same 
node voltage as Vxy(n,m,q), that given by A-> B->C-»D and that given by 
A-»F-»G-»D. In region A, the first path implies that the wave traverses half the 
width of the line Zyzforr^q), and thus the wave "sees" an impedance 
Zyz(n,m,q)/2. Similarly, the wave sees a node resistance of R(n,m,q) 12 in re
gion A. Analogous reasoning in region D leads us to conclude that +Vxy(n,m,q) 
encounters a line impedance of Zyz(n,m+l,q)/2 and again a load resistance of 
R(n,m,q)/2. The same statements apply to the second path, A-»F-»G-»D, ex
cept for the fact that the currents in regions A and D are opposite to that of the 
first path. This circuit must be carefully interpreted and the resultant equations 
examined, especially in regard to the coupling of the incident wave to the 
ZyZ(n,m,q) and Zy^nm+^q) lines, which we designate as quasi coupling. A 
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VxY(n,in,q) 
(FIELD DIRECTION) 

FIG.3.7 APLANAR SCATTERING AT A 3D NODE. BOTH THE 
DIRECTIONS OF PROPAGATION (SINGLE ARROW) AND FIELD 
(DOUBLE ARROW ) ARE SHOWN. QUASI-COUPLING MAY OCCUR AT 
A AND D, i.e., AT Zvz(ii,m,q) AND ZYz(n,m+l,q). 

separate calculation must be performed for this type coupling. If the line imped
ances surrounding a node are identical, one can surmise that the quasi coupling 
vanishes due to symmetry. 

To determine first order coupling we examine the TLM lines in Fig.3.8, 
using simplified notation. Lines Zi and Z2 in Fig.3.8 belong to the Rlyz(n.,m,q) 
and R3yz(n,m,q) branches in Fig.3.6, while Z2 and Z4 belong to the R2zy(n,m,q) 
and R4zy(n,m,q) branches. We then allow for field +V, propagating perpendicu
lar to the plane(emerging from the page) and with the field direction as shown. 
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Z4 

Zi «— * - z3 r; 
Z j 

FIG. 3.8 APLANAR SCATTERING (INCLUDING QUASI-COUPLING) 
OF SIGNAL +V INTO LINES Z ^ Z ^ Z j , AND Z4 (+V PROPAGATES 
PERPENDICULAR TO PAGE). 

This wave will couple to the four lines(in addition to the co-planar coupling, 
which we ignore for the moment), assumed to be lossless for the moment. As 
implied in Fig.3.8, there are two possible current paths, Ii and I2, related to V 
(the total input node voltage) and the line impedances by 

V = [(Z!/2) +Z4 +(Z3/2)]I, 

I, = V/[(Z!/2)+Z4+(Z3/2)] 

V = [(Z1/2)+Z2+(Z3/2)]I2 

I2 = V/[(Z,/2)+Z2+(Z3/2)] 

(3.37a) 

(3.37b) 

(3.38a) 

(3.38b) 

Next we obtain the partial voltages across Z3, VA and VB , given by 



144 Electromagnetic Analysis Using Transmission Line Variables 

VA= V-(Z,/2)I, -Z4I, (3.39) 

VB = V-(ZXI2)\2-Z2h (3.40) 

Since VA and VB oppose one another, the net field across Z3 is obtained by tak
ing the difference between VA and VB , A3i or 

A3 = VA-VB = [(Z1/2)+Z2]I2 -[(Z,/2)+Z4]I, (3.41) 

A similar calculation across Z\ gives the net field across Zi 

A, = = [(Z3/2)+Z4]Ii -[(Z3/2)+Z2]I2 (3.42) 

Ai and A3 are the first order quasi coupled waves to the Zi and Z3 lines respec
tively. We can express these amplitude in terms of the assumed node voltage ,V, 
and the circuit parameters by combining with Eqs(3.37)-(3.40). Thus 

A3 = V (Z3/2)/ [(Zi/2)+Z4+(Z3/2)] - V(Z3/2)/[(ZI/2)+Z2+(Z3/2)] (3.43) 

Ai = V (Zi/2)/ [(Z!/2)+Z4+(Z3/2)] - V(Zi/2)/[(Z,/2)+Z2+(Z3/2)] (3.44) 

Note that A! = A3 = 0 when Z4 =Z2. Quasi- coupling is therefore suppressed un
der these conditions, which is a less restrictive condition than having all the 
TLM lines identical. Normally it is more useful to express the scattered waves in 
terms of the incident wave, VINC, which is related to V by the usual expression 

V= 2VWcRI/[RI+ZiNe] (3.45) 

where ZMC is the impedance of the incident line, and RL is the load impedance, 
which is a parallel combination of the coplanar circuit and the two "half circuit 
branches just discussed.. The use of the equivalent resistors Z3/2 and Zi/2 is 
not straightforward, however, and we must modify the analysis, as indicated in 
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the next Section, so as to obtain the proper impedance values and to correctly 
calculate RL. 

3.8 Correction to Quasi- Coupling Circuit .Second Order Approximation 

Although Eqs.(3.43)-(3.45) provide a reasonable initial estimate of the quasi-
coupling to the Z i and Z3 lines, the circuit in Fig.3.6, as it stands, it does not ac
curately portray the coupling to the lines Z2, Z4 and to the coplanar branch, as a 
simple example will demonstrate. Suppose there is no quasi coupling, a situation 
which occurs when , for example, the TLM lines are all identical or if Z2 = Z4. 
Despite this fact, Zi and Z3 still appear in the outputs to the Z2, Z4 , and coplanar 
lines. Essentially the lines Zi and Z3 siphon off energy even when the quasi 
coupling vanishes. This is because the load impedance for this circuit, RL , in
correctly assumes that the wave energy is either dissipated or delivered to Zi or 
Z3 even when the quasi-coupling is not present. 

The problem is with the values assigned to the quasi-coupling parameters 
(Zi/2) and(Z3/2) in each branch. {Z\I2) and Z3/2) represent first order values for 
the coupling parameters. While the selection of (Zi/2) and Z3/2) may appear 
intuitive, these parameters are controlled by the energy coupled to the Z\ , Z3 

lines. These quasi-coupling parameters, which control the degree of output to 
the Zi and Z3 lines, must be modified. We allow (Zi/2) and (Z3/2) to be re
placed by a new pair of second order quasi-coupling resistance parameters, as 
yet undetermined, and designated by ^ 3 Q and /3?1Q , with 

(Z,/2)-> # l Q and (Z3/2) -> £ 3 Q (3.46a), (3.46b) 

The lines Z2 and Z4 are themselves of course unchanged in the new circuit. With 
losses present, the replacements become 

Rlyzfon^qja-^lQ and KiyJ^va,^/! ->• S3Q (3.46c),(3.46d) 

We now proceed to determine these parameters based on symmetry and energy 
considerations. 
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Most important, we require that these quasi-coupling parameters vanish 
when the coupled voltages to the Zi and Z3 lines, At and A3 , vanish. The new 
circuit is shown in Fig.3.9, which is a modification of that in Fig (3.6). Fig.9 also 
uses obvious cell notation, which we discuss in a moment. Superficially the two 
circuits appear the same, but they differ with respect to the node parameters 

A 

«3YZQ(n,m,q)/2 

R4ZY(n,m,q) J S >r \ R4YZ(n,m,q) 
/ 

R3XY(n,m,q) 
+VXY(n,m,q) 

ZXY(n,m,q) 

R(n,m,q) ^ y ^ H * ? ^ R^ZY (n,m,q) 

*lYZQ(n,m,q)/2 T> R 2 Y X ( B , I I M | ) 

FIG. 3.9 EQUIVALENT CIRCUIT FOR SCATTERING OF BOTH 
COPLANAR AND APLANAR WAVES. THE TERMINAL PAIRS, 
A,B AND C,D REPRESENT SECOND ORDER QUASI-
COUPLING TO THE ZyzCn^q) AND ZYZ(n,m+l,q) LINES. 
QUASI -COUPLING NODE PARAMETERS # lyzQ (n,m,q) AND 
£3JiQ(n,m,q) ARE INDICATED. 

for the lines Z\ and Z3. Specifically ^ 1 Q will in general not be equal to half the 
node parameter Rl^fon^q) , shown in Fig.3.6. Similarly £3Q, will in general 
not be equal to half the node parameter R3yz(n,m,q). Without losses, and using 
the simplified notation of the previous Section, this is equivalent to saying that 
in general ^ 1 Q * Z\I2 and 33 Q * Z3/2. 

As noted in Fig.3.9 It may appear at first sight that we have gone against 
our earlier admonition against selecting different node resistors at the same 
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node; in fact the node resistors are still the same and we should regard £1Q, £3Q, 
as necessary coupling parameters which help facilitate the transfer of wave en
ergy when quasi coupling is present. Once we obtain these new parameters we 
will be able to ascertain the coupling to all four lines. In order to obtain these 
parameters we first utilize the voltage relationships for the branches in Fig.3.8, 
in which the upper branch is associated with Z4 and the lower one Z2 Looking at 
the lower branch, 

V = Ii* [Z4 + £3Q + 2?1Q] (3.47) 

from which we obtain 

Ii = V/[Z4 + £ 3 Q + * 1 Q ] (3.48) 

A similar equation for the lower branch gives 

h = V/[Z2 + £3Q + *1Q] (3.49) 

At this point we still lack sufficient information to determine the quasi-coupling 
parameters. However we have not yet made use of the total power radiated into 
the Zi and Z3 lines, via the coupling parameters. We require that the power de
livered to these lines satisfy the following 

A3
2/Z3 = £3Q( I,2 +I2

2) (3.50) 

A!2/Z! = *1Q( l!2 +I2
2) (3.51) 

where in the above we use the first order voltages A3 and Ai , provided by 
Eqs.(3.43) and(3.44)respectively, while Ii andl2 aregivenby Eqs.(3.48) and 
(3.49). Note that A3 and A! vanish when the coupling parameters go to zero. 
Substituting for A3, Ii, and I2. Eq.(3.50) for example becomes 

(Z3/4)[l/{(Z1/2)+Z4+(Z3/2)} - l / K Z ^ + Z a + C Z ^ ) } ] 2 ^ ! ) ] 2 = 
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&Q[ l/{ Z4 +£3Q + * 1 Q } 2 +1/ { Z2 +*3Q +*1Q}2 ] [V(2)] 2 (3.52) 

Some explanation of Eq.(3.52) is required. On the left side of the equation, V(l) 
is the total load voltage given by Eq.(3.45) with the load impedance given by 
Fig.3.6 , i.e., the coupling parameters are first order and are given by Zi/2, Z3/2. 
We have added the argument 1 to emphasize this fact. On the right side , V(2) is 
again the load voltage given by Eq.(3.45) but we have now added the argument 
2 to V, to indicate that the load impedance is now obtained from Fig.3.9 with 
second order coupling parameters )53Q and ^ 1 Q . 

Similarly, Eq.(3.51) becomes 

(Zj/4)[ l/{(ZI/2)+Z4+(Z3/2)} - l/{(Z,/2)+Z2+(Z3/2)}]2 [V(l)]2 = 

*1Q[ l/{ Z4 +S3Q + # 1 Q } 2 +1/ { Z2 +*3Q +*1Q}2 ] [V(2)]2 (3.53) 

We also note that the Eqs.(3.50), (3.51) lead to the simple relationship 

(«3Q/^1Q) = Z3/Z1 (3.54) 

Further evaluation of ;S3Q and J?1Q necessitates the simultaneous solution of 
Eqs.(3.52) and (3.53). It is important to understand the implications of Eqs. 
(3.52) and (3.53). The second order coupling parameters ^ 1 Q and £3Q , based on 
the circuit in Fig.3.9 , have been defined using the first order coupling voltages 
Ai and A3, based on the circuit in Fig.3.6. With this bootstrap technique, one 
may obtain the modified circuit representation of quasi- coupling. 

3.9 Calculation of Load Impedance with Quasi-Coupling 

In order to proceed further we need to obtain the load impedances which appear 
implicitly in Eqs.(3.52)-93.53), due to the presence of V(l) or V(2). We thus 
calculate the load impedance seen by the incident wave using the circuits in 
Figs.3.6 and 3.9, so that we include the quasi-node parameters for the latter cir
cuit. Assuming for the moment that no losses are present, the load impedance RL 

is given by 
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RL — ZiZiiZni/tZiZn+ZjZni+ZuZm] (3.55) 

where Z\, Zn are the upper and lower impedance branches and Zm is the copla-
nar branch. The impedance branches(and the resultant load impedance) will dif
fer depending on whether the circuit is first order, second order, or zero order if 
quasi-coupling is ignored. Using Fig.3.6, for the first order coupling 

Zffl= Z4+(Z3/2)+(Zi/2) (Fig.3.6) (3.56) 

while for the second order coupling of Fig.3.9 

Z„, = Z4 + £3Q + *?1Q (Fig.3.9) (3.57) 

Similarly Zn for the first and second order coupling is 

Z, = Z2 +(Z3/2)+ (Z,/2) (Fig.3.6) (3.58) 

Zj = Z2 + 23Q + mQ (Fig.3.9) (3.59) 

The coplanar branch is the same for both first and second order circuits 

Zn = ZCi + ZC2 +ZC3 (Coplanar Lines) (3.60) 

where ZCi , ZC2 ,ZC3 are the three coplanar lines seen by the incident wave. 
For completeness we also provide the load impedance corresponding to that 

of Fig.3.5, the zero order approximation. In this case the three branches are 

Zm = Z4 (3.61a) 
Zr= Z2 (3.61b) 

Zn =ZCi + ZC2 +ZC3 (Coplanar Lines) (3.61c) 

The previous discussion implies zero loss at the nodes. If loss is present the fol
lowing transformation is substituted: 
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Zi ->Rl = RZi/(R+ZO (3.62a) 
Z2->R2 = RZ2/(R+Z2) (3.62b) 
Z3 -»R3 = RZ3/(R+Z3) (3.62c) 
Z4 ->R4 = RZ4/(R+Z4) (3.62d) 

When we include losses we must be careful to include the node resistance in the 
calculation of the load resistance RL. With loss Eq.(3.55) becomes 

RL = ZiZnZniR/fZiZnR+ZtZniR+ZiiZniR + ZiZuZm] (3.63) 

where we note the inclusion of the node resistance R in the expression for RL. 

3.10 Small Coupling Approximation of Second Order Quasi- Coupling 

When the difference in Z2 and Z4 is small compared to the line impedance values 
then an approximate solution for the coupling parameters, ^ 3 Q , #1 Q is easy to 
obtain. To distinguish between the loads in Figs.3.6 and 3.9, i.e., between first 
and second order, we will add the argument 1 or 2 respectively, RL(1) and 
RL(2), as was done with the voltage. We will also have occasion to use the cir
cuit in Fig.3.5, in which the quasi coupling vanishes altogether; this of course is 
the zero order approximation. We designate this load voltage as V(0) and the 
load impedance as RL(0). 

We then expand the right side of Eqs.(3.52)-(3.53) in terms of ^ 3 Q , J£1Q, If 
we retain only the linear term then 

^Q=(Z3/4)[l/{(Z1/2)+Z4+(Z3/2)}-l/{(Z1/2)+Z2+(Z3/2)]2/[(l/Z2
2)+(l/Z4

2)] 
(3.64) 

The above is obtained by neglecting the quadratic terms of ^ 3 Q and S I Q , i.e., 

33Q » Q ->0; « l Q £ 1 Q - » 0 ; £ 3 Q £ 3 Q - > 0 (3.65) 
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and also making use of 

V(2)2/V(l)2 ->l+0{quadratic terms of £3Q , £1Q} (3.66) 

A similar calculation for 2?1Q gives 

^lQ=(Zi/4)[l/{(Zi/2)+Z4+(Z3/2)}-l/{(Z1/2)+Z2+(Z3/2)]2/[(l/Z22)+(l/Z42)](3.67) 

As noted before the same relationship between £3Q , ^ 1 Q is maintained, given 
by 

( ^ 3 Q / ^ l Q ) = (Z3/Z1) (3.68) 

With the second order quasi coupling parameters calculated we then per
form a similar calculation for Ai and A3. The first order values of Ai and A3 

have already been obtained from Eqs.(3.43)-(3.44), based on Fig.3.6. To obtain 
the second order approximation, we merely replace V with V(2) , based on the 
circuit in Fig.3.9, and using Eq.(3.45) to relate V(2) to the incident wave and the 
circuit. We rewrite Eqs.(3.43) and (3.44) to explicitly show the appropriate ar
gument for V, V(2), or 

A3(2) = V(2) 2 3 Q / [2?1Q +Z4+ £ 3 Q ] - V(2) £3Q /[ * 1 Q +Z2+ 2=3Q] (3.69) 

Ai(2) = V(2) #1 Q / [ » Q +Z4+ S3Q] - V(2) » Q /[ * 1 Q +Z2+ ^ 3 Q ] (3.70) 

Eqs.(3.64),(3.67) and (3.69)-(3.70) provide us with the second order coupling 
parameters and voltages based on the circuit in Fig.3.9. We have appended the 
argument two to indicate the quasi voltages are second approximations. We 
again note that the quasi node parameters and voltages vanish when Z4 =Z2 . 

As one may surmise , we may continue the approximation process to obtain 
higher order solutions. Thus, to obtain a third order approximation, we first 
modify Eqs.(3.52)-(3.53). On the left side of the two equations, V(l) is replaced 
by V(2). Since V(2) involves second order node parameters, obtained previ-
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ously, the left side of the equations represent known quantities. On the right side, 
however, £3Q and %\Q are replaced by £3Q(3) and ^1Q(3) , where we add the 
argument 3 to indicate these are the third order parameters. In addition V(2) , on 
the right side, is replaced by V(3), where the 3 argument again indicates that the 
circuit contains the third order parameters(as yet unknown). We then solve 
Eqs.(3.52 ) and (3.53) for R3Q(3) and /?1Q(3). AS in Section 3.10 we may use 
the small coupling approximation to solve for the node parameters. We should 
point out that the circuit for the 3rd order approximation is identical to that of 
Fig.3.9 except for the fact that S3Q (3) and ^1Q(3) replace £3Q(2) and 1R\q{2) . 
Once we have the third order parameters we can obtain the third order quasi 
voltages, A3(3) and Ai(3) from Eqs.(3.69 and (3.70), remembering to replace 
V(2) by V(3) , which contains the previously solved third order node parame
ters. The procedure for higher order solutions is similar. 

With the determination of the quasi-coupling parameters and voltages, we 
can now ascertain the scattering coefficients and the transfer of wave energy to 
the various lines(with and without quasi-coupling). Rather than treating this 
topic now, however, we avoid redundancy and postpone the topic until the next 
Section, in which the entire subject matter is cast into cell notation, an absolute 
necessity for handling the iterative equations. 

3.11 General 3D Scattering Process Using Cell Notation 

In much of the previous discussion on aplanar coupling, particularly quasi-
coupling, cell notation was not utilized, and therefore the results therefore are 
not suitable for iterative processes. In the following we incorporate aplanar cou
pling into the formulation , using cell notation. Losses and quasi-coupling are 
included throughout. Following the circuit in either Figs.3.9, 3.6, or 3.5 (if we 
neglect quasi-coupling), we are now in a position to calculate the various scat
tering coefficients and iterative equations, using the generalized cell notation. 
The scattering process will now be complete since, in addition to the coplanar 
scattering described previously, we include scattering perpendicular to the 
propagation plane, which includes the usual aplanar scattering with or without 
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quasi scattering. If we wish, quasi-coupling may ignored entirely by setting the 
quasi- node parameters (to be described explicitly) equal to zero. As we have 
done before, it is useful to define auxiliary node parameters consisting of the 
parallel combination of the line impedance and the node resistance. To illustrate 
the definitions, we focus on the (n,m,q) node and examine a wave +Vxy(n,m,q) 
incident on the node. For coplanar (xy plane) scattering the node parameter 
definitions remain the same as before and the relevant relationships are identical 
to Eqs.(3.26a)-(3.26d) repeated here to give 

Rlxyforr^q) =[R(n,m,q)Zxy(n,m,q)]/[R(n,m,q)+Zxy(n,m,q)] (3.71) 

R2yx(n,m,q) =[R(n,m,q)Zyx(n,m,q)]/[R(n,m,q)+Zyx(n,m,q)] (3.72) 

R3xy(n,m,q) = [R(n,m,q)Z3q,(n+l,m)q)]/IR(n,m,q)+Zxy(n+l,m,q)] (3.73) 

R4yx(n,m,q) =[R(n,m,q)Zyx(n,m+l,q)]/[R(n,m,q)+Zyx(n,m+l,q)] (3.74) 

Because of aplanar effects the wave +Vxy(n,m,q) will scatter unto the yz 
plane with coupling to the lines Zzyfoir^q) , Zzy(n,m,q+1) , Zyzfom.q) and 
Z y ^ m + ^ q ) lines. Because of the aplanar and quasi scattering the values of the 
node parameters will differ from the conventional type, following the circuit in 
either Fig..3.6 or Fig.3.9 and the discussions in the previous Sections. In the 
following it will be more useful and less confusing if we consider the cell nota
tion of the node parameters for just the half impedance portions, i.e., for either 
Zi/2, Z3/2 (first order) or if we use the second or higher order parameters. In the 
following we always assume losses are present. 

3.11(a): Quasi-Node Parameters in Cell Notation 

We first describe the first order quasi-node parameters in cell notation. In the 
first order approximation we continue to use Z3/2 , Zi/2 for the coupling pa
rameters , using Fig.3.6 as the circuit. The cell notation for the node parameters 
involved in quasi-coupling are as follows. 
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R l y ^ L n ^ q ) = (l/2)(Zy2(n,m,q))(R(n!m,q)/[Zyz(n,m,q)+R(n,m,q)] (3.75) 

where Rly2Q(l,n,m,q) is the quasi node coupling parameter and we have re
placed Zi with Zyzfon^q) to conform with the cell notation. Similarly the node 
parameter RS^^r r^q ) is 

R3yzQ(l,n,m,q)=(l/2)(Zyz(n,m+l,q))(R(n?m,q))/Zyz(n,m+l,q)+R(n,m,q)] (3.76) 

Note that we have now replaced Z3 with ZyZ(n,m+l,q). Note also that the m in
dex is increased by one since the corresponding line belongs to the (n,m+l,q) 
cell. We have also appended a one argument to Rly2Q(l,n,m,q) and 
R3yzQ(l,n,m,q) to indicate the first order approximation and to differentiate them 
from the second order parameters. To suppress quasi-coupling we set 
RlyzoXl^n^q) = RS^QJT^m^O . 

Next we consider the second order node parameters, based on Fig.3.9 
Without realizing it, however, we have already obtained these parameters and 
they are as follows 

RlyzQ(2,n,m,q) = * 1 Q (3.77) 

R3yzQ(2,n,m,q) = * 3 Q (3.78) 

where of course J5 1Q and /?3Q correspond , e.g., to the approximate expressions 
of Eqs.(3.64) and (3.67), but in cellular notation. Using these expressions , 
modified to include loss, we have 

Rl^Q(2,n,m,q)=(Rly2Q(lAni,q)/2)[l/{RlyZQ(l,n,m,q)+R4zy(n,m,q)+ 
R3yzQ(l,n,m,q)}- [l/{ Rl^Q(l,n,m,q)+ R2zy(n,m,q) + R3yiQ(l,iMii,q)}]2 *F 

(3.79) 
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where 

F = 1/[(1/R2zy(n,m,q))2+(1/R42y(n,m,q))2] (3.80) 

and quadratic terms such as 

(Rl>z(2>n,m,q))2, etc...-» 0 (3.81) 

As noted earlier, RlyzQ(2,n,m,q) is evaluated using first order quantities de
fined previously. The expression for R3yzQ(2,n,m,q) is obtained in exactly the 
same manner, or by analogy with Eq.(3.68), 

R3yzQ(2,n,m,q)= Rlyzc>(2, n,m,q) R S ^ ^ ^ n ^ q ) / R l ^ l ^ m ^ } (3.82) 

The final two node parameters are for the aplanar case but without quasi cou
pling. They assume the more familiar forms, and as with the coplanar parame
ters, there is no concern with half impedance coupling. Thus, 

R2zy(n,m,q) = [R(n,m,q)Z2y(n,m,q)]/[R(n,m,q)+Z2y(n,m,q] (3.83) 

R4zy(n,m,q) = [R(n,m,q)Zzy(n,m,q+l)]/[R(n,m,q)+Zzy(n,m,q+l)] (3.84) 

This completes the specification of the first set of node parameters Again note 
that in the above the subscript Q identifies quasi coupling. 

3.11(b): Calculation of Load Impedance in Cell Notation 

The next step is to calculate the branch impedance seen by each of the inci
dent waves, from which we can obtain the load impedance, using the circuit in 
either Fig.3.6 or Fig.3.9, or for that matter the zero order circuit in Fig.3.5. Note 
that the first and zero order load impedances are required to calculate the second 
order node parameters, as shown by Eq.(3.79). To illustrate , we again focus on 
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+Vxy(n,m,q). By way of preparation, it is first convenient to calculate the total 
impedance in each of the three parallel branches, denoted by +Rixy(n,m,q), 
+Rnxy(n,m,q), and +Rnixy(n,m,q), where the subscript denotes the wave and the 
superscript removes the ambiguity as whether the wave is a forward or backward 
one. The I indicates the lowest branch, which is in the negative z direction, the II 
branch is the coplanar branch, and III is the elevated branch in the plus z direc
tion. These additional node parameters are 

+R!xy(n,m,q) =RlyzQ(n,m,q) +R2zy(n,m,q) + RSyzofan^q) (3.85) 

+RiIxy(n,m,q) = R2yx(n,m,q) +R3xy(n,m,q) + R4yx(n,m,q) (3.86) 

+Riiixy(n,m,q)= RlyzQfam.q) + RSyzQ^m.q) + R4zy(n,m,q) (3.87) 

The quasi-coupling parameters are obtained using either the first order ex
pressions, Eqs.(3.75)-(3.76) or the second order ones from Eqs.(3.79) and 
(3.82). In the absence of either a 1 or 2 argument the above may assume either 
approximation , depending on which values for RlyZQ(n,m,q) and R3yzQ(n,m,q) 
are used. (The same applies to RLlxyfon^q), to be discussed ). We reinforce the 
notation of the three branches by citing a wave +Vyz(n,m,q) propagating in the yz 
plane. The upper branch then will the be +Rniyz(n,m,l) , which will be in the 
plus x direction with the +Rmyz(n,m, 1) circuit existing in the xz plane. 

The node parameters facilitate the calculation of the load impedance seen 
by the wave +Vxy(n,m,q), since we now know the parallel contributions, namely, 
+RIxy(n,m,q) , +Rnxy(n,m,q), +Rfflxy(n,m,q), and R(n,m,q), the latter contribution 
being the node resistor in the Zxyjn^q) line. Thus the load impedance seen by 
+Vxy(n,m,q) , denoted RLlxy(n,m,q) is 

RLlxy(n,m,q)=[{+R,xy(n,m,q)}*{+Rnxy(n,m,q)}*{+RIIIxy(n,m,q)}* R(n,m,q)]/D 
(3.88) 

where 
D={+Rixy(n,m,q)}*{+Rnxy(n,m,q)}*{+Riiixy(n,m,q)}+{+RIxy(n,m,q)}* 
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{+Rnxy(r^m,q)}*R(n,m,q)+{+Rnxy(n,rn,q)}*{+Riiixy{n,m,q)}*R(n,rn,q) 
+{+RIxy(n,m,q)}* {+Rmxy(n,m,q)*R(n,m,q) (3.89) 

As another example we cite the backward wave, ~Vxy(n,m,q). The load im
pedance seen by this wave is RUxyforr^q). The expression for RL3xy(n,m,q) 
has a form very similar to that of Eq.(3.88). The sole differences , as seen from 
the circuit, involves reversing the arrow directions for the branch impedances 
and replacing R3xy(n,m,q) with Rl^(n,m,q) in Eq.(3.86). 

3.1 l(c):Transferred Quasi-Voltages in Cell Notation 

Next we adopt the quasi- voltages themselves to cell notation, i.e., Aj and A3 

The first and second order expressions for these voltages are identical except for 
the use of the proper load voltage, given by +Vxy(p,n,m,q) where p=l (first or
der ) or p=2(second order), and a similar notation for the node parameters. We 
utilize Eqs.(3.43)-(3.44) or (3.69) -(3.70), denoting the waves by ~Ayz(p,n,m,q) 
and +Ayz(p,ii,m+l,q). The first order voltage is then 

"A^(l,ri,m,o^=+Vxy(l,n,m,o^Rl^(l,n,m,oJ)/[(RlyZQ(l,n,m,q)+R4^n,m,q)+ 
Rlyzqi l.n.nMDl-'ViyC l A m ^ R l ^ 1 ,n,m,q))/ 
[(RlyZQ(l,n,m,q)+R2zy(n,m,q)+R3yzQ(l,n,m,q)] (3.90a) 

+Ay2( 1 ,n,m+1 ,q)=+Vxy( 1 ,n,m,q)R3yzQ( 1 ,n,m,q))/[(R 1 ̂  1 ,n,m,q)+R4zy(n,m,q)+ 
R3yzQ( 1 ,n,m)]-+V](y( 1 ,n,m,q)R3yzQ( 1 ,n,m,q))/ 
[(Rly2Q(l,n,m,q)+R2zy(n,m,q)+R3 „o(lAm,q)] (3.90b) 

where 

+V^(l,n,m,q)=2V^(n,m,q)RLl^l,n,m,q)/[RLlxy(l,n,m,q)+Zxy(n,m,q)] (3.91) 

To obtain the second order expressions, -Ayz(2,n,m,q) , +Ayz(2,n,m+l,q), we re
place X ( l , n , m , q ) by ^ ^ i ^ q ) , and R L l ^ l ^ n ^ q ) by RLl]iy(2,iun,q). 
The node parameters RlyzQ(l,n,m,q) and R S ^ l ^ n ^ q ) , in Eqs.(3.90a), (3.90b), 
are replaced by RlyZQ(2,n,m,q) and R3yZQ(2,n,m,q). We again emphasize that for 
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non -quasi scattering the coefficients are calculated on the basis of the usual cir
cuit representation. 

With the adoption of the node parameters and quasi-voltages to cell nota
tion, we can now do the same for the scattering coefficients, which now will in
clude both aplanar and coplanar forms. A total of 96 coefficients exist, consist
ing of 84 transfer type and 12 reflection type. These numbers may be inferred 
from the fact that there are 12 possible waves incident on each node, which ac
counts for the 12 reflection coefficients. And since each line is connected to 7 
other lines at the node, there are 84 transfer coefficients, thus accounting for the 
total of 96 coefficients. Thus for the transfer coefficient, T*»(n,m,q, s), the rout
ing index ,s, will range from 1 to 84, and for the reflection coefficient , 
B«(n,m,q,s) , the s index will range from 1 to 12. 

3.11(d): Scattering Coefficients in Cell Notation 

We first illustrate the scattering, using the same node (n-l,m,q), as in the pure 
coplanar case, discussed earlier, in which wave energy is scattered from an in
cident wave in the Zxy(n-l,m,q) line into the Zxy(n^n,q) line. The formal expres
sion for this coefficient, Txy(n-l,m,q,l) is identical to that of Eq.(3.31), except 
that RLljjy^a-ljmjq) will differ since the equivalent circuit now is given by Fig. 
3.9. Thus RLlxy(n-l,m,q) will be given by Eq.(3.88), but with n replaced by n-1. 
The fourth argument in T^n-1 ,m,q, 1), specifies the routing of the wave, which 
is the same as before, namely, s=l. 

Next consider scattering at the (n,m,q) node in which energy is scattered 
from an incident wave in the Zxy(n,m,q) line to the Zzy(n,m,q) line, thus repre
senting normal aplanar scattering, designated by Txy(n,m,q, s) , and given by 

Txy(n,m,q,53)={2RLlxy(n,m,q)/[RLlxy(n,m,q)+Zxy(n,m,q)]}* 
{R2zy(n,m,q)/RIxy(n,m,q)} (3.92) 

The first factor within the { } bracket is recognized as the total load voltage 
delivered by Zxy(n,m,q) to the load (for a unit amplitude input), while the second 
is the fraction allotted to Zzy(n,m,q) in the I branch. The identification of the 
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routing index as s=53 (as well as for other examples to follow) makes use of 
Tables 3.7 and 3.8 , and will be discussed at the end of the Section. We again 
reiterate that in the above the load impedance, branch impedances, and node pa
rameters may assume either first or second order values. 

Another example is the scattering from the Zxy(n,m,q) line, via the (n,m,q) 
node, to the Zyz(n,m,q) line. This is an example of a quasi -scattering process. As 
such, we may use , for example, the expressions for the coupling voltage factor 
"Ayzfon^q) to describe the wave transfer to the Zyzfon^q) line. In cell nota
tion, the incident wave +Vxy(n,m,q) is scattered into "Vyzforr^q) according to 

"Vyzfarr^q^ 'V3iy(ii,m,(0TJ^ii,in,q,41) (3.93) 

where ~VYl{n,m,q) = ~Ayz(p,n,m,q) represents the quasi-coupled voltage to the 
Zyz(n,m,q) line. If we set +Vxy(n,m,q) equal to one then T xyQ(n,m,q,41) is 

T ^(11,111,^41)= "Ayz(pAm,q) (394) 

where ~Ayz(p,n,m,q) is given by Eq.(3.90a)(for second order 1 is replaced by 2). 
A similar scattering coefficient may be determined for the forward quasi-
scattered wave 

+Vyz(n,m+l,q)= +Vxy(n,m,q) T ^ ,111^,34) (3.95) 

where we note that scattered wave belongs to the (n,m+l,q) cell. Again setting 
+Vxy(n,m,q) equal to one, we obtain 

T xyQ(n,m,q,34) = " A ^ m + l . q ) (3.96) 

where ~Ayz(p,n,m+l,q) is given by Eq.(3.90b) or its second order version. In the 
above equations, the scattering is to outside the (n,m,q) cell; to obtain the scat
tering into the (n,m,q) cell we use m+l-> m and m-»m-l in the above. 

We then proceed to obtain the coefficients for scattering into the xy plane ; 
the coefficients as well as the fields for scattering into the other planes, yz and 
zx, follow by symmetry. Table 3.7 provides the listing of the 32 coefficients for 
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the xy plane(i.e., the scattering of fields into the xy plane belonging to the 
(n,m,q) cell). Twenty eight of them are transfer type and four are reflection type. 

TABLE 3.7 SCATTERING COEFiaENTS: BOTH COPLANAR AND APLANAR 
CONTRIBUTIONS INTO 
PLANE). 

COEFFICIENT 
Tly(n-l,m,q,l) 
()Tyx(ii-l,in,q^) 
Ty.Cn-l.m.q^) 
T^n-l.m.q^) 
T^n-Lm.q.S) 
TrxQ(n-l,m,q,6) 
T„Q(n-l,in,q,7) 
Tly(n,m,q,8) 
(-)Tyl(n,m,q,9) 
Ty^m.q.lO) 

T^(n^n,q,ll) 
T^(nan,q+l,12) 
TIjQ(n,m,q,13) 
TIlQ(n,m,q,14) 
(-)Tly(n,m-l,q,15) 
T^n^n-1^1,16) 
T(ly(n,m-l,q,17) 
T2I(n,m-l,q,18) 
Ta(n,in-l,q,19 
TlyQ(n,m-l,q,20) 
TlyQ(n,m-l,q^l) 
T ^ m ^ ) 
T^n.m+ljq^) 
(-)Tiy(n,m,q^4) 
T„(n,m,q,25) 
TIX(n,m,q,26) 
TlyQ(n,iii,q,27) 
TlyQ(n,m,q^8) 

B^(n-l,ni,q,l) 
B,y(n,in,q,2) 
Bj4(n,iii-l,q^) 
ByI(n,m,q,4) 

UNIT CELL LINES Z ^ n i 

TRANSFER TYPE 

FROM 
Z^n-l.m.q) 
Z^n-l.m.q) 
Zyl(n-l,m+l,q) 
Zzy(n-l,m,q) 
Zly(n-l,m,q+l) 
Z„(n-l,ni,q) 
Zlx(n-l,ni,q+l) 
Zly(n+l,m,q) 
Zyi(n,m+l,q) 
Zyl(n,m,q) 
Zzy(n,m,q) 
Zly(n,m,q+1) 
Z«(n,m,q) 
ZII(n,m,q+l) 
Zly(n,m-l,q) 
Zyl(n,m-l,q) 
Ziy(n+l,m-l,q) 
Z„(n,m-l,q) 
ZM(n,m-l,q+l) 
Zly(n,m-l,q) 
Z^n.ni-l.q+l) 
Ziy(n,m,q) 
Zyi(n,m+l,q) 
Zxy(n+l,m,q) 
Z„(n,m,q) 
Z„(n,m,q+1) 
Z^fan^q) 
Zzy(n,m,q+1) 

REFLECTION TYPE 

Z^n.m.q) 
Z,y(ii,in,q) 
Zy^(n,m,q) 
Zyl(ii,m,q) 

,q) AND Zyl(n,m,q) (XY 

TO 
Zjy(n,ni,q) 
Zly(n,m,q) 
Zly(n,m,q) 
Zjy^nijq) 
Ziy(n,m,q) 
Zry(n,m,q) 
Z,y(n,m,q) 
Zu(n,m,q) 
Zjy(n,m,q) 
Z,y(n,in,q) 
Zjj^iijinjq) 

Z,y(ii,m,q) 
ZxyCnjnijq) 
Z^n.n^q) 
Zyl(n,m,q) 
Zv,(n,m,q) 
Zyl(n,m,q) 
Zyl(n,m,q) 
Zyl(n,m,q) 
Zyx(n,m,q) 
Zyl(n,m,q) 
Zyl(n,m,q) 
Zyl(n,m,q) 
Zyl(n,m,q) 
Zyv(n,m,q) 
Zyx(n,m,q) 
Zyl(n,m,q) 
Zvl(n,m,q) 

Ziy(n,m,q) 
Z^n.m.q) 
ZVI(n,m,q) 
ZyI(n,m,q) 
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As with the coplanar arrays, the elements may be regarded as four dimensional 
arrays, in which the indices (n,m,q) provide the node location , and the index s 
specifies the routing of the wave. In general the array values will change with 
each time step, since they depend on the time dependent conductivity. The pre
vious discussion and Eqs.(3.92)-(3.96) illustrate the technique for obtaining the 
twenty eight scattering coefficients in terms of the explicit circuit parameters. A 
listing of the coefficients without quasi-coupling(about node in xy plane), ex
pressed in their circuit parameters , is given in App.3A.3 . Once more, symmetry 
arguments may be invoked to obtain the expressions for the coefficients in the 
yz and zx planes, based on a knowledge of the coefficients for scattering in the 
xy plane. Table 3.8 indicates the transformations used to obtain the scattering 
coefficients, as well as the wave voltages and node parameters, for the yz and zx 
plane The transformations are similar to the coplanar type found in Table 3.6. 
We should note that under the column for the xy plane the fields V2X and Vxy and 
the corresponding coefficients Tzx and Tzy appear as may be verified by inspect
ing the iterative equations, to be discussed in the next Section. This is due of 
course to the aplanar scattering which now occurs as part of the iterative process. 
The remaining coefficients and iterative equations for scattering into the yz and 
zx planes follow from symmetry using Tables 3.7 and 3.8, as will be discussed. 

One should add that in the event that we wish to omit quasi coupling then 
we set all the scattering coefficients involving quasi-coupling (identified by the 
subscript Q) equal to zero. Alternatively we may also achieve the same effect by 
setting the appropriate node parameters(those containing a Q subscript, e.g., 
RlxyQ(n,rn,q) or RlxyQ(n,m,q)) equal to zero. 

We now return to the issue of identifying the s index for scattering into the 
yz and zx planes, and cite the examples discussed earlier. The first was the 
aplanar example in which the forward wave +Vxy(n,m,q) is scattered into 
Zzy(n,m,q) in which the wave is a backward type, ~Vzy(n,m,q). In order to pro
ceed, based on the scattering results to the xy plane, we must first transform the 
scattered field ""Vzyfom.q). back to "Vyx(n,m,q). and similarly the incident field 
+Vxy(n,m,q) is transformed back to ~Vzx(n,m,q) (i.e., z-»y, x-»z, and y-»x). We 
then "look up" Table 3.7 and determine that the only entry which corresponds to 
scattering of the field from the Zzx(n,m,q) to the Zyx(n,m,q) lines is given by the 
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TABLE 3.8 TRANSFORMATION OF 3D SCATTERING COEFFICIENTS AND 
WAVE VOLTAGES TO 
APLANAR WAVES. 

XY PLANE 
X 
Y 
Z 
V,y(n,m,q) 
Vy^n^q) 
Vzx(n,m,q) 
Vzy(n,m,q) 
T^n.m.q.s) 
Tyj(n,m,q,s) 
TZI(n,m,q,s) 
Tzy(n,m,q,s) 
B^n.nvq.s) 
Byl(n,m,q,s) 

-> 
-> 
-> 
-> 
-> 
-* 
-» 
-> 
- > • 

-» 
-> 
-» 
-> 

YZ AND ZX PLANES 

YZ PLANE 
Y 
Z 
X 
Vj^n.m.q) 

Vzy(n,m,q) 
V^iMn.q) 
VIZ(n,m,q) 
Tyz(n,m,q,s+28) 
Tzy(n,m,q,s+28) 
Tly(n,m,q,s+28) 
Tn(n,nMi,s+28) 
Byz(n,m,q,s+4) 
Bzy(n,m,q,s+4) 

GENERAL TRANSFORMATION^, Am, Aq 
V*j(n+An,m+Am, q+Aq) -> 
Vjj(irt-An,m+Am, q+Aq) -> 
V„(n+An,m+Am, q+Aq) -> 
V^(n+Aji,m+Am, q+Aq) -> 
T^.(n+An,m+Am, q+Aq,s) -+ 
T^(n+An,m+Ani, q+Aq,s) -> 
T„(n+An,m+Am, q+Aq,s) -» 
Tw(n+An,m+Am, q+Aq,s) -» 
Bij(n+An,m+Am, q+Aq,s) -* 
Bjj(n+An,m+Am, q+Aq,s) -> 

XY PLANE 

V^n+Aqjcn+An, q+Am) 
V^n+Aq^n+An, q+Am) 
V„(n+Aq^n+An, q+Am) 
V„(n+Aq,m+An, q+Am) 
Tyl(n+Aq,m+An, q+Am,s+28) 
T^n+Aq.m+An, q+Am,s+28) 
T,j(n+Aq,m+An, q+Am,s+28) 
T„(n+Aq,m+An, q+Am,s+28) 
Byifn+Aqjin+An, q+Am,s+4) 
B^n+Aq,!!^-^, q+Am,s+4) 

!. BOTH COPLANAR AND 

ZX PLANE 
Z 
X 
Y 
VZI(n,m,q) 
VIZ(n,m,q) 
Vyz(n,m,q) 
Vyx(ii,iii,q) 
TZI(n,m,q,s+56) 
TIZ(n,m,q,s+S6) 
Tyi(n^n^],s+S6) 
Tyi(n,m,q,s+56) 
BZI(n,m,q,s+8) 
Bn(n,m,q,s+8) 

=0 or ±1) 
Va(n+Am,m+Aq, q+An) 
V„(n+Am,m+Aq, q+An) 
Vy^n+Am^n+Aq, q+An) 
Vj,(n+Am,m+Aq, q+An) 
Tn(n+Am,m+Aq, q+An^s+56) 
Ti/n+Am^n+Aq, q+An^+56) 
TjtCn+An^m+Aq, q+An,s+56) 
Tj,(n+Am^n+Aq, q+An^+56) 
Bn(n+Am,m+Aq, q+An^+8) 
B„(n+Am,m+Aq, q+An^+8 

TRANSFORMATION OF NODE PARAMETERS 

RLlsj(n+An,m+Am, q+Aq) -> 
RL3,j(n+An,m+Am, q+Aq) -> 
RL2yx(n+An,m+Am, q+Aq) -» 

RL4yl(n+An,m+Am, q+Aq) -> 

R l j,(irl-An,m+Am ,q+Aq) -» 

R3x,(n+An,m+Am, q+Aq) -> 

R2^(n+An^n+Am, q+Aq) -> 

R4yl(n+An,m+Ani, q+Aq) -» 

YZ PLANE 
RLlJZ(n+Aq,m+An, q+Am) 
RLSj^n+Aq^n+An, q+Am) 
RL2zy(ii+Aq,m+An, q+Am) 

RL4jj(n+Aq,m+An, q+Am) 

RljZ(n+Aq,m+An, q+Am) 

R3yz(n+Aq^n+An, q+Am) 

R2„(n+Aq,m+An, q+Am) 

R4jy(n+Aq,m+An, q+Am) 

ZX PLANE 
RLl„(n+Am,m+Aq, q+An) 
RL3n,(n+Am^n+Aq, q+An) 
RL2M(n+Am,m+Aq, q+An) 

RL4M(n+Am^n+Aq, q+An) 

Rln(n+Am,m+Aq, q+An) 

R3n(n+Am^n+Aq, q+An) 

R2„(n+Am4n+Aq, q+An) 

R4a(n+Am,m+Aq, q+An) 
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routing index s=25, i.e., the transfer coefficient is Tzx(n,m,q,25). At this point we 
turn to Table 3.8 , which provides the the fields and coefficients for scattering 
into the yz and zx planes. Making use of the Table we regain the incident and 
scattered fields, +Vxy(n,m,q) and "Vzy(n,m,q) , respectively, but in addition we 
also obtain the corresponding transfer coefficient which is Txy(n,m,q,s+25). 
Since s=25 the sought after coefficient is Txy(n,m,q,53), as stated previously. 

Next we cite another example in which the forward wave +Vxy(n,m,q) is 
scattered, in quasi-coupling fashion , to the Zyz(n,m,q) line. The scattered wave 
in this case is a backward one, ""Vyz(n,m,q). Just as before we transform the fields 
so that the scattered field is in the xy plane, i.e., ~V^(n,m,q), while the incident 
field becomes as before +Vzx(n,m,q). Referring to Table 3.7 we see that the entry 
for s=13 satisfies the necessary scattering requirements, and therefore the trans
fer coefficient TzxQfon^q) is the appropriate quantity. Next we resort to the 
transformation to the yz plane where we again retrieve the incident and scat
tered fields, +Vxy(n,m,q) and "Vyzfom.q) as well as the transfer coefficient 
TxyQ(n,m,q, 41), i.e., s=13+28 =41. Naturally quasi scattering in one plane, 
when transformed to another plane, remains a quasi scattering process. 

Next we cite a two examples in which the indices change upon transforma
tion. First, suppose +Vxy(n,m,q) is scattered, in normal aplanar fashion, as a for
ward wave, becoming +Vzy(n,m,q+1). Extra care must be exercised because of 
the fact that the scattered wave is in the (n,m,q+l) cell. When we transform back 
obtain the field in the xy plane we must reduce the q index by 1 since we require 
the scattered wave to be in the (n,m,q) cell. Thus we should consider the inci
dent wave to be +Vxy(n,m,q-1) and the scattered wave to be +Vzy(n,m,q).When 
we transform the scattered wave to the xy plane, the scattered wave becomes 
+Vyx(n,m,q) while the incident wave becomes +Vzx(n,m-l,q). Note that the -1 
change in the q index has moved over to the m index in accordance with the 
transformation. We then examine Table 3.7 and observe that the coefficient wth 
s=18 satisfies the scattering process and thus the coefficient is T2X(n,m-l,q,18). 
As before, to obtain the scattering in the yz plane we then go to transformation 
Table 3.8, from which we regain the incident and scattered fields +Vxy(n,m,q-1) 
and +Vzy(n,m,q) as well as the transfer coefficient Txy(n,m,q-l,s+28), and since 
s=18 for the xy plane, the new coefficient is Txy(n,m,q-1, 46) with s=46. 
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Finally we consider the quasi-coupling of the incident wave +Vxy(n,m,q), 
scattered to the forward wave +Vyz(n,m+l,q). As before, we want the scattering 
to be in the (n,m,q) cell, and therefore m should be reduced by one in both the 
incident and scattered waves, giving us +Vxy(n,m-l,q) and +Vyz(n,m,q) respec
tively. Transforming the scattering to the xy plane, the incident wave becomes 
+Vzx(n-l,m,q) and he scattered wave becomes +Vxy(n,m,q). Examining Table 3.7 
we see that s=6 provides the correct routing and the transfer coefficient is Tzx(n-
l,m,q,6). We then use Table 3.8 to transfer to the scattering in the yz plane, 
which yields a coefficient index of s+28=34, and thus the coefficient is Txy(n,m-
l,q,34). 

From the previous examples we see how we may generate Tables compara
ble to 3.7 for the scattering coefficients in the yz and zx planes, allowing us to 
obtain the full set of 96 coefficients properly identified by the routing index. 
App. 3A.2 lists the additional coefficients for the yz and zx planes. We can then 
obtain the coefficients in terms of the circuit parameters as illustrated in Sec
tion 3.lid and stated in App.3A.3. The scattering to the various planes may 
then easily expressed in computer code. 

3.12 Complete Iterative Equations 

With the scattering coefficients now specified, we are now in a position to write 
down the iterative equations for the waves about a given cell, (n,m,q). As before, 
in the coplanar case, we need only concentrate on the six lines associated with 
the (n,m,q) node, namely, Zxyfoir^q), Zyxfarr^q), Z^ (n,m,q), Zzy(n,m,q), 
Zzxfoir^q), and Zyjji^n,q). It is convenient, once more, to examine the waves in 
a particular propagation plane, since many of the results may be carried over to 
the waves in the other two planes as well. We first look at the lines in the xy 
plane, i.e., the Zxy(n,m,q) and Zyx^rr^q) lines. We wish to determine what 
waves from surrounding lines, together with reflected in the lines themselves, 
contribute to the fields in these lines to produce the follow-on fields for the next 
time step. Consider first the forward waves in the Z xyfon^q) line. The forward 
wave +Vk+1xy(n,m,q), at time t+At, may be expressed in terms of the waves sur
rounding the line at time t. Thus 
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tVk+1
xy(n,m,q)=Tk

sy(n-l,m)q, 1) Vxy(n-l>m,q>Tk
y]((n-l,in,q,2) V ^ n - l . m . q ) 

+Tk
yx(n-l,m,q,3)-Vlc

yx(n-l,m+l,q)+Bk
xy(n-l,m,q,l)"Vk

xy(n,m,q) 

+ T ^ n - l ^ q , ^ +Vk
zy(n-l,m,q) + T ^ n - l ^ q ^ ) Y ^ n - U q + 1 ) 

+Tk
zxQ(n-l,m,q,6)+Vk

zx(n-l,m,q)+Tk
2xQ(n-l,m,qjrVk

zx(n-l,m,q+l) (3.97) 

The first four terms are nothing more than the coplanar terms encountered earlier 
in the Chapter. Formally the terms appear identical; the scattering coefficients 
will of course differ since the equivalent circuit has changed. The next four 
terms arise from scattering normal to the xy plane at the (n-l,m,q) node. The 
fifth term, for example, represents the scattering of the +Vkzy(n-l,m,q) wave into 
the Zxy(n,m,q) line, and similarly, the sixth term denotes the scattering of the 
~Vk

zy(n-l,m,q+l) wave. The last two terms represent the quasi-coupling of the 
+Vkzx(n-l,rn,q) and ~Vk

zx(n-l,m,q+l) waves to the Zxy(n,m,q) line. 
We complete the wave picture in the xy plane by stating the iterative equa

tions for the backward wave ~Vk+1
xy(n,m,q), and the waves in the Zy^n.m.q) line. 

Thus 

- V ^ n . m . q ) , = T ^ m , ^ ) -\\{n+\,m,q)- TV0un,q,9) "Vk
yx(ii,m+l,q) 

+Tk
yx(n,ni,q,10) +Vk

yx(n,m,q)+ B ^ f a m , ^ ) Vxy(n,m,q) 

+ T ^ m ^ l l ) V ^ i y n . q ) + Tk
zy(n,ni,q+l,12) V ^ n ^ q + l ) 

+ Tk
aQ(iMn,q,13) +Vk

a(n,m,q) + T%(n,m,q+l,14) -V^n.m.q+l) (3.98) 

V+1^(n,ni,q)=-Tk
xy(n,m-l,q,15)+Vk

xy(n,m-l,q)+Tk
yx(n,m-l,q,16)+Vk

yx(n,m-l,q) 

+Tk
xy(n,m-l,q,17) -V^n+l .m-l .q) + B ^ m - l , ^ ) -V^foi^q) 

+ TkJn,m-\,q,\S) V ^ m - ^ q ) + Tk
zx(iMn-l,q,19) " V ^ m - L q + l ) 
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+Tk
zyQ(n,m-l,q,20)+Vk

zy(n,m-l,q)+Tk
2yQ(n,m-l,q,2irVlc

zy(n,m-l,q+l) (3.99) 

-Vk+1
yx(n,m,q)=Tk

xy(n,m,q,22)+Vk
xy(n,m,q)+Tk

yx(n,m+l,q,23)-Vk
yx(n,m+l,q) 

- T\y(iMn,q,24) V ^ n + l ^ q ) + B ^ f o m , ^ ) V ^ n ^ q ) 

+Tk
zx(n,m,q,25)+Vk

zx(n,m,q) + Tk
zx(n,m,q,26) " V ^ n ^ q + l ) 

+ 1*zyQ(n,iii,q,27) V ^ n ^ q ) + T ^ n ^ q ^ ) V ^ n ^ q + l ) (3.100) 

Just as we did in the coplanar case, we may obtain the remaining iterative equa
t i o n s ^ well as he scattering coefficients) from symmetry considerations. To do 
this, we transform each term in the iterative equation, whether it be a wave volt
age or scattering coefficient, using the prescription in Table 3.8. App.3A.l pro
vides the remaining iterative equations for the yz and zx planes. 

As mentioned previously, we can greatly simplify the iterative equations, at 
the expense of some resolution, by neglecting quasi-coupling. Thus any transfer 
coefficient with a Q subscript, displayed in the iterative equations, is set equal to 
zero. This reduces the number of transfer coefficients from 84 to 60. In addition 
we utilize the zero order expressions for the node parameters, or equivalently, 
set equal to zero any node parameters with a Q subscript(e.g., Rly2Q(l,n,m,q)). 

Eqs.(3.97)-(3.100) and the companion ones for the yz and zx planes in 
App.3A.l, represent the core of the iterative process. All the input information, 
via the scattering coefficients, is routed by means of these equations They per
form the simple but critical task of relating the new state to the old one. Because 
of their importance, these equations may be regarded the "crown jewels" of any 
computer program using the TLM formulation. 

3.13 Contribution of Electric and Magnetic Fields to Total Energy 

Although the scattering equations provides us with the electric field amplitudes 
throughout the TLM space, it is often useful to compare the electric and mag-
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netic field energies in the space at any one moment. This allows us to determine 
if there are regions dominated by either field, or whether a region contains sig
nificant contributions from both types of energy. In fact, we shall see in the 
following Sections, which describe plane waves incident on a cell matrix, that 
certain TLM lines will be dominated by magnetic energy while others will be 
dominated by the electric field. We know from previous comments that when 
the field is dominated by the electric field, usually the forward and backward 
waves are about equal, 

+V = ~V (3.101) 

(For this Section, we drop the cell designation). Such is the case, e.g., when 
static conditions prevail. On the hand, when the magnetic field dominates, the 
forward and backward waves have opposite amplitudes, i.e., 

+V= -"V (3.102) 

We employ a straightforward technique for finding the relative contributions to 
the total energy. We first calculate the energy levels residing in the current and 
voltage(i.e., in the magnetic and electric fields), designated respectively by Uh 
and Ue. These quantities may be estimated from 

Uh = (1/2 )(+I+ I )2Z At = (l/2)(( +V/Z> ~V/Z))2Z At (3.103) 

Ue = (l/2)(+V+"V)2At/Z (3.104) 

The total energy Ut is given by 

U, = Uh +Ue = [ V /Z + V /Z]At (3.105) 

using Eqs.(3.103) and (3.104). We may interpret Eq.(3.105) to say that the total 
energy is the sum of the energies associated with the forward and backward 
waves. It is often convenient to define energy partition parameters 
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rh= (Uh/UO (3.106a) 
re= (U./UO (3.106b) 
rh + re =1 (3.106c) 

Certain special cases are of interest. If +V = "V , then re =1 and ^ = 0. On 
the other hand if +V = - "V, then re =0 and ^ =1, as expected. A very important 
case occurs when +V= 0 or "V =0 . Here re = rh =1/2, i.e., in a plane wave the 
magnetic and electric energies share equally and the total energy in +V or ~V (in 
which +V and "V do not co-exist) are 

U, = (+V)2At/Z (forwardwave) (3.107) 
and similarly 

U, = fV)2At/Z (backwardwave) (3.108) 

Plane Wave Behavior 

3.14 Response of 2D Cell Matrix to Input Plane Wave 

The TLM scattering equations should enable one, in principle, to predict the dy
namic electromagnetic behavior of a medium undergoing conductivity changes. 
Before applying this tool to a detailed problem, however, we must investigate 
whether the TLM method is compatible with a simple but obviously important 
phenomenon, that of a plane wave propagating throughout the space. We per
form this investigation by finding out the response of a 2D cell matrix to an in
put plane wave. 

To secure compatibility with the plane wave, certain kinds of behavior are 
required of the waves in a TLM matrix. Throughout a uniform region we insist 
that the reflected waves vanish, and conversely, that the amplitude front be 
maintained in the forward direction. Fig.3.11 indicates this more explicitly. We 
initially assume a 2D array in order to simplify the analysis. Assume a plane 
wave propagates in the x direction, and that during the kth time step the wave 
front occupies the n cells, i.e., (n, m-1), (n,m) (n,m+l), etc... In order for the 
plane wave to maintain itself, we require that that the reflected wave - V ^ m ) 
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+Vk
XY(n,m+l) 

^ x Y ^ m ) 

(n,m) 

VxvCn^-l) WAVE FRONT 

FIG.3.10 PLANE WAVE CONDITIONS IN UNIFORM REGION: 
V x ^ m - l ) = +\*xY(n,m) = + V W I M H + I ) , ETC... 
VXY(n,m) = V^xvCn+l,™); 
V'xyCn.m) =0 FOR n BEYOND FRONT 

vanish and that the forward wave, expressed in the horizontal lines, be pre
served as it moves from the nth cell to the (n+l)th cell for arbitrary values of m 
and n. The pertinent relationships in cell notation for the plane wave (2D)are, 
for a uniform region, 

V ^ m - l ) = " V ^ m ) = V ^ m + l ) , etc.. 
V x y (n ,m)= V ^ n + U m ) 
+Vkxy(n,m) =0 (n beyond front) 

(3.109) 
(3.110) 
(3.1H) 

Eq.(3.109) simply states the uniformity of the field in the y direction. The sec
ond relation (3.110) requires that the forward wave in the horizontal lines re-
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main intact as the wave moves from one cell to the next. The absence of wave 
reflection, "Vkj^n,m) =0, is implied by Eq.(3.110). Another implied condition 
stemming from Eq,(3.110) is that there be no transverse scattering of waves , 
i.e., no scattering of waves perpendicular to the propagation direction(e.g„ 
+Vkyx(n,m) =0, -Vkyx(ii,m) =0, e t c . ) . This implication follows since there is no 
leftover wave energy for transverse scattering. The third relation simply indi
cates the absence of field beyond the front. In other words, if the front is at nF 

during the kth step then we obviously require that there be no fields beyond the 
front, or +Vkxy(n,m) =0 for n>nF. 

Finally we may specify, in the ensuing discussion, that the front have some 
depth, i.e., that the field be uniform in the x direction over a length of several 
cells, or 

V ^ , m) = V ^ n p - l , m) (3.112) 

The above is not at all a plane wave condition, but a condition one may impose 
to simplify particular situations. 

In the previous discussion we focused on plane wave behavior in a uniform 
region. What happens when we maintain constancy in the yz plane, Eq.(109), 
but we allow for variations in the x direction? For example, the wave may en
counter a dielectric or conducting semi-infinite yz plane, or else there may sim
ply be variations of the dielectric constant in the x direction. In this case, the re
quirement set forth by Eq.(3.110) is obviously not valid, because of reflections 
due to impedance mismatch. Instead we must use the aforementioned, less strin
gent condition, which excludes transverse scattering ; thus for n at or behind the 
wave front: 

Vyxfom^O ; V y ^ m ) =0 ;for all m (113) 

while in the x direction, the scattering is controlled by the usual one dimensional 
relationships. 

We now return to the original question posed at the start of this Section: 
does the present formulation of the TLM matrix allow for plane wave behavior? 
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To simplify the discussion, the remainder of the Chapter will consider only the 
case of the uniform region. We shall shortly observe, however, that even with 
this simplification, the plane wave relationships cannot be satisfied, using the 
TLM formulation, and significant modifications must be incorporated, as will be 
done in Chapter IV. It is extremely instructive, nevertheless, to determine the 
response of a plane wave launched in the present matrix. The results thus ob
tained will help guide us as to how to modify the TLM matrix in order to pre
serve the plane wave as it progresses in the matrix. 

We first determine the behavior of a plane wave launched in a lossless, uni
form 2D TLM matrix. Because of the zero loss, we simply apply the 2D scat
tering equations derived previously, setting the node resistors equal to very large 
values in the matrix. The plane wave properties introduce additional symmetries, 
which allows us to utilize semi-graphical techniques using only a limited portion 
of the matrix. Fig.3.11 shows a series of "snapshots" of the waves in the TLM 
matrix, up to k=3(for extra clarity in Fig.3.11, as well as in Fig.3.12, the wave 
direction is specified by placing the appropriate directional arrow immediately 
after the wave amplitude). Note that we need only consider the m,m-l, and m+1 
lines which congregate about the m node From the aforementioned symmetry 
conditions, it is unnecessary to consider any other TLM lines in the y direction. 

We impose certain initial boundary conditions on the input plane wave in 
Fig.3.11, as well as in the next three Sections. We assume the input horizontal 
lines(for which n=l), which contains the input forward plane wave, are much 
longer than any of the other lines. This enables the analysis to proceed without 
having to take into account reflections at the input, or back-scattering into the 
region behind n=l. Chapters V and VII further discuss this type of "long input" 
boundary condition. An alternative boundary condition makes use of a uniform, 
vertically directed, static electric field in the region x<0 , but with a high im
pedance boundary at the x=0 . Initially, therefore, the field is concentrated in the 
x<0 region , and there is no field in the x>0 region. The high impedance bound
ary is then suddenly removed and the TLM waves are allowed to enter the x>0 
region. In any case, the response in the x>0 region, due to this boundary, is 
qualitatively the same as that due to long input lines. 
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We start the analysis using Fig.3.12 , which shows the wave +V1
xy(l,m) oc

cupying the Zxy(l,m) line, and representing a portion of the x directed plane 
wave front, with unity amplitude, at k=l( t = At). We next consider the waves 
at t = 2 At in Fig.3.12. The incident wave is scattered into the Zxy(2,m), Zy* 
(l,m), and Z^ l .m+l ) lines, as well as reflected in the Zxy(n,m) line. We know 
from Chapterl that for this type of 2D node, with identical line impedance val
ues for each line, each of the scattering coefficients( both the transfer and re
flection type) is equal to 1/2. Thus the scattered waves from Zxy(l,m) are 

~V\(\,m) =1/2 (3.114a) 
V ^ m ) = 1/2 (3.114b) 
" V y i ^ i ) =1/2 (3.114c) 
Vyx(l,m+l) = -l/2 (3.114d) 

We remind ourselves of the fact that +V2yx(l,m+1) = -1/2 has a negative ampli
tude because of the boundary condition at the node. The wave picture is com
plete except for two additional waves incident on the (n,m) node in the trans
verse lines, Zyx(l,m,) and Zyx(l,m+1), as shown in Fig.3.11. These waves may 
be obtained from the aforementioned symmetry considerations, or simply by 
considering the input waves V ^ m - l ) and V,y(l,m+1) in like manner. 
Thus, 

+V2yx(l,m) = V ^ l . m + l ) = -1/2 (3.115a) 
-V2„(l,m+l) = - v y i , m ) = 1/2 (3.115b) 

Eqs.(3.114)-(3.115) complete the wave description at the end of t= 2 A t. We 
perform one additional iteration, t=3At, to reinforce the graphical technique. The 
waves at t = 3At will of course rely completely on the t= 2At results. We be
gin with the Zxy(l,m) line, which will consist of the unity incident wave and a 
backward wave, "V '^^m) . The backward wave will consist of a reflected 
wave and contributions from the Zyx(l,m) and Zyx(l,m+1) lines. Thus 

- v V l ^ n ) =(1/2) V ^ m ) -(1/2) T ^ l . m + l ) +(1/2) V ^ m ) (3.116) 
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Since 

V y x ( l ,m) = -l/2 (3.117a) 

~V2
yx(l,m+l)=l/2 (3.117b) 

V x y ( l , m ) = l (3.117c) 

we have 

'V\{\,m)= 0 (3.118) 

We next consider the Zyx(l,m) and Zyx(l,m+1) lines. +V3yx(l,m+1), for ex
ample, will consist of the wave scattered from the incident wave, +V2xy(l,m), 
the reflected wave of ~V2yx(l,m+l), and the portion of the wave transferred from 
V^mXThus, 

+V3
yx(l,m+l)=(-l/2)+V2

xy(l,m)+(l/2)-V2
yx(l,m+l)+(l/2) V ^ m ) (3.119) 

Since we know the wave amplitudes at t =2At, from Eqs.(3.114) -(3.115), we see 
that the last two terms in Eq.(3.119) cancel, and we have 

V y x ( l ,m+l ) = -l/2 (3.120) 
By symmetry, 

+V3
yx(l^n)= -1/2 (3.121) 

Similar arguments, starting with ~V3yx(l,m) lead to 

-V3yK(l,m)= 1/2 (3.122a) 
V y x ( l ,m+l)=l /2 (3.122b) 
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Next we consider the waves in the Z^ (2,m) line. The forward wave will 
receive contributions from the Zxy(l, m) , Zyx(l,m), and Zyx(l,m+1) lines, or, 

+ vV2,m) = (\I2)+V\{\,m) +(1/2) T ^ l ^ + l ) - ( l ^ V ^ m ) (3.123) 

Using the wave amplitudes of the previous time step, 

V x y (2 ,m)=l (3.124) 

Thus, the plane wave amplitude is finally transferred from Z(l,m) to Z(2,m); the 
wave, however, experiences a delay of an additional time step. The backward 
wave in Zxy(2,m) is simply 

V ^ m ) = (1/2) V ^ U m ) = 1/4 (3.125) 

The scattering of +V2xy(2,m) determines the waves at k=3 in the Zxy(3,m), Zyx 
(2,m+l), andZyx(2,m) lines. Thus +V3

yx(2,m+1) = -(1/2) V ^ m ) , V ^ m ) 
= (1/2) V ^ m ) , and V ^ m ) = (1/2) V ^ m ) . Using the wave ampli
tudes of the prior step, as well as the usual symmetry arguments, we obtain 

Vyx&m) =Vy x(2,m+l) = -1/4 (3.. 126) 

V ^ m + l ) = - v y 2 , m ) = 1/4 (3.127) 

V ^ m ) = 1/4 (3.128) 

Eqs.(3.116) and (3.118)-(3.128)constitute the waves present at the end of the 
third time step. The same process then is used to obtain the waves for the subse
quent time steps. By the end of the seventh step, the fields, given in Figs.3.12, 
show certain trends which clearly indicate the need to modify the iteration. Fig. 
3.13 shows the horizontal field +V7xy(n,m) as a function of n at the end of the 
seventh step. As expected +V7xy(n,m) has close to unity amplitude, at least for 
the first few cells. After n=4, however, the amplitude in +V7xy(n,m) begins to 
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diminish to values significantly less than one. The same amplitude diminution 
occurs in the transverse lines, Z ^ ^ m ) and Zyx(n,m+1), wherein the amplitudes 
approximates 1/2 for n=l to 4, but drops off afterwards. 

The computerized version of the previous graphical study confirms certain 
suspicions based on the observations of the graphical analysis carried out from 
n=l to n=7. We find that for large n, the forward plane wave amplitude, 
+Vkxy(n,m), is approximately unity, provided n < k/2 , where k is of course the 
number of time steps. Beyond n =k/2, the amplitude begins to decline, finally 
approaching zero at n=k, which is the edge of the wave front. In fact this be
havior is not surprising, based on the fact that the wave energy is traveling along 
a grid , and not entirely on a straight line path. Energy is therefore diverted into 
the transverse lines(Zyx(n,m) and Zyx(n,m+1)) and until these lines are "filled up" 
with their share of wave energy, the progress of the wave is slowed down. The 
effective velocity appears to be slowed down by about a factor of two, which 
again is not surprising if one considers the possible transverse paths taken by the 
waves, rather than the straight line path. 

Other trends also are observed. As the number of time steps is increased, the 
reflected wave at the input, ~Vkxy(l,m) , does not go to zero, as one would ex
pect of a normal plane wave. In the interval k=4 to 9, for example, ~Vkxy(l,m) 
fluctuated between 0.125 and 0.250. Another observation has to do with the 
transverse waves. For n < k/2, these waves roughly satisfy 

V y x (n ,m)= +VkJn,m+\)*-\l2 (3.129a) 

Vyxfam) = -V^fam+l) «l/2 (3.129.b) 

and beyond n= k/2 the amplitudes diminish to ~ 0. Within each transverse line, 
for n < k/2, therefore, the energy may be classified as purely magnetic since 
the forward and backward waves are equal in amplitude and opposite in sign. In 
the case of the forward horizontal waves, +Vkxy(n,m), the fields may be regarded 
as static in time (at least for n < k/2). We may then regard the energy in 
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ZxyOti.m) as purely electrical in nature and equal in magnitude to the magnetic 
energy, as expected for a pure transient plane wave. 

3.15 Response of 2D Cell Matrix to Input Waves With Arbitrary Amplitudes 

In this Section we determine the conditions under which a limited portion of a 
non-uniform input wave behaves simulates the behavior of a plane wave, as 
seen by the TLM matrix. Unlike the previous plane wave analysis, suppose we 
now allow the three forward waves, ^ ' ^ ( l . m - l ) , """V^ljm), and +V1

xy(l,m+1) 
to have arbitrary amplitudes, i.e., we assume the wave is in general non-uniform. 
As noted previously during the second time step the input waves fill up the lon
gitudinal lines and partially transfer energy to Z^(2,m). At the end of the third 
time step, the transfer of forward wave energy to Zxy(2,m) was more or less 
complete, as noted by the fact that +V3xy(2,m) was unity and approximately re
mained so for the subsequent steps. We apply the same criterion to the case 
when the three input waves have arbitrary amplitudes, carrying out the analysis 
to the third time step by which time the trend is observable. We then calculate 
+V3xy(2,m), using the same techniques described earlier, except for the differing 
input amplitudes. We then obtain the forward wave, in terms of the amplitudes 
during the first step, 

+Y%(2,m)=(y2)+V\(l,m) + (l/4)[ +V\!y(l,m-1)++V1,iy(l,m+1)] (3.130) 

We now determine what constraints are imposed on the inputs if we require 
that the output during the third step satisfies 

V ^ . n O a T v V l . m ) (3.131) 

If we combine Eqs.(3.130) and (3.131) we obtain the result 

V ^ ^ m ) = (l/2)[ V ^ l . m + 1 ) + V ^ L m - l ) (3.132) 

or, using more general notation, 
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V ^ m ) = (l/2)[ V ^ n y m - l ) + V ^ n . m + 1 ) ] (3.133) 

We have the result, therefore, that the wave in the TLM matrix 'appears' to re
spond as though it were a plane wave, when Eq.(3.133) is satisfied. Eq.(3.133) 
states of course that +Vkxy(n,m) is the average of the two neighboring forward 
waves at m-1 and m+1. We emphasize that the wave I the TLM matrix is only 
a "quasi plane wave" because of the unavoidable delay of the additional time 
step needed to fill up the transverse lines. The TLM formulation is corrected for 
this delay in the next Chapter. 

3.16 Response of 3D Cell Matrix to Input Plane Wave 

To explore the plane wave limit we consider a plane wave front, +V xy(n,m,q), 
moving in the x direction with the front uniform throughout the yz plane. We 
assume that at k=T, i.e., t = At, the wave front occupies the first cell of the ma
trix (n,m,q). Just as in the 2D front, the subsequent time step is involved with 
"filling up" the transverse lines which are subsequently used to feed into the 
Zxy(n+l,m,q) line. At the end of the third step the full forward wave energy is 
delivered to the Zxy(n+l,m,q) line, just as in the 2D plane wave. With the help 
of Fig.3.14, we use a similar graphical to determine the origin of the wave distri
bution, again assuming that the incoming wave has unity amplitude. 

We make several preparatory remarks regarding the scattering in the 3D 
matrix. In the event all the transmission lines are uniform, as is the case here, the 
quasi type aplanar coupling does not apply and the equivalent circuit simplifies, 
as seen in Fig.3.5. Based on this circuit, with negligible losses, an input wave at 
A, Fig.3.15, will see a load impedance of (3/7)Z. Thus the transfer coefficient to 
each of the two perpendicular lines, designated by TA->.B and TA-»D,( or in cellu
lar notation, Txy(n,m,q,53 ) and Txy(n,m,q,46) will be 

TA~-»B =TA-»D = 2(3/7)Z/[Z+(3/7)Z] =3/5 (3.134) 

In the case of the coplanar coupling, there are three lines in series and thus the 
transfer to each one of the lines, designated by TA->ci, TA->C2 , or TA-̂ C3, is (in 
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FIG. 3.15 3D TRANSFER OF WAVE +VXY(n,m,q) INCIDENT 
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cellular notation the coefficients are Txy(n,m,q,22), Txy(n,m,q,15) and 
TxyOi^q,!)) 

lA-»Cl =T A~>C2 = T A-»C3 1/5 (3.135) 

The reflection coefficient is [(3/7)Z-Z]/ [(3/7)Z+Z] =-2/5. We now return to treat 
the plane wave impinging on the 3D matrix, making use of these coefficients. 



182 Electromagnetic Analysis Using Transmission Line Variables 

For simplicity we assume that, at the end of the first step, k=l, all the Z*,, 
(l,m,q) lines contain the forward wave +V1

xy(l,m,q) with unity amplitude. At the 
end of the second step we determine the amplitudes of the waves in the trans
verse lines, directed toward the (l,m,q) node. These consist of 

V ^ l . m . q + l ) = 3/5 (3.136a) 
• V V 1 A < 0 = 3/5 (3.136b) 
Vy x( l ,m+l,q) = 1/5 (3.136c) 
Y j l , m , q ) = -1/5 (3.136d) 
V 2 y ( l ,m,q)=l (3.136e) 

where of course the input amplitude +V2
xy(l,m,q) remains at unity. The origin of 

Eq.(3.136) is straightforward; +V2zy(l,m,q+1), for example, originates from the 
aplanar scattering of the input +V1

xy(l,m,q+1) at the (l,m,q+l) node while 
+V2yx(l,m+l,q) originates from the input +V1

xy(l,m+l,q) undergoing coplanar 
scattering at the (l,m+l,q) node, and similarly for the other incident waves. We 
use the scattering coefficients obtained in the previous paragraph. Knowing the 
waves at k=2 we can obtain the forward wave in Z^{2,va,q) at k=3 , or 

VxyCm.q) = (1/5) V ^ l . m . q ) +(3/5) V ^ l ^ q + l ) + (3/5)+V2
zy(l,m,q) 

+ (1/5) - V ^ a m + l . q ) - (1/5) V ^ l,m,q) (3.137) 

Substituting the amplitudes at t= 2At, we then obtain the forward wave ampli
tude at 3At, or 

Vx y(2,m,q)= 1 (3.138) 

which is the same as the result for the 2D matrix. As with the 2D matrix, the 
unity amplitude plane wave propagates into the matrix, but requires twice the 
normal amount of time. 
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3.17 Response of 3D Cell Matrix to Input Waves With Arbitrary Amplitudes 

Following the 2D arguments we allow the input waves, +V1
xy(l,m,q), to depart 

from uniformity and then inquire under what conditions, a limited portion of the 
input wave front behaves as though it were a plane wave. We first note that the 
waves incident on the (n,m,q) node during k=2 are related to the arbitrary inputs 
by 

-VVl^n.q+1) = (3/5) V ^ l,m,q+l) (3.139a) 

V z y( l>m,q)= (3/5)V,y(l,in,q-l) (3.139b) 

- V y l,m+l,q) = (1/5) V ^ L m + L q ) (3.139c) 

VyxO.m.q) = -(l/5)+V1
xy(l,m,q) (3.139d) 

V x y ( l ,m,q)=l (3.139e) 

We then substitute Eq.(3.139) into (3.137), and impose the following require
ment 

V ^ H M D * Y ^ l , m , q ) (3.140) 

As in the 2D case, by combining the previous equations, we can determine what 
constraints on the input will result in the continued propagation of the wave 
+V1

xy(l,m,q) with the same amplitude without scattering. Generalizing the re
sults to arbitrary n and k, +Vk

xy(n,m,q) must satisfy 

V ^ w q ) = (9/20)[ V ^ n A q + l ) ++Vk
xy(n,m,q-1)] 

+(l/20)[ V ^ i M n + L q ) + V ^ m - L q ) ] (3.141) 
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The previous Sections provide hints as to the conditions under which non
uniform input waves behave , to some degree, as plane waves , as they advance 
in the TLM matrix. We saw that the forward wave in a particular cell ad
vances as an approximate plane wave manner provided there is close "correla
tion" with its neighbors; in this case the correlation is provided by he closeness 
of the forward wave amplitude to the average, which takes into account the 
waves, in the neighboring cells. 

However a serious problem still remains, even when the input is uniform. A 
plane wave launched in a TLM matrix, as it progresses , does not satisfy the ba
sic criterion for a plane wave because of the diversion of wave energy into the 
transverse lines, which results in a propagation delay. This diversion is nothing 
more than an artifact of the TLM matrix , as it is presently formulated. What is 
needed is a systematic means for correcting the TLM method to account for 
plane wave effects. In addition, anisotropy effects have not been accounted for 
in the TLM method. These matters are taken up in the following Chapter. 
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APP. 3A.1 3D SCATTERING EQUATIONS: WITH 
BOTH COPLANAR AND APLANAR CONTRIBUTIONS 

INTO UNIT CELL LINES ZYz(n,m,q), ZzY(n,iii,q) (yz PLANE). 

+Vk+1
iy(n,m,q)= T ^ n ^ - ^ q ^ ^ V ^ n . m - ^ q J - T ^ n ^ - ^ q ^ O f V ^ n ^ - l . q ) 

+^"(11,111-1^,31) V ^ m - ^ q + l ) +Byz
k(n»m-l5q,5) Vyz(n,iii,q) 

+Tn
k(n,m-l,q^2)+Vk

K(n,m-l,q)+T]a
k(n,iii-l,q,33)+Vk

zy{n+l,m-l,q) 
+TiyQ

k(n,m-l,q,34)+Vk
xy(n,m-l,q)+TiyQ

k(n,iii-l,q,35) Vk
iy(n+l,m-l,q) 

"V^^miiMi) = ^(11,01^,36) ^ ( n . m + l . q ) -^"(11,111,^37) V ^ n ^ q + l ) 
+^"(11,111^,38) +V\y(ii,m,q) +8^(11,111^,6) ^ ( n . m . q ) 

+TH
k(n,m,q^9) V U n ^ q ) +TH

k(n+l,m,q,40) V U n + l ^ q ) 
+TiyQ

k(ii,ni,q,41)+Vk
iy(ii,ni,q)+TxyQ

k(n+l,m,q,42)-Vk
iy(ii+l,in,q) 

V ^ n ^ q ) = -Tyz
k(n5ni,q-l,43)+Vk

yi(n,m,q-l)Tiy
k(n,m,q-l,44)+Vk

zy(n,m,q-l) 
+^11,111^-1,45) V ^ n . m . q - l ) +Bzy

k(n,m,q-1,7) V ^ i m q ) 
+T^k(n,m,q-l,46)V^n,ro,q-l)+T^Vm,q-l,47)Vk

v(n+l,m,q-l) 
+TKQ

k(n,m,q-l,48) V U n ^ q - l ) +TnQ
k(n,m,q-l,49)Vk

xz(n,m,q-l) 

"V^^n,™^) = Ty^n^q.SO) V y ^ m . q ) +Tzy
k(n,in,q+l,51) Vk

iy(n,ni,q+1) 
-^"(11,111^,52) " V ^ n ^ + l . q ) +Bzy

k(n,m,q,8) V ^ n . m . q ) 
+Tiy

k(n,m,q,53) V ^ n . m . q ) +^"(11,111,^54) - \ \^n+l ,nM0 
+TIZQk(ii,iii,q,55)+Vk

a(ii,m,q) +T3raQ
k(n,ni,q,56) V U n + l ^ q ) 
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APP. 3A.l(CONT). 3D SCATTERING EQUATIONS: WITH BOTH 
COPLANAR AND APLANAR CONTRIBUTIONS INTO UNIT CELL 

LINES Zzx(n,m,q), Zxz(n,m,q) (zx PLANE). 

-Vk+1
a(n,m,q-l)=Tzs

k(n,m,q,64)-Vk
ZI(n,m,q+l) .T„*(ii^i,q,65) -Vk

11(n+l,m,q) 
+T«k(n,m,q,66) V^OMMi) +BII

k(ii,m,q,10) V ^ m . q ) 
+Tyl

ktn,m*q><7) V ^ n . m . q ) +Tyi
k(n,m+l,q,68) ~vV(n,m+l,q) 

+TyzQ
k(n,m,q,69) +Vkyz(n,m,q) +TyzQ

k(n,m+l,q,70) -Vk^(ii,m+l,q) 

+Vk+1
B(n,m,q)=-TM

k(n-l,in,q,71)+Vk
a(n-l,m,q)+Tx2

k(n-l,in,q,72)+Vk
XI(n-l,m,q) 

+Tzs
k(n-l,m,q,73) ^ ( n - l . m . q + l ) +BH

k(n-l,m,q,ll) V^n.m.q) 
+TyI

k(n-l,m,q,74)+vV(n-l,m,q)+Ty,k(n-l,m,q,75)Vk
yz(n-l,m+l,q) 

+TyiQ
k(n-l,m,q,76)+Vk

yx(n-l,in,q)+TyxQ
k(n-l,m,q,77)-Vk

yx(n-l,m+l,q) 

V+1
SI(n,m,q)=TM

k(n,in,q,78)+Vk
iX(n,m,q)+Txz

k(n+l,in,q,79)-Vk
1„(n+l,ni,q) 

-TK
k(n,m,q,80) Vk

ZJ(n,m,q+l) +BB
k(ii,iii,q,12) V ^ i w n . q ) 

+Tyi
k(n,m,q-l,81) V^(n,m^i>f T ^ I M I M I . 8 2 ) V^O^m+l.q) 

+TyiQ
k(n,m,q,83) +Vk

yi(ii,m,q)+TyxQ
k(n,m,q,84) "VV(n,m+l,q) 
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APP.3A.2 SCATTERING COEFICIENTS WITH COPLANAR AND 
APLANAR CONTRIBUTIONS. INTO UNIT CELL LINES 

Zj^n^q) AND Zzy(n,m,q) (yz PLANE). 

TRANSFER TYPE 

COEFFICIENT 
Ty2(n,m-l,q,29) 
(-)Tzy(n,m-l,q,30) 
Tzy(n,m-l,q,31) 
Tra(n,m-l,q,32) 
Tn(n,m-l,q,33) 
T ^ n . m - l . q ^ ) 
T,yQ(n,iii-l,q,35) 
Tyz(n,m,q,36) 
(-)Tzy(n,m,qr37) 
T2y(n,m,q,38) 
TK(n,m,q39) 

(n+l,m,q,40) 
TlyQ(n,m,q^l) 
TiyQ(n,m,q,42) 
(-^(11,111^-1,43) 
T2y(n,m,q-1,44) 
Ty2(n,m,q-1,45) 
T,y(ii,iii,q-1,46) 
TIy(n,ni,q-l,47) 

Q(n,m,q-1,48) 
TMQ(n,m,q-l,49) 
Tyz(n,m,q,50) 
Tzy(n,m,q+l,51) 
(-)TyI(n,m,q,52) 
Txy(ii,ni^i33) 
Tiy(n^n,q^4) 
T^n.m.q^S) 
Tno(n,iii,q,56) 

FROM 
Zyz(n,m-l,q) 
Zzy(n,m-l,q) 
Zzy(n,m-l,q) 
Zxz(n,m-l,q) 
Z^n+l.m-Lq) 
ZIy(n,m-l,q) 
Z^n+l.m-Lq) 
ZyXn.m+^q) 
Z2y(n,m,q+1) 
Z2y(n,m,q) 
Z^(n,m,q) 
ZK(n+l,m,q) 
Ziy(«t,n»,q) 
Zly(n+l,m,q) 
Zyz(n,m,q-1) 
Z^n.n^q-l) 
ZyZ(n,m+l,q-l) 
Zxy(n,m,q-1) 
Zly(n+l,m,q-l) 
ZK(n,m,q-l) 
ZK(n+l,m,q-l) 
2^(11,111^) 

Z2y(n,m,q+1) 
Zyz(n,m+l,q) 
Zsy(n,m,q) 
Z^n+l.m.q) 
Zto(n,m,q) 
Z^n+l.m.q) 

TO 
Zyz(n,m,q) 
Zj,z(ii,m,q) 
Zyz(n,m,q) 
Zj,z(n,in,q) 
Zy2(n,m,q) 
Zj,z(n,m,q) 
Zyz(n,m,q) 
Zy,(n,m,q) 
Zyz(n,m,q) 
Zj,z(n,m,q) 
Zj^n.H^q) 
Zy2(n,m,q) 
ZyZ(n,m,q) 
Zyz(n,m,q) 
Zzy(n,m,q) 
Zzy(n,m,q) 
Zzy(n,m,q) 
Zzy(n,m,q) 
Z,y(n»n>»q) 
Zzy(n,m,q) 
Z2y(n,m,q) 
Z2y(n,m,q) 
Zzv(n,m,q) 
Zzy(n,m,q) 
Zzy(n,m,q) 
Z2y(n,m,q) 
Zz)(n,m,q) 
Zzy(n,m,q) 

REFLECTION TYPE 
Byz(n,m-l,q,5) Z^n.m.q) ZyZ(n,m,q) 
By2(n,m,q,6) Z ^ n ^ q ) Zyz(n,m,q) 
Bzy(n,m,q-1,7) Zzy(n,m,q) Zyl(n,m,q) 
Bzy(n,m,q,8) Zzy(n,m,q) Z2y(n,m,q) 
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APP. 3A.2 (CONT). 3D SCATTERING COEFICIENTS WITH COPLANARAND 
APLANAR CONTRIBUTIONS. INTO UNIT CELL LINES ZZI(n,m,q) AND 

Zzz(n,m,q) (zx PLANE). 

TRANSFER TYPE 

COEFFICIENT FROM TO 
TZI(n,m,q-l,57) ZZI(n,m,q-l) Z„(n,m,q) 
(-)TIZ(n,m,q-l,58) ZM(n,m,q-l) ZZI(n,m,q) 
TE(n,m,q-l,59) ZJn.m.q-l) ZZI(n,m,q) 
Tyl(n,m,q-1,60) ZyI(n,m,q-l) ZZI(n,m,q) 
Tyl(n,m,q-l,61) Zy^n.mzx.q-l) Z^n.m.q) 
^(11,111^-1,62) Zyl(n,m,q-1) Z,I(n,in,q) 
TyzQ(n,m,q-l,63) Zyz(n,m+l,q-l) ZZI(ii,ni,q) 
TZI(n,m,q,64) ZZI(n,m,q+l) ZZI(n,m,q) 
(-)TH(n,m,q,65) ZE(n+l,m,q) ZZI(n,m,q) 
To(n,m,q,66) Z^n.m.q) Zzl(n,m,q) 
Tyi(n,m,q,67) Z^i^m^) ZZI(n,m,q) 
Tyl(n,m+l,q,68) Z^n.m+Lq) Zzl(n,m,q) 
TyzQ(n,m,q,69) ZyZ(n,m,q) ZZI(n,m,q) 
^(11,111^,70) Zyz(n,m+l,q) Zzx(n,m,q) 
(-)TZI(n-l,m,q,71) Zlyzl(n-l,m,q) Z^n.nMl) 
Tsz(n-l,m^i,72) Zra(n-l,m,q) Z^n.m.q) 
TZI(n-l,m,q,73) Z„(n-l,m,q+l) Zn(n,m,q) 
Tyz(n-l,m,q,74) Z^n-Lm.q) Zra(n,m,q) 
Tyi(n-l,m,q,75) Z^n-Lm+l.q) Z^^m.q) 
TyXQ(n-l,m,q,76) Zj^n- l^q) Z^n.iiMl) 
TylQ(n-l,m,q,77) Z^n-l.m+Lq) Z^n.m.q) 
TZI(n,m,q,78) ZZI(n,m,q) ZH(n,ni,q) 
T^n+l .m.q^) ZH(n+l,m,q) Zn(n,m,q) 
(-)TZI(n,m,q,80) ZZI(n,m,q+l) Zn(n,m,q) 
Tyz(n,m,q,81) Zy^n.m.q) ZK(n,m,q) 
Tyz(n,m,q,82) Zyz(n,m+l,q) ZnO^m.q) 
TylQ(n,m,q,83) Zyi(ii,m,q) Z^n.m.q) 
TylQ(n,m,q,84) Zy^iii+Lq) ZIZ(n,m,q) 

REFLECTION TYPE 
B„(n,m,q-1,9) ZZI(n,m,q) ZZI(n,m,q) 
BZI(n,m,q,10) ZZI(n,in,q) ZZI(n,m,q) 
B^n-l.m.q.ll) Zn(n,m,q) Z^n.m.q) 
BIZ(n,m,q,12) Z^n.n^q) ZII(n,m,q) 
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APP.3A.3 3D SCATTERING COEFFICIENTS, WITHOUT QUASI-COUPLING, 
IN TERMS OF CIRCUIT PARAMETERS. FOR CO-PLANAR AND APLANAR 
SCATTERING INTO XY PLANE ABOUT (n,m,q) NODE. COEFFiaENTS 
FOR YZ AND ZX PLANES ARE OBTAINED FROM TABLE 3.8. 

TRANSFER COEFFiaENTS 

TXY(n,m,q,l)=(2RLlxY(n,ni,q)/IRLlXY(n,iii^|)+ZxY(n,m,q)])*Al 
Al=R3XY(n,iii,q)/[R2yx(n,ni,q)+R3XY(n,m,qHR4Yx(n,m,q)] 

TYX(n,m,qa)=(2RL2YX(n,m,q)/[RL2Yx(n,m,q)+ZYX(n,m,q)])*A2 
A2=R3XY(ii,iii,q)/[RlXY(n^n,q)+R3XY(n,iii,q)+R4Yx(n,m,q)] 

TYx(n,m,q,3)= (2RL4YX(n,m,q)/IRL4YX(n,iii,q)+ZYx(n,m+l ,q)])* A3 
A3=R3XY(n,m,q)/[RlXY(ii,m,q)+R3XY(n,in,q)+R2YX(n,iii,q)] 

TzY(n,m,q,4) = 2RL2ZY(n,m,q)/[RL2Zy(n,ni,q)+Zz¥(n^n,q)] 

TZY(n,m,q^) = 2RL4Zy(n,m,q)/[RL4ZY(n,m,q)+ZZY(n,ni,q+l)] 

TMQ^m.q^M) 

TZXQ(n,m,q,7)=0 

TXY(n,m,q3)=(2RL3xY(n,m,q)/lRL3xY(n^n,q)+ZxY(n+l,ni,q)])*A8 
A8=RlXY(n,m,q)/[R2YX(n,m,q)+MXY(n,m,q)+R4YX(n,in,q)] 

TYx(n,m,q^)=(2RL4YX(n,m,q)/[RL4YX(n,m,q)+ZYx(n,m+l,q)])*A9 
A9=RlXY(n,m,q)/[R2YX(n,iii,q)+RlXY(ii,iii,q)+R3XY(ii,in,q)J 

TYX(n,m,q,10)=(2RL2YX(n,m,q)/[RL2YX(n,m,q)+ZYX(n,ni,q)])*A10 
A10=RlXY(n,m,q)/[R4YX(n,m,q)+Rlx>(n,m,q)+R3XY(n,m,q)l 
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Tzy(n,m,q,ll) = 2RL2CT(n,m,q)/[RL2ZY(n,m,q)+ZZY(n,ni,q)] 

TZY(n,m,q,12) = 2RL4Zy(n,m,q)/[RL4ZY(n,m,q)+ZZY(n,m,q)] 
TzxQ(n,m,q,13)=0 

TZXQ(n,m,q,14)=0 

TXY(n,m,q,15)= (2RLlXY(n,m,q)/[RLlxY(n,inl ,q)+ZxY(n,m,q)])*AlS 

A15=R4Yx(n,m,q)/[R2yx(n,iii,q)+R3XY(ii,m,q)+R4YX(ii,iii,q)] 

TYx(n,m,q,16)=(2RL2YX(n,m,q)/[RL2Yx(n,m,q)+ZYx(n,m,q)])*A16 
A16=R4YX(n,m,q)/[R4Yx(n,m,q)+RlxY(n,m,q)+R3XY(n,m,q)J 

TxY(n,m,q,17)=(2RL3xY(n,m,q)/[RL3xY(n,m,q)+ZXY(n+l,ni,q)])*A17 

Al 7=R4YX(n,m,q)/[R2Yx(n,m,q)+Rl XY(n,m,q)+R4YX(n,m,q)l 

TZx(n,m,q,18) = 2RLIzx(n,m,q)/[RLlzx(n,m,q)+Zzx(n,m,q)] 

Tzx(n,m,q,19) = 2RL3Zx(n,m,q+l)/[RL3Zx(n,m,q+l)+Zzx(n,ni,q+l)] 

TzyQ(n,m^|^0)=0 

TZYQ(n,m,q^l)=0 

TXY(n,m,qa2)=(2RLlxY(n,in,q)/tRLlXY(ii,m,q)+ZXY(n,m,q)J)*A22 

A22=R2Yx(n,m,q)/[R2Yx(n,m,q)+R3xY(n,m,q)+R4Yx(n,m,q)] 

TYX(n,m,q,23)= (2RL4Yx(n,m,q)/[RL4Yx(n,m,q)+ZYx (n,m+l,q)])*A23 
A23=R2Yx(n,m,q)/[R2Yx(n,m,q)+R3XY(n,m,q)+RlxY(n,m,q)] 

TxY(n,m,q,24)=(2RL3xy(n,m,q)/[RL3xY(n,m,q)+ZXy(n+l,m,q)])*A24 
A24=R2YX(n,m,q)/[R2YX(n,m,q)+RlXY(n,m,q)+R4YX(n,in,q)] 
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Tzx(n,m,q,2S) = 2RLIzx(n,m,q)/[RLlZx(n,ni,q)+ZZx(n,ni,q)] 

Tzx(n,m,q,26) = 2RL3Zx(n,m,q)/[RL3zx(n,m,q)+Zzx(ii,in,q+l)] 

TZYQ(n,m,q,27)=0 

TZYQ(n,m,q,28)=0 

REFLECTION COEFFICIENTS(CONT) 

BXY(n,m,q,l) = {RL3xY(n,m,q)-ZxY(n+l,m,q)] / [RL3XY(n,m,q)+ZxY(n+l,m,q)] 
BXY(n,m,q^) = [RLlxy(n,ni,q)-ZxY(n,m,q)] / [RLlxY(n,m,q)+Zxy(n,m,q)] 
BYx(n,m,q3) = [RL4Yx(n,m,q)-ZYX(n,m-l,q)] / [RL4yX(n,m,q)+ZYx(n,m-l,q)] 
Byx(n,m,q,4) = [RL2Vx(n,m,q)-ZYX(n,m,q)] / [RL2YX(n,m,q)+ZyX(n,m,q)] 
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APP. 3A.3(CONT) NODE PARAMETERS (ALL THREE PLANES) WITHOUT QUASI-
COUPLING.THE NODE PARAMETERS ARE REFERENCED TO THE (n,m,q) NODE. 
REPLACE n WITH n+1, n-1, ETC.. , AS APPROPRIATE, IN THE SCATTERING 
EQUATIONS. TO SAVE SPACE WE HAVE OMITTED THE (n,m,q) ARGUMENT IN 
THE LOAD RESISTANCE PARAMETERS. 

LOAD RESISTANCE PARAMETERS 

RL1XY=[R4ZY*R2ZY *R*D1]/{R4ZY*R2ZY*R+D1 *R4ZY*R2ZY+D1 *R*R4ZY+D1 *R*R2ZY} 
Dl = R2YX +R3XY +R4YX 

R L 2 Y X = [ R 1 Z X * R 3 Z X * R * D 2 1 / { R 1 Z X * R 3 Z X * R + D 2 * R 1 Z X * R 3 Z X + D 2 * R * R 1 Z X + D 2 * R * R 3 Z X } 
D2 = RIXY +R4YX +R3XY 

RL3XY= [R4ZY*R2ZY*R*D3]/ {R4ZY*R2zy*R+D3*R4ZYR2ZY+D3*R*R2ZY+D3*R*R4Zy} 
D3 = R2YX +RlXY+R4yX 

RL4YX=IR1ZX*R3ZX*R*D41/{R1ZX*R3ZX*R+D4*R1ZX*R3ZX+D4*R*R1ZX+D4*R*R3ZX} 
D4= Rlxy+R2YX+R3XY 

RLlY?7=[R4Xz*R2xz*R*D5]/{R4xz*R2xz*R+D5*R4xz*R2xz+D5*R*R4xz+D5*R*R2xz} 
D5= R2ZY+R3yz+R4ZY 

RL2ZY=[RlXY*R3XY*R*D6]/{RlXY*R3XY*R+D6*RlXY*R3XY+D6*R*RlXY+D6*R*R3xY 
D6 = R1YZ +R4ZY +R3YZ 

RL3YZT1 [R4xZ*R2xz*R*D7]/ {R4XZ*R2XZ*R+D7*R4XZR2XZ+D7*R*R2XZ+D7*R*R4XZ} 
D7 = R2ZY +R1Y Z+R4ZY 

RL4ZY=[R1XY*R3XY*R*D8]/{R1XY*R3XY*R+D8*R1XY*R3XY+D8*R*R1XY+D8*R*R3XY} 
1/8 — Rly2 +R22Y "̂ ""̂ VZ 

RL1Z X =(R4YX*R2Y X *R*D9]/{R4Y X *R2 Y X *R+D9*R4Y X *R2YX + D9*R*R4Y X +D9*R*R2Y X } 
D 9 = R2XZ+R3ZX+R4XZ 

R L 2 X Z = [ R 1 Y Z * R 3 Y Z * R * D 1 0 ] / { R 1 Y Z * R 3 X Y * R + D 1 0 * R 1 Y Z * R 3 Y Z + D 1 0 * R * R 1 Y Z 

+D10*R*R3Y Z } 
D10= R1ZX+R4XZ+R3ZX 



Scattering Equations 

RL3ZX=[R4YX*R2YX*R*D1 1] /{R4YX*R2 V X *R+D1 1 *R4YXR2 Y X +D1 1 *R*R2YX 

+D11*R*R4YX} 
Dll=R2Xz+Rlzx+R4xz 

RL4XZ=[R1YZ*R3YZ*R*D12]/{R1YZ*R3YZ*R+D12*R1YZ*R3YZ+D12*R*R1 

+D12*R*R3YZ} 
D12= R1ZX+R2XZ+R3ZX 

PARALLEL RESISTANCE NODE PARAMETERS(ALL THREE PLANES). 

RIXY = R(n,m,q) *ZxY(n,m,q)/[R(n,m,q)+ZxY(a,m,q)] 

R2YX = R(n,m,q) *ZYx(n,m,q)/[R(n,m,q)+ZYx(n,m,q)] 

R3xr = R(n,m,q) *Zxr(n+l,m,q)/[R(n,m,q)+Zxv(n+l,m,q)] 

R4YX = R(n,m,q) *ZYx(n )m+l,q)/[R(n,m,q)+ZYx(ii,m+l )q)] 

R I T Z = R(n,m,q) *ZYz(n,m,q)/[R(n,m,q)+Zyz(n,m,q)] 

R2z7 = R(n,m,q) *ZzY(n,m,q)/[R(n,m,q)+ZzY(n,m,q)] 

R3TZ = R(n,m,q) *Zyz(ii,m+l,q)/[R(n,m,q)+ZYz(n,m+l,q)] 

R4ZY = R(n,m,q) *ZzY(n,m,q+l)/[R(n,m,q)+Zzy(n,m,q+l)] 

Rlzx = R(n,m,q) *Zzx(n,m,q)/[R(n,iii,q)+Zzx(n,iii,q)] 

R2XZ = R(n,m,q) *Zxz(n,m,q)/[R(n,m,q)+Zxz(n,in,q)] 

R3zx = R(n,m,q)*ZZx(n,m,q+l)/[R(n,m,q)+ZZx(n,in,q+l)] 

R4xZ = R(n,m,q))*ZxZ(n+l,m,q)/[R(n,m,q)+Zxz(n+l,m,q)] 



IV. Corrections for Plane Wave and 
Anisotropy Effects 

The previous Chapter revealed certain flaws in the TLM method. In particular, 
the TLM method, as it now stands, does not properly account for plane wave 
behavior in the electromagnetic field. In addition, the artificial anisotropy 
introduced by the cell matrix has not been resolved. This Chapter addresses 
these issues. In preparation, however, we first require discussion of the 
partitioning of the TLM wave into two or more component waves, described in 
the following Section. 

4.1 Partition of TLM Waves into Component Waves 

Before proceeding further we must outline a general means for dividing a wave 
into two parts. Once we acquire this technique, we will then be able to partition 
a wave into a plane wave part, which does not scatter normal to the propagation 
direction, and the usual "symmetric" part which scatters to all the TLM lines. 

We inquire as to the possibility of replacing a wave +Vxy(n,m) with a pair of 
separate, independent waves, given by +VxyA(n,m) and +VxyB(n,m), such that then-
effect is exactly equivalent to the original wave. We assume the wave 
amplitudes satisfy 

X f r m ) = "VxA^m) + X u O u n ) (4-1) 

Our initial impulse is to employ two separate waves; +VxyA(n,m) and +VxyB(n,m) 
without any modification of their wave amplitudes; this inclination is incorrect, 
however, since +Vxy(n,m) and the component waves are not referenced to the 
same line impedance. The modified "effective" wave amplitudes may be 

194 
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obtained with the help of Fig.4.1, where we have suppressed unnecessary 
subscripts and arguments for the present discussion. We imagine the line 
impedance, Z, to be partitioned into two series connected lines, Z= ZA + ZB , 
where 

Z A = [ + V A r V ] Z (4.2a) 

Z B = [ + V , / V ] Z (4.2b) 

and +V = +VA + +VB. The power in the line Z is equal to the sum of the powers 
in lines ZA and ZB, or 

(+V)2 /Z = (+VA)2 / ZA +( +VB)2
 / Z B < V A

+ V ) / Z + (+VB
 +V)/Z (4.3) 

The effective wave amplitudes, associated with +VA and +VB , are thus 

"VA.Eff = (+VA
+V)1/2 (4.4a) 

+VB,Eff = ( + V B
+ V ) 1 / 2 (4.4b) 

I 
i 

vA, zA 

+ v , z 

"VB,ZB 

FIG. 4.1 WAVE PARTITION INTO COMPONENT WAVES. THE 
EFFECTIVE WAVE AMPLITUDES OF +\K, +VB, REFERENCED TO 
LINE IMPEDANCE Z, ARE : "VAJMP fVA

 +V}m , +VBJJFF= fVB
 +V}1/2 

where ^A.Eff and +VB,Eff are each referenced to the full line impedance Z, rather 
than a portion of the impedance. The fact that the effective fields are referenced 
to the same original impedance provides for a much simpler interpretation of the 
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wave picture. The effective amplitude of +VA is the mean square of the full 
voltage and +VA and similarly for +VB. We should note that the above 
relationships satisfy 

(+VA,Eff)
2 + (+VB,Eff)

2 =(+V)2 (4.4c) 

which should not come as a surprise; the sum of the partioned wave energies, 
using the effective amplitudes, is the same as the original energy. The two waves 
then are said to add in quadrature. We have therefore divided the original wave V 
into two independent waves, +VA,Efr and +VB,Eff, each referenced to the full line 
impedance. 

For more than two components, the same root mean square relationship 
holds. Suppose +Vxy(n,m) is divided into Nt components, 

+V,y(n,m)= N=i£+VxyN(n,m) (4.5) 

where N denotes the Nth component. Using the same arguments as before we can 
show that the effective field for the Nth field is 

(+VxyN(n,m))Eff = [+Vxy(n,m)+VxyN(n,m)]1/2 (4.6) 

In the following discussion we will employ the effective partitioned fields, rather 
than the component fields (such as +VA , +VB or +Vxy(n,m)) to describe the 
divided fields. In subsequent discussion we will also drop the Eff subscript label 
in order to simplify the notation ; partitioned waves will be identified as such, it 
being understood that any such waves are to be added in quadrature. 

4.2 Scattering Corrections for 2D Plane Waves : Plane Wave Correlations 
Between Cells 

In Chapter III, Sections 3.15 to 3.18, we saw that unless some correction is 
introduced, the TLM matrix technique will distort the time of arrival and the 
strength of an input plane wave electromagnetic signal propagating in a medium. 
By the very nature of the TLM formulation, a substantial portion of an input 
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plane wave will divert significant energy to the transverse lines, effectively 
attenuating the leading edge of the signal and slowing down the effective 
propagation velocity of the wave amplitude. This effect of the TLM matrix on 
the plane waves will manifest itself not only in a plane waves of infinite extent, 
but also in much more limited wave fronts, extending only a few cells in the 
transverse direction. There is therefore a definite need to correct for plane wave 
effects. How do we begin to implement these corrections? First consider a plane 
wave of infinite extent in the transverse direction. The TLM formulation cannot 
be brought into accord with the plane wave properties unless we exclude 
scattering normal to the propagation direction; we postulate that the plane wave 
behavior is due to "correlation" effects between waves in adjacent TLM lines. 
The correlation effects are maximized when the fields in the neighboring lines 
have identical amplitudes (as well as sign). For a perfect plane wave the waves 
in adjacent TLM lines are identical, and the correlation between such waves is 
maximized. We now assert we can apply the same correlation to wave fronts 
which are not perfect plane waves, i.e, to arbitrary wave fronts. Neighboring 
waves will therefore exhibit plane wave correlation with one another, arising 
from the degree to which the waves have equal amplitudes (assuming the same 
direction and sign; opposing waves or waves with unequal sign are assumed to 
have zero correlation). Conversely, neighboring waves with highly disparate 
amplitudes will exhibit normal (i.e., symmetric) scattering. Implicit in the 
correation process is the assumption that neighboring TLM plane waves are 
phase coherence, having originated from a common source. In this regard, we 
remark that although we are employing strictly classical concepts to describe the 
correlation, one may also employ quantum mechanical considerations to obtain 
the equivalent correlation between neighboring photons. App.4A.2 presents 
simple quantum mechanical arguments which support the assumption of plane 
wave correlations. 

As a first step we adapt a technique in which the field in each cell is 
divided into two parts: a part exhibiting plane wave effects and a part exhibiting 
the "normal" TLM scattering into all the available lines. In this Section we 
outline a technique for partitioning the wave into two such components. The first 
component wave behaves as a plane wave, with the wave progressing straight 
ahead(or reflected backward if the next TLM line has a differing dielectric 
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constant) with no diversion to the transverse lines. In order to implement the 
plane wave progression, the scattering coefficients must be of course be 
modified. The second component behaves as a normal wave in a TLM matrix, 
and the scattering coefficients previously derived apply. The partitioning makes 
use of the results given in Section 4.1. 

We examine the partitioning of the wave with the help of Fig.4.2 which 
shows the forward wave +Vxy(n,m) and its two nearest neighbors , assuming the 
same impedance, +Vxy(n,m+1) and +Vxy(n,m-1). The amplitudes of the three 
waves are arbitrary, but in any event they fall into one of the six categories in 
Fig.4.2. Thus if category I applies, for example,+Vxy(n,m+1) is greater or equal 

*Vw(n,m+l) 

^(n , ! ! ! ) 

"•"Vnfom-l) 

I +V*y(n,in+1) Tz+V^vju) > V^n.m-l) 

II +VI^ii,m-l) S ^ V ^ m ) > V,y(n,iii+ 

IB ^ ( n . m + l ) S+V^m- l ) > V ^ m ) 

IV +Viy(n,m-1) S+V^m+l) > 
V,y(n,m) 

V +Vxy(ii,ni) >+V,y(n,m+l) > V ^ m - l ) 

VI +V„(n,m) >+V„(n,m-l) > 

FIG. 4.2 VARIOUS CATEGORIES USED TO 
DETERMINE PLANE WAVE CORRELATION. 

than +Vxy(n,m) while +Vxy(n,m) is greater or equal than +Vxy(n,m-1). With the 
hierarchies given in Fig.4.2, we assume in the ensuing discussion, that if 
+Vxy(n,m) is positive then any negative values of +Vxy(n,m-1) and +Vxy(n,m+1) 
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are treated as having zero values for correlation purposes. Likewise, if +Vxy(n,m) 
is negative , any positive values of+Vxy(n,m-1) and +Vxy(n,m+1) are assigned 
zero values when calculating the correlation. The same Categories and conditions 
also apply of course to the backward waves and the transverse waves. 

In the following we use Category I as an illustrative example, with the 
forward wave +Vxy(n,m) considered positive. The first step is to divide the wave 
in each line into two identical waves, the sum of whose energies is equal to the 
original energy. Using the partitioning given in Eqs.(4.4a)-(4.4b), the half energy 
effective wave is denoted by +VxyiD(n,m) and 

+VxyJD(n,m) = +Vxy(n,m)/21,2 (4.7) 

with similar relationships for +VxyjD(n,m+l) and +Vxy;D(n,m-l). We now invoke 
a symmetry argument and state that one of the two waves, +VxyD(n,m) , 
correlates with +VxyD(n,m+l), while the other +Vxy,D(n,m) correlates to 
+Vxy(n,m-1) . Based on these correlations we must now determine whether each 
of the +VxyD(n,m) must be further partitioned. We first look at the correlation of 
+Vxy,D(n,m+l) to +VxyD(a.m). Since category I has been selected, +VxyD(n,m+l) > 
VxyoO^m). There is no need, therefore, to partition the upper +VxyD(n,m) since 

the amplitude in Zxy(n,m+1) is more than sufficient to produce plane wave 
correlation. The upper +Vxy,D(n,m) is entirely of the plane wave type( note that if 
we were to start out with Zxy(n,m+1) , however, a partitioning of Zxy(n,m+1) 
would then be necessary) .The "upper" plane wave component, designated by 
Vxyp^n^m), is therefore 

"Vxypufom) = X .Dfom) = X f o m ) /2m (4.8a) 

Thus there is no need for an "upper " symmetric component. Using a similar 
notation for the symmetric component, 

+VxySU(n,m)= 0 (4.8b) 

Next we consider the correlation of +Vxy>D(n,m) to +VxyD(n,m-l), where 
+VxyjD(n,m) >+VxyiD(n,m-l). Here a partitioning of+Vxy)D(n,m) is necessary since 
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there is insufficient amplitude in +VxyD(n,m-l) to produce a complete plane wave 
correlation. We therefore set +Vxy,D(iMn) equal to 

X . o f a r n ) = +V^>D(n,m-l) + +A^(n,m) (4.9) 

where +Axy(n,m) is defined by Eq.(4.9). We must not forget to use Eqs.(4.4a )-
(4.4b) to insure proper scaling. The new effective components for the lower 
components, with similar notation(replacing subscript U with L), are 

X n t e m ) ^ V ^ D f o m - l ) +WmU(n,m)]V2 (4.10a) 

X s L f o m ) = f A ^ m ) Xofom)] 1 7 2 (4.10b) 

Eq.(4.10a) represents the plane wave contribution due to the correlation of the 
+Vxy(n,m) and +Vxy(n,m-1) waves. Eq.( 4.10b) is the "normal' wave which is 
scattered in all directions.(lines). In addition to Eqs.(4.10a)-(4.10b) we must also 
add, in quadrature, the plane wave contribution resulting from the correlation 
with +Vxy(n,m+1), which we have shown to be equal to +VxyD(n,m). The total 
plane wave, designated by +Vxyp(n,m), relates in quadrature to +VxyPL(n,m) and 
+VxyD(n,m) by 

[Xpfom) ] 2 = T V ^ n . m ) ] 2 + [ X ^ m ) ] 2 (4.11) 

The portion of the wave which undergoes normal, symmetric, scattering is 
designated by +Vxys(n,m), and is simply 

^xysOun) = X s L ^ m ) (4.12) 

It is more useful to express +VxyP(n,m) and +Vxys(n,m) in terms of the original 
wave amplitudes. Using Eqs.(4.7)-(4.10), +Vxyp(n,m) and +VxyS(n,m) then 
become 

\ K n , m ) = (l/2)1/2[+Vxy(n,m-l)+Vxy(n,m)+ { X ^ m ) } 2 } m (4.13) 
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" V ^ m ) = (1/2)1/2 [ f V ^ m ) } 2 - " V ^ m ) XyOun-l)]1 '2 (4.14) 

{ +Vxy(n,m) >0 ; if+Vxy(n,m-1) <0 then ^ ^ m - l ) =0} 

Eqs.(4.13) -(4.14) are the sought after plane wave and normal components of the 
original wave. We note certain simple but important features of the partition. If 
+Vxy(n,m-1) = 0 then ^ p ^ m ) = Xysfom) = (1/2)1/2 ^ ^ m ) , i.e., the planar 
and symmetric components are equal. Also note that when +Vxy(n,m-1) 
=+Vxy(n,m) then ^ ^ f a m ) =0 and +Vxyp(n,m) = +Vxy(n,m), as expected. 

We should also observe that ^ ^ ( r ^ m ) and +VxyS(n)m) are the effective 
amplitudes of the planar and symmetric fields, and thus +Vxy(n,m) * +Vxyp(n,m) 
+ ^xysfom) , but rather [+V^(n,m)]2 = fV^pfom)]2 + [+Vxys(n,m)]2, as may 
be verified from Eqs.(4.13) and (4.14). From Eqs.(4.4a) and (4.4b) the 
partitioned waves , denoted by +VxyPM(n,m) and +VxySM(n,m), are related to the 
effective amplitudes by 

"V^PMfom) = rv^K^m)] 2 r v ^ m m ) (4.15) 

"V^M^m) = t V ^ m ) ] 2 A ^ m ) (4.16) 

The above equations satisfy +Vxy(n,m) = +VyxPM(n,m) + +VyxSM(n,m). The 
relationships for the transverse components +VxyP(n,m) and +VxyS(n,m) are of 
course similar. 

We also emphasize that the above partition applies only to category I. 
Category II is similar except for the replacement of +Vxy(n,m-1) with 
+Vxy(n,m+1). Thus 

^ p f o m ) = (l/2)1/2[+Vxy(n,m+l) " V ^ m ) + [ X ^ m ) ] 2 ] 1 ' 2 (4.17) 

"V^fom) = (1/2)1/2 [ f V ^ m ) } 2 - Xyfom) +V^m+\)]m (4.18) 

{ ^ ( i M n ) >0; if Xyfom+l) <0 then +Vxy(n,m+1) =0} 
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In Categories III and IV, +Vxy(n,m) is the minimum among its neighbors. 
+Vxy(n,m) then correlates perfectly with its neighbors with respect to its plane 
wave properties. The normal scattering then vanishes. Thus 

^xypfam) = "V^fom) (4.19) 

+VxyS(n,m)= 0 (4.20) 

CV^fom) >0} 

In Categories V and VI, +Vxy(n,m) has the highest amplitude among its neighbors 
and the effect is somewhat the opposite of categories III and IV, but not quite. 
The planar and normal fields are 

"Vxypfom) = (l/2)1/2[+Vxy(n,m) " V ^ m + l ) + " V ^ m ) " V ^ m - l ) ]1/2 (4.21) 

+VxyS(n,m)=(l/2)1/2[2(+Vxy(n,m))2-+Vxy(n,m)+Vxy(n,m+l)-+Vxy(n,m)+Vxy(n,ml)]1/2 

(4.22) 

fVxyfom) >0; if+Vxy(n,m-1) <0 then ^ ( i ^ m - l ) =0; same for +Vyfam+1) } 

From Eqs.(4.21)-(4.22) we see that the planar field vanishes only when 
+Vxy(n,m+1) and +Vxy(n,m-1) are equal to or less than zero and under these 
conditions we have +VxyS(n,m) = +Vxy(n,m). With these conditions we have an 
isolated(from its immediate neighbors) wave from which plane wave effects are 
impossible and we should expect scattering in all the available TLM lines. 

Care should be exercised in the expressions for +VxyP(n,m) and +Vxys(n,m), 
concerning the signs of +Vxy(n,m+1) and +Vxy(n,m-1). As noted beneath the 
expressions, when +Vxy(n,m) is positive and +Vxy(n,m+1)<0 then we set 
+Vxy(n,m+1) = 0. in the above expressions. A similar statement holds for 
+Vxy(n,m-1). We are therefore asserting that there is no plane wave correlation 
between neighbors exists when the polarities of the waves are opposite. 
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Similarly when +Vxy(n,m) is negative, +Vxy(n,m+1) and +Vxy(n,m-1) will vanish 
when they we positive. We should also note that when +Vxy(n,m) is negative the 
roles of+Vxy(n,m-1) and +Vxy(n,m+1) are reversed so that Eqs.(4.13) and (4.14) 
apply to Category II (instead of I) while Eqs.(4.17) and (4.18) apply to Category 
I, and so forth. App.4.1 goes through the steps , parallel to the 2D development, 
for deriving the 3D planar and normal components for the various Categories. 

Throughout the previous discussion, we postulated that a plane wave 
correlates with an adjacent wave, with the correlation strength roughly 
proportional to the product of the waves; however, any excess in the wave 
amplitude relative to the adjacent wave, causes that portion of the wave to scatter 
in all directions. As mentioned before, this assumption is supported by 
elementary quantum mechanical arguments, described in App.4A.2, where we 
show that the quantum cross-coupling between adjacent regions is consistent with 
plane wave correlations. 

One may have noticed that throughout the discussion we have avoided the 
following question concerning the plane wave analysis. The plane wave 
correlation process can only occur instantaneously if the wave in a particular line 
"knows" what the status is of the wave in the adjoining line. If we assume the 
two lines somehow "communicate" with each other, however, we return to our 
original problem, in which a signal delay occurs because of signals propagating 
in the transverse lines. The only way to "resolve" this dilemma is through 
intensive quantum mechanical considerations, where such questions are posed in 
a different manner. The issue is a matter for debate even to this day. Indeed, our 
treatment of wave correlations represents a classical description of phenomena 
more appropriately described by quantum mechanics. Needless to say, the 
issues just discussed become more important as the cell size is reduced. Further 
examination of this topic will take us far beyond the scope of the present subject. 

4.3 Changes to 2D Scattering Coefficients 

Having determined the effective wave amplitudes for a partitioned wave, our task 
is now to modify the scattering coefficients. In particular, we must modify the 
scattering equations to account for the plane wave component of the wave. Thus 
we need to change Eqs.(3.33)-(3.36) for coplanar scattering or Eqs.(3.97)-
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(3.100) for the general aplanar case. We now have a more complicated situation 
in which each wave incident on a node contains two components with differing 
scattering components. In effect this doubles the number of 3D scattering 
coefficients, from 96 to 192, with the additional 96 elements arising from the 
planar wave component in each transmission line. 

The remaining issue is what changes should be introduced in the scattering 
coefficients for the planar wave component of each wave. The goal is to 
eliminate the indirect path of the wave, which effectively distorts the signal, 
slowing down the time of arrival of the full amplitude to its destination. The 
remedy adapted is fairly straightforward. If, for example, +VxyiP(n,m) is incident 
on the (n,m) node then the 2D scattering coefficients are modified. For purposes 
of calculating the coefficients, we simply set Zy^n.m) and Zyx(n,m+1) equal to 
zero, essentially shorting out the transverse lines. In the absence of any node 
resistance, therefore, the wave will continue unimpeded to the next line, 
Zxy(n+l,m) , assuming Zxy(n+l,m) =Zzy(n,m). In formal language, the scattering 
coefficient for the coupling of +Vxy(n,m) into the Zxy(n+l,m) line is 

T^, P(n,m, 1) = 1: { Z ^ m ) = Z ^ m + l ) =0} (4.23) 

while the reflection coefficient is zero. In the event that Zxy(n+l,m) * Zxy(n,m) 
then the modified transfer and reflection coefficients are 

T^pfonU) = 2Zxy(n+l,m)/[ Zyx(n,m+1)+ Z^^m)] (4.24a) 

BxyP(n,m,2) = [Z^fom+l)- Z ^ m ) ] / [Zyx(n,m+1)+ Zyx(n,m)] (4.24b) 

The modification for the presence of node conductivity is straightforward 
and follows the discussion for the ID scattering In the event Zxy(n+l,m) * 
Zxy(n,m) or if node resistance is present, part of the wave energy is reflected back 
into Zxy(n,m), but in any case, there is still no energy transfer to the transverse 
lines. As a second example, consider Tyx(n,m,2), which couples energy from the 
Zyx(n,m) to the Zxy(n+l,m) lines. For the plane wave component, +VyxP(n,m), 
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Tyx,P(n,m,2) = 0 : (4.25) 

{Zxy(n,m)-Zxy(n+l,m)=0} 

since Zxy(n+l,m) and Zxyfom) are shorted out. 
In the case of 3D assume the wave +Vxy>P(n,m,q) is incident on the (n,m,q) 

node. A total of six transverse lines must be decoupled by setting Zyx( n,m,q), 
Zyx(n,m+l,q), Z ^ r r ^ q ) , Z^n.m.q+l), Z^fam.q), and Zyz(n,m+l,q) equal to 
zero. These zero values for the impedance lines are then substituted in the 3D 
scattering coefficients. 

Once the scattering is completed each line will contain forward and 
backward waves, each comprised of plane wave and symmetric components. 
Provided that the net plane wave and net symmetric components have the same 
sign, the two components will add in quadrature, resulting in the final field. In 
the event of a sign disparity between the two components, a "decorrellation" 
process must be implemented, to be discussed later in the Chapter. 

A computer simulation of plane wave correlations in a light activated, 
semiconductor switch , with a parallel plate geometry, is given in Chapter VII. 
As we shall see, there are very substantial differences, compared to the situation 
in which only symmetric scattering prevails. 

Finally, one should allow for the possibility that the node resistance (or any 
other node parameter) is dependent on the wave amplitude. If so, is the node 
dependence changed when the wave is partitioned into plane wave and 
symmetric parts? Although second order effects are always possible, in this study 
we assume the dependence of the node on the full wave amplitude is unchanged 
when the wave is partitioned. Thus, for example, the avalanche threshold at a 
node is assumed the same, regardless of the degree of partitioning. 

Corrections to Plane Wave Correlation 

The plane wave correlation described in the previous Sections is satisfactory 
provided the neighboring TLM lines are uniform. When the bordering TLM lines 
differ, however, the previous correlation is not complete and we must consider 
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augmenting the correlation appropriately. First we consider changes to the 
correlation when the adjoining cells have different dielectric constants. 
Correlation changes should not be surprising since the dielectric constant affects 
the wave energy and this in turn will influence the correlation. We then go on to 
discuss the modifications to the wave correlation required when the TLM wave is 
adjacent a conductor. This is an important modification because of the 
omnipresence of conductors, as well as the frequent application of guided waves 
adjacent to a conductor(or for that matter, a dielectric). The topic of de-
correlation of the waves, i.e., the conversion of plane waves into symmetric 
waves, is discussed later in the Chapter. 

4.4 Correlation of Waves in Adjoining Media With Differing Dielectric 
Constants 

In the previous discussion we have tacitly assumed thatjhe correlation process 
takes place between the amplitudes of adjoining waves propagating in the same 
dielectric media. With differing dielectric media , however, proper weight must 
be given to the energy residing in each wave, taking into account the dielectric 
constant. A simple example will illustrate the point. If a wave in Zxyfom) 
correlates with another wave in Zxy (n,m+l), situated in a very high impedance 
region , the correlation ignores the fact that the wave in Zxy(n,m+1) carries little 
energy and should therefore carry less weight. The simplest way to correct for 
this oversight is to replace every amplitude +Vxy(n,m), located in Zxy(n,m), by 
+Vxy(n,m) /(Zxyfom))1'2, which takes into account the wave impedance. The 
previous correllation equations, such as Eqs.(4.13)-(4.14) and Eqs.(4.17)-(4.22), 
should be modified by the following replacements 

^ ( r w m ) -+ X f o m ) / (Z^m)) 1 7 2 (4.26) 

+N^n,m+\) -> X f o m + l ) / ( Z ^ m + l ) ) 1 ' 2 (4.27) 

" V ^ m - l ) -> " V ^ m - l ) / (Z^m- l ) ) 1 7 2 (4.28) 
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as well as a similar set of transformations for +VxyP(n,m), +VxyP(n,m-l), 
+VxyP(n,m+l) and ^xysCn.m), +Vxys(n,m-1), +VxyS(n,m+l). The criteria for the six 
Categories of wave correlation, listed in Fig.4.2, are also modified accordingly. 
Thus Category I, for example, is: fVxyfom+l) / (Z^m+l ) ) 1 ' 2 ] > fVxyOo.m) 
/ (Z^m)) 1 ' 2 ] > r v ^ m - ^ / C Z ^ m - l ) ) 1 7 2 ] . 

Another issue arises when we examine the correlation results at the 
dielectric-dielectric interface. Suppose we wish to obtain the correlation for the 
TLM wave belonging to the lower dielectric region (the larger cell) and 
propagating parallel the interface. Normally this wave will be correlated with a 
single wave, in the high dielecric region, corresponding to the "nearest node" at 
the interface(see Sections 5.3 and 5.4 in the next Chapter). Rather than consider 
only a single cell, a better approximation takes into consideration the multitude 
of high dielectric cells sharing the border with the larger low dielectric cell. 

For example, suppose at the interface the ratio of dielectric constants is 
nine. The cells in the low dielectric region will then be 3X larger than the their 
counterparts in the high dielectric region, and therefore each large cell will share 
a border with three of the smaller cells. We can improve the accuracy of the 
correlation of the wave in the larger cell if we perform the correlation with all 
three waves, belonging to the smaller cells, rather than with only a single 
wave(belonging to the nearest node). In performing the correlation we utilize the 
average of the fields in the three cells, bordering the large cell. During the 
correlation process we still utilize the modified relationships, Eqs.(4.26)-(4.28), 
discussed previously. The same averaging technique in the correlation may of 
course be extended to arbitrary ratios for the dielectric constant. 

4.5 Modification of Wave Correlation Adjacent a Conducting Boundary 

The need for this modification is most easily understood if we consider a plane 
wave next to a conducting plane. If we assume the plane wave +Vxy(n,m) can 
propagate next to the conducting zx plane, without loss of its plane wave 
properties, then the previous wave correlation must be modified, as we shall see. 
Suppose the zx conducting plane is just beneath the Zxy(n,m) line. Since the wave 
in the Zxy(n,m-1) vanishes there is no plane wave correlation with that line, and a 
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symmetric component equal to +Vxy(n,m) /(1/2)1/2 exists in the line. In the light of 
Eq.(4.14), e.g., this component will then scatter to the transverse line Zyx(n,m+1) 
, thus creating a situation which eventually destroys the plane wave correlation. 
One way to remedy this predicament is to simply postulate that the wave 
+Vxy(n,m), when adjacent a perfect conductor, fully correlates with +Vxy(n,m+1). 
Using the same notation as before both the "upper" and " lower" +VxyD(n,m) then 
correlate with +Vxy(n,m+1). The plane wave property of +Vxy(n,m) is therefore 
maintained. An alternative view, which is physically motivated and also 
produces the same result, is given by the following. Assume the line Zxy(n,m) is 
next to the conductor. This conductor then may be replaced by an image line 
with the same field, located at Zxy(n,m-1). This is nothing more than the 
invocation of well known concepts from potential theory which replaces a 
conducting plane with opposite charge at the image location . To see this more 
clearly, we first simulate the TLM field in Zxy(n,m) with + and - charges residing 
on the opposite TLM conductors. The conducting boundary plane is then 
replaced by inserting the image charges(after changing the sign of the charge) to 
their respective image locations. The image charges produce a replica of the field 
in Zxy(n,m), but now located at Zxy(n,m-1). +VxyD(n,m) is then allowed to 
correlate with +VxyD(n,m-l), i.e. , the lower +VxyD(n,m) correlates with its own 
field. From this we may immediately deduce that when a plane wave propagates 
adjacent a perfect conducting plane the plane wave property in +Vxy(n,m) is 
maintained since the lower +VxyD(n,m) correlates perfectly with its image field 
while the upper +VXyD(n,m) correlates perfectly with its plane wave neighbor in 
Xfom+l). 

Having demonstrated the plane wave properties next to a conductor, we 
should then go on to treat the general case when +Vxy(n,m) is not part of a plane 
wave. In this case the number of Categories simplifies, reducing from six to two 
possibilities. This is because +Vxy(n,m) is always equal to its image field at 
^xyfam-l). In Category I ^ ^ m + l ) > ^ f a m ) . From Eqs.(4.13)-(4.14), 
setting ^xyfom-l^Vxyfam), 

^ p f a m ) ^Vxyfam) (4.29) 
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+\^s(n,m)=0 (4.30) 

In Category I I , +Vxy(n,m) ^Vxyfom+l). In this case there is no change in the 
expressions for the two components, given in Eqs.(4.17)-(4.18) and repeated 
here for completeness, 

X p ^ m ) = (l/2)1/2[+Vxy(n,m+1) " V ^ m ) +[+Vxy(n,m) ]2]1/2 (4.31) 

X s f a m ) = (1/2)I/2 [ [ " V ^ m ) ]2 - " V ^ m ) " V ^ m + l ) ]m (4.32) 

In the previous discussion, we did not inquire as to how the plane wave was 
launched in the region next to the conductor. One should expect the plane wave 
conditions to be upset when the wave encounters the conducting plane. One 
possible way to avoid such a disturbance is to employ an "infinitely" long , 
conducting plane in which the conductor is tapered, with the grazing angle 
slowly varying from 0 to 90 degrees. Such tapers must of course be 
approximated. An alternative is to employ the TLM matrix, including plane wave 
correlations, to analyze the changes to the plane wave conditions, even in cases 
where the transition to the conductor is abrupt. Fig.4.3 shows such a situation for 
a half-infinite conducting plane. For the most part the plane wave, denoted by 
+V, is maintained in regions far away from the corner of the half plane, 
designated by O. In the region near O, however, a definite departure from plane 
wave conditions is encountered , due to the limited front. This takes the form of 
non-uniformity of the waves in adjacent cells, as well as the initiation of waves 
in the transverse direction ( i.e., waves propagating in the vertical direction). As 
the waves proceed further and further away from O, however, the waves return to 
their plane wave properties. These properties may be deduced in detail, using the 
iterative equations with plane wave correlations. One may also employ the semi-
graphical, step by step technique, similar to that used in Section 3.4. 
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4.5(a) Non-Perfect Conducting Plane 

What effect does an imperfect conducting plane have on a plane wave which 
borders the conductor? It would seem that even with very small imperfections, 
the plane wave properties will eventually be destroyed. However, if the 
conducting surface has random irregularities with the usual usual peaks and 
valleys, then one may apply very small TLM cells to demonstrate the overall 
effect. With a random surface, the decorrelation effects are essentially confined 
to the surface region(defined by the size of the imperfections) and thus the 
destruction of the plane wave does not spread beyond the region of the 
imperfections. Stated another way, the symmetric waves are cancel out and are 
extinguished once they venture beyond the imperfection region. The effect is to 
slow down the wave propagation(in the directions parallel to the surface) near the 
conducting surface, in much the same manner as a pure symmetric matrix. To be 
sure this is an intuitive argument, which may be verified by applying the TLM 
matrix to various models of imperfections on the conducting surface, using a 
very high resolution TLM matrix. An alternate (but cruder) way of looking at the 
problem is to apply a large cell matrix, whose cell size is much larger than the 
imperfections. One can then estimate that the imperfections average out to zero, 
and thus the imperfect surface may be replaced by a perfectly smooth surface. 

Decorrelation Processes 

4.6 De-Correlation Due to Sign Disparity of Plane and Symmetric Waves 

In earlier discussion we described field correlation of a wave +Vxy(n,m) with its 
neighbors ^xyfom+l) and +Vxy(n,m-1). Is there a simultaneous process which 
brings about the decorrelation of the field(i.e., the decrease of the plane wave 
component)? In the following we shall see that indeed such a decorrelation does 
occur, depending on the four waves incident on the (n,m) node. 

We start with a simple example. Suppose a plane wave is advancing along 
the TLM matrix in the x direction and that the wave front is located at the nth 
element. Thus for the (n,m) cell the field in the Zxy(n,m) line is +Vxy(n,m) and 
since we assume the wave is a purely planar type, we have +V,cy(n,ni) = 
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Vxyp(n,m). At the same time that we have the plane wave, suppose in addition 
we have a solitary transverse symmetric wave +VyxS(n,m) (i.e., there is no plane 
wave component contained in +VyxS(n,m) ). What happens during the ensuing 
time step. ? The planar wave +VxyP(n,m) will advance to the Zxy(n+l,m) line. The 
VyxsCr̂ m) wave, however, will scatter in symmetric fashion about the (n,m) 

node. The significant point is that the symmetric component, scattered into the 
Zxy(n+l,m) line, will be opposite in sign to the planar component +V„yp(n,m). In 
order to simultaneously account for this disparity in sign, and the conservation of 
scattered energy about the node, we must surrender the existence of a plane 
wave in the Zxy(n,m) line and assume instead that the wave is composed of both 
plane wave and symmetric components(despite the correlation with the waves in 
the Zxy(n,m+1) and Z*y(n-l,in) lines). The sign disparity immediately signifies 
that a decorrelation of the incident wave field must take place. We should add 
that the symmetric wave in the Zyx(n,m) line, in some ways, may be regarded as 
a physical obstacle which undoes the plane wave properties in the Z-^ (n,m) 
line. 

4.6(a). Simplified De-correlation Process For Removal of Sign 
Disparity 

We consider the case in which the incoming waves, +Vxy(n,m), ~Vxy(n+l,m), 
+Vyx(n,m), and "Vyxfom+l) converge on the (n,m) node and we allow each wave 
the possibility of having plane wave as well as symmetric components. We of 
course assume there is no sign disparity in any of he incoming waves. Now 
suppose a sign disparity develops in one or more of the outgoing waves, 
"Vxy^m), +Vxy(n+l,m), "Vyxfom), and +Vyx(n,m+1), during the ensuing (k+1) 
time step . The sign disparity means that the plane wave and symmetric waves 
are opposite to one another, an unacceptable condition requiring some type of 
decorrelation of the incoming waves. 

The simplest and most direct means for removing the disparity is to convert 
all the incoming waves to purely symmetric waves. In this case +VxyS(n,m) 
=+Vxy(n,m) and+Vxyp(n,m) =0, etc.. This obviously insure that no sign disparity 
will occur since we have removed all the plane wave components heading 
toward the (n,m) node. A less crude version of this approach is to convert only 
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those co-linear incoming waves for which a sign disparity exists in the outgoing 
waves of the same co-linear TLM lines. Thus for example, if the only outgoing 
waves which have a sign disparity are either ~V,,y(n,m) or +Vxy(n+l,m) ( or both), 
but there is no disparity in the other outgoing waves, then obviously we can 
eliminate the disparity by removing the planar components from the incoming 
co-linear waves +Vxy(n,m) and ~Vxy(n+l,m) and nothing need be done for the 
other incoming waves +Vyx(n,m) and ~Vxy(n,m+l). 

Before discussing the general case, it is helpful to first cite the earlier 
example of a pure plane wave +Vkxyp(n,m) = +Vk

xy(n,m), advancing toward the 
(n,m) node and, in addition, a pure symmetric wave, +Vkyxs(n,m) =+Vk„y(n,m), 
also advancing toward the (n,m) node ( here we include the time step superscript 
for clarity). For simplicity assume for the time being that the TLM lines are 
identical. The wave scattered from ZyJ^va) to line Zxy(n+l,m), is equal to 
-Vkyxs(n,m)/2, where the minus sign indicates the negative polarity. Assume 
Vkxyp(n,m) and +Vkyxs(n,m) both have the same sign. If the magnitude of 
Vkyxs(n,m) is greater than or equal to 2+Vkxyp(n,m), then in fact +Vkxyp(n,m) 

must be replaced by +Vk
xyS(n,m), i,e., the plane wave must be completely 

decorrelated. Suppose the magnitude of +Vk
yxS(n,m) is less than 2+Vkxyp(n,m). 

In this case +Vkxyp(n,m) is replaced by a new pair of components , +V'kxyp(n,m) 
and V ^ m ) , where [ V ^ m ) ] 2 = ( V ^ m ) ) 2 + ( V ^ m ) ) 2 and 
V kxyS(n,m) is equal in magnitude to +Vk

yxS(n,m). (Here and in the remainder of 
the Chapter, the prime may signify transformed waves resulting from either 
decorrelation or grid change). Their contributions to Zxy(n+l,m) then cancel one 
another and we are left with a smaller plane wave component +Vk+1xyp(n+l,m) 
(compared to +VkxyP(n,m)). 

In the previous discussion the sign disparity between the plane and 
symmetric components was resolved for a particular situation in which the 
incident wave , for the horizontal line, was completely planar and the incident 
wave for the transverse line was completely symmetric. The same sign disparity 
can also arise when all the lines, surrounding the node, have both plane wave and 
symmetric components. The sign disparity between the resultant planar and 
symmetric waves may then be removed using the same decorrelation techniques 
as before, but we use a more general format. This is done by first examining the 
waves emanating from the (n,m) node in each of the four lines surrounding the 
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node. Assume, as a matter of generality that in each line the emerging line has 
both symmetric and plane wave components. If we find no sign disparity in any 
of the four lines then no alteration is necessary and we allow the iteration to 
continue on to the next step. On the other hand, suppose a sign disparity does 
exist in one or more of the lines. This disparity may then be removed by 
appropriately reducing the planar components of the incident co-linear waves, 
and similarly for any other disparity present in any of the other lines. Once we 
dispose of the sign disparity we allow the iteration to proceed for that step, 
combining the symmetric and plane waves in each line and thus providing the 
total field. With the new total fields, the process starts over again, beginning 
with the correlation process(which compares the fields in the two parallel 
neighbors)immediately followed by the de-correlation process. 

In the previous discussion we considered only the simple case in which the 
sign disparity is removed by decorrelation of the co-linear waves. Such a 
solution will in general, however, not be unique. For example, since it may also 
be possible to remove the disparity by eliminating the plane wave component in 
the transverse lines, without changing the co-linear waves. Indeed we may have 
all four mcoming waves participating in the decorrelation process. This raises 
the issue of exactly what is required of the decorrelation process, given the fact 
that more than one solution may be possible. 

In order to proceed, we postulate that the decorrelation represents a minimal 
path solution., i.e., a solution in which the least amount of plane wave energy 
undergoes decorrelation. This has two desirable properties. The first is that the 
decorrelated field solution is unique. The second is that the new decorrelated 
waves will "least disturb" the old correlated fields. This helps to insure stability 
and prevents the occurrence of catastrophic changes in the plane waves, brought 
about by small sign disparities. A corollary of the rninimal solution is that it 
allows for an elegant mathematical formulation, namely, the calculation of 
variations, which often leads to new insights. With this approach, the voltage 
integral of the decorrelation energy is assumed to be an extremum. 

Suppose the plane wave energy converging on a node is ET, and there are 
sign disparities in the subsequent step. We designate the decorrelation energy by 
AET, remembering that AET is one of many possible solutions. Using standard 
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minimization methods(including the calculus of variations) requires that 
3(AET)/5Vj = 0, where V; is any one of the four TLM waves incident on the 
node. In this case the only allowable extremum is a minimum since the 
maximum calls for the elimination of the entire incident plane wave energy - a 
generally unstable condition. The minimal solution may be determined, in 
principle, by analytic methods, but it is often more convenient to obtain such a 
solution by means of computerized, iterative techniques. An outline of one such 
approach is given later in the Chapter. 

Before outlining the techniques for the minimal solution, it is worthwhile to 
devote attention to several general decorrelation concepts and also to solutions 
which are not minimal. The approximate solutions afford much insight into the 
decorrelation process, and will be useful in obtaining the minimal solutions. We 
reiterate that whatever process is employed, the decorrelation of a wave is 
allowed only if it results in the reduction of the sign disparity. Upon completing 
the decorrelation, the newly acquired waves are then incorporated into the overall 
computer iteration. 

4.6(b) General Concepts Underlying Removal of the Sign Disparity 

Before delving into the analytic and minimal solution methods, we first discuss 
several concepts pertaining to the decorrelation. We suppose the general case in 
which each of the four lines surrounding the (n,m) node has both symmetric and 
plane wave components, incident on the node, and that there exists a sign 
disparity in one or more of the four waves emerging from the node. In the 
general case we must consider all four input and output waves simultaneously, 
since merely "fixing" the problem in one wave, along the lines described in the 
previous paragraphs, may induce an additional disparity in another line. For 
convenience, we mostly focus attention on only one output line, Zxy(n+l,m), but 
the method is exactly the same for the other lines. 

In order to proceed we utilize the iterative equations described in Chapter 
III, Eqs.(3.20)-(3.23), (We point out the difference that in the present discussion, 
the scattering is about the node, and not scattering into the TLM cell, so that for 
example T^(n-l,m,l)-> Txy(n,m,l), V ^ f o m ) -> V ^ ^ n + ^ m ) , etc..) . We 
first state the expression for +Vk+I

xy(n+l,m), which from Section 3.2 is 
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V^xysCn+^m) = 1^(11,1^1) V ^ s f o m ) - T ^ ^ m ^ ) V ^ m ) 

+1*y]lS(iMn,3) VyrfCiMn+l) + Bk^s(n,m, 1) "V^sCn+^m) (4.33) 

We also have need of the expression for the companion planar component in the 
Zxy(n+l,m) line, given by 

"V^^pCn+^m) = TV(n,m,l) Y ^ i y n ) +Bk
]iyp(ii,in,l) Y ^ n + l ^ i ) (4.34) 

where the P subscript in the coefficients indicates that we short out the transverse 
lines, as is appropriate for the plane wave components. 

We may utilize the previous expressions to estimate the condition for the 
elimination of any assumed sign disparity of the outgoing wave in Zxy(n+l,m). 
We require that 

SIGN{ V ^ n + L m ) } =SIGN{ V ^ n + ^ m ) } (4.35a) 

We proceed in similar fashion to obtain the components for the three other 
outgoing waves, again utilizing Eqs.(3.20)-(3.23) and the companion equations 
for the planar components. The required sign conditions are 

SIGN{ - V ^ V f o m ) } =SIGN{ ~VM^(n,vn)} (4.35b) 

SIGN{ -V^yxpfom) } =SIGN{ " V ^ ^ ^ m ) } (4.35c) 

SIGN{ V ^ f a m + l ) } =SIGN{ V ^ f o m + l ) } (4.35d) 

In the event of a sign disparity in an outgoing line, it is useful to define a 
quantity which reflects the degree of sign disparity. Suppose, for example, 
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+Vk+1
Xvp(n+l,m) and +Vk+1xys(n+l,m) have disparate signs and the absolute value 

of ^ V C n + ^ m ) exceeds that of +Vk+1
xyS(n+l,m). The degree of sign identity 

index, denoted by yo, is defined by 

YD=[((+Vk+1
xyP(n+l,m))2-(+Vk+1

Xvs(n+l,m))2]1/2/[(+Vk+1
xyp(n+l,m))2 

+(+Vk+1
xyS(n+l,m))2]1/2 (4.36) 

SIGN(+Vk+1
xyP(n+l,m))^SIGNCVk+1

xys(n+l,m)); 
I V \ p ( n + l , m ) I >l +NM^s(ry+lM 

and the P and S subscripts are of course interchanged if |+Vk+1xyS(n+l,m) I 
exceeds ^V^'xypCn+^m) I. Note that when the signs are opposite but the 
magnitudes of the two waves are equal, yD =0, and the sign disparity is 
correspondingly a maximum with the plane and symmetric components having 
equal magnitudes. For the other extreme, when the magnitude of one 
component is much higher than the magnitude of the other, yD is approaches 
unity and there is very little disparity. The inverse of yD of course expresses the 
degree of sign disparity. 

Looking at the scattering equations , we can immediately assert that there is 
at least one(non-minimal) solution, namely, the simplified decorrellation, 
discussed earlier, in which the sign disparities are removed by setting equal to 
zero the planar components in each co-linear direction. If there are sign 
disparities in both the x and y directions, then all the plane wave components are 
set equal to zero and the input waves satisfy, after decorrelation, 

V ^ s f o m ) =+Vk
xy(n,m) ; - V ^ n + ^ m ) =Vk^n+\,m) (4.37a,b) 

" V ^ m ) ^ V ^ m ) - V ^ f o m + l ) ^ V ^ m + l ) (4.37c,d) 
V ^ n , m ) =Vyrf(n,m) = V ^ n + l ^ n ) ^ V ^ ^ m + l ) =0 (4.37e,f) 

The more refined procedure is to remove only that amount of planar field 
necessary to eliminate the sign disparity. The simplest strategy starts with the 
largest disparity in the four output lines, using the sign identity index yD as a 
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measure. For example, suppose the largest disparity is in Zxy(n+l,m). There are 
then four possible sources of incoming plane wave components which we can 
seek to reduce in order to remove the sign disparity: the forward planar wave 
Vkxyp(n,m) , the backward planar wave, ~Vk,jyp(n+l,m), and the corresponding 

transverse planar waves, +Vkyxp(n,m) and "Vk
yxP(n,m+l). 

In proceeding with the decorrelation the first step is to determine the 
existence of any sign disparities in any of the outgoing waves and then to 
determine the sign identity index yD for each instance where such a disparity 
exists. Once we have calculated the these indices then the next step is to 
determine which of the four input planar fields must undergo reduction in order 
for the sign identity index to increase toward unity, and thus remove the sign 
disparity. How we set yo equal to unity depends on the relative magnitudes of the 
plane and symmetric components, and the elimination of one or the other. 

4.6(c) Approximate Decorrelation Methods(Non-Minimal Solution) 

In this Sub-Section we discuss approximate methods for finding non-minimal 
decorrelation solutions. As mentioned previously, although not a true solution , 
the method does provide insight into the decorrelation process. The method relies 
on the progressive increase of yD , seeking out solutions which, though not 
strictly minimal, are efficient in increasing ju-

How we approach the increase in yD , as we force it toward unity, requires 
some attention. Suppose Zxy(n+l,m) has a sign disparity between the two waves 
+Vk+1xyp(n+l,m) and +Vk+1xys(n+l,m). There are two possible routes for obtaining 
YD=1, depending on the relative magnitudes of the components and the 
composition of the input waves. The two paths will in general differ as to the 
total amount of decorrelation needed to remove the sign disparity. The desired, 
of course, path is the one requiring the lesser amount of decorrelation , i.e., the 
one which results in a smaller disturbance of the prior fields, as mentioned 
before. The quantitative meaning of " lesser" is discussed subsequently . We 
classify the two routes as follows, using the output in the 2^y(n+l,m) line as an 
example. 
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PATH 

I : Eliminate V^VC0*1*111) 

219 

COMMENTS 

Guaranteed to Remove Sign 
Disparity. More likely to be 
Lesser Path when: 

II: Eliminate +Vfctl
xys(ii+l,m) No guarantee to Remove Sign 

Disparity. More likely to be 
Lesser Path when: 
I +Vk\P(n+\,m) I > I V ^ s C n + ^ m ) ! 

If Path I applies, then the disparity is removed by the decorrelation of other 
input plane waves such that +Vk+1xyp(n+l,m) is eliminated. In this case the input 
plane waves to be decorrelated are confined to the in-line type, namely, 
Vkxyp(n,m) and ~Vkxyp(n+l,m); the transverse waves then play no role. Using 

this path , although one is assured of eliminating^^'xyp^+^m), it is no 
guarantee that this is a lesser path, although this is more likely to happen when, 
as noted, I V^'xysCn+^m) |> IV^'xypCn+^m) I. We must also look into the 
possibility that the symmetric component, +Vk+1xys(n+l,m), goes to zero before 
the plane wave type, i.e., we must consider the possibility of Path II. Unlike Path 
I , however, there is no guarantee that +Vk+1

xyS(n+l,m) can be eliminated at all, 
much less qualify as a lesser path. As noted above Path II has greater chances 
of success when I +Vlcf\iyp(n+l,m) I > I V ^ s C n + ^ m ) I. With Path II all four 
input waves may play a role in the removal of the sign disparity. 

We now quantify and generalize several of the ideas described in the 
previous paragraphs using analytic means. Once we have determined which of 
the four incoming planar fields must be reduced then we attach a common 
decorrelation factor ccD to each of the applicable incoming fields. Under the most 
general conditions all four input planar waves will have to be reduced, in which 
case aD will apply to all the input waves. The revised fields are denoted by a 
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prime superscript in order to help differentiate them from the original fields. 
Thus, 

( +V\s(n,m) f + ( V V f a m ) ) 2 = ( V ^ m ) ) 2 (4.38a) 
("V "VsCn+^m))2 + CVV(n+l,m))2 = (-V^n+^m)) 2 (4.38b) 
C V V M + C v ' ^ m ) ) 2 =CVk

yx(n,m))2 (4.38c) 
T ' ^ m + l ^ + l - V ' ^ m + l ) ) 2 = p / ^ f o m + l ) ) 2 (4.38d) 

Now suppose we wish to break up +Vk
xyP(n,m) into two quadrature components, 

<*D +Vk
xyP(n,m) and (l-aD

2 )1/2 +Vlc
xyP(n,m), with similar results for the other input 

waves. Using the partitioning process described at the start of the Chapter, the 
revised(primed) and the original fields are related by 

+V'V(n,m)) = aD V ^ m ) ) (4.39a) 
-VVtn+^m)) =cxD -vVfa+^m)) (4.39b) 
V V f o m ) ) = a D V ^ m ) ) (4.39c) 

" V ' V ^ m + l ) ) =aD T ^ m + l ) ) (4.39d) 

Thus the revised and original fields for the symmetric component are related by 

C v V r y n ) 2 =C\k^s(n,m) f +(l-aD
2) ( ( V ^ m ) ) 2 (4.40a) 

CV^sCn+^m))2 =CVk
xyS(n+l,m))2 +(l-ccD

2) C V ^ n + L m ) ) 2 (4.40b) 
( V ^ m ) ) 2 ^ V ^ f o m ) ) 2 +(l-aD

2)( ^ U M ) 2 (4.40c) 
C V ' ^ ^ m + l ) ) 2 ^ - V ^ m + l ) ) 2 + ( W ) f V ^ ^ m + l ) ) 2 (4.40d) 

aD is in the range 0 <ccD<l For ccD = 0, the decorrelation is complete whereas 
for ocD =1, no decorrellation occurs. We again reiterate that the decorrelation is 
applied only to those planar fields whose reduction will result in a field increase 
in the sign identity index. 

The decorrelation is achieved by combining Eqs(4.38)-(4.40) with the 
scattering equations, Eqs.(4.33)-(4.34) and setting either the symmetric or plane 
wave portion of+Vk+1

xy(n+l,m) , for example, equal to zero. The solution for aD 
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is then obtained for each of these two cases. The larger value of aD is then 
selected, which corresponds to the lesser degree of decorrelation needed to 
remove the sign disparity, i.e, the minimum Path whether it be I or II. In certain 
cases the only solution will be aD = 0 , in which case all the input plane wave 
fields will converted to symmetric fields. 

A simple example is discussed in order to render the concepts more clearly. 
Suppose we wish to eliminate a sign disparity in Zxy(n+l,m). The de-correlation 
factor ocD based on the planar scattering , must then be determined. We assume 
for the moment that no planar fields are present in the transverse lines and thus 
no decorrellation need be applied to these fields. Given these circumstances, 
how do we go about setting +Vk+1xyp(n+l,m) or +Vk+1

xyS(n+l,m) equal to zero, 
assuming a sign disparity is present. Several possibilities exist. To simplify we 
first assume Path I prevails , and to make matters concrete, we also assume 
B(n,m,l) is positive and ~Vkxyp(n+l,m) , +Vkxyp(n,m) are as well. We then take 
+Vk+1

xyS(n+l,m) to be negative, which thus makes +Vk+1xyP(n+l,m) positive. Now 
since Path I applies, +Vk+1

xyP(n+l,m) is to be eliminated. Because both incoming 
plane waves contribute to the reduction, we attach ao to both +Vkxyp(n,m) and 
Vkxyp(n+l,m). In this case, in order to reduce the output plane wave component 

to zero, we must likewise force the two planar inputs to zero, i.e., aD=0. 
During this reduction +Vk+1

xyS(n+l,m) may change in value but will remain 
negative. Now consider a slightly different variation of the previous, in which all 
the field magnitudes and polarities are unchanged but B(n,m,l) is negative. In 
this situation the decorrelation factor attaches to only one of the two inputs, 
namely, +V xyP(n,m). In this instance it may be possible to analytically determine 
ccD from the scattering equation, Eq.(434) 

«D = -Bxypfom,!) -VxyKn+Mn) / T ^ ^ m J ) V^pfom) (4.41a) 

Suppose the solution of the above does not satisfy 0<a<l ? Then we proceed as 
before and completely decorrelate the two inputs, effectively forcing aD =0. 

We use the same example as before but now examine the possibility that 
Path II applies. B(n,m,l) is once more negative and the field magnitudes and 
polarities are as before. The strategy followed is then to reduce +Vk+1

xyS(n+I,m) 
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to zero. Since we assume in this example that there are no transverse plane 
waves, we need only attach the decorrelation factor to the input plane wave 
+Vkxyp(n,m). In this simple case we can resort analytic means, using the 
scattering relationship,Eq.(4.33),to find ao , remembering to set +Vk+1

xyS(n+l,m) 
equal to zero: 

TjysCn.m.l) +V'kxyS(n,m) =-8^11,111,1) "V^Cn+l^n) +TyxS(n,m,2) V ^ m ) 

-T^(n,m,3)~Vk
yxs(n,m+l) (4.41b) 

where we use Eq.(4.40a) to find "V'^sfam) 

CV'^sCn.m))2 ^CV^sC^m))2 +(l-ccD
2) ( V ^ f r m ) ) 2 (4.41c) 

which then allows us to solve for ao. As indicated before the prime superscript 
indicates that we are using the revised symmetric field. For clarity we retain the 
subscripts S in the transverse fields despite the assumed absence of plane wave 
fields. As this is the only field undergoing decorrelation, only this field requires 
revision. Finally we compare the aD here with the aD obtained for the Path I 
trial. The Path with the smaller ctD then prevails. 

The previous example was for a specific wave having a sign disparity, but 
the non-minimal method may be generalized to all four output waves with or 
without sign disparities. Starting with the wave with the largest sign disparity , 
we employ both Paths I and II to remove the disparity We then select the Path, 
which corresponds to the largest ao. We then re-examine the outputs and once 
more identify the largest disparity, followed once more by the same employment 
of Paths I and II, etc... The process ends when all the sign disparities are 
removed in all four output waves. 

4.7 Minimal Solution Using Differing Decorrelation Factors to Remove 
Sign Disparities 

Although useful, the simple solutions just discussed suffer from certain 
deficiencies. First of all there is no reason to assume that the same decorrelation 
factor ao applies to all of the four input waves surrounding the node. For 
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completeness, each wave should have its own decorrelation factor. More 
importantly, there is no guarantee that the previous methods will yield a minimal, 
solution, i.e., the decorrelation path which least disturbs the initial plane wave 
energy about the node. The minimal solution , employing differing decorrelation 
factors, should provide the necessary stability for the resultant waves. If we 
assume the stable solution embodies the correct solution, then the minimal 
solution will provide greater accuracy as well. 

In seeking the minimal solution, we have to spell out exactly what quantity 
we are trying to minimize. This quantity, as one might expect, is the energy flow 
associated with the initial plane wave components directed at the particular 
node. The "inertia" of the plane waves is associated with the energy, and not the 
amplitudes. To obtain the plane wave energy flow in each line, we must also take 
into account the impedance value of each line. 

To proceed with this method we first assign a decorrelation factor to each 
input wave about the (n,m) node. We use aDi, aD2, a,D3, and am as the factors 
applied to the waves +Vkxyp(n,m), +VkyKp(n,m), ~Vlc

xyp(n+l,m), and " V ^ f o m + l ) 
respectively. Thus, for example, the difference in the energy flow, AEl5 for the 
VVCiMn) wave is AE1=(+Vk^p(n,m))2/ZJIy(n,in>( aD1)

2(+Vk
xyP(n,m))2/Zxy(n,m), 

or, 

AE, = ((+Vk
xyP(n,m))2/Zxy(n,m))(l-aD1

2) (4.42a) 

When aDi is equal to one then there is no decorrelation and AE! =0. When am 

=0 then the decorrelation is complete and AEi is equal to the initial energy flow 
of the plane wave. The decrements of the energy flow for the other three lines 
are, in similar fashion, 

AE2 = ((+Vk
yxP(n,m))2/Zyx(n,m))(l-aD2

2) (4.42b) 
AE3 = (CVk

xyP(n+l,m))2/Zxy(n+l,m)Xl-aD3
2) (4.42c) 

AE4= (CVk
yrf<n,m+l))2/Zyx(ii,in+l)Xl-aD42) (4.42d) 

The general procedure for finding the minimal solution is fairly 
straightforward. Suppose only a single output wave from the (n,m) node exhibits 
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a sign disparity. Then there are two possible ways, or paths, for removing the 
sign disparity- either eliminating the plane wave or symmetric components. 
When the sign disparity exists in two, three, or all four outputs, the number of 
paths is four, eight, or sixteen, respectively. 

As an example, suppose two of the outputs , +Vk+1xy(n+l,m) and ~Vkyx(n,m) 
exhibit a sign disparity. The following Table lists all the possible combinations 
or paths for removing the sign disparity. 

POSSIBLE MINIMAL PATHS FOR REMOVAL OF SIGN DISPARITY 
EXAMPLE: DISPARITIES IN V ^ n + L m ) and " V ^ ' ^ m ) 

A : V V C n + L m ) , 1 ^ ^ ) 
B: V V C n + L m ) , V ^ ^ m ) 
C: V ^ C n + L m ) , V + V ^ m ) 
D : V ^ s C n + L m ) , V ^ ^ m ) 

Thus , for example, in path B we reduce +Vk+1xyp(n+l,m) and "V^'yxsfom) to 
zero in order to remove the disparity. Continuing with Path B, we first require 
the total difference in energy flow AETto be minimized. The total is 

AET = AEi +AE2 +AE3+AE4 (4.42e) 

In the above expression, not all terms will be present, depending on whether 
plane waves are present or absent. Thus, if there are no plane waves in 
"Vkyx(n,m+1) then AE4 =0. The minimum of AET, with respect to the 
decorrelation factors, is then determined subject to several constraints. First of 
all we require that any solutions must satisfy 0<CIDN^1, where N=l,2,3,4. 
Secondly, the rninimization is accompanied by two subsidiary relations which 
must be satisfied, namely, the two scattering equations which cause 
+Vk+1

xyP(n+l,m) and ~Vk+I
yxs(n,m) to vanish. In the case of +Vk+1xyp(n+l,m), the 

scattering equation is (see Eq.(4,34) set equal to 0) 

Tk
xyp(n,m,l)aD1

+Vk
xyp(n,m)+Bk

xyp(n,m,l)aD3
_Vk

xyp(n+l,m)=0 (4.42f) 
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Similarly, for T ^ ( i y n ) to vanish, we have(see Eq.(3.23)): 

T'VsfanUO) " V ^ m ) + T ^ n ^ l l ) - V ' ^ f o m + l ) 
-T^sCn.m,^) -V'^sCn+^m) +Bk

yxS(n,m,4) V ^ m ) =0 (4.42g) 

where the primes indicate we are using the decorrelated symmetric fields. These 
fields will depend on the decorrelation factors in a manner similar to Eq.(4.40) 
but with an important difference: each input wave will have its own decorrelation 
factor. Thus 

CvVO^m)) 2 H+^s(n,m)f +(l-aD1
2) ( V ^ m ) ) 2 (4.42h) 

(-V'kyxS(n,m+l))2=rVk
yxs(n,m+l))2+(l-aD4

2)rVk
yxp(n,m+l))2 (4.42i) 

C V V n + ^ m ) ) 2 K'V^sCn+^m))2 +(l-aD3
2) CV%P(n+l,m)f (4.42J) 

C V ^ ^ m ) ) 2 =C^Un,m)f +(l-aD2
2) (+vV(n,m))2 (4.42k) 

The minimization is then carried out subject to the previously mentioned 
constraints on the decorrelation factors and the two scattering equations. In this 
case , for Path B, a solution is not guaranteed since one can never assume that 
Vk+1yxs(n,m) can be attain a zero value. Once we finish with Path B we follow 

the procedure for the other Paths(A, C, and D), obtaining AET and a set of 
decorrelation factors for each Path. We then select the smallest AET , among the 
four possibilities. 

The process is then repeated for all the nodes until all the sign disparities 
throughout the space are eliminated. The result is the minimal solution for the 
entire matrix . We then go forward with the next iteration. 

4.7(a). Iterative Method 

The previously outlined solution relies on the use of standard analytic 
methods for minimizing a function A purely numerical method may be 
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employed provided the second derivative of AET is positive throughout the 
region of interest. This will be the case if AET is close to its minimum value. To 
implement this method we first define a constant decrement of the energy flow 
8E . Thus if we wish to decrement the energy of the initial plane wave field in 
Vkxyp(n,m), the old and the new fields are related by 

f v V O u n ) ] 2 = [VxyP(n,m)]2-[5E]2
 {AA2Y) 

[VVsfom)]2 = [Vxysfom)]2 + [5E]2 (4.42m) 

As in our previous example suppose there exists sign disparities in 
+Vk+1xy(n+l,m), "Vk+1yx(n,m). We decorrelate the input of each input plane wave 
(a total of four possibilities), one at a time, by the amount 8E examining the 
reduction in the output wave energy . If we are focusing on Path B then we 
examine the reduction in the energy flow (+Vk+1xyp(n+l,m))2/ Zxy(n+l,m) + 
( Vk+1

yxS(n,m))2/Zyx(n,m) at each step. The particular decorrelation which yields 
the largest reduction is then selected(in the event that two decorrelations yield the 
same maximum reduction, then the energy decrement may be distributed equally 
among the two types of decorrelations). This process is continued until 
+Vfc+lxyp(n+l,m) and -Vk+1yxs(n,m) are completely extinguished. We are then left 
with decorrelated fields obtained in a number of energy decrements, designated 
by NB. The same process is then performed for the other three paths , yielding 
energy decrement numbers of NA, N C , and ND and their corresponding 
decorrelated fields. Finally we select the minimum among N \ NB, N C , and No. 
Small values of 8E may be required in order to differentiate between paths. It 
may also occur(though unlikely) that a decorrelation may lead to an additional 
sign disparity, in which case additional paths must be considered. 

4.8 Non-Essential De-Correlation Caused by Simultaneous Presence of 
Forward and Backward In-Line Plane Waves With Same Polarity 

There is another source of de-correlation, which in some ways may be considered 
an adjunct of the previous sign disparity type, and having to do with the with the 
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simultaneous presence of forward and backward plane waves witn me same 
polarity in neighboring series TLM lines. This decorrelation is termed non
essential in the sense that it is used to simplify the decorrelation process, but is 
not needed to obtain the final decorrelation. For this decorrelation, we take a clue 
from equilibrium situations in which we know that at equilibrium, the forward 
and backward waves are equal in amplitude and sign. In the process of achieving 
the equilibrium state, we may regard the correlation between the two waves as 
indicative of the degree to which the system has achieved equilibrium. In order to 
insure that the system tends toward equilibrium, however, we require a 
corresponding increase in the symmetric scattering , at the expense of the plane 
wave scattering, i.e., we perform a decorrelation of the opposite waves As we 
will, see this type decorrelation applies not only to equilibrium states, but to 
non-equilibrium situations as well, i.e., time dependent situations in which plane 
wave components always appear. 

We can best illustrate the previous assertion by considering two oppositely 
directed plane waves approaching one another with equal amplitudes, one in the 
positive x direction and the other in the negative x direction. Until the two waves 
converge , the waves proceed as normal plane waves. However, when the waves 
border one another, or even overlap, our interpretation of the two waves will 
change. In fact the two waves converging on the (n,m) node, +Vxyp(n,m) and 
"Vxyp(n+l,m) may just as well be regarded as symmetric waves +VxyS(n,m) and 
~Vkxys(n+l,m). Indeed it is very easy to show that, for these oppositely directed 
symmetric waves, the net scattering to the transverse lines Zyx(n,m) and 
Zyx(n,m+1) vanishes. We should also take note that in arriving at the zero 
scattering to the transverse lines, we considered opposite waves in the Zxy(n,m) 
and Zxy(n+l,m) lines, rather than both waves in the Zxy(n,m). However, if the 
changes in the x direction vary slowly, and the TLM length is correspondingly 
small, then we can compare forward and backward waves in the same Zxy(n,m) 
line. 

In the previous discussion we saw that a pair of opposite plane waves, of 
equal amplitude, are equivalent to symmetric waves so far as transverse 
scattering is concerned. What about the reflected and transmitted waves in 
Zxyfom) and Z*y(n+l,m)? Indeed it is easy to show, for example, that the 
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reflected plane wave differs from that of a symmetric wave (for the same input 
amplitude). The same is true of the transmitted wave. However, when we 
consider the total wave amplitude leaving the node, ~Vxy(n,m) and +Vxy(n+l,m), 
we find that ~Vxy(n,m) = +Vxy(n+l,m) = +Vxy(n,m) = ~Vxy(n+l,m), irregardless 
of whether the inputs are pure plane waves or symmetric waves. In summary, 
therefore, we can replace a pair of opposite plane waves of equal amplitude, with 
a pair of symmetric waves of the same amplitude. 

Thus plane wave components, when they are part of equal and opposite 
directed uniform plane wave fronts, and also uniform in the direction in the 
propagation directions, are redundant and may be replaced by their symmetric 
counterparts. In such situations, the replacement of the plane wave components 
will not change the iteration, as we previously indicated. However, because we 
are converting plane waves to symmetric waves, we may be able to avoid the 
need for a follow-on sign disparity decorrelation, thus simplifying the process. 
We emphasize, however, that if there is no sign disparity to begin with, then no 
decorrelation of this type (i.e., due to the presence of forward and backward 
plane waves)need be performed and we may proceed directly to the scattering 
equations. An exception to this rule occurs, however, when we do not perform a 
correlation after each time step, allowing the plane wave and symmetric 
components to proceed for a number of steps before intervening with a 
correlation. 

We now describe the general decorrelation in which the forward and 
backward plane wave components , in adjoining series TLM lines, are not part 
of plane wave fronts and there is non-uniformity of the plane wave components. 
In other words, what happens when the two opposite waves have the same 
polarity but differ in magnitude. Also, what occurs if the opposite wavesboth 
contain symmetric as well as plane components? These issues are discussed in 
the following. 

As usual, we can best explain this type decorrelation by means of an 
example. Suppose the forward plane wave in line Zxy(n,m) is +VxyP(n,m) and the 
backward plane wave, in line Zxy(n+l,m), ~Vxyp(n+l,m). Assume for the 
moment that both are positive and that +VxyP(n,m) ^~V^p(n+l,ni), and that there 
are no symmetric components present. Under these circumstances we assume a 
decorrelation of +VxyP(n,m) occurs , converting into plane wave and symmetric 
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parts, +VxyP(n,m) and +V xyS(n,m), where we append a prime superscript to 
differentiate the revised fields from the original ones. At the same time the 
backward wave ~Vxyp(n+l,m) is converted to "Vxysfn+^m). The new and old 
fields are related by 

( V ^ m ) ) ^ (fV'«yS(n,m))2= ( " V ^ m ) ) 2 (4.43a) 

VxyS(n,m)= - V > + l , m ) (4.43b) 
and 

-VxyS(n+l,m) = -VxyP(n+l,m) (4.43c) 

and of course +Vxyp(n,m) is explicitly determined by combining Eqs.(4.43a) and 
(4.43b). We again point out that +Vxyp(n,m) is determined by the degree of 
decorrelation between the forward and backward plane waves in the adjoining 
series TLM lines. As implied by the existence of +Vxyp(n,m) and ~Vkxyp(n+l,m), 
this type de- correlation follows the correlation process with the adjacent 
horizontal waves +Vxy(n,m-1) and +Vxy(n,m+1) as well as ~Vxy(n+l,m-l) and 
-V^n+^m+l). 

In the previous example we assumed that no symmetric fields were present 
in the original fields. If symmetric fields are present, the repair of the outlined 
decorrelation method is straightforward; we simply add , in quadrature , the 
new symmetric fields, +Vxys(n,m) and ~V-XyS{n+\,m), to the old symmetric fields 
^xysfom) and " V ^ ^ + ^ m ) . 

The consideration of other examples is straightforward. Suppose the 
amplitude of the backward plane wave "Vxyp^+^m) is larger than that of 
Vxyp^m), although both are considered to have the same sign. In this case the 

situation is reversed from that of the previous example and we are left with the 
resultant backward plane wave. 

As another example suppose that +VxyP(n,m) is positive while the backward 
plane wave "Vxyp(n+l,m) is negative. In this case +VxyP(n,m) and ~VxyP(n+l,m) 
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remain intact as plane wave components and no further decorrelation occurs. 
Finally, although all our comments have focused on the components in the x 
direction, naturally the same technique applies to the y direction, i.e., to the 
+Vyxp(n,m) and "Vyxpfom+l). 

Although the examples outlined certainly do not exhaust all the possibilities 
they are sufficient to completely make the method very clear. We should note 
the similarity with the plane wave correlation in adjacent parallel lines with that 
of the forward and backward plane waves in the series lines. The difference is 
that in the latter the plane wave remains intact to the degree that it differs in sign 
and magnitude with its oppositely directed counterpart; in the former case the 
correlation is enhanced by adjacent waves with the same sign and magnitude. 

4.9 Decorrelation Treatment of Plane Waves Incident on a Dielectric Interface 

Another type of decorrelation to be discussed requires us to anticipate results 
discussed fully in Chapter V, having to do with the boundary between two 
regions with differing dielectric constants. The differing values in s imply 
differences in the propagation velocity, which in turn signifies differing cell sizes 
in each region. Fig.4.4 depicts the interface separating regions Si and e2, and we 
of course note the larger cells in region s2 corresponding to the presumed smaller 
value of e2 compared to ei . 

4.9(a) Decorrelation of Partial Node When Using Nearest Node Method 

We focus our attention first on the line Zyx(n,m) and also note that the wave 
''Vyxfom) does not penetrate directly into the s2 region, but must instead first 
enter lines Zxy(n,m) and Zxy(n+l,m). This type of node is termed a partial node , 
whose designation arises because the larger cell essentially blocks the direct entry 
of incident waves at certain nodes, as in Fig.4.4a. Note from Fig.4.4a that we 
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PARTIAL NODE 

INTERFACE 

NEAREST NODE 

* ... 
ei 

+VYx(n,m) +VYX(n+l,m) 

FIG. 4.4(a) WITH NEAREST NODE COUPLING, THE 
INCIDENT WAVE +V(n,m) IS PURELY SYMMETRIC 
AT A PARTIAL NODE. 

INTERFACE 

MULTI-COUPLING 
NODE 

Si 
+VYx(n,m) +VYx(n+l,m) 

FIG. 4.4(b) DEMONSTRATION OF MULTICOUPLEVG NODE WITH 
NODES (n,m) AND (n+l,m) PARTICIPATING. FOR WAVES 
INCDDENT ON e2 WAVES +V((n,m) AND +V(n+l,m) ARE COMBINED. 
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assume the partial node is not a "nearest node", discussed extensively in Chapter 
V. The blocking of the wave at the partial node occurs of course since the large 
cell in E2 appears as a conductor and therefore the wave is either routed to 
Zxy(n,m) or Zxy(n+l,m), or reflected back into Zyx(n,m). 

The problem with this type of node occurs when we perform a plane wave 
correlation in Zyx(n,m). Any plane wave component of +Vyx(n,m) , produced in 
Zyx(n,m) , runs into a short circuit, artificially produced by the TLM matrix in 
the 82 region. There is no physical reason for this occurrence and therefore we 
eliminate the possibility of any plane wave correlation for waves incident on a 
partial node. Thus, any wave incident on a partial node , in which the 
propagation direction is blocked by a conducting cell, is assumed to be fully 
symmetric and with no plane wave component. Thus in the case of Fig. 4.4, 
+VyxP(n,m) =0 and +Vyxs(n,m) =+Vyx(n,m). Similarly, if the conducting cell 
blocked any of the other propagation dkections/Vyxfom+l^Vxyfom), 
~Vyx(n+l,m), these waves would likewise be completely symmetric. 

4.9(b) Decorrelation at Dielectric Interface Using Multi-Coupling Nodes 

Usually the nearest node coupling approximation is quite adequate, particularly 
when the waves are incident on a dielectric interface whose dielectric constants 
are close in value. When this difference is large however, a higher order 
approximation may be warranted, one using multi-coupling nodes, as seen in 
Fig.4.4b. With the nearest node approximation, waves incident at a partial node 
do not have do not couple directly from the high dielectric region to the low s 
region With the multi-coupling node approach, however, there are essentially no 
partial nodes and all nodes at the interface participate in the direct coupling from 
one region to the other. We stipulate, however, that the waves participating in the 
multicoupling have the same polarity.This is required in order to properly 
combine the waves into a single wave. In Fig(4.4b) we show two multicoupling 
nodes, (n,m) and (n+l,m). The node (n+l,m) is termed the nearest multi-
coupling node(to distinguish it from the nearest node) while the (n,m) node 
participates in the direct coupling via the (n+l,m) node. In view of the prior 
comments, the two waves contributing to the multinode should have the same 
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polarity. In the prior nearest node approximation, (n,m) and the (n+l,m) 
represented the partial and nearest nodes respectively. The procedures for 
locating in cell notation the nearest multicoupling and nearest nodes, as well as 
the participating nodes, are discussed in Chapter V. 

Having identified the nearest multicoupling and the participating nodes, the 
next step is to outline the procedure for combining such waves. We illustrate 
with the two nodes in Fig.4.4b, which assumes the (n,m) and (n+l,m) are the 
only nodes participating in the multicoupling, via the nearest multicoupling node 
(n+l,m). We then consider the incident waves +Vyx(n,m) and +Vyx(n+l,m). In 
order for the multi-coupling to be allowed, the polarity of +Vyx(n,m) and 
+Vyx(n+l,m) must be the same; else we fall back on the nearest node 
approximation. Assuming the polarities are the same the procedure is then to 
"remove " +Vyx(n,m) and add it in quadrature to +Vyx(n+l,m), i.e., the plane wave 
and symmetric components are each added resulting in a new pair of 
+Vyxp(n+l,m) and +VyxS(n+l,m). The usual scattering of these waves is then 
allowed to take place. If a decorrelation of the new wave is required , we use the 
minimal procedure outlined previously. What about a vertical wave emanating 
from the low dielectric side and incident on the (n,m+l) node. In this case the 
outputs among the lines surrounding the (n+l,m) node in the ei region, are re
distributed in equal fashion among the lines about (n,m) and (n+l,m). For 
example, if after scattering about (n+l,m), suppose the output wave in the line 
Zyx(n+l,m) is ""Vyx(n+l,m).and has both plane wave and symmetric components. 
Each component is men divided in quadratuere between Zyx(n,m) and 
Zyx(n+l,m). 

When combining waves in the multicoupling approach, we should take note 
of the fact that we have artificially inflated the amplitude in a particular TLM 
line. This is not a problem unless the node function(e.g, the node resistance) is 
amplitude dependent, as is often the case. If such is the case then we must use the 
average of the full wave TLM wave amplitudes participating in the 
multicoupling process. 

We point out that the multicoupling node approach should not result in any 
new results, compared to the nearest node method. With the nearest node 
method, the plane waves incident on partial nodes eventually make their way into 
the low dielectric region where, after some delay they participate in the plane 
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wave process. Thus, the multicoupling should speed up the iteration, since it will 
reduce the amount of delay at the interface., for a given cell size. The main 
disadvantage is the additional iterative complexity of the multicoupling. 

4.10 Comments on Interaction of a Plane Wave Front and a Source Emitting 
Both Plane Wave and Symmetric Components 

The interpretation of plane wave correlations/decorrelations may be aided by 
considering the interaction of a plane wave front in which a source is immersed 
and emitting both plane and symmetric wave components. What effect should we 
observe in the behavior of the plane wave, in the region of the source? We 
assume of course that the surface is compatible with the TLM matrix so that the 
source roughly coincides with a TLM line at the interface. Suppose the source is 
immersed in the plane wave, and the source emits a constant amplitude. A TLM 
analysis in the region of the source then reveals a definite perturbation of the 
plane wave in the region of the source. Now suppose the frequency of the source 
is changed, from say "dc" to an alternating signal. In other words we alternate 
the sign of the signal amplitude, during successive transit times, emanating from 
the source(Section 7.16 discusses a simulation of a signal with an alternating 
sign). In this case also, the effect on the plane wave is in the form of low 
amplitude ripples superimposed on the plane wave, which decay also in 
amplitude as one goes farther and farther away from the source. We emphasize, 
however, that both these perturbations occur because of the tacit assumption that 
the plane wave and source signal are locked in time and therefore the two signals 
are "coherent" and therefore an interaction is to be expected. Suppose, however, 
the source signal is random in nature in either phase or frequency(or both). 
Averaged over many cells the effect of the source on the plane wave vanishes. 

The situation also applies to two interacting laser signals which cross paths. 
Each laser signal is assumed to be made up of a dominant plane wave 
component, except for the laser boundary region, where symmetric components 
are assumed to be present. When the lasers are locked in phase, the laser signals 
will experience coherent interaction due to the correlation of the plane wave 
components. If the lasers are not locked together, however, the interaction will be 
very weak. 
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The features of all the interactions may be examined more closely using the 
graphical TLM analysis as in Sections 3.14 to 3.17, or by using the TLM 
simulations of Chapter VII. 

4.11 Summary of Correlation/Decorrelation Processes 

Fig.4.5 shows a flow diagram of the wave decomposition, followed by the de-
correlation processes. Although not specifically noted the correlation is assumed 
to include correlation effects due to the presence of conductors and differing 
dielectric constants, as discussed earlier. Note that the decorrelation due to the 
simultaneous presence of forward and backward waves, in series TLM lines, is 
performed first, before that caused by the sign disparity. This type decorrelation 
is not essential, but can shorten the follow-on decorrelation processes. The 
second decorrelation is that due to either a nearest node, or a multicoupling node, 
taking place at a dielectric interface. Finally, if a sign disparity is predicted, a 
further decorrelation is performed. Once the waves are correctly decorrelated 
they are delivered to the scattering equations. Following scattering, we then 
perform the process of wave reconstruction. The process is repeated for each 
node and for each time step. 

Grid Orientation Effects 

4.12 Dependence of Wave Energy Dispersal on Grid Orientation 

Since the electromagnetic energy is guided along the edges of either a square (for 
2D) or a cube(for 3D), these edge directions are preferred and energy will be 
transmitted more rapidly along these directions compared to any other directions, 
as indicated earlier in Fig. 1.17. The earliest arrival of an electromagnetic 
disturbance initiated at the region O will reach regions A and B more quickly 
than the earliest arrival at region B. This stems from the fact that A and C may 
be reached via a straight line path whereas region B may be accessed only 
through a tortuous zigzag path through both transverse and longitudinal lines. 
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I* 
DECOMPOSE WAVE INTO PLANE 
AND SYMMETRIC 
PARTSfCORRELATION) 

I 
DE-CORRELATION DUE TO FORWARD AND 
BACKWARD WAVES IN SERIES TLM LINES 

DE-CORRELATION DUE TO NEAREST NODE 
OR MULTICOUPLING NODE 

DECORRELATION DUE TO SIGN DISPARITY 

I 
SCATTERING EQUATIONS 

1 
RECONSTRUCTION OF FULL WAVES 

FIG.4.5 FLOW DIAGRAM OF WAVE PROCESSING 

We generalize the concept by comparing the earliest arrival times from the 
origin to points on a circle of radius L0, as in Fig.4.6. Obviously, the shortest 
path is along a grid axis, as with point A. Next consider an arbitrary point B in 
which the radius vector makes an angle 9 with the x axis. The shortest path, L, 
from the origin to B is not unique, but nevertheless may be expressed by 

L = L0[cos9 + sin6] (4.44) 

Note that there may be many paths , such as L \ which have the same total length 
as L; so long as one does not go backwards in x or y, the path lengths woll be 
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FIG. 4.6 VARIOUS TLM PATHS FROM ORIGIN TO POINTS 
ON CIRCUMFERENCE. PATH Lo IS PARALLEL TO X AXIS 
AND IS SHORTEST POSSIBLE PATH LENGTH, EQUAL TO 
RADIUS. PATHS L AND L' TO POINT B ARE INDIRECT AND 
LONGER, EQUAL TO L=L'= [COS8 +SIN0]Lo 

identical. In any event, the earliest arrival time, to point B, will be dependent on 
the orientation of the TLM matrix. An inherent anisotropy therefore exists in the 
distribution of electromagnetic energy, at least during the initial transient phase, 
resulting from the particular symmetry elements employed (such as the 2D 
square or the 3D cube) throughout the space. From Eq.(4.44 ), the maximum 
occurs at 0 = 45° while the minimum occurs at either 0° or 90°. These results 
are not surprising. At 9 =0 or 90° , the path length is LQ and the signal has a 
straight line path to its destination and therefore the earliest arrival time will be 
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the shortest time possible. To be sure, the duration of the earliest arriving signal 
will diminish as the cell density increases. As one takes into account slight 
excursions from the shortest path, however, the duration of the signal will 
increase. At 45° the path length is 21 /2LQ. Here the path is the furthest away from 
both axes and earliest arrival path at 45° will be a zigzag one, thus maximizing 
the path length for the earliest arrival time. 

It is important to note that, although the earliest arrival time is a minimum 
at 9 =0° or 90°, there is only one path available( either the x axis or the y axis), 
unlike the situation which exists when 9= 45° . In this case the number of earliest 
arrival paths is a maximum and the early signal, when it arrives, does so at more 
or less full strength. For 9 = 0° or 90° , the build-up to full strength is more 
gradual and does not occur until about 21/2Lo/v , which is the earliest arrival of 
the signal at 9 =45°. Thus, both signals achieve./«// strength at about the same 
time. For intermediate angles, as indicated in Fig. 3.6, the same concept applies; 
the full strength signal is achieved at the same time at points on the 
circumference of the circle. 

Although the signal distribution is more or less isotropic with regard to the 
full amplitude signal, we must nevertheless accept the fact that the TLM matrix is 
anisotropic with regard to the transient development of the earliest arriving 
signal. This must be regarded as an unacceptable artifact of the TLM method. 
The issue to be addressed, therefore , is how the TLM matrix may be modified 
so as to eliminate or at least minimize this anisotropic effect, which is built into 
the matrix. One crude approach is to reorient the axes 45°, obtain the solution in 
the new coordinates, and average the new solution with that of the old one. If the 
disturbance source is spherically symmetric, the new solution will be exactly the 
same as the old one, but rotated 45°. Setting LD =1, the two paths are Li= 
cos9+sin 9 and L2=cos(9 +45°)+sin(9 +45°), and the average of the two paths is 

AvL = (L!+L2)/2 = [(l+21/2)cos9 +sin 9 ]/2 (4.45) 

Because we are averaging two of these functions, which tend to dilute the 
extreme path values, the earliest arrival time will exhibit more spherical 
symmetry, with the path length varying from 1.2-1.3, compared to that in Fig. 
4.7 where the variation is from 1 to 21/2. The averaging process may be continued 
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by dividing into smaller angles followed by an averaging over the various angles. 
This allows the angular dependence of the earliest arrival to be further reduced. 
Repeated averaging leads to the elimination of the angular dependence, and a 
path length of ~ 1.25. The risetime of the signal also becomes considerably 
reduced, compared to the on-axis path. 

Despite the removal of the anisotropy there still remains the delay factor (of 
about 1.25 ). This delay is illusory, however, since we have not incorporated the 
plane wave correlation effects, or directivity, discussed earlier, into the 
description. If we look at a limited portion of a spherical wave front, the 
directivity will tend to keep that portion of the front moving in the same direction 
along the longitudinal lines, particularly for those grids in which the axes are 
aligned in the same direction as the direction of the front. As discussed 
previously, the plane wave correlation property prevents energy from being 
diverted into the transverse lines; such diversion effectively slows down the 
front velocity. 

4.13 Transformation Properties Between Grids 

As we have seen, we may remove the anisotropy inherent in the TLM matrix , by 
considering an array of TLM grids, oriented at various angles In order to 
proceed, however, we must determine how the various properties change under 
orthogonal transformations. Such transformations are well known; our main goal 
will be to recast such changes using cellular notation. This is to be followed by 
averaging the properties among the various grids. 

We begin with 2D orthogonal transformations arising from a rotation about 
the origin. Only a single parameter, the angle 0 is required. Using primes to 
specify the transformed coordinates, the coordinates in the new system are 

x' = xcosG +ysin6 (4.46a) 
y' = -xsinG + ycosG (4.46b) 

Conversely, the old coordinates may be related to the new ones by 

x = x'cosG -y'sinG (4.47a) 
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y = x'sinG +y'cos8 (4.47b) 

We now determine the node resistors and voltage waves in the transformed grid. 
The approach taken is to first find the node (n',m') closest to the (n,m) node. For 
this we use Eqs.(4.46a)-(4.46b), setting x=nAl , y= mAl , x'=yAl, and y'=r|Al. 
These equations then become 

y = ncos 9 +msin0 (4.48) 

X] = -nsin 6 + mcos6 (4.49) 

Since we have not placed any constraints on , x and y, y and r) in Eqs.(4.48)-
(4.49) will in general not be integral. We then state 

n' = INT(y) +Rem(y) (4.50) 

m' =INT(TI)+ Rem(ri) (4.51) 

where INT(y) and INT(ri) are the largest integers for y and r| respectively and the 
Rem( ) functions are the fractional remainders of y and r). Applying the nearest 
node approximation, 

Rem(y) =0 if Rem(y)< 0.5 (4.52) 
Rem(y) = 1 if Rem(y) >0.5 (4.53) 
Rem(ri) =0 if Rem (r\) <0.5 (4.54) 
Rem(ri) =1 if Rem(ri) >0.5 (4.55) 

From Eqs.(4.48)-(4.55) we now can identify the node (n',m') closest to (n,m), 
for which we will use the designation, 

(n',m') <-» (n,m) (4.56) 



Corrections for Plane Waves 241 

Once we know the corresponding nodes in the oriented grid, we can readily 
obtain the node resistors and voltage waves in the same grid. Since p(n,m) is a 
scalar, p(n',m') s p(n,m) for the transformation (n,m) <-» (n',m'), and thus 

R(n',m') = R(n,m) ; (n ,m)o(n ' ,m') (4.57) 

As the cell density is increased, R(n',m') approaches R(n,m) with greater 
and greater accuracy(this neglects grid dependence due to nonlinear effects, to be 
discussed later). Next we find the voltage waves in the new grid. Since we know 
the fields Vxy(n,m) and Vyx(n,m) associated with the (n,m) node , we may find 
V'xy(n',m') and V'yx(n',m'), by simply applying the transformations , 
Eqs.(4.46a)-(4.46b). In so doing we regard Vxy(n,m) and Vyx(n,m) as the 
components of the field vector V(n,m), undergoing an orthogonal 
transformation. Thus 

V'yY(n',m') = Vyxfom) cos6 + Vxy(n,m)sine (4.58) 

V'xy(n',m') = - Vyx(n,m)sin0 + V^fom) cos8 (4.59) 

At the same time that the fields transform by the above, the node indices 
also transform, (n',m') <-> (n,m), according to Eqs.(4.48)-(4.51). Each of the 
voltage amplitudes in Eqs.(4.58)-(4.59) represent the sum of forward and 
backward waves. Exactly the same equations apply individually to the forward 
and backward voltage waves. Thus, for example, Eqs.(4.58)-(4.59) become 
V'yx(n',m') , for the forward wave, 

+V'yx(n',m') = ^yxfam) cos8 + Xyfam) sin6 (4.60) 

+V'xy(n',m') = - ^ ^ m ) sine + Xyfom) cos6 (4.61) 

and a similar pair of equations for the backward ones. We will also have need of 
the inverse transformation, 
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Vyx(n,m) = V'y.x<n'm')cose - V'xy(n',m')sine (4.62) 

Vxy(n,m) = V'yv(n',m') sin0 + V'xy(n',m')cos0 (4.63) 

where as before the above represent the forward and backward waves as well. 
In the previous mapping equations for the wave amplitudes and node 

resistance, we assumed a knowledge of the system at a particular instant in time. 
Such information might be available, for example, during static or steady state 
conditions, or possibly by measurement of the properties at a particular instant, 
even during the transient phase. However, we stress that, if, from that particular 
point in time, we allow the iteration to proceed in different grids, it is quite 
possible that a prediction of different distributions of waves and node resistors 
will evolve, depending on the particular grid selected. Indeed such differences 
are inevitable, if we recall the phenomenon of the earliest arrival of a signal, 
which is entirely based on the particular grid employed. In addition, the interplay 
of the wave amplitudes and the node resistance, through some non-linear process, 
such as avalanching , will lead to further differences. Thus, after the iteration 
proceeds for some number of steps( or even one step) we need to adopt an 
averaging procedure, based on the various grids , so as to determine the 
properties in the medium. We use these averages, with respect to a reference grid, 
to then perform a mapping back onto the various grids, thus continuing the 
process. In the following we describe the averaging procedure. 

Averaging Procedure Among Grids 

4.14 General Procedure and Grid Specification 

At a given instant, which includes the initial conditions, we assume a knowledge 
of the fields and node resistors throughout the medium, referenced to a particular 
grid. We can then determine the fields and node resistors in the various grids, 
oriented at different angles. The idea is to first express the existing conditions in 
the various grids, using the corresponding transformations previously discussed. 
We then allow the solutions to evolve within each grid. At the completion of the 
final time step, or at some intermediate number of steps, the various solutions are 
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averaged together, referencing them to the particular grid. The process is then 
repeated as before if the state is an intermediate one. 

Although it is relatively easy to see why the fields will depend on the 
orientation of a particular grid, it is less evident why the node resistors should 
change with grid orientation and, therefore, why it is necessary to obtain averages 
(from the various grid orientations)for the node resistors. As mentioned 
previously, the reason has to do with the possible dependence of the node 
resistance on the field which may, for example, trigger an avalanche. If the field 
depends on the particular grid, therefore, the node resistance also will depend on 
the grid. This in turn will further impact the wave amplitude in the grid. It is 
possible, therefore, each grid will have its own version of electromagnetic events 
different from those in another grid. The averaging of the grids is therefore 
important. 

In preparation for the averaging we first specify the type and number of 
oriented grids, with the orientation angle ranging from -45° to +45°. We assume 
the angular spacing between grids is uniform. If NT is the total number of grids, 
and 6N represents the orientation of the Nth grid, then 

6N = 90°{N/NT} -45° (4.64) 

where N= 0,1,2, NT. Note that the angular spacing between grids is 90/ NT 

and that the our customary grid, 8N = 0, occurs when N = NT 12. We have 
arbitrarily selected the range for 9N to be from -45° to +45°. We could just as 
easily have chosen the range to be from 0° to 90°, since this also provides the 
same distribution of grids. 

4.15 Vector Description of Plane and Symmetric Waves 

It will be convenient to recast the plane and symmetric fields associated with 
each cell in terms of vector notation. Each grid will have its version of the wave 
distribution, and will contribute accordingly to the averaging process. Suppose 
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that at node (n,m), the components for the forward plane wave fields associated 
with the node(or cell) are +Vxyp(n,m) and +Vyxp(n,m). The magnitude and 
direction of the mini- front field, VFjP(n,m), existing at the (n,m) node is then 
found from the vector addition of the transmission line fields. First considering 
only the forward waves in Zxy(n,m,) and Zyx(n,m), 

VF,p(n,m) ^VyxK^m) i + +Vxyp(n,m)j (4.65) 

VF,p(n,m) , however does not constitute the total vector field at the (n,m) node. 
There is also another portion of the field, the symmetric fields, which have no 
directivity, designated by VFS(n,m), and satisfying 

VFjS(n,m)= +VyxS(n,m)i+ ^ ^ ( n ^ i (4.66) 

Unlike VFP(n,m), VFS(n,m) scatters in all directions when it encounters a node. 
For completeness, we state the total forward wave associated with (n,m) node : 

VF(n,m)= Vpp^m) + VFS(n,m) (4.67) 

Care should be exercised in the interpretation of Eq.(4.67), however. The vector 
components for VFP(n,m) and VFS(n,m) are added in quadrature, as outlined 
Section 4.1 and in subsequent Sections. 

We emphasize that Eqs.(4.65)-(4.67) are cast in terms of the vector fields 
and not the propagation direction. We may recast these equations in terms of the 
propagation direction, in which case Eqs.(4.65)-(4.66) become 

VFP1(n,m) =+VxyP(n,m)i - ^ ^ ( ^ m ) ] (4.67b) 

VFSX(n,m) = ^ M * " +Vyxs(n,m) j (4.67b) 

Note that we appended the subscript _L to indicate the propagation direction; also 
note the minus sign in front of the j component. This is needed to insure the 
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orthogonality condition, VF,pi(n,m) . VF>P(n,m) =0. Although we employ 
VF,p(n,m) in the following development, one should keep in mind the associated 
VF,PI (n,m)( as well as VF,si (n,m)); indeed the propagation type vectors help to 
visualize the plane wave propagation. 

Looking at Eqs.(4.65)-(4.67) we have only considered forward waves 
whereas any combination of forward and backward waves is possible. Eq.(4.65), 
for example, is only one of four possibilities, depending on the particular 
combination of forward and backward waves in Zxy(n,m) and Zyx(n,m). The four 
possibilities, denoted by VFjpj0(n,m) with 0=1,2,3,4, are 

VFPi(n,m) =+VyxP1(n,m) i + ^ p ^ m ) j (4.68) 

VFP2(n,m) ^Vy^fom) i + "Vxypzfarnlj (4.69) 

VFP3(n,m) =+Vytf3(1I,m) i + - V ^ ^ m ) ] (4.70) 

VFP4(n,m) ="VyxP4(n,m) i + +VxyP4(n,m)j (4.71) 

The above four equations are redundant and it is sufficient to specify either the 
first pair, Eqs.(4.68)-(4.69), or the second pair, Eqs.(4.70)-(4.71), since either 
pair comprises all possible individual waves in the TLM lines. Note that in 
Eqs.(4.68)-(4.71), although redundant, we retain the subscript for the O index in 
the interest of clarity. We also construct the symmetric wave counterparts to the 
above, given by 

VFSi(n,m) =+Vyx8i(n,m) i + "V^KiMn) j (4.72) 
VFS2(n,m) ^Vy^fom) i + -Vxys2(n,m)j (4.73) 
VFS3(n,m) ^ V ^ n ^ i + "Vxyssfam) j (4.74) 
VFS4(n,m) ^ V y ^ ^ m ) i + +VxyS4(n,m)j (4.75) 

As with the planar waves we need only concern ourselves with either VFSi(n,m) 
and VFS2(n,m), or VFS3(n,m) and VFS4(n,m). Also, as we shall see in later 
Sections, the plane wave vectors given by Eqs.(4.68) and (4.69) will be the 
most useful pair in formulating the iteration. 
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4.16 Energy Content of Plane Waves and Symmetric Waves 

It will prove useful to determine the energy content of Vpp, o and VFS,O where O 
=l,2,3,or 4. Using 0=1 as an example, we know that the amplitudes of 
+VxyPi(n,m), +Vxysi(n,m), ^ ^ ( ^ m ) , and +VyxSi(n,m), which comprise VFP.I, 

Vps,i , are effective amplitudes, and therefore the wave energies are proportional 
to the square of the amplitudes of the components. The energy of the forward 
and backward plane waves for the cell, denoted by UFP1(n,m) and UFP2(n,m), 
respectively, are given by 

UFP1(n,m) = O V ^ f o m ^ / Z o + C V ^ i ^ m ) ) 2 ^ (4.76a) 

UKP2(n,m) - O V ^ m ) ) 2 ^ + ( " V y ^ m ) ) 2 ^ (4.76b) 

where we assume for simplicity that the TLM lines surrounding the node are 
identical, Z0. Similarly, the corresponding energy relationships for the 
symmetric terms are 

UFsl(n,m) = fVyrfitem))2/^ + ( ^ ( ^ m ) ) 2 /Z0 (4.77a) 

UFS2(n,m) = {'V^2{n,m)flZ0 + {-\^2{n,m))2IZ0 (4.77b) 

The total forward wave energy of UFi(n,m) , belonging to the (n,m) cell, consists 
of both types of energy(plane wave and symmetric), or 

Un(n,m) = Umfom) +UFS1(n,m) = ( " V ^ m ) ) 2 ^ +(+Vyx(n,m))2/Z0 (4.78) 

and a similar relationship for UF2(n,m) 

UF2(n,m)=UFP2(n,m)+UFS2(n,m)=CVxy(n,m))2/Z0+CVyx(n,m))2/Z0 (4.79) 
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It is worthwhile to recall that we are using effective amplitudes for +VxyPi(n,m) , 
+VxySi(n,m), etc... Thus, for example, +Vxy(n,m) is related to the symmetric and 
plane wave components by the energy relations, (+Vxy(n,m)) = (+VxyPi(n,m)) + 
(Vxysi(n,m))2 with a similar relationship for the backward wave. As we have 
alluded to before, the scattering coefficients of the two components will differ, 
with the symmetric wave scattering in all directions while the plane wave 
component avoids scattering in the transverse directions. 

4.17 Principal Axis Grid 

It will be useful, as indicated in the ensuing discussion, to obtain the grid with 
one of the principal axes in the same direction of Vp.pi, at a particular cell site. 
This is usually done at some time step prior to the start of the averaging process. 
For example, with the grid axis x' along Vp,pi, the x component of the field 
disappears and the following condition is satisfied, using Eqs.(4.60): 

+Vyxpi(n,m) cos0 ++V,ypi(n,m) sin6 =0 (4.80) 

At the same time the companion transformation, Eq.(4,61), provides the actual 
wave 

+V'xypi(n',m') = VF,P1(n,m) = ^ V ^ i ^ m ) sinG ++VxyPi(n,m) cos8 (4.81a) 

I VF;P1(n,m) I = [CVyxPl(n,m)f+ CV^^m)) 2 ] 1 7 2 (4.81b) 

From Eq.(4.80) the solution for 9 is designated as the principal angle 0X , 

tan9x= -[+Vyxp,(n,m) / +V^P1(n,m)] (4.82) 
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A similar calculation for the y' axis gives the angle 0y, or 

taney=[+VxyP1(n,m)rVyxP1(n,m)] (4.83) 

Note that the right hand side of Eq.(4.83) is the negative reciprocal of that for 
Eq.(4.82). Between 6X and 8y we choose the angle having the smaller absolute 
value. Thus if tan9x is less than or equal to one than we choose 0X and if it is 
greater than one we choose 9y. In any event it is only necessary to orient the grid 
somewhere between -45° to +45° in order for either the x' or y' axis to be aligned 
with VF P1 . This choice then dictates the particular 0N grid , whichever is closer 
to the smaller absolute value of 9X or 9y . 

4.18 Simple Averaging Example Without Plane Wave Effects 

We first illustrate the averaging procedure for the fields and conductivity using a 
very simple example, consisting of the original grid and an additional one rotated 
45 degrees about the origin, applicable to each cell. Initially we know the 
conductivity and wave amplitudes in the original grid. Plane wave correlations 
are ignored for the moment. We obtain the corresponding waves in the oriented 
system, using the transformation results of the discussion in Section 4.6, and 
setting cos45° =sin45° =2"1/2. We then allow the iteration to proceed in both 
systems for the same number of time steps. At the conclusion we compare the 
results in regard to the node resistance and wave amplitudes. The comparison is 
more easily interpreted if, after the iteration, we transform the results of the 
oriented grid to that of the original grid, which we use as the basis for the 
comparison. We then average the results for the two grids, designated by 
Ni(for the original) and N2(for the orientated grid). Thus, for example, for the 
voltage component +Vxy(n,m) 

" V ^ m ) = [+V^(n,m) N1 +
 +V^n,m) N 2 ] / 2 (4.84) 

and for the conductivity 
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a(n,m) = [afam)™ + o(n,m)N2 ] / 2 (4.85) 

where the results are always referenced to the original Ni grid. Under ordinary 
circumstances +Vxy(n,m) evaluated in grid I will be the same as +Vxy(n,m) 
traveling in grid II (following the transformation back to grid I). In the event of 
nonlinear effects, however, this will no longer be true and the averaging process 
is required. The same is true of the conductivity. Note that we use the inverse of 
the node resistance in taking the average. Also, suppose there is a substantial 
discrepancy between the results of the Ni and N2 grids. In this case, higher 
order averaging is required, i.e., additional more closely spaced grids are needed 
in the averaging. The generalization to a larger number of grids is 
straightforward. Because of symmetry, we choose NT grids(NT a positive integer) 
with the angular spacing equal to 90/NT. Until this point, we have said nothing 
about attaching any weight to a particular grid; each grid is assumed to have the 
same weight as any other grid. This topic is discussed later in regard to the 
average node resistance. In addition, the plane wave correlations(ignored here) 
are discussed in the following Sections. 

4.19 General Averaging Procedure For Cell Waves, Including Plane Wave 
Correlations 

We summarize the averaging process as follows. Preparatory to the averaging we 
create NT grids, with uniform angular spacing given by 907NT. At some time 
step we know the fields and node resistance(whether from static, steady state, 
experiment, or a prior averaging). We examine the fields associated with the 
(n,m) cell in the reference grid, or "original" grid, and split the fields in the 
Zxy(n,m) and Zyxfom) lines into plane wave and symmetric parts, using the 
correlation technique outlined earlier in the Chapter. When we use the term 
correlation, we always mean the net correlation in which decorrelation factors 
have been taken into account as well. Further, we always return to the reference 
grid since this is the grid shared by all the cells, and therefore forms a convenient 
basis for comparison. In general, however, keep in mind that the reference grid is 
not the grid in which the waves actually undergo their motion. We first construct 
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the vectorial plane wave vectors VFiPi(n,m) and Vpp2(n,m) as well as the 
symmetric vectors VFsl(n,m) and VFS2(n,m) , which will prepare us for the 
averaging process of the various grids. From the two planar fields, VFjPi(n,m) 
and VFP2(n,m), we select the two principal axis grids most closely aligned with 
the directions of the two fields; we designate these two grids by NPj and NP2. By 
selecting only these two (and no other) grids to represent the plane waves, from 
among the array of NT grids, we assign proper weight to the plane waves .The 
utilization of the principle axes for the plane waves helps to avoid any artificial 
effects due to the grid. We then track the plane waves during the ensuing time 
step(or time steps). A new set of plane waves will then enter the (n,m) cell 
although they may not be necessarily restricted to the NPi and NP2 grids, Thus, 
for example, a plane wave entering the (n,m) cell from the adjacent (n-l,m) cell 
may belong to a grid which is slightly different from NPi or NP2 . 

With regard to the symmetric fields, VFSi(n, m) and VFS2(n,m), we use all 
NT grids available, unlike the case for the plane waves. Initially, before the time 
step iteration, the symmetric waves are transformed to each of the NT grids, and 
we assume each of these grids has an equal weight. We then allow the waves, 
which include both the plane and symmetric waves, to proceed one or more 
time steps, taking into account the differing scattering coefficients of the plane 
wave and symmetric waves. We track the wave motion for each grid. The 
contribution from each grid is needed in order to obtain the proper averaging. 

Once the time step(or time steps) is completed we are then ready to obtain 
the total plane wave as well obtain the symmetric wave, obtained by averaging 
over the various grids. First we obtain the various contributions separately for 
the plane and symmetric wave parts in each grid line, either emanating from 
adjacent cells or reflected within the cell. This is treated as a normal scattering 
process. To simplify the interpretation, we then proceed back to the reference 
(n,m,q) grid(for both plane and symmetric waves). The averaging of the 
symmetric portion occurs in the reference grid. 

Starting with the plane wave case, let us consider first the components 
contributing to ^ p i O ^ m ) . The field +VxyPi(n,m) emanates partly from the 
motion of the waves along the principal grids determined by VF;Pi(n-l,m) and 
VFP2(n,m) of the prior step, after which the fields are transformed back to the 
reference grid. This is followed by the correlation treatment (for which we also 
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require the symmetric waves, to be discussed) to get an updated +VxyPi(n,m), We 
do the same for +VyxPi(n,m), from which we form a new VF,pi(n,m) and a 
principal grid NPJ Making use of the results in Section 4.14, the plane wave in 
the principal grid is given by 

+V xypi(n',m') =1 VFjP1(n,m)| = ^Vy^fom) sin6Pi ++VxyP1(n,m) cos9Pi (4.86) 

while the +VyxPi(n',m') component vanishes. Here the PI grid is assumed to be 
along the x' axis; in the event that the y' axis applies then Eq.(4.86a) is replaced 
by 

+V'yVPi(n',m') =1 VF>P1(n,m)| = ^ ^ f a m ) coSeP1 + ^ ^ ( l y n ) sin6P1 (4.87) 

A similar treatment apphes to the backward wave and the selection of the grid 
based on VFP2(n,m). The plane waves are then all allowed to scatter, creating the 
next iterative step. 

We then turn our attention to the symmetric waves. The situation with the 
symmetric waves is different since most if not all NT grids participate, and the 
process involves an averaging step. This should not come as a surprise since 
initially we transformed the symmetric field to the NT grids using the same 
amplitude in each grid. As mentioned previously, the number of grids 
contributing to the symmetric averaging will therefore far exceed the plane waves 
grids. We pick up the description where the have completed their motion in each 
of NT grids ; we then have to transform these waves back to our reference grid 
and perform an averaging. This given by as 

AV[+Vy]S1(h,m) ] = (1/NT) *T
= j I f V ^ f o m , 9N) ] (4.88) 

AVtVxysKn,!!!)] = (1/NT) *T i r v ^ i f c r n , 6 N ) ] (4.89) 

and with similar equations for "VyxS2(n,m) and ""V^fom). Note that +VyxSi(n,m, 
0N) and +VxySi(n,m, %) represent the fields transformed to the reference grid. 9N 

in the above represents the Nth grid (which is a "primed' grid). The actual 
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transformation is implemented in the usual way; see Eqs.(4.60)-(4.61). Once we 
have these fields, in addition the plane wave fields, we subject the fields to a 
correlation process, providing us with a new set of waves from which we begin 
the next iterative step. For the symmetric field this means assigning the same 
symmetric field to each of N? grids and allowing the iteration to proceed. 

It may be worthwhile to summarize results for the plane and symmetric 
waves in the (n,m) cell, explicitly citing the transformation to the reference grid, 
but not yet performing the correlation. 

+Vyrf»i(n,m)= [+VyxP1(n,m)]epi,eP2,+Vyxsi(n,m)= AV[+Vyxsi(n,m) ] (4.90) 

+VxyPi(n>m) = rVxyp1(n,m)]6pi,GP2,+VxyS1(n,m)= AVfVxysifam)] (4.91) 

"VyxP2(n,m)= rVyxp2(n,m)]epi,&P2,"Vyiis2(n,m)= AV[ "Vy^fcm)} (4.92) 

~VxyP2(n,m)= rVxyp2(n,m)]ep1,ep2,"VxyS2(n,m)= AVfV^sa^m)] (4.93) 

As noted, the planar fields arise from transformations from principal grids while 
the symmetric fields are an average of the transformed fields of NT grids, as 
indicated in Eqs.(4,88)-(4.89).We then have necessary information so that the 
total forward and backward wave in the TLM line may be obtained, which serves 
as the starting point for the correlation process. With the usual notation, the 
forward waves are: 

+V^n,m) = [ f V ^ f o m ) ] 2 + [+W^{n,m)f]m (4.94) 

+V^ii,in)= [[+V^x{n,m)f + fV^fam)]2]1 7 2 (4.95) 

A parallel expression may also be done for the backward waves . The results are 

- V ^ m ) = t r / V x ^ m ) ] 2 + r V W w n ) ] 2 ] 1 0 (4.96a) 
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"Vyx(n,m)= [nWOMn)] 2 + [-VyxS2(n,m)]2]1/2 (4.96b) 

This process is done of course for all the cells in the region of interest. This 
completes the description of the iteration step. To continue the process we go 
back to the beginning of this Section in which we first examine for field 
correlation in order to break up the field into new symmetric and planar parts, 
followed by the determination of VFPi(n,m) and VFP2(n,m) to obtain the two 
"favored" grids, NPi and Np2 . Note that we have concentrated on a single cell 
(n,m) . During the iteration process, of course, the same preparation process is 
repeated for all the cells, before the waves are "released". 

The question of whether to allow the iteration to continue for a single time 
step or for many time steps is largely an issue of the computer capability and 
solution accuracy. If the medium properties change only a small amount, over the 
length of the cell size, then it probably is not necessary to re-examine the fields, 
at every step, in regard to the composition of the symmetric and planar fields. 

In the previous discussion, we transformed the symmetric fields to the array 
of grids, allowed the iteration to proceed, and then transformed back to the 
original grid, taking a suitable average of the symmetric fields. There is a 
potential defect in using this procedure, however. The problem is that the 
amplitude of the symmetric wave will by definition be smaller than the total 
wave amplitude, which is the sum(in quadrature) of the symmetric and plane 
wave parts. The simulation in general will depend on the signal amplitude and 
therefore the voltage amplitude in each grid line should equal the original 
amplitude. This does not represent a problem for grids NPi and Np2, which 
contain both the planar and symmetric fields, and whose sum is equal to the 
original amplitude. But for other grids, the field(purely symmetric part) will be 
less than the total field. 

A possible way to repair this defect is to replace the symmetric field in each 
grid with the full amplitude waves, and to solely ascribe symmetric properties to 
such waves. Thus, if VFi(n,m) and VF2(n,m) are the total fields(both symmetric 
and planar) associated with the (n,m) cell, then we designate the "full "symmetric 
waves, as VFSTi(n,m) and VFST2(n,m), which have the same amplitudes as 
VF1(n,m) and VF2(n,m). We then allow the iteration to run separately, i.e., in 
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parallel, one for the full symmetric and the other for the combination of planar 
and symmetric fields in grids NP1 and Np2.. Once the iteration step is completed, 
we remove the added symmetric portion (equal in magnitude to the plane wave 
part) appearing in any grids. It is relatively easy to keep track of the two 
symmetric portions of the wave, using the by now familiar quadrature method 
for adding two waves. Alternatively, we may wish to retain the identity of the 
two symmetric components, since, the process of disentangling the components 
is made easier after the scattering is completed. Also, from a conceptual 
viewpoint, we may simplify matters, perhaps, by applying the full symmetric 
amplitude to all the NT grids. This gives more weight to the symmetric field than 
is deserved, but for large NT the differences between the two approaches become 
small. 

Formally the procedure for using full symmetric waves is similar to that of 
the previous except that we now have two separate, parallel iterations, one for the 
full symmetric waves VFSTi(n*m) and VFST2 (n,m) , which apply to all the grids, 
and the other for VFpi(n,m), Vp^^m) with grids NPi and Np2 but which also 
includes the full symmetric fields as well. As an example, suppose that in line 
Zxy(n,m). the full symmetric component is +V xysxfom) where the prime indicates 
that the fields have not yet been transformed to the reference grid . +V xyST(n,m) 
will consist will consist of the normal symmetric part, ^xysfom) and the 
complementary part, designated by +V xysc(n,m), where the complementary part 
may be determined from the fact that +Vxys(n,m) and +Vxysc(n,m) add in 
quadrature. To obtain the full symmetric field +V xyS(n,m) the quadrature sum is 

rv^sfom)] 2 + r v ' ^ c ^ m ) ] 2 = [ V ^ s i ^ m ) ] 2 = [VF1(n,m)]2 (4.97) 

which allows one to solve for +V xysc(n,m). Thus for both components, prior to 
transformation, the complementary part is deleted and 
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V^sKiytn)-* Vxysfom) (4.98) 

V ^ x f r m ) -> V ^ m ) (4.99) 

with similar relations for the backward waves. We then perform the averaging 
process, transforming the above to the reference grid, together with the 
symmetric fields in the other grids, including any symmetric fields associated 
with planar fields . Once the transformation is completed the final fields are the 
found by summing the component planar and symmetric fields in quadrature. 

4.20 Summary of Field Averaging Procedure 

Unfortunately the conceptualization of the averaging processes, described in the 
preceding Sections, are obscured somewhat by the fact that we have to take 
into account several processes: the usual time step iteration of a 2D (or 3D) cell 
matrix, field correlation , the break-up of the fields into plane and symmetric 
parts, the establishment of the grid array, and the averaging of the symmetric 
fields over various grids. The proper sequencing of these processes is important 
but not readily apparent. Fig.4.7 addresses these issues, where we use the format 
of a flow diagram , which should help remove any uncertainties and also render 
the processes more amenable to computer iteration. The deletion of the 
complementary portion of the symmetric wave is indicated as an option, 
depending on the particular application or the desired accuracy. 
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4.21 Averaging Procedure For Node Resistance 

As mentioned previously, the node resistance may exhibit differing resistance 
values, depending on the particular grid. This has to do with the possible 
nonlinear nature of the resistance in which the resistance is a function of the 
signal amplitude( as, for example, avalanching). We must therefore resort to an 
averaging of the node resistance over the various grids. For equal grid weight, 
the node resistance is thus expressed as 

AV(I/R(n,m)) = (1/Nx), ™*Z (1/ R ^ m , ^ ) ) (4.100) 

where R(n,m,9N) is the node resistance of the Nth grid oriented at angle 9N , 
and we have assumed each grid has equal weight. Note that the actual quantity 
being averaged is the inverse of the node resistance, (1/R(n,m). We know this 
quantity is proportional to the conductivity, which is the appropriate parameter 
for averaging. 

In the previous discussion on node resistance averaging, we assumed the 
weight given to each grid was equal to that of any other grid. Although very 
simple to interpret this is not the best choice for the grid weight, however. The 
brunt of the plane wave effects is represented by only two grids, NPi and Np2 , 
while the symmetric waves are represented by Nj grids. If we assign an equal 
weight to each of the NT grids, however, then the symmetric waves will swamp 
the plane waves and their effect on the node resistance will be skewed 
accordingly. The grid weights must be changed such that the effect of the plane 
waves are properly taken into account. One method is to separately average the 
node resistance over the two plane wave grids and the node resistance over the 
NT symmetric grids; this is then followed by a final average of the plane wave 
and symmetric averages. A second method is to assign grid weights based on the 
relative content of the plane wave and symmetric wave energies. 

4.21(a) Separate Plane Wave and Symmetric Wave Averaging 

The average of the nodes for the plane wave grids is given by 
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AV(l/R(n,m))PLANE WAVE = [1/ R ^ m , ^ ) +1/ R(n,m,eNP2)]/2 (4.101a) 

For the symmetric waves the average is given by 

AV(l/R(n,m))SYM = l/(NT-2)) f j l j I (1/ Rfom,^ ) ) (4.101b) 

Where in the above the symmetric waves represent the full wave amplitudes 
discussed earlier. The final average is given by 

AV(l/R(n,m)) = [AV(l/R(n,m))PLANE WAVE + AV(l/R(n,m))SYM]/2 (4.101c) 

4.22(b) Grid Weight Based on Wave Energy 

The second, preferred, method assigns a weight to a particular grid, taking into 
account the relative amounts of plane wave and symmetic energies in each cell. 
The first step in assigning a weight to the grid is to recognize that the weights 
must be normalizable, and for this we use the total energy of the TLM lines 
associated with the (n,m) cell. The total energy, denoted by UT(n,m), is 

UToT(n,m)=[+Vxy(n,m)2 ++Vyx(n,m) ̂ / Z o + f V ^ m ) V v ^ m ) 2]/Z0 (4.102) 

We examine the fields after completing the time iteration, and the average 
fields have been referenced to the original grid, allowing us to produce new 
plane wave correlation vectors VFpi (n,m) and VFp2(n,m). The energies of the 
planar waves Vppi (n,m) and VFp2(n,m) are UFpi(n,m) and UFp2(n,m), given by 
Eqs.(4.76a) and (4.76b). The normalized weights ,Gi and G2, of these two 
waves are 

d f o m ) = (Urn (n,m)/ UTOT (n,m) (4.103) 
G2 (n,m) = (UFP2 (n,m)/ UToT.(n,m) (4.104) 

and the associated grids are NPi and NP2. The total weight ascribed to the 
symmetric waves, denoted by Gs (n,m) and comprising all the grids, is given by 
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Gs(n,m) = 1- [(UFP1(n,m)+(UFp2(n,m)]/UTOT(n,m) (4.105) 

On the other hand we require the symmetric weight for each grid. Since the final 
symmetric field must be diluted by the number of grids, the simplest approach is 
to assign equal weight to each of the grids, and thus the weight for the Nth grid 
for the symmetric part, GsN(n,m), is 

GSN(n,m) = Gs(n,m)/ NT (4.106) 

We are now prepared to obtain the node resistance, averaged over the Nx 
grids. The actual quantity to be averaged is (1/ R(n,m)), i.e, the conductance, as 
mentioned previously. We denote the node resistance of the Nth grid by 
RN(n,m). The averaging then takes the form 

AV[(l/R(n,m)] = G1(n,m)(l/RN1(n,m)) +G2(n,m) (l/RN2(n,m)) 
+ ,NT I GsN(n,m) (l/RN(n,m)) (4.107) 

The above represents the average for the node resistance, but other node 
properties mentioned in Chapter II may also be averaged along the same lines. 
For pure plane waves the last term in the above vanishes, and conversely, for 
pure symmetric waves the first two terms vanish. 

4.22 Comparison of Standard Numerical Methods and TLM Methods 
Incorporating TLM Correlations/Decorrelations and Grid Orientation 

Without wave correlations and grid orientation effects we should expect the TLM 
and numerical solutions of Maxwell's equations to yield identical simulation 
results. With the introduction of wave correlations and grid orientation effects, 
however, we will start to see departures from the standard numerical techniques. 
The departures will be most evident in extremely fast electromagnetic pulses and 
in the description of the initial field profiles. These situations cannot possibly be 
described by standard numerical methods without taking into account the 
significant effects of plane wave correlations and grid orientation. The result 
should be greater accuracy in the prediction of electromagnetic energy dispersal. 
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As mentioned before the wave correlations employed represent a classical 
treatment of phenomena which, strictly speaking, should be described by 
quantum mechanical arguments in which plane wave components in adjacent 
TLM lines effectively share the same quantum state. An elementary treatment of 
wave correlations, using quantum mechanical arguments, is given in App.4A.2 

Appendices 

AppAA.l 3D Scattering Corrections For Plane Waves (Wave Correlations) 

The 3D correction for plane wave effects follows the same general outline as that 
for 2D case given previously. We provide a concrete example in which the wave 
propagates in the + x direction. For a perfect plane wave the wave amplitudes 
will be uniform be in the yz plane; under more typical conditions, the wave 
amplitudes will be non-uniform and plane wave effects will be exhibited only 
partially. The degree of plane wave effects at a particular site will depend on the 
degree of amplitude uniformity, or "correlation" among the amplitudes at the 
site. 

For this situation we consider waves polarized in the y direction, Since 
we now are considering 3D effects, there will be four nearest neighbors instead 
of two, as was noted in Fig.4.2. Assume the selected site is the (n,m,q) cell and 
the TLM line is Zxy(n,m,q). The corresponding forward wave is +Vxy(n,m,q). 
The four neighboring waves are +Vxy(n,m-l,q), +Vxy(n,m+l,q), +Vxy(n,m,q-1), 
and +Vxy(n,m,q+1). As with the 2D case it is important to point whether the 
neighboring amplitudes exceed or are less than +Vxy(n,m,q). As before, the 
degree of plane wave correlation remains at unity, when a neighboring 
amplitude exceeds +Vxy(n,m,q) ,and again an amplitude with opposite sign of 
+Vxy(n,m,q) is assumed to have zero plane wave correlation. Since there are now 
five amplitudes to compare (instead of three) the number of correlation 
Categories is 120 , instead of 6, based on the factorial 5!. For illustrative 
purposes, we consider the case in which the following is satisfied 

" V ^ m ^ + l ^ V ^ m + l ^ ^ V ^ m ^ ^ V ^ r M n - l ^ ^ V ^ C n ^ q - l ) (4A. 1) 
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Having defined the wave and its neighbors we can the proceed to find the degree 
of plane wave correlation. The first step, as before, is to break up the wave in 
each line, this time into four equal component waves, in which each component 
will be assumed to interact with a particular neighbor. Using the quadrature type 
partitioning ( as before), the amplitude for each of the four components, for the 
+Vxy(n,m,q) wave, is designated by 

+VxyD(n,m,q)= XyOM^q)/2 (4A.2) 

with similar relations for the neighboring lines (Note the denominator is 2 
instead of 21/2, due to the presence of four neighbors in 3D)). We now start the 
correlation process by first looking at the correlation between +VxyD(n,m,q) and 
VxyD^m-ljq) and between +VxyD(n,m,q) and +VxyD(n,m,q-l). In both cases, 
VxyD^rr^q) exceeds its partner wave in the neighboring lines. We therefore 

must split up +Vxyr>(n,ni,q) accordingly: 

+VxyD(n,m,q) = %^D(n,m-l,q) + %^D(n,m-l,q) (4A.3) 

^xyoOi^q) = +VxyD(n,m,q-l) + +AxyD(n,m,q-l) (4A.4) 

+AxyD(n,m-l,q) and +AxyD(n,m,q-l) are defined by Eqs.(4A.3)-(4A.4) and 
represent the differences between the correlation waves . We are now in a 
position to obtain the plane wave and symmetric correlations among the 
partitioned D waves, at least in regard to lines Z^(n,m-l,q) and Zxy(n,m,q-1). 
Thus 

+V^p,(n,m,q) = [+V]wD(ii,m-l,q) +V„yD(ii,m,q)]1/2 (4A.5) 

+V,ysi(n,m,q) = fAxyrXiun-l.q) +VxyD(n,m,q) ]1/2 (4A.6) 

^xyreO^q) = fVxyDO^q-l) +VxyD(n,m,q)]1/2 (4A.7) 

* V W P . < l ) = fAxyDCn^q-l) +VxyD(ii,m,q)]1/2 (4A.8) 
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where +VxyPi(n,m,q) and +VxySi(n,ni,q) are the plane wave and symmetric 
correlations respectively with the Zxy(n,m-1 ,q) line. Similarly +Vxyp2(n,m,q) and 
Vxys2(n,m,q) are the correlations with Zxy(n,m,q-1). We now obtain the 

correlations with the Z^(n,m+l,q) and Zxy(n,m,q+1) lines. These are easier to 
calculate since the amplitudes in these lines exceed +Vxy(n,m,q). The correlations 
with these lines are purely of the plane wave type. If we designate these 
correlations by +Vxyp3(n,m,q) and +Vxyp4(n,m,q), for the 2^(11,01+l,q) and 
Zxyfoir^q+l) lines respectively, then 

Xcypsfan^q) = ^ D C n ^ q ) (4A.9) 

+V^P4(n,m,q) = +VxyD(n,m,q) (4 A. 10) 

while the symmetric components vanish. This completes the plane wave and 
symmetric correlations among the four D waves. The total plane wave 
component in Zxy(n,m,q) is obtained by adding in quadrature +Vxypi(n,m,q), 
+VxyP2(n,ni,q), +VxyP3(n,m,q), and +VxyP4(n,m,q). Designating the total component 
by + Vxyp(n,m,q) (without a numerical index following P), 

^xypfon^q) = [(+V»yp1(n,m,q))2 + C V ^ n . m . q ) 2 + (+V*yra(n,m,q))2 

+ ( X P 4 ( n , m , q ) ) f (4A.11) 

Similarly the total symmetric component +VxyS(n,m,q) is given by 

+VxyS(n>m,q)= [tVxy81(n,m,q))2 + CV^Cn^q)) 2 ] 1 ' 2 (4A.12) 

As with the 2D we can also express +VxyP(n,ni,q) and +VxyS(n,m,q) in the original 
TLM variables. 
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App.4A.2 Consistency of Plane Wave Correlations With a Simple Quantum 
Mechanical Model 

In this Appendix we demonstrate the consistency of quantum mechanics with 
our treatment of wave correllations in a TLM matrix. To simplify the discussion 
we select two isolated horizontal lines , Zxy(n,m) and Zxy(n,m+1). Further we 
assume the amplitude in the m+1 line is twice that in the m line, and in fact we 
assume the the wave in the m+1 line may be replaced by two identical, 
independent waves, each of which is equal in amplitude to the wave in the mth 
line. We designate each of these waves as a unit wave. We now make the 
important assumption that each unit wave may be represented by a quantum 
mechanical wave function. Conceptually, we regard the wave function as 
representing Bose particles which are photonic in nature. Indeed in the 
subsequent discussion, it will be helpful to substitute "photon" for "unit wave"; 
thus, we regard the m+1 line as having two two photons while the mth line has a 
single photon. 

The total wave function \J/T will consist of the linear combinations of the 
three individual wave functions for the three photons(or unit waves). \\ij will 
remain exactly the same when photons are interchanged, and in addition the 
individual wave functions will be allowed to share the same quantum numbers; in 
this case two photons will share any quantum numbers associated with the m+1 
line. 

A typical combination in \yT may be represented by 

Typical Combination = i|/m+i(l) v]/m+1(2) v|/m(3) (4A.13) 

where photons 1 and 2 are in the m+1 line and the third photon is in the mth 
line. The total wave function i|/T is then obtained by summing the six 
permutations of the photon numbers. Thus 

VT =N[( i |Wl) V|/„H-I(2) v|/m(3)+v|/m+I(l) ym+i(3) M>m(2)+v|/m+i(2) \|/m+i(l) yra(3) 
+\|/m+i(2)H/m+1(3)H/m(l)+\(/m+1(3)\(/m+1(l)v|/m(2)+\i/m+i(3)\(/m+1(2)v);m(l) (4A.14) 
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where N is a nomalization factor. Next the probability function \|/\|/ is 
calculated. This will result in a total of 36 terms each of which consists of the 
product of the six individual wave functions. Thus for example one of the 
terms is 

Typical Term=N2 [\|/m+i(l) \|Wi(2) \|/m(3)] [\|Wi(l) \|/m+i(2) Vm(3)]* (4A. 15) 

which is nothing more than the probability that photons 1 and 2 are in line m+1 
and photon 3 is in line m. Our interest is not in these terms but in the cross-terms, 
i.e., the terms in which there is a photon interchange between the m and m+1 
states. For example consider the combination 

Typical Cross-Term=N2[\)/m+1(l)v(/m+1(2)v);m(3)][\|/m+i(l)vj/m+i(3)v(/m(2)]* (4A. 16) 

Note the interchange of photons , in the in the second bracket, of photons 2 and 
3 , which occurs between the m and m+1 lines. The above therefore represents an 
"overlap", or wave interference effect, between the m and m+1 lines. A virtually 
identical cross-term may also be written: 

Typical Cross-Term=N2[vm+i(l)v|/m+1(2)vi/ra(3)][vt/m+1(3)v|/m+1(2)H/m(l)]* (4A. 17) 

In the above photons 1 and 3 participate in the interchange rather than photons 2 
and 3. We then make the important observation that the overlap per photon in 
the m+1 line has half the weight of the total overlap between the mth and 
(m+l)th states. This is because only one of the two m+1 occupants changes at a 
time. The total overlap to the m+1 photons is therefore distributed equally among 
the two occupants. We should also point out that although we have considered 
only one type of permutation, the same comments apply of course to the other 
permutations. 

A useful image for understanding the concept, looking for example at 
Eq.(4A.16), is to regard photons 2 and 3 as jumping between the m and m+1 
states. The probability that one of the two photons in the m+1 state undergoes 
this transition is the same as that of the sole occupant in the mth state. 
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In the light of the above discussion, it is easier to see what we have done in 
treating plane wave correlations earlier in the Chapter. In this case, instead of 
distributing the overlap to both photons, we have arbitrarily concentrated the 
overlap onto one of the two photons in the m+1 line. The other photon in the 
m+1 line is then completely isolated and does not feel the overlap from the mth 
line. 

We also emphasize though we have only considered the simplified case of 
three photons distributed in the m and m+1 lines, we may extend the discussion 
to arbitrary amplitudes in the two lines, in which the number of photons in each 
line is proportional to the amplitude. The zero order wave functions, and their 
associated probability functions, possess the potential for a natural source of 
cross-coupling between waves in adjacent regions(TLM lines). What we have not 
accomplished is to further model the nature of the coupling between waves in 
adjacent states. To do this a more detailed use of quantum mechanical methods 
must be employed. 



V. Boundary Conditions and Dispersion 

In this Chapter we incorporate the boundary conditions and dispersion into 
the TLM method. At first glance it may seem odd to lump together these two 
subject areas in the same Chapter. The two subjects, however, share a common 
feature in as much as both phenomena involve variations in the propagation 
velocity. The changes in the propagation velocity, however, have different 
physical origins. In the case of boundary conditions the situation often involves 
adjoining media with unequal dielectric constants and therefore differing 
propagation velocities. In the case of dispersion, of course, the differing 
propagation velocities arises from their frequency dependence. As we shall see, 
the methods used to deal with dispersion and adjoining dielectrics are entirely 
different. This is because with dispersion the propagation velocity is assumed to 
vary continuously with frequency whereas in the case of adjoining dielectrics, 
the velocity most often is assumed constant in each dielectric region. The amount 
of additional information needed to characterize dispersion is considerably 
greater compared to that of adjoining dielectrics. We first discuss the 
incorporation of various spatial boundary conditions including the 
aforementioned dielectric- dielectric interface. 

In the following we discuss several kinds of boundary conditions one is 
likely to encounter in the TLM analysis. The two most common boundary 
conditions are the dielectric-dielectric and dielectric-conductor interfaces. It is 
difficult to imagine an electromagnetic configuration without the presence of one 
or the other of these two interfaces. However other kinds of boundaries are 
possible. For simulation purposes the idealized dielectric-mfinite permeability 
interface, or "open circuit", provides a convenient means for obtaining total 
reflection of the wave energy from a given surface The open circuit is often 
useful since it may be used to approximate experimental conditions in which the 
radiated wave energy at a given surface is small, due to a very large mismatch 
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in impedance levels. A conducting surface also will provide total reflection but 
with a resultant field inversion. 

Other boundary conditions relate to the input/output of the electromagnetic 
signal. Here we specify the conditions under which electromagnetic energy is 
introduced into or leaves the region of interest, whether it be a closed device or 
an antenna. The difference between the input and output energies results in either 
the dissipation or storage of energy in the region of interest. In the following we 
describe ways in which to simulate the boundary conditions, using the TLM cell 
matrix and appropriate values of node resistors and transmission line 
impedances. 

5.1 Dielectric-Dielectric Interface 

There are several choices for positioning the TLM boundary of a dielectric-
dielectric interface, two of which are shown in Fig. 5.1. The side view shows the 
dielectric - dielectric interface with constants Si and e2 . The permeability jx is 
assumed to be the same in both regions. In contrast, we assume ei > e2 . The 
propagation velocities in each region satisfy 

(v,/v2) = [62/s,]1/2 (5.1) 

where vi and v2 are the velocities in regions 1 and 2 respectively. If we wish 
to retain the same time step in each region, At , then we are forced to adopt 
different cell sizes in each region. Since the linear dimension of each cell is 
inversely proportional to the velocity, the transmission line lengths in each 
region, Alj andAl2, satisfy 

(A1,/A12) = [e2/e,]1/2 (5.2) 

The particular choice of boundary dictates what value of characteristic 
impedance is selected for the transmission lines at the interface and parallel to it. 
In Fig.5.1(a) the horizontal lines at the interface, Zxy(n,m), Z^n+l.m), 
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FIG. 5.1 POSSIBLE LOCATIONS OF DIELECTRIC 
INTERFACE FOR TLM MATRIX. THE INTERFACE 
LINE IS IN THE 8, REGION IN (a) AND E2 IN (b). 

etc . , are situated on the Si side of the boundary, and thus its interface 
impedance is determined by Ei, as are all the lines beneath the interface. Similarly 
Fig.5.1(b) depicts a boundary wherein the horizontal interface lines are situated 
on the 82 side of the boundary and thus the interface impedance is determined by 
82. One may also invoke a mixture of the two previous boundaries, as in Fig. 5.2. 
In (a) the dielectric constant of the line alternates between 81 and 82 . Another 
approach is shown in (b), where the entire question of where to situate the 
boundary is avoided by choosing a suitable dielectric average for the interface 
region, 

SAV = 2( SiS2)/[81 +82] (5-3) 
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E A V = 2 ( s i s 2 ) / (Ei +e 2 ) 

where eAv is inserted between the Si and e2 regions, as shown in Fig.5.2(b). eAv 
is obtained by calculating the capacitance consisting of two layers of dielectric 
materials, of equal thickness,si and e2 between the electrodes. Note that when ei 
= e2 = e then sAv = £• When Ei » e2 , then EAV = 2s2 . In effect the 
capacitance in the vicinity of the interface is equal to 2X that of the smaller 
dielectric constant, s2. In addition, since the equivalent dielectric is given by 
Eq.(5.3), the impedance of the vertical lines in the intermediate region is 

Zyxforr^q) = (M^AV) 1/2 (5-4) 
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and (i is again assumed to be the same as in the other regions. An additional 
complication arises, however, since the propagation velocity of the interface line, 
v = ( \i eAV ) ' m , will differ from that in either region. The interface length , 
corresponding to the basic time step At, will therefore differ from that of Ali and 
Al2, as noted in Fig.5.2(b). The region with intermediate 8, therefore, may lead 
to more accurate and rapidly attained solutions (for a given cell size) in the 
vicinity of the boundary, but at the expense of additional iterative complexity. 

Obviously the field will be grossly distorted (and will differ from one 
another, depending on the type of boundary selected) if it is within one or two 
cell lengths from the boundary. It is important to realize, however, that the 
various boundary choices eventually will lead to the same field profile away 
from the boundary provided our cell density is sufficiently large and that a 
sufficient number of cells separate the calculated field point and the boundary. 

In the applications and simulations which follow in later Chapters, we 
select the simplified boundary depicted in Fig.5.1, and further we arbitrarily 
imbed the interface boundary in the smaller dielectric region Thus the selected 
interface boundary condition corresponds to Fig.5.1(a) and the interface 
impedance corresponds to that of the larger dielectric. Although we use the word 
arbitrary in selecting the location of the boundary, there are conceptual reasons 
for selecting the situation in 5.1(a), based on the use of the TLM method, The 
main objection with 5.1(b) is that a wave traveling in the horizontal interface line 
will encounter nodes (associated with the smaller cells) well before the iteration 
time At has elapsed. We must then devise an approximation technique to take 
these scattering events into account. Although such techniques may be devised it 
is easier to simply use the boundary in Fig.5.1(a), where we insure the delay time 
between nodes, in the interface line , is maintained at At. 

Regardless of the boundary location selected, the inequality in the dielectric 
constant at the interface presents a problem in the iterative procedure. The nodes 
in region 1 will in general not coincide with those in region 2 at the interface. 
This invites the question of how one directs the energy flow from region 1 to 
region 2 and vice versa. We will see that the energy flow may be described using 
approximations which become more and more accurate as the cell density is 
increased. Before delving into these approximations, we describe certain special 
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situations which greatly simplify the energy flow. The special situation occur 
when Ali and Al2 satisfy 

(All/Al2) =An (5.5) 

where An is a positive integer. This automatically lines up the node of every 
large cell(small e) with a node of the smaller cell, noted in Fig.5.3 for the case of 
An =2 (For illustrative purposes this special situation was used as well in Fig. 
5.1). This interface will leave some nodes of the small cells unaffiliated with 
large cell nodes, such as nodes A and D in Fig.5.3. In contrast, at nodes B and 

E2 

ei 

INTERFACE 

COINCIDENCE 

FIG. 5.3 NODE COINCIDENCE FOR [ zxlz2\ =2 
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C the transmission lines from both dielectric regions converge exactly, and is 
designated as a regular node. The load impedance seen by incident waves at 
nodes A and D will of course differ from that at B and C. At nodes A and D the 
incident wave Vyx(n,m) will transmit energy into the horizontal lines Zyx(n,m) and 
Zyx(n+l,m) , but will not convey energy into the dielectric region s2 until an 
additional time step has elapsed, at which time energy is transferred via nodes B 
and C. Nodes such as A and D, located at dielectric-dielectric interfaces, in 
which there exists only one TLM line perpendicular to the boundary, are 
designated partial nodes. Another way of thinking of a partial node is to regard a 
zero impedance line to exist in the 82 region, as noted in Fig.5.4. The load 
impedances seen by the various waves at the interface, for partial and regular 
nodes, will differ, of course, because of the zero impedance line. 

CELL CONDUCTOR 

ZERO" IMPEDANCE LINE 

J I 

FIG. 5.4 PARTIAL NODE: NODE NOT COUPLED 
DIRECTLY TO NEIGHBORING DD2LECTRIC e2. 

£2 

• • 

El 
17T 
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Node Coupling: Nearest Node And Multi-Coupled Node 
Approximations 

For the general situation we look at Fig.5.5, noting that as a rule there are only 
partial nodes in regions 1 and 2 and no regular nodes, i.e., the vertical lines in the 
two regions do not "line up" at the interface, as seen in the various partial nodes 
at the boundary. We now make the following approximation. We first identify 
the partial nodes in the larger cell region, i.e., region 2, and then determine what 
partial node in region 1 is closest to the partial node in region 2. Thus, viewing 
Fig.5.5 , the partial node A in region 2 is closest to partial node B in region 1. 
Likewise D is closest to C. We then assume that the combination of A and B, as 
well as C and D, e tc . , form regular nodes. We neglect any 

PARTIAL NODES NEAREST NODES 

FIG. 5.5 DBELECTRIC INTERFACE SHOWING PARTIAL NODES. 
NODES A,B AND C,D ARE NEAREST PARTIAL NODE PAIRS. WITH 
THE MULTICOUPLING METHOD F JOINS C AND D WHILE E JOINS 
A ANDB. 
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phase delay between A and B, as well as C between and D, etc... This is the 
nearest node approximation. Fig.5.6 shows a closer view of the nearest nodes, 
indicating the zig-zag path the wave must take in order to go from the vertical 
TLM line in Si to the nearest vertical TLM line in e2. 

As indicated previously in Section 4.9 and Fig.4.4(b), one may also employ 
multi-coupling nodes, rather the nearest nodes. This method is probably more 
effective when the the adjoining dielectrics differ greatly with respect to the 
dielectric constant(> 10:1)). The location of the nodes participating in the multi-
coupling relies on the same notation and methods employed previously for the 
nearest node approximation. With this approximation all partial nodes existing 
on the high dielectric side join a regular node. Thus, looking at Fig.5.5 , the 
partial node F joins with C and D , while E joins with A and B. However, 
although the multi-coupling eliminates the delay associated with the scattering 

NEAREST NODES 

FIG. 5.6 NEAREST NODE APPROXIMATION. 
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to the interface line, it also introduces complications having to do with wave 
reconstruction, For example, if we focus on nodes F and D, this method requires 
us to combine the waves in the associated vertical lines(on the Si side), using a 
quadrature approach described in the last Chapter. For this reason, we employ the 
more straightforward nearest node method in the remainder of this Chapter (and 
in Chapter VII where we present a computer iteration for a dielectric interface). 

5.2 Nearest Nodes for ID Interface 

The next step is to quantify the location of the partial nodes, allowing us to 
locate the nearest nodes, which we may then use for iterative purposes. For 
illustrative purposes, we first consider a boundary with a ID interface. The 
interface itself may be formed, e.g., by a pair of adjoining 2D regions. For 
convenience we regard the interface as formed by a pair of parallel ID lines with 
nearest neighbors in the x direction, as indicated in Fig.5.7. If n2 is the x index 
for the n2th cell in region 2, then the distance to the n2 node is n2 Al2 . Dividing 
by A l i , we obtain 

(n2Al2/ A10 = n'i +RM (5.6) 

where n'i is the largest integer and RM is the fractional remainder(i.e., the 
decimal portion). We assume both lines start at x=0. The nearest neighbor in 
region 1 to the n2th partial node, denoted by n j , is thus 

n, = n ' j + l if RM>5 (5.7a) 

n, =n'[ if RM<.5 (5.7b) 

In Chapter VII we will make use of these linear boundary conditions when 
formulating the iterative equations. 
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x=n2Al2 = n'jAIi +RMA1, 

S l n,-l « l n,+l 

AI, 
NEAREST NODE(RM<. 5) 

FIG 5.7 NEAREST NODE FOR LINEAR BOUNDARY. 
NEAREST NODE IS nt FOR RM < 0.5 AND n,+l FOR RM>0.5 

5.3 Nearest Nodes at 2D Interface 

We now extend Eq.(5.7) to a 2D surface boundary condition, and in particular , 
to a planar surface. Fig.5.8 shows a top view of the interface where the dotted, 
smaller cells apply to region 1 and the solid line, larger cells belong to region 2. 
We now determine the nearest neighbor in region 1 to the node (n2, m2) located 
in region 2. For the xy plane the equations analogous to Eq.(5.6) are then 

(n2Al2/Ali) = n'! +RMX (5.8a) 

(m2Al2/A10 = m'. + RMy (5.8b) 
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where as before ni and nil are the largest integer values and RMX and RMy are 
the remaining fractional values. These two fractions will detennine which of 
four possibilities is the nearest neighbor. The four possibilities are 

I: n 1 =n ' 1 ,m 1 =m' i : ForRMx<.5, RMy<.5 (5.9a) 

II: ni = n'i +1, m, =m'i: For RMX>.5, RMy<5 (5.9b) 

III: n! = n r
h mi = m'i+1: ForRMX<5, RMy>.5 (5.9c) 

IV: n 1 = n ' i+ l , mj =m'i+l: ForRMX>5, RMy>5 (5.9d) 
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The four possibilities may be summarized with the aid of Fig.5.9. The four nodes 
in region 1 form the corners of a square of length All. The square consists of 
four quadrants, each with its own node. The nearest neighbor in region 1 will 
depend on where (n2, m2,) is located among the four quadrants. If the node is 
located in the second quadrant, as indicated in Fig.5.9, then the node is 
(n,+l,mi), etc... 

(ni,mi+l) (ni+l,m1+l) 

in 

i 

« 

IV 

n ^ 

< 
(ni,mi) (ni+l,mi) 

FIG. 5.9 2D INTERFACE: NODE (n2^n2), SITUATED IN 
THE 82 REGION, IS CLOSEST TO (n,+l,mi) IN THE e i 

REGION. 

5.4 Truncated Cells and Oblique Interface 

Thus far we have only considered complete cells bordering the interface. In 
general this will not always be possible and truncated cells may be required at the 
interface, as shown in Fig.5.10(a). The easiest solution to this problem is to 
either modify the cell size or the boundary conditions slightly so as to remove 
the truncated portions. A simple approach is to have the truncated portion 
deleted or made whole in the iteration, depending on whether the truncated 
portion is less than or more than Al/2 . For example, in Fig.5.10(a), the truncated 
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portion of the cell in region 1 is less than AIj72 and thus node B bonds directly 
with A, essentially eliminating the truncated cells of ei.. 

Although nearest neighbors have been calculated for a simple planar 
surfaces, parallel to the principal planes, the technique must be modified to 
account for oblique planes, or for that matter, any arbitrary surface. If we 
consider oblique planes, for example, then truncated cells in both regions are 
inevitable and slight adjustments will not remedy this fact. As before we again 
employ the criterion that a truncated transmission line is either discarded or made 
complete depending on whether the truncated portion is greater or less than Al/2. 
Fig. 5.10(b) depicts an oblique interface. Using the aforementioned criterion, the 
partial node indicated in region 2 bonds with the nearby partial nodes in region 
1. The node relationships for the oblique plane are similar to Eq.(5.9), but must 
be modified to account for the oblique boundary. 

5.5 Single Index Cell Notation 

Referring to Fig.5.7, we see that the index ni is used to indicate the position of 
any cell in the high dielectric region. Likewise for the low dielectric region a 
different index n2 is employed, indicative of the cell position in that region. 
The use of two separate indices, however, adds complexity and for this reason it 
is often convenient to use a single index for both regions. Toward this goal we 
select an index which locates the position of the cell in each region, and for this 
purpose we continue to use choose nt in region 1 and a modified form of ni in 
region 2. In so doing ni serves to locate the node in the cell of each region. In 
this regard ni behaves much like a distance coordinate x, except for the fact that 
distances are now specified in terms of the cell length All There are certain 
disadvantages, however, to this type of re-labeling. One is that the cell index, 
for the low dielectric region(region 2) will generally be non-integral, unless the 
ratio of the cell lengths is integral. In addition, the index numbers will not 
consecutively increase by an integer, unless once more the ratio of line lengths is 
integral. Nevertheless the incentive to use a single cell index for purposes of 
locating each and every cell is very strong and we adopt this labeling when 
describing the computer iteration in Chapter VII. 
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The re-labeling for parallel chains is shown in Fig.5.11(a). Note that the 
high dielectric region, represented by the bottom chain, has exactly the identical 
cell labeling as that in Fig.5.7. The cell indices for the low dielectric chain, on die 
other hand, will differ. The label for the first cell, since it overlaps the ni cell, is 
(ni +RM ). Similarly the second cell is (ni+2+RM), since the large cell overlaps 
that of (ni+2), and so forth. As discussed previously, RM is the remainder term 
satisfying Eq.(5.6). We may also approximate the cell position in the upper chain 
, to the nearest integer, using the nearest node approximation. As shown in 
Fig.5.11(a), the fractional remainder overlapping ni is less than 0.5 and therefore 
the index is simply nj. For the next cell, ni+2, the remainder is >0.5 and thus the 
cell index for the e2 line is ni+3, and so forth. 

The notation simplifies considerably if (Al2/Ali) is integral. For example if 
(Al2/Ali) =3 the indices of the larger cells are 3, 6, 9 etc... Note that by adapting 
this notation, the cell index numbers no longer increase one, but by the factor 
(Al2/Ali)=3. The single index notation for the larger cells, (Al2/Ali) =3, is 
employed in the iterative program used to analyze a photoconductive switch, 
given in Chapter VII. 

The single index cell notation is also useful when the dissimilar cells are in 
series rather than in parallel, as shown in Fig.5.11(b), where a ID example of a 
non-uniform line is provided. In this case we assume the line consists of two 
separate line segments , with differing cell lengths, joined together without cell 
truncation at the boundary. Again note that the ni index, may be used to identify 
cells in both dielectric regions. In the large cell region the indices are ni 
+(A12/Al!), ni+2(Al2/Ali), etc... Again we note that the cell designations will in 
general be non-integral and the jumps in the index from cell to cell will likewise 
be non-integral. Finally, although the single index labeling has been applied to 
only one dimension( in the x direction)it is easily extended to boundaries with 
2D and 3D cells. 
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5.6 Simplified Iteration Neglecting the Nearest Node Approximation 

We digress for a moment to point out an elementary version of the iteration 
method which requires little or no additional effort in the modification of the 
basic iterative program, unlike the modifications needed to implement, e.g., the 
nearest node method. Suppose we use the single index cell labeling of the 
previous Section to characterize two bordering dielectric regions, and set-up the 
iterative equations for each region. We then purposely neglect incorporating the 
nearest node approximation into the program and allow the program to proceed. 
At the border waves will go from one region to the other indirectly, first traveling 
along the interface line. The TLM lines will automatically adopt a neighbor in 
the adjacent region. Exactly which neighbor is selected depends on the "round
off convention utilized by the computer language in treating non-integral array 
elements. As long as the cell density is sufficiently large, however, the results 
probably will not differ a great deal. 

In view of the above comments one may question why it is at all necessary 
to invoke a nearest node(or multicoupling node) approximation method. The 
reason for implementing this approach has to do with the calculation of the 
scattering coefficients for the boundary nodes. When we neglect the nearest 
nodes, no attempt is made to correctly calculate the scattering coefficient at the 
boundary; and accuracy suffers compared to the nearest node method. We 
should point out that in the limit of small cell size, away from the boundary, 
both methods should lead to essentially the same results. Near the boundary, 
however, the nearest node method will provide more accurate results for a given 
cell size, thereby easing the computational burden. 

In Chapter VII we briefly compare the results with and without the nearest 
node approximations for the case of a light activated semiconductor switch. The 
resultant field profiles, located two cells away from the border, demonstrate the 
differences between the two methods for the given cell size. 

5.7 Non-Uniform Dielectric. Use of Cluster Cells 

In the event that the dielectric is non-uniform throughout the medium, then there 
is no clear cut boundary condition, but instead a matrix of cells will appear as, 
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for example, in Fig. 5.12 where the dielectric varies in the y direction. This means 
of course that the cell size will vary throughout the medium as well. Just as in the 
case of an abrupt boundary, however, we can use a nearest node approach to 
obtain the scattering. 

In Fig. 5.12 the change in the dielectric constant is along one of the principle 
axes, in this case the y direction, which makes the "tilework" relatively easy to 
perform. In general, however, the change in dielectric constant will be along an 
arbitrary direction and, in addition , the change will be non-uniform . The 
technique then becomes more complicated and iterative procedures must be 
employed to lay out the tilework in as compact fashion as possible. Iterative 
procedures must then be formulated, while applying the nearest node or multi-
node approximations to the non- uniform dielectrics. 

* t T 

• • • • • • • • 
FIG. 5.12 VARIATION OF DIELECTRIC CONSTANT IN Y 
DIRECTION, DEPICTED AS CHANGE IN CELL SIZE. 
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Needless to say, the rilework procedure becomes more amenable as we 
resort to smaller and smaller cells. If the spatial, change in dielectric constant 
changes only a small amount over the selected cell length , then we may use a 
cluster method. As noted in Fig.5.13 , a cluster cell is an enlarged cell whose 
dimension is AL<> The dielectric constant is considered the same throughout the 
cluster cell; the value of s employed corresponds to that at the center of the 
cluster cell, so that in a sense the value represents an average value throughout 
the cell. Each cluster cell will contain a number of TLM cells, all of same 
dimension. The size of the TLM cells, will of course depend on the dielectric 
constant in the cluster cell, so that with increasing dielectric constant, the cluster 
cell will contain more and more TLM cells. Inevitably, the cluster cell will 
contain truncated cells at the cluster cell border, since there is no reason to 
assume the cluster cell is made up of an integral number of TLM cells. 

In principle one may use cluster cells to treat non-uniform dielectrics via 
the TLM method. Assuming a knowledge of the spatial variation of the dielectric 
constant, the dielectric is the divided into small cluster cells; within each cluster 
cell the TLM cells are identical. Fig.5.13 shows four cluster cells, each having a 
different e( and therefore different sized cells) bordering one another. Scattering 
then proceeds as usual among the TLM cells As discussed previously, we may 
employ the nearest node/multi-node approximations along the borders of the 
cluster cells. Since truncated cells are likely to exist along the borders, we either 
delete or make whole these cells, depending on the degree of truncation. Both the 
truncation and nearest node/multi-node approximations gain in accuracy as both 
the TLM and cluster cells are made smaller. 

5.7(a) Use of Existing Software to Generate Cell Matrix 

In all of the prior situations discussed, whether it was differing dielectrics 
bounding one another, or nonuniform dielectric regions, we saw that the first 
task was the generation of a cell matrix in the given dielectric region. The cell 
size was determined by the value of the dielectric constant. Each cell, regardless 
of its location, was given a particular number label in order to identify it in the 
iterative process. The establishment of such a cell matrix, of course, is not a 
unique procedure, and there is no reason why existing software ( for other 



286 Electromagnetic Analysis Using Transmission Line Variables 

TRUNCATED CELLS 

sLjLXjiJLJLir ii 1 i= on 

!• 

- 1—1TH II 1 Ii 
-1 l-H II 1—II—i 
— j II 1 IL_i 
: [L 3 i : ac U I 

• • 

j : 

m * 

ALr 
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applications) cannot be used toward the existing problem. In these other 
applications both uniform and non-uniform grids are established throughout the 
space. This software must then be adopted by attaching a node, cell, and 
surrounding TLM lines to each of the grid points. In the final analysis, the 
decision must then be made as to whether it is more expedient to adopt existing 
software to establish the TLM matrix, or whether it is easier to develop the 
necessary TLM matrix from the outset. 

Other Boundary Conditions 

5.8 Dielectric - Open Circuit Interface 

On occasion, we may wish to constrain or direct electromagnetic energy within a 
particular region, by means of an extremely high permeability constant material 
at a given interface. Such an interface may correspond to an actual representation 
of the experimental facts, where an extremely large positive mismatch exists; or 
else the interface may correspond to a mathematical simplification of a radiation 
problem in which we impose the reflection of electromagnetic energy by means 
of an "open circuit". This is in contrast to the field reversal experienced by 
arbitrarily placing a conducting region at the interface. Since the relatively high 
impedance of the transmission line often arises from a large permeability, n, we 
must include this in the determination of the cell sizes. Thus, Eq.(5.2) becomes 

(AWAfe) = [ Eaua/s^f2 (5.10) 

In the limit of open circuit impedances, i.e., very large jo., the number of cells in 
the slow region will grow very large, thus adding an unnecessary degree of 
complexity. A simpler way to simulate an open circuit is to maintain the same 
cell sizes on both sides of the interface, but to assign extremely large 
characteristic values to Z(n,m,q) in the open circuit region , as indicated in Fig. 
5.14. The implication of having the same cell size is that the dielectric constant 
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FIG. 5.14 DIELECTRIC-OPEN CIRCUIT INTERFACE. 
THE INCIDENT WAVE ENERGY IS PREVENTED FROM 
PENETRATING THE HIGH Uj REGION. 

decreases in the proportion that the permeability increases, thereby further 
increasing the TLM line impedance. Thus a wave emanating from the 82 , p.2 
region, and arriving at the interface node will see a very large impedance, i.e., an 
open circuit. If the wave attempts to enter the high impedance lines, The wave 
will be totally reflected (with the same polarity) with no energy entering the high 
impedance region.. 

5.9 Dielectric - Conductor Interface 

A representation of the dielectric - conductor interface is shown in Fig.5.15. We 
have portrayed the conductor, in much the same manner as a dielectric. This is 
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somewhat of an artifact, of course, since normally we do not associate a cell 
with a conducting region. The use of such cells, however , allows us to simulate 
the conductor in a very convenient manner, since we may simply extend the 
same TLM matrix from the dielectric region into the conducting region with 
greater flexibility. 

The conducting region is simulated by a combination of two effects. First 
the resistor nodes in the conducting region may be assigned very small values. 
Secondly, we can reinforce, or accelerate the conduction properties by assigning 
small values to the transmission lines as well. For convenience, we have 
arbitrarily assumed a cell length in the conductor equal to that of the dielectric. 
There are two choices for the location of the interface, as indicated in Fig.5.16 
by the dashed line. The first is located in the dielectric region, Fig.5.15(a), 
slightly above the interface nodes, and the second is located in the conducting 
region, Fig.5.15(b), slightly below the nodes. We compare both boundaries. 

We first look at 5.15(a), in which the interface is assumed to be embedded 
in the dielectric. Contact with the dielectric is made via the vertical TLM lines in 
the dielectric. R(n,m) is surrounded by the four cells (n,m), (n+l.m), (n,m+l), 
and (n+l,m+l). For both boundaries the conductivity about the node is averaged 
over these four cells( we consider the 2D problem for simplicity). For large 
conductivity, the average node resistor will be dominated by the cells in the 
conducting region and the conductivity will be approximated by 
(l/2)[o"(n,m)+o"(n+l,m)] , which will be small. This would appear to favor the 
interpretation of the upper boundary (a) as the more consistent boundary. 
Looking at Fig. 5.15(b),on the other hand, there is no reason for the impedance of 
the horizontal interface line to change (compared to that in the interior of the 
dielectric. Waves will be prevented from entering the conductor because of the 
small values of impedance assigned to the conductor. These low impedance 
vertical lines(rather than the node) carry the burden of initially creating the short 
circuit conditions at the interface. The advantage of this type boundary, 5.15(b), 
is a geometrically neat condition in which the conducting boundary exactly 
coincides with lower member of the horizontal interface line, as opposed to the 
dangling vertical lines in Fig.5.15(a). Whichever boundary is selected, (a) or 
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(b), the iterative results should be the same as the cell density is increased. One 
should also note that if the conductor- dielectric transition is gradual, or for 
moderate or low conductivity, one should not use low impedance TLM lines,but 
instead ascribe the conductivity to the nodes as usual. The low impedance lines 
should be reserved solely for the case of "hard" metal conductors. 
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5.10 Input/Output Conditions 

Two types of input/output boundary conditions prove to be useful. In the case of 
the input to some electromagnetic interaction region(or "device"), Fig.5.16 , the 
input signal is often delivered by means of a transmission line. The input line will 
in general suffer reflections, however, which will then slosh back and forth 

LONG INPUT 
LINES 

INPUT 

/ 

X ENCLOSURE 

ELECTROMAGNETIC 
INTERACTION 
REGION 

CELL MATRIX 

FIG. 5.16 . USE OF CELL MATRIX TO SIMULATE 
COUPLING TO ELECTOMAGNETIC INTERACTION 
REGION. LONG INPUT LINES TO THE REGION MAY 
BE SIMULATED WITH NODE RESISTORS WHICH 
TERMINATE REFLECTED WAVES. 

between the input plane and the source. The multiple reflections will often 
introduce an unwanted disturbance into the system. One way to avoid this 
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problem is to have an input line which is extremely long, i.e., longer than any 
times of interest. The reflected waves then will become "lost" and they no longer 
have an opportunity to disturb the system. This simplifies the input boundary 
condition a great deal. Of course it is completely unnecessary, for simulation 
purposes, to insert a long line. Instead, what we do simply is to insert node 
resistors which arbitrarily terminate any reflected waves at the input plane. If we 
wish we can also arrange (both by simulation and experiment) for the input lines 
to exactly match the impedance of the TLM lines in the input device region(same 
dielectric constant). However, unless the device interior structure is uniform and 
exactly matched to the input, there will inevitably be reflected waves in the 
device which will work their way back to the input line, even when the TLM 
lines at the input are matched at the input aperture plane. Within the enclosure, 
we use the usual TLM cells and lines, occupying the entire enclosure, to 
determine the electromagnetic behavior. 

In the case of the output region we have a somewhat similar situation. A 
very simple output boundary is shown in Fig.5.17 where an electromagnetic 
signal is radiated from the aperture of an enclosure. To solve the complete 
problem, including the radiated output, we need to extend the TLM matrix 
(already existing in the enclosure)to the output and continue the solution. If we 
wish, however, we may deal with the output in a very simple manner, by 
replacing the output aperture region with a parallel array of lines, with 
characteristic impedance Z 0 corresponding to that of the output region. These 

lines are then matched at their output ends. Thus, except for the reflections at the 
input to the Z 0 lines, there are no other reflections. Indeed, if we match the 

impedance of the enclosure lines to the output Z 0 lines, the electromagnetic 

signal will be completely absorbed, and the array of Z 0 lines will simulate an 

output transmission line. At this point, we have not actually specified the node 
resistors needed to prevent unwanted multiple reflections at the input/output. 
This is done in App.5A. 1. 
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5.11 Composite Transmission Line 

For both the inputs and outputs we often deal with a composite transmission line, 
i.e., a transmission line which itself is composed of individual TLM elements, ZG, 
as in Fig.5.18. The use of the TLM lines for the composite line, as with any 
region, is necessary in order to properly study the transition between the input 
composite line and the device under study. If the input/output transmission line is 
geometrically simple, i.e., rectangular in cross-section, then the composite 
impedance , Z c , is given by 

(Zoh)/W (5.11) 

where is h the region height and W the width. W and h may be expressed in 
terms of the cell length Al, 

NHA1 

NWA1 

FIG. 5.18 COMPOSITE TRANSMISSION LINE 
IMPEDANCE: Z c 

Zc = (NH /Nw)Z0 

NH = NUMBER OF CELL LENGTHS EQUAL 
TO HEIGHT OF COMPOSITE LINE 

N w = NUMBER OF CELL LENGTHS EQUAL 
TO WIDTH OF COMPOSITE LINE. 
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h=NhAl (5.12) 
W=NwAl (5.13) 

where Nw and Nh are the number of cell lengths in W and h. The relationship 
between Zc and Z0 is thus 

Z c = N h Z 0 / N w (5.14) 

The individual line impedances, Z 0 , bridge the gap between the region under 
study and the input/output. We should point out that for purposes of achieving a 
"matched" condition, i.e., avoiding reflections and losses at the input/output 
planes of the device, the important quantity is not Z0 but the composite 
impedance Zc. This impedance must be the same in the device as well as at the 
input/output. On the other hand, although Z0 may be the same everywhere (input, 
output, device) imbalances in the geometry will in general cause the device to be 
mis-matched. 

5.12 Determination of Initial Static Field by TIMMethod 

As mentioned repeatedly, the TLM variables may be used to track any transient 
phenomena following the disturbance of the static fields. We start with a 
completely static case with no electromagnetic inputs, in which fixed, charged 
conductors give rise to a potential distribution(whose solution is assumed to be 
known), which then remains constant until the conductivity in the medium is 
altered in some manner. Before we can calculate the effects of the conductivity, 
we must first cast the static potential distribution in terms of the transmission line 
modes. As we have outlined on several occasions, this is accomplished by 
dividing up the medium into the usual cells and transmission lines and 
identifying the corresponding standing voltage waves in each line. The field 
description is then transferred to that of the standing waves in the lines. When 
the conductivity is "turned on", the standing waves become traveling waves, 
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which may be tracked in time and so one may determine how the fields evolve 
throughout the region. 

In the previous discussion, we assumed the initial static solution was 
already known, having been obtained from Laplaces' Equation. For certain 
simple geometries, however, it is possible to obtain the static solution, using 
precisely the same iteration developed for the transient case. Fig.5.19 illustrates 
the concept, for a pair of conductors. For the initial conditions, the wave 
amplitudes are taken to be zero everywhere at t = 0, except for a narrow region 
connecting the two conductors, labeled by A. In this region we assume a 
knowledge of the static fields, which are of course constant in time. The region 
may be regarded as a source of voltage which remains constant for t > 0, emitting 
constant amplitude waves at its boundary. After a sufficient number of time steps 
have elapsed the source voltage eventually gives rise to a static field throughout 
the space. This field, however, is not necessarily Laplaces solution since we have 
assumed the static solution in region A . If the assumed solution is incorrect then 
the solution throughout the space will be as well. The way out of this dilemma is 
again relies on an iterative process. We select a different region between the 
conductors, and assume the static solution values based on the first iteration. All 
other field values throughout the space, except for this region, are then set equal 
to zero and the emission process is repeated, but now from the new region, 
designated as B in Fig.5.19. The emission from B then serves as a correction to 
the assumed fields at A. This process may then repeated , alternating between 
regions A and B, until a stable solution is achieved. 

A key assumption, the initial voltage distribution at A, is important in 
finding the fastest path toward a solution. For some simple geometries the initial 
selection of static field values for region A is sufficiently accurate so that the 
alternate iterations may be kept to a minimum or eliminated entirely. Fig.5.20 
shows examples of geometries in which one may estimate the initial static field. 
In Fig.5.20(a) , for example, we select a region in which the two conductors are 
relatively close together and uniformly spaced apart. By selecting our source 
voltage region here, we may make the reasonable estimate that the source field is 
more or less constant across the gap spacing. Another obvious choice is in 
Fig. 5.20(b), where the source region is located near the output of an infinitely 
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long transmission line. Here again the field is assumed to spatially uniform, 
provided we ignore fringing This effect may be minimized if we locate the 
source voltage region further inside the transmission line. After the charge up 
process, which establishes the static field, the voltage source may remain in place 
if desired and if this conforms to the actual experimental condition. This is 
typical in the case of a combined antenna/switch charged up by an input 
transmission line. Upon initiation of the switch, the initial static fields will be 
disturbed, but we may use the same cell matrix as before to track the transient 
behavior. Reflections back into the infinite line may absorbed by placing 
terminating resistor loads further upstream in the line, before they reach the 
source region. 

5.13 Time Varying Source Voltage and Antenna Simulation 

In the previous Section we employed voltage sources constant in time , which 
made sense since we were interested in finding the static solution. In the event 
that the voltage source varies in time, however, then a radiative field pattern 
(rather than the static field) will emerge. We therefore deal with an antenna, and 
at large distances from the source, the radiated power away will be significant. In 
order to keep the simulation to manageable dimensions, matched terminations 
are placed at the outer boundaries, once the major trends with distance have been 
established. An iterative TLM example discussed in Chapter VII, for example, is 
easily modified so that the input represents a time varying function. A powerful 
advantage in using the TLM method is that the same iteration handles 
simultaneously the combined problem of an antenna(i.e., a time varying voltage 
source) while taking into account the introduction of conductivity into the 
medium. 

Dispersion 

Up until this point one might have gained the impression that the TLM method is 
a conceptually simple yet powerful tool, providing us with the means to solve 
a multitude of electromagnetic problems while at the same time providing 
physically intuitive framework for understanding a multitude of phenomena. For 
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the most part, this impression is correct, but with the incorporation of dispersion 
into TLM method, the technique becomes a good deal more complicated. The 
additional complications, of course, are not native to TLM, but to any technique 
for dealing with dispersion. The problem is the immense amount of additional 
information needed to characterize dispersion, placing great demands on both 
computer speed and memory. Besides the needs for the additional vast amount of 
information, the TLM model becomes more cumbersome and its interpretation 
loses much of its simplicity. Other complications arise which are subsequently 
discussed. 

There are two methods for incorporating dispersion into the TLM 
formulation. With the first we select a single matrix with sufficient resolution 
such that any variations in the field are small when observed over the selected 
TLM length. Thus the single matrix can accommodate all the variations, whether 
slow or fast, throughout the propagation region. To obtain the Fourier 
components, a numerical method is used which lends itself to computer methods. 
For convenience, the sampling length for the Transform is selected to be the 
same as the TLM element. Following the Fourier transformation, we deploy the 
same TLM matrix throughout the propagation region. There are then two 
interpretations for the field inside the TLM element. One is the usual constant 
field approximation in the TLM(representing a sort of average value) which we 
have employed throughout the book until this Chapter. The second interpretation 
allows for the variation of the field within the TLM element. The field variation 
is assembled from the calculated Fourier components. Which interpretation is 
used will be immediately evident from the context of the discussion; in the 
following discussion usually we will regard the fields as nonuniform within the 
TLM element. 

During the ensuing time step(or time steps) we allow the Fourier 
components to move from one cell to the next, with each component having its 
own propagation velocity, and its own scattering properties, as dictated by 
dispersion. The new field , resulting from both dispersive and non-dispersive 
effects, is then reassembled using inverse Fourier Transform techniques. This 
new field is then used to produce a new set of Fourier components, and the 
process is thus repeated. When the final time step is attained, the non-uniform 
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field within each cell may be replaced if desired by a constant value, representing 
some suitable average. 

The second method for calculating dispersive effects is very similar to the 
first method just described except that we use two or more overlapping matrices, 
with each matrix representing a well defined frequency or spatial region with 
distinct or simplifying dispersive properties. The method is best illustrated with 
the interacting EM and light signals discussed in Chapter II(see Figs.2.18 and 
2.19 which show a pair of ID and 2D matrices respectively). The EM matrix, 
with the larger cells, will often display very little dispersion, while the light 
matrix , with its small matrix due to its smaller wavelength, will often have 
significant dispersive properties. The main advantage here is that it is 
unnecessary to use the same high resolution matrix for the EM signal; a lower 
resolution matrix may be all that is required. A separate matrix for each signal 
may be used, while allowing the matrices to interact at the nodes using either a 
nearest node or multi-node approximation. Separate Fourier transformations 
would be carried out for each matrix. 

In the ensuing discussion we will employ the use of a single, high resolution 
matrix(Method I) since this simplifies the discussion. One should bear in mind, 
however, that the mult-matrix approach may be attractive when considering 
interacting signals with distinct dispersive properties. 

Whatever method is used, it will be strongly dependent on the type 
dispersion present. Before proceeding, we will discuss dispersion sources found 
in electromagnetic media. One dimensional arguments will be used exclusively; 
the extension to 2D and 3D do not involve any additional concepts. 

5.14 Dispersion Sources 

Two sources of dispersion are considered in the TLM method. As one might 
guess the sources arise from the two elements which comprise the TLM matrix: 
the transmission line and the node. In the case of the transmission line, the 
propagation velocity v will be dispersive and this will be denoted by either v(co) 
or v( k ) where co is the frequency, and k is the propagation constant, and are 
related by v(co )= v(k) = co/k. k =2TCM. where A. is the wavelength in the 
medium. We ascribe the velocity dispersion to its dependence on the dielectric, 
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e(co ), which is likewise dispersive and satisfies v(a> ) ={|j.s(co )}" . The second 
dispersion resides in the node resistor and this is denoted by either R(co ) or 
R(k). A more comprehensive labeling is given by R(co,n,m,q) where the first 
index denotes the dispersion and the next three denote the location of the node. 

Although we will ascribe the dispersive propagation velocity as a property 
of the line, we should point out that we may achieve the same effect by formally 
assigning a dispersive phase delay (or advance)to the property of the node. In so 
doing we may interpret the node as the origin of all important physical changes, 
while the transmission line is still responsible for the (non-dispersive )energy 
spread. 

5.15 Dispersion Example 

Examples of the dispersive properties of the dielectric constant s( co ), as well as 
the node resistance, R(co ), may be demonstrated from the wave equation, 
Eq.(1.2), assuming an EXPj{Kx-(Ot} dependence, where co is the radian 
frequency and K is a complex propagation constant. Substituting into the wave 
equation gives 

{neco2+jco|J,cr}E = K2E (5.15) 

and therefore 

K = a + j p = (co/c)K1/2[l+jo-/eco]1/2=((o/c)[K+JCT/s0o>]1/2 (5.16) 

and K =e/eo is the specific inductive capacity. 

As noted from Eq.(5.16), K has both real and imaginary parts and both are 
dispersive. A serious deficiency exists with Eq.(5.16) , however. The dispersion 
is based on the macroscopic, average fields, which are incomplete when 
describing dispersion phenomena( see , for example, References [1],[2]). The 
dispersive properties of a and K are lacking, and these can only be obtained from 
a knowledge of the localized electric field. With these localized fields, one can 
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calculate the displacement of charge(including loss) within atomic systems, from 
which the dispersive polarization follows. From this we obtain the dispersion of 
the complex inductive capacity. Once we obtain the proper dispersion relation, 
the complex inductive capacity may be used to obtain K, which may be 
compared with Eq.(5.16) to obtain the dispersive relationships for K and a. 

Using he localized field approach[l], we can obtain the polarization P, 
which is now dispersive, as a function of the macroscopic field E. Thus 

P(ro)=a280E/(coR
2-o)2-jcog) (5.17) 

adopting the notation in [1]. a2 is proportional to the number of oscillators per 
unit volume, each with resonant frequency co0, g is the dissipative term, and COR 
is related to co0 by co2

R = co2
0 -(l/3)a2 . The phenomenological constants COR ,g , 

and a are determined from experiment. If K' is considered to be a complex 
specific inductive capacity, then 

P = [K ' -1]E„E (5.18) 

Comparison of Eqs.(5.17) and (5.18) then provides 

K' = l+{a2/[co2
R-co2-jcog]} (5.19) 

In terms of the complex propagation constant 

K = ct+jp = (CO/C)K'1/2 = (co/c)[l+a2/(co2
R - co2 -jog)]172 (5.20) 

We then separate the terms inside the radical into real and imaginary parts, and 
assume that the dissipative term g is much smaller than co and (coR -co). With 
these assumptions, 

K = a+jp= (co/c)[l+{a2/(co2
R-co2)}+ja2cog/(co2

R-co2)2]1/2 (5.21) 



304 Electromagnetic Analysis Using Transmission Line Variables 

and the comparison with the macroscopic relation, Eq.(5.16), gives, for small 
losses, 

K(CO) = l+a2/(eo2
R-co2) (5.22) 

CT((») = £0a
2co2g/(co2

R-co2)2 (5.23) 

Eqs.(5.22)-(5.23) give the inductive capacity and conductivity dispersions in 
terms of the phenomenological constants. Note that when co->0, the zero 
frequency expression for K(CO) becomes 

K(CO=0) = K(0) = l+a2/co2
R (5.24) 

In addition, cr(co=0)=0 (this is true even when losses are not assumed small). The 
fact that CT(CO)=0 at co =0 is an outcome of the phenomenological assumptions ; a 
low frequency model to augment Eq.(5.23), therefore, may be desirable. 

We now return to Eq.(5.21) and decompose the real and imaginary parts, a 
and 0, thus giving 

oc(co) = (co/c)[l+a2/(co2
R-co2)]1/2[[(l+A2(co))1/2+l]/2]1/2 (5.25) 

p(co) = (co/c)[l+a2/(co2
R-co2) ]1/2t[(l+A2(co))1/2-l]/2]1/2 (5.26) 

where 

A(co) =a2cog/[(co2R-co2)2+a2(co2
R-co2)] (5.27) 

We can again make use of the approximation, g « c o , and g « (coR -co), so that 

oc(co) =(co/c)[l+a2/(co2
R-co2)]1/2[l+A2(co)/8] (5.28) 

P(co) = (co/c)[I+a2/(co2
R-co2)]1/2[(A(co)/2)] (5.29) 

For completeness we express a(co) and 0(co) in terms of the conductivity and 
specific capacity, using Eqs.(5.22)-(5.23), or 
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a(co)=(co/c)K1/2(o))[l+(l/8)a2(a)((o2
R-a)2)4/[s0

2(o2{(a)2
R-o2)2+a2(co2

R-co2)}]2] 
(5.30a) 

which simplifies, using Eq.(5.22), to 

a((o)=(a)/c)K1/2(a))[l+(l/8)( cf2(co)/80
2a)2K2(a)))l (5.30b) 

Similarly, 

P(a>) = (l/c)K1/2(©)[{o(o))(co2
R-(o2)2/2s0{(o32R-o)2)2+a2(co2

R-(»2)}] 
(5.31a) 
or 

P(©)= a(co)[ 2E0CK1/2(OO)]"1 (5.31b) 

If Eqs.(5.30)-(5.31) are used one must make sure that the actual dispersion for 
CT(CO) and K(CO), from Eqs.(5.22)-( 5.23), are kept in mind. Two obvious points 
concerning ct(co) and P( co ) should be cited: as the dissipative term goes to 
zero, g-» 0, then a -> (oo/c) K (OO)1/2 and P ->0 , as expected. Secondly, 
Eqs.(5.30b) and (5.31b) reduce to Eq.(5.16) (after decomposition and allowing 
for small losses ), as is required. 

At this point we have sufficient information to obtain the propagation 
velocity v(oo) and the node resistance R(eo), both of which will be dispersive. 
First we consider v(co), again assuming small losses. By definition, v(eo) is 

v(co) = co/a(o>) (5.32) 
or more explicitly 

v(eo) = CK-1/2(co)[l+(l/8)(tT2((o)/e0
2a)2K2(co))]-1 (5.33) 

For zero loss, the velocity is simply, from Eq.(5.22), 

v( co ) = c/ K1/2 (co) =c /[l +a2/(co2
R -co2)]1'2 (5.34a) 

We note that as co increases , the velocity decreases. As co -» 0, the velocity 
v(co) approaches its zero frequency value of c/ K1/2 (0), 
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v(0) = c/[l+a2/coR
2]1/2 (5.34b) 

5.16 Propagation Velocity in Terms of Wave Number 

As we shall see in a moment, it is often useful to express the propagation 
velocity, Eq.(5.33), in terms of the propagation constant. For small losses and 
low frequency, substitution of co ~ kv(k) ~ kv(0) into Eq.(5.33 ) approximates 
v(k) in terms of k. For zero loss and low frequency v(k), from Eq.(5.34a), 
converts to 

v(k) = c[(l+a2/co2
R)+v2(0)k2a2/a)4R]-1/2 (5.35) 

which with further approximation gives 

v(k) = v(0)[l- (my(0)k2a2/(o4
RK(0)] (5.36) 

Note that with the given phenomenological model and approximations, v(k) 
decreases with k from its initial value of v(0). 

5.17 Dispersive Properties of Node Resistance 

To obtain the dispersive R(co ), we must first examine (3(co), which indicates the 
degree of attenuation of the wave, with a dependence of EXP[- P(co)x]. If we 
choose a sufficiently small cell size, then we approximate, to first order, the 
exponential decay of the wave by 1- p(co)Al. From Chapter 1, however, we 
know from the TLM theory that the wave transmission, to first order, is governed 
by 

+V(n+1) =+V(n)T (5.37) 
where 

T = 1- Zo/2R(co) (5.38) 
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We now are able to identify Z0/2R(co) with P(a> )A1. Equating the two terms, we 
obtain for R(ce>) 

R(co) = Zo/2P(oo)Al (5.39) 

with P(oo) given by Eq.(5.29). For small loss, R(co) of course becomes very 
large. With increasing <D , as P(a>) increases, there is a corresponding decrease in 
R(co). 

5.18 Node Resistance in Terms of Wave Number 

As with v(oo), we can likewise express P(co), and therefore R(o), in terms of the 
propagation constant k rather than the frequency. For small losses and low 
frequency, the changeover is simple ; we set the propagation constant equal to 
k=co/v(0) in Eq.(5.31). R(co) then becomes 

R(k) =ZJ (2P(k)Al) (5.40) 
where 

P(k) = K1/2(k) 0(k)(co2
R-v2(O)k2)2 /p(co) (5.41a) 

P(co) =2eoc[(a)2
R-v2(0)k2)2+a2(o)2

R-v2(0)k2)] (5.41b) 

and K(k), a(k) are obtained from Eqs.(5.22)-(5.23) 

K(k)=l+a!/(a)2
8-v

2(0)k2) (5.42a) 

a(k) = 60aV(0)k2g/(eo2
R-v2(0)k2)2 (5.42b) 

Once more , from Eqs.(5.40)-(5.42), P(k) may be written as 

P(k) = a(k)/[2s0CK1/2(k)] (5.43) 

Since 
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Z0 = ( M/s(k))1/2 = ( v/s0K(k))m (5.44) 

Eqs.(5.40) and (5.43) - (5.44) combine to give 

R(k) = l/o-(k)Al (5.45a) 

In terms of the modelling parameters for o(k), R(k) becomes 

R(k)= (l/Al)[(©2
R-v2(0)k2)2/eoaV(0)k2g] (5.45b) 

The result, R(k) = l/c(k)Al, is exactly the same as that obtained for the non-
dispersive case, indicating that we could just as well have inserted the dispersive 
a(k), Eq.(5.42b), into R(k) = l/a(k)Al. 

In summary, we have provided examples of dispersion , based on a specific 
polarization model, for the propagation velocity and node resistance. The results, 
expressed in both wavenumber and frequency, may then be incorporated into the 
TLM formulation. 

5.19 Anomalous Dispersion 

In the previous discussion we have for the most part made the assumptions that 
g « (coR -CO) and g « co. In this region the phase velocity decreases with 
increasing co. Are there regions in which the velocity increases as oo grows? The 
answer is affirmative for regions where co begins its approach toward the 
resonant frequency The region here is "anomalous", and the velocity, after first 
increasing, will begin to decline, even falling below its original value at co =0. It 
is quite possible, therefore, that for certain dispersion problems, frequency 
regions will exist in which the velocity is both smaller and larger than the original 
velocity at co =0. Several references discuss the more general dispersion 
equations for v(co), when co is located in the vicinity of a resonance frequency 
[1],[2]. 

We hasten to add that as co becomes enveloped in the resonance region, with 
co very close to the resonant frequency, the phase velociry(and even the group 
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velocity) lose their usual meaning. In this discussion, we assume co is still far 
enough from resonance, such that the phase velocity is still meaningful. 

Incorporation of Dispersion into TLM Formulation 

5.20 Dispersion Approximations 

From the previous discussion we may infer that dispersion introduces another 
complication, related to the non-uniformity of the cell field, into the iteration 
process. Without dispersion the wave energy travels exactly one cell length for a 
given time step. By adding dispersion, however, certain Fourier components may 
travel only a fraction of a cell length while others may travel several cell lengths. 
Indeed, in the previous discussion, we saw that for "normal" dispersion, where 
V(CD )< v(0) at the lower frequencies, the wave components will travel a cell 
length or less. For the " anomalous" case, on the other hand, v(co)>v(0) as co 
approaches COR , and thus some components will travel more than one cell 
length. In the ensuing discussion we adopt a matrix utilizing the cell length 
determined by the "zero frequency " velocity , v(0), so that Al = v(0)At. We 
then continue the approximation by confining ourselves to two Categories of 
dispersion. In both categories we will tacitly assume the maximum velocity 
excursion , Av0 is always much less than v{0). AvQ is assumed to be a 
dispersionless constant. To simplify matters we also assume in the following that 
the neighboring cells are identical, so that v(k) is the same in each cell. Differing 
cells will of course modify the calculation, but not alter the basic technique. In 
Category I the velocity is always less than or equal to v(0), so the individual 
wave components never travel more than one cell length during the time step At. 
We express the velocity limits in terms of both co and the propagation constant k: 

CATEGORY 1 
v(0)- Av0 < v(co) <v(0) (5.46) 

In Category II we allow for excursions above and below v(0). The limits of the 
velocity likewise may be expressed as 
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CATEGORY II 
v(0)- Av0 < v(<o) < v(0)+ Av0 (5.47) 

In Category II we will have to consider waves originating not only from the 
immediate cell neighbors but also from neighbors two cell lengths away. For 
convenience we have selected the magnitude of the positive excursion to be the 
same as the negative one, i.e., Av0. In general these excursions will of course 
differ. 

It is natural to inquire why we should not forego the cell length of v(0) At 
and simply select a length of [v(0)+ Av0] At, thereby requiring only a Category I 
treatment. It is certainly allowable to introduce a matrix based on a an extreme 
value of the dispersion. By considering the dispersion as a perturbative effect, 
however, the natural starting point is the non-dispersive matrix with velocity 
equal to v(0). This starting point is particularly convenient if the propagation 
constant components for k ~ 0 dominate, in which case the results will be 
considerably easier to interpret. 

5.21 Outline of Dispersion Calculation Using the TLMMethod 

The iterative calculation starts with the field profile in the propagation region at a 
given time step. At the beginning of each iteration, the total field in each cell 
will consist of forward and backward waves each of which will, in general, be 
nonuniform. Both waves must be treated separately and the results combined at 
the completion of the step. At the start of a particular time step, the Fourier 
Transform is obtained for the wave profile in the propagation region, using a 
numerical procedure. The procedure means segmenting the propagation region 
into Np sampling elements ,where NF is a positive integer, with each element 
making a contribution to the Transform. In this case we simply select the element 
to be identical with the TLM length; of course there is no requirement for setting 
the sampling element equal to the TLM length and indeed smaller elements may 
be used to enhance accuracy. Once the complete Transform is obtained, then, 
over the next time step, we allow each Fourier component to have a differing 
propagation velocity and for the node resistor to dispersively modify each of the 
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Fourier components as well. Once the iterative step is completed we then 
perform an inverse transform, returning to the original coordinate space, thus 
showing how the original profile evolves when dispersion is included. For the 
inverse Transform, we again use a numerical procedure, but impose maximum 
and niinimum limits on k, so as to facilitate the calculation. Because of 
dispersion, the original function is allowed to "spread out" a maximum of two 
cells in either direction, since we are allowing both Categories I and II 
dispersions. 

5.22 One Dimensional Dispersion Iteration 

The dispersion calculation is illustrated in one dimension. The extension to two 
and three dimensions does not involve any additional, new concepts. As 
mentioned before, we limit the dispersion to two types: Category I , (v(0)- Av0) 
< v(k) < v(0), and Category II, (v(0)- Av0) < v(k) <(v(0)+ Av0). Although we 
allow v(k) to vary only slightly from v(0), i.e., v(k) is closely centered about 
v(0). In order to proceed further we need to trace the development of the waves 
for both Categories. Fig.5.21 shows the evolution for the first Category, where 
+V(n) and ~V(n) are the forward and backward waves in the nth cell during the 
kth time step. Note that there are cells on either side, (n-1) and (n+1), with 
similar waves, since we still allow contributions from waves in these cells. The 
accompanying Table gives the origin of the forward wave in the nth cell during 
the (k+l)th time step. Just as in the non-dispersive case, we will have 
contributions from the forward wave, transmitted from the (n-1) cell, as well as a 
reflected wave emanating from the backward wave in the nth cell. In addition, 
however, and this is entirely due to dispersion, we will have a contribution from 
the forward wave in the nth cell, resulting from the fact that for some wave 
numbers v(k )<v(0) A similar Table showing the origin of the backward wave in 
the nth cell for the (k+1) th time step. 

A similar description of the wave development for the Category II 
dispersion is shown in Fig.5.22. Note that we include two cells on either side 
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Z(n-l) Z(n) Z(n+1) 

n-2 n-1 n n +l 

FIG. 5.21 CONTRIBUTIONS TO FORWARD WAVE IN nth 
CELL DUE TO DISPERSION: CATEGORY I, Al=v(0)At, 
v(0)-Av0<v(co)<v(0). 

FORWARD WAVE +V(n) 

ORIGIN OF WAVE 

V(n) 

V(n-1) 
+V(n) 

SCATTERING PROCESSES 

B(n-1,2) 

T(n-1,2) 
NONE 

BACKWARD WAVE V(n) 

ORIGIN OF WAVE 

"V (n+l) 
+V(n) 
V(n) 

SCATTERING PROCESSES 

T(n,2) 
B(n,l) 
NONE 
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Z(n-l) Z(n) Z(n+1 

n-2 n-1 n+1 n+2 

FIG. 5.22 CONTRD3UTIONS TO WAVE IN nth CELL DUE TO 
DISPERSION: CATEGORY H, Al=v(0)At, v(0>Avo < v(co) < v(0)+Avo 

FORWARD W A V E +V(n) 

ORIGIN OF W A V E 
+V(n) 
V(n) 

+V(n-1) 
+V(n-2) 
V(n-l) 
V(n+1) 

V(n) 
+V(n) 
V(n+1) 

+V(n+2) 
+V(n+1) 
+V(n-1) 

SCATTERING PROCESSES 
NONE 
B(n-1,2) 
T(n-l,l) 
T(n-2,1), T(n-l,l) 
B(n-2,2), T(n-l,l) 
T(n,2), B(n-1,2) 

BACKWARD W A V E V(n) 

NONE 
B(n,l) 
T(n,2) 
T(n+1,2), T(n,2) 
B(n+l,l), T(n,2) 
T(n-1,2), B(n,l) 
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of the nth cell since we allow for contributions from the (n-2) and (n+2)th cells. 
Because of the additional cells the iteration is slightly more complicated. We 
construct a Table giving the origin of the six contributions to the forward wave in 
the nth cell for the (k+l)th time step, and point out several contributions. The 
first contribution is from the forward wave in the nth cell itself. Since a portion 
of the waves will have velocities v(k) less than v =A1/A t , certain of these waves 
will remain in the nth line, although they will not interact with any node. The 
second contribution is from the backward wave in the nth cell wherein a portion 
of the wave is reflected from the R(k,n-1) node, thus contributing to the forward 
wave. As a final example we note the fifth contribution, where the original wave 
is a backward one in the (n-2)th cell, undergoing a partial reflection at the (n-2) 
node and then a partial transmission of the forward wave at the (n-l)th node. A 
similar Table is given for the backward wave contributions. 

In the following we illustrate the calculations involving contributions to the 
forward and backward waves in the nth cell, during the k+1 step, based on the 
waves in the neighboring cells existing during the kth time step. For our 
elementary coordinate space we use five cells centered about the n th cell, i.e., 
cells ranging from n-2 to n+1. The five cells will allow us to consider both 
categories of dispersion, I and II. At this point we are prepared to write down the 
dispersive iteration for the nth cell. Because there are both forward and 
backward waves, the amount of computation is increased. For example, in 
Category I there are three contributions each for the forward and backward 
waves, for a total of six separate but similar calculations which must be 
performed. For Category II a total of 12 calculations must be performed. Rather 
than calculate all the possibilities, we outline the calculation for a single type of 
contribution, and afterwards point out some of the differences which occur when 
other contributions are present. 

To illustrate the calculation we select the second entry in Fig.5.21 which 
represents contributions to the forward wave in the nth cell wherein the forward 
wave in the n-1 cell undergoes a partial transmission via the n-1 node into the nth 
cell. The assumed forward wave in the (n-1) cell propagates during the kth time 
step. If we wish we may shift the coordinate x axis so that x=0 coincides with 
either the start of the n-2 or n-1 cells, or for that matter the start of any of the 
cells. 
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To proceed with the calculation the element must be described completely, 
during the prior time step, in either the coordinate space or the corresponding 
Fourier transformed space (k space). If, somehow, we know the functional 
dependence of the wave, then we may obtain the transform using numerical 
techniques, and thereafter allow the Fourier components to interact with the other 
elements. We can remain in k space as long as we like(for as many time steps as 
we wish), transforming back to coordinate space when necessary. An important 
simplification may be invoked when static initial conditions prevail. Under these 
typical conditions the spatial profile is assumed constant in each TLM element. 
Initial, static conditions and the impact of dispersion are discussed in a later 
Section. 

We proceed to obtain the Fourier Transform of the initial field in the 
propagation region. In particular, we first consider the forward wave, designated 
by +V(x), where x is an arbitrary coordinate in the propagation region, and we 
have omitted the time step superscript(note the difference from V(n) , which is 
the field in the nth cell). The Fourier transform for +V(x) , designated by F(k) 
is[3] 

F(k) =I.00
GO+V(x) EXP[-jkx]dx = Jxo

Lo+V(x)EXP[-jkx]dx (5.48) 

where the second integral arises since Xo is the assumed start of the propagation 
region, and the end is L0. In general it will not be possible to calculate the 
Transform in closed form and it is necessary to use numerical techniques. 
Accordingly we briefly describe a polygonal approximation [9 ] of +V(x) 
obtained by dividing the region into NF points, equally spaced, and connecting 
them with straight line segments. Outside the region we assume +V(x) vanishes. 
We select the spacing between points to be Al, the TLM length. The nth point 
coordinate xn is thus 

xn= nAl+Xo; n=0,l,2,3, NF (5.49) 

The length of the propagation region L0-Xo satisfies 

L0-Xo = NFA1 (5.50) 
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As mentioned before, +V(x) =0 when x < Xo and x> L0. Having defined the 
notation, we next employ the polygonal technique to obtain the Fourier 
Transform F(k). In each element Al we first calculate the two slopes about x„, 
[+V(xn+1) -+V (xn)]/ Al and [+V(xn) -

+V(xn.j) ]/ Al (V(xn), e.g, is the value of 
V(x) at the edge of the nth cell). We then calculate essentially the the second 
derivative (without the additional Al ), given by the difference term [+V(xn+i) -
+V(xa_i) ]/ Al. This difference is then utilized in the expression for F(k) [3], 

F(k)= (n-1 to NF) - I [(+V(xn+1) -
+V(xn4))/ Al][(l/k2)EXP(-jkxn)] (5.51) 

It is convenient to cast Eq.(5.51) into polar form, 

F(k) = +A(k) EXP) [jcp(k)] (5.52) 

where A(k) is the amplitude and <p(k) the phase angle. These are related to the 
real and imaginary parts of F(k) , Re F(k) =C(k) , Im F(k)sX(k), using Eq.(5.52). 
The connections are 

+A(k) =[C2(k)+X2(k)],/2 (5.53) 

tanq>(k) = X(k)/£(k) (5.54) 

We now return to the cell description of the fields and Fourier components. 
The nth cell is of course enclosed by the points xn and xn-i, used in calculating 
the Transform. We now determine how the profile changes if we allow each of 
the Fourier components to propagate(in the forward direction) for one time step 
At. We proceed using a constant phase approximation. We assume that when a 
cell node is encountered, and the wave undergoes reflection and transmittal, that 
only the amplitude is affected and the phase portion is approximately constant. 
This assumption is reasonable since the node has no reactive components and by 
its very definition is infinitesimal in length. Thus the amplitude function +A(k) 
will undergo a change, but only for those forward waves which find memselves 
in the nth cell after the time step has elapsed. If+A (n-l,k) and +A (n,k) are 
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the amplitudes in the cell lines n-1 and n respectively, and (p(n-l,k) , (p(n,k) are 
the respective phase angles then the two are related by 

+A(n,k) = T(n-l)+A(n-l,k) (5.55) 

tancp(n,k) ~ tancp(n-1 ,k) (5.56) 

Note that the phase factor is assumed to be unchanged as it traverses the n-1 
node. T(n-1) is the usual transmission coefficient at node n-1, given by(Chapter 

m). 
T(n-1) = 2 R(n-1) / (Z(n-1) +R(n-1)) (5.57) 

In order to discuss the wave delay and dispersion in the TLM line, we require the 
inverse Fourier Transform [9}for the wave in the (n-l)th cell, V(n-l,x) , 

+V(n-l,x) = (l/7t) l0°°+A(n-l,k)cos(kx+(p(n-l,k))dk (5.58) 

The inverse transform has a somewhat simplified form because of the assumed 
reality of +V (n-l,x). As a consequence the integration range need only extend 
from 0 to oo . 

Next we determine how to incorporate the phase changes due to the wave 
motion in the TLM line. The wave velocity is given by v(k) with the argument 
indicating that we allow the velocity to have dispersion. In order to account for 
the phase change , we replace cos(kx+(p(fl-l,k)) with cosfkx -kv(k)t +<p(n-l,k)], 
which represents wave motion toward increasing x. Since the wave velocity is 
dispersive, we should expect the various Fourier components will fall out of 
phase with one another and the pulse will smear out as it propagates. Eq.(5.58) 
then becomes 

+V(n-l,x) = (l/7t)Jo°0+A(n-l,k)cos[kx-kv(k)t+(p(n-l,k)]dk (5.59) 

We should note that within a given cell line the kth wave moves with velocity 
v(k) and the distance traversed 5x in time 8t are related by 5x =v(k)8t. Also, 
when there is no dispersion, v(k)=v(0) and after At has elapsed, v(0) At =A1 . 
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Following the time step, At, the wave in cell (n-1) will, for the most part move 
into cell n, except for effects due to dispersion. Because of dispersion a small 
portion of the wave may remain in cell (n-1) or may skip over into cell (n+1) if 
Category II dispersion exists. For the present we focus on the portion of the 
wave carried into cell n. 

Once we perform the spatial decomposition in each cell, we then focus on 
the behavior of each of the waves with propagation constant k. We focus on the 
wave amplitude at time t in cell (n-1), denoted by +A(n-l,t, xi; kj) The arguments 
of+A are explained: n-1 denotes the cell (n-1) and t is the time. x; is the position 
in the (n-1) cell, i is a positive integer which specifies the ith sub-element in the 
cell. We assume each cell is subdivided into N c (a positive integer)sub-elements 
with width Al/Nc. For the n-1 cell, Xj then equals x„4+ i(Al/Nc). The subscripted 
wavenumber kj requires further explanation as outlined in the following. 

In order to perform the inverse transformation we again utilize numerical 
techniques, first dividing up the k space , which describes +A(n-l,k), into Nk 

equally spaced values. We then define the allowed values of k;. 

k; = (i-l)Ak, i=l,2,3,...Nk, Ak= kc/(Nk-l) (5.60) 

kc is the cutoff for the wavenumber k. kc may be estimated from analysis of 
+A(n-l,k), or from the following assumptions. We assume the high frequency 
components will be determined by any variations in the single cell. Since the 
waves are approximately uniform in the cell, we can approximate the upper limit 
of the wave as that used to describe a rectangular pulse within the cell, and so k̂  
can be put in the form kc~ ncit/Al, where i^ is a positive integer. A value of ^ ~ 
10 should be sufficient to specify the cutoff kc-For more non-uniform pulses, 
higher wavenumbers may be present, in which case a larger cutoff ric will be 
required. To obtain the spacing Ak, which is equivalent to stating Nk , we 
assume the low frequency content will be determined by the entire propagation 
region L0 -Xo ; again approximating with a rectangular pulse, the wavenumber 
limit is jt/(Lo-Xo). We then set Ak = 7t/nL(L0-Xo), where nL is a constant used to 
provide resolution ; nL =10 should be sufficient . The value of Nk is then 
obtained from Eq.(5.60), which then allows one to completely specify k; 
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Having specified k; , we see that +A(n-l,t, x;, kj) may be interpreted as the 
k;th component of the forward wave in cell n-1 located at x ; . Suppose v(k) may 
be written in the form v(k) =v(0) +Av(k). At time At later the component wave 
will move into cell n and x; will transform to 

x(n) = Xi(n-l) + [v(0) + Av(k)]At (5.61) 

where Av(k) is negative for this case since we have selected a Category I 
dispersion. Note that in accordance with Eqs.(5.46)-(5.47), I Av(k)| < Av0. Note 
that no subscript has been used for x(n) since, because of dispersion, there is no 
guarantee that the new position in the nth cell coincides with one of the x;. If 
dispersion is absent, Av(k) =0 and the wave will have moved from cell n-1 into 
exactly the same location in cell n a distance Al away , where Al = v(0) At. The 
location of the wave in the nth cell will then be x;(n) . With the presence of 
Av(k), the new location for the wave is denoted by 

xi(n-l) -> x(n)-> Xi'(n) (5.62) 

where the prime indicates that x,'(n) represents the closest member of x; in the 
nth cell, satisfying Eq.(5.62). This procedure is repeated for all values of k; 
corresponding to Xj in cell n-1. We then go to the next value Xj in the cell and run 
through the same procedure. This will produce a distribution of points in cell n , 
whose total is approximately Nf*Nk . Without dispersion the distribution will be 
uniform with Nk points at each position value in cell n. Dispersion will cause 
nonuniformity in this distribution. The task remaining is then to add up the 
Fourier components at each sub-element position value in cell n. This will then 
produce the field in cell n , at least due to the forward wave in cell n-1. To 
achieve this summation task, we replace dk in Eq.(5.59) by Ak= k«/(Nk-l), and 
transition to a summation (rather than an integral). We then allow the waves to 
proceed for an additional time step. The double summation, as alluded to 
previously, includes x; and k; in the (n-l)th cell. Thus 
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+V(n,t+At,xi'(n))=(l/7r)(kc/(Nk-l)Xi,kiI'T(n-l,ki)
+A(n-l,xi,t,ki)cos[kixi(n-l) 

+cp(ki,n-l)] (5.63) 

We should note that we have reconstructed +V(n, t+At,x;) by summing over 
those amplitudes closest to each x;(n) ; the prime in the summation symbolically 
indicates that the closest x;(n) in cell n is employed, using Eq.(5.61) and 
Eq.(5.62). Thus we insert the value of k; in Eq.(5.61) to determine the location of 
the wave component in the nth cell. Note that the dispersion itself is 
implemented by means of Eqs.(5.61) and (5.62) for each wave in the summation. 
This procedure is equivalent to making use of the velocity term in the argument 
for the wave(represented by the cosine). For this reason the velocity term is 
missing from the argument in Eq.(5.63) and only the position and phase terms 
are present in the (n-1) cell. As mentioned before a total of NF*Nt wave 
amplitudes are evaluated in cell n-1 at various positions x; and various 
wavenumbers kj . We also note that the wave amplitude +A(n-l,Xj , k; , t) in 
Eq.(5.63) is modified by the transfer coefficient T(n-1, k;) at the n-1 node, as 
indicated by Eqs.(5.55) and (5.57). 

After time At has elapsed most of these waves find themselves in cell n. 
After reconstructing the field we produce a new Fourier spectrum just as we did 
in the beginning. We then follow the same process as before starting with the 
decomposition of the field into a new set of Fourier components (we must also 
include the two other contributions to the field, to be discussed). 

It is tempting to assume that it is unnecessary to reconstruct the field in cell 
n. Why not simply allow the Fourier components to continue to scatter in the 
TLM matrix, for as long as we wish, until such time that we wish to terminate 
the analysis.? This would be perfectly acceptable if there were no dispersion. 
Because of dispersion, however, the field shape will inexorably change as it 
propagates from cell to cell. The Fourier spectrum will therefore change; there is 
a continuous interplay between the Fourier spectrum and dispersion. The only 
question is whether it is necessary to recalculate the Fourier spectrum after each 
time step; if the dispersive changes are small it may be possible to wait several 
time steps before recalculating the spectrum. These are mathematical issues 
which go beyond the present scope of this discussion. The ideal approach is a 
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conservative one, which is to recalculate the spectrum after each time step, 
provided such a procedure is practical in terms of computer capacity. 

In the previous we confined the discussion to the Category I forward wave 
and in particular to the transmission of the forward wave in the n-1 cell to the nth 
cell. There are two other contributions of course. One is the forward wave in the 
nth cell during the kth time step. The bulk of this wave will have left the cell 
once the time step is completed. Since the velocity is slightly less than v(0) , 
however, a small portion of the wave will remain in the nth cell. The calculation 
follows the same course as before except that now we first obtain the Fourier 
Transform of the forward wave in the nth cell for the kth step. We then obtain 
the contributions which remain in the nth cell and add these to the previous 
contributions. The final contribution originates from the reflection of the 
backward wave at the (n-1) node. The reflected wave is related to the backward 
one by 

~A(n, k) = B(n-1, k) + A(n,k) (5.64) 

With the use of numerical techniques, k is of course replaced by kj. The initial 
calculation differs here in that we first obtain the Fourier Transform of the 
backward wave. We then imagine the backward wave, with amplitude modified 
by Eq.(5.64), flowing, in the forward direction, into the nth cell at the n-1 node. 
For this wave the bulk of the contributions will remain in the nth cell. These 
contributions are then added to those of the previous waves discussed. 

We may reduce the amount of computer computation, at least for the 
reflected wave. We do this by examining the (n-1) node and combining the 
transmitted and reflected waves with identical wavenumbers. We can employ this 
technique provided we use the same kc cutoff in each cell , and therefore the 
same set of kj By this technique, the transmitted and reflected waves are 
combined into a single forward wave in the nth cell. This enables us to employ 
analytic expressions while reducing the amount of numerical computation. This 
procedure works, of course , only when the adjacent cells are uniform and thus 
each wave in the two adjoining cells has the same velocity dispersion. 

Let us denote the kth transmitted wave in the nth cell by +AxR(n,k) and is 
related to the forward wave in the (n-l)th cell by Eq.(5.55). The forward wave 
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resulting from the reflected wave is denoted by +AREF(n,k) and is given by 
Eq.(5.64). The sum of these two waves is determined by sinusoidal addition , as 
opposed to the usual arithmetic addition when the waves are uniform throughout 
the cell. Denoting the sum by +As(n,k), the result is 

(+As(n,k))2=(+ATO(n,k) )2+(+AREF(n,k))2+2+ATR(n!k)+AREF(n,k)cos(A(p(k)) (5.65) 

where A(p(k) is the phase angle difference between the two waves, i.e., Acp(k) 
=tp(k,n)-cp(k.n-l). 

Unfortunately we are unable to perform a similar addition for the forward 
wave originally in the nth cell during the kth time step. This is because we can 
never match the waves with the same k number. Neither the transmitted or 
reflected waves catch up with the original forward wave, all of which have the 
same velocity for the same k(or kj) value. Waves with differing values of k may 
of course catch up with one another, leading to significant changes in the field 
profile. 

5.23 Initial Conditions With Dispersion Present 

The most common initial condition is that in which the field in a particular cell 
is both static and uniform so that both the forward and backward waves are 
likewise uniform ,i.e., rectangular in shape. As an example, therefore, we seek 
the initial Fourier Transform in each of the cells belonging to a cell chain as in 
Fig.5.21 or 5.22. It is relatively easy to obtain each of these transforms if we first 
obtain the transform of the auxiliary cell, centered about x=0, with total cell 
length Al. Assume for the moment, therefore, that this cell is isolated from its 
neighbors and that the field profile is rectangular shaped, i.e., the field is Vo for 
-Al 12 < x <A112 and zero elsewhere. The Fourier transform for this profile is 
treated in all elementary texts on Fourier analysis . If the field in the auxiliary 
cell is V0 then the transform F(0,k) is 
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F(0,k) = 2V0sin(kAl/2)/k (5.66) 

where we understand the zero argument in F(0,k) represents the transform of the 
auxiliary cell. 

To obtain the corresponding transforms for the n=l,2,3,.. cells, we make use 
of a well known theorem in Fourier analysis [3]. Suppose F(k) is the Fourier 
transform of V(x). If V(x) is then shifted in coordinate space by an amount Axo, 
then the transform of the shifted function is F(k)EXP(-jkAxo). We are then able 
to state the transforms for the cells n=l,2,3, etc..., denoted by F(k,n): 

F(n,k) = [2V0sin(kAl/2)/k]EXP{-jk(n-l/2)Al};n=l,2,3 (5.67) 

Note that for n=l, the function has been shifted by Al/2, for n=2 the shift is 
(3/2)Al, and so forth. From the inverse transform, we can write down the field 
V(x,n) in terms of the transform. Thus, for the auxiliary cell as well as the nth 
cell, the initial fields V(0,x) and V(n,x) may be expressed with the following 
inverse integrals 

V(0,x) = (2V0/7t)Joeo [sin(kAl/2)/k] cos(kx)dk = V0 (5.68) 

V(n,x) = (2VO/TC)J o" [sin(kAl/2)/k] cos[(kx)+(p(k,n)dk =V0 (5.69) 

where 
cp(k,n) = -k(n-l/2)Al ; n=l,2,3... (5.70) 

Eq.(5.69) represents the total field in the nth cell. For the forward and backward 
waves a factor of 1/2 must be inserted in both the Fourier transform and the field 
for each wave. 

5.24 Stability of Initial Profiles With Dispersion Present 

In the past we have always regarded a static TLM line element as a superposition 
of forward and backward waves, continuously traveling back and forth in the 
line, and destined to remain as such in the line until the "dynamic" equilibrium is 
upset by changes among nodes somewhere in the region, thereby "unleashing" 
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these modes. The use of such equilibrium modes would appear to be reasonable 
so long as there is no dispersion in the line. With dispersion present, however, 
one must question whether such modes are even appropriate, since dispersion 
will undoubtedly affect the nature of the assumed modes as they travel back and 
forth in the line element. To reiterate, can we logically continue to describe the 
static TLM element in terms of forward and backward waves, when dispersion is 
present. 

In order to explore this question, we examine a centered auxiliary cell with 
the Fourier transform given by Eq.(5.66) and the field given by Eq.(5.68), all at 
t=0. V(0,x) may be split up into the usual forward and backward waves, with 
equal magnitude, +V(0,x) + ~V(0,x). In order to account for the traveling nature 
of these waves we make the following replacements in Eq.(5.68): 

Forward Wave : coskx -> cos[k(x-v(k)t)] (5.71) 

Backward Wave : coskx -> cos[k(x+v(k)t)] (5.72) 

We initially assume the inverse transforms for the two waves are 

+V(0,x) = (V0/7c)Jo00[sin(kAl/2)/k][cos{k(x-v(k)t)]dk (5.73) 

~V(0,x). = (V0/7t)loco[sin(kAy2)/k][cos{k(x+v(k)t)]dk (5.74) 

The above assumes the integrand is an even function; for odd functions the 
integrals vanish. We may regard the above two equations as depicting a situation 
in which there is no dispersion to begin with, and we arbitrarily "switch on" on 
the dispersion immediately afterwards. Note that the numerical coefficient in 
front of each integral is reduced by a factor of two since each wave contributes to 
half the total field. Also the phase factor has been set equal to zero in each of the 
traveling waves of Eqs.(5.73) and (5.74). This is tantamount to saying that at t=0 
the wave crest of each wave is situated at x=0, the same as the static solution. 
Since we exclude waves from venturing outside the cell region, we assume the 
forward and backward waves are confined to 



Boundary Conditions and Dispersion 325 

-Al/2 <x-v(k)t <Al/2 : (FORWARD WAVE) (5.75a) 

-Al/2 <x+v(k)t <Al/2 : (BACKWARD WAVE) (5.75b) 

Eqs.(73)-(75) are incomplete, however, since they portray the wave motion only 
during the "first pass", and they do not account for subsequent reflections from 
the end points, x= Al/2 and Al/2, wherein the forward wave is reflected at 
x=Al/2, and thereby converted to a backward wave, and vice versa for the initial 
backward wave reflected at x=-Al/2. In order to analyze this situation we employ 
a very simple approach using "circular" boundary conditions. Because of the 
inherent symmetry of the forward and backward waves, it is easy to relate the 
reflected waves , at x=-Al/2 and -Al/2, to the waves at the opposite end of the 
TLM line. Thus , for example, after the reflection of the forward wave at x=Al/2 
we can think of the same wave (with the same amplitude) entering the TLM line 
as a forward wave at x= -Al/2, but with important difference: the wave has an 
added phase factor kAl, so that the wave appears as cos{ kx +kAl -v(k)t}. This is 
necessitated by the requirement that the reflected amplitude at x=Al/2 maintain 
the same value. Continuing, the new wave will be reflected once more at x=Al/2, 
leading to still a new wave entering at x=-Al/2 with phase factor 2kAl,. Thus with 
each successive reflection the forward wave phase factor is kAl , 2kAl , 3kAl, 
etc... A similar treatment for the backward wave leads to a phase factor of -kAl, 
,-2kAl,-3kAl,etc... 

The change in phase factor after each reflection slightly complicates the 
wave motion in the cell. For a given wavenumber k and time the cell region must 
now be subdivided into two sub-regions, each with a different phase factor. To 
determine the two sub-regions we first form the ratio v(k)t /Al, given by 

v(k)t/Al = q(k.t)+REM( k,t) (5.76) 

where q(k,t) is the highest integer and REM(k,t) is the fractional remainder. In 
the case of the forward waves , the two sub-regions will therefore be occupied 
with waves appearing as cos{kx+kq(k,t) Al-v(k)t} and cos{kx+k(q(k,t) +1)A1-
v(k)t}.The transitional point separating the two sub-regions, +Xt(k,t), is 
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+Xt(k,t) = - Al/2 +REM(k,t) (FORWARD WAVE) (5.77a) 

We should note that the region adjacent bounded by x=-Al/2 has the higher 
index, q(k,t)+l, while the sub-region bounded by x=Al/2 has the q(k,t) index. 

The same treatment may be applied to the backward wave . The two sub 
regions are occupied by cos{kx-kq(k,t) Al+v(k)t} and cos{kx-k(q(k,t) 
+l)Al+v(k)t}. The transitional point is 

~Xt(k,t) = + Al/2 -REM(k,t) (BACKWARD WAVE) (5.77b) 

where the sub-region bounded by x=Al 12 has the higher index, q(k,t)+l and the 
other sub-region the q(k,t) index. 

At this point we can write down the general expressions for the forward and 
backward waves for arbitrary wavenumber and time. These expressions replace 
the "first pass" equations of Eqs.(5.73)-(5.74). Thus 

+V(0,x)=(V0/7c)Joc°[sin(kAl/2)/k][cos{kx+k(q(k,t)+l)Al-kv(k)t}]dk 
-Al/2<x<+Xt(k,t) (5.78a) 

+V(0,x) =(V0/7i)Ioc°[sin(kAl/2)/k][cos{kx +k(q(k,t) Al -kv(k)t}]dk 
Al/2>x >+Xt (k,t) (5.78b) 

Similarly for the backward wave 

~V(0,x). KVo/7t)!o>in(kAl/2)/k][cos{kx -k(q(k,t)+l)Al +kv(k)t}]dk 
Al/2>x>+X t(k,t) (5.79a) 



Boundary Conditions and Dispersion 32 7 

~V(0,x). = (Vy7i)J0*[sin(kAiy2)/k][cos{kx -k(q(k,t) Al +kv(k)t}]dk 
-Al /2< x <TX(k,t) (5.79b) 

The total field is of course given by V(0,x)= +V(0,x) +~V(0,x). If the wave 
velocity is dispersionless then v(k)=vQ and +V(0,x) =~V(0,x) =VJ2 as expected. 

To simplify matters for the moment assume the dispersive v(k) has the form 
v(k)=v0+ Av(k) (5.80) 

where vG is dispersionless and the dispersive part is Av(k). How does this 
modify the forward and backward waves, which without dispersion are simply 
equal to Vo/2? Assume for the moment that Av«v0 . Inserting Eq.(5.80) into 
Eq.(5.78), and keeping only first order quantities, we obtain for the forward 
wave 

+V(0,x)=V0/2+(V0/2)/oQO[sin(kAy2)/k][sin{kx+k(q(k,t)+l)Al-kv0t}]* 
sin( kAv(k)t)dk: (5.81a) 

-Al/2<x<+Xt(k,t) 
+V(0,x)==V0/2+(V0/2)Jo"[shi(kAl/2)/k][sin{kx+k(q(k,t) Al-kv0t] sin(kAv(k)t)dk: 

(5.81b) 
Al /2£x >+X,(k,t) 

where VJ2 is the non-dispersive part and the integrals are the perturbative, 
dispersive contributions. Corresponding equations for the backward wave are 

-V(0,x).=V0/2<V0/2)Jo00[sin(kAl/2)/k][sin{kx-k(q(k,t)+l)Al+kv0k}]* 
sin( kAv(k)t)dk: (5.81c) 

Al /2>x >~Xt(k,f) 

"V(0,x). ^ ^ - ( V ^ ^ f s i ^ k A ^ ^ J I s i n f k x -k(q(k,t) Al+kv0t] sin(kAv(k)t)dk 
(5.81d) 

-Al/2<x<-Xt(k,t) 
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We present an argument to indicate that the dispersive contributions in Eq.(5.81) 
vanish. First we verify that for sufficiently small Av(k), the dispersive 
contributions vanish as expected, due to the sin( kAv(k)t) terms in the integrand. 
Indeed we can show that the dispersive contributions vanish without actually 
setting Av(k) equal to zero. Instead, throughout the effective range of k, 
[kAv(k)]_1 may be regarded as a long period during which time the integrals in 
Eq.(5.81) average out to zero. Aside from sin(kAv(k)t) the terms in each 
integrand, for example, [sin(kAl/2)/k][sin{kx -k(q(k,t) Al+kv0t], are odd 
functions and therefore their contribution washes out, given the essential 
constancy of sin( kAv(k)t). 

An equivalent but perhaps more convincing procedure is to consider the 
time average of the dispersive integrals in Eq.(5.81). If we first perform this time 
averaging, then one can argue that the averaging of the dispersive contributions 
vanishes. For example, if we look at the integrand in Eq.(5.81a) then the term 
[sin{kx+k(q(k,t)+l)Al-kv0t}] oscillates very quickly because of the relatively 
large frequency associated with kv0. On the other hand, the remaining portion of 
the integrand, [sin(kAl/2)/k] (sin( kAv(k)t), may be considered a modulation 
factor since it varies more slowly because of Av(k). The time averaged 
dispersive integral therefore vanishes. 

In the previous discussion we made the assumption that the velocity could 
split into two parts, a nondispersive part v0 and a dispersive part Av(k) which 
remains small compared to v(k) throughout the effective range of k. We then 
argued that the voltage throughout the TLM line remains constant while the time 
averaged contributions of the dispersive integrals vanish. Now suppose the 
general case applies, with no limitations in v(k). We then ask whether after time 
averaging there exist dispersion relations which do not change(or at least 
rninimally change) the initial uniform field, and if such dispersions exist, 
what conditions are imposed; for example a stabilization period might be 
required. Such dispersion relations, if they exist, offer a powerful incentive for 
their selection, provided of course they are verified experimentally. Further 
pursuit of this subject , however, requires the detailed numerical solution of 
Eqs.(5.78)-(5.79), without any approximations. This task is not undertaken here. 
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5.25 Replacement of Non-Uniform Field in Cell with Effective Uniform Field 

Once the desired time step in the calculation is achieved, then it might be useful 
to replace the nonuniform field in each cell with an effective uniform field, based 
on the energy content in each cell. This field, denoted by Veg(n), is 

Vefi(n) = [(l/AOJo* V2(n)dx]1/2 (5.82) 

In the above we assume the cell is small enough so that there is no sign change 
throughout the cell and of course the sign of Veg(n) is the same as V(n). One 
need not wait until the end of the final calculation to obtain Veg(n) for the field. 
The calculation may be done periodically in the iteration to provide a simple way 
of assessing how the field energy is being distributed. 
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Appendices 

App.5A. ] Specification of Input/Output Node Resistance to Eliminate Multiple 
Reflections 

5 A. 1(a) Input Simulation 

Fig. 5A. 1 shows the input circuit, which simulates a long input line. A matrix of 
parallel TLM lines , with impedance ZQ, is employed. The specified signal is 

then inserted in ZQ Any reflections are then terminated in R(n,m). Note that the 

three other lines converging on the node are assumed to have extremely high 
impedances. The load seen by the reflected wave is that shown in Fig. 5 A. 1. If we 
designate the load as Rjjn,m), then the reflected signal is perfectly matched 

when 
RL(n,m) = (3/4)R(n,m)=ZG (5A.1) 

or R(n,m)=(4/3)Z0 (Interior Line) (5A.2) 

We use the term interior line to indicate that the line is not adjacent a conductor. 
What happens when the input lines are next to a conducting boundary? This 
situation must occur at some point along the input. The equivalent circuit is 
modified, given in Fig. 5 A. 2. Note that only two high impedance lines now 
converge at the node, and in fact the third line is shorted out. The load 
resistance, matched to Z0 , is then found from 

RL(n,m)= (2/3)R(n,m)=Z0 (5A.3) 

which then gives 
R(n,m) = (3/2)ZG (Adjacent Conducting Boundary) (5A.4) 

5A. 1(b) Output Simulation 

The output simulation is very similar to that of the input. The simulation circuit is 
precisely the same as the input circuit, if we merely "flip" the input circuit The 
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condition for terminating any reflections in Z 0 is then the same as for the input, 

i.e., 
R(n,m) = (4/3)ZG (Interior Line) (5 A. 5) 

R(n,m) =(3/2) Zo (Adjacent Conducting Boundary) (5A.6) 

HIGH 
IMPEDANCE 
LINES 

REFLECTED WAVE 
MATCHED WHEN 
R(n,m)=(4/3)Z0 

REFLECTED 
WAVE 

CONSTANT 
INPUT WAVE 
SOURCE 

INPUT 
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REFLECTED 
WAVE AT INPUT 

FIG. 5A.1 SIMULATION OF LONG INPUT LINE. 
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CONDUCTING REGION 

/ / / / / / 
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CONSTANT INPUT WAVE 

REFLECTED WAVE 
AT INPUT 

FIG. 5A.2 SIMULATION CIRCUIT OF LONG INPUT 
WHEN INPUT CELL IS NEXT TO CONDUCTOR. 
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VI. Cell Discharge Properties And Integration Of 
Transport Phenomena Into The Transmission Line Matrix 

The transmission line model, which we have described thus far, is very well 
suited for characterizing fast electromagnetic and conductivity changes. Slower 
processes, however, typified by phenomena such as recombination, drift, diffu
sion, and space charge, may also be incorporated into the model. These transport 
phenomena are described in terms of charge carrier models. In almost all cases, 
for illustrative purposes, we will describe a semiconductor medium with hole 
and electron carriers. However, the same concepts apply to other situations, 
such as ionized gases. In this Chapter we seek to integrate the carrier model into 
the TLM formulation. Simple iterations, illustrating the time step changes in 
recombination, drift, diffusion, carrier generation, and cell charge will be 
described using the TLM matrix. The integration of the transport properties also 
will help us to understand the TLM theory. For example, the discharge of 
neighboring cells , via the nodal resistors between cells, may be cast in terms of 
the carrier drift between cells. 

The integration of carrier transport into the computer iteration will improve 
our ability to interpret the results in a more meaningful and physical manner. If 
we desire such an all encompassing model, however, we will have to simultane
ously track fast and slow phenomena. To implement such a model, a large 
number of time steps will be required; an important impact, therefore, will be the 
necessity for additional computer memory and speed in order to obtain solutions 
in a timely manner. Often, however, certain approximations may be invoked to 
help speed up the iteration and reduce the amount of computer time. 

Incorporating the slower phenomena into the TLM matrix has the advantage 
that we may use the cell matrix already available for the electromagnetic 
analysis. In fact, for many situations, the only portion of the matrix required is 
the cell itself and not the TLM lines(or "tracks")separating the cells. The 
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disadvantage in using the same matrix is that the time step being used is usually 
so small that very little happens, when analyzing slower phenomena during that 
step. In the case of drift, for example, the only change that occurs is near the cell 
boundary. One way of dealing with this disparity is to evaluate the slower 
phenomena less frequently, instead of after each step. Indeed we will see later 
that if we use the same electromagnetic cell size to examine transport 
phenomena, then it is appropriate to use a slower "sampling " speed. 

Before bringing the carrier description under the umbrella of the 
transmission line matrix model, we will first discuss the discharge of neighboring 
cells, resulting from the potential difference between them. The discharge, i.e., 
the transfer of charge, occurs via the node resistors connecting the cells. We will 
see later that the description of this discharge is consistent with the introduction 
of carrier drift into the TLM cell matrix model. 

6.1 Charge Transfer Between Cells 

Within the TLM model there exists iso-potential cells which are separated by 
transmission lines, which represent differences in potential between cells and 
which also account for the conveyance of electromagnetic energy. The nodal 
resistors simulate the conductivity of the medium and provides the means for the 
cells to discharge into one another. Our scattering equations automatically take 
into account any changes in potential difference between cells, resulting from 
either a change in the wave status, or from charge transferee., current) . 
Equivalently this allows us to track the evolution of net charge on each cell, as 
we shall show in a moment. 

A natural question which arises is what happens if the resistivity returns to 
its formerly large value, characteristic of equilibrium. Suppose, for example, the 
light activation process in a semiconductor, which produces conductivity, ceases 
at time t = ti . We further assume an exponential "recovery" of the node 
resistance R(n,m,q). Thus, 

R(n,m,q) = [R(n,m,q)]MlEXP((t-t1)/x) (6.1) 
where {R(n,m,q)}Mi is the node resistance value at t = ti, and x is the "recovery 
constant". For times (t-ti) large compared to x one might expect Eq.(6.1) to rein-
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state the same situation that existed at equilibrium , before any conductivity was 
introduced. This turns out not to be the case, however. Although Eq.(6.1) will 
restore the resistivity to its equilibrium value, it will not get rid of the net charge 
that has evolved on the cells, as a result of the charge transfer between cells. The 
resultant fields, therefore, will differ from the equilibrium fields, reflecting the 
existence of charged up cells. The charge-up is especially evident when the 
semiconductor (or any other medium) is partially activated. A charge layer then 
develops at the interface between the activated and inactivated regions. The 
charge remains stationary unless we allow for carrier drift or diffusion to the 
electrodes. 

The simple circuit shown in Fig.6.1 illustrates the concept. The circuit 
consists of a charged capacitor C in series with a time varying resistor R(t) and 
an inductance L. Crudely, C and L represent the elements of the transmission 
lines separating a particular cell from its neighboring cells, while R(t) represents 
the resistance connecting the cells. Initially, C is fully charged and R(t) is very 
large. When the node resistor is activated R(t) first declines in value. Once the 
activation ceases, R(t) then increases to its former value, as a result of 
recombination. During this process some of the original charge will have been 
lost, dissipated in R(t). The remaining charge, however, does not return to its 
original state. The relative charge distribution, and therefore the voltage 
distribution will change. Each cell will be left with a different, "trapped" net 
charge, which changes the original voltage difference between cells. The 
charging of each cell is controlled by carrier transport properties, to be addressed 
shortly. 

The fields produced by the charged cells do not begin to impact the iteration 
so long as the times involved are smaller than the characteristic times associated 
with the transport quantities, such as carrier drift, diffusion, and recombination. 
Under these conditions, the solution will be a purely electromagnetic one in 
which the convective phenomena are considered frozen in space. For the longer 
times, however, the carrier transport must be incorporated into the iteration. 
Before addressing the issue of carrier transport and its inclusion into the model, 
we relate the charge accumulation on the cell to the electric field divergence for 
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FIG. 6.1. LUMPED CIRCUIT ANALOGUE TO DESCRIBE THE 
DISCHARGE BETWEEN ADJOINING TLM CELLS, 
VIA THE NODE RESISTANCE. L AND C IN THE 
ABOVE CORRESPOND TO THE TLM LINE. 
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each cell. From an iterative point of view, this information will provide us with a 
convenient means for determining the amount of charge in the cell for an 
arbitrary time step. This information will be useful when we incorporate the 
carrier transport into the iteration. 

6.2 Relationship between Field and Cell Charge 

In order to proceed further we must quantify the exact amount of excess charge 
present in each cell during each time step. One possibility involves calculating 
any net charge delivered to the cell, via the node resistor, and adding (or sub
tracting) this amount to the charge of the previous time step. This assumes of 
course that we know the net cell charge at a particular moment in time. Indeed 
we will use this method later in the Chapter when we calculate the time change in 
the net cell charge(i.e., the current). For the present situation, however, it is 
more convenient to use a different approach, namely, Gauss' Law. We simply 
apply Gauss' Law, i.e., the surface integral form of Poisson's Equation, to the 
cubical (n,m,q) cell, as shown in Fig.6.2. The averaged net outflow of the electric 
field, AE, is then related to the total net charge contained in the cell q(n,m,q) by 

Al2 [AExforr^q) + AEy(n,m,q) + AEz(n,m,q)] = q(n,m,q)/e (6.2) 

where AEx, etc... are the differences of the component fields across opposite sur
faces of the (n,m,q) cell 

The remainder of the discussion in this Section is mostly devoted to seeing 
how we may re-cast Eq,(6.2) , utilizing the usual TLM voltage amplitudes in the 
lines surrounding the cell, (n,m,q). We first replace the electric variable with the 
averaged transmission line variable, AV which are related by AVX = -AExAl, 
etc.... Thus, the charge within the cell may be expressed in terms of the net 
transmission line voltage, or, 

Al[ AVX (n,m,q) + AVy (n,m,q) +AVZ (n,m,q) ] = -q(n,m,q)/e (6.3) 
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It is worthwhile reiterate that AVX (n,m,q), etc.. is not the voltage amplitude in a 
particular line, but rather the difference in voltage between two opposite faces 
on either side of the cell. The next task is to calculate AV and this is done with 
the aid of Fig.6.2. We first look at AVZ for the two xy faces of the cell. For the 
face at z=qAl, for example, we need to calculate the outwardly directed, average 
field perpendicular to this face. This field is simply the average of the fields 
contained in the four transmission lines which border the face. If we denote this 
field by Vz+ then 

Vz+ = (1/4) [ V ^ n ^ q ) + V ^ m - ^ q ) +Vyz(n,m,q) + V ^ n - l ^ q ) ] (6.4) 

Vxz(n,m,q) 

VYZ(n,m,q) 

ZYZ(n,m,q) 

n,m,q) NODE 

(n,m,q) CELL TLM LINES 

FIG. 6.2 TLM FIELDS Vxz(n,m,q), Vxz(n,m-l,q), VYZ(n,m,q), 
AND VYZ(n-l,m,q) EMERGING FROM THE POSITIVE XY 
FACE OF THE TLM CELL. FIELDS ARE AVERAGED 
OVER THE CELL FACE AREA. THE DIFFERENCE IN 
FIELDS BETWEEN OPPOSITE FACES LEADS TO THE 
CELL CHARGE. 
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and we remind ourselves of the fact that each term on the right side is the sum of 
a forward and backward wave, e.g., Vxy(n,m,q) = Vxyforr^q) + Vxy (n,m,q), 
etc... Note that the second subscript in each term is z, indicating the proper 
polarization. Next we write down the field for the xy face located at z= (q-l)Al. 
Denoting the average field for this face by Vz., we have 

Vz = (1/4) [ V ^ n ^ q - l H V ^ i M n - l ^ - l ) +Vyz(n,m,q-l)+Vyz(n-l,m,q-l)] (6.5) 

Note that Eq.(6.5) is identical to Eq.(6.4) except for change in the q index, where 
q is now replaced by q-1, since the face is located at z = (q-1) Al . We can now 
calculate the difference 

AVz(n,m,q) = Vz+(n,m,q) - Vz.(n,m,q) (6.6) 

where Vz+ and Vz. are given by Eqs.(6.4) and (6.5). We can now perform 
similar calculations for the x and y directions. The average voltage expressions 
for the yz and zx faces are easily obtained, giving 

V ^ = (1/4) [Vzx(n,m,q)+Vyx(n,m,q)+Vzx(n,m-l,q)+Vyx(n,m,q-l)] (6.7) 

Vyz=(l/4)[Vzx(n-l,m,q)+Vyx(n-l,m,q)+Vzx(n-l,m-l,q)+Vyx(n-l,m,q-l)] (6.8) 

V ^ = (l/4)[Vzy(n,m,q)+Vxy(n,m,q)+Vxy(n-l,m,q)+Vzy(n,m,q-l)] (6.9) 

V ^ K l / ^ l V ^ m - l ^ + V ^ m - l ^ + V ^ n - ^ m - l ^ + V ^ m - l ^ - l ) ] (6.10) 

As with the z component, the net differences in voltage in he x and y directions 
are 

AVx(n,m,q) = Vx+(n,m,q) -Vx.(n,m,q) (6.11) 

AVy(n,m,q) = Vy+(n,m,q) - Vy.(n,m,q) (6.12) 
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The total net field outwardly directed from the (n,m,q) cell, denoted by 
AV(n,m,q) , is then given by 

AV(n,m,q)= AVx(n,m,q) + AVy(n,m,q) +AVz(n,m,q) (6.13) 

The total net charge contained in the (n,m,q) cell, during the kth time step, is de
noted by qk(n,m,q). Thus, 

qk(n,m,q) = -eAlAVk(n,m,q) (6.14) 

Eq.(6.14) allows us to calculate the net charge during any time step of the tran
sient process . We also wish to find the time change in the net charge, i.e., the 
iterative change. In order to do this, we state the net charge for the k+1 step: 

qk+1(n,m,q) - -eAlAVk+1(n,m,q) (6.15) 

We then take the difference between the expressions, 

qk+1(n,m,q) = qk(n,m,q) -sAlAVk+1(n,m,q)+ eAlAVk(n,m,q) (6.16) 

where it is understand that AVk+1(n,m,q) is expressed in k state variables through 
the usual iterative equations relating (k+1) voltage waves to k voltage waves. 

Very often, when a semiconductor is ionized, the following charge carrier 
conditions may prevail. We assume there exists a large background plasma of 
equal numbers of holes and electrons, with each charge equal to q0(n,m,q), 
and a small excess of either positive or negative charge , which we now denote 
by Aq+(n,m,q) and Aq.(n,m,q) with Aq+.(n,m,q) « q0(n,m,q) and Aq.(n,m,q) « 
q0(n,m,q).The positive and negative charge in each cell is therefore 

q+(n,m,q) = q0(n,m,q) +Aq+(n,m,q) (6.17a) 
q.(n,m,q) = q0(n,m,q) (6.17b) 

which applies if the net cell charge is positive and 
q+(n,m,q) =q0(n,m,q) (6.18a) 
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q.(n,m,q) = q0(n,m,q) +Aq_(n,m,q) (6.18b) 

if the net charge is negative. The total number of carriers, of each type, control 
the resistivity. The carrier numbers, in turn, are controlled by the transport 
properties. Later in the Chapter we restate the iteration in terms of the node 
parameters and the transport properties. 

6.3 Dependence of Conductivity on Carrier Properties 

Understanding the electromagnetic wave behavior in a semiconductor requires us 
to first understand the properties of the semiconductor. Accordingly, we briefly 
review the dependence of the semiconductor conductivity (from which we may 
obtain the node resistance) on the carrier properties[l]. In particular we employ 
the carrier cell occupancy, and the mobility of the carriers, expressed in cell no
tation. For illustrative purposes, we again choose a semiconductor with electron 
and hole carriers, each having different transport properties, such as differing 
drift velocities, diffusion constants, recombination times, etc... The following 
parallels the discussion in Chapter II except that now the electron and hole 
number occupancies are allowed to differ. First we relate the conductivity to the 
to the carrier properties, in terms of the TLM notation. We use the conductivity 
relationship corresponding to Eq(2.54 ), allowing for different hole and electron 
densities, as well as velocities. Within each cell the conductivity o"(n,m,q) is 
given by 

o-(n,m,q) =[em(n,m,q)«(n,m,q)+e|Xp(n,m,q)p(n,m,q)] /Al3 (6.19) 

where n (n,m,q) = number electrons in (n,m,q) cell 
/?(n,m,q) = number holes in (n,m,q) cell 
jin (n,m,q) = average electron mobility in (n,m,q) cell 
(ip(n,m,q) = average hole mobility in (n ,m,q) cell 
e = electron charge 

and the electron and hole mobilities satisfy the relations Ue(n,m,q) = 
l^(n,m,q)EAv(n,m,q) and uh(n,m,q) = |ah(n,m,q)EAv(n,m,q), where Ue(n,m,q) 
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and Uh(n,m,q) are the average electron and hole drift velocities of the (n,m,q) cell 
and EAV(n,m,q) is the average field for that cell, already determined in Chapter 2 
(see Eqs.(2.35)-(2.37)). We recall that EAV(n,m,q) represents the average of the 
various fields in the transmission lines surrounding the cell. Also note that we use 
the italicized symbols «(n,m,q) andjp(n,m,q) , to differentiate the electron density 
from the cell index n. As shown in Chapter 2, once we know the cell 
conductivity, the node resistance of the (n,m,q) cell is determined by taking the 
conductivity average of the eight cells surrounding the node, given by Eq.(2.33). 

Integration Of Carrier Transport Using TLM Notation. 
Changes In Cell Occupancy And Its Effect On TLM Iteration 

6.4 General Continuity Equations 

We see from Eq.(6.19) that the conductivity depends directly on the cell occu
pancy of holes and electrons. The transport phenomena controls the cell occu
pancy, by virtue of the carrier motion , generation, and recombination. It is ap
propriate therefore to track the carrier occupancy in each cell and at each time 
step. Toward this goal we employ the continuity equations for the cell occupancy 
of electrons and holes, or(omitting the cell index notation) 

(dn/dt)= (5«/at)GEN + (5«/a)REcoMB + (5«/at)DRiFT+(a»/at)DiFF (6.20) 

(dp/dt)= (dp/dt)Gm + (dp/dt^couB + (dp/dt)DSm+ (dp/dt)Di¥f (6.21) 

where the cell occupancy changes are due to generation, recombination, drift, and 
diffusion, respectively. Our task is now to recast the above equations in terms of 
iterative rate equations for the electron and hole occupancy numbers in each cell, 
i.e., the iterative equations in cell notation. We begin with the generation term, 
caused by light activation. 
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6.5 Carrier Generation Due to Light Activation 

If (dn/dt )GEN = Gk(n,m,q) is the generation rate of electrons in the (n,m,q) cell 
then the number of electrons produced during the kth time step is Gk(n,m,q) At. 
Similarly the holes are generated at a rate Gp(n,m,q) The number of electrons 
and holes during the kth and kth steps are therefore related by 

«k+1(n,m,q) = nk(n,m,q) + Gk(n,m,q)At (6.22) 

/7k+1(n,m,q) =/>k(n,m,q) + Gk(n,m,q)At (6.23) 

A simple illustration is the generation of carriers from a constant light pulse 
impinging on a semiconductor as discussed in Chapter II. Based on that discus
sion, and with the same assumptions, the generation rate for both electrons and 
holes is given by 

Gk(n,m,q) = £ / ( n ^ q ) / UAt (6.24) 

where 
/ f a m , ^ P0EXP{-a[(nAl/l0)-l/2]2 }D(m)At (6.25) 

and 
D(m) =[EXP-(mAl/ho)][EXP(Al/ho)-l] fork^m (6.26) 

with the notation as given in Chapter II. We recall that y^ (n,m,q) is the light en
ergy absorbed in the (n,m,q) cell while £, is the conversion efficiency , U the 
photon energy, ho the attenuation constant, 10 the semiconductor length, and a the 
spatial spread factor of the incident light pulse. Eqs.(6.25)-(6.26) are discussed 
in Chapter II . The spatial variation in Eq.(6.25) ,as well as the attenuation of 
the light pulse in the semiconductor, will of course change the generation rate 
from cell to cell. Another source of carrier generation is that due to avalanching, 
discussed in the following. 
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6.6 Carrier Generation Due to Avalanching: Identical Hole and Electron Drift 
Velocities 

There are other means for producing electron-hole pairs, besides using light ac
tivation. If the electric field in the semiconductor is sufficiently strong, the hole 
or electron carrier will acquire enough kinetic energy to cause impact ionization 
in the lattice, i.e., to produce electron -hole pairs via collision of the lattice and 
the primary carriersfl]. The secondary carriers thus produced can then go on to 
produce additional carriers by the same process, thus causing an avalanche mul
tiplication of carrier current. Usually the avalanche process is described in terms 
of the ionization coefficients of holes and electrons, ap (x) and a„(x), re
spectively, where x is the distance traversed by the carrier, and ap (x) and cxn.(x) 
represent the number of hole -electron pairs generated per unit distance. We can 
then characterize the growth of the individual hole and electron currents, Ip(x) 
and In(x), assuming a knowledge of ap (x) and an (x). For holes the relationship 
describing the growth is 

Ip(x+Ax) -Ip(x) = ap(x)Ip(x)Ax+ a„(x+2Ax)In(x+2Ax)Ax (6.27) 

The right side of the above provides the increment in the hole current due to 
avalanching at x+Ax after a time step At has elapsed. Ax is the incremental 
distance traversed by the hole and electron avalanche currents in time At. 
Generally we will regard Ax as much smaller than the cell length Al and that 
Ax/At may be approximated by the drift velocity. The electric field is assumed 
to be in the + x direction. Note that the increment in the hole current is made up 
of two contributions; the first stems from the ionization impact of the hole 
current, while the second stems from that of the electron current. The x+2Ax 
argument in the electron current stems from the opposite motion of the electrons 
In the interest of simplicity we assume, for the moment, that the hole and elec
tron drift velocities are the same. Indeed, in order to achieve the large fields 
needed for avalanching, both velocities will approach their saturated values, 
which have comparable values. 
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We can also express the currents Ip(x) , In(x) in terms of the hole and 
electron cell occupations given by 

Ip(x) = Al2p(x)eu(x) (6.28a) 

In(x) = Al2»(x)eu(x) (6.28b) 

where u(x) is the same carrier velocity for electrons and holes , p(x), «(x) are 
the carrier cell occupations, e the charge , and Al2 is the current cross-section. 
Similar equations apply of course to Ip(x+Ax) and I„(x±Ax) and to Ip(x±2Ax) and 
I„(x±2Ax). Substitution of the current equations into Eq.(6.27) gives 

/>(x+Ax)={/?(x)u(x)+Ax[ap(x)p(x)u(x)+ 
a„(x+2Ax)n(x+2Ax)u(x+2Ax)] }/u(x+Ax) (6.29) 

where again x+2Ax appears in the electron contribution since the electrons travel 
in the -x direction. We then make a simplification which allows the results to be 
interpreted more easily, namely, we assume the drift velocities are identical for 
carriers within the same cell. Thus u(x)= u(x+Ax) = u(x+2Ax), e tc . , provided x 
remains within a cell This is not a burdensome assumption since Ax is a sub-
element of the cell Al and, in any event, we usually assume all quantities, such as 
the drift velocity are constant within the cell. We also shift the reference so that 
in the previous equations x+Ax -> x, x-»x-Ax, and x+2Ax -» x+Ax. and apply 
the appropriate time step superscripts to the various quantities . Eq.(6.29) 
becomes 

pk+\x) = pk(x-Ax) + Ax [ak
p(x-Ax)pk(x-Ax) + a

k
n(x+Ax)«k(x+Ax)] (6.30) 

It is worthwhile to point the significance of each of the terms in the above. The 
first term represents the motion of the holes from x-Ax to x in the absence of 
avalanching. The first term in the bracket is the contribution of the avalanching 
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holes going from x-Ax to x. The second term is the contribution of avalanching 
electrons emanating from x+Ax . 

We then proceed as before for the electron carriers, starting with the basic 
current equation, corresponding to Eq.(6.27), or 

In(x-Ax) -In(x)= Ax[ccn(x)In(x)+ ccp(x-2Ax)Ip(x-2Ax)] (6.31) 

where x-Ax appears in In(x-Ax) since we are dealing with electron carriers, 
whose motion is opposite to that of the holes. Similarly the avalanching due to 
the holes emanates from x-2Ax. Substituting for the currents, and shifting po
sition as before, the relationship for the electron carrier density is 

«k+1(x) = «k(x+Ax) + Ax [ak
n(x+Ax)«k(x+Ax) + ak

p(x-Ax)pk(x-Ax)] (6.32) 

From Eq.(6.32) and (6.30) we can then proceed to determine the carrier time 
dependence in each cell(inside of which Ax is a sub-element). We postpone this 
step, however, until the hole and electron velocities are allowed to differ, which 
is the more general case, described in the next Section. 

6.7 Avalanching with Differing Hole and Electron Drift Velocities 

Eqs(6.30) and (6.32) represent sub-cell iterations for the hole and electron den
sities when the respective velocities are equal. This simplifies the iterative 
equations; in particular the drift velocity cancels out in the final expressions. 
Under general conditions, however, the velocities will differ, and accordingly we 
must modify Eqs.(6.30) ,(6.32). Besides the drift velocities the increment Ax 
must be replaced by Axp or Axn , depending on the particular carrier avalanche. 
These differentials may be estimated by Axp ~ up(x) At and Axn ~ un(x) At as
suming the avalanche velocities are equal to the hole and electron drift velocities. 
In general this is an approximation , but the ensuing equations are still useful as 
long as we employ avalanche velocities which are much smaller than the 
electromagnetic velocity. In this regard, one should not confuse carrier creation 
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stemming from a front of avalanching holes or electrons (whose velocities are 
approximated by the drift velocities) , with avalanching caused by the sudden 
arrival of a high intensity electromagnetic signal. Although both give rise to 
avalanching, the electromagnetic signal is capable of creating an avalanche re
gion on a much faster time scale. By separating the two phenomena(and not 
lumping them together) we gain greater insight into avalanche effects. 

Looking at the hole current equation first, we again start with Eq.(6.27). As 
before, we then relate the currents to the densities and drift velocities, given by 

Ip(x) = Al2/7(x)eup (6.33a) 

In(x) = Al2«(x)eu„ (6.33b) 

where up, un are the hole and electron velocities. Similar equations for Ip(x±Axp) 
and In(x+Ax) also apply, as well as (x±2Axp) and I„(x+2Ax). The iteration for 
the hole density then becomes, using Eq.(6.30) as a guide, 

/>k+1(x)=pk(x-Axp)+Axp [akp(x-Axp)/>k(x-Axp)] + Axn[(un/up) ak
n(x+Axn)«

k(x+Axn)] 
(6.34) 

where we note now that the factor (un/up) now appears in the second term, (we 
still assume the carrier velocities do not change throughout the cell). The similar 
relationship for the electron iteration is 

«k+1(x) =«k(x+Axn) +Axn [ak
n(x+Axn)n

k(x+Axn)]+Axp[(up/un)a
kp(x-Axp)/(x-Axn)] 

(6.35) 

Eqs.(6.34)-(6.35) are now modified so as to make them applicable to the 
TLM matrix. To simplify matters we assume the sub elements Axn and Axp are 
much smaller than the electromagnetic cell length, Al. This is certainly true if 
the ionization is initiated solely by high energy carriers drifting into a high field 
region, since the drift velocity is much smaller than the propagation velocity. 
Thus Axp « AlAt and Axn « AlAt. 
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With the aforementioned assumptions, we can then revise Eqs.(6.34)-
(6.35) to obtain the increments in the hole and electron cell occupancy numbers, 
thus re-casting the equations in TLM notation Assuming uniformity of the 
densities, drift velocities , and the ionization coefficients, throughout each TLM 
cell, a simple integration of Eqs.(6.34)-(6.35) then yields the sought after 
iterative equations for/? k(n) and n (n), caused by avalanching. 

p k+I(n) = p k(n) + Al [ccp
k(n)/> k(n)+ (uk

n(n)/uk
p(n))ock

n(n)« k(n)] (6.36) 

n k+I(n)= n k(n) + Al [an
k(n)« k(n)+ (uk

p(n)/uk
n(n))ak

p(n)/> k(n)] (6.37) 

We reiterate that in the above iterations, p(n) and «(n) are the actual numbers of 
holes and electrons in the TLM (n) cell, and are related to the densities by divid
ing p(n) and w(n) by Al3. Since the differentials Axp and Ax„ are much smaller 
than Al , any end effects at the cell boundaries are ignored. Also note that we 
have also assigned cell indices to the drift velocities since these may change from 
cell to cell as well as from one time step to another. Note that the second terms 
on the right side in Eqs.(6.36) and (6.37) correspond to (dp/dt )GEN and 
(9«/9t)GEN, caused by the avalanching. 

In the above iterations we have assumed a variation in only the x direction, 
in both field and drift velocity, and have therefore omitted the m, q indices. In 
general, however, the field, and hence the drift velocity will have both x , y , and 
z components, so that, e.g., 

up
k =upx

ki + uk
pyj + uk

pzq . (6.38) 

Since there is no variation over the cell, however, the same type iteration applies 
in 3D. The method of calculation of the 3D avalanche iteration is almost identi
cal to that given in the previous discussion, while remembering that the ratio 
(uk

n(n,m,q)/uk
p(n,m,q)), as in the case of Eq.(6.36), represents the ratio of the 

magnitudes of the two drift velocities. The simplest way to view the 3D case is 
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to rotate the cell so that the i vector, for example, is aligned with the field and 
velocity, thus regaining the ID result. Except for the (n,m,q) argument the result 
is the same as Eq.(6.36), or 

p k+1(n,m,q)=pk(n,m,q) +A1 [ccp
k(n,m,q))/? k(n,m,q)+rak

n(n,m,q)« k(n,m,q)] (6.39) 

where 

r= un
k(n,m,q)/up

k(n,m,q) (6.40) 

and 

un
k(n,m,q)=[(unx

k(n,m,q)2 +(uny
k(n,m,q)2+ (uj^ir^q)2]1 '2 (6.41) 

up
k(n,m,q)=[(upx

k(n,m,q)2 +(upy
k(n,m,q)2+ (Upz

k(ii,m,q)2]1/2 (6.42) 

The corresponding iteration for the electron carriers is 

n k+1(n,m,q) = nk(n,m,q)+Al [an
k(n,m,q)« k(n,m,q)+ (l/r)ak

p(n,m,q)p k(n,mq)] 
(6.43) 

Additional corrections may be introduced to take into account the electric 
field dependence. Both the drift velocity and the ionization coefficient rely on 
the magnitude of the electric field in the (n,m,q) cell. During each step of the 
iteration, the field is calculated from E k

AV(n,m,q), i.e. , the average field 
obtained from the transmission lines surrounding the cell (see Eqs.(2.35)-(2.37)). 
From E k

Av(n,ni,q), one may then obtain the corrected drift velocities and 
ionization coefficients using semiconductor models available in the literature. 

One issue that has not been addressed thus far, in regard to avalanching, 
has been the observed delay in the onset of the ionization process, once the ava
lanche field is in place about a region(in our case, a cell). In other words, the 
ionization coefficients may not become effective immediately at the start of a 
time step, but instead may experience a delay, ranging from a fraction of a time 
step to several time steps. Naturally, if there is a delay in the ionization, the 
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number of carriers produced for that given time step (in a given cell) will be re
duced; indeed, where the ionization delay is greater than the time step, little or 
no carriers will be produced for the given cell. In cases where the ionization 
delay exceeds many time steps, an unusual phenomenon may occur; the ioni
zation may occur after the high intensity portion of the avalanche field has left 
the particular cell. So far as the computer iteration is concerned, however, the in
corporation of the ionization delay does not represent any fundamental problem. 

6.8 Two Step Generation Process 

In the previous Sections we described two sources of conductivity, avalanching 
and photo-ionization , and incorporated them into the TLM matrix formulation. 
It is important to mention , however, that either one of these sources can create 
an ionization region spatially removed from the original source region. The 
experimental conditions for this to occur are obvious. For example an ionization 
region, initially created by avalanching carriers or photo-ionization, can then 
emit high intensity light signals. The light signals may be capable of further 
ionizing the semiconductor, by means of photo-ionization, away from the initial 
ionization region. Another form of ionization may occur when the elec
tromagnetic field re-arranges itself in response to the initial ionization region 
(again caused by either avalanching or photo-ionization) such that the resultant 
electric field is enhanced in some region spatially removed from the original re
gion. The newly created, field enhanced, region then undergoes avalanche 
breakdown. It is very likely that the two step processes play a crucial role in 
numerous breakdown phenomena. In addition the two processes, photoconduc
tivity and avalanching, may co-exist, possibly reducing breakdown thresholds. 
We do not consider the two step processes any further in this Chapter, but we do 
emphasize that the TLM formulation is extremely well suited for describing such 
processes, especially since the phenomena involved may occur on a very fast 
time scale. In Chapter VII we describe field enhancement due to the partial (in a 
spatial sense) photo-ionization of a semiconductor gap. Also, in Chapter VIII 
we discuss a SPICE technique for describing the breakdown process in a 
semiconductor switch , incorporated into a transmission line, in which a pro
gressive breakdown occurs caused by field enhancement. 
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6.9 Recombination 

In this Section we include recombination effects in the iteration. As is well 
known, there are a large number of recombination mechanisms, many of which 
occur simultaneously in semiconductors. Typically the time scales involved in 
the recombination process will vary over a wide range but are usually much 
longer than the electromagnetic delay time. For illustrative purposes we select a 
single quite common mechanism. 

For concreteness, we assume recombination of carriers is achieved via the 
existence of a single energy level in the midgap region. The midgap energy level 
serves as an indirect means for carrier recombination, i.e., these deep level sites 
achieve the recombination by a two step process: first an electron is captured 
followed by the capture of a hole. The capture and emission rates, involved in the 
recombination process, are assumed to differ for holes and electrons and holes, 
and to be field dependent as well. First we set forth the following definitions[l] 

Nx(n,m,q) = Number of recombination sites in (n,m,q) cell 
«T(n,m,q) = Number of recombination sites filled with electrons in (n,m,q) cell 
/>r(n,m,q) = Number of empty recombination sites in (n,m,q) cell 

and which satisfy 

NT(n,m,q)= nT(n,m,q) + />r(n,m,q) (6.44) 

With these definitions we are able to write down the rate equation for electrons 

d«/dt)REcoM= en«T(n,m,q)-cn/>r(n,m,q)«(n,m,q) (6.45) 

en is the emission coefficient representing the transition from the trap to the 
conduction band. cn is the capture coefficient for an electron, representing a 
transition from the conduction band to the trap. As is often done, We can make 
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use of the fact that e„ is related to cn , using equilibrium arguments . We then as
sume the emission coefficient does not change under non-equilibrium conditions. 

A similar rate equation for holes may be expressed: 

(dp/dt )RECOM= ep/>r(n,m,q) - CpWT(n,m,q)p(n,m,q) (6.46) 

ep and cp are the emission and capture coefficients for the holes. We recall from 
the semiconductor background that the emission of a hole to the valence band is 
equivalent to the emission of an electron from the valence band to the trapping 
site, while the capture of a hole represents just the inverse process(see, for ex
ample, Ref [1]). Eqs.(6.45) and (6.46) give the change in the electron and hole 
numbers for the (n,m,q) cell, arising solely from indirect recombination with a 
single deep trap. 

The iterative change in the electron number assuming for the moment that 
only the recombination process is active, is thus 

«k+1(n,m,q) = wk(n,m,q)+ (dn/dt )RECOM At (6.47) 

Eq.(6.47)simply expresses the number of electron carriers, during the (k+l)th 
interval, in terms of «k(n,m,q) and a first order correction term at time At later. A 
similar iteration for the hole number yields 

pk+\n,m,q) =/(n,m,q)+(5Jp/5t)REcoMAt (6.48) 

We again stress the fact that the recombination iteration depends entirely on the 
particular mechanism, and we have chosen one particular example, a single trap, 
with rate expressions given by Eq.(6.45) and (6.46). Emission and capture 
coefficients for a single trap, for example, EL2 in GaAs, are discussed in the 
semiconductor literature. In general, of course, many traps will exist simultane
ously , in which case the number of rate equations will multiply. The identifica-



Cell Discharge and Transport Integration 353 

tion of traps, their energy levels, and their emission and capture coefficients, are 
the subjects of ongoing investigation among many semiconductor workers, with 
the aim of characterizing recombination properties. 

6. 10 Limitations of Simple Exponential Recovery Model 

In Eq.(6.1) we assumed an exponential recovery of the resistivity, without re
lying, for example, on the solutions to Eqs.(6.45)-(6.48) to obtain the recovery. 
Given the convenience and simplicity of the exponential recovery, it is worth
while to give examples under what conditions such a recovery is valid. One 
example is provided by a semiconductor with indirect recombination(as 
described in the previous Section) in which excess carriers are injected into a 
depletion region containing traps, i.e., a region with a deficit of carriers created 
by a high resistivity bulk semiconductor or a reversed biased diode. Under these 
condition holes and electrons recombine at a constant rate and a lifetime 
constant, x , may be ascribed to the exponential growth of the resistivity. 

Another example of exponential recovery is provided by the low level 
injection of carriers into an equilibrium plasma. The problem with low level 
injection is that the equilibrium background carrier densities, which produces 
conductivity, is assumed very high and thus the background conductivity often 
dominates the electromagnetic behavior. As a result, during any transient phase, 
which is our main interest, it is impossible to differentiate the effects of the 
injected carriers from that of the "equilibrium" carriers. This means that under 
transient conditions a simple exponential recovery based on low level injection is 
inadequate, and we must rely on numerical techniques to accurately model the 
recovery. The numerical methods take into account the total conductivity, as well 
as the differing transient properties of holes and electrons, including the 
recombination coefficients, the drift velocities, and the differing dependence on 
the electric field. 

6.11 Carrier Drift 

We next consider the contribution of drift to the carrier density. We continue to 
use the same grid, wherein the spacing is determined by the electromagnetic 
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velocity. The drift velocity is about three orders of magnitude smaller than the 
electromagnetic velocity. Thus, during the delay time, At, the carriers will move 
only a very short distance relative to the transmission line length,Al. We will 
therefore resort to certain approximations which make use of this disparity 
between the drift and electromagnetic velocities. We first consider the motion of 
holes and assume that t = kAt, and the hole number is /?k(n,m,q). The average 
electric field for the (n,m,q) cell is calculated on the basis of the transmission line 
voltages surrounding the cell, as indicated in Chapter 2. This enables us to 
calculate the total average field EAV(n,m,q), which has the components 

EAV(n,m,q) = EAV;X(n,m,q) i + EAV,y(n,m,q)j + EAV,z(n,m,q) k (6.49) 

where i j , k, are the unit vectors in the x,y, and z directions. If we focus on the 
hole carriers, for the moment, the velocity of the hole carriers Up(n,m,q) is re
lated to the field by 

up(n,m,q) = j^(n,m,q) EAV(m,m,q) (6.50) 

and the velocity may be decomposed accordingly, 

up(n,m,q) = upx(n,m,q)i +upy(n,m,q)j upz(n,m,q)k (6.51) 

The changes in the hole number may be explained with the help of Fig.6.3, 
which shows two adjoining cells. At the beginning of the k time step the hole 
number is p^{a,va.,q). At the end of the next time one may regard the holes as 
having moved uniformly in the direction of E with velocity up (n,m,q). Thus, a 
portion of the holes, which were originally contained in the (n,m,q) cell volume, 
will have exited the volume after the next time step. The holes that are about to 
exit are shown contained in the shaded volume(right side) . The number of holes 
exiting the cell is easy to estimate, assuming up(n,m,q) « v(n,m,q). The number 
exiting in the x direction may be estimated by (upx(n,m,q) At/Al)pk(n,m,q), with 
these holes now residing in the (n+l,m,q) cell during the (k+1) step. Similarly, 
the number that have exited in the y direction is given by 
(upy(n,m,q)t/Al)pk(n,m,q) (now in the (n,m+l,q) cell) and that for the z direction 
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(n-l,m,q) (n,m,q) (n+l,m,q) 

FIG. 6.3 HOLE CARRIERS LEAVING (n,m,q) CELL AND 
ENTERING THE (n+l,m,q) CELL DURING At (SHADED, 
RIGHT SIDE), DUE TO ELECTRIC DRIFT IN X DIRECTION. 

NUMBER OF HOLE CARRIERS LEAVING (n,m) IS 
uPx(n,m,q)/7(n,m,q) At/Al 

WHERE: 
UP][(n,m,q) = HOLE DRIFT VELOCITY 
/?(n,m,q) = NUMBER HOLE CARRIERS IN (n,m,q) CELL 

SIMILARLY, HOLE CARRIERS ENTERING CELL IS 
Upi(n-1 ,m,q) p(n-\ ,m,q) At/Al 

is (upz (n,m,q)t/Al)p (n,m,q) (now in the (n,m,q+l) cell), The total number of 
holes leaving the cell, pko\n is thus 

^kouT(n,m,aJ=(UpXAt/Al)/(n,m,q)+(upyAt/Al)/7V,m,aJ+(Up2At/Al)/7Vrn,q) 
(6.52) 

Having obtained the holes that have left the cell, we must now obtain the number 
of holes entering the cell during the k th step. The arguments are identical, with 
the incoming holes coming from the (n-l,m,q), (n,m-l,q) , and (n,m,q-l) cells. 
The number of cells entering, pk m , is 
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pk
m (n,m,q)= (upx(n,m^oJAt/Al)pk(n-l,m,q) + (upy(n,m,q)At/Al)pk(n,m-l,q) + 

(upz(n,m,q)Al/Al)/?k(n,m,q-l) (6.53) 

We can now relate the number of holes in the (n,m,q) cell at the k time step to 
that at the kth step, assuming the changes arise solely from hole drift. Thus, from 
Eqs.(6.52)-(6.53), 

pk+l(n,m,q)=p\n,m,q) + pk
 m(n,m,q)-pk

0uv(n,m,q) (6.54) 

Eq.(6.54) is the desired iteration for the transport of holes where, we identify the 
last two terms on the right side with (dp/dt )DRIFT • Note that the right side con
tains neighboring cells, as well as the principal cell, all evaluated during the kth 
step. The velocities are of course are field dependent, wherein up (n,m„q) will 
rely on the total field, given by Eq.(6.49) at the kth time step 

A similar iteration may be developed for the electrons. The major difference 
is that the electrons will respond fashion in opposite because of their negative 
charge. The number of electrons exiting and entering the cell, «kour and nk

m 

during the kth time step are then 

"kouT (n,m,q)= (unx(n,m,q)At/Al)«k(n,m,q) + (uay(n,m,q)At/Al)«k(n,m,q) + 
(unz(ii,m,q)At/Al>tk(ii,m,q) (6.55) 

«kiN (n,m,q) = (unx(n,m,q)At/Al)wk(n+l,m,q) + (uny(n,m,q)At/Al)«k(n,m+l,q) + 
(uBZ(ii,ni,q)Al/Al>ik(n,m,q+l) (6.56) 

Note that for nk^ the incoming electrons emanate from the n+1, m+1, q+1 cells 
because of their sign. Making use of Eqs.(6.55) and (6.56) then provides the 
iteration for the number of electrons in the (n,m,q) cell, or 

«k+1 (n,m,q) = «k(n,m,q) +«kiN(n,m,q)-«k
0uT(n,m,q) (6.57) 

and the last two terms on the right may be identified with (dn/dt )DRIFT 
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The iterative equations, Eqs.(6.54) and (6.57), rely on a nearest neighbor ap
proximation, which becomes more and more accurate as the ratio of the drift to 
electromagnetic velocities decreases. The nearest neighbors are the six cells 
surrounding the (n,m) cell which share cell faces (in Fig. 6.3 only one of the 
nearest cell neighbors is shown). If one wishes to gain greater accuracy, then one 
must consider additional neighbors. For example one may consider all 26 
neighbors surrounding the (n,m,q) cell, which come into contact with the (n,m,q), 
either at a face, edge, or corner. 

6.12 Cell Charge Iteration. Equivalence of Drift and Inter-Cell Currents 

As was stated earlier in the Chapter the carrier occupancy change due to drift is 
equivalent to that from the current flowing between cells via the node resistors. 
This is discussed in more explicit fashion, in which first we calculate the current 
in terms of the carrier properties and then calculate the change in the cell charge 
from one step to the next. We begin by calculating the current entering and 
leaving the (n,m,q) cell, in much the same fashion that we obtained the particle 
current. To simplify matters, we assume the field is applied in the z direction. 
The current at the z+ face denoted by Iz+(n,m,q) is then 

Iz+(n,m,q) = In z_(n,m,q) +Ipz+(n,m,q) (6.58) 

and, similarly for the z- face the current is 

Iz.(n,m,q) = Inz_(n,m,q) +Ipz_(n,m,q) (6.59) 

The change in the cell charge Aq(n,m,q) in the (n,m,q) cell is 

Aq(n,m,q)/At = Iz.(n,m,q) - Iz+(n,m,q) (6.60) 

Note the minus sign at the z+ face, which indicates positive charge leaving the 
(n,m,q) cell (or, equivalently, negative charge entering the cell at z+). To relate 



358 Electromagnetic Analysis Using Transmission Line Variables 

the current to the carrier properties we use the relationships, jp= o>,E, j n = 0nE 
to obtain 

Iz_ = Al2 { °p?z_(n,m,q)+ ^z.(n,m,q)}Ez.(n,m,q)} (6.61) 

Iz+
 = A l 2 ^CTp,z+(n>m>q)+ CTn,zf(n,m,q)}Erf(n,m,q)} (6.62) 

where the z+, z- subscripts indicate the conductivities centered about the z+,z-
cell faces. Since the conductivities are located at the z- and z+ faces, we may 
form the averages 

ap,z.(n,m,q) = [CT
p(n,m,q) + ^p(n,m,q-l)]/2 (6.63) 

°p5Z+(n,m,q) = [CT
p(n,m,q) + CT

p(n,m>q+l)]/2 (6.64) 

CTn,z-(n,m,q) = [an(n,m,q) + V w q - i P (6.65) 

% jZ+(n,m,q) = [°n(n,m,q) + V ^ q + l ) ] ^ (6.66) 

As discussed in Chapter II the conductivities at the faces represent auxiliary 
cells , which are related to the usual cell conductivities via Eqs.(6.63)-(6.66). We 
still have not expressed the conductivities in terms of the carrier properties, and 
these are obtained from the standard transport relationships 

°p(n,m,q) = (e/Al3) Hp(n,m,q)/?(n,m,q) (6.67) 

a
n(n,m,q) = (e/Al3) Hn(n,m,q)w(n,m,q) (6.68) 

We then express the fields at the cell faces, z+ and z- , in terms of the TLM 
voltage waves associated with the cell, 
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Ez+(n,m,q) = -Al Vz+(n,m,q) (6.69a) 

Ez.(n,m,q) =-Al Vz.(n,m,q) (6.69b) 

where Vz+(n,m,q) , Vz.(n,m,q) are the z directed voltage waves , which with the 
help of Fig.6.2 are given by 

Vz+(n,m,q)=(l/4)[Vxz(n>m,q)+Vxz(n,m-l,q) +Vy2(n,m,q)+Vyz(n-l,m,q) (6.70) 

Vz-(n,m,q)=(l/4)[Vxz(n,m,q-l)+Vxz(n,m-l,q-l)+Vyz(n,m,q-l)+Vyz(n-l,m,q-l) 
(6.71) 

Finally we return to the cell charge iteration based on Eq.(6.60), or 

qk+1(n,m,q) = qk(n,m,q) + At[Ik
z.(n,m,q)-Ik

z+(n,m,q)] (6.72) 

The current terms Ik
z.(n,m,q) , Ik

z+(n,m,q) in Eq.(6.72) may then be expressed in 
terms of either the TLM formulation (voltage waves and node resistors), or in 
terms of the equivalent semiconductor properties. Continuing with Eq.(6.72), 
we substitute Eqs.(6.61)-(6.62) into (6.72) to obtain 

qk+1(n,m,q)-qk(n,m,q) =Al2At[ap,z.(n,m,q) + o-nz_(n,m,q)] Ek
z_(n,m,q) 

- Al2At[p>z+(n,m,q)+ on,z+(n,m,q)] Ek
z+(n,m,q) (6.73a) 

where CTP)Z.(n,m,q), etc..., are given by Eqs.(6.63)-(6.66). 

To recast the above in terms of TLM parameters, we relate Ek
z. and Ek

z+ to 
the voltage waves using Eqs.(6.69)-(6.71). and then relate the face centered 
conductivities to the node resistors R(n,m,q) and R(n,m), using the 2D 
expressions in Chapter II. For small changes , the net charge iteration is then 
found to be equivalent to the TLM iteration given in Eq.(6.16). This result is 
found by first calculating AVk+1(n,m,q) (in terms of the k state values) in 
Eq.(6.16) and then expanding under the condition of small loss. Use is made of 
the TLM relation, Z0=l/ve. If the drifting carriers traverse only the z+ nodes, then 
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the change in cell charge is quickly evident. The subject is further explored in 
Chapter VII. 

We can also cast Eq.(6.73a) in terms of the semiconductor properties, if we 

substitute Eqs.(6.63)-(6,66),(6.67)-(6.68) and expand Mp(n,m,q-1), Mn(n,m,q+1), 
Ez+(n,m,q), and Ez.(n,m,q) about the central cell(n,m,q). The approximate change 
in cell charge is then 

qk+1(n,m,q) - qk(n,m,q)= (eupz(n,m,q)At/Al )[/(n,m,q-l)- ;7
k(n,m,q)] 

- (eUnz(n,m,q)At/Al)[ «k(n,m,q+l)- n (n,m,q)] (6.73b) 

We remind ourselves that the right side of the above is a small quantity based on 
the fact that upz(n,m,q), Unzfon^q) are each much smaller than the electromag
netic velocity Al/At. 

We now reconcile the cell charge iteration in Eq.(6.72) with the results of 
the drift model given in Section 6.11. We should not expect any differences 
since both results are based on the same semiconductor drift properties. 
Consider the carrier drift model used in Section 4.11. By definition the change 
in the cell charge is 

qk+I(n,m,q)-qk(n,m,q)=e|>k+1(^m^-/(n 'm^]-e["k+1(n 'm 'q)-"Vm,q)] (6.73c) 

We then insert the equations (6.52)-(6.57) from the drift discussion in the above, 
where for purposes of comparison we consider only the z component of the drift 
velocity. This gives precisely the same result as Eq.(6.73b), as expected, since 
both results derive from the semiconductor model. 

Finally we point out that although there is a large disparity in the carrier drift 
and wave propagation velocities, and although charge transport occurs only at the 
edges of the cells, this does not prevent the TLM waves from re-adjusting the 
electric fields at the speed of the propagation velocity. In the following Chapter, 
for example, we will show in a simulation that the fields at the boundary of a 
conducting region(produced by a nanosecond laser pulse) will grow at a rate 
commensurate with the propagation velocity. 
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6.13 Carrier Diffusion 

As is well known, random thermal processes in semiconductors give rise to car
rier flow from regions of high carrier concentration to regions of lower concen
tration. The hole and electron diffusion equations are 

(Jp)diff= -(e/Al3)DpV/?(n,m,q) (6.74) 
(J„)d,ff= (e/Al3)DnV«(n,m,q) (6.75) 

where (Jp)diff, (Jn)diff, are the hole and electron current densities, caused by diffu
sion, p(n,m,q) and «(n,m,q) are the number of holes and electrons occupying the 
cell of volume Al3. Dp, Dn are the diffusion constants for holes and electrons , 
and e is the electron charge(absolute value). Note the negative sign for the hole 
current, which arises since we assume a positive density gradient, and therefore 
the motion of the holes, as well as the hole current, are in the negative direction. 
With the electrons, of course, the current is opposite to the electron flow and no 
negative sign is necessary. The discussion of the diffusion constants is given in 
the standard semiconductor references [1]. 

The rate equations corresponding to Eqs.(6.74) and (6.75) are transcribed 
into cellular notation. For this purpose , we may visualize the diffusion taking 
place between adjoining cells, (n-l,m,q), (n,m,q), and (n+l,m,q), and that both 
the hole and electron cell occupancy increases with x(or index number n) . We 
now wish to determine the time change in the number of holes contained in the 
(n,m,q) cell, resulting from diffusion. We first calculate the diffusion of holes 
between (n+l,m,q) to (n,m,q). Since the number of holes in (n+l,m,q) is greater 
than that of (n,m,q) the holes will diffuse from (n+l,m,q) to (n,m,q). Just as with 
drift phenomena, we may obtain the number of holes entering (n,m,q) from 
(n+l,m,q) , during the kth time step. This number, for the x direction, is des
ignated as p\m, 

p\ iN(n,m,q) =(Dp(n,m,q)/Al2){ pk
x(n+l,m,q) -pkJn,m,q)} At (6.76) 
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Eq.(6.76) is obtained from Eq.(6.74) by remembering that the cross-section for 
the current density is Al2 and that the gradient of the hole number is the differ
ence in hole numbers between the two cells divided by Al. We then set (Jp)diff Al2 

At equal to ep\ iN(n,m,q) to obtain Eq.(6.76). In like manner we can then obtain 
the number of holes leaving the cell which occurs when the holes go from 
(n,m,q) to (n-l,m,q) during the k step. For the x direction we call this 
p\om(n,m,q). 

p\om (n,m,q) = (Dp(n,m,q)/Al2) {/?k(n,m,q) -pk(n-l,m,q)}At (6.77) 

Note that we have provided cell indices to Dp(n,m,q) to indicate that the 
diffusion constant should be evaluated at each cell during the time step. We are 
now prepared to write down the iterative equation relating the number of holes 
in the (n,m,q) cell, during the k+lth time step, to that during the kth step, caused 
by diffusion in the x direction. Combining Eqs.(6.76) and (6.77). 

/7k+1(n,m,q) =/?k(n,m,q) + [ p^ - p ' W ] (6.78) 

Since Eq.(6.78) only applies to diffusion in the x direction., we must also ac
count the y and z directions as well, thus obtaining the complete hole diffusion 
iteration, or, 

/>k+1(n,m,q) = /(n,m,q) + (/*,,„ - P^our ) +(Pk
y,IN - i*y.our ) +(^Z,IN - ̂ o u r ) 

(6.79) 

where the definitions for P'V.IN, P^IN, etc... are similar to Eqs.(6.76) and (6.72). 
An analogous iteration also exists for the electron carriers: 

nk+1(n,m,q) = nk(n,m,q) +(N\m - N^our) +(Nk
y,iN - Nk

y,our) +(Nkz,iN - N^our ) 
(6.80) 

The diffusion of carriers into the (n,m,q) cell of course contributes to the con
ductivity and changes the recombination properties, as well. 
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6.14 Frequency of Transport Iteration 

Since the drift and diffusion transport phenomena are generally much slower than 
that of the electromagnetic type, we should question whether it is essential to 
perform the transport iteration during each time step. The cell size, and the 
corresponding time step, are determined from the outset, by the electromagnetic 
behavior. Therefore, during successive time steps, the changes in the cell occu
pancy will not be noticeable, except at the border regions of the cell. This is due 
to the much slower carrier drift and diffusion velocities, u(n,m,q) and 
uDiFF(n,m,q), compared to the electromagnetic velocity, v(n,m,q). As shown in 
Fig.6.3, if we are dealing with a duration of At, then only a small region , near 
the cell border, is occupied by the incoming carriers from the adjacent cell. The 
carriers in this narrow region, however, are averaged over the entire cell. This 
means that over the next time step some carriers(though small in number) will be 
treated as though their drift (or diffusion) velocity is comparable to the 
propagation velocity. This of course is not a real result but an artifact of the type 
of iteration selected. If the cell size(or time step) is made sufficiently small 
enough, the accompanying artifact also shrinks in size. 

An alternate approach is to postpone the transport iteration until such time 
that the carrier front traverses the cell length. If Ak is the number of time steps 
needed for the front to traverse the cell 

Ak~ v(n,m,q)/u(n,m,q) for carrier drift (6.81a) 
Ak~ v(n,m,q)/UDIFF (n,m,q) for carrier diffusion (6.81b) 

where uDiFF(n,m,q) is of course profile dependent. A useful definition of UDIFF 

(n,m,q) given in cellular notation for the hole carriers is [1] 

uDIFF(n,m,q)=-[D(n,m,q)//?(n,m,q)] [(p(n+l,m,q)-p(n-l,m,q))2Al] (6.82) 

and a similar expression for electrons . The second bracketed term in Eq.(6.82) is 
recognized as the gradient in the x direction. 

The iteration for drift or diffusion, therefore , is not implemented , until a 
number of time steps have elapsed, specified by Eq.(6.81a) or (6.81b). As a 
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result of this iteration, the cell will suddenly acquire carriers when Eq.(6.81a) or 
Eq.(6.81b) is satisfied. At the same time, the electromagnetic iteration may pro
ceed more frequently, with the limit determined by the cell size, i.e., At. 

6.15 Total Contribution to Changes in Carrier Cell Occupancy 

For completeness we state the total iterative equation describing changes in the 
carrier density, taking into account the contributions of carrier generation, re
combination, carrier drift, and diffusion. We confine the iteration to those results 
obtained in the previous Sections, bearing in mind that the carrier generation was 
restricted to a simplified form of light activation and that for recombination we 
considered only a single deep level. In any event, the important point is to 
convey the techniques involved in integrating arbitrary phenomena into the 
transmission line matrix approach. 

Assuming the rate equations are valid, we may sum the rates the for holes 
and electrons to obtain a total iterative equation in which the contributions from 
the various mechanisms which add or subtract carriers from a cell are all 
included. Thus for each carrier the total iteration is 

pk+1 (n,m,q) -p k (n,m,q) = (dp/dt )k
UGm + (dp/dt /AVALANCHE + (dp/dt / W O M B 

+(d Jp/&/Wr+ (dp/dt )k
DIFF 6.83) 

«k+1 (n,m,q) - nk (n,m,q) = (dn/dt /LIGHT + (dm/dt /AVALANCHE + (dn/dt )kR£coMB 
+(d«/dt)k

DRIFT + (dn/dt )k
DIFF (6.84) 

The various rates for the holes and electrons, for each process, are scattered 
throughout the Chapter and are summarized in the following Table. 
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ITERATIVE RATE EQUATIONS FOR VARIOUS TRANSPORT 
PHENOMENA 

PROCESS HOLES ELECTRONS NET CHARGE 
Light Activation Eq.(6.23) Eq.(6.22) Difference 
Avalanche Eq.(6.36) Eq.(6.37) Difference 
Recombination Eq.(6.48) Eq.(6.47) Difference 
Drift Eq.(6.54) Eq.(6.57) Difference 
Diffusion Eq.(6.79) Eq.(6.80) Difference 
Cell Charge Eq.(6.16) 

REFERENCES 

1. S. Wang, Semiconductor Electronics, McGraw Hill, New York, 1966. 



VII. Description of TLM Iteration 

In the previous Chapters we have laid the groundwork for constructing the 
iterative relationships of the electromagnetic fields in a medium undergoing 
conductivity changes, based on the TLM formulation. The actual transcription 
from the physical principles to a workable computer program , however, is not 
entirely straightforward. In this Chapter we examine the iterative steps involved, 
and focus on a particular example, that of a semiconductor switch activated by a 
light pulse, to further illustrate the description. Fig.7.1 gives an outline of the 
main steps in the iteration. Each of the steps is explained in Section 7.2 and the 
Appendices, using the same example of the light activated semiconductor. 
Results of the computer iteration are given for several cases of interest. Before 
delving into the details of the iteration, we first select the configuration to which 
the iteration will correspond. 

7.1 Specification of Geometry 

The example geometry, Fig.7.2, consists of a parallel plate transmission line, 
incorporating a photoconductive switch. We consider the geometry to be two 
dimensional, with rectangular type boundary conditions. The height between 
conductors is taken to be h = 1.5 mm and the width is 5 mm. For this switch, a 
portion of the top conductor, of length lo= 2.5 mm , is removed and substituted 
with a semiconductor of the same length and cross-section as the conductor. The 
gap region, containing the semiconductor, therefore represents a high impedance 
to any incoming wave. The impedance remains high, unless conductivity is 
induced in the semiconductor, either by a light signal or by avalanching. For 
arbitrary inductive capacity of the dielectric region, and with 

366 
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FIG. 7.2 SIDE VIEW OF PHOTOCONDUCTIVE, 
PARALLEL PLATE SWITCH. 

complete activation of the semiconductor (we imagine the semiconductor to be 
replaced by a conductor), the composite impedance of the dielectric region is 
approximated from the parallel plate, transmission line formula, 

Z = (Ho/e0) 
1/2, (h/ws1/2). 1/2-. 376.7 ( h/we"0 (7.1) 

where \i„ is the free space permeability, s0 the free space inductive capacity , and 
e the specific inductive capacity, or relative dielectric constant, of the dielectric 
region beneath the semiconductor(to conform with common engineering usage 
we use e instead of K in Chapters VII and VIII). In almost all the simulations to 
be presented, we employ the value s=l, which yields an impedance value of 
about 113 Q from Eq.(7.1). It is important to make the distinction between the 
impedance of the individual lines, and the composite inpedance. Thus in the 
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case of s = 1, the individual line impedance for the dielectric region is 376.7C2 
while the composite impedance is 113Q. 

The input and output composite impedances, on the other hand, are 
assumed to be 50 Q, a standard value associated with microwave transmission 
lines. The input/output cross-sections are taken to be the same as the device 
cross-section, meaning the same as the dielectric region beneath the activated 
semiconductor. This arrangement implies a dielectric constant of about 5.11 
for the input/output lines. Just as we did with the dielectric region, we should 
then point out that, for the input/output, the impedance of the individual TLM 
lines will then be 166.7Q, as opposed to the 50Q composite value. In any event, 
the device will represent same positive mismatch to the input when e = 1 in the 
dielectric region. One should mention that the width to height ratio of « 3.3, 
together with the presence of the semiconductor, implies that fringing is very 
significant and that radiation from the sides is important as well. To deal with 
such limitations, we must resort to a 3D cell matrix for greater accuracy. In this 
example we forego the 3D treatment in the interest of minimizing the amount of 
detail, emphasizing instead the essential points in the iteration process. 

An important preliminary in the iterative formulation involves breaking up 
the various regions into appropriate cells using the labeling technique described 
in Chapter II and Chapter V. Note the various regions in Fig.7.3, which include 
the semiconductor region (S), the dielectric region(D), and the input(IN) and 
output(0) regions. In addition we have the three conducting regions: the anode, 
cathode , and groundline regions, labeled (CI), C2), and C3) respectively. 
Finally we have the three high impedance regions: (I1),I2), and (13). The high 
impedance region located immediately above the semiconductor, (II), has the 
effect of turning back any wave attempting to leave the top portion of the 
semiconductor Regions (12 )and (13) are adjacent the input and output regions . 
These regions serve as a buffer to the input and output, helping to simulate long 
input and output lines, which serves to prevent unwanted multiple reflections. 
The simulated long lines are implemented with the aid of matching resistors 
discussed in Chapter V and later in this Chapter. 

As noted in the Figure, we first treat a simple boundary type in which the 
cell size in region (D) is a multiple of that in the semiconductor; in this case the 
multiple is three, implying that the propagation velocity in the dielectric region 
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is 3X that in the semiconductor. This also implies a dielectric constant of 9 in 
the semiconductor, obtained from 

FIG. 7.3 VARIOUS REGIONS OF SEMICONDUCTOR 
SWITCH CELL MATRIX. 

SS = (VD/VS) £D (7.2) 

where the subscript denotes the particular region. The delay time in each cell 
TLM line (whether the cell is large or small) is equal to 1.6678ps. 
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The selection of propagation velocities having a multiple relationship is 
done as a matter of convenience since devices with arbitrary dielectric constants 
will in general contain non-aligned quasi nodes at the dielectric/semiconductor 
interface. To treat this situation, we must use the nearest node approach in the 
iteration, as discussed in Chapter V. Section 7.14 illustrates the results of an 
iteration when we are required to use the nearest node approximation. Also, as 
pointed out previously, the device structure is mismatched to the input/output of 
50Q, when the semiconductor is entirely activated to a state of high conductivity. 
The modifications to the program, needed to produce matched structures, 
however, are relatively minor Simulation results for the case of a matched device 
are discussed in Section 7.15 

It may seem odd at first that we show cells in the conduction regions, as 
well as in the high impedance region. There is no wave propagation in these 
regions and therefore one would not expect the need for such cells. There are two 
reasons for continuing the cell structure into these regions. One is that the 
numbering system is easy to extend since the same cell structure is continued 
throughout all the regions (one possible disadvantage here is the added memory 
one must allot; if the conducting regions account for a significant portion of the 
volume, and sufficient memory is a concern, then only cells near the boundary 
should be added). The second reason is that for very small cells, the wave 
attenuation, or reflection, may be gradual and several cells may be needed to 
accurately describe the waves as they transition these regions. We also note that 
the same cell size in the (D ) and (S) regions are carried over into the adjoining 
conductors and high impedance regions. Thus the same size cell as that of the 
semiconductor is carried over to the conductors (C1),C(2), and the high 
impedance region (II). Likewise, the same cell size as in the dielectric(D) 
region is carried over to the conductor (C3) and the high impedance regions, (12) 
and (13), and the Input/Output regions, (IN) and (O). In particular, it may seem 
inappropriate to choose the same length for the I/O regions, since we know the 
dielectric constant here is ~5.11 and one would expect an appropriately smaller 
length, according to the factor (1/5.11)1/2. But in fact there is no reason to select 
a different sized cell, since the only function of the input/output regions is either 
to inject a signal or terminate a signal and there is no scattering within these 
regions. 

http://~5.11
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Before proceeding we must decide on the number of cells to be employed in 
the iteration. This choice represents a tradeoff, of course, between the simulation 
accuracy and the computer capabilities. For the problem at hand, we choose a 
cell density which can provide reasonable quantitative results, without creating a 
burden for the computer. For regions (CI), (C2), (S), and (II) we choose a 23X5 
array , with the cell length equal to 1.667 mm. A total of 15X3 such cells are 
required to cover the semiconductor itself. In the regions beneath the 
semiconductor , (IN),(0), (D), (C3),(I2) ,and (13), we construct 9X5 cells. 
Here, of course, the cells are 3X larger, with each equal to 0.5 mm in length. The 
cell nomenclature, following the guidelines in Chapter II and V, is shown in 
Fig.7.3 for several selected cells. Note that for the larger cells the indices of 
adjacent cells differ by three. Thus we follow the single index notation for the 
larger cells as outlined in Chapter V, Section 5.4. This insures that the indices 
properly locate the cell, as do the indices for the smaller cells. Looking at 
Fig.7.3, if n,m are the indices, this means that for the large cells, an (n,m) cell is 
undefined if m<15, if either m or n is not a multiple of three. As a result, the 
omnipresent iterative loops, which are used in the program, must be modified to 
exclude such cells. The iterative details are discussed in the Appendices. 

7.2 Description of Inputs and TLM Iteration Outline 

We now discuss the broad outline of the iteration, Fig. 7.1, leaving the details to 
App.7A. 1 and 7A.2. The actual program statements are given in App.7A.2. In 
order to start the program, various kinds of input information such as the 
number of time steps, the activation time, I/O impedances, the type of output 
data requested, etc.. , are required. The Input statements are listed in App.7A.l, 
Table 7A.1. The next step is to declare the various arrays needed during the 
course of the iteration, and these are listed in Table 7A.2. These arrays will 
include the cell voltages, the backward and forward waves in the horizontal and 
transverse lines, the node resistance, etc... 

Following the declaration of arrays, the initial conditions are specified 
starting with the values of the cell voltages array. Very often we wish to 
determine the static field profile under the conditions of a constant input voltage 
at the anode. Under these conditions the cell voltage is everywhere zero except 
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for the input region and possibly (CI), the anode. The word possibly is used 
since we can just as well set the anode cells initially equal to zero and allow the 
waves in the input region raise the voltage of the anode. We assume the voltage 
is evenly distributed among the input cells, m=9,12 and 15. In fact what is 
specified are input waves in lines Zxy(3,6), Zxy(3,9), Zxy(3,12) , and Zxy(l,15), 
Zxy(2,15), Zxy(3,15). These lines are of course part of the 50 Q input composite 
line. In each of these lines, the input wave is Vo /8. The choice of Vo/8 is of 
course not accidental ; the total composite input voltage adds up to VJ2 The 
individual input wave amplitudes, Vo/8, are re- introduced at every time step 
during the charge-up process until equilibrium is achieved, at which time the 
voltage on the anode(actually the anode cells bordering the dielectric) attains V0, 
which is the sum of the composite forward and composite backward waves, each 
equal to Vo/2, at equilibrium. The backward waves are assumed to be 
terminated, as we will discuss in shortly. 

Following the specification of the initial cell voltages and input waves , we 
specify the initial values of the other arrays. Certain arrays, in particular, the 
transmission line impedance values, normally are constant with time throughout 
the iteration. These include the horizontal line impedances, denoted by Zxy(n,m), 
and the transverse lines, Zyx(n,m), surrounding each cell. We recall that only two 
of the four lines surrounding each cell are associated with the (n,m) cell, these 
two being in the direction of increasing n and m. As noted previously the 
impedance in the dielectric and semiconductor is given simply by (|j/s)1/2. As 
mentioned before, the horizontal lines in the I/O regions possess an impedance 
such that the composite value is 50Q. The high impedance regions, (II), (12), 
and (13) are assigned very high impedance values (~1012fi) while the conducting 
regions are given very low values (~ .01Q ). Next we look at the forward and 
backward waves in both the transverse and horizontal lines( for a total of four 
arrays), denoted by +Vyx(n,m) ^y^n .m) and +Vxy(n,m), "Vxyfom) respectively. 
The initial wave values are obtained from the voltage cell array, i.e., by taking 
the voltage differences of adjacent cells, as outlined in Chapter I and elsewhere. 
Thus , if we examine two adjacent voltage cells V(n,m), V(n+l,m) , then the 
sum of the waves in the Zyx(n,m) line is equal to the difference in the cell voltage, 
or 
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Vyx(n,m)= ^yxfam) +-Vyxfom) = V(n+l,m) -V(n,m) (7.3) 

Under equilibrium conditions, we assume the waves are equal and thus, 

+YyM,™) = ~Vyx(n,m) = [V(n+l,m) - V(n,m)]/2 (7.4) 

Similar equation for the horizontal line provide 

V^n.m) = +V^(n,m) + "V^fom) = V(n,m+1) -V(n,m) (7.5) 

And under equilibrium conditions 

+Vxy(n,m)= -Vxy(n,m)= [V(n,m+1) -V(n,m)]/2 (7.6) 

The previous assumes a knowledge of the initial cell voltages. If we assume 
the initial cell voltages are everywhere zero, the only initial array elements 
required are the wave amplitudes in the horizontal lines of the (IN) region. As 
previously mentioned, the wave amplitudes in fact are 

+V„y(ii,m)= Vo/8 : m=6,9,12,15, n=3 (7.7) 

where V0 is the assumed anode voltage. 
Next, we check the node resistor array R(n,m). Again we use the same 

indices as that for the basic cells, and we also remind ourselves that the node for 
each cell is located , by definition, at the upper right hand corner of the cell. As 
anticipated the initial node resistance will be very large in the semiconductor and 
dielectric regions (107 - 1012fi) and very small in the conducting regions(.OlQ). 
The node resistance is also very large in region (II), as one might expect, as well 
as in regions (12) and (13), which buffer the input and output regions. However, 
finite resistance values must be inserted at the nodes along the interface between 
the (12) and (IN) regions and between the (O) and (13) regions. These resistors 
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serve as effective matching resistors to the reflected waves of the (IN) region and 
to the forward waves in the output (O) region. Thus the node resistors R(0,m), 
m=6,9,12,15 terminate the reflected waves in the horizontal lines, 2xy(3,m), 
m=6,9,12,15. By inserting terminating resistors, thereby removing the effects of 
any reflected waves, in effect we simulate the input as an infinitely long 
transmission line as discussed in Chapter V. We again make the point that we 
are not disallowing reflections from the input plane, but that we are simply 
getting rid of any possible reflections from the source, which would then work 
their way back into the configuration under study. As indicated before, each of 
the four lines comprising the input has an input wave amplitude of Vo/8. The 
value of R(n,m) selected is obtained is obtained from Chapter V, using either 
Eq.(5A.2) or Eq.(5A.4), as noted in Figs.5A.l and 5A.2 Fig.5.Al applies to 
nodes (0,9) and (0,12) while Fig.5A.2 applies to nodes (0,6) and (0,15). It 
should be noted that three of the TLM lines have very high impedance levels and 
therefore these line impedances do not contribute to the terminating resistance. 
The parallel combination of the resistors in line 2^(3,9) is (3/4)R(0,9) and for 
line Zxy(3,12) it is (3/4)R(0,12). From Eq.(5A.2) the matching requirement leads 
to, for a uniform input dielectric, 

R(0,9) =R(0,12) = (4/3) Z^(3,9) = (4/3)2^(3,12) (7.8) 

where the input line impedance is {\x /e}1 2 with a dielectric constant of 5.1085, 
thus yielding a line impedance of 166.670. The matching resistor, from Eq.(7.8) 
is 222.2Q. Calculating the matching resistance for the remaining input nodes, 
(0,15) and (0,6), is similar except for the adjacent conductor. The total resistance 
is thus (2/3)R(0,15) or (2/3)R(0,6) and hence the matching requirement gives, 
from Eq.(5A.4), 

R(0,6) = R(0,15)= (3/2)2^(3,6) = (3/2)2^3,15) (7.9) 

with a matching resistance of 250Q. Similar arguments may be used to 
determine the matching resistors for the forward waves in the output region, 
providing 



376 Electromagnetic Analysis Using Transmission Line Variables 

R(21,12) =R(21,9) =(4/3) 2^(21,12) =(4/3^(21,9) (7.10) 

R(21,15) = R(21,6) =(3/2)2,^21,15) =(3 /2 )^21 ,6 ) (7.11) 

and the impedance of Zxy(21,m) is the same as that for the input. The output 
matching resistors are identical to those of the input. 

Having defined the node resistor array, and its initial conditions, we call 
attention to several other arrays, listed in App.7A.3, which expedite the 
calculation and are defined in terms of the node resistor elements. Referring to 
Chapter III we make sure first to define the node parameter array, as well as the 
load impedance array. Finally, the 2 dimensional scattering coefficient arrays, 
T(n,m,s) and B(n,m,s), must be enumerated (we recall that the index s identifies 
the scattering route). With these auxiliary arrays defined, we can begin the 
iteration in both time and space,, as outlined in Fig.7.1. The iteration in time is 
taken as the outer loop. The first few hundred time steps are devoted to solving 
the static problem, i.e., we allow the input voltage to charge up the device and 
during this time there are no changes in any of the node resistors. Eventually the 
a stable solution is attained At k= KL, conductivity is introduced in the 
semiconductor and the stability ends, with waves now being both reflected and 
dissipated in regions where the conductivity has been added. In either case , the 
same basic iteration for both the "charge up" phase as well as the transient 
conductivity phase, is employed, the only difference being the assumed changes 
in the node resistor elements. As noted in Fig.7.1, there are several separate 
calculations for each time step. In the first, the presupposed changes in the 
node resistors are introduced; as noted before the changes in the node resistance 
reflect changes in the conductivity of a particular region, which in turn is induced 
in the semiconductor by either photons or avalanching. Once the node resistor 
array is specified, we then calculate the node parameters, which consists of the 
parallel resistance and the load impedance. This is followed by the calculation of 
the scattering coefficient arrays. This completes the first stage of calculations. In 
the next step we run through all the wave arrays, +Vyx(n,m), ~Vyx(n,m) +Vxy(n,m), 
"Vxy^m), and place them into temporary arrays. Although this may appear to 
be a superfluous step, it is actually quite necessary. This is because in the next 
step, when we actually calculate the new wave amplitudes for the next time step, 
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the calculation involves various wave contributions surrounding a particular 
transmission line and node. These contributions should all belong to the same, 
previous time step. If we do not resort to a temporary array, we may 
inadvertently use an updated wave rather than one belonging to the previous time 
step. Omitting the temporary array then will have the erroneous result of 
distorting propagation effects throughout the medium. 

Following the introduction of the temporary wave array, we proceed directly 
to the scattering equations outlined in Chapter III. On the right side of the 
scattering equations we use the temporary waves previously defined. On the left 
side of the equations, we use different temporary wave variables, for the same 
reasons given before, i.e., we wish to avoid premature use of waves belonging to 
the next time step. Finally, upon completing the scattering equations, we convert 
the temporary variables contained in the equations to the original wave 
amplitudes, +Vxy(n,m), etc... We insure, during the iteration, that we have not 
disturbed the constant amplitude input waves, and this is achieved by adding, the 
requirement ,after the scattering equations, that +Vxy(3,m) = V0/8 for m= 6,9,12, 
15, as well as for +Vxy(2,15) and +Vxy(l,15). One should note that special care is 
needed when m=15 in the iteration. When such occurs, then +Vyx(n,15) and 
"Vyx(n,15) both vanish when n is a non-integral of three. This is intuitively 
obvious since such lines are embedded in the conductor and no fields should be 
expected. On the other hand when n is an integral of three then the node (n,m ) 
is a regular node and Vyx(n, 15) certainly exists. The scattering at the (n,m) 
node then follows the normal procedure. 

7.3 Output Format 

Output data is saved in the form of various arrays. One important data array, as a 
function of k, is the pulse delivered to the output(O) region. The output array 
variable Vout(k) is given by 

Vout(k) = V ^ 2 1 , 6 ) + V^(21,9) + V 4 2 U 2 ) +Vxy(21,15) (7.12) 

Note that Eq.(7.12) is the sum of the individual lines in the output region. The 
right side of Eq (7.12 ) is recognized as the sum of the forward waves of the 
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horizontal TLM lines in the output region. These waves see a matched 
impedance. Once these waves gain entry into the lines Zxy(21, 6), etc... , there 
are no reflections back into the device. 

In order to save array space, while retaining sufficient accuracy, one may 
wish to use multiples of k. For example, if we have a 1000 time steps for k, we 
may decide that sufficient accuracy is attained by calculating Eq.(7.12) every 
10th step, in which case the array size reduced by a factor often. 

Another useful data array, in cell space, is the average horizontal field in 
the semiconductor at a specified distance from the anode, AV(Vkyx(n,m)) defined 
by 

AV ( V ^ m ) ) = [ V ^ W ) + - V ^ W ) +Vyx(ii,17) + ^ ^ , 1 7 ) 
++Vk

yx(n, 18) +-Vk
yx(n, 18)]/3 (7.13) 

where we have selected the above six elements for field averaging. The right side 
represents the field, averaged over the three vertical TLM lines for m= 16,17, 
and 18 at a given instant in time, i,e, at a given time step k. Again we may choose 
to use the reduced time step array, or we may choose the to determine the field 
at each time step for greater temporal resolution. A simpler version of Eq.(7.13) 
for the semiconductor field is given by the centrally located single cell at m=17, 

Vk
yx(n,m)=+Vk

yx(ii,17) + ^ ^ , 1 7 ) (7.14) 

For the bulk of the computer runs which follow, we will use the single cell field 
estimate given by the m=17 cell in Eq.(7.14). 

Another useful array makes up the 16 elements of the average horizontal 
field throughout the entire semiconductor gap, from anode to cathode. This array 
provides with a profile of the semiconductor field, between electrodes. We 
provide for several such arrays, each array having a different time element and 
therefore representing a "snapshot" of the semiconductor field at any given 
instant. We can use Eq.(7.14) to calculate each of the thirty two field elements, 
ranging from n=3 to n=18 , or 
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V ^ m ) = VyxOU?) + -V\x(n,17) n=3,4,... 18 (7.15) 

Simulation examples of these profiles , as well as those for the cell charge and 
the time evolution of the load voltage and the semiconductor field, are given in 
the ensuing Sections. 

In order to accommodate the array data, an output data file is opened up 
and arrays previously mentioned, plus any others, are placed in a column format. 
We then use any one of several graphical software packages available, such as 
EXCEL, to graph the data arrays. 

Output Simulation Data 

7.4 Conditions During Simulation 

The input parameters for the problem under consideration is shown in Table 
7A.2. The time step is 1.66787ps, which corresponds to a Al of 0.5 mm in the 
dielectric and 0.1667 mm in the semiconductor. The total number of time steps 
KM, was varied between 500 and 5000. Normally the bias voltage was specified 
by assigning the appropriate amplitudes to the incoming waves in the input 
region. The values of the initial node resistance and line impedance depended of 
course on the particular region. In the case of the conducting region, a value of 
0.01Q was typically selected for R(n,m) as well as for Zxy(n,m) and Zyx(n,m). 
The use of any non-zero number less than 0.01 resulted in very little change. 
Inserting an outright zero for R(n,m) or Zxy(n,m), Zyx(n,m) is not recommended , 
however, since it may lead to occasional spurious results. This can easily be 
circumvented , of course , by inserting a lower limit value , say 10"8 Q , into the 
program code. Conversely a value of 1012 Q for R(n,m) was employed in the 
high impedance region. Similarly an R(n,m) value of 1012 Q was used at all 
times in the dielectric region. Except for one particular example, Section 7.7, the 
same initial node resistance also was used for the semiconductor during charge-
up. Smaller values of R(n,m) for the semiconductor naturally may also be used. 
Once conductivity is introduced the value of R(n,m) in the semiconductor is 
lowered. In almost all the examples which follow, the values of R(n,m) were 
lowered suddenly at a particular time step. Of course, a gradual risetime may be 
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built in over several time steps, and an example of this is provided. As indicated, 
activated R(n,m) values of 15fi and 150Q were employed in the examples cited. 
The spread factor ,G0, which is an indication of the uniformity of the node 
activation, was assumed to be very small. An important input is the activation 
time, which is the time step (k=350, in these examples) when the conductivity is 
introduced. The activation was initiated only after sufficient has elapsed to insure 
that the static solution has been obtained. Once activation began, then the 
recovery process went into effect. The presence of recovery mechanisms , such 
as recombination, dictates whether R(n,m) returns to its former large value, and 
at what speed. The recovery times used in the examples were either k=200, or 
essentially no recovery( k=108). Only those nodes belonging to the 
semiconductor were activated. For total activation, the nodes n=3-18, and m=16-
18 were all illuminated. In other examples, only a partial region of the 
semiconductor was activated. 

7.5 Behavior During Charge-up and Establishment of Static Field Profile 

Initially the device, except for the input, is void of any electromagnetic energy. 
The input lines in region (I) then begin to inject signals into the dielectric, 
semiconductor, and output regions When they do so, the equilibrium fields are 
not immediately attained. There are two reasons for this. In the first place, the 
signals have a finite propagation velocity and a time delay occurs before the 
signal can reach every nook and cranny of the device. Secondly, each cell has a 
capacitance and time is required for the signal to charge up the cell. It should not 
come as a surprise, therefore, that transient fields, resulting from the charge-up, 
will be observed in the device. One way to suppress such fields are to allow the 
input signal to come up to full amplitude very slowly, instead of suddenly 
injecting the input signals at full amplitude. We have avoided this procedure for 
the ensuring simulations, however, since much insight may be gained by 
exarnining the charge-up transients. 

We first look at the signal developed at the output lines. The output 
transient, seen in Fig (7.4), has several noteworthy characteristics. One notable 
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FIG. 7.4 TRANSIENT SIGNAL DELIVERED TO OUTPUT 
DURING INITIAL PHASE OF CHARGE-UP. VO=1000V, 
TIME STEP=1.6678 ps. 
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point to observe is the signal delay . The arrival of the earliest signal occurs at 
about 6 time steps(each time step is 1.6678 ps). This time of arrival is expected, 
since it represents the approximate propagation delay from the input to the 
output. The output transient amplitude, however, does not reach full amplitude 
until several picoseconds later, at approximately 12 time steps. One would 
expect the signal development to occur much faster since the input wave is planar 
(initially), and therefore one would suspect that a significant portion of the input 
would remain intact as it propagates to the output. As we have pointed out 
previously, however, the signal build-up is delayed because of the signal 
diversion into the transverse lines, which effectively slows down the propagation 
velocity of the transient signal. 

We also note that the maximum amplitude of the output transient is 200V, 
or about 40% of the input wave. This is not unexpected, of course, since the 
input plane wave will begin to diverge as soon as the wave leaves the input 
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region and is injected into the structure. Energy begins to "peel off from the 
wave, with the process beginning at the wave boundary, where energy is diverted 
into the semiconductor region. The peel-off process continues with each time 
step, gradually working its way to the interior of the wave. The proper treatment 
of the delay actually requires us to use modified scattering coefficients, corrected 
for plane wave effects as discussed in Chapter IV. If the plane wave correlations 
are included in the analysis, transverse scattering in the interior of the plane wave 
is prevented, thus reducing the time of arrival of the signal. This does not 
prevent, however, the peeling- off of plane wave energy into the semiconductor, 
near the interface, unless the semiconductor is entirely activated very suddenly, 
as discussed in Section 7.7. 

The bulk of the transient signal to the load lines is more or less extinguished 
by about 100 time steps( 167ps). By this time, the full voltage is across the 
semiconductor and static conditions have for the most part been achieved. As 
indicated before, the charge-up time is determined by the size of the 
device(causing propagation delay) and the charging up of the cells. Note that the 
transient signal has both positive and negative swings. This is not surprising, in 
view of the dielectric mismatch at the output, and the multiple reflections which 
occur as signals are reflected from conducting surfaces. 

Next we look at the field in the semiconductor as the system approaches 
equilibrium(the charge-up interval). Depending on the accuracy desired, the 
evolution of the system toward complete static conditions may require many time 
steps. This is illustrated when we examine the horizontal field at the 
approximate center of the semiconductor, i.e., the total field equal to Vxy(l 1,17). 
Fig.7.5 shows the time development for the first 100 time steps. Again we see 
that there exists a signal delay, during which time there is no field at the (11,17) 
cell. This is followed by a transient signal, which is actually stronger in 
amplitude than the final static value, After additional time has elapsed , the field 
stabilizes to about 50.5 V after 100 time steps. At 100 time steps, the evolution 
to static conditions is far from complete, as noted in Fig.7.6, which has a longer 
time scale for the field. A slow oscillatory decay toward equilibrium may be 
noted, with an oscillation period approximately equal to the initial transient 
response. 
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FIG. 7.5 DEVELOPMENT OF FIELD AT CENTER OF 
SEMICONDUCTOR (n=ll, m=17) DURING CHARGE-UP. 
VO=1000V. TIME STEP=1.6678ps. 
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FIG. 7.6 STABILIZATION OF STATIC FIELD AT CENTER OF 
SEMICONDUCTOR (n=ll, m=17). TIME STEP=1.6678ps 
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In the previous discussion, we utilized a the field associated with a single 
cell, namely, (11,17). We now compare these results with the average horizontal 
field averaged over all three cells comprising the height of the semiconductor, 
i.e., cells (11,16), (11,17), and (11,18). In this case the field is given by Eq.(7.13) 
with n=l 1. The field evolution looks similar to that for the single cell, as noted 
in Fig.7.7. The static field, however is now close to 48V, slightly less than the 
single cell field, There is no reason to expect the two field values to be the same, 
however, since we have now added two additional cells to the average, one cell 
next to the dielectric and the other next to the high impedance region. Because of 
the courseness of the grid , some differences are to be expected. Also of interest 
is the long term stabilization behavior of the 3 cell average. Qualitatively the 
behavior looks the same as the single cell average. The convergence for the 3 
cells, however, appears to be better by about a factor of 5, caused, apparently by 
fact that the 3 cell average smoothes out any fluctuations which are likely to 
appear with a single cell. 

FIG. 7.7 STABILIZATION OF STATIC FIELD AT CENTER OF 
SEMICONDUCTOR AVERAGED OVER THREE CELLS 
(n=ll, m=16,17,18). TIME STEP= 1.6678ps 
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Fig.7.8 shows the field profile over the semiconductor during the charge-up 
process. Initially, of course, the field is zero throughout the semiconductor. At 
just 41.7ps(k=25) the field has grown rapidly so that the field actually exceeds 
the equilibrium values. At 83.4ps , the field has settled down, and the profile is 
very close to the equilibrium one. Finally for times greater than 584 ps (k=350) 
there is very little change in the profile, and this we designate as the equilibrium 
profile. We note of course that the field is stronger at the anode than at the 
cathode, caused by the strong fringing fields at the anode to the ground line. An 
important internal check shows that the sum of the voltages (the "integral" of the 
field) is equal to the bias field of 1000V, i.e., twice the sum of the total input 
line voltages of 500 V. 

A slight oscillatory variation of the profiles , caused by the disparity in cell 
size at the dielectric interface, may be observed. As expected, the superimposed 
oscillation peaks at nodes corresponding to full nodes at the interface (e.g., 
m=6, 9 , etc) while the fields are lower at nodes corresponding to partial nodes 

FIG. 7.8 STATIC FIELD EVOLUTION DURING 
CHARGE-UP. VO=1000V. FIELD AT m=17. 
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at the interface. Such variations are of course an artifact and may be eliminated 
by resorting to larger cell densities , and may be expedited by spatial averaging 
over the oscillation length. 

It is worthwhile to emphasize that the semiconductor field values shown in 
Fig.7.8, and throughout Chapters VII and VIII, are the total voltage amplitudes 
in the transmission line. The actual electric field is obtained by normalizing with 
respect to the cell dimension Al ;the field can then be interpreted as the average 
field of an auxiliary cell centered about the line, as discussed in Section 2.3. 

7.6 Node Resistance R(n,m) During Activation 

Before describing the actual simulations which take place when R(n,m) is 
activated we first describe several of the mechanisms which control R(n,m), and 
which are specifically included in the program statements. Besides the 
conductivity caused by light, we also include the background semiconductor 
conductivity, which is simultaneous with any other source of conductivity 
present. In addition the program includes node recovery and spatial changes in 
the conductivity generation caused by the spatial dependence of the incident light 
pulse. Further we include a temporal dependence in the light pulse, allowing for 
either an instantaneous or gradual risetime in the conductivity. 

We begin with the background conductivity. Before activation the 
semiconductor node resistance will be high, but certainly not as high as the nodes 
for the other non- conducting regions. We provide a program input, RT, to 
specify the semiconductor node resistance prior to the activation time step, KL 
,or 

R(n,m) = RT , K<KL; (7.16) 
n=3 to 18 , m=15 tol8 

For K>KL, we may select from two forms of activation, either a sudden 
activation of R(n,m) or an activation which provides for a gradual rise in the 
conductivity. The selection of either type activation is discussed further in the 
following and in the description of the program statements, App.7A. 1. We then 
describe the factors controlling R(n,m). The following discusses two main 
classifications: instantaneous and gradual changes in the conductivity. 
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7.6(a) Instantaneous Change in R(n,m) 

We first consider the case in which the activation is very abrupt and the node 
resistance drops suddenly. Once the added conductivity reaches a specified 
value, which is virtually instantaneous, any additional conductivity ceases. The 
added conductivity may be stated in terms of a resistance, RO, and is 
proportional to (1/RO). RO is specified as an input. We can think of this type 
activation as a special case of light activation discussed in Chapter 2, wherein a 
high intensity light signal P0 has a duration of one time step. If the time step is 
very short , with PG very large, then the light energy is transferred to the 
semiconductor in a single time step, and the resistance is reduced to RO. We 
postpone until later the effect of the background conductivity, proportional to 
(1/RT), where RT is the background node resistance. 

Once the node resistance is lowered , we arbitrarily assume that the added 
conductivity decays exponentially, so that the decay is proportional to 
(l/RO)*EXP(-(K-KL)/KREC), where KL is the activation time and KREC is the 
assumed recovery time. KL and KREC are expressed in terms of the number of 
elementary time steps At. If we again neglect the background conductivity then 
the node resistance becomes 

R'(n,m) -> RO*EXP((k-KL)/KREC), (7.17) 

where the primed R'(n,m) designates the resistance stemming solely from the 
light activation and recombination effects, but excludes background conductivity. 
RO is the initial resistance immediately following the activation. Eq.(7.17) does 
not take into account any spatial variation of the activation across the length of 
the semiconductor. If we use the results of Chapter 2, R'(n,m) must be modified 
by replacing Eq.(7.17) with 

R'(n,m) = RO* [EXP(G0(n-11 )2)] * EXP((k-KL)/KREC); k>(KL-1) (7.18) 
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where we again ignore RT for the moment. . The bracketed term is the spread 
factor ,i.e., the spread in light energy along the length of the semiconductor . The 
spread term has the same form as in Eq.(2.58) in Chapter 2 with the spread 
factor GO = a(Al/lo)2 . In order to reduce the amount of detail, we do not include 
the modeling of the activation with depth, as expressed by the function D(m) in 
Eqs.(2.51)-(2.52), which is time dependent. Nor do we take into account 
reflections from the dielectric surface , which will also contribute to the carrier 
generation. R'(n,m) is therefore assumed uniform as a function of m in the 
semiconductor(i.e., uniform among the cells m=16,17,18) We emphasize, 
however , that the TLM method is very well suited for taking all these factors 
into account, and the variation of R(n,m) in the semiconductor with the m index 
may be incorporated at any time. Eq.(2.50) , for example, expresses the 
activation of the cells as a function of m(depth) as well as n(thickness) and k 
(time). We also make the important point concerning the recovery of the node 
resistance. We have assumed an exponential recovery throughout the entire 
range of k , both for small amounts of added conductivity as well as large. This is 
obviously a crude simplification We remark that the exponential recovery is 
simply being used as a handy example to explore the TLM method; In actual 
practice, the physics will dictate what recovery term will apply, which then must 
be cast into the TLM format, using techniques outlined in Chapter VI. Finally 
we take into account the background conductivity. When we take into account 
the background resistance RT, the new resistance after activation becomes 

R(n,m)= (RT)(R'(n,m))/[RT+R'(n,m)] (7.19) 

Eq.(7.19) follows from the fact that the conductivities add while the inverses 
combine as parallel resistors. In the examples which follow, the background 
resistance RT usually will be assumed to be much larger than RO, so that the 
initial R(n,m) after activation may be approximated by RO. 

7.6(b) Gradual Change in R(n,m) 

In this sub-section we assume the added conductivity is done gradually rather 
than all at once. In Eq.(2.58) we saw that for constant light power PG, falling on 
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the center cell, the conductivity change ( neglecting RT) is proportional to Po(k-
KL)At, the light energy at the completion of the kth step. (In Eq.(2.58) the light 
activation occurs at KL=0) Since the light power is in general a function of 
time, we replace Po (k-KL)At with the integral 

Light Energy = J VPWdt (7.20) 

where P(t) is the time dependent power. To illustrate the TLM method we 
assume P(t) has an exponential dependence, or 

P(t) = P0 EXP[(t-KLAt)/KRSAt] ;k>KL (7.21a) 
P(t)=0 ;k<KL (7.21b) 

where k, KL,and KRS are expressed in the number of time steps and t=kAt The 
light signal therefore starts from PG at k=KL and increases with risetime KRS. 
The integrated light energy is then 

Light Energy = P0 KRS At{EXP{(k-KL)/KRS) -1) (7.22) 

Note that if we expand the exponential term, we retrieve the constant power case, 
discussed in Chapter II, so that Eq.(7.22) becomes P0(k-KL)At. The node 
resistance associated with the light energy may in fact be obtained from 
Eq.(2.58) if we replace k with KRS{EXP{(k-KL)/KRS) -1). The same previous 
remarks regarding the depth apply here as well. For our purposes it is more 
useful to cast the resistance in the form 

RO(n,m)= RST * [EXP(G0*(n-ll)2)]* [KRS*{EXP{(k-KL)/KRS} -l}]"1 (7.23a) 

where we use the designation RO(n,m) to indicate that we have excluded the 
contributions of recombination and the background resistance RT. The input 
constant RsT has the dimensions of resistance and contains factors such as the 
power constant Po , the carrier mobilities, the TLM length, plus other factors 
discussed in Chapter II and embedded in Eq.(2.58). If k-KL « KRS then 
Eq.(7.23a) then becomes 
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RO(n,m) = RST * [EXP(GO*(n-ll)2)]*(k-KL)4 (7.23b) 

This is nothing more than the result for the case of the constant (in time) light 
power source discussed in Chapter II. When k=KL, RO(n,m) is still infinite 
since in the absence of any accumulated light and any background conductivity, 
there are no contributors to, the conductivity. At the end of the first time step k-
KL =1, RO(n,m) = RST * [EXP(G0*(n-l l)2)] , at which point RO(n,m) is at its 
initial (finite) value. When k-KL is equal to KRS, RO(n,m) » RST * [EXP(G0*(n-
11)2)]/KRS, indicating the anticipated decline from RST. 

Next we have to append the recovery term to Eq.(7.23), in much the same 
fashion as before, again neglecting the background conductivity. Thus, we 
assume the recovery attaches only to RO(n,m) . The result is 

R'(n,m) = [EXP((k-kl)/KREC)]* RO(n,m) (7.24) 

RO(n,m) is given by Eq.(7.23) and R'(n,m) is the node resistance which accounts 
for both light activation and recombination effects, but excludes background 
conductivity. As before, we have temporarily added a prime to indicate the 
neglect of the background conductivity. 

The background conductivity, proportional to (1/RT), adds to the 
conductivity induced by the light signal. In the absence of any background 
conductivity, the light induced contribution, including recombination effects, is 
proportional to (1/R'(n,)), with R'(n,m) given by Eq.(7.24). When background 
conductivity exists , the total resistance will consist of the parallel combination of 
RT and the resistance stemming from Eq.(7.24). Essentially repeating Eq.(7.19), 
the final node resistance is 

R(n,m) = RT*R'(n,m)/[RT+R'(n,m)] (7.25) 

with R'(n,m) given by Eq.(7.24). 
We should specify any bounds which may exist on R(n,m), which are not 

explicitly addressed by the above expressions. One such problem is the risetime 
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function in which there is no lower limit to R(n,m). To remedy this defect we 
must pre-select a value RM((n,m) below which R(n,m) is not allowed to fall, 
based on the fact that the lower values of R(n,m) are physically unrealizable. In 
the case of the semiconductor, there is the finite number of carriers available. 
Another limit may occur earlier because of optical screening; in this case the light 
signal is rejected at the semiconductor surface because of large carrier densities. 
Whatever the origin, when R(n,m) falls below RM, we "turn off' the light 
induced contribution as indicated in the program description in App.7.A4. 
Because of the presence of RT, it is unnecessary to introduce an upper limit to 
R(n,m). RT serves as this limit as noted from Eq.(7.25 if we allow EXP((k-
kl)/krec) to increase without limit. 

7.7 Output Pulse When Semiconductor is Activated 

Figs.7.9 and 7.10 show the output pulse when the entire semiconductor is 
activated( nodes m=15 to 18 and n=3 to 18) with a constant light source. The 
activation occurs at k=350, well after the transient term has died out. (In regard 
to the transient term, some fine structure has been lost in Figs, 7.9 and 7.10, 
compared to that in Fig.7.4, due to the evaluation at every 10th time step, rather 
than every step). No recovery of the node resistance is assumed. The figures 
differ with respect to the activation resistance; one is at 15 Q. and the other at 
150 Q. We note that at 15Q the output is close to 500 V, which is what one 
would expect when the output is matched to the input(both 50Q) and the voltage 
drop in the semiconductor is sufficiently low so as not to interfere with the 
matching condition. AT RO =150 Q we begin to notice a drop in the output, to 
about 400V, due to the increased voltage drop in the semiconductor. 

During activation we can view the device in a simple manner, in which the 
input and output are separated by a section of transmission line ,2.5 mm long, 
with e = l . The effect of this intervening transmission line section is twofold: 
there is the usual propagation delay, but in addition there is a rounding of the 
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FIG. 7.9 VOLTAGE DELIVERED TO OUTPUT LINE WHEN 
SEMICONDUCTOR IS ENTIRELY ACTIVATED. RO=15Q. TIME 
STEP= 1.6678ps. VO=1000V 

FIG. 7.10 VOLTAGE DELIVERED TO OUTPUT LINE WHEN 
SEMICONDUCTOR IS ENTIRELY ACTIVATED. RO-150O. 
TIME STEP= 1.6678ps. VO=1000V 

TIME STEP(k) 
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leading edge of the pulse, due to the mismatch between the intervening section 
and the input/output. Ultimately, however , the full amplitude of 500V is 
delivered to the output line, since the input and output are matched. The situation 
changes, however, when the activation intensity is reduced, RO =150 Q . 
Because of the significant series voltage drop incurred in the semiconductor the 
output is no longer matched to the input. This is noted by the reduced signal 
amplitude, about 400V, delivered to the output. 

From the previous discussion one might be tempted into thinking that if the 
input, dielectric, and output sections are all matched, then the instantaneous 
activation of the entire semiconductor will result in the delivery of a pulse to the 
load with an infinitely fast risetime. Such is not the case however, except for 
certain limiting situations. The problem is that fringing exists at the device, prior 
to activation. Following the semiconductor activation, the fringing field profile 
turns into a traveling wave and the intact profile is the first to arrive at the 
load., which effectively constitutes a risetime. The only way to deal with this 
fringing field effect is to resort to small heights, hi, relative to the semiconductor 
gap spacing, 1<,. 

Fig.7.11 shows the effect of the conductivity risetime on the output pulse, 
using the expression Eq.(7.23a) with G0=0. As before the semiconductor 
activation begins at k=350, but with a risetime of KRS=50 ( again we assume 
there is no node recovery).The initial light activated resistance, RST, is arbitrarily 
set equal to the background resistance of RT=EXP07 Q. The lower limit of 
R(n,m) is taken to be 15Q. There are two main effects to be observed 
concerning the output, compared to the previous case where the conductivity 
change is instantaneous. First, there is substantial delay in the output pulse. This 
is due to the fact that a several E fold decrease( i.e., several times KRS) in the 
resistance is required before the resistance becomes comparable to the 
semiconductor impedance . The second thing to observe is that the risetime is 
somewhat longer than KRS=50, in the output, due to the fact that the initial 
resistance is relatively small. In the remaining simulations to be discussed we 
only consider constant light sources. 
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FIG. 7.11 VOLTAGE DELIVERED TO OUTPUT FOR 
COMPLETELY ACTIVATED SEMICONDUCTOR. RISETTME OF 
LIGHT PULSE IS INCLUDED. KRS=50, RST=RT=EXP[07] Q, 
LOWER LIMIT =15Q, KL=350,VO=1000V, TIME STEP=1.6678ps 
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7.8 Node Recovery and its Effect on Output Pulse 

In Figs.7.12-7.13 we see the effects of the node resistor recovery. In order to 
simplify the recovery process, we assumed the node resistor recovery has the 
form given by Eq.(7.17), i.e., we assume R(n,m) is the node resistance 
immediately after activation and is thereafter controlled by the assumed 
exponential recovery(neglecting RT, R'(n,m) = R(n,m). Thus, 

R(n,m) = RO [EXP{(k-KL)/KREC}] ; k>(KL-l) (7.26) 

In Figs.7.12-7.13 we assume KREC= 200 for RO =15Q and 150Q respectively. 
Looking at the recoveries in the load voltage, particularly the 15 fl activation in 
Fig.7.12, we can see that the effective recovery is much longer than k=200. This 
is to be expected since the effects of the recovery will not be felt until R(n,m) 
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FIG. 7.12 VOLTAGE OUTPUT DELIVERED TO OUTPUT LINE WHEN 
SEMICONDUCTOR IS ENTIRELY ACTIVATED. RECOVERY IS 
INCLUDED. KREC=200, VO=1000V, TIME STEP=1.6678ps, RO=15Q. 
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FIG. 7.13 VOLTAGE OUTPUT DELIVERED TO OUTPUT LINE WHEN 
SEMICONDUCTOR IS ENTIRELY ACTIVATED. RECOVERY IS 
INCLUDED. KREC=200, VO=1000V, TIME STEP =1.6678ps, RO=150fi. 
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reaches the value of the line impedance of the semiconductor, which in this case 
is Z0 = 126Q . A few E-folds are therefore required before attaining the line 
resistance. Compared to Fig.7.13, the recovery is longer in the case of Fig.712, 
since it is starting off with a smaller resistance, 15Q as opposed to 150 Q in 
Fig.7.13. 

The recovery of the node resistance does not necessarily mean that all the 
charge has been removed from the semiconductor, as we will discuss in a later 
section. The remaining charge can give rise to strong fields in the semiconductor, 
even after the node resistance has completely recovered. 

7.9 Steady State and Transient Field Profiles 

We next consider the semiconductor field profile as it evolves, following 
activation, from its initial, static state to its transient and final steady state 
profiles. Figs.7.14 and 7.15 show these profiles when the entire semiconductor 
has been activated with a constant light source, without node recovery, for RO= 
15Q and 150 Q . The conditions correspond to the output pulses in Figs.7.9 and 
7.10. At RO= 15Q, which is the high conductivity case, the fields for both the 
transient (599ps) and the final, steady state profile(lns) are quite small. For the 
final profile the field (voltage difference between adjacent cells) is in the 1-2 volt 
range, resulting in an integrated voltage drop of 25-30 Volts. With RO = 15 Q an 
unusual effect is observed. During the first 10 time steps or so(~17ps) after 
activation, the fields in each cell decay in "ringing" fashion, .i.e., the field 
changes sign with each successive time step, as shown in App.7A.4. This effect 
is due to the fact that R(n,m) is much smaller than Z0 , resulting in a negative 
mismatch . As the cell size is allowed to shrink, R(n,m) increases and eventually 
the ringing disappears. We should mention that at 599 ps, which corresponds to 
the k=359 th time step the field happens to have a positive upswing as seen in 
Fig.7.14. App.7A.4 discusses the conductivity induced field decay in quantitative 
fashion , for both large and small R(n,m) , and we shall determine the critical 
value of R(n,m), below which ringing occurs. Turning our attention to the case 
when R(n,m) is 150Q, the ringing disappears since R(n,m) is sufficiently large 
compared to ZQ. Also, because of the higher R(n,m) one begins to notice, in 
Fig.7.15 , substantial voltage drops in the semiconductor, particularly during the 
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final steady-state profile. Indeed the integrated voltage difference across the 
semiconductor is ~ 250 volts at the final field. 

FIG. 7.14 STATIC AND ACTIVATED TRANSEENT FIELDS. 
SEMICONDUCTOR NODES m=16-18 ARE ACTIVATED. VO=1000V, 
RO=15Q, FIELD IS AT m=17. ACTIVATION IS AT 584ps. 
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FIG. 7.15 STATIC AND ACTIVATED TRANSD2NT FIELDS FOR 
LOWER CONDUCTIVITY. SEMICONDUCTOR NODES m=16-18 
ARE ACTIVATED. VO=1000V, RO=150Q, FD2LD IS AT m=17. 
ACTIVATION IS AT 584ps. 
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It is worthwhile to compare the voltage drop in the semiconductor at 
RO=150Q with that obtained using lumped circuit variables. To do this, we 
convert the 2D semiconductor matrix to a lumped circuit resistance and we 
ignore the dielectric region. First we obtain the resistivity in the semiconductor. 
From Chapter II, Section 2.13, p(suppressing the indices) is given by 

p = AlR(n,m)/2= 1.25 Q cm (7.27) 

since Al = 0.0167 cm. Using this value of the resistivity, and knowing the 
dimensions of the semiconductor, we can calculate the lumped constant 
resistance value of the semiconductor. Designating the total semiconductor 
resistance by RST, we have 

RST= plo/hW (7.28) 

where h is the height of the semiconductor, 10 the length, and W the width. Since 
h =0.05cm, lo =2.5cm, and w=0.5cm, we have RST = 12.5Q . With this value of 
RST we obtain the total load impedance, RL, seen by the input wave, again 
regarding the semiconductor and the 50 output as a lumped impedance. Thus 

RL = RST + ZOUT = 62.5Q (7.29) 

We may now calculate the transfer of voltage to the semiconductor and the 
output line by first obtaining the transfer coefficient T, given by 

T = 2RL/(RL + Zm) (7.30) 

where Zm is 50Q . The voltage drop in semiconductor Vs is then 

V S = T[RST/RL](VO/2) = 111.IV (7.31) 

which is lower than the 250V value provided by the TLM method. 
The disparity is not surprising, given the courseness of the grid and the 

conversion of the 2D problem to one in which the semiconductor is replaced by 
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a lumped resistor, thus ignoring 2D fields and currents in the semiconductor. The 
courseness of the grid is illustrated by the overestimated height of the activated 
semiconductor. The m=15 nodes are part of the semiconductor, but they have 
not been activated(in order to clear a path for the input and output lines). In 
effect, this reduces the effective height of the activated region(from 05cm to 
perhaps 0.04cm). In addition the vertically directed currents have been ignored in 
the semiconductor. Assuming a sufficiently fine grid the 2D TLM description 
should be used(not a lumped element description) in order to obtain accurate 
results, especially during the transient phase. 

7.10 Partial Activation of Nodes and Effect on Profiles and Output 

Next we examine the partial activation of the semiconductor as , opposed to the 
complete activation. We again stress that the light source is constant in time. As 
an example we select nodes from n=3 to n=Tl for activation, which constitutes 
about 1/2 of the semiconductor the half closest to the anode). We first look at 
the pulse delivered to the output line, shown in Fig.7.16. We see that a transient 
pulse is produced when the semiconductor is partially activated. A simple 
interpretation of the result may be provided. Following the activation, we may 
regard the new situation as resembling a device of half the length, but only 
partially charged(to about half the voltage). This "new" device undergoes a 
charge -up to full voltage, but in the process a transient is delivered to the load in 
much the same fashion as that which occurs during the initial charge-up of the 
device. 

Figs.7.17-7.18 show the transient and final field profiles under partial 
spatial activation with RO =150Q and 15Q. No recovery of the node resistors is 
assumed. The most important thing to observe the field enhancement that occurs 
in the region not exposed to the activation. As discussed in the previous 
paragraph, the device has essentially been reduced to half that of the original, 
with the result that the full voltage appears across 1/2 the original distance. Thus 
a field enhancement occurs. With this enhancement, however, an additional 
phenomenon enters the picture. A positive charge layer is produced on the n=12 
cells , which now becomes a virtual anode. The enhancement does not continue 
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FIG. 7.16 TRANSBENT PULSE DELIVERED TO OUTPUT WHEN 
SEMICONDUCTOR IS PARTIALLY ACTIVATED(n=3 TO 11). RO=15 
a, VO=1000V, TIME STEP=1.6678ps. ACTIVATION IS AT KL=350 

FIG. 7.17 STATIC AND TRANSIENT FIELD PROFILES OF 
SEMICONDUCTOR WITH PARTIAL ACTIVATION. VO=1000V. 
ACTIVATION AT 584ps. RO=150fi, m=17 

CELL NUMBER CATHODE 
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FIG. 7.18 STATIC AND TRANSIENT FIELD PROFILES OF 
SEMICONDUCTOR WITH PARTIAL ACTIVATION AT HIGHER 
CONDUCTIVITY. VO=1000V. ACTIVATION AT 584ps. RO=15«, m=17. 

FINAL FIELD(lns) 

ANODE CELL NUMBER CATHODE 

indefinitely, of course, since the charge carriers will eventually drift to the 
electrodes. Provided no recovery occurs, and the activation continues, the entire 
semiconductor then becomes filled with carriers and the field enhancement 
disappears. 

Even with an instantaneous activation, the field enhancement does not 
occur immediately. We can see this if we look at the 589ps profile, which occurs 
three time steps after the activation. We can observe the slight field enhancement 
compared to the static profile occurring in the cells just ahead of m=ll , i.e., the 
m=12 and m=13. Beyond these cells the profile coincides with the static profile. 
The reason for this, of course, is that the new signals produced have not yet had 
time to reach the cells further away and therefore no enhancement can occur. 

The differences between the profiles for RO =150Q and RO =15Q are 
relatively minor. Note that the final fields in the activated region are both very 
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small despite the differences in the activation resistance, and unlike the case 
when the entire semiconductor is activated. This has to do with the lack of 
current flow in the device once the new equilibrium is established. We also point 
out the transient profiles at 589ps and note that he field is larger when RO =15Q 
as compared to the 150Q case. This seems contradictory since one would guess 
that the lower resistance would imply a lower resistance. In fact this effect does 
indeed occur and what we have exhibited is an computer artifact during the 
transient phase, already alluded to in Section 7.9 and discussed further in 
App.7A.4. We note that the value of RO =15Q is highly mismatched with the 
semiconductor impedance lines of Z0 = 125.67Q (recall that this is counter to 
our TLM model assumption that RO » Z0). It will therefore take longer to 
dissipate the stored energy compared to the 150Q node resistance, which is better 
matched to the semiconductor line. Ultimately, of course, the field for the 15fi 
activation grows smaller than that for the 150Q one. We should also point out, 
just as was alluded to in Section 7.9, the fields in each cell change sign with each 
successive time step. This artificial effect is eliminated, as mentioned previously, 
by choosing a smaller cell. For a sufficiently small cell(about 10X smaller) just 
the opposite occurs; the smaller resistance results in the faster decay of the stored 
field, as expected. 

7.11 Cell Charge Following Recovery 

If the node resistance of the partially activated semiconductor (as in Figs.7.17 
and 7.18) are allowed to recover, i.e., if we introduce a recovery such as 
Eq.(7.26) into the iteration, an apparently anomalous situation ensues. The final 
fields hardly change at all from the final fields shown in Figs.7.17 and 7.18. 
Thus, for the first half of the semiconductor, cells n=3 to 11, the field is close to 
zero, while for cells n=12 to 18 the field is enhanced well above its static values. 
This despite the fact that the node resistors have long recovered. The reason has 
to do with the accumulation of real charge on the cells bounding the activated 
region, i.e., on the m=12 cells. During the discharge positive charge is delivered 
to the n=12 cell from the n=ll cell, while there is no corresponding loss of 
charge from n=12 cell to any other cells. Once the node resistance is recovered, 
the charge still remains. 
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Perhaps it is best to start with he static field where we know there is no 
charge initially present, at least in the semiconductor. We seek to find the charge 
in each of the m=17 cells from n=3 to n=19, i.e. , across the length of the 
semiconductor. To do this we use the expressions in Chapter VI for the cell 
charge(within a multiplicative constant) 

Q(n,17) = [V,x(n, 17)-Vyx((n-l),17] + [ V*fa\T)- V^n,16)] (7.32) 

The charge is normalized with respect to Al 8, i.e., multiplying Q(n,17) by Ale 
gives the actual charge. We should also note that each term on the right side 
represents the sum of the forward and backward waves. Note that the terms in the 
first bracket provide the difference in field in the horizontal direction while the 
second bracket is for the vertical field The distribution of charge for the initial 
static field is shown in Fig.7.19. As expected the only true charge is on the m=3 
and m=19 cells, which of course correspond to the anode and cathode, 
respectively. In contrast, any charge on the interior cells of the semiconductor 

FIG.7.19 RELATIVE CHARGE OF CELLS AT ANODE AND CATHODE 
FOLLOWING CHARGE-UP OF SEMICONDUCTOR AT 584ps. 
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corresponds to induced charge and therefore does not contribute to Q(n,m). In 
cellular notation, Q(3,17) and Q(19,17), represent the charge in the conducting 
cells bordering the semiconductor. We should note that the charge produces a 
field dominated by the horizontal component as expected. At the electrodes the 
second bracket in Eq.(7.32), produces the vertical field component, which in this 
case is zero since Vyx(2,17) and Vyx(20,17) are embedded in the electrodes and 
are therefore zero. 

We now partially activate the semiconductor, from cells n=3 to 11, and also 
include a recovery term with KREC =200, and allow the system to come to its 
final state. As before we look at the charge in the m=17 cells. As shown in 
Fig.7.20 We see that the cell charge remains on the m=12 cell even after 
recovery, thus becoming a virtual anode. Also note that the cell charge has 
increased on both the cathode and on the (virtual) anode, which corresponds to 

FIG. 7.20 RELATIVE CHARGE OF m=17 CELLS IN SEMICONDUCTOR 
FOLLOWING PARTIAL ACTIVATION, RO=150 CI. VIEW IS AT Ins 
AFTER ACTIVATION(584ps). RECOVERY IS INCLUDED, KREC=200 
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the enhanced field in the inactivated region. We also observe that the cell charge 
disparity between the n=12 and the cathode is much smaller owing to the fact 
that there is considerably less fringing from the virtual anode to the ground line. 
We see from Fig.7.20 that the TLM method is a powerful tool for obtaining the 
transient distribution of charge in the semiconductor. The charge distribution is 
temporary, of course, until the charge drifts to the electrodes. 

Besides partial activation, it is also of interest to point out how the charge 
re-distributes itself when the entire semiconductor is activated, followed by the 
recovery of the nodes. When this happens another charge layer is seen to have an 
important role, besides that of the electrode charge. The additional charge layer is 
along the m=15 interface, with the cell charge dirriinishing as n increases from 3 
to 18 . In effect, just as in the case for the partial activation, the semiconductor 
field in the horizontal lines has been effectively replaced with a charge layer 
along the m=15 boundary line. An important interpretation of this charge is that 
it represents, for the most part, the effect of the fringing field to the ground line. 
The addition of this charge layer also has an important effect on the field in the 
semiconductor, as seen in Fig.7.21. In contrast to the initial static field, once 
activated, both the transient and final fields are very uniform. The residual charge 
on the semiconductor/dielectric interface exactly counteracts the fringing field so 
that the semiconductor field is quite uniform. This phenomenon therefore 
provides the possibility, in a rather novel way, of obtaining temporary field 
uniformity in a long semiconductor where fringing is usually difficult to control. 

7.12 Role of TLM Waves at Charged Boundary 

It is natural to ask how the waves conspire to enforce the new boundary 
conditions brought about by the presence of charge at the boundary. As an 
example we look at the situation where the field has been totally excluded from 
the semiconductor, due to activation, and where the field exclusion remains after 
recovery , as in Fig.7.21. The situation at the boundary is depicted in Fig.7.22 ). 
Since VA ~0, this imposes the condition, 
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FIG. 7.21 FIELD PROFILES IN SEMICONDUCTOR BEFORE AND 
AFTER RECOVERY. ALL NODES IN SEMICONDUCTOR 
ACTIVATED, VO=1000V, RO=150Q, KREC=200 
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FIG. 7.22 ESTABLISHMENT OF CHARGED CELLS IN 
SEMICONDUCTOR. THE PREDOMINANT FIELDS, IN D AND B, 
CANCEL OUT ONE ANOTHER IF THEY ATTEMPT TO ENTER A. 
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VB + Vc -VD = 0 (7.33) 

It is easiest to see how the waves enforce the boundary condition when 
Vc«0 , which is a good approximation since the fields normal to the charge layer 
predominate. This assumption also implies that VB «VD. In terms of the forward 
and backward waves, under the new equilibrium conditions, +VB and ~VD are 
equal in magnitude and thus the coupling to the backward wave in A is 

VA = (1/2)+VB - ( 1 / 2 ) - V D = 0 (7.34) 

which is to say that the waves in lines in B and D exactly cancel one another in 
line A. Thus the field energy does not penetrate the region to the left of the 
charge layer. The field configuration is of course only stable temporarily. 
Eventually the carrier drift becomes important, as the charged carriers move 
toward the cathode. 

7.13 Comparison of Possible Boundary Conditions at the 
Semiconductor/Dielectric Interface 

In the particular problem addressed , one issue, which we had to resolve at the 
outset, was where to imbed the TLM line corresponding to the interface 
between the semiconductor and the dielectric. As mentioned in Section 5.1 we 
arbitrarily decided to place the boundary in the low dielectric region Following 
this guideline, we can then assume the horizontal Zxy(n,15) line, which is the 
interface line, belongs to the high dielectric region, i.e., the semiconductor 
region. Given the coarseness of the grid we should try to determine the degree to 
which the solutions are dependent on the location of the interface TLM line, 
i.e., what are the differences in the solutions if the TLM line is in the 
semiconductor region versus the dielectric region. An estimate of this effect may 
be obtained if we assume the iterative equations are maintained, while we simply 
assign higher impedance values to the interface line (377Q). For the simulation 
result, we select the field profile of the semiconductor, using the center cell 
approximation, (n,17) . In Fig.7.23, we compare the two profiles, 
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FIG. 7.23 COMPARISON OF STATIC FIELDS WHEN ROW 
AT BOUNDARY(m=15)IS EMBEDDED IN EITHER THE 
SEMICONDUCTOR OR DIELECTRIC REGIONS 
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one where we use a 126 Q interface impedance (semiconductor) and the other 
377Q (dielectric). We note that the two profiles are very close in value. The 
differences for other field profiles, as well as the output current, are also minor. 

7.14 Simulation Results for Boundary with Non-Integral Nearest Nodes 

The results of the previous examples dealt with a semiconductor/dielectric 
boundary in which the he ratio of propagation velocities was integral(in this case 
, a ratio of three) so that the vertical lines in the dielectric are perfectly aligned 
with the semiconductor lines (regular nodes). This simplifies the iteration 
considerably, but of course it does not correspond to the general situation in 
which the velocity ratio is non-integral. For completeness we consider the 
dielectric region to have a dielectric constant of s =4 (instead of unity). This 
corresponds to the boundary shown in Fig.7.24. Note that every other vertical 
line in the dielectric region fails to coincide with a node in the 
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NEAREST NODE 

SEMICONDUCTOR 
6=9 

— BOUNDARY 

DIELECTRIC 
8=4 

FIG. 7.24 SEMICONDUCTOR-DIELECTRIC INTERFACE WITH 
NEAREST NODE AS INDICATED. NEAREST NODE 
APPROXIMATION IS INCORPORATED INTO PROGRAM. 

semiconductor region, with the line ending abruptly in the midst of the 
semiconductor cell. As indicated in the Figure, we invoke the nearest node 
approximation and assume the vertical dielectric line is part of the node located 
half of a semiconductor cell away. In cell notation the node consists of the line 
Zyx(4.5,15) in the dielectric region, Zyx(5,17) in the semiconductor, and the 
horizontal lines, Zxy(5,15) and Zxy(6,15). For the next nearest node, the vertical 
lines are Zyx(7.5,15), Zyx(7,17), and the horizontal lines are Zxy(7,17) and 
Zxy(8,17). The iterative equations must then be modified, taking into account the 
lines surrounding the nearest node, as well as the regular nodes. 

Fig.7.25 shows the static field profiles in the semiconductor using a nearest 
node approximation for e=4 in the dielectric region. The static horizontal field 
profile is very similar to that for 6=1, displaying a field concentration in the 
anode region and a slight concentration near the cathode. For comparison 
Fig.7.26 also includes the profile resulting from the neglect of the nearest node 
method, discussed briefly in Chapter V. We recall that with this 
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simplified method the nearest node method is not built into the program and 
instead the computer decides how to route the waves in going from one region to 
the other, after first being shunted off to the interface line. Since the profile is 
only two cells away from the border, we should not be surprised if significant 
differences in the profiles exist; in fact the differences are rather subdued as 
indicated in Fig.7.25 The major differences are near the anode. In addition, such 
differences should become even more mitigated as one examines the fields 
further away, in terms of the number of cells, from the border. Increasing the 
number of cells requires shrinking the cell size, which of course places 
additional demands on computer time and memory. 

Of paramount relevance , of course , is the capability of the TLM matrix to 
simulate the propagation when the dielectric constants are completely arbitrary. 
The program modifications needed to simulate this situation are indicated in 
App.7A.3. Fortunately the changes are fairly straightforward. 

FIG. 7.25 STATIC FIELD PROFILES IN SEMICONDUCTOR 
OBTAINED WITH AND WITHOUT THE NEAREST NODE METHODS, 
VO=1000V. FIELD IS AT m=17 
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7.15 Comparison of Output With and Without Matched Input/Output Lines 

In all the previous simulations, the inputs and outputs were mismatched to the 
device impedance. As discussed early in the Chapter, when the semiconductor is 
completely activated, the semiconductor portion of the device possesses an 
impedance of 113 Q while the input and output lines are both 50 Q . Assuming a 
device cross-section of 1.5mm X 5mm for both the device and input/output, this 
implies a dielectric constant of 5.11 for the input/output lines. Suppose now, we 
change the impedance of the input/output from 50Q (which is a common 
standard for microwave transmission lines) to 113Q , i.e., suppose we look at the 
transient behavior under matched conditions. Although we can match the device 
impedance to that of the input/output (50Q), we instead choose to change the 
input/output impedance to that of the device(113Q) in order to achieve the 
match; By utilizing the same device, we can obtain a more meaningful 
comparison. The program changes needed to switch to a matched device are 
relatively minor. 

First the individual TLM lines of the input /output are changed from 167Q 
to 377Q, the same value as the device (when activated.). This involves the input 
horizontal lines Zxy(3,m), and the output lines Zxy(21,m) with m=6,9,12,15 in 
each case. Having changed the impedance levels of the input/output lines, we 
must then change the node resistors which terminate the lines so as to prevent 
unwanted multiple reflections This allows us to simulate (infinitely)long TLM 
lines for the input/output, by absorbing any reflections at the input and by 
absorbing all the signals delivered to the output lines. 

One may question whether it is necessary to have matching node resistors at 
all at the input, since the individual line impedances are the same for both the 
semiconductor portion and the input, and therefore one might expect no 
reflections. In fact such reflections are inevitable especially since we have not 
taken plane wave effects into effect and thus reflections at the node will occur. 
The expressions for the terminating resistors are given by Eqs.(7.8),(7.10) for 
the interior lines and Eqs.(7.9), (7.11) for the lines adjacent the conductors. 
Substituting the value of 376.7 Q into these equations we obtain a value of 
502.3Q for the interior lines and 565.1 Q for the lines adjacent the conductors. 
The node resistors affected are R(0,m) and R(21,m) with m=6,9,12 ,15. With the 
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new values of node resistance and line impedance for the input/output lines, we 
can now perform the simulations for the matched transmission line, 
semiconductor switch. 

We should add that the input/output are not perfectly matched since the 
horizontal TLM lines corresponding to m=15 belong to the dielectric, which has 
a line impedance of 126Q, instead of 377Q. The substitution of 126Q lines at 
the input/output, in any event, does not change the waveforms in any important 
way. In the limit of small cell size the degree of mismatch at the conducting 
boundary will of course diminish. 

The major differences between the matched and unmatched cases are best 
illustrated by examining the output pulse , shown in Fig.7.26. In this Figure the 
device parameters remain the same but the individual input/output lines are 

FIG. 7.26 COMPARISON OF OUTPUT PULSE WITH AND WITHOUT 
MATCHED INPUT/OUTPUT. VO=1000V. SEMICONDUCTOR ENTIRELY 
ACTIVATED. TIME STEP=1.6678ps. RO=15Q 
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either matched(377fi) or unmatched(113Q). The waveforms shown are the 
output pulses following the activation of the entire semiconductor at k=350. We 
expand the time scale about the risetime regions. The first thing to note is the 
faster risetime associated with the matched device, compared to that of the 
mismatched device. The risetime of the matched device is approximately Ak=10, 
or 16.7ps. The transit time delay between anode and cathode, on the other hand, 
is Ak=5 , or 8.3 ps. This should not come as a surprise since plane wave effects 
have not been included in the simulation. Thus, as discussed in the 1 Sections 
3.14 to 3.19 of Chapter III, the wave energy will be diverted into the transverse 
TLM lines, as the wave progresses down the length of the switch. As pointed out 
previously, the full amplitude of the signal will not be attained until twice the 
transit delay has elapsed. The simulated risetime(/H// amplitude) of Ak=10 is 
therefore to be expected. The increased risetime of the mismatched device, with a 
risetime of Ak~ 30, arises mainly from the mismatch between the 377Q lines and 
the 167Q lines of the input/output. As a result, some time will be required before 
the signal builds up to steady state amplitude in the device. The reader may 
notice that in both cases the there is detectable signal at the output at times less 
than Ak =5, the transit time of the device. What is the source of this wave 
energy? It certainly cannot come from the input at the cathode side, since the 
signal has not yet had time to reach the output. The origin of this energy stems 
from the energy stored in the region of the cathode just prior to the activation. 
Once the semiconductor is activated, the energy in this region is redistributed and 
as a result a transient signal, shortly after activation, is delivered to the output. 

7.16 Simulation of Plane Wave Effects . Effect of Alternating Input 

Much insight is gained by showing the effects of plane wave correlation on the 
simulated output pulse, utilizing the same semiconductor device as before. 
Specifically we focus on the charge-up phase during which the system moves 
input. This will provide some insight as to how the plane waves affect the 
charge-up phase. We also include a simulation of a simplified time varying 
input. 

Once we employ plane wave correlations, we must decide on how to treat 
the iteration when sign disparities appear. The full decorrelation discussed in 
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Chapter IV does add complexity to the program, and it may be worthwhile to 
employ very simple techniques, if only to gain insight into the correlation 
process. One way to treat this disparity, in a very approximate way, without 
actually performing a decorrelation, is to utilize the sign identity index yD 

discussed in Section 4.6. As noted previously YD varies from 0 to 1. We recall 
that YD is inverse to the magnitude of the disparity; a value close to zero has a 
large disparity(amplitudes are equal in magnitude but opposite in sign), while a 
value of YD close to 1 has a small sign disparity. During the iteration, we 
arbitrarily adopt the rule that if YD is less than some pre-selected value , yD1 , 
then we create a new wave from the plane and symmetric components, wherein 
the new amplitude is equal to the quadrature sum of the plane and symmetric 
components, and the sign is equal to that of the dominant component, i.e., the 
sign is determined by the sign of [Vxyp(n,m)+Vxys(n,m)]. If we select a value of 
YDI close to or equal to 1, therefore, all the waves with a sign disparity are 
treated in the aforementioned manner. For YD greater or equal to YDI the sign 
disparity effects are less and presumably we may invoke some other 
approximarion(perhaps ignoring the disparity and redefining the correlation 
process). Given such uncertainties, we select YDI =1 for the simulations shown. 

In the following we consider several simulations. The first is that of the 
purely symmetric wave situation, which completely ignores plane wave effects, 
and was discussed previously in Section 7.5 . The second simulation is one in 
which we include plane wave correlations, for the usual case of constant input, 
but do not take into account any decorrelation effects. In this case any sign 
disparity is treated in the manner previously described. The final simulation has 
to do with an entirely different input. Instead of a constant input each of the 
four input lines delivers an alternating voltage, alternating between VO/8 and -
VO/8 for successive time steps. This type input is examined both with and 
without plane wave correlation(but no decorrelation). Any sign disparities 
encountered in the correlated outputs are dealt with in an approximate manner, as 
outlined previously, using YDI=1-

The first two simulations shown in Fig.7.27 are interesting since they 
compare a symmetric wave, and the same wave but with plane wave 
correlations . The purely symmetric case is the same as that in Fig.7.5. The 
plane wave output, with no decorrelation, has an interesting feature which is not 
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unexpected. We see that with an input of 500 volts, a continuous output of about 
200 volts is delivered to the load. The wave correlation in the absence of any 
decorrelation, forces a portion of the wave energy toward the output load. The 
value of the sign index parameter selected is yoi =1, so that all waves having a 
sign disparity were treated in the same manner, outlined previously. 
Also, we hasten to add that the simulation shown in Fig.7.27, given the 
approximate nature of the correlation should be taken purely as a qualitative 
description of the correlation process. When decorrelation effects are added the 
plane wave output presumably goes to zero(for uniform, time invarient input), 

FIG. 7.27 WAVEFORM COMPARISON DURING CHARGEUP: 
SYMMETRIC AND PLANE WAVE CORRELATED WAVEFORMS. 
VO=1000V, TIME STEP=1.6678ps 

300 T 
/ 

CORRELATED PLANE WAVE, 
Y D , = 1 
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+ + + + H 
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TIME STEP(K) 
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Just as the symmetric wave. In these simulations we do not include 
modifications to the correlation , due to the presence of a conductor interface , 
or to an interface between dissimilar dielectrics. 

In Fig.7.28 we expand the time step scale in order to observe the risetimes 
of the two curves in Fig.7.27, the symmetric wave and the wave with plane 
wave correlation(with no decorrelation). As expected we see that the plane 
wave has a shorter risetime, compared to that of the pure symmetric wave. 
Roughly speaking the risetime of the symmetric wave is twice as long as the 
risetimes of the correlated waves(Ak»4 versus Ak«2). The residual risetime 
remaining in the correlated output stems from several reasons. One reason is the 
"peel-off of wave energy at the edges of the wave front, as progresses away 
from the input. Other reasons have to do with shortcomings in the simulation, 
rather than the underlying physics. For one thing, the correlation enhancement 
due to the conductor, at m=6, was not included(at least for the plane wave with 

FIG. 7.28 COMPARISON OF RISETIMES DURING 
CHARGEUP:SYMMETRIC AND PLANE WAVE CORRELATED 
WAVEFORMS.VO=1000V. TTME STEP=1 6678ns 

PLANE WAVE(YDI=1) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
TIME STEP(K) 
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no decorrelations) Another important issue, which affects the risetime, has to do 
with the fact that the output receives a significant amount of its energy along the 
slower (high dielectric) line at m=15, which contributes to the slower risetime , 
and also upsets the plane wave condition. As the cell density increases this 
slowdown effect will be minimized. Fig.7.29, 
again with ym =1, simulates the response when the input alternates in sign (rather 
than being constant in time), both with and without plane wave correlation( but 
not including decorrelation effects). In the case where there is no correlation( 
i.e., purely symmetric waves) the output is essentially "washed out" , with a 
small amount of energy distributed throughout the device, and very little energy 
delivered to the output. After 50 time steps or so, almost all the energy is 
reflected at the input. The simulation is entirely 

FIG. 7.29 COMPARISON OF ALTERNATING INPUTS WITH AND 
WIHOUT PLANE WAVE CORRELATION. INPUT WAVE IS 500V. 
TIME STEP IS 1.6678ps 
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different when , for the same input, plane wave correlations are included. Note 
that a strong alternating signal is delivered to the output. The output, however, is 
not a replica of the input because of the reasons outlined in the previous 
paragraph. In any event it is important to recognize that the correlated output in 
Fig.7.29 corresponds to a high frequency input. In the extreme case this would 
correspond to a laser signal simply traversing the device and exiting with hardly 
any interaction with its surroundings. Be that as it may, there is no reason why 
the TLM formulation cannot be applied to high frequency signals, provided 
sufficiently small TLM cells are selected. 

We emphasize the fact that the plane wave simulations shown in Figs.7.27 
- 7.29 are approximate in nature ; they do not account for any decorrelations, or 
for that matter corrections to the correlations. Still, the approximations 
employed are valuable in at least providing a qualitative idea of the correlation 
processes, particularly in regard to the output current, which represents an 
"integrated" quantity. For obtaining the field profiles, or, for that matter 
quantitative estimates of both the field and current, the exact 
correlation;/decorrelation methods described in Chapter IV must be employed. 

Appendices 

App. 7A. 1. Discussion Of Program Statements For Semiconductor Switch 

We describe the BASIC program given in App.7A.2 for the semiconductor 
switch . The program is of course based on the ideas presented previously in this 
and earlier Chapters. The inclusion of the program is essential in order to 
quantify many(but certainly not all) of the concepts covered in the book. The 
program relies for the most part on a "brute force" technique, and no attempt is 
made make the program run more efficiently. The statements are discussed and 
we identify their relationship to the concepts. Possible modifications of the 
program, such as increasing the number of cells(for more resolution), or altering 
the boundary conditions (to take into account, e.g., quasi-nodes) may be 
implemented with little additional effort. Other modifications such as plane wave 
correlations require additional software development. Further, we have not 
attempted to express the Program in more advanced computer languages. Our 
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main aim has been directed toward the understanding the main concepts and 
iterations. In any event, the transcription of the results to more advanced 
languages should not be difficult. 

Lines 10-110 provide input data such as the total number of time steps, the 
bias voltage, the background node resistance, and so forth. Table 7A. 1 explains 
the input parameters and the symbols used. Typical values for the inputs are 
listed. Note that included in the input is the region of activated nodes , specified 
by the range values NS1,NS2 and MS1,MS2 where the activated nodes are in 
the range NSKn< NS2 and MSKm<MS2. Before activation, RT is the 
background node resistance in the semiconductor, which will be generally 
smaller than REQ, the background resistance in the dielectrics, (D) and (II). 
Lines 40 and 90-110 specify whether the node resistance is allowed to collapse 
suddenly to RO(in which case IN STAN =10), or whether the resistance is 
allowed to decrease gradually, INST AN <> 10. In the event of the latter case, we 
must also specify the conductivity risetime, KRS , LIT and RST. LIT is a 
limiting node resistance of the semiconductor below which we do not allow the 
resistance to fall( such limitations may be ascribed physically, e.g., to optical 
screening effects). RST may be regarded as the initial light activated resistance of 
the semiconductor , following the first time step after KL. RST also may be 
modeled from the semiconductor physics, as discussed in Chapter II. 

Lines 120-210 declare the array sizes needed to run the program. The 
various arrays are listed in Table 7A.2 Several of these are obvious such as the 
cell voltage VO(n,m), the scattering coefficients, B(n,m) and T(n,m), as well as 
the node resistance R(n,m), and the corresponding node parameters , Rl(n,m), 
R2(n,m) ,R3(n,m), R4(n,m), RLl(n,m),RL2(n,m), RL3(n,m), and RL4(n,m). 
The forward and backward waves have the following computer symbols: 
^ ( ^ m ) -> VPM(n,m), " V ^ m ) ->VNM(n,m), +V^(n,m) ->VPN(n,m), and 
~Vyx(n,m) -»VNN(n,m). Similarly the line impedances are identified by 
Zxy(n,m)->ZM(n,m) and Z ^ ^ m ) -»ZN(n,m). The arrays VPMS(n,m), etc., are 
temporary arrays assigned to the waves as discussed earlier. The remaining 
arrays, VS(n,m), VS2(n,m), VSlP(n,m), VS2P(n,m), VOUT(n,m), and 
VGC(n,m) are output arrays for the field and current, to be defined later in the 
program. 
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TABLE 7A.1 

INPUT ITERATION PARAMETERS 

TYPE 

TIME STEP ,At 

TOTAL NO. TIME STEPS , KM 

BIAS VOLTAGE, VO 

R(n,m), Z(n,m) OF 
CONDUCTING & 
DIELECTRIC REGIONS 

R(n,m) AFTER ACTIVATION, RO 

SPREAD FACTOR, GO 

ACTIVATION TIME, KL 

RECOVERY TIME,KREC 

ACTIVATED NODES 
NS1-NS2, MS1-MS2 RANGE 

BACKGROUND R(n,m): RT, REQ IN 
SEMICONDUCTOR, DIELECTRIC 

TYPICAL VALUES 

LINE IMPEDANCES, ZD , Z s , ZIN, ZOUT 

RISETIME CONSTANTS: 
RST, LIT, KRS 

1.6678ps 

500 -5000 

1000 V 

.01Q, 1012fi 

15 - 150Q 

106 

k=350 

k=300,108 

n=3-18 
m= 15-18, 

107,1012 Q. 

126-377Q 

106Q, 15Q 
K=50 
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TABLE 7A.2 

VARIOUS TLM ARRATS APPLICABLE TO LIGHT 
ACTIVATED SEMICONDUCTOR SWITCH 

TEXT PROGRAM 
SYMBOL SYMBOL 

V(n,m,) VO(n,m) 

•V^n.m), Vx,(n,m) VPM(n,m),VNM(n,m) 

*Vy^n,m)rVy»(n,m), VPN(n,m),VNN(n,m) 

N/A VPMS(n,m),VNMS(n,m) 

N/A VPNS(n,m),VNNS(n,m) 

Zxr(n,m), Zrx(n,m) ZM(n,m),ZN(n,m) 

R(n,m) R(n,m) 

Rl(n,m), R2(n,m) Rl(n,m),R2(n,m) 

R3(n,m),R4(n,m) R3(n,m),R4(n,m) 

RLl(n,m),RL2(n,m) RLl(n,m),RL2(n,m) 

RL3(n,m), RL4(n,m) RL3(n,m), RL4(n,m) 

T(n,m,s) T(n,m,s) 

B(n,m,s) B(n,m,s) 

VOUT(K) VOUT(K) 

VTx(n,m) VGC(K) 

V^n.17) VS(L),VS2(L) 

V,x(n,17) X(L) 

DESCRIPTION DIMENSION 

CELL VOLTAGE 

HORIZONTAL WAVES 

VERTICAL WAVES 

TEMP WAVES 

TEMP WAVES 

TL LINES 

NODE RESISTANCE 

NODE PARAMETER 

NODE PARAMETER 

NODE PARAMETER 

NODE PARAMETER 

TRANSFER COEFF 

2 5 X 2 1 

2 5 X 2 1 

2 5 X 2 1 

25X21 

2 5 X 2 1 

2 5 X 2 1 

25x21 

25X21 

25X21 

25X21 

25X21 

25X21X12 

REFLECTION COEFF 25X21X4 

OUTPUT VOLTAGE 

SC FIELDS(TIME) 

SC FIELD(PROFILB) 

SC CELL NUMBER 

103-10* 

103-10* 

18 

18 
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The initial cell voltages are given in lines 225-250. Note that in the case of 
the larger dielectric cells , a STEP 3 is required in the for-next loop. Once we 
have the cell voltages we can determine the initial forward and backward waves 
in the lines, since these depend on nothing more than the differences in cell 
voltage of the adjacent cells. The forward and backward waves are given in lines 
300-350. In the simulations provided the initial cell voltages are zero, so that in 
fact VOI(n,m)=0, and therefore the initial waves vanish as well. 

The transmission line impedances and node resistance values are stated in 
lines 600-1660. Because there are several regions, each with a different dielectric 
constant and loss property, extra care must be exercised assigning the correct line 
impedance and node resistance. A piecemeal approach was used in determining 
these values, wherein the appropriate TLM impedances and node resistors are 
inserted row by row, starting with m=3. 

In going through the spatial loops for the line impedances and node 
resistances, we could have chosen to use separate FOR - NEXT loops to account 
for the difference in cell size between the dielectric and the semiconductor, as 
was done in assigning values to the cell voltages. Instead we use a special 
technique for using the same index source for both large and small cell regions, 
as indicated in lines 680-700. The 680-700 statements are equivalent to the step 
3 process in the dielectric process while in the semiconductor region the usual 
step 1 process applies. Thus, lines 680-700 are a convenient way for using a 
single FOR-NEXT loop for the entire space. The same type index source is used 
repeatedly throughout the program. 

Except for the I/O regions, where there exist matching resistors, the nodes 
initially have either very large resistance value, as in the dielectric or 
semiconductor, or very small values, as in the conducting regions. The node 
resistors in the semiconductor will be smaller that of the dielectric, due of course 
to the presence of background conductivity which always exists in the 
semiconductor. Before beginning the main iteration we insure that the constant 
input waves, lines 2022-2024, are introduced in the m= 3 TLM lines. Each of 
the waves has an amplitude VO/8. 

The main iteration begins with line 4000, with the iteration over both the 
time and spatial steps. Nothing of interest has happened thus far, however. This 
is because the initial cell voltages, as well as the waves derived from the cell 
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voltages, are zero(assuming VOI(n,m)=0). In order to kick-start the program we 
introduce the aforementioned input waves in lines 2022-2024, just before the 
start of the iteration. 

Line 4060 assigns node resistance value to the semiconductor region during 
the charge-up period, during which time no external conductivity has been 
introduced(to an extent this is redundant since we have introduced the same 
resistance values during the initialization). Even without activation the 
semiconductor node resistance RT will be small compared to that of the 
dielectric REQ( e.g., RT-E107 ohms versus REQ-E1012 ohms). Lines 4160-
4340 are responsible for the node activation in the semiconductor region, Note 
that there are two choices: When INST AN = 1 0 the semiconductor region 
undergoes a sudden conductivity change at k=kL. When INSTAN<>10 an 
exponential risetime is assumed starting at k=kL. Assuming negligible 
background conductivity, the node resistance is equal to E1*E2*E3, where E2 is 
the recovery term, line 4280, E3 is the spatial term, line 4295, and El is the 
induced conductivity. For the sudden conductivity change, El=RO , and for the 
exponential risetime El is given by line 4210 where the constant RST is 
discussed in Section 7.6 Lines 4300 and 4310 combine the background and 
induced conductivities , which then yields R(n,m). Lines 4220 ,4290, limit the 
size of the exponential numbers and 4320 and 4340 assign bounds to the node 
resistance. 

Once we change the node resistance, this triggers a sequence of other 
changes. Lines 5020-5100 calculates the various node parameters, all based of 
course on the new values of R(n,m). Following the calculation of the node 
parameters, we then obtain the transfer and reflection coefficients from lines 
5130-5310. Note that the node activation, calculation of the node parameters , 
and the scattering coefficients all belong to the same for-next loop.for n,m. We 
now have all the information necessary to implement the scatteiing equations, at 
a given time step. 

Before we can hand off the new values of R(n,m) , we must first create a 
set of temporary variables for the forward and backward waves, which we 
denote by appending an S to the old variable. Thus, VPM(n,m)-> VPMS(n,m), 
etc...The transformation is accomplished in lines 5450-5480. In lines 5500-
5530, we insure that the phantom lines, located at the quasi nodes on the 
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dielectric side equal to zero. This occurs at m=15 when n is not divisible by 
three, or when (n-3*INT(n/3))>0. This procedure is to some extent redundant 
since the scattering coefficients at the boundary presumably take into account the 
zero impedance of the phantom line and therefore there should be an absence of 
wave energy in these lines. Just prior to the scattering equations, we again insert 
the omnipresent lines 6010 -6025, which insures that in the medium with the 
lower dielectric constant, we perform the proper index skipping. We also have 
need of line 6030, as well. The parameter dt , equal to either 1 or 3, identifies 
whether the scattering is from lines in the dielectric or semiconductor. 

Lines 6050-6165 represent the scattering equations. Lines 6050-6102 give 
the scattering for VPM(n,m) and VNM((n,m), the horizontal lines, using 
temporary variables. For the transverse lines we need to be more careful. If m= 
15 then we set VPN(n,m) and VNN(n,m) =0 for those n yielding a quasi node, as 
indicated in lines 6104 and 6105. . This then completes the iteration for these 
particular waves with line 6106 essentially bypassing the remaining scattering 
equations, and returning to the start of the for-next loop. Line 6108 treats a 
special case in which m=15, with n divisible by three, in which case we wish to 
determine the new forward wave VPN(n, 15). The waves scattering into the 
Zyx(n,15) line emanate from lines with m=T2, at the (n,12) node, so that the 
parameter dt=3. We make this explicit by routing the forward wave VPN(n,15) 
to line 6132. Lines 6132-6134 take into account the proper scattering at the 
(n,12) node. The backward wave ,VNN(n,m), is treated in lines 6140-6160, and 
requires no special treatment since the scattering node situated at (n,15). 
Suppose m< >15? We then return to lines 6110-6130 where the scattering for 
VPN(n,m) and VNN(n,m) is completed . This completes the iteration. Note 
the iterative equations use temporary variables throughout until the iteration is 
ended.. Having essentially finished the iteration we then transform back to the 
original variables as shown in line 6165. We have not totally completed our task, 
however. The previous iteration does not provide for any input waves. We must 
not forget to re-establish the input waves, given in lines 6180-6222. 

The remainder of the program deals with tabulating the output data and then 
putting into a form suitable for graphing. Keep in mind that we are still inside 
the k loop At a given time step, the total output pulse VOUT(k), delivered to the 
output line, is given in line 6250. Note that VOUT(k) is an array, as are the other 
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outputs, so that the data is being stored. Also note that the output is the sum of 
the four waves in series. Likewise, the field at the centrally located cell, (11,17), 
denoted by VGC(k). is also calculated and stored. We recall that the field, 
calculated from VPN( 11,17) + VNN( 11,17), involves only the horizontal 
component. A small vertically directed field is also present, which may be 
calculated from VPM( 11,17)+VNM( 11,17). Line 6310 displays the value of k 
during the calculation, while lines 6320 and 6330 display either VOUT(k) or 
VGC(k), or both. 

We next create data arrays of the field profiles in the semiconductor. Each 
of the profile arrays contain 16 elements (one more than the number of cells). 
Lines 6232 -6335 creates an array profile of the horizontal field, denoted by 
VS2(L) just prior to the light activation at time KL-2, using the eighteen cells 
available. By this time equilibrium has been achieved and this represents , 
therefore, the static field profile ( since equilibrium has been achieved, any time 
step just prior to activation may be used, e.g., KL-1 or KL-3) We also make use 
of our input parameters, KP1 and KP2 , which are selected moments of time at 
which we take a "snapshot" of the field profile, either during the charge-up or 
after activation. These are described in lines 6336-6339, and are denoted by 
VSP1(L) and VSP2(L), where L is an integer, 3 to 18, specifying the cell number 
(corresponding to the n index). We can specify as many of these snapshots as we 
like, of course. The iteration in time then comes to an end. Immediately 
afterwards, we create a final array, VS(L), representing the final profile. We also 
create a number array for the number of profile array elements, denoted by X(L). 

We next place our data files in column format so as to make them more 
suitable to most types of graphical software. This is implemented in lines 7050-
7390 The output file bunk.xl is opened and made available for the data array 
elements. The three columns of data, k, VOUT(K), VGC(K) are placed in the 
file, as indicated in lines 7200-7272. This is followed by the columns of the 
profile elements consisting of X(L), VS(L), VS2(L), VSP1(L), and VSP2(L). 
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App. 7A.2 Program Statements 

REM App.7A.2: 2D PHOTOCONDUCTIVE SEMICONDUCTOR SWITCH 
PROGRAM 

10 INPUT "BIAS VOLTAGE : VO="; VO 
INPUT "MAXIMUM TIME STEP: KM="; KM 
INPUT "SEMICONDUCTOR BACKGROUND RESISTANCE: RT=";RT 

20 INPUT "CONDUCTOR LINE IMPEDANCE:ZL="; ZL 
INPUT "CONDUCTOR NODE RESISTANCE:RLL=";RLL 
INPUT "DIELECTRIC, INSULATOR NODE RESISTANCE:REQ=";REQ 

30 INPUT "INSTANTANEOUS (INSTAN=10) OR GRADUAL 
(INSTANO10) RISETIME: INSTAN="; INSTAN 
40 IF INSTAN =10 THEN INPUT "INSTANTANEOUS NODE 
RE SISTANCE;RO="; RO 
50 INPUT "SPREAD FACTOR: G0=";G0 
REM IN THIS EXAMPLE THE DIELECTRIC CONSTANT OF THE 
SEMICONDUCTOR AND THE 
REM DIELECTRIC FILL REGION ARE 9 AND 1 RESPECTIVELY,WITH 
THE CORRESPONDING 
REM TLM LINE IMPEDANCES EQUAL TO ZS=125.6 OHMS AND 
ZD=376.7 
OHMS. 

ZS=125.6: ZD=376.7 
INPUT "COMPOSITE INPUT LINE IMPEDANCE:ZINC=";ZINC 
INPUT "COMPOSITE OUTPUT LINE IMPEDANCE:ZOUTC=";ZOUTC 

REM SINCE THE CROSS-SECTION OF THE INPUT/OUTPUT IS EQUAL TO 
THAT OF THE 
REM DIELECTRIC FILL(5MMX1.5MM) THE LINE IMPEDANCES, ZIN AND 
ZOUT, ARE 

ZIN=5*ZINC/1.5:ZOUT=5*ZOUTC/l.5 
60 REM THE INPUT/OUTPUT NODE RESISTANCES ARE 
70 RIN1=(4/3)*ZIN:RIN2=(3/2)*ZIN:ROUTl=(4/3)*ZOUT:ROUT2= 
(3/2)*ZOUT 
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80 INPUT "LIGHT ACTIVATION STEP:KL="; KL 

INPUT "STATUS AT TIME STEPS: KP1,KP2=";KP1,KP2 
INPUT "RECOVERY TIME(NUMBER OF TIME STEPS):KREC=";KREC 

INPUT "CELL NODE ACTIVATION; LOWER, UPPER M 
INDEX:MS1,MS2=";MS1,MS2 
INPUT " CELL NODE ACTIVATION; LOWER, UPPER N 
INDEX:NS1,NS2=";NS1,NS2 
90 IF instanOlO then input "LIGHT AMPLITUDE 
RISETIME(NUMBER OF TIMESTEPS):krs=";krs 
100 IF instanOlO then input "LOWER NODE RESISTANCE 
BOUND:LIT=";LIT 
110 IF instanOlO then input "INITIAL NODE RESISTANCE^' ;RST 

120 DIM VO(25, 21), VPM(25,21), 
VPMS(25,21),VNMS(25,21),VPNS(25,21), VNNS(25,21) 
125 DIM VOI(25,21) 
130 DIM VPN(25, 21), VNM(25, 21), VNN(25, 21) 
140 DIM ZN(25, 21), ZM(25, 21) 
150 DIM R(25, 21), Rl(25, 21), R2(25, 21) 
160 DIM R3(25, 21), R4(25, 21), RL1(25, 21) 
170 DIM RL2(25, 21), RL3(25, 21), RL4(25, 21) 
180 DIM VS(18), X(18), VS2(18) 
190 DIM B(25, 21, 4), F(25, 21, 12) 
195 DIM VS1P(18), VS2P(18) 
200 DIM VOUT(KM) 
210 DIM VGC(KM) 

225 REM INITIAL BIAS VOLTAGES OF EACH CELL 
REM FOLL ASSUMES VOI(N,M) OF EACH CELL IS SPECIFIED; 

ELSE VOI(N,M)=0 

230 FOR M=0 TO 15 STEP 3 
235 FOR N=0 TO 24 STEP 3 

VO(N,M)=VOI(N,M) 
NEXT N 
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NEXT M 

240 FOR M=16 TO 20 
FOR N= 0 TO 22 
VO(N,M)=VOI(N,M) 
NEXT N 
NEXT M 

REM FOR M= 15 INSURE THAT SIB-CELL VOLTAGE SAME AS LARGE 
CELL 

FOR N=3 TO 24 STEP 3 
FOR D=l TO 2 
VO(N-D,15) =VO(N,15) 
NEXT D 
NEXT N 

250 REM 

300 REM WAVE CALC 

REM WAVES TRAVELING ALONG VERTICAL TRACKS 

310 FOR M= 0 TO 15 STEP 3 

FOR N= 0 TO N=21 STEP 3 
VPN(N,M)= (VO(N+3,M)-VO(N,M))/2 
VNN(N,M)=VPN(N,M) 
NEXT N 
NEXT M 

320 FOR M= 16 TO 20 
FOR N= 0 TO 21 
VPN(N,M)=(VO(N+l,M)-VO(N,M))/2 
VNN (N, M) =VPN (N, M) 
NEXT N 
NEXT M 

REM INSURE FIELDS IN PHANTOM LINES ARE ZERO 
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FOR N=0 TO 24 
IF (N-3*INT(N/3))>0 THEN VPN(N,15)=0 
IF (N-3*INT(N/3))>0 THEN VNN(N,15)=0 
NEXT N 

REM WAVES TRAVELING ALONG HORIZONTAL LINES 

330 FOR M= 0 TO 12 STEP 3 
FOR N=0 TO 24 STEP 3 
VPM(N,M)=(VO(N,M+3)-VO(N,M))/2 
VNM(N,M)=VPM(N,M) 
NEXT N 
NEXT M 

FOR M= 15 TO 19 
FOR N= 0 TO 22 
VPM(N,M) =(VO(N,M+l)-VO(N,M))/2 
VNM (N, M) =VPM (N, M) 
NEXT N 
NEXT M 

350 REM 

600 REM TRANSMISSION LINE AND RESISTANCE VALUES 

HH=REQ 
REM 
670 FOR M=l TO 20 
675 FOR N=0 TO 24 

680 IF M<15 AND (M-3*INT(M/3))>0 THEN M=M+1 
685 IF M<15 AND (M-3*INT(M/3))>0 THEN GOTO 680 
695 IF M<15 AND (N-3*INT(N/3))>0 THEN N=N+1 
700 IF M<15 AND (N-3*INT(N/3))>0 THEN GOTO 695 

IF M=3 THEN 
ZM(N,M)=ZL 
ZN(N,M)=ZL 
R(N,M)=RLL 
END IF 
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IF M=6 AND N=0 THEN 
ZM(N,M)=HH 
ZN(N,M)=ZL 
R(N,M)=RIN2 
END IF 

IF M=6 AND N=3 THEN 
ZM(N,M)=ZIN 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 

IF M=6 AND N>3 AND N<19 THEN 
ZM(N,M)=ZD 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 

IF M=6 AND N=21 THEN 
ZM(N,M)=ZOUT 
ZN(N,M)=ZL 
R(N,M)=R0UT2 
END IF 

IF M=6 AND N=24 THEN 
ZM(N,M)=HH 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 

IF M>8 AND M<13 AND N=0 THEN 
ZM(N,M)=HH 
ZN(N,M)=HH 
R(N,M)=RIN1 
END IF 

IF M>8 AND M<13 AND N=3 THEN 
ZM(N,M)=ZIN 
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ZN(N,M)=ZD 
R(N,M)=REQ 
END I F 

IF M>8 AND M<13 AND N>3 AND N<19 THEN 
ZM(N,M)=ZD 
ZN(N,M)=ZD 
R(N,M)=REQ 
END IF 

IF M>8 AND M<13 AND N=21 THEN 
ZM(N,M)=ZOUT 
ZN(N,M)=HH 
R(N,M)=R0UT1 
END IF 

IF M>8 AND M<13 AND N=24 THEN 
ZM(N,M)=HH 
ZN(N,M)=HH 
R(N,M)=REQ 
END IF 

IF M=15 AND N=0 THEN 
ZM(N,M)=HH 
ZN(N,M)=HH 
R(N,M)=RIN2 
END IF 

IF M= 15 AND N=3 THEN 
ZM(N,M)=ZIN 
ZN(N,M)=ZD 
R(N,M)=RT 
END IF 

IF M=15 AND N>0 AND N<3 THEN 
ZM(N,M)=ZIN 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 
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IF M=15 AND N>3 AND N<19 THEN 
ZM(N,M)=ZS 
ZN(N,M)=ZD 
R(N,M)=RT 
END IF 

IF M=15 AND N>18 AND N<21 THEN 
ZM(N,M)=ZOUT 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 

IF M=15 AND N=21 THEN 
ZM(N,M)=ZOUT 
ZN(N,M)=HH 
R(N,M)=R0UT2 
END IF 

IF M=15 AND N>21 AND N<24 THEN 
ZM(N,M)=HH 
ZN(N,M)=ZL 
R(N,M)=REQ 
END IF 

IF M=15 AND N=24 THEN 
ZM(N,M)= HH 
ZN(N,M)=HH 
R(N,M)=REQ 
END IF 

IF M>15 AND M<18 AND N<3 THEN 
ZM(N,M)=ZL 
ZN(N,M)=ZL 
R(N,M)=RLL 
END IF 

DOP=0 
IF M=16 OR M=17 THEN DOP=10 
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IF DOP=10 AND N=3 THEN 
ZN(N,M)=ZS 
ZM(N,M)=ZL 
R(N,M)=RT 
END IF 

IF M>15 AND M<18 AND N>3 AND N<19 THEN 
ZM(N,M)=ZS 
ZN(N,M)=ZS 
R(N,M)=RT 
END IF 

IF M>15 AND M<18 AND N>18 THEN 
ZM(N,M)=ZL 
ZN(N,M)=ZL 
R(N,M)=RLL 
END IF 

IF M=18 AND N<3 THEN 
ZN(N,M)=ZL 
ZM(N,M)=ZS 
R(N,M)=RT 
END IF 

IF M=18 AND N=3 THEN 
ZN(N,M)=ZS 
ZM(N,M)=ZS 
R(N,M)=RT 
END IF 

IF M=18 AND N>3 AND N<19 THEN 
ZM(N,M)=ZS 
ZN(N,M)=ZS 
R(N,M)=RT 
END IF 

IF M=18 AND N>18 THEN 
ZN(N,M)=ZL 
ZM(N,M)=ZS 
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R(N,M)=RT 
END IF 

IF M=19 THEN 
ZN(N,M)=ZS 
ZM(N,M)=HH 
R(N,M)=REQ 
END IF 

IF M=20 THEN 
ZM(N,M)=HH 
ZN(N,M)=HH 
R(N,M)=REQ 
END IF 

IF M=15 AND (N-3*INT(N/3))>0 THEN 
ZN<N,M)=ZL 
END IF 

1660 REM 

NEXT N 
NEXT M 

REM INPUT WAVES 
2022 VPM(3,6)=VO/8 : VPM(3,9)=VO/8: VPM(3,12)=VO/8 
2024 VPM(l,15)=VO/8: VPM(2,15)=VO/8:VPM(3,15)=VO/8 

4000 REM NODE ACTIVATION 
4002 FOR K = 1 TO KM 

REM ***** THE FOLLOWING 8 STATEMENTS APPLY WHEN INPUT 
ALTERNATES IN SIGN 
REM IF (K-2*INT(K/2))=0 THEN 
REM VPM(l,15)=-VO/8 :VPM(2,15)=-VO/8:VPM(3,15)=-VO/8 
REM VPM(3,12)= -VO/8:VPM(3,9)= -VO/8 :VPM(3, 6) =-VO/8 
REM END IF 
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REM IF (K-2*INT(K/2))>0 THEN 
REM VPM(1,15)= VO/8:VPM(2,15)=VO/8:VPM(3,15)= VO/8 
REM VPM(3,12)= VO/8:VPM(3,9)= VO/8:VPM(3,6)= VO/8 
REM END IF 
REM ****** 

4004 
4006 
4010 
4020 
4030 
4040 
4050 
4060 
4065 
4080 
4130 
4150 
4160 
then 
4180 
4200 
4210 
4220 
4240 
4260 
4280 
4290 
4295 
4300 
4310 
4320 
4325 
4340 
4345 

FOR m = 1 
FOR n = 1 

TO 19 
TO 21 

IF m < 
IF m < 
IF m < 

15 AND 
15 AND 
15 AND 

(m 
(m 
(n 
(n 

3 * INT (m / 3)) > 0 THEN m = m + 1 
3 * INT(m / 3)) > 0 THEN GOTO 4010 
3 * INT(n / 3)) > 0 THEN n = n + 1 
3 * INT(n / 3)) > 0 THEN GOTO 4030 IF m < 15 AND 

RR2=0 
if n>2 and n<19 and m>14 and m<19 then R(n,m)=RT 
if R(n,m)>(hh+.l) then R(n,m)=hh 

if k>(KL-l) then goto 4160 
rem 

if k<KL then goto 4345 
if k>(KL-l) and n>NSl and n<ns2 and nOMSl and m<MS2 
RR2=10 
if instan=10 then goto 4240 
rem 

El = RST/(KRS*(EXP((k-kl)/krs)-.99999)) 
if ((K-KL)/KRS)>40 then E1=RST/(KRS*(EXP(40)-1)) 
if instan =10 and rr2=10 then El=RO 
rem 
E2 = EXP((K-KL)/KREC) 
IF ((K-KL)/KREC)>40 THEN E2=EXP(40) 
E3 = EXP(G0*(n-ll)A2) 
if RR2=10 then RQ = E1*E2*E3 
IF RR2=10 then R(n,m) = RT*RQ/(RT+RQ) 
if RR2=10 AND R(n,m)>RT THEN R(n,m)=RT 

if instan=10 then goto 4345 
if RR2=10 and R(n,m)<LIT then R(n,m)=LIT 

rem 

5015 REM CALC OF NODE PARAMETERS 
5020 if m<15 then dt=3 else dt=l 
5030 Rl(n, m) = ZM(n, m) * R(n, m) / (ZM(n, m) + R(n, m)) 
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5040 R2(n, m) = ZN(n, m) * R(n, m) / (ZN(n, m) + R(n, m)) 
5050 R3(n, m) = ZM((n + dt), m) * R(n, m) / (ZM((n + dt), 
m) + R(n, m)) 
5060 R4(n, m) = ZN(n,(m+dt)) * R(n, m) / (ZN(n,(m+dt)) + 
R(n, m)) 
5070 lRLl(n, m)=(R2(n, m)+R3(n,m)+R4(n, m))*R(n, m)/((R2(n, 
m)+R3(n,m)+R4(n, m))+R(n, m)) 
5080 RL2(n, m)=(Rl(n, m)+R3(n, m)+R4(n, m))*R(n, m)/((Rl(n, 
m)+R3(n, m)+R4(n, m))+R(n,m)) 
5090 RL3(n, m)=(Rl(n, m)+R2(n,m)+R4(n,m))*R(n, m)/((Rl(n, 
m)+R2(n, m)+R4(n, m))+R(n, m)) 
5100 RL4(n, m)=(Rl(n, m)+R2(n, m)+R3(n, m))*R(n, m)/((Rl(n, 
m)+R2(n, m)+R3(n,m))+R(n, m)) 
5110 rem 
5120 rem 
5130 REM CALCULATION OF TRANSFER/REFLECTION COEFF 
5140 rem 
5150 rem 
5160 B(n, m, 1) = (RL3(n, m) - ZM((n+dt), m)) / (RL3(n, m) 
+ ZM((n+dt), m)) 
5170 B(n, m, 2) = (RLl(n, m) - ZM(n, m)) / (RLl(n, m) + 
ZM(n, m)) 
5180 B(n, m, 3) = (RL4(n, m) - ZN(n,(m+dt))) / (RL4(n, m) + 
ZN(n ,(m+dt))) 
5190 B(n, m, 4) = (RL2(n, m) - ZN(n,m)) / (RL2(n, m) + 
ZN(n,m)) 

5200 F(n, m, l)=2*RLl(n, m)*R3(n, m)/((RLl(n, m)+ZM(n, 
m))*(R2(n, m)+R3(n, m)+R4(n, m))) 

5210 F(n,m,2)=2*RL2(n, m)*R3(n, m)/((RL2(n, m)+ZN(n, 
m))*(Rl(n, m)+R3(n, m)+R4(n, m))) 

5220 F(n, m,3)=2*RL4(n, 
m)*r3(n,m)/((RL4(n,m)+ZN(n,(m+dt)))*( Rl(n,m)+R2(n,m)+R3(n, 
m))) 
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5230 F(n,m,4)=2*RL3(n, 
m)*R1(n,m)/((RL3(n,m)+ZM((n+dt),m))*(Rl(n, m)+R2(n, 
m)+R4(n, m) ) ) 

5240 F(n, m,5)=2*RL4(n,m)*R1(n,m)/((RL4(n, 
m)+ZN(n,(m+dt)))*(Rl(n, m)+R2(n, m)+R3(n, m))) 

5250 F(n,m,6)=2 * RL2(n, m)*Rl(n, m)/((RL2(n, m)+ZN(n, 
m))*(Rl(n,m)+R3(n, m)+R4(n, m))) 

5260 F(n, m,7)=2 * RLl(n, m)*R4(n, m)/((RLl(n, m)+ZM(n, 
m))*(R2(n, m)+R3(n, m)+R4(n, m))) 

5270 F(n, m, 8)=2*RL2(n, m)*R4(n, m)/((RL2(n, m)+ZN(n, 
m))*(Rl(n, m)+R3(n, m)+R4(n, m))) 

5280 F(n, m,9)=2*RL3(n,m)*R4(n,m)/((RL3(n, 
m)+ZM((n+dt),m))*(Rl(n, m)+R2(n,m)+R4(n, m))) 

5290 F(n,m,10)=2*RLl(n, m)*R2(n, m)/((RLl(n, m)+ZM(n, m))*( 
R2(n, m)+R3(n,m)+R4(n, m))) 

5300 F(n,m,ll)=2*RL4(n, m)*R2(n,m)/((RL4(n, 
m)+ZN(n,(m+dt)))*(Rl(n, m)+R2(n,m)+R3(n,m))) 

5310 F(n,m,12)=2*RL3(n,m)*R2(n, 
m) / ((RL3 (n,m) +ZM( (n+dt) ,m)) * (Rl (n,m)+R2 (n,rn) +R4 (n, m))) 

5315 rem 
5320 rem 
5325 next n 
5330 next m 

REM TEMPORARY FIELD REPLACEMENT 
5430 FOR m=0 to 20 
5440 FOR n=0 to 22 
5450 if m<15 and (m-3*INT(m/3))>0 then m=m+l 
5455 if m<15 and (m-3*INT(m/3))>0 then goto 5450 
5460 i f nK15 and (n-3*INT(n/3))>0 then n=n+l 
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5470 if m<15 and <n-3*INT(n/3))>0 then goto 5460 
5480 
VPNS(n,m)=VPN(n,m) :VNNS (n,m) =VNN (n,m) :VPMS (n,m) =VPM(n,m) :VN 
MS(n,m)=VNM(n,m) 
5490 next n 
54 95 next m 

REM SET TEMPORARY PHANTOM FIELDS EQUAL TO ZERO 
5500 FOR N=l TO 21 
5510 IF <N-3*INT(n/3))>0 THEN VPNS(n,15)=0 
5520 IF (N-3*INT(n/3))>0 THEN VNNS(n,15)=0 
5530 NEXT N 

REM MAIN ITERATION 
6000 for m= 1 to 19 
6005 for n=l to 21 
6010 if m<15 and (m-3*INT(m/3))>0 then m=m+l 
6015 if m<15 and (m-3*INT(m/3))>0 then goto 6010 
6020 if m<15 and (n-3*INT(n/3))>0 then n=n+l 
6025 if m<15 and (n-3*INT(n/3))>0 then goto 6020 
6030 IF m < 15 THEN dt = 3 ELSE dt = 1 
6035 REM FOLLOWING ARE ITERATIVE EQS 
6040 rem 
6050 X = F((n - dt), m, 1) * VPMS((n - dt), m) -F((n -
dt), m, 2) * VPNS((n - dt), m) 
6060 Y = F((n - dt), m, 3) * VNNS((n - dt), (m + dt)) + 
B((n - dt), m, 1) * VNMS(n, m) 
6070 Zl = X + Y 

6080 X = F(n, m, 4) * VNMS((n + dt), m) - F(n, m, 5) * 
VNNS(n, (m + dt)) 
6090 Y = F(n, m, 6) * VPNS(n, m) + B(n, m, 2) * VPMS(n, 
m) 
6100 Z2 = X + Y 

6102 VPM(n,m)=zl : VNM(n,m)=z2 
6104 if m=15 and (n-3*INT(n/3))>0 then VPN(n,15)=0 
6105 if m=15 and (n-3*INT(n/3))>0 then VNN(n,15)=0 
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6106 if m=15 and (n-3*INT(n/3))>0 then goto 6167 
6108 if m=15 and (n-3*INT(n/3))=0 then goto 6132 
6110 X = -F(n, (m - dt),7) * VPMS(n,(m - dt))+F(n, (m -
dt), 8)*VPNS(n, (m - dt)) 
6120 Y = F(n,(m - dt),9)*VNMS((n+dt),(m-dt))+B(n, <m -
dt), 3) * VNNS(n, m) 
6130 Z3 = X + Y 
6131 goto 6140 
6132 X=-F(n,12,7)*VPMS(n,12)+F(n,12,8)*VPNS(n,12) 
6134 Y=F(n,12,9)*VNMS(<n+3),12)+B(n,12,3)*VNNS(n,15) 
6136 Z3=x+y 

6140 X = F(n, m, 10) * VPMS(n, m) + F(n, m, 11) * 
VNNS(n, (m + dt)) 
6150 Y = -F(n, m, 12) * VNMS ((n + dt) , m) + B(n, m, 4) 
* VPNS(n, m) 
6160 Z4 = X + Y 

6165 VPM(n,m)=Zl:VNM(n,m)=Z2:VPN(n,m)=Z3:VNN(n,m)=Z4 
6167 rem 
6180 VPM(3, 6) =VO/8 
6200 VPM(3, 9) =VO/8 
6220 VPM(3, 12) =VO/8 
6222 VPM(3,15)=VO/8:VPM(2,15)=VO/8:VPM(1,15)=V0/8 
6224 REM 

REM ******* THE FOLLOWING 8 STATEMENTS ARE USED FOR 
ALTERNATING INPUT 
REM IF (K-2*INT(K/2))=0 THEN 
REM VPM(1,15)= -VO/8:VPM(2,15)= -VO/8:VPM(3,15)= -VO/8 
REM VPM(3,12)= -VO/8:VPM(3,9)= -VO/8:VPM(3,6)=-VO/8 
REM END IF 
REM IF (K-2*INT(K/2))>0 THEN 
REM VPM(1,15)= VO/8:VPM(2,15)=VO/8:VPM(3,15)= VO/8 
REM VPM (3,12)= VO/8: VPM (3, 9)= VO/8 : VPM (3, 6) = VO/8 
REM END IF 
REM ******** 

6230 NEXT n 
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6240 NEXT m 
6241 KQ=0 
6242 rem if ((K/10)-INT(K/10))=0 then KQ=K/10 
6250 VOUT(K) = VPM(21, 6) + VPM(21, 9) + VPM(21, 12) 
+VPM(21,15) 
6260 rem VGC(K) = 
(VPN(11,16)+VNN(11,16)+VPN(11,17)+VNN(11,17)+VPN(11,18)+VNN 
(ll,18))/3 
6270 VGC(K) = VPN(11,17) +VNN(11,17) 
6280 rem 
6290 rem 
6300 if ((k/100)-INT(k/100))=0 then print 
6310 if ((K/100)-INT(k/100))=0 then print k 
6315 REM print 
VPNS(18,15);VNNS(18,15);VPNS(17,15);VNNS(17,15) 
6320 rem print VGC(k); 
6330 print VOUT(K); 
6332 FOR L=3 to 18 
6333 REM 
6334 IF K=KL-2 THEN VS2 (L) =VPN (L, 17)+VNN (L, 17) 
6335 next L 
6336 FOR L=3 to 18 
6337 if k=KPl then VS1P(L)= VPN(L,17)+VNN(L,17) 
6338 if k=kp2 then VS2P(L)=VPN(L,17)+VNN(L,17) 
6339 next L 
6340 NEXT K 
6345 rem 
6350 for L=3 to 18 
6355 REM 
6360 VS(L) = VPN(L,17)+ VNN(L,17) 
6365 next L 
6370 for L=3 to 18 
6375 x(L)=L 
6380 next L 
6385 rem 

REM SETUP OUTPUT FILE 
7050 OPEN "bunk.xl" FOR output AS #1 
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7190 rem 
7195 print #1, "k"; CHR$(9); "VOUT(k)";CHR$(9); "VGC(k)" 
7200 FOR K = 1 TO KM 
7210 rem K=10*KQ 
7220 rem 
7230 PRINT #1, k; 
7240 PRINT #1, CHR$(9); 
7250 PRINT #1, VOUT(k); 
7260 PRINT #1, CHR$(9); 
7270 PRINT #1, -VGC(K) 
7272 next k 
7273 print #1, " 
7274 print #1, " 
7275 print 
#1,"X(L)";CHR$(9);"VS(L)";CHR$(9);"VS2(L)";CHR$(9);"VS1P(L) 
";CHR$(9);"VS2P(L)" 
7280 for 1=3 to 18 
7290 PRINT #1, X(L); 
7300 PRINT #1,CHR$(9); 
7310 PRINT #1, -VS(L); 
7320 PRINT #1, CHR$(9); 
7330 PRINT #1, -VS2(L) ; 
7340 PRINT #1, CHR$(9); 
7350 PRINT #1, -VS1P(L); 
7352 PRINT #1, CHR$(9); 
7354 PRINT #1,-VS2P(L) 
7360 next L 
7365 rem 
7370 CLOSE #1 
7380 rem 
7390 end 
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App. 7A.3 Program Changes For Arbitrary Dielectric Constant, Cell 
Density, and Device Size 

When the dielectric constants and cell density are arbitrarily selected, the changes 
to the program code are not large, at least from a conceptual viewpoint. The 
most significant changes occur at the dielectric interface, where we must employ 
a nearest node approximation. 

We consider the same type design switch as before, i.e, a rectangular type 
switch in a parallel plate transmission line. Designating the dielectric constants 
of the semiconductor and dielectric regions by ss and So, and the corresponding 
cell lengths by Als and A1D , we have the usual relation 

(A1S/A1D) = (8D/SS)1/2 (7A5.1) 

The cell lengths satisfy 

Als = (l//ES/£o^)1/2At ; A1D = (V/so/e^^At (7A5.2); (7A5.3) 

where At is the selected time step. 
Since we are selecting arbitrary dielectric constants, we should not expect 

that there will be an integral number of cell lengths in each of the switch 
dimensions(height and length of the semiconductor and dielectric regions). One 
must therefore expect truncated cells at the boundaries. By increasing the cell 
densities we can reduce the effect of the truncated cells to an arbitrarily small 
amount. In the following we "round off the truncated cells( either deleting the 
partial cell or replacing it with a whole cell, depending on whether the truncated 
cell >= 0.5). In a way this is equivalent to changing the dimensions very slightly. 

In addition, since the ratio of dielectric constants is arbitrary, we should not 
expect the cell index, or for that matter the increment in the index to be an 
integer in the dielectric region(this assumes the dielectric region has a smaller 
dielectric constant with larger cells). As for the semiconductor region(again 
assuming the semiconductor has the larger dielectric constant and thus the 
smaller cells), we are free to adopt an index which increments by unity. Such a 
selection is assumed throughout. 
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The use of non-integral indices , unfortunately, introduces complications in 
the in the array variables. The arrays only consider the indices as integers, When 
a non-integer is encountered , the array variable usually(depending on the 
language) rounds off the index to the closest integer. Ordinarily this property is 
desired, but when using the nearest node approximation there will be occasions 
when this selection is incorrect; in this case program revisions must be 
incorporated so as to make the correct selection for the array variable. The 
nearest node method therefore results in a program which is more involved 
(compared to the previous example) but is naturally of greater utility. 

In Fig. 7A. 1 we provide sample results of simulations which allow for 
arbitrary dielectric constant and cell density, using the nearest node 
approximation(the program revisions are based on the discussion in Chapter V)). 
The Figure shows three static profiles of the semiconductor, i.e., the TLM 
solution of LaPlaces equation. Curves I and II are the same except for the 
dielectric constant of the fill region; for I it is eD = 3 while for II it is So = 9. In 
III, 8Q = 3 but the height of the fill HI is 3 mm instead of 1.5 mm. In each of 
the three curves a slightly different time step was selected in order to insure that 
the number of cells in the semiconductor was the same; in this case each has 
exactly 15 cells in the semiconductor (or 16 field values). This was done to 
facilitate the comparison between the three curves. Also, the cell index numbers 
are shown as integral; in fact the indices differ slightly and in general are non-
integral. The index changes in the semiconductor, however, are unity and 
therefore it is convenient to label the cells with integers. 

We should note that in curves I and II, where the dielectric constant of the 
fill is changed, from 3 to 9, the profiles do not change greatly. When the height 
of the dielectric fill is doubled, however, from 1.5 mm to 3.0 mm, the fields 
near the anode change significantly. This is expected since, for the smaller 
height, the main fringing to the ground line occurs in the first couple of cells 
next to the anode. When the distance from the anode to the ground line is 
increased, the fringing is cast out further, so that the field profile in the 
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FIG. 7A.1 STATIC FIELDS USING NEAREST NODE APPROXIMATION. 
THE DIELECTRIC CONSTANTS OF THE FILL AND SEMICONDUCTOR 
ARE ED AND es RESPECTIVELY. HI IS THE FILL HEIGHT. 

semiconductor is flattened out to some extent. Alternatively, when the 
semiconductor length is made large compared to the height of the dielectric fill, 
the field is strong near the anode but relatively weak near the cathode. As 
mentioned earlier, the oscillatory behavior of the profiles(especially for eD =3) is 
an artifact of the simulation; it may be removed by resorting to larger cell 
densities and with the assistance of spatial averaging over the oscillation 
length(approximately equal to the cell length in 8D). 

App. 7A. 4 Field Decay in Semiconductor Using the TLM Formulation 

As indicated on several occasions, the enhancement in resolution of the TLM 
solution may be obtained by reducing the cell length, (assuming sufficient 
computer capacity). Although important for the TLM method, the small cell 
length is critical in the case of numerical methods The numerical methods can 



Description of TIJA Iteration 445 

only guarantee a solution if the cell size is sufficiently small ; in TLM language 
they require that the cell transit time be roughly equal to or smaller than the 
capacitive time constant, which is equivalent to Z0 < R(n,m). In contrast to 
numerical methods, however, the TLM method allows R(n,m)< Z0, although the 
accuracy will be affected, particularly for the cells within the conductor and cells 
near the conducting interface. In allowing this condition, it behooves us therefore 
to understand how the fields will behave in the TLM lines. 

In this Appendix we explicitly indicate the field decay for arbitrary values of R 
and Zo, using the TLM formulation. To simplify matters we consider a one 
dimensional chain of cells biased to the same voltage VD, with R(n,m)=R We 
then activate the cell chain uniformly. As first noted in Section 1.4, under 
uniform conditions, and utilizing Fig. 1.14, the backward and forward waves 
combine, together with the reflected signals so that there is no net transfer of 
energy outside the cell; we may regard each cell as self contained as one might 
expect from symmetry considerations. This is now made more explicit. 

During the static conditions the forward and backward waves in each cell 
are identical and the same from cell to cell. Upon activation we then determine 
the change in the forward wave during the next time step. The same analysis will 
of course apply to the backward wave because of symmetry. The transfer 
coefficient at the node is 

T = 2RL/[Z0+RL] (7A6.1) 

where RL is 
RL = RZo/[Z0+R] (7A6.2) 

Combining the above equations, 

T= 2R/[2R+Z0] (7A6.3) 

Similarly the reflection coefficient is 

B = (RL-Z0)/(RL+Z0) (7A6.4) 
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where again 

RL = RZo/[Z0+R] (7A6.5) 

Combining the last two equations gives 

B= -Zo/[2R+Z0] (7A6.6) 

We can now determine the forward wave during the follow on time step 
Denoting the initial forward wave by +V° and the wave during the follow on step 
by +V ! . From the usual scattering equations, 

V = V [ T+B] (7A6.7) 

where the above takes into account the equality of the forward and backward 
waves and the wave symmetry among the neighboring cells. Combining the 
previous equations, 

V = +V° [2R-Z0]/[2R+Z0] (7A6.8) 

From symmetry considerations, however, the backward wave "V1, is exactly 
equal to +V'. But the above equation is exactly identical to that of a reflected 
wave in an isolated cell with end resistors 2R. The same factor is applied with 
each successive time step; thus, for k=2, +V2=+V0{[2R-Zo]/[2R+Zo]}

2. The 
description of the cell chain may therefore be replaced with that of a single 
isolated cell with an effective load of 2R, thus making the interpretation far 
simpler. In the remainder of the analysis we employ the isolated cell for 
convenience. 

For 2R>Z0 , the isolated cell will see a positive mismatch and the fields will 
decay with no change in polarity. For 2R»ZQ , the decay will take many time 
steps, but since a correspondingly small At is implied, the "RC" time constant, or 
equivalently s/a, is the same. When 2R«Z 0 , the field will decay in a ringing 
fashion, with the field changing polarity with each successive time step. With 
2R=Z0 , which is the matched condition, the field would appear to 
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instantaneously vanish. Bear in mind that the TLM method can only be applied 
with accuracy when R » Z o ; and the situations occurring in the conductivity 
region when Z0 > 2R must be treated with caution. As stated numerous times 
before, the situation is corrected by selecting a smaller cell size 

Next we determine the number of time steps needed to attenuate the field 
within each cell. As a criterion we say that the field is attenuated , if at the Kth 
time step, the field is at half its value. From Eq.(7A6.8 ) therefore we set 

(1/2) = { [2R-Z0]/[2R+Z0]}
K (7A6.9) 

K is the determined from 

K= 541/2) /^ (BEFF) (7A6.10) 
where 

BEFF = { [2R-Z0]/[2R+Z0]} (7A6.11) 

As R is made large relative to Zo, the quantity KAt approaches the RC time 
constant, i.e., KAt-»RC , or in terms of the material constants, KAt -»e/a. 

The field behavior just discussed may be illustrated using the same 
semiconductor switch example and program code employed previously in the 
Chapter, in which the the entire semiconductor is activated. The simulations in 
Figs.7A.2 and 7A.3 show the field in the center cell(n=Tl,m=17) of the 
semiconductor immediately after activation , reducing the node resistance 
instantaneously to either 150Q, as in 7A.2, or 15 Q, as in 7A.3. The conditions 
correspond to those in Figs.7.15 and 7.16 .We can interpret the simulations in 
light of the above results derived in this Appendix; keep in mind , however, that 
we have only considered ID situations and we have not made any corrections 
for 2D. 

At 150Q , 2R>Z0 (since ZG=126Q), and therefore we should probably not 
expect any ringing, and indeed the field in Fig.7A.2 appears to be well behaved 
in that respect. Since 2R is close to the matching conditions the field is seen to 
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FIG.7A.2 FIELD AT CENTER CELL, n=ll,m=17, WHEN ENTIRE 
SEMICONDUCTOR IS ACTIVATED. RO=150Q, VO=1000V 
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dissipate very quickly, and after one time step the field is not very far from its 
steady state value of ~ 15 V. 

When R = 15Q, however , Fig.7A.3, the number of transit times needed to 
dissipate the wave is larger, because of the strong negative mismatch. From the 
simulation shown in the figure a K value of ~ 3 appears to reduce the field by 
about a factor of two. The ID expression from Eq.(7A.6.1), on the other hand, 
yields a value of- 1.5. The discrepancy is due to the use of a 2D matrix instead 
of a linear chain. We also note the alternate changes in the field polarity, again 
brought about by the negative mismatch. The steady state field value is smaller 
than that for the case of 150 Q, as expected, because of the smaller 
semiconductor resistance. We again emphasize that the transient response in the 
activated region, certainly for the case when R=15Q, is a computer artifact which 
we may eliminate by selecting a smaller size for the cell. 
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FIG. 7A.3 FD3LD AT CENTER CELL n=ll,m=17. SAME CONDITIONS 
AS BEFORE BUT WITH LOWER NODE RESISTANCE DURING 
ACTIVATION:RO=15Q. 

TIME STEP K 



VIII. SPICE Solutions 

Often a relatively small number of cells is sufficient to qualitatively describe an 
electromagnetic problem. Such situations may occur in quasi two dimensional 
problems and certainly in one dimensional problems. If such is the case then 
SPICE analysis offers an often simple alternative to the iterations being 
discussed. Developed during the 1960's, primarily for lumped circuit variables, 
most modern software versions of SPICE incorporate transmission line 
elements. There are certain drawbacks, however, in using such software. An 
important shortcoming is their exclusive focus on coplanar modes. By ignoring 
normal scattering, the proper wave energy distribution in 3D multi- cell arrays 
cannot be obtained. Even when applied to 2D problems, the SPICE software 
does not properly take into account boundary conditions, or for that matter plane 
wave correlations or grid anisotropy effects. At the very least, the result is a 
diminution in accuracy. In addition there exists a major practical disadvantage 
having to do with the maximum number of cells one may employ with SPICE. 
Exactly how many cells can be analyzed by SPICE depends on the particular 
software. It appears, however, that when the number of cells exceeds 100 or so, 
the programs, if not specifically prohibited, run into practical difficulties(at least 
for the SPICE programs currently tested). Nevertheless, despite these crucial 
limitations, SPICE offers a useful and simple tool for understanding the nature of 
the TLM model. The SPICE method is applied to ID devices and simple 2D 
devices(especially devices which are relatively" long" in one direction, so the 
device may be considered quasi one dimensional), where the cell number 
capability is not exceeded. In this Chapter, we employ SPICE to analyze, in 
particular, avalanching photoconductive switches, transmission line Marx 
generators, Darlington pulsers, and various types of transformers and pulse 
generators. 

450 
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8.1 Photoconductive Switch 

Fig. 8.1 shows a conceptual view of a parallel plate photoconductive switch, with 
an input transmission line of impedance Z0. A portion of the top conductor is 
removed and replaced with a semiconductor, which also makes contact with the 
ground line. To simplify matters we assume the composite impedance of the 
semiconductor portion, when entirely activated, is also equal to Z0. The output at 
the cathode end is likewise matched to the input Z0. The semiconductor gap is 
then charged up to voltage V0 via the input line which is assumed to be 
extremely long compared to the device dimensions. Once the charge up process 
is completed the top surface of the semiconductor region, representing a small 
fraction of the height, is then illuminated, creating a conductive layer in the top 
region of the semiconductor. The entire length of the semiconductor need not be 
activated , however. Indeed, in the example to be discussed only the region near 
the anode is optically activated while the remaining length is activated by 
avalanching due to the build-up of the electric field. 
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I 1 1 
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T*" 
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L I N E Z Q 

GROUND LINE 

FIG. 8.1 SIDE VIEW OF PHOTOCONDUCTIVE SWITCH. 

This device is analyzed using SPICE , replacing the semiconductor with an 
eight cell simulation shown in Fig.8.2. There are a total of ten TLM lines, all 
with impedance ZQ, representing the semiconductor. We note that there is only a 



452 Electromagnetic Analysis Using Transmission Line Variables 

single row (consisting of four lines)of TLM lines. Also note that at the bottom of 
the device the nodes are at zero voltage since they are in contact with the ground 
line. The top nodes (A, B, and C) represent the activated region of the 
semiconductor. These node resistors are not activated until photoconductivity 
or avalanching is introduced. 

The first task is to obtain the static solution , which will give us the voltage 
of each cell. In cases where there are many cells(as in the iterative process) the 
static solution is normally obtained by initially setting all the cell voltages to 
zero and charging up the cells via the input transmission line, assuming the node 
resistors are infinitely large, as was done in the last Chapter. In this case, 
however, the limited number of cells grossly distorts the static field. Were we to 
use this charge-up procedure (using either the TLM or SPICE methods) we 
would find that the input merely charges up the first vertical line (below A in 
Fig.8.2 to the full input voltage of 3 kV. This is due to the fact that there is 
essentially only one active row of cells, each connected by an infinite 

ANODE SEQUENTIALLY ACTIVATED RESISTORS CATHODE 

LONG INPUT 
LINTS Zo Zo 

/ / y / / s \ 
GROUND LINE 

FIG. 8.2 EIGHT CELL MATRIX APPROXIMATION OF 
TRANSMISSION LINE SWITCH USING SPICE 
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resistance. In order to circumvent this limitation (other than adding additional 
rows, i.e., additional cells), we simply assume a linear gradient for the upper row 
of four cells. If the charge up voltage is V0 then the cell in contact with the anode 
is V 0 , the adjacent cell is (2/3)V0, the next is VJ'i, and the cell in contact with 
the cathode is at zero voltage. Next we assign specific values to the parameters, 
representative of a millimeter sized semiconductor switch. We take V0 = 3kV 
and Zo=104 Q(corresponding to a dielectric constant of ~13.1). The 
transmission line lengths are all 10 ps each , except for the input line , which is 
assumed to be long compared to lOps, and which provides a reservoir of 
energy for the semiconductor. Another assumption is the avalanche delay time. 
Once the semiconductor is exposed to a large electric field, the conductivity 
induced by avalanching is not instantaneous and a delay in the build-up of 
conductivity exists. An avalanche delay time of 10 ps is assumed. 

The only resistors activated are those at A, B, and C, and these are done 
sequentially. The resistor at A, near the anode, is first turned on optically. This is 
followed by B and C which are presumed to turn on via avalanching. Once the 
switch is turned on at A , a larger field develops at B, which causes the switch 
there to turn on (by avalanching). The activation at B in turn causes a higher field 
to develop at C, thus turning on C. Following the activation at C, the enhanced 
pulse to the load is delivered The simulated SPICE fields which develop across 
A, B C, and the load are shown in Fig. 8.3. At t =1 ps, switch A is turned on, 
and an enhanced voltage difference, close to 2kV, then appears across B 
approximately 50 ps later. After an additional 10 ps avalanche delay, switch B is 
activated and after another 30 ps, an enhanced field of 2.6 kV appears at switch 
C. Finally, after switch C is activated, the load pulse is delivered at t=120 ps. The 
total delay time, for delivery of the load pulse, is caused by a combination of 
propagation and avalanche delay. Since SPICE does not take plane wave effects 
into account, the propagation delay of the main signal, between anode and 
cathode, will be approximately twice that of the straight line delay(See Sections 
Chapter IV , where this delay is termed the earliest arrival time and the issue is 
discussed further). Since the straight line delay is 40ps( consisting of the 4 
horizontal TLM lines, each lOps long), the full strength signal should not arrive 
at the output until at least 80ps has elapsed. As discussed in Chapter III, the 
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200 

TIME(ps) 

FIG. 8.3 SPICE SIULATION OF VOLTAGE SIGNAL DEVELOPED AT 
VARIOUS POINTS IN THE SEMICONDUCTOR, PRIOR TO AND 
AFTER SWITCHING. 

effective slowing down of the signal is due to the filling up of wave energy in the 
transverse lines. When this delay is added to the avalanche delay of 3 Ops, the 
appearance of the full strength signal at 120ps is not surprising. The pulse plateau 
eventually settles down to half the charging voltage, as expected, in the limit of 
long input lines. The SPICE FORMAT for the light activated semiconductor is 
discussed in App.8A. 1. 

In the previous discussion we saw that it was possible to obtain field growth, 
caused by the imposition of the same voltage over progressively decreasing 
distances, and initiated by the introduction of conductivity, produced by either a 
light signal or avalanching. Efficient operation in this mode relies on the 
synchronization of the process so that the cell resistor is instantaneously activated 
once the maximum field signal arrives at the cell, i.e., avalanche delay must be 
minimized. Losses, of course, must also be controlled. The minimization of these 
two factors, avalanche delay and losses, can result in enormous field growth. 
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Such field growth is analogous to that in a traveling wave , Marx generator 
discussed in the next Section. 

8.2 Traveling Wave Marx Generator 

The field growth alluded to in the previous paragraph may be made clearer by 
analyzing the traveling wave Marx generator. First, however, we describe the 
conventional, lumped circuit Marx generator shown in Fig.8.4. An array of 
energy storing capacitors is charged in parallel as noted in (a). The charging 
resistors, Ri, R2 , etc.,are selected to be much larger than the load impedance. 
Now, suppose the switches Si , S2 , etc...in the diagonal lines of each cell are 
turned on simultaneously. The N capacitors, initially in parallel, will find 
themselves in series, as shown in (b), with a resultant N times multiplication of 
the charging voltage. Note that the large charging resistors essentially isolate the 
pulse circuit, preventing any unwanted discharge into these resistors. 

An important defect, associated with the circuit in Fig.8.4, is that the pulse 
risetime may be unacceptably slow, a direct result of the fact that the circuit does 
not behave as a transmission line. Thus the electrical lengths in the switch 
segments, as well as in the capacitor sections, represents an effective inductance 
which tends to smear out the risetime. In order to overcome this defect, we 
employ a transmission line circuit [1], with characteristic impedance Z0, as 
shown in Fig.8.5(a). The series combination of the capacitor and the switch is 
placed periodically in the line, with spacing Al, and with a delay time interval 
equal to At. We assume the electrical length, i.e., inductance, of this combination 
is small compared to that of Al, and also assume the switching time is very short 
compared to At. Note that the cells are all identical except for the first and last 
ones where input and output matching resistors terminate the line. We also point 
out that there is no requirement that the energy storage be restricted to a lumped 
capacitor. Indeed the capacitor may be replaced by a low impedance transmission 
line, Zn, with Zn « ZN, as noted in Fig.8.5(b). 

The sequence of operation for the transmission line Marx is as follows. 
Initially it is assumed each of the energy storage elements is charged to voltage 
V0. At t=0 , switch Si is activated. This gives rise to forward and backward 
waves of amplitude YJ2 (assuming no losses). The backward wave is absorbed 
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in the matched resistor RIN = ZD . The forward wave, however progresses to the 
next cell. When the wave front reaches S2 , this switch is quickly activated. Just 
as before, a forward and backward waves are launched from cell #2. The 
backward wave meets the same fate as before, being absorbed in the matched 
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FIG. 8.5a TRAVELING WAVE MARX GENERATOR. 

+ At • 

FIG.8.5b TRAVELING WAVE MARX GENERATOR WITH 
TRANSMISSION LINE STORAGE ELEMENTS Zs. 

in the matched resistor R^ = Z0. The forward wave, however, is superimposed 
onto the previous wave. The total amplitude of the forward wave, therefore , is 
Vo, instead of VJ2 . The process continues until the end of the line is reached. If 
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there are N stages then the total amplitude attained is N(Vo/2). The important 
point is that the precise sequential triggering of the switches gives rise to a fast 
risetime pulse, compared to that of the conventional Marx generator. 

Fig.8.6 shows one approach for the precise triggering of the various stages 
in the Marx line. A short laser pulse (pulse width much shorter than the delay 
time in the Marx line)is used to activate the switches. Differing lengths of fiber 
cables are used to produce the required activation delay between switches. 

A SPICE simulation was performed for a three cell transmission line Marx. 
Fig.8.7 shows the forward wave, produced in the 3 stage version, with capacitor 
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FIG.8.6 SEQUENTIAL LIGHT TRIGGERING OF 
MARX SWITCH ARRAY. 

storage, initially charged to 200V, with a 10 ns delay between stages. The fast 
risetime and 3X multiplication are evident. In contrast, the backward wave (not 
shown) is a series individual pulses with amplitude VJ2. Fig.8.8 shows how to 
modify the Marx circuit if we include losses, stemming from either the 
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conducting wires or the medium. Note that the conductor loss is represented by a 
series resistance while the medium loss is represented by the parallel resistance. 
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FIG. 8.8 TRAVELING WAVE MARX GENERATOR INCLUDING 
LOSSES DUE TO MEDIUM(RM) AND CONDUCTOR^). UN ,SN 
ARE ENERGY STORAGE AND SWITCH ELEMENTS 
ASSOCIATED WITH NTH STAGE. 

8.3 Traveling Marx Wave in a Layered Dielectric 

The previous discussion seems to imply that we require distinct energy storage 
circuit elements, external to the medium, either in the form of capacitors or input 
pulse forming lines, in order to achieve a growing Marx wave. Similar waves 
may be obtained, however, without relying on such external circuit elements. In 
fact, a growing wave may be derived from the electric field energy distributed 
throughout the medium itself, although the conditions are somewhat restrictive, 
as we shall see. Fig.8.9(a) shows a TLM matrix representation of the medium in 
which the transverse fields are assumed to be initially static. Note that the 
medium consists of a material with a dielectric constant e2, and containing a 
narrow channel, made up of another dielectric material, S\. In this configuration, 
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the 82 material plays the role of the energy storage elements of the circuit model. 
Under static conditions, the field storage is assumed to be primarily in the 
transverse lines of the s2 matrix, at which time there is no field growth in the 
channel. If we focus on the node (n,m) we see that the equilibrium 
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can be upset if we are able to reverse the field direction in the Zyx(n,m+1) line in 
the e2 region but leave the Zyx(n,m) and Zyx(n,m-1) lines alone We can imagine 
the field reversal occurring by means of photoconductivity which produces 
conductivity at one end of the transverse line, as indicated in Fig.8.9(b). The 
reversed field wave, in combination with the wave in Zyx(n,m,) now contributes 
to the forward horizontal wave in the channel. The fastest risetime and largest 
amplitude of the forward wave occur when coincidence conditions are achieved, 
i.e., when the arrival times of the forward wave and the reversed transverse wave 
occur simultaneously. We can achieve coincidence but only if we impose the 
condition that we delay the photoconductivity process along the length of the 
semiconductor. In order to realize a growing wave, however, we must also 
specify one more condition. Upon encountering the node, a portion of the wave 
energy will be dispersed to the transverse lines; in fact as much energy is lost by 
the forward wave to the transverse lines as is gained by the scattering from the 
transverse lines back to the forward wave. The only way we can minimize the re-
scattering into the transverse lines is to impose the condition that the line 
impedance of the channel is much greater than that of the medium, i.e., we 
require 82 » E i . Under this condition little of the wave energy in the channel is 
scattered into the medium. 

8.4 Simulation of Traveling Marx Wave in Layered Dielectric 

We can simulate the growing wave depicted in Fig.8.9(b), using a modification 
of the cell matrix given in Fig.8.2, with the accompanying node designation 
given in the Appendix, Fig.8A.l. The critical difference , however, is that we do 
not provide for a long input line; thus the output wave energy derives entirely 
from the initial energy stored in the TLM lines. Ti in Fig.8A.l has the same 
length as the other lines, i.e., lOps Note also the similarity to the circuit in 
Fig.8.5(b) with the main change being the location of the switches, which are in 
series with the storage elements. 

Referencing the designations in Fig. 8A. 1, we begin the modification of the 
matrix by first assigning low impedance values to the six transverse lines, T3, 
T6,T9,T2,T5, and T8. In the simulation to be presented, the transverse lines have 
an impedance of 5Q (instead of 104fi)while the horizontal lines, T1,T4, T7, and 
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TIO have an impedance of 104Q. Next we assign the delay times for the 
activation of the switches,GSl, GS2, and GS3. These switches simulate the light 
activation discussed previously. In order to achieve synchronism, the 
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switches must be delayed from one another by one transit time. Thus if we 
arbitrarily cause GS1 to turn at lps, and we assume the delay time of each TLM 
line is 10 ps, then GS2 is turned on at 1 lps and GS3 at 21 ps. Avalanche delay 
is not included in this simulation(Also note that the lengths of the low dielectric 
constant, horizontal lines are not drawn to scale). In using the matrix of 
Fig. 8 A. 1, which corresponds to a transmission line, we should note that the 
lower four cells are all at ground potential; the connecting resistors RS1,RS2, and 
RS3 all have extremely small resistance values, and are included to preserve the 
identity of the neighboring cells. Since there is no voltage difference between 
these cells, they do not contribute (for this simulation) to the growth of the 
forward wave. 

For the simulation, we use the SPICE Format given in the Appendix Table 
8A.1 with the above modifications. In addition, as mentioned before, Ti = lOps. 
We assume a bias of 3000V and a 1000 volt difference between adjacent cells in 
the upper row. The simulated pulse output, delivered to the matched resistance of 
RL=104fi , is shown in Fig.8.10. Note that after three stages the amplified pulse 
output is almost 3000V. We can understand this voltage output with the 
following argument. In Tl the initial forward wave, which is in the stationary 
state, is 1500 V. When GS1 is activated , the equilibrium status is upset, and 
approximately half the voltage in T3, equal to 500V, is added to the forward 
wave, so that the forward wave in T4 is then 2000 V. Key to the previous 
statement is the fact that the total voltages in T3 is 1000V, and further the 
impedance of this line is much smaller than the horizontal line impedance. In a 
similar manner , lines T6 and T9 also contribute 500V each , so that the total 
voltage delivered is about 3000V. The follow-on pulses represent the progressive 
decay of energy in both the transverse and input lines. The follow-on pulses 
eventually decay to zero, as expected, since the output is derived from the field 
energy stored in the TLM lines. Input resistors, for terminating backward waves, 
have not been included; their absence will contribute to the follow-on pulses as 
well. 

Fig.8.2 does not quite correspond to Fig.8.9, in as much a ground line exists 
on one side of the e channel in Fig.8.2 whereas a low dielectric channel is 
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FIG.8.10 SIMULATED OUTPUT FOR A 3 STAGE TRAVELING 
MARX WAVE IN A LAYERED DIELECTRIC. FORWARD 
WAVE PULSE IS AMPLIFDXD FROM INITIAL 1.5KV TO 3.0 
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sandwiched between two high dielectric regions in Fig.8.9 . In other words, the 
results just described represent a half circuit version of the traveling wave Marx 
wave for a layered dielectric. Suppose, therefore, we were to remove the ground 
line in Fig.8,2 and allow the horizontal field to also exist in the lower four cells 
of circuit, so that the situation corresponds more closely to that of Fig. 8.9. Will 
the output voltage change from its previous value of 3 kV? The answer is no , 
but the reason is not immediately evident. Since we have removed the ground 
line , and the voltages in the lower row cells are the same as the upper one, the 
initial transverse field (i.e., the field in the horizontal line)in the ei region is 
zero. , compared to 1500 V for the previous situation. Because of the double 
layer, however, the growth factor in the Si region will be twice as large. Thus, 
when switch GS1 is triggered, waves from both T2 and T3 will contribute to the 
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growth and the amplitude following the first stage will be lkV. Similarly, the 
contributions from the remaining two stages will be 1 kV each, and the total 
output will be 3 kV, the same as the half circuit discussed previously. One may 
quickly generalize the results to show that the outputs for the half and full circuits 
, representing the Traveling Wave Marx devices, are identical. 

So far as device implementation, the half circuit is easier to construct since 
it involves only two dielectric layers as opposed to three layers for the full 
circuit. However, there is something to be said for the full circuit. With the half 
circuit, the entire bias voltage exists across the 6i channel, corresponding to a 
relatively large static electric field. Voltage breakdown is therefore a potential 
problem. With the full circuit, however, the transient field in the channel starts 
out small and gradually builds up; there are no intense static fields anywhere and 
therefore a lesser likelihood of premature voltage breakdown. 

Pulse Transformation And Generation Using Non-Uniform 
Transmission Lines 

SPICE provides a convenient and effective tool for analyzing transformers using 
non-uniform transmission lines. Not surprisingly we can convert the transformer 
to a pulse source by adding a switch, and SPICE is very effective for analyzing 
these devices as well. As far as the pulse sources are concerned, we analyze two 
types. In the first a pulse is first produced externally and simply delivered to the 
input terminals of the transformer, usually the low impedance side. The pulse 
then undergoes an impedance transformation, emerging at the output tenninals. 
Usually the output is at the higher impedance, in which case the pulse amplitude 
is transformed upward. The second type of pulse source is more self contained, 
wherein the non-uniform line itself stores the energy(rather than being stored in 
an external line)and a switch is provided either at the input or output of the line 
to trigger the wave(When the switch is situated at the input, the circuit must be 
augmented with an auxiliary, uniform section of transmission line, as we will 
discuss). The SPICE analysis for both these pulse sources, as well as the solitary 
transformer, are similar. We begin the analysis by considering the transformer by 
itself. 
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8.5 Use of Cell Chain to Simulate Pulse Transformer 

The pulse transformer, Fig.8.11, usually consists of a transformation line whose 
impedance varies slowly (and usually monotonically) with length. Typically the 
impedance is varied by changing some dimension of the line, e.g., the height 
between conductors in a strip transmission line. Provided that the propagation 
time of the transformer is much longer than the pulse width, pulse deformation 
may be kept to a minimum. For a long, lossless transformer, the output pulse, 
VOUT , is ideally related to the input VIN , by the transformer relationship, 

VOUT = [ ZOUT/ZIN] VIN (8-1) 

Eq.8.1 is derived analytically, using a TLM formulation, in App.8A.3. 
Inevitably, the finite length of the transformer, as well as losses and parasitics, 
degrade the output pulse to some extent. SPICE is able to take into account these 
additional effects. 

The SPICE(as well as the TLM) technique involves conceptually breaking 
up the transformer into a number of segments of equal length , each of which is 
approximated by a constant impedance(see Reference [1] ) The impedance of 

INCIDENT . : ZIN 
PULSE "-—• 

RL—ZQUT 

FIG. 8.11 PULSE TRANSFORMER LEADING EDGE 
OUTPUT Voirr IS RELATED TO INPUT BY 

VQUT = [ZOUT/ZIN] \ m . 
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each section follows the functional impedance of the transformer with length. 
Once this is done, then the SPICE software may be used to determine the 
response to an input pulse. Fig. 8.12 demonstrates the technique for a transformer 
where the impedance is a function of length Z(l). Although the transformer 
shown has a linear taper, the following method also applies to non-linear 
transformers where the conductors are of equal length and symmetric about the 
x axis. As a first step, the transformer is divided into N sections ( N= a positive 
integer). This will enable us to define a set of lengths 10 given by 

ln = 1; + n(lf-l,)/N (8.2) 

where 1; is the initial value of the transformer length, If is the final value, and n is 
an integer 0,1,2, ....N. The length of each section is Al = (lf -lj )/N. We then 
define a midpoint of each section, l'n 

l'„ = (l„ + l„-i)/2 (8.3) 

where n = 1,2,3, ....N. The average impedance of the nth section, Z n , is then 

Rl,~Zr 

FIG. 8.12 BREAKUP OF TRANSFORMER LINE INTO N 
SECTIONS OF TRANSMISSION LINES , EACH OF 
CONSTANT IMPEDANCE. 

Zn = Z(l'n) (8.4) 
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where Z(Fn) is the impedance of the line evaluated at l'„ , which in turn, is 
proportional to the height h(l'n) between the conductors, which is a function of 
l'„-

In the case of a linear taper, for example, h(l'n) is proportional to l'n .If we 
use the simple strip transmission line relationship, then 

1/2-. Z(l'tt) = 376.7 h(l'n)/ (s
1/2W) (8.5) 

where W is the transmission line width and 8 is the relative dielectric constant. 
Since the two conductors are symmetric about the x axis, as in Fig, 8.11, then 
we may approximate the height for each cell as the vertical line connecting the 
two conductors. 

The SPICE simulation just described applies to transformers in which both 
conductors are of equal length and symmetric about the x axis. If the two 
conductors are not symmetric about the x axis, extra care must be taken in 
calculating the impedance of each cell. Thus, in Fig.8.13, the lower conductor is 
a straight line, but the upper conductor is altogether different, displaying 
significant curvature. We consider the case in which the total line lengths of the 
two conductors are the same. Because of the curved conductor, the cells 

ADJUSTED 
HEIGHT 

*n,y(x„) 

nAl 

FIG. 8.13 NON-SYMMETRIC TRANSFORMER. 

themselves have curvature. The extra complication then arises in the calculation 
of Z(x), and in particular, the height between conductors, which now bends. In 
order to proceed further, we assume the curved conductor has the functional 
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dependence, y(x). Then for the nth cell, we wish to obtain the two heights 
enclosing the cell. To do this we need the coordinates of y(x) intersecting the 
heights, and to obtain these we calculate the line integrals of y(x). For the nth 
cell, we have, due to the equality of the conductor lengths, 

nAl = litoxnJ [1+ (dy(x)/dx)2]1/2dx (8.6) 

where xn is the x intercept of the adjusted height of the nth cell and the curved 
conductor, and 1; is the initial x value of the transformer. The value of xn is 
calculated using Eq.(8.6). We can then obtain the adjusted height, h(n), which is 
simply 

h(n) = [(nAl-xn)2+y(xn)2]1 /2 (8.7) 

A similar calculation is performed for h(n-l): 

h(n-l) = [((n-l)Al-xn.1)2+y(xn.1)2]1/2 (8.8) 

h(n) and h(n-l) are then averaged to obtain the cell impedance, i.e., the average 
height for the nth cell is given by [h(n)+h(n-l)]/2 

In the previous calculations, we assumed the conductors are of equal length. 
It may be that two conducting transformer members are of unequal length, a fact 
often dictated by geometry constraints. Under these circumstances, the one 
dimensional approach is less appropriate, and the two and three dimensional 
iterations described in the previous Chapters should be employed. 

8.6 Pulse Transformer Simulation Results 

For our simulation example we choose a symmetric transformer whose 
impedance varies linearly with length from 5 Q to 50Q . For convenience, we 
break up the transformer into ten stages, N=10. The total delay time is 10ns, 
representing a delay time of Ins in each stage(At = Al/v). Fig.8.14 shows the 
average impedance of each cell, using Eqs.(8.2)-(8.4). Two SPICE simulations 
were performed for this transformer, as shown in Fig(8.15). In the first 
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simulation , the 50 volt input pulse injected is 10 ns wide. Although the initial 
portion of the pulse reaches the anticipated value, - 1 5 0 volts(using Eq.(8.1)), 
much of the pulse is attenuated. The pulse degradation should not be surprising 

RL =50Q 

/J\K—512 7.25 11.75 16.25 20,75 25.75 29.75 34.25 38.75 '43.25 

n(l) n(2) n(3) n(4) n(5) •»(«) n(7) n(8) „(9) n(10) 

FIG. 8.14 IMPEDANCE VALUES FOR LINEAR TRANSFORMER 
5->50fi), DIVIDED INTO TEN CELLS. 
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FIG. 8.15 OUTPUT FROM 10:1 TRANSFORMER WITH IONS 
LONG DELAY. INCIDENT PULSE AMPLITUDE IS 50V. 
INCIDENT PULSEWTDTHS ARE IONS AND 2NS. 
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since the input pulsewidth is comparable to the delay time of the transformer. 
Indeed for very long input pulsewidths, relative to the transformer, the voltage 
gain will drop to unity. In contrast, the narrower input pulse, 2ns, will transform 
upward to-150 volts, over the entire pulsewidth, as noted in Fig. 8.15. 

8.7 Pulse Source Using Non-Uniform TIM Lines (Switch at Output) 

The SPICE simulations facilitate the study of many variations of the previous 
pulser, as described in the following. The same pulse transformer described in 
the previous Section may be converted to a pulse source when it is combined 
with an output switch, as seen in Fig.8.16. The same device performs two 
functions: it stores the energy as well as providing the impedance transformation. 
The switch allows the non-uniform impedance line to store energy prior to 
triggering the switch. For a given charging voltage, the line produces the pulse 
shown in Fig.8.17. For this simulation we used the same transformer as in the 
previous discussion, with the same delay time of 10 ns, number of sections(lO) , 
and impedance values for each section. 

^1 1 

RL-ZQUT 

FIG. 8.16 PULSE SOURCE COMBINING FUNCTIONS 
OF IMPEDANCE TRANSFORMATION AND ENERGY 
STORAGE (BIAS VO) , WITH SWITCH S AT OUTPUT. 
VOLTAGE GAIN IS LIMITED. 

swn 
BIASVQ 
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FIG.8.17 SIMULATED OUTPUT FROM ENERGY STORING 
TRANSFORMER WITH OUTPUT SWITCH. LINEAR IMPEDANCE 
CHANGES FROM 5Q TO 50Q. 100V BIAS. 

We note in Fig.8.17 that initially the pulse rapidly climbs to half the 
charging voltage; this is to be expected since the line impedance is close to 50fi, 
which matches the load resistance. Following this region in time, the pulse 
climbs to about the full charging voltage, before beginning its decline. It may 
seem surprising at first that higher voltages are not obtained since the impedance 
transformation ratio is ten. However, we have no control over the pulsewidth 
being produced, and as we have seen before, when the pulsewidth is comparable 
to the transformer transit time, the pulse transformation is severely curtailed. The 
gain, therefore, is a definite drawback with this type of source. In Section 8.9 we 
shall see how we may modify the circuit in Fig. 8.16 so as to achieve significant 
transformer gain. 

8.8 Radial Pulse Source(Switch at Output) 

A particularly compact design of an energy storing device is that of the radial 
transmission line, for which SPICE analysis may be employed. As shown in Fig. 
8.18, the source consists of a pair of circular electrodes separated by a dielectric 

J 
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medium. A field is applied to the electrodes and the energy is stored in the 
dielectric. The switch is located at the center of the structure, where it makes 
contact with the high voltage plate and the center conductor of the output coaxial 
transmission line. Since fast switching times are required, a good switch 
candidate is the photoconductive type as noted in the Figure. Laser light is 
introduced into the semiconductor medium by means of an aperture in the plate 
electrode. Since the device has circular symmetry, the only meaningful variations 
are in the radial direction, and thus a one dimensional SPICE description may be 
employed to analyze the response of the radial line. In the case of the radial line 
the variation of the impedance with length(i.e., radius) stems from the effective 
changes in the width. The fundamental wave undergoing the transformation is 
concentric in nature. Here the effective width of the line is changing, given by 
W(r') = 2 7t r. If h is the fixed height between the radial plates then the 
impedance formula, comparable to Eq.(8.5), is 

SEMICONDUCTOR 
SWITCH 

TOP CIRCULAR 
ELECTRODE 

7* ̂
4 ^ 

DIELECTRIC 

OUTER 
CONDUCTOR 

""---INNE: R 
CONDUCTOR 

TO LOAD 

FIG. 8.18 RADIAL LINE PULSER WITH 
SWITCH AT OUTPUT. 
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FIG. 8.19 EXPERIMENTAL OUTPUT FROM ENERGY STORING 
RADIAL LINE WITH OUTPUT SWITCH AND POSITIVE 
MISMATCH. OUTPUT RESEMBLES "RF CAPACITOR". 

Zm(r') = 376.7 h/[e1/2(2 TT r')] (8.9) 

where we identify 27ir' with F. When used as a pulse source with the switch at 
the output, this type of design lacks true voltage gain; the peak output pulse is 
about equal to the bias voltage, as mentioned before. An interesting special case 
occurs when the there is a very large positive mismatch between the load 
resistance and the final impedance of the radial line, located near the center (RL 

much larger than the line impedance at output). With this circumstance, we have 
a 2D "RF" capacitor, wherein the output has a very fast initial risetime followed 
by an exponential decay. Fig.8.19 shows the experimental output from 
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such a radial line ; the SPICE simulation is in very good agreement with the 
result. The following Section discusses the design modification needed to 
enhance the gain. 

8.9 Pulse Sources With Gain(PFXL Sources) 

In the previous discussion we saw that one could obtain, with a single switch, 
pulse sources with a voltage gain of about unity, i.e., the output voltage was 
about equal to the bias voltage. There are two drawbacks to the sources just 
described, however. The first, already cited, is that the voltage gain is quite 
inadequate, with only unity gain(We here define gain as the ratio of pulse output 
to bias voltage. An alternate definition is the ratio of pulse output to half the bias 
voltage, which implies comparison with the output from a uniform TLM line 
with a matched load). The second drawback is that the pulse output amplitude is 
non-uniform, owing to the fact that the device impedance itself is non-uniform. 
A straightforward solution to this matter is shown in Fig.8.20, where we have a 
composite device in which the pulse source and transformation functions are 
separated. The low voltage constant amplitude pulse is generated with a uniform 
transmission line and a switch. This is 

BIAS SWITCH 
VOLTAGE 

Zo 

TRANSFORMER 

FIG. 8.20 PULSE SOURCE USING SEPARATE ENERGY 
STORAGE LINE (Z0) AND TRANSFORMER SECTION. INPUT 
OF TRANSFORMER IS Z 0 AND OUTPUT IS EQUAL TO RL. 

> * 
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followed with a pulser transformer to obtain the voltage gain. In order to 
maintain the constant amplitude, the transformer length must be much longer 
than that of the original energy storage element, and as a result the size of the 
composite pulser will be enlarged. 

The preceding invites the question as to whether it is possible to obtain a 
high gain, constant amplitude pulse source which combines the energy storage 
and transformation functions, again using a single switch. We use the designation 
"PFXL" to describe such a circuit element, and to differentiate it from the 
conventional "PFL" , or pulse forming line , which is used to produce a constant 
amplitude pulse, but without gain(In Reference [1] the PFXL designation also 
was inadvertently applied to sources of the type in Fig.8.16. Because of the 
aforementioned gain limitations with such sources, however, the PFXL 
designation is not appropriate). If we forego the goal of constant amplitude, then 
we can certainly obtain a PFXL pulser as shown in Fig.8.21. Here we insert the 
switch at the low impedance end of the transformer section. 

AUXILIARY LINE Z 0 

SWITCH \ m 

TRANSFORMER/ENERGY 
STORAGE SECTION 

FIG. 8.21 PULSE SOURCE USING TRANSFORMER/ENERGY 
STORAGE ELEMENT AND AUXILIARY LINE Z0(PFXL). 
SWITCH IS LOCATED AT LOW IMPEDANCE END OF 
TRANSFORMER. RL= Z0+ZF WHERE ZF IS HIGH IMPEDANCE 
OUTPUT OF TRANSFORMER. 

Firing the switch then launches an inverted wave toward the output end of 
the transformer, in which the final impedance is ZF- We include an auxiliary 
element, a uniform section of transmission line Z0 at the output, in series with the 
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load RL This auxiliary line serves to provide voltage hold-off (since we have 
moved the switch to the input), but also contributes to the voltage gain. Since the 
switch is at the low impedance end side, the generated wave in some ways 
resembles a wave injected into pure transformer, at least for the leading edge of 
the wave. We should contrast this with the situation wherein the switch is at the 
output of the transformer; in this case the generated wave must make a round trip 
in the transformer, thus nullifying the possibility of any significant gain 

We may roughly estimate the output of the PFXL, using the following 
arguments. The output consists of the load RL in series with the auxiliary section 
of uniform transmission line of impedance Z 0 . Because of the inverted wave in 
the transformer, Z0 and ZF, which are in series, provide current in the same 
direction, and so discharge into RL. In order to maximize the energy transfer, we 
arrange to have matching conditions at the output 

Z0 + ZF = RL (8.10) 

As implied before, the PFXL does not produce a constant amplitude pulse, but 
we expect the the leading edge of the pulse output to have an enhanced 
amplitude, V0UT, approximately equal to 

Vour = (V„/2) (ZF / Z,)1/2 + (Vo/2) (8.11) 

where Z; is the initial low impedance of the transformer. Eq.(8.11) is proposed, 
based on the following simple considerations: the first term represents the effect 
of the transformer, while the second term provides the additional voltage of the 
final storage line, Z0. In fact we shall see that Eq.(8.11) underestimates the gain, 
by about 10-15%, and that an accurate estimate of the leading edge, as well as 
the entire pulse shape, can only be obtained by a SPICE simulation or the 
equivalent TLM analysis, to be discussed. 

Figs.8.22(a) - 8.22(b) show SPICE simulations for a PFXL, using the same 
type of linear transformer section as before, but with differing line lengths, Ins 
and 250ps in the auxiliary line. As with the previous simulations , we arbitrarily 
divide the transformer section into 10 sections, each with a one ns delay. With a 
100 volt bias, we see that in both cases the leading edge output is ~ 243 Volts, 
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which is slightly higher than the estimate from Eq.(8.11), which yields - 2 1 0 
volts. The reason for the higher output in the simulation has to do with the fact 
that Eq-.(8.11) does not completely portray the actual situation since it deals 
solely with the leading edge in a pure transformer, augmented by the output from 
Z0. In fact the PFXL transformer is subject to a bias voltage and the leading edge 
output contains contributions from backward waves which have been reflected 
toward the output direction, throughout the entire transformer. This effectively 
increases the voltage gain. In App.8A.4 we obtain the same result as the 
simulation using TLM analysis for calculating the leading edge. 

Comparing Figs.8.22(a) and 8.22(b) we see that the pulsewidth of the 
auxiliary line controls the pulsewidth of the output pulse. For a transformer cell 
size of Ins, an auxiliary line of Ins (Fig.8.22(a)) results in an output pulse of 
about 2 ns. When the auxiliary line is reduced to 250ps (Fig.8.22(b)), we 
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FIG. 8.22(a) OUTPUT FROM PULSER WITH COMBINED TRANSFORMER/ENERGY 
STORAGE SECTION(PFXL). TAPER IS LINEAR, 10 NS LONG, 5CI TO 50 CI. 100V 
BIAS. DELAY TIME OF AUXILIARY LINE =1NS. 
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FIG. 8.22(b) OUTPUT FROM PFXL BUT WITH AUXILIARY LINE 
DELAY OF 0.25NS. OTHER CONDITIONS ARE SAME AS IN 8.22(a). 

see that the output pulsewidth is reduced accordingly. The auxiliary line 
pulsewidth therefore controls the output pulsewidth, at least when Z0 and ZF are 
comparable. We also note, as expected, that the leading edge amplitude of the 
output is the same in both cases. 

In both cases, the oscillatory behavior due to multiple reflections is 
significant, as seen in Figs.8.22. No attempt has been to optimize the output 
pulse shape. It is very likely that tradeoffs in in pulse amplitude and pulse shape 
may be accomplished using various kinds of tapers in the transformer as well as 
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various auxiliary impedance values and pulsewidths. These tradeoffs can be 
examined using pure simulation methods or a combination of simulation and 
analysis 

A similar PFXL design modification to the radial line pulser is shown in 
Fig. (8.23). Instead of having the switch at the ouput high impedance region, the 
switch is located at the outer circumference, which constitutes the low impedance 
region. By its very nature, of course, a single switch is not possible and instead a 
series of switches, located at the outer periphery, and turned on simultaneously, 
is required: This launches a circular wave, directed toward the center. Upon 
reaching the center, both the radial line and the auxiliary line Z0 contribute to the 
total output, RL. As before the load is matched to the sum of the radial 
impedance, ZF and ZQ. Qualitatively, the output simulation is very similar to that 
of the linear PFXL. The pulse delivered to the load will consist of the 
transformed pulse plus the auxiliary line wave. 

We see from Fig.8.22 that the resolution of the output PFXL wave is 
determined by the smallest element in the circuit, in this case either the cell size 
of the transformer or pulsewidth of the auxiliary line. To observe structure in the 
leading edge of the output, we need to increase the number of cells, i.e., shrink 
the cell size. Using only ten cells, the simulation can approximate the amplitude 
of the pulse, but it is likely that some of the structure in the output pulse shape is 
lost. Under these circumstances the only remedy is to increase the number of 
cells. We then return to the central question as to whether SPICE can 
accommodate large numbers of cells, or whether it is preferable instead to use the 
basic TLM method. As seen in the previous Chapters, there are no basic 
obstacles to using the TLM method for solving such problems, especially ID 
type. 

Darlington Pulser 

8.10 TLM Formulation of Darlington Pulser 

In the previous pulse sources described, we saw that it was possible to achieve 
significant voltage gain in devices which both store the energy as well as provide 
the impedance transformation, using only a single switch. The output, 
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FIG. 8.23 RADIAL LINE PULSER (PFXL)WITH AUXILIARY 
LINEZo AND WITH LIGHT ACTIVATION AT LOW 
IMPEDANCE PERIMETER. RL=Z0+Zi WHERE Z, IS THE 
IMPEDANCE OF RADIAL LINE AT THE INNER RADIUS. 

however, did not have constant amplitude, and we inquire under what 
circumstances a constant amplitude may be achieved while still retaining the 
aforementioned properties. We shall see that it is indeed possible to obtain such a 
source, but only if we resort to discrete sections of pulse forming lines rather 
than to a continuously varying transformer line. Such a pulser is designated as a 
Darlington pulser[2], Although it is certainly possible to employ a SPICE 
simulation to describe a Darlington pulser, it will be instructive to derive its 
basic properties from the TLM formulation. The results are simple design 
formulas, which are are very easy to apply. In the follow-on Section, we then add 
losses to the Darlington, for which the SPICE simulation is easier to use. 
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The new design is prompted by our previous considerations and thus we 
consider the design in Fig.8.24, in which we have a chain of N transmission line 
sections Z(l), Z(2),....Z(N). A single switch is located in the first section and the 
load RL is between the Nth and (N-l)th sections. All the sections are biased to 
voltage V0. Now suppose the impedance sections satisfy 

Z(n) = n(n+l)RL/N2 : n= 1, 2, (N-l) (8.12) 

Z(N)=RL/N (8.13) 

SWITCH 

rj Z(l) Z(2) 

FIG. 8.24 N STAGE DARLINGTON CIRCUIT. Z(n) 
SATISFIES: Z(n)= n(n+l)(RL/N2) ; n=l,2,....N-l 

Z(N) = Ri/N , GAIN == N(V„/2) 

With the impedance sections given by Eqs.8.12-8.13, we can show that , 
upon initiation of the switch, a growing wave is propagated toward the load, and 
that with each section, the wave amplitude is increased by an amount WJ2. The 
total gain is then NVo/2, i.e., the voltage pulse delivered to the load, VRL, is 

VRL = NVO/2 (8.14) 

We can demonstrate Eq.8.14 by the method of induction. We briefly 
summarize this method. We show that at the n=l node, the energy in Z(l) is 
completely transferred to Z(2), while at the same time there is no energy transfer 
whatever from Z(2) to Z(l). The wave growth results in an additional amplitude 
of VQ/2 in Z(2) during the second time step. We now assume that for the nth 
impedance(after 2n time steps have elapsed), the amplitude is nVo/2 in the Z0(n) 
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line, and all the wave energy in the prior lines (less than n) has been emptied. If 
now we can show that all the energy in Z(n) is transferred to Z(n+1) with a 
resultant YJ2 enhancement in the amplitude, then by virtue of induction, the 
same behavior is true for all values of n. A separate verification for the final 
impedance section completes the proof. 

The proof begins by assuming the switch at Z(l) has been turned on and the 
growth process has begun. Because of the initial switching action the forward 
wave at the end of the first time step will be inverted and the wave amplitude 
will be 

V ( l ) = -Vo/2 (8.15) 

We then calculate the backward wave ~V2(1) in the Z(l) line during the second 
step. Thus 

"V2(l)= -+(Vo/2)B(l,l) +-(Vo/2)T(l,2) (8.16) 

We remind ourselves that the two arguments in the scattering coefficients 
identify the node and the incident wave direction, respectively. From the 
expressions for the ID scattering coefficients, and the Darlington impedance 
values from Eq.(8.12) 

B(l,l) = (l/2) (8.17a) 
T( l ,2)=( l /2) (8.17b) 

and thus ~V2(1) -0 . Next we determine the wave transfer from the Z(l) to Z(2) 
lines during the second time step. The forward wave +V2(2) in the Z(2) line is 

V ( 2 ) = - +(Vo/2) T(l,l) + "(Vo/2) B(l,2) (8.18) 
Since 

T(l , l )= 1/2 (8.19a) 
B(l,2) = -l/2 (8.19b) 
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the forward wave +V2(2) = -V0 and thus the forward wave has increased by -VJ2. 
Next we assume this process continues and that in the nth line the forward wave 
is (-nVo/2) during the nth time step. The forward wave in the (n+l)th line is 

+Vn+1(n+1) = - +(nVo/2) T(n, 1) + ~(yj2) B(n,2) (8.20) 

Using Eq (8.12 ) for the line impedances, the coefficients are 

T(n,l) = (n+2)/(n+l) (8.21a) 
B(n,2) = l/(n+l) (8.21b) 

Substituting into Eq.(8.20 ) we obtain 

+Vn+I(n+1)= -(n+l)Vo/2 (8.22) 

A similar analysis shows that the backward wave in Z(n) vanishes. This 
completes the proof except for the last cell which is different because of the 
presence of RL, and therefore requires a separate treatment. We note that the 
impedances Z(N)= RL/N and Z(N-1) = RLN(N-1)/N2 add in series such that 

Z(N) + Z(N-1) = RL (8.23) 

Because of the inverted wave in Z(N-1), the combination of waves in Z(N) and 
Z(N+1) is matched to R:L. Thus 

VRL = V(N-1) +V(N) = -(N-l)(Vo/2) - Vo/2= -NV„/2 (8.24) 

which completes the proof. 

8.11 SPICE Simulation of Lossy Darlington Pulser 
It should be noted that for the first few sections of the Darlington pulser, the 
impedance levels are small, and therefore the design is very sensitive to small 
amounts of inductance and loss. SPICE(or the equivalent TLM analysis) can play 
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an important role in understanding the effects of losses and other parasitics in 
transformers and pulse sources. Indeed, in the case of the lossless Darlington 
pulser, for example, the design equations are extremely simple and SPICE 
solutions are unnecessary. It is only when we try to determine the effects of 
losses or deviations from the line impedance , when closed form solutions are 
impractical, that SPICE becomes essential. Fig.8.25 shows how an arbitrary 
ID circuit is modified by losses, such as a transformer, PFXL, or Darlington 

PARALLEL LOSS 
(MEDIUM) 

SERIES LOSS 
(CONDUCTOR) 

AAAA-,. 

(n) NODE 

FIG. 8.25 CONDUCTOR AND MEDIUM LOSS 
REPRESENTATIONS IN ID CIRCUIT (e.g., 
DARLINGTON, TRANSFORMER, OR PFXL CmCUITS). 
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FIG. 8.26 OUTPUT FROM 5 STAGE DARLINGTON CIRCUIT 
WITH AND WITHOUT LOSS. LOSS IS DUE TO 1Q SERIES DROP 
IN EACH STAGE. BIAS =100V AND OUTPUT IS ACROSS 50£i. 

circuit. In the Figure we have included the effects of both medium losses, 
represented by the usual shunt resistors, as well as losses in the "wires" 
represented by the series resistors.The inclusion of series losses points out the 
fact that the TLM formulation may be extended to account for such losses. Both 
parallel and series resistors, as usual, are located at the node. The width of the 
node in Fig.8.25 is of course exaggerated to display the resistors. 

As an example, in Fig.8.26 we compare the simulations of a lossless 
Darlington circuit with that when loss is included. The selected circuit is a 5 stage 
Darlington, and a 1Q series loss per stage is included(we neglect parallel losses). 
We see that in the lossless case, the output obeys Eq.8.24, and the 100 volt bias 
results in a 250 volt output. When loss is included, substantial decay begins to 
appear in the output. Much of the loss occurs in the initial stage (n=l) where the 
TLM impedance value is only 4Q. Since the series resistance is comparable 
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to the TLM impedance in the initial stage, the losses are proportionately more 
important. 

Appendices 

App. 8A. I Introduction To SPICE Format 

The following discussion and formatting is typical among vendors of SPICE 
software. A great deal of the presently available software is mainly graphical, 
wherein the circuit, made up of the various elements(transmission lines, resistors, 
etc), is graphically displayed. Upon completion of the graphical representation, 
the user then requests a transient solution of the circuit(other options are 
available, such as a steady state solution, Fourier analysis, etc..) and provides 
the numerical limits for the analysis. The computer then automatically assigns 
node numbers to the circuit and proceeds to grind out the solution. The tabulated 
results may then be displayed using the graphics package provided with the 
software, or else the tabulated results also can be delivered to an external 
graphics package for display. One should also mention that most commercial 
versions of SPICE present the format listing (which identifies the various 
components at the nodes) in a graphical manner. This greatly facilitates the use of 
the SPICE methods. 

App. 8A. 2 Discussion of Format for Photoconductive Switch 

In this Section we discuss the SPICE format for the photoconductive switch 
given in Table 8A.1. Only the most essential statements, corresponding to the 
eight cell representation in Fig.8.2, are provided. We add node numbers(which 
are arbitrary) and the labels for the circuit elements as shown in Fig. 8A. 1. 

Line 1 of the format is simply the title. Line 2 specifies the transmission 
line of the input, designated as Tl. The first pair of node numbers following Tl, 
1 2 , specifies the input port nodes of the line; the second pair, 3 4, specifies the 
node numbers of the output port. This is followed by the characteristic 
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impedance( ohms) of the line, ZO=104Q. Finally the length of the input line, 
TD, is specified, which for this program was 120ps (a longer input line is 
probably more desirable, so long as the software can provide a solution). The 
other nine lines, T2, T3, etc follow the same format. The value of TD for the 
other lines, however, is lOps, which is the selected matrix length for the 
semiconductor. Line 5 specifies one of three shorting resistors. RSI is identified 
by the pair of nodes 6 11. The third entry 1E-6 provides the resistance 
value(ohms). The other two shorting resistors, RS2 and RS3 are assigned the 
same value. We next complete the description of the other resistors: the load 
resistor(line 21) and the resistors attached to each node(lines 22-52). The load 
resistor, connecting nodes 30 31, terminates the transmission line so that the 
value is 104 ohms, as indicated. Many of the iterations require a dc path from the 
node site to ground. Therefore, as a precaution, we insert a large resistance , 107 

ohms, between each non-zero node and ground. Thus, lines 22-52 enumerate all 
the non zero nodes, inserting 107 ohms to ground. For example, the first entry in 
line 22 is for Rl, where the 1 indicates the node number. The specification is 
therefore Rl 1 0 1E7. Note that we have not actually specified the zero node, 
i.e., ground , anywhere in the Figure. This is completely arbitrary, but often the 
ground node selected is one of the two nodes enclosing the load resistor, either 
30 or 31. Next we discuss the switches, GS1, GS2, and GS3 found on lines 6-7, 
12-13, 18-19. The switches are used to simulate the added conductivity, induced 
by either a light signal or avalanching. The actual switching elements, however, 
are voltage controlled current sources, with the voltage control signals designated 
by VIN1, VIN2, and VIN3 for each of the three sources. Looking at GS1 (line 
6), for example, the GS1 is followed by the nodes enclosing the element, 5 8. 
The next portion of the statement POLY(2), assumes a two dimensional 
polynomial expansion of the current in terms of the two variables, the source 
voltage, V(5,8), and the control voltage, V(7,0). Note that the control voltage is 
referenced to ground. These four nodes make up the first four entries following 
POLY(2). The remaining entries are the coefficients of the expansion for the 
current. If the coefficients are designated by P0 , Pi , P2, etc., then the first few 
terms for the current I are 

I = Po + Pi* [V(5,8)] + P2*[V(7,0)] + P3*[V(5,8)]2 + P4*[V(5,8)]*[V(7,0)] 
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+ P5*[V(7,0)]2+ P6*[V(5,8)]3 + P7*[V(5,8)]2*[V(7,0)] + e t c ( 8 A 1} 

We arbitrarily select P4 =1 as the only non-zero coefficient of POLY(2). 
Unspecified coefficients are assumed to be zero. The coefficient is a convenient 
choice because we may then attach a very simple interpretation to the result. Thus 

I = V(5,8)* V(7,0) (8A.2) 

The equivalent resistance R(5,8) across the source nodes, 5 8 , is therefore 

R(5,8) = 1/V(7,0) (8A.3) 

(More generally, R(5,8) = 1/ P4V(7,0) if P4 * 1). We may therefore change the 
resistance via the control voltage; the higher the control voltage the smaller the 
resistance. The statement for the control voltage, VIN1, is shown in line 7. The 
first two entries are the node numbers , followed by the function PULSE. This 
indicates the control voltage is a flat top pulse with the capability of non-zero rise 
and fall times. The first two entries under PULSE indicate the initial and plateau 
values, which are zero and 100 volts respectively. From Eq.(8A.3), we see that 
initially the resistance is extremely large . When the 100V pulse is applied, the 
resistance then falls to 1/V100 or .01 ohms. The next entry, lps, is the delay time 
for the onset of the pulse. Note that the delay time, for each of the three switches, 
increases with distance from the anode, corresponding to a progressive triggering 
of the switches. The next two entries, each l.Ops, are the rise and fall times 
respectively. The final two entries, each 200ps in length, are the pulsewidth and 
the period. In fact the latter two values do not play a direct role but are merely 
selected large enough so as to insure that the resistance remains at its low 
value(.01 ohms) throughout the time domain of interest. Lastly we point out the 
initial conditions for each of the noes, lines 53-57. Note that all the initial node 
voltages are zero except for those sitting on one of the three "charged cells", i.e., 
3000V(anode), 2000V, or 1000V. 

The SPICE format for the pulse transformer , together with the node 
diagram, are shown in Table 8A.2 and Fig.8A.2, respectively. The simulation of 
the transformer consists of elements already described for the photoconductive 
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switch. Note that the all the transmission lines are identical in length, Ins, except 
for T2 , which is very long, 16ns, by comparison. The purpose of this line is to 
simplify the device, essentially isolating the transformer from any reflections 
from the pulse source. 

TABLE 8A.1. SPICE FORMAT FOR PHOTOCONDUCTIVE SWITCH 

[I] PHSW.CER 
[2] Tl 1 2 3 4 ZO=104 TD =120PS 
[3] T2 6 11 3 10 ZO=104 TD=10PS 
[4] T3 4 9 5 8 ZO=104 TD=10PS 
[5] RSI 6 11 1E-6 
[6] GS1 5 8 POLY(2) 5 8 7 0 0 0 0 0 1 
[7] VTN1 7 0 PULSE(0 100 IPS IPS IPS 200PS 200PS) 
[8] T4 10 9 12 13 ZO=104 TD=10PS 
[9] T5 15 20 12 17 ZO=104 TD=10PS 
[10] T6 13 18 14 19 ZO=104 TD=10PS 
[II] RS2 15 20 1E-6 
[12] GS2 14 19 POLY(2) 14 19 16 0 0 0 0 0 1 
[13] VTN2 16 0 PULSE(0 100 60PS IPS IPS 200PS 200PS) 
[14] T7 17 18 21 22 ZO=104 TD=10PS 
[15] T8 24 29 21 26 ZO=104 TD = 10PS 
[16] T9 22 27 23 28 ZO=104 TD=10PS 
[17] RS3 24 29 1E-6 
[18] GS3 23 28 POLY(2) 23 28 25 0 0 0 0 0 1 
[19] VTN3 25 0 PULSE(0 100 100PS 1 PS IPS 200PS 200PS) 
[20] T10 26 27 30 31 ZO = 104 TD =10PS 
[21] RL 30 31 104 
[22] Rl 1 0 1E7 
[23] R2 2 0 1E7 
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(CONT) 
[24] R3 3 0 1E7 
[25] R4 4 0 1E7 
[26] R5 5 0 1E7 
[27] R6 6 0 1E7 
[28] R7 701E7 
[29] R8 8 0 1E7 
[30] R9 9 0 1E7 
[31] R15 15 0 1E7 
[32]R10 10 01E7 
[33] R l l 11 0 1E7 
[34] R12 12 0 1E7 
[35] R13 13 0 1E7 
[36] R14 14 0 1E7 
[37] R15 15 0 1E7 
[38] R16 16 0 1E7 
[39] R17 17 0 1E7 
[40] R18 18 0 1E7 
[41] R19 19 0 1E7 
[42] R20 20 0 1E7 
[43] R21 21 0 1E7 
[44] R22 22 0 1E7 
[45] R23 23 0 1E7 
[46] R24 24 0 1E7 
[47] R25 25 0 1E7 
[48] R26 26 0 1E7 
[49] R28 28 0 1E7 
[50] R29 29 0 1E7 
[51] R30 30 0 1E7 
[52] R31 31 0 1E7 
[53] JC V(0)=0 V(1)=0 V(2)=3000 V(3)=0 V(4)=3000V(5)=3000 V(6)=0 
[54] JC V(7)=0 V(8)=2000 V(9)=2000 V(10)=0 V(11)=0 V(12)=0 V(13)=2000 
[55] JC V(14)=2000 V(15)=0 V(16)=0 V(17)=0 V(18)=1000 V(19)=1000 
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(CONT) 
[56] .IC V(20)=0.ICV(21)=0 V(22)=1000 V(23)=1000 V(24)=0 V(25)=0 

V(26)=0 
[57].IC V(27)=0 V(28) =0 V(29)=0 V(30)=0 V(31)=0 
[58] .END 

Tl 

FIG. 8A.1 SPICE NODE IDENTIFICATION FOR 
PHOCONDUCTIVE SWITCH. 
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TABLE 8A.2. TYPICAL SPICE FORMAT FOR PULSE 
TRANSFORMER 

I] XMFR.cir 
2] T l 1 2 3 4 zo=5 td=lns 
3] Gsl 4 6 poly(2) 4 6 5 0 0 0 0 0 1 
4] Vinl 5 0 pulse(0 100 Ins Ins Ins 51ns 51ns) 
5] T2 3 6 7 8 zo=5 td =15ns 
6] T3 7 8 9 10 zo=7.5 td=lns 
7] T4 9 10 11 12 zo=11.75 td=lns 
8] T5 11 12 13 14 Zo=16.25 td=lns 
9] T6 13 14 15 16 Zo=20.75 td=lns 
10] T7 15 16 17 18 Zo=25.25 td =lns 
I I ] T8 17 18 19 20 Zo=29.75 td =lns 
12] T9 19 20 21 22 Zo=34.25 td=lns 
13] T10 21 22 23 24 Zo=38.75 td=lns 
14] T i l 23 24 25 26 Zo=43.25 td=lns 
15] T12 25 26 27 28 Zo=47.75 td=lns 
16] RL 27 28 50 
17] Rl 1 0 le7 
18] R2 2 0 le7 
19] R3 3 0 le7 
20] R4 4 0 le7 
21] R5 5 0 le7 
22] R6 6 0 le7 
23] R7 7 0 le7 
24] R8 8 0 le7 
25] R9 9 0 le7 
26] R1010 01e7 
27]R111101e7 
28] R12 12 0 le7 
29] R13 13 0 le7 
30] R14 14 0 le7 
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[31] R15 15 0 le7 
[32] R16 16 0 le7 
[33] R17 17 0 le7 
[34] R18 18 0 le7 
[35] R19 19 0 le7 
[36] R20 20 0 le7 
[37] R21 21 0 le7 
[38] R22 22 0 le7 
[39] R23 23 0 le7 
[40] R24 24 0 le7 
[41] R25 25 0 le7 
[42] R26 26 0 le7 
[43] R27 27 0 le7 
[44] R28 28 0 le7 
[45] .ic V(0)=0 V(1)=0 V(2)=100 V(3)=0 V(4)=100V(5)=0 V(6)=0 V(7)=0 
[46] .ic V(8)=0 V(9)=0 V(10)=0 V(11)=0 V(12)=0 V(13)=0: V(14)=0 
[47] .ic V(15)=0 V(16)=0 V(17)=0 V(18)=0 V(19)=0 V(20)=0 V(21)=0 

.ic V(22)=0 V(23)=0 V(24)=0 V(25)=0 V(26)=0 V(27)=0 V(28)=0 [48] 
[49] end 

Tl 
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T2 T3 T4 T5 T6 T7 T8 T9 T10 Til IT12 »RL 

11 13 15 17 19 21 23 25 27 

FIG. 8A.2 SPICE NODE IDENTIFICATION FOR PULSE 
TRANSFORMER. T1(PULSE SOURCE) AND T2(ISOLATION LINE) 
HAVE THE SAME IMPEDANCE. T2 IS ASSUMED TO BE MUCH 
LONGER COMPARED TO THE OTHER CELL LINES. 
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8A.3 TLM Analysis of Leading Edge Pulse in a Transformer 

In this Appendix we calculate the leading edge of the electromagnetic pulse as it 
progresses through the transformer, The results obtained of course are not in 
conflict with the SPICE results and in fact the SPICE simulation is implicitly 
based on the discussion here and that in the next section where the general ID 
TLM scattering equations are restated. What the TLM approach does offer, of 
course, is the insight into the operation of the transformer and other devices. 

The leading edge of the propagating pulse, to which we have referred previously, 
is important since it provides the output amplitude representing the ideal 
transformer. We employ the cell designation as shown in the example provided 
in Fig.8.15. Suppose a pulse with an infinitely fast risetime is delivered to the 
input of the first cell n(l). The leading edge output(at the 50 Q load) is the 
earliest arriving signal, and represents that portion of the signal uncontaminated 
by any wave components which have been back-scattered, only to be re-scattered 
later in the forward direction. As an example, we know that the forward wave 
will backscatter into the n(8) cell from the n=8 node , only to be scattered again 
in the forward direction at the n=7 node. This wave does not contribute to the 
leading edge, nor do any of the other back scattered waves from any of the other 
nodes throughout the transformer. An obvious property of the leading edge is the 
following: if 1 is the total length of the transformer, and v the propagation 
velocity, then the leading edge arrives at time 1/v whereas the remainder of the 
wave arrives at later times. 

We outline a simple iterative approach to obtain the leading edge for the 
transformer, using the aforementioned cell chain. Assume that the pulse incident 
on the n(l) cell (i.e., incident on the n=0 node)has unity amplitude. The initial 
transmission coefficient, T(0,1), (the argument 1 indicates a forward 
wave)determines the enhancement of the leading edge as the wave travels from 
the 5Q TLM line into the 7.25 Q cell. We know from Chapters 1 and 3 that 

T(0,1) = 2Z(1)/(Z(0) +Z(1)) = 2(7.25)/(5+7.25)=1.224 (8A.4) 
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The leading edge amplitude in the n(l) cell is therefore 1.224. We next calculate 
the T(l)transmission coefficient, which will tell us how the wave is enhanced in 
going from the n(l) cell to the n(2) cell. Thus the wave amplitude in n(2) is 

+V(2)=1.224T(UH1-224)2Z(2)/(Z(1)+Z(2)) (8A.5a) 
or 

+V(2Hl-224)2(11.75)/(7.25+11.75)=1.513 (8A.5b) 

This process continues , with repeated field enhancement at each cell interface, 
the wave reaches the 50 Q load, where the final field is 

+Vour = T(0,l)T(l,l)T(2,l) T(10,l) (8A.6) 

where 

T(n, l)=2Z(n+l)/(Z(n)+Z(n+l)) (8A.7a) 

T(10,l)=2(50)/(Z(10)+50) (8A.7b) 

Using the linear transformer values in Fig.8.15, we obtain a leading edge value of 
+V0UT =3.01 volts (8A.8) 

It is reassuring that this output agrees with the SPICE simulations in Fig.8.16 
where the 50 volt leading edge wave is transformed into 150 volts(3X input). 

We know that with the ideal pulse transformer, the leading edge of pulse 
satisfies 

( + V/V,) = (Z2/Z,)1/2 (8A.9) 

where Zu Z2 are transformer impedance values and +Vi, +V2 are the 
corresponding field values which the wave assumes as it progresses along the 
transformer. The transformer relationship, Eq.(8A.9), is very well known, but 
we have not yet formerly and explicitly shown that the TLM theory leads to 
Eq.(8A.9 )(or to some relationship closely related to Eq.(8A.9)). Of course, this 
has important implications for SPICE, which is based on the TLM theory. In the 
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following we fill in the gap between the TLM analysis and simple transformer 
theory. We begin by shrinking the size of the transformer cells to infinitesimal 
dimensions of two neighboring cells, designated by z, and z+Az (we have 
changed the notation for the cells , for obvious reasons). Suppose the forward 
wave +V(z) is just incident on the node separating the z and z+Az cells. The 
transmission coefficient is 2(z+Az)/(2z+Az). The transmitted wave +V(z+Az) is 
therefore 

+V(z+Az) = 2+V(z) (z+Az)/(2z+Az). (8A. 10) 

If we expand the denominator to first order 

+V(z+Az) = +V(z) (l+Az/z)(l-Az/2z) (8A. 11) 

Retaining only terms up to first order, we have 

+V(z+Az)= +V(z)++V(z) Az/2z (8A.12) 

or in differential form, 

d+V(z)/dz =+V(z)/2z (8A.13) 

The above has the simple solution 

+V(z)=Cz1 / 2 (8A.14) 

Assuming +V(z) = +Vj at at z=zb C = +Vt /z,1/2, then 

+V(z)Afi = (z/Zl)
1/2 (8A.15) 
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which is identical to Eq.(8A.9). If we use Eq.(8A.15) to obtain the leading edge 
amplitude, we will obtain a slightly larger result ( by about 5%) compared to the 
10 stage simulation performed earlier ; this is not surprising since Eq(8A.15) 
presupposes an infinite number of cells, thereby approaching the theoretical limit 
of the transformer, so that some differences should be expected. 

Finally we address the entire pulse output from the transformer, not just the 
leading edge. Of course the SPICE simulations performed previously already 
take into account the multi-scattering processes needed to describe the entire 
pulse, based on ID, TLM iterations. The question posed is whether it is 
worthwhile to do a TLM analysis as in the previous, allowing the cell size to 
shrink to mfinitesimal dimensions, or outline the TLM iteration using cells which 
are of finite extent, and are not infinitesimally small. We choose the latter 
approach , since the pure analysis becomes cumbersome (especially when losses 
are added) and , in any event, the SPICE are based on the TLM iterations. As 
noted before, Table 8A.2 gives the SPICE format for the transformer and 
Fig. 8A. 2 is the accompanying node designation. The modification for the PFXL 
is straightforward, merely requiring an input switch and an auxiliary output line. 

8A. 4 TLM Analysis of Leading Edge Wave in PFXL 

We may provide TLM analysis and arguments, parallel to those for the 
transformer, to obtain numerical and closed form expressions for the leading 
edge of the wave in a PFXL source. We use the same PFXL design as before, 
when we obtained SPICE simulations, with the transformer section divided into 
ten cells as in Fig.8.15. Unlike the pure transformer, of course, the PFXL 
transformer is subject to a bias voltage and we add the output auxiliary line Z0, 
and an input switch. The pulsing action is initiated by shorting out the n=0 node 
of the first cell. Following the shorting of the n=0 node we may trace the 
evolution of the wave as it proceeds down the transformer. Unlike the pure 
transformer, however, the wave energy is derived from preexisting standing 
waves in the PFXL, which are unleashed by the shorting of the n=0 node. 

Immediately following the n=0 node activation , the reflection coefficient at 
this node becomes B(0,1) = -1 and thus an inverted wave of amplitude -WJ2 is 
initiated in the forward direction of the n=l cell, or 
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V ( l ) = B(0,2)(V„/2) = -Vo/2 (8A. 16) 

and we remind ourselves of the fact that the second argument in B(0,2) indicates 
a backward wave incident on the n=0 node. The wave then encounters the n=l 
node, which separates the Z(l) and Z(2) cells. The transmission coefficient at this 
node ,T( 1,1), is 

T( l , l )= 2Z(2)/(Z(l)+Z(2)) = 2(11.75)/(7.25+l 1.75)= 1.237 (8A.17) 

where we inserted the specified impedance values. The transmitted wave, 
however, represents only a portion of the forward wave in the n=2 cell. To this 
we must add the backward wave, of amplitude Vo/2, and partially reflected at 
the n=l inversion because of the negative mismatch. The reflection coefficient 
the n=l node is 

B(1,2)=[Z(1)-Z(2)]/[Z(1)+Z(2)]=[7,25-11.75]/[7.25+l 1.75]=-.2368 (8A.18) 

where the negative sign indicates the reflected wave is inverted, adding to the 
transmitted wave (which has already undergone an inversion because of the 
initial short at the n=0 node). The total forward wave in the n=2 cell is therefore 

V ( 2 ) = T(l,l)(-V„/2) + B(l,2)(Vo/2)= -1.474 (Vo/2) (8A.19) 

The process is then continued on to the next cell in like manner. The above 
wave encounters the n=2 node, and part of this wave energy is transmitted into 
the n=3 cell. The transmitted wave is again augmented by the reflection of the 
(Vo/2) backward wave. Using this procedure we may obtain a closed form 
expression, but because of the fact that we are dealing with a number of discrete 
cells, the final expression for the wave output is somewhat lengthy. We then 
obtain the leading edge field in the final cell, V(10): 
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V°(10)=(Vo/2)B(0,2)T(l, 1)T(2,1)T(3,1)T(4,1)T(5,1)T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(l,2)T(2,1)T(3,1)T(4,1)T(5,1)T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(2,2) T(3,1)T(4,1)T(5,1)T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(3,2) T(4,1)T(5,1)T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(4,2) T(5,1)T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(5,2) T(6,1)T(7,1)T(8,1)T(9,1) 

+(Vo/2)B(6,2) T(7,1)T(8,1)T(9,1) 

+WJ2)B{1,2) T(8,1)T(9,1) 

+(Vo/2)B(8,2)T(9,l) 

+(Vo/2)B(9,2) (8A.20a) 

Eq.(8A.20a) may be written in a more compact form 

+V10(10)=(Vo/2)I^[nB(n,2)T(n+l,l)T(n,l)...T(9,l)]+(Vo/2)B(9,2) (8A.20b) 

Once we know V(10) we can calculate the leading edge output to RL with 
the help of the circuit in App. 8A.3, with ZF =Z(10). There are two contributions 
to the pulse delivered to RL. the first is that transmitted from the n=10 cell, and 
the second is from the auxiliary line, with impedance Z0. For this, we need the 
transmission coefficients emanating from Z(10) and Z0, designated by T\ and Tn. 
From the circuit in Fig. 8 A. 3, 

T! = 2 [(RL+Zo)/(Ri+Zo+Z(10))] [RL/(RL+Z0] 

= 2RL/(RL+Z0+Z( 10)) (8A.21) 
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T„ = 2 [ (RL+Z(10)) / (RL+Z(10)+ZO ) ] [RL/(RL+Z(10)] 

= 2RL/ (RL+Zo+Z(10))= Ti (8A.22) 

The second bracket in Eq.(8A.21) accounts for the voltage division between RL 

and Z0. Similarly, the second bracket in Eq.(8A.22) accounts for the division 
between RL and Z(10). We note the interesting result that T\ =Tn. This is 
representative of the general result that the forward and backward transfer 
coefficients to a series load, separating two lines, are equal. In fact, if we view 
RL as a series TLM line (with impedance RL) then the equality of Ti and Tn may 
be regarded as a special case based on the symmetry relationships discussed in 
Section 3.3 and displayed in Table 3.4. Finally, the leading edge output delivered 
to RL is 

VOUT = V C I O ) ^ + "(Vo/2)Tn (8A.23) 

Zp Z0 

• W W > 
RL 

• * 

FIG. 8A.3 EQUIVALENT CIRCUIT SEEN BY LEADING EDGE 
OF PULSE AT FINAL SECTION OF PFXL TRANSFORMER. ZF 
IS THE FINAL SECTION, Z0 THE AUXILIARY LINE, AND RL 
THE LOAD. 

Both terms in Eq.(8A.23 ) add constructively. A discussion of the signs may be 
worthwhile, again using the Figure in Fig.8A.3 with ZF = Z(10). +V10(10) has a 
negative polarity as it impinges on RL, due to the field inversion at the start of 
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the chain. Ti will therefore deliver the pulse to RL with its polarity in the 
negative x direction. "(Vo/2) on the other hand, has a positive polarity. Since 
"(Vo/2) is a backward wave Tn will deliver ~(VJ2) to RL in the negative x 
direction as well. The two contributions therefore add. 

Eq.(8A.23) should provide exactly the same result as the SPICE simulations 
in Figs.8.23-8.24 (i.e.,the leading edge in the SPICE should reproduce 
Eq.(8A.23)). Using the same transformer cells, and with Z0 =50Q, RL=100 Q, 
we obtain V0UT =243V, which is identical to the simulation result, as expected. 

As with the 
pure transformer, we should inquire whether a simple closed form result is 
possible if we allow the cell size of the PFXL to shrink to mfinitesimal 
dimensions. This is indeed the case. As with the case of the transformer, we 
modify our notation, so that two neighboring cells are designated z and z+Az. 
The leading edge voltage in z+Az is made up of two parts. One is the wave 
portion transmitted from the previous cell at z, and the other is the result of the 
backward wave reflected at the node separating the two cells. The transmission 
and reflection coefficients are 

T(z) = 2(z+Az)/(2z+Az) ~ l+Az/2 (8A.24) 

B(z) = Az/(2z+Az) ~ Az/2z (8A.25) 

where we have retained only first order terms. V(z+Az) is then 

+V(z+Az)= +V(z) T(z) + "(Vo/2) B(z) (8A.26a) 

Strictly speaking , both contributions in the above are negative (which we have 
suppressed) due to the negative mismatch at either the first cell, which pertains to 
+V(z) T(z), or to the negative mismatch further down the chain, which pertains 
to "(Vo/2) B(z). Combining Eq.(8A.26a) with the expressions for T(z) and B(z), 
we have 
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+V(z+Az) = +V(z) ++V(z) Az/2z + ~{VJ2) Az/2z (8A.26b) 

In differential form, Eq(8A.26) becomes 

d+V(z) /dz =+V(z) /2z + (1/2) "(Vo/2) /z (8A.27) 

The solution of the above is 

+V(z)= -(Vo/2) +Vo(z/z01/2 (8A.28) 

where we have used the initial condition, +V(z) -YJ2 when z=zi, i.e., at the 
beginning of the PFXL line the initial wave is that caused by the reflection from 
the short at the n=0 node. Note that the functional dependence of Eq.(8A.28) 
differs somewhat from that of a pure transformer. If we consider a pure 
transformer with an input of V/2, the output is given by +V(z) = (Vo/2) (z/zi)1/2 

Eq(8A.28) exceeds the transformer output by an amount (Vo/2)[(z/zi)1/2-l] which 
is always greater than one. As mentioned previously, the enhanced output is due 
to the reflected wave in each cell, which add constructively with the forward 
transmitted wave. Finally 
Eq.(8A.28) treats only the transformer section of the PFXL. At this point we 
need to take into account the augmented line Z0 at the output. This is done in 
exactly the same manner as was done when treating the transformer with 
numerable cells, using Eqs.(8A.21)-(8A.22). In the case of the mfinitesimal cell 
transformer, we simply substitute the wave output for the final value of the 
transformer, zf ? given by 

V(zf) = -(Vo/2) +V0(zf/z,)1/2 (8A.29) 

The above is used in Eqs.(8A.21)-(8A.23) , replacing z(10) with zf and V(10) 
with V(zf). Thus 

T, = 2 ^/(RL+Zo+Zf) (8A.30) 

T n = Tj (8A.31) 
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VOITT = V(zf)T, + (Vo/2)T„ (8A.32) 

where again both terms in Eq.(8A.32) add constructively to RL, as outlined in the 
discussion following Eq.(8A.23). 

It is of interest to compare the leading edge output from Eq.(8A.32) to that 
using the ten stage PFXL(either the SPICE simulation or equivalently, 
Eq.(8A.23)). Using zx =7.25 Q and Zf = 47.75Q , RL =100Q and , Zo=50fi we 
obtain the result Votrr ~ 256V which is about 5% higher than the SPICE result 
using the ten cell simulation done previously. As the number of cells is 
increased, of course, the difference between the exact result and the simulation 
grows smaller. The simulation is most valuable, however, when we wish to 
determine the entire pulse output, or when we add additional elements to the 
circuit. 
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Problems in electromagnetic propagation, especially those with complex geometries, 
have traditionally been solved using numerical methods, such as the method of 
finite differences. Unfortunately the mathematical methods suffer from a lack of 
physical appeal . The researcher or designer often loses sight of the physics 
underlying the problem, and changes in the mathematical formulation are often 
not identifiable with any physical change. 

This book employs a relatively new method for solving electromagnetic problems, 
one which makes use of a transmission line matrix (TLM). The propagation space 
is imagined to be filled with this matrix. The propagating fields and physical 
properties (for example, the presence of conductivity) are then mapped onto the 
matrix. Mathematically, the procedures are identical with the traditional numerical 
methods; however, the interpretation and physical appeal of the transmission line 
matrix are far superior. Any change in the matrix has an immediate physical 
significance. What is also very important is that the matrix becomes a launching 
pad for many improvements in the analysis (for example, the nature of coherent 
waves) using more modern notions of electromagnetic waves. Eventually, the purely 
mathematical techniques will probably give way to the transmission line matrix 
method. 

Note on figure: 
The figure shows a transmission line matrix (TLM) grid used to solve problems in electromagnetics 
and other areas of physics. The grid consists of scattering nodes (circles) which are connected 
by transmission lines, in which the electromagnetic waves flow. The arrows represent forward 
and backward waves in each transmission line. The above grid may be used instead of 
standard numerical methods. 

www. worldscientific. com 
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