Magnetically-Coupled Circuits

Magnetically-Coupled Circuits

(a)

(b)

Current entering the dotted terminal of one coil produces a voltage that is sensed positively at the dotted terminal of the second coil. Current entering the undotted terminal of one coil produces a voltage that is sensed positively at the undotted terminal of the second coil.

Magnetically-Coupled Circuits

(a) A circuit containing mutual inductance in which the voltage ratio $\mathbf{V}_{2} / \mathbf{V}_{1}$ is desired. (b) Self and mutual inductances are replaced by the corresponding impedances.

(a)

(b)

Magnetically-Coupled Circuits

(a)

(b)
$\left\{\begin{array}{c}-10+I_{1}+j 10 I_{1}-j 90 I_{2}=0 \\ j 1000 I_{2}-j 90 I_{1}+400 I_{2}=0\end{array}\right\} \Rightarrow \begin{aligned} & I_{1}=2.063 \angle-38.5^{\circ} \\ & I_{2}=0.172 \angle-16.7^{\circ}\end{aligned}$
$V_{2}=400 I_{2}=68.8 \mathrm{~V}>V_{1} \Rightarrow$ Voltage gain is possible with a transformer, but not actual power gain. Current gain is also possible.

Magnetically-Coupled Circuits

$$
\begin{aligned}
& \mathrm{v}_{s}(t)=2 \cos (100 \pi t) \mathrm{V}, R_{1}=3 \Omega, R_{2}=8 \Omega \\
& L_{1}=50 \mathrm{mH}, L_{2}=100 \mathrm{mH}, M=60 \mathrm{mH} \\
& -2+j 100 \pi(0.05) I_{1}-j 100 \pi(0.06) I_{2}+3\left(I_{1}-I_{2}\right)=0 \\
& 3\left(I_{2}-I_{1}\right)+j 100 \pi(0.1) I_{2}-j 100 \pi(0.06) I_{1}+8 I_{2}=0
\end{aligned}
$$

Magnetically-Coupled Circuits

$$
\begin{aligned}
& \mathrm{i}_{s}(t)=5 \cos (120 \pi t) \mathrm{A}, R_{1}=50 \Omega, R_{2}=100 \Omega \\
& L_{1}=1 \mathrm{H}, L_{2}=3 \mathrm{H}, M=1.5 \mathrm{mH} \\
& 50\left(I_{2}-I_{1}\right)+j 120 \pi(1) I_{2}-j 120 \pi(1.5)\left(I_{2}-I_{3}\right) \\
& \quad \quad+j 120 \pi(3)\left(I_{2}-I_{3}\right)-j 120 \pi(1.5) I_{2}=0 \\
& \quad j 120 \pi(3)\left(I_{3}-I_{2}\right)+j 120 \pi(1.5) I_{2}+100 I_{3}=0 \\
& I_{1}=5
\end{aligned}
$$

The Ideal Transformer

An ideal transformer is connected to a general load impedance.

The ideal transformer is a transformer with unity coupling coefficient k and with L_{1} and L_{2} very large (approaching infinity).

The Ideal Transformer

An ideal transformer is connected to a general load impedance.
$a=\frac{N_{2}}{N_{1}}, V_{2}=a V_{1}, I_{1}=a I_{2}, \frac{L_{2}}{L_{1}}=\frac{N_{2}^{2}}{N_{1}^{2}}=a^{2}$
$Z_{i n}=\frac{Z_{L}}{a^{2}}$, where N_{1} and N_{2} are the numbers of
turns in L_{1} and L_{2}.

The Ideal Transformer

$$
\begin{aligned}
& V_{s}=120 \angle 0^{\circ}, R_{1}=50 \Omega, C=3 \mu \mathrm{~F}^{2}, R_{2}=200 \Omega, a=5 \\
& f=60 \mathrm{~Hz} \Rightarrow \omega=377 \mathrm{rad} / \mathrm{s} \\
& -120+I_{1}\left(50+Z_{L} / 5^{2}\right)=0 \\
& \text { where } Z_{L}=\frac{1}{j 377 \times 3 \times 10^{-6}}+200=906.5 \angle-77.25^{\circ} \\
& I_{1}=1.7655 \angle 31.374^{\circ}, I_{2}=I_{1} / 5=0.3533 \angle 31.374^{\circ} \\
& V_{2}=R_{2} I_{2}=70.66 \angle 31.374^{\circ}
\end{aligned}
$$

