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Introduction

This book originates from a collection of lecture notes that the first author prepared

at the University of Trieste with Michela Brundu, over a span of fifteen years,

together with the more recent one written by the second author. The notes were

meant for undergraduate classes on linear algebra, geometry and more generally

basic mathematical physics delivered to physics and engineering students, as well

as mathematics students in Italy, Germany and Luxembourg.

The book is mainly intended to be a self-contained introduction to the theory of

finite-dimensional vector spaces and linear transformations (matrices) with their

spectral analysis both on Euclidean and Hermitian spaces, to affine Euclidean

geometry as well as to quadratic forms and conic sections.

Many topics are introduced and motivated by examples, mostly from physics.

They show how a definition is natural and how the main theorems and results are

first of all plausible before a proof is given. Following this approach, the book

presents a number of examples and exercises, which are meant as a central part in

the development of the theory. They are all completely solved and intended both to

guide the student to appreciate the relevant formal structures and to give in several

cases a proof and a discussion, within a geometric formalism, of results from

physics, notably from mechanics (including celestial) and electromagnetism.

Being the book intended mainly for students in physics and engineering, we

tasked ourselves not to present the mathematical formalism per se. Although we

decided, for clarity's sake of our readers, to organise the basics of the theory in the

classical terms of definitions and the main results as theorems or propositions, we

do often not follow the standard sequential form of definition—theorem—corollary

—example and provided some two hundred and fifty solved problems given as

exercises.

Chapter 1 of the book presents the Euclidean space used in physics in terms of

applied vectors with respect to orthonormal coordinate system, together with the

operation of scalar, vector and mixed product. They are used both to describe the

motion of a point mass and to introduce the notion of vector field with the most

relevant differential operators acting upon them.

xi



Chapters 2 and 3 are devoted to a general formulation of the theory of

finite-dimensional vector spaces equipped with a scalar product, while the Chaps. 4

–6 present, via a host of examples and exercises, the theory of finite rank matrices

and their use to solve systems of linear equations.

These are followed by the theory of linear transformations in Chap. 7. Such a

theory is described in Chap. 8 in terms of the Dirac’s Bra-Ket formalism, providing

a link to a geometric–algebraic language used in quantum mechanics.

The notion of the diagonal action of an endomorphism or a matrix (the problem

of diagonalisation and of reduction to the Jordan form) is central in this book, and it

is introduced in Chap. 9.

Again with many solved exercises and examples, Chap. 10 describes the spectral

theory for operators (matrices) on Euclidean spaces, and (in Chap. 11) how it allows

one to characterise the rotations in classical mechanics. This is done by introducing

the Euler angles which parameterise rotations of the physical three-dimensional

space, the notion of angular velocity and by studying the motion of a rigid body

with its inertia matrix, and formulating the description of the motion with respect to

different inertial observers, also giving a characterisation of polar and axial vectors.

Chapter 12 is devoted to the spectral theory for matrices acting on Hermitian

spaces in order to present a geometric setting to study a finite level quantum

mechanical system, where the time evolution is given in terms of the unitary group.

All these notions are related with the notion of Lie algebra and to the exponential

map on the space of finite rank matrices.

In Chap. 13, we present the theory of quadratic forms. Our focus is the

description of their transformation properties, so to give the notion of signature,

both in the real and in the complex cases. As the most interesting example of a

non-Euclidean quadratic form, we present the Minkowski spacetime from special

relativity and the Maxwell equations.

In Chaps. 14 and 15, we introduce through many examples the basics of the

Euclidean affine linear geometry and develop them in the study of conic sections, in

Chap. 16, which are related to the theory of Kepler motions for celestial body in

classical mechanics. In particular, we show how to characterise a conic by means of

its eccentricity.

A reader of this book is only supposed to know about number sets, more

precisely the natural, integer, rational and real numbers and no additional prior

knowledge is required. To try to be as much self-contained as possible, an appendix

collects a few basic algebraic notions, like that of group, ring and field and maps

between them that preserve the structures (homomorphisms), and polynomials in

one variable. There are also a few basic properties of the field of complex numbers

and of the field of (classes of) integers modulo a prime number.

Giovanni Landi

Alessandro Zampini

Trieste, Italy

Napoli, Italy

May 2018
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Chapter 1

Vectors and Coordinate Systems

The notion of a vector, or more precisely of a vector applied at a point, originates in

physics when dealing with an observable quantity. By this or simply by observable,

one means anything that can be measured in the physical space—the space of physical

events— via a suitable measuring process. Examples are the velocity of a point

particle, or its acceleration, or a force acting on it. These are characterised at the

point of application by a direction, an orientation and a modulus (or magnitude). In

the following pages we describe the physical space in terms of points and applied

vectors, and use these to describe the physical observables related to the motion of a

point particle with respect to a coordinate system (a reference frame). The geometric

structures introduced in this chapter will be more rigorously analysed in the next

chapters.

1.1 Applied Vectors

We refer to the common intuition of a physical space made of points, where the

notions of straight line between two points and of the length of a segment (or equiv-

alently of distance of two points) are assumed to be given. Then, a vector v can be

denoted as

v = B − A or v = AB,

where A, B are two points of the physical space. Then, A is the point of application

of v, its direction is the straight line joining B to A, its orientation the one of the arrow

pointing from A towards B, and its modulus the real number ‖B − A‖ = ‖A − B‖,

that is the length (with respect to a fixed unit) of the segment AB.

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Vectors and Coordinate Systems

Fig. 1.1 The parallelogram rule

If S denotes the usual three dimensional physical space, we denote by

W
3 = {B − A | A, B ∈ S}

the collection of all applied vectors at any point of S and by

V
3
A = {B − A | B ∈ S}

the collection of all vectors applied at A in S. Then

W
3 =

⋃

A∈S

V
3
A.

Remark 1.1.1 Once fixed a point O in S, one sees that there is a bijection between

the set V3
O = {B − O | B ∈ S} and S itself. Indeed, each point B in S uniquely

determines the element B − O in V3
O , and each element B − O in V3

O uniquely

determines the point B in S.

It is well known that the so called parallelogram rule defines in V3
O a sum of

vectors, where

(A − O) + (B − O) = (C − O),

with C the fourth vertex of the parallelogram whose other three vertices are A, O ,

B, as shown in Fig. 1.1.

The vector 0 = O − O is called the zero vector (or null vector); notice that its

modulus is zero, while its direction and orientation are undefined.

It is evident that V3
O is closed with respect to the notion of sum defined above.

That such a sum is associative and abelian is part of the content of the proposition

that follows.

Proposition 1.1.2 The datum (V3
O ,+, 0) is an abelian group.

Proof Clearly the zero vector 0 is the neutral (identity) element for the sum in V3
O ,

that added to any vector leave the latter unchanged. Any vector A − O has an inverse



1.1 Applied Vectors 3

Fig. 1.2 The opposite of a vector: A
′
− O = −(A − O)

Fig. 1.3 The associativity of the vector sum

with respect to the sum (that is, any vector has an opposite vector) given by A′ − O ,

where A′ is the symmetric point to A with respect to O on the straight line joining

A to O (see Fig. 1.2).

From its definition the sum of two vectors is a commutative operation. For the

associativity we give a pictorial argument in Fig. 1.3. �

There is indeed more structure. The physical intuition allows one to consider

multiples of an applied vector. Concerning the collection V3
O , this amounts to define

an operation involving vectors applied in O and real numbers, which, in order not to

create confusion with vectors, are called (real) scalars.

Definition 1.1.3 Given the scalar λ ∈ R and the vector A − O ∈ V3
O , the product

by a scalar

B − O = λ(A − O)

is the vector such that:

(i) A, B, O are on the same (straight) line,

(ii) B − O and A − O have the same orientation if λ > 0, while A − O and

B − O have opposite orientations if λ < 0,

(iii) ‖B − O‖ = |λ| ‖A − O‖.

The main properties of the operation of product by a scalar are given in the

following proposition.

Proposition 1.1.4 For any pair of scalars λ,µ ∈ R and any pair of vectors

A − O, B − O ∈ V3
O , it holds that:
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Fig. 1.4 The scaling λ(C − O) = (C ′ − O) with λ > 1

1. λ(µ(A − O)) = (λµ)(A − O),

2. 1(A − O) = A − O,

3. λ ((A − O) + (B − O)) = λ(A − O) + λ(B − O),

4. (λ + µ)(A − O) = λ(A − O) + µ(A − O).

Proof 1. Set C − O = λ (µ(A − O)) and D − O = (λµ)(A − O). If one of

the scalars λ,µ is zero, one trivially has C − O = 0 and D − O = 0, so

Point 1. is satisfied. Assume now that λ �= 0 and µ �= 0. Since, by definition,

both C and D are points on the line determined by O and A, the vectors C − O

and D − O have the same direction. It is easy to see that C − O and D − O

have the same orientation: it will coincide with the orientation of A − O or not,

depending on the sign of the product λµ �= 0. Since |λµ| = |λ||µ| ∈ R, one has

‖C − O‖ = ‖D − O‖.

2. It follows directly from the definition.

3. Set C − O = (A − O) + (B − O) and C ′ − O = (A′ − O) + (B ′ − O),

with A′ − O = λ(A − O) and B ′ − O = λ(B − O).

We verify that λ(C − O) = C ′ − O (see Fig. 1.4).

Since O A is parallel to O A′ by definition, then BC is parallel to B ′C ′; O B is

indeed parallel to O B ′, so that the planar angles Ô BC and Ô B ′C ′ are equal.

Also λ(O B) = O B ′, λ(O A) = O A′, and λ(BC) = B ′C ′. It follows that the

triangles O BC and O B ′C ′ are similar: the vector OC is then parallel OC ′ and

they have the same orientation, with ‖OC ′‖ = λ ‖OC‖. From this we obtain

OC ′ = λ(OC).

4. The proof is analogue to the one in point 3. �

What we have described above shows that the operations of sum and product by a

scalar give V3
O an algebraic structure which is richer than that of abelian group. Such

a structure, that we shall study in detail in Chap. 2, is called in a natural way vector

space.
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1.2 Coordinate Systems

The notion of coordinate system is well known. We rephrase its main aspects in terms

of vector properties.

Definition 1.2.1 Given a line r , a coordinate system � on it is defined by a point

O ∈ r and a vector i = A − O , where A ∈ r and A �= O .

The point O is called the origin of the coordinate system, the norm ‖A − O‖ is

the unit of measure (or length) of �, with i the basis unit vector. The orientation of

i is the orientation of the coordinate system �.

A coordinate system � provides a bijection between the points on the line r and

R. Any point P ∈ r singles out the real number x such that P − O = x i; viceversa,

for any x ∈ R one has the point P ∈ r defined by P − O = x i. One says that P

has coordinate x , and we shall denote it by P = (x), with respect to the coordinate

system � that is also denoted as (O; x) or (O; i).

Definition 1.2.2 Given a plane α, a coordinate system � on it is defined by a point

O ∈ α and a pair of non zero distinct (and not having the same direction) vectors

i = A − O and j = B − O with A, B ∈ α, and ‖A − O‖ = ‖B − O‖.
The point O is the origin of the coordinate system, the (common) norm of the

vectors i, j is the unit length of �, with i, j the basis unit vectors. The system is

oriented in such a way that the vector i coincides with j after an anticlockwise

rotation of angle φ with 0 < φ < π. The line defined by O and i, with its given

orientation, is usually referred to as a the abscissa axis, while the one defined by O

and j, again with its given orientation, is called ordinate axis.

As before, it is immediate to see that a coordinate system � on α allows one to

define a bijection between points on α and ordered pairs of real numbers. Any

P ∈ α uniquely provides, via the parallelogram rule (see Fig. 1.5), the ordered

pair (x, y) ∈ R2 with P − O = x i + yj; conversely, for any given ordered pair

(x, y) ∈ R2, one defines P ∈ α as given by P − O = x i + yj.

With respect to �, the elements x ∈ R and y ∈ R are the coordinates of P ,

and this will be denoted by P = (x, y). The coordinate system � will be denoted

(O; i, j) or (O; x, y).

Fig. 1.5 The bijection P(x, y) ↔ P − O = x i + yj in a plane
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Definition 1.2.3 A coordinate system � = (O; i, j) on a plane α is called an orthog-

onal cartesian coordinate system if φ = π/2, where φ is as before the width of the

anticlockwise rotation under which i coincides with j.

In order to introduce a coordinate system for the physical three dimensional

space, we start by considering three unit-length vectors in V3
O given as u = U − O,

v = V − O, w = W − O , and we assume the points O, U, V, W not to be on the

same plane. This means that any two vectors, u and v say, determine a plane which

does not contain the third point, say W . Seen from W , the vector u will coincide

with v under an anticlockwise rotation by an angle that we denote by ûv.

Definition 1.2.4 An ordered triple (u, v, w) of unit vectors in V3
O which do not lie

on the same plane is called right-handed if the three angles ûv, v̂w, ŵu, defined by

the prescription above are smaller than π. Notice that the order of the vectors matters.

Definition 1.2.5 A coordinate system � for the space S is given by a point O ∈ S

and three non zero distinct (and not lying on the same plane) vectors i = A − O,

j = B − O and k = C − O , with A, B, C ∈ S, and ‖A − O‖ = ‖B − O‖ =

‖C − O‖ and (i, j, k) giving a right-handed triple.

The point O is the origin of the coordinate system, the common length of the

vectors i, j, k is the unit measure in �, with i, j, k the basis unit vectors. The line

defined by O and i, with its orientation, is the abscissa axis, that defined by O and j

is the ordinate axis, while the one defined by O and k is the quota axis.

With respect to the coordinate system �, one establishes, via V3
O , a bijection

between ordered triples of real numbers and points in S. One has

P ↔ P − O ↔ (x, y, z)

with P − O = x i + yj + zk as in Fig. 1.6. The real numbers x, y, z are the com-

ponents (or coordinates) of the applied vector P − O , and this will be denoted by

P = (x, y, z). Accordingly, the coordinate system will be denoted by

� = (O; i, j, k) = (O; x, y, z). The coordinate system� is called cartesian orthog-

onal if the vectors i, j, k are pairwise orthogonal.

By writing v = P − O , it is convenient to denote by vx , vy, vz the components

of v with respect to a cartesian coordinate system �, so to have

v = vx i + vyj + vzk.

In order to simplify the notations, we shall also write this as

v = (vx , vy, vz),

implicitly assuming that such components of v refer to the cartesian coordinate sys-

tem (O; i, j, k). Clearly the components of a given vector v depend on the particular

coordinate system one is using.
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Fig. 1.6 The bijection P(x, y, z) ↔ P − O = x i + yj + zk in the space

Exercise 1.2.6 One has

1. The zero (null) vector 0 = O − O has components (0, 0, 0) with respect to any

coordinate system whose origin is O , and it is the only vector with this property.

2. Given a coordinate system � = (O; i, j, k), the basis unit vectors have compo-

nents

i = (1, 0, 0) , j = (0, 1, 0) , k = (0, 0, 1).

3. Given a coordinate system � = (O; i, j, k) for the space S, we call coordinate

plane each plane determined by a pair of axes of �. We have v = (a, b, 0), with

a, b ∈ R, if v is on the plane xy, v′ = (0, b′, c′) if v′ is on the plane yz, and

v′′ = (a′′, 0, c′′) if v′′ is on the plane xz.

Example 1.2.7 The motion of a point mass in three dimensional space is described by

a map t ∈ R �→ x(t) ∈ V3
O where t represents the time variable and x(t) is the posi-

tion of the point mass at time t . With respect to a coordinate system � = (O; x, y, z)

we then write

x(t) = (x(t), y(t), z(t)) or equivalently x(t) = x(t)i + y(t)j + z(t)k.

The corresponding velocity is a vector applied in x(t), that is v(t) ∈ V3
x(t), with

components

v(t) = (vx (t), vy(t), vz(t)) =
dx(t)

dt
= (

dx

dt
,

dy

dt
,

dz

dt
),

while the acceleration is the vector a(t) ∈ V3
x(t) with components

a(t) =
dv(t)

dt
= (

dx2

dt2
,

d2 y

dt2
,

d2z

dt2
).
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One also uses the notations

v =
dx

dt
= ẋ and a =

d2x

dt2
= v̇ = ẍ.

In the newtonian formalism for the dynamics, a force acting on the given point

mass is a vector applied in x(t), that is F ∈ V3
x(t) with components F = (Fx , Fy, Fz),

and the second law of dynamics is written as

m a = F

where m > 0 is the value of the inertial mass of the moving point mass. Such a

relation can be written component-wise as

m
d2x

dt2
= Fx , m

d2 y

dt2
= Fy, m

d2z

dt2
= Fz .

A coordinate system for S allows one to express the operations of sum and product

by a scalar in V3
O in terms of elementary algebraic expressions.

Proposition 1.2.8 With respect to the coordinate system � = (O; i, j, k), let us

consider the vectors v = vx i + vyj + vzk and w = wx i + wyj + wzk, and the scalar

λ ∈ R. One has:

(1) v + w = (vx + wx )i + (vy + wy)j + (vz + wz)k,

(2) λv = λvx i + λvyj + λvzk.

Proof (1) Since v + w = (vx i + vyj + vzk) + (wx i + wyj + wzk), by using the com-

mutativity and the associativity of the sum of vectors applied at a point, one has

v + w = (vx i + wx i) + (vyj + wyj) + (vzk + wzk).

Being the product distributive over the sum, this can be regrouped as in the

claimed identity.

(2) Along the same lines as (1). �

Remark 1.2.9 By denoting v = (vx , vy, vz) and w = (wx , wy, wz), the identities

proven in the proposition above are written as

(vx , vy, vz) + (wx , wy, wz) = (vx + wx , vy + wy, vz + wz),

λ(vx , vy, vz) = (λvx ,λvy,λvz).

This suggests a generalisation we shall study in detail in the next chapter. If we

denote by R3 the set of ordered triples of real numbers, and we consider a pair of
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elements (x1, x2, x3) and (y1, y2, y3) in R3, with λ ∈ R, one can introduce a sum of

triples and a product by a scalar:

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3),

λ(x1, x2, x3) = (λx1,λx2,λx3).

1.3 More Vector Operations

In this section we recall the notions—originating in physics—of scalar product,

vector product and mixed products.

Before we do this, as an elementary consequence of the Pythagora’s theorem, one

has the following (see Fig. 1.6)

Proposition 1.3.1 Let v = (vx , vy, vz) be an arbitrary vector in V3
O with respect to

the cartesian orthogonal coordinate system (O; i, j, z). One has

‖v‖ =

√
v2

x + v2
y + v2

z .

Definition 1.3.2 Let us consider a pair of vectors v, w ∈ V3
O . The scalar product of

v and w, denoted by v · w, is the real number

v · w = ‖v‖ ‖w‖ cos α

with α = v̂w the plane angle defined by v and w. Since cos α = cos(−α), for this

definition one has cos v̂w = cos ŵv.

The definition of a scalar product for vectors in V2
O is completely analogue.

Remark 1.3.3 The following properties follow directly from the definition.

(1) If v = 0, then v · w = 0.

(2) If v, w are both non zero vectors, then

v · w = 0 ⇐⇒ cos α = 0 ⇐⇒ v ⊥ w.

(3) For any v ∈ V3
O , it holds that:

v · v = ‖v‖2

and moreover

v · v = 0 ⇐⇒ v = 0.
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(4) From (2), (3), if (O; i, j, k) is an orthogonal cartesian coordinate system, then

i · i = j · j = k · k = 1, i · j = j · k = k · i = 0.

Proposition 1.3.4 For any choice of u, v, w ∈ V3
O and λ ∈ R, the following identi-

ties hold.

(i) v · w = w · v,

(ii) (λv) · w = v · (λw) = λ(v · w),

(iii) u · (v + w) = u · v + u · w.

Proof (i) From the definition one has

v · w = ‖v‖ ‖w‖ cos v̂w = ‖w‖ ‖v‖ cos ŵv = w · v.

(ii) Setting a = (λv) · w, b = v · (λw) and c = λ(v · w), from the Definition 1.3.2

and the properties of the norm of a vector, one has

a = (λv) · w = ‖λv‖ ‖w‖ cos α′ = |λ|‖v‖ ‖w‖ cos α′

b = v · (λw) = ‖v‖ ‖λw‖ cos α′′ = ‖v‖ |λ|‖w‖ cos α′′

c = λ(v · w) = λ(‖v‖ ‖w‖ cos α) = λ‖v‖ ‖w‖ cos α

where α′ = (̂λv)w, α′′ = v̂(λw) and α = v̂w. If λ = 0, then a = b = c = 0.

If λ > 0, then |λ| = λ and α = α′ = α′′; from the commutativity and the

associativity of the product in R, this gives that a = b = c. If λ < 0, then

|λ| = −λ and α′ = α′′ = π − α, thus giving cos α′ = cos α′′ = − cos α. These

read a = b = c.

(iii) We sketch the proof for parallel u, v, w. Under this condition, the result depends

on the relative orientations of the vectors. If u, v, w have the same orientation,

one has

u · (v + w) = ‖u‖ ‖v + w‖

= ‖u‖(‖v‖ + ‖w‖)

= ‖u‖ ‖v‖ + ‖u‖ ‖w‖

= u · v + u · w.

If v and w have the same orientation, which is not the orientation of u, one has

u · (v + w) = −‖u‖ ‖v + w‖

= −‖u‖(‖v‖ + ‖w‖)

= −‖u‖ ‖v‖ − ‖u‖ ‖w‖

= u · v + u · w.

We leave the reader to explicitly prove the other cases. �
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By expressing vectors in V3
O in terms of an orthogonal cartesian coordinate system,

the scalar product has an expression that will allow us to define the scalar product of

vectors in the more general situation of euclidean spaces.

Proposition 1.3.5 Given (O; i, j, k), an orthogonal cartesian coordinate system for

S; with vectors v = (vx , vy, vz) and w = (wx , wy, wz) in V3
O , one has

v · w = vxwx + vywy + vzwz .

Proof With v = vx i + vyj + vzk and w = wx i + wyj + wzk, from Proposition 1.3.4,

one has

v · w = (vx i + vyj + vzk) · (wx i + wyj + wzk)

= vxwx i · i + vywx j · i + vzwx k · i

+ vxwy i · j + vywyj · j + vzwyk · j + vxwzi · k + vywzj · k + vzwzk · k.

The result follows directly from (4) in Remark 1.3.3, that is i · j = j · k = k · i = 0

as well as i · i = j · j = k · k = 1. �

Exercise 1.3.6 With respect to a given cartesian orthogonal coordinate system, con-

sider the vectors v = (2, 3, 1) and w = (1,−1, 1). We verify they are orthogonal.

From (2) in Remark 1.3.3 this is equivalent to show that v · w = 0. From Proposition

1.3.5, one has v · w = 2 · 1 + 3 · (−1) + 1 · 1 = 0.

Example 1.3.7 If the map x(t) : R ∋ t �→ x(t) ∈ V3
O describes the motion (notice

that the range of the map gives the trajectory) of a point mass (with mass m), its

kinetic energy is defined by

T =
1

2
m ‖v(t)‖2.

With respect to an orthogonal coordinate system � = (O; i, j, k), given

v(t) = (vx (t), vy(t), vz(t)) as in the Example 1.2.7, we have from the Proposi-

tion 1.3.5 that

T =
1

2
m (v2

x + v2
y + v2

z ).

Also the following notion will be generalised in the context of euclidean spaces.

Definition 1.3.8 Given two non zero vectors v and w in V3
O , the orthogonal projec-

tion of v along w is defined as the vector vw in V3
O given by

vw =
v · w

‖w‖2
w.

As the first part of Fig. 1.7 displays, vw is parallel to w.

From the identities proven in Proposition 1.3.4 one easily has
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Fig. 1.7 Orthogonal projections

Proposition 1.3.9 For any u, v, w ∈ V3
O , the following identities hold:

(a) (u + v)w = uw + vw,

(b) v · w = vw · w = wv · v .

The point (a) is illustrated by the second part of the Fig. 1.7.

Remark 1.3.10 The scalar product we have defined is a map

σ : V
3
O × V

3
O −→ R, σ(v, w) = v · w.

Also, the scalar product of vectors on a plane is a map σ : V2
O × V2

O −→ R.

Definition 1.3.11 Let v, w ∈ V3
O . The vector product between v and w, denoted by

v ∧ w, is defined as the vector in V3
O whose modulus is

‖v ∧ w‖ = ‖v‖ ‖w‖ sin α,

where α = v̂w, with 0 < α < π is the angle defined by v e w; the direction of v ∧ w

is orthogonal to both v and w; and its orientation is such that (v, w, v ∧ w) is a

right-handed triple as in Definition 1.2.4.

Remark 1.3.12 The following properties follow directly from the definition.

(i) if v = 0 then v ∧ w = 0,

(ii) if v and w are both non zero then

v ∧ w = 0 ⇐⇒ sin α = 0 ⇐⇒ v ‖ w,

(one trivially has v ∧ v = 0),

(iii) if (O; i, j, k) is an orthogonal cartesian coordinate system, then

i ∧ j = k = −j ∧ i, j ∧ k = i = −k ∧ j, k ∧ i = j = −i ∧ k.

We omit to prove the following proposition.
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Proposition 1.3.13 For any u, v, w ∈ V3
O and λ ∈ R, the following identities holds:

(i) v ∧ w = −w ∧ v,

(ii) (λv) ∧ w = v ∧ (λw) = λ(v ∧ w)

(iii) u ∧ (v + w) = u ∧ v + u ∧ w,

Exercise 1.3.14 With respect to a given cartesian orthogonal coordinate system,

consider in V3
O the vectors v = (1, 0,−1) e w = (−2, 0, 2). To verify that they are

parallel, we recall the abov e result (ii) in the Remark 1.3.12 and compute, using the

Proposition 1.3.15, that v ∧ w = 0.

Proposition 1.3.15 Let v = (vx , vy, vz) and w = (wx , wy, wz) be elements in V3
O

with respect to a given cartesian orthogonal coordinate system. It is

v ∧ w = (vywz − vzwy, vzwx − vxwz, vxwy − vywx ).

Proof Given the Remark 1.3.12 and the Proposition 1.3.13, this comes as an easy

computation. �

Remark 1.3.16 The vector product defines a map

τ : V
3
O × V

3
O −→ V

3
O , τ (v, w) = v ∧ w.

Clearly, such a map has no meaning on a plane.

Example 1.3.17 By slightly extending the Definition 1.3.11, one can use the vec-

tor product for additional notions coming from physics. Following Sect. 1.1, we

consider vectors u, w as elements in W3, that is vectors applied at arbitrary

points in the physical three dimensional space S, with components u = (ux , u y, uz)

and w = (wx , wy, wz) with respect to a cartesian orthogonal coordinate system

� = (O; i, j, k). In parallel with Proposition 1.3.15, we define τ : W3 × W3 → W3

as

u ∧ w = (u ywz − uzwy, uzwx − uxwz, uxwy − u ywx ).

If u ∈ V3
x is a vector applied at x, its momentum with respect to a point x′ ∈ S is the

vector in W3 defined by

M = (x − x′) ∧ u.

In particular, if u = F is a force acting on a point mass in x, its momentum is

M = (x − x′) ∧ F.

If x(t) ∈ V3
O describes the motion of a point mass (with mass m > 0), whose

velocity is v(t), then its corresponding angular momentum with respect to a point x′

is defined by

Lx′(t) = (x(t) − x′) ∧ mv(t).
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Exercise 1.3.18 The angular momentum is usually defined with respect to the origin

of the coordinate system �, giving LO(t) = x(t) ∧ mv(t). If we consider a circular

uniform motion

x(t) =
(

x(t) = r cos(ωt), y(t) = r sin(ωt), z(t) = 0
)
,

with r > 0 the radius of the trajectory and ω ∈ R the angular velocity, then

v(t) =
(

vx (t) = −rω sin(ωt), y(t) = rω cos(ωt), vz(t) = 0
)

so that

LO(t) = (0, 0, mrω).

Thus, a circular motion on the xy plane has angular momentum along the z axis.

Definition 1.3.19 Given an ordered triple u, v, w ∈ V3
O , their mixed product is the

real number

u · (v ∧ w).

Proposition 1.3.20 Given a cartesian orthogonal coordinate system in S with

u = (ux , u y, uz), v = (vx , vy, vz) and w = (wx , wy, wz) in V3
O , one has

u · (v ∧ w) = ux (vywz − vzwy) + u y(vzwx − vxwz) + uz(vxwy − vywx ).

Proof It follows immediately by Propositions 1.3.5 and 1.3.15. �

In the space S, the vector product between u ∧ w is the area of the parallelogram

defined by u and v, while the mixed product u · (v ∧ w) give the volume of the

parallelepiped defined by u, v, w.

Proposition 1.3.21 Given u, v, w ∈ V3
O .

1. Denote α = v̂w the angle defined by v and w. Then, the area A of the parallelo-

gram whose edges are u and v, is given by

A = ‖v‖ ‖w‖ sin α = ‖v ∧ w‖.

2. Denote θ = ̂u(v ∧ w) the angle defined by u and v ∧ w. Then the volume V of

the parallelepiped whose edges are u, v, w, is given by

V = A‖u‖ cos θ = ‖u · v ∧ w‖.

Proof The claim is evident, as shown in the Figs. 1.8 and 1.9. �
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Fig. 1.8 The area of the parallelogramm with edges v and w

Fig. 1.9 The volume of the parallelogramm with edges v, w, u

1.4 Divergence, Rotor, Gradient and Laplacian

We close this chapter by describing how the notion of vector applied at a point also

allows one to introduce a definition of a vector field.

The intuition coming from physics requires to consider, for each point x in the

physical space S, a vector applied at x. We describe it as a map

S ∋ x �→ A(x) ∈ V
3
x .

With respect to a given cartesian orthogonal reference system for S we can write

this in components as x = (x1, x2, x3) and A(x) = (A1(x), A2(x), A3(x)) and one

can act on a vector field with partial derivatives (first order differential operators),

∂a = (∂/∂xa) with a = 1, 2, 3, defined as usual by

∂a(xb) = (δab), with δab =

{
1 if a = b

0 if a �= b
.

Then, (omitting the explicit dependence of A on x) one defines

div A =

3∑

k=1

(∂k Ak) ∈ R

rot A = (∂2 A3 − ∂3 A2)i + (∂3 A1 − ∂1 A3)j + (∂1 A2 − ∂2 A1)k ∈ V
3
x .
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By introducing the triple ∇ = (∂1, ∂2, ∂3), such actions can be formally written as a

scalar product and a vector product, that is

div A = ∇ · A

rot A = ∇ ∧ A .

Furthermore, if f : S → R is a real valued function defined on S, that is a (real)

scalar field on S, one has the grad operator

grad f = ∇ f = (∂1 f, ∂2 f, ∂3 f )

as well as the Laplacian operator

∇2 f = div(∇ f ) =
( 3∑

k=1

∂k∂k

)
f = ∂2

1 f + ∂2
2 f + ∂2

3 f .

Exercise 1.4.1 The properties of the mixed products yields a straightforward proof

of the identity

div(rot A) = ∇ · (∇ ∧ A) = 0 ,

for any vector field A. On the other hand, a direct computation shows also the identity

rot (grad f ) = ∇ ∧ (grad f ) = 0 ,

for any scalar field f .



Chapter 2

Vector Spaces

The notion of vector space can be defined over any field K. We shall mainly consider

the case K = R and briefly mention the case K = C. Starting from our exposition,

it is straightforward to generalise to any field.

2.1 Definition and Basic Properties

The model of the construction is the collection of all vectors in the space applied at

a point with the operations of sum and multiplication by a scalar, as described in the

Chap. 1.

Definition 2.1.1 A non empty set V is called a vector space over R (or a real vector

space or an R-vector space) if there are defined two operations,

(a) an internal one: a sum of vectors s : V × V → V ,

V × V ∋ (v, v′) �→ s(v, v′) = v + v′,

(b) an exterior one: the product by a scalar p : R × V → V

R × V ∋ (k, v) �→ p(k, v) = kv,

and these operations are required to satisfy the following conditions:

(1) There exists an element 0V ∈ V , which is neutral for the sum, such that

(V,+, 0V ) is an abelian group.

For any k, k ′ ∈ R and v, v′ ∈ V one has

(2) (k + k ′)v = kv + k ′v

(3) k(v + v′) = kv + kv′
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(4) k(k ′v) = (kk ′)v

(5) 1v = v, with 1 = 1R.

The elements of a vector space are called vectors; the element 0V is the zero or null

vector. A vector space is also called a linear space.

Remark 2.1.2 Given the properties of a group (see A.2.9), the null vector 0V and the

opposite −v to any vector v are (in any given vector space) unique. The sums can

be indeed simplified, that is v + w = v + u =⇒ w = u. Such a statement is easily

proven by adding to both terms in v + w = v + u the element −v and using the

associativity of the sum.

As already seen in Chap. 1, the collections V
2
O (vectors in a plane) and V3

O (vectors

in the space) applied at the point O are real vector spaces. The bijection V3
O ←→ R

3

introduced in the Definition 1.2.5, together with the Remark 1.2.9, suggest the natural

definitions of sum and product by a scalar for the set R
3 of ordered triples of real

numbers.

Proposition 2.1.3 The collection R
3 of triples of real numbers together with the

operations defined by

I. (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3), for any (x1, x2, x3),

(y1, y2, y3) ∈ R
3,

II. a(x1, x2, x3) = (ax1, ax2, ax3), for any a ∈ R, (x1, x2, x3) ∈ R
3,

is a real vector space.

Proof We verify that the conditions given in the Definition 2.1.1 are satisfied. We

first notice that (a) and (b) are fullfilled, since R
3 is closed with respect to the

operations in I. and II. of sum and product by a scalar. The neutral element for the

sum is 0R3 = (0, 0, 0), since one clearly has

(x1, x2, x3) + (0, 0, 0) = (x1, x2, x3).

The datum (R3,+, 0R3) is an abelian group, since one has

• The sum (R3,+) is associative, from the associativity of the sum in R:

(x1, x2, x3) + ((y1, y2, y3) + (z1, z2, z3))

= (x1, x2, x3) + (y1 + z1, y2 + z2, y3 + z3)

= (x1 + (y1 + z1), x2 + (y2 + z2), x3 + (y3 + z3))

= ((x1 + y1) + z1, (x2 + y2) + z2, (x3 + y3) + z3)

= (x1 + y1, x2 + y2, x3 + y3) + (z1, z2, z3)

= ((x1, x2, x3) + (y1, y2, y3)) + (z1, z2, z3).
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• From the identity

(x1, x2, x3) + (−x1,−x2,−x3) = (x1 − x1, x2 − x2, x3 − x3) = (0, 0, 0)

one has (−x1,−x2,−x3) as the opposite in R
3 of the element (x1, x2, x3).

• The group (R3,+) is commutative, since the sum in R is commutative:

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)

= (y1 + x1, y2 + x2, y3 + x3)

= (y1, y2, y3) + (x1, x2, x3).

We leave to the reader the task to show that the conditions (1), (2), (3), (4) in Defi-

nition 2.1.1 are satisfied: for any λ,λ′ ∈ R and any (x1, x2, x3), (y1, y2, y3) ∈ R
3 it

holds that

1. (λ + λ′)(x1, x2, x3) = λ(x1, x2, x3) + λ′(x1, x2, x3)

2. λ((x1, x2, x3) + (y1, y2, y3)) = λ(x1, x2, x3) + λ(y1, y2, y3)

3. λ(λ′(x1, x2, x3)) = (λλ′)(x1, x2, x3)

4. 1(x1, x2, x3) = (x1, x2, x3). �

The previous proposition can be generalised in a natural way. If n ∈ N is a positive

natural number, one defines the n-th cartesian product of R, that is the collection of

ordered n-tuples of real numbers

R
n = {X = (x1, . . . , xn) : xk ∈ R},

and the following operations, with a ∈ R, (x1, . . . , xn), (y1, . . . , yn) ∈ R
n:

In. (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

IIn. a(x1, . . . , xn) = (ax1, . . . , axn).

The previous proposition can be directly generalised to the following.

Proposition 2.1.4 With respect to the above operations, the set R
n is a vector space

over R.

The elements in R
n are called n-tuples of real numbers. With the notation

X = (x1, . . . , xn) ∈ R
n , the scalar xk , with k = 1, 2, . . . , n, is the k-th component

of the vector X .

Example 2.1.5 As in the Definition A.3.3, consider the collection of all polynomials

in the indeterminate x and coefficients in R, that is

R[x] =
{

f (x) = a0 + a1x + a2x2 + · · · + an xn : ak ∈ R, n ≥ 0
}

,

with the operations of sum and product by a scalar λ ∈ R defined, for any pair of

elements in R[x], f (x) = a0 + a1x + a2x2 + · · · + an xn and g(x) = b0 + b1x +

b2x2 + · · · + bm xm , component-wise by
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Ip. f (x) + g(x) = a0 + b0 + (a1 + b1)x + (a2 + b2)x2 + · · ·

IIp. λ f (x) = λa0 + λa1x + λa2x2 + · · · + λan xn .

Endowed with the previous operations, the set R[x] is a real vector space; R[x] is

indeed closed with respect to the operations above. The null polynomial, denoted by

0R[x] (that is the polynomial with all coefficients equal zero), is the neutral element

for the sum. The opposite to the polynomial f (x) = a0 + a1x + a2x2 + · · · + an xn

is the polynomial (−a0 − a1x − a2x2 − · · · − an xn) ∈ R[x] that one denotes by

− f (x). We leave to the reader to prove that (R[x],+, 0R[x]) is an abelian group and

that all the additional conditions in Definition 2.1.1 are fulfilled.

Exercise 2.1.6 We know from the Proposition A.3.5 that R[x]r , the subset in R[x]

of polynomials with degree not larger than a fixed r ∈ N, is closed under addition

of polynomials. Since the degree of the polynomial λ f (x) coincides with the degree

of f (x) for any λ 
= 0, we see that also the product by a scalar, as defined in IIp.

above, is defined consistently on R[x]r . It is easy to verify that also R[x]r is a real

vector space.

Remark 2.1.7 The proof that R
n , R[x] and R[x]r are vector space over R relies on

the properties of R as a field (in fact a ring, since the multiplicative inverse in R does

not play any role).

Exercise 2.1.8 The set C
n , that is the collection of ordered n-tuples of complex

numbers, can be given the structure of a vector space over C. Indeed, both the

operations In. and IIn. considered in the Proposition 2.1.3 when intended for complex

numbers make perfectly sense:

Ic. (z1, . . . , zn) + (w1, . . . , wn) = (z1 + w1, . . . , zn + wn)

IIc. c(z1, . . . , zn) = (cz1, . . . , czn)

with c ∈ C, and (z1, . . . , zn), (w1, . . . , wn) ∈ C
n .

The reader is left to show that C
n is a vector space over C.

The space C
n can also be given a structure of vector space over R, by noticing

that the product of a complex number by a real number is a complex number. This

means that C
n is closed with respect to the operations of (component-wise) product

by a real scalar. The condition IIc. above makes sense when c ∈ R.

We next analyse some elementary properties of general vector spaces.

Proposition 2.1.9 Let V be a vector space over R. For any k ∈ R and any v ∈ V it

holds that:

(i) 0Rv = 0V ,

(ii) k0V = 0V ,

(iii) if kv = 0V then it is either k = 0R or v = 0V ,

(iv) (−k)v = −(kv) = k(−v).

Proof (i) From 0Rv = (0R + 0R)v = 0Rv + 0Rv, since the sums can be simpli-

fied, one has that 0Rv = 0V .

(ii) Analogously: k0V = k(0V + 0V ) = k0V + k0V which yields k0V = 0V .
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(iii) Let k 
= 0, so k−1 ∈ R exists. Then, v = 1v = k−1kv = k−10V = 0V , with the

last equality coming from (ii).

(iv) Since the product is distributive over the sum, from (i) it follows that

kv + (−k)v = (k + (−k))v = 0Rv = 0V that is the first equality. For the sec-

ond, one writes analogously kv + k(−v) = k(v − v) = k0V = 0V �

Relations (i), (ii), (iii) above are more succinctly expressed by the equivalence:

kv = 0V ⇐⇒ k = 0R or v = 0V .

2.2 Vector Subspaces

Among the subsets of a real vector space, of particular relevance are those which

inherit from V a vector space structure.

Definition 2.2.1 Let V be a vector space over R with respect to the sum s and the

product p as given in the Definition 2.1.1. Let W ⊆ V be a subset of V . One says

that W is a vector subspace of V if the restrictions of s and p to W equip W with

the structure of a vector space over R.

In order to establish whether a subset W ⊆ V of a vector space is a vector subspace,

the following can be seen as criteria.

Proposition 2.2.2 Let W be a non empty subset of the real vector space V . The

following conditions are equivalent.

(i) W is a vector subspace of V ,

(ii) W is closed with respect to the sum and the product by a scalar, that is

(a) w + w′ ∈ W , for any w,w′ ∈ W ,

(b) kw ∈ W , for any k ∈ R and w ∈ W ,

(iii) kw + k ′w′ ∈ W , for any k, k ′ ∈ R and any w,w′ ∈ W .

Proof The implications (i) =⇒ ii) and (ii) =⇒ (iii) are obvious from the definition.

(iii) =⇒ (ii): By taking k = k ′ = 1 one obtains (a), while to show point (b) one

takes k ′ = 0R.

(ii) =⇒ (i): Notice that, by hypothesis, W is closed with respect to the sum and

product by a scalar. Associativity and commutativity hold in W since they hold in V .

One only needs to prove that W has a neutral element 0W and that, for such a

neutral element, any vector in W has an opposite in W . If 0V ∈ W , then 0V is the

zero element in W : for any w ∈ W one has 0V + w = w + 0V = w since w ∈ V ;

from ii, (b) one has 0Rw ∈ W for any w ∈ W ; from the Proposition 2.1.9 one has

0Rw = 0V ; collecting these relations, one concludes that 0V ∈ W . If w ∈ W , again

from the Proposition 2.1.9 one gets that −w = (−1)w ∈ W . �
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Exercise 2.2.3 Both W = {0V } ⊂ V and W = V ⊆ V are trivial vector subspaces

of V .

Exercise 2.2.4 We have already seen that R[x]r ⊆ R[x] are vector spaces with

respect to the same operations, so we may conclude that R[x]r is a vector subspace

of R[x].

Exercise 2.2.5 Let v ∈ V a non zero vector in a vector space, and let

L(v) = {av : a ∈ R} ⊂ V

be the collection of all multiples of v by a real scalar. Given the elements w = av

and w′ = a′v in L(v), from the equality

αw + α′w′ = (αa + α′a′)v ∈ L(v)

for any α,α′ ∈ R, we see that, from the Proposition 2.2.2, L(v) is a vector subspace

of V , and we call it the (vector) line generated by v.

Exercise 2.2.6 Consider the following subsets W ⊂ R
2:

1. W1 = {(x, y) ∈ R
2 : x − 3y = 0},

2. W2 = {(x, y) ∈ R
2 : x + y = 1},

3. W3 = {(x, y) ∈ R
2 : x ∈ N},

4. W4 = {(x, y) ∈ R
2 : x2 − y = 0}.

From the previous exercise, one sees that W1 is a vector subspace since

W1 = L((3, 1)). On the other hand, W2, W3, W4 are not vector subspaces of R
2. The

zero vector (0, 0) /∈ W2; while W3 and W4 are not closed with respect to the product

by a scalar, since, for example, (1, 0) ∈ W3 but 1
2
(1, 0) = ( 1

2
, 0) /∈ W3. Analogously,

(1, 1) ∈ W4 but 2(1, 1) = (2, 2) /∈ W4.

The next step consists in showing how, given two or more vector subspaces of a

real vector space V , one can define new vector subspaces of V via suitable operations.

Proposition 2.2.7 The intersection W1 ∩ W2 of any two vector subspaces W1 and

W2 of a real vector space V is a vector subspace of V .

Proof Consider a, b ∈ R and v,w ∈ W1 ∩ W2. From the Propostion 2.2.2 it follows

that av + bw ∈ W1 since W1 is a vector subspace, and also that av + bw ∈ W2 for

the same reason. As a consequence, one has av + bw ∈ W1 ∩ W2. �

Remark 2.2.8 In general, the union of two vector subspaces of V is not a vector

subspace of V . As an example, the Fig. 2.1 shows that, if L(v) and L(w) are generated

by different v,w ∈ R
2, then L(v) ∪ L(w) is not closed under the sum, since it does

not contain the sum v + w, for instance.
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Fig. 2.1 The vector line L(v + w) with respect to the vector lines L(v) and L(w)

Proposition 2.2.9 Let W1 and W2 be vector subspaces of the real vector space V

and let W1 + W2 denote

W1 + W2 = {v ∈ V | v = w1 + w2; w1 ∈ W1, w2 ∈ W2} ⊂ V .

Then W1 + W2 is the smallest vector subspace of V which contains the union

W1 ∪ W2.

Proof Let a, a′ ∈ R and v, v′ ∈ W1 + W2; this means that there exist w1, w
′
1 ∈ W1

and w2, w
′
2 ∈ W2, so that v = w1 + w2 and v′ = w′

1 + w′
2. Since both W1 and W2

are vector subspaces of V , from the identity

av + a′v′ = aw1 + aw2 + a′w′
1 + a′w′

2 = (aw1 + a′w′
1) + (aw2 + a′w′

2),

one has aw1 + a′w′
1 ∈ W1 and aw2 + a′w′

2 ∈ W2. It follows that W1 + W2 is a vector

subspace of V .

It holds that W1 + W2 ⊇ W1 ∪ W2: if w1 ∈ W1, it is indeed w1 = w1 + 0V in

W1 + W2; one similarly shows that W2 ⊂ W1 + W2.

Finally, let Z be a vector subspace of V containing W1 ∪ W2; then for any

w1 ∈ W1 and w2 ∈ W2 it must be w1 + w2 ∈ Z . This implies Z ⊇ W1 + W2, and

then W1 + W2 is the smallest of such vector subspaces Z . �

Definition 2.2.10 If W1 and W2 are vector subspaces of the real vector space V the

vector subspace W1 + W2 of V is called the sum of W1 e W2.

The previous proposition and definition are easily generalised, in particular:

Definition 2.2.11 If W1, . . . , Wn are vector subspaces of the real subspace V , the

vector subspace

W1 + · · · + Wn = {v ∈ V | v = w1 + · · · + wn; wi ∈ Wi , i = 1, . . . , n}

of V is the sum of W1, . . . , Wn .
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Definition 2.2.12 Let W1 and W2 be vector subspaces of the real vector space V . The

sum W1 + W2 is called direct if W1 ∩ W2 = {0V }. A direct sum is denoted W1 ⊕ W2.

Proposition 2.2.13 Let W1, W2 be vector subspaces of the real vector space V .

Their sum W = W1 + W2 is direct if and only if any element v ∈ W1 + W2 has a

unique decomposition as v = w1 + w2 with wi ∈ Wi , i = 1, 2.

Proof We first suppose that the sum W1 + W2 is direct, that is W1 ∩ W2 = {0V }. If

there exists an elementv ∈ W1 + W2 withv = w1 + w2 = w′
1 + w′

2, andwi , w
′
i ∈ Wi ,

then w1 − w′
1 = w′

2 − w2 and such an element would belong to both W1 and W2.

This would then be zero, since W1 ∩ W2 = {0V }, and then w1 = w′
1 and w2 = w′

2.

Suppose now that any element v ∈ W1 + W2 has a unique decomposition

v = w1 + w2 with wi ∈ Wi , i = 1, 2. Let v ∈ W1 ∩ W2; then v ∈ W1 and v ∈ W2

which gives 0V = v − v ∈ W1 + W2, so the zero vector has a unique decomposition.

But clearly also 0V = 0V + 0V and being the decomposition for 0V unique, this gives

v = 0V . �

These proposition gives a natural way to generalise the notion of direct sum to an

arbitrary number of vector subspaces of a given vector space.

Definition 2.2.14 Let W1, . . . , Wn be vector subspaces of the real vector space V .

The sum W1 + · · · + Wn is called direct if any of its element has a unique decom-

position as v = w1 + · · · + wn with wi ∈ Wi , i = 1, . . . , n. The direct sum vector

subspace is denoted W1 ⊕ · · · ⊕ Wn .

2.3 Linear Combinations

We have seen in Chap. 1 that, given a cartesian coordinate system � = (O; i, j, k)

for the space S, any vector v ∈ V3
O can be written as v = ai + bj + ck. One says

that v is a linear combination of i, j, k. From the Definition 1.2.5 we also know that,

given �, the components (a, b, c) are uniquely determined by v. For this one says

that i, j, k are linearly independent. In this section we introduce these notions for an

arbitrary vector space.

Definition 2.3.1 Let v1, . . . , vn be arbitrary elements of a real vector space V . A vec-

tor v ∈ V is a linear combination of v1, . . . , vn if there exist n scalars λ1, . . . ,λn ∈ R,

such that

v = λ1v1 + · · · + λnvn.

The collection of all linear combinations of the vectors v1, . . . , vn is denoted by

L(v1, . . . , vn). If I ⊆ V is an arbitrary subset of V , by L(I ) one denotes the col-

lection of all possible linear combinations of vectors in I , that is

L(I ) = {λ1v1 + · · · + λnvn | λi ∈ R, vi ∈ I, n ≥ 0}.



2.3 Linear Combinations 25

The set L(I ) is also called the linear span of I .

Proposition 2.3.2 The space L(v1, . . . , vn) is a vector subspace of V , called the

space generated by v1, . . . , vn or the linear span of the vectors v1, . . . , vn .

Proof After Proposition 2.2.2, it is enough to show that L(v1, . . . , vn) is closed

for the sum and the product by a scalar. Let v,w ∈ L(v1, . . . , vn); it is then

v = λ1v1 + · · · + λnvn and w = µ1v1 + · · · + µnvn , for scalars λ1, . . . ,λn and

µ1, . . . ,µn . Recalling point (2) in the Definition 2.1.1, one has

v + w = (λ1 + µ1)v1 + · · · + (λn + µn)vn ∈ L(v1, . . . , vn).

Next, let α ∈ R. Again from the Definition 2.1.1 (point 4)), one has αv = (αλ1)v1 +

· · · + (αλn)vn , which gives αv ∈ L(v1, . . . , vn). �

Exercise 2.3.3 The following are two examples for the notion just introduced.

(1) Clearly one has V2
O = L(i, j) and V3

O = L(i, j, k).

(2) Let v = (1, 0,−1) and w = (2, 0, 0) be two vectors in R
3; it is easy to see that

L(v,w) is a proper subset of R
3. For example, the vector

u = (0, 1, 0) /∈ L(v,w). If u were in L(v,w), there should be α,β ∈ R such

that

(0, 1, 0) = α(1, 0,−1) + β(2, 0, 0) = (α + 2β, 0,−α).

No choice of α,β ∈ R can satisfy this vector identity, since the second com-

ponent equality would give 1 = 0, independently of α,β.

It is interesting to explore which subsets I ⊆ V yield L(I ) = V . Clearly, one has

V = L(V ). The example (1) above shows that there are proper subsets I ⊂ V

whose linear span coincides with V itself. We already know that V2
O = L(i, j) and

that V3
O = L(i, j, k): both V3

O and V2
O are generated by a finite number of (their)

vectors. This is not always the case, as the following exercise shows.

Exercise 2.3.4 The real vector space R[x] is not generated by a finite num-

ber of vectors. Indeed, let f1(x), . . . , fn(x) ∈ R[x] be arbitrary polynomials. Any

p(x) ∈ L( f1, . . . , fn) is written as

p(x) = λ1 f1(x) + · · · + λn fn(x)

with suitable λ1, . . . ,λn ∈ R. If one writes di = deg( fi ) and d = max{d1, . . . , dn},

from Remark A.3.5 one has that

deg(p(x)) = deg(λ1 f1(x) + · · · + λn fn(x)) ≤ max{d1, . . . , dn} = d.

This means that any polynomial of degree d + 1 or higher is not contained in

L( f1, . . . , fn). This is the case for any finite n, giving a finite d; we conclude that, if

n is finite, any L(I ) with I = ( f1(x), . . . , fn(x)) is a proper subset of R[x] which

can then not be generated by a finite number of polynomials.
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On the other hand, R[x] is indeed the linear span of the infinite set

{1, x, x2, . . . , x i , . . . }.

Definition 2.3.5 A vector space V over R is said to be finitely generated if

there exists a finite number of elements v1, . . . , vn in V which are such that

V = L(v1, . . . , vn). In such a case, the set {v1, . . . , vn} is called a system of gen-

erators for V .

Proposition 2.3.6 Let I ⊆ V and v ∈ V . It holds that

L({v} ∪ I ) = L(I ) ⇐⇒ v ∈ L(I ).

Proof “ ⇒” Let us assume that L({v} ∪ I ) = L(I ). Since v ∈ L({v} ∪ I ), then

v ∈ L(I ).

“ ⇐” We shall prove the claim under the hypothesis that we have a finite

system {v1, . . . , vn}. The inclusion L(I ) ⊆ L({v} ∪ I ) is obvious. To prove the

inclusion L({v} ∪ I ) ⊆ L(I ), consider an arbitrary element w ∈ L({v} ∪ I ), so that

w = αv + µ1v1 + · · · + µnvn . By the hypothesis, v ∈ L(I ) so it is

v = λ1v1 + · · · + λnvn . We can then write

w = α(λ1v1 + · · · + λnvn) + µ1v1 + · · · + µnvn.

From the properties of the sum of vectors in V , one concludes that w ∈ L(v1, . . . , vn)

= L(I ). �

Remark 2.3.7 From the previous proposition one has also the identity

L(v1, . . . , vn, 0V ) = L(v1, . . . , vn)

for any v1, . . . , vn ∈ V .

If I is a system of generators for V , the next question to address is whether I

contains a minimal set of generators for V , that is whether there exists a set J ⊂ I

(with J 
= I ) such that L(J ) = L(I ) = V . The answer to this question leads to the

notion of linear independence for a set of vectors.

Definition 2.3.8 Given a collection I = {v1, . . . , vn} of vectors in a real vector space

V , the elements of I are called linearly independent on R, and the system I is said

to be free, if the following implication holds,

λ1v1 + · · · + λnvn = 0V =⇒ λ1 = · · · = λn = 0R.

That is, if the only linear combination of elements of I giving the zero vector is the

one whose coefficients are all zero.

Analogously, an infinite system I ⊆ V is said to be free if any of its finite subsets

is free.
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The vectors v1, . . . , vn ∈ V are said to be linearly dependent if they are not

linearly independent, that is if there are scalars (λ1, . . . ,λn) 
= (0, . . . , 0) such that

λ1v1 + · · · + λnvn = 0V .

Exercise 2.3.9 It is clear that i, j, k are linearly independent in V3
O , while the vec-

tors v1 = i + j, v2 = j − k and v3 = 2i − j + 3k are linearly dependent, since one

computes that 2v1 − 3v2 − v3 = 0.

Proposition 2.3.10 Let V be a real vector space and I = {v1, . . . , vn} be a collec-

tion of vectors in V . The following properties hold true:

(i) if 0V ∈ I , then I is not free,

(ii) I is not free if and only if one of the elements vi is a linear combination of the

other elements v1, . . . , vi−1, vi+1, . . . , vn ,

(iii) if I is not free, then any J ⊇ I is not free,

(iv) if I is free, then any J such that J ⊆ I is free; that is any subsystem of a free

system is free.

Proof i) Without loss of generality we suppose that v1 = 0V . Then, one has

1Rv1 + 0Rv2 + · · · + 0Rvn = 0V ,

which amounts to say that the zero vector can be written as a linear combination

of elements in I with a non zero coefficients.

(ii) Suppose I is not free. Then, there exists scalars (λ1, . . . ,λn) 
= (0, . . . , 0) giv-

ing the combination λ1v1 + · · · + λnvn = 0V . Without loss of generality take

λ1 
= 0; so λ1 is invertible and we can write

v1 = λ−1
1 (−λ2v2 − · · · − λnvn) ∈ L(v2, . . . , vn).

In order to prove the converse, we start by assuming that a vector vi is a linear

combination

vi = λ1v1 + · · · + λi−1vi−1 + λi+1vi+1 + · · · + λnvn.

This identity can be written in the form

λ1v1 + · · · + λi−1vi−1 − vi + λi+1vi+1 + · · · + λnvn = 0V .

The zero vector is then written as a linear combination with coefficients not all

identically zero, since the coefficient of vi is −1. This amounts to say that the

system I is not free.

We leave the reader to show the obvious points (iii) and (iv). �
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2.4 Bases of a Vector Space

Given a real vector space V , in this section we determine its smallest possible systems

of generators, together with their cardinalities.

Proposition 2.4.1 Let V be a real vector space, with v1, . . . , vn ∈ V . The following

facts are equivalent:

(i) the elements v1, . . . , vn are linearly independent,

(ii) v1 
= 0V and, for any i ≥ 2, the vector vi is not a linear combination of

v1, . . . , vi−1.

Proof The implication (i) =⇒ (ii) directly follows from the Proposition 2.3.10.

To show the implication (ii) =⇒ (i) we start by considering a combination

λ1v1 + · · · + λnvn = 0V . Under the hypothesis, vn is not a linear combination of

v1, . . . , vn−1, so it must be λn = 0: were it not, one could write vn =

λ−1
n (−λ1v1 − · · · − λn−1vn−1). We are then left with λ1v1 + · · · + λn−1vn−1 = 0V ,

and an analogous reasoning leads to λn−1 = 0. After n − 1 similar steps, one has

λ1v1 = 0; since v1 
= 0 by hypothesis, it must be (see 2.1.5) that λ1 = 0. �

Theorem 2.4.2 Any finite system of generators for a vector space V contains a free

system of generators for V .

Proof Let I = {v1, . . . , vs} be a system of generators for a real vector space V .

Recalling the Remark 2.3.7, we can take vi 
= 0 for any i = 1, . . . , s. We define

iteratively a system of subsets of I , as follows:

• take I1 = I = {v1, . . . , vs},

• if v2 ∈ L(v1), take I2 = I1 \ {v2}; if v2 
= L(v1), take I2 = I1,

• if v3 ∈ L(v1, v2), take I3 = I2 \ {v3}; if v3 
= L(v1, v2), take I3 = I2,

• Iterate the steps above.

The whole procedure consists in examining any element in the starting I1 = I , and

deleting it if it is a linear combination of the previous ones. After s steps, one ends

up with a chain I1 ⊇ · · · ⊇ Is ⊇ I .

Notice that, for any j = 2, . . . , s, it is L(I j ) = L(I j−1). It is indeed either I j =

I j−1 (which makes the claim obvious) or I j−1 = I j ∪ {v j }, withv j ∈ L(v1, . . . , v j−1)

⊆ L(I j−1); from Proposition 2.3.6, it follows that L(I j ) = L(I j−1).

One has then L(I ) = L(I1) = · · · = L(Is), and Is is a system of generators of

V . Since no element in Is is a linear combination of the previous ones, the Proposi-

tion 2.4.1 shows that Is is free. �

Definition 2.4.3 Let V be a real vector space. An ordered system of vectors I =

(v1, . . . , vn) in V is called a basis of V if I is a free system of generators for V , that

is V = L(v1, . . . , vn) and v1, . . . , vn are linearly independent.

Corollary 2.4.4 Any finite system of generators for a vector space contains (at least)

a basis. This means also that any finitely generated vector space has a basis.
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Proof It follows directly from the Theorem 2.4.2. �

Exercise 2.4.5 Consider the vector space R
3 and the system of vectors I = {v1, . . . , v5}

with

v1 = (1, 1,−1), v2 = (−2,−2, 2), v3 = (2, 0, 1), v4 = (1,−1, 2), v5 = (0, 1, 1).

Following Theorem 2.4.2, we determine a basis for L(v1, v2, v3, v4, v5).

• At the first step I1 = I .

• Since v2 = −2v1, so that v2 ∈ L(v1), delete v2 and take I2 = I1 \ {v2}.

• One has v3 /∈ L(v1), so keep v3 and take I3 = I2.

• One has v4 ∈ L(v1, v3) if and only if there exist α,β ∈ R such that v4 =

αv1 + βv3, that is (1,−1, 2) = (α + 2β,α,−α + β). By equating components,

one has α = −1, β = 1. This shows that v4 = −v1 + v3 ∈ L(v1, v3); therefore

delete v4 and take I4 = I3 \ {v4}.

• Similarly one shows that v5 /∈ L(v1, v3). A basis for L(I ) is then I5 = I4 =

(v1, v3, v5).

The next theorem characterises free systems.

Theorem 2.4.6 A system I = {v1, . . . , vn} of vectors in V is free if and only if any

element in L(v1, . . . , vn) can be written in a unique way as a linear combination of

the elements v1, . . . , vn .

Proof We assume that I is free and that L(v1, . . . , vn) contains a vector, say v, which

has two linear decompositions with respect to the vectors vi :

v = λ1v1 + · · · + λnvn = µ1v1 + · · · + µnvn.

This identity would give (λ1 − µ1)v1 + · · · + (λn − µn)vn = 0V ; since the elements

vi are linearly independent it would read

λ1 − µ1 = 0, · · · , λn − µn = 0,

that is λi = µi for any i = 1, . . . , n. This says that the two linear expressions above

coincide and v is written in a unique way.

We assume next that any element in L(v1, . . . , vn) as a unique linear decomposi-

tion with respect to the vectors vi . This means that the zero vector 0V ∈ L(v1, . . . , vn)

has the unique decomposition 0V = 0Rv1 + · · · + 0Rvn . Let us consider the expres-

sion λ1v1 + · · · + λnvn = 0V ; since the linear decomposition of 0V is unique, it

is λi = 0 for any i = 1, . . . , n. This says that the vectors v1, . . . , vn are linearly

independent. �

Corollary 2.4.7 Let v1, . . . , vn be elements of a real vector space V . The system

I = (v1, . . . , vn) is a basis for V if and only if any element v ∈ V can be written in

a unique way as v = λ1v1 + · · · + λnvn .
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Definition 2.4.8 Let I = (v1, . . . , vn) be a basis for the real vector space V . Any

v ∈ V is then written as a linear combination v = λ1v1 + · · · + λnvn is a unique

way. The scalars λ1, . . . ,λn (which are uniquely determined by Corollary 2.4.7) are

called the components of v on the basis I . We denote this by

v = (λ1, . . . ,λn)I .

Remark 2.4.9 Notice that we have taken a free system in a vector space V and

a system of generators for V not to be ordered sets while on the other hand, the

Definition 2.4.3 refers to a basis as an ordered set. This choice is motivated by the

fact that it is more useful to consider the components of a vector on a given basis

as an ordered array of scalars. For example, if I = (v1, v2) is a basis for V , so it is

J = (v2, v1). But one considers I equivalent to J as systems of generators for V ,

not as bases.

Exercise 2.4.10 With E = (i, j) and E ′ = (j, i) two bases for V2
O , the vector v =

2i + 3j has the following components

v = (2, 3)E = (3, 2)E ′

when expressed with respect to them.

Remark 2.4.11 Consider the real vector space R
n and the vectors

e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),

...

en = (0, 0, . . . , 1).

Since any element v = (x1, . . . , xn) can be uniquely written as

(x1, . . . , xn) = x1e1 + · · · + xnen,

the system E = (e1, . . . , en) is a basis for R
n .

Definition 2.4.12 The system E = (e1, . . . , en) above is called the canonical basis

for R
n .

The canonical basis for R
2 is E = (e1, e2), with e1 = (1, 0) and e2 = (0, 1); the

canonical basis for R
3 is E = (e1, e2, e3), with e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1).

Remark 2.4.13 We have meaningfully introduced the notion of a canonical basis for

R
n . Our analysis so far should nonetheless make it clear that for an arbitrary vector
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space V over R there is no canonical choice of a basis. The exercises that follow

indeed show that some vector spaces have bases which appear more natural than

others, in a sense.

Exercise 2.4.14 We refer to the Exercise 2.1.8 and consider C as a vector space

over R. As such it is generated by the two elements 1 and i since any complex

number can be written as z = a + ib, with a, b ∈ R. Since the elements 1, i are

linearly independent over R they are a basis over R for C.

As already seen in the Exercise 2.1.8, Cn is a vector space both over C and over R.

As a C-vector space, C
n has canonical basis E = (e1, . . . , en), where the elements

ei are given as in the Remark 2.4.11. For example, the canonical basis for C
2 is

E = (e1, e2), with e1 = (1, 0), e2 = (0, 1).

As a real vector space, C
n has no canonical basis. It is natural to consider for it

the following basis B = (b1, c1 . . . , bn, cn), made of the 2n following elements,

b1 = (1, 0, . . . , 0), c1 = (i, 0, . . . , 0),

b2 = (0, 1, . . . , 0), c2 = (0, i, . . . , 0),

...

bn = (0, 0, . . . , 1), cn = (0, 0, . . . , i).

For C
2 such a basis is B = (b1, c1, b2, c2), with b1 = (1, 0), c1 = (i, 0), and

b2 = (0, 1), c2 = (0, i).

Exercise 2.4.15 The real vector space R[x]r has a natural basis given by all the

monomials (1, x, x2, . . . , xr ) with degree less than r , since any element

p(x) ∈ R[x]r can be written in a unique way as

p(x) = a0 + a1x + a2x2 + · · · ar xr ,

with ai ∈ R.

Remark 2.4.16 We have seen in Chap. 1 that, by introducing a cartesian coordinate

system in V3
O and with the notion of components for the vectors, the vector space

operations in V3
O can be written in terms of operations among components. This fact

is generalised in the following way.

Let I = (v1, . . . , vn) be a basis for V . Let v,w ∈ V , with v = (λ1, . . . ,λn)I and

w = (µ1, . . . ,µn)I the corresponding components with respect to I . We compute

the components, with respect to I , of the vectors v + w. We have

v + w = (λ1v1 + · · · + λnvn) + (µ1v1 + · · · + µnvn)

= (λ1 + µ1)v1 + · · · + (λn + µn)vn,

so we can write

v + w = (λ1 + µ1, . . . ,λn + µn)I .
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Next, with a ∈ R we also have

av = a(λ1v1 + · · · + λnvn) = (aλ1)v1 + · · · + (aλn)vn,

so we can write

av = (aλ1, . . . , aλn)I .

If z = av + bw with, z = (ξ1, . . . , ξn)I , it is immediate to see that

(ξ1, . . . , ξn)I = (aλ1 + bµ1, . . . , aλn + bµn)I

or equivalently

ξi = aλi + bµi , for any i = 1, . . . , n.

Proposition 2.4.17 Let V be a vector space over R, and I = (v1, . . . , vn) a basis

for V . Consider a system

w1 = (λ11, . . . ,λ1n)I , w2 = (λ21, . . . ,λ2n)I , . . . , ws = (λs1, . . . ,λsn)I

of vectors in V , and denote z = (ξ1, . . . , ξn)I . One has that

z = a1w1 + · · · + asws ⇐⇒ ξi = a1λ1i + · · · + asλsi for any i = 1, . . . , n.

The i-th component of the linear combination z of the vectors wk , is given by the

same linear combination of the i-th components of the vectors wk .

Proof It comes as a direct generalisation of the previous remark. �

Corollary 2.4.18 With the same notations as before, one has that

(a) the vectors w1, . . . , ws are linearly independent in V if and only if the corre-

sponding n-tuples of components (λ11, . . . ,λ1n), . . . , (λs1, . . . ,λsn) are linearly

independent in R
n ,

(b) the vectors w1, . . . , ws form a system of generators for V if and only if the cor-

responding n-tuples of components (λ11, . . . ,λ1n), . . . , (λs1, . . . ,λsn) generate

R
n .

A free system can be completed to a basis for a given vector space.

Theorem 2.4.19 Let V be a finitely generated real vector space. Any free finite

system is contained in a basis for V .

Proof Let I = {v1, . . . , vs} be a free system for the real vector space V . By the

Corollary 2.4.4, V has a basis, that we denote B = (e1, . . . , en). The set I ∪ B =

{v1, . . . , vs, e1, . . . , en} obviously generates V . By applying the procedure given

in the Theorem 2.4.2, the first s vectors are not deleted, since they are linearly

independent by hypothesis; the subsystem B′ one ends up with at the end of the

procedure will then be a basis for V that contains I . �
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2.5 The Dimension of a Vector Space

The following (somewhat intuitive) result is given without proof.

Theorem 2.5.1 Let V be a vector space over R with a basis made of n elements.

Then,

(i) any free system I in V contains at most n elements,

(ii) any system of generators for V has at least n elements,

(iii) any basis for V has n elements.

This theorem makes sure that the following definition is consistent.

Definition 2.5.2 If there exists a positive integer n > 0, such that the real vector

space V has a basis with n elements, we say that V has dimension n, and write

dim V = n. If V is not finitely generated we set dim V = ∞. If V = {0V } we set

dim V = 0.

Exercise 2.5.3 Following what we have extensively described above, it is clear that

dim V2
O = 2 and dim V3

O = 3. Also dim R
n = n, with dim R = 1, and we have that

dim R[x] = ∞ while dim R[x]r = r + 1. Referring to the Exercise 2.4.14, one has

that dimC C
n = n while dimR C

n = 2n.

We omit the proof of the following results.

Proposition 2.5.4 Let V be a n-dimensional vector space, and W a vector subspace

of V . Then, dim(W ) ≤ n, while dim(W ) = n if and only if W = V .

Corollary 2.5.5 Let V be a n-dimensional vector space, and v1, . . . , vn ∈ V . The

following facts are equivalent:

(i) the system (v1, . . . , vn) is a basis for V ,

(ii) the system {v1, . . . , vn} is free,

(iii) the system {v1, . . . , vn} generates V .

Theorem 2.5.6 (Grassmann) Let V a finite dimensional vector space, with U and

W two vector subspaces of V . It holds that

dim(U + W ) = dim(U ) + dim(W ) − dim(U ∩ W ).

Proof Denote r = dim(U ), s = dim(W ) and p = dim(U ∩ W ). We need to show

that U + W has a basis with r + s − p elements.

Let (v1, . . . , vp) be a basis for U ∩ W . By the Theorem 2.4.19 such a free sys-

tem can be completed to a basis (v1, . . . , vp, u1, . . . , ur−p) for U and to a basis

(v1, . . . , vp, w1, . . . , ws−p) for W .

We then show that I = (v1, . . . , vp, u1, . . . , ur−p, w1, . . . , ws−p) is a basis for

the vector space U + W . Since any vector in U + W has the form u + w, with u ∈ U

and w ∈ W , and since u is a linear combination of v1, . . . , vp, u1, . . . , ur−p, while w
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is a linear combination of v1, . . . , vp, w1, . . . , ws−p, the system I generates U + W .

Next, consider the combination

α1v1 + · · · + αpvp + β1u1 + · · · + βr−pur−p + γ1w1 + · · · + γs−pws−p = 0V .

Denoting for brevity v =
∑p

i=1 αivi , u =
∑r−p

j=1 β j u j and w =
∑s−p

k=1 γkwk , we write

this equality as

v + u + w = 0V ,

with v ∈ U ∩ W, u ∈ U, w ∈ W . Since v, u ∈ U , then w = −v − u ∈ U ; so w ∈

U ∩ W . This implies

w = γ1w1 + · · · + γs−pws−p = λ1v1 + · · · + λpvp

for suitable scalars λi : in fact we know that {v1, . . . , vp, w1, . . . , ws−p} is a free

system, so any γk must be zero. We need then to prove that, from

α1v1 + · · · + αpvp + β1u1 + · · · + βr−pur−p = 0V

it follows that all the coefficients αi and β j are zero. This is true, since (v1, . . . , vp,

u1, . . . , ur−p) is a basis for U . Thus I is a free system. �

Corollary 2.5.7 Let W1 and W2 be vector subspaces of V . If W1 ⊕ W2 can be

defined, then

dim(W1 ⊕ W2) = dim(W1) + dim(W2).

Also, if B1 = (w′
1, . . . , w

′
s) and B2 = (w′′

1 , . . . , w
′′
r ) are basis for W1 and W2 respec-

tively, a basis for W1 ⊕ W2 is given by B = (w′
1, . . . , w

′
s, w

′′
1 , . . . , w

′′
r ).

Proof By the Grassmann theorem, one has

dim(W1 + W2) + dim(W1 ∩ W2) = dim(W1) + dim(W2)

and from the Definition 2.2.12 we also have dim(W1 ∩ W2) = 0, which gives the

first claim.

With the basis B1 and B2 one considers B = B1 ∪ B2 which obviously generates

W1 ⊕ W2. The second claim directly follows from the Corollary 2.5.5. �

The following proposition is a direct generalization.

Proposition 2.5.8 Let W1, . . . , Wn be subspaces of a real vector space V and let

the direct sum W1 ⊕ · · · ⊕ Wn be defined. One has that

dim(W1 ⊕ · · · ⊕ Wn) = dim(W1) + · · · + dim(Wn).



Chapter 3

Euclidean Vector Spaces

When dealing with vectors of V
3
O in Chap. 1, we have somehow implicitly used the

notions of length for a vector and of orthogonality of vectors as well as amplitude of

plane angle between vectors. In order to generalise all of this, in the present chapter

we introduce the structure of scalar product for any vector space, thus coming to the

notion of euclidean vector space. A scalar product allows one to speak, among other

things, of orthogonality of vectors or of the length of a vector in an arbitrary vector

space.

3.1 Scalar Product, Norm

We start by recalling, through an example, how the vector space R
3 can be endowed

with a euclidean scalar product using the usual scalar product in the space V3
O .

Example 3.1.1 The usual scalar product in V3
O , under the isomorphism R

3 ≃ V3
O

(see the Proposition 1.3.9), induces a map

· : R
3 × R

3 −→ R

defined as

(x1, x2, x3) · (y1, y2, y3) = x1 y1 + x2 y2 + x3 y3.

For vectors (x1, x2, x3), (y1, y2, y3), (z1, z2, z3) ∈ R
3 and scalars a, b ∈ R, the fol-

lowing properties are easy to verify.
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(i) Symmetry, that is:

(x1, x2, x3) · (y1, y2, y3) = x1 y1 + x2 y2 + x3 y3

= y1x1 + y2x2 + y3x3 = (y1, y2, y3) · (x1, x2, x3).

(ii) Linearity, that is:

(a(x1, x2, x3) + b(y1, y2, y3)) · (z1, z2, z3)

= (ax1 + by1)z1 + (ax2 + by2)z2 + (ax3 + by3)z3

= a(x1z1 + x2z2 + x3z3) + b(y1z1 + y2z2 + by3z3)

= a(x1, x2, x3) · (z1, z2, z3) + b(y1, y2, y3) · (z1, z2, z3).

(iii) Non negativity, that is:

(x1, x2, x3) · (x1, x2, x3) = x2
1 + x2

2 + x2
3 ≥ 0.

(iv) Non degeneracy, that is:

(x1, x2, x3) · (x1, x2, x3) = 0 ⇔ (x1, x2, x3) = (0, 0, 0).

These last two properties are summarised by saying that the scalar product in R
3

is positive definite.

The above properties suggest the following definition.

Definition 3.1.2 Let V be a finite dimensional real vector space. A scalar product

on V is a map

· : V × V −→ R (v,w) �→ v · w

that fulfils the following properties. For any v,w, v1, v2 ∈ V and a1, a2 ∈ R it holds

that:

(i) v · w = w · v,

(ii) (a1v1 + a2v2) · w = a1(v1 · w) + a2(v2 · w),

(iii) v · v ≥ 0,

(iv) v · v = 0 ⇔ v = 0V .

A finite dimensional real vector space V equipped with a scalar product will be

denoted (V, ·) and will be referred to as a euclidean vector space.

Clearly the properties (i) and (ii) in the previous definition allows one to prove

that the scalar product map · is linear also with respect to the second argument.

A scalar product is then a suitable bilinear symmetric map, also called a bilinear

symmetric real form since its range is in R.

Exercise 3.1.3 It is clear that the scalar product considered in V3
O satisfies the condi-

tions given in the Definition 3.1.2. The map in the Example 3.1.1 is a scalar product on

the vector space R
3. This scalar product is not unique. Indeed, consider for instance

p : R
3 × R

3 −→ R given by
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p((x1, x2, x3), (y1, y2, y3)) = 2x1 y1 + 3x2 y2 + x3 y3.

It is easy to verify that such a map p is bilinear and symmetric. With v = (v1, v2, v3),

from p(v, v) = 2v2
1 + 3v2

2 + v2
3 one has p(v, v) ≥ 0 and p(v, v) = 0 ⇔ v = 0. We

have then that p is a scalar product on R
3.

Definition 3.1.4 On R
n there is a canonical scalar product

· : R
n × R

n −→ R

defined by

(x1, . . . , xn) · (y1, . . . , yn) = x1 y1 + · · · + xn yn =
n

∑

j=1

x j y j .

The datum (Rn, ·) is referred to as the canonical euclidean space and denoted En .

The following lines sketch the proof that the above map satisfies the conditions

of Definition 3.1.2.

(i) (x1, . . . , xn) · (y1, . . . , yn) =
∑n

j=1
x j y j

=
∑n

j=1
y j x j = (y1, . . . , yn) · (x1, . . . , xn),

(ii) left to the reader,

(iii) (x1, . . . , xn) · (x1, . . . , xn) =
∑n

i=1 x2
i ≥ 0,

(iv) (x1, . . . , xn) · (x1, . . . , xn) = 0 ⇔
∑n

i=1 x2
i = 0 ⇔ xi = 0, ∀i ⇔

(x1, . . . , xn) = (0, . . . , 0).

Definition 3.1.5 Let (V, ·) be a finite dimensional euclidean vector space. The map

‖ − ‖ : V −→ R, v �→ ‖v‖ =
√

v · v

is called norm. For any v ∈ V , the real number ‖v‖ is the norm or the length of the

vector v.

Exercise 3.1.6 The norm of a vector v = (x1, . . . , xn) in En = (Rn, ·) is

‖(x1, . . . , xn)‖ =

√

√

√

√

n
∑

i=1

x2
i .

In particular, for E3 one has ‖(x1, x2, x3)‖ =
√

x2
1 + x2

2 + x2
3 .

The proof of the following proposition is immediate.

Proposition 3.1.7 Let (V, ·) be a finite dimensional euclidean vector space. For any

v ∈ V and any a ∈ R, the following properties hold:
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(1) ‖v‖ ≥ 0,

(2) ‖v‖ = 0 ⇔ v = 0V ,

(3) ‖av‖ = |a| ‖v‖.

Proposition 3.1.8 Let (V, ·) be a finite dimensional euclidean vector space. For any

v,w ∈ V the following inequality holds:

|v · w| ≤ ‖v‖ ‖w‖.

This is called the Schwarz inequality.

Proof If either v = 0V or w = 0V the claim is obvious, so we may assume that both

vectors v,w �= 0V . Set a = ‖w‖ and b = ‖v‖; from (iii) in the Definition 3.1.2, one

can write

0 ≤ ‖av ± bw‖2 = (av ± bw) · (av ± bw)

= a2‖v‖2 ± 2ab(v · w) + b2‖w‖2

= 2ab(‖v‖‖w‖ ± v · w).

Since both a, b are real positive scalars, the above expression reads

∓ v · w ≤ ‖v‖ ‖w‖

which is the claim. �

Definition 3.1.9 The Schwarz inequality can be written in the form

|v · w|
‖v‖ ‖w‖

≤ 1, that is − 1 ≤
v · w

‖v‖ ‖w‖
≤ 1.

Then one can define then angle α between the vectors v,w, by requiring that

v · w

‖v‖ ‖w‖
= cos α

with 0 ≤ α ≤ π. Notice the analogy between such a definition and the one in Defi-

nition (1.3.2) for the geometric vectors in V3
O .

Proposition 3.1.10 Let (V, ·) be a finite dimensional euclidean vector space. For

any v,w ∈ V the following inequality holds:

‖v + w‖ ≤ ‖v‖ + ‖w‖.

This is called the triangle, or Minkowski inequality.
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Proof From the definition of the norm and the Schwarz inequality in Proposi-

tion 3.1.8, one has v · w ≤ |v · w| ≤ ‖v‖ ‖w‖. The following relations are imme-

diate,

‖v + w‖2 = (v + w) · (v + w)

= ‖v‖2 + 2(v · w) + ‖w‖2

≤ ‖v‖2 + 2‖v‖ ‖w‖ + ‖w‖2

= (‖v‖ + ‖w‖)2

and prove the claim. �

3.2 Orthogonality

As mentioned, with a scalar product one generalises the notion of orthogonality

between vectors and then between vector subspaces.

Definition 3.2.1 Let (V, ·) be a finite dimensional euclidean vector space. Two vec-

tors v,w ∈ V are said to be orthogonal if v · w = 0.

Proposition 3.2.2 Let (V, ·) be a finite dimensional euclidean vector space, and let

w1, · · · , ws and v be vectors in V . If v is orthogonal to each wi , then v is orthogonal

to any vector in the linear span L(w1, . . . , ws).

Proof From the bilinearity of the scalar product, one has

v · (λ1w1 + · · · + λsws) = λ1(v · w1) + · · · + λs(v · ws).

The right hand side of such expression is obviously zero under the hypothesis of

orthogonality, that is v · wi = 0 for any i . �

Proposition 3.2.3 Let (V, ·) be a finite dimensional euclidean vector space. If

v1, . . . , vs is a collection of non zero vectors which are mutually orthogonal, that is

vi · v j = 0 for i �= j , then the vectors v1, . . . , vs are linearly independent.

Proof Let us equate to the zero vector a linear combination of the vectors v1, . . . , vs ,

that is, let

λ1v1 + · · · + λsvs = 0V .

For vi ∈ {v1, . . . , vs}, we have

0 = vi · (λ1v1 + · · · + λsvs) = λ1(vi · v1) + · · · + λs(vi · vs) = λi ‖vi‖2.

Being vi �= 0V it must be λi = 0. One gets λ1 = . . . = λs = 0, with the same

argument for any vector vi . �
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Definition 3.2.4 Let (V, ·) be a finite dimensional euclidean vector space. If W ⊆ V

is a vector subspace of V , then the set

W ⊥ = {v ∈ V : s v · w = 0,∀w ∈ W }

is called the orthogonal complement to W .

Proposition 3.2.5 Let W ⊆ V be a vector subspace of a euclidean vector space

(V, ·). Then,

(i) W ⊥ is a vector subspace of V ,

(ii) W ∩ W ⊥ = {0V }, and the sum between W and W ⊥ is direct.

Proof (i) Let v1, v2 ∈ W ⊥, that is v1 · w = 0 and v2 · w = 0 for any w ∈ W . With

arbitrary scalars λ1,λ2 ∈ R, one has

(λ1v1 + λ2v2) · w = λ1(v1 · w) + λ2(v2 · w) = 0

for any w ∈ W ; thus λ1v1 + λ2v2 ∈ W ⊥. The claim follows by recalling the

Proposition 2.2.2.

(ii) If w ∈ W ∩ W ⊥, then w · w = 0, which then gives w = 0V . �

Remark 3.2.6 Let W = L(w1, . . . , ws) ⊂ V . One has

W ⊥ = {v ∈ V | v · wi = 0,∀i = 1, . . . , s}.

The inclusion W ⊥ ⊆ L(w1, . . . , vs) is obvious, while the opposite inclusion

L(w1, . . . , ws) ⊆ W ⊥ follows from the Proposition 3.2.2.

Exercise 3.2.7 Consider the vector subspace W = L((1, 0, 1)) ⊂ E3. From the pre-

vious remark we have

W ⊥ = {(x, y, z) ∈ E3 | (x, y, z) · (1, 0, 1) = 0} = {(x, y, z) ∈ E3 | x + z = 0},

that is W ⊥ = L((1, 0,−1), (0, 1, 0)).

Exercise 3.2.8 Let W ⊂ E4 be defined by

W = L((1,−1, 1, 0), (2, 1, 0, 1)).

By recalling the Proposition 3.2.3 and the Corollary 2.5.7 we know that the

orthogonal subspace W ⊥ has dimension 2. From the Remark 3.2.6, it is given by

W ⊥ =
{

(x, y, z, t) ∈ E4 :
{

(x, y, z, t) · (1,−1, 1, 0) = 0

(x, y, z, t) · (2, 1, 0, 1) = 0

}

,

that is by the common solutions of the following linear equations,
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x − y + z = 0

2x + y + t = 0 .

Such solutions can be written as

{

z = y − x

t = −2x − y

for arbitrary values of x, y. By choosing, for example, (x, y) = (1, 0) and (x, y) =
(0, 1), for the orthogonal subspace W ⊥ one can show that W ⊥ = L((1, 0,−1,−2),

(0, 1, 1,−1)) (this kind of examples and exercises will be clearer after studying

homogeneous linear systems of equations).

3.3 Orthonormal Basis

We have seen in Chap. 2 that the orthogonal cartesian coordinate system (O, i, j, k)

for the vector space V3
O can be seen as having a basis whose vectors are mutually

orthogonal and have norm one.

In this section we analyse how to select in a finite dimensional euclidean vector

space (V, ·), a basis whose vectors are mutually orthogonal and have norm one.

Definition 3.3.1 Let I = {v1, . . . , vr } be a system of vectors of a vector space V . If

V is endowed with a scalar product, I is called orthonormal if

vi · v j = δi j =
{

1 if i = j

0 if i �= j
.

Remark 3.3.2 From the Proposition 3.2.3 one has that any orthonormal system of

vectors if free, that is its vectors are linearly independent.

Definition 3.3.3 A basis B for (V, ·) is called orthonormal if it is an orthonormal

system.

By such a definition, the basis (i, j, k) of V3
O as well as the canonical basis for En

are orthonormal.

Remark 3.3.4 Let B = (e1, . . . , en) be an orthonormal basis for (V, ·) and let v ∈ V .

The vector v can be written with respect to B as

v = (v · e1)e1 + · · · + (v · en)en.

Indeed, from

v = a1e1 + · · · + anen
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one can consider the scalar products of v with each ei , and the orthogonality of these

yields

a1 = v · e1, . . . , an = v · en .

Thus the components of a vector with respect to an orthonormal basis are given by

the scalar products of the vector with the corresponding basis elements.

Definition 3.3.5 Let B = (e1, . . . , en) be an orthonormal basis for (V, ·). With

v ∈ V , the vectors

(v · e1)e1, . . . , (v · en)en,

which give a linear decomposition of v, are called the orthogonal projections of v

along e1, . . . , en .

The next proposition shows that in an any finite dimensional real vector space

(V, ·), with respect to an orthonormal basis for V the scalar product has the same

form than the canonical scalar product in En .

Proposition 3.3.6 Let B = (e1, . . . , en) be an orthonormal basis for (V, ·). With

v,w ∈ V , let it be v = (a1, . . . , an)B and w = (b1, . . . , bn)B. Then one has

v · w = a1b1 + · · · + anbn.

Proof This follows by using the bilinearity of the scalar product and the relations

ei · e j = δi j . �

Any finite dimensional real vector space can be shown to admit an orthonormal

basis. This is done via the so called Gram-Schmidt orthonormalisation method. Its

proof is constructive since, out of any given basis, the method provides an explicit

orthonormal basis via linear algebra computations.

Proposition 3.3.7 (Gram-Schmidt method) Let B = (v1, . . . , vn) be a basis for the

finite dimensional euclidean space (V, ·). The vectors

e1 =
v1

‖v1‖
,

e2 =
v2 − (v2 · e1)e1

‖v2 − (v2 · e1)e1‖
,

...

en =
vn −

∑n−1
i=1 (vn · ei )ei

‖vn −
∑n−1

i=1 (vn · ei )ei‖

form an orthonormal basis (e1, . . . , en) for V .
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Proof We start by noticing that ‖e j‖ = 1, for j = 1, . . . , n, from the way these

vectors are defined. The proof of orthogonality is done by induction. As induction

basis we prove explicitly that e1 · e2 = 0. Being e1 · e1 = 1, one has

e1 · e2 =
e1 · v2 − (v2 · e1)e1 · e1

‖v1‖ ‖v2 − (v2 · e1)e1‖
= 0 .

We then assume that e1, . . . , eh are pairwise orthogonal (this is the inductive

hypothesis) and show that e1, . . . , eh+1 are pairwise orthogonal. Consider an integer

k such that 1 ≤ k ≤ h. Then,

eh+1 · ek =
vh+1 −

∑h
i=1(vh+1 · ei )ei

‖vh+1 −
∑h

i=1(vh+1 · ei )ei‖
· ek

=
vh+1 · ek −

∑h
i=1 ((vh+1 · ei )(ei · ek))

‖vh+1 −
∑h

i=1(vh+1 · ei )ei‖

=
vh+1 · ek − vh+1 · ek

‖vh+1 −
∑h

i=1(vh+1 · ei )ei‖
= 0

where the last equality follows from the inductive hypothesis ei · ek = 0. The system

(e1, . . . , en) is free by Remark 3.3.2, thus giving an orthonormal basis for V . �

Exercise 3.3.8 Let V = L(v1, v2) ⊂ E4, withv1 = (1, 1, 0, 0), andv2 = (0, 2, 1, 1).

With the Gram-Schmidt orthogonalization method, we obtain an orthonormal basis

for V . Firstly, we have

e1 =
v1

‖v1‖
=

1
√

2
(1, 1, 0, 0) .

Set f2 = v2 − (v2 · e1)e1. We have then

f2 = (0, 2, 1, 1) −
(

(0, 2, 1, 1) ·
1

√
2

(1, 1, 0, 0)

)

1
√

2
(1, 1, 0, 0)

= (0, 2, 1, 1) − (1, 1, 0, 0)

= (−1, 1, 1, 1).

Then, the second vector e2 = f2

‖ f2‖ is

e2 =
1

2
(−1, 1, 1, 1) .

Theorem 3.3.9 Any finite dimensional euclidean vector space (V, ·) admits an

orthonormal basis.

Proof Since V is finite dimensional, by the Corollary 2.4.4 it has a basis, which can

be orthonormalised using the Gram-Schmidt method. �
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Theorem 3.3.10 Let (V, ·) be finite dimensional with {e1, . . . , er } an orthonor-

mal system of vectors of V . The system can be completed to an orthonormal basis

(e1, . . . , er , er+1, . . . , en) for V .

Proof From the Theorem 2.4.19 the free system {e1, . . . , er } can be completed to a

basis for V , say

B = (e1, . . . , er , vr+1, . . . , vn).

The Gram-Schmidt method for the system B does not alter the first r vectors, and

provides an orthonormal basis for V . �

Corollary 3.3.11 Let (V, ·) have finite dimension n and let W be a vector subspace

of V . Then,

(1) dim(W ) + dim(W ⊥) = n,

(2) V = W ⊕ W ⊥,

(3) (W ⊥)⊥ = W .

Proof

(1) Let (e1, . . . , er ) be an orthonormal basis for W completed (by the theorem

above) to an orthonormal basis (e1, . . . , er , er+1, . . . , en) for V . Since the vec-

tors er+1, . . . , en are then orthogonal to the vectors e1, . . . , er , they are (see the

Definition 3.2.1) orthogonal to any vector in W , so er+1, . . . , en ∈ W ⊥. This

gives dim(W ⊥) ≥ n − r , that is dim(W ) + dim(W ⊥) ≥ n. From the Defini-

tion 3.2.4 the sum of W and W ⊥ is direct, so, recalling the Corollary 2.5.7,

one has dim(W ) + dim(W ⊥) = dim(W ⊕ W ⊥) ≤ n, thus proving the claim.

(2) From (1) we have dim(W ⊕ W ⊥) = dim(W ) + dim(W ⊥) = n = dim(V ); thus

W ⊕ W ⊥ = V .

(3) We start by proving the inclusion (W ⊥)⊥ ⊇ W .

By definition, it is (W ⊥)⊥ = {v ∈ V | v · w = 0, ∀w ∈ W ⊥}. If v ∈ W , then

v · w = 0 for any w ∈ W ⊥, thus W ⊆ (W ⊥)⊥. Apply now the result in point

1) to W ⊥: one has

dim(W ⊥) + dim((W ⊥)⊥) = n.

This inequality, together with the point 1) gives dim((W ⊥)⊥) = dim(W ); the

spaces W and (W ⊥)⊥ are each other subspace with the same dimension, thus

they coincide. �

It is worth stressing that for the identity (W ⊥)⊥ = W it is crucial that the vector

space V be finite dimensional. For infinite dimensional vector spaces in general only

the inclusion (W ⊥)⊥ ⊇ W holds.

Exercise 3.3.12 In Exercise 3.2.7 we considered the subspace of E3 given by W =
L((1, 0, 1)), and computed W ⊥ = L((1, 0,−1), (0, 1, 0)). It is immediate to verify

that

dim(W ) + dim(W ⊥) = 1 + 2 = 3 = dim(E3).
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3.4 Hermitian Products

The canonical scalar product in R
n can be naturally extended to the complex vector

space C
n with a minor modification.

Definition 3.4.1 The canonical hermitian product on C
n is the map

· : C
n × C

n −→ C

defined by

(z1, . . . , zn) · (w1, . . . , wn) = z̄1w1 + · · · + z̄nwn

where z̄ denotes the complex conjugate of z (see the Sect. A.5). The datum (Cn, ·) is

called the canonical hermitian vector space of dimension n.

The following proposition—whose straightforward proof we omit—generalises

to the complex case the properties of the canonical scalar product on R
n shown

after Definition 3.1.4. For easy of notation, we shall denote the vectors in C
n by

z = (z1, . . . , zn).

Proposition 3.4.2 For any z, w, v ∈ C
n and a, b ∈ C, the following properties hold:

(i) w · z = z · w ,

(ii) (az + bw) · v = ā(z · v) + b̄(w · v)

while v · (az + bw) = a(v · z) + b(v · w) ,

(iii) z · z =
∑n

i=1 |zi |2 ≥ 0 ,

(iv) z · z = 0 ⇔ z = (0, . . . , 0) ∈ C
n .

Notice that the complex conjugation for the first entry of the hermitian scalar prod-

uct implies that the hermitian product of a vector with itself is a real positive number.

It is this number that gives the real norm of a complex vector z = (z1, . . . , zn),

defined as

‖z‖ =
√

(z1, . . . , zn) · (z1, . . . , zn) =

√

√

√

√

n
∑

i=1

|zi |2 .



Chapter 4

Matrices

Matrices are an important tool when dealing with many problems, notably the theory

of systems of linear equations and the study of maps (operators) between vector

spaces. This chapter is devoted to their basic notions and properties.

4.1 Basic Notions

Definition 4.1.1 A matrix M with entries in R (or a real matrix) is a collection

of elements ai j ∈ R, with i = 1, . . . , m; j = 1, . . . , n and m, n ∈ N, displayed as

follows

M =

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎞

⎟

⎟

⎟

⎠

.

The matrix M above is said to be made of m row vectors in R
n , that is

R1 = (a11, . . . , a1n) , . . . , Rm = (am1, . . . , amn)

or by n column vectors in R
m , that is

C1 = (a11, . . . , am1) , . . . , Cn = (a1n, . . . , amn).

Thus the matrix M above is a m × n-matrix (m rows Ri ∈ R
n and n columns

Ri ∈ R
n). As a shorthand, by M = (ai j ) we shall denote a matrix M with entry

ai j at the i-th row and j-th column. We denote by R
m,n the collection of all

m × n-matrices whose entries are in R.
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Remark 4.1.2 It is sometime useful to consider a matrix M ∈ R
m,n as the collection

of its n columns, or as the collection of its m rows, that is to write

M = (C1 C2 . . . Cn) =

⎛

⎜

⎜

⎜

⎝

R1

R2

...

Rm

⎞

⎟

⎟

⎟

⎠

.

An element M ∈ R
1,n is called a n-dimensional row matrix,

M = (a11 a12 . . . a1n)

while an element M ∈ R
m,1 is called a m-dimensional column matrix,

M =

⎛

⎜

⎜

⎜

⎝

a11

a21

...

am1

⎞

⎟

⎟

⎟

⎠

.

A square matrices of order n is a n × n matrix, that is an element in R
n,n . An element

M ∈ R
1,1 is a scalar, that is a single element in R. If A = (ai j ) ∈ R

n,n is a square

matrix, the entries (a11, a22, . . . , ann) give the (principal) diagonal of A.

Example 4.1.3 The bold typeset entries in

A =

⎛

⎝

1 2 2

−1 0 3

2 4 7

⎞

⎠

give the diagonal of A.

Proposition 4.1.4 The set R
m,n is a real vector space whose dimension is mn. With

A = (ai j ), B = (bi j ) ∈ R
m,n and λ ∈ R, the vector space operations are defined by

A + B = (ai j + bi j ) , λA = (λai j ).

Proof We task the reader to show that R
m,n equipped with the above defined oper-

ations is a vector space. We only remark that the zero element in R
m,n is given by

the matrix A with entries ai j = 0R; such a matrix is also called the null matrix and

denoted 0Rm,n .

In order to show that the dimension of R
m,n is mn, consider the elementary

m × n-matrices

Ers = (e
(rs)
jk ) , with e

(rs)
jk =

{

1 if ( j, k) = (r, s)

0 if ( j, k) �= (r, s)
.
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Thus the matrix Ers has entries all zero but for the entry (r, s) which is 1. Clearly

there are mn of them and it is immediate to show that they form a basis for R
m,n . �

Exercise 4.1.5 Let A =

(

1 2 −1

0 −1 1

)

∈ R
2,3. One computes

(

1 2 −1

0 −1 1

)

=

(

1 0 0

0 0 0

)

+ 2

(

0 1 0

0 0 0

)

−

(

0 0 1

0 0 0

)

+ 0

(

0 0 0

1 0 0

)

−

(

0 0 0

0 1 0

)

+

(

0 0 0

0 0 1

)

= E11 + 2E12 − E13 − E22 + E23.

In addition to forming a vector space, matrices of ‘matching size’ can be multiplied.

Definition 4.1.6 If A = (ai j ) ∈ R
m,n and B = (b jk) ∈ R

n,p the product between A

and B is the matrix in R
m,p defined by

C = (cik) = AB ∈ R
m,p , where cik = R

(A)

i · C
(B)

k =

n
∑

j=1

ai j b jk,

with i = 1, . . . , m and k = 1, . . . , p. Here R
(A)

i · C
(B)

k denotes the scalar product in

R
n between the i-th row vector R

(A)

i of A with the k-th column vector C
(B)

k of B.

Remark 4.1.7 Notice that the product AB—also called the row by column product—

is defined only if the number of columns of A equals the number of rows of B.

Exercise 4.1.8 Consider the matrices

A =

(

1 2 −1

3 0 1

)

∈ R
2,3, B =

⎛

⎝

1 2

2 1

3 4

⎞

⎠ ∈ R
3,2.

One has AB = C = (cik) ∈ R
2,2 with

C =

(

2 0

6 10

)

.

On the other hand, B A = C ′ = (c′
st ) ∈ R

3,3 with

C ′ =

⎛

⎝

7 2 1

5 4 −1

15 6 1

⎞

⎠ .

Clearly, comparing C with C ′ is meaningless, since they are in different spaces.
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Remark 4.1.9 With A ∈ R
m,n and B ∈ R

p,q , the product AB is defined only if

n = p, giving a matrix AB ∈ R
m,q . It is clear that the product B A is defined only if

m = q and in such a case one has B A ∈ R
p,n . When both the conditions m = q and

n = p are satisfied both products are defined. This is the case of the matrices A and

B in the previous exercise.

Let us consider the space R
n,n of square matrices of order n. If A, B are in R

n,n then

both AB and B A are square matrices of order n. An example shows that in general

one has AB �= B A. If

A =

(

1 2

1 −1

)

, B =

(

1 −1

1 0

)

,

one computes that

AB =

(

3 −1

0 −1

)

�= B A =

(

0 3

1 2

)

.

Thus the product of matrices is non commutative. We shall say that two matrices

A, B ∈ R
n,n commute if AB = B A. On the other hand, the associativity of the prod-

uct in R and its distributivity with respect to the sum, allow one to prove analogous

properties for the space of matrices.

Proposition 4.1.10 The following identities hold:

(i) A(BC) = (AB)C, for any A ∈ R
m,n, B ∈ R

n,p, C ∈ R
p,q ,

(ii) A(B + C) = AB + AC, for any A ∈ R
m,n, B, C ∈ R

n,p ,

(iii) λ(AB) = (λA)B = A(λB), for any A ∈ R
m,n, B ∈ R

n,p, λ ∈ R.

Proof (i) Consider three matrices A = (aih) ∈ R
m,n , B = (bhk) ∈ R

n,p and

C = (ck j ) ∈ R
p,q . From the definition of row by column product one has

AB = (dik)with dik =
∑n

h=1 aihbhk , while BC = (eh j )with eh j =
∑p

k=1 bhkck j .

The i j-entries of (AB)C and A(BC) are

p
∑

k=1

dikck j =

p
∑

k=1

(

n
∑

h=1

aihbhk

)

ck j =

p
∑

k=1

n
∑

h=1

(aihbhkck j ),

n
∑

h=1

aiheh j =

n
∑

h=1

aih

(

p
∑

k=1

bhkck j

)

=

n
∑

h=1

p
∑

k=1

(aihbhkck j ).

These two expressions coincide (the last equality on both lines follows from

the distributivity in R of the product with respect to the sum).

(ii) Take matrices A = (aih) ∈ R
m,n , B = (bh j ) ∈ R

n,p and C = (ch j ) ∈ R
n,p. The

equality A(B + C) = AB + AC is proven again by a direct computation of

the i j-entry for both sides:
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[A(B + C)]i j =

n
∑

h=1

aih(bh j + ch j )

=

n
∑

h=1

aihbh j +

n
∑

h=1

aihch j

= [AB]i j + [AC]i j

= [AB + AC]i j .

(iii) This is immediate. �

The matrix product in R
n,n is inner and it has a neutral element, a multiplication unit.

Definition 4.1.11 The unit matrix of order n, denoted by In , is the element in R
n,n

given by

In = (δi j ) , with δi j =

{

1 if i = j

0 if i �= j
.

The diagonal entries of In are all 1, while its off-diagonal entries are all zero.

Remark 4.1.12 It is easy to prove that, with A ∈ R
m,n , one has

AIn = A and Im A = A.

Proposition 4.1.13 The space R
n,n of square matrices of order n, endowed with the

sum and the product as defined above, is a non abelian ring.

Proof Recall the definition of a ring given in A.1.6. The matrix product is an inner

operation in R
n,n , so the claim follows from the fact that (Rn,n,+, 0Rn,n ) is an abelian

group and the results of the Proposition 4.1.10. �

Definition 4.1.14 A matrix A ∈ R
n,n is said to be invertible (also non-singular or

non-degenerate) if there exists a matrix B ∈ R
n,n , such that AB = B A = In . Such

a matrix B is denoted by A−1 and is called the inverse of A.

Definition 4.1.15 If a matrix is non invertible, then it is called singular or degener-

ate.

Exercise 4.1.16 An element of the ring R
n,n needs not be invertible. The matrix

A =

(

1 1

0 1

)

∈ R
2,2

is invertible, with inverse

A−1 =

(

1 −1

0 1

)

as it can be easily checked. On the other hand, the matrix
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A′ =

(

1 0

k 0

)

∈ R
2,2

is non invertible, for any value of the parameter k ∈ R. It is easy to verify that the

matrix equation
(

1 0

k 0

) (

x y

z t

)

=

(

1 0

0 1

)

has no solutions.

Proposition 4.1.17 The subset of invertible elements in R
n,n is a group with respect

to the matrix product. It is called the general linear group of order n and is denoted

by GL(n, R) or simply by GL(n).

Proof Recall the definition of a group in A.2.7. We observe first that if A and B are

both invertible then AB is invertible since AB(B−1 A−1) = (B−1 A−1)AB = In; this

means that (AB)−1 = B−1 A−1 so GL(n) is closed under the matrix product. It is

evident that I −1
n = In and that if A is invertible, then A is the inverse of A−1, thus

the latter is invertible. �

Notice that since AB is in general different from B A the group GL(n) is non abelian.

As an example, the non commuting matrices A and B considered in the Remark 4.1.9

are both invertible.

Definition 4.1.18 Given A = (ai j ) ∈ R
m,n its transpose, denoted by tA, is the matrix

obtained from A when exchanging its rows with its columns, that is tA = (bi j ) ∈ R
n,m

with bi j = a j i .

Exercise 4.1.19 The matrix

A =

(

1 2 −1

3 0 1

)

∈ R
2,3

has transpose tA ∈ R
3,2 given by

tA =

⎛

⎝

1 3

2 0

−1 1

⎞

⎠ .

Proposition 4.1.20 The following identities hold:

(i) t(A + B) = tA + tB, for any A, B ∈ R
m,n ,

(ii) t(AB) = tB tA, for A ∈ R
m,n and B ∈ R

n,p,

(iii) if A ∈ GL(n) then tA ∈ GL(n) that is, if A is invertible its transpose is invertible

as well with (tA)−1 = t(A−1).
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Proof (i) It is immediate.

(ii) Given A = (ai j ) and B = (bi j ), denote tA = (a′
i j ) and tB = (b′

i j ) with a′
i j = a j i

and b′
i j = b j i . If AB = (ci j ), then ci j =

∑n
h=1 aihbh j . The i j-element in t (AB)

is then
∑n

h=1 a jhbhi ; the i j-element in tB tA is
∑n

h=1 b′
iha′

h j and these elements

clearly coincide, for any i and j .

(iii) It is enough to show that t (A−1) tA = In . From (ii) one has indeed

t (A−1) tA = t (AA−1) = tIn = In.

This finishes the proof. �

Definition 4.1.21 A square matrix of order n, A = (ai j ) ∈ R
n,n , is said to be sym-

metric if tA = A that is, if for any i, j it holds that ai j = a j i .

Exercise 4.1.22 The matrix A =

⎛

⎝

1 2 −1

2 0 1

−1 1 −1

⎞

⎠ is symmetric.

4.2 The Rank of a Matrix

Definition 4.2.1 Let A = (ai j ) be a matrix in R
m,n . We have seen that the m rows

of A,

R1 = (a11, . . . , a1n),

...

Rm = (am1, . . . , amn)

are elements (vectors, indeed) in R
n . By R(A) we denote the vector subspace of R

n

generated by the vectors R1, . . . , Rm that is,

R(A) = L(R1, . . . , Rm).

We call R(A) the row space of A. Analogously, given the columns

C1 =

⎛

⎜

⎜

⎜

⎝

a11

a21

...

am1

⎞

⎟

⎟

⎟

⎠

, · · · , Cn =

⎛

⎜

⎜

⎜

⎝

a1n

a2n

...

amn

⎞

⎟

⎟

⎟

⎠

of A, we define the vector subspace C(A) in R
m ,

C(A) = L(C1, . . . , Cn)
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as the column space of A.

Remark 4.2.2 Clearly C(tA) = R(A) since the columns of tA are the rows of A.

Theorem 4.2.3 Given A = (ai j ) ∈ R
m,n one has that dim(R(A)) = dim(C(A)).

Proof Since A is fixed, to simplify notations we set R = R(A) and C = C(A).

The first step is to show that dim(C) ≤ dim(R). Let dim R = r ; up to a permuta-

tion, we can take the first r rows in A as linearly independent. The remaining rows

Rr+1, . . . , Rm are elements in R = L(R1, . . . , Rr ) and we can write

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R1

...

Rr
∑r

i=1 λ
r+1
i Ri

...
∑r

i=1 λ
m
i Ri

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 · · · a1n

...
...

ar1 · · · arn
∑r

i=1 λ
r+1
i ai1 · · ·

∑r
i=1 λ

r+1
i ain

...
...

∑r
i=1 λ

m
i ai1 · · ·

∑r
i=1 λ

m
i ain

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for suitable scalarsλ
j

i (with i ∈ 1, . . . , r, and j ∈ r + 1, . . . , m). Given h = 1, . . . , n,

consider the h-th column,

Ch =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1h

a2h

...

arh
∑r

i=1 λ
r+1
i aih

...
∑r

i=1 λ
m
i aih

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= a1h

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0
...

0

λ
r+1
1
...

λ
m
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ · · · + arh

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0
...

1

λ
r+1
r

...

λ
m
r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

This means that C is generated by the r columns

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0
...

0

λ
r+1
1
...

λ
m
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, · · · ,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0
...

1

λ
r+1
r

...

λ
m
r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

so we have dim(C) ≤ r = dim R. By exchanging the rows with columns, a similar

argument shows also that dim(C) ≥ dim(R) thus the claim. �

This theorem shows that dim(R(A)) = dim(C(A)) is an integer number that char-

acterises A.
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Definition 4.2.4 Given a matrix A ∈ R
m,n , its rank is the number

rk(A) = dim(C(A)) = dim(R(A))

that is the common dimension of its space of rows, or columns.

Corollary 4.2.5 For any A ∈ R
m,n one has rk(A) = rk(tA).

Proof This follows from Remark 4.2.2 since C(tA) = R(A). �

It is clear that rk(A) ≤ min(m, n).

Definition 4.2.6 A matrix A ∈ R
m,n has maximal rank if rk(A) = min(m, n).

Our task next is to give methods to compute the rank of a given matrix. We first

identify a class of matrices whose rank is easy to determine.

Remark 4.2.7 It is immediate to convince one-self that the rank of a matrix A does not

change by enlarging it with an arbitrary number of zero rows or columns. Moreover,

if a matrix B is obtained from a matrix A by a permutation of either its rows or

columns, that is, if it is

A =

⎛

⎜

⎜

⎜

⎝

R1

R2

...

Rm

⎞

⎟

⎟

⎟

⎠

and B =

⎛

⎜

⎜

⎜

⎝

Rσ(1)

Rσ(2)

...

Rσ(m)

⎞

⎟

⎟

⎟

⎠

(where σ denotes a permutation of m objects) or if

A = (C1, . . . , Cn) and B ′ = (Cσ′(1), . . . , Cσ′(n))

(where σ
′ denotes a permutation of n objects), then rk(A) = rk(B) = rk(B ′). These

equalities are true since the dimension of a vector space does not depend on the

ordering of its basis.

Definition 4.2.8 A square matrix A = (ai j ) ∈ R
n,n is called diagonal if ai j = 0 for

i �= j .

Exercise 4.2.9 The following matrix is diagonal,

A =

⎛

⎜

⎜

⎝

1 0 0 0

0 2 0 0

0 0 0 0

0 0 0 −3

⎞

⎟

⎟

⎠

.

Its rows and columns are vectors in R
4, with R1 = e1, R2 = 2e2, R3 = 0, R4 = −3e4

with respect to the canonical basis. As a consequence R(A) = L(R1, R2, R3, R4) =

L(e1, e2, e4) so that rk(A) = 3.



56 4 Matrices

The rank of a diagonal matrix of order n coincides with the number of its non zero

diagonal elements, since, as the previous exercise shows, its non zero rows or columns

correspond to multiples of vectors of the canonical basis of R
n . Beside the diagonal

ones, a larger class of matrices for which the rank is easy to compute is given in the

following definition.

Definition 4.2.10 Let A = (ai j ) be a square matrix in R
n,n . The matrix A is called

upper triangular if ai j = 0 for i > j . An upper triangular matrix for which ai i �= 0

for any i , is called a complete upper triangular matrix.

Exercise 4.2.11 Given

A =

⎛

⎝

1 0 3

0 0 2

0 0 −1

⎞

⎠ , B =

⎛

⎝

1 0 3

0 2 2

0 0 −1

⎞

⎠ ,

then A is upper triangular and B is complete upper triangular.

Theorem 4.2.12 Let A ∈ R
n,n be a complete upper triangular matrix. Then,

rk(A) = n.

Proof Let

A =

⎛

⎜

⎜

⎜

⎝

a11 a12 · · · a1n

0 a22 · · · a2n

...
...

...

0 0 · · · ann

⎞

⎟

⎟

⎟

⎠

.

To prove the claim we show that the n columns C1, . . . , Cn of A are linearly inde-

pendent. The equation λ1C1 + · · · + λnCn = 0 can be written in the form

⎛

⎜

⎜

⎜

⎝

λ1a11 + · · · + λn−1a1n−1 + λna1n

...

λn−1an−1 n−1 + λnan−1 n

λnann

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
...

0

0

⎞

⎟

⎟

⎟

⎠

.

Equating term by term, one has for the n-th component λnann = 0, which gives

λn = 0 since ann �= 0. For the (n − 1)-th component, one has

λn−1an−1,n−1 + λnan−1,n = 0

which gives, from λn = 0 and an−1,n−1 �= 0, that λn−1 = 0. This can be extended

step by step to all components, thus getting λn = λn−1 = · · · = λ1 = 0. �

The notion of upper triangularity can be extended to non square matrices.
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Definition 4.2.13 A matrix A = (ai j ) ∈ R
m,n is called upper triangular if it satisfies

ai j = 0 for i > j and complete upper triangular if it is upper triangular with ai i �= 0

for any i .

Remark 4.2.14 Given a matrix A ∈ R
m,n set p = min(m, n). If A is a complete

upper triangular matrix, the submatrix B made by the first p rows of A when m > n,

or the first p columns of A when m < n, is a square complete upper triangular matrix

of order p.

Exercise 4.2.15 The following matrices are complete upper triangular:

A =

⎛

⎜

⎜

⎝

1 0 −3

0 2 0

0 0 −1

0 0 0

⎞

⎟

⎟

⎠

, A′ =

⎛

⎝

1 2 3 9

0 2 0 7

0 0 4 −3

⎞

⎠ .

The submatrices

B =

⎛

⎝

1 0 −3

0 2 0

0 0 −1

⎞

⎠ , B ′ =

⎛

⎝

1 2 3

0 2 0

0 0 4

⎞

⎠

are (square) complete upper triangular as mentioned in the previous remark.

Corollary 4.2.16 If A ∈ R
m,n is a complete upper triangular matrix then rk(A) =

min(m, n).

Proof We consider two cases.

• n ≥ m. One has rk(A) ≤ min(m, n) = m, with

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 . . . a1m−1 a1m ∗ . . . ∗

0 a22 a23 . . . a2m−1 a2m ∗ . . . ∗

0 0 a33 . . . a3m−1 a3m ∗ . . . ∗
...

...
...

...
...

...
...

0 0 0 . . . 0 amm ∗ . . . ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Let B be the submatrix of A given by the its first m columns. Since B is

(Remark 4.2.14) a complete upper triangular square matrix of order m, the columns

C1, . . . , Cm are linearly independent. This means that rk(A) ≥ m and the claim

follows.

• n < m. One has rk(A) ≤ min(m, n) = n, with
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A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n

...
...

...
...

0 0 0 . . . ann

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By deleting all zero rows, one gets a matrix of the previous type, thus

rk(A) = n. �

The matrices A and A′ in the Exercise 4.2.15 are both complete upper triangular.

Their rank is 3.

Remark 4.2.17 The notions introduced in the present section can be formulated by

considering columns instead of rows. One has:

• A matrix A ∈ R
m,n is called lower triangular if ai j = 0 for i < j . A lower trian-

gular matrix is called complete if ai i �= 0 for any i .

• Given A ∈ R
m,n , one has that A is (complete) upper triangular if and only if tA is

(complete) lower triangular.

• If A ∈ R
m,n is a complete lower triangular matrix then rk(A) = min(m, n).

4.3 Reduced Matrices

Definition 4.3.1 A matrix A ∈ R
m,n is said to be reduced by rows if any non zero

row has a non zero element such that the entries below it are all zero. Such an element,

which is not necessarily unique if m ≤ n, is called the pivot of its row.

Exercise 4.3.2 The matrix

A =

⎛

⎜

⎜

⎝

0 1 3

0 0 0

2 0 0

0 0 −1

⎞

⎟

⎟

⎠

is reduced by row. The pivot element for the first row is 1, the pivot element for the

third row is 2, the pivot element for the fourth row is −1. Note that rk(A) = 3 since

the three non zero rows are linearly independent.

Exercise 4.3.3 Any complete upper triangular matrix is reduced by rows.

Theorem 4.3.4 The rank of a matrix A which is reduced by row coincides with the

number of its non zero rows. Indeed, the non zero rows of a reduced by rows matrix

are linearly independent.
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Proof Let A be a reduced by rows matrix and let A′ be the submatrix of A obtained

by deleting the zero rows of A. From the Remark 4.2.7, rk(A′) = rk(A). Let A′′

be the matrix obtained by A′ by the following permutation of its columns: the first

column of A′′ is the column of A′ containing the pivot element for the first row of

A′, the second column of A′′ is the column of A′ containing the pivot element for the

second row of A′ and so on. By such a permutation A′′ turns out to be a complete

upper triangular matrix and again from the Remark 4.2.7 it is rk(A′) = rk(A′′). Since

A′′ is complete upper triangular its rank is given by the number of its rows, the rank

of A is given by the number of non zero rows of A. �

Since the proof of such a theorem is constructive, an example clarifies it.

Example 4.3.5 Let us consider the following matrix A which is reduced by rows (its

pivot elements are bold typed):

A =

⎛

⎜

⎜

⎝

1 −1 1 1

0 0 2 −1

2 0 0 0

0 0 0 1

⎞

⎟

⎟

⎠

.

The first column of A′ is the column containing the pivot element for the first row

of A, the second column of A′ is the column containing the pivot element for the

second row of A and so on. The matrix A′ is then

A′ =

⎛

⎜

⎜

⎝

−1 1 1 1

0 2 0 −1

0 0 2 0

0 0 0 1

⎞

⎟

⎟

⎠

and A′ is complete upper triangular; so rk(A) = rk(A′) = 4.

Remark 4.3.6 As we noticed in Remark 4.2.17, the notions introduced above can be

formulated by exchanging the role of the columns with that of the rows of a matrix.

• A matrix A ∈ R
m,n is said to be reduced by columns if any non zero column has

a non zero element such that the entries at its right are all zero. Such an element,

which is not necessarily unique, is called the pivot of its column.

• If A is a reduced by columns matrix its rank coincides with the number of its non

zero columns. The non zero columns are linearly independent.

• By mimicking the proof of the Theorem 4.3.4 it is clear that a matrix A is reduced

by rows if and only if tA is reduced by column.
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4.4 Reduction of Matrices

In the previous section we have learnt how to compute the rank of a reduced matrix.

In this section we outline a procedure that associates to any given matrix a reduced

matrix having the same rank.

We shall consider the following set of transformations acting on the rows of a matrix.

They are called elementary transformations of rows and their action preserves the

vector space structure of the space of rows.

• (λ) The transformation Ri �→ λRi that replace the row Ri with its multiple λRi ,

with R ∋ λ �= 0,

• (e) The transformation Ri ↔ R j , that exchanges the rows Ri and R j ,

• (D) The transformation Ri �→ Ri + a R j that replace the row Ri with the linear

combination Ri + a R j , with a ∈ R and i �= j .

Given a matrix A ∈ R
m,n the matrix A′ ∈ R

m,n is said to be row-transformed from

A if A′ is obtained from A by the action of a finite number of the elementary trans-

formations (λ), (e) and (D) listed above.

Proposition 4.4.1 Let A ∈ R
m,n and A′ ∈ R

m,n be row-transformed form A. Then

R(A) = R(A′) as vector spaces and rk(A) = rk(A′).

Proof It is obvious that for an elementary transformation (e) or (λ) the vector spaces

R(A) and R(A′) coincide. Let us take A′ to be row-transformed from A by a trans-

formation (D). Since

R(A) = L(R1, . . . , Ri−1, Ri , Ri+1, . . . , Rm)

and

R(A′) = L(R1, . . . , Ri−1, Ri + a R j , Ri+1, . . . , Rm)

it is clear that R(A′) ⊆ R(A). To prove the opposite inclusion, R(A) ⊆ R(A′), it is

enough to show that the row Ri in A is in the linear span of the rows of A′. Indeed

Ri = (Ri + a R j ) − a R j , thus the claim. �

Exercise 4.4.2 Let

A =

⎛

⎝

1 0 1

2 1 −1

−1 1 0

⎞

⎠ .

We act on A with the following (D) elementary transformations:
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A
R2 �→R2−2R1

−−−−−−−−−−−−−−−→ A′ =

⎛

⎝

1 0 1

0 1 −3

−1 1 0

⎞

⎠

A′
R′

3 �→R′
3+R′

1

−−−−−−−−−−−−−−−→ A′′ =

⎛

⎝

1 0 1

0 1 −3

0 1 1

⎞

⎠

A′′
R′′

3 �→R′′
3 −R′′

2

−−−−−−−−−−−−−−−→ A′′′ =

⎛

⎝

1 0 1

0 1 −3

0 0 4

⎞

⎠ .

The matrix A′′′ is reduced by rows with rk(A′′′) = 3. From the proposition above, we

conclude that rk(A) = rk(A′′′) = 3. This exercise shows how the so called Gauss’

algorithm works.

Proposition 4.4.3 Given any matrix A it is always possible to find a finite sequence

of type (D) elementary transformations whose action results in a matrix (say B)

which is reduced by rows.

Proof Let A = (ai j ) ∈ R
m,n . We denote by Ri the first non zero row in A and by ai j

the first non zero element in Ri . In order to obtain a matrix A′ such that the elements

under ai j are zero one acts with the following (D) transformation

Rk �→ Rk − ak j ai j
−1 Ri , for any k > i .

We denote such a transformed matrix by A′ = (a′
i j ). Notice that the first i rows in

A′ coincide with the first i rows in A, with all the elements in the column j below

the element a′
i j = ai j being null. Next, let R′

h be the first non zero row in A′ with

h > i and let a′
hp be the first non zero element in R′

h . As before we now act with the

following (D) elementary transformation

R′
k −→ R′

k − a′
kpa′

hp

−1
R′

h, for any k > h.

Let A′′ the matrix obtained with this transformation and iterate. It is clear that a finite

number of iterations of this procedure yield a matrix B which is—by construction—

reduced by row. �

With the expression of reduction by rows of a matrix A we mean a finite sequence of

elementary transformations on the rows of A whose final image is a matrix A′ which

is reduced by rows.

Remark 4.4.4 The proof of the Proposition 4.4.3 made use only of type (D) trans-

formations. It is clear that, depending on the specific elements of the matrix one is

considering, it can be easier to use also type (e) and (λ) transformations. The claim

of the Proposition 4.4.1 does not change.
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Exercise 4.4.5 Let us reduce by rows the following matrix

A =

⎛

⎜

⎜

⎝

0 1 0 0

0 1 2 −1

0 0 0 9

1 3 1 5

⎞

⎟

⎟

⎠

.

This matrix can be reduced as in the proof of the Proposition 4.4.3 by type (D)

transformations alone. A look at it shows that it is convenient to swap the first row

with the fourth. We have

A
R1↔R4

−−−−−−−−−−−−−−−→

⎛

⎜

⎜

⎝

1 3 1 5

0 1 2 −1

0 0 0 9

0 1 0 0

⎞

⎟

⎟

⎠

= B.

It is evident that the matrix B is already reduced by row so we can write

rk(A) = rk(B) = 4.

Exercise 4.4.6 Let us consider the matrix

A =

⎛

⎝

2 1 −1 1

3 1 1 −1

0 1 1 9

⎞

⎠ .

To reduce A we start with the type (D) transformation R2 �→ R2 − 3/2R1, that leads

to

A′ =

⎛

⎝

2 1 −1 1

0 −1/2 5/2 −5/2

0 1 1 9

⎞

⎠ .

Since we are interested in computing the rank of the matrix A in order to avoid

non integers matrix entries (which would give heavier computations) we can instead

reduce by rows the matrix A′ as

A′
R2 �→2R2

−−−−−−−−−−−−−−−→ A′′ =

⎛

⎝

2 1 −1 1

0 −1 5 −5

0 1 1 9

⎞

⎠

A′′
R′

3 �→R′
2+R′

3

−−−−−−−−−−−−−−−→ A′′′ =

⎛

⎝

2 1 −1 1

0 −1 5 −5

0 0 6 4

⎞

⎠ .

The matrix A′′′ is upper triangular so we have rk(A) = 3.

The method of reducing by rows a matrix can be used to select a basis for a vec-

tor space V given as a linear span of a system of vectors in some R
n , that is
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V = L(v1, . . . , vr ). To this end, given the vectors v1, . . . , vr spanning V , one con-

siders the matrix A with rows v1, . . . , vr or alternatively a matrix B with columns

v1, . . . , vr :

A =

⎛

⎜

⎝

v1

...

vr

⎞

⎟

⎠
, B = (v1 · · · vr ) .

One then has R(A) = V using A, which is reduced by rows to a matrix

A′ =

⎛

⎜

⎝

w1

...

wr

⎞

⎟

⎠
.

Clearly V = R(A) = R(A′) and dim(V ) = dim(R(A)) = rk(A) = rk(A′). That is

dim(V ) is the number of non zero rows in A′ and these non zero rows in A′ are a

basis for V .

Exercise 4.4.7 In R
4 consider the system of vectors I = {v1, v2, v3, v4, v5} with

v1 = (1,−1, 2, 1),v2 = (−2, 2,−4,−2),v3 = (1, 1, 1,−1),v4 = (−1, 3,−3,−3),

v5 = (1, 2, 1, 2). We would like to

(a) exhibit a basis B for V = L(I ) ⊂ R
4, with B ⊂ I ,

(b) complete B to a basis C for R
4.

For point (a) we let A be the matrix whose rows are the vectors in I that is,

A =

⎛

⎜

⎜

⎜

⎜

⎝

v1

v2

v3

v4

v5

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 2 1

−2 2 −4 −2

1 1 1 −1

−1 3 −3 −3

1 2 1 2

⎞

⎟

⎟

⎟

⎟

⎠

.

We reduce the matrix A by rows using the following transformations:

A

R2 �→R2+2R1

R3 �→R3−R1

−−−−−−−−−−−−−−−→

R4 �→R4+R1

R5 �→R5−R1

A′ =

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 2 1

0 0 0 0

0 2 −1 −2

0 2 −1 −2

0 3 −1 1

⎞

⎟

⎟

⎟

⎟

⎠

A′

R′
4 �→R′

4−R′
3

−−−−−−−−−−−−−−−→

R′
5 �→2R′

5−3R′
3

A′′ =

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 2 1

0 0 0 0

0 2 −1 −2

0 0 0 0

0 0 1 8

⎞

⎟

⎟

⎟

⎟

⎠

.
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As a result we have rk(A) = 3 and then dim(V ) = 3. A basis for V is for example

given by the three non zero rows in A′′ since R(A) = R(A′′). The basis B is made by

the vectors in I corresponding to the three non zero rows in A′′ that is B = (v1, v3, v5).

Cleary, with the transformations given above one has also that

B =

⎛

⎝

v1

v3

v5

⎞

⎠ �→ B ′ =

⎛

⎝

1 −1 2 1

0 2 −1 −2

0 0 1 8

⎞

⎠ .

To complete the basis B to a basis for R
4 one can use the vectors of the canonical

basis. From the form of the matrix B ′ it is clear that it suffices to add the vector e4 to

the three row vectors in B to meet the requirement:

⎛

⎜

⎜

⎝

v1

v3

v5

e4

⎞

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎝

1 −1 2 1

0 2 −1 −2

0 0 1 8

0 0 0 1

⎞

⎟

⎟

⎠

.

We can conclude that C = (v1, v3, v5, e4).

Exercise 4.4.8 Let I = {v1, v2, v3, v4} ⊂ R
4 be given by v1 = (0, 1, 2, 1),

v2 = (0, 1, 1, 1), v3 = (0, 2, 3, 2), v4 = (1, 2, 2, 1). With V = L(I ) ⊂ R
4:

(a) determine a basis B for V , with B ⊂ I ,

(b) complete B to a basis C for R
4.

Let A be the matrix whose rows are given by the vectors in I that is,

A =

⎛

⎜

⎜

⎝

v1

v2

v3

v4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 1 2 1

0 1 1 1

0 2 3 2

1 2 2 1

⎞

⎟

⎟

⎠

.

After swapping R1 ↔ R4, the matrix can be reduced following the lines above,

leading to

⎛

⎜

⎜

⎝

1 2 2 1

0 1 1 1

0 2 3 2

0 1 2 1

⎞

⎟

⎟

⎠

R3 �→ R3−2R2

−−−−−−−−−−→

R4 �→ R4 − R2

⎛

⎜

⎜

⎝

1 2 2 1

0 1 1 1

0 0 1 0

0 0 1 0

⎞

⎟

⎟

⎠

−−−−−−−−−−→

R4 �→ R4 − R3

⎛

⎜

⎜

⎝

1 2 2 1

0 1 1 1

0 0 1 0

0 0 0 0

⎞

⎟

⎟

⎠

.
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We can then take B = (v4, v2, v3). Analogously to what we did in the Exercise 4.4.7,

we have
⎛

⎜

⎜

⎝

v4

v2

v3

e4

⎞

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎝

1 2 2 1

0 1 1 1

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎠

and such a matrix shows that we can tale C = (v4, v2, v3, e4) as a basis for R
4.

Exercise 4.4.9 Consider again the set I given in the previous exercise. We now look

for a basis B ⊂ I via the constructive proof of the Theorem 2.4.2. The reduction by

rows procedure can be used in this case as well. Start again with

A =

⎛

⎜

⎜

⎝

v1

v2

v3

v4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 1 2 1

0 1 1 1

0 2 3 2

1 2 2 1

⎞

⎟

⎟

⎠

.

The swap operated in Exercise 4.4.8 is not admissible with the procedure in the

Theorem 2.4.2 so we use type (D) transformations:

A

R2 �→ R2−R1

−−−−−−−−−−→

R3 �→ R3 − 2R2

R4 − R4 − R1

⎛

⎜

⎜

⎝

0 1 2 1

0 0 −1 0

0 0 −1 0

1 1 0 0

⎞

⎟

⎟

⎠

−−−−−−−−−−→

R′
3 �→ R′

3 − R′
2

⎛

⎜

⎜

⎝

0 1 2 1

0 0 −1 0

0 0 0 0

1 1 0 0

⎞

⎟

⎟

⎠

.

These computations show that R′
3 − R′

2 = 0, R′
3 = R3 − 2R1 and R′

2 = R2 − R1.

From these relations we have that R3 − R2 − R1 = 0 which is equivalent to

v3 = v1 + v2: this shows that v3 is a linear combination of v1 and v2, so we recover

the set {v1, v2, v4} as a basis for L(I ).

The method we just illustrated in order to exhibit the basis of a vector subspace of

R
n can be used with any vector space: the entries of the relevant matrix will be given

by the components of a system of vectors with respect to a fixed basis.

Exercise 4.4.10 Let V = L(I ) ⊂ R
2,3 with I = {M1, M2, M3, M4} given by

M1 =

(

1 1 1

0 1 0

)

, M2 =

(

1 2 1

0 1 1

)

,

M3 =

(

2 3 2

0 2 1

)

, M4 =

(

0 1 1

0 1 −1

)

;

(a) exhibit a basis B for V , with B ⊂ I ,

(b) complete B to a basis C for R
2,3.
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In order to use the reduction method we need to represent the matrices M1, M2, M3, M4

as row vectors. The components of these vectors will be given by the components

of the matrices in a basis. This we may take to be the basis E = (Ei j | i = 1, 2;

j = 1, 2, 3) of R
2,3 made of elementary matrices as introduced in the proof of the

Proposition 4.1.4. One has, for example,

M1 = E11 + E12 + E13 + E22 = (1, 1, 1, 0, 1, 0)E .

Proceeding analogously we write the matrix

A =

⎛

⎜

⎜

⎝

M1

M2

M3

M4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 1 1 0 1 0

1 2 1 0 1 1

2 3 2 0 2 1

0 1 1 0 1 −1

⎞

⎟

⎟

⎠

.

With a suitable reduction we have

A �→

⎛

⎜

⎜

⎝

1 1 1 0 1 0

0 1 0 0 0 1

0 1 0 0 0 1

0 1 1 0 1 −1

⎞

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎝

1 1 1 0 1 0

0 1 0 0 0 1

0 0 0 0 0 0

0 2 1 0 1 0

⎞

⎟

⎟

⎠

,

from which we have B = (M1, M2, M4).

We complete B to a basis C for R
2,3 by considering 3 elements in E and the same

reduction:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M1

M2

M4

E13

E21

E22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 0 1 0

0 1 0 0 0 1

0 2 1 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Since this matrix is reduced by row, the vectors {M1, M2, M4, E13, E21, E22} are 6

linearly independent vectors in R
2,3 (whose dimension is 6). This is enough to say

that they give a basis C for R
2,3 completing B.

4.5 The Trace of a Matrix

We end this chapter with another useful notion for square matrices.

Definition 4.5.1 The trace of a square matrix is the function tr : R
n,n → R defined

as follows. If A = (ai j ) its trace is given by
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tr(A) = a11 + a22 + · · · + ann =

n
∑

j=1

a j j .

That is, the trace of a matrix is the sum of its diagonal elements.

The following proposition proves an important property of the trace function for a

matrix.

Proposition 4.5.2 With A = (ai j ) and B = (bi j ) ∈ R
n,n it holds that

tr(AB) = tr(B A).

Proof The entry (i, j) in AB is (AB)i j =
∑n

k=1 aikbk j , while the entry (i, j) in B A

is (B A)i j =
∑n

k=1 bikak j . From the row by column product of square matrices one

obtaines

tr(AB) =

n
∑

j=1

(AB) j j =

n
∑

j=1

n
∑

k=1

a jkbk j

=

n
∑

k=1

n
∑

j=1

bk j a jk

=

n
∑

k=1

(B A)kk = tr(B A),

which is the claim. �

Because of the above property one says that the trace is cyclic.
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The Determinant

The notion of determinant of a matrix plays an important role in linear algebra.

While the rank measures the linear independence of the row (or column) vectors of a

matrix, the determinant (which is defined only for square matrices) is used to control

the invertibility of a matrix and in explicitly constructing the inverse of an invertible

matrix.

5.1 A Multilinear Alternating Mapping

The determinant can be defined as an abstract function by using multilinear algebra.

We shall define it constructively and using a recursive procedure.

Definition 5.1.1 The determinant of a 2 × 2 matrix is the map

det : R
2,2 → R , A �→ det(A) = |A|

defined as

A =

(

a11 a12

a21 a22

)

�→ det(A) =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21.

The above definition shows that the determinant can be though of as a function

of the column vectors of A = (C1, C2), that is

det : R
2 × R

2 → R , (C1, C2) �→ a11a22 − a12a21.

It is immediate to see that the map det is bilinear on the column of A, that is
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det(λC1 + λ′C ′
1, C2) = λ det(C1, C2) + λ′ det(C ′

1, C2)

det(C1,λC2 + λ′C ′
2) = λ det(C1, C2) + λ′ det(C1, C ′

2) (5.1)

for any C1, C ′
1, C2, C ′

2 ∈ R
2 and any λ,λ′ ∈ R.

The map det is indeed alternating (or skew-symmetric), that is

det(C2, C1) = − det(C1, C2). (5.2)

From (5.2) the determinant of A vanishes if the columns C1 and C2 coincide.

More generally, det(A) = 0 if C2 = λC1 for λ ∈ R, since, from (5.1)

det(C1, C2) = det(C1,λC1) = λ det(C1, C1) = 0.

Since the determinant map is bilinear and alternating, one also has

det(C1 + λC2, C2) = det(C1, C2) + det(λC2, C2) = det(C1, C2).

Exercise 5.1.2 Given the canonical basis (e1, e2) for R
2, we compute

det(e1, e1) =

∣

∣

∣

∣

1 1

0 0

∣

∣

∣

∣

= 0, det(e1, e2) =

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

= 1

det(e2, e1) =

∣

∣

∣

∣

0 1

1 0

∣

∣

∣

∣

= −1, det(e2, e2) =

∣

∣

∣

∣

0 0

1 1

∣

∣

∣

∣

= 0.

We generalise the definition of determinant to 3 × 3 and further to n × n matrices.

Definition 5.1.3 Given a 3 × 3 matrix

A =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

one defines det : R
3,3 → R as

det(A) = |A| =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

(5.3)

= a11

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Exercise 5.1.4 Let us compute the determinant of the following matrix,

A =

⎛

⎝

1 0 −1

1 1 −1

2 1 0

⎞

⎠ .
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Using the first row as above one gets:

det(A) =

∣

∣

∣

∣

1 −1

1 0

∣

∣

∣

∣

−

∣

∣

∣

∣

1 1

2 1

∣

∣

∣

∣

= 2.

It is evident that the map det can be read, as we showed above, as defined on the

column vectors of A = (C1, C2, C3), that is

det : R
3 × R

3 × R
3 → R , (C1, C2, C3) �→ det(A).

Remark 5.1.5 It is easy to see that the map det defined in (5.3) is multilinear, that

is it is linear in each column argument. Also, for any swap of the columns of A,

det(A) changes its sign. This means that (5.3) is an alternating map (this property

generalises the skew-symmetry of the det map on 2 × 2 matrices). For example,

det(C2, C1, C3) = − det(C1, C2, C3),

with analogous relations holding for any swap of the columns of A. Then det(A) = 0

if one of the columns of A is a multiple of the others, like in

det(C1, C2,λC2) = λ det(C1, C2, C2) = −λ det(C1, C2, C2) = 0.

More generally det(A) = 0 if one of the columns of A is a linear combination of the

others as in

det(λC2 + µC3, C2, C3) = λ det(C2, C2, C3) + µ det(C3, C2, C3) = 0.

Exercise 5.1.6 If (e1, e2, e3) is the canonical basis for R
3, generalising Exer-

cise 5.1.2 one finds det(ei , ei , ei ) = 0, det(ei , ei , e j ) = 0 and det(e1, e2, e3) =

det(I3) = 1, with I3 the 3 × 3 unit matrix.

We have seen that the determinant of a 3 × 3 matrix A makes use of the deter-

minant of a 2 × 2 matrix: such a determinant is given as the alternating sum of the

elements in the first row of A, times the determinant of suitable 2 × 2 submatrices

in A. This procedure is generalised to define the determinant of n × n matrices.

Definition 5.1.7 Consider the matrix A = (ai j ) ∈ R
n,n , or

A =

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

⎞

⎟

⎟

⎟

⎠

.

For any pair (i, j) we denote by Ai j the (n − 1) × (n − 1) submatrix of A obtained

by erasing the i-th row and the j-th column of A, Firstly, the number det(Ai j ) is
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called the minor of the element ai j . Then the cofactor αi j of the element ai j (or

associated with ai j ) is defined as

αi j = (−1)i+ j det(Ai j ).

Exercise 5.1.8 With A ∈ R
3,3 given by

A =

⎛

⎝

1 0 −1

3 −2 −1

2 5 0

⎞

⎠ ,

we easily compute for instance,

A11 =

(

−2 −1

5 0

)

, A12 =

(

3 −1

2 0

)

and

α11 = (−1)1+1|A11| = 5, α12 = (−1)1+2|A12| = −2.

Definition 5.1.9 Let A = (ai j ) ∈ R
n,n . One defines its determinant by the formula

det(A) = a11α11 + a12α12 + · · · + a1nα1n. (5.4)

Such an expression is also referred to as the expansion of the determinant of the

matrix A with respect to its first row.

The above definition is recursive: the determinant of a n × n matrix involves

the determinants of a (n − 1) × (n − 1) matrices, starting from the definition of the

determinant of a 2 × 2 matrix. The Definition 5.1.3 is indeed the expansion with

respect to the first row as written in (5.4).

That the determinant det(A) of a matrix A can be equivalently defined in terms

of a similar expansion with respect to any row or column of A is the content of the

following important theorem, whose proof we omit.

Theorem 5.1.10 (Laplace) For any i = 2, . . . , n it holds that

det(A) = ai1αi1 + ai2αi2 + · · · + ainαin. (5.5)

This expression is called the expansion of the determinant of A with respect to its

i-th row.

For any j = 1, . . . , n, it holds that

det(A) = a1 jα1 j + a2 jα2 j + · · · + anjαnj (5.6)

and this expression is the expansion of the determinant of A with respect to its j -th

column.
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The expansions (5.5) or (5.6) are called the cofactor expansion of the determinant

with respect to the corresponding row or column.

Exercise 5.1.11 Let In ∈ R
n,n be the n × n unit matrix. It is immediate to compute

det(In) = 1.

From the Laplace theorem the following statement is obvious.

Corollary 5.1.12 Let A ∈ R
n,n . Then det(tA) = det(A).

Also, from the Laplace theorem it is immediate to see that det(A) = 0 if A

has a null column or a null row. We can still think of the determinant of the

matrix A as a function defined on its columns. If A = (C1, · · · , Cn), one has

det(A) = det(C1, . . . , Cn), that is

det : R
n × · · · × R

n → R, (C1, . . . , Cn) �→ det(A).

The following result, that can be proven by using the Definition 5.1.9, generalises

properties already seen for the matrices of order two and three.

Proposition 5.1.13 Let A = (C1, · · · , Cn) ∈ R
n,n . One has the following proper-

ties:

(i) For any λ,λ′ ∈ R and C ′
1 ∈ R

n , it holds that

det
(

λC1 + λ′C ′
1, C2, . . . , Cn

)

= λ det(C1, C2, . . . , Cn) + λ′ det(C ′
1, C2, . . . , Cn).

Analogous properties hold for any other column of A.

(ii) If A′ = (Cσ(1), . . . , Cσ(n)), where σ = (σ(1), . . . ,σ(n)) is a permutation of the

columns transforming A �→ A′, it holds that

det(A′) = (−1)σ det(A),

where (−1)σ is the parity of the permutation σ, that is (−1)σ = 1 if σ is given

by an even number of swaps, while (−1)σ = −1 if σ is given by an odd number

of swaps.

Corollary 5.1.14 Let A = (C1, · · · , Cn) ∈ R
n,n . Then,

(i) det(λC1, C2, . . . , Cn) = λ det(A),

(ii) if Ci = C j for any pair i, j , then det(A) = 0,

(iii) det(α2C2 + · · · + αnCn, C2, . . . , Cn) = 0; that is the determinant of a matrix

A is zero if a column of A is a linear combination of its other columns,

(iv) det(C1 + α2C2 + · · · + αnCn, C2, . . . , Cn) = det(A).
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Proof (i) it follows from the Proposition 5.1.13, with λ′ = 0,

(ii) if Ci = C j , the odd permutation σ which swaps Ci with C j does not change the

matrix A; then from the Proposition 5.1.13, det(A) = − det(A) ⇒ det(A) = 0,

(iii) from 5.1.13 we can write

det(α2C2 + · · · + αnCn, C2, . . . , Cn) =

n
∑

i=2

αi det(Ci , C2, . . . , Cn) = 0

since, by point (ii), one has det(Ci , C2, . . . , Cn) = 0 for any i = 2, . . . , n,

(iv) from the previous point we have

det(C1 + α2C2 + · · · + αnCn, C2, . . . , Cn)

= det(C1, C2, . . . , Cn) +

n
∑

i=2

αi det(Ci , C2, . . . , Cn) = det(A).

This concludes the proof. �

Remark 5.1.15 From the Laplace theorem it follows that the determinant of A is an

alternating and multilinear function even when it is defined via the expansion with

respect to the rows of A.

We conclude this section with the next useful theorem, whose proof we omit.

Theorem 5.1.16 (Binet) Given A, B ∈ R
n,n it holds that

det(AB) = det(A) det(B). (5.7)

5.2 Computing Determinants via a Reduction Procedure

The Definition 5.1.9 and the Laplace theorem allow one to compute the determinant of

any square matrix. In this section we illustate how the reduction procedure studied

in the previous chapter can be used when computing a determinant. We start by

considering upper triangular matrices.

Proposition 5.2.1 Let A = (ai j ) ∈ R
n,n . If A is diagonal then,

det(A) = a11a22 · · · ann .

More generally, if A is an upper (respectively a lower) triangular matrix,

det(A) = a11a22 · · · ann .
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Proof The claim for a diagonal matrix is evident. With A an upper (respectively

a lower) triangular matrix, by expanding det(A) with respect to the first column

(respectively row) the submatrix A11 is upper (respectively lower) triangular. The

result then follows by a recursive argument. �

Remark 5.2.2 In Sect. 4.4 we defined the type (s), (λ) and (D) elementary transfor-

mations on the rows of a matrix. If A is a square matrix, transformed under one of

these transformations into the matrix A′, we have the following results:

• (s) : det(A′) = − det(A) (Proposition 5.1.13),

• (λ) : det(A′) = λ det(A) (Corollary 5.1.14),

• (D) : det(A′) = det(A) (Corollary 5.1.14).

It is evident that the above relations are valid when A is mapped into A′ with ele-

mentary transformations on its columns.

Exercise 5.2.3 Let us use row transformations on the matrix A:

A =

⎛

⎝

1 1 −1

2 1 1

1 2 1

⎞

⎠

R2 �→ R2 − 2R1

−−−−−−−−−−→

R3 �→R3 − R1

A′

A′ =

⎛

⎝

1 1 −1

0 −1 3

0 1 2

⎞

⎠ −−−−−−−−−−→

R′
3 �→R′

3 + R′
2

A′′

A′′ =

⎛

⎝

1 1 −1

0 −1 3

0 0 5

⎞

⎠ .

Since we have used only type (D) transformations, from the Remark 5.2.2

det(A) = det(A′′) and from Proposition 5.2.1 we have det(A′′) = 1 · (−1) · 5 = −5.

Exercise 5.2.4 Via a sequence of elementary transformations,

A =

⎛

⎝

0 1 1

1 2 −1

1 1 1

⎞

⎠

C1 ↔ C2

−−−−−→ A′

A′ =

⎛

⎝

1 0 1

2 1 −1

1 1 1

⎞

⎠

R′
2 �→ R′

2 − 2R′
1

−−−−−−−−−−→

R′
3 �→ R′

3 − R′
1

A′′

A′′ =

⎛

⎝

1 0 1

0 1 −3

0 1 0

⎞

⎠

R′′
3 �→ R′′

3 − R′′
2

−−−−−−−−−−→ A′′′

A′′′ =

⎛

⎝

1 0 1

0 1 −3

0 0 3

⎞

⎠ .
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Since we used once a type (s) transformation det(A) = − det(A′′′) = −3.

Remark 5.2.5 The sequence of transformations defined in the Exercise 5.2.3 does

not alter the space of rows of the matrix A, that is R(A) = R(A′′). The sequence of

transformations defined in the Exercise 5.2.4 does alter both the spaces of rows and

of columns of the matrix A.

Proposition 5.2.6 Let A = (ai j ) ∈ R
n,n be reduced by rows and without null rows.

It holds that

det(A) = (−1)σa1,σ(1) · · · an,σ(n)

where ai,σ(i) is the pivot element of the i-th row and σ is the permutation of the

columns mapping A into the corresponding (complete) upper triangular matrix.

Proof Let B = (bi j ) ∈ R
n,n be the complete upper triangular matrix obtained

from A with the permutation σ. From the Proposition 5.1.13 we have det(A) =

(−1)σ det(B), with (−1)σ the parity of σ. From the Proposition 5.2.1 we have

det(B) = b11b22 · · · bnn , with b11 = a1,σ(1), . . . , bnn = an,σ(n) by construction, thus

obtaining the claim. �

The above proposition suggests that a sequence of type (D) transformations on the

rows of a square matrix simplifies the computation of its determinant. We summarise

this suggestion as a remark.

Remark 5.2.7 In order to compute the determinant of the matrix A ∈ R
n,n:

• riduce A by row with only type (D) transformations to a matrix A′; this is

always possible from the Proposition 4.4.3. Then det(A) = det(A′) from the

Remark 5.2.2;

• compute the determinant of A′. Then,

– if A′ has a null row, from the Corollary 5.1.14 one has det(A′) = 0;

– if A′ has no null rows, from the Proposition 5.2.6 one has

det(A′) = (−1)σa′
1,σ(1) · · · a′

n,σ(n)

with σ = (σ(1), . . . ,σ(n)).

Again, the result continues to hold by exchanging rows with columns.

Exercise 5.2.8 With the above method we have the following equalities,

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 −1

0 1 1 1

−1 −1 1 1

1 2 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 −1

0 1 1 1

0 1 2 0

0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 −1

0 1 1 1

0 0 1 −1

0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 −1

0 1 1 1

0 0 1 −1

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1.
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5.3 Invertible Matrices

We now illustrate some use of the determinant in the study of invertible matrices.

Proposition 5.3.1 Given A ∈ R
n,n , it holds that

det(A) = 0 ⇔ rk(A) < n.

Proof

(⇐) : By hypothesis, the system of the n columns C1, . . . , Cn of A is not free, so

there is least a column of A which is a linear combination of the other columns.

From the Corollary 5.1.14 it is then det(A) = 0.

(⇒) : Suppose rk(A) = n. With this assumption A could be reduced by row to a

matrix A′ having no null rows since rk(A) = rk(A′) = n. From the Propo-

sition 5.2.6, det(A′) is the product of the pivot elements in A′ and since by

hypothesis they would be non zero, we would have det(A′) 
= 0 and from the

Remark 5.2.2 det(A) = det(A′) 
= 0 thus contradicting the hypothesis. �

Remark 5.3.2 The equivalence in the above proposition can be stated as

det(A) 
= 0 ⇔ rk(A) = n.

Proposition 5.3.3 A matrix A = (ai j ) ∈ R
n,n is invertible (or non-singular) if and

only if

det(A) 
= 0.

Proof If A is invertible, the matrix inverse A−1 exists with AA−1 = In . From the

Binet theorem, this yields det(A) det(A−1) = det(In) = 1 or det(A−1) =

(det(A))−1 
= 0.

If det(A) 
= 0, the inverse of A is the matrix B = (bi j ) with elements

bi j =
1

det(A)
α j i

and α j i the cofactor of a j i as in the Definition 5.1.7. Indeed, an explicit computation

shows that

(AB)rs =

n
∑

k=1

arkbks =
1

det(A)

n
∑

k=1

arkαsk =

{

det(A)

det(A)
= 1 if r = s

0 if r 
= s
.

The result for r = s is just the cofactor expansion of the determinant given by the

Laplace theorem in Theorem 5.1.10, while the result for r 
= s is known as the second

Laplace theorem (whose discussion we omit). The above amounts to AB = In so

that A is invertible with B = A−1. �
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Notice that in the inverse matrix B there is an index transposition, that is up to

the determinant factor, the element bi j of B is given by the cofactor α j i of A.

Exercise 5.3.4 Let us compute the inverse of the matrix

A =

(

a b

c d

)

.

This is possible if and only if |A| = ad − bc 
= 0. In such a case,

A−1 =
1

|A|

(

α11 α21

α12 α22

)

,

with α11 = d, α21 = −b, α12 = −c, α22 = a, so that we get the final result,

A−1 =
1

|A|

(

d −b

−c a

)

.

Exercise 5.3.5 Let us compute the inverse of the matrix A from the Exercise 5.1.4,

A =

⎛

⎝

1 0 −1

1 1 −1

2 1 0

⎞

⎠ .

From the computation there det(A) = 2, explicit computations show that

α11 = (+) 1 α12 = (−) 2 α13 = (+) (−1)

α21 = (−) 1 α22 = (+) 2 α23 = (−) 1

α31 = (+) 1 α32 = (−) 0 α33 = (+) 1

.

It is then easy to find that

A−1 =
1

2

⎛

⎝

1 −1 1

−2 2 0

−1 −1 1

⎞

⎠ .



Chapter 6

Systems of Linear Equations

Linear equations and system of them are ubiquitous and an important tool in all

of physics. In this chapter we shall present a systematic approach to them and to

methods for their solutions.

6.1 Basic Notions

Definition 6.1.1 An equation in n unknown variables x1, . . . , xn with coefficients

in R is called linear if it has the form

a1x1 + · · · + an xn = b,

with ai ∈ R and b ∈ R. A solution for such a linear equation is an n-tuple of real

numbers (α1, . . . ,αn) ∈ R
n which, when substituted for the unknowns, yield an

‘identity’, that is

a1α1 + · · · + anαn = b.

Exercise 6.1.2 It is easy to see that the element (2, 6, 1) ∈ R
3 is a solution for the

equation with real coefficients given by

3x1 − 2x2 + 7x3 = 1.

Clearly, this is not the only solution for the equation: the element ( 1
3
, 0, 0) is for

instance a solution of the same equation.

Definition 6.1.3 A collection of m linear equations in the n unknown variables

x1, . . . , xn and with real coefficients is called a linear system of m equations in n
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unknowns. We shall adopt the following notation

� :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a11x1 + a12x2 + . . . + a1n xn = b1

a21x1 + a22x2 + . . . + a2n xn = b2

...
...

...
...

am1x1 + am2x2 + . . . + amn xn = bm

.

A solution for a given linear system is an n-tuple (α1, . . . ,αn) in R
n which

simultaneously solves each equation of the system. The collection of the solutions of

the system � is then a subset of R
n , denoted by S� and called the space of solutions

of �.

A system � is called compatible or solvable if its space of solutions is non void,

S� �= ∅; it will be said to be incompatible if S� = ∅.

Exercise 6.1.4 The element (1,−1) ∈ R
2 is a solution of the system

{

x + y = 0

x − y = 2
.

The following system
{

x + y = 0

x + y = 1
.

has no solutions.

In the present chapter we study conditions under which a linear system is com-

patible and in such a case find methods to determine its space of solutions. We shall

make a systematic use of the matrix formalism described in the previous Chaps. 4

and 5.

Definition 6.1.5 There are two matrices naturally associated to the linear system �

as given in the Definition 6.1.3:

1. the matrix of the coefficients of �, A = (ai j ) ∈ R
m,n ,

2. the matrix of the inhomogeneous terms of �, B = t (b1, . . . , bm) ∈ R
m,1.

The complete or augmented matrix of the linear system � is given by

(A, B) = (ai j | bi ) =

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1

b2

...

bm

⎞

⎟

⎟

⎟

⎠

.

By using these matrices the system � can be represented as follows
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� :

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x1

x2

...

xn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

b1

b2

...

bm

⎞

⎟

⎟

⎟

⎠

or more succinctly as

� : AX = B

where the array of unknowns is written as X = t (x1, . . . , xn) and (abusing notations)

thought to be an element in R
n,1.

Definition 6.1.6 Two linear systems � : AX = B and �′ : A′ X = B ′ are called

equivalent if their spaces of solutions coincide, that is � ∼ �′ if S� = S�′ . Notice

that the vector of unknowns for the two systems is the same.

Remark 6.1.7 The linear systems AX = B and A′ X = B ′ are trivially equivalent

• if (A′, B ′) results from (A, B) by adding null rows,

• if (A′, B ′) is given by a row permutation of (A, B).

The following linear systems are evidently equivalent:

{

x + y = 0

x − y = 2
,

{

x − y = 2

x + y = 0
.

Remark 6.1.8 Notice that for a permutation of the columns of the matrix of its

coefficients a linear system � changes to a system that is in general not equivalent

to the starting one. As an example, consider the compatible linear system AX = B

given in Exercise 6.1.4. If the columns of A are swapped one has

(A, B) =

(

1 1

1 −1

∣

∣

∣

∣

0

2

)

C1 ↔ C2

−−−−−−−−−−→

(

1 1

−1 1

∣

∣

∣

∣

0

2

)

= (A′, B).

One checks that the solution (1,−1) of the starting system is not a solution for

the system A′ X = B.

6.2 The Space of Solutions for Reduced Systems

Definition 6.2.1 A linear system AX = B is called reduced if the matrix A of its

coefficients is reduced by rows in the sense of Sect. 4.4. Solving a reduced system is

quite elementary, as the following exercises show.

Exercise 6.2.2 Let the linear system � be given by
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� :

⎧

⎨

⎩

x + y + 2z = 4

y − 2z = −3

z = 2

with (A, B) =

⎛

⎝

1 1 2

0 1 −2

0 0 1

∣

∣

∣

∣

∣

∣

4

−3

2

⎞

⎠ .

It is reduced, and has the only solution (x, y, z) = (−1, 1, 2). This is easily found

by noticing that the third equation gives z = 2. By inserting this value into the second

equation one has y = 1, and by inserting both these values into the first equation one

eventually gets x = −1.

Exercise 6.2.3 To solve the linear system

� :

⎧

⎨

⎩

2x + y + 2z + t = 1

2x + 3y − z = 3

x + z = 0

with (A, B) =

⎛

⎝

2 1 2 1

2 3 −1 0

1 0 1 0

∣

∣

∣

∣

∣

∣

1

3

0

⎞

⎠

one proceeds as in the previous exercise. The last equation gives z = −x . By setting

x = τ , one gets the solutions (x, y, z, t) = (τ ,−τ + 1,−τ , τ ) with τ ∈ R. Clearly

� has an infinite number of solutions: the space of solutions for � is bijective to

elements τ ∈ R.

Exercise 6.2.4 The linear system � : AX = B, with

(A, B) =

⎛

⎜

⎜

⎝

1 2 1

0 −1 2

0 0 3

0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

3

1

2

1

⎞

⎟

⎟

⎠

,

is trivially not compatible since the last equation would give 0 = 1.

Remark 6.2.5 If A is reduced by row, the Exercises 6.2.2 and 6.2.3 show that one first

determines the value of the unknown corresponding to the pivot (special) element

of the bottom row and then replaces such unknown by its value in the remaining

equations. This amounts to delete, or eliminate one of the unknowns. Upon iterating

this procedure one completely solves the system. This procedure is showed in the

following displays where the pivot elements are bold typed:

(A, B) =

⎛

⎝

1 1 2

0 1 −2

0 0 1

∣

∣

∣

∣

∣

∣

4

−3

2

⎞

⎠ .

Here one determines z at first then y and finally x . As for the Exercise 6.2.3, one

writes

(A, B) =

⎛

⎝

2 1 2 1

2 3 −1 0

1 0 1 0

∣

∣

∣

∣

∣

∣

1

3

0

⎞

⎠

where one determines z, then y and after those one determines t .
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The previous exercises suggest the following method that we describe as a propo-

sition.

Proposition 6.2.6 (The method of eliminations) Let � : AX = B be a reduced sys-

tem.

(1) From the Remark 6.1.7 we may assume that (A, B) has no null rows.

(2) If A has null rows they correspond to equations like 0 = bi with bi �= 0 since

the augmented matrix (A, B) has no null rows. This means that the system is not

compatible, S� = ∅.

(3) If A has no null rows, then m ≤ n. Since A is reduced, it has m pivot elements, so

its rank is m. Starting from the bottom row one can then determine the unknown

corresponding to the pivot element and then, by substituting such an unknown

in the remaining equations, iterate the procedure thus determining the space of

solutions.

We describe the general procedure when A is a complete upper triangular matrix.

(A, B) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 . . . a1m ∗ . . . ∗ a1n

0 a22 a23 . . . a2m ∗ . . . ∗ a2n

0 0 a33 . . . a3m ∗ . . . ∗ a3n

...
...

...
...

...
...

...

0 0 0 . . . amm ∗ . . . ∗ amn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1

b2

b3

...

bm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with all diagonal elements ai i �= 0. The equation corresponding to the bottom line

of the matrix is

amm xm + amm+1xm+1 + · · · + amn xn = bm

with amm �= 0. By dividing both sides of the equation by amm , one has

xm = a−1
mm(bm − amm+1xm+1 + · · · − amn xn).

Then xm is a function of xm+1, . . . , xn . From the (m − 1)-th row one analogously

obtains

xm−1 = a−1
m−1m−1(bm−1 − am−1m xm − am−1m+1xm+1 + · · · − am−1n xn).

By replacing xm with its value (as a function of xm+1, . . . , xn) previously deter-

mined, one writes xm−1 as a function of the last unknowns xm+1, . . . , xn . The natural

iterations of this process leads to write the unknowns xm−2, xm−3, . . . , x1 as functions

of the remaining ones xm+1, . . . , xn .

Remark 6.2.7 Since the m unknowns x1, . . . , xm can be expressed as functions of

the remaining ones, the n − m unknowns xm+1, . . . , xn , the latter are said to be free

unknowns. By choosing an arbitrary numerical value for them, xm+1 = λ1, . . . , xn =

λn−m , with λi ∈ R, one obtains a solution, since the matrix A is reduced, of the linear

system. This allows one to define a bijection
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R
n−m ⇔ S�

where n is the number of unknowns of � and m = rk(A). One usually labels this

result by saying that the linear system has ∞n−m solutions.

6.3 The Space of Solutions for a General Linear System

One of the possible methods to solve a general linear system AX = B uses the

notions of row reduction for a matrix as described in Sect. 4.4. From the definition

at the beginning of that section one has the following proposition.

Theorem 6.3.1 Let � : AX = B be a linear system, and let (A′, B ′) be a trans-

formed by row matrix of (A, B). The linear systems � and the transformed one

�′ : A′ X = B ′ are equivalent.

Proof We denote as usual A = (ai j ) and B = t (b1, . . . , bm). If (A′, B ′) is obtained

from (A, B) under a type (e) elementary transformation, the claim is obvious as seen

in Remark 6.1.7. If (A′, B ′) is obtained from (A, B) under a type (λ) transformation

by the row Ri the claim follows by noticing that, for any λ �= 0, the linear equation

ai1x1 + · · · + ain xn = bi

is equivalent to the equation

λai1x1 + · · · + λain xn = λbi .

Let now (A′, B ′) be obtained from (A, B) via a type (D) elementary transforma-

tion,

Ri → Ri + λR j

with j �= i . To be definite we take i = 2 and j = 1. We then have

(A′, B ′) =

⎛

⎜

⎜

⎜

⎝

R1

R2 + λR1

...

Rm

⎞

⎟

⎟

⎟

⎠

.

Let us assume that α = (α1, . . . ,αn) is a solution for �, that is

ai1α1 + · · · + ainαn = bi

for any i = 1, . . . , m. That all but the second equation of �′ are solved by α is
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obvious; it remains to verify whether α solves also the second equation in it that is,

to show that

(a21 + λa11)x1 + · · · + (a2n + λa1n)xn = b2 + λb1.

If we add the equation for i = 2 to λ times the equation for i = 1, we obtain

(a21 + λa11)α1 + · · · + (a2n + λa1n)αn = b2 + λb1

thus (α1, . . . ,αn) is a solution for �′ and S� ⊆ S�′ . The inclusion S�′ ⊆ S� is

proven in an analogous way. �

By using the above theorem one proves a general method to solve linear systems

known as Gauss’ elimination method or Gauss’ algorithm.

Theorem 6.3.2 The space S� of the solutions of the linear system � : AX = B is

determined via the following steps.

(1) Reduce by rows the matrix (A, B) to (A′, B ′) with A′ reduced by row.

(2) Using the method given in the Proposition 6.2.6 determine the space S�′ of the

solutions for the system �′ : A′ X = B ′.

(3) From the Theorem 6.3.1 it is � ∼ �′ that is S� = S�′ .

Exercise 6.3.3 Let us solve the following linear system

� =

⎧

⎨

⎩

2x + y + z = 1

x − y − z = 0

x + 2y + 2z = 1

whose complete matrix is

(A, B) =

⎛

⎝

2 1 1

1 −1 −1

1 2 2

∣

∣

∣

∣

∣

∣

1

0

1

⎞

⎠ .

By reducing such a matrix by rows, we have

(A, B)

R2 → R2+R1

−−−−−−−−−−→

R3 → R3−2R1

⎛

⎝

2 1 1

3 0 0

−3 0 0

∣

∣

∣

∣

∣

∣

1

1

−1

⎞

⎠

−−−−−−−−−−→

R3 → R3+R2

⎛

⎝

2 1 1

3 0 0

0 0 0

∣

∣

∣

∣

∣

∣

1

1

0

⎞

⎠ = (A′, B ′).

Since A′ is reduced the linear system �′ : A′ X = B ′ is reduced and then solvable

by the Gauss’ method. We have
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�′ :

{

2x + y + z = 1

3x = 1
=⇒

{

y + z = 1
3

x = 1
3

.

It is now clear that one unknown is free so the linear system has ∞1 solutions.

By choosing z = λ the space S� of solutions for � is

S� = {(x, y, z) ∈ R
3 | (x, y, z) = ( 1

3
, 1

3
− λ,λ), λ ∈ R}.

On the other end, by choosing y = α the space S� can be written as

S� = {(x, y, z) ∈ R
3 | (x, y, z) = ( 1

3
,α, 1

3
− α), α ∈ R}.

It is obvious that we are representing the same subset S� ⊂ R
3 in two different

ways.

Notice that the number of free unknowns is the difference between the total number

of unknowns and the rank of the matrix A.

Exercise 6.3.4 Let us solve the following linear system,

� :

⎧

⎨

⎩

x + y − z = 0

2x − y = 1

y + 2z = 2

whose complete matrix is

(A, B) =

⎛

⎝

1 1 −1

2 −1 0

0 1 2

∣

∣

∣

∣

∣

∣

0

1

2

⎞

⎠ .

The reduction procedure gives

(A, B)

R2 → R2−2R1

−−−−−−−−−−→

⎛

⎝

1 1 −1

0 −3 2

0 1 2

∣

∣

∣

∣

∣

∣

0

1

2

⎞

⎠

−−−−−−−−−−→

R3 → R3−R2

⎛

⎝

1 1 −1

0 −3 2

0 4 0

∣

∣

∣

∣

∣

∣

0

1

1

⎞

⎠ = (A′, B ′).

Since A′ is reduced the linear system �′ : A′ X = B ′ is reduced with no free

unknowns. This means that S�′ (and then S�) has ∞0 = 1 solution. The Gauss’

method provides us a way to find such a solution, namely

�′ :

⎧

⎨

⎩

x − y + z = 0

−3y + 2z = 1

4y = 1

=⇒

⎧

⎨

⎩

x − z = − 1
4

2z = 7
4

y = 1
4

.
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This gives S� = {(x, y, z) = ( 5
8
, 1

4
, 7

8
)}. Once more the number of free unknowns

is the difference between the total number of unknowns and the rank of the matrix A.

The following exercise shows how to solve a linear system with one coefficient

given by a real parameter instead of a fixed real number. By solving such a system we

mean to analyse the conditions on the parameter under which the system is solvable

and to provide its space of solutions as depending on the possible values of the

parameter.

Exercise 6.3.5 Let us study the following linear system,

�λ :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x + 2y + z + t = −1

x + y − z + 2t = 1

2x + λy + λt = 0

−λy − 2z + λt = 2

with λ ∈ R. When the complete matrix for such a system is reduced, particular care

must be taken for some critical values of λ. We have

(A, B) =

⎛

⎜

⎜

⎝

1 2 1 1

1 1 −1 2

2 λ 0 λ

0 −λ −2 λ

∣

∣

∣

∣

∣

∣

∣

∣

−1

1

0

2

⎞

⎟

⎟

⎠

R2 → R2−R1

−−−−−−−−−−→

R3 → R3−2R1

⎛

⎜

⎜

⎝

1 2 1 1

0 −1 −2 1

0 λ − 4 −2 λ − 2

0 −λ −2 λ

∣

∣

∣

∣

∣

∣

∣

∣

−1

2

2

2

⎞

⎟

⎟

⎠

R3 → R3−R2

−−−−−−−−−−→

R4→R4−R2

⎛

⎜

⎜

⎝

1 2 1 1

0 −1 −2 1

0 λ − 3 0 λ − 3

0 −λ + 1 0 λ − 1

∣

∣

∣

∣

∣

∣

∣

∣

−1

2

0

0

⎞

⎟

⎟

⎠

= (A′, B ′).

The transformations R3 → R3 + R4, then R3 → 1
2

R3 and finally R4 → R4 +

(1 − λ)R3 give a further reduction of (A′, B ′) as

⎛

⎜

⎜

⎝

1 2 1 1

0 −1 −2 1

0 −1 0 λ − 2

0 −λ + 1 0 λ − 1

∣

∣

∣

∣

∣

∣

∣

∣

−1

2

0

0

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 1 1

0 −1 −2 1

0 −1 0 λ − 2

0 0 0 a44

∣

∣

∣

∣

∣

∣

∣

∣

−1

2

0

0

⎞

⎟

⎟

⎠

= (A′′, B ′′)

with a44 = (1 − λ)(λ − 3). Notice that the last transformation is meaningful for any

λ ∈ R. In the reduced form (A′′, B ′′) we have that R4 is null if and only if either

λ = 3 or λ = 1. For such values of the parameter λ either R3 or R4 in A′ is indeed

null. We can now conclude that �λ is solvable for any value of λ ∈ R and we have
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• If λ ∈ {1, 3} then a44 = 0, so rk(A) = 3 and �λ has ∞1 solutions,

• If λ /∈ {1, 3} then a44 �= 0, so rk(A) = 4 and �λ has a unique solution.

We can now study the following three cases:

(a) λ /∈ {1, 3}, that is

�λ :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x + 2y + z + t = −1

−y − 2z + t = 2

−y + (λ − 2)t = 0

(λ − 3)(λ − 1)t = 0

.

From our assumption, we have that a44 = (λ − 3)(λ − 1) �= 0 so we get t = 0.

By using the Gauss’ method we then write

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 0

z = −1

y = 0

t = 0

.

This shows that for λ �= 1, 3 the space S�λ
does not depend on λ.

(b) If λ = 1 we can delete the fourth equation since it is a trivial identity. We have

then

�λ=1 :

⎧

⎨

⎩

x + 2y + z + t = −1

−y − 2z + t = 2

y + t = 0

.

The Gauss’ method gives us
⎧

⎨

⎩

x = 0

z = t − 1

y = −t

and this set of solutions can be written as

{(x, y, z, t) ∈ R
4 | (x, y, z, t) = (0,−α,α − 1,α), α ∈ R}.

(c) If λ = 3 the non trivial part of the system turns out to be

�λ=3 :

⎧

⎨

⎩

x + 2y + z + t = −1

−y − 2z + t = 2

−y + t = 0

and we write the solutions as
⎧

⎨

⎩

x = −3t

z = −1

y = t

or equivalently S�λ=3
= {(x, y, z, t) ∈ R

4 | (x, y, z, t) = (−3α,α,−1,α), α ∈ R}.
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What we have discussed can be given in the form of the following theorem which

provides general conditions under which a linear system is solvable.

Theorem 6.3.6 (Rouché–Capelli). The linear system � : AX = B is solvable if and

only if rk(A) = rk(A, B). In such a case, denoting rk(A) = rk(A, B) = ρ and with

n the number of unknowns in �, the following holds true:

(a) the number of free unknowns is n − ρ,

(b) the n − ρ free unknowns have to be selected in such a way that the remaining ρ

unknowns correspond to linearly independent columns of A.

Proof By noticing that the linear system � can be written as

x1C1 + · · · + xnCn = B

with C1, . . . , Cn the columns of A, we see that � is solvable if and only if B is a linear

combination of these columns that is if and only if the linear span of the columns of

A coincides with the linear span of the columns of (A, B). This condition is fulfilled

if and only if rk(A) = rk(A, B).

Suppose then that the system is solvable.

(a) Let �′ : A′ X = B ′ be the system obtained from (A, B) by reduction by rows.

From the Remark 6.2.7 the system �′ has n − rk(A′) free unknowns. Since

� ∼ �′ and rk(A) = rk(A′) the claim follows.

(b) Possibly with a swap of the columns in A = (C1, . . . , Cn) (which amounts to

renaming the unknown), the result that we aim to prove is the following:

xρ+1, . . . , xn are free ⇔ C1, . . . , Cρ are linearly independent.

Let us at first suppose that C1, . . . , Cρ are linearly independent, and set

A = (C1, . . . , Cρ). By a possible reduction and a swapping of some equations,

with rk(A) = rk(A, B) = ρ, the matrix for the system can be written as

(A′, B ′) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 . . . a1ρ ∗ . . . ∗ b1

0 a22 a23 . . . a2ρ ∗ . . . ∗ b2

0 0 a33 . . . a3ρ ∗ . . . ∗ b3

...
...

...
...

...
...

...

0 0 0 . . . aρρ ∗ . . . ∗ bρ

0 0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 . . . 0 0 . . . 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The claim—that xρ+1, . . . , xn can be taken to be free—follows easily from the

Gauss’ method.

On the other hand, let us assume that xρ+1, . . . , xn are free unknowns for the

linear system and let us also suppose that C1, . . . , Cρ are linearly dependent. This
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would result in the rank of A be less that ρ and there would exist a reduction of

(A, B) for which the matrix of the linear system turns out to be

(A′, B ′) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 . . . a1ρ ∗ . . . ∗
...

...
...

...

aρ−1 1 . . . aρ−1 ρ ∗ . . . ∗

0 . . . 0 ∗ . . . ∗
...

...
...

...

0 . . . 0 ∗ . . . ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Since rk(A′, B ′) = rk(A, B) = ρ there would then be a non zero row Ri in

(A′, B ′) with i ≥ ρ. The equation corresponding to such an Ri , not depending

on the first ρ unknowns, would provide a relation among the xρ+1, . . . , xn , which

would then be not free. �

Remark 6.3.7 If the linear system � : AX = B, with n unknowns and m equations

is solvable with rk(A) = ρ, then

(i) � is equivalent to a linear system �′ with ρ equations arbitrarily chosen among

the m equations in �, provided they are linearly independent.

(ii) there is a bijection between the space S� and R
n−ρ.

Exercise 6.3.8 Let us solve the following linear system depending on a parameter

λ ∈ R,

� :

⎧

⎨

⎩

λx + z = −1

x + (λ − 1)y + 2z = 1

x + (λ − 1)y + 3z = 0

.

We reduce by rows the complete matrix corresponding to � as

(A, B) =

⎛

⎝

λ 0 1

1 λ − 1 2

1 λ − 1 3

∣

∣

∣

∣

∣

∣

−1

1

0

⎞

⎠

R2 → R2−2R1

−−−−−−−−−−→

R3 → R3−3R1

⎛

⎝

λ 0 1

1 − 2λ λ − 1 0

1 − 3λ λ − 1 0

∣

∣

∣

∣

∣

∣

−1

3

3

⎞

⎠

−−−−−−−−−−→

R3 → R3−R2

⎛

⎝

λ 0 1

1 − 2λ λ − 1 0

−λ 0 0

∣

∣

∣

∣

∣

∣

−1

3

0

⎞

⎠ = (A′, B ′).

Depending on the values of the parameter λ we have the following cases.
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(a) If λ = 1, the matrix A′ is not reduced. We then write

(A′, B ′) =

⎛

⎝

1 0 1

−1 0 0

−1 0 0

∣

∣

∣

∣

∣

∣

−1

3

0

⎞

⎠ −−−−−−−−−−→

R3 → R3−R2

⎛

⎝

1 0 1

−1 0 0

0 0 0

∣

∣

∣

∣

∣

∣

−1

3

−3

⎞

⎠ .

The last row gives the equation 0 = −3 and in this case the system has no

solution.

(b) If λ �= 1 the matrix A′ is reduced, so we have:

• If λ �= 0, then rk(A) = 3 = rk(A, B), so the linear system �λ=0 has a unique

solution. With λ /∈ {0, 1} the reduced system is

�′ :

⎧

⎨

⎩

λx + z = −1

(1 − 2λ)x + (λ − 1)y = 3

−λx = 0

and the Gauss’ method gives S�λ
= (x, y, z) = (0, 3/(λ − 1),−1).

• If λ = 0 the system we have to solve is

�′ :

{

z = −1

x − y = 3

whose solutions are given as

S�λ=0
= {(x, y, z) ∈ R

3 | (x, y, z) = (α + 3,α,−1)α ∈ R} .

Exercise 6.3.9 Let us show that the following system of vectors,

v1 = (1, 1, 0), v2 = (0, 1, 1), v3 = (1, 0, 1),

is free and then write v = (1, 1, 1) as a linear combination of v1, v2, v3.

We start by recalling that v1, v2, v3 are linearly independent if and only if the rank

of the matrix whose columns are the vectors themselves is 3. We have the following

reduction,

(v1 v2 v3) =

⎛

⎝

1 0 1

1 1 0

0 1 1

⎞

⎠ →

⎛

⎝

1 0 1

0 1 −1

0 1 1

⎞

⎠ →

⎛

⎝

1 0 1

0 1 −1

0 0 2

⎞

⎠ .

The number of non zero rows of the reduced matrix is 3 so the vectors v1, v2, v3

are linearly independent. Then they are a basis for R
3, so the following relation,

xv1 + yv2 + zv3 = v
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is fullfilled by a unique triple (x, y, z) of coefficients for any v ∈ R
3. Such a triple is

the unique solution of the linear system whose complete matrix is

(A, B) = (v1 v2 v3 v). For the case we are considering in this exercise we have

(A, B) =

⎛

⎝

1 0 1

1 1 0

0 1 1

∣

∣

∣

∣

∣

∣

1

1

1

⎞

⎠ .

Using for (A, B) the same reduction we used above for A we have

(A, B) →

⎛

⎝

1 0 1

0 1 −1

0 1 1

∣

∣

∣

∣

∣

∣

1

0

1

⎞

⎠ →

⎛

⎝

1 0 1

0 1 −1

0 0 2

∣

∣

∣

∣

∣

∣

1

0

1

⎞

⎠ .

The linear system we have then to solve is

⎧

⎨

⎩

x + z = 1

y − z = 0

2z = 1

giving (x, y, x) = 1
2
(1, 1, 1). One can indeed directly compute that

1
2
(1, 1, 0) + 1

2
(0, 1, 1) + 1

2
(1, 0, 1) = (1, 1, 1).

Exercise 6.3.10 Let us consider the matrix

Mλ =

(

λ 1

1 λ

)

with λ ∈ R. We compute its inverse using the theory of linear systems.

We can indeed write the problem in terms of the linear system

(

λ 1

1 λ

) (

x y

z t

)

=

(

1 0

0 1

)

,

that is

� :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λx + z = 1

x + λz = 0

λy + t = 0

y + λt = 1

.

We reduce the complete matrix of the linear system as follows:
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(A, B) =

⎛

⎜

⎜

⎝

λ 0 1 0

1 0 λ 0

0 λ 0 1

0 1 0 λ

∣

∣

∣

∣

∣

∣

∣

∣

1

0

0

1

⎞

⎟

⎟

⎠

R2 → R2−λR1

−−−−−−−−−−→

⎛

⎜

⎜

⎝

λ 0 1 0

1 − λ2 0 0 0

0 λ 0 1

0 1 0 λ

∣

∣

∣

∣

∣

∣

∣

∣

1

−λ

0

1

⎞

⎟

⎟

⎠

−−−−−−−−−−→

R4 → R4−λR3

⎛

⎜

⎜

⎝

λ 0 1 0

1 − λ2 0 0 0

0 λ 0 1

0 1 − λ2 0 0

∣

∣

∣

∣

∣

∣

∣

∣

1

−λ

0

1

⎞

⎟

⎟

⎠

= (A′, B ′).

The elementary transformations we used are well defined for any real value of λ.

We start by noticing that if 1 − λ2 = 0 that is λ = ±1, we have

(A′, B ′) =

⎛

⎜

⎜

⎝

±1 0 1 0

0 0 0 0

0 ±1 0 1

0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

1

∓1

0

1

⎞

⎟

⎟

⎠

.

The second and the fourth rows of this matrix show that the corresponding linear

system is incompatible. This means that when λ = ±1 the matrix Mλ is not invertible

(as we would immediately see by computing its determinant).

We assume next that 1 − λ2 �= 0. In such a case we have rk(A) = rk(A, B) = 4,

so there exists a unique solution for the linear system. We write it in the reduced

form as

�′ :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λx + z = 1

(1 − λ2)x = −λ

λy + t = 0

(1 − λ2)y = 1

.

Its solution is then
⎧

⎪

⎪

⎨

⎪

⎪

⎩

z = 1/(1 − λ2)

x = −λ/(1 − λ2)

t = −λ/(1 − λ2)

y = 1/(1 − λ2)

,

that we write in matrix form as

M−1
λ = 1

(1−λ2)

(

−λ 1

1 −λ

)

.
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6.4 Homogeneous Linear Systems

We analyse now an interesting class of linear systems (for easy of notation we write

0 = 0Rm ).

Definition 6.4.1 A linear system � : AX = B is called homogeneous if B = 0.

Remark 6.4.2 A linear system � : AX = 0 with A ∈ R
m,n is always solvable since

the null n-tuple (the null vector in R
n) gives a solution for �, albeit a trivial

one. This also follows form the Rouché-Capelli theorem since one obviously has

rk(A) = rk(A, 0). The same theorem allows one to conclude that such a trivial solu-

tion is indeed the only solution for � if and only if n = ρ = rk(A).

Theorem 6.4.3 Let � : AX = 0 be a homogeneous linear system with A ∈ R
m,n .

Then S� is a vector subspace of R
n with dim S� = n − rk(A).

Proof From the Proposition 2.2.2 we have to show that if X1, X2 ∈ S� with λ1,

λ2 ∈ R, then λ1 X1 + λ2 X2 is in S� . Since by hypothesis we have AX1 = 0 and

AX2 = 0 we have also λ1(AX1) + λ2(AX2) = 0. From the properties of the matrix

calculus we have in turn λ1(AX1) + λ2(AX2) = A(λ1 X1 + λ2 X2), thus giving

λ1 X1 + λ2 X2 in S� . We conclude that S� is a vector subspace of R
n .

With ρ = rk(A), from the Rouché-Capelli theorem we know that � has n − ρ

free unknowns. This number coincides with the dimension of S� . To show this fact

we determine a basis made up of n − ρ elements. Let us assume for simplicity that

the free unknowns are the last ones xρ+1, . . . , xn . Any solution of � can then be

written as

(∗, . . . , ∗, xρ+1, . . . , xn)

where the ρ symbols ∗ stand for the values of x1, . . . , xρ corresponding to each possi-

ble value of xρ+1, . . . , xn . We let now the (n − ρ)-dimensional ‘vector’ xρ+1, . . . , xn

range over all elements of the canonical basis of R
n−ρ and write the corresponding

elements in S� as

v1 = (∗, . . . , ∗, 1, 0, . . . , 0)

v2 = (∗, . . . , ∗, 0, 1, . . . , 0)

...

vn−ρ = (∗, . . . , ∗, 0, 0, . . . , 1).

The rank of the matrix (v1, . . . , vn−ρ) (that is the matrix whose rows are these vec-

tors) is clearly equal to n − ρ, since its last n − ρ columns are linearly independent.

This means that its rows, the vectors v1, . . . , vn−ρ, are linearly independent. It is easy

to see that such rows generate S� so they are a basis for it and dim(S�) = n − ρ. �

It is clear that the general reduction procedure allows one to solve any homoge-

neous linear system �. Since the space S� is in this case a linear space, one can
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determine a basis for it. The proof of the previous theorem provides indeed an easy

method to get such a basis for S� . Once the elements in S� are written in terms of

the n − ρ free unknowns a basis for S� is given by fixing for these unknowns the

values corresponding to the elements of the canonical basis in R
n−ρ.

Exercise 6.4.4 Let us solve the following homogeneous linear system,

� :

⎧

⎨

⎩

x1 − 2x3 + x5 + x6 = 0

x1 − x2 − x3 + x4 − x5 + x6 = 0

x1 − x2 + 2x4 − 2x5 + 2x6 = 0

and let us determine a basis for its space of solutions. The corresponding A matrix is

A =

⎛

⎝

1 0 −2 0 1 1

1 −1 −1 1 −1 1

1 −1 0 2 −2 2

⎞

⎠ .

We reduce it as follows

A →

⎛

⎝

1 0 −2 0 1 1

0 −1 1 1 −2 0

0 −1 2 2 −3 1

⎞

⎠ →

⎛

⎝

1 0 −2 0 1 1

0 −1 1 1 −2 0

0 0 1 1 −1 1

⎞

⎠ = A′.

Thus rk(A) = rk(A′) = 3. Since the first three rows in A′ (and then in A) are

linearly independent we choose x4, x5, x6 to be the free unknowns. One clearly has

� ∼ �′ : A′ X = 0 so we can solve

�′ :

⎧

⎨

⎩

x1 − 2x3 + x5 + x6 = 0

x2 − x3 − x4 + 2x5 = 0

x3 + x4 − x5 + x6 = 0

.

By setting x4 = a , x5 = b and x6 = c we have

S� = {(x1, ..., x6) = (−2a + b − 3c,−b − c,−a + b − c, a, b, c) | a, b, c ∈ R}.

To determine a basis for S� we let (a, b, c)be the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1)

of the canonical basis in R
3 since n − ρ = 6 − 3 = 3. With this choice we get the

following basis

v1 = (−2, 0,−1, 1, 0, 0)

v2 = (1,−1, 1, 0, 1, 0)

v3 = (−3,−1,−1, 0, 0, 1).



Chapter 7

Linear Transformations

Together with the theory of linear equations and matrices, the notion of linear

transformations is crucial in both classical and quantum physics. In this chapter

we introduce them and study their main properties.

7.1 Linear Transformations and Matrices

We have already seen that differently looking sets may have the same vector space

structure. In this chapter we study mappings between vector spaces which are, in a

proper sense, compatible with the vector space structure. The action of such maps

will be represented by matrices.

Example 7.1.1 Let A =

(

a b

c d

)

∈ R
2,2. Let us define the map f : R

2 → R
2 by

f (X) = AX

where X = (x, y) is a (column) vector representing a generic element in R
2 and AX

denotes the usual row by column product, that is

f

(

x

y

)

=

(

a b

c d

) (

x

y

)

.

With X = (x1, x2) and Y = (y1, y2) two elements in R
2, using the properties of

the matrix calculus it is easy to show that

f (X + Y ) = A(X + Y ) = AX + AY = f (X) + f (Y )
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as well as, with λ ∈ R, that

f (λX) = A(λX) = λA(X) = λ f (X).

This example is easily generalised to matrices of arbitrary dimensions.

Exercise 7.1.2 Given A = (ai j ) ∈ R
m,n one considers the map f : R

n → R
m

f (X) = AX,

with X = t (x1, . . . , xn) and AX the usual row by column product. The above

properties are easily generalised so this map satisfies the identities f (X + Y ) =

f (X) + f (Y ) for any X, Y ∈ R
n and f (λX) = λ f (X) for any X ∈ R

n , λ ∈ R.

Example 7.1.3 Let A =

(

1 2 1

1 −1 0

)

∈ R
2,3. The associated map f : R

3 → R
2 is

given by

f ((x, y, z)) =

(

1 2 1

1 −1 0

)
⎛

⎝

x

y

z

⎞

⎠ =

(

x + 2y + z

x − y

)

.

The above lines motivate the following.

Definition 7.1.4 Let V and W be two vector spaces over R. A map f : V → W

is called linear if the following properties hold:

(L1) f (X + Y ) = f (X) + f (Y ) for all X, Y ∈ V ,

(L2) f (λX) = λ f (X) for all X ∈ V, λ ∈ R .

The proof of the following identities is immediate.

Proposition 7.1.5 If f : V → W is a linear map then,

(a) f (0V ) = 0W ,

(b) f (−v) = − f (v) for any v ∈ V ,

(c) f (a1v1 + · · · + apvp) = a1 f (v1) + · · · + ap f (vp), for anyv1, . . . , vp ∈ V and

a1, . . . , ap ∈ R.

Proof (a) Since 0V = 0R0V the (L2) defining property gives

f (0V ) = f (0R0V ) = 0R f (0V ) = 0W .

(b) Since −v = (−1)v, again from (L2) we have

f (−v) = f ((−1)v) = (−1) f (v) = − f (v).

(c) This is proved by induction on p. If p = 2 the claim follows directly from (L1)

and (L2) with



7.1 Linear Transformations and Matrices 99

f (a1v1 + a2v2) = f (a1v1) + f (a2v2) = a1 f (v1) + a2 f (v2).

Let us assume it to be true for p − 1. By setting w = a1v1 + · · · + ap−1vp−1,
we have

f (a1v1 + · · · + apvp) = f (w + apvp) = f (w) + f (apvp) = f (w) + ap f (vp)

(the first equality follows from (L1), the second from (L2)). From the induction
hypothesis, we have f (w) = a1 f (v1) + · · · + ap−1 f (vp−1), so

f (a1v1 + · · · + apvp) = f (w) + ap f (vp) = a1 f (v1) + · · · + ap−1 f (vp−1) + ap f (vp),

which is the statement for p.

⊓⊔

Example 7.1.6 The Example 7.1.1 and the Exercise 7.1.2 show how one associates

a linear map between R
n and R

m to a matrix A ∈ R
m,n . This construction can be

generalised by using bases for vector spaces V and W .

Let us consider a basis B = (v1, . . . , vn) for V and a basis C = (w1, . . . , wm)

for W . Given the matrix A = (ai j ) ∈ R
m,n we define f : V → W as follows. For

any v ∈ V we have uniquely v = x1v1 + · · · + xnvn , that is v = (x1, . . . , xn)B. With

X = t (x1, . . . , xn), we consider the vector AX ∈ R
m with AX = t (y1, . . . , ym)C . We

write then

f (v) = y1w1 + · · · + ymwm

which can be written as

f ((x1, . . . , xn)B) =

⎛

⎜
⎝A

⎛

⎜
⎝

x1

...

xn

⎞

⎟
⎠

⎞

⎟
⎠

C

.

Exercise 7.1.7 Let us consider the matrix A =

(

1 2 1

1 −1 0

)

∈ R
2,3, with V = R[X ]2

and W = R[X ]1. With respect to the bases B = (1, X, X2) for V and C = (1, X) for

W the map corresponding to A as in the previous example is

f (a + bX + cX2) = (A t (a, b, c))C

that is

f (a + bX + cX2) = (a + 2b + c, a − b)C = a + 2b + c + (a − b)X.

Proposition 7.1.8 The map f : V → W defined in the Example 7.1.6 is linear.

Proof Let v, v′ ∈ V with v = (x1, . . . , xn)B and v′ = (x ′
1, . . . , x ′

n)B. From the

Remark 2.4.16 we have
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v + v′ = (x1 + x ′
1, . . . , xn + x ′

n)B

so we get

f (v + v′) = (At(x1 + x ′
1, . . . , xn + x ′

n))C

= (At(x1, . . . , xn))C + (At(x ′
1, . . . , x ′

n))C

= f (v) + f (v′)

(notice that the second equality follows from the Proposition 4.1.10). Along the same

line one shows easily that for any λ ∈ R one has f (λv) = λ f (v). ⊓⊔

The following definition (a rephrasing of Example 7.1.6) plays a central role in

the theory of linear transformations.

Definition 7.1.9 With V and W two vector spaces over R and basesB = (v1, . . . , vn)

for V and C = (w1, . . . , wm) for W , consider a matrix A = (ai j ) ∈ R
m,n . The linear

map

f
C,B
A : V → W

defined by

V ∋ v = x1v1 + · · · + xnvn �→ f
B,C
A (v) = y1w1 + · · · + ymwm ∈ W

with
t (y1, . . . , ym) = A t (x1, . . . , xn),

is the linear map corresponding to the matrix A with respect to the basis B e C.

Remark 7.1.10 Denoting f
C,B
A = f , one immediately sees that the n columns in A

provide the components with respect to C in W of the vectors f (v1), . . . , f (vn),

with (v1, . . . , vn) the basis B for V . One has

v1 = 1v1 + 0v2 + · · · + 0vn = (1, 0, . . . , 0)B,

thus giving

f (v1) = (A t (1, 0, . . . , 0))C = t (a11, . . . , am1)C

= f (v1) = a11w1 + · · · + am1wm .

It is straightforward now to show that f (v j ) = (a1 j , . . . , amj )C for any index j .

If A = (ai j ) ∈ R
m,n and f : R

n → R
m is the linear map defined by f (X) = AX ,

then the columns of A give the images under f of the vectors (e1, . . . en) of the

canonical basis En in R
n . This can be written as

A =
(

f (e1) f (e2) · · · f (en)
)

.
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Exercise 7.1.11 Let us consider the matrix

A =

⎛

⎝

1 1 −1

0 1 2

1 1 0

⎞

⎠ ,

with B = C = E3 the canonical basis in R
3, and the corresponding linear map

f = f
E3,E3

A : R
3 → R

3. If (x, y, z) ∈ R
3 then f ((x, y, z)) = A t (x, y, z). The

action of f is then given by

f ((x, y, z)) = (x + y − z, y + 2z, x + y).

Being B the canonical basis, it is also

f (e1) = (1, 0, 1), f (e2) = (1, 1, 1), f (e3) = (−1, 2, 0).

We see that f (e1), f (e2), f (e3) are the columns of A. This is not an accident:

as mentioned the columns of A are, in the general situation, the components of

f (e1), f (e2), f (e3) with respect to a basis C—in this case the canonical one.

The Proposition 7.1.8 shows that, given a matrix A, the map f
C,B
A is linear. Our

aim is now to prove that for any linear map f : V → W there exists a matrix A such

that f = f
B,C
A , with respect to two given bases B and C for V and W respectively.

In order to determine such a matrix we use the Remark 7.1.10: given a matrix A

the images under f
C,B
A of the elements in the basis B of V are given by the column

elements in A. This suggests the following definition.

Definition 7.1.12 Let B = (v1, . . . , vn) be a basis for the real vector space V and

C = (w1, . . . , wm) a basis for the real vector space W . Let f : V → W be a linear

map. The matrix associated to f with respect to the basis B and C, that we denote

by M
C,B
f , is the element in R

m,n whose columns are given by the components with

respect to C of the images under f of the basis elements in B. That is, the matrix

M
C,B
f = A = (ai j ) is given by

f (v1) = a11w1 + · · · + am1wm

...

f (vn) = a1nw1 + · · · + amnwm,

which can be equivalently written as

M
C,B
f = ( f (v1), . . . , f (vn)).

Such a definition inverts the one given in the Definition 7.1.9. This is the content

of the following proposition, whose proof we omit.



102 7 Linear Transformations

Proposition 7.1.13 Let V be a real vector space with basis B = (v1, . . . , vn) and

W a real vector space with basis C = (w1, . . . , wm). The following results hold.

(i) If f : V → W is a linear map, by setting A = M
C,B
f it holds that

f
C,B
A = f.

(ii) If A ∈ R
m,n , by setting f = f

C,B
A it holds that

M
C,B
f = A.

Proposition 7.1.14 Let V and W be two real vector spaces with (v1, . . . , vn) a basis

for V . For any choice of {u1, . . . , un} of n elements in W there exists a unique linear

map f : V → W such that f (v j ) = u j for any j = 1, . . . , n.

Proof To define such a map one uses that any vector v ∈ V can be written uniquely

as

v = a1v1 + · · · + anvn

with respect to the basis (v1, . . . , vn). By setting

f (v) = a1 f (v1) + · · · + an f (vn) = a1u1 + · · · + anun

we have a linear (by construction) map f that satisfies the required condition

f (v j ) = u j for any j ∈ 1, . . . , n.

Let us now suppose this map is not unique and that there exists a second linear

map g : V → W with g(v j ) = u j . From the Proposition 7.1.5 we could then write

g(v) = a1g(v1) + · · · + ang(vn) = a1u1 + · · · + anun = f (v),

thus getting g = f . ⊓⊔

What we have discussed so far gives two equivalent ways to define a linear map

between two vector spaces V and W .

I. Once a basis B for V , a basis C for W and a matrix A = (ai j ) ∈ R
m,n are fixed,

from the Proposition 7.1.13 we know that the linear map f
C,B
A is uniquely

determined.

II. Once a basis B = (v1, . . . , vn) for V and n vectors {u1, . . . , un} in W are fixed,

we know from the Proposition 7.1.14 that there exists a unique linear map

f : V → W with f (v j ) = u j for any j = 1, . . . , n.

From now on, if V = R
n and B = E is its canonical basis we shall denote by

f ((x1, . . . , xn)) what we have previously denoted as f ((x1, . . . , xn)B). Analogously,

with C = E the canonical basis for W = R
m we shall write (y1, . . . , ym) instead of

(y1, . . . , ym)C .
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With such a notation, if f : R
n → R

m is the linear map which, with respect to

the canonical basis for both vector spaces corresponds to the matrix A, its action is

written as

f ((x1, . . . , xn)) = A t (x1, . . . , xn)

or equivalently

f ((x1, . . . , xn)) = (a11x1 + · · · + a1n xn, . . . , am1x1 + · · · + amn xn).

Exercise 7.1.15 Let f0 : V → W be the null (zero) map, that is f0(v) = 0W for

any v ∈ V . With B and C arbitrary bases for V and W respectively, it is clearly

M
C,B
f0

= 0Rm,n ,

that is the null matrix.

Exercise 7.1.16 If idV (v) = v is the identity map on V then, using any basis

B = (v1, . . . , vn) for V , one has the following expression

idV (v j ) = v j = (0, . . . , 0, 1
︸︷︷︸

j

, 0, . . . , 0)B

for any j = 1, . . . , n. That is M
B,B
idV

is the identity matrix In . Notice that M
C,B
idV

	= In

if B 	= C.

Exercise 7.1.17 Let us consider for R
3 both the canonical basis E3 = (e1, e2, e3)

and the basis B = (v1, v2, v3) with

v1 = (0, 1, 1), v2 = (1, 0, 1), v3 = (1, 1, 0).

A direct computation gives

M
E3,B
id =

⎛

⎝

0 1 1

1 0 1

1 1 0

⎞

⎠ , M
E3,B
id =

1

2

⎛

⎝

−1 1 1

1 −1 1

1 1 −1

⎞

⎠

and each of these matrices turns out to be the inverse of the other, that is

M
E3,B
id M

B,E3

id = In .
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7.2 Basic Notions on Maps

Before we proceed we recall in a compact and direct way some of the basic notions

concerning injectivity, surjectivity and bijectivity of mappings between sets.

Definition 7.2.1 Let X and Y be two non empty sets and f : X → Y a map

between them. The element f (x) in Y is called the image under f of the element

x ∈ X . The set

Im( f ) = {y ∈ Y | ∃ x ∈ X : y = f (x)}

is called the image (or range) of f in Y . The set (that might be empty)

f −1(y) = {x ∈ X : f (x) = y}.

defines the pre-image of the element y ∈ Y .

Definition 7.2.2 Let X and Y be two non empty sets, with a map f : X → Y . One

says that:

(i) f is injective if, for any pair x1, x2 ∈ X with x1 	= x2, it is f (x1) 	= f (x2),

(ii) f is surjective if Im( f ) = Y ,

(iii) f is bijective if f is both injective and surjective.

Definition 7.2.3 Let f : X → Y and g : Y → Z be two maps. The composition

of g with f is the map

g ◦ f : X → Z

defined as (g ◦ f )(x) = g( f (x)) for any x ∈ X .

Definition 7.2.4 A map f : X → Y is invertible if there exists a map g : Y → X

such that g ◦ f = idX and f ◦ g = idY . In such a case the map g is called the

inverse of f and denoted by f −1. It is possible to prove that, if f is invertible, then

f −1 is unique.

Proposition 7.2.5 A map f : X → Y is invertible if and only if it is bijective. In

such a case the map f −1 is invertible as well, with ( f −1)−1 = f .

7.3 Kernel and Image of a Linear Map

Injectivity and surjectivity of a linear map are measured by two vector subspaces

that we now introduce and study.

Definition 7.3.1 Consider a linear map f : V → W . The set

V ⊇ ker( f ) = {v ∈ V : f (v) = 0W }
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is called the kernel of f , while the set

W ⊇ Im( f ) = {w ∈ W : ∃ v ∈ V : w = f (v)}

is called the image of f .

Theorem 7.3.2 Given a linear map f : V → W , the set ker( f ) is a vector sub-

space in V and Im( f ) is a vector subspace in W .

Proof We recall the Proposition 2.2.2. Given v, v′ ∈ ker( f ) and λ,λ′ ∈ R we need to

compute f (λv + λ
′v′). Since f (v) = 0W = f (v′) by hypothesis, from the Proposi-

tion 7.1.5 we have f (λv + λ
′v′) = λ f (v) + λ

′ f (v′) = 0W . This shows that ker( f )

is a vector subspace in V .

Analogously, let w,w′ ∈ Im( f ) and λ,λ′ ∈ R. From the hypothesis there exist

v, v′ ∈ V such that w = f (v) and w′ = f (v′); thus we can write λw + λ
′w′ =

λ f (v) + λ
′ f (v′) = f (λv + λ

′v′) ∈ Im( f ) again from he Proposition 7.1.5. This

shows that Im( f ) is a vector subspace in W . ⊓⊔

Having proved that Im( f ) and ker( f ) are vector subspaces we look for a system

of generators for them. Such a task is easier for the image of f as the following

lemma shows.

Lemma 7.3.3 With f : V → W a linear map, one has that

Im( f ) = L( f (v1), . . . , f (vn)), where B = (v1, . . . , vn) is an arbitrary basis for

V . The map f is indeed surjective if and only if f (v1), . . . , f (vn) generate W .

Proof Let w∈ Im( f ), that is w= f (v) for some v ∈ V . Being B a basis for V , one has

v = a1v1 + · · · + anvn and since f is linear, one has w = a1 f (v1) + · · · + an f (vn),

thus givingw ∈ L( f (v1), . . . , f (vn)). We have then Im( f ) ⊆ L( f (v1), . . . , f (vn)).

The opposite inclusion is obvious since Im( f ) is a vector subspace in W and contains

the vectors f (v1), . . . , f (vn).

The last statement is the fact that f is surjective (Definition 7.2.2) if and only if

Im( f ) = W . ⊓⊔

Exercise 7.3.4 Let us consider the linear map f : R
3 → R

2 given by

f ((x, y, z)) = (x + y − z, x − y + z).

From the lemma above, the vector subspace Im( f ) is generated by the images

under f of an arbitrary basis in R
3. With the canonical basis E = (e1, e2, e3) we

have Im( f ) = L( f (e1), f (e2), f (e3)), with

f (e1) = (1, 1), f (e2) = (1,−1), f (e3) = (−1, 1).

It is immediate to see that Im( f ) = R
2, that is f is surjective.
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Lemma 7.3.5 Let f : V → W be a linear map between two real vector spaces.

Then,

(i) f is injective if and only if ker( f ) = {0V },

(ii) if f is injective and (v1, . . . , vn) is a basis for V , the vectors f (v1), . . . , f (vn)

are linearly independent.

Proof (i) Let us assume that f is injective and v ∈ ker( f ), that is f (v) = 0W .

From the Proposition 7.1.5 we know that f (0V ) = 0W . Since f is injective it

must be v = 0V , that is ker( f ) = {0V }.

Viceversa, let us assume that ker( f ) = 0V and let us consider two vectors v1, v2

such that f (v1) = f (v2). Since f is linear this reads 0W = f (v1) − f (v2) =

f (v1 − v2), that is v1 − v2 ∈ ker( f ) which, being the latter the null vector

subspace, thus gives v1 = v2.

(ii) In order to study the linear independence of the system of vectors

{ f (v1), . . . , f (vn)} let us take scalars λ1, . . . ,λn ∈ R such that

λ1 f (v1) + · · · + λn f (vn) = 0W . Being f linear, this gives f (λ1v1 + · · · +

λnvn) = 0W and then λ1v1 + · · · + λnvn ∈ ker( f ). Since f is injective, from

(i) we have ker( f ) = {0V } so it is λ1v1 + · · · + λnvn = 0V . Being (v1, . . . , vn)

a basis for V , we have that λ1 = · · · = λn = 0R thus proving that also

f (v1), . . . , f (vn) are linearly independent.

⊓⊔

Exercise 7.3.6 Let us consider the linear map f : R
2 → R

3 given by

f ((x, y)) = (x + y, x − y, 2x + 3y).

The kernel of f is given by

ker( f ) = {(x, y) ∈ R
2 | f ((x, y)) = (x + y, x − y, 2x + 3y) = (0, 0, 0)}

so we have to solve the linear system

⎧

⎨

⎩

x + y = 0

x − y = 0

2x + 3y = 0

.

Its unique solution is (0, 0) so ker( f ) = {0R2} and we can conclude, from the

lemma above, that f is injective. From the same lemma we also know that the

images under f of a basis for R
2 make a linearly independent set of vectors. If we

take the canonical basis for R
2 with e1 = (1, 0) and e2 = (0, 1), we have

f (e1) = (1, 1, 2), f (e2) = (1,−1, 3).
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7.4 Isomorphisms

Definition 7.4.1 Let V and W be two real vector spaces. A bijective linear map

f : V → W is called an isomorphism. Two vector spaces are said to be isomorphic

if there exists an isomorphism between them. If f : V → W is an isomorphism

we write V ∼= W .

Proposition 7.4.2 If the map f : V → W is an isomorphism, such is its inverse

f −1 : W → V .

Proof From the Proposition 7.2.5 we have that f is invertible, with an invertible

inverse map f −1. We need to prove that f −1 is linear. Let us consider two arbitrary

vectors w1, w2 ∈ W with v1 = f −1(w1) and v2 = f −1(w2) in V ; this is equivalent

to w1 = f (v1) and w2 = f (v2). Let us consider also λ1,λ2 ∈ R. Since f is linear

we can write

λ1w1 + λ2w2 = f (λ1v1 + λ2v2).

For the action of f −1 is then

f −1(λ1w1 + λ2w2) = λ1v1 + λ2v2 = λ1 f −1(w1) + λ2 f −1(w2),

which amounts to say that f −1 is a linear map. ⊓⊔

In order to characterise isomorphisms we first prove a preliminary result.

Lemma 7.4.3 Let f : V → W be a linear map with (v1, . . . , vn) a basis for V .

The map f is an isomorphism if and only if ( f (v1), . . . , f (vn)) is a basis for W .

Proof If f is an isomorphism, it is both injective and surjective. From the

Lemma 7.3.3 the system f (v1), . . . , f (vn) generates W , while from the Lemma 7.3.5

such a system is linearly independent. This means that ( f (v1), . . . , f (vn)) is a basis

for W .

Let us now assume that the vectors ( f (v1), . . . , f (vn)) are a basis for W . From the

Proposition 7.1.14 there exists a linear map g : W → V such that g( f (v j )) = v j

for any j = 1, . . . , n. This means that the linear maps g ◦ f and idV coincide on the

basis (v1, . . . , vn) in V and then (again from Proposition 7.1.14) they coincide, that

is g ◦ f = idV . Along the same lines it is easy to show that f ◦ g = idW , so we have

g = f −1; the map f is then invertible so it is an isomorphism. ⊓⊔

Theorem 7.4.4 Let V and W be two real vector spaces. They are isomorphic if and

only if dim(V ) = dim(W ).

Proof Let us assume V and W to be isomorphic, that is there exists an isomor-

phism f : V → W . From the previous lemma, if (v1, . . . , vn) is a basis for V , then

( f (v1), . . . , f (vn)) is a basis for W and this gives dim(V ) = n = dim(W ).

Let us now assume n = dim(V ) = dim(W ) and try to define an isomorphism

f : V → W . By fixing a basisB = (v1, . . . , vn) for V and a basisC = (w1, . . . , wn)
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for W , we define the linear map f (v j ) = w j for any j . Such a linear map exists and it

is unique from the Proposition 7.1.14. From the lemma above, f is an isomorphism

since it maps the basis B to the basis C for W . ⊓⊔

Corollary 7.4.5 If V is a real vector space with dim(V ) = n, then V ∼= R
n . Any

choice of a basis B for V induces the natural isomorphism

α : V
∼=

−→ R
n given by (x1, . . . , xn)B �→ (x1, . . . , xn).

Proof The first claim follows directly from the Theorem 7.4.4 above. Once the

basis B = (v1, . . . , vn) is chosen the map α is defined as the linear map such that

α(v j ) = e j for any j = 1, . . . , n. From the Lemma 7.4.3 such a map α is an iso-

morphism. It is indeed immediate to check that the action of α on any vector in V is

given by α : (x1, . . . , xn)B �→ (x1, . . . , xn). ⊓⊔

Exercise 7.4.6 Let V = R[X ]2 be the space of the polynomials whose degree is

not higher than 2. As we know, V has dimension 3 and a basis for it is given by

B = (1, X, X2). The isomorphismα : R[X ]2

∼=
−→ R

3 corresponding to such a basis

reads

a + bX + cX2 �→ (a, b, c).

It is simple to check whether a given system of polynomials is a basis for R[X ]2.

As an example we consider

p1(X) = 3X − X2, p2(X) = 1 + X, p3(X) = 2 + 3X2.

By setting v1 = α(p1) = (0, 3,−1), v2 = α(p2) = (1, 1, 0) and v3 = α(p3) =

(2, 0, 3), it is clear that the rank of the matrix whose columns are the vectors

v1, v2, v3 is 3, thus proving that (v1, v2, v3) is a basis for R
3. Since α is an iso-

morphism, the inverse α
−1 : R

3 → R[X ]2 is an isomorphism as well: the vectors

α
−1(v1), α

−1(v2), α
−1(v2) provide a basis for R[X ]2 and coincide with the given

polynomials p1(X), p2(X), p3(X).

Theorem 7.4.4 shows that a linear isomorphism exists only if its domain has the

same dimension of its image. A condition that characterises isomorphism can then

be introduced only for vector spaces with the same dimensions. This is done in the

following sections.

7.5 Computing the Kernel of a Linear Map

We have seen that isomorphisms can be defined only between spaces with the same

dimension. Being not an isomorphism indeed means for a linear map to fail to be

injective or surjective. In this section and the following one we characterise injectivity
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and surjectivity of a linear map via the study of its kernel and its image. In particular,

we shall describe procedures to exhibit bases for such spaces.

Proposition 7.5.1 Let f : V → W be a linear map between real vector spaces,

and dim(V ) = n. Fix a basis B for V and a basis C for W , with associated matrix

A = M
C,B
f . By denoting� : AX = 0 the linear system associated to A, the following

hold:

(i) S�
∼= ker( f ) via the isomorphism (x1, . . . , xn) �→ (x1, . . . , xn)B,

(ii) dim(ker( f )) = n − rk(A),

(iii) if (v1, . . . , vp) is a basis for S� , the vectors
(

(v1)B, . . . , (vp)B
)

are a basis for

ker( f ).

Proof (i) With the given hypothesis, from the definition of the kernel of a linear

map we can write

ker( f ) = {v ∈ V : f (v) = 0W }

=

⎧

⎪
⎨

⎪
⎩

v = (x1, . . . , xn)B ∈ V :

⎛

⎜
⎝A

⎛

⎜
⎝

x1

...

xn

⎞

⎟
⎠

⎞

⎟
⎠

C

=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠

C

⎫

⎪
⎬

⎪
⎭

= {(x1, . . . , xn)B ∈ V : (x1, . . . , xn) ∈ S�}

with S� denoting the space of solutions for �. As in Corollary 7.4.5 we can

then write down the isomorphism S� → ker( f ) given by

(x1, . . . , xn) �→ (x1, . . . , xn)B.

(ii) From the isomorphism of the previous point we then have

dim(ker( f )) = dim(S�) = n − rk(A)

where the last equality follows from the Theorem 6.4.3.

(iii) From the Lemma 7.4.3 we know that, under the isomorphism S� → ker( f ),

a basis for S� is mapped into a basis for ker( f ).

⊓⊔

Exercise 7.5.2 Consider the linear map f : R
3 → R

3 defined by

f ((x, y, z)B) = (x + y − z, x − y + z, 2x)E

where B =
(

(1, 1, 0), (0, 1, 1), (1, 0, 1)
)

and E is the canonical basis for R
3. We

determine ker( f ) and compute a basis for it with respect to both B and E . Start by

considering the matrix associated to the linear map f with the given basis,
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A = M
E,B
f =

⎛

⎝

1 1 −1

1 −1 1

2 0 0

⎞

⎠ .

To solve the linear system � : AX = 0 we reduce the matrix A by rows:

A �→

⎛

⎝

1 1 −1

2 0 0

2 0 0

⎞

⎠ �→

⎛

⎝

1 1 −1

2 0 0

0 0 0

⎞

⎠

and the space S� of the solutions of � is then given by

S� = {(0, a, a) : a ∈ R} = L((0, 1, 1)).

This reads

ker( f ) = {(0, a, a)B : a ∈ R},

with a basis given by the vector (0, 1, 1)B . With the explicit expression of the elements

of B,

(0, 1, 1)B = (0, 1, 1) + (1, 0, 1) = (1, 1, 2).

This shows that the basis vector for ker( f ) given by (0, 1, 1) on the basis B is the

same as the basis vector (1, 1, 2) with respect to the canonical basis E for R
3.

Exercise 7.5.3 With canonical bases E , consider the linear map f : R
3 → R

3

given by

f ((x, y, z)) = (x + y − z, x − y + z, 2x).

To determine the space ker( f ), we observe that the matrix associated to f is

the same matrix of the previous exercise, so the linear system � : AX = 0 has

solutions S� = L((0, 1, 1)) = ker( f ), since E is the canonical basis.

Since the kernel of a linear map is the preimage of the null vector in the image

space, we can generalise the above procedure to compute the preimage of any element

w ∈ W . We denote it as f −1(w) = {v ∈ V : f (v) = w}, with ker( f ) = f −1(0W ).

Notice that we denote the preimage of a set under f by writing f −1 also when f is

not invertible.

Proposition 7.5.4 Consider a real vector space V with basis B and a real vec-

tor space W with basis C. Let f : V → W be a linear map with A = M
C,B
f its

corresponding matrix. Given any w = (y1, . . . , ym)C ∈ W , it is

f −1(w) = {(x1, . . . , xn)B ∈ V : A t (x1, . . . , xn) = t (y1, . . . , ym)}.

Proof It is indeed true that, with v = (x1, . . . , xn)B, one has
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f (v) = f ((x1, . . . , xn)B) = (A t (x1, . . . , xn))C .

The equality f (v) = w is the equality of components, given by

A t (x1, . . . , xn) = t (y1, . . . , ym), on the basis C. ⊓⊔

Remark 7.5.5 This fact can be expressed via linear systems. Given w ∈ W , its preim-

age f −1(w) is made of vectors in V whose components with respect to B solve the

linear system AX = B, where B is the column of the components of w with respect

to C.

Exercise 7.5.6 Consider the linear map f : R
3 → R

3 given in the Exercise 7.5.2.

We compute f −1(w) forw = (1, 1, 1). We have then to solve the system� : AX = B,

with B = t (1, 1, 1). We reduce the matrix (A, B) as follows

(A, B) =

⎛

⎝

1 1 −1 1

1 −1 1 1

2 0 0 1

⎞

⎠ �→

⎛

⎝

1 1 −1 1

2 0 0 2

2 0 0 1

⎞

⎠ �→

⎛

⎝

1 1 −1 1

1 0 0 1

0 0 0 1

⎞

⎠ .

This shows that the system � has no solution, that is w /∈ Im( f ).

Next, let us compute f −1(u) for u = (2, 0, 2), so we have the linear system

� : AX = B with B = t (2, 0, 2). Reducing by row, we have

(A, B) =

⎛

⎝

1 1 −1 2

1 −1 1 0

2 0 0 2

⎞

⎠ �→

⎛

⎝

1 1 −1 2

2 0 0 2

2 0 0 2

⎞

⎠ �→

⎛

⎝

1 1 −1 2

2 0 0 2

0 0 0 0

⎞

⎠ .

The system � is then equivalent to

{

x = 1

y = z + 1

whose space of solutions is S� = {(1, a + 1, a) : a ∈ R}. We can then write

f −1(2, 0, 2) = {(1, a + 1, a)B : a ∈ R} = {(a + 1, a + 2, 2a + 1) : a ∈ R}.

7.6 Computing the Image of a Linear Map

We next turn to the study of the image of a linear map.

Proposition 7.6.1 Let f : V → W be a linear map between real vector spaces,

with dim(V ) = n and dim(W ) = m. Fix a basis B for V and a basis C for W , with

associated matrix A = M
C,B
f and with C(A) its space of columns. The following

results hold:

(i) Im( f ) ∼= C(A) via the isomorphism (y1, . . . , ym)C �→ (y1, . . . , ym),
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(ii) dim(Im( f )) = rk(A),

(iii) if (w1, . . . , wr ) is a basis for C(A), then ((w1)C, . . . , (wr )C) is a basis for

Im( f ).

Proof (i) With the given hypothesis, from the definition of the image of a linear
map we can write

Im( f ) = {w ∈ W : ∃ v ∈ V : w = f (v)}

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

w = (y1, . . . , ym)C ∈ W : ∃ (x1, . . . , xn)B ∈ V :

⎛

⎜
⎝

y1

.

.

.

ym

⎞

⎟
⎠

C

=

⎛

⎜
⎝A

⎛

⎜
⎝

x1

.

.

.

xn

⎞

⎟
⎠

⎞

⎟
⎠

C

⎫

⎪
⎪
⎬

⎪
⎪
⎭

=

⎧

⎪
⎨

⎪
⎩

(y1, . . . , ym)C ∈ W : ∃ (x1, . . . , xn) ∈ R
n :

⎛

⎜
⎝

y1

.

.

.

ym

⎞

⎟
⎠ = A

⎛

⎜
⎝

x1

.

.

.

xn

⎞

⎟
⎠

⎫

⎪
⎬

⎪
⎭

.

Representing the matrix A by its columns, that is A = (C1 · · · Cn), we have

A

⎛

⎜
⎝

x1

...

xn

⎞

⎟
⎠ = x1C1 + · · · + xnCn.

We can therefore write

Im( f ) =

⎧

⎪
⎨

⎪
⎩

(y1, . . . , ym)C ∈ W : ∃ (x1, . . . , xn) ∈ R
n :

⎛

⎜
⎝

y1

.

.

.

ym

⎞

⎟
⎠ = x1C1 + · · · xnCn

⎫

⎪
⎬

⎪
⎭

=

⎧

⎪
⎨

⎪
⎩

(y1, . . . , ym)C ∈ W :

⎛

⎜
⎝

y1

.

.

.

ym

⎞

⎟
⎠ ∈ C(A)

⎫

⎪
⎬

⎪
⎭

.

We have then the isomorphism C(A) → Im( f ) defined by

(y1, . . . , ym) �→ (y1, . . . , ym)C

(compare this with the one in the Corollary 7.4.5).

(ii) Being Im( f ) ∼= C(A), it is dim(Im( f )) = dim(C(A)) = rk(A).

(iii) The claim follows from (i) and the Lemma 7.4.3.

⊓⊔

Remark 7.6.2 To determine a basis for C(A) as in (iii) above, one can proceed as

follows.

(a) If the rank of A is known, one has to select n linearly independent columns:

they will give a basis for C(A).
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(b) If the rank of A is not known, by denoting A′ the matrix obtained from A by

reduction by columns, a basis for C(A) is given by the r non zero columns of A′.

Exercise 7.6.3 Let f : R
3 → R

3 be the linear map with associated matrix

A = M
C,E
f =

⎛

⎝

1 −1 2

0 1 −3

2 −1 1

⎞

⎠

for the canonical basis E and basis C = (w1, w2, w3), with w1 = (1, 1, 0),

w2 = (0, 1, 1), w3 = (1, 0, 1). We reduce A by columns

A

C2 �→ C2 + C1

−−−−−−−−−−→

C3 �→ C3 − 2C1

⎛

⎝

1 0 0

0 1 −3

2 1 −3

⎞

⎠

C3 �→ C3 + 3C1

−−−−−−−−−−→

⎛

⎝

1 0 0

0 1 0

2 1 0

⎞

⎠ = A′.

Being A′ reduced by columns, its non zero columns yield a basis for the space

C(A). Thus, C(A) = C(A′) = L((1, 0, 2), (0, 1, 1)). From the Proposition 7.6.1

a basis for Im( f ) is given by the pair (u1, u2),

u1 = (1, 0, 2)C = w1 + 2w3 = (3, 1, 2)

u2 = (0, 1, 1)C = w2 + w3 = (1, 1, 2).

Clearly, dim(Im( f )) = 2 = rk(A).

From the previous results we have the following theorem.

Theorem 7.6.4 Let f : V → W be a linear map. It holds that

dim(ker( f )) + dim(Im( f )) = dim(V ).

Proof Let A be any matrix associated to f (that is irrespective of the bases chosen

in V and W ). From the Proposition 7.5.1 one has dim(ker( f )) = dim(V ) − rk(A),

while from the Proposition 7.6.1 one has dim(Im( f )) = rk(A). The claim follows.

⊓⊔

From this theorem, the next corollary follows easily.

Corollary 7.6.5 Let f : V → W be a linear map, with dim(V ) = dim(W ). The

following statements are equivalent.

(i) f is injective,

(ii) f is surjective,

(iii) f is an isomorphism.

Proof Clearly it is sufficient to prove the equivalence (i) ⇔ (ii). From the Lemma

7.3.5 we know that f is injective if and only if dim(ker( f )) = 0. We also known

that f is surjective if and only if dim(Im( f )) = dim(W ). Since dim(V ) = dim(W )

by hypothesis, the statement thus follows from the Theorem 7.6.4. ⊓⊔
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7.7 Injectivity and Surjectivity Criteria

In this section we study conditions for injectivity and surjectivity of a linear map

through properties of its associated matrix.

Proposition 7.7.1 (Injectivity criterion) Let f : V → W be a linear map. Then f

is injective if and only if rk(A) = dim(V ) for any matrix A associated to f (that is,

irrespective of the bases with respect to which the matrix A is given).

Proof From (i) in the Lemma 7.3.5 we know that f is injective if and only if

ker( f ) = {0V }, which means dim(ker( f )) = 0. From the Proposition 7.5.1 we have

that dim(ker( f )) = dim(V ) − rk(A) for any matrix A associated to f . We then have

that f is injective if and only if dim(V ) − rk(A) = 0. ⊓⊔

Exercise 7.7.2 Let f : R[X ]2 → R
2,2 be the linear map associated to the matrix

A =

⎛

⎜
⎜
⎝

2 1 0

−1 0 1

2 1 1

1 0 0

⎞

⎟
⎟
⎠

with respect to two given basis. SinceA is already reduced by column, rk(A) = 3,

the number of its non zero columns. Being dim(R[X ]2) = 3 we have, from the

Proposition 7.7.1, that f is injective.

Proposition 7.7.3 (Surjectivity criterion) Let f : V → W be a linear map. The

map f is surjective if and only if rk(A) = dim(W ) for any matrix associated to f

(again irrespective of the bases with respect to which the matrix A is given).

Proof This follows directly from the Proposition 7.6.1. ⊓⊔

Exercise 7.7.4 Let f : R
3 → R

2 be the linear map given by

f (x, y, z) = (x + y − z, 2x − y + 2z).

With E the canonical basis in R
3 and C the canonical basis in R

2, we have

A = M
C,E
f =

(

1 1 −1

2 −1 2

)

:

by reducing by rows,

A �→

(

1 1 −1

3 0 1

)

= A′.

We know that rk(A) = rk(A′) = 2, the number of non zero rows in A′. Being

dim(R2) = 2, the map f is surjective from the Proposition 7.7.3.
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We have seen in the Proposition 7.4.2 that if a linear map f is an isomorphism,

then its domain and image have the same dimension. Injectivity and surjectivity of

a linear map provide necessary conditions on the relative dimensions of the domain

and the image of the map.

Remark 7.7.5 Let f : V → W be a linear map. One has:

(a) If f is injective, then dim(V ) ≤ dim(W ). This claim easily follows from

the Lemma 7.3.5, since the images under f of a basis for V gives linearly

independent vectors in W .

(b) If f is surjective, then dim(V ) ≥ dim(W ). This claim follows from the Lemma

7.3.3, since the images under f of a basis for V generate (that is they linearly

span) W .

Remark 7.7.6 Let f : V → W be a linear map, with A its corresponding matrix

with respect to any basis. One has:

(a) With dim(V ) < dim(W ), f is injective if and only if rk(A) is maximal;

(b) With dim(V ) > dim(W ), f is surjective if and only if rk(A) is maximal;

(c) With dim(V ) = dim(W ), f is an isomorphism if and only if rk(A) is maximal.

Exercise 7.7.7 The following linear maps are represented with respect to canonical

bases.

(1) Let the map f : R
3 → R

4 be defined by

(x, y, z) �→ (x − y + 2z, y + z,−x + z, 2x + y).

To compute the rank of the corresponding matrix A with respect to the canonical

basis, as usual we reduce it by rows. We have

A =

⎛

⎜
⎜
⎝

1 −1 2

0 1 1

−1 0 1

2 1 0

⎞

⎟
⎟
⎠

�→

⎛

⎜
⎜
⎝

1 −1 2

0 1 1

0 0 1

0 0 0

⎞

⎟
⎟
⎠

,

and the rank of A is maximal, rk(A) = 3. Since dim(V ) < dim(W ) we have that f

is injective.

(2) Let the map f : R
4 → R

3 be defined by

(x, y, z, t) �→ (x − y + 2z + t, y + z + 3t, x − y + 2z + 2t).

We proceed as above and compute, via the following reduction,

A =

⎛

⎝

1 −1 2 1

0 1 1 3

1 −1 2 2

⎞

⎠ �→

⎛

⎝

1 −1 2 1

0 1 1 3

0 0 0 1

⎞

⎠ ,
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that rk(A) = 3. Since rk(A) is maximal, with dim(V ) > dim(W ), f turns out to be

surjective.

(3) Let f : R
3 → R

3 be represented as before by the matrix

A =

⎛

⎝

1 2 1

2 1 1

1 −1 2

⎞

⎠ ,

which, by reduction, becomes

A �→

⎛

⎝

1 2 1

0 −3 −1

0 0 2

⎞

⎠ ,

whose rank is clearly maximal. Thus f is an isomorphism since dim(V ) = dim(W ).

7.8 Composition of Linear Maps

We rephrase the general Definition 7.2.3 of composing maps.

Definition 7.8.1 Let f : V → W and g : W → Z be two linear maps between

real vector spaces. The composition between g and f is the map

g ◦ f : X → Z

defined as (g ◦ f )(v) = g( f (v)), for any v ∈ X .

Proposition 7.8.2 If f : V → W and g : W → Z are two linear maps, the com-

position map g ◦ f : V → Z is linear as well.

Proof For any v, v′ ∈ V and λ,λ′ ∈ R, the linearity of both f and g allows one to

write:

(g ◦ f )(λv + λ
′v′) = g( f (λv + λ

′v′))

= g(λ f (v) + λ
′ f (v′))

= λg( f (v)) + λ
′g( f (v′))

= λ(g ◦ f )(v) + λ
′(g ◦ f )(v′),

showing the linearity of the composition map. ⊓⊔

The following proposition, whose proof we omit, characterises the matrix corre-

sponding to the composition of two linear maps.
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Proposition 7.8.3 Let V, W, Z be real vector spaces with basis B, C,D respectively.

Given linear maps f : V → W and g : W → Z, the corresponding matrices with

respect to the given bases are related by

M
D,B
g◦ f = MD,C

g · M
C,B
f .

The following theorem characterises an isomorphism in terms of its corresponding

matrix.

Theorem 7.8.4 Let f : V → W be a linear map. The map f is an isomorphism

if and only if, for any choice of the bases B for V and C for W , the corresponding

matrix M
C,B
f with respect to the given bases is invertible, with

M
B,C

f −1 =
(

M
C,B
f

)−1

.

Proof Let us assume that f is an isomorphism: we can then write dim(V ) = dim(W ),

so M
C,B
f is a square matrix whose size is n × n (say). From the Proposition 7.4.2 we

know that f −1 exists as a linear map whose corresponding matrix, with the given

bases, will be M
B,C

f −1 . From the Proposition 7.8.3 we can write

M
B,C

f −1 · M
C,B
f = M

B,B

f −1◦ f
= M

B,B
idV

= In ⇒ M
B,C

f −1 =
(

M
C,B
f

)−1

.

We set now A = M
C,B
f . By hypothesis A is a square invertible matrix, with

inverse A−1, so we can consider the linear map

g = f
B,C

A−1 : W → V .

In order to show that g is the inverse of f , consider the matrix corresponding to

g ◦ f with respect to the basis B. From the Proposition 7.8.3,

M
B,B
g◦ f = MB,C

g · M
C,B
f = A−1 · A = In.

Since linear maps are in bijection with matrices, we have that g ◦ f = idV .

Along the same lines we can show that f ◦ g = idW , thus proving g = f −1. ⊓⊔

Exercise 7.8.5 Consider the linear map f : R
3 → R

3 defined by

f ((x, y, z)) = (x − y + z, 2y + z, z).

With the canonical basis E for R
3 the corresponding matrix is

A = M
E,E
f =

⎛

⎝

1 −1 1

0 2 1

0 0 1

⎞

⎠ .
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Since rk(A) = 3, f is an isomorphism, with f −1 the linear map corresponding to

A−1. From the Proposition 5.3.3, we have

A−1 =
1

det(A)

(

α j i

)

=

⎛

⎝

1 1/2 −3/2

0 1/2 −1/2

0 0 1

⎞

⎠ = M
E,E

f −1 .

7.9 Change of Basis in a Vector Space

In this section we study how to relate the components of the same vector in a vector

space with respect to different bases. This problem has a natural counterpart in

physics, where different bases for the same vector space represent different reference

systems. Thus different observers measuring observables of the same physical system

in a compatible way.

Example 7.9.1 We start by considering the vector space R
2 with two bases given by

E =
(

e1 = (1, 0), e2 = (0, 1)
)

, B =
(

b1 = (1, 2), b2 = (3, 4)
)

.

Any vector v ∈ R
2 will then be written as

v = (x1, x2)B = (y1, y2)E ,

or, more explicitly,

v = x1b1 + x2b2 = y1e1 + y2e2.

By writing the components of the elements in B in the basis E , that is

b1 = e1 + 2e2, b2 = 3e1 + 4e2,

we have

y1e1 + y2e2 = x1(e1 + 2e2) + x2(3e1 + 4e2)

= (x1 + 3x2)e1 + (2x1 + 4x2)e2.

We have then obtained

y1 = x1 + 3x2, y2 = 2x1 + 4x2.

These expression can be written in matrix form

(

y1

y2

)

=

(

x1 + 3x2

2x1 + 4x2

)

⇔

(

y1

y2

)

=

(

1 3

2 4

) (

x1

x2

)

.
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Such a relation can be written as

(

y1

y2

)

= A

(

x1

x2

)

,

where

A =

(

1 3

2 4

)

.

Notice that the columns of A above are given by the components of the vectors

in B with respect to the basis E . We have the following general result.

Proposition 7.9.2 Let V be a real vector space with dim(V ) = n. Let B and C be

two bases for V and denote by (x1, . . . , xn)B and (y1, . . . , yn)C the component of

the same vector v with respect to them. It is

⎛

⎜
⎝

y1

...

yn

⎞

⎟
⎠ = M

C,B
idV

⎛

⎜
⎝

x1

...

xn

⎞

⎟
⎠ .

Such an expression will also be written as

t (y1, . . . , yn) = M
C,B
idV

· t (x1, . . . , xn).

Proof This is clear, by recalling the Definition 7.1.12 and the Proposition 7.1.13. ⊓⊔

Definition 7.9.3 The matrix MC,B = M
C,B
idV

is called the matrix of the change of

basis from B to C. The columns of this matrix are given by the components with

respect to C of the vectors in B.

Exercise 7.9.4 Let B = (v1, v2, v3) and C = (w1, w2, w3) two different bases for

R
3, with

v1 = (0, 1,−1), v2 = (1, 0,−1), v3 = (2,−2, 2),

w1 = (0, 1, 1), w2 = (1, 0, 1), w3 = (1, 1, 0).

We consider the vector v = (1,−1, 1)B and we wish to determine its components

with respect to C. The solution to the linear system

v1 = a11w1 + a21w2 + a31w3

v2 = a12w1 + a22w2 + a32w3

v3 = a13w1 + a23w2 + a33w3

give the entries for the matrix of the change of basis, which is found to be
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MC,B =

⎛

⎝

0 −1 −1

−1 0 3

1 1 −1

⎞

⎠ .

We can then write

v =

⎛

⎝

y1

y2

y3

⎞

⎠

C

=

⎛

⎝MC,B

⎛

⎝

x1

x2

x3

⎞

⎠

⎞

⎠

C

=

⎛

⎝

⎛

⎝

0 −1 −1

−1 0 3

1 1 −1

⎞

⎠

⎛

⎝

1

−1

1

⎞

⎠

⎞

⎠

C

=

⎛

⎝

0

2

−1

⎞

⎠

C

.

Theorem 7.9.5 Let B and C be two bases for the vector space V over R. The matrix

MC,B is invertible, with
(

MC,B
)−1

= MB,C .

Proof This easily follows by applying the Theorem 7.8.4 to MC,B = M
C,B
idV

, since

idV = id−1
V . ⊓⊔

Theorem 7.9.6 Let A ∈ R
n,n be an invertible matrix. Denoting by v1, . . . , vn the

column vectors in A and setting B = (v1, . . . , vn), it holds that:

(i) B is a basis for R
n ,

(ii) A = MB,E with E the canonical basis in R
n .

Proof (i) From the Remark 7.7.6, we know that A has maximal rank, that is

rk(A) = n. Being the column vectors in A, the system v1, . . . , vn is then free.

A system of n linearly independent vectors in R
n is indeed a basis for R

n (see

the Corollary 2.5.5 in Chap. 2).

(ii) It directly follows from the Definition 7.9.3.

⊓⊔

Remark 7.9.7 From the Theorems 7.9.5 and 7.9.6 we have that the group GL(n, R)

of invertible matrices of order n, is the same as (the group of) matrices providing

change of basis in R
n .

Exercise 7.9.8 The matrix

A =

⎛

⎝

1 1 −1

0 1 2

0 0 1

⎞

⎠

is invertible since rk(A) = 3 (the matrix A is reduced by rows, so its rank is the

number of non zero columns). The column vectors in A, that is

v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (−1, 2, 1),

form a basis for R
3. It is also clear that A = ME,B = M

E,B
id

R3
, with B = (v1, v2, v3).
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We next turn to study how M
C,B
f , the matrix associated to a linear map f : V → W

with respect to the bases B for V and C in W , is transformed under a change of basis

in V and W . In the following pages we shall denote by VB the vector space V referred

to its basis B.

Theorem 7.9.9 Let B and B′ be two bases for the real vector space V and C and

C ′ two bases for the real vector space W . With f : V → W a linear map, one has

that

M
C′,B′

f = MC′,C · M
C,B
f · MB,B′

.

Proof The commutative diagram

f

VB −−−−−−→ WC

idV

�
⏐
⏐
⏐

⏐
⏐
⏐
� idW

V ′
B

−−−−−−→ W ′
C

f

shows the claim: going from V ′
B

to W ′
C

along the bottom line is equivalent to going

around the diagram, that is

f = idW ◦ f ◦ idV .

Such a relation can be translated in a matrix form,

M
C′,B′

f = M
C′,B′

idW ◦ f ◦idV

and, by recalling the Proposition 7.8.3, we have

M
C′,B′

idW ◦ f ◦idV
= M

C′,C
idW

· M
C,B
f · M

B,B′

idV
,

which proves the claim. ⊓⊔

Exercise 7.9.10 Consider the linear map f : R
2
B

→ R
3
C

whose corresponding

matrix is

A = M
C,B
f =

⎛

⎝

1 2

−1 0

1 1

⎞

⎠

with respect to B =
(

(1, 1), (0, 1)
)

and C =
(

(1, 1, 0), (1, 0, 1), (0, 1, 1)
)

. We deter-

mine the matrix B = M
E3,E2

f , with E2 the canonical basis for R
2 and E3 the canonical

basis for R
3. The commutative diagram above turns out to be
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f
C,B
A

R
2
B −−−−−−→ R

3
C

id
R2

�
⏐
⏐
⏐

⏐
⏐
⏐
� id

R3

R
2
E2

−−−−−−→ R
3
E3

f
E3 ,E2
B

,

which reads

B = M
E3,E2

f = ME3,C A MB,E2 .

We have to compute the matrices ME3,C and MB,E2 . Clearly,

ME3,C =

⎛

⎝

1 1 0

1 0 1

0 1 1

⎞

⎠ ,

and, from the Theorem 7.9.5, it is

MB,E2 =
(

ME2,B
)−1

=

((

1 0

1 1

))−1

=

(

1 0

−1 1

)

(the last equality follows from the Proposition 5.3.3). We have then

B =

⎛

⎝

1 1 0

1 0 1

0 1 1

⎞

⎠

⎛

⎝

1 2

−1 0

1 1

⎞

⎠

(

1 0

−1 1

)

=

⎛

⎝

−2 2

−1 3

−1 1

⎞

⎠ .

We close this section by studying how to construct linear maps with specific

properties.

Exercise 7.9.11 We ask whether there is a linear map f : R
3 → R

3 which fulfils

the conditions f (1, 0, 2) = 0 and Im( f ) = L((1, 1, 0), (2,−1, 0)). Also, if such a

map exists, is it unique?

We start by setting v1 = (1, 0, 2), v2 = (1, 1, 0), v3 = (2,−1, 0). Since a linear

map is characterised by its action on the elements of a basis and v1 is required to

be in the kernel of f , we complete v1 to a basis for R
3. By using the elements of

the canonical basis E3, we may take the set (v1, e1, e2), which is indeed a basis: the

matrix ⎛

⎝

1 0 2

1 0 0

0 1 0

⎞

⎠ ,
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whose rows are given by (v1, e1, e2) has rank 3 (the matrix is already reduced by

rows). So we can take the basis B = (v1, e1, e2) and define

f (v1) = 0R3 ,

f (e1) = v2,

f (e2) = v3.

Such a linear map satisfies the required conditions, since ker( f ) = {v1} and

Im( f ) = L( f (v1), f (e1), f (e2)) = L(v2, v3).

With respect to the bases E and B we have

M
E,B
f =

⎛

⎝

0 1 2

0 1 −1

0 0 0

⎞

⎠ .

In order to understand whether the required conditions can be satisfied by a dif-

ferent linear map f , we start by analysing whether the set (v1, v2, v3) itself provides

a basis for R
3. As usual, we reduce by rows the matrix associated to the vectors,

A =

⎛

⎝

1 0 2

1 1 0

2 −1 0

⎞

⎠ �→

⎛

⎝

1 0 2

1 1 0

3 0 0

⎞

⎠ .

Such a reduction gives rk(A) = 3, that is C = (v1, v2, v3) is a basis for R
3. Then,

let g : R
3 → R

3 be defined by

g(v1) = 0R3 ,

g(v2) = v2,

g(v3) = v3.

Also the linear map g satisfies the conditions we set at the beginning and the

matrix

MC,C
g =

⎛

⎝

0 0 0

0 1 0

0 0 1

⎞

⎠

represents its action by the basis C. It seems clear that f and g are different.

In order to prove this claim, we shall see that their corresponding matrices with

respect to the same pair of bases differ. We need then to find ME,B
g . We know that

ME,B
g = ME,C

g MC,B, with
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ME,C
g =

⎛

⎝

0 1 2

0 1 −1

0 0 0

⎞

⎠ ,

since the column vectors in ME,C
g are given by g(v1), g(v2), g(v3). The columns of

the matrix MC,B are indeed the components with respect to C of the vectors in B,

that is

v1 = v1,

e1 =
1

3
v2 +

1

3
v3,

e2 =
2

3
v2 −

1

3
v3.

Thus we have

MC,B = 1
3

⎛

⎝

3 0 0

0 1 2

0 1 −1

⎞

⎠ ,

and in turn,

ME,B
g = ME,C

g MC,B =

⎛

⎝

0 1 2

0 1 −1

0 0 0

⎞

⎠ 1
3

⎛

⎝

3 0 0

0 1 2

0 1 −1

⎞

⎠ =

⎛

⎝

0 1 0

0 0 1

0 0 0

⎞

⎠ .

This shows that ME,B
g 	= M

E,B
f , so that g 	= f .



Chapter 8

Dual Spaces

8.1 The Dual of a Vector Space

Let us consider two finite dimensional real vector spaces V and W , and denote by

Lin(V → W ) the collection of all linear maps f : V → W . It is easy to show that

Lin(V → W ) is itself a vector space over R. This is with respect to a sum ( f1 + f2)

and a product by a scalar (λ f ), for any f1, f2, f ∈ Lin(V → W ) and λ ∈ R, defined

pointwise, that is by

( f1 + f2)(v) = f1(v) + f2(v)

(λ f )(v) = λ f (v)

for any v ∈ V . If B is a basis for V (of dimension n) and C a basis for W (of

dimension m), the map Lin(V → W ) → R
m,n given by

f �→ M
C,B

f

is an isomorphism of real vector spaces and the following relations

M
C,B

f1+ f2
= M

C,B

f1
+ M

C,B

f2

M
C,B

λ f = λM
C,B

f (8.1)

hold (see the Proposition 4.1.4). It is then clear that dim(Lin(V → W )) = mn.

In particular, the vector space of linear maps from a vector space V to R, that is

the set of linear forms on V , deserves a name of its own.

Definition 8.1.1 Given a finite dimensional vector space V , the space of linear maps

Lin(V → R) is called the dual space to V and is denoted by V ∗ = Lin(V → R).

The next result follows from the general discussion above.
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Proposition 8.1.2 Given a finite dimensional real vector space V , its dual space V ∗

is a real vector space with dim(V ∗) = dim(V ).

Let B = (b1, . . . , bn) be a basis for V . We define elements {ϕi }i=1,...,n in V ∗ by

ϕi (b j ) = δi j with

{

1 if i = j

0 if i �= j .
(8.2)

With V ∋ v = x1b1 + . . . + xnbn , we have for the components that xi = ϕi (v). If

f ∈ V ∗ we write

f (v) = f (b1) x1 + . . . + f (bn) xn

= f (b1)ϕ1(v) + . . . + f (bn)ϕn(v)

=
(

f (b1)ϕ1 + . . . + f (bn)ϕn

)

(v).

This shows that the action of f upon the vector v is the same as the action on v of the

linear map f = f (b1)ϕ1 + . . . + f (bn)ϕn , that is we have that V ∗ = L(ϕ1, . . . ,ϕn).

It is indeed immediate to prove that, with respect to the linear structure in V ∗, the

linear maps ϕi are linearly independent, so they provide a basis for V ∗. We have then

sketched the proof of the following proposition.

Proposition 8.1.3 Given a basis B for a n-dimensional real vector space V , the

elements ϕi defined in (8.2) provide a basis for V ∗. Such a basis, denoted B∗, is

called the dual basis to B.

We can also write

f (v) = ( f (b1) . . . f (bn))

⎛

⎜

⎝

x1

...

xn

⎞

⎟

⎠
. (8.3)

Referring to the Definition 7.1.12 (and implicitly fixing a basis for W ∼= R), the

relation (8.3) provides us the single row matrix MB

f = ( f (b1) . . . f (bn)) associated

to f with respect to the basis B for V . Its entries are the image under f of the basis

elements in B. The proof of the proposition above shows that such entries are the

components of f ∈ V ∗ with respect to the dual basis B∗.

Let B′ be another basis for V , with elements {b′
i }i=1,...,n . With

v = x1b1 + . . . + xnbn = x ′
1b′

1 + . . . + x ′
nb′

n

we can write, following the Definition 7.9.3,

x ′
k =

n
∑

s=1

(MB′,B)ks xs, bi =

n
∑

j=1

(MB′,B) j i b
′
j
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or, in a matrix notation,

⎛

⎜

⎝

x ′
1
...

x ′
n

⎞

⎟

⎠
= MB′,B

⎛

⎜

⎝

x1

...

xn

⎞

⎟

⎠
, (b1 . . . bn) MB,B′

= (b′
1 . . . b′

n). (8.4)

From the Theorem 7.9.9 we have the matrix associated to f with respect to B′

MB′

f = MB

f MB,B′

,

which we write as

( f (b1) . . . f (bn)) MB,B′

= ( f (b′
1) . . . f (b′

n)). (8.5)

Since the entries of MB′

f provide the components of the element f ∈ V ∗ with respect

to the basis B
′∗, a comparison between (8.4) and (8.5) shows that, under a change

of basis B �→ B′ for V and the corresponding change of the dual basis in V ∗, the

components of a vector in V ∗ are transformed under a map which is the inverse of

the map that transforms the components of a vector in V .

The above is usually referred to by saying that the transformation law for vectors

in V ∗ is contravariant with respect to the covariant one for vectors in V . In Sect. 13.3

we shall describe these facts with an important physical example, the study of the

electromagnetic field.

If we express f ∈ V ∗ with respect to the dual bases B∗ and B′∗ as

f (v) =

n
∑

i=1

f (bi )ϕn =

n
∑

k=1

f (v′
k)ϕ

′
k

and consider the rule for the change of basis, we have

n
∑

k,i=1

(MB′,B)ki f (b′
k)ϕi =

n
∑

k=1

f (v′
k)ϕ

′
k .

Since this must be valid for any f ∈ V ∗, we can write the transformation law

B∗ �→ B
′∗:

ϕ′
k =

n
∑

i=1

(MB′,B)kiϕi that is

⎛

⎜

⎝

ϕ′
1
...

ϕ′
n

⎞

⎟

⎠
= MB′,B

⎛

⎜

⎝

ϕ1

...

ϕn

⎞

⎟

⎠
.

It is straightforward to extend to the complex case, mutatis mutandis, all the

results of the present chapter given above. In particular, one has the following natural

definition.
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Definition 8.1.4 Let V be a finite dimensional complex vector space. The set

V ∗ = Lin(V → C) is called the dual space to V .

Indeed, the space V ∗ is a complex vector space, with dim(V ∗) = dim(V ), and a

natural extension of (8.2) to the complex case allows one to introduce a dual basis

B∗ for any basis B of V .

Also, we could consider linear maps between finite dimensional complex vector

spaces. In the next section we shall explicitly consider linear transformations of the

complex vector space C
n .

8.2 The Dirac’s Bra-Ket Formalism

Referring to Sect. 3.4 let us denote by H n = (Cn, ·) the canonical hermitian vector

space. Following Dirac (and by now a standard practice in textbooks on quantum

mechanics), the hermitian product is denoted as

〈 | 〉 : C
n × C

n → C
′, 〈z|w〉 = z̄1w1 + · · · + z̄nwn,

for any z = (z1, . . . , zn),w = (w1, . . . , wn) ∈ C
n . Thus its properties (see the Propo-

sition 3.4.2) are written as follows. For any z, w, v ∈ C
n and a, b ∈ C,

(i) 〈w|z〉 = 〈z|w〉,

(ii) 〈az + bw|v〉 = ā〈z|v〉 + b̄〈w|v〉 while 〈v|az + bw〉 = a〈v|z〉 + b〈v|w〉,

(iii) 〈z|z〉 ≥ 0,

(iv) 〈z|z〉 = 0 ⇔ z = (0, . . . , 0) ∈ C
n .

Since the hermitian product is bilinear (for the sum), for any fixed w ∈ H n , the

mapping

fw : v �→ 〈w|z〉

provides indeed a linear map from C
n to C, that is fw is an element of the dual space

(Cn)∗. Given a hermitian basis B = {e1, . . . , en} for H n , with w = (w1, . . . , wn)B
and z = (z1, . . . , zn)B, one has

fw(z) = w̄1z1 + . . . + w̄nzn.

The corresponding dual basis B∗ = {ε1, . . . , εn} for (Cn)∗ is defined in analogy to

(8.2) for the real case by taking εi (e j ) = δi j . In terms of the hermitian product, these

linear maps can be defined as εi (z) = 〈ei |z〉. Then, to any w = (w1, . . . , wn)B we

can associate an element fw = w̄1ε1 + . . . + w̄nεn in (Cn)∗, whose action on C
n can

be written as

fw(v) = 〈w|v〉.
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Thus, via the hermitian product, to any vector w ∈ C
n one associates a unique dual

element fw ∈ (Cn)∗; viceversa, to any element f ∈ (Cn)∗ one associates a unique

element w ∈ C
n in such a way that f = fw:

w = w1e1 + . . . + wnen ↔ fw = w̄1ε1 + . . . + w̄nεn.

Remark 8.2.1 Notice that this bijection between C
n and (Cn)∗ is anti-linear (for the

product by complex numbers), since we have to complex conjugate the components

of the vectors in order to satisfy the defining requirement of the hermitian product

in H n , that is

fλw = λ̄ fw, for λ ∈ C, w ∈ C
n.

For the canonical euclidean space En one could proceed in a similar manner and

in such a case the bijection between En and its dual (En)∗ given by the euclidean

product is linear.

Given the bijection above, Dirac’s idea was to split the hermitian product bracket.

Any element w ∈ H n provides a ket element |w〉 and a bra element 〈w| ∈ (Cn)∗.

A basis for H n is then written as made of elements |e j 〉 while the bra elements 〈e j |

form the dual basis for (Cn)∗, with

w = w1e1 + . . . + wnen ↔ |w〉 = w1|e1〉 + . . . + wn|en〉,

fw = w̄1ε1 + . . . + w̄nεn ↔ 〈w| = w̄1〈e1| + . . . + w̄n〈en| .

The action of a bra element on a ket element is just given as a bra-ket juxtapposition,

with

fw(z) = 〈w|z〉 ∈ C.

We are now indeed allowed to define a ket-bra juxtaposition, that is we have elements

T = |z〉〈w|. The action of such a T from the left upon a |u〉, is then defined as

T : |u〉 �→ |z〉〈w|u〉.

Since 〈w|u〉 is a complex number, we see that for this action the element T maps a

ket vector linearly into a ket vector, so T is a linear map from H n to H n .

Definition 8.2.2 With z, w ∈ H n , the ket-bra element T = |z〉〈w| is the linear oper-

ator whose action is defined as v �→ T (v) = 〈w|v〉z = (w · v)z.

It is then natural to consider linear combination of the form T =
∑n

k,s=1 Tks |ek〉〈es |

with Tks ∈ C the entries of a matrix T ∈ C
n,n so to compute

T |e j 〉 =

n
∑

k,s=1

Tks |ek〉〈es |e j 〉 =

n
∑

k=1

Tk j |ek〉

Tk j = 〈ek |T (e j )〉. (8.6)
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In order to relate this formalism to the one we have already developed in this

chapter, consider a linear map φ : H n → H n and its associated matrix M
B,B

φ = (aks)

with respect to a given hermitian basis B = (e1, . . . , en). From the Propositions

7.1.13 and 7.1.14 it is easy to show that one has

ak j = ek · (A(e j )) = 〈ek |A(e j )〉. (8.7)

The analogy between (8.6) and (8.7) shows that, for a fixed basis of H n , the action

of a linear map φ with associated matrix A = M
B,B

φ = (aks) is equivalently written

as the action of the operator

TA(= Tφ) =

n
∑

k,s=1

aks |ek〉〈es |

in the Dirac’s notation. The association A → TA is indeed an isomorphism of (com-

plex) vector space of dimension n2.

Next, let φ,ψ be two linear maps on H n with associated matrices A, B with

respect to the hermitian basis B. They correspond to the operators that we write as

TA =
∑n

r,s=1 ars |er 〉〈es | and TB =
∑n

j,k=1 b jk |e j 〉〈ek |. With a natural juxtaposition

we write the composition of the linear maps as

φ ◦ ψ =

n
∑

r,s=1

n
∑

j,k=1

arsb jk |er 〉〈es |e j 〉〈ek |

=

n
∑

r,k=1

(

n
∑

j=1

ar j b jk)|er 〉〈ek | .

We see that the matrix associated, via the isomorphism A → TA above, to the com-

position φ ◦ ψ has entries (r, k) given by
∑n

j=1 ar j b jk , thus coinciding with the row

by column product between the matrices A and B associated to φ and ψ, that is

TAB = TATB .

Thus, the Proposition 7.8.3 for composition of matrices associated to linear maps is

valid when we represent linear maps on H n using the Dirac’s notation.

All of this section has clearly a real version and could be repeated for the (real)

euclidean space En with its linear maps and associated real matrices T ∈ R
n,n .



Chapter 9

Endomorphisms and Diagonalization

Both in classical and quantum physics, and in several branches of mathematics, it

is hard to overestimate the role that the notion of diagonal action of a linear map

has. The aim of this chapter is to introduce this topic which will be crucial in all the

following chapters.

9.1 Endomorphisms

Definition 9.1.1 Let V be a real vector space. A linear map φ : V → V is called

an endomorphism of V . The set of all endomorphisms of V is denoted End(V ). Non

invertible endomorphisms are also called singular or degenerate.

As seen in Sect. 8.1, the set End(V ) is a real vector space with dim(End(V )) = n2

if dim(V ) = n.

The question we address now is whether there exists a class of bases of the vector

space V , with respect to which a matrix M
B,B
φ has a particular (diagonal, say) form.

We start with a definition.

Definition 9.1.2 The matrices A, B ∈ R
n,n are called similar if there exists a real

vector space V and an endomorphism φ ∈ End(V ) such that A = M
B,B
φ and

B = M
C,C
φ , where B and C are bases for V . We denote similar matrices by A ∼ B.

Similarity between matrices can be described in a purely algebraic way.

Proposition 9.1.3 The matrices A, B ∈ R
n,n are similar if and only if there exists

an invertible matrix P ∈ GL(n), such that P−1 AP = B.
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Proof Let us assume A ∼ B: we then have a real vector space V , bases B and C for

it and an endomorphism φ ∈ End(V ) such that A = M
B,B
φ e B = M

C,C
φ . From the

Theorem 7.9.9 we have

B = MC,B A MB,C .

Since the matrix MC,B is invertible, with (MC,B)−1 = MB,C , the claim follows with

P = MB,C .

Next, let us assume there exists a matrix P ∈ GL(n) such that P−1 AP = B.

From the Theorem 7.9.6 and the Remark 7.9.7 we know that the invertible matrix

P gives a change of basis in R
n: there exists a basis C for R

n (the columns of P),

with P = ME,C and P−1 = MC,E . Let φ = f
E,E
A be the endomorphism in R

n

corresponding to the matrix A with respect to the canonical bases, A = M
E,E
φ . We

then have

B = P−1 A P

= MC,E M
E,E
φ ME,C

= M
C,C
φ .

This shows that B corresponds to the endomorphism φ with respect to the different

basis C, that is A and B are similar. ⊓⊔

Remark 9.1.4 The similarity we have introduced is an equivalence relation in R
n,n ,

since it is

(a) reflexive, that is A ∼ A since A = In AIn ,

(b) symmetric, that is A ∼ B ⇒ B ∼ A since

P−1 A P = B ⇒ P B P−1 = A,

(c) transitive, that is A ∼ B and B ∼ C imply A ∼ C , since P−1 A P = B and

Q−1 B Q = C clearly imply Q−1 P−1 A P Q = (P Q)−1 A(P Q) = C .

If A ∈ R
n,n , we denote its equivalence class by similarity as [A] = {B ∈ R

n,n :

B ∼ A}.

Proposition 9.1.5 Let matrices A, B ∈ R
n,n be similar. Then

det(B) = det(A) and tr(B) = tr(A).

Proof From Proposition 9.1.3, we know there exists an invertible matrix P ∈ GL(n),

such that P−1 AP = B. From the Binet Theorem 5.1.16 and the Proposition 4.5.2 we

can write

det(B) = det(P−1 AP)

= det(P−1) det(A) det(P) = det(P−1) det(P) det(A)

= det(A)

and tr(B) = tr(P−1 AP) = tr(P P−1 A) = tr(A). ⊓⊔
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A natural question is whether, for a given A, the equivalence class [A] contains a

diagonal element (equivalently, whether A is similar to a diagonal matrix).

Definition 9.1.6 A matrix A ∈ R
n,n is called diagonalisable if it is similar to a

diagonal (� say) matrix, that is if there is a diagonal matrix � in the equivalence

class [A].

Such a definition has a counterpart in terms of endomorphisms.

Definition 9.1.7 An endomorphism φ ∈ End(V ) is called simple if there exists a

basis B for V such that the matrix M
B,B
φ is diagonalisable.

We expect that for an endomorphism to be simple is an intrinsic property which

does not depend on the basis with respect to which its corresponding matrix is given.

The following proposition confirms this point.

Proposition 9.1.8 Let V be a real vector space, with φ ∈ End(V ). The following

are equivalent:

(i) φ is simple, there is a basis B for V such that M
B,B
φ is diagonalisable,

(ii) there exists a basis C for V such that M
C,C
φ is diagonal,

(iii) given any basis D for V , the matrix M
D,D
φ is diagonalisable.

Proof (i) ⇒ (ii): Since M
B,B
φ is similar to a diagonal matrix �, from the proof

of the Proposition 9.1.3 we know that there is a basis C with respect to which

� = M
C,C
φ is diagonal.

(ii) ⇒ (iii): Let C be a basis of V such that M
C,C
φ = � is diagonal. For any basis D

we have then M
D,D
φ ∼ �, thus M

D,D
φ is diagonalisable.

(iii) ⇒ (i): obvious.

⊓⊔

9.2 Eigenvalues and Eigenvectors

Remark 9.2.1 Let φ : V → V be a simple endomorphism, with � = M
C,C
φ a diag-

onal matrix associated to φ. It is then

� =

⎛

⎜

⎜

⎜

⎝

λ1 0 0 · · · 0

0 λ2 0 · · · 0
...

...
...

...

0 0 0 · · · λn

⎞

⎟

⎟

⎟

⎠

,

for scalars λ j ∈ R, with j = 1, . . . , n. By setting C = (v1, . . . , vn), we write then

φ(v j ) = λ jv j .
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The vectors of the basis C and the scalars λ j plays a prominent role in the analysis

of endomorphisms. This motivates the following definition.

Definition 9.2.2 Let φ ∈ End(V ) with V a real vector space. If there exists a non

zero vector v ∈ V and a scalar λ ∈ R, such that

φ(v) = λv,

then λ is called an eigenvalue of φ and v is called an eigenvector of φ associated to

λ. The spectrum of an endomorphism is the collection of its eigenvalues.

Remark 9.2.3 Let φ ∈ End(V ) and C be a basis of V . With the definition above,

the content of the Remark 9.2.1 can be rephrased as follow:

(a) M
C,C
φ is diagonal if and only if C is a basis of eigenvectors for φ,

(b) φ is simple if and only if V has a basis of eigenvectors for φ (from the Defini-

tion 9.1.7).

Notice that each eigenvector v for an endomorphism φ is uniquely associated to

an eigenvalue λ of φ. On the other hand, more than one eigenvector can be associated

to a given eigenvalue λ. It is indeed easy to see that, if v is associated to λ, also αv,

with α ∈ R, is associated to the same λ since φ(αv) = αφ(v) = α(λv) = λ(αv).

Proposition 9.2.4 If V is a real vector space , and φ ∈ End(V ), the set

Vλ = {v ∈ V : φ(v) = λv}

is a vector subspace in V .

Proof We explicitly check that Vλ is closed under linear combinations. With v1, v2 ∈

Vλ and a1, a2 ∈ R, we can write

φ(a1v1 + a2v2) = a1φ(v1) + a2φ(v2) = a1λv1 + a2λv2 = λ(a1v1 + a2v2),

showing that Vλ is a vector subspace of V ⊓⊔

Definition 9.2.5 If λ ∈ R is an eigenvalue of φ ∈ End(V ), the space Vλ is called

the eigenspace corresponding to λ.

Remark 9.2.6 It is easy to see that if λ ∈ R is not an eigenvalue for the endomorphism

φ, then the set Vλ = {v ∈ V | φ(v) = λv} contains only the zero vector. It is indeed

clear that, if Vλ contains the zero vector only, then λ is not an eigenvalue for φ. We

have that λ ∈ R is an eigenvalue for φ if and only if dim(Vλ) ≥ 1.

Exercise 9.2.7 Let φ ∈ End(R2) be defined by φ((x, y)) = (y, x). Is λ = 2 an

eigenvalue for φ? The corresponding set V2 would then be

V2 = {v ∈ R
2 : φ(v) = 2v} = {(x, y) ∈ R

2 : (y, x) = 2(x, y)},
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that is, V2 would be given by the solutions of the system

{

y = 2x

x = 2y
⇒

{

y = 2x

x = 4x
⇒

{

x = 0

y = 0
.

Since V2 = {(0, 0)}, we conclude that λ = 2 is not an eigenvalue for φ.

Exercise 9.2.8 The endomorphism φ ∈ End(R2) given by φ((x, y)) = (2x, 3y) is

simple since the corresponding matrix with respect to the canonical basis E = (e1, e2)

is diagonal,

M
E,E
φ =

(

2 0

0 3

)

.

Its eigenvalues are λ1 = 2 (with eigenvector e1) and λ2 = 3 (with eigenvector e2).

The corresponding eigenspaces are then V2 = L(e1) and V3 = L(e2).

Exercise 9.2.9 We consider again the endomorphism φ((x, y)) = (y, x) in R
2 given

in the Exercise 9.2.7. We wonder whether it is simple. We start by noticing that its

corresponding matrix with respect to the canonical basis is the following,

M
E,E
φ =

(

0 1

1 0

)

,

which is not diagonal. We look then for a basis (if it exists) with respect to which

the matrix corresponding to φ is diagonal. By recalling the Remark 9.2.3 we look

for a basis of R
2 made up of eigenvectors for φ. In order for v = (a, b) to be an

eigenvector for φ, there must exist a real scalar λ such that φ((a, b)) = λ(a, b),

{

b = λa

a = λb
.

It follows that the eigenvalues, if they exist, must fulfill the condition λ2 = 1. For

λ = 1 the corresponding eigenspace is

V1 = {(x, y) ∈ R
2 : φ((x, y)) = (x, y)} = {(x, x) ∈ R

2} = L((1, 1)).

And for λ = −1 the corresponding eigenspace is

V−1 = {(x, y) ∈ R
2 : φ((x, y)) = −(x, y)} = {(x,−x) ∈ R

2} = L((1,−1)).

Since the vectors (1, 1), (1,−1) form a basis B for R
2 with respect to which the

matrix of φ is

M
B,B
φ =

(

1 0

0 −1

)

,
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we conclude that φ is simple. We expect M
B,B
φ ∼ M

E,E
φ , since they are associated

to the same endomorphism; the algebraic proof of this claim is easy. By defining

P = ME,B =

(

1 1

1 −1

)

the matrix of the change of basis, we compute explicitly,

(

1 1

1 −1

)−1 (

0 1

1 0

) (

1 1

1 −1

)

=

(

1 0

0 −1

)

,

that is P−1 M
E,E
φ P = M

B,B
φ (see the Proposition 9.1.3).

Not any endomorphism is simple as the following exercise shows.

Exercise 9.2.10 The endomorphism in R
2 defined as φ((x, y)) = (−y, x) is not

simple. For v = (a, b) to be an eigenvector, φ((a, b)) = λ(a, b) it would be equiv-

alent to (−b, a) = λ(a, b), leading to λ2 = −1. The only solution in R is then

a = b = 0, showing that φ is not simple.

Proposition 9.2.11 Let V be a real vector space with φ ∈ End(V ). If λ1,λ2

are distinct eigenvalues, any two corresponding eigenvectors, 0 	= v1 ∈ Vλ1
and

0 	= v2 ∈ Vλ2
, are linearly independent. Also, the sum Vλ1

+ Vλ2
is direct.

Proof Let us assume that v2 = αv1, with R ∋ α 	= 0. By applying the linear map

φ to both members, we have φ(v2) = αφ(v1). Since v1 and v2 are eigenvectors with

eigenvalues λ1 and λ2,

φ(v1) = λ1 v1

φ(v2) = λ2 v2

and the relation φ(v2) = αφ(v1), using v2 = αv1 become

λ2v2 = α(λ1v1) = λ1(αv1) = λ1v2,

that is

(λ2 − λ1)v2 = 0V .

Since λ2 	= λ1, this would lead to the contradiction v2 = 0V . We therefore conclude

that v1 and v2 are linearly independent.

For the last claim we use the Proposition 2.2.13 and show that Vλ1
∩ Vλ2

= {0V }.

If v ∈ Vλ1
∩ Vλ2

, we could write both φ(v) = λ1v (since v ∈ Vλ1
) and φ(v) = λ2v

(since v ∈ Vλ2
): it would then be λ1v = λ2v, that is (λ1 − λ2)v = 0V . From the

hypothesis λ1 	= λ2, we would get v = 0V . ⊓⊔

The following proposition is proven along the same lines.
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Proposition 9.2.12 Let V be a real vector space, with φ ∈ End(V ). Let λ1, . . . ,

λs ∈ R be distinct eigenvalues of φ with 0V 	= v j ∈ Vλ j
, j = 1, . . . , s corresponding

eigenvectors. The set {v1, . . . , vs} is free, and the sum Vλ1
+ · · · + Vλs

is direct.

Corollary 9.2.13 Ifφ is an endomorphism of the real vector space V , with dim(V ) =

n, then φ has at most n distinct eigenvalues.

Proof If φ had s > n distinct eigenvalues, there would exist a set v1, . . . , vs of non

zero corresponding eigenvectors. From the proposition above, such a system should

be free, thus contradicting the fact that the dimension of V is n. ⊓⊔

Remark 9.2.14 Let φ and ψ be two commuting endomorphisms, that is they are

such that φ(ψ(w)) = ψ(φ(w)) for any v ∈ V . If v ∈ Vλ is an eigenvector for φ

corresponding to λ, it follows that

φ(ψ(v)) = ψ(φ(v)) = λψ(v).

Thus the endomorphism ψ maps any eigenspace Vλ of φ into itself, and analogously

φ preserves any eigenspace V ′
λ′ of ψ.

Finding the eigenspaces of an endomorphism amounts to compute suitable ker-

nels. Let f : V → W be a linear map between real vector spaces with bases B and

C. We recall (see Proposition 7.5.1) that if A = M
C,B
f and � : AX = 0 is the linear

system associated to A, the map S� → ker( f ) given by

(x1, . . . , xn) → (x1, . . . , xn)B

is an isomorphism of vector spaces.

Lemma 9.2.15 If V is a real vector space with basis B, let φ ∈ End(V ) and λ ∈ R.

Then

Vλ = ker(φ − λ idV ) ∼= S�λ
,

where S�λ
is the space of the solutions of the linear homogeneous system

S�λ
:

(

M
B,B
φ − λIn

)

X = 0.

Proof From the Definition 9.2.4 we write

Vλ = {v ∈ V : φ(v) = λv}

= {v ∈ V : φ(v) − λv = 0V }

= ker(φ − λ idV ).

Such a kernel is isomorphic (as recalled above) to the space of solutions of the linear

system given by the matrix M
B,B
φ−λidV

, where B is an arbitrary basis of V . We conclude

by noticing that M
B,B
φ−λidV

= M
B,B
φ − λIn . ⊓⊔
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Proposition 9.2.16 Let φ ∈ End(V ) be an endomorphism of the real vector space

V , with dim(V ) = n, and let λ ∈ R. The following are equivalent:

(i) λ is an eigenvalue for φ,

(ii) dim(Vλ) ≥ 1,

(iii) det(M
B,B
φ − λIn) = 0 for any basis B in V .

Proof (i) ⇔ (ii) is the content of the Remark 9.2.6;

(ii) ⇔ (iii). Let B be an arbitrary basis of V , and consider the linear system

S�λ
:

(

M
B,B
φ − λIn

)

X = 0. We have

dim(Vλ) = dim(S�λ
)

= n − rk
(

M
B,B
φ − λIn

)

;

the first and the second equality follow from Definition 6.2.1 and Theorem 6.4.3

respectively. From Proposition 5.3.1 we finally write

dim(Vλ) ≥ 1 ⇔ rk
(

M
B,B
φ − λIn

)

< n ⇔ det
(

M
B,B
φ − λIn

)

= 0,

which concludes the proof. ⊓⊔

This proposition shows that the computation of an eigenspace reduces to finding

the kernel of a linear map, a computation which has been described in the Proposi-

tion 7.5.1.

9.3 The Characteristic Polynomial of an Endomorphism

In this section we describe how to compute the eigenvalues of an endomorphism.

These will be the roots of a canonical polynomial associate with the endomorphism.

Definition 9.3.1 Given a square matrix A ∈ R
n,n , the expression

pA(T ) = det(A − T In)

is a polynomial of order n in T with real coefficients. Such a polynomial is called

the characteristic polynomial of the matrix A.

Exercise 9.3.2 If A =

(

a11 a12

a21 a22

)

is a square 2 × 2 matrix, then

pA(T ) =

∣

∣

∣

∣

a11 − T a12

a21 a22 − T

∣

∣

∣

∣

= T 2 − (a11 + a22) T + (a11a22 − a12a21)

= T 2 − (tr(A)) T + (det(A)).
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If λ1 and λ2 are the zeros (the roots) of the polynomial pA(T ), with elementary

algebra we write

pA(T ) = T 2 − (λ1 + λ2) T + λ1λ2

thus obtaining

λ1 + λ2 = a11 + a22 = tr(A), λ1λ2 = (a11a22 − a12a21) = det(A).

Proposition 9.3.3 Let V be a real vector space with dim(V ) = n, and let

φ ∈ End(V ). For any choice of bases B and C in V , with corresponding matri-

ces A = M
B,B
φ and B = M

C,C
φ , it is

pA(T ) = pB(T ).

Proof We know that B = P−1 AP , with P = MB,C the matrix of change of basis.

So we write

B − T In = P−1 AP − P−1(T In)P = P−1(A − T In)P.

From the Binet Theorem 5.1.16 we have then

det(B − T In) = det(P−1(A − T In)P) = det(P−1) det(A − T In) det(P)

= det(A − T In),

which yields a proof of the claim, since det(P−1) det(P) = det(In) = 1. ⊓⊔

Given a matrix A ∈ R
n,n , an explicit computation of det(A − T In) shows that

pA(T ) = (−1)nT n + (−1)n−1tr(A) T n−1 + · · · + det(A).

The case n = 2 is the Exercise 9.3.2.

Given φ ∈ End(V ), the Proposition 9.3.3 shows that the characteristic polyno-

mial of the matrix associated to φ does not depend on the given basis of V .

Definition 9.3.4 For any matrix A associated to the endomorphism φ ∈ End(V ),

the polynomial pφ(T ) = pA(T ) is called the characteristic polynomial of φ.

From the Proposition 9.2.16 and the Definition 9.3.4 we have the following result.

Corollary 9.3.5 The eigenvalues of the endomorphism φ ∈ End(V ) (the spectrum

of φ) are the real roots of the characteristic polynomial pφ(T ).

Exercise 9.3.6 Let φ ∈ End(R2) be associated to the matrix

M
E,E
φ =

(

0 1

−1 0

)

.

Since pφ(T ) = T 2 + 1, the endomorphism has no (real) eigenvalues.
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Definition 9.3.7 Let p(X) be a polynomial with real coefficients, and let α be one of

its real root. From the fundamental theorem of algebra (see the Proposition A.5.7) we

know that then (X − α) is a divisor for p(X), and that we have the decomposition

p(X) = (X − α)m(α) · q(X)

where q(X) is not divisible by (X − α) and 1 ≤ m(α) is an integer depending on

α. Such an integer is called the multiplicity of α.

Exercise 9.3.8 Let p(X) = (X − 2)(X − 3)(X2 + 1). Its real roots are 2 (with mul-

tiplicity m(2) = 1, since (X − 3)(X2 + 1) cannot be divided by 2) and 3 (with multi-

plicity m(3) = 1). Clearly the polynomial p(X) has also two imaginary roots, given

by ±i.

Proposition 9.3.9 Let V be a real vector space with φ ∈ End(V ). If λ is an eigen-

value for φ with multiplicity m(λ) and eigenspace Vλ, it holds that

1 ≤ dim(Vλ) ≤ m(λ).

Proof Let r = dim(Vλ) and C be a basis of Vλ. We complete C to a basis B for V . We

then have B = (v1, . . . , vr , vr+1, . . . , vn), where the first elements v1, . . . , vr ∈ Vλ

are eigenvectors for λ. The matrix M
B,B
φ has the following block form,

A = M
B,B
φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ 0 . . . 0 a1,r+1 . . . a1,n

0 λ . . . 0 a2,r+1 . . . a2,n

...
...

...
...

...

0 0 . . . λ ar,r+1 . . . ar,n

0 0 . . . 0 ar+1,r+1 . . . ar+1,n

0 0 . . . 0 ar+2,r+1 . . . ar+2,n

...
...

...
...

...

0 0 . . . 0 an,r+1 . . . an,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

If det(A − T In) is computed by the Laplace theorem (with respect to the first row,

say), we have

pφ(T ) = det(A − T In) = (λ − T )r g(T ),

where g(T ) is the characteristic polynomial of the lower diagonal (n − r) × (n − r)

square block of A. We can then conclude that r ≤ m(λ). ⊓⊔

Definition 9.3.10 The integer dim(Vλ) is called the geometric multiplicity of the

eigenvalue λ, while m(λ) is called the algebraic multiplicity of the eigenvalue λ.

Remark 9.3.11 Let φ ∈ End(V ).

(a) If λ = 0 is an eigenvalue for φ, the corresponding eigenspace V0 is ker(φ).
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(b) If λ 	= 0 is an eigenvalue for φ, then Vλ ⊆ Im(φ):

let us indeed consider 0V 	= v ∈ Vλ with φ(v) = λv. Since λ 	= 0, we divide

by λ and write

v = λ−1φ(v) = φ(λ−1v) ∈ Im(φ).

(c) If λ1 	= λ2 	= · · · 	= λs are distinct non zero eigenvalues for φ, from the Propo-

sition 9.2.12 we have the direct sum of corresponding eigenspaces and

Vλ1
⊕ · · · ⊕ Vλs

⊆ Im(φ).

Exercise 9.3.12 Let φ ∈ End(R4) be given by

φ((x, y, z, t)) = (2x + 4y, x + 2y,−z − 2t, z + t).

The corresponding matrix with respect to the canonical basis E4 is

A = M
E,E
φ =

⎛

⎜

⎜

⎝

2 4 0 0

1 2 0 0

0 0 −1 −2

0 0 1 1

⎞

⎟

⎟

⎠

.

Its characteristic polynomial reads

pφ(T ) = pA(T ) = det(A − T I4)

=

∣

∣

∣

∣

∣

∣

∣

∣

2 − T 4 0 0

1 2 − T 0 0

0 0 −1 − T −2

0 0 1 1 − T

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2 − T 4

1 2 − T

∣

∣

∣

∣

∣

∣

∣

∣

−1 − T −2

1 1 − T

∣

∣

∣

∣

= T (T − 4)(T 2 + 1).

The eigenvalues (the real roots of such a polynomial) of φ are λ = 0, 4. It is easy to

compute that

V0 = ker(φ) = L((−2, 1, 0, 0)),

V4 = ker(φ − 4I4) = L((2, 1, 0, 0)).

This shows that V4 is the only eigenspace corresponding to a non zero eigenvalue

for φ.
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From the Theorem 7.6.4 we know that dim Im(φ) = 4 − dim ker(φ) = 3, with a

basis of the image of φ given by 3 linearly independent columns in A. It is immediate

to notice that the second column is a multiple of the first one, so we have

Im(φ) = L((2, 1, 0, 0), (0, 0,−1, 1), (0, 0,−2, 1)).

It is evident that V4 ⊂ Im(φ), as shown in general in the Remark 9.3.11.

Exercise 9.3.13 We consider the endomorphism in R
4 given by

φ((x, y, z, t)) = (2x + 4y, x + 2y,−z, z + t),

whose corresponding matrix with respect to the canonical basis E4 is

A = M
E,E
φ =

⎛

⎜

⎜

⎝

2 4 0 0

1 2 0 0

0 0 −1 0

0 0 1 1

⎞

⎟

⎟

⎠

.

The characteristic polynomial reads

pφ(T ) = pA(T ) = det(A − T I4)

=

∣

∣

∣

∣

∣

∣

∣

∣

2 − T 4 0 0

1 2 − T 0 0

0 0 −1 − T 0

0 0 1 1 − T

∣

∣

∣

∣

∣

∣

∣

∣

= T (T − 4)(T + 1)(T − 1).

The eigenvalues are given by λ = 0, 4,−1, 1. The corresponding eigenspaces are

V0 = ker(φ) = L((−2, 1, 0, 0)),

V4 = ker(φ − 4I4) = L((2, 1, 0, 0)),

V−1 = ker(φ + I4) = L((0, 0,−2, 1)),

V1 = ker(φ − I4) = L((0, 0, 0, 1)),

with

Im(φ) = V−1 ⊕ V1 ⊕ V4.

The characteristic polynomial pφ(T ) of an endomorphism over a real vector space

has real coefficients. If λ1, . . . ,λs are its non zero real distinct roots (that is, the

eigenvalues of φ), we can write

pφ(T ) = (T − λ1)
m1 · · · (T − λp)

ms · q(T ),
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where m j , j = 1, . . . , s are the algebraic multiplicities and q(T ) has no real roots.

We have then

deg(pφ(T )) ≥ m1 + · · · + ms .

This proves the following proposition.

Proposition 9.3.14 Let V be a real vector space with dim(V ) = n, and let φ ∈

End(V ). By denoting λ1, . . . ,λs the distinct eigenvalues of φ with corresponding

algebraic multiplicities m1, . . . , ms , one has

m1 + · · · + ms ≤ n,

with the equality holding if and only if every root in pφ(T ) is real. ⊓⊔

9.4 Diagonalisation of an Endomorphism

In this section we describe conditions under which an endomorphism is simple. As we

have seen, this problem is equivalent to study conditions under which a square matrix

is diagonalisable. The first theorem we prove characterises simple endomorphims.

Theorem 9.4.1 Let V be a real n-dimensional vector space, with φ ∈ End(V ).

If λ1, . . . ,λs are the different roots of pφ(T ) with multiplicities m1, . . . , ms , the

following claims are equivalent:

(a) φ is a simple endomorphism,

(b) V has a basis of eigenvectors for φ,

(c) λi ∈ R for any i = 1, . . . , s, with V = Vλ1
⊕ · · · ⊕ Vλs

,

(d) λi ∈ R and mi = dim(Vλi
) for any i = 1, . . . , s.

When φ is simple, each basis of V of eigenvectors for φ contains mi eigenvectors for

each distinct eigenvalues λi , for i = 1, . . . , s.

Proof • (a) ⇔ (b): this has been shown in the Remark 9.2.3.

• (b) ⇒ (c): let B = (v1, . . . , vn) be a basis of V of eigenvectors for φ. Any vector

vi belongs to one of the eigenspaces, so we can write

V = L(v1, . . . , vn) ⊆ Vλ1
+ · · · + Vλs

,

while the opposite inclusion is obvious. Since the sum of eigenspaces corre-

sponding to distinct eigenvalues is direct (see the Proposition 9.2.12), we have

V = Vλ1
⊕ · · · ⊕ Vλs

.

• (c) ⇒ (b): let Bi be a basis of Vλi
for any i . Since V is the direct sum of all the

eigenspaces Vλi
, the set B = B1 ∪ . . . ∪ Bs is a basis of V made by eigenvectors

for φ.
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• (c) ⇒ (d): from the Grassmann Theorem 2.5.8, we have

n = dim(V ) = dim(Vλ1
⊕ · · · ⊕ Vλs

)

= dim(Vλ1
) + · · · + dim(Vλs

)

≤ m1 + · · · + ms

≤ n,

where the inequalities follow from the Propositions 9.3.9 and 9.3.14. We can then

conclude that dim(Vλi
) = m(λi ) for any i .

• (d) ⇒ (c): from the hypothesis mi = dim(Vλi
) for any i = 1, . . . , s, and the

Proposition 9.3.14 we have

n = m1 + · · · + ms = dim(Vλ1
) + · · · + dim(Vλs

).

We have then n = dim(Vλ1
⊕ · · · ⊕ Vλs

) and this equality amounts to prove the

claim, since Vλ1
⊕ · · · ⊕ Vλs

has dimension n and therefore coincides with V . ⊓⊔

Corollary 9.4.2 If λi ∈ R and m(λi ) = 1 for any i = 1, . . . , n, then is φ simple.

Proof It is immediate, by recalling the Proposition 9.3.9 and (d) in the Theorem

9.4.1. ⊓⊔

Exercise 9.4.3 Let φ be the endomorphism in R
2 whose corresponding matrix with

respect to the canonical basis is the matrix

A =

(

1 1

0 1

)

.

It is pA(T ) = (1 − T )2: such a polynomial has only one root λ = 1 with alge-

braic multiplicity m = 2. It is indeed easy to compute that V1 = L((1, 0)), so the

geometric multiplicity is 1. This proves that the matrix A is not diagonalisable, the

corresponding endomorphism is not simple.

Proposition 9.4.4 Let φ ∈ End(V ) be a simple endomorphism and C be a basis of

V such that � = M
C,C
φ . Then,

(a) the eigenvalues λ1, . . . ,λs for φ, counted with their multiplicities m(λ1), . . . ,

m(λs), are the diagonal elements for �;

(b) the diagonal matrix � is uniquely determined up to permutations of the eigen-

values (such a permutation corresponds to a permutation in the ordering of the

basis elements in C).

Proof (a) From the Remark 9.2.1 we know that the diagonal elements in � =

M
C,C
φ ∈ R

n,n are given by the eigenvalues λ1, . . . ,λs : each eigenvalue λi must

be counted as many times as the geometric multiplicity of the eigenvector vi ,
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since C is a basis of eigenvectors. From the claim (d) in the Theorem 9.4.1, the

geometric multiplicity of each eigenvalue coincides with its algebraic multiplic-

ity.

(a) This is obvious. ⊓⊔

Proposition 9.4.5 Let φ be a simple endomorphism on V , with B an arbitrary basis

of V . By setting A = M
B,B
φ , let P be a matrix such that

P−1 A P = �.

Then the columns in P are the components, with respect to B, of a basis of V made

by eigenvectors for φ.

Proof Let C be a basis of V such that � = M
C,C
φ . From the Remark 9.2.3 the basis C

is made by eigenvectors for φ. The claim follows by setting P = MB,C , that is the

matrix of the change of basis. ⊓⊔

Definition 9.4.6 Given a matrix A ∈ R
n,n , its diagonalisation consists of determin-

ing, (if they exist) a diagonal matrix � ∼ A and an invertible matrix P ∈ GL(n)

such that P−1 A P = �.

The following remark gives a resumé of the steps needed for the diagonalisation

of a given matrix.

Remark 9.4.7 (An algorithm for the diagonalisation) Let A ∈ R
n,n be a square

matrix. In order to diagonalise it:

(1) Write the characteristic polynomial pA(T ) of A and find its roots λ1, . . . ,λs

with the corresponding algebraic multiplicities m1, . . . , ms .

(2) If one of the roots λi /∈ R, then A is not diagonalisable.

(3) If λi ∈ R for any i = 1, . . . , s, compute the geometric multiplicities

dim(Vλi
) = n − rk(A − λi In).

If there is an eigenvalue λi such that mi 	= dim(Vλi
), then A is not diagonalis-

able.

(4) if λi ∈ R and m(λ)i = dim(Vλi
) for any i = 1, . . . , s, then A is diagonalisable.

In such a case, A is similar to a diagonal matrix �: the eigenvalues λi , counted

with their multiplicities, give the diagonal elements for �.

(5) it is � = M
B,B
φ , where B is a basis of V given by eigenvectors for the endomor-

phism corresponding to the matrix A. By defining P = ME,B, it is � = P−1 AP .

Since V is the direct sum of the eigenspaces for A (see Theorem 9.4.1), it follows

that B = B1 ∪ · · · ∪ Bs , with Bi a basis of Vλi
for any i = 1, . . . , s. (The spaces

Vλi
can be obtained explicitly as in the Lemma 9.2.15.)
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Exercise 9.4.8 We study whether the matrix

A =

⎛

⎝

3 1 1

1 0 2

1 2 0

⎞

⎠

is diagonalisable. Its characteristic polynomial is

pA(T ) = det(A − T I3)

=

∣

∣

∣

∣

∣

∣

3 − T 1 1

1 −T 2

1 2 −T

∣

∣

∣

∣

∣

∣

= −T 3 + 3T 2 + 6T − 8 = (T − 1)(T − 4)(T + 2).

Its eigenvalues are found to be λ1 = 1,λ2 = 4,λ3 = −2. Since each root of the

characteristic polynomial has algebraic multiplicity m = 1, from the Corollary 9.4.2

the matrix A is diagonalisable, and indeed similar to

� =

⎛

⎝

1 0 0

0 4 0

0 0 −2

⎞

⎠ .

We compute a basis B for R
3 of eigenvectors for A. We know that V1 = ker(A − I3),

so V1 is the space of the solutions of the homogeneous linear system (A − I3)X = 0

associated to the matrix

A − I3 =

⎛

⎝

2 1 1

1 −1 2

1 2 −1

⎞

⎠ ,

which is reduced to
⎛

⎝

2 1 1

3 0 3

0 0 0

⎞

⎠ .

The solution of such a linear system are given by (x, y, z) = (x,−x,−x), thus

V1 = L((−1, 1, 1)). Along the same lines we compute

V4 = ker(A − 4I3) = L((2, 1, 1)),

V−2 = ker(A + 2I3) = L((0,−1, 1)).



9.4 Diagonalisation of an Endomorphism 147

We have then B = ((−1, 1, 1), (2, 1, 1), (0,−1, 1)) and

P = ME,B =

⎛

⎝

−1 2 0

1 1 −1

1 1 1

⎞

⎠ .

It is easy to compute that P−1 A P = �.

Proposition 9.4.9 Let A ∈ R
n,n be diagonalisable, with eigenvalues λ1, . . . ,λs and

corresponding multiplicities m1, . . . , ms . Then

det(A) = λ
m1

1 · λ
m2

2 · · · · · λms

s ,

tr(A) = m1λ1 + m2λ2 + · · · + msλs .

Proof Since A is diagonalisable, there exists an invertible n-dimensional matrix P

such that � = P−1 A P . The matrix � is diagonal, and its diagonal elements are

(see the Proposition 9.4.4) the eigenvalues of A counted with their multiplicities.

Then, from the Proposition 9.1.5 on has,

det(A) = det(P−1 AP) = det(�) = λ
m1

1 · λ
m2

2 · · · · · λms

s

and

tr(A) = tr(P−1 AP) = tr(�) = m1λ1 + m2λ2 + · · · + msλs .

⊓⊔

9.5 The Jordan Normal Form

In this section we briefly describe the notion of Jordan normal form of a matrix. As we

have described before in this chapter, a square matrix is not necessarily diagonalis-

able, that is it is not necessarily similar to a diagonal matrix. It is nonetheless possible

to prove that any square matrix is similar to a triangular matrix J which is not far

from being diagonal. Such a matrix J is diagonal if and only if A is diagonalisable;

if not it has a ‘standard’ block structure.

An example of a so called Jordan block is the non diagonalisable matrix A in

Exercise 9.4.3. We denote it by

J2(1) =

(

1 1

0 1

)

.



148 9 Endomorphisms and Diagonalization

A Jordan block of order k is a k-dimensional upper triangular square matrix of the

form

Jk(λ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
...

...
...

...
... · · · 1

0 0 0 · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the diagonal terms are given by a scalar λ ∈ R, the (Jk(λ)) j, j+1 entries are

1 and the remaining entries are zero. It is immediate to show that the characteristic

polynomial of such a matrix is given by

pJk (λ)(T ) = (T − λ)k,

and the parameter λ is the unique eigenvalue with algebraic multiplicity mλ = k.

The corresponding eigenspace is

Vλ = ker(Jk(λ) − λ In) = L((1, 0, . . . , 0)),

with geometric multiplicity dim(Vλ) = 1. Thus, if k > 1, a Jordan block is not diag-

onalisable.

A matrix J is said to be in (canonical or normal) Jordan form if it has a block

diagonal form

J =

⎛

⎜

⎜

⎜

⎝

Jk1
(λ1) 0 . . . 0

0 Jk2
(λ2) . . . 0

...
...

. . .
...

0 0 . . . Jks
(λs)

⎞

⎟

⎟

⎟

⎠

,

where each Jk j
(λ j ) is a Jordan block of order k j and eigenvalue λ j , for j = 1, . . . , s.

Notice that nothing prevents from having the same eigenvalue in different Jordan

blocks, that is λ j = λl even with k j 	= kl . Since each Jordan block Jk j
(λ j ) provides

a one dimensional eigenspace for λ j , the geometric multiplicity of λ j coincides with

the number of Jordan blocks with eigenvalue λ j . The algebraic multiplicity of λ j

coincides indeed with the sum of the orders of the Jordan blocks having the same

eigenvalue λ j .

Theorem 9.5.1 (Jordan) Let A ∈ R
n,n such that its characteristic polynomial has

only real roots (such roots are all the eigenvalues for A). Then,

(i) the matrix A is similar to a Jordan matrix,

(ii) two Jordan matrices J and J ′ are similar if and only if one is mapped into the

other under a block permutation.
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We omit a complete proof of this theorem, and we limit ourselves to briefly

introduce the notion of generalised eigenvector of a matrix A. We recall that, when

A is not diagonalisable, the set of eigenvectors for A is not enough for a basis of R
n .

The columns of the invertible matrix P that realises the similarity between A and

the Jordan form J (such that P−1 AP = J ) are the components with respect to the

canonical basis En of the so called generalised eigenvectors for A.

Given an eigenvalue λ for A with algebraic multiplicity mλ ≥ 1, a corresponding

generalised eigenvector is a non zero vector v that solves the linear homogeneous

system

(A − λ In)
mv = 0Rn .

It is possible to show that such a system has m solutions v j (with v j = 1, . . . , m)

which can be obtained by recursion,

(A − λ In)v1 = 0Rn ,

(A − λ In)vk = vk−1, k = 2, . . . m.

The elements v j span the generalised eigenspace Vλ for A corresponding to the

eigenvalue λ. The generalised eigenvectors satisfy the condition

(A − λ In)
kvk = 0Rn for any k = 1, 2, . . . m.

Since the characteristic polynomial of A has in general complex roots, we end by

noticing that a more natural version of the Jordan theorem is valid on C.

Exercise 9.5.2 We consider the matrix

A =

⎛

⎜

⎜

⎝

5 4 2 1

0 1 −1 −1

−1 −1 3 0

1 1 −1 2

⎞

⎟

⎟

⎠

.

Its characteristic polynomial is computed to be pA(T ) = (T − 1)(T − 2)(T − 4)2,

so its eigenvalues are λ = 1, 2, 4, 4. Since the algebraic multiplicity of the eigen-

values λ = 1 and λ = 2 is 1, their geometric multiplicity is also 1. An explicit

computation shows that

dim(ker(A − 4 I4)) = 1.

We have then that A is not diagonalisable, and that the eigenvalue λ = 4 corresponds

to a Jordan block. A canonical form for the matrix A is then given by

J =

⎛

⎜

⎜

⎝

1 0 0 0

0 2 0 0

0 0 4 1

0 0 0 4

⎞

⎟

⎟

⎠

.
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Exercise 9.5.3 The matrices

J =

⎛

⎜

⎜

⎝

3 1 0 0

0 3 0 0

0 0 3 0

0 0 0 3

⎞

⎟

⎟

⎠

, J ′ =

⎛

⎜

⎜

⎝

3 1 0 0

0 3 0 0

0 0 3 1

0 0 0 3

⎞

⎟

⎟

⎠

have the same characteristic polynomial, the same determinant, and the same trace.

They are however not similar, since they are in Jordan form, and there is no block

permutation under which J is mapped into J ′.



Chapter 10

Spectral Theorems on Euclidean Spaces

In Chap. 7 we studied the operation of changing a basis for a real vector space. In

particular, in the Theorem 7.9.6 and the Remark 7.9.7 there, we showed that any

matrix giving a change of basis for the vector space R
n is an invertible n × n matrix,

and noticed that any n × n invertible yields a change of basis for R
n .

In this chapter we shall consider the endomorphisms of the euclidean space

En = (Rn, ·), where the symbol · denotes the euclidean scalar product, that we

have described in Chap. 3.

10.1 Orthogonal Matrices and Isometries

As we noticed, the natural notion of basis for a euclidean space is that of orthonormal

one. This restricts the focus to matrices which gives a change of basis between

orthonormal bases for En .

Definition 10.1.1 A square matrix A ∈ R
n,n is called orthogonal if its columns

form an orthonormal basis B for En . In such a case A = ME,B, that is A is the

matrix giving the change of basis from the canonical basis E to the basis B.

It follow from this definition that an orthogonal matrix is invertible.

Exercise 10.1.2 The identity matrix In is clearly orthogonal for each En . Since the

vectors

v1 = 1√
2
(1, 1), v2 = 1√

2
(1,−1)
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form an orthonormal basis for E2, the matrix

A = 1√
2

(
1 1

1 −1

)

is orthogonal.

Proposition 10.1.3 A matrix A is orthogonal if and only if

tA A = In,

that is if and only if A−1 = tA.

Proof With (v1, . . . , vn) a system of vectors in En , we denote by A = (v1 · · · vn)

the matrix with columns given by the given vectors, and by

tA =

⎛
⎜⎝

tv1

...
tvn

⎞
⎟⎠

its transpose. We have the following equivalences. The matrix A is orthogonal (by

definition) if and only if (v1, . . . , vn) is an orthonormal basis for En , that is if and

only if vi · v j = δi j for any i, j . Recalling the representation of the row by column

product of matrices, one has vi · v j = δi j if and only if (tAA)i j = δi j for any i, j ,

which amounts to say that tAA = In . �

Exercise 10.1.4 For the matrix A considered in the Exercise 10.1.2 one has easily

compute that A = tA and A2 = I2.

Exercise 10.1.5 The matrix

A =
(

1 0

1 1

)

is not orthogonal, since

tAA =
(

1 1

0 1

) (
1 0

1 1

)
=

(
2 1

1 1

)
�= I2.

Proposition 10.1.6 If A is orthogonal, then det(A) = ±1.

Proof This statement easily follows from the Binet Theorem 5.1.16: with tAA = In ,

one has

det(tA) det(A) = det(In) = 1,

and the Corollary 5.1.12, that is det(tA) = det(A), which then implies

(det(A))2 = 1. �
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Remark 10.1.7 The converse to this statement does not hold. The matrix A from the

Exercise 10.1.5 is not orthogonal, while det(A) = 1.

Definition 10.1.8 An orthogonal matrix A with det(A) = 1 is called special orthog-

onal.

Proposition 10.1.9 The set O(n) of orthogonal matrices in R
n,n is a group, with

respect to the usual matrix product. Its subset SO(n) = {A ∈ O(n) : det(A) = 1}
is a subgroup of O(n) with respect to the same product.

Proof We prove that O(n) is stable under the matrix product, has an identity element,

and the inverse of an orthogonal matrix is orthogonal as well.

• The identity matrix In is orthogonal, as we already mentioned.

• If A and B are orthogonal, then we can write

t (AB)AB = tB tAAB

= tB In B

= tB B = In,

that is, AB is orthogonal.

• If A is orthogonal, tAA = In , then

t (A−1)A−1 = (A tA)−1 = In,

that proves that A−1 is orthogonal.

From the Binet theorem it easily follows that the set of special orthogonal matrices

is stable under the product, and the inverse of a special orthogonal matrix is special

orthogonal. �

Definition 10.1.10 The group O(n) is called the orthogonal group of order n, its

subset SO(n) is called the special orthogonal group of order n.

We know from the Definition 10.1.1 that a matrix is orthogonal if and only if

it is the matrix of the change of basis between the canonical basis E (which is

orthonormal) and a second orthonormal basis B. A matrix A is then orthogonal if

and only if A−1 = tA (Proposition 10.1.3).

The next theorem shows that we do not need the canonical basis. If one defines

a matrix A to be orthogonal by the condition A−1 = tA, then A is the matrix for

a change between two orthonormal bases and viceversa, any matrix A giving the

change between orthonormal bases satisfies the condition A−1 = tA.

Theorem 10.1.11 Let C be an orthonormal basis for the euclidean vector space En ,

with B another (arbitrary) basis for it. The matrix MC,B of the change of basis from

C to B is orthogonal if and only if also the basis B is orthonormal.
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Proof We start by noticing that, since C is an orthonormal basis, the matrix ME,C

giving the change of basis between the canonical basis E and C is orthogonal by the

Definition 10.1.1. It follows that, being O(n) a group, the inverse MC,E = (ME,C)−1

is orthogonal. With B an arbitrary basis, from the Theorem 7.9.9 we can write

MC,B = MC,E ME,E ME,B

= MC,E In ME,B = MC,E ME,B.

Firstly, let us assume B to be orthonormal. We have then that ME,B is orthogonal;

thus MC,B is orthogonal since it is the product of orthogonal matrices.

Next, let us assume that MC,B is orthogonal; from the chain relations displayed

above we have

ME,B = (MC,E)−1 MC,B = ME,C MC,B.

This matrix ME,B is then orthogonal (being the product of orthogonal matrices), and

therefore B is an orthonormal basis. �

We pass to endomorphisms corresponding to orthogonal matrices. We start by

recalling, from the Definition 3.1.4, that a scalar product has a ‘canonical’ form

when it is given with respect to orthonormal bases.

Remark 10.1.12 Let C be an orthonormal basis for the euclidean space En . If

v, w ∈ En are given by v = (x1, . . . , xn)C and w = (y1, . . . , yn)C , one has that

v · w = x1 y1 + · · · + xn yn . By denoting X and Y the one-column matrices whose

entries are the components of v, w with respect to C, that is

X =

⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ , Y =

⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ ,

we can write

v · w = x1 y1 + · · · + xn yn =
(
x1 . . . xn

)
⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ = tXY.

Theorem 10.1.13 Let φ ∈ End(En), with E the canonical basis of En . The follow-

ing statements are equivalent:

(i) The matrix A = M
E,E

φ is orthogonal.

(ii) It holds that φ(v) · φ(w) = v · w for any v, w ∈ En .

(iii) IfB = (b1, . . . , bn) is an orthonormal basis for En , then the setB′ = (φ(b1), . . . ,

φ(bn)) is such.
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Proof (i) ⇒ (ii): by denoting X = tv and Y = tw we can write

v · w = tXY, φ(v) · φ(w) = t (AX)(AY ) = tX (tAA)Y,

and since A is orthogonal, tAA = In , we conclude that φ(v) · φ(w) = v · w for

any v, w ∈ En .

(ii) ⇒ (iii): let A = M
C,C

φ be the matrix of the endomorphismφ with respect to the

basis C. We start by proving that A is invertible. By adopting the notation used

above, we can represent the condition φ(v) · φ(w) = v · w as t (AX)(AY ) =
tXY for any X, Y ∈ En . It follows that tAA = In , that is A is orthogonal, and

then invertible. This means (see Theorem 7.8.4) that φ is an isomorphism, so it

maps a basis for En into a basis for En . If B is an orthonormal basis, then we

can write

φ(bi ) · φ(b j ) = bi · b j = δi j

which proves that B′ is an orthonormal basis.

(iii) ⇒ (i): since E , the canonical basis for En , is orthonormal, then (φ(e1), . . . ,

φ(en)) is orthonormal. Recall the Remark 7.1.10: the components with respect

to E of the elements φ(ei ) are the column vectors of the matrix M
E,E

φ , thus M
E,E

φ

is orthogonal. �

We have seen that, if the action of φ ∈ End(En) is represented with respect to the

canonical basis by an orthogonal matrix, then φ is an isomorphism and preserves the

scalar product, that is, for any v, w ∈ En one has that,

v · w = φ(v) · φ(w).

The next result is therefore evident.

Corollary 10.1.14 If φ ∈ End(En) is an endomorphism of the euclidean space En

whose corresponding matrix with respect to the canonical basis is orthogonal then

φ preserves the norms, that is, for any v ∈ En one has

‖φ(v)‖ = ‖v‖.

This is the reason why such an endomorphism is also called an isometry.

The analysis we developed so far allows us to introduce the following definition,

which will be more extensively scrutinised when dealing with rotations maps.

Definition 10.1.15 If φ ∈ End(En) takes the orthonormal basis B = (b1, . . . , bn)

to the orthonormal basis B′ = (b′
1 = φ(b1), . . . , b′

n = φ(bn)) in En , we say that B

and B′ have the same orientation if the matrix representing the endomorphism φ is

special orthogonal.
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Remark 10.1.16 It is evident that this definition provides an equivalence relation

within the collection of all orthonormal bases for En . The corresponding quotient

can be labelled by the values of the determinant of the orthogonal map giving the

change of basis, that is det φ = {±1}. This is usually referred to by saying that the

euclidean space En has two orientations.

10.2 Self-adjoint Endomorphisms

We need to introduce an important class of endomorphisms.

Definition 10.2.1 An endomorphismφ of the euclidean vector space En is called

self-adjoint if

φ(v) · w = v · φ(w) ∀ v, w ∈ E .

From the Proposition 9.2.11 we know that eigenvectors corresponding to dis-

tinct eigenvalues are linearly independent. When dealing with self-adjoint endomor-

phisms, a stronger property holds.

Proposition 10.2.2 Let φ be a self-adjoint endomorphism of En , with λ1,λ2 ∈ R

different eigenvalues for it. Any two corresponding eigenvectors, 0 �= v1 ∈ Vλ1
and

0 �= v2 ∈ Vλ2
, are orthogonal.

Proof Since φ is self-adjoint, one has φ(v1) · v2 = v1 · φ(v2) while, v1 and v2 being

eigenvectors, one has φ(vi ) = λivi for i = 1, 2. We can then write

(λ1v1) · v2 = v1 · (λ2v2)

which reads

λ1(v1 · v2) = λ2(v1 · v2) ⇒ (λ2 − λ1)(v1 · v2) = 0.

The assumption that the eigenvalues are different allows one to conclude that

v1 · v2 = 0, that is v1 is orthogonal to v2. �

The self-adjointness of an endomorphism can be characterised in terms of proper-

ties of the matrices representing its action on En . We recall from the Definition 4.1.21

that a matrix A = (ai j ) ∈ R
n,n is called symmetric if tA = A, that is if one has

ai j = a j i , for any i, j .

Theorem 10.2.3 Let φ ∈ End(En) and B an orthonormal basis for En . The endo-

morphism φ is self-adjoint if and only if M
B,B

φ is symmetric.
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Proof Using the usual notation, we set A = (ai j ) = M
B,B

φ and X, Y be the columns

giving the components with respect to B of the vectors v, w in En . From the

Remark 10.1.12 we write

φ(v) · w = t (AX)Y = (tX tA)Y = tX tAY

and v · φ(w) = tX (AY ) = tX AY.

Let us assume A to be symmetric. From the relations above we conclude that φ(v) ·
w = v · φ(w) for any v, w ∈ En , that is φ is self-adjoint.

If we assume φ to be self-adjoint, then we can equate

tX tAY = tX AY

for any X, Y in R
n . If we let X and Y to range on the elements of the canonical basis

E = (e1, . . . , en) in R
n , such a condition is just the fact that ai j = a j i for any i, j ,

that is A is symmetric. �

Exercise 10.2.4 The following matrix is symmetric:

A =
(

2 −1

−1 3

)
.

Then the endomorphism φ ∈ End(E2) corresponding to A with respect to the

canonical basis is self-adjoint. This can also be shown by a direct calculation:

φ((x, y)) = (2x − y,−x + 3y); then

(a, b) · φ((x, y)) = a(2x − y) + b(−x + 3y)

= (2a − b)x + (−a + 3b)y

= φ((a, b)) · (x, y).

Exercise 10.2.5 The following matrix is not symmetric

B =
(

1 1

−1 0

)
.

The corresponding (with respect to the canonical basis) endomorphismφ ∈ End(E2)

is indeed not self-adjoint since for instance,

φ(e1) · e2 = (1,−1) · (0, 1) = −1,

e1 · φ(e2) = (1, 0) · (1, 0) = 1.

An important family of self-adjoint endomorphisms is illustrated in the following

exercise.
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Exercise 10.2.6 We know from Sect. 8.2 that, if B = (e1, . . . , en) is an orthonormal

basis for En , then the action of an endomorphism φ whose associated matrix is

� = M
B,B

φ can be written with the Dirac’s notation as

φ =
n∑

a,b=1

�ab|ea〉〈eb|,

with �ab = 〈ea|φ(eb)〉. Then, the endomorphismφ is self-adjoint if and only if

�ab = �ba . Consider vectors u = (u1, . . . , un)B, v = (v1, . . . , vn)B in En , and

define the operator L = |u〉〈v|. We have

〈ea|Leb〉 = 〈ea|u〉〈v|eb〉 = uavb,

〈eb|Lea〉 = 〈eb|u〉〈v|ea〉 = ubva,

so we conclude that the operator L = |u〉〈v| is self-adjoint if and only if u = v.

Exercise 10.2.7 Let φ be a self-adjoint endomorphism of the euclidean space En ,

and let the basis B = (e1, . . . , en) made of orthonormal eigenvectors for φ with corre-

sponding eigenvalues (λ1, . . . ,λn) (not necessarily all distinct). A direct computation

shows that, in the Dirac’s notation, the action of φ can be written as

φ = λ1|e1〉〈e1| + · · · + λn|en〉〈en|,

so that, for any v ∈ En , one writes

φ(v) = λ1|e1〉〈e1|v〉 + · · · + λn|en〉〈en|v〉.

10.3 Orthogonal Projections

As we saw in Chap. 3, given any vector subspace W ⊂ En , with orthogonal com-

plement W ⊥ we have a direct sum decomposition En = W ⊕ W ⊥, so for any vector

v ∈ En we have (see the Proposition 3.2.5) a unique decomposition v = vW + vW ⊥ .

This suggests the following definition.

Definition 10.3.1 Given the (canonical) euclidean space En with W ⊂ En a vector

subspace and the orthogonal sum decomposition v = vW + vW ⊥ , the map

PW : En → En, v �→ uW

is linear, and it is called the orthogonal projection onto the subspace W . The dimen-

sion of W is called the rank of the orthogonal projection PW .

If W ⊂ En it is easy to see that Im(PW ) = W while ker(PW ) = W ⊥. Moreover,

since PW acts as an identity operator on its range W , one also has P2
W = PW . If
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u, v are vectors in En , with orthogonal sum decomposition u = uW + uW ⊥ and v =
vW + vW ⊥ , we can explicitly compute

PW (u) · v = uW · (vW + vW ⊥)

= uW · vW and

u · PW (v) = (uW + uW ⊥) · vW

= uW · vW .

This shows that orthogonal projectors are self-adjoint endomorphisms. To which

extent can one reverse these computations, that is can one characterise, within all

self-adjoint endomorphisms, the collection of orthogonal projectors? This is the

content of the next proposition.

Proposition 10.3.2 Given the euclidean vector space En , an endomorphism

φ ∈ End(En) is an orthogonal projection if and only if it is self-adjoint and sat-

isfies the condition φ2 = φ.

Proof We have already shown that the conditions are necessary for an endomorphism

to be an orthogonal projection in En . Let us now assume that φ is a self-adjoint

endomorphism fulfilling φ2 = φ. For any choice of u, v ∈ En we have

((1 − φ)(u)) · φ(v) = u · φ(v) − φ(u) · φ(v)

= u · φ(v) − u · φ2(v)

= u · φ(v) − u · φ(v) = 0

with the second line coming from the self-adjointness of φ and the third line from

the condition φ2 = φ. This shows that the vector subspace Im(1 − φ) is orthogo-

nal to the vector subspace Im(φ). We can then decompose any vector y ∈ En as

an orthogonal sum y = yIm(1−φ) + yImφ + ξ, where ξ is an element in the vector

subspace orthogonal to the sum Im(1 − φ) ⊕ Im(φ). For any u ∈ En and any such

vector ξ we have

φ(u) · ξ = 0, ((1 − φ)(u)) · ξ = 0.

These conditions give that u · ξ = 0 for any u ∈ En , so we can conclude that ξ = 0.

Thus we have the orthogonal vector space decomposition

En = Im(1 − φ) ⊕ Im(φ).

We show next that ker(φ) = Im(1 − φ). If u ∈ Im(1 − φ), we have u = (1 − φ)v

with v ∈ En , thus φ(u) = φ(1 − φ)v = 0, that is Im(1 − φ) ⊆ ker(φ). Conversely,

if u ∈ ker(φ), then φ(u) · v = 0 for any v ∈ En , and u · φ(v) = 0, since φ is self-

adjoint, which gives ker(φ) ⊆ (Im(φ))⊥ and ker(φ) ⊆ Im(1 − φ), from the decom-

position of En above.
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If w ∈ Im(φ), then w = φ(x) for a given x ∈ En , thus φ(w) = φ2(x) = φ(x) = w.

We have shown that we can identify φ = PIm(φ). This concludes the proof. �

Exercise 10.3.3 Consider the three dimensional euclidean space E3 with canon-

ical basis and take W = L((1, 1, 1)). Its orthogonal subspace is given by the

vectors (x, y, z) whose components solve the linear equation � : x + y + z = 0,

so we get S� = W ⊥ = L((1,−1, 0), (1, 0,−1)). The vectors of the canonical

basis when expressed with respect to the vectors u1 = (1, 1, 1) spanning W and

u2 = (1,−1, 0), u3 = (1, 0,−1) spanning W ⊥, are written as

e1 =
1

3
(u1 + u2 + u3),

e2 =
1

3
(u1 − 2u2 + u3),

e3 =
1

3
(u1 + u2 − 2u3).

Therefore,

PW (e1) =
1

3
u1, PW (e2) =

1

3
u1, PW (e3) =

1

3
u1,

and

PW ⊥(e1) =
1

3
(u2 + u3), PW ⊥(e2) =

1

3
(−2u2 + u3), PW ⊥(e3) =

1

3
(u2 − 2u3).

Remark 10.3.4 Given an orthogonal space decomposition En = W ⊕ W ⊥, the union

of the basis BW and BW ⊥ of W and W ⊥, is a basis B for W . It is easy to see that the

matrix associated to the orthogonal projection operator PW with respect to such a

basis B has a block diagonal structure

M
B,B

PW
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0 · · · 0
...

...
...

...

0 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the order of the diagonal identity block is the dimension of W = Im(PW ). This

makes it evident that an orthogonal projection operator is diagonalisable: its spectrum

contains the real eigenvalue λ = 1 with multiplicity equal to mλ=1 = dim(W ) and

the real eigenvalue λ = 0 with multiplicity equal to mλ=0 = dim(W ⊥).

It is clear that the rank of PW (the dimension of W ) is given by the trace tr(M
B,B

PW
)

irrespectively of the basis chosen to represent the projection (see the Proposi-
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tion 9.1.5) since as usual, for a change of basis with matrix MB,C , one has that

M
C,C

PW
= MC,B M

B,B

PW
MB,C , with MB,C = (MC,B)−1.

Exercise 10.3.5 The matrix

M =
(

a
√

a − a2
√

a − a2 1 − a

)

is symmetric and satisfies M2 = M for any a ∈ (0, 1]. With respect to an orthonormal

basis (e1, e2) for E2, it is then associated to an orthogonal projection with rank given

by tr(M) = 1. In order to determine its range, we diagonalise M . Its characteristic

polynomial is

pM(T ) = det(M − T I2) = T 2 − T

and the eigenvalues are then λ = 0 and λ = 1. Since they are both simple, the

matrix M is diagonalisable. The eigenspace Vλ=1 corresponding to the range of the

orthogonal projection is one dimensional and given as the solution (x, y) of the

system (
a − 1

√
a − a2

√
a − a2 −a

) (
x

y

)
=

(
0

0

)
,

that is (x,

√
1−a

a
x) with x ∈ R. This means that the range of the projection is given

by L((1,

√
1−a

a
)).

We leave as an exercise to show that M is the most general rank 1 orthogonal

projection in E2.

Exercise 10.3.6 We know from Exercise 10.2.6 that the operator L = |u〉〈u| is self-

adjoint. We compute

L2 = |u〉〈u|u〉〈u| = ‖u‖2 L .

Thus such an operator L is an orthogonal projection if and only if ‖u‖ = 1. It is then

the rank one orthogonal projection L = |u〉〈u| = PL(u).

Let us assume that W1 and W2 are two orthogonal subspaces (to be definite we

take W2 ⊆ W ⊥
1 ). By using for instance the Remark 10.3.4 it is not difficult to show

that PW1
PW2

= PW2
PW1

= 0. As a consequence,

(PW1
+ PW2

)(PW1
+ PW2

) = P2
W1

+ P2
W2

+ PW1
PW2

+ PW2
PW1

= (PW1
+ PW2

).

Since the sum of two self-adjoint endomorphisms is self-adjoint, we can conclude

(from Proposition 10.3.2) that the sum PW1
+ PW2

is an orthogonal projector, with

PW1
+ PW2

= PW1⊕W2
. This means that with two orthogonal subspaces, the sum of

the corresponding orthogonal projectors is the orthogonal projection onto the direct

sum of the given subspaces.
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These results can be extended. If the euclidean space has a finer orthogonal

decomposition, that is there are mutually orthogonal subspaces {Wa}a=1,...,k with

En = W1 ⊕ · · · ⊕ Wk , then we have a corresponding set of orthogonal projectors

PWa
. We omit the proof of the following proposition, which we shall use later on in

the chapter.

Proposition 10.3.7 If En = W1 ⊕ · · · ⊕ Wk with mutually orthogonal subspaces

Wa , a = 1, . . . , k, then the following hold:

(a) For any a, b = 1, . . . , k, one has

PWa
PWb

= δab PWa
.

(b) If W̃ = Wa1
⊕ · · · ⊕ Was

is the vector subspace given by the direct sum of the

orthogonal subspaces {Wa j
} with a j any subset of (1, . . . , k) without repeti-

tion, then the sum P̃ = PWa1
+ . . . + PWas

is the orthogonal projection operator

P̃ = PW̃ .

(c) For any v ∈ En , one has

v = (PW1
+ · · · + PWk

)(v).

Notice that point (c) shows that the identity operator acting on En can be decom-

posed as the sum of all the orthogonal projectors corresponding to any orthogonal

subspace decomposition of En .

Remark 10.3.8 All we have described for the euclidean space En can be natu-

rally extended to the hermitian space (Cn, ·) introduced in Sect. 3.4. If for example

(e1, . . . , en) gives a hermitian orthonormal basis for H n , the orthogonal projection

onto Wa = L(ea) can be written in the Dirac’s notation (see the Exercise 10.3.6) as

PWa
= |ea〉〈ea|,

while the orthogonal projection onto W̃ = Wa1
⊕ · · · ⊕ Was

(point b) of the Propo-

sition 10.3.7) as

PW̃ = |ea1
〉〈ea1

| + · · · + |eas
〉〈eas

|.

The decomposition of the identity operator can be now written as

idH n = |e1〉〈e1| + · · · + |en〉〈en|.

Thus, any vector v ∈ H n can be decomposed as

v = |v〉 = |e1〉〈e1|v〉 + · · · + |en〉〈en|v〉.
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10.4 The Diagonalization of Self-adjoint Endomorphisms

The following theorem is a central result for the diagonalization of real symmetric

matrices.

Theorem 10.4.1 Let A ∈ R
n,n be symmetric, tA = A. Then, any root of its charac-

teristic polynomial pA(T ) is real.

Proof Let us assume λ to be a root of pA(T ). Since pA(T ) has real coefficients,

its roots are in general complex (see the fundamental theorem of algebra, Theo-

rem A.5.7). We therefore think of A as the matrix associate to an endomorphism

φ : C
n −→ C

n,

with M
E,E

φ = A with respect to the canonical basis E for C
n as a complex vector

space. Let v be a non zero eigenvector for φ, that is

φ(v) = λv.

By denoting with X the column of the components of v = (x1, . . . , xn) with respect

to E , we write
tX = t(x1, . . . , xn), AX = λX.

Under complex conjugation, with Ā = A since A has real entries, we get

tX̄ = t (x̄1, . . . , x̄n), AX̄ = λ̄X̄ .

From these relations we can write the scalar tX̄ AX in the following two ways,

tX̄ AX = tX̄(AX) = tX̄(λX) = λ (tX̄ X)

and tX̄ AX = (tX̄ A)X = t (AX̄)X = t (λ̄X̄)X = λ̄ (tX̄ X).

By equating them, we have

(λ − λ̄) (tX̄ X) = 0.

The quantity tX̄ X = x̄1x1 + x̄2x2 + · · · + x̄n xn is a positive real number, since

v �= 0Cn ; we can then conclude λ = λ̄, that is λ ∈ R. �

Example 10.4.2 The aim of this example is threefold, namely

• it provides an ad hoc proof of the Theorem 10.4.1 for symmetric 2 × 2 matrices;

• it provides a direct proof for the Proposition 10.2.2 for symmetric 2 × 2 matrices;

• it shows that, if φ is a self-adjoint endomorphism in E2, then E2 has an orthonormal

basis made up of eigenvectors for φ. This result anticipates the general result which

will be proven in the Theorem 10.4.5.
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We consider then a symmetric matrix A ∈ R
2,2,

A =
(

a11 a12

a12 a22

)
.

Its characteristic polynomial pA(T ) = det(A − T I2) is then

pA(T ) = T 2 − (a11 + a22)T + a11a22 − a2
12.

The discriminant of this degree 2 characteristic polynomial pA(T ) is not negative:

� = (a11 + a22)
2 − 4(a11a22 − a2

12)

= (a11 − a22)
2 + 4a2

12 ≥ 0

being the sum of two square terms; therefore the roots λ1,λ2 of pA(T ) are both real.

We prove next that A is diagonalisable, and that the matrix P giving the change of

basis is orthogonal. We consider the endomorphism φ corresponding to A = M
E,E

φ ,

for the canonical basis E for E2, and compute the eigenspaces Vλ1
and Vλ2

.

• If � = 0, then a11 = a22 and a12 = 0. The matrix A is already diagonal, so we

may take P = I2. There is only one eigenvalue λ1 = a11 = a22. Its algebraic mul-

tiplicity is 2 and its geometric multiplicity is 2, with corresponding eigenspace

Vλ1
= E2.

• If � > 0 the characteristic polynomial has two simple roots λ1 �= λ2 with corre-

sponding one dimensional orthogonal (from the Proposition 10.2.2) eigenspaces

Vλ1
and Vλ2

. The change of basis matrix P , whose columns are the normalised

eigenvectors
v1

‖v1‖
and

v2

‖v2‖
,

is then orthogonal by construction. We notice that P can be always chosen to be

an element in SO(2), since a permutation of its columns changes the sign of its

determinant, and is compatible with the permutation of the eigenvalue λ1,λ2 in

the diagonal matrix.

In order to explicitly compute the matrix P we see that the eigenspace Vλi
for any

i = 1, 2 is given by the solutions of the linear homogeneous system associated to the

matrix

A − λi I2 =
(

a11 − λi a12

a12 a22 − λi

)
.

Since we already know that dim(Vλi
) = 1, such a linear system is equivalent to a

single linear equation. We can write

Vλi
= {(x, y) : (a11 − λi )x + a12 y = 0}
= L((−a12, a11 − λi )) = L(vi ),
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where we set

v1 = (−a12, a11 − λ1), v2 = (−a12, a11 − λ2).

For the scalar product,

v1 · v2 = a2
12 + a2

11 − (λ1 + λ2)a11 + λ1λ2 = 0

since one has

λ1 + λ2 = a11 + a22, λ1λ2 = a11a22 − a2
12.

Exercise 10.4.3 We consider again the symmetric matrix

A =
(

2 −1

−1 3

)

from the Exercise 10.2.4. Its characteristic polynomial is

pA(T ) = det(A − T I2) = pA(T ) = T 2 − 5T + 5,

with roots

λ± =
1

2
(5 ±

√
5).

The corresponding eigenspaces V± are the solutions of the homogeneous linear

systems associated to the matrices

A − λ± I2 =
1

2

(
(−1 ∓

√
5) −2

−2 (1 ±
√

5)

)
.

one has dim(V±) = 1, so each system is equivalent to a single linear equation, that

is

V± = L((−2, 1 ±
√

5) = L(v±),

where

v+ = (−2, 1 +
√

5), v− = (−2, 1 −
√

5),

and one computes that

v+ · v− = 4 − 4 = 0,
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that is the eigenspaces are orthogonal. The elements

u1 =
v+

‖v+‖
and u2 =

v−

‖v−‖

form an orthonormal basis for E2 of eigenvectors for the endomorphism φA.

We present now the fundamental result of this chapter, that is the spectral theorem

for self-adjoint endomorphisms and for symmetric matrices. Towards this, it is worth

mentioning that the whole theory, presented in this chapter for the euclidean space

En , can be naturally formulated for any finite dimensional real vector space equipped

with a scalar product (see Chap. 3).

Definition 10.4.4 Let φ : V → V be an endomorphism of the real vector space

V , and let Ṽ ⊂ V be a vector subspace in V . If the image of Ṽ for φ is a subset of the

same Ṽ (that is, φ(Ṽ ) ⊆ Ṽ ), there is a well defined endomorphism φṼ : Ṽ → Ṽ

given by

φṼ (v) = φ(v), for all v ∈ Ṽ

(clearly a linear map). The endomorphism φṼ acts in the same way as the endomor-

phism φ, but on a restricted domain. This is why φṼ is called the restriction to Ṽ

of φ.

Proposition 10.4.5 (Spectral theorem for endomorphisms) Let (V, ·) be a real vec-

tor space equipped with a scalar product, and let φ ∈ End(V ). The endomorphism

φ is self-adjoint if and only if V has an orthonormal basis of eigenvectors for φ.

Proof Let us assume the orthonormal basis C for V is made of eigenvectors for φ. This

implies that M
C,C

φ is diagonal and therefore symmetric. From the Theorem 10.2.3 we

conclude that φ is self-adjoint.

The proof of the converse is by induction on n = dim(V ). For n = 2 the state-

ment is true, as we explicitly proved in the Example 10.4.2. Let us then assume it

to be true for any (n − 1)-dimensional vector space. Then, let us consider a real

n-dimensional vector space (V, ·) equipped with a scalar product, and let φ be a

self-adjoint endomorphism on V . With B an orthonormal basis for V (remember

from the Theorem 3.3.9 that such a basis always exists V finite dimensional), the

matrix A = M
B,B

φ is symmetric (from the Theorem 10.2.3) and thus any root of the

characteristic polynomial pA(T ) is real. Denote by λ one such an eigenvalue for φ,

with v1 a corresponding eigenvector that we can assume of norm 1.

Then, let us consider the orthogonal complement to the vector line spanned

by v1,

Ṽ = (L(v1))
⊥ .

In order to meaningfully define the restriction to Ṽ of φ, we have to verify that for

any v ∈ Ṽ one has φ(v) ∈ Ṽ , that is, we have to prove the implication

v · v1 = 0 ⇒ φ(v) · v1 = 0.
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By recalling that φ is self-adjoint and φ(v1) = λv1 we can write

φ(v) · v1 = v · φ(v1) = v · (λv1)

= λ (v · v1) = 0.

This proves that φ can be restricted to a φṼ : Ṽ → Ṽ , clearly self-adjoint. Since

dim(Ṽ ) = n − 1, by the inductive assumption there exist n − 1 elements (v2, . . . , vn)

of eigenvectors for φṼ making up an orthonormal basis for Ṽ . Since φṼ is a restriction

of φ, the elements (v2, . . . , vn) are eigenvectors for φ as well, and orthogonal to v1

as they all belong to Ṽ . Then the elements (v1, v2, . . . , vn) are orthonormal and

eigenvectors for φ. Being n = dim(V ), they are an orthonormal basis for V . �

10.5 The Diagonalization of Symmetric Matrices

There is a counterpart of Proposition 10.4.5 for symmetric matrices.

Proposition 10.5.1 (Spectral theorem for symmetric matrices) Let A ∈ R
n,n be sym-

metric. There exists an orthogonal matrix P such that tP AP is diagonal. This result is

often referred to by saying that symmetric matrices are orthogonally diagonalisable.

Proof Let us consider the endomorphism φ = f
E,E

A : En → En , which is self-

adjoint since A is symmetric and E is the canonical basis (see the Theorem 10.2.3).

From the Proposition 10.4.5, the space En has an orthonormal basis C of eigenvectors

for φ, so the matrix M
C,C

φ is diagonal. From Theorem 7.9.9 we can write

M
C,C

φ = MC,E M
E,E

φ ME,C .

Since M
E,E

φ = A, by setting P = MC,E we have that P−1 AP is diagonal. The

columns of the matrix P are given by the components with respect to E of the

elements in C, so P is orthogonal since C is orthonormal. �

Remark 10.5.2 The orthogonal matrix P can always be chosen in SO(n), since, as

already mentioned, the sign of its determinant changes under a permutation of two

columns.

Exercise 10.5.3 Consider φ ∈ End(R4) given by

φ((x, y, z, t)) = (x + y, x + y,−z + t, z − t).
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Its corresponding matrix with respect to the canonical basis E in R
4 is given by

A = M
E,E

φ =

⎛
⎜⎜⎝

1 1 0 0

1 1 0 0

0 0 −1 1

0 0 1 −1

⎞
⎟⎟⎠ .

Being A symmetric and E orthonormal, than φ is self-adjoint. Its characteristic poly-

nomial is

pφ(T ) = pA(T ) = det(A − T I4)

=
∣∣∣∣
1 − T 1

1 1 − T

∣∣∣∣
∣∣∣∣
−1 − T 1

1 −1 − T

∣∣∣∣
= T 2(T − 2)(T + 2).

The eigenvalues are then λ1 = 0 with (algebraic) multiplicity m(0) = 2, λ2 = −2

with m(−2) = 1 and λ2 = 2 with m(2) = 1. The corresponding eigenspaces are

computed to be

V0 = ker(φ) = L((1,−1, 0, 0), (0, 0, 1, 1)),

V−2 = ker(φ − 2I4) = L((1, 1, 0, 0)),

V2 = ker(φ − I4) = L((0, 0, 1,−1))

and as we expect, these three eigenspaces are mutually orthogonal, with the two

basis vectors spanning V0 orthogonal as well. In order to write the matrix P which

diagonalises A one just needs to normalise such a system of four basis eigenvectors.

We have

P =
1

√
2

⎛
⎜⎜⎝

1 0 1 0

−1 0 1 0

0 1 0 1

0 1 0 −1

⎞
⎟⎟⎠ , tP AP =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −2 0

0 0 0 2

⎞
⎟⎟⎠ ,

where we have chosen an ordering for the eigenvalues that gives det(P) = 1.

Corollary 10.5.4 Let φ ∈ End(En). If the endomorphism φ is self-adjoint then it is

simple.

Proof The proof is immediate. From the Proposition 10.4.5 we know that the self-

adjointness of φ implies that En has an orthonormal basis of eigenvectors for φ. From

the Remark 9.2.3 we conclude that φ is simple. �
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Exercise 10.5.5 The converse of the previous corollary does not hold in general.

Consider for example the endomorphismφ in E2 whose matrix with respect to the

canonical basis E is

A =
(

1 1

0 −1

)
.

An easy calculation gives for the eigenvalues λ1 = 1 e λ2 = −1 and φ is (see the

Corollary 9.4.2) therefore simple. But φ is not self-adjoint, since

φ(e1) · e2 = (1, 0) · (0, 1) = 0,

e1 · φ(e2) = (1, 0) · (1,−1) = 1,

or simply because A is not symmetric. The eigenspaces are given by

V1 = L((1, 0)), V−1 = L((1,−2)),

and they are not orthogonal. As a further remark, notice that the diagonalising matrix

P =
(

1 1

0 −2

)

is not orthogonal.

What we have shown in the previous exercise is a general property characterising

self-adjoint endomorphisms within the class of simple endomorphisms, as the next

theorem shows.

Theorem 10.5.6 Let φ ∈ End(En) be simple, with Vλ1
, . . . , Vλs

the corresponding

eigenspaces. Then φ is self-adjoint if and only if Vλi
⊥ Vλ j

for any i �= j .

Proof That the eigenspaces corresponding to distinct eigenvalues are orthogonal for

a self-adjoint endomorphism comes directly from the Proposition 10.2.2.

Conversely, let us assume that φ is simple, so that En = Vλ1
⊕ · · · ⊕ Vλs

. The

union of the bases given by applying the Gram-Schmidt orthogonalisation proce-

dure to an arbitrary basis for each Vλ j
, yield an orthonormal basis for En , which is

clearly made of eigenvectors for φ. The statement then follows from the

Proposition 10.4.5. �

Exercise 10.5.7 The aim of this exercise is to define (if possible) a self-adjoint

endomorphismφ : E3 → E3 such that ker(φ) = L((1, 2, 1)) and λ1 = 1, λ2 = 2

are eigenvalues of φ.

Since ker(φ) �= {(0, 0, 0)}, then λ3 = 0 is the third eigenvalue for φ, with

ker(φ) = V0. Thus φ is simple since it has three distinct eigenvalues, with E3 =
V1 ⊕ V2 ⊕ V0. In order for φ to be self-adjoint, we have to impose that Vλi

⊥ Vλ j
,

for all i �= j . In particular, one has

(ker(φ))⊥ = (V0)
⊥ = V1 ⊕ V2.
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We compute

(ker(φ))⊥ = (L((1, 2, 1))⊥

= {(α,β,−α − 2β) : α,β ∈ R}
= L((1, 0,−1), (a, b, c))

where we impose that (a, b, c) belongs to L((1, 2, 1))⊥ and is orthogonal to

(1, 0,−1). By setting {
(1, 2, 1) · (a, b, c) = 0

(1, 0,−1) · (a, b, c) = 0
,

we have (a, b, c) = (1,−1, 1), so we select

V1 = L((1, 0,−1)), V2 = L((1,−1, 1)).

Having a simple φ with mutually orthogonal eigenspaces, the endomorphism φ self-

adjoint. To get a matrix representing φ we can choose the basis in E3

B = ((1, 0,−1), (1,−1, 1), (1, 2, 1)),

thus obtaining

M
B,B

φ =

⎛
⎝

1 0 0

0 2 0

0 0 0

⎞
⎠ .

By defining e1 = (1, 0,−1), e2 = (1,−1, 1) we can write, in the Dirac’s notation,

φ = |e1〉〈e1| + 2|e2〉〈e2|.

Exercise 10.5.8 This exercise defines a simple, but not self-adjoint, endomor-

phismφ : E3 → E3 such that ker(φ) = L((1,−1, 1)) and Im(φ) = (ker(φ))⊥.

We know that φ has the eigenvalue λ1 = 0 with V0 = ker(φ). For φ to be simple,

the algebraic multiplicity of the eigenvalueλ1 must be 1, and there have to be two

additional eigenvalues λ2 and λ3 with either λ2 = λ3 or λ2 �= λ3. If λ2 = λ3, one

has then

Vλ2
= Im( f ) = (ker( f ))⊥ = (Vλ1

)⊥.

In such a case, φ would be a simple endomorphism with mutually orthogonal

eigenspaces for distinct eigenvalues. This would imply φ to be self-adjoint. Thus

to satisfy the conditions we require for φ we need λ2 �= λ3. In such a case, one has

Vλ2
⊕ Vλ3

= Im(φ) and also clearly Vλi
⊥ V0 for i = 2, 3. In order for φ to be sim-
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ple but not self-adjoint, we select the eigenspaces Vλ2
and Vλ3

to be not mutually

orthogonal subspaces in Im( f ). Since

Im( f ) = (L((1,−1, 1)))⊥

= {(x, y, z) : x − y + z = 0}
= L((1, 1, 0), (0, 1, 1))

we can choose

Vλ2
= L((1, 1, 0)), Vλ3

= L((0, 1, 1)).

If we set B =
(
(1,−1, 1), (1, 1, 0), (0, 1, 1)

)
(clearly not an orthonormal basis for

E3), we have

M
B,B

φ =

⎛
⎝

0 0 0

0 λ2 0

0 0 λ3

⎞
⎠ .

Exercise 10.5.9 Consider the endomorphism φ : E3 → E3 whose corresponding

matrix with respect to the basis B =
(
v1 = (1, 1, 0), v2 = (1,−1, 0), v3 = (0, 0,−1)

)
is

M
B,B

φ =

⎛
⎝

1 0 0

0 2 0

0 0 3

⎞
⎠ .

With E as usual the canonical basis for E3, in this exercise we would like to determine:

(1) an orthonormal basis C for E3 given by eigenvectors for φ,

(2) the orthogonal matrix ME,C ,

(3) the matrix MC,E ,

(4) the matrix M
E,E

φ ,

(5) the eigenvalues of φ with their corresponding multiplicities.

(1) We start by noticing that, since M
B,B

φ is diagonal, the basis B is given by eigen-

vectors of φ, as the action of φ on the basis vectors in B can be clearly written

as φ(v1) = v1, φ(v2) = 2v2, φ(v3) = 3v3. The basis B is indeed orthogonal, but

not orthonormal, and for an orthonormal basis C of eigenvectors for φ we just

need to normalize, that is to consider

u1 =
v1

‖v1‖
, u2 =

v2

‖v2‖
, u3 =

v3

‖v3‖

just obtaining C = ( 1√
2
(1, 1, 0), 1√

2
(1,−1, 0), (0, 0,−1)). While the existence

of such a basis C implies that φ is self-adjoint, the self-adjointness of φ could

not be derived from the matrix M
B,B

φ , which is symmetric with respect to a basis

B which is not orthonormal.
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(2) From its definition, the columns of ME,C are given by the components with

respect to E of the vectors in C. We then have

ME,C =
1

√
2

⎛
⎝

1 1 0

1 −1 0

0 0 −
√

2

⎞
⎠ .

(3) We know that MC,E =
(
ME,C

)−1
. Since the matrix above is orthogonal, we

have

MC,E = t
(
ME,C

)
=

1
√

2

⎛
⎝

1 1 0

1 −1 0

0 0 −
√

2

⎞
⎠ .

(4) From the Theorem 7.9.9 we have

M
E,E

φ = ME,C M
C,C

φ MC,E .

Since M
C,C

φ = M
B,B

φ , the matrix M
E,E

φ can be now directly computed.

(5) Clearly, from M
B,B

φ the eigenvalues for φ are all simple and given by λ = 1, 2, 3.



Chapter 11

Rotations

The notion of rotation appears naturally in physics, and is geometrically formulated in

terms of a euclidean structure as a suitable linear map on a real vector space. The aim

of this chapter is to analyse the main properties of rotations using the spectral theory

previously developed, as well as to recover known results from classical mechanics,

using the geometric language we are describing.

11.1 Skew-Adjoint Endomorphisms

In analogy to the Definition 10.2.1 of a self-adjoint endomorphism, we have the

following.

Definition 11.1.1 An endomorphism φ of the euclidean vector space En is called

skew-adjoint if

φ(v) · w = − v · φ(w), for all v,w ∈ En.

From the Definition 4.1.7 we call a matrix A = (ai j ) ∈ R
n,n skew-symmetric (or anti-

symmetric) if tA = −A, that is if ai j = −a j i , for any i, j . Notice that the skew-

symmetry condition for A clearly implies for its diagonal elements that ai i = 0. The

following result is an analogous of the Theorem 10.2.3 and can be established in a

similar manner.

Theorem 11.1.2 Let φ ∈ End(En) and B an orthonormal basis for En . The endo-

morphism φ is skew-adjoint if and only if M
B,B
φ is skew-symmetric.
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Proposition 11.1.3 Let φ ∈ End(En) be skew-adjoint. It holds that

(a) the euclidean vector space En has an orthogonal decomposition

En = Im(φ) ⊕ ker(φ),

(b) the rank of φ is even.

Proof (a) Let u ∈ En and v ∈ ker(φ). We can write

0 = u · φ(v) = −φ(u) · v.

Since this is valid for any u ∈ En , the element φ(u) ranges over the whole space

Im(φ), so we have that ker(φ) = (Im(φ)⊥.

(b) From t M
B,B
φ = −M

B,B
φ , it follows det(M

B,B
φ ) = (−1)n det(M

B,B
φ ). Thus a

skew-adjoint endomorphism on an odd dimensional euclidean space is singu-

lar (that is it is not invertible). From the orthogonal decomposition for En of

point (a) we conclude that the restriction φ̃Im(φ) : Im(φ) → Im(φ̃) is regular

(that is it is invertible). Since such a restriction is skew-adjoint, we have that

dim(Im(φ)) = dim(Im(φ̃)) = rk(φ) is even. �

A skew-adjoint endomorphismφ on En can have only the zero as (real) eigenvalue,

so it is not diagonalisable. Indeed, if λ is an eigenvalue for φ, that is φ(v) = λv for

v �= 0En ∈ En , from the skew-symmetry condition we have that 0 = v · φ(v) = λ v · v,

which implies λ = 0. Also, since its characteristic polynomial has non real roots, it

does not have a Jordan form (see Theorem 9.5.1).

Although not diagonalisable, a skew-adjoint endomorphism has nonetheless a

canonical form.

Proposition 11.1.4 Given a skew-adjoint invertible endomorphismφ : E2p → E2p,

there exists an orthonormal basis B for E2p with respect to which the representing

matrix for φ is of the form,

M
B,B
φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ1

−μ1 0

. . .

. . .

0 μp

−μp 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with μ j ∈ R for j = 1, . . . , p.
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Proof The map S = φ2 = φ ◦ φ is a self-adjoint endomorphism on E2p, so there

exists an orthonormal basis of eigenvectors for S. Given S(w j ) = λ jw j with λ j ∈ R,

each eigenvalue λ j has even multiplicity, since the identity

S(φ(wi )) = φ(S(wi )) = λiφ(wi )

shows that wi and φ(wi ) are eigenvectors of S with the same eigenvalue λi . We label

then the spectrum of S by (λ1, . . . ,λk) and the basis C =
(
w1,φ(w1), . . . , wk ,φ(wk)

)
.

We also have

λi = wi · S(wi ) = wi · φ2(wi ) = −φ(wi ) · φ(wi ) = −‖φ(wi )‖2

and, since we tookφ to be invertible, we haveλi < 0. Define the setB = (e1, . . . , e2p)

of vectors as

e2 j−1 = w j , e2 j =
1√
|λ j |

φ(w j )

for j = 1, . . . , p. A direct computation shows that e j · ek = δ jk with j, k = 1, . . . , 2p

and

φ(e2 j−1) =
√

|λ j | e2 j , φ(e2 j ) = −
√

|λ j | e2 j−1.

Thus B is an orthonormal basis with respect to which the matrix representing the

endomorphism φ has the form above, with μ j =
√

|λ j |. �

Corollary 11.1.5 If φ is a skew-adjoint endomorphism on En , then there exists an

orthonormal basis B for En with respect to which the associated matrix of φ has the

form

M
B,B
φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ1

−μ1 0

. . .

. . .

0 μp

−μp 0

0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with μ j ∈ R, j = 1, · · · , p, and 2p ≤ n.

The study of antisymmetric matrices makes it natural to introduce the notion of

Lie algebra.
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Definition 11.1.6 Given A, B ∈ R
n,n , one defines the map [ , ] : R

n,n × R
n,n → R

n,n ,

[A, B] = AB − B A

as the commutator of A and B. Using the properties of the matrix product is it easy

to prove that the following hold, for any A, B, C ∈ R
n,n and any α ∈ R:

(1) [A, B] = −[B, A], [αA, B] = α[A, B], [A + B, C] = [A, C] + [B, C], that

is the commutator is bilinear and antisymmetric,

(2) [AB, C] = A[B, C] + [A, C]B,

(3) [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0; this is called the Jacoby identity.

Definition 11.1.7 If W ⊆ R
n,n is a vector subspace such that the commutator maps

W × W into W , we say that W is a (matrix) Lie algebra. Its rank is the dimension

of W as a vector space.

Excercise 11.1.8 The collection of all antisymmetric matrices WA ⊂ R
n,n is a

matrix Lie algebra since, if tA = −A and tB = −B it is

t ([A, B]) = t B tA − tA tB = B A − AB.

As a Lie algebra, it is denoted so(n) and one easily computed its dimension to be

n(n − 1)/2. As we shall see, this Lie algebra has a deep relation with the orthogonal

group SO(n).

Remark 11.1.9 It is worth noticing that the vector space WS ⊂ R
n,n of symmetric

matrices is not a matrix Lie algebra, since the commutator of two symmetric matrices

is an antisymmetric matrix.

Excercise 11.1.10 It is clear that the matrices

L1 =

⎛
⎝

0 0 0

0 0 −1

0 1 0

⎞
⎠ , L2 =

⎛
⎝

0 0 1

0 0 0

−1 0 0

⎞
⎠ , L3 =

⎛
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎠

provide a basis for the three dimensional real vector space of antisymmetric matrices

WA ⊂ R
3,3. As the matrix Lie algebra so(3), one computes the commutators:

[L1, L2] = L3, [L2, L3] = L1, [L3, L1] = L2.

Excercise 11.1.11 We consider the most general skew-adjoint endomorphismφ on

E3. With respect to the canonical orthonormal basis E = (e1, e2, e3) it has associated

matrix of the form

M
E,E
φ =

⎛
⎝

0 −γ β

γ 0 −α

−β α 0

⎞
⎠ = αL1 + βL2 + γL3.
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with α,β, γ ∈ R. Any vector (x, y, z) in its kernel is a solution of the system

⎛
⎝

0 −γ β

γ 0 −α

−β α 0

⎞
⎠

⎛
⎝

x

y

z

⎞
⎠ =

⎛
⎝

0

0

0

⎞
⎠ .

It is easy to show that the kernel is one-dimensional with ker(φ) = L((α,β, γ)).

Since φ is defined on a three dimensional space and has a one-dimensional kernel,

from the Proposition 11.1.4 the spectrum of the map S = φ2 is made of the sim-

ple eigenvalue λ0 = 0 and a multiplicity 2 eigenvalue λ < 0, which is such that

2λ = tr(M
E,E
S ) with

M
E,E
S =

⎛
⎝

0 −γ β

γ 0 −α

−β α 0

⎞
⎠

⎛
⎝

0 −γ β

γ 0 −α

−β α 0

⎞
⎠ =

⎛
⎝

−γ2 − β2 αβ αγ

αβ −γ2 − α2 βγ

αγ βγ −β2 − α2

⎞
⎠ ;

thus λ = −(α2 + β2 + γ2). For the corresponding eigenspace Vλ ∋ (x, y, x) one

has ⎛
⎝

α2 αβ αγ

αβ β2 βγ

αγ βγ γ2

⎞
⎠

⎛
⎝

x

y

z

⎞
⎠ =

⎛
⎝

0

0

0

⎞
⎠ ⇔

⎧
⎨
⎩

α(αx + βy + γz) = 0

β(αx + βy + γz) = 0

γ(αx + βy + γz) = 0

.

Such a linear system is equivalent to the single equation (αx + βy + γz) = 0, which

shows that ker(S) is orthogonal to Im(S). To be definite, assume α �= 0, and fix as

basis for Vλ

w1 = (−γ, 0,α),

w2 = φ(w1) = (−αβ,α2 + γ2,−βγ),

with w1 · φ(w1) = 0. With the appropriate normalization, we define

u1 =
w1

‖w1‖
,

u2 =
φ(w1)

‖φ(w1)‖
,

u3 =
1√

α2 + β2 + γ2
(α,β, γ)

and verify that C = (u1, u2, u3) is an orthonormal basis for E3. With MC,E the

orthogonal matrix of change of bases (see the Theorem 7.9.9), this leads to

MC,E M
E,E
φ ME,C = M

C,C
φ =

⎛
⎝

0 −ρ 0

ρ 0 0

0 0 0

⎞
⎠ , ρ = |λ| = α2 + β2 + γ2,

an example indeed of Corollary 11.1.5.
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11.2 The Exponential of a Matrix

In Sect. 10.1 we studied the properties of the orthogonal group O(n) in En . Before

studying the spectral properties of orthogonal matrices we recall some general results.

Definition 11.2.1 Given a matrix A ∈ R
n,n , its exponential is the matrix eA defined

by

eA =
∞∑

k=0

1

k!
Ak

where the sum is defined component-wise, that is (eA) jl =
∑∞

k=0
1
k! (Ak) jl .

We omit the proof that such a limit exists (that is each series converges) for every

matrix A, and we omit as well the proof of the following proposition, which lists

several properties of the exponential maps on matrices.

Proposition 11.2.2 Given matrices A, B ∈ R
n,n and an invertible matrix P ∈ GL(n),

the following identities hold:

(a) eA ∈ GL(n), that is the matrix eA is invertible, with (eA)−1 = e−A and

det(eA) = etr A,

(b) if A = diag(a11, . . . , ann), then eA = diag(ea11 , . . . , eann ),

(c) eP AP−1 = PeA P−1,

(d) if AB = B A, that is [A, B] = 0, then eAeB = eBeA = eA+B ,

(e) it is e
tA = t (eA),

(f) if W ⊂ R
n,n is a matrix Lie algebra, the elements eM with M ∈ W form a group

with respect to the matrix product.

Excercise 11.2.3 Let as determine the exponential eQ of the symmetric matrix

Q =
(

0 a

a 0

)
, a ∈ R.

We can proceed in two ways. On the one hand, it is easy to see that

Q2k =
(

a2k 0

0 a2k

)
, Q2k+1 =

(
0 a2k+1

a2k+1 0

)
.

Thus, by using the definition we compute

eQ =

⎛
⎜⎝

∑∞
k=0

a2k

(2k)!
∑∞

k=0
a2k+1

(2k+1)!

∑∞
k=0

a2k+1

(2k+1)!
∑∞

k=0
a2k

(2k)!

⎞
⎟⎠ =

(
cosh a sinh a

sinh a cosh a

)
.
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Alternatively, we can use the identities (c) and (b) in the previous proposition, once

Q has been diagonalised. It is easy to compute the eigenvalues of Q to be λ± = ±a,

with diagonalising orthogonal matrix P = 1√
2

(
1 1

−1 1

)
. That is, P�Q P−1 = Q with

with �Q = diag(−a, a),

1
2

(
1 1

−1 1

) (
−a 0

0 a

) (
1 −1

1 1

)
=

(
0 a

a 0

)
.

We then compute

eQ = eP�Q P−1 = Pe�Q T −1

= 1
2

(
1 1

−1 1

) (
e−a 0

0 ea

) (
1 −1

1 1

)
=

(
cosh a sinh a

sinh a cosh a

)
.

Notice that det(eQ) = cosh2 a − sinh2 a = 1 = etr Q .

Excercise 11.2.4 Let us determine the exponential eM of the anti-symmetric matrix

M =
(

0 a

−a 0

)
, a ∈ R.

Since M is not diagonalisable, we explicitly compute eM as we did in the previous

exercise, finding

M2k = (−1)k

(
a2k 0

0 a2k

)
, M2k+1 = (−1)k

(
0 a2k+1

−a2k+1 0

)
.

By putting together all terms, one finds

eM =

⎛
⎜⎝

∑∞
k=0(−1)k a2k

(2k)!
∑∞

k=0(−1)k a2k+1

(2k+1)!

−
∑∞

k=0(−1)k a2k+1

(2k+1)!
∑∞

k=0(−1)k a2k

(2k)!

⎞
⎟⎠ =

(
cos a sin a

− sin a cos a

)
.

We see that if M is a 2 × 2 anti-symmetric matrix, the matrix eM is special

orthogonal. This is an example for the point ( f ) in the Proposition 11.2.2.

Excercise 11.2.5 In order to further explore the relations between anti-symmetric

matrices and special orthogonal matrices, consider the matrix

M =

⎛
⎝

0 a 0

−a 0 0

0 0 0

⎞
⎠ a ∈ R.
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In parallel with the computations from the previous exercise, it is immediate to see

that

eM =

⎛
⎝

cos a sin a 0

− sin a cos a 0

0 0 1

⎞
⎠ .

This hints to the conclusion that eM ∈ SO(3) if M ∈ R
3,3 is anti-symmetric.

The following proposition generalises the results of the exercises above, and

provides a further example for the claim ( f ) from the Proposition 11.2.2, since the

set WA ⊂ R
n,n of antisymmetric matrices is the (matrix) Lie algebraso(n), as shown

in the exercise 11.1.8.

Proposition 11.2.6 If M ∈ R
n,n is anti-symmetric, then eM is special orthogonal.

The restriction of the exponential map to the Lie algebra so(n) of anti-symmetric

matrices is surjective onto SO(n).

Proof We focus on the first claim which follows from point (a) of Proposition 11.2.2.

If M ∈ R
n,n is anti-symmetric, tM = −M and tr(M) = 0. Thus t (eM) = e

tM =
e−M = (eM)−1 and det(eM) = etr(M) = e0 = 1. �

Remark 11.2.7 As the Exercise 11.2.5 directly shows, the restriction of the expo-

nential map to the Lie algebra so(n) of anti-symmetric matrices is not injective into

SO(n).

In the Example 11.3.1 below, we shall sees explicitly that the exponential map,

when restricted to 2-dimensional anti-symmetric matrices, is indeed surjective onto

the group SO(2).

11.3 Rotations in Two Dimensions

We study now spectral properties of orthogonal matrices. We start with the orthogonal

group O(2).

Example 11.3.1 Let A =
(

a11 a12

a21 a22

)
∈ R

2,2. The condition tAA = A tA = I2 is

equivalent to the conditions for its entries given by

a2
11 + a2

12 = 1

a2
21 + a2

22 = 1

a11a21 + a12a22 = 0.
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To solve these equations, let us assume a11 �= 0 (the case a22 �= 0 is analogous). We

have then a21 = −(a12a22)/a11 from the third equation while, from the others, we

have

a2
22

(
a2

12

a2
11

+ 1

)
= 1 ⇒ a2

22 = a2
11.

There are two possibilities.

• If a11 = a22, it follows that a12 + a21 = 0, so the matrix A can be written as

A+ =
(

a b

−b a

)
with a2 + b2 = 1,

and det(A+) = a2 + b2 = 1. One can write a = cos ϕ, b = sin ϕ, for ϕ ∈ R, so

to get

A+ =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
.

• If a11 = −a22, it follows that a12 = a21, so the matrix A can be written as

A− =
(

a b

b −a

)
with a2 + b2 = 1,

and we can write

A− =
(

cos ϕ sin ϕ

sin ϕ − cos ϕ

)

with det(A−) = −a2 + b2 = −1.

Finally, it is easy to see that a11 = 0 would imply a22 = 0 and a2
12 = a2

21 = 1. These

four cases correspond to ϕ = ±π
2

for A+ or A−, according to wether a12 = −a21 or

a12 = a21 respectively.

We see that A+ makes up the special orthogonal group SO(2), while A− the orthog-

onal transformations in E2 which in physics are usually called improper rotations.

Given the 2π-periodicity of the trigonometric functions, we see that any element in

the special orthogonal group SO(2) corresponds bijectively to an angle ϕ ∈ [0, 2π).

On the other hand, any improper orthogonal transformation can be factorised as

the product of a SO(2) matrix times the matrix Q = diag(1,−1),

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

)
=

(
1 0

0 −1

)(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)
.

Thus, an improper orthogonal transformation ‘reverses’ one of the axis of any given

orthogonal basis for E2 and so changes its orientation.
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Remark 11.3.2 Being O(2) a group, the product of two improper orthogonal trans-

formations is a special orthogonal transformation. We indeed compute

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

) (
cos ϕ′ sin ϕ′

sin ϕ′ − cos ϕ′

)
=

(
cos(ϕ′ − ϕ) sin(ϕ′ − ϕ)

− sin(ϕ′ − ϕ) cos(ϕ′ − ϕ)

)
∈ SO(2).

Proposition 11.3.3 A matrix A ∈ SO(2) is diagonalisable if and only if A = ±I2.

An orthogonal matrix A with det(A) = −1 is diagonalisable, with spectrum given

by λ = ±1.

Proof From the previous example we have:

(a) The eigenvalues λ for a special orthogonal matrix are given by the solutions of

the equation

pA+(T ) = (cos ϕ − T )2 + sin2 ϕ = T 2 − 2(cos ϕ) T + 1 = 0,

which are λ± = cos ϕ ±
√

cos2 ϕ − 1. This shows that A+ is diagonalisable

if and only if cos2 = 1, that is A+ = ±I2.

(b) Improper orthogonal matrices A− turn to be diagonalisable since they are sym-

metric. The eigenvalue equation is

pA− = (T + cos ϕ)(T − cos ϕ) − sin2 ϕ = T 2 − 1 = 0,

giving λ± = ±1. �

11.4 Rotations in Three Dimensions

We move to the analysis of rotations in three dimensional spaces.

Excercise 11.4.1 From the Exercise 11.1.11 we know that the anti-symmetric matri-

ces in R
3,3 form a three dimensional vector space, thus any anti-symmetric matrix

M is labelled by a triple (α,β, γ) of real parameters. The vector a = (α,β, γ) is the

generator, with respect the canonical basis E of E3, of the kernel of the endomorphism

φ associated to M with respect to the basis E , M = M
E,E
φ .

Moreover, from the same exercise we know that there exists an orthogonal

matrix P which reduces M to its canonical form (see Corollary 11.1.5), that is

M = P aM P−1 with

aM =

⎛
⎝

0 −ρ 0

ρ 0 0

0 0 0

⎞
⎠ , and ρ2 = α2 + β2 + γ2,
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with respect to an orthonormal basis C for E3 such that P = ME,C , the matrix of

change of basis. From the Exercise 11.2.5 it is

SO(3) ∋ eaM =

⎛
⎝

cos ρ − sin ρ 0

sin ρ cos ρ 0

0 0 1

⎞
⎠ , (11.1)

and, if R = eM , from the Proposition 11.2.2 one has R = PeaM P−1.

The only real eigenvalue of the orthogonal transformation eaM is then λ = 1, cor-

responding to the 1-dimensional eigenspace spanned by the vector a = (α,β, γ). The

vector lineL(a) is therefore left unchanged by the isometryφ of E3 corresponding

to the matrix R, that is such that M
E,E
φ = R.

From the Proposition 11.2.6 we know that given R ∈ SO(3), there exists an anti-

symmetric matrix M ∈ R
3,3 such that R = eM . The previous exercise gives then the

proof of the following theorem.

Theorem 11.4.2 For any matrix R ∈ SO(3) with R �= I3 there exists an orthonor-

mal basis B on E3 with respect to which the matrix R has the form (11.1).

This theorem, that is associated with the name of Euler, can also be stated as

follow:

Theorem 11.4.3 Any special orthogonal matrix R ∈ SO(3) has the eigenvalue +1.

Those isometries φ ∈ End(E3) whose representing matrices M
E,E
φ with respect to

an orthonormal basis E are special orthogonal are also called 3-dimensional rotation

endomorphisms or rotations tout court. With a language used for the euclidean affine

spaces (Chap. 15), we then have:

• For each rotation R of E3 there exists a unique vector line (a direction) which is

left unchanged by the action of the rotation. Such a vector line is called the rotation

axis.

• The width of the rotation around the rotation axis is given by an angle ρ obtained

from (11.1), and implicitly given by

1 + 2 cos ρ = tr

⎛
⎝

cos ρ − sin ρ 0

sin ρ cos ρ 0

0 0 1

⎞
⎠ = tr P−1 R P = trR, (11.2)

from the cyclic property of the trace.

Excercise 11.4.4 Consider the rotation of E3 whose matrix E = (e1, e2.e3) is

R =

⎛
⎝

cos α sin α 0

− sin α cos α 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0

0 cos β sin β

0 − sin β cos β

⎞
⎠
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with respect to the canonical basis. Such a matrix is the product R = R1 R2 of two

special orthogonal matrices. The matrix R1 is a rotation by an angle α with rota-

tion axis the vector lineL(e1) and angular width α, while R2 is a rotation by the

angle β with rotation axisL(e3). We wish to determine the rotation axis for R with

corresponding angle. A direct calculation yields

R =

⎛
⎝

cos α sin α cos β sin α sin β

− sin α cos α cos β cos α sin β

0 − sin β cos β

⎞
⎠ .

Since R �= I3 for α �= 0 and β �= 0, the rotation axis is given by the eigenspace
corresponding to the eigenvalue λ = 1. This eigenspace is found to be spanned by
the vector v with

v =
(

sin α(1 − cos β), (cos α − 1)(1 − cos β), sin β(1 − cos α)
)

if α �= 0, β �= 0,

v = (1, 0, 0) if α = 0,

v = (0, 0, 1) if β = 0.

The rotation angleρ can be obtained (implicitly) from the Eq. (11.2) as

1 + 2 cos ρ = tr(R) = cos α + cos β + cos α cos β.

Excercise 11.4.5 Since the special orthogonal group SO(n) is non abelian for n > 2,

for the special orthogonal matrix given by R′ = R2 R1 one has R′ �= R. The matrix

R′ can be written as

R′ =

⎛
⎝

cos α sin α 0

− sin α cos β cos α cos β sin β

sin α sin β − sin β cos α cos β

⎞
⎠ .

One now computes that while the rotation angle is the same as in the previous exercise,

the rotation axis is spanned by the vector v′ with

v′ =
(

sin α sin β, (1 − cos α) sin β, (1 − cos α)(1 + cos β)
)

if α �= 0, β �= 0,

v′ = (1, 0, 0) if α = 0,

v′ = (0, 0, 1) if β = 0.

Excercise 11.4.6 Consider the matrix R′′ = Q1 Q2 given by

R′′ =

⎛
⎝

cos α sin α 0

sin α − cos α 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0

0 cos β′ sin β′

0 sin β′ − cos β′

⎞
⎠ .



11.4 Rotations in Three Dimensions 185

Now neither Q1 nor Q2 are (proper) rotation matrix: both Q1 and Q2 are in O(3), but

det(Q1) = det(Q2) = −1 (see the Example 11.3.1, where O(2) has been described,

and the Remark 11.3.2). The matrix R′′ is nonetheless special orthogonal since O(3)

is a group and det(R′′) = 1.
One finds that the rotation axis is the vector line spanned by the vector v′′ with

v′′ =
(

sin α sin β′, (1 − cos α) sin β′, (1 − cos α)(1 − cos β′)
)

if α �= 0, β′ �= 0,

v′′ = (1, 0, 0) if α = 0,

v′′ = (0, 0, 1) if β′ = 0.

One way to establish this result without doing explicit computation, is to observe that

R′′ is obtained from R′ in Exercise 11.4.5 under a transposition and the identification

β′ = π − β.

Excercise 11.4.7 As an easy application of the Theorem 10.1.13 we know that, if

B = (u1, u2, u3) and C = (v1, v2, v3) are orthonormal bases in E3, then the orthog-

onal endomorphism φ mapping vk �→ uk is represented by a matrix whose entry �ab

is given by the scalar product ub · va

M
C,C
φ = � =

(
�ab = ub · va

)
a,b=1,2,3

.

It is easy indeed to see that the matrix element (t��)ks is given by

3∑

a=1

�ak�as =
3∑

a=1

(ua · vk)(ua · vs) = vk · vs = δks

thus proving that � is orthogonal. Notice that M
B,B
φ = t� = �−1.

Excercise 11.4.8 Let E = (e1, e2, e3) be an orthonormal basis for E3. We compute

the rotation matrix corresponding to the change of basisE → B withB = (u1, u2, u3)

for any given basis B with the same orientation (see the Definition 10.1.15) of E .

Firstly, consider a vector u of norm 1. Since such a vector defines a point on a

sphere of radius 1 in the three dimensional physical space S, which can be identified

by a latitude and a longitude, its components with respect to E are determined by

two angles. With respect to Figure 11.1 we write them as

u = (sin ϕ sin θ,− cos ϕ sin θ, cos θ)

with θ ∈ (0,π) and ϕ ∈ [0, 2π). Then, to complete u to an orthonormal basis for E3

with u′
3 = u, one finds,

u′
1 = uN = (cos ϕ, sin ϕ, 0),

u′
2 = (− sin ϕ cos θ, cos ϕ cos θ, sin θ).
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Fig. 11.1 The Euler angles

The rotation matrix (with respect to the basis E) of the transformation

E → (u′
1, u′

2, u′
3) is given by

R′(θ,ϕ) =

⎛
⎝

cos ϕ − sin ϕ cos θ sin ϕ sin θ

sin ϕ cos ϕ cos θ − cos ϕ sin θ

0 sin θ cos θ

⎞
⎠ .

Since the choice of u′
1, u′

2 is unique up to a rotation around the orthogonal vector u,
we see that the most general SO(3) rotation matrix mapping e3 → u is given by

R(θ,ϕ,ψ) = R(θ,ϕ)

⎛
⎝

cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1

⎞
⎠

=

⎛
⎝

cos ϕ cos ψ − sin ϕ cos θ sin ψ − cos ϕ sin ψ − sin ϕ cos θ cos ψ sin ϕ cos θ

sin ϕ cos ψ + cos ϕ cos θ sin ψ − sin ϕ sin ψ + cos ϕ cos θ cos ψ − cos ϕ sin θ

sin θ sin ψ sin θ cos ψ cos θ

⎞
⎠

with ψ ∈ [0, 2π). This shows that the proper 3-dimensional rotations, that is the

group SO(3), can be parametrised by 3 angles. Such angles are usually called Euler

angles, and clearly there exist several (consistent and equivalent) different choices

for them.
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Our result depends on the assumption that sin θ �= 0, which means that u1 �= ±e3

(this corresponds to the case when u1 is the north-south pole direction). The most gen-

eral rotation matrix representing an orthogonal transformation withe1 → u1 = ±e3

is given by

R(ψ) =

⎛
⎝

0 cos ψ ∓ sin ψ

0 sin ψ ± cos ψ

±1 0 0

⎞
⎠ .

We finally remark that the rotation matrix R(θ,ϕ,ψ) can be written as the product

R(θ,ϕ,ψ) =

⎛
⎝

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠

⎛
⎝

cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1

⎞
⎠ .

This identity shows that we can write

R(θ,β,ψ) = eϕL3 eθL1 eψL3 .

where L1 and L3 are the matrices in Exercise 11.1.10. These matrices are the ‘gen-

erators’ of the rotations around the first and third axis, respectively.

In applications to the dynamics of a rigid body, with reference to the Figure 11.1,

the angle ϕ parametrises the motion of precession of the axis u3 around the axis e3,

the angle θ the motion of nutation of the axis u3 and the angle ϕ the intrinsic rotation

around the axis u3. The unit vector uN indicates the line of nodes, the intersection of

the plane (e1e2) with the plane (u1u2).

We close this section by listing the most interesting properties of orthogonal

endomorphisms in En with n > 0. Endomorphisms φ whose representing matrix

M
E,E
φ are special orthogonal, with respect to an orthonormal basis E for En , are called

rotations. From the Proposition 11.2.6 we know that there exists an anti-symmetric

matrix M such that M
E,E
φ = eM . When rk(M) = 2k, the matrix eM depends on k

angular variables.

From the Corollary 11.1.5 and a direct generalisation of the computations above,

one can conclude that for each n-dimensional rotation:

• There exists a vector subspace V ⊂ En which is left unchanged by the action of

the rotation, with dim(V ) = n − rk(M).

• Since rk(M) is even, we have that, if n is odd, then V is odd dimensional as well,

and at least one dimensional. If n is even and the matrix M is invertible, then V is

the null space.
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11.5 The Lie Algebra so(3)

We have a closer look at the Lie algebraso(3) introduced in the Exercise 11.1.10. As

mentioned, it is three dimensional and generated by the three matrices

L1 =

⎛
⎝

0 0 0

0 0 −1

0 1 0

⎞
⎠ , L2 =

⎛
⎝

0 0 1

0 0 0

−1 0 0

⎞
⎠ , L3 =

⎛
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎠ ,

which are closed under matrix commutator.

Consider the three dimensional euclidean totally antisymmetric Levi-Civita sym-

bol εa1a2a3
with indices a j = 1, 2, 3 and defined by

εa1a2a3
=

⎧
⎨
⎩

+1 if (a1, a2, a3) is an even permutation of (1, 2, 3)

−1 if (a1, a2, a3) is an odd permutation of (1, 2, 3) .

0 if any two indices are equal

One has the identity
∑3

a=1 εabcǫaks = (δbkδcs − δbsδck).

Excercise 11.5.1 Using the Levi-Civita symbol, it is easy to see that the generators

La have components given by

(La)mn = εman,

while their commutators are written as

[Lm, Ln] =
3∑

a=1

εmna La .

There is an important subtlety when identifying 3 × 3 antisymmetric matrices

with three dimensional vectors. The most general antisymmetric matrix in indeed

characterised by three scalars,

A =

⎛
⎝

0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞
⎠ =

3∑

a=1

va La

For the time being, this only defines a triple of numbers (v1, sv2, v3) in E3.

Whether this triple provides the components of a vector in the three dimensional

euclidean space, will depend on how it transforms under an orthonormal transforma-

tion. Now, we may think of A as the matrix, with respect to the canonical orthonormal

basis E of a skew-adjoint endomorphismφ on E3: A = M
E,E
φ . When changing basis

to an orthonormal basis B with matrix of change of basis R = ME,B ∈ O(3), the

matrix A is transformed to
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A′ = R AR−1 = R A tR,

since R is orthogonal and thus R−1 = tR. Since A′ is antisymmetric as well, it

can be written as A′ =
∑3

a,b=1 v′
a La for some (v′

1, v
′
2, v

′
3). In order to establish the

transformation rule from (v1, v2, v3) to (v′
1, v

′
2, v

′
3), we need an additional result on

orthogonal matrices.

Excercise 11.5.2 Using the expression in Sect. 5.3 for the inverse of an invertible

matrix, the orthogonality condition for a matrix R ∈ O(3), that is

Rab = (tR)ba = (R−1)ba , can be written as

Rab =
1

det R
(−1)a+b det(R̂ab),

where R̂ab is the 2 dimensional matrix obtained by deleting the row a and the column

b in the 3 dimensional matrix R. (Then det(R̂ab is the minor of the element Rab, see

the Definition 5.1.7.) In terms of the Levi-Civita symbol this identity transform to

3∑

j=1

εmjn R jq =
1

det R

3∑

a,b=1

Rmaεaqb Rnb, (11.3)

or, being t R orthogonal as well, with det R = det t R,

3∑

j=1

εmjn Rq j =
1

det R

3∑

a,b=1

Ramεaqb Rbn. (11.4)

Going back to A =
∑3

a=1 va La and A′ =
∑3

a,b=1 v′
a La , we have for their com-

ponents:

Amn =
3∑

j=1

v j εmjn and A′
mn =

3∑

j=1

v′
j εmjn.

We then compute, using the relation (11.3),

A′
mn = (R A tR)mn =

3∑

a,b=1

Rma Aab Rnb

=
3∑

j=1

3∑

a,b=1

v j εajb Rma Rnb

= (det R)

3∑

j=1

3∑

c=1

Rcjv j εmcn = (det R)

3∑

c=1

(Rv)c εmcn,
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that is,

v′
j = (det R) (Rv) j = (det R)

3∑

c=1

Rcjv j .

This shows that, under an orthogonal transformation between different bases of

E3, the components of an antisymmetric matrix transforms as the components of a

vector only if the orientation is preserved, that is only if the transformation is special

orthogonal.

Using a terminology from physics, elements in E3 whose components with respect

to orthonormal basis transform as the general theory (see the Proposition 7.9.2) pre-

scribes are called polar vectors (or vectors tout court), while elements in E3 whose

components transform as the components of an antisymmetric matrix are called axial

(or pseudo) vectors.

An example of an axial vector is given by the vector product in E3 of two (polar)

vector, that we recall from the Chap. 1. To be definite, let us start with the canonical

orthonormal basisE . Ifv = (v1, v2, v3) andw = (w1, w2, w3), the Proposition 1.3.15

define the vector product of v and w as,

τ (v,w) = v ∧ w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

Using the Levi-Civita symbol, the components are written as

(v ∧ w)a =
3∑

b,c=1

εabc vb wc.

If R = ME,B ∈ O(3) is the change of basis to a new orthonormal basis B for E3, on

one hand we have (v ∧ w)′q = (R(v ∧ w))q while the relation (11.4) yields,

(v′ ∧ w′)q =
3∑

k, j=1

εqk jv
′
kw

′
j =

3∑

k, j,b,s=1

εqk j Rkb R jsvbws

= (det R)

3∑

a,b,s=1

Rqaεabs vbws = (det R)(v ∧ w)′q .

This shows that the components of a vector product transforms as an axial vector

under an orthogonal transformation between different bases of E3. In a similar man-

ner one shows that the vector product of an axial vector with a polar vector, is a polar

vector.

Excercise 11.5.3 For example, the change of basis from B to B′ = (b′
1 = −b1,

b′
2 = −b2, b′

3 = −b3) is clearly represented by the matrix MB,B′ = MB′,B = −I3

which is orthogonal but not special orthogonal. It is immediate to see that we have
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v = (−v1,−v2,−v3)B′ and w = (−w1,−w2,−w3)B′ , but v ∧ w = (v2w3 − v3w2,

v3w1 − v1w3, v1w2 − v2w1)B′ .

From the Example 1.3.17 we see that, since the physical observables position, veloc-

ity, acceleration and force are described by polar vectors, both momenta and angular

momenta for the dynamics of a point mass are axial vectors.

Excercise 11.5.4 We recall from Sect. 1.4 the action of the operator rot on a vector

field A(x),

rot A = ∇ ∧ A =
3∑

i, j,k=1

(εi jk∂ j Ak) ei

with respect to an orthonormal basis E = (e1, e2, e3) of E3 which represents the

physical space S. This identity shows that, if A is a polar vector (field) then rot A is

an axial vector (field).

Example 11.5.5 The (Lorentz) force F acting on a point electric charge q whose

motion is given by x(t), in the presence of an electric field E(x) and a magnetic field

B(x) is written as

F = q(E + ẋ ∧ B).

We conclude that E is a polar vector field, while B is an axial vector field. Indeed,

the correct way to describe B is with an antisymmetric 3 × 3 matrix.

11.6 The Angular Velocity

When dealing with rotations in physics, an important notion is that of angular veloc-

ity. This and several related notions can be analysed in terms of the spectral prop-

erties of orthogonal matrices that we have illustrated above. It is worth recalling

from Chap. 1 that euclidean vector spaces with orthonormal bases are the natural

framework for the notion of cartesian orthogonal coordinate systems for the physical

space S (inertial reference frames).

Example 11.6.1 Consider the motion x(t) in E3 of a point mass such that its distance

‖x(t)‖ from the origin of the coordinate system is fixed. We then consider a fixed

orthonormal basis E = (e1, e2, e3), and a orthonormal basis E ′ = (e′
1(t), e′

2(t), e′
3(t))

which rotates with respect to E in such a way that the components of x(t) along E ′

do not depend on time — the point mass is at rest with respect to E ′. We can write

the position vector x(t) as

x(t) =
3∑

a=1

xa(t)ea =
3∑

k=1

x ′
ke′

k(t).
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Since E ′ depends on time, the change of the basis is given by a time-dependent

orthogonal matrix ME,E ′(t) = R(t) ∈ SO(3) as

xk(t) =
3∑

j=1

Rk j (t)x ′
j .

By differentiating with respect to time t (recall that the dot means time derivative),

with ẋ ′
j = 0, the above relation gives,

ẋk =
3∑

a=1

Ṙa x ′
a =

3∑

a,b=1

Ṙka(R−1)abxb =
3∑

a,b=1

Ṙka(
tR)abxb.

From the relation R(t) tR(t) = I3 it follows that, by differentiating with respect to t ,

Ṙ tR + R tṘ = 0 ⇒
Ṙ tR = −R (tṘ) = − t (Ṙ tR)

We see that the matrix Ṙ t R is antisymmetric, so from the Exercise 11.1.11 there

exist real scalars (ω1(t),ω2(t),ω3(t)) such that

Ṙ tR =

⎛
⎝

0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0

⎞
⎠ . (11.5)

A comparison with the Example 1.3.17 than shows that the expression for the velocity,

⎛
⎝

ẋ1

ẋ2

ẋ3

⎞
⎠ = Ṙ tR

⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎝

0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0

⎞
⎠

⎛
⎝

x1

x2

x3

⎞
⎠ ,

can be written as

ẋ(t) = ω(t) ∧ x(t). (11.6)

The triple ω(t) =
(
ω1(t),ω2(t),ω3(t)

)
is the angular velocity vector of the motion

described by the rotation R(t).

As we shall see in the Exercise 11.7.1, this relation also describes the rotation of

a rigid body with a fixed point.

Excercise 11.6.2 The velocity corresponding to the motion in E3 given by (here

r > 0)

x(t) =
(
r cos α(t), r sin α(t), 0

)

with respect to an orthonormal basis E is
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ẋ(t) = α̇
(
− r sin α(t), r cos α(t), 0

)
= ω(t) ∧ x(t)

with ω(t) = (0, 0, α̇).

From the Sect. 11.5, we know that the angular velocity is an axial vector, so we

write

ωa(t) �→ ω′
b(t) = (det P)

3∑

a=1

Pabωa(t).

for the transformation of the components under a change of basis in E3 given by

an orthogonal matrix P ∈ O(3). Notice that the relation (11.6) shows that the vector

ẋ(t), although expressed via an axial vector, is a polar vector, since the vector product

between an axial vector and a polar vector yields a polar vector. This is consistent

with the formulation of ẋ(t) as the physical velocity of a point mass.

A different perspective on these notions and examples, allows one to study how

the dynamics of a point mass is described with respect to different reference systems,

in physicists’ parlance.

Example 11.6.3 We describe the motion of a point mass with respect to an orthonor-

mal basis E = (e1, e2, e3) and with respect to an orthonormal basis E ′(t) = (e′
1(t),

e′
2(t), e′

3(t)) that rotates with respect to E . So we write

x(t) =
3∑

a=1

xa(t) ea =
3∑

k=1

x ′
k(t) e′

k(t).

Considering the time derivative of both sides, we have

ẋ(t) =
3∑

a=1

ẋa(t) ea =
3∑

k=1

ẋ ′
k(t) e′

k(t) +
3∑

k=1

x ′
k ė′

k(t).

Using the results of the Example 11.6.1, the second term can be written by means of

an angular velocity ω(t) and thus we have

ẋ(t) = ẋ′(t) + ω(t) ∧ x′(t),

where v = ẋ is the velocity of the point mass with respect to E , while v′ = ẋ′ is the

velocity of the point mass with respect to E ′(t).
With one step further along the same line, by taking a second time derivative

results in

ẍ(t) = ẍ′(t) + ω(t) ∧ ẋ′(t) + ω(t) ∧
(
ẋ′(t) + ω(t) ∧ x′(t)

)
+ ω̇(t) ∧ x′(t)

= ẍ′(t) + 2 ω(t) ∧ ẋ′(t) + ω(t) ∧
(
ω(t) ∧ x′(t)

)
+ ω̇(t) ∧ x′(t).
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Using the language of physics, the term ẋ′(t) is the acceleration of the point mass

with respect to the ‘observer’ at rest E , while ẋ′(t) gives its acceleration with respect

to the moving ‘observer’ E ′(t).
With the rotation of E ′(t) with respect to E given in terms of the angular veloc-

ityω(t), the term

aC = 2 ω(t) ∧ ẋ′(t)

is called the Coriolis acceleration, the term

aR = ω(t) ∧
(
ω(t) ∧ x′(t)

)

is the radial (that is parallel to x′(t)) acceleration, while the term

aT = ω̇(t) ∧ x′(t)

is the tangential (that is orthogonal to x′(t)) one, and depending on the variation of

the angular velocity.

11.7 Rigid Bodies and Inertia Matrix

Example 11.7.1 Consider a system of point masses {m( j)} j=1,...,N whose mutual

distances in E3 is constant, so that it can be considered as an example of a rigid

body. The dynamics of each point mass is described by vectors x( j)(t).

If we do not consider rigid translations, each motion x( j)(t) is a rotation with

the same angular velocityω(t) around a fixed point. If we assume, with no loss of

generality, that the fixed point coincides with the centre of mass of the system, and

we set it to be the origin of E3, then the total angular momentum of the system (the

natural generalization of the angular momentum defined for a single point mass in

the Example 1.3.17) is given by (using (11.6))

L(t) =
N∑

j=1

m( j)x( j)(t) ∧ ẋ( j)(t) =
N∑

j=1

m( j)x( j)(t) ∧
(
ω(t) ∧ x( j)(t)

)
.

With an orthonormal basis E = (e1, e2, e3) for E3, so that x( j) = (x( j)1, x( j)2, x( j)3)

and using the definition of vector product in terms of the Levi-Civita symbol, it is

straightforward to compute that L = (L1, L2, L3) is given by

Lk =
3∑

s=1

{ N∑

i=1

m( j)(‖x( j)‖2δks − x( j)k x( j)s)

}
ωs .
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(In order to lighten notations, we drop for this example the explicit t dependence on

the maps.) This expression can be written as

Lk =
3∑

s=1

Iks ωs

where the quantities

Iks =
N∑

j=1

m( j)

(
‖x( j)‖2δks − x( j)k x( j)s

)

are the entries of the so called inertia matrix I (or inertia tensor) of the rigid body

under analysis.

It is evident that the inertia matrix is symmetric, so from the Proposition 10.5.1,

there exists an orthonormal basis for E3 of eigenvectors for it. Moreover, if λ is an

eigenvalue with eigenvector u, we have

λ‖u‖2 =
3∑

k,s=1

Iksukus =
N∑

j=1

m( j)

(
‖u‖2‖x( j)‖2 − (u · x( j))

2
)

≥ 0

where the last relation comes from the Schwarz inequality of Proposition 3.1.8.

This means that I has no negative eigenvalues. If (u1, u2, u3) is the orthonormal

basis for which the inertia matrix is diagonal, and (λ1,λ2,λ3) are the corresponding

eigenvalues, the vector lines L(ua) are the so called principal axes of inertia for the

rigid body, while the eigenvalues are the moments of inertia.

We give some basic examples for the inertia matrix of a rigid body.

Excercise 11.7.2 Consider a rigid body given by two point masses with

m(1) = αm(2) = αm with α > 0, whose position is given in E3 by the vectors

x(1) = (0, 0, r) and x(2) = (0, 0,−αr) with r > 0. The corresponding inertia matrix

is found to be

I = α(1 + α)mr2

⎛
⎝

1 0 0

0 1 0

0 0 0

⎞
⎠ .

The principal axes of inertia coincide with the vector lines spanned by the orthonormal

basis E . The rigid body has two non zero momenta of inertia; the third momentum

of inertia is zero since the rigid body is one dimensional.

Consider a rigid body given by three equal masses m( j) = m and

x(1) = (r, 0, 0), x(2) =
1

2
(−r,

√
3r, 0), x(3) =

1

2
(−r,−

√
3r, 0)
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with r > 0, with respect to an orthonormal basis E in E3. The inertia matrix is

computed to be

I =
3mr2

2

⎛
⎝

1 0 0

0 1 0

0 0 2

⎞
⎠ ,

so the basis elements E provide the inertia principal axes.

Finally, consider a rigid body in E3 consisting of four point masses with m( j) = m

and

x(1) = (r, 0, 0), x(2) = (−r, 0, 0), x(3) = (0, r, 0), x(4) = (0,−r, 0)

with r > 0. The inertia matrix is already diagonal with respect to E whose basis

elements give the principal axes of inertia for the rigid body, while the momenta of

inertia is

I = 2mr2

⎛
⎝

1 0 0

0 1 0

0 0 2

⎞
⎠ .



Chapter 12

Spectral Theorems on Hermitian Spaces

In this chapter we shall extend to the complex case some of the notions and results

of Chap. 10 on euclidean spaces, with emphasis on spectral theorems for a natural

class of endomorphisms.

12.1 The Adjoint Endomorphism

Consider the vector space C
n and its dual space C

n∗, as defined in Sect. 8.1. The

duality between C
n and C

n∗ allows one to define, for any endomorphism φ of C
n ,

its adjoint.

Definition 12.1.1 Given φ : C
n → C

n , the map φ† : ω ∈ C
n∗ �→ φ†(ω) ∈ C

n∗

defined by

(φ†(ω))(v) = ω(φ(v)) (12.1)

for any ω ∈ C
n∗ and any v ∈ C

n is called the adjoint to φ.

Remark 12.1.2 From the linearity of φ and ω it follows that φ† is linear, so φ† ∈
End(Cn∗).

Example 12.1.3 Let B = (b1, b2) be a basis for C
2, with B∗ = (β1,β2) its dual basis

for C
2∗. If φ is the endomorphism given by

φ : b1 �→ kb1 + b2

φ : b2 �→ b2,
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with k ∈ C, we see from the definition of adjoint that

φ†(β1) : b1 �→ β1(φ(b1)) = k

φ†(β1) : b2 �→ β1(φ(b2)) = 0

φ†(β2) : b1 �→ β2(φ(b1)) = 1

φ†(β2) : b2 �→ β2(φ(b2)) = 1.

The (linear) action of the adjoint map φ† to φ is then

φ† : β1 �→ kβ1

φ† : β2 �→ β1 + β2.

Consider now the canonical hermitian space H n = (Cn, ·), that is the vector space

C
n with the canonical hermitian product (see Sect. 3.4). As described in Sect. 8.2,

the hermitian product allows one to identify C
n∗ with C

n . Under such identification,

the defining relation for φ† can be written as

(φ†u) · v = u · (φ v) or equivalently 〈φ†(u) | v〉 = 〈u|φ(v)〉

for any u, v ∈ C
n , so that φ† is an endomorphism of H n = (Cn, ·).

Definition 12.1.4 Given a matrix A = (ai j ) ∈ C
n,n , its adjoint A† ∈ C

n,n is the

matrix whose entries are given by (A†)ab = aba .

Thus, adjoining a matrix is the composition of two compatible involutions, the

transposition and the complex conjugation.

Exercise 12.1.5 Clearly

A =
(

1 α

0 β

)

⇒ A† =
(

1 0

ᾱ β̄

)

.

Exercise 12.1.6 By using the matrix calculus we described in the previous chapters,

it comes as no surprise that the following relations hold.

(A†)† = A,

(AB)† = B† A†,

(A + αB)† = (A† + ᾱB†)

for any A, B ∈ C
n,n and α ∈ C. The second line indeed parallels the Remark 8.2.1.

If we have two endomorphisms φ,ψ ∈ End(H n), one has

〈(φ ψ)†(u)|v〉 = 〈u|φ ψ(v)〉 = 〈φ†(u)|ψ(v)〉 = 〈ψ†φ†(u)|v〉,
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for any u, v ∈ H n . With α ∈ C, it is also

〈(φ + α ψ)†u|v〉 = 〈u|(φ + α ψ)v〉 = 〈φ(u)|v〉 + α〈ψ(u)|v〉 = 〈(φ† + ᾱψ†)(u)|v〉.

Again using the properties of the hermitian product together with the definition

of adjoint, it is

〈(φ†)†u|v〉 = 〈u|φ†(v)〉 = 〈φ(u)|v〉

The above lines establish the following identities

(φ†)† = φ,

(φ ψ)† = ψ†φ†,

(φ + α ψ)† = φ† + ᾱψ†

which are the operator counterpart of the matrix identities described above.

Definition 12.1.7 An endomorphism φ on H n is called

(a) self-adjoint, or hermitian, if

φ = φ†,

that is if 〈φ(u)|v〉 = 〈u|φ(v)〉 for any u, v ∈ H n ,

(b) unitary, if

φφ† = φ†φ = In,

that is if 〈φ(u)|φ(v)〉 = 〈u|v〉 for any u, v ∈ H n ,

(c) normal, if φφ† = φ†φ.

In parallel to these, a matrix A ∈ C
n,n is called

(a) self-adjoint, or hermitian, if A† = A,

(b) unitary, if AA† = A† A = In ,

(c) normal, if AA† = A† A.

Remark 12.1.8 Clearly the condition of unitarity for φ is equivalent to the condition

φ† = φ−1. Also, both unitary and self-adjoint endomorphisms are normal. From the

Remark 12.1.6 it follows that for any endomorphism ψ, the compositions ψψ† and

ψ†ψ are self-adjoint.

Remark 12.1.9 The notion of adjoint of an endomorphism can be introduced also

on euclidean spaces En , where it is identified, at a matrix level, by the transposition.

Then, it is clear that the notion of self-adjointness in H n generalises that in En , since

if A = tA in En , then A = A† in H n , while orthogonal matrices in En are unitary

matrices in H n with real entries.

The following theorem is the natural generalisation for hermitian spaces of a

similar result for euclidean spaces. Its proof, that we omit, mimics indeed that of the

Theorem 10.1.11.
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Theorem 12.1.10 Let C be an orthonormal basis for the hermitian vector space H n

and let B be any other basis. The matrix MC,B of the change of basis from C to B is

unitary if and only if B is orthonormal.

The following proposition, gives an ex-post motivation for the definitions above.

Proposition 12.1.11 If E is the canonical basis for H n , with φ ∈ End(H n), it holds

that

M
E,E

φ† = (M
E,E

φ )†

Proof Let E = (e1, . . . , en) be the canonical basis for H n . If M
E,E

φ ∈ C
n,n is the

matrix that represents the action of φ on H n with respect to the basis E , its entries

are given (see 8.7) by

(M
E,E

φ )ab = 〈ea|φ(eb)〉.

By denoting φab = (M
E,E

φ )ab, the action of φ is given by φ(ea) =
∑n

b=1 φbaeb, so

we can compute

(M
E,E

φ† )ab = 〈ea|φ†(eb)〉 = 〈φ(ea)|eb〉 =
n

∑

c=1

〈φcaec|eb〉 = φba

As an application of this proposition, the next proposition also generalises to

hermitian spaces analogous results proven in Chap. 10 for euclidean spaces.

Proposition 12.1.12 The endomorphism φ on H n is self-adjoint (resp. unitary, resp.

normal) if and only if there exists an orthonormal basis B for H n with respect to

which the matrix M
B,B

φ is self-adjoint (resp. unitary, resp. normal).

Exercise 12.1.13 Consider upper triangular matrices in C
2,2,

M =
(

a b

0 c

)

⇒ M† =
(

ā 0

b̄ c̄

)

.

One explicitly computes

M M† =
(

aā + bb̄ bc̄

cb̄ bb̄ + cc̄

)

, M† M =
(

aā bā

ab̄ bb̄ + cc̄

)

,

and the matrix M is normal, M M† = M† M , if and only if bb̄ = 0 ⇔ b = 0. Thus

an upper triangular matrix in 2-dimension is normal if and only if it is diagonal. In

such a case, the matrix is self-adjoint if the diagonal entries are real, and unitary if

the diagonal entries have norm 1.
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Exercise 12.1.14 We consider the following family of matrices in C
2,2,

M =
(

a b

c 0

)

, M† =
(

ā c̄

b̄ 0

)

.

It is

M M† =
(

aā + bb̄ ac̄

cā +cc̄

)

, M† M =
(

aā + cc̄ bā

ab̄ +bb̄

)

.

The conditions for which M is normal are

bb̄ = cc̄, ac̄ = bā.

These are solved by b = Reiβ, c = Reiγ, A = |A|eiα with 2α = (β + γ) mod 2π,

where R > 0 and |A| > 0 are arbitrary moduli for complex numbers.

Exercise 12.1.15 With the Dirac’s notation as in (8.6), an endomorphism φ and its

adjoint are written as

φ =
n

∑

a,b=1

φab |ea〉〈eb| and φ† =
n

∑

a,b=1

φba |ea〉〈eb|

with φab = 〈ea|φ(eb)〉 = (M
E,E

φ )ab with respect to the orthonormal basis

E = (e1, . . . , en).

With u = (u1, · · · , un) and v = (v1, . . . , vn) vectors in H n we have the endo-

morphism P = |u〉〈v|. If we decompose the identity endomorphism (see the point

(c) from the Proposition 10.3.7) as

id =
n

∑

s=1

|es〉〈es |

we can write

P = |u〉〈v| =
n

∑

ab=1

|ea〉〈ea|u〉〈v|eb〉〈eb| =
n

∑

ab=1

Pab |ea〉〈eb|

with Pab = uavb = 〈ea|P(eb)〉. Clearly then

P† = |v〉〈u|.
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Example 12.1.16 Let φ an endomorphism H n with matrix M
E,E

φ with respect to the

canonical orthonormal basis, thus (M
E,E

φ )ab = 〈ea|φ(eb)〉. If B = (b1, . . . , bn) is a

second orthonormal basis for H n , we have two decompositions

id =
n

∑

k=1

|ek〉〈ek | =
n

∑

s=1

|es〉〈es |.

Thus, by inserting these two expressions of the identity operators, we have

〈ea|φ(eb)〉 =
n

∑

k,s=1

〈ea|bk〉〈bk |φ(bs)〉〈bs |eb〉,

giving in components,

(M
E,E

φ )ab =
n

∑

k,s=1

〈ea|bk〉(M
B,B

φ )ks〈bs |eb〉.

The matrix of the change of basis from E to B has entries 〈ea|bk〉 = (ME,B)ak , with

its inverse matrix entries given by (MB,E)sb = 〈bs |eb〉. From the previous examples

we see that

(MB,E†)ak = (MB,E)ka = 〈bk |ea〉 = 〈ea|bk〉 = (ME,B)ak

thus finding that the change of basis is given by a unitary matrix.

Proposition 12.1.17 For any endomorphism φ in H n , there is an orthogonal vector

space decomposition

H n = Im(φ) ⊕ ker(φ†)

Proof If u is any vector in H n , the vector φ(u) cover over all of Im(φ), so the

condition 〈φ(u)|w〉 = 0 characterises the elements w ∈ (Im(φ))⊥. It is now easy to

compute

0 = 〈φ(u)|w〉 = 〈u|φ†(w)〉.

Since u is arbitrary and the hermitian product is not degenerate, we have

ker(φ†) = (Im(φ))⊥. �
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12.2 Spectral Theory for Normal Endomorphisms

We prove a few results for normal endomorphisms which will be useful for spectral

theorems.

Proposition 12.2.1 Let φ be a normal endomorphism of H n .

(a) With u ∈ H n , we can write

‖φ(u)‖2 = 〈φ(u)|φ(u)〉 = 〈u|φ†φ(u)〉 = 〈u|φφ†(u)〉 = 〈φ†(u)|φ†(u)〉 = ‖φ†(u)‖2.

Since the order of these computations can be reversed, we have the following

characterisation.

φφ† = φ†φ ⇔ ‖φ(u)‖ = ‖φ†(u)‖ for all u ∈ H n.

(b) From this it also follows that ker(φ) = ker(φ†). So from the Proposition 12.1.17,

we have the following orthogonal decomposition,

H n = Im(φ) ⊕ ker(φ).

(c) Clearly (φ − λI ) is a normal endomorphism if φ is such. This gives

ker(φ − λI ) = ker(φ† − λ̄I ), meaning that if λ is an eigenvalue of a normal

endomorphism φ, then λ̄ is an eigenvalue for φ†, with the same eigenspaces.

(d) Let λ,µ be two distinct eigenvalues for φ, with φ(v) = λv and φ(w) = µw.

Then we have

(λ − µ)〈v|w〉 = 〈λ̄v|w〉 − 〈v|µw〉 = 〈φ†(v)|w〉 − 〈v|φ(w)〉 = 0.

We can conclude that the eigenspaces corresponding to distinct eigenvalues for

a normal endomorphism are mutually orthogonal. ⊓⊔

We are ready to characterise a normal operator in terms of its spectral properties.

The proof of the following result generalises to hermitian spaces the proof of the

Theorem 10.4.5 on the diagonalization of symmetric endomorphisms on euclidean

spaces.

Theorem 12.2.2 An endomorphism φ of H n is normal if and only there exists an

orthonormal basis for H n made of eigenvectors for φ.

Proof If B = (b1, . . . , bn) is an orthonormal basis of eigenvectors for φ, with corre-

sponding eigenvalues (λ1, . . . ,λn), we can write

φ =
n

∑

a=1

λa |ba〉〈ba| and φ† =
n

∑

a=1

λa |ba〉〈ba|



204 12 Spectral Theorems on Hermitian Spaces

which directly yields (see the Exercise 12.1.15)

φφ† =
n

∑

a=1

|λa|2 |ba〉〈ba| = φ†φ.

The converse, the less trivial part of the statement, is proven once again by induc-

tion.

Consider first a normal operator φ on the two dimensional hermitian space H 2.

With respect to any basis, the characteristic polynomial pφ(T ) has two complex

roots, from the fundamental theorem of algebra. A normal endomorphism of H 2

with only the zero eigenvalue, would be the null endomorphism. So we can assume

there is a root λ �= 0, with v a (normalised) eigenvectors, that is φ(v) = λv with

‖v‖ = 1. If C = (v,w) is an orthonormal basis for H 2 that completes v, we have,

from point (c) above,

〈φ(w)|v〉 = 〈w|φ†(v)〉 = 〈w|v〉λ̄ = 0.

Being λ �= 0, this shows that φ(w) is orthogonal to L(v), so that there must exists a

scalar µ, such that φ(w) = µw. In turn this shows that if φ is a normal endomorphism

of H 2, then H 2 has an orthonormal basis of eigenvectors for φ.

Inductively, let us assume that the statement is valid when the dimension of the

hermitian space is n − 1. The n-dimensional case is treated analogously to what done

above. If φ is a normal endomorphism of H n , its characteristic polynomial pφ(T )

has at least a non zero complex root, λ say, with v a corresponding normalised

eigenvector: φ(v) = λv, with ‖v‖ = 1. (Again, a normal endomorphism of H n with

only the zero eigenvalue is the null endomorphism.) We have H n = Vλ ⊕ V ⊥
λ and v

can be completed to an orthonormal basis C = (v,w1, . . . , wn) for H n . If w ∈ V ⊥
λ

we compute as above

〈φ(w)|v〉 = 〈w|φ†(v)〉 = 〈w|v〉λ̄ = 0.

This shows that φ maps V ⊥
λ to itself, while also φ† maps V ⊥

λ to itself since,

〈φ†(w)|v〉 = 〈w|φ(v)〉 = 〈w|v〉λ = 0.

The restriction of φ to V ⊥
λ is then a normal operator on a (n − 1) dimensional

hermitian space, and by assumption there exists an orthonormal basis (u1, . . . , un−1)

for V ⊥
λ made of eigenvectors forφ. The basisE = (v, u1, . . . , un−1) is an orthonormal

basis for H n of eigenvectors for φ. �

Remark 12.2.3 Since the field of real numbers is not algebraically closed (and the

fundamental theorem of algebra is valid on C), it is worth stressing that an analogue

of this theorem for normal endomorphisms on euclidean spaces does not hold. A

matrix A ∈ R
n,n such that (tA) A = A (tA), needs not be diagonalisable. An example
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is given by an antisymmetric (skew-adjoint, see Sect. 11.1) matrix A, which clearly

commutes with tA, being nonetheless not diagonalisable.

We showed in the Remark 12.1.8 that self-adjoint and unitary endomorphisms are

normal. Within the set of normal endomorphisms, they can be characterised in terms

of their spectrum.

If λ is an eigenvalue of a self-adjoint endomorphism φ, with φ(v) = λv, then

λv = φ(v) = φ†(v) = λ̄v

and thus one has λ = λ̄. If λ is an eigenvalue for a unitary operator φ, with φ(v) = λv,

then

‖v‖2 = ‖φ(v)‖2 = |λ|2‖v‖2,

which gives |λ| = 1. It is easy to show also the converse of these claims, so to have

the following.

Theorem 12.2.4 A normal operator on H n is self-adjoint if and only if its eigenval-

ues are real. A normal operator on H n is unitary if and only if its eigenvalues have

modulus 1.

As a corollary, by merging the previous two theorems, we have a characterisation

of self-adjoint and unitary operators in terms of their spectral properties, as follows.

Corollary 12.2.5 An endomorphism φ on H n is self-adjoint if and only if its spec-

trum is real and there exists an orthonormal basis for H n of eigenvectors for φ. An

endomorphism φ on H n is unitary if and only if its spectrum is a subset of the unit

circle in C, and there exists an orthonormal basis for H n of eigenvectors for φ.

Exercise 12.2.6 Consider the hermitian space H 2, with E = (e1, e2) its canonical

orthonormal basis, and the endomorphism φ represented with respect to E by

M
E,E

φ =
(

0 a

−a 0

)

with a ∈ R.

This endomorphism is not diagonalisable over R, since it is antisymmetric (see

Sect. 11.1) and the Remark 12.2.3. Being normal with respect to the hermitian struc-

ture in H 2, there exists an orthonormal basis for H 2 of eigenvectors for φ. The

eigenvalue equation is pφ(T ) = T 2 + a2 = 0, so the eigenvalues are λ± = ±ia,

with normalised eigenvectors u± given by

λ± = ±i a u± = 1√
2
(1,±i)E ,

while the unitary conjugation that diagonalises the matrix M
E,E

φ is given by

1
2

(

1 −i

1 i

) (

0 a

−a 0

) (

1 1

i −i

)

=
(

i a 0

0 −i a

)

.
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The comparison of this with the content of the Example 12.1.16 follows by writing

the matrix giving the change of basis from E to B = (u+, u−) as

MB,E = 1
2

(

1 −i

1 i

)

=
(

〈u+|e1〉 〈u+|e2〉
〈u−|e1〉 〈u−|e2〉

)

.

We next study a family of normal endomorphisms, which will be useful when con-

sidering the properties of unitary matrices. The following definition comes naturally

from the Definition 12.1.7.

Definition 12.2.7 An endomorphism φ in H n is named skew-adjoint if

〈u|φ(v)〉 + 〈φ†(u)|v〉 = 0 for any u, v ∈ H n . A matrix A ∈ C
n,n is named skew-

adjoint if A† = −A.

We list some important results on skew-adjoint endomorphisms and matrices.

(a) It is clear that an endomorphism φ on H n is skew-adjoint if and only if there

exists an orthonormal basis E for H n with respect to which the matrix M
E,E

φ is

skew-adjoint.

(b) Skew-adjoint endomorphisms are normal. We know from the Proposition 12.2.1

point (c), that if λ is an eigenvalue for the endomorphism φ, then λ̄ is an eigen-

value for φ†. This means that if λ is an eigenvalue For a skew-adjoint endomor-

phism φ, then λ̄ = −λ, so any eigenvalue for a skew-adjoint endomorphism is

either purely imaginary or zero.

(c) There exists an orthonormal basis E = (e1, . . . , en) of eigenvectors for φ such

that

φ =
n

∑

a=1

i λa |ea〉〈ea| with λa ∈ R.

(d) The real vector space of skew-adjoint matrices A = −A† ∈ C
n,n is a matrix

Lie algebra (see the Definition 11.1.6), that is the commutator of skew-adjoint

matrices is a skew-adjoint matrix; it is denoted u(n) and it has dimension n.

Remark 12.2.8 In parallel with the Remark 11.1.9, self-adjoint matrices do not make

up a Lie algebra since the commutator of two self-adjoint matrices is a skew-adjoint

matrix.

Exercise 12.2.9 On the hermitian space H 3 we consider the endomorphism φ whose

representing matrix is, with respect to the canonical basis E , given by

M
E,E

φ =

⎛

⎝

0 i a

i 0 0

−a 0 0

⎞

⎠ ,
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with a a real parameter. Since (M
E,E

φ )† = −M
E,E

φ , then φ is skew-adjoint (and thus

normal). Its characteristic equation

pφ(T ) = −T (1 + a2 + T 2) = 0

has solutions λ = 0 and λ± = ±i
√

1 + a2. Explicit calculations show that the

eigenspaces are given by ker(φ) = Vλ=0 = L(u0) and Vλ± = L(u±) with

u0 = 1√
1+a2

(0, ia, 1),

u± = 1√
2(1+a2)

(
√

1 + a2,±1,±ia).

It is immediate to see that the set B = (u0, u±) gives an orthonormal basis for

H 3.

Exercise 12.2.10 We close this section by studying an endomorphism which is not

normal, and indeed diagonalisable with an eigenvector basis which is not orthonor-

mal. In H 2 with respect to E = (e1, e2), consider the endomorphism whose repre-

senting matrix is

M =
(

0 1

a 0

)

with a ∈ R. Than M is normal if and only if a = 1. The characteristic equation is

pM(T ) = T 2 − a = 0

so its spectral decomposition is given by

λ± = ±
√

a, Vλ± = L(u±) with u± = (1,±
√

a)E .

Being 〈u+|u−〉 = 1 − a, the eigenvectors are orthogonal if and only if M is normal.

12.3 The Unitary Group

If A, B ∈ C
n,n are two unitary matrices, A† A = In and B† B = In (see the Definition

12.1.7), one has (AB)† AB = B† A† AB = In . Furthermore, det(A†) = det(A), so

from det(AA†) = 1 we have | det(A)| = 1. Clearly, the identity matrix In is unitary

and these leads to the following definition.

Definition 12.3.1 The collection of n × n unitary matrices is a group, called the

unitary group of order n and denoted U(n). The subset SU(n) = {A ∈ U(n) :
det(A) = 1} is a subgroup of U(n), called the special unitary group of order n.
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Remark 12.3.2 With the the natural inclusion of real matrices as complex matrices

whose entries are invariant under complex conjugation, it is clear that O(n) is a

subgroup of U(n) and SO(n) is a subgroup of SU(n).

Now, the exponential of a matrix as in the Definition 11.2.1 can be extended to

complex matrices. Thus, for a matrix A ∈ C
n,n , its exponential is defined by by the

expansion,

eA =
∞

∑

k=0

1
k! Ak .

Then, all properties in the Proposition 11.2.2 have a counterpart for complex matrices,

with point (e) there now reading eA† = (eA)†.

Theorem 12.3.3 Let M, U ∈ C
n,n . One has the following results.

(a) If M† = −M, then eM ∈ U(n). If M† = −M and tr(M) = 0, then eM ∈ SU(n).

(b) Conversely, if UU † = In , there exists a skew-adjoint matrix M = −M† such that

U = eM . If U is a special unitary matrix, there exists a skew-adjoint traceless

matrix, M = −M† with tr(M) = 0, such that U = eM .

Proof Let M be a skew-adjoint matrix. From the previous section we know that there

exists a unitary matrix V such that M = V �M V †, with �M = diag(iρ1, . . . , iρn) for

ρa ∈ R. We can then write

eM = eV �M V † = V e�M V †

with e�M = diag(eiρ1 , . . . , eiρn ). This means that e�M is a unitary matrix, and we

can conclude that the starting matrix eM is unitary. If tr(M) = 0, then eM is a special

unitary matrix.

Alternatively, the result can be shown as follows. If M = −M†, then

(eM)† = eM† = e−M = (eM)−1.

This concludes the proof of point (a).

Consider then a unitary matrix U . Since U is normal, there exists a unitary matrix

V such that U = V �U V † with �U = diag(eiϕ1 , . . . , eiϕn ), where eiϕk are the mod-

ulus 1 eigenvalues of U . Clearly, the matrix �U can be written as

�U = eδU

with δU = diag(iϕ1, . . . , iϕn) = −(δU )†. This means that

U = V eδU V † = eV δU V †

with (V δU V †)† = −(V δU V †). If U ∈ SU(n), then one has tr(V δU V †) = 0. This

establishes point (b) and concludes the proof. ⊓⊔
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Exercise 12.3.4 Consider the matrix, with a, b ∈ R,

A =
(

b a

a b

)

= A†.

Its eigenvalues λ are given by the solutions of the characteristic equation

pA(T ) = (b − T )2 − a2 = (b − T − a)(b − T + a) = 0.

Its spectral decomposition turns out to be

λ± = b ± a, Vλ± = L((1,±1)).

To exponentiate the skew-adjoint matrix iA we can follow two ways.

• By normalising the eigenvectors, we have the conjugation with its diagonal form

A = V �AV †,

(

b a

a b

)

= 1√
2

(

1 1

−1 1

) (

b − a 0

0 b + a

)

1√
2

(

1 −1

1 1

)

so we have

eiA = eiV �A V † = V ei�A V † = 1
2

(

1 1

−1 1

) (

ei(b−a) 0

0 ei(b+a)

) (

1 −1

1 1

)

= 1
2

(

ei(b−a) + ei(a+b) −ei(b−a) + ei(a+b)

−ei(b−a) + ei(a+b) ei(b−a) + ei(a+b)

)

=
(

eib cos a ieib sin a

ieib sin a eib cos a

)

.

Notice that det(eiA) = e2ib = eitr(A).

• By setting

A = Ã + B̃ =
(

0 a

a 0

)

+
(

b 0

0 b

)

we see that A is the sum of two commuting matrices, since B̃ = bI2. So we can

write

eiA = ei( Ã+B̃) = ei ÃeiB̃ .

Since B̃ is diagonal, eiB̃ = diag(eib, ei ib). Computing as in the Exercise 11.2.4

we have

Ã2k =
(

(−1)ka2k 0

0 (−1)ka2k

)

, Ã2k+1 =
(

0 (−1)k ia2k+1

(−1)k ia2k+1 0

)

so that

ei Ã =
(

cos a i sin a

i sin a cos a

)
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and

eiA =
(

cos a i sin a

i sin a cos a

) (

eib 0

0 eib

)

=
(

eib cos a ieib sin a

ieib sin a eib cos a

)

.

Exercise 12.3.5 In this exercise we describe how to reverse the construction of the

previous one. That is, given the unitary matrix

U = 1√
2

(

1 1

−1 1

)

,

we determine the self-adjoint matrix A = A† such that U = eiA. Via the usual tech-

niques it is easy to show that the spectral decomposition of U is given by

λ± =
a ± i

√
1 + a2

, with Vλ± = L((1,±i)).

Notice that |λ±| = 1 so we can write λ± = eiϕ± and, by normalising the eigenvectors

for U ,

U = V �U V † = 1
2

(

1 1

−i i

) (

eiϕ− 0

0 eiϕ+

) (

1 i

1 −i

)

,

with V †V = I2. Since �U = eiδU with δU = δ
†
U = diag(ϕ−,ϕ+), we write

U = V eiδU V † = eiV δU V † = eiA

where A = A† with

A = V δU V † = 1
2

(

1 1

−i i

) (

eiϕ− 0

0 eiϕ+

) (

1 i

1 −i

)

= 1
2

(

ϕ− + ϕ+ i(ϕ− − ϕ+)

i(ϕ− − ϕ+) ϕ− + ϕ+

)

.

Notice that the matrix A is not uniquely determined by U , since the angular

variables ϕ± are defined up to 2π periodicity by

cos ϕ± =
a

√
1 + a2

, sin ϕ± = ±
1

√
1 + a2

.

We close this section by considering one parameter groups of unitary matrices.

We start with a self-adjoint matrix A = A† ∈ C
n,n , and define the matrix

Us = eis A, for s ∈ R.

From the properties of the exponential of a matrix, it is easy to show that, for any

real s, s ′, the following identities hold.
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(i) (Us)
†Us = In ,

that is Us is unitary,

(ii) U0 = In ,

(iii) (Us)
† = U−s ,

(iv) Us+s ′ = UsUs ′ = Us ′Us ,

thus in particular, these unitary matrices commute for different values of the

parameter.

The map R → U(n) given by s �→ Us is, according to the definition in the

Appendix A.4, a group homomorphism between (R,+) and U(n) (with group mul-

tiplication), that is between the abelian group R with respect to the sum and the non

abelian group U(n) with respect to the matrix product. This leads to the following

definition.

Definition 12.3.6 If Us is a family (labelled by a real parameter s) of elements in

U(n) such that, for any value of s ∈ R, the above identities ii) − iv) are fulfilled,

then Us is called a one parameter group of unitary matrices of order n.

For any self-adjoint matrix A, we have a one parameter group of unitary matrices

given by Us = eis A. The matrix A is usually called the infinitesimal generator of the

one parameter group.

Proposition 12.3.7 For any A = A† ∈ C
n,n , the elements Us = eis A give a one

parameter group of unitary matrices in H n . Conversely, if Us is a one parameter

group of unitary matrices in H n , there exists a self-adjoint matrix A = A† such that

Us = eis A.

Proof Let Us ∈ U(n) be a one parameter group of unitary matrices. For each value

s ∈ R the matrix Us can be diagonalised, and since Us commutes with any Us ′ , it

follows that there exists an orthonormal basis B for H n of common eigenvectors for

any Us . So there is a unitary matrix V (providing the change of basis from B to the

canonical base E) such that

Us = V {diag(eiϕ1(s),...,iϕn(s))}V †

where eiϕk (s) are the eigenvalues of Us . From the condition UsUs ′ = Us+s ′ it follows

that the dependence of the eigenvalues on the parameter s is linear, and from U0 = In

we know that ϕk(s = 0) = 0. We can eventually write

Us = V {diag(eisϕ1,...,isϕn )}V † = V eis δV † = eis V δV †

where δ = diag(ϕ1, . . . ,ϕn) is a self-adjoint matrix. We then set A = V δV † = A†

to be the infinitesimal generator of the given one parameter group of unitary matrices.

⊓⊔



Chapter 13

Quadratic Forms

13.1 Quadratic Forms on Real Vector Spaces

In Sect. 3.1 the notion of scalar product on a finite dimensional real vector space has

been introducedas a bilinear symmetric map · : V × V → R with additional prop-

erties. Such additional properties are that v · v ≥ 0 for v ∈ V , with

v · v = 0 ⇔ v = 0V . This is referred to as positive definiteness.

We start by introducing the more general notion of quadratic form.

Definition 13.1.1 Let V be a finite dimensional real vector space. A quadratic form

on V is a map

Q : V × V −→ R (v,w) �→ Q(v,w)

that fulfils the following properties. For any v,w, v1, v2 ∈ V and a1, a2 ∈ R it holds

that:

(Q1) Q(v,w) = Q(w, v),

(Q2) Q((a1v1 + a2v2), w) = a1Q(v1, w) + a2Q(v2, w).

When a quadratic form is positive definite, that is for any v ∈ V the additional

conditions

(E1) Q(v, v) ≥ 0;

(E2) Q(v, v) = 0 ⇔ v = 0V .

are satisfied, then Q is a scalar product, and we say that V is an euclidean space.

With respect to a basis B = (u1, . . . , un) for V , the conditions Q1 and Q2 are

clearly satisfied if and only if there exists a symmetric matrix F = (Fab) ∈ R
n,n such

that

Q(v,w) = Q
(
(v1, . . . , vn)B, (w1, . . . , wn)B

)
=

n∑

a,b=1

Fab vawb.
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This expression can be also written as

Q(v,w) =
(
v1 · · · vn

)
⎛
⎜⎝

F11 · · · F1n

...
...

Fn1 · · · Fnn

⎞
⎟⎠

⎛
⎜⎝

w1

...

wn

⎞
⎟⎠

Not surprisingly, the matrix representing the action of the quadratic form Q depends

on the basis considered in V . Under a change of basis B → B′ with B′ = (u′
1, . . . , u′

n)

and corresponding matrix M B
′,B, as we know, the components of the vectors v,w

are transformed as ⎛
⎜⎝

v′
1
...

v′
n

⎞
⎟⎠ = M B

′,B

⎛
⎜⎝

v1

...

vn

⎞
⎟⎠

and analogously for w. So we write the action of the quadratic form Q as

Q(v,w) =
(
v′

1 · · · v′
n

) (
tM B

′,B F M B
′,B

)
⎛
⎜⎝

w′
1
...

w′
n

⎞
⎟⎠ .

If we write the dependence on the basis as Q → FB, we have then shown the

following result.

Proposition 13.1.2 Given a quadratic form Q on the finite dimensional real vector

space V , with FB and FB
′

the matrices representing Q on V with respect to the

bases B and B′, it holds that

FB
′ = tM B

′,B FB M B
′,B.

Corollary 13.1.3 Since the matrix FB associated with the quadratic form Q on V

for the basis B is symmetric, it is evident from the Proposition4.1.20 that the matrix

FB
′
associated with Q with respect to any other basis B′ is symmetric as well.

The Proposition 13.1.2 is the counterpart of the Proposition 7.9.9 which related

the matrices of a linear maps in different bases. This transformation is not the same as

the one for the matrix of an endomorphism as described at the beginning of Chap. 9.

To parallel the definition there, one is led to the following definition.

Definition 13.1.4 The symmetric matrices A, B ∈ R
n,n are called quadratically

equivalent (or simply equivalent) if there exists a matrix P ∈ GL(n), such that

B = tPAP. Analogously, the quadratic forms Q and Q′ defined on a real finite dimen-

sional vector space V are called equivalent if their representing matrices are (quadrat-

ically) equivalent.
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Exercise 13.1.5 Let us consider the symmetric matrices

A =
(

1 0

0 2

)
, B =

(
1 0

0 3

)
.

They are not similar, since for example det(A) = 2 �= det(B) = 3 (recall that if two

matrices are similar, then their determinants must coincide, from the Binet Theo-

rem 5.1.16). They are indeed quadratically equivalent: the matrix

P =

(
1 0

0

√
3
2

)

gives tPAP = B.

In parallel with the Remark 9.1.4 concerning similarity of matrices, it is easy to

show that the quadratic equivalence is an equivalence relation within the collection

of symmetric matrices in R
n,n. It is then natural to look for a canonical representative

in any equivalence class.

Proposition 13.1.6 Any quadratic form Q is equivalent to a diagonal quadratic

form, that is one whose representing matrix is diagonal.

Proof This is just a consequence of the fact that symmetric matrices are orthogonally

diagonalisable. From the Proposition 10.5.1 we know that for any symmetric matrix

A ∈ R
n,n there exists a matrix P which is orthogonal, that is P−1 = tP, such that

tPAP = �A

where �A is a diagonal matrix whose entries are the eigenvalues of A. �

Without any further requirements on the quadratic form, the matrix �A may have

a number μ of positive eigenvalues, a number ν of negative eigenvalues, and also

the zero eigenvalue with multiplicity m0 = mλ=0. We can order the eigenvalues as

follows

�A = diag (λp1
, · · · , λpμ

, λn1
, · · · , λnν

, 0, · · · , 0)

As in the Exercise 13.1.5, we know that the diagonal matrix

Q = diag ( 1√
λp1

, . . . , 1√
λpμ

, 1√
|λn1

|
, . . . , 1√

|λnν |
, 1, . . . , 1)

is such that

tQ�AQ = diag (1, . . . , 1,−1, . . . ,−1, 0, . . . , 0) = DA
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with the expected multiplicities μ for +1, ν for −1 and m0 for 0. Since we are

considering only transformations between real basis, these multiplicities are constant

in each equivalence class of symmetric matrices.

For quadratic forms, this means that any quadratic form Q on V is equivalent

to a diagonal one whose diagonal matrix has a number of μ times +1, a number

of ν times −1 and a number of m0 = dim(V ) − μ − ν times 0. The multiplicities

μ and ν depend only on the equivalence class. Equivalently, for a quadratic form

Q on V , there is a basis for V with respect to which the matrix representing Q is

diagonal, with diagonal entries given +1 repeated μ times, −1 repeated ν times and

m0 multiplicity of 0.

Definition 13.1.7 Given a symmetric matrix A on R
n,n, we call DA its canonical form

(or reduced form). If Q is a quadratic form on R
n whose matrix FB is canonical,

then one has

Q(v,w) = vp1
wp1

+ · · · + vpμ
wpμ

− (vn1
wn1

+ · · · + vnν
wnν

)

with v = (vp1
, . . . , vpμ

, vn1
, . . . , vnν

, ṽ1, . . . , ṽm0
) and analogously for w. This is the

canonical form for the quadratic formQ. The triple sign(Q) = (μ, ν, m0) is called the

signature of the quadratic formQ. In particular, the quadratic formQ is called positive

definite if sign(Q) = (μ = n, 0, 0), and negative definite if sign(Q) = (0, ν = n, 0).

Exercise 13.1.8 On V = R
3 consider the quadratic form

Q(v,w) = v1w2 + v2w1 + v1w3 + v3w1 + v2w3 + v3w2

where v = (v1, v2, v3)B and w = (w1, w2, w3)B with respect to a given basis

(u1, u2, u3). Its action is represented by the matrix

FB =

⎛
⎝

0 1 1

1 0 1

1 1 0

⎞
⎠

To diagonalise it, we compute its eigenvalues from the characteristic polynomial,

pFB(T ) = −T 3 + 3T + 2 = (2 − T )(1 + T )2.

The eigenvalue λ = 2 is simple, with eigenspace Vλ=2 = L((1, 1, 1)), while

the eigenvalue λ = −1 has multiplicity mλ=−1 = 2, with corresponding eigenspace

Vλ=−1 = L((1,−1, 0), (1, 1,−2)). If we define

P = M B
′,B = 1√

6

⎛
⎝

√
2

√
3 1√

2 −
√

3 1√
2 0 −2

⎞
⎠

we see that
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tPFBP =

⎛
⎝

2 0 0

0 −1 0

0 0 −1

⎞
⎠ = �A = FB

′

with respect to the basis B′ = (u′
1, u′

2, u′
3) of eigenvectors given explicitly by

u′
1 = 1√

3
(u1 + u2 + u3),

u′
2 = 1√

2
(u1 − u2),

u′
3 = 1√

6
(u1 + u2 − 2u3).

With respect to the basis B′ the quadratic form is written as

Q(v,w) = 2v′
1w

′
1 − (v′

2w
′
2 + v′

3w
′
3).

Motivated by the Exercise 13.1.5, with the matrix

Q =

⎛
⎝

1√
2

0 0

0 1 0

0 0 1

⎞
⎠

we have that

tQFB
′
Q =

⎛
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎠ = FB

′′

on the basis B′′ = (u′′
1 = 1√

2
u′

1, u′′
2 = u′

2, u′′
3 = u′

3). With respect to B′′ the quadratic

form is

Q(v,w) = v′′
1w′′

1 − v′′
2w′′

2 − v′′
3w′′

3 ,

in terms of the components ofv,w in the basisB′′. Its signature is sign(Q) = (1, 2, 0).

Exercise 13.1.9 On the vector space R
4 with canonical basis E , consider the

quadratic form

Q(v,w) = u1w1 + u2w2 + u1w2 + u2w1 + u3w4 + u4w3 − u3w3 − u4w4,

for any two vectors v,w in R
4. Its representing matrix is

FE =

⎛
⎜⎜⎝

1 1 0 0

1 1 0 0

0 0 −1 1

0 0 1 −1

⎞
⎟⎟⎠ ,

which has been already studied in the Exercise 10.5.3. We can then immediately write
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P = 1√
2

⎛
⎜⎜⎝

1 0 1 0

−1 0 1 0

0 1 0 1

0 1 0 −1

⎞
⎟⎟⎠ , tPFEP =

⎛
⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −2 0

0 0 0 2

⎞
⎟⎟⎠ = FE

′
,

with the basis E ′ = (e′
1, e′

2, e′
3, e′

4) given by

e′
1 = 1√

2
(e1 − e2),

e′
2 = 1√

2
(e3 + e4),

e′
3 = 1√

2
(e1 + e2),

e′
4 = 1√

2
(e3 − e4).

With respect to the basis E ′′ = (e′′
1 = e′

1, e′′
2 = e′

2, e′′
3 = 1√

2
e′

3, e′′
4 = 1√

2
e′

4) it is

clear that the matrix representing the action of Q is FE
′′ = diag(0, 0,−1, 1), so that

the canonical form of the quadratic form Q reads

Q(v,w) = −v′′
3w′′

3 + v′′
4w′′

4

with v = (v′′
1 , v′′

2 , v′′
3 , v′′

4 )E ′′ and analogously for w. It signature is sign(Q) = (1, 1, 2)

Remark 13.1.10 Once the dimension n of the real vector space V is fixed, the collec-

tion of inequivalent quadratic forms, that is the quotient of the symmetric matrices by

the quadratic equivalence relation of the Definition 13.1.7, is labelled by the possible

signatures of the quadratic forms, or equivalently by the signatures of the symmetric

matrices, written as sign(Q) = (μ, ν, n − μ − ν).

Finally, we state the conditions for a quadratic form to provides a scalar product

for a finite dimensional real vector space V . Since we have discussed the topics at

length, we omit the proof of the following proposition.

Proposition 13.1.11 A quadratic form Q on a finite dimensional real vector space

V provides a scalar product if and only if it is positive definite. In such a case we

denote the scalar product by

v · w = Q(v,w).

Exercise 13.1.12 With respect to the canonical basis E on R
2 we consider the

quadratic form

Q(v,w) = av1w1 + v1w2 + v2w1, with a ∈ R,

for v = (v1, v2) and w = (w1, w2). The matrix representing Q is given by

FE =
(

a 1

1 0

)
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and its characteristic polynomial, pFE (T ) = T 2 − aT − 1, gives eigenvalues

λ± = 1
2
(a ±

√
a2 + 4).

Since for any real value of a there is one positive eigenvalue and one negative

eigenvalue, we conclude that the signature of the quadratic form is

sign(Q) = (1, 1, 0).

Exercise 13.1.13 Consider, from the Exercise 11.1.11, the three dimensional vector

space V of antisymmetric matrices in R
3,3. If we set

Q(L, L′) = − 1
2

tr (LL′)

with L, L′ ∈ V , it is immediate to verify that Q is a quadratic form. Also, the basis

elements La given in the Exercise 11.1.11 are orthonormal,

Q(La, Lb) = δab.

Then, the space of real antisymmetric 3 × 3 matrices is an euclidean space for

this scalar product.

Exercise 13.1.14 On R
2 again with the canonical basis, we consider the quadratic

form

Q(v,w) = v1w1 + v2w2 + a(v1w2 + v2w1), with a ∈ R,

whose representing matrix is

FE =
(

1 a

a 1

)
.

Its characteristic polynomial is pFE = (1 − T )2 − a2 = (1 − T − a)(1 − T + a),

with eigenvalues

λ± = 1 ± a .

We have the following cases:

• for a > 1, it is sign(Q) = (1, 1, 0);

• for a = ±1, it is sign(Q) = (1, 0, 1);

• for a < −1, it is sign(Q) = (1, 1, 0);

• for −1 < a < 1, it is sign(Q) = (2, 0, 0).

In this last case, the quadratic form endows R
2 with a scalar product. The

eigenspaces are

λ− = (1 − a), Vλ− = L((1,−1)),

λ+ = (1 + a), Vλ+ = L((1, 1)),
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so we can define the matrix

M E
′,E = 1√

2

(
1 1

−1 1

)

which gives

tM E
′,EFEM E

′,E =
(

1 − a 0

0 1 + a

)
.

With respect to the basisE ′ = 1√
2
(e′

1 = (e1 − e2), e′
2 = 1√

2
(e1 + e2)) the quadratic

form is

Q(v,w) = (1 − a)v′
1w

′
1 + (1 + a)v′

2w
′
2.

We obtain the canonical form for Q if we consider the basis E ′′ given by

e′′
1 =

1
√

1 − a
e′

1, e′′
2 =

1
√

1 + a
e′

2.

The basis E ′′ is orthonormal with respect to the scalar product defined by Q.

Exercise 13.1.15 This exercise puts the results of the previous one in a more general

context.

(a) From Exercise 13.1.14 we know that the symmetric matrix

S =
(

1 a

a 1

)
,

with a ∈ R, is quadratically equivalent to the diagonal matrix

S ′ =
(

1 − a 0

0 1 + a

)
.

Let us consider S and S ′ as matrices in C
2,2 with real entries (recall that R is a

subfield of C). We can then write

(
(1 − a)−1/2 0

0 (1 + a)−1/2

) (
1 − a 0

0 1 + a

) (
(1 − a)−1/2 0

0 (1 + a)−1/2

)
=

(
1 0

0 1

)

for any a ∈ R. This means that, by complexifying the entries of the real sym-

metric matrix S, there exists a transformation

S �→ tPSP = I2

with P ∈ GL(n, C) (the group of invertible n × n complex matrices), which

transforms S to I2.
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(b) From the Exercise 13.1.8 we know that the symmetric matrix

S =

⎛
⎝

0 1 1

1 0 1

1 1 0

⎞
⎠

is quadratically equivalent to

S ′ =

⎛
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎠ .

By again considering them as complex matrices, we can write

I3 =

⎛
⎝

1 0 0

0 i 0

0 0 i

⎞
⎠

⎛
⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎠

⎛
⎝

1 0 0

0 i 0

0 0 i

⎞
⎠ .

Thus, S is quadratically equivalent to I3 via an invertible matrix P ∈ C
n,n.

If A is a symmetric matrix with real entries, from the Proposition 13.1.6 we know

that it is quadratically equivalent to

�A = diag (λp1
, · · · , λpμ

, λn1
, · · · , λnν

, 0, · · · , 0),

with λpj
> 0 and λnj

< 0. Given the invertible matrix

P = diag ( 1√
λp1

, . . . , 1√
λpμ

, i√
|λn1

|
, . . . , i√

|λnν |
, 1, . . . , 1)

in C
n,n, one finds that

tP�AP = diag (1, . . . , 1, 1, . . . , 1, 0, . . . , 0) = D̃A,

where the number of non zero terms +1 is given by the rank of A.

If we now define that two symmetric matrices A, B ∈ C
n,n are quadratically equiv-

alent if there exists a matrix P ∈ GL(n, C) such that B = tPAP, we can conclude that

any real symmetric matrix A is quadratically equivalent to a diagonal matrix D̃A as

above.

The diagonal matrix D̃A above gives a canonical form for A with respect to

quadratic equivalence after complexification. Notice that, since (iIn)A(iIn) = −A,

we have that A is quadratically equivalent to −A. This means that a notion of

complex signature does not carry much information since it cannot measure the

signs of the eingenvalues of A, but only its rank. If A = tA = Ā, then we set

sign(A) = (rk(A), dim ker(A)).
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We conclude by observing that what we have sketched above gives the main

properties of a real quadratic form on a complex finite dimensional vector space,

whose definition is as follows.

Definition 13.1.16 A real quadratic forms on a complex finite dimensional vector

spaces is a map

S : C
n × C

n −→ C, (v,w) �→ S(v,w)

such that, for any v,w, v1, v2 ∈ C
n and a1, a2 ∈ C it holds that:

(S1) S(v,w) = S(w, v),

(S2) S(v,w) ∈ R if and only if v = v̄ and w = w̄,

(S3) S((a1v1 + a2v2), w) = a1S(v1, w) + a2S(v2, w).

It is clear that S is a real quadratic form on C
n if and only if there exists a real

basis B for C
n, that is a basis which is invariant under complex conjugation, with

respect to which the matrix SB ∈ C
n,n representing S is symmetric with real entries.

In order to have a more elaborate notion of signature for a bilinear form on complex

vector spaces, one needs the notion of hermitian form as explained in the next section.

13.2 Quadratic Forms on Complex Vector Spaces

It is straightforward to generalise to C
n the main results of the theory of quadratic

forms on R
n. The following definition comes naturally after Sects. 3.4 and 8.2.

Definition 13.2.1 Let V be a finite dimensional complex vector space. A hermitian

form on V is a map

H : V × V −→ C, (v,w) �→ H(v,w)

that fulfils the following properties. For any v,w, v1, v2 ∈ V and a1, a2 ∈ C it holds

that:

(H1) H(v,w) = H(w, v),

(H2) H((a1v1 + a2v2), w) = a1H(v1, w) + a2Q(v2, w).

When a hermitian form is positive definite, that is for any v ∈ V the additional

conditions

(E1) H(v, v) ≥ 0;

(E2) H(v, v) = 0 ⇔ v = 0V .

are satisfied, then H is a hermitian product, and we say that V is a hermitian space.

We list the properties of hermitian forms in parallel with those of the real case.
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(a) With respect to any given basis B = (u1, . . . , un) of V , the conditions H1 and

H2 are satisfied if and only if there exists a selfadjoint matrix H = (Hab) ∈ C
n,n,

H = H †, such that

H(v,w) =
n∑

a,b=1

Hab vawb.

If we denote by HB the dependence on the basis of V for the matrix giving the

action of H, under a change of bases B → B′ we have

HB
′ = (M B

′,B)† HB M B
′,B = (HB

′
)†. (13.1)

(b) Two selfadjoint matrices A, B ∈ C
n,n are defined to be equivalent if there exists

an invertible matrix P such that B = P†AP. This is an equivalence relation within

the set of selfadjoint matrices. Analogously, two hermitian forms H and H′ on

C
n are defined to be equivalent if their representing matrices are equivalent.

(c) From the spectral theory for selfadjoint matrices it is clear that any hermitian

form H is equivalent to a hermitian form whose representing matrix is diagonal.

Referring to the relation (13.1), there exists a unitary matrix U = M B
′,B of the

change of basis from B to B′ such that HB
′ = diag(λ1, . . . , λn), with λj ∈ R

giving the spectrum of HB.

(d) The matrix HB
′
is further reduced to its canonical form via the same conjugation

operation described for the real case after the Proposition 13.1.6.

Since, as in real case, no conjugation as in (13.1) can alter the signs of the eigen-

values of a given selfadjoint matrix, the notion of signature is meaningful for

hermitian forms. Such a signature characterises equivalence classes of selfad-

joint matrices (and then of hermitian forms) via the equivalence relation we are

considering.

(e) A hermitian form H equips C
n with a hermitian product if and only if it is positive

definite.

Exercise 13.2.2 On C
2 we consider the basis B = (u1, u2) and the hermitian form

H(v,w) = a(v1w1 + v2w2) + i b(v1w2 − v2w1), with a, b ∈ R

for v = (v1, v2)B and w = (w1, w2)B. The hermitian form is represented by the

matrix

HB =
(

a i b

−i b a

)
= (HB)†.

The spectral resolution of this matrix gives

λ± = a ± b, Vλ± = L(u±)

with normalised eigenvectors
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u± = 1√
2
(±i, 1)B,

and with respect to the basis B′ = (b′
1 = u+, b′

2 = u−) one finds

HB
′ =

(
a + b 0

a − b 0

)
.

We reduce the hermitian form H to its canonical form by defining a basis

B′′ = ( 1√
|a+b| b′

1,
1√

|a−b| b′
2)

so to have

M B
′′ =

(
a+b
|a+b| 0

0 a−b
|a−b|

)
.

We see that the signature of H depends on the relative moduli of a and b. It endows

C
2 with a hermitian product if and only if |a| > |b|, with B′′ giving an orthonormal

basis for it.

13.3 The Minkowski Spacetime

We now describe the quadratic form used for a geometrical description of the elec-

tromagnetism and for the special theory of relativity.

Let V be a four dimensional real vector space equipped with a quadratic form Q

with signature sign(Q) = (3, 1, 0). From the theory we have developed in Sect. 13.1

there exists a (canonical) basis E = (e0, e1, e2, e3) with respect to which the action

of Q is given by1

Q(v,w) = −v0w0 + v1w1 + v2w2 + v3w3

with v = (v0, v1, v2, v3) and w = (w0, w1, w2, w3).

Definition 13.3.1 The equivalence class of quadratic forms on R
4 characterised by

the signature (3, 1, 0) is said to provide R
4 a Minkowski quadratic form, that we

denote by η. The datum (R4, η) is called the Minkowski spacetime, using the name

from physics. We shall denote it by M 4 and with a slight abuse of terminology, we

shall also denote the action of η as a scalar product

v · w = η(v,w)

and refer to it as the (Minkowski) scalar product in M 4.

1The reason why we denote the first element by e0 and the corresponding component of a vector v

by v0 comes from physics, since such components is identified with the time coordinate of an event.
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Definition 13.3.2 We list the natural generalisations to M 4 of well known definitions

in En.

(a) For any v ∈ (R4, η), the quantity ‖v‖2 = v · v is the square of the (Minkowski)

norm of v ∈ R
4;

the vector v is called space-like if ‖v‖2 > 0,

the vector v is called light-like if ‖v‖ = 0,

the vector v is called time-like if ‖v‖2 < 0.

(b) Two vectors v,w ∈ M 4 are orthogonal if v · w = 0; thus a light-like vector is

orthogonal to itself.

(c) A basis B for R
4 is orthonormal if the action of η with respect to B is diagonal,

that is if and only if the matrix ηB has the form

ηB =

⎛
⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ .

We simply denote ημν = (ηB)μν with B orthonormal.

(d) A matrix A ∈ R
4,4 is a Lorentz matrix if its columns yield an orthonormal basis

for M 4.

We omit the proof of the following results, which generalise to M 4 analogous

results valid in En.

Proposition 13.3.3 Let B = (e0, e1, e2, e3) be an orthonormal basis for M 4, with

A ∈ R
4,4 and φ ∈ End(M 4).

(a) The matrix A is a Lorentz matrix if and only if tA η A = η.

(b) It holds that φ(v) · φ(w) = v · w for any v,w ∈ M 4 if and only if M
B,B
φ is a

Lorentz matrix.

(c) The system B′ = (φ(e0), . . . , φ(e3)) is an orthonormal basis for M 4 if and only

if for any v,w ∈ M 4 one has φ(v) · φ(w) = v · w, that is if and only if

φ(eμ) · φ(eν) = eμ · eν = ημν .

As an immediate consequence of such proposition, one proves that, if u ∈ M 4 is a

space-like vector, there exists an orthonormal basis B′ for M 4 with respect to which

u = (0, u′
1, u′

2, u′
3)B′ . Analogously, if u is a time-like vector, there exists a basis B′′

with respect to which u = (u′′
0, 0, 0, 0)B′′ .

Indeed it is straightforward to prove that the set of Lorentz matrices form a group,

for matrix multiplication, denoted by O(3, 1) and called the Lorentz group. If the

endomorphism φ is represented, with respect to an orthonormal basis for M 4 by a
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Lorentz matrix, then φ is said to be a Lorentz transformation. This means that the

set of Lorentz transformations is a group isomorphic to the Lorentz group.

Example 13.3.4 In the special theory of relativity the position of a point mass at a

given time t is represented with a vector x = (x0 = ct, x1, x2, x3)B in M 4 with respect

to an orthonormal basis B, with (x1, x2, x3) giving the so called spatial components

of x and c denoting the speed of light. Such a vector x is also called an event. The

linear map ⎛
⎜⎜⎝

x′
0

x′
1

x′
2

x′
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠

with

β = v/c and γ = (1 − β2)−1/2,

yields the components of the vector x with respect to an orthonormal basis B′ corre-

sponding to an inertial reference system, (an inertial observer) which is moving with

constant spatial velocity v along the direction e1. Notice that, being c a limit value

for the velocity, we have |β| < 1 and then γ ≥ 1. It is easy to see that this map is a

Lorentz transformation, and that the matrix gives the change of basis M B
′,B in M 4.

From the identity tA η A = η one gets det A = ±1 for a Lorentz matrix A. The

set of Lorentz matrices whose determinant is positive is the (sub)group SO(3, 1) of

proper Lorentz matrices.

If Aμν denotes the entries of a Lorentz matrix A, then from the same identity we

can write that

−A2
00 +

3∑

k=1

A2
k0 = −1 and − A2

00 +
3∑

k=1

A2
0k = −1,

thus proving that A2
00 ≥ 1. Lorentz matrices with A00 > 1 are called ortochronous.

We omit the proof that the set of ortochronous Lorentz matrices form a group as well.

Proper and ortochronous Lorentz matrices form therefore a group, that we denote

by

SO(3, 1)↑ = {A ∈ O(3, 1) : det A = 1, A00 > 1}.

Notice that the Lorentz matrix given in Example 13.3.4 is proper and ortochronous.

Given the physical interpretation of the components of a vector in M 4 mentioned

before, it is natural to call the endomorphisms represented by the Lorentz matrices

P =

⎛
⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ , T =

⎛
⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠
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the (spatial) parity and the time reversal. The matrix P is improper and ortochronous,

while T is improper and antichronous.

We can generalise the final remark from Example 11.3.1 to the Lorentz group case.

If A is an improper ortochronous Lorentz matrix, then it is given by the product PA′

with A′ ∈ SO(3, 1)↑. If A is an improper antichronous Lorentz matrix, then it is given

by the product TA′ with A′ ∈ SO(3, 1)↑. If A is the product PTA′ with A′ ∈ SO(3, 1)↑,

it is called a proper antichronous Lorentz matrix.

Let us describe the structure of the group SO(3, 1)↑ in more details. Firstly, notice

that if R ∈ SO(3) then all matrices of the form

AR =

⎛
⎜⎜⎝

1 0 0 0

0

0 R

0

⎞
⎟⎟⎠

are elements in SO(3, 1)↑. The set of such matrices A is clearly isomorphic to the

group SO(3), so we can refer to SO(3) as the subgroup of spatial rotations within

the Lorentz group.

The Lorentz matrix in the Example 13.3.4 is not such a rotation. From the Exer-

cise 11.2.3 we write

euS1 =

⎛
⎜⎜⎝

γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ with S1 =

⎛
⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎠

with sinh u = βγ and cosh u = γ so that tgh u = v/c.

We therefore have a closer look at the exponential of symmetric matrices of the

form

S(u) =

⎛
⎜⎜⎝

0 u1 u2 u3

u1 0 0 0

u2 0 0 0

u3 0 0 0

⎞
⎟⎟⎠ = u1S1 + u2S2 + u3S3, (13.2)

with u = (u1, u2, u3) a triple of real parameters. If the matrix R = (Rij) represents a

spatial rotation, a direct computation shows that

AR−1 S AR =

⎛
⎜⎜⎝

0
∑3

k=1 Rk1uk

∑3
k=1 Rk2uk

∑3
k=1 Rk3uk∑3

k=1 Rk1uk 0 0 0∑3
k=1 Rk2uk 0 0 0∑3
k=1 Rk3uk 0 0 0

⎞
⎟⎟⎠ :

We see that u = (u1, u2, u3) transforms like a vector in a three dimensional euclidean

space, and therefore we write the identity above as
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S(R−1u) = AR−1 S(u)AR.

This identity allows us to write (see the Proposition 11.2.2)

eS(u) = AR−1 eS(Ru)AR.

If R is a proper rotation mapping u �→ (‖u‖E, 0, 0), with ‖u‖2
E = u2

1 + u2
2 + u2

3 the

square of the euclidean three-norm, we get

eS(u) = AR−1 e(‖u‖E S1)AR.

Alternatively, one shows by direct computations that

S2(u) =

⎛
⎜⎜⎝

‖u‖2
E 0 0 0

0

0 Q

0

⎞
⎟⎟⎠ and S3(u) = ‖u‖2

E S(u)

⇒ S2k(u) = ‖u‖2(k−1)
E S(u), S2k+1(u) = ‖u‖2k

E S(u),

where Q ∈ R
3,3 has entries Qij = uiuj, so that Q2 = ‖u‖2

E Q. These identities give

then

eS(u) = 1 + 1

‖u‖2
E

(cosh ‖u‖2
E − 1) S2(u) + 1

‖u‖E
sinh ‖u‖E S(u).

It is easy to show that eS(u) ∈ SO(3, 1)↑. Such transformations are called Lorentz

boosts, or hyperbolic rotations. They give the matrices of change of bases M B,B′

where B′ is the orthonormal basis corresponding to an inertial reference system

moving with constant velocity v = (v1, v2, v3) in the physical euclidean three dimen-

sional space with respect to the reference system represented by B, by identifying

for the velocity,

c (tgh ‖u‖E) = ‖v‖E .

From the properties of the group SO(3) we know that each proper spatial rotation

is the exponential of a suitable antisymmetric matrix, that is AR = eL̃ where L̃ is an

element in the three dimensional vector space spanned by the matrices L̃j ⊂ R
4,4 of

the form

L̃j =

⎛
⎜⎜⎝

0 0 0 0

0

0 Lj

0

⎞
⎟⎟⎠

with the antisymmetric matrices Lj, j = 1, 2, 3, those of the Exercise 11.1.10, the

generators of the Lie algebra so(3). With the symmetric matrices Sj in (13.2), we

compute the commutators to be
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[̃Li, L̃j] =
3∑

i,j=1

εijk L̃k

[Si, Sj] = −
3∑

i,j=1

εijk L̃k

[Si, L̃j] =
3∑

i,j=1

εijkSk ,

thus proving that the six dimensional vector space L(̃L1, L̃2, L̃3, S1, S2, S3) is a matrix

Lie algebra (see the Definition 11.1.7) which is denoted so(3, 1). What we have

discussed gives the proof of the first part of the following proposition, which is

analogous of the Proposition 11.2.6.

Proposition 13.3.5 If M is a matrix in so(3, 1), then eM ∈ SO(3, 1)↑. When

restricted to so(3, 1), the exponential map is surjective onto SO(3, 1)↑.

This means that the group of proper and ortochronous Lorentz matrices is given

by spatial rotations, hyperbolic rotations (that is boosts) and their products.

13.4 Electro-Magnetism

By recalling the framework of Sect. 1.4, in the standard euclidean formulation on

the space E3 representing the physical space S (and with an orthonormal basis) one

describes the three dimensional electric E(t, x) field and the magnetic field B(t, x)

as depending on both the three dimensional position vector x = (x1, x2, x3) and the

time coordinate t. In this section we show that the Maxwell equations for electro-

magnetism can be naturally formulated in terms of the geometry of the Minkowski

space M 4.

Example 13.4.1 The Maxwell equations in vacuum for the pair (E(t, x), B(t, x)) are

written as

div B = 0, rot E + ∂ B
∂ t

= 0

div E = ρ

ε0
, rot B = μ0J + μ0ε0

∂ E
∂ t

where ε0 and μ0 are the vacuum permittivity and permeability, with c2ε0μ0 = 1. The

sources of the fields are the electric charge density ρ (a scalar field) and the current

density J (a vector field).

For the homogeneous Maxwell equations (the first two) the vector fields E and B

can be written in terms of a vector potential A(t, x) = (A1(t, x), A2(t, x), A3(t, x))

and a scalar potential φ(t, x), as
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B = rot A, E = −grad φ − ∂ A
∂ t

,

that makes the homogeneous equations automatically satisfied from the identity

div (rot) = 0 and rot (grad) = 0, in Exercise 1.4.1. If the potentials satisfy the so

called Lorentz gauge condition

div A + 1
c2

∂ φ

∂ t
= 0,

the two Maxwell equations depending on the sources can be written as

∇2 Aj − 1
c2

∂2Aj

∂t2 = −μ0Jj, for j = 1, 2, 3,

∇2φ − 1
c2

∂2φ

∂t2 = − ρ

ε0

where ∇2 =
∑3

k=1 ∂2
k is the spatial Laplacian operator with ∂k = ∂/∂xk .

If we define the four-potential as A = (A0 = − φ

c
, A), then the Lorentz gauge

condition is written as (recall the Definition 13.3.2 for the metric ημν)

3∑

μ,ν=0

ημν ∂μAν = 0,

where we also define ∂0 = ∂/∂x0 = ∂/c∂t. In terms of the four-current

J = (J0 = −ρ/cε0, μ0J), the inhomogeneous Maxwell equations are written as

3∑

μ,ν

ημν∂μ∂νAρ = −Jρ .

Using the four-dimensional ‘nabla’ operator ∇∇ = (∂0, ∂1, ∂2, ∂3) we can then

write the Lorentz gauge condition as

∇∇ · A =
3∑

μ,ν=0

ημν∂μAν = 0,

and the inhomogeneous Maxwell equations as

∇∇2Aρ =
3∑

μ,ν=0

ημν∂μ∂νAρ = −Jρ, for ρ = 0, 1, 2, 3,

thus generalising to the Minkowski spacetime the analogous operations written for

the euclidean space E3 in Sect. 1.4.

Example 13.4.2 From the relations defining the vector fields E and B in terms of the

four-potential vector A, we can write for their components in the physical space
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Ba =
3∑

b,c=1

εabc∂bAc

Ea = c(∂aA0 − ∂0Aa)

for a = 1, 2, 3. This shows that the quantity

Fμν = ∂μAν − ∂νAμ

with μ, ν ∈ {0, . . . , 3}, defines the entries of the antisymmetric field strength matrix

(or more precisely field strength ‘tensor’) F given by

F = (Fμν) =

⎛
⎜⎜⎝

0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

⎞
⎟⎟⎠ .

Merging the definition of F with the Lorentz gauge condition we have

3∑

μ,ν

ημν∂μ∂νAρ =
3∑

μ,ν=0

ημν∂μ(Fνρ + ∂ρAν)

=
3∑

μ,ν=0

ημν∂μFνρ + ∂ρ(

3∑

μ,ν=0

ημν∂μAν) =
3∑

μ,ν=0

ημν∂μFνρ

so we can write the inhomogeneous Maxwell equations as

3∑

μ,ν=0

ημν∂μFνρ = −Jρ for ρ = 0, 1, 2, 3.

The homogeneous Maxwell equation can be written in a similar way by means

of another useful quantity, the dual field strength matrix (or tensor) F̃μν . For this

one needs the (four dimensional) totally antisymmetric symbol εa1a2a3a4
with indices

aj = 0, 1, 2, 3 and defined by

εa1a2a3a4
=

⎧
⎨
⎩

+1 if (a1, a2, a3, a4) is an even permutation of (0,1,2,3)

−1 if (a1, a2, a3, a4) is an odd permutation of (0,1,2,3) .

0 if any two indices are equal

Also, let η−1 = (ημν) be the inverse of the matrix η = (ημν). The dual field
strength matrix is the antisymmetric matrix defined by
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F̃ = (F̃μν), F̃μν = 1
2

3∑

α,β,γ,δ=0

εμνγ δ ηγαηδβFαβ =

⎛
⎜⎜⎝

0 B1 B2 B3

−B1 0 −E3/c E2/c

−B2 E3/c 0 −E1/c

−B3 −E2/c E1/c 0

⎞
⎟⎟⎠ .

Notice that the elements of F̃ are obtained from those of F by the exchange

E ↔ −cB.

A straightforward computation shows that the homogeneous Maxwell equations

can be written as

3∑

μ,ν=0

ημν∂μF̃νρ = 0, for ρ = 0, 1, 2, 3.

In terms of Fμν rather then F̃μν , these homogeneous equation are the four equations

∂ρFμν + ∂μFνρ + ∂νFρμ = 0

for μ, ν, ρ any three of the integers 0, 1, 2, 3.

We now have a glimpse at the geometric nature of the four-potential A and of

the antisymmetric matrix F , that is we study how they transform under a change of

basis from B to B′ for M 4. If two inertial observers (for the orthonormal bases B and

B′ for M 4) relate their spacetime components as in the Example (13.3.4), we know

from physics that for the transformed electric and magnetic fields E′ and B′ one has

E′
1 = E1, B′

1 = B1

E′
2 = γ (E2 − vB3), B′

2 = γ (B2 + (v/c2)E3)

E′
3 = γ (E3 + vB2), B′

2 = γ (B3 − (v/c2)E2)

For the transformed potential A′ = (A′
ρ) and matrix F ′ = (F ′

μν) with

F ′
μν = ∂ ′

kA′
s − ∂ ′

sA
′
k (where ∂ ′

a = ∂/∂x′
a), one then finds

A′ = M B
′,B A

and

F ′ = t(M B,B′
) F M B,B′

.

It is indeed possible to check that such identities are valid for any proper and

ortochronous Lorentz matrix giving the change of orthonormal basis B → B′.

If we denote by M 4∗ the space dual to (R4, η) with {ǫ0, ǫ1, ǫ2, ǫ3} the basis dual

to B = (e0, . . . , e3), the definition

η(ǫa, ǫb) = η(ea, eb)
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clearly defines a Minkowski quadratic form on R
4∗, making then the space M 4∗.

Also, if B is orthonormal, then B∗ is orthonormal as well.

Recall now the results described in Sect. 8.1 on the dual of a vector space. The

previous relations, when compared with the Example 13.3.4, show that the vectors

A = (A0, A) is indeed an element in the dual space M 4∗ to M 4 with respect to the

dual basis B∗ to B. From the Proposition 13.1.2 we see also that the matrix elements

F transform as the entries of a quadratic form in M 4∗ (although F is antisymmetric).

All this means that the components of the electro-magnetic fields E, B are the entries

of an antisymmetric matrix F which transform as a ‘contravariant’ quadratic form

under (proper and orthochronous) Lorentz transformations.



Chapter 14

Affine Linear Geometry

14.1 Affine Spaces

Intuitively, an affine space is a vector space without a ‘preferred origin’, that is as

a set of points such that at each of these there is associated a model (a reference)

vector space.

Definition 14.1.1 The real affine space of dimension n, denoted by A
n(R) or simply

A
n , is the set R

n equipped with the map

α : A
n × A

n → R
n

given by

α((a1, . . . , an), (b1, . . . , bn)) = (b1 − a1, . . . , bn − an).

Notice that the domain of α is the cartesian product of R
n × R

n , while the range

of α is the vector space R
n . The notation A

n stresses the differences between an

affine space structure and a vector space structure on the same set R
n . The n-tuples

of A
n are called points.

By A
1 we have the affine real line, by A

2 the affine real plane, by A
3 the affine

real space. There is an analogous notion of complex affine space A
n(C), modelled

on the vector space C
n .

Remark 14.1.2 The following properties for A
n easily follows from the above defi-

nition:

(p1) for any point P ∈ A
n and for any vector v ∈ R

n , there exists a unique point Q

in A
n such that α(P, Q) = v,

(p2) for any triple P, Q, R of points in A
n , it holds that α(P, Q) + α(Q, R) =

α(P, R).
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Fig. 14.1 The sum rule (Q − P) + (R − Q) = R − P

The property (p2) amounts to the sum rule of vectors (see Fig. 14.1).

Remark 14.1.3 Given the points P, Q ∈ A
n and the definition of the map α, the

vector α(P, Q) will be also denoted by

v = α(P, Q) = Q − P.

Then, from the property (p1), we shall write

Q = P + v.

And property (p2), the sum rule for vectors in R
n , is written as

(Q − P) + (R − Q) = R − P.

Remark 14.1.4 Given an affine space A
n , from (p2) we have that

(a) for any P ∈ A
n it is α(P, P) = 0Rn (setting P = Q = R),

(b) for any pair of points P, Q ∈ A
n it is (setting R = P), α(P, Q) = −α(Q, P) .

A reference system in an affine space is given by selecting a point O ∈ A
n so

that from (p1) we have a bijection

αO : A
n → R

n, αO(P) = α(O, P) = P − O, (14.1)

and then a basis B = (v1, . . . , vn) for R
n .

Definition 14.1.5 The datum (O,B) is called an affine coordinate system or an

affine reference system for A
n with origin O and basis B. With respect to a reference

system (O,B) for A
n , if

P − O = (x1, . . . , xn)B = x1v1 + · · · + xnvn

we call (x1, . . . , xn) the coordinates of the point P ∈ A
n and often write

P = (x1, . . . , xn). If E is the canonical basis for R
n , then (O, E) is the canonical

reference system for A
n .
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Remark 14.1.6 Once an origin has been selected, the affine space A
n has the struc-

tures of R
n as a vector space. Given a reference system (O,B) for A

n , with

B = (b1, . . . , bn), the points Ai in A
n given by

Ai = O + bi

for i = 1, . . . , n, are called the coordinate points of A
n with respect to B. They have

coordinates

A1 = (1, 0, . . . , 0)B, A2 = (0, 1, . . . , 0)B, . . . An = (0, 0, . . . , 1)B.

With the canonical basis E = (e1, . . . , en), for R
n the coordinates points Ai = O + ei

will have coordinates

A1 = (1, 0, . . . , 0), A2 = (0, 1, . . . , 0), . . . An = (0, 0, . . . , 1).

Definition 14.1.7 With w ∈ R
n , the map

Tw : A
n → A

n, Tw(P) = P + w.

is called the translation of A
n along ws.

It is clear that Tw is a bijection between A
n and itself, since T−w is the inverse

map to Tw. Once a reference system has been introduced in A
n , a translation can be

described by a set of equations, as the following exercise shows.

Exercise 14.1.8 Let us fix the canonical cartesian coordinate system (O, E) for A
3,

and consider the vector w = (1,−2, 1). If P = (x, y, z) ∈ A
3, then

P − O = xe1 + ye2 + ze3 and we write

Tw(P) − O = (P + w) − O

= (P − O) + w

= (xe1 + ye2 + ze3) + (e1 − 2e2 + e3)

= (x + 1)e1 + (y − 2)e2 + (z + 1)e3,

so Tw

(

(x, y, z)) = (x + 1, y − 2, z + 1
)

.

Following this exercise, it is easy to obtain the equations for a generic translation.
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Proposition 14.1.9 Let A
n be an affine space with the reference system (O,B). With

a vector w = (w1, . . . , wn)B in R
n , the translation Tw has the following equations

Tw

(

(x1, . . . , xn)B
)

= (x1 + w1, . . . , xn + wn)B.

Remark 14.1.10 The translation Tw induces an isomorphism of vector spaces φ :

R
n → R

n given by

P − O �→ Tw(P) − Tw(O).

It is easy to see that φ is the identity isomorphism. By fixing the orthogonal carte-

sian reference system (O, E) for A
n , with corresponding coordinates (x1, . . . , xn)

for a point P , and a vector w = w1e1 + · · · + wnen , we can write

R
n ∋ P − O = x1e1 + · · · + xnen

and

Tw(P) = (x1 + w1, . . . , xn + wn), Tw(O) = (w1, . . . , wn),

so that we compute

Tw(P) − Tw(O) = (Tw(P) − O) − (Tw(O) − O)

=
(

(x1 + w1)e1 + · · · (xn + wn)en

)

− (w1e1 + · · · + wnen)

= x1e1 + · · · + xnen = P − O.

More precisely, such an isomorphism is defined between two distinct copies of the

vector space R
n , those associated to the points O and O ′ = Tw(O) in A

n thought of

as the origins of two different reference systems for A
n . This is depicted in Fig. 14.2.

Fig. 14.2 The translation Tw
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14.2 Lines and Planes

From the notion of vector line in R
2, using the bijection αO : A

2 �→ R
2, given in

(14.1), it is natural to define a (straight) line by the origin the subset in A
2 that

corresponds to L(v) in R
2.

Exercise 14.2.1 Consider v = (1, 2) ∈ R
2. The corresponding line by the origin in

A
2 is the set

{P ∈ A
2 : (P − O) ∈ L(v)} = {(x, y) = λ(1, 2), λ ∈ R}.

Based on this, we have the following definition.

Definition 14.2.2 A (straight) line by the origin in A
n is the subset

rO = {P ∈ A
n : (P − O) ∈ L(v)}

for a vector v ∈ R
n\{0}. The vector v is called the direction vector of rO .

Using the identification between A
n and R

n given in (14.1) we write

rO = {P ∈ A
n : P = λv, λ ∈ R},

or even

rO : P = λv , λ ∈ R.

We call such an expression the vector equation for the line rO . Once a reference

system (O,B) for A
n is chosen, via the identification of the components of P − O

with respect to B with the coordinates of a point P , we write the vector equation

above as

rO : (x1, . . . , xn) = λ(v1, . . . , vn) , with λ ∈ R

with v = (v1, . . . , vn) providing the direction of the line.

Remark 14.2.3 It is clear that the subset rO coincides with L(v), although they

belong to different spaces, that is rO ⊂ A
n while L(v) ⊂ R

n . With such a caveat,

these sets will be often identified.

Exercise 14.2.4 The line rO in A
3 with direction vector v = (1, 2, 3) has the vector

equation,

rO : (x, y, z) = λ(1, 2, 3), λ ∈ R.

Exercise 14.2.5 Consider the affine space A
2 with the orthogonal reference system

(O, E). The subset given by

r = {(x, y) = (1, 2) + λ(0, 1), λ ∈ R}
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clearly represents a line that runs parallel to the second reference axis. Under the

translation Tu with u = (−1,−2) we get the set

Tu(r) = {P + u, P ∈ r}

= {(x, y) = λ(0, 1), λ ∈ R},

which is a line by the origin (indeed the second axis of the reference system). If

rO = Tu(r), a line by the origin, it is clear that r = Tw(rO), with w = −u.

This exercise suggests the following definition.

Definition 14.2.6 A set r ⊂ A
n is called a line if there exist a translation Tw in A

n

and a line rO by the origin such that r = Tw(rO).

Being the sets rO and L(v) in R
n coincident, we shall refer to L(v) as the direction

of r , and we shall denote it by Sr (with the letter S referring to the fact that L(v) is

a vector subspace in R
n). Notice that, for a line, it is dim(Sr ) = 1.

The equation for an arbitrary line follows easily from that of a line by the origin.

Let us consider a line by the origin,

rO : P = λv , λ ∈ R,

and the translation Tw with w ∈ R
n . If w = Q − O , the line r = Tw(rO) is given by

r = {P ∈ A
n : P = Tw(PO), PO ∈ rO}

= {P ∈ A
n : P = Q + λv, λ ∈ R},

so we write

r : P = Q + λv. (14.2)

With respect to a reference system (O,B), where Q = (q1, . . . , qn)B and

v = (v1, . . . , vn)B, the previous equation can be written as

r : (x1, . . . , xn) = (q1, . . . , qn) + λ(v1, . . . , vn), (14.3)

or equivalently

r :

⎧

⎪

⎨

⎪

⎩

x1 = q1 + λv1

...

xn = qn + λvn

. (14.4)

Definition 14.2.7 The expression (14.2) (or equivalently 14.3) is called the vector

equation of the line r , while the expression (14.4) is called the parametric equation

of r (stressing that λ is a real parameter).
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Fig. 14.3 The translation Tw′ with w′ − w ∈ L(v) maps r into rO

Remark 14.2.8 Consider the line whose vector equation is r : P = Q + λv.

(a) We have a unique point in r for each value of λ, and selecting a point of r gives

a unique value for λ. The point in r is Q if and only if λ = 0;

(b) The direction of r is clearly the vector line L(v). This means that the direction

vector v is not uniquely determined by the equation, since each elementv′ ∈ L(v)

is a direction vector for r . This arbitrariness can be re-absorbed by a suitable

rescaling of the parameter λ: with a rescaling the equation for r can always be

written in the given form with v its direction vector.

(c) The point Q is not unique. As the Fig. 14.3 shows, if Q = O + w is a point in

r , then any translation Tw′ with w′ − w ∈ L(v) maps r into the same line by

the origin.

Exercise 14.2.9 We check whether the following lines coincide:

r : (x, y) = (1, 2) + λ(1,−1),

r ′ : (x, y) = (2, 1) + µ(1,−1).

Clearly r and r ′ have the same direction, which is Sr = Sr ′ = L((1,−1)) = rO .

If we consider Q = (1, 2) ∈ r and Q′ = (2, 1) ∈ r ′ with w = Q − O = (1, 2) and

w′ = Q′ − O = (2, 1) we compute,

r = Tw(rO), r ′ = Tw′(rO).

We have that r coincides with r ′: as described in the remark above,

w − w′ = (−1, 1) ∈ L((1,−1)).

In analogy with the definition of affine lines, one defines planes in A
n .

Definition 14.2.10 A plane through the origin in A
n is any subset of the form

πO = {P ∈ A
n : (P − O) ∈ L(u, v)},

with two linearly independent vectors u, v ∈ R
n .
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With the usual identification of a point P ∈ A
n with its image α(P) ∈ R

n

(see 14.1), we write

πO = {P ∈ A
n : P = λu + µv, λ,µ ∈ R},

or also

πO : P = λu + µv

with λ,µ real parameters.

Definition 14.2.11 A subset π ⊂ A
n is called a plane if there exist a translation

map Tw in A
n and a plane πO through the origin such that π = Tw(πO). Since we

can identify the elements in πO with the vectors in L(u, v) ⊂ R
n , generalising the

analogue Definition 14.2.6 for a line, we define the space Sπ = L(u, v) to be the

direction of π. Notice that dim(Sπ) = 2.

If Q = Tw(O), that is w = Q − O , the points P ∈ π are characterised by

P = Q + λu + µv. (14.5)

Let (O,B) be a reference system for A
n . If Q = (q1, . . . , qn)B ∈ A

n , with

u = (u1, . . . , un)B and v = (v1, . . . , vn)B ∈ R
n , the above equation can be written

as

π :

⎧

⎪

⎨

⎪

⎩

x1 = q1 + λu1 + µv1

...

xn = qn + λuv + µvn

. (14.6)

The relation (14.5) is the vector equation of the plane π, while (14.6) is a parametric

equation of π.

Exercise 14.2.12 Given the linearly independent vectors v1 = (1, 0, 1) and

v2 = (1,−1, 0) with respect to the basis B in R
3, the plane πO through the origin

associated to them is the set of points P ∈ A
3 given by the vector equation

P = λ1v1 + λ2v2, λ1,λ2 ∈ R.

With the reference system (O,B), with P = (x, y, z) its parametric equations is

(x, y, z) = λ1(1, 0, 1) + λ2(1,−1, 0) ⇔ π :

⎧

⎨

⎩

x = λ1 + λ2

y = −λ2

z = λ1

.
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Exercise 14.2.13 Given the translation Tw in A
3 with w = (1,−1, 2) in a basis B,

the plane πO of the previous exercise is mapped into the plane π = Tw(πO) whose

vector equation is

π : P = Q + λ1v1 + λ2v2,

with Q = Tw(O) = (1,−1, 2). We can equivalently represent the points in π as

π : (x, y, z) = (1,−1, 2) + λ1(1, 0, 1) + λ2(1,−1, 0).

Exercise 14.2.14 Let us consider the vectors v1, v2 in R
4 with the following com-

ponents

v1 = (1, 0, 1, 0), v2 = (2, 1, 0,−1)

in a basis B, and the point Q in A
4 with coordinates

Q = (2, 1, 1, 2).

in the corresponding reference system (O,B). The plane π ⊂ A
4 through Q whose

direction is Sπ = L(v1, v2) has the vector equation

π : (x1, x2, x3, x4) = (2, 1, 1, 2) + λ1(1, 0, 1, 0) + λ2(2, 1, 0,−1)

and parametric equation

π :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 = 2 + λ1 + 2λ2

x2 = 1 + λ2

x3 = 1 + λ1

x4 = 2 − λ2

.

Remark 14.2.15 The natural generalisation of the Remark 14.2.8 holds for planes as

well. A vector equation for a given plane π is not unique. If

π : P = Q + λu + µv

π′ : P = Q′ + λu′ + µv′

are two planes in A
n , then

π = π′ ⇔

{

Sπ = Sπ′ (that is L(u, v) = L(u′, v′))

Q − Q′ ∈ Sπ

Proposition 14.2.16 Given two distinct points A, B in A
n (with n ≥ 2), there is only

one line through A and B. A vector equation is

rAB : P = A + λ(B − A).
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Proof Being A 
= B, this vector equation gives a line since B − A is a non zero

vector and the set of points P − A is a one dimensional vector space (that is the

direction is one dimensional). The equation rAB contains A (for λ = 0) and B (for

λ = 1). This shows there exists a line through A and B.

Let us consider another line rA through A. Its vector equation will be P = A + µv,

with v ∈ R
n and µ a real parameter. The point B is contained in rA if and only if

there exists a value µ0 of the parameter such that B = A + µ0v, that is B − A = µ0v.

Thus the direction of rA would be SrA
= L(v) = L(B − A) = SrAB

. The line rA then

coincides with rAB . ⊓⊔

Exercise 14.2.17 The line in A
2 through the points A = (1, 2) and B = (1,−2) has

equation

P = (x, y) = (1, 2) + λ(0,−4).

Exercise 14.2.18 Let the points A and B in A
3 have coordinates A = (1, 1, 1) and

B = (1, 2,−2). The line rAB through them has the vector

(x, y, z) = (1, 1, 1) + λ(0, 1,−3).

Does the point P = (1, 0, 4) belong to rAB? In order to answer this question we

need to check whether there is a λ ∈ R that solves the linear system

⎧

⎨

⎩

1 = 1

0 = 1 + λ

4 = 1 − 3λ.

It is evident that λ = −1 is a solution, so P is a point in rAB .

An analogue of the Proposition 14.2.16 holds for three points in an affine space.

Proposition 14.2.19 Let A, B, C be three points in an affine space A
n (with n ≥ 3).

If they are not contained in the same line, there exists a unique plane πABC through

them, with a vector equation given by

πABC : P = A + λ(B − A) + µ(C − A).

Proof The vectors B − A and C − A are linearly independent, since they are not

contained in the same line. The direction of πABC is then two dimensional, with

SπABC
= L(B − A, C − A). The point A is inπABC , corresponding to P(λ = µ = 0);

the point B is in πABC , corresponding to P(λ = 1,µ = 0); the point C is in πABC

corresponding to P(λ = 0,µ = 1).

We have then proven that a plane through A, B, C exists. Let us suppose that

π′ : P = A + λu + µv.

gives a plane through the points A, B, C (which are not on the same line) with u and

v linearly independent (so its direction is given by Sπ′ = L(u, v)). This means that
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B − A ∈ L(u, v) and C − A ∈ L(u, v). Since the spaces are both two dimensional,

this reads L(B − A, C − A) = L(u, v), proving that π′ coincides with πABC . ⊓⊔

Exercise 14.2.20 Let A = (1, 2, 0), B = (1, 1, 1) and C = (0, 1,−1) be three

points in A
3. They are not on the same line, since the vectors B − A = (0,−1, 1)

and C − A = (−1,−1,−1) are linearly independent. A vector equation of the plane

πABC is

π : (x, y, z) = (1, 2, 0) + λ(0,−1, 1) + µ(−1,−1,−1).

14.3 General Linear Affine Varieties and Parallelism

The natural generalisation of (straight) lines and planes leads to the definition of a

linear affine variety L in A
n , where the direction of L is a subspace in R

n of dimension

greater than 2.

Definition 14.3.1 A linear affine variety of dimension k in A
n is a set

L = {P ∈ A
n : (P − Q) ∈ V },

where Q is a point in the affine space A
n and V ⊂ R

n is a vector subspace of

dimension k in R
n . The vector subspace V is called the direction of the variety L ,

and denoted by SL = V . If V = L(v1, . . . , vk), a vector equation for L is

L : P = Q + λ1v1 + · · · + λkvk

for scalars λ1, . . . ,λk in R.

Remark 14.3.2 It is evident that a line is a one dimensional linear affine variety,

while a plane is a two dimensional linear affine variety.

Definition 14.3.3 An linear affine variety of dimension n − 1 in A
n is called a

hyperplane in A
n .

It is clear that a line is a hyperplane in A
2, while a plane is a hyperplane in A

3.

Exercise 14.3.4 We consider the affine space A
4, the point Q with coordinates

Q = (2, 1, 1, 2) with respect to a given reference system (O,B), and the vector sub-

space S = L(v1, v2, v3) in R
4 with generators v1 = (1, 0, 1, 0), v2 = (2, 1, 0,−1),

v3 = (0, 0,−1, 1) with respect to B. The vector equation of the linear affine variety

L with direction SL = L(v1, v2, v3) and containing Q is

L : (x1, x2, x3, x4) = (2, 1, 1, 2) + λ1(1, 0, 1, 0) + λ2(2, 1, 0,−1) + λ3(0, 0,−1, 1),
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while its parametric equation reads

L :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 = 2 + λ1 + 2λ2

x2 = 1 + λ2

x3 = 1 + λ1 − λ3

x4 = 2 − λ2 + λ3

.

Definition 14.3.5 Let L , L ′ be two linear affine varieties of the same dimension k

in A
n . We say that L is parallel to L ′ if they have the same directions, that is if

SL = SL ′ .

Exercise 14.3.6 Let L O ⊂ A
n be a line through the origin. A line L in A

n is parallel

to L O if and only if L = Tw(L O), for w ∈ R
n . From the Remark 14.2.15 we know

that L = L O if and only if w ∈ SL .

Let us consider the line through the origin in A
2 given by L O : (x, y) = λ(3,−2).

A line will be parallel to L O if and only if its vector equation is given by

L : (x, y) = (α,β) + λ(3,−2),

with (α,β) ∈ R
2. The line L is moreover distinct from L ′ if and only if (α,β) /∈ SL .

Definition 14.3.7 Let us consider in A
n a linear affine variety L of dimension k and

a second linear affine variety L ′ of dimension k ′, with k > k ′. The variety L is said

to be parallel to L ′ if SL ′ ⊂ SL , that is if the direction of L ′ is a subspace of the

direction of L .

Exercise 14.3.8 Let us consider in A
3 the plane given by

π : (x, y, z) = (0, 2,−1) + λ1(1, 0, 1) + λ2(0, 1, 1).

We check whether the following lines,

r1 : (x, y, z) = λ(1,−1, 0)

r2 : (x, y, z) = (0, 3, 0) + λ(1, 1, 2)

r3 : (x, y, z) = (1,−1, 1) + λ(1, 1, 1),

are parallel to π.

If Sπ denotes the direction ofπ, we clearly have that Sπ =L(w1, w2) = L((1, 0, 1),

(0, 1, 1)), while we denote by vi a vector spanning the direction Sri
of the line

ri , i = 1, 2, 3. To verify whether Sri
⊂ Sπ it is sufficient to compute the rank of the

matrix whose rows are given by (w1, w2, vi ).

• For i = 1, after a reduction procedure we have,

⎛

⎝

w1

w2

v1

⎞

⎠ =

⎛

⎝

1 0 1

0 1 1

1 −1 0

⎞

⎠ �→

⎛

⎝

1 0 1

0 1 1

0 1 1

⎞

⎠ .
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Since this matrix has rank 2, we have that v1 ∈ L(w1, w2), that is Sr1
⊂ Sπ . We

conclude that r1 is parallel to π. One also checks that r1 
⊂ π, since (0, 0, 0) ∈ r1

but (0, 0, 0) /∈ π. To show this, one notices that the origin (0, 0, 0) is contained in

π if and only if the linear system

(0, 0, 0) = (0, 2,−1) + λ1(1, 0, 1) + λ2(0, 1, 1) ⇒

⎧

⎨

⎩

0 = λ1

0 = 2 + λ2

0 = −1 + λ1 + λ2

has a solution. It is evident that such a solution does not exist.

• For i = 2 we proceed as above. The following reduction by rows

⎛

⎝

w1

w2

v2

⎞

⎠ =

⎛

⎝

1 0 1

0 1 1

1 1 2

⎞

⎠ �→

⎛

⎝

1 0 1

0 1 1

0 1 1

⎞

⎠

shows that v2 ∈ L(w1, w2), thus r2 is parallel to π. Now r2 ⊂ π: a point P is in r2

if and only there exists a λ ∈ R such that P = (λ,λ + 3, 2λ). For any value of λ,

the linear system

(λ,λ + 3, 2λ) = (0, 2,−1) + λ1(1, 0, 1) + λ2(0, 1, 1) ⇒

⎧

⎨

⎩

λ = λ1

λ + 3 = 2 + λ2

2λ

has the unique solution λ1 = λ, λ2 = λ + 1.

• For i = 3 the following reduction by rows

⎛

⎝

w1

w2

v3

⎞

⎠ =

⎛

⎝

1 0 1

0 1 1

1 1 1

⎞

⎠ �→

⎛

⎝

1 0 1

0 1 1

0 1 0

⎞

⎠

shows that the matrix t (w1, w2, v3) has rank 3, so r3 is not parallel to π.

Definition 14.3.9 Let L , L ′ ⊆ A
n two distinct linear affine varieties. We say that L

and L ′ are incident if their intersection is non empty, while they are said to be skew

if they are neither parallel nor incident.

Remark 14.3.10 It is easy to see that two lines (or a line and a plane) are incident

if they have a common point. Two distinct planes in A
n (with n ≥ 3) are incident if

they have a common line.

Exercise 14.3.11 In the affine space A
3 we consider the line r3 and the plane π

as in the Exercise 14.3.8. We know already that they are not parallel, and a point

P = (x, y, z) belongs to the intersection r3 ∩ π if and only if there exists a λ such that
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P = (1 + λ,−1 + λ, 1 + λ) ∈ r3 and there exist scalars λ1,λ2 such that

P = (λ1, 2 + λ2,−1 + λ1 + λ2) ∈ π. These conditions are equivalent to the linear

system
⎧

⎨

⎩

1 + λ = λ1

−1 + λ = 2 + λ2

1 + λ = −1 + λ1 + λ2

that has the unique solution (λ = 4,λ1 = 5,λ2 = 1). This corresponds to

P = (5, 3, 5) ∈ r3 ∩ π.

Exercise 14.3.12 Consider again the lines r1 and r2 in the Exercise 14.3.8. We know

they are not parallel, since v1 /∈ L(v2). They are not incident: there are indeed no

values of λ and µ such that a point P = λ(1,−1, 0) in r1 coincides with a point

P = (0, 3, 0) + µ(1, 1, 2) in r2, since the following linear system

⎧

⎨

⎩

λ = µ

−λ = 3 + µ

0 = 2µ

has no solution. Thus r1 and r2 are skew.

Exercise 14.3.13 Given the planes

π : (x, y, z) = (0, 2,−1) + λ1(1, 0, 1) + λ2(0, 1, 1)

π′ : (x, y, z) = (1,−1, 1) + λ1(0, 0, 1) + λ2(2, 1,−1)

in A
3, we determine all the lines which are parallel to both π and π′.

We denote by r a generic line satisfying such a condition. From the Defini-

tion 14.3.5, we require that Sr ⊆ Sπ ∩ Sπ′ for the direction Sr of r . Since

Sπ = L((1, 0, 1), (0, 1, 1)) while Sπ′ = L((0, 0, 1), (2, 1,−1)), in order to compute

Sπ ∩ Sπ′ we write the condition

α(1, 0, 1) + β(0, 1, 1) = α′(0, 0, 1) + β′(2, 1,−1)

as the linear homogeneous system for (α,β,α′,β′) given by � : AX = 0 with

A =

⎛

⎝

1 0 0 2

0 1 0 1

1 1 1 −1

⎞

⎠ , X =

⎛

⎜

⎜

⎝

α

β

−α′

−β′

⎞

⎟

⎟

⎠

.

The space of solution for such a linear system is easily found to be

S� = {(α,β,−α′,−β′) = t (2, 1,−4,−1) : t ∈ R},
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so we have that the intersection Sπ ∩ Sπ′ is one dimensional and spanned by the

vector

2(1, 0, 1) + (0, 1, 1) = 4(0, 0, 1) + (2, 1,−1) = (2, 1, 3).

This gives that Sr = L((2, 1, 3)), so we finally write

r : (x, y, z) = (a, b, c) + λ(2, 1, 3).

for an arbitrary (a, b, c) ∈ A
3.

14.4 The Cartesian Form of Linear Affine Varieties

In the previous sections we have seen that a linear affine variety can be described

either with a vector equation or a parametric equation. In this section we relate linear

affine varieties to systems of linear equations.

Proposition 14.4.1 A linear affine variety L ⊆ A
n corresponds to the space of the

solutions of an associated linear system with m equations in n unknowns, that is

�L : AX = B, for A ∈ R
m,n . (14.7)

Moreover, the space of solutions of the corresponding homogeneous linear system

describes the direction space SL = L O of L, that is

�L O
: AX = 0.

We say that the linear system �L given in (14.7) is the cartesian equation for

the linear affine variety L of dimension n − rk(A). By computing the space of the

solutions of �L in terms of n − rk(A) parameters, one gets the parametric equation

for L . Conversely, given the parametric equation of L , its corresponding cartesian

equation is given by consistently ‘eliminating’ all the parameters in the parametric

equation. This linear affine variety can be represented both by a cartesian equation

and by a parametric equation, which are related as

linear system � : AX = B

(cartesian equation)
⇐⇒

space of the solutions for � : AX = B

(parametric equation)

Notice that for a linear affine variety L a cartesian equation is not uniquely deter-

mined: any linear system �′ which is equivalent to �L (that is for which the spaces

of the solutions for �L and �′ coincide) describe the same linear affine variety. An

analogue result holds for the direction space of L , which is equivalently described

by any homogenous linear system �′
O equivalent to �L O

.
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We avoid an explicit proof of the Proposition 14.4.1 in general, and analyse the

equivalence between the two descriptions via the following examples.

Exercise 14.4.2 Let us consider the line r ⊂ A
2 with parametric equation

r :

{

x = 1 + λ

y = 2 − λ
.

We can express the parameter λ in terms of x from the first relation, that is

λ = x − 1, and replace this in the second relation, having

x + y − 3 = 0.

We set

s = {(x, y) ∈ A
2 : x + y − 3 = 0}

and show that s coincides with r . Clearly r ⊆ s, since a point with coordinates

(1 + λ, 2 − λ) ∈ r solves the linear equation for s:

(1 + λ) + (2 − λ) − 3 = 0.

In order to prove that s ⊆ r , consider a point P = (x, y) ∈ s, so that

P = (x, y = 3 − x) for any value of x : this means considering x as a real parame-

ter. By writing λ = x − 1, we have P = (x = λ + 1, y = 2 − λ) for any λ ∈ R, so

P ∈ r . We have then s = r as linear affine varieties.

Proposition 14.4.3 Given a, b, c in R with (a, b) 
= (0, 0), the solutions of the equa-

tion

�r : ax + by + c = 0 (14.8)

provide the coordinates of all the points P = (x, y) of a line r in A
2 whose direc-

tion Sr = L((−b, a)) is given by the solutions of the associated linear homogenous

equation

�rO
: ax + by = 0.

Moreover, if r ⊂ A
2 is a line with direction Sr = L((−b, a)), then there exists c ∈ R

such that the cartesian form for the equation of r is given by (14.8).

Proof We start by showing that the solutions of (14.8) give the coordinates of the

points representing the line with direction L((−b, a)) in parametric form.

Let us assume a 
= 0. We can then write the space of the solutions for (14.8) as

(x, y) = (−
b

a
µ −

c

a
,µ)
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where µ ∈ R is a parameter. By rescaling the parameter, that is defining λ = µ/a,

we write the space of solutions as the points having coordinates,

(x, y) = (−bλ −
c

a
, aλ)

= (−
c

a
, 0) + λ(−b, a).

This expression gives the vector (and the parametric) equation of a line through

(−c/a, 0) with direction Sr = L((−b, a)).

If a = 0, we can write the space of the solutions for (14.8) as

(x, y) = (µ,−
c

b
)

where µ ∈ R is a parameter. By rescaling the parameter, we can write

(x, y) = (−λb,−
c

b
) = (0,−

c

b
) + λ(−b, 0),

giving the vector equation of a line through the point (0,−c/b) with direction

Sr = L((−b, 0)).

Now let r be a line in A
2 with direction Sr = L((−b, a)). Its parametric equation

is of the form

r :

{

x = x0 − bλ

y = y0 + aλ

where (x0, y0) is an arbitrary point in A
2. If a 
= 0, we can eliminate λ by setting

λ =
y − y0

a

from the second relation and then

x = x0 −
b

a
(y − y0),

resulting into the linear equation

ax + by + c = 0

with c = −(ax0 + by0).

If a = 0 then b 
= 0, so by rescaling the parameter as µ = x0 − λb, the points of

the line r are (x = µ, y = y0). This is indeed the set of the solutions of the linear

equation

ax + by + c = 0
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with a = 0 and c = −by0. We have then shown that any line with a given direction

has the cartesian form given by a suitable linear equation (14.8). ⊓⊔

The equation ax + by + c = 0 is called the cartesian equation of a line in A
2.

Remark 14.4.4 As already mentioned, a line does not uniquely determine its carte-

sian equation. With ax + by + c = 0 the cartesian equation for r , any other linear

equation

ρax + ρby + ρc = 0, with ρ 
= 0

yields a cartesian equation for the same line, since

ρax + ρby + ρc = 0 ⇔ ρ(ax + by + c) = 0 ⇔ ax + by + c = 0.

Exercise 14.4.5 The line�r : 2x − y + 3 = 0 in A
2 has direction�rO

: 2x − y = 0,

or Sr = L((1, 2)).

Exercise 14.4.6 We turn now to the description of a plane in the three dimensional

affine space in terms of a cartesian equation. Let us consider the plane π ⊂ A
3 with

parametric equation

π :

⎧

⎨

⎩

x = 1 + 2λ + µ

y = 2 − λ − µ

z = µ

.

We eliminate the parameter µ by setting µ = z from the third relation, and write

π :

⎧

⎨

⎩

x = 1 + 2λ + z

y = 2 − λ − z

µ = z

.

We can then eliminate the parameter λ by using the second (for example) relation,

so to have λ = 2 − y − z and write

π :

⎧

⎨

⎩

x = 1 + 2(2 − y − z) + z

λ = 2 − y − z

µ = z

.

Since these relations are valid for any choice of the parameters λ and µ, we have

a resulting linear equation with three unknowns:

�π : x + 2y + z − 5 = 0.

Such an equation still represents π, since every point P ∈ π solves the equation (as

easily seen by taking P = (1 + 2λ + µ, 2 − λ − µ,µ)) and the space of solutions

of �π coincides with the set π.
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This example has a general validity for representing in cartesian form a plane in

A
3. A natural generalisation of the proof of the previous Proposition 14.4.3 allows

one to show the following result.

Proposition 14.4.7 Given a, b, c, d in R with (a, b, c) 
= (0, 0, 0), the solutions of

the equation

�π : ax + by + cz + d = 0 (14.9)

provide the coordinates of all the points P = (x, y, z) of a plane π in A
3 whose

direction Sπ is given by the solutions of the associated linear homogenous equation

�πO
: ax + by + cz = 0. (14.10)

If π ⊂ A
3 is a plane with direction Sπ = R

2 given by the space of the solutions

of (14.10), then there exists d ∈ R such that the cartesian form for the equation of

π is given by (14.9).

The equation

ax + by + cz + d = 0

is called the cartesian equation of a plane in A
3.

Remark 14.4.8 Analogously to what we noticed in the Remark 14.4.4, the cartesian

equation of a plane π in A
3 is not uniquely determined, since it can be again multiplied

by a non zero scalar.

Exercise 14.4.9 We next look for a cartesian equation for a line in A
3. As usual,

by way of an example, we start by considering the parametric equation of the line

r ⊂ A
3 given by

r :

⎧

⎨

⎩

x = 1 + 2λ

y = 2 − λ

z = λ

.

By eliminating the parameter λ via (for example) the third relation λ = z we have

r :

⎧

⎨

⎩

x = 1 + 2z

y = 2 − z

λ = z

.

Since the third relations formally amounts to redefine a parameter, we write

�r :

{

x − 2z − 1 = 0

y + z − 2 = 0
,

which is a linear system with three unknowns and rank 2, thus having ∞1 solutions.

In analogy with the procedure used above for the other examples, it is easy to show

that the space of solutions of �r coincides with the line r in A
3.
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The following result is the natural generalisation of the Propositions 14.4.3 and

14.4.7.

Proposition 14.4.10 Given the (complete, see the Definition 6.1.5) matrix

(A, B) =

(

a1 b1 c1 −d1

a2 b2 c2 −d2

)

∈ R
2,4

with

rk(A) = rk

(

a1 b1 c1

a2 b2 c2

)

= 2,

the solutions of the linear system

�π : AX = B ⇔

{

a1x + b1 y + c1z + d1 = 0

a2x + b2 y + c2z + d2 = 0
(14.11)

provide the coordinates of all the points P = (x, y, z) of a line r in A
3 whose direction

Sr is given by the solutions of the associated linear homogenous system

�rO
: AX = 0. (14.12)

If r ⊂ A
3 is a line whose direction Sr = R is given by the space of the solutions

of the linear homogenous system (14.12) with A ∈ R
3,2 and rk(A) = 2, then there

exists a vector B = t (−d1,−d2) such that the cartesian form for the equation of r

is given by (14.11).

The linear system

�r :

{

a1x + b1 y + c1z + d1 = 0

a2x + b2 y + c2z + d2 = 0

with rk

(

a1 b1 c1

a2 b2 c2

)

= 2 is called the cartesian equation of the line r in A
3.

Remark 14.4.11 We notice again that the cartesian form (14.11) is not uniquely

determined by the line r , since any linear system �′ which is equivalent to �r

describes the same line.

We now a few examples of linear affine varieties described by cartesian equations

obtained via removing parameters in their parametric equations.

Exercise 14.4.12 We consider the hyperplane in A
4 with parametric equation

H :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1 + λ + µ + ν

y = λ − µ

z = µ + ν

t = ν

.
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Let us eliminate the parameters: we start by eliminating µ via the fourth relations,

then ν by the third relation and eventually λ via the second relation. We have then

H :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1 + λ + µ + t

y = λ − µ

z = µ + t

ν = t

⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1 + λ + (z − t) + t

y = λ − (z − t)

µ = z − t

ν = t

⇔

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x = 1 + (y + z − t) + (z − t) + t

λ = y + z − t

µ = z − t

ν = t

.

As we have noticed previously, since these relations are valid for each value of

the parameters λ,µ, ν, the computations amount to a redefinition of the parameters

to y, z, t , so we consider only the first relation, and write

�H : x − y − 2z + t − 1 = 0

as the cartesian equation of the hyperplane H in A
4 with the starting parametric

equation. The direction SH = R
3 of such a hyperplane is given by the vector space

corresponding to the space of the solutions of the homogeneous linear equation

x − y − 2z + t = 0.

Exercise 14.4.13 We consider the plane π in A
3 whose vector equation is given by

π : P = Q + λv1 + µv2,

with Q = (2, 3, 0) and v1 = (1, 0, 1), v2 = (1,−1, 0). By denoting the coordinates

P = (x, y, z) we write

⎛

⎝

x

y

z

⎞

⎠ =

⎛

⎝

2

3

0

⎞

⎠ + λ

⎛

⎝

1

0

1

⎞

⎠ + µ

⎛

⎝

1

−1

0

⎞

⎠ ,

which reads as the parametric equation

π :

⎧

⎨

⎩

x = 2 + λ + µ

y = 3 − µ

z = λ

.
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If we eliminate the parameters we write

H :

⎧

⎨

⎩

λ = z

µ = 3 − y

x = 2 + z + 3 − y

so to have the following cartesian equation for π:

�π : x + y − z − 5 = 0.

The direction Sπ = R
2 of the plane π is the space of the solutions of the homo-

geneous equation

x + y − z = 0,

and it is easy to see that Sπ = L(v1, v2).

Exercise 14.4.14 We consider the line r : P = Q + λv in A
4, with Q = (1,−1, 2, 1)

and direction vector v = (1, 2, 2, 1). Its parametric equation is given by

r :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 = 1 + λ

x2 = 2 − λ

x3 = 2 + 2λ

x4 = 1 + λ

.

If we use the first relation to eliminate the parameter λ, we write

r :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ = x1 − 1

x2 = 2 − (x1 − 1)

x3 = 2 + 2(x1 − 1)

x4 = 1 + (x1 − 1)

which amounts to the following cartesian equation

�r :

⎧

⎨

⎩

x1 + x2 − 3 = 0

2x1 + x3 = 0

x1 + x4 = 0

.

Again, the direction Sr = R of the line r is given by the space of the solutions for

the homogeneous linear system

⎧

⎨

⎩

x1 + x2 = 0

2x1 + x3 = 0

x1 + x4 = 0

.

It is easy to see that SrO
= L(v).
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Exercise 14.4.15 We consider the plane π ⊆ A
3 whose cartesian equation is

�π : 2x − y + z − 1 = 0.

By choosing as free unknowns x, y, we have z = −2x + y + 1, that is

P = (x, y, z) ∈ π if and only if

(x, y, z) = (a, b,−2a + b + 1) = (0, 0, 1) + a(1, 0,−2) + b(0, 1, 1)

for any choice of the real parameters a, b. The former relation is then the vector

equation of π.

Exercise 14.4.16 We consider the line r ⊆ A
3 with cartesian equation

�r :

{

x − y + z − 1 = 0

2x + y + 2 = 0
.

In order to have a vector equation for r we solve such a linear system, getting

�r :

{

y = −2x − 2

z = −3x − 3
.

Then the space of the solutions for �r is given by the elements

(x, y, z) = (a,−2a − 2,−3a − 3) = (0,−2,−3) + a(1,−2,−3).

This relation yields a vector equation for r .

We conclude this section by rewriting the Proposition 14.4.1, whose formulation

should appear now clearer.

Proposition 14.4.17 Given the matrix

(A, B) =

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n −b1

a21 a22 . . . a2n −b2

...
...

...

am1 am2 . . . amn −bm

⎞

⎟

⎟

⎟

⎠

∈ R
m,n

with

rk(A) = rk

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn

⎞

⎟

⎟

⎟

⎠

= m < n,
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the solutions of the linear system

�L : AX = B ⇔

⎧

⎨

⎩

a11x1 + a12x2 + · · · + a1n xn + b1 = 0

. . .

am1x1 + am2x2 + · · · + amn xn + bm = 0

(14.13)

give the coordinates of all points P = (x1, x2, . . . , xn) of a linear affine variety L in

A
n of dimension k = n − m and whose direction SL is given by the solutions of the

associated linear homogenous system

�L O
: AX = 0. (14.14)

If L ⊂ A
n is a linear affine variety of dimension k, whose direction SL

∼= R
k is

the space of solutions of the linear homogenous system AX = 0 with A ∈ R
m,n and

rk(A) = m < n, then there is a vector B = t (−b1, . . . ,−bm) such that the cartesian

form for the equation of L is given by (14.13).

14.5 Intersection of Linear Affine Varieties

In this section, by studying particular examples, we introduce some aspects of the

general problem of the intersection (that is of the mutual position) of different linear

affine varieties.

14.5.1 Intersection of two lines in A
2

Let r and r ′ be the lines in A
2 given by the cartesian equations

�r : ax + by + c = 0; �r ′ : a′x + b′y + c′ = 0.

Their intersection is given by the solutions of the linear system

�r∩r ′ :

{

ax + by = −c

a′x + b′y = −c′ .

By defining

A =

(

a b

a′ b′

)

, (A, B) =

(

a b −c

a′ b′ −c′

)

the matrices associated to such a linear system, we have three different possibilities:

• if rk(A) = rk((A, B)) = 1, the system�r∩r ′ is solvable, with the space of solutions

S�r∩r ′ containing ∞1 solutions. This means that r = r ′, the two lines coincide;

• if rk(A) = rk((A, B)) = 2, the system�r∩r ′ is solvable, with the space of solutions

S�r∩r ′ made of only one solution, the point P = (x0, y0) of intersection between

the lines r and r ′;
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• if rk(A) = 1 and rk((A, B)) = 2, the system �r∩r ′ is not solvable, which means

that r ∩ r ′ = ∅; the lines r and r ′ are therefore parallel, with common direction

given by L((−b, a)).

We can summarise such cases as in the following table

rk(A) rk((A, B)) S�r∩r ′ r ∩ r ′

1 1 ∞1 r = r ′

2 2 1 P = (x0, y0)

1 2 ∅ ∅

The following result comes easily from the analysis above.

Corollary 14.5.2 Given the lines r and r ′ in A
2 with cartesian equations

�r : ax + by + c = 0 and �r ′ : a′x + b′y + c′ = 0, we have that

r = r ′ ⇐⇒ rk

(

a b −c

a′ b′ −c′

)

= 1.

Exercise 14.5.3 Given the lines r and s on A
2 whose cartesian equations are

�r : x + y − 1 = 0, �s : x + 2y + 2 = 0,

we study their mutual position. We consider therefore the linear system

�r∩s :

{

x + y = 1

x + 2y = −2
.

The reduction

(A, B) =

(

1 1 1

1 2 −2

)

�→

(

1 1 1

0 1 −3

)

= (A′, B ′)

proves that rk(A, B) = rk(A′, B ′) = 2 and rk(A) = rk(A′) = 2. The lines r and s

have a unique point of intersection, which is computed to be r ∩ s = {(4,−3)}.

Exercise 14.5.4 Consider the lines r and sα given by their cartesian equations

�r : x + y − 1 = 0, �sα
: x + αy + 2 = 0

with α ∈ R a parameter. We study the mutual position of r and sα as depending on

the value of α. We therefore study the linear system

�r∩sα
:

{

x + y = 1

x + αy = −2
.
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We use the reduction

(A, B) =

(

1 1 1

1 α −2

)

�→

(

1 1 1

0 α − 1 −3

)

= (A′, B ′),

proving that rk(A, B) = rk(A′, B ′) = 2 for any value ofα, while rk(A) = rk(A′) = 2

if and only if α 
= 1. This means that r is parallel to sα if and only if α = 1 (being

in such a case �s1
: x + y + 2 = 0), while for any α 
= 1 the two lines intersects in

one point, whose coordinates are computed to be

r ∩ sα = (
α + 2

α − 1
,

3

1 − α
).

The following examples show how to study the mutual position of two lines which

are not given in the cartesian form. They present different methods without the need

to explicitly transforming a parametric or a vector equation into its cartesian form.

Exercise 14.5.5 We consider the line r in A
2 with vector equation

r : (x, y) = (1, 2) + λ(1,−1),

and the line s whose cartesian equation is

�s : 2x − y − 6 = 0.

These line intersect for each value of the parameter λ giving a point in r whose

coordinates solve the equation �s . From

r :

{

x = 1 + λ

y = 2 − λ

we have

2(1 + λ) − (2 − λ) − 6 = 0 ⇔ λ = 2.

This means that r and s intersects in one point, the one with coordinates

(x = 3, y = 0).

Exercise 14.5.6 As in the exercise above we consider the line r given by the vector

equation

r : (x, y) = (1,−1) + λ(2,−1)

and the line s given by the cartesian equation

�s : x + 2y − 3 = 0.
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Their intersections correspond to the value of the parameter λ which solve the

equation

(1 + 2λ) + 2(−1 − λ) − 3 = 0 ⇔ −4 = 0.

This means that r ∩ s = ∅; these two lines are parallel.

Exercise 14.5.7 Consider the lines r and s in A
2 both given by a vector equation,

for example

r : (x, y) = (1, 0) + λ(1,−2), s : (x, y) = (1,−1) + µ(−1, 1).

The intersection r ∩ s corresponds to values of the parameters λ and µ for which

the coordinates of a point in r coincide with those of a point in s. We have then to

solve the linear system

{

1 + λ = 1 − µ

−2λ = −1 + µ
⇔

{

λ = −µ

2µ = −1 + µ
⇔

{

λ = 1

µ = −1
.

Having such a linear system one solution, the intersection s ∩ r = P where the

point P corresponds to the value λ = 1 in r or equivalently to the value µ = −1 in s.

Then r ∩ s = (2,−2).

Exercise 14.5.8 As in the previous exercise, we study the intersection of the lines

r : (x, y) = (1, 1) + λ(−1, 2), s : (x, y) = (1, 2) + µ(1,−2).

We proceed as above, and consider the linear system

{

1 − λ = 1 + µ

1 + 2λ = 2 − 2µ
⇔

{

−λ = µ

1 − 2µ = 2 − 2µ
⇔

{

−λ = µ

1 = 2
.

Since this linear system is not solvable, we conclude that r does not intersect s,

and since the direction of r and s coincide, we have that r is parallel to s.

14.5.9 Intersection of two planes in A
3

Consider the planes π and π′ in A
3 with cartesian equations given by

�π : ax + by + cz + d = 0, �π′ : a′x + b′y + c′z + d ′ = 0.

Their intersection is given by the solutions of the linear system

�π∩π′ :

{

ax + by + cz + d = 0

a′x + b′y + c′z + d ′ = 0
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which is characterized by the matrices

A =

(

a b c

a′ b′ c′

)

, (A, B) =

(

a b c −d

a′ b′ c′ −d ′

)

.

We have the following possible cases.

rk(A) rk((A, B)) S�π∩π′ π ∩ π′

1 1 ∞2 π = π′

2 2 ∞1 line

1 2 ∅ ∅

Notice that the case π ∩ π′ = ∅ corresponds to π parallel to π′.

The following corollary parallels the one in Corollary 14.5.2.

Corollary 14.5.10 Consider two planes π and π′ in A
3 having cartesian equations

�π : ax + by + cz + d = 0 and �π′ : a′x + b′y + c′z + d ′ = 0. One has

π = π′ ⇐⇒ rk

(

a b c −d

a′ b′ c′ −d ′

)

= 1.

Exercise 14.5.11 We consider the planes π and π′ in A
3 whose cartesian equations

are

�π : x − y + 3z + 2 = 0 �π′ : x − y + z + 1 = 0.

The intersection is given by the solutions of the system

�π∩π′ :

{

x − y + 3z = −2

x − y + z = −1
.

By reducing the complete matrix of such a linear system,

(A, B) =

(

1 −1 3 −2

1 −1 1 −1

)

�→

(

1 −1 3 −2

0 0 2 −1

)

,

we see that rk(A, B) = rk(A) = 2, so the linear system has ∞1 solutions. The inter-

section π ∩ π′ is therefore a line with cartesian equation given by �π∩π′ .

Exercise 14.5.12 We consider the planes π and π′ in A
3 given by

�π : x − y + z + 2 = 0 �π′ : 2x − 2y + 2z + 1 = 0.
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As in the previous exercise, we reduce the complete matrix of the linear system

�π∩π′ ,

(A, B) =

(

1 −1 1 −2

2 −2 2 −1

)

�→

(

1 −1 1 −2

0 0 0 3

)

,

to get rk(A) = 1 while rk(A, B) = 2, so π ∩ π′ = ∅. Since these planes are in A
3,

they are parallel.

Exercise 14.5.13 We consider the planes π,π′,π′′ in A
3 whose cartesian equations

are given by

�π : x − 2y − z + 1 = 0

�π′ : x + y − 2 = 0

�π′′ : 2x − 4y − 2z − 5 = 0 .

For the mutual positions of the pairs π,π′ and π,π′′, we start by considering the

linear system

�π∩π′ :

{

x − 2y − z = −1

x + y = 2
.

For the complete matrix

(A, B) =

(

1 −2 −1 −1

1 1 0 2

)

we easily see that rk(A) = rk(A, B) = 2, so the intersection π ∩ π′ is the line whose

cartesian equation is the linear system �π∩π′ .

For the intersections of π with π′′ we consider the linear system

�π∩π′′ :

{

x − 2y − z = −1

2x − 4y − 2z = 5
.

The complete matrix

(A, B) =

(

1 −2 1 −1

2 −4 −2 5

)

,

has rk(A) = 1 and rk(A, B) = 2. This means that �π∩π′′ has no solutions, that is

the planes π and π′ are parallel, having the same direction given by the vector space

solutions of SπO
: x − 2y − z = 0.



264 14 Affine Linear Geometry

14.5.14 Intersection of a line with a plane in A
3

We consider the line r and the plane π in A
3 given by the cartesian equations

�r :

{

a1x + b1 y + c1z + d1 = 0

a2x + b2 y + c2z + d2 = 0
, �π : ax + by + cz + d = 0.

Again, their intersection is given by the solutions of the linear system

�π∩r :

⎧

⎨

⎩

a1x + b1 y + c1z = −d1

a2x + b2 y + c2z = −d2

ax + by + cz = −d

,

with its associated matrices

A =

⎛

⎝

a1 b1 c1

a2 b2 c2

a b c

⎞

⎠ , (A, B) =

⎛

⎝

a1 b1 c1 −d1

a2 b2 c2 −d2

a b c −d

⎞

⎠ .

Since the upper two row vectors of both A and (A, B) matrices are linearly

independent, because the corresponding equations represent a line in A
3, only the

following cases are possible.

rk(A) rk((A, B)) S�π∩r π ∩ r

2 2 ∞1 r

3 3 ∞0 point

2 3 ∅ ∅

Notice that, when rk(A) = rk(A, B) = 2, it is r ⊂ π, while, if rk(A) = 2 and

rk(A, B) = 3, then r is parallel to π. Indeed, when rk(A) = 2, then Sr ⊂ Sπ , the

direction of r is a subspace in the direction of π. In order to show this, we consider

the linear systems for the directions Sr and Sπ ,

�rO
:

{

a1x + b1 y + c1z = 0

a2x + b2 y + c2z = 0
, �πO

: ax + by + cz = 0.

Since rk(A) = 2 and the upper two row vectors are linearly independent, we can

write

(a, b, c) = λ1(a1, b1, c1) + λ2(a2, b2, c2).

If P = (x0, y0.z0) is a point in Sr , then ai x0 + bi y0 + ci z0 = 0 for i = 1, 2. We

can then write

ax0 + by0 + cz0 = (λ1a1 + λ2a2)x0 + (λ1b1 + λ2b2)y0 + (λ1c1 + λ2c2)z0

= λ1(a1x0 + b1 y0 + c1z0) + λ2(a2x0 + b2 y0 + c2z0)

= 0

and this proves that P ∈ Sπ , that is the inclusion Sr ⊂ Sπ .
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Exercise 14.5.15 Given in A
3 the line r and the plane π with cartesian equations

�r :

{

x − 2y − z + 1 = 0

x + y − 2 = 0
, �π : 2x + y − 2z − 5 = 0,

their intersection is given by the solutions of the linear system �π∩r : AX = B whose

associated complete matrix, suitably reduced, reads

(A, B) =

⎛

⎝

1 −2 −1 −1

1 1 0 2

2 1 −2 5

⎞

⎠ �→

⎛

⎝

1 −2 −1 −1

1 1 0 2

0 5 0 7

⎞

⎠ = (A′, B ′).

Then rk(A) = 3 and rk(A, B) = 3, so the linear system �π∩r has a unique solu-

tion, which corresponds to the unique point P of intersection between r and π. The

coordinates of P are easily computed to be P = ( 3
5
, 7

5
,− 6

5
).

Exercise 14.5.16 We consider in A
3 the line r and the plane πh with equations

�r :

{

x − 2y − z + 1 = 0

x + y − 2 = 0
, �π : 2x + hy − 2z − 5 = 0,

where h is a real parameter. The complete matrix of to the linear system

�πh∩r : AX = B giving the intersection of πh and r is

(Ah, B) =

⎛

⎝

1 −2 −1 −1

1 1 0 2

2 h −2 5

⎞

⎠ .

We notice that the rank of Ah is at least 2, with rk(Ah) = 3 if and only if

det(Ah) 
= 0. It is det(Ah) = −h − 4, so rk(Ah) = 3 if and only if h 
= −4. In such

a case rk(Ah) = 3 = rk(Ah, B), and this means that r and πh 
=−4 have a unique point

of intersection.

If h = −4, then rk(A−4) = 2: the reduction

(A−4, B) =

⎛

⎝

1 −2 −1 −1

1 1 0 2

2 −4 −2 5

⎞

⎠ �→

⎛

⎝

1 −2 −1 −1

1 1 0 2

0 0 0 7

⎞

⎠

shows that rk(A−4, B) = 3, so the linear system A−4 X = B has no solutions, and r

is parallel to π.
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Exercise 14.5.17 As in the Exercise 14.5.15 we study the intersection of a plane π

(represented by a cartesian equation) and a line r in A
3 (represented by a parametric

equation). Consider for instance,

r : (x, y, z) = (3,−1, 5) + λ(1,−1, 2), �π : x + y − z + 1 = 0.

As before, the intersection π ∩ r corresponds to the values of the parameter λ

for which the coordinates P = (3 + λ,−1 − λ, 5 + 2λ) of a point in r solve the

cartesian equation for π, that is

(3 + λ) + (−1 − λ) − (5 + 2λ) + 1 = 0 ⇒ −2λ − 2 = 0 ⇒ λ = −1.

We have then r ∩ π = (2, 0, 3).

14.5.18 Intersection of two lines in A
3

We consider a line r and a line r ′ in A
3 with cartesian equations

�r :

{

a1x + b1 y + c1z + d1 = 0

a2x + b2 y + c2z + d2 = 0
, �′

r :

{

a′
1x + b′

1 y + c′
1z + d ′

1 = 0

a′
2x + b′

2 y + c′
2z + d ′

2 = 0
.

The intersection is given by the linear system �r∩r ′ whose associated matrices are

A =

⎛

⎜

⎜

⎝

a1 b1 c1

a2 b2 c2

a′
1 b′

1 c′
1

a′
2 b′

2 c′
2

⎞

⎟

⎟

⎠

, (A, B) =

⎛

⎜

⎜

⎝

a1 b1 c1 −d1

a2 b2 c2 −d2

a′
1 b′

1 c′
1 −d ′

1

a′
2 b′

2 c′
2 −d ′

2

⎞

⎟

⎟

⎠

.

Once again, different possibilities depending on the mutual ranks of these. As

we stressed in the previous case 14.5.14, since r and r ′ are lines, the upper two row

vectors R1 and R2 of both A and (A, B) are linearly independent, as are the last two

row vectors, R3 and R4. Then,

rk(A) rk((A, B)) S�r∩r ′ r ∩ r ′

2 2 ∞1 r

3 3 ∞0 point

2 3 ∅ ∅

3 4 ∅ ∅

In the first case, with rk(A) = rk(A, B) = 2, the lines r, r ′ coincide, while in the

second case, with rk(A) = rk(A, B) = 3, they have a unique point of intersection,

whose coordinates are given by the solution of the system AX = B.
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In the third and the fourth case, the condition rk(A) 
= rk(A, B) means that the

two lines do not intersect. If rk(A) = 2, then the row vectors R3 and R4 of A are both

linearly dependent of R1 and R2, and therefore the homogeneous linear systems

�rO
:

{

a1x + b1 y + c1z = 0

a2x + b2 y + c2z = 0
, �r ′

O
:

{

a′
1x + b′

1 y + c′
1z = 0

a′
2x + b′

2 y + c′
2z = 0

,

are equivalent. We have then that Sr = Sr ′ , the direction of r coincide with that of

r ′, that is r is parallel to r ′. If rk(A) = 3 (the fourth case in the table above) the lines

are not parallel and do not intersect, so they are skew.

Exercise 14.5.19 We consider the line r and r ′ in A
3 whose cartesian equations are

�r :

{

x − y + 2z + 1 = 0

x + z − 1 = 0
, �r ′ :

{

y − z + 2 = 0

x + y + z = 0
.

We reduce the complete matrix associated to the linear system �r∩r ′ , that is

(A, B) =

⎛

⎜

⎜

⎝

1 −1 2 −1

1 0 1 1

0 1 −1 −2

1 1 1 0

⎞

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎝

1 −1 2 −1

0 1 −1 2

0 1 −1 −2

0 2 −1 1

⎞

⎟

⎟

⎠

�→

⎛

⎜

⎜

⎝

1 −1 2 −1

0 1 −1 2

0 0 0 −4

0 0 1 −3

⎞

⎟

⎟

⎠

= (A′, B ′).

Since rk(A′) = 3 and rk(A′, B ′) = 4, the two lines are skew.



Chapter 15

Euclidean Affine Linear Geometry

15.1 Euclidean Affine Spaces

In the previous chapter we have dealt with the (real and linear) affine space A
n as

modelled on the vector space R
n . In this chapter we study the additional structures

on A
n that come when passing from R

n to the euclidean space En (see the Chap. 3).

Taking into account the scalar product allows one to introduce metric notions (such

as distances and angles) into an affine space.

Definition 15.1.1 The affine space A
n associated to the Euclidean vector space

En = (Rn, ·) is called the Euclidean affine space and denoted E
n . A reference system

(O,B) for E
n is called cartesian orthogonal if the basis B for En is orthonormal.

Recall that, if B is an orthonormal basis for En , the matrix of change of basis

ME,B (the matrix whose column vectors are the components of the vectors in B

with respect to the canonical basis E) is orthogonal by definition (see the Chap. 10,

Definition 10.1.1), and thus det(ME,B) = ±1.

In our analysis in this chapter we shall always consider cartesian orthogonal

reference systems.

Exercise 15.1.2 Let r be the (straight) line in E
2 with vector equation

(x, y) = (1,−2) + λ(1,−1).

We take A = (1,−2) and v = (1,−1). To determine a cartesian equation for r ,

in alternative to the procedure described at length in the previous chapter (that is

removing the parameter λ), one observes that, since L(v) is the direction of r , and

thus the vector u = (1, 1) is orthogonal to v, we can write

© Springer International Publishing AG, part of Springer Nature 2018

G. Landi and A. Zampini, Linear Algebra and Analytic Geometry

for Physical Sciences, Undergraduate Lecture Notes in Physics,

https://doi.org/10.1007/978-3-319-78361-1_15

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78361-1_15&domain=pdf


270 15 Euclidean Affine Linear Geometry

P = (x, y) ∈ r ⇐⇒ P − A ∈ L(v)

⇐⇒ (P − A) · u = 0

⇐⇒ (x − 1, y + 2) · (1, 1) = 0.

This condition can be written as

x + y + 1 = 0,

yielding a cartesian equation �r for r .

This exercise shows that, if r is a line in E
2 whose vector equation is

r : P = A + λv, with u a vector orthogonal to v so that for the direction of r one

has Sr = L(u)⊥, we have

P ∈ r ⇐⇒ (P − A) · u = 0.

This expression is called the normal equation for the line r .

We can generalise this example to any hyperplane.

Proposition 15.1.3 Let H ⊂ E
n be a hyperplane, with A ∈ H. If u ∈ R

n is a non

zero vector orthogonal to the direction SH of the hyperplane, that is L(u) = (SH )⊥,

then it holds that

P ∈ H ⇐⇒ (P − A) · u = 0.

Definition 15.1.4 The equation

NH : (P − A) · u = 0

is called the normal equation of the hyperplane H in E
n . If n = 2, it yields the normal

equation of a line; if n = 3, it yields the normal equation of a plane.

Remark 15.1.5 Notice that, as we already seen for a cartesian equation in the previ-

ous chapter (see the Remark 14.4.11), the normal equation NH for a given hyperplane

in E
n is not uniquely determined, since A can range in H and the vector u is given

up to an arbitrary non zero scalar.

Remark 15.1.6 With a cartesian equation

�H : a1x1 + · · · + an xn = b

for the hyperplane for H in E
n , one has S⊥

H = L((a1, . . . , an)). This follows from

the definition

SH = {(x1, . . . , xn) ∈ R
n : a1x1 + · · · + an xn = 0}

= {(x1, . . . , xn) ∈ R
n : (a1, . . . , an) · (x1, . . . , xn) = 0}.
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With A an arbitrary point in H , a normal equation for H is indeed given by

NH : (P − A) · (a1, . . . , an) = 0.

Exercise 15.1.7 We determine both a cartesian and a normal equation for the plane

π in A
3 whose direction is orthogonal to u = (1, 2, 3) and that contains the point

A = (1, 0,−1). We have

Nπ : (x − 1, y, z + 1) · (1, 2, 3) = 0,

equivalent to the cartesian equation

�π : x + 2y + 3z + 2 = 0.

Exercise 15.1.8 Given the (straight) line r in A
2 with cartesian equation

�r : 2x − 3y + 3 = 0

we look for its normal equation. We start by noticing (see the Remark 15.1.6) that the

direction of r is orthogonal to the vector u = (2,−3), and that the point A = (0, 1)

lays in r , so we can write

Nr : (P − (0, 1)) · (2,−3) = 0 ⇔ (x, y − 1) · (2,−3) = 0

as a normal equation for r .

From what discussed above, it is clear that there exist deep relations between carte-

sian and normal equations for an hyperplane in a Euclidean affine space. Moreover,

as we have discussed in the previous chapter, a generic linear affine variety in A
n

can be described as a suitable intersection of hyperplanes. Therefore it should come

as no surprise that a linear affine variety can be described in a Euclidean affine space

in terms of a suitable number of normal equations. The general case is illustrated by

the following exercise.

Exercise 15.1.9 Let r be the line through the point A = (1, 2,−3) in E
3 which is

orthogonal to the space L((1, 1, 0), (0, 1,−1)). Its normal equation is given by

Nr :
{

(P − A) · (1, 1, 0) = 0

(P − A) · (0, 1,−1) = 0
,

that is

Nr :
{

(x − 1, y − 2, z + 3) · (1, 1, 0) = 0

(x − 1, y − 2, z + 3) · (0, 1,−1) = 0

yielding then the cartesian equation
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�r :
{

x + y − 3 = 0

y − z − 5 = 0
.

15.2 Orthogonality Between Linear Affine Varieties

In the Euclidean affine space E
n there is the notion of orthogonality. Thus, we have:

Definition 15.2.1 One says that

(a) the lines r, r ′ ⊂ E
n are orthogonal if v · v′ = 0 for any v ∈ Sr and any v′ ∈ Sr ′ ,

(b) the planes π,π′ ⊂ E
3 are orthogonal if u · u′ = 0 for any u ∈ S⊥

π and any

u′ ∈ S⊥
π′ ,

(c) the line r with direction v is orthogonal to the plane π in E
3 if v ∈ S⊥

π .

Exercise 15.2.2 We consider the following lines in E
2,

�r1
: 2x − 2y + 1 = 0,

�r2
: x + y + 3 = 0,

r3 : (x, y) = (1,−3) + λ(1, 1),

Nr4
: (x + 1, y − 4) · (1, 2) = 0

with directions spanned by the vectors

v1 = (2, 2),

v2 = (1,−1),

v3 = (1, 1),

v4 = (1,−2).

It is immediate to show that the only orthogonal pairs of lines among them are

r1 ⊥ r2 and r2 ⊥ r3.

Exercise 15.2.3 Consider the lines r, r ′ ⊂ E
3 given by

r : (x, y, z) = (1, 2, 1) + λ(3, 0,−1) , r ′ :

⎧

⎨

⎩

x = 3 + µ

y = 2 − 2µ

z = 3µ

.

We have Sr = L((3, 0,−1)) and Sr ′ = L((1,−2, 3)). Since

(3, 0,−1) · (1,−2, 3) = 0

we conclude that r is orthogonal to r ′.
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Exercise 15.2.4 Let π be the plane in E
3 whose cartesian equation is

�π : x − y + 2z − 3 = 0.

In order to find an equation for the line r through A = (1, 2, 1) which is orthogonal

to π we notice from the Remark 15.1.6, that it is S⊥
π = L((1,−1, 2)): we can then

write

r : (x, y, z) = (1, 2, 1) + λ(1,−1, 2).

Exercise 15.2.5 Consider in E
3 the line given by

�r :
{

x − 2y + z − 1 = 0

x + y = 0
.

We seek to determine:

(1) a cartesian equation for the plane π through the point A = (−1,−1,−1) and

orthogonal to r ,

(2) the intersection between r and π.

We proceed as follows.

(1) From the cartesian equation �r we have that

S⊥
r = L((1,−2, 1), (1, 1, 0))

and this subspace yields the direction Sπ . Since A ∈ π, a vector equation for π

is given by

π : (x, y, z) = −(1, 1, 1) + λ(1,−2, 1) + µ(1, 1, 0).

By noticing that Sπ = L((1,−1,−3)), a normal equation for π is given by

Nπ : (P − A) · (1,−1,−3) = 0

yielding the cartesian equation

�π : x − y − 3z − 3 = 0.

(2) The intersection π ∩ r is clearly given by the unique solution of the linear

system

�π∩r :

⎧

⎨

⎩

x − 2y + z − 1 = 0

x + y = 0

x − y − 3z − 3 = 0,

,

which is P = 1
11

(6,−6,−7).
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Exercise 15.2.6 We consider again the lines r and r ′ in E
3 from the Exercise 15.2.3.

We know that r ⊥ r ′. We determine the plane π which is orthogonal to r ′ and such

that r ⊂ π. Since L((1,−2, 3)) is the direction of r ′, we can write from the Remark

15.1.6 that

�π : x − 2y + 3z + d = 0

with d a real parameter. The line r is in π if and only if the coordinates of every of

its points P = (1 + 3λ, 2, 1 − λ) ∈ r solve the equation �π , that is, if and only if

the equation

(1 + 3λ) − 2(2) + 3(1 − λ) + d = 0

has a solution for each value of λ. This is true if and only if d = 0, so a cartesian

equation for π is

�π : x − 2y + 3z = 0.

Exercise 15.2.7 For the planes

�π : 2x + y − z − 3 = 0, �π′ : x + y + 3z − 1 = 0

in E
3 we have S⊥

π = L((2, 1,−1)) and S⊥
π′ = L((1, 1, 3)). We conclude that π is

orthogonal to π′, since (2, 1,−1) · (1, 1, 3) = 0. Notice that

(2, 1,−1) ∈ Sπ′ = {(a, b, c, ) : a + b + 3c = 0},

that is S⊥
π ⊂ Sπ′ . We can analogously show that S⊥

π′ ⊂ Sπ . This leads to the following

remark.

Remark 15.2.8 The planes π,π′ ⊂ E
3 are orthogonal if and only if S⊥

π ⊂ Sπ′ (or

equivalently if and only if S⊥
π′ ⊂ Sπ).

In order to recap the results we described in the previous pages, we consider the

following example.

Exercise 15.2.9 Consider the point A = (1, 0, 1) in E
3 and the lines r, s with equa-

tions

r : (x, y, z) = (1, 2, 1) + λ(3, 0,−1), �s :
{

x − y + z + 2 = 0

x − z + 1 = 0
.

We seek to determine:

(a) the set F of lines through A which are orthogonal to r ,

(b) the line l ∈ F which is parallel to the plane π given by �π : x − y + z + 2 = 0,

(c) the line l ′ ∈ F which is orthogonal to s,

(d) the lines q ⊂ π′ with �π′ : y − 2 = 0 which are orthogonal to r .

For these we proceed as follows.



15.2 Orthogonality Between Linear Affine Varieties 275

(a) A line u through A has a vector equation

(x, y, z) = (1, 0, 1) + λ(a, b, c)

with arbitrary direction Su = L((a, b, c)). Since u is to be orthogonal to r , we

have the condition (a, b, c) · (3, 0, 1) = 3a − c = 0. The set F is then given by

the union F = {rα}α∈R ∪ {r} with

rα : (x, y, z) = (1, 0, 1) + µ(1,α, 3) for a �= 0,

and

r : (x, y, z) = (1, 0, 1) + µ(0, 1, 0) for a = c = 0.

(b) Since the direction Sπ of the plane π is given by the subspace orthogonal to

L((1,−1, 1)), it is clear from (0, 1, 0) · (1,−1, 1) �= 0 that the line r is not

parallel to π. This means that the line l must be found within the set {rα}α∈R. If

we impose that (1,α, 3) · (1,−1, 1) = 0, we have α = 4, so the line l is given

by

l : (x, y, z) = (1, 0, 1) + µ(1, 4, 3).

(c) A cartesian equation for s is given by solving the linear system �s in terms of

one free unknown. It is immediate to show that

s : (x, y, z) = (−1 + η, 1 + 2η, η) = (−1, 1, 0) + η(1, 2, 1).

The condition rα ⊥ s is equivalent to (1,α, 3) · (1, 2, 1) = 0, reading α = −2,

so we have

l ′ : (x, y, z) = (1, 0, 1) + µ(1,−2, 3).

This is the unique solution to the problem: we directly inspect that r is not

orthogonal to s, since (0, 1, 0) · (1, 2, 1) = 2 �= 0.

(d) A plane πh is orthogonal to r if and only if

�πh
: 3x − z + h = 0.

The lines qh are then given by the intersection

�qh
= �πh∩π′ :

{

3x − z + h = 0

y − 2 = 0
with h ∈ R.
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15.3 The Distance Between Linear Affine Varieties

It is evident that the distance between two points A and B on a plane is defined to

be the length of the line segment whose endpoints are A and B. This definition can

be consistently formulated in a Euclidean affine space.

Definition 15.3.1 Let A and B be a pair of points in E
n . The distance d(A, B)

between them is defined as

d(A, B) = ‖B − A‖ =
√

(B − A) · (B − A).

Exercise 15.3.2 If A = (1, 2, 0,−1) and B = (0,−1, 2, 2) are points in E
4, then

d(A, B) = ‖(−1,−3, 2, 3)‖ =
√

23.

The well known properties of a Euclidean distance function are a consequence of

the corresponding properties of the scalar product.

Proposition 15.3.3 For any A, B, C points in E
n the following properties hold.

(1) d(A, B) ≥ 0,

(2) d(A, B) = 0 if and only if A = B,

(3) d(A, B) = d(B, A).

(4) d(A, B) + d(B, C) ≥ d(A, C).

In order to introduce a notion of distance between a point and a linear affine

variety, we start by looking at an example. Let us consider in E
2 the point A = (0, 0)

and the line r whose vector equation is (x, y) = (1, 1) + λ(1,−1). By denoting

Pλ = (1 + λ, 1 − λ) a generic point in r , we compute

d(A, Pλ) =
√

2 + 2λ2.

It is immediate to verify that, as a function of λ, the quantity d(A, P) ranges

between
√

2 and +∞: it is therefore natural to consider the minimum of this range

as the distance between A and r . We have then d(A, r) =
√

2.

Definition 15.3.4 If L is a linear affine variety and A is a point in E
n , the distance

d(A, L) between A and L is defined to be

d(A, L) = min{d(A, B) : B ∈ L}.

Remark 15.3.5 It is evident from the definition above that d(A, L) = 0 if and only

if A ∈ L . We shall indeed prove that, given a point A and a linear affine variety L in

E
n , there always exists a point A0 ∈ L such that d(A, L) = d(A0, L), thus showing

that the previous definition is well posed.
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Proposition 15.3.6 Let L be a linear affine variety and A /∈ L a point in E
n . It holds

that

d(A, L) = d(A, A0) with A0 = L ∩ (A + S⊥
L ).

Here the set A + S⊥
L denotes the linear affine variety through A whose direction is

S⊥
L . The point A0 is called the orthogonal projection of A on L.

Proof Since the linear system �L∩(A+S⊥
L ) given by the cartesian equations �L and

�A+S⊥
L

is of rank n with n unknowns, the intersection L ∩ (A + S⊥
L ) consists of a

single point that we denote by A0.

Let B be an arbitrary point in L . We can decompose

A − B = (A − A0) + (A0 − B),

with A0 − B ∈ SL (since both A0 and B are in L) and A − A0 ∈ S⊥
L (since both A

and A0 are points in the linear affine variety A + S⊥
L ). We have then

(A − A0) · (A0 − B) = 0

and we write

(d(A, B))2 = ‖A − B‖2 = ‖(A − A0) + (A0 − B)‖2

= ‖A − A0‖2 + ‖A0 − B‖2.

As a consequence,

(d(A, B))2 ≥ ‖A − A0‖2 = (d(A, A0))
2

for any B ∈ L , and this proves the claim. �

Exercise 15.3.7 Let us compute the distance between the line r : 2x + y + 4 = 0

and the point A = (1,−1) in E
2. We start by finding the line sA = A + S⊥

r through

A which is orthogonal to r . The direction S⊥
r is spanned by the vector (2, 1), so we

have

sA : (x, y) = (1,−1) + λ(2, 1).

The intersection A0 = r ∩ sA is then given by the value of the parameter λ that

solves the equation

2(1 + 2λ) + (−1 + λ) + 4 = 0,

that is λ = −1 giving A0 = (−1,−2). Therefore we have

d(A, r) = d(A, A0) = ‖(2, 1)‖ =
√

5.
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Exercise 15.3.8 Let us consider in E
3 the point A = (1,−1, 0) and the line r with

vector equation r : (x, y, z) = (1, 2, 1) + λ(1,−1, 2). In order to compute the dis-

tance between A and r we first determine the plane πA := A + S⊥
r . Since the direction

of r must be orthogonal to πA, from the Remark 15.1.6 the cartesian equation for πA

is given by

�πA
: x − y + 2z + d = 0,

with d ∈ R. The value of d if fixed by asking that A ∈ πA, that is 1 + 1 + d = 0

giving d = −2. We then have

�πA
: x − y + 2z − 2 = 0.

The point A0 is now the intersection r ∩ πA, which is given for the value of λ = 1
6

which solves,

(1 + λ) − (2 − λ) + 2(1 + 2λ) − 2 = 0.

It is therefore A0 = ( 7
6
, 11

6
, 4

3
), with

d(A, r) = d(A, A0) = ‖(
1

6
,

17

6
,

4

3
)‖ =

√

59

6
.

The next theorem yields a formula which allows one to compute more directly

the distance d(Q, H) between a point Q and an hyperplane H in E
n .

Theorem 15.3.9 Let H be a hyperplane and Q a point in E
n with

�H : a1x1 + · · · + an xn + b = 0 and Q = (x ′
1, . . . , x ′

n). The distance between Q

and H is given by

d(Q, H) =
|a1x ′

1 + · · · + an x ′
n + b|

√

a2
1 + · · · + a2

n

.

Proof If we consider X = (x1, . . . , xn) and A = (a1, . . . , an) as vectors in R
n , using

the scalar product in E
n , the cartesian equation for H can be written as

�H : A · X + b = 0.

We know that A ∈ S⊥
H , so the line through A which is orthogonal to H is made

of the points P such that

r : P = Q + λA.

The intersection point Q0 = r ∩ H is given by replacing X in �H with such a P ,

that is
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A · (Q + λA) + b = 0 ⇒ A · Q + λA · A + b = 0

⇒ λ = −
A · Q + b

A · A
.

The equation for r gives then

Q0 = Q −
A · Q + b

‖A‖2
A.

We can now easily compute

‖Q − Q0‖2 =
∥

∥

∥

∥

A · Q + b

‖A‖2
A

∥

∥

∥

∥

2

=
|A · Q + b|2

‖A‖4
‖A‖2 =

|A · Q + b|2

‖A‖2
,

therefore getting

d(Q, H) =
|A · Q + b|

‖A‖
=

|a1x ′
1 + · · · + an x ′

n + b|
√

a2
1 + · · · + a2

n

,

as claimed. �

Exercise 15.3.10 Consider the line r with cartesian equation �r : 2x + y + 4 = 0

and the point A = (1,−1) in E
2 as in the Exercise 15.3.7 above. From the Theorem

15.3.9 we have

d(A, r) =
|2 − 1 + 4|

√
4 + 1

=
√

5.

Exercise 15.3.11 By making again use of the Theorem 15.3.9 it is easy to com-

pute the distance between the point A = (1, 2,−1) and the plane π in E
3 with

�π : x + 2y − 2z + 3 = 0. We have

d(A,π) =
|1 + 4 + 2 + 3|

√
1 + 4 + 4

=
10

3
.

We generalise the analysis above with a natural definition for the distance between

any two linear affine varieties.

Definition 15.3.12 Let L and L ′ two linear affine varieties in E
n . The distance

between them is defined as the non negative real number

d(L , L ′) = min{d(A, A′) : A ∈ L , A′ ∈ L ′}.

It is evident that d(L , L ′) = 0 if and only if L ∩ L ′ �= ∅. It is indeed possible to

show that the previous definition is consistent even when L ∩ L ′ = ∅. Moreover one
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can show that there exist a point Ā ∈ L and a point Ā′ ∈ L ′, such that the minimum

distance is attained for them, that is d( Ā, Ā′) ≤ d(A, A′) for any A ∈ L and A′ ∈ L ′.
For such a pair of points it is d(L , L ′) = d( Ā, Ā′).

In the following pages we shall study the following cases of linear varieties which

do not intersect:

• lines r, r ′ in E
2 which are parallel,

• planes π,π′ in E
3 which are parallel,

• a plane π and a line r in E
3 which are parallel,

• lines r, r ′ in E
3 which are parallel.

Remark 15.3.13 Consider lines r and r ′ in E
2 which are parallel and distinct. Their

cartesian equations are

�r : ax + by + c = 0, �r ′ : ax + by + c′ = 0,

for c′ �= c. Let A = (x ′
1, x ′

2) ∈ r , that is ax ′
1 + bx ′

2 + c = 0. From the Theorem 15.3.9

it is

d(A, r ′) =
|ax ′

1 + bx ′
2 + c′|

√
a2 + b2

=
|c′ − c|

√
a2 + b2

.

From the Definition 15.3.12 we have d(A, A′) ≥ d(A, r ′). Since the value d(A, r ′)
we have computed does not depend on the coordinates of A ∈ r , we have that d(A, r ′)
is the minimum value for d(A, A′) when A ranges in r and A′ in r ′, so we conclude

that

d(r, r ′) =
|c′ − c|

√
a2 + b2

.

Notice that, with respect to the same lines, we also have

d(A′, r) =
|c′ − c|

√
a2 + b2

= d(A, r ′).

Exercise 15.3.14 Consider the parallel lines r, r ′ ⊂ E
2 with cartesian equations

�r : 2x + y − 3 = 0, �r ′ : 2x + y + 2 = 0.

The distance between them is

d(r, r ′) =
|2 − (−3)|

√
5

=
√

5.

The distance between two parallel hyperplanes in E
n is given by generalising the

proof of the Theorem 15.3.9.

Proposition 15.3.15 If H and H ′ are parallel hyperplanes in E
n with cartesian

equations
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�H : a1x1 + · · · + an xn + b = 0, �H ′ : a1x1 + · · · + an xn + b′ = 0,

then d(H, H ′) = d(Q, H ′), where Q is an arbitrary point in H, and therefore it is

d(H, H ′) =
|b − b′|

√

a2
1 + · · · + a2

n

.

Proof We proceed as in the Theorem 15.3.9, so we set X = (x1, . . . , xn) and

A = (a1, . . . , an) and write

�H : A · X + b = 0, �H ′ : A · X + b′ = 0.

As we argued in the Remark 15.3.13, by setting Q = X̄ with AX̄ + b = 0, as an

arbitrary point in H , we have

d(Q, H ′) =
|A · X̄ + b′|

‖A‖
=

|b′ − b|
‖A‖

and since such a distance does not depend on Q, we conclude that

d(H, H ′) = d(Q, H ′). �

Exercise 15.3.16 The planes

�π : x + 2y − z + 2 = 0, �π′ : x + 2y − z − 4 = 0

are parallel and distinct. The distance between them is

d(π,π′) =
|2 + 4|

√
1 + 4 + 1

=
√

6.

It is clear that not all linear affine varieties which are parallel have the same

dimension. The next proposition shows a result within this situation.

Proposition 15.3.17 Let r be a line and H an hyperplane in E
n , with r parallel to

H. It is

d(r, H) = d(P̄, H),

where P̄ is any point in r .

Proof With the notations previously adopted, we have A = (a1, . . . , an) and

X = (x1, . . . , xn), we represent H by the cartesian equation

�H : A · X + b = 0

and r by the vector equation
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r : P = P̄ + λv

where P̄ ∈ r while v · A = 0 since r is parallel to H . From the Theorem 15.3.9 we

have

d(P, H) =
|A · P + b|

‖A‖
=

|A · (P̄ + λv) + b|
‖A‖

=
|A · P̄ + b|

‖A‖
.

This expression does not depend on λ: this is the reason why d(P, H) = d(P̄, H) =
d(r, H). �

Exercise 15.3.18 Consider in E
3 the line r and the plane π given by:

�r :
{

2x − y + z − 2 = 0

y + 2z = 0
, �π : 2x − y + z + 3 = 0.

Since r is parallel to π, we take the point P = (1, 0, 0) in r and compute the

distance between P and π. One gets

d(r,π) = d(P,π) =
5

√
6
.

Exercise 15.3.19 Consider the lines r and r ′ in E
3 given by the vector equations

r : (x, y, z) = (3, 1, 2) + λ(1, 2, 0), r ′ : (x, y, z) = (−1, −2, 3) + λ(1, 2, 0).

Since r is parallel to r ′, the distance between them can be computed by proceeding

as in the previous exercises, that is d(r, r ′) = d(A, r ′) = d(B, r), where A is an

arbitrary point in r and B an arbitrary point in r ′.
We illustrate an alternative method. We notice that, if π is a plane orthogo-

nal to both r and r ′, then the distance d(r, r ′) = d(P, P ′) where P = π ∩ r and

P ′ = π ∩ r ′. We consider the plane π through the origin which is orthogonal to both

r and r ′, and whose cartesian equation is

�π : x + 2y = 0.

Direct calculations show that P = π ∩ r = (2,−1, 2) and P ′ = π ∩ r ′ =
(0, 0, 3), so

d(r, r ′) = d(P, P ′) =
√

6.

We end the section by sketching how to define the distance between skew lines

in E
3.

Remark 15.3.20 If r and r ′ are skew lines in E
3, then there exist a point P ∈ r and

a point P ∈ r ′ which are the intersections of the lines r and r ′ with the unique line s
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orthogonally intersecting both r and r ′. The line s is the minimum distance line for

r and r ′, and the distance d(r, r ′) = d(P, P ′).

Exercise 15.3.21 We consider the skew lines in E
3,

r : (x, y, z) = λ(1,−1, 1), r ′ : (x, y, z) = (0, 0, 1) + µ(1, 0, 1).

The subspace N ⊂ E3 which is orthogonal to both the directions Sr and Sr ′ is

N = L((1, 0,−1)). The minimum distance line s for the given r and r ′ has the

direction Ss = N , and intersects r in a point P and r ′ in a point P ′. Since P ∈ r

and P ∈ r ′, there exists a value for λ and a value for µ such that P = Q(λ) and

P ′ = Q′(µ) with

Q(λ) + t (1, 0,−1) = Q′(µ),

where ν is the parameter for s. The points P = s ∩ r and P ′ = s ∩ r ′ are then those

corresponding to the values of the parameters λ and µ solving such a relation, that is

s :

⎧

⎨

⎩

λ + ν = µ

−λ = 0

λ − t = 1 + µ

.

One finds λ = 0, µ = ν = − 1
2
, so P = (0, 0, 0), P ′ = 1

2
(−1, 0, 1) and

d(r, r ′) = d(P, P ′) =
1

√
2
.

15.4 Bundles of Lines and of Planes

A useful notion for several kinds of problems in affine geometry is that of bundle of

lines and bundle of planes.

Definition 15.4.1 Given a point A in E
2, the bundle of concurrent lines with center

(or point of concurrency) A is the set of all the lines through A in E
2; we shall denote

it by FA.

The next result is immediate.

Proposition 15.4.2 With A = (x0, y0) ∈ E
2, the cartesian equation of an arbitrary

line in the bundle FA through A is given by

�FA
: α(x − x0) + β(y − y0) = 0

for any choice of the real parameters α and β such that (α,β) ∈ R
2 \ {(0, 0)}.
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Notice that the parameters α and β label a line in FA, but there is not a bijection

between pairs (α,β) and lines in FA: the pairs (α0,β0) and (ρα0, ρβ0), for ρ �= 0,

give the same line in FA.

Exercise 15.4.3 The cartesian equation for the bundle FA of lines through

A = (1,−2) in E
2 is

�FA
: α(x − 1) + β(y + 2) = 0.

The result described in the next proposition (whose proof we omit) shows that the

bundle FA can be generated by any pair of distinct lines concurrent in A.

Proposition 15.4.4 Let A ∈ E
2 be the unique intersection of the lines

�r : ax + by + c = 0, �r ′ : a′x + b′y + c′ = 0.

Any relation

�(α,β) : α(ax + by + c) + β(a′x + b′y + c′) = 0

with R
2 ∋ (α,β) �= (0, 0) is the cartesian equation for a line in the bundle FA of lines

with center A, and for any element s of FA there exists a pair R
2 ∋ (α,β) �= (0, 0)

such that the cartesian equation of s can be written as

�(α,β) : α(ax + by + c) + β(a′x + b′y + c′) = 0. (15.1)

Definition 15.4.5 If the bundle FA is given by (15.1), the distinct lines r, r ′ are

called the generators of the bundle. To stress the role of the generating lines, we also

write in such a case FA = F(r, r ′).

Exercise 15.4.6 The line r whose cartesian equation is �r : x + y + 1 is an ele-

ment in the bundle FA in the Exercise 15.4.3, corresponding to the parameters

(α,β) = (1, 1) or equivalently (α,β) = (ρ, ρ) with ρ �= 0.

Exercise 15.4.7 Consider the following cartesian equation,

�(α,β) : α(x − y + 3) + β(2x + y + 3) = 0,

depending on a pair of real parameters (α,β) �= (0, 0). Since the relations

x − y + 3 = 0 and 2x + y + 3 = 0 yield the cartesian equations for a pair of non

parallel lines in E
2, the equation �(α,β) is the cartesian equation for a bundle F of

lines in E
2. We compute:

(a) the centre A of the bundle F ,

(b) the line s1 ∈ F which is orthogonal to the line r1 whose cartesian equation is

�r1
: 3x + y − 1 = 0,
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(c) the line s2 ∈ F which is parallel to the line r2 whose cartesian equation is

�r2
: x − y = 0,

(d) the line s3 ∈ F through the point B = (1, 1).

We proceed as follows:

(a) The centre of the bundle is given by the intersection

{

x − y + 3 = 0

2x + y + 3 = 0
,

which is found to be A = (−2, 1).

(b) We write the cartesian equation of the bundle F ,

�F : (α + 2β)x + (−α + β)y + 3(α + β) = 0.

As a consequence, the direction of an arbitrary line in the bundle F is spanned by

the vectorv(α,β) = (α + 2β,β − α). In order for the line s1 ∈ F to be orthogonal

to r1 we require

(α + 2β,β − α) · (−1, 3) = 0 ⇒ (α,β) = ρ(7,−2)

with ρ �= 0. The line s has the cartesian equation �(7,−2) : x − 3y + 5 = 0.

(c) In order for an element s2 ∈ F to be parallel to r2 we require that its direction

coincides with the direction of r2, which is L((1,−1)). We impose then

α + 2β = −(β − α) ⇒ (α,β) = ρ(1, 0)

with ρ �= 0. So we have that s2 is given by the cartesian equation

�(1,0) : x − y + 3 = 0. The line s2 turns out to be indeed one of the genera-

tors of the bundle F .

(d) We have now to require that the coordinates of B solve the equation �(α,β), that

is

(α + 2β) + (β − α) + 3(α + β) = 0 ⇒ 3α + 6β = 0,

giving (α,β) = ρ(2,−1) with ρ �= 0. The line s3 is therefore given by

�(2,−1) : y − 1 = 0.

Remark 15.4.8 Notice that the computations in (d) above can be generalised. If FA

is a bundle of lines through A, for any point B �= A there always exists a unique line

in FA which passes through B. We denote it as the line rAB ∈ FA.

Definition 15.4.9 Let �r : ax + by + c = 0 be the cartesian equation of the line r

in E
2. The set of all lines which are parallel to r is said to define a bundle of parallel

lines or an improper bundle. The most convenient way to describe an improper bundle

of lines is

�F : ax + by + h = 0, with h ∈ R.
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Exercise 15.4.10 We consider the line r in E
2 given by �r : 2x − y + 3 = 0. We

wish to determine the lines s which are parallel to r and whose distance from r is

d(s, r) =
√

5.

The parallel lines to r are the elements rh of the improper bundle F whose cartesian

equation is

�h : 2x − y + h = 0.

From the Proposition 15.3.15 we have

√
5 = d(rh, r) =

|h − 3|
√

5
⇒ |h − 3| = 5 ⇒ h − 3 = ±5.

The solutions of the exercise are

�r8
: 2x − y + 8 = 0, �r−2

: 2x − y − 2 = 0.

In a way similar to above, one has the notion of bundle of planes in a three

dimensional affine space.

Definition 15.4.11 Let r be a line in E
3. The bundle Fr of planes through r is the set

of all planes π in E
3 which contains r , that is r ⊂ π. The line r is called the carrier

of the bundle Fr .

Moreover, if π is a plane in E
3, the set of all planes in E

3 which are parallel to π

gives the (improper) bundle of parallel planes to π.

The following proposition is the analogue of the Proposition 15.4.2.

Proposition 15.4.12 Let r be the line in E
3 with cartesian equation given by

�r :
{

ax + by + cz + d = 0

a′x + b′y + c′z + d ′ = 0
.

For any choice of the parameters (α,β) �= (0, 0) the relation

�(α,β) : α(ax + by + cz + d) + β(a′x + b′y + c′z + d ′) = 0 (15.2)

yields the cartesian equation for a plane in the bundle Fr with carrier line r , and for

any plane π in such a bundle there is a pair (α,β) �= (0, 0) such that the cartesian

equation of π is given by (15.2).

Definition 15.4.13 If the bundle Fr of planes is given by the cartesian equation

(15.2), the planes �π : ax + by + cz + d = 0 and �π′ : a′x + b′y + c′z + d ′ = 0

are called the generators of Fr . In such a case the equivalent notation F(π,π′) will

also be used.

Remark 15.4.14 Clearly, the bundle Fr is generated by any two distinct planes π, π′

through r .
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Exercise 15.4.15 Given the line r whose vector equation is

r : (x, y, z) = (1, 2,−1) + λ(2, 3, 1),

we determine the bundle Fr of planes through r . In order to obtain a cartesian equation

for r , we eliminate the parameter λ from the vector equation above, as follows

⎧

⎨

⎩

x = 1 + 2λ

y = 2 + 3λ

λ = z + 1

⇒
{

x = 1 + 2(z + 1)

y = 2 + 3(z + 1)
⇒ �r :

{

x − 2z − 3 = 0

y − 3z − 5 = 0
.

The cartesian equation for the bundle is then given by

�Fr
: α(x − 2z − 3) + β(y − 3z − 5) = 0

with any (α,β) �= (0, 0).

Let us next find the plane π ∈ Fr which passes through A = (1, 2, 3). The con-

dition A ∈ π yields

α(1 − 6 − 3) + β(2 − 9 − 5) = 0 ⇒ 2α + 3β = 0.

We can pick (λ,µ) = (3,−2), giving �π : 3(x − 2z − 3) − 2(y − 3z − 5) = 0,

that is �π : 3x − 2y + 1 = 0.

We also find the plane σ ∈ Fr which is orthogonal to v = (1,−1, 1). We know

that a vector orthogonal to a plane π ∈ Fr with equation

�Fr
: αx + βy − (2α + 3β)z − 3α − 5β = 0,

is given by (α,β,−2α − 3β). The conditions we have to meet are then

{

α = −β

α = −2α − 3β
⇒ α = −β.

If we fix (λ,µ) = (1,−1), we have �σ : (x − 2z − 3) − (y − 3z − 5) = 0, that is

�σ : x − y + z + 2 = 0.

15.5 Symmetries

We introduce a few notions related to symmetries which are useful to solve problems

in several branches of geometry and physics.

Definition 15.5.1 Consider a point C ∈ E
n .
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(a) Let P ∈ E
n be an arbitrary point in E

n . The symmetric point to P with respect

to C is the element P ′ ∈ E
n that belongs to the line rC P passing through C and

P , and such that d(P ′, C) = d(P, C) with P ′ �= P .

(b) Let X ⊂ E
n be a set of points. The symmetric points to X with respect to C is

the set X ′ ⊂ E
n given by every point P ′ which is symmetric to any P in X with

respect to C .

(c) Let X ⊂ E
n . We say that X is symmetric with respect to C if X = X ′, that is if

X contains the symmetric point (with respect to C) to any of its points. In such

a case, C is called a symmetry centre for X .

Exercise 15.5.2 In the euclidean affine plane E
2 consider the point C = (2, 3).

Given the point P = (1,−1), we determine its symmetric P ′ with respect to C .

And with the line �r : 2x − y − 3 = 0, we determine its symmetric r ′ with respect

to C .

We consider the line rC P through P and C , which has the vector equation

rC P : (x, y) = (1,−1) + λ(1, 4).

The distance between P and C is given by ‖P − C‖ =
√

17, so the point P ′ can

be obtained by finding the value for the parameter λ such that the distance

‖Pλ − C‖ = ‖(−1 + λ,−4 + 4λ)‖ =
√

(−1 + λ)2 + (−4 + 4λ)2

be equal to ‖P − C‖. We have then

√

(−1 + λ)2 + 16(−1 + λ)2 =
√

17 ⇒
√

17(−1 + λ)2 =
√

17 ⇒
√

(−1 + λ)2 = 1

that is ‖ − 1 + λ‖ = 1, giving λ = 2, λ = 0. For λ = 0 we have Pλ=0 = P , so

P ′ = Pλ=2 = (3, 7).

In order to determine r ′ we observe that P ∈ r and we claim that, since r is a line,

the set r ′ symmetric to r with respect to C is a line as well. It is then sufficient to write

the line through P ′ and another point Q′ which is symmetric to Q ∈ r with respect

to C . By choosing Q = (0,−3) ∈ r , it is immediate to compute, with the same steps

as above, that Q′ = (4, 9). We conclude that r ′ = rC Q′ , with vector equation

r ′ : (x = 3 + λ, y = 7 + 2λ).

Definition 15.5.3 Let A, B be points in E
n . The midpoint MAB of the line segment

AB is the (unique) point of the line rAB with ‖MAB − A‖ = ‖MAB − B‖.

Notice that A is the symmetric point to B with respect to MAB , and clearly B is

the symmetric point to A with respect to MAB with MAB = MB A. One indeed has

the vector equality A − MAB = MAB − B, giving

MAB =
A + B

2
.



15.5 Symmetries 289

The set HAB given by the points

HAB =
{

P ∈ E
n : ‖P − A‖ = ‖P − B‖

}

can be shown to be the hyperplane passing through MAB and orthogonal to the line

segment AB. The set HAB is called the bisecting hyperplane of the line segment AB.

In E
2 is the bisecting line of AB, while in E

3 is the bisecting plane of AB.

Exercise 15.5.4 Consider the line segment in E
2 whose endpoints are A = (1, 2)

and B = (3, 4). Its midpoint is given by

MAB =
A + B

2
=

(1, 2) + (3, 4)

2
= (2, 3).

A point P = (x, y) belongs to the bisecting line if ‖P − A‖2 = (x − 1)2 + (y − 2)2

equates ‖P − B‖2 = (x − 3)2 + (y − 4)2 = ‖PB‖2, which gives

(x − 1)2 + (y − 2)2 = (x − 3)2 + (y − 4)2 ⇒ −2x + 1 − 4y + 4 = −6x + 9 − 8y + 16,

that is �HAB
: x + y − 5 = 0. It is immediate to check that M ∈ HAB . The direction

of the bisecting line is spanned by (1,−1), which is orthogonal to the direction vector

B − A = (2, 2) spanning the direction of the line rAB .

Exercise 15.5.5 Consider the points A = (1, 2,−1) and B = (3, 0, 1) in E
3. The

corresponding midpoint is

MAB =
A + B

2
=

(1, 2,−1) + (3, 0, 1)

2
= (2, 1, 0).

The bisecting plane HAB is given by the points P = (x, y, z) fulfilling the con-
dition

(x − 1)2 + (y − 2)2 + (z + 1)2 = ‖P − A‖2 = ‖P − B‖2 = (x − 3)2 + y2 + (z − 1)2

which gives

�π : x − y + z − 1 = 0.

The bisecting plane is then orthogonal to (1,−1, 1), with rAB having a direction

vector given by B − A = (2,−2, 2).

Having defined the notion of symmetry of a set in E
n with respect to a point, we

might wonder about a meaningful definition of symmetry of a set with respect to an

arbitrary linear affine variety in E
n . Such a task turns out to be quite hard in general,

so we focus on the easy case of defining only the notion of symmetry with respect

to a hyperplane.

Firstly, a general definition.
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Definition 15.5.6 Let H ⊂ E
n be a hyperplane.

(a) Let P ∈ E
n be an arbitrary point in E

n . The symmetric point to P with respect

to H is the element P ′ ∈ E
n such that H is the bisecting hyperplane of the line

segment P P ′.
(b) Let X ⊂ E

n be a set of points. The symmetric points to X with respect to H is

the set X ′ ⊂ E
n given by every point P ′ which is symmetric to any P in X with

respect to H .

(c) Let X ⊂ E
n . We say that X is symmetric with respect to H if X = X ′, that is if

X contains the symmetric point (with respect to H ) to any of its points. In such

a case, H is called a symmetry hyperplane for X .

Remark 15.5.7 Notice that if P ′ is the symmetric point to P with respect to the

hyperplane H , then the line rP P ′ is orthogonal to H and d(P ′, H) = d(P, H).

We finish with some examples on the simplest cases in E
2 and E

3.

Exercise 15.5.8 A line is a hyperplane in E
2. Given the point P = (1, 2) we deter-

mine its symmetric P ′ with respect to the line whose equation is �r : 2x + y − 2.

We observe that if t is the line through P which is orthogonal to P , then P ′ is

the point in t fixed by the condition d(P, r) = d(P ′, r). The direction of t is clearly

spanned by the vector (2, 1), so

t :
{

x = 1 + 2λ

y = 2 + λ

and the points in t can be written as Qλ = (1 + 2λ, 2 + λ). By setting

d(Qλ, r) = d(P, r) ⇒
|2(1 + 2λ) + (2 + λ) − 2|

√
4 + 1

=
|2 + 2 − 2|

√
4 + 1

⇒ |5λ + 2| = 2

we see that Qλ=0 = P , while Qλ=−4/5 = P ′ = 1
5
(−3, 6).

Exercise 15.5.9 Given P = (0, 1,−2) ∈ E
3, we determine its symmetric P ′ with

respect to the hyperplane π (which is indeed a plane, since we are in E
3) whose

equation is �π : 2x + 4y + 4z − 5 = 0.

We firstly find the line t through P which is orthogonal to π. The orthogonal

subspace to π is spanned by the vector (2, 4, 4) or equivalently (1, 2, 2), so the line

t has parametric equation

t :

⎧

⎨

⎩

x = λ

y = 1 + 2λ

z = −2 + 2λ

.

Since for the symmetric point P ′ it is d(P,π) = d(P ′,π), we label a point Q in
t by the parameter λ as Qλ = (λ, 1 + 2λ,−2 + 2λ) and impose
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d(Qλ, π) = d(P,π)

⇒
|2λ + 4(1 + 2λ) + 4(−2 + 2λ) − 5|

√
36

=
|4 − 8 − 5|

√
36

⇒ |18λ − 9| = 9.

We see that P = Qλ=0 and P ′ = Qλ=1 = P ′ = (1, 3, 0).

Exercise 15.5.10 In E
3 let us determine the line r ′ which is symmetric to the line

with equation r : (x, y, z) = (0, 1,−2) + µ(1, 0, 0) with respect to the plane π with

equation π : 2x + 4y + 4z − 5 = 0.

The plane π is the same plane we considered in the previous exercise. Its orthog-

onal space is spanned by the vector (1, 2, 2). By labelling a point of the line r as

Pµ = (µ, 1,−2), we find the line tµ which passes through Pµ and is orthogonal to

π. A parametric equation for tµ is given by

tµ :

⎧

⎨

⎩

x = µ + λ

y = 1 + 2λ

z = −2 + 2λ

.

We label then points Q in tµ by writing Qλ,µ = (µ + λ, 1 + 2λ,−2 + 2λ). We

require

d(Qλ,µ,π) = d(Pµ,π)

as a condition to determine λ, since µ will yield a parameter for the line r ′. We have

d(Qλ,µ,π) =
|2(µ + λ) + 4(1 + 2λ) + 4(−2 + 2λ) − 5|

√
36

d(Pµ,π) =
|2µ + 4 − 8 − 5|

√
36

.

From d(Qλ,µ,π) = d(Pµ,π) we have

|2µ + 18λ − 9| = |2µ − 9| ⇒ 2µ + 18λ − 9 = ±(2µ − 9).

For λ = 0 we recover Qλ=0,µ = Pµ. The other solution is λ = − 2
9
µ + 1, giving

Qλ=−(2/9)µ+1,µ = P ′
µ =

(

7

9
µ + 1,−

4

9
µ + 3,−

4

9
µ

)

.

By a rescaling of the parameter µ, a vector equation for the line r ′ can be written

as

r ′ : (x, y, z) = (1, 3, 0) + µ(7,−4,−4).

Exercise 15.5.11 Consider the set X ⊂ E
2 given by

X = {(x, y) ∈ E
2 : y = 5x2}
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and the line r whose cartesian equation is �r : x = 0. We wish to show that r is

a symmetry axis for X , that is X is symmetric with respect to r . We have then to

prove that each point P ′, symmetric to any point P ∈ X with respect to r , is an

element in X .

Let us consider a generic P = (x0, y0) ∈ X and determine its symmetric with

respect to r . The line t through P which is orthogonal to r has the following parametric

equation

t :
{

x = x0 + λ

y = y0
.

A point in t is then labelled Pλ = (x0 + λ, y0). For its distance from r we compute

d(Pλ, r) = |x0 + λ|, while d(P, r) = |x0|. By imposing that these two distances

coincide, we have

d(Pλ, r) = d(P, r) ⇔ |x0 + λ| = |x0|
⇔ (x0 + λ)2 = x2

0

⇔ λ(2x0 + λ) = 0.

The solution λ = 0 corresponds to P , the solution λ = −2x0 yields

P ′ = (−x0, y0). Such calculations do not depend on the fact that P is an element in

X . If we consider only points P in X , we have to require that y0 = 5x2
0 . It follows

that y0 = 5(−x0)
2, that is P ′ ∈ X .



Chapter 16

Conic Sections

This chapter is devoted to conics. We shall describe at length their algebraic and

geometric properties and their use in physics, notably for the Kepler laws for the

motion of celestial bodies.

16.1 Conic Sections as Geometric Loci

The conic sections (or simply conics) are parabolæ, ellipses (with circles as limiting

case), hyperbolæ. They are also known as geometric loci, that is collections of points

P(x, y) ∈ E
2 satisfying one or more conditions, or determined by such conditions.

The following three relations, whose origins we briefly recall, should be well known

x2 = 2py,
x2

a2
+

y2

b2
= 1,

x2

a2
−

y2

b2
= 1. (16.1)

Definition 16.1.1 (Parabolæ) Given a straight line δ and a point F on the plane E
2,

the set (locus) of points P equidistant from δ and F is called parabola. The straight

line δ is the directrix of the parabola, while the point F is the focus of the parabola.

This is shown in Fig. 16.1.

Fix a cartesian orthogonal reference system (O; x, y) for E
2, with a generic point

P having coordinates P = (x, y). Consider the straight line δ given by the points

with equation y = −p/2 and the focus F = (0, p/2) (with p > 0). The parabola

with directrix δ and focus F is the set of points fulfilling the condition

d(P, δ) = d(P, F). (16.2)
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Fig. 16.1 The parabola y = x2/2p

Since the point P ′ = (x,−p/2) is the orthogonal projection of P over δ, with

d(P, δ) = d(P, P ′), the condition (16.2) reads

‖P − P ′‖2 = ‖P − F‖2 ⇒ ‖(0, y + p/2)‖2 = ‖(x, y − p/2)‖2,

that is

(y + p/2)2 = x2 + (y − p/2)2 ⇒ x2 = 2py.

If C is a parabola with focus F and directrix δ then,

• the straight line through F which is orthogonal to δ is the axis of C ,

• the point where the parabola C intersects its axis is the vertex of the parabola.

Definition 16.1.2 (Ellipses) Given two points F1 ed F2 on the plane E
2, the set

(locus) of points P for which the sum of the distances between P and the points F1

and F2 is constant is called ellipse. The points F1 and F2 are called the foci of the

ellipse. This is shown in Fig. 16.2.

Fix a cartesian orthogonal reference system (O; x, y) for E
2, with a generic point

P having coordinates P = (x, y). Consider the points F1 = (−q, 0), F2 = (q, 0)

(with q ≥ 0) and k a real parameter such that k > 2q. The ellipse with foci F1, F2

and parameter k is the set of points P = (x, y) fulfilling the condition

Fig. 16.2 The ellipse x2/a2 + y2/b2 = 1
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d(P, F1) + d(P, F2) = k. (16.3)

We denote by A = (a, 0) and B = (0, b) the intersection of the ellipse with the

positive x-axis half-line and the positive y-axis half-line, thus a > 0 and b > 0. From

d(A, F1) + d(A, F2) = k we have that k = 2a; from d(B, F1) + d(B, F2) = k we

have that 2
√

q2 + b2 = k, so we write

k = 2a, q2 = a2 − b2,

with a ≥ b. By squaring the condition (16.3) we have

‖(x + q, y)‖2 + ‖(x − q, y)‖2 + 2 ‖(x + q, y)‖ ‖(x − q, y)‖ = 4a2,

that is

2(x2 + y2 + q2) + 2
√

(x2 + y2 + q2 + 2qx)(x2 + y2 + q2 − 2qx) = 4a2

that we write as

√
(x2 + y2 + q2)2 − 4q2x2 = 2a2 − (x2 + y2 + q2).

By squaring such a relation we have

−q2x2 = a4 − a2(x2 + y2 + q2).

Since q2 = a2 − b2, the equation of the ellipse depends on the real positive param-

eters a, b as follows

b2x2 + a2 y2 = a2b2,

which is equivalent to

x2

a2
+

y2

b2
= 1.

Notice that, if q = 0, that is if a = b, the foci F1 ed F2 coincide with the origin

O of the reference system, and the ellipse reduces to a circle whose equation is

x2 + y2 = r2

with radius r = a = b > 0.

If C is an ellipse with (distinct) foci F1 and F2, then

• the straight line passing through the foci is the major axis of the ellipse,

• the straight line orthogonally bisecting the segment F1 F2 is the minor axis of the

ellipse,

• the midpoint of the segment F1 F2 is the centre of the ellipse,
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Fig. 16.3 The hyperbola x2/a2 − y2/b2 = 1

• the four points where the ellipse intersects its axes are the vertices of the ellipse,

• the distance between the centre of the ellipse and the vertices on the major axis

(respectively on the minor axis) is called the major semi-axis (respectively minor

semi-axis).

Definition 16.1.3 (Hyperbolæ) Given two points F1 and F2 on the plane E
2, the set

(locus) of points P for which the absolute difference of the distances d(P, F1) and

d(P, F2) is constant, is the hyperbola with foci F1, F2. This is shown in Fig. 16.3.

Fix a cartesian orthogonal reference system (O; x, y) for E
2, with a generic point

P having coordinates P = (x, y). Consider the points F1 = (−q, 0), F2 = (q, 0)

(with q ≥ 0) and k a real parameter such that k > 2q. The hyperbola with foci

F1, F2 and parameter k is the set of points P = (x, y) fulfilling the condition

|d(P, F1) − d(P, F2)| = k. (16.4)

Notice that, since k > 0, such a hyperbola does not intersect the y-axis, since the

points on the y-axis are equidistant from the foci. By denoting by A = (a, 0) (with

a > 0) the intersection of the hyperbola with the x-axis, we have

k = |d(A, F1) − d(A, F2)| =
∣∣a + q − |a − q|

∣∣,

which yields a < q, since from a > q it would follow that |a − q| = a − q, giving

k = 2q. The previous condition then show that

k = |2a| = 2a.

By squaring the relation (16.4) we have

‖(x + q, y)‖2 + ‖(x − q, y)‖2 − 2 ‖(x + q, y)‖ ‖(x − q, y)‖ = 4a2,
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that is

2(x2 + y2 + q2) − 2
√

(x2 + y2 + q2 + 2qx)(x2 + y2 + q2 − 2qx) = 4a2

which we write as

√
(x2 + y2 + q2)2 − 4q2x2 = (x2 + y2 + q2) − 2a2.

By squaring once more, we have

−q2x2 = a4 − a2(x2 + y2 + q2),

that reads

(a2 − q2)x2 + a2 y2 = a2(a2 − q2).

From a < q we have q2 − a2 > 0, so we set q2 − a2 = b2 and write the previous

relation as

−b2x2 + a2 y2 = −a2b2,

which is equivalent to

x2

a2
−

y2

b2
= 1.

If C is a hyperbola with foci F1 and F2, then

• the straight line through the foci is the transverse axis of the hyperbola,

• the straight line orthogonally bisecting the segment F1 F2 is the axis of the hyper-

bola,

• the midpoint of the segment F1 F2 is the centre of the hyperbola;

• the points where the hyperbola intersects its transverse axis are the vertices of the

hyperbola,

• the distance between the centre of the hyperbola and its foci is the transverse

semi-axis of the hyperbola.

Remark 16.1.4 The above analysis shows that, if C is a parabola with equation

x2 = 2py,

then its directrix is the line y = −p/2 and its focus is the point (0, p/2), while the

equation

y2 = 2px

is a parabola C with directrix x = −p/2 and focus (p/2, 0).

If C is an ellipse with equation
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x2

a2
+

y2

b2
= 1

(and a ≥ b), then its foci are the points F± = (±
√

a2 − b2, 0).

If C is a hyperbola with equation

x2

a2
−

y2

b2
= 1

then its foci are the points F± = (±
√

a2 + b2, 0).

We see that the definition of a parabola requires one single focus and a straight

line (not containing the focus), while the definition of an ellipse and of a hyperbola

requires two distinct foci and a suitable distance k. This apparent diversity can be

reconciled. If F is a point is E
2 and δ a straight line with F /∈ δ, then one can consider

the locus given by points P in E
2 fulfilling the condition

d(P, F) = e d(P, δ) (16.5)

with e > 0. It is clear that, if e = 1, this relation defines a parabola with focus F and

directrix δ. We shall show later on (in Sect. 16.4 and then Sect. 16.7) that the relation

above gives an ellipse for 0 < e < 1 and a hyperbola if e > 1. The parameter e > 0

is called the eccentricity of the conic.

Since symmetry properties of conics do not depend on the reference system,

when dealing with symmetries or geometric properties of conics one can refer to the

Eqs. (16.1).

Remark 16.1.5 With the symmetry notions given in the Sect. 15.5, the y-axis is a

symmetry axis for the parabola C whose equation is y = 2px2. If P = (x0, y0) ∈ C ,

the symmetric point P ′ to P with respect to the y-axis is P ′ = (−x0, y0), which

belongs to C since 2py0 = (−x2
0 ) = x2

0 . Furthermore, the axis of a parabola is a

symmetry axis and its vertex is equidistant from the focus and the directrix if the

parabola.

In a similar way one shows that the axes of an ellipse or of a hyperbola, are

symmetry axes and the centre is a symmetry centre in both cases. For an ellipse with

equation αx2 + βy2 = 1 or a hyperbola with equation αx2 − βy2 = 1 the centre

coincided with the origin of the reference system.

16.2 The Equation of a Conic in Matrix Form

In the previous section we have shown how, in a given reference system, a parabola,

an ellipse and a hyperbola are described by one of equations in (16.1). But evidently

such equations are not the most general ones for the loci we are considering, since

they have particular positions with respect to the axes of the reference system.
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A common feature of the Eqs. (16.1) is that they are formulated as quadratic

polynomials in x and y. In the present section we study general quadratic polynomial

equations in two variables.

Since to a large extent one does not make use of the euclidean structure given

by the scalar product in E
n , one can consider the affine plane A

2(R). By taking

complex coordinates, with the canonical inclusion R
2 →֒ C

2, one enlarges the real

affine plane to the complex one,

A
2(R) →֒ A

2(C).

Definition 16.2.1 A conic section (or simply a conic) is the set of points (locus)

whose coordinates (x, y) satisfy a quadratic polynomial equation in the variables

x, y, that is

a11 x2 + 2 a12 xy + a22 y2 + 2 a13 x + 2 a23 y + a33 = 0 (16.6)

with coefficients ai j ∈ R.

Remark 16.2.2 We notice that

(a) The equations of conics considered in the previous section are particular case of

the general Eq. (16.6). As an example, for a parabola we have

a11 = 1, a23 = −2p, a12 = a22 = a13 = a33 = 0.

Notice also that in all the equations considered in the previous section for a

parabola or an ellipse or a hyperbola we have a12 = 0.

(b) There are polynomial equations like (16.6) which do not describe any of

the conics presented before: neither a parabola, nor an ellipse or a hyper-

bola. Consider for example the equation x2 − y2 = 0, which is factorised as

(x + y)(x − y) = 0. The set of solutions for such an equation is the union of

the two lines with cartesian equations x + y = 0 and x − y = 0.

Any quadratic polynomial equation (16.6) that can be factorised as

(ax + by + c)(a′x + b′y + c′) = 0

describes the union of two lines. Such lines are not necessarily real. Consider for

example the equation x2 + y2 = 0. Its set of solutions is given only by the point

(0, 0) in A
2(R), while in A

2(C) we can write x2 + y2 = (x + iy)(x − iy), so the

conic is the union of the two conjugate lines with cartesian equation x + iy = 0

and x − iy = 0.

Definition 16.2.3 A conic is called degenerate if it is the union of two lines. Such

lines can be either real (coincident or distinct) or complex (in such a case they are

also conjugate).
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The polynomial equation (16.6) can be written in a more succinct form by means

of two symmetric matrices associated with a conic. We set

R
2,2 ∋ A =

(
a11 a12

a12 a22

)
, R

3,3 ∋ B =

⎛
⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠ .

By introducing these matrices, we write the left end side of the Eq. (16.6) as

(
x y 1

)
⎛
⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

⎛
⎝

x

y

1

⎞
⎠ = a11 x2 + 2 a12 xy + a22 y2 + 2 a13 x + 2 a23 y + a33.

(16.7)

The quadratic homogeneous part of the polynomial defining (16.6) and (16.7), is

written as

FC(x, y) = a11 x2 + 2 a12 xy + a22 y2 =
(
x y

)
A

(
x

y

)
.

Such an FC is a quadratic form, called the quadratic form associated to the conic C .

Definition 16.2.4 Let C be the conic given by the equation

a11 x2 + 2 a12 xy + a22 y2 + 2 a13 x + 2 a23 y + a33 = 0.

The matrices

B =

⎛
⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠ , A =

(
a11 a12

a12 a22

)

are called respectively the matrix of the coefficients and the matrix of the quadratic

form of C .

Exercise 16.2.5 The matrices associated to the parabola with equation y = 3x2 are,

B =

⎛
⎝

3 0 0

0 0 −1/2

0 −1/2 0

⎞
⎠ , A =

(
3 0

0 0

)
.

Remark 16.2.6 Notice that the six coefficients ai j in (16.6) determine a conic, but a

conic is not described by a single array of six coefficients since the equation

ka11 x2 + 2 ka12 xy + ka22 y2 + 2 ka13 x + 2 ka23 y + ka33 = 0

defines the same locus for any k ∈ R \ {0}.
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16.3 Reduction to Canonical Form of a Conic: Translations

A natural question arises. Given a non degenerate conic with equation written as in

(16.6) with respect to a reference frame, does there exist a new reference system with

respect to which the equation for the conic has a form close to one of those given in

(16.1)?

Definition 16.3.1 We call canonical form of a non degenerate conic C one of the

following equations for C in a given reference system (O; x, y).

(i) A parabola has equation

x2 = 2py or y2 = 2px . (16.8)

(ii) A real ellipse has equation

x2

a2
+

y2

b2
= 1 (16.9)

while an imaginary ellipse has equation

x2

a2
+

y2

b2
= −1. (16.10)

(iii) A hyperbola has equation

x2

a2
−

y2

b2
= 1 or

x2

a2
−

y2

b2
= −1. (16.11)

A complete answer to the question above is given in two steps.

One first considers only conics whose equation, in a given reference system,

(O; x, y) has coefficient a12 = 0, that is conics whose equation lacks the mixed

term xy. The reference system (O ′; X, Y ) for a canonical form is obtained with a

translation from (O; x, y).

The general case of a conic whose equation in a given reference system (O; x, y)

may have the mixed term xy will require the composition of a rotation and a transla-

tion from (O; x, y) to obtain the reference system (O ′; X, Y ) for a canonical form.

Exercise 16.3.2 Let Ŵ : y = 2x2 describe a parabola in the canonical form, and let

us define the following translation on the plane

T(x0,y0) :
{

x = X + x0

y = Y + y0
.

The equation for the conic Ŵ with respect to the reference system (O ′; X, Y ) is then

Y = 2X2 + 4x0 X + 2x2
0 − y0.
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Exercise 16.3.3 Let Ŵ′ : x2 + 2y2 = 1 be an ellipse in the canonical form. Under

the translation of the previous example, the equation for Ŵ′ with respect to the refer-

ence system (O ′; X, Y ) is

X2 + 2Y 2 + 2x0 X + 4y0Y + x2
0 + 2y2

0 − 1 = 0.

Notice that, after the translation by T(x0,y0), the equations for the conics Ŵ and Ŵ′

are no longer in canonical form, but both still lack the mixed term xy. We prove now,

with a constructive method, that the converse holds as well.

Exercise 16.3.4 (Completing the squares) Let C be a non degenerate conic whose

equation reads, with respect to the reference system (O; x, y),

a11 x2 + a22 y2 + 2 a13 x + 2 a23 y + a33 = 0. (16.12)

Since the polynomial must be quadratic, there are two possibilities. Either both

a11 and a22 different from zero, or one of them is zero. We then consider:

(I) It is a11 = 0, a22 
= 0 (the case a11 
= 0 and a22 = 0 is analogue).

The Eq. (16.12) is then

a22 y2 + 2 a23 y + a33 + 2 a13 x = 0. (16.13)

From the algebraic identities:

a22 y2 + 2 a23 y = a22

(
y2 + 2

a23

a22

y

)

= a22

[(
y +

a23

a22

)2

−
(

a23

a22

)2
]

= a22

(
y +

a23

a22

)2

−
a2

23

a22

we write the Eq. (16.13) as

a22

(
y +

a23

a22

)2

−
a2

23

a22

+ a33 + 2 a13 x = 0. (16.14)

Since C is not degenerate, we have a13 
= 0 so we write (16.14) as

a22

(
y +

a23

a22

)2

+ 2 a13

(
x +

a33a22 − a2
23

2 a22a13

)
= 0
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which reads

(
y +

a23

a22

)2

= −
2 a13

a22

(
x +

a33a22 − a2
23

2 a22a13

)
.

Under the translation

⎧
⎨
⎩

X = x + (a33a22 − a2
23)/2 a22a13

Y = y + a23/a22

we get

Y 2 = 2 p X (16.15)

with p = −a13/a22. This is the canonical form (16.8).

If we drop the hypothesis that the conics C is non degenerate, we have

a13 = 0 in the Eq. (16.13). Notice that, for the case a11 = 0 we are considering,

det B = −a2
13a22. Thus the condition of non degeneracy can be expressed as a

condition on the determinant of the matrix of the coefficients, since

a13 = 0 ⇔ det B = −a2
13a22 = 0.

The Eq. (16.14) is then

(
y +

a23

a22

)2

=
a2

23 − a33a22

a2
22

and with the translation {
X = x

Y = y + a23/a22

it reads

Y 2 = q (16.16)

with q = (a2
23 − a33a22)/a2

22.

(II) It is a11 
= 0, a22 
= 0.

With algebraic manipulation as above, we can write

a11 x2 + 2 a13 x = a11

(
x +

a13

a11

)2

−
a2

13

a11

,

a22 y2 + 2 a23 y = a22

(
y +

a23

a22

)2

−
a2

23

a22

.
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So the Eq. (16.12) is written as

a11

(
x +

a13

a11

)2

+ a22

(
y +

a23

a22

)2

+ a33 −
a2

13

a11

−
a2

23

a22

= 0. (16.17)

If we consider the translation given by

{
X = x + a13/a11

Y = y + a23/a22

the conic C has the equation

a11 X2 + a22Y 2 = h, with h = −a33 +
a2

13

a11

+
a2

23

a22

, (16.18)

and h 
= 0 since C is non degenerate. The coefficients a11 and a22 can be either

concordant or not. Up to a global factor (−1), we can take a11 > 0. So we have

the following cases.

(IIa) It is a11 > 0 and a22 > 0. One distinguish according to the sign of the coeffi-

cient h:

• If h > 0, the Eq. (16.18) is equivalent to

a11

h
X2 +

a22

h
Y 2 = 1.

Since a11/h > 0 and a22/h > 0, we have (positive) real numbers a, b by

defining h/a11 = a2 and h/a22 = b2. The Eq. (16.18) is written as

X2

a2
+

Y 2

b2
= 1, (16.19)

which is the canonical form of a real ellipse (16.9).

• If h < 0, we have −a11/h > 0 and −a22/h > 0, we can again introduce (pos-

itive) real numbers a, b by −h/a11 = a2 and −h/a22 = b2. The Eq. (16.18)

can be written as
X2

a2
+

Y 2

b2
= −1, (16.20)

which is the canonical form of an imaginary ellipse (16.10).

• If h = 0 (which means that C is degenerate), we set 1/a11 = a2 and 1/a22 = b2

with real number a, b, so to get from (16.18) the expression

X2

a2
+

Y 2

b2
= 0. (16.21)
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(IIb) It is a11 > 0 and a22 < 0. Again depending on the sign of the coefficient h we

have:

• If h > 0, the Eq. (16.18) is

a11

h
X2 +

a22

h
Y 2 = 1.

Since a11/h > 0 and a22/h < 0, we can define h/a11 = a2 and −h/a22 = b2

with a, b positive real numbers. The Eq. (16.18) becomes

X2

a2
−

X2

b2
= 1, (16.22)

which the first canonical form in (16.11).

• If h < 0, we have−a11/h > 0 and−a22/h < 0, so we can define−h/a11 = a2

and h/a22 = 1/b2 with a, b positive real numbers. The Eq. (16.18) becomes

X2

a2
−

Y 2

b2
= −1, (16.23)

which is the second canonical form in (16.11).

• If h = 0 (that is C is degenerate), we set 1/a11 = a2 and −1/a22 = b2 with

a, b real number, so to get from (16.18) the expression

X2

a2
−

Y 2

b2
= 0. (16.24)

Once again, with B the matrix of the coefficients for C , the identity

det B = a11a22 h

shows that the condition of non degeneracy of the conic C is equivalently given by

det B 
= 0.

The analysis done for the cases of degenerate conics makes it natural to introduce

the following definition, which has to be compared with the Definition 16.3.1.

We call canonical form of a degenerate conic C one of the following equations

for C in a given reference system (O; x, y).

(i) A degenerate parabola has equation

x2 = q or y2 = q. (16.25)

(ii) A degenerate ellipse has equation

x2

a2
+

y2

b2
= 0. (16.26)
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(iii) A degenerate hyperbola has equation

x2

a2
−

y2

b2
= 0. (16.27)

Remark 16.3.5 With the definition above, we have that

(i) The conic C with equation x2 = q is the union of the lines with cartesian

equations x = ±√
q . If q > 0 the lines are real and distinct, if q < 0 the lines

are complex and conjugate. If q = 0 the conic C is the y-axis counted twice.

Analogue cases are obtained for the equation y2 = q.

(ii) The equation b2 x2 + a2 y2 = 0 has the unique solution (0, 0) if we consider

real coordinates. On the complex affine plane A
2(C) the solutions to such equa-

tions give a degenerate conic C which is the union of two complex conjugate

lines, since we can factorise

b2 x2 + a2 y2 = (b x + i a y)(b x − i a y).

(iii) The solutions to the equation b2 x2 − a2 y2 = 0 give the union of two real and

distinct lines, since we can factorise as follows

b2 x2 − a2 y2 = (b x + a y)(b x − a y).

What we have studied up to now is the proof of the following theorem.

Theorem 16.3.6 Let C be a conic whose equation, with respect to a reference sys-

tem (O; x, y) lacks the monomial xy. There exists a reference system (O ′; X, Y ),

obtained from (O; x, y) by a translation, with respect to which the equation for the

conic C has a canonical form.

Exercise 16.3.7 We consider the conic C with equation

x2 + 4y2 + 2x − 12y + 3 = 0.

We wish to determine a reference system (O ′; X, Y ) with respect to which the

equation for C is canonical. We complete the squares as follows:

x2 + 2x = (x + 1)2 − 1,

4y2 − 12y = 4
(
y − 3

2

)2 − 9

and write

x2 + 4y2 + 2x − 12y + 3 = (x + 1)2 + 4
(
y − 3

2

)2 − 7.
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With the translation {
X = x + 1

Y = y − 3
2

the equation for C reads

X2 + 4Y 2 = 7 ⇒
X2

7
+

Y 2

7/4
= 1.

This is an ellipse with centre (X = 0, Y = 0) = (x = −1, y = 3/2), with axes

given by the lines X = 0 and Y = 0 which are x = −1 and y = 3/2, and semi-axes

given by
√

7,
√

7/2.

16.4 Eccentricity: Part 1

We have a look now at the relation (16.5) for a particular class of examples. Consider

the point F = (ax , ay) in E
2 and the line δ whose points satisfy the equation x = u,

with u 
= ax . The relation d(P, F) = e d(P, δ) (with e > 0) is satisfied by the points

P = (x, y) whose coordinates are the solutions of the equation

(y − ay)
2 + (1 − e2)x2 + 2(ue2 − ax )x + a2

x − u2e2 = 0. (16.28)

We have different cases, depending on the parameter e.

(a) We have already mentioned that for e = 1 we are describing the parabola with

focus F and directrix δ. Its equation from (16.28) is given by

(y − ay)
2 + 2(u − ax )x + a2

x − u2 = 0. (16.29)

(b) Assume e 
= 1. Using the results of the Exercise 16.3.4, we complete the square

and write

(y − ay)
2 + (1 − e2)x2 + 2(ue2 − ax )x + a2

x − u2e2 = 0

or (y − ay)
2 + (1 − e2)

(
x +

ue2 − ax

1 − e2

)2

−
e2(u − ax )

2

1 − e2
= 0. (16.30)

Then the translation given by

{
Y = y − ay

X = x + (ue2 − ax )/(1 − e2)

allows us to write, with respect to the reference system (O ′; X, Y ), the equation

as
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Y 2 + (1 − e2)X2 =
e2(u − ax )

2

1 − e2
.

Depending on the value of e, we have the following possibilities.

(b1) If 0 < e < 1, all the coefficients of the equation are positive, so we have the

ellipse (
1 − e2

e(u − ax )

)2

X2 +
1 − e2

e2(u − ax )2
Y 2 = 1.

An easy computation shows that its foci are given by

F± = (±
e2(u − ax )

1 − e2
, ay)

with respect to the reference system (O ′; X, Y ) and then clearly by

F+ = (ax , ay), F− = (
ax + e2ax − 2ue2

1 − e2
, ay)

with respect to (O; x, y). Notice that F+ = F , the starting point.

(b2) If e > 1 the equation

(
1 − e2

e(u − ax )

)2

X2 −
e2 − 1

e2(u − ax )2
Y 2 = 1.

represents a hyperbola with foci again given by the points F± written before.

Remark 16.4.1 Notice that, if e = 0, the relation (16.28) becomes

(y − ay)
2 + (x − ax )

2 = 0,

that is a degenerate imaginary conic, with

(y − ay + i(x − ax ))(y − ay − i(x − ax )) = 0.

If we fix e2(u − ax )
2 = r2 
= 0 and consider the limit e → 0, the Eq. (16.28) can

be written as

(x − ax )
2 + (y − ay)

2 = r2.

This is another way of viewing a circle as a limiting case of a sequence of ellipses.

The case for which the point F ∈ δ also gives a degenerate conic. In this case

u = ax and the Eq. (16.28) is

(y − ax )
2 + (1 − e2)(x − 2u)2 = 0

which is the union of two lines either real (if 1 < e) or imaginary (if 1 > e).
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16.5 Conic Sections and Kepler Motions

Via the notion of eccentricity it is easier to describe a fundamental relation between

the conic sections and the so called Keplerian motions.

If x1(t) and x2(t) describe the motion in E
3 of two point masses m1 and m2, and

the only force acting on them is the mutual gravitational attraction, the equations of

motions are given by

m1ẍ1 = −Gm1m2

x1 − x2

‖x1 − x2‖3

m2ẍ2 = −Gm1m2

x2 − x1

‖x1 − x2‖3
.

Here G is a constant, the gravitational constant. We know from physics that the

centre of mass of this system moves with no acceleration, while for the relative

motion r(t) = x1(t) − x2(t) the Newton equations are

µ r̈(t) = −Gm1m2

r

r3
(16.31)

with the norm r = ‖x‖ and µ = m1m2/(m1 + m2) the so called reduced mass of the

system. A qualitative analysis of this motion can be given as follows.

With a cartesian orthogonal reference system (O; x, y, z) in E
3, we can write

r(t) = (x(t), y(t), z(t)) and ṙ(t) = (ẋ(t), ẏ(t), ż(t)) for the vector representing the

corresponding velocity. From the Newton equations (16.31) the angular momentum

(recall its definition and main properties from Sects. 1.3 and 11.2) with respect to the

origin O ,
dLO

dt
= µ {ṙ ∧ ṙ + r ∧ r̈} = 0,

is a constant of the motion, since r̈ is parallel to r from (16.31). This means that both

vectors r(t) and ṙ(t) remain orthogonal to the direction of LO , which is constant: if

the initial velocity ṙ(t = 0) is not parallel to the initial position r(t = 0), the motion

stays at any time t on the plane orthogonal to LO(t = 0).

We can consider the plane of the motion as E
2, and fix a cartesian orthogonal ref-

erence system (O; x, y), so that the angular momentum conservation can be written

as

µ (ẋ y − ẏx) = l

with the constant l fixed by the initial conditions. We also know that the gravitational

force is conservative, thus the total energy

1

2
µ ‖ṙ‖2 − Gm1m2

1

r
= E .
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is also a constant of the motion. It is well known that the Eq. (16.31) can be completely

solved. We omit the proof of this claim, and mention that the possible trajectories of

such motions are conic sections, with focus F = (0, 0) ∈ E
2 and directrix δ given

by the equation x = l̃/e with

l̃ =
l2

Gm1m2µ
.

and eccentricity parameter given by

e =

√
1 +

2µEl2

(Gm1m2µ)2
.

One indeed shows that
2µEl2

(Gm1m2µ)2
> −1

for any choice of initial values for position and velocity.

This result is one of the reasons why conic sections deserve a special attention

in affine geometry. From the analysis of the previous section, we conclude that for

E < 0, since 0 < e < 1, the trajectory of the motion is elliptic. If the point mass m2

represents the Sun, while m1 a planet in our solar system, this result gives the well

observed fact that planet orbits are plane elliptic and the Sun is one of the foci of the

orbit (Kepler law).

The Sun is also the focus of hyperbolic orbits (E > 0) or parabolic ones (E = 0),

orbits that are travelled by comets and asteroids.

16.6 Reduction to Canonical Form of a Conic: Rotations

Let us consider two reference systems (O; x, y) and (O; X, Y ) having the same

origin and related by a rotation by an angle of α,

{
x = cos α X + sin α Y

y = − sin α X + cos α Y
.

With respect to (O; x, y), consider the parabola Ŵ: y = x2. In the rotated system

(O; X, Y ) the equation for Ŵ is easily found to be

− sin α X + cos α Y = (cos α X + sin α Y )2

⇒
cos α2 X2 + sin 2α XY + sin α2 Y 2 + sin α X − cos α Y = 0.
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We see that as a consequence of the rotation, there is a mixed term XY in the

quadratic polynomial equation for the parabola Ŵ. It is natural to wonder whether

such a behaviour can be reversed.

Example 16.6.1 With respect to (O; x, y), consider the conic C : xy = k for a real

parameter k. Clearly, for k = 0 this is degenerate (the union of the coordinate axes x

and y). On the other hand, the rotation to the system (O; X, Y ) by an angle α = π
4

,

{
x = 1√

2
(X + Y )

y = 1√
2
(X − Y )

,

transforms the equation of the conic to

X2 − Y 2 = 2k.

This is a hyperbola with foci F± = (±2
√

k, 0 when k > 0 or F± = (0,±2
√

|k|)
when k < 0.

In general, if the equation of a conic has a mixed term, does there exist a reference

system with respect to which the equation for the given conic does not have the mixed

term?

It is clear that the answer to such a question is in the affirmative if and only if

there exists a reference system with respect to which the quadratic form of the conic

is diagonal. On the other hand, since the quadratic form associated to a conic is

symmetric, we know from the Chap. 10 that it is always possible to diagonalise it

with a suitable orthogonal matrix.

Let us first study how the equation in (16.7) for a conic changes under a general

change of the reference system of the affine euclidean plane we are considering.

Definition 16.6.2 With a rotation of the plane we mean a change in the reference

system from (O; x, y) to (O; x ′, y′) that is given by

(
x

y

)
= P

(
x ′

y′

)
, (16.32)

with P ∈ SO(2) a special orthogonal matrix, referred to as the rotation matrix. If

we write

P =
(

p11 p12

p21 p22

)
,

the transformation above reads

{
x = p11x ′ + p12 y′

y = p21x ′ + p22 y′ (16.33)

These relations give the equations of the rotation.
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A translation from the reference system (O; x ′, y′) to another (O ′; X, Y ) is

described by the relations {
x ′ = X + x0

y′ = Y + y0
(16.34)

where (−x0,−y0) are the coordinates of the point O with respect to (O ′; X, Y ) and,

equivalently, (x0, y0) are the coordinates of the point O ′ with respect to (O; x ′, y′).
A proper rigid transformation on the affine euclidean plane E

2 is a change of the

reference system given by a rotation followed by a translation. We shall refer to a

proper rigid transformation also under the name of roto-translation.

Let us consider the composition of the rotation given by (16.33) followed by the

translation given by (16.34), so to map the reference system (O; x, y) into (O ′; X, Y ).

The equation describing such a transformation are easily found to be

{
x = p11 X + p12Y + a

y = p21 X + p22Y + b
(16.35)

where {
a = p11 x0 + p12 y0

b = p21 x0 + p22 y0

are the coordinates of O ′ with respect to (O; x, y). The transformation (16.35) can

be written as ⎛
⎝

x

y

1

⎞
⎠ =

⎛
⎝

p11 p12 a

p21 p22 b

0 0 1

⎞
⎠

⎛
⎝

X

Y

1

⎞
⎠ , (16.36)

and we call

Q =

⎛
⎝

p11 p12 a

p21 p22 b

0 0 1

⎞
⎠ (16.37)

the matrix of (associated to) the proper rigid transformation (roto-translation).

Remark 16.6.3 A rotation matrix P is special orthogonal, that is tP = P−1 and

det(P) = 1. A roto-translation matrix Q as in (16.37), although satisfies the identity

det(Q) = 1, is not orthogonal.

Clearly, with a transposition, the action (16.32) of a rotation matrix also gives(
x y

)
=

(
x ′ y′) tP , while the action (16.36) of a roto-translation can be written as(

x y 1
)

=
(
X Y 1

)
t Q.
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Let us then describe how the matrices associated to the equation of a conic are

transformed under a roto-translation of the reference system. Then, let us consider a

conic C described, with respect to the reference system (O; x, y), by

(
x y 1

)
B

⎛
⎝

x

y

1

⎞
⎠ = 0, FC(x, y) =

(
x y

)
A

(
x

y

)
.

Under the roto-translation transformation (16.36) the equation of the conic C with

respect to the reference system (O ′; X, Y ) is easily found to becomes

(
X Y 1

)
t Q B Q

⎛
⎝

X

Y

1

⎞
⎠ = 0.

Also, under the same transformations, the quadratic form for C reads

FC(x ′, y′) =
(
x ′ y′) tP A P

(
x ′

y′

)

with respect to the reference system (O; x ′, y′) obtained from (O; x, y) under the

action of only the rotation P . Such a claim is made clearer by the following propo-

sition.

Proposition 16.6.4 The quadratic form associated to a conic C does not change for

a translation of the reference system with respect to which it is defined.

Proof Let us consider, with respect to the reference system (O; x ′, y′), the conic

with quadratic form

FC(x ′, y′) =
(
x ′ y′) A′

(
x ′

y′

)
= a11 (x ′)2 + 2 a12 x ′y′ + a22 (y′)2.

Under the translation (16.34) we have x ′ = X − x0 e y′ = Y − y0, that is

a11 X2 + 2 a12 XY + a22 Y 2 + {monomials of order ≤ 1}.

The quadratic form associated to C , with respect to the reference system

(O ′; X, Y ), is then

FC(X, Y ) = a11 X2 + 2 a12 XY + a22 Y 2 =
(
X Y

)
A′

(
X

Y

)
,

with the same matrix A′. �



314 16 Conic Sections

Given the quadratic form FC associated to the conic C in (O; x ′, y′), we have

then the following:

FC(x ′, y′) =
(
x ′ y′) tP A P

(
x ′

y′

)
⇒ FC(X, Y ) =

(
X Y

)
tP A P

(
X

Y

)
.

All of the above proves the following theorem.

Theorem 16.6.5 Let C be a conic with associated matrix of the coefficients B and

matrix of the quadratic form A with respect to the reference system (O; x, y). If

Q is the matrix of the roto-translation mapping the reference system (O; x, y) to

(O ′; X, Y ), with P the corresponding rotation matrix, the matrix of the coefficients

associated to the conic C with respect to (O ′; X, Y ) is

B ′ = t Q B Q,

while the matrix of the canonical form is

A′ = tP A P = P−1 A P.

In light of the Definition13.1.4, the matrices A and A′ are quadratically equiva-

lent. �

Exercise 16.6.6 Consider the conic C whose equation, in the reference system

(O; x, y) is

x2 − 2xy + y2 + 4x + 4y − 1 = 0.

Its associated matrices are

B =

⎛
⎝

1 −1 2

−1 1 2

2 2 −1

⎞
⎠ , A =

(
1 −1

−1 1

)
.

We first diagonalise the matrix A. Its characteristic polynomial is

pA(T ) = |A − T I | =
∣∣∣∣
1 − T −1

−1 1 − T

∣∣∣∣ = (1 − T )2 − 1 = T (T − 2).

The eigenvalues are λ = 0 and λ = 2 with associated eigenspaces,

V0 = ker( f A) = {(x, y) ∈ R
2 : x − y = 0} = L((1, 1)),

V2 = ker( f A−2I ) = {(x, y) ∈ R
2 : x + y = 0} = L((1,−1)).
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It follows that the special orthogonal matrix P giving the change of the basis is

P = 1√
2

(
1 1

−1 1

)

and eigenvectors ordered so that det(P) = 1. This rotated the reference system to

(O; x ′, y′) with {
x = 1√

2
(x ′ + y′)

y = 1√
2
(−x ′ + y′)

.

Without translation, the roto-translation matrix is

Q′ = 1√
2

⎛
⎝

1 1 0

−1 1 0

0 0
√

2

⎞
⎠

and from the Theorem 16.6.5, the matrix associated to C with respect to the reference

system (O; x ′, y′) is B̃ = tQ′ B Q′. We have then

B̃ = 1√
2

⎛
⎝

1 −1 0

1 1 0

0 0 1

⎞
⎠

⎛
⎝

1 −1 2

−1 1 2

2 2 −1

⎞
⎠ 1

2

⎛
⎝

1 1 0

−1 1 0

0 0 1

⎞
⎠ =

⎛
⎝

2 0 0

0 0 2
√

2

0 2
√

2 −1

⎞
⎠ ,

so that the equation for C reads

2(x ′)2 + 4
√

2y′ − 1 = 0.

By completing the square at the right hand side, we write this equation as

(x ′)2 = −2
√

2
(

y′ −
√

2
8

)
.

With the translation {
X = x ′

Y = y′ −
√

2
8

we see that C is a parabola with the canonical form

X2 = −2
√

2 Y

and the associated matrices

B ′ =

⎛
⎝

1 0 0

0 0
√

2

0
√

2 0

⎞
⎠ , A′ =

(
1 0

0 0

)
.
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Rather than splitting the reduction to canonical form into a first step given by a

rotation and a second step given by a translation, we can reduce the equation for C

with respect to (O; x, y) to its canonical form by a proper rigid transformation with

a matrix Q encoding both a rotation and a translation. Such a composition is given by

{
x = 1√

2
(x ′ + y′)

y = 1√
2
(−x ′ + y′)

⇒
{

x = 1√
2
(X + Y +

√
2

8
)

y = 1√
2
(−X + Y +

√
2

8
)

which we write as ⎛
⎝

x

y

1

⎞
⎠ = Q

⎛
⎝

X

Y

1

⎞
⎠

with

Q =
1

√
2

⎛
⎝

1 1
√

2/8

−1 1
√

2/8

0 0 1

⎞
⎠ .

We end this example by checking that the matrix associated to the conic C with

respect to the reference system (O ′; X, Y ) can be computed as it is described in the

Theorem 16.6.5, that is

t Q B Q =

⎛
⎝

2 0 0

0 0 2
√

2

0 2
√

2 0

⎞
⎠ = 2B ′.

We list the main steps of the method we described in order to reduce a conic to

its canonical form as the proof of the following results.

Theorem 16.6.7 Given a conic C whose equation is written in the reference system

(O; x, y), there always exists a reference system (O ′; X, Y ), obtained with a roto-

translation from (O; x, y), with respect to which the equation for C is canonic.

Proof Let C be a conic, with associated matrices A (of the quadratic form) and B

(of the coefficients), with respect to the reference system (O; x, y). Then,

(a) Diagonalise A, computing an orthonormal basis with eigenvectors

v1 = (p11, p21), v2 = (p12, p22), given by the rotation

{
x = p11 x ′ + p12 y′

y = p21 x ′ + p22 y′ (16.38)

and define

Q′ =

⎛
⎝

p11 p12 0

p21 p22 0

0 0 1

⎞
⎠ .
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With respect to the reference system (O; x ′, y′), the conic C has matrix

B ′ = tQ′ B Q′, and the corresponding quadratic equation, which we write as

(
x ′ y′ 1

)
B ′

⎛
⎝

x ′

y′

1

⎞
⎠ = 0, (16.39)

lacks the monomial term x ′y′.
(b) Complete the square so to transform, by the corresponding translation, the ref-

erence system (O; x ′, y′) to (O ′; X, Y ), that is

{
X = x ′ + a

Y = y′ + b
. (16.40)

From this, we can express the Eq. (16.39) for C with respect to the reference

system (O ′; X, Y ). The resulting equation is canonical for C .

(c) The equations for the roto-translation from (O; x, y) to (O ′; X, Y ) are given by

substituting the translation transformation (16.40) into (16.38).

Corollary 16.6.8 Given a degree-two polynomial equation in the variable x and y,

the set (locus) of zeros of such equation is one of the following loci: ellipse, hyperbola,

parabola, union of lines (either coincident or distinct).

The proof of the Proposition 16.3.4 together with the result of the Theorem 16.6.5,

which give the transformation relations for the matrices associated to a given conic

C under a proper rigid transformation, allows one to prove the next proposition.

Proposition 16.6.9 A conic C whose associated matrices are A and B with respect to

a given orthonormal reference system (O; x, y) is degenerate if and only if det B = 0.

Depending on the values of the determinant of A the following cases are possible

det A < 0 ⇔ C hyperbola

det A = 0 ⇔ C parabola

det A > 0 ⇔ C ellipse .

The relative signs of det(A) and det B determine whether the conic is real or

imaginary.

Exercise 16.6.10 As an example, we recall the results obtained in the Sect. 16.4. For

the conic d(P, F) = e d(P, δ) with focus F = (ax , ay) and directrix δ : x = u, the

matrix of the coefficients associated to the Eq. (16.28) is

B =

⎛
⎝

1 − e2 0 ue2 − ax

0 1 ay

ue2 − ax ay a2
x + a2

y − u2e2

⎞
⎠
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with then det B = −e2(ax − u)2. We recover that the sign of (1 − e2) determines

whether the conic C is an ellipse, or a parabola, or a hyperbola. We notice also that

the conic is degenerate if and only if at least one of the conditions e = 0 or ax = u

is met.

16.7 Eccentricity: Part 2

We complete now the analysis of the conics defined by the relation

d(P, F) = e d(P, δ)

in terms of the eccentricity parameter. In Sect. 16.4 we have studied this equation

with an arbitrary F and δ parallel to the y-axis, when it becomes the Eq. (16.28). In

general, for a given eccentricity the previous relation depends only on the distance

between F and δ. Using a suitable roto-translation as in the previous section, we

have the following result.

Proposition 16.7.1 Given a point F and a line δ in E
2 such that F /∈ δ, there exists

a cartesian orthogonal coordinate system (O ′; X, Y ) with F = O ′ and with respect

to which the equation d(P, F) = e d(P, δ) (with e > 0) is written as

Y 2 + X2 − e2(X − u)2 = 0.

Proof Given a point F and a line δ 
∋ F , it is always possible to roto-translate the

starting coordinate system (O; x, y) to a new one (O ′; X, Y ) in such a way that

O ′ = F and the line δ is given by the equation X = u 
= 0. The result then follows

from (16.28) being aX = aY = 0. �

We know from the Sect. 16.4 that if e = 1, the equation represents a parabola

with directrix X = u 
= 0 and focus F = (0, 0). If 1 
= e, the equation represents

either an ellipse (0 < e < 1) or a hyperbola (e > 1) with foci F+ = (0, 0) and

F− = (− 2ue2

1−e2 , 0). Also, e = 0 yields the degenerate conic X2 + Y 2 = 0, while

u = 0 (that is F ∈ δ) gives the degenerate conic Y 2 + (1 − e2)X2 = 0.

We can conclude that the Eq. (16.5) represents a conic whose type depends on the

values of the eccentricity parameter. Its usefulness resides in yielding a constructive

method to write the equation in canonical form, even for the degenerate cases.

We address the inverse question: given a non degenerate conic C with equation

a11 x2 + 2 a12 xy + a22 y2 + 2 a13 x + 2 a23 y + a33 = 0

is it possible to determine its eccentricity and its directrix?

We give a constructive proof of the following theorem.
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Theorem 16.7.2 Given the non degenerate conic C whose equation is

a11 x2 + 2 a12 xy + a22 y2 + 2 a13 x + 2 a23 y + a33 = 0,

there exists a point F and a line δ with F /∈ δ such that a point P ∈ C if and only if

d(P, F) = e d(P, δ)

for a suitable value e > 0 of the eccentricity parameter.

Proof As in the example Exercise 16.6.6 we firstly diagonalise the matrix of the

quadratic form of C finding a cartesian orthogonal system (O; x ′, y′) with respect

to which the equation for C is written as

α11(x ′)2 + α22(y′)2 + 2α13x ′ + 2α23 y′ + α33 = 0,

with α11,α22 the eigenvalues of the quadratic form. This is the equation of the conic

in the form studied in the Proposition 16.3.4, whose proof we now use. We have the

following cases

(a) One of the eigenvalues of the quadratic form is zero, say α11 = 0 (the case

α22 = 0 is analogous).

Up to a global (−1) factor that we can rescale, the equation for C is

α22(y′)2 + 2α13x ′ + 2α23 y′ + α33 = 0,

with α22 > 0 and α13 
= 0 (non degeneracy of C). Since there is no term (x ′)2,

this equation is of the form (16.28) only if e = 1. Thus it is of the form (16.29)

written as

(y − ay)
2 + 2(u − ax )

(
x − 1

2
(u + ax )

)
= 0.

The two expression are the same if and only if we have e = 1, and

ay = −
α23

α22

and

⎧
⎨
⎩

u − ax = α13/α22

u + ax = (α2
23 − α33α22)/α13α22

.

These say that C is the parabola with focus and directrix given, with respect to

(O; x ′, y′), by

F = (
α2

23 − α33α22 − α2
13

2α13α22

,−
α23

α22

), x ′ =
α2

13 + α2
23 − α33α22

2α13α22

.
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With the translation

⎧
⎨
⎩

X = x ′ + (α33α22 − α2
23)/2α22α13

Y = y′ + α23/α22

it can indeed be written as

Y 2 + 2
α13

α22

X = 0.

If α22 = 0 and α11 
= 0 the result would be similar with the x ′-axis and y′ axis

interchanged.

(b) Assume α11 
= 0 and α22 
= 0. We write the equation for C as in (16.17),

α11

α22

(
x +

α13

α11

)2

+
(

y +
α23

α22

)2

−
1

α22

(
−α33 +

α2
13

α11

+
α2

23

α22

)
= 0,

(16.41)

and compare it with (16.30)

(1 − e2)

(
x +

ue2 − ax

1 − e2

)2

+ (y − ay)
2 −

e2(u − ax )
2

1 − e2
= 0. (16.42)

Notice that with this choice (that the directrix be parallel to the y-axis, x = u)
we are not treating the axes x and y in an equivalent way. We would have a
similar analysis when exchanging the role of the axes x and y. The conditions
to satisfy are

⎧
⎨
⎩

1 − e2 = α11/α22

ay = − α23/α22

and

⎧
⎨
⎩

e2(u−ax )2

1−e2 = h
α22

with h = −α33 + α2
13

α11
+ α2

23
α22

ue2−ax

1−e2 = α13
α11

.

(16.43)

We see that h = 0 would give a degenerate conic with either e = 0 or u = ax ,

that is the focus is on the directrix. As before, up to a global (−1) factor we

may assume α22 > 0. And as in Sect. 16.3 we have two possibilities according

to the sign of α11.

(b1) The eigenvalues have the same sign: α22 > 0 and α11 > 0. From the first condi-

tion in (16.43) we need α22 > α11 and we get that e < 1. Then the last condition

requires that the parameter h > 0 be positive. This means that C is a real ellipse.

The case α22 < α11 also results into a real ellipse but requires that the role of

the axes x and y be exchanged. (The condition α11 = α22 would give a circle

and result in e = 0 which we are excluding.)

(b2) The eigenvaluesα11 andα22 are discordant. Now the conditions (16.43) requires

e > 1 and the parameter h to be negative. This means that C is a hyperbola

of the second type in (16.11). To get the other type in (16.11), once again one

needs to exchange the axes x and y.
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As mentioned, the previous analysis is valid when the directrix is parallel to the

y-axis. For the case when the directrix is parallel to the x-axis (the equation y = u),

one has a similar analysis with the relations analogous to (16.43) now written as

⎧
⎨
⎩

1 − e2 = α22/α11

ax = −α13/α11

and

{
e2(u−ay)

2

1−e2 = h
α11

with h = −α33 + α2
13

α11
+ α2

23

α22

ue2−ay

1−e2 = α23

α22

.

(16.44)

In particular for 0 < α22 < α22 these are the data of a real ellipse, while for

α11 > 0 and α22 < 0 (and h < 0) this are the data for a hyperbola of the first type in

(16.11). �

In all cases above, the parameters e, u, ax , ay are given in terms of the conic

coefficients by the relations (16.43) or (16.44). Being these quite cumbersome, we

omit to write the complete solutions for these relations and rather illustrate with

examples the general methods we developed.

Exercise 16.7.3 Consider the hyperbolas

y2 − x2 + k = 0, k = ±1 .

If k = 1, the relations (16.43) easily give the foci

F± = (±
√

2, 0)

and corresponding directrix δ± with equation

x = ±
√

2
2

.

On the other hand, for k = 1, the relations (16.44) now give the foci

F± = (0,±
√

2)

and corresponding directrix δ±,

y = ±
√

2
2

.

Exercise 16.7.4 Consider the C of the example Exercise 16.3.7, whose equation we

write as

x2 + 4y2 + 2x − 12y + 3 = (x + 1)2 + 4(y − 3
2
)2 − 7 = 0.

It is easy now to compute that this ellipse has eccentricity e =
√

3
4

and foci

F± = (−1 ±
√

21
2

, 3
2
).
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The directrix δ± corresponding to the focus F± is given by the line

x = −1 ± 2
√

21
3

.

Exercise 16.7.5 Consider the conic C with equation

x2 − ky2 − 2x − 2 = 0

with a parameter k ∈ R. By completing the square, we write this equation as

(x − 1)2 − ky2 − 3 = 0.

Depending on the value of k, we have different cases.

(i) If k < −1, it is evident that C is a real ellipse with α11 < α22, and the condition

(16.43) gives eccentricity e =
√

1 + 1
k
, with foci

F± = (1 ±
√

3(1+k)

k
, 0) (16.45)

and corresponding directrix δ± with equation

x = 1 ±
√

3
k(1+k)

. (16.46)

(ii) If −1 < k < 0 the conic C is again a real ellipse, whose major axis is par-

allel to the y-axis, so α11 > α22. Now the relations (16.44) yield eccentricity

e =
√

1 + k, with foci

F± = (1,±
√

−3
(
1 + 1

k

)
)

and corresponding directrix δ± given by the lines with equation

y = ±
√

3
−k(k+1)

.

(iii) If k = 0 the conic C is degenerate.

(iv) If k > 0, the conic C is a hyperbola. It is easy to compute the eccentricity to be

e =
√

1 + 1
k

(the same expression as for k < −1), with the foci and the directrix

given by (16.45) and (16.46).

The matrix of the coefficients of this conic C is given by

B =

⎛
⎝

1 0 −1

0 −k 0

−1 0 −2

⎞
⎠ ,
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with det A = −k and det B = −3k. By the Proposition 16.6.9 we recover the listed

results: C is degenerate if and only if k = 0; it is a hyperbola if and only if k > 0;

an ellipse if and only if k < 0.

16.8 Why Conic Sections

We close the chapter by explaining where the loci on the affine euclidean plane E
2

that we have described, the conic sections, get their name from. This will also be

related to finding solutions to a non-linear problem in E
3.

Fix a line γ and a point V ∈ γ in E
3. A (double) cone with axis γ and vertex V

is the bundle of lines through V whose direction vectors form, with respect to γ, an

angle of fixed width.

Consider now a plane π ⊂ E
3 which does not contain the vertex of the cone. We

show that, depending on the relative orientation of π with the axis of the cone, the

intersection π ∩ C — a conic section — is a non degenerate ellipse, or a parabola, or

a hyperbola.

Let (O, E) = (O; x, y, z) be an orthonormal reference frame for E
3, with E an

orthonormal basis for E3. To be definite, we take the z-axis as the axis of a cone C,

its vertex to be V = O and its width an angle 0 < θ < π/2. It is immediate to see

that the cone C is given by the points P = (x, y, z) of the lines whose normalised

direction vectors are

E3 ∋ u(α) = (sin θ cos α, sin θ sin α, cos θ)

with α ∈ [0, 2π). The parametric equation for these lines (see the Definition 14.2.7)

is then

r(α) =

⎧
⎨
⎩

x = λ sin θ cos α

y = λ sin θ sin α

z = λ cos θ

.

with λ a real parameter. This expression provides a vector equation for the cone C.

By eliminating the parameter, one gets a cartesian equation for C as given by the

relation

�r(α) : x2 + y2 − (tan2 θ)z2 = 0.

Without loss of generality, we may intersect the cone C with a plane π which

is orthogonal to the yz coordinate plane and meeting the z axis at the point

A = (0, 0, k > 0). If β ∈ (0,π/2) is the angle between the axis of the cone (the

z axis) and (its projection on) the plane π, the direction Sπ of the plane is orthogo-

nal to the normalised vector v = (0, cos β, sin β). We know from Chap. 15 that the

cartesian equation for the plane π is then

�π : (cos β)y + (sin β)(z − k) = 0.
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The intersection C ∩ π is then given by the solution of the system

{
x2 + y2 − (tan2 θ)z2 = 0

(cos β)y + (sin β)(z − k) = 0
. (16.47)

This is the only problem in this textbook which is formulated in terms of a system

of non-linear equations. By inserting the second equation in the first one, elemen-

tary algebra gives, for the projection on the plane xy of the intersection C ∩ π, the

equation,

x2 + (1 − tan2 θ cot2 β) y2 + 2k tan2 θ cot β y − k2 tan2 θ. (16.48)

From what we have described above in this chapter, this equation represents a

conic.

Its matrix of the coefficients is

B =

⎛
⎝

1 0 0

0 1 − tan2 θ cot2 β k tan2 θ cot β

0 k tan2 θ cot β −k2 tan2 θ

⎞
⎠ ,

while the matrix of the quadratic form is

A =
(

1 0

0 1 − tan2 θ cot2 β

)
.

One then computes

det(A) = 1 − tan2 θ cot2 β, det B = −k2 tan2 θ .

Having excluded the cases k = 0 and tan θ = 0, we know from the Proposition 16.6.9

that the intersection C ∩ π represents a non degenerate real conic. Some algebra

indeed shows that:

det(A) > 0 ⇔ tan2 β > tan2 θ ⇔ β > θ,

det(A) = 0 ⇔ tan2 β = tan2 θ ⇔ β = θ, (16.49)

det(A) < 0 ⇔ tan2 β < tan2 θ ⇔ β < θ,

thus giving an ellipse, a parabola, a hyperbola respectively. These are shown in

Figs. 16.4 and 16.5.
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Fig. 16.4 The ellipse with the limit case of the circle

Fig. 16.5 The parabola and the hyperbola

Remark 16.8.1 As a particular case, if we take β = π
2

, from (16.48) we see that

C ∩ π is a circle with radius R = k tan θ. On the other hand, with k = 0, that is π

contains the vertex of the cone, one has det B = 0. In such a case, the (projected)

Eq. (16.48) reduces to

x2 + (1 − tan2 θ cot2 β) y2 = 0.

Such equation represents:

2a. the union of two complex conjugate lines for β > θ,

2b. the points (x = 0, y), that is the y-axis for β = θ,

2c. the union of two real lines for β < θ.
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We conclude giving a more transparent, in a sense, description of the intersection

C ∩ π by using a new reference system (O; x ′, y′, z′), by a rotation around the x-axis

where the plane π is orthogonal to the axis z′-axis. adapted to π. From Chap. 11, the

transformation we consider is given in terms of the matrix in SO(3),

⎛
⎝

x ′

y′

z′

⎞
⎠ =

⎛
⎝

1 0 0

0 sin β − cos β

0 cos β sin β

⎞
⎠

⎛
⎝

x

y

z

⎞
⎠ .

With respect to the new reference system, the system of Eq. (16.47) becomes

{
(x ′)2 +

(
(sin β)y′ + (cos β)z′)2 − (tan2 θ)

(
(sin β)z′ − (cos β)y′)2 = 0

z′ − k sin β = 0
.

It is then easy to see that the solutions of this system of equations are the points
having coordinates z′ = k sin β and (x ′, y′) satisfying the equation

(x ′)2 + (sin2 β − tan2 θ cos2 β)(y′)2 + 2k cos β sin2 β(1 + tan2 θ)y′ + (cos2 β − tan2 θ sin2 ρ) k2 sin2 β = 0.

(16.50)

Clearly, this equation represents a conic on the plane z′ = k sin β with respect to the

orthonormal reference system (O; x ′, y′). Its matrix of the coefficients is

B =

⎛
⎝

1 0 0

0 sin2 β(1 − tan2 θ cot2 β) k cos β sin2 β(1 + tan2 θ)

0 k cos β sin2 β(1 + tan2 θ) k2 sin2 β cos2 β(1 − tan2 θ tan2 β)

⎞
⎠ ,

while the matrix of the quadratic form is

A =
(

1 0

0 sin2 β(1 − tan2 θ cot2 β))

)
.

One then computes

det(A) = sin2 β(1 − tan2 θ cot2 β), det B = −k2 sin2 β tan2 θ .

With k 
= 0 and tan θ 
= 0, clearly also in this case the relations (16.49) are valid.

And as particular cases, if we take β = π/2, one has that C ∩ π is a circle with radius

R = k tan θ. On the other hand, for k = 0, (that is π contains the vertex of the cone)

so that det B = 0, the Eq. (16.50) reduces to

(x ′)2 + (sin2 β − tan2 θ cos2 β)(y′)2 = 0.

Such equation as before represents: the union of two complex conjugate lines for

β > θ; the points x ′ = 0 for β = θ; the union of two real lines for β < θ.
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Remark 16.8.2 We remark that both Eqs. (16.48) and (16.50) describe the same type

of conic, depending on the relative width of the angles β and θ. What differs is their

eccentricity. The content of the Sect. 16.7 allows us to compute that the eccentricity

of the conic in (16.48) is e2 = tan2 θ cot2 β, while for the conic in (16.50) we have

e2 = (1 + tan2 θ) cos2 β.



Appendix A

Algebraic Structures

This appendix is an elementary introduction to basic notions of set theory, together

with those of group, ring and field. The reader is only supposed to know about

numbers, more precisely natural (containing the zero 0), integer, rational and real

numbers, that will be denoted respectively by N, Z, Q, R. Some of their properties

will also be recalled in the following. We shall also introduce complex numbers

denoted C and (classes of) integers Zp = Z/pZ.

A.1 A Few Notions of Set Theory

Definition A.1.1 Given any two sets A and B, by A × B we denote their Cartesian

product. This it is defined as the set of ordered pairs of elements from A and B,

that is,

A × B = {(a, b) | a ∈ A, b ∈ B}.

Notice that A × B �= B × A since we are considering ordered pairs. The previous

definition is valid for sets A, B of arbitrary cardinality. The set A × A is denoted A2.

Exercise A.1.2 Consider the set A = {♦, ♥, ♣, ♠}. The Cartesian product A2 is

then

A2 = A × A

=
{

(♦,♦), (♦,♥), (♦,♣), (♦,♠), (♥,♦), (♥,♥), (♥,♣), (♥,♠),

(♣,♦), (♣,♥), (♣,♣)(♣,♠), (♠,♦), (♠,♥), (♠,♣), (♠,♠)
}

.

Definition A.1.3 Given any set A, a binary relation on A is any subset of the Carte-

sian product A2 = A × A. If such a subset is denoted by R, we say that the pair of

elements a, b in A are related or in relation if (a, b) ∈ R and write it as a R b.
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Fig. A.1 A binary relation in N2

Example A.1.4 Consider A = N, the set of natural numbers, with R the subset of

N2 = N × N given by the points as in the Fig. A.1. We see that 2R1, but it is not true

that 1R1. One may easily check that R can be written by the formula

nRm ⇔ m = n − 1, for any (n, m) ∈ N2.

Definition A.1.5 A binary relation on a set A is called an equivalence relation if the

following properties are satisfied

• R is reflexive, that is aRa for any a ∈ A,

• R is symmetric, that is aRb ⇒ bRa, for any a, b ∈ A,

• R is transitive, that is aRb and bRc ⇒ aRc for any a, b, c ∈ A.

Exercise A.1.6 In any given set A, the equality is an equivalence relation. On the set

T of all triangles, congruence of triangles and similarity of triangles are equivalence

relations. The relation described in the Example A.1.4 is not an equivalence relation,

since reflexivity does not hold.

Definition A.1.7 Consider a set A and let R be an equivalence relation defined on

it. For any a ∈ A, one defines the subset

[a] = {x ∈ A | xRa} ⊆ A

as the equivalence class of a in A. Any element x ∈ [a] is called a representative

of the class [a]. It is clear that an equivalence class has as many representatives as

the elements it contains.

Proposition A.1.8 With R an equivalence relation on the set A, the following prop-

erties hold:

(1) If a R b, then [a] = [b].
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(2) If (a, b) /∈ R, then [a] ∩ [b] = ∅.

(3) A =
⋃

a∈A[a]; this is a disjoint union.

Proof (1) One shows that the mutual inclusions [a] ⊆ [b] and [b] ⊆ [a] are both

valid if a R b. Let x ∈ [a]; this means x R a. From the hypothesis a R b, so by

the transitivity of R one has x R b, that is x ∈ [b]. This proves the inclusion

[a] ⊆ [b]. The proof of the inclusion [b] ⊆ [a] is analogue.

(2) Let us suppose that A ∋ x ∈ [a] ∪ [b]. It would mean that x R a and x R b.

From the symmetry of R we would then have a R x , and from the transitivity

this would result in a R b, which contradicts the hypothesis.

(3) It is obvious, from (2). �

Definition A.1.9 The decomposition A =
⋃

a∈A[a] is called the partition of A

associated (or corresponding) to the equivalence relation R.

Definition A.1.10 If R is an equivalence relation defined on the set A, the set whose

elements are the corresponding equivalence classes is denoted A
/

R and called the

quotient of A modulo R. The map

π : A → A
/

R given by a �→ [a]

is called the canonical projection of A onto the quotient A
/

R.

A.2 Groups

A set has an algebraic structure if it is equipped with one or more operations. When

the operations are more than one, they are required to be compatible. In this section

we describe the most elementary algebraic structures.

Definition A.2.1 Given a set G, a binary operation ∗ on it is a map

∗ : G × G −→ G.

The image of the operation between a and b is denoted by a ∗ b. One also says that

G is closed, or stable with respect to the operation ∗. One usually writes (G, ∗) for

the algebraic structure ∗ defined on G, that is for the set G equipped with the binary

operation ∗.

Example A.2.2 It is evident that the usual sum and the usual product in N are binary

operations.

As a further example we describe a binary operation which does not come from

usual arithmetic operations in any set of numbers. Let T be an equilateral triangle

whose vertices are ordered and denoted by ABC . Let R be the set of rotations on a

plane under which each vertex is taken onto another vertex. The rotation that takes

the vertices ABC to BC D, can be denoted by
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(

A B C

B C A

)

.

It is clear that R contains three elements, which are:

e =

(

A B C

A B C

)

x =

(

A B C

B C A

)

y =

(

A B C

C A B

)

.

The operation—denoted now ◦—that we consider among elements in R is the com-

position of rotations. The rotation x ◦ y is the one obtained by acting on the vertices

of the triangle first with y and then with x . It is easy to see that x ◦ y = e. The

Table A.1 shows the composition law among elements in R.

◦ e x y

e e x y

x x y e

y y e x

(A.1)

Remark A.2.3 The algebraic structures (N,+) and (N, ·) have the following well

known properties, for all elements a, b, c ∈ N,

a + (b + c) = (a + b) + c, a + b = b + a,

a · (b · c) = (a · b) · c, a · b = b · a .

The set N has elements, denoted 0 and 1, whose properties are singled out,

0 + a = a, 1a = a

for any a ∈ N. We give the following definition.

Definition A.2.4 Let (G, ∗) be an algebraic structure.

(a) (G, ∗) is called associative if

a ∗ (b ∗ c) = (a ∗ b) ∗ c

for any a, b, c ∈ G.

(b) (G, ∗) is called commutative (or abelian) if

a ∗ b = b ∗ a

for any a, b ∈ G.

(c) An element e ∈ G is called an identity (or a neutral element) for (G, ∗) (and the

algebraic structure is often denoted by (G, ∗, e)) if
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e ∗ a = a ∗ e

for any a ∈ G.

(d) Let (G, ∗, e) be an algebraic structure with an identity e. An element b ∈ G such

that

a ∗ b = b ∗ a = e

is called the inverse of a, and denoted by a−1. The elements for which an inverse

exists are called invertible.

Remark A.2.5 If the algebraic structure is given by a ‘sum rule’, like in

(N,+), the neutral element is usually called a zero element, denoted by 0, with

a + 0 = 0 + a = a. Also, the inverse of an element a is usually denoted by −a and

named the opposite of a.

Example A.2.6 It is easy to see that for the sets considered above one has (N,+, 0),

(N, ·, 1), (R, ◦, e). Every element in R is invertible (since one has x ◦ y = y ◦ x = e);

the set (N, ·, 1) contains only one invertible element, which is the identity itself, while

in (N,+, 0) no element is invertible.

From the defining relation (c) above one clearly has that if a−1 is the inverse

of a ∈ (G, ∗), then a is the inverse of a−1. This suggests a way to enlarge sets

containing elements which are not invertible, so to have a new algebraic structure

whose elements are all invertible. For instance, one could define the set of integer

numbers Z = {±n : n ∈ N} and sees that every element in (Z,+, 0) is invertible.

Definition A.2.7 An algebraic structure (G, ∗) is called a group when the following

properties are satisfied

(a) the operation ∗ is associative,

(b) G contains an identity element e with respect to ∗,

(c) every element in G is invertible with respect to e.

A group (G, ∗, e) is called commutative (or abelian) if the operation∗ is commutative.

Remark A.2.8 Both (Z,+, 0) and (R, ◦, e) are abelian groups.

Proposition A.2.9 Let (G, ∗, e) be a group. Then

(i) the identity element is unique,

(ii) the inverse a−1 of any element a ∈ G is unique.

Proof (i) Let us suppose that e, e′ are both identities for (G, ∗). Then it should be

e ∗ e′ = e since e′ is an identity, and also e ∗ e′ = e′ since e is an identity; this

would then mean e = e′.

(ii) Let b, c be both inverse elements to a ∈ G; this would give a ∗ b = b ∗ a = e and

a ∗ c = c ∗ a = e. Since the binary operation is associative, one has

b ∗ (a ∗ c) = (b ∗ a) ∗ c, resulting in b ∗ e = e ∗ c and then b = c. �
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A.3 Rings and Fields

Next we introduce and study the properties of a set equipped with two binary

operations—compatible in a suitable sense—which resemble the sum and the product

of integer numbers in Z.

Definition A.3.1 Let A = (A,+, 0A, ·, 1A) be a set with two operations, called sum

(+) and product (·), with two distinguished elements called 0A and 1A. The set A is

called a ring if the following conditions are satisfied:

(a) (A,+, 0A) is an abelian group,

(b) the product · is associative,

(c) 1A is the identity element with respect to the product,

(d) one has a · (b + c) = (a · b) + (a · c) for any a, b, c ∈ A.

If moreover the product is abelian, A is called an abelian ring.

Example A.3.2 The set (Z,+, 0, ·, 1) is clearly an abelian ring.

Definition A.3.3 By Z[X ] one denotes the set of polynomials in the indeterminate

(or variable) X with coefficients in Z, that is the set of formal expressions,

Z[X ] =

{

n
∑

i=0

ai X i = an Xn + an−1 Xn−1 + . . . + a1 X + a0 : n ∈ N, ai ∈ Z

}

.

If Z[X ] ∋ p(X) = an Xn + an−1 Xn−1 + . . . + a1 X + a0 then a0, a1, . . . , an are the

coefficients of the polynomial p(X), while the term ai X i is a monomial of degree i .

The degree of the polynomial p(X) is the highest degree among those of its non zero

monomials. If p(X) is the polynomial above, its degree is n provided an �= 0, and

one denotes deg p(X) = n. The two usual operations of sum and product in Z[X ]

are defined as follows. Let p(X), q(X) be two arbitrary polynomials in Z[X ],

p(X) =

n
∑

i=0

ai X i , q(X) =

m
∑

i=0

bi X i .

Let us suppose n ≤ m. One sets

p(X) + q(X) =

m
∑

j=0

c j X j ,
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with c j = a j + b j for 0 ≤ j ≤ n and c j = b j for n < j ≤ m. One would have an

analogous results were n ≥ m. For the product one sets

p(X) · q(X) =

m+n
∑

h=0

dh X h,

where dh =
∑

i+ j=h ai b j .

Proposition A.3.4 Endowed with the sum and the product as defined above, the

set Z[X ] is an abelian ring, the ring of polynomials in one variable with integer

coefficients.

Proof One simply transfer to Z[X ] the analogous structures and properties of the

ring (Z,+, 0, ·, 1). Let 0Z[X ] be the null polynomial, that is the polynomial whose

coefficients are all equal to 0Z, and let 1Z[X ] = 1Z be the polynomial of degree 0

whose only non zero coefficient is equal to 1Z. We limit ourselves to prove that

(Z[X ],+, 0Z[X ]) is an abelian group.

• Clearly, the null polynomial 0Z[X ] is the identity element with respect to the sum

of polynomials.

• Let us consider three arbitrary polynomials in Z[X ],

p(X) =

n
∑

i=0

ai X i , q(X) =

m
∑

i=0

bi X i , r(X) =

p
∑

i=0

ci X i .

We show that

(

p(X) + q(X)
)

+ r(X) = p(X) +
(

q(X) + r(X)
)

.

For simplicity we consider the case n = m = p, since the proof for the general

case is analogue. From the definition of sum of polynomials, one has

A(X) = (p(X) + q(X)) + r(X)

=

n
∑

i=0

(ai + bi )X i +

n
∑

i=0

ci X i =

n
∑

i=0

[(ai + bi ) + ci ]X i

and

B(X) = p(X) + (q(X) + r(X))

=

n
∑

i=0

ai X i +

n
∑

i=0

(bi + ci )X i =

n
∑

i=0

[ai + (bi + ci )]X i .
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The coefficients of A(X) and B(X) are given, for any i = 0, . . . , n, by

[(ai + bi ) + ci ] and [ai + (bi + ci )]

and they coincide being the sum in Z associative. This means that A(X) = B(X).

• We show next that any polynomial p(X) =
∑n

i=0 ai X i is invertible with respect

to the sum in Z[X ]. Let us define the polynomial p′(X) =
∑n

i=0(−ai )X i , with

(−ai ) denoting the inverse of ai ∈ Z with respect to the sum. From the definition

of the sum of polynomials, one clearly has

p(X) + p′(X) =

n
∑

i=0

ai X i +

n
∑

i=0

(−ai )X i =

n
∑

i=0

(ai − ai )X i .

Since ai − ai = 0Z for any i , one has p(X) + p′(X) = 0Z[X ]; thus p′(X) is the

inverse of p(X).

• Finally, we show that the sum in Z[X ] is abelian. Let p(X) and q(X) be two arbi-

trary polynomials in Z[X ] of the same degree deg p(X) = n = deg q(X) (again

for simplicity); we wish to show that

p(X) + q(X) = q(X) + p(X).

From the definition of sum of polynomials,

U (X) = p(X) + q(X) =

n
∑

i=0

(ai + bi )X i

V (X) = q(X) + p(X) =

n
∑

i=0

(bi + ai )X i :

the coefficients of U (X) and V (X) are given, for any i = 0, . . . , n by

ai + bi and bi + ai

which coincide since the sum is abelian in Z. This means U (X) = V (X).

We leave as an exercise to finish showing that Z[X ] with the sum and the product

above fulfill the conditions (b)–(d) in the Definition A.3.1 of a ring. �

Remark A.3.5 Direct computation show the following well known properties of the

abelian ring Z[X ] of polynomials. With f (X), g(X) ∈ Z[X ] it holds that:

(i) deg( f (X) + g(X)) ≤ max{deg( f (X)), deg(g(X))};

(ii) deg( f (X) · g(X)) = deg( f (X)) + deg(g(X)).

It is easy to see that the set (Q,+, ·, 0, 1) of rational numbers is an abelian ring as

well. The set Q has indeed a richer algebraic structure than Z: any non zero element
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0 �= a ∈ Q is invertible with respect to the product. If a = p/q with p �= 0, then

a−1 = q/p ∈ Q.

Definition A.3.6 An abelian ring K = (K ,+, 0, ·, 1) such that each element

0 �= a ∈ K is invertible with respect to the product ·, is called a field. Equivalently

one sees that (K ,+, 0, ·, 1) is a field if and only if both (K ,+, 0) and (K , ·, 1) are

abelian groups and the product is distributive with respect to the sum, that is the

condition (d) of the Definition A.3.1 is satisfied.

Example A.3.7 Clearly (Q,+, 0, ·, 1) is a field, while (Z,+, 0, ·, 1) is not. The fun-

damental example of a field for us will be the set R = (R,+, 0, ·, 1) of real numbers

equipped with the usual definitions of sum and product.

Analogously to the Definition A.3.3 one can define the sets Q[X ] and R[X ] of

polynomials with rational and real coefficients. For them one naturally extends the

definitions of sum and products, as well as that of degree.

Proposition A.3.8 The set Q[X ] and R[X ] are both abelian rings. �

It is worth stressing that in spite of the fact that Q and R are fields, neither Q[X ]

nor R[X ] are such since a polynomial need not admit an inverse with respect to the

product.

A.4 Maps Preserving Algebraic Structures

The Definition A.2.1 introduces the notion of algebraic structure (G, ∗) and we have

described what groups, rings and fields are. We now briefly deal with maps between

algebraic structures of the same kind, which preserve the binary operations defined

in them. We have the following definition

Definition A.4.1

A map f : G → G ′ between two groups (G, ∗G, eG) and (G ′, ∗G ′ , eG ′) is a group

homomorphism if

f (x ∗G y) = f (x) ∗G ′ f (y) for all x, y ∈ G.

A map f : A → B between two rings (A,+A, 0A, ·A, 1A) and (B,+B, 0B, ·B, 1B)

is a ring homomorphism if

f (x +A y) = f (x) +B f (y), f (x ·A y) = f (x) ·B f (y) for all x, y ∈ A.

Example A.4.2 The natural inclusions Z ⊂ Q, Q ⊂ R are rings homomorphisms, as

well as the inclusion Z ⊂ Z[x] and similar ones.

Exercise A.4.3 The map Z → Z defined by n �→ 2n is a group homomorphism

with respect to the group structure (Z,+, 0), but not a ring homomorphism with

respect to the ring structure (Z,+, 0, ·, 1).
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To lighten notations, from now on we shall denote a sum by + and a product by ·

(and more generally a binary operation by ∗), irrespectively of the set in which they

are defined. It will be clear from the context which one they refers to.

Group homomorphisms present some interesting properties, as we now show.

Proposition A.4.4 Let (G, ∗, eG) and (G ′, ∗, eG ′) be two groups, and f : G → G ′

a group homomorphism. Then,

(i) f (eG) = eG ′ ,

(ii) f (a−1) = ( f (a))−1, for any a ∈ G.

Proof (i) Since eG is the identity element with respect to the sum, we can write

f (eG) = f (eG ∗ eG) = f (eG) ∗ f (eG),

where the second equality is valid as f is a group homomorphism. Being

f (eG) ∈ G ′, it has a unique inverse (see the Proposition A.2.9), ( f (eG))−1 ∈ G ′,

that we can multiply with both sides of the previous equality, thus yielding

f (eG) ∗ ( f (eG))−1 = f (eG) ∗ f (eG) ∗ ( f (eG))−1.

This relation results in

eG ′ = f (eG) ∗ eG ′ ⇒ eG ′ = f (eG).

(ii) Making again use of the Proposition A.2.9, in order to show that ( f (a))−1 is the

inverse (with respect to the product in G ′) of f (a) it suffices to show that

f (a) ∗ ( f (a))−1 = eG ′ .

From the definition of group homomorphism, it is

f (a) ∗ ( f (a))−1 = f (a ∗ a−1) = f (eG) = eG ′

where the last equality follows from (i).

If f : A → B is a ring homomorphism, the previous properties are valid with

respect to both the sum and to the product, that is

(i’) f (0A) = 0B and f (1A) = 1B ;

(ii’) f (−a) = − f (a) for any a ∈ A, while f (a−1) = ( f (a))−1 for any invertible

(with respect to the product) element a ∈ A with inverse a−1. �

If A, B are fields, a ring homomorphism f : A → B is called a field homomor-

phism. A bijective homomorphism between algebraic structures is called an isomor-

phism.
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A.5 Complex Numbers

It is soon realised that one needs enlarging the field R of real numbers to consider zeros

of polynomials with real coefficients. The real coefficient polynomial p(x) = x2 + 1

has ‘complex’ zeros usually denoted ±i, and their presence leads to defining the field

of complex numbers C. One considers the smallest field containing R, ±i and all

possible sums and products of them.

Definition A.5.1 The set of complex numbers is given by formal expressions

C = {z = a + ib | a, b ∈ R}.

The real number a is called the real part of z, denoted a = ℜ(z); the real number b

is called the imaginary part of z, denoted b = ℑ(z).

The following proposition comes as an easy exercise.

Proposition A.5.2 The binary operations of sum and product defined in C by

(a + ib) + (c + id) = (a + c) + i(b + d),

(a + ib) · (c + id) = (ac − bd) + i(bc + ad)

make (C,+, 0C, ·, 1C) a field, with 0C = 0R + i0R = 0R and

1C = 1R + i0R = 1R. �

Exercise A.5.3 An interesting part of the proof of the proposition above is to deter-

mine the inverse z−1 of the complex number z = a + ib. One easily checks that

(a + ib)−1 =
a

a2 + b2
− i

b

a2 + b2
=

1

a2 + b2
(a − ib).

Again an easy exercise establishes the following proposition.

Proposition A.5.4 Given z = a + ib ∈ C one defines its conjugate number to be

z̄ = a − ib. Then, for any complex number z = a + ib the following properties hold:

(i) z = z,

(ii) z = z if and only if z ∈ R,

(iii) zz = a2 + b2,

iv) z + z = 2ℜ(z). �

Exercise A.5.5 The natural inclusions R ⊂ C given by R ∋ a �→ a + i0R is a field

homomorphism, while the corresponding inclusion R[x] ⊂ C[x] is a ring homomor-

phism.

Remark A.5.6 We mentioned above that the polynomial x2 + 1 = p(x) ∈ R[x] can-

not be decomposed (i.e. cannot be factorised) as a product of degree 1 poly-

nomials in R[x], that is, with real coefficients. On the other hand, the identity



340 Appendix A: Algebraic Structures

x2 + 1 = (x − i)(x + i) ∈ C[x] shows that the same polynomial can be decomposed

into degree 1 terms if the coefficients of the latter are taken in C. This is not sur-

prising, since the main reason to enlarge the field R to C was exactly to have a field

containing the zero of the polynomial p(x).

What is indeed surprising is that the field C contains the zeros of any polynomial

with real coefficients. This is the result that we recall as the next theorem.

Proposition A.5.7 (Fundamental theorem of algebra) Let f (x) ∈ R[x] be a polyno-

mial with real coefficients and deg f (x) ≥ 1. Then, f (x) has at least a zero (that is

a root) in C. More precisely, if deg f (x) = n, then f (x) has n (possibly non distinct)

roots in C. If z1, . . . , zs are these distinct roots, the polynomial f (x) can be written

as

f (x) = a(x − z1)
m(1)(x − z2)

m(2) · · · (x − zs)
m(s),

with the root multiplicities m( j) for j = 1, . . . s, such that

s
∑

j=1

m( j) = n.

That is the polynomial f (x) it is completely factorisable on C. �

A more general result states that C is an algebraically closed field, that is one has

the following:

Theorem A.5.8 Let f (x) ∈ C[x] be a degree n polynomial with complex coeffi-

cients. Then there exist n complex (non distinct in generall ) roots of f (x). Thus the

polynomial f (x) is completely factorisable on C. �

A.6 Integers Modulo A Prime Number

We have seen that the integer numbers Z form only a ring and not a field. Out of

it one can construct fields of numbers by going to the quotient with respect to an

equivalence relation of ‘modulo an integer’. As an example, consider the set Z3 of

integer modulo 3. It has three elements

Z3 = {[0], [1], [2]}

which one also simply write Z3 = {0, 1, 2}, although one should not confuse them

with the corresponding classes.

One way to think of the three elements of Z3 is that each one represents the

equivalence class of all integers which have the same remainder when divided by 3.

For instance, [2] denotes the set of all integers which have remainder 2 when divided

by 3 or equivalently, [2] denotes the set of all integers which are congruent to 2
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modulo 3, thus [2] = {2, 5, 8, 11, . . . }. The usual arithmetic operations determine

the addition and multiplication tables for this set as show in Table A.2.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

and

∗ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

. (A.2)

Thus −[1] = [2] and −[2] = [1] and Z3 is an abelian group for the addition. Further-

more, [1] ∗ [1] = [1] and [2] ∗ [2] = [1] and both nonzero elements have inverse:

[1]−1 = [1] and [2]−1 = [2]. All of this makes Z3 a field.

The previous construction works when 3 is substituted with any prime number p.

We recall that a positive integer p is called prime if it is only divisible by itself and

by 1. Thus, for any prime number one gets the field of integers modulo p:

Zp = Z/pZ = {[0], [1], . . . , [p − 1]}.

Each of its elements represents the equivalence class of all integers which have

the given remainder when divided by p. Equivalently, each element denotes the

equivalence class of all integers which are congruent modulo p. The corresponding

addition and multiplication tables, defines as in Z but now taken modulo p, can be

easily worked out. Notice that the construction does not work, that is Zp is not a ring,

if p is not a prime number: were this the case there would be divisors of zero.
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