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Preface

The field of sensory science has grown exponentially since the publication of the pre-
vious version of this work. Fifteen years ago the journal Food Quality and Preference

was fairly new. Now it holds an eminent position as a venue for research on sensory
test methods (among many other topics). Hundreds of articles relevant to sensory
testing have appeared in that and in other journals such as the Journal of Sensory

Studies. Knowledge of the intricate cellular processes in chemoreception, as well as
their genetic basis, has undergone nothing less than a revolution, culminating in the
award of the Nobel Prize to Buck and Axel in 2004 for their discovery of the olfactory
receptor gene super family. Advances in statistical methodology have accelerated as
well. Sensometrics meetings are now vigorous and well-attended annual events. Ideas
like Thurstonian modeling were not widely embraced 15 years ago, but now seem to
be part of the everyday thought process of many sensory scientists.

And yet, some things stay the same. Sensory testing will always involve human
participants. Humans are tough measuring instruments to work with. They come
with varying degrees of acumen, training, experiences, differing genetic equipment,
sensory capabilities, and of course, different preferences. Human foibles and their
associated error variance will continue to place a limitation on sensory tests and
actionable results. Reducing, controlling, partitioning, and explaining error variance
are all at the heart of good test methods and practices. Understanding the product–
person interface will always be the goal of sensory science. No amount of elaborate
statistical maneuvering will save a bad study or render the results somehow useful
and valid. Although methods continue to evolve, appreciation of the core principles
of the field is the key to effective application of sensory test methods.

The notion that one can write a book that is both comprehensive and suitable as
an introductory text was a daunting challenge for us. Some may say that we missed
the mark on this or that topic, that it was either too superficially treated or too in
depth for their students. Perhaps we have tried to do the impossible. Nonetheless the
demand for a comprehensive text that would serve as a resource for practitioners is
demonstrated by the success of the first edition. Its widespread adoption as a univer-
sity level text shows that many instructors felt that it could be used appropriately for
a first course in sensory evaluation.

This book has been expanded somewhat to reflect the advances in methodolo-
gies, theory, and analysis that have transpired in the last 15 years. The chapters are
now divided into numbered sections. This may be of assistance to educators who
may wish to assign only certain critical sections to beginning students. Much of the
organization of key chapters has been done with this in mind and in some of the
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vi Preface

opening sections; instructors will find suggestions about which sections are key for
fundamental understanding of that topic or method. In many chapters we have gone
out on a limb and specified a “recommended procedure.” In cases where there are
multiple options for procedure or analysis, we usually chose a simple solution over
one that is more complex. Because we are educators, this seemed the appropriate
path.

Note that there are two kinds of appendices in this book. The major statistical
methods are introduced with worked examples in Appendices A–E, as in the previ-
ous edition. Some main chapters also have appended materials that we felt were not
critical to understanding the main topic, but might be of interest to advanced students,
statisticians, or experienced practitioners. We continue to give reference citations at
the end of every chapter, rather than in one big list at the end. Statistical tables have
been added, most notably the discrimination tables that may now be found both in the
Appendix and in Chapter 4 itself.

One may question whether textbooks themselves are an outdated method for
information retrieval. We feel this acutely because we recognize that a textbook is
necessarily retrospective and is only one snapshot in time of a field that may be
evolving rapidly. Students and practitioners alike may find that reference to updated
websites, wikis, and such will provide additional information and new and different
perspectives. We encourage such investigation. Textbooks, like automobiles, have an
element of built-in obsolescence. Also textbooks, like other printed books, are lin-
ear in nature, but the mind works by linking ideas. Hyperlinked resources such as
websites and wikis will likely continue to prove useful.

We ask your patience and tolerance for materials and citations that we have left out
that you might feel are important. We recognize that there are legitimate differences of
opinion and philosophy about the entire area of sensory evaluation methods. We have
attempted to provide a balanced and impartial view based on our practical experience.
Any errors of fact, errors typographical, or errors in citation are our own fault. We beg
your understanding and patience and welcome your corrections and comments.

We could not have written this book without the assistance and support of many
people. We would like to thank Kathy Dernoga for providing a pre-publication ver-
sion of the JAR scale ASTM manual as well as the authors of the ASTM JAR
manual Lori Rothman and Merry Jo Parker. Additionally, Mary Schraidt of Peryam
and Kroll provided updated examples of a consumer test screening questionnaire and
field study questionnaires. Thank you Mary. We thank John Hayes, Jeff Kroll, Tom
Carr, Danny Ennis, and Jian Bi for supplying additional literature, software, and sta-
tistical tables. Gernot Hoffmann graciously provided graphics for Chapter 12. Thank
you Dr. Hoffmann. We would like to thank Wendy Parr and James Green for provid-
ing some graphics for Chapter 10. Additionally, Greg Hirson provided support with
R-Graphics. Thank you, Greg. Additionally, we want to thank the following peo-
ple for their willingness to discuss the book in progress and for making very useful
suggestions: Michael Nestrud, Susan Cuppett, Edan Lev-Ari, Armand Cardello, Marj
Albright, David Stevens, Richard Popper, and Greg Hirson. John Horne had also been
very helpful in the previous edition, thank you John. Proofreading and editing sug-
gestions were contributed by Kathy Chapman, Gene Lovelace, Mike Nestrud, and
Marge Lawless.

Although not directly involved with this edition of the book we would also like
to thank our teachers and influential mentors—without them we would be very dif-
ferent scientists, namely Trygg Engen, William S. Cain, Linda Bartoshuk, David
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Peryam, David Stevens, Herb Meiselman, Elaine Skinner, Howard Schutz, Howard
Moskowitz, Rose Marie Pangborn, Beverley Kroll, W. Frank Shipe, Lawrence E.
Marks, Joseph C. Stevens, Arye Dethmers, Barbara Klein, Ann Noble, Harold
Hedrick, William C Stringer, Roger Boulton, Kay McMath, Joel van Wyk, and Roger
Mitchell.

Ithaca, New York Harry T. Lawless
Davis, California Hildegarde Heymann
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Chapter 1

Introduction

Abstract In this chapter we carefully parse the definition for sensory evaluation,
briefly discuss validity of the data collected before outlining the early history of
the field. We then describe the three main methods used in sensory evaluation
(discrimination tests, descriptive analysis, and hedonic testing) before discussing the
differences between analytical and consumer testing. We then briefly discuss why one
may want to collect sensory data. In the final sections we highlight the differences and
similarities between sensory evaluation and marketing research and between sensory
evaluation and commodity grading as used in, for example, the dairy industry.

Sensory evaluation is a child of industry. It was spawned in the late 40’s by the rapid growth of the

consumer product companies, mainly food companies. . . . Future development in sensory

evaluation will depend upon several factors, one of the most important being the people and their

preparation and training.

— Elaine Skinner (1989)
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1.1 Introduction and Overview

1.1.1 Definition

The field of sensory evaluation grew rapidly in the sec-
ond half of the twentieth century, along with the expan-
sion of the processed food and consumer products
industries. Sensory evaluation comprises a set of tech-
niques for accurate measurement of human responses
to foods and minimizes the potentially biasing effects
of brand identity and other information influences on
consumer perception. As such, it attempts to isolate
the sensory properties of foods themselves and pro-
vides important and useful information to product
developers, food scientists, and managers about the
sensory characteristics of their products. The field was
comprehensively reviewed by Amerine, Pangborn, and
Roessler in 1965, and more recent texts have been pub-
lished by Moskowitz et al. (2006), Stone and Sidel
(2004), and Meilgaard et al. (2006). These three later
sources are practical works aimed at sensory specialists

1H.T. Lawless, H. Heymann, Sensory Evaluation of Food, Food Science Text Series,
DOI 10.1007/978-1-4419-6488-5_1, © Springer Science+Business Media, LLC 2010
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in industry and reflect the philosophies of the consult-
ing groups of the authors. Our goal in this book is to
provide a comprehensive overview of the field with a
balanced view based on research findings and one that
is suited to students and practitioners alike.

Sensory evaluation has been defined as a scientific
method used to evoke, measure, analyze, and interpret
those responses to products as perceived through the
senses of sight, smell, touch, taste, and hearing (Stone
and Sidel, 2004). This definition has been accepted
and endorsed by sensory evaluation committees within
various professional organizations such as the Institute
of Food Technologists and the American Society for
Testing and Materials. The principles and practices of
sensory evaluation involve each of the four activities
mentioned in this definition. Consider the words “to
evoke.” Sensory evaluation gives guidelines for the
preparation and serving of samples under controlled
conditions so that biasing factors are minimized. For
example, people in a sensory test are often placed in
individual test booths so that the judgments they give
are their own and do not reflect the opinions of those
around them. Samples are labeled with random num-
bers so that people do not form judgments based upon
labels, but rather on their sensory experiences. Another
example is in how products may be given in different
orders to each participant to help measure and counter-
balance for the sequential effects of seeing one product
after another. Standard procedures may be established
for sample temperature, volume, and spacing in time,
as needed to control unwanted variation and improve
test precision.

Next, consider the words, “to measure.” Sensory
evaluation is a quantitative science in which numerical
data are collected to establish lawful and specific rela-
tionships between product characteristics and human
perception. Sensory methods draw heavily from the
techniques of behavioral research in observing and
quantifying human responses. For example, we can
assess the proportion of times people are able to dis-
criminate small product changes or the proportion of
a group that expresses a preference for one product
over another. Another example is having people gener-
ate numerical responses reflecting their perception of
how strong a product may taste or smell. Techniques
of behavioral research and experimental psychology
offer guidelines as to how such measurement tech-
niques should be employed and what their potential
pitfalls and liabilities may be.

The third process in sensory evaluation is analysis.
Proper analysis of the data is a critical part of sen-
sory testing. Data generated from human observers are
often highly variable. There are many sources of vari-
ation in human responses that cannot be completely
controlled in a sensory test. Examples include the
mood and motivation of the participants, their innate
physiological sensitivity to sensory stimulation, and
their past history and familiarity with similar products.
While some screening may occur for these factors, they
may be only partially controlled, and panels of humans
are by their nature heterogeneous instruments for the
generation of data. In order to assess whether the rela-
tionships observed between product characteristics and
sensory responses are likely to be real, and not merely
the result of uncontrolled variation in responses, the
methods of statistics are used to analyze evaluation
data. Hand-in-hand with using appropriate statistical
analyses is the concern of using good experimental
design, so that the variables of interest are investigated
in a way that allows sensible conclusions to be drawn.

The fourth process in sensory evaluation is the inter-
pretation of results. A sensory evaluation exercise is
necessarily an experiment. In experiments, data and
statistical information are only useful when interpreted
in the context of hypotheses, background knowl-
edge, and implications for decisions and actions to be
taken. Conclusions must be drawn that are reasoned
judgments based upon data, analyses, and results.
Conclusions involve consideration of the method, the
limitations of the experiment, and the background and
contextual framework of the study. The sensory evalu-
ation specialists become more than mere conduits for
experimental results, but must contribute interpreta-
tions and suggest reasonable courses of action in light
of the numbers. They should be full partners with their
clients, the end-users of the test results, in guiding fur-
ther research. The sensory evaluation professional is
in the best situation to realize the appropriate inter-
pretation of test results and the implications for the
perception of products by the wider group of con-
sumers to whom the results may be generalized. The
sensory specialist best understands the limitations of
the test procedure and what its risks and liabilities
may be.

A sensory scientist who is prepared for a career
in research must be trained in all four of the phases
mentioned in the definition. They must understand
products, people as measuring instruments, statistical
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analyses, and interpretation of data within the con-
text of research objectives. As suggested in Skinner’s
quote, the future advancement of the field depends
upon the breadth and depth of training of new sensory
scientists.

1.1.2 Measurement

Sensory evaluation is a science of measurement. Like
other analytical test procedures, sensory evaluation is
concerned with precision, accuracy, sensitivity, and
avoiding false positive results (Meiselman, 1993).
Precision is similar to the concept in the behavioral
sciences of reliability. In any test procedure, we would
like to be able to get the same result when a test is
repeated. There is usually some error variance around
an obtained value, so that upon repeat testing, the
value will not always be exactly the same. This is
especially true of sensory tests in which human per-
ceptions are necessarily part of the generation of
data. However, in many sensory test procedures, it is
desirable to minimize this error variance as much as
possible and to have tests that are low in error asso-
ciated with repeated measurements. This is achieved
by several means. As noted above, we isolate the sen-
sory response to the factors of interest, minimizing
extraneous influences, controlling sample preparation
and presentation. Additionally, as necessary, sensory
scientists screen and train panel participants.

A second concern is the accuracy of a test. In the
physical sciences, this is viewed as the ability of a test
instrument to produce a value that is close to the “true”
value, as defined by independent measurement from
another instrument or set of instruments that have been
appropriately calibrated. A related idea in the behav-
ioral sciences, this principle is called the validity of a
test. This concerns the ability of a test procedure to
measure what it was designed and intended to measure.
Validity is established in a number of ways. One useful
criterion is predictive validity, when a test result is of
value in predicting what would occur in another situ-
ation or another measurement. In sensory testing, for
example, the test results should reflect the perceptions
and opinions of consumers that might buy the product.
In other words, the results of the sensory test should
generalize to the larger population. The test results
might correlate with instrumental measures, process or
ingredient variables, storage factors, shelf life times,

or other conditions known to affect sensory properties.
In considering validity, we have to look at the end use
of the information provided by a test. A sensory test
method might be valid for some purposes, but not oth-
ers (Meiselman, 1993). A simple difference test can
tell if a product has changed, but not whether people
will like the new version.

A good sensory test will minimize errors in mea-
surement and errors in conclusions and decisions.
There are different types of errors that may occur in
any test procedure. Whether the test result reflects
the true state of the world is an important question,
especially when error and uncontrolled variability are
inherent in the measurement process. Of primary con-
cern in sensory tests is the sensitivity of the test to
differences among products. Another way to phrase
this is that a test should not often miss important
differences that are present. “Missing a difference”
implies an insensitive test procedure. To keep sensi-
tivity high, we must minimize error variance wherever
possible by careful experimental controls and by selec-
tion and training of panelists where appropriate. The
test must involve sufficient numbers of measurements
to insure a tight and reliable statistical estimate of
the values we obtain, such as means or proportions.
In statistical language, detecting true differences is
avoiding Type II error and the minimization of β-risk.
Discussion of the power and sensitivity of tests from
a statistical perspective occurs in Chapter 5 and in the
Appendix.

The other error that may occur in a test result is
that of finding a positive result when none is actually
present in the larger population of people and prod-
ucts outside the sensory test. Once again, a positive
result usually means detection of a statistically signif-
icant difference between test products. It is important
to use a test method that avoids false positive results
or Type I error in statistical language. Basic statistical
training and common statistical tests applied to scien-
tific findings are oriented toward avoiding this kind of
error. The effects of random chance deviations must be
taken into account in deciding if a test result reflects a
real difference or whether our result is likely to be due
to chance variation. The common procedures of infer-
ential statistics provide assurance that we have limited
our possibility of finding a difference where one does
not really exist. Statistical procedures reduce this risk
to some comfortable level, usually with a ceiling of 5%
of all tests we conduct.
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Note that this error of a false positive experimen-
tal result is potentially devastating in basic scientific
research—whole theories and research programs may
develop from spurious experimental implications if
results are due to only random chance. Hence we guard
against this kind of danger with proper application
of statistical tests. However, in product development
work, the second kind of statistical error, that of miss-
ing a true difference can be equally devastating. It
may be that an important ingredient or processing
change has made the product better or worse from a
sensory point of view, and this change has gone unde-
tected. So sensory testing is equally concerned with not
missing true differences and with avoiding false posi-
tive results. This places additional statistical burdens
on the experimental concerns of sensory specialists,
greater than those in many other branches of scientific
research.

Finally, most sensory testing is performed in an
industrial setting where business concerns and strate-
gic decisions enter the picture. We can view the out-
come of sensory testing as a way to reduce risk and
uncertainty in decision making. When a product devel-
opment manager asks for a sensory test, it is usually
because there is some uncertainty about exactly how
people perceive the product. In order to know whether
it is different or equivalent to some standard product,
or whether it is preferred to some competitive stan-
dard, or whether it has certain desirable attributes, data
are needed to answer the question. With data in hand,
the end-user can make informed choices under con-
ditions of lower uncertainty or business risk. In most
applications, sensory tests function as risk reduction
mechanisms for researchers and marketing managers.

In addition to the obvious uses in product develop-
ment, sensory evaluation may provide information to
other corporate departments. Packaging functionality
and convenience may require product tests. Sensory
criteria for product quality may become an integral
part of a quality control program. Results from blind-
labeled sensory consumer tests may need to be com-
pared to concept-related marketing research results.
Sensory groups may even interact with corporate legal
departments over advertising claim substantiation and
challenges to claims. Sensory evaluation also functions
in situations outside corporate research. Academic
research on foods and materials and their properties
and processing will often require sensory tests to eval-
uate the human perception of changes in the products

(Lawless and Klein, 1989). An important function of
sensory scientists in an academic setting is to provide
consulting and resources to insure that quality tests
are conducted by other researchers and students who
seek to understand the sensory impact of the variables
they are studying. In government services such as food
inspection, sensory evaluation plays a key role (York,
1995). Sensory principles and appropriate training can
be key in insuring that test methods reflect the current
knowledge of sensory function and test design. See
Lawless (1993) for an overview of the education and
training of sensory scientists—much of this piece still
rings true more than 15 years later.

1.2 Historical Landmarks and the Three

Classes of Test Methods

The human senses have been used for centuries to eval-
uate the quality of foods. We all form judgments about
foods whenever we eat or drink (“Everyone carries his
own inch-rule of taste, and amuses himself by applying
it, triumphantly, wherever he travels.”—Henry Adams,
1918). This does not mean that all judgments are use-
ful or that anyone is qualified to participate in a sensory
test. In the past, production of good quality foods often
depended upon the sensory acuity of a single expert
who was in charge of production or made decisions
about process changes in order to make sure the prod-
uct would have desirable characteristics. This was the
historical tradition of brewmasters, wine tasters, dairy
judges, and other food inspectors who acted as the
arbiters of quality. Modern sensory evaluation replaced
these single authorities with panels of people partici-
pating in specific test methods that took the form of
planned experiments. This change occurred for sev-
eral reasons. First, it was recognized that the judgments
of a panel would in general be more reliable than the
judgments of single individual and it entailed less risk
since the single expert could become ill, travel, retire,
die, or be otherwise unavailable to make decisions.
Replacement of such an individual was a nontriv-
ial problem. Second, the expert might or might not
reflect what consumers or segments of the consum-
ing public might want in a product. Thus for issues
of product quality and overall appeal, it was safer
(although often more time consuming and expensive)
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to go directly to the target population. Although the
tradition of informal, qualitative inspections such as
benchtop “cuttings” persists in some industries, they
have been gradually replaced by more formal, quan-
titative, and controlled observations (Stone and Sidel,
2004).

The current sensory evaluation methods comprise a
set of measurement techniques with established track
records of use in industry and academic research.
Much of what we consider standard procedures comes
from pitfalls and problems encountered in the practi-
cal experience of sensory specialists over the last 70
years of food and consumer product research, and this
experience is considerable. The primary concern of any
sensory evaluation specialist is to insure that the test
method is appropriate to answer the questions being
asked about the product in the test. For this reason,
tests are usually classified according to their primary
purpose and most valid use. Three types of sensory
testing are commonly used, each with a different goal
and each using participants selected using different cri-
teria. A summary of the three main types of testing is
given in Table 1.1.

1.2.1 Difference Testing

The simplest sensory tests merely attempt to answer
whether any perceptible difference exists between two
types of products. These are the discrimination tests
or simple difference testing procedures. Analysis is
usually based on the statistics of frequencies and pro-
portions (counting right and wrong answers). From the
test results, we infer differences based on the propor-
tions of persons who are able to choose a test product
correctly from among a set of similar or control prod-
ucts. A classic example of this test was the triangle
procedure, used in the Carlsberg breweries and in the
Seagrams distilleries in the 1940s (Helm and Trolle,

1946; Peryam and Swartz, 1950). In this test, two
products were from the same batch while a third prod-
uct was different. Judges would be asked to pick the
odd sample from among the three. Ability to discrim-
inate differences would be inferred from consistent
correct choices above the level expected by chance.
In breweries, this test served primarily as a means to
screen judges for beer evaluation, to insure that they
possessed sufficient discrimination abilities. Another
multiple-choice difference test was developed at about
the same time in distilleries for purposes of quality
control (Peryam and Swartz, 1950). In the duo–trio
procedure, a reference sample was given and then two
test samples. One of the test samples matched the ref-
erence while the other was from a different product,
batch or process. The participant would try to match
the correct sample to the reference, with a chance
probability of one-half. As in the triangle test, a propor-
tion of correct choices above that expected by chance
is considered evidence for a perceivable difference
between products. A third popular difference test was
the paired comparison, in which participants would be
asked to choose which of two products was stronger
or more intense in a given attribute. Partly due to the
fact that the panelist’s attention is directed to a specific
attribute, this test is very sensitive to differences. These
three common difference tests are shown in Fig. 1.1.

Simple difference tests have proven very useful in
application and are in widespread use today. Typically
a discrimination test will be conducted with 25–40
participants who have been screened for their sensory
acuity to common product differences and who are
familiar with the test procedures. This generally pro-
vides an adequate sample size for documenting clear
sensory differences. Often a replicate test is performed
while the respondents are present in the sensory test
facility. In part, the popularity of these tests is due to
the simplicity of data analysis. Statistical tables derived
from the binomial distribution give the minimum num-
ber of correct responses needed to conclude statistical

Table 1.1 Classification of test methods in sensory evaluation

Class Question of interest Type of test Panelist characteristics

Discrimination Are products perceptibly different in any way “Analytic” Screened for sensory acuity, oriented to test
method, sometimes trained

Descriptive How do products differ in specific sensory
characteristics

“Analytic” Screened for sensory acuity and motivation,
trained or highly trained

Affective How well are products liked or which products
are preferred

“Hedonic” Screened for products, untrained
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Fig. 1.1 Common methods
for discrimination testing
include the triangle, duo–trio,
and paired comparison
procedures.

significance as a function of the number of partici-
pants. Thus a sensory technician merely needs to count
answers and refer to a table to give a simple statisti-
cal conclusion, and results can be easily and quickly
reported.

1.2.2 Descriptive Analyses

The second major class of sensory test methods is
those that quantify the perceived intensities of the sen-
sory characteristics of a product. These procedures
are known as descriptive analyses. The first method
to do this with a panel of trained judges was the
Flavor Profile R© method developed at the Arthur D.
Little consulting group in the late 1940s (Caul, 1957).
This group was faced with developing a comprehen-
sive and flexible tool for analysis of flavor to solve
problems involving unpleasant off flavors in nutritional
capsules and questions about the sensory impact of
monosodium glutamate in various processed foods.
They formulated a method involving extensive train-
ing of panelists that enabled them to characterize all of
the flavor notes in a food and the intensities of these
notes using a simple category scale and noting their
order of appearance. This advance was noteworthy on
several grounds. It supplanted the reliance on single
expert judges (brewmasters, coffee tasters, and such)
with a panel of individuals, under the realization that

the consensus of a panel was likely to be more reliable
and accurate than the judgment of a single individual.
Second, it provided a means to characterize the indi-
vidual attributes of flavor and provide a comprehensive
analytical description of differences among a group of
products under development.

Several variations and refinements in descriptive
analysis techniques were forthcoming. A group at the
General Foods Technical Center in the early 1960s
developed and refined a method to quantify food
texture, much as the flavor profile had enabled the
quantification of flavor properties (Brandt et al., 1963,
Szczesniak et al., 1975). This technique, the Texture
Profile method, used a fixed set of force-related and
shape-related attributes to characterize the rheolog-
ical and tactile properties of foods and how these
changed over time with mastication. These character-
istics have parallels in the physical evaluation of food
breakdown or flow. For example, perceived hardness
is related to the physical force required to penetrate
a sample. Perceived thickness of a fluid or semisolid
is related in part to physical viscosity. Texture profile
panelists were also trained to recognize specific inten-
sity points along each scale, using standard products or
formulated pseudo-foods for calibration.

Other approaches were developed for descriptive
analysis problems. At Stanford Research Institute in
the early 1970s, a group proposed a method for
descriptive analysis that would remedy some of the
apparent shortcomings of the Flavor Profile R© method
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and be even more broadly applicable to all sensory
properties of a food, and not just taste and tex-
ture (Stone et al., 1974). This method was termed
Quantitative Descriptive Analysis R© or QDA R© for
short (Stone and Sidel, 2004). QDA R© procedures
borrowed heavily from the traditions of behavioral
research and used experimental designs and statisti-
cal analyses such as analysis of variance. This insured
independent judgments of panelists and statistical test-
ing, in contrast to the group discussion and consensus
procedures of the Flavor Profile R© method. Other varia-
tions on descriptive procedures were tried and achieved
some popularity, such as the Spectrum Method R©

(Meilgaard et al., 2006) that included a high degree of
calibration of panelists for intensity scale points, much
like the Texture Profile. Still other researchers have
employed hybrid techniques that include some features
of the various descriptive approaches (Einstein, 1991).
Today many product development groups use hybrid
approaches as the advantages of each may apply to the
products and resources of a particular company.

Descriptive analysis has proven to be the most com-
prehensive and informative sensory evaluation tool. It
is applicable to the characterization of a wide vari-
ety of product changes and research questions in food
product development. The information can be related
to consumer acceptance information and to instrumen-
tal measures by means of statistical techniques such as
regression and correlation.

An example of a descriptive ballot for texture
assessment of a cookie product is shown in Table 1.2.
The product is assessed at different time intervals in

Table 1.2 Descriptive evaluation of cookies–texture attributes

Phase Attributes Word anchors

Surface Roughness Smooth–rough
Particles None–many
Dryness Oily–dry

First bite Fracturability Crumbly–brittle
Hardness Soft–hard
Particle size Small–large

First chew Denseness Airy–dense
Uniformity of chew Even–uneven

Chew down Moisture absorption None–much
Cohesiveness of mass Loose–cohesive
Toothpacking None–much
Grittiness None–much

Residual Oiliness Dry–oily
Particles None–many
Chalky Not chalky–very chalky

a uniform and controlled manner, typical of an ana-
lytical sensory test procedure. For example, the first
bite may be defined as cutting with the incisors. The
panel for such an analysis would consist of perhaps 10–
12 well-trained individuals, who were oriented to the
meanings of the terms and given practice with exam-
ples. Intensity references to exemplify scale points
are also given in some techniques. Note the amount
of detailed information that can be provided in this
example and bear in mind that this is only look-
ing at the product’s texture—flavor might form an
equally detailed sensory analysis, perhaps with a sep-
arate trained panel. The relatively small number of
panelists (a dozen or so) is justified due to their level
of calibration. Since they have been trained to use
attribute scales in a similar manner, error variance is
lowered and statistical power and test sensitivity are
maintained in spite of fewer observations (fewer data
points per product). Similar examples of texture, fla-
vor, fragrance, and tactile analyses can be found in
Meilgaard et al. (2006).

1.2.3 Affective Testing

The third major class of sensory tests is those that
attempt to quantify the degree of liking or disliking
of a product, called hedonic or affective test methods.
The most straightforward approach to this problem is
to offer people a choice among alternative products and
see if there is a clear preference from the majority of
respondents. The problem with choice tests is that they
are not very informative about the magnitude of liking
or disliking from respondents. An historical landmark
in this class of tests was the hedonic scale developed at
the U.S. Army Food and Container Institute in the late
1940s (Jones et al., 1955). This method provided a bal-
anced 9-point scale for liking with a centered neutral
category and attempted to produce scale point labels
with adverbs that represented psychologically equal
steps or changes in hedonic tone. In other words, it was
a scale with ruler-like properties whose equal intervals
would be amenable to statistical analysis.

An example of the 9-point scale is shown in Fig. 1.2.
Typically a hedonic test today would involve a sample
of 75–150 consumers who were regular users of the
product. The test would involve several alternative ver-
sions of the product and be conducted in some central
location or sensory test facility. The larger panel size
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Fig. 1.2 The 9-point hedonic scale used to assess liking and dis-
liking. This scale, originally developed at the U.S. Army Food
and Container Institute (Quartermaster Corps), has achieved
widespread use in consumer testing of foods.

of an affective test arises due to the high variability of
individual preferences and thus a need to compensate
with increased numbers of people to insure statisti-
cal power and test sensitivity. This also provides an
opportunity to look for segments of people who may
like different styles of a product, for example, different
colors or flavors. It may also provide an opportunity
to probe for diagnostic information concerning the
reasons for liking or disliking a product.

Workers in the food industry were occasionally
in contact with psychologists who studied the senses
and had developed techniques for assessing sensory
function (Moskowitz, 1983). The development of the
9-point hedonic scale serves as good illustration of
what can be realized when there is interaction between
experimental psychologists and food scientists. A psy-
chological measurement technique called Thurstonian
scaling (see Chapter 5) was used to validate the adverbs
for the labels on the 9-point hedonic scale. This inter-
action is also visible in the authorship of this book—
one author is trained in food science and chemistry
while the other is an experimental psychologist. It
should not surprise us that interactions would occur
and perhaps the only puzzle is why the interchanges
were not more sustained and productive. Differences
in language, goals, and experimental focus probably
contributed to some difficulties. Psychologists were
focused primarily on the individual person while sen-
sory evaluation specialists were focused primarily on

the food product (the stimulus). However, since a sen-
sory perception involves the necessary interaction of
a person with a stimulus, it should be apparent that
similar test methods are necessary to characterize this
person–product interaction.

1.2.4 The Central Dogma—Analytic

Versus Hedonic Tests

The central principle for all sensory evaluation is that
the test method should be matched to the objectives
of the test. Figure 1.3 shows how the selection of the
test procedure flows from questions about the objective
of the investigation. To fulfill this goal, it is necessary
to have clear communication between the sensory test
manager and the client or end-user of the information.
A dialogue is often needed. Is the important question
whether or not there is any difference at all among
the products? If so, a discrimination test is indicated.
Is the question one of whether consumers like the
new product better than the previous version? A con-
sumer acceptance test is needed. Do we need to know
what attributes have changed in the sensory character-
istics of the new product? Then a descriptive analysis
procedure is called for. Sometimes there are multiple
objectives and a sequence of different tests is required
(Lawless and Claassen, 1993). This can present prob-
lems if all the answers are required at once or under
severe time pressure during competitive product devel-
opment. One of the most important jobs of the sensory
specialist in the food industry is to insure a clear
understanding and specification of the type of informa-
tion needed by the end-users. Test design may require
a number of conversations, interviews with different
people, or even written test requests that specify why
the information is to be collected and how the results
will be used in making specific decisions and subse-
quent actions to be taken. The sensory specialist is the
best position to understand the uses and limitations of
each procedure and what would be considered appro-
priate versus inappropriate conclusions from the data.

There are two important corollaries to this principle.
The sensory test design involves not only the selec-
tion of an appropriate method but also the selection
of appropriate participants and statistical analyses. The
three classes of sensory tests can be divided into two
types, analytical sensory tests including discrimination
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Fig. 1.3 A flowchart showing
methods determination. Based
on the major objectives and
research questions, different
sensory test methods are
selected. Similar decision
processes are made in panelist
selection, setting up response
scales, in choosing
experimental designs,
statistical analysis, and other
tasks in designing a sensory
test (reprinted with permission
from Lawless, 1993).

and descriptive methods and affective or hedonic tests
such as those involved in assessing consumer liking
or preferences (Lawless and Claassen, 1993). For the
analytical tests, panelists are selected based on having
average to good sensory acuity for the critical charac-
teristics (tastes, smells, textures, etc.) of products to
be evaluated. They are familiarized with the test pro-
cedures and may undergo greater or lesser amounts
of training, depending upon the method. In the case
of descriptive analysis, they adopt an analytical frame
of mind, focusing on specific aspects of the prod-
uct as directed by the scales on their questionnaires.
They are asked to put personal preferences and hedo-
nic reactions aside, as their job is only to specify what
attributes are present in the product and at what levels
of sensory intensity, extent, amount, or duration.

In contrast to this analytical frame of mind, con-
sumers in an affective test act in a much more inte-
grative fashion. They perceive a product as a whole
pattern. Although their attention is sometimes cap-
tured by a specific aspect of a product (especially if
it is a bad, unexpected, or unpleasant one), their reac-
tions to the product are often immediate and based
on the integrated pattern of sensory stimulation from
the product and expressed as liking or disliking. This
occurs without a great deal of thought or dissection
of the product’s specific profile. In other words, con-
sumers are effective at rendering impressions based on
the integrated pattern of perceptions. In such consumer

tests, participants must be chosen carefully to insure
that the results will generalize to the population of
interest. Participants should be frequent users of the
product, since they are most likely to form the target
market and will be familiar with similar products. They
possess reasonable expectations and a frame of refer-
ence within which they can form an opinion relative to
other similar products they have tried.

The analytic/hedonic distinction gives rise to some
highly important rules of thumb and some warnings
about matching test methods and respondents. It is
unwise to ask trained panelists about their prefer-
ences or whether they like or dislike a product. They
have been asked to assume a different, more analytical
frame of mind and to place personal preference aside.
Furthermore, they have not necessarily been selected
to be frequent users of the product, so they are not
part of the target population to which one would like
to generalize hedonic test results. A common analogy
here is to an analytical instrument. You would not ask a
gas chromatograph or a pH meter whether it liked the
product, so why ask your analytical descriptive panel
(O’Mahony, 1979).

Conversely, problems arise when consumers are
asked to furnish very specific information about prod-
uct attributes. Consumers not only act in a non-analytic
frame of mind but also often have very fuzzy concepts
about specific attributes, confusing sour and bitter
tastes, for example. Individuals often differ markedly
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in their interpretations of sensory attribute words on
a questionnaire. While a trained texture profile panel
has no trouble in agreeing how cohesive a product is
after chewing, we cannot expect consumers to provide
precise information on such a specific and technical
attribute. In summary, we avoid using trained pan-
elists for affective information and we avoid asking
consumers about specific analytical attributes.

Related to the analytic–hedonic distinction is the
question of whether experimental control and precision
are to be maximized or whether validity and general-
izability to the real world are more important. Often
there is a tradeoff between the two and it is difficult
to maximize both simultaneously. Analytic tests in the
lab with specially screened and trained judges are more
reliable and lower in random error than consumer tests.
However, we give up a certain amount of generalizabil-
ity to real-world results by using artificial conditions
and a special group of participants. Conversely, in the
testing of products by consumers in their own homes
we have not only a lot of real-life validity but also a lot
of noise in the data. Brinberg and McGrath (1985) have
termed this struggle between precision and validity
one of “conflicting desiderata.” O’Mahony (1988) has
made a distinction between sensory evaluation Type
I and Type II. In Type I sensory evaluation, reliabil-
ity and sensitivity are key factors, and the participant
is viewed much like an analytical instrument used to
detect and measure changes in a food product. In Type
II sensory evaluation, participants are chosen to be rep-
resentative of the consuming population, and they may
evaluate food under more naturalistic conditions. Their
emphasis here is on prediction of consumer response.
Every sensory test falls somewhere along a continuum
where reliability versus real-life extrapolation are in a
potential tradeoff relationship. This factor must also
be discussed with end-users of the data to see where
their emphasis lies and what level of tradeoff they find
comfortable.

Statistical analyses must also be chosen with an eye
to the nature of the data. Discrimination tests involve
choices and counting numbers of correct responses.
The statistics derived from the binomial distribution
or those designed for proportions such as chi-square
are appropriate. Conversely, for most scaled data, we
can apply the familiar parametric statistics appropri-
ate to normally distributed and continuous data, such
as means, standard deviations, t-tests, analysis of vari-
ance. The choice of an appropriate statistical test is not

always straightforward, so sensory specialists are wise
to have thorough training in statistics and to involve
statistical and design specialists in a complex project
in its earliest stages of planning.

Occasionally, these central principles are violated.
They should not be put aside as a matter of mere expe-
diency or cost savings and never without a logical
analysis. One common example is the use of a discrim-
ination test before consumer acceptance. Although our
ultimate interest may lie in whether consumers will
like or dislike a new product variation, we can con-
duct a simple difference test to see whether any change
is perceivable at all. The logic in this sequence is the
following: if a screened and experienced discrimina-
tion panel cannot tell the difference under carefully
controlled conditions in the sensory laboratory, then
a more heterogeneous group of consumers is unlikely
to see a difference in their less controlled and more
variable world. If no difference is perceived, there can
logically be no systematic preference. So a more time
consuming and costly consumer test can sometimes be
avoided by conducting a simpler but more sensitive
discrimination test first. The added reliability of the
controlled discrimination test provides a “safety net”
for conclusions about consumer perception. Of course,
this logic is not without its pitfalls—some consumers
may interact extensively with the product during a
home use test period and may form stable and impor-
tant opinions that are not captured in a short duration
laboratory test, and there is also always the possibil-
ity of a false negative result (the error of missing a
difference). MacRae and Geelhoed (1992) describe an
interesting case of a missed difference in a triangle
test where a significant preference was then observed
between water samples in a paired comparison. The
sensory professional must be aware that these anoma-
lies in experimental results will sometimes arise, and
must also be aware of some of the reasons why they
occur.

1.3 Applications: Why Collect Sensory

Data?

Human perceptions of foods and consumer products
are the results of complex sensory and interpretation
processes. At this stage in scientific history, percep-
tions of such multidimensional stimuli as conducted
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by the parallel processing of the human nervous
system are difficult or impossible to predict from
instrumental measures. In many cases instruments
lack the sensitivity of human sensory systems—smell
is a good example. Instruments rarely mimic the
mechanical manipulation of foods when tasted nor
do they mimic the types of peri-receptor filtering that
occur in biological fluids like saliva or mucus that can
cause chemical partitioning of flavor materials. Most
importantly, instrumental assessments give values that
miss an important perceptual process: the interpreta-
tion of sensory experience by the human brain prior to
responding. The brain lies interposed between sensory
input and the generation of responses that form our
data. It is a massively parallel-distributed processor
and computational engine, capable of rapid feats of
pattern recognition. It comes to the sensory evaluation
task complete with a personal history and experiential
frame of reference. Sensory experience is interpreted,
given meaning within the frame of reference, evaluated
relative to expectations and can involve integration
of multiple simultaneous or sequential inputs. Finally
judgments are rendered as our data. Thus there is a
“chain of perception” rather than simply stimulus and
response (Meilgaard et al., 2006).

Only human sensory data provide the best mod-
els for how consumers are likely to perceive and
react to food products in real life. We collect, ana-
lyze, and interpret sensory data to form predictions
about how products have changed during a prod-
uct development program. In the food and consumer
products industries, these changes arise from three
important factors: ingredients, processes, and packag-
ing. A fourth consideration is often the way a prod-
uct ages, in other words its shelf life, but we may
consider shelf stability to be one special case of pro-
cessing, albeit usually a very passive one (but also
consider products exposed to temperature fluctuation,
light-catalyzed oxidation, microbial contamination,
and other “abuses”). Ingredient changes arise for a
number of reasons. They may be introduced to improve
product quality, to reduce costs of production, or sim-
ply because a certain supply of raw materials has
become unavailable. Processing changes likewise arise
from the attempt to improve quality in terms of sen-
sory, nutritional, microbiological stability factors, to
reduce costs or to improve manufacturing productiv-
ity. Packaging changes arise from considerations of
product stability or other quality factors, e.g., a certain

amount of oxygen permeability may insure that a fresh
beef product remains red in color for improved visual
appeal to consumers. Packages function as carriers of
product information and brand image, so both sen-
sory characteristics and expectations can change as
a function of how this information can be carried
and displayed by the packaging material and its print
overlay. Packaging and print ink may cause changes
in flavor or aroma due to flavor transfer out of the
product and sometimes transfer of off-flavors into the
product. The package also serves as an important bar-
rier to oxidative changes, to the potentially deleterious
effects of light-catalyzed reactions, and to microbial
infestations and other nuisances.

The sensory test is conducted to study how these
product manipulations will create perceived changes
to human observers. In this sense, sensory evaluation
is in the best traditions of psychophysics, the old-
est branch of scientific psychology, that attempts to
specify the relationships between different energy lev-
els impinging upon the sensory organs (the physical
part of psychophysics) and the human response (the
psychological part). Often, one cannot predict exactly
what the sensory change will be as a function of ingre-
dients, processes, or packaging, or it is very difficult to
do so since foods and consumer products are usually
quite complex systems. Flavors and aromas depend
upon complex mixtures of many volatile chemicals.
Informal tasting in the lab may not bring a reliable or
sufficient answer to sensory questions. The benchtop
in the development laboratory is a poor place to judge
potential sensory impact with distractions, competing
odors, nonstandard lighting, and so on. Finally, the
nose, eyes, and tongue of the product developer may
not be representative of most other people who will
buy the product. So there is some uncertainty about
how consumers will view a product especially under
more natural conditions.

Uncertainty is the key here. If the outcome of a sen-
sory test is perfectly known and predictable, there is no
need to conduct the formal evaluation. Unfortunately,
useless tests are often requested of a sensory test-
ing group in the industrial setting. The burden of
useless routine tests arises from overly entrenched
product development sequences, corporate traditions,
or merely the desire to protect oneself from blame in
the case of unexpected failures. However, the sensory
test is only as useful as the amount of reduction in
uncertainty that occurs. If there is no uncertainty, there
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is no need for the sensory test. For example, doing a
sensory test to see if there is a perceptible color differ-
ence between a commercial red wine and a commercial
white wine is a waste of resources, since there is no
uncertainty! In the industrial setting, sensory evalua-
tion provides a conduit for information that is useful
in management business decisions about directions for
product development and product changes. These deci-
sions are based on lower uncertainty and lower risk
once the sensory information is provided.

Sensory evaluation also functions for other pur-
poses. It may be quite useful or even necessary to
include sensory analyses in quality control (QC) or
quality assurance. Modification of traditional sensory
practices may be required to accommodate the small
panels and rapid assessments often required in on-
line QC in the manufacturing environment. Due to
the time needed to assemble a panel, prepare samples
for testing, analyze and report sensory data, it can be
quite challenging to apply sensory techniques to qual-
ity control as an on-line assessment. Quality assurance
involving sensory assessments of finished products are
more readily amenable to sensory testing and may be
integrated with routine programs for shelf life assess-
ment or quality monitoring. Often it is desirable to
establish correlations between sensory response and
instrumental measures. If this is done well, the instru-
mental measure can sometimes be substituted for the
sensory test. This is especially applicable under condi-
tions in which rapid turnaround is needed. Substitution
of instrumental measurements for sensory data may
also be useful if the evaluations are likely to be fatigu-
ing to the senses, repetitive, involve risk in repeated
evaluations (e.g., insecticide fragrances), and are not
high in business risk if unexpected sensory problems
arise that were missed.

In addition to these product-focused areas of test-
ing, sensory research is valuable in a broader context.
A sensory test may help to understand the attributes
of a product that consumers view as critical to prod-
uct acceptance and thus success. While we keep a
wary eye on the fuzzy way that consumers use lan-
guage, consumer sensory tests can provide diagnostic
information about a product’s points of superiority or
shortcomings. Consumer sensory evaluations may sug-
gest hypotheses for further inquiry such as exploration
of new product opportunities.

There are recurrent themes and enduring problems
in sensory science. In 1989, the ASTM Committee

E-18 on Sensory Evaluation of Materials and Products
published a retrospective celebration of the origins
of sensory methods and the committee itself (ASTM,
1989). In that volume, Joe Kamen, an early sensory
worker with the Quartermaster Food and Container
Institute, outlined nine areas of sensory research which
were active 45 years ago. In considering the status
of sensory science in the first decade of the twenty-
first century, we find that these areas are still fertile
ground for research activity and echo the activities in
many sensory labs at the current time. Kamen (1989)
identified the following categories:

(1) Sensory methods research. This aimed at increas-
ing reliability and efficiency, including research
into procedural details (rinsing, etc.) and the use of
different experimental designs. Meiselman (1993),
a later sensory scientist at the U.S. Army Food
Laboratories, raised a number of methodological
issues then and even now still unsettled within the
realm of sensory evaluation. Meiselman pointed
to the lack of focused methodological research
aimed at issues of measurement quality such as
reliability, sensitivity, and validity. Many sensory
techniques originate from needs for practical prob-
lem solving. The methods have matured to the
status of standard practice on the basis of their
industrial track record, rather than a connection
to empirical data that compare different methods.
The increased rate of experimental publications
devoted to purely methodological comparisons in
journals such as the Journal of Sensory Studies and
Food Quality and Preference certainly points to
improvement in the knowledge base about sensory
testing, but much remains to be done.

(2) Problem solving and trouble shooting. Kamen
raised the simple example of establishing prod-
uct equivalence between lots, but there are many
such day-to-day product-related issues that arise
in industrial practice. Claim substantiation (ASTM
E1958, 2008; Gacula, 1991) and legal and adver-
tising challenges are one example. Another com-
mon example would be identification of the cause
of off-flavors, “taints” or other undesirable sen-
sory characteristics and the detective exercise that
goes toward the isolation and identification of the
causes of such problems.

(3) Establishing test specifications. This can be impor-
tant to suppliers and vendors, and also for quality
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control in multi-plant manufacturing situations,
as well as international product development and
the problem of multiple sensory testing sites and
panels.

(4) Environmental and biochemical factors. Kamen
recognized that preferences may change as a func-
tion of the situation (food often tastes better
outdoors and when you are hungry). Meiselman
(1993) questioned whether sufficient sensory
research is being performed in realistic eating
situations that may be more predictive of con-
sumer reactions, and recently sensory scientists
have started to explore this area of research (for
example, Giboreau and Fleury, 2009; Hein et al.,
2009; Mielby and Frøst, 2009).

(5) Resolving discrepancies between laboratory and
field studies. In the search for reliable, detailed,
and precise analytical methods in the sensory lab-
oratory, some accuracy in predicting field test
results may be lost. Management must be aware
of the potential of false positive or negative results
if a full testing sequence is not carried out, i.e., if
shortcuts are made in the testing sequence prior
to marketing a new product. Sensory evaluation
specialists in industry do not always have time
to study the level of correlation between labora-
tory and field tests, but a prudent sensory program
would include periodic checks on this issue.

(6) Individual differences. Since Kamen’s era, a grow-
ing literature has illuminated the fact that human
panelists are not identical, interchangeable mea-
suring instruments. Each comes with different
physiological equipment, different frames of ref-
erence, different abilities to focus and maintain
attention, and different motivational resources. As
an example of differences in physiology, we have
the growing literature on specific anosmias—smell
“blindnesses” to specific chemical compounds
among persons with otherwise normal senses of
smell (Boyle et al., 2006; Plotto et al., 2006;
Wysocki and Labows, 1984). It should not be
surprising that some olfactory characteristics are
difficult for even trained panelists to evaluate and
to come to agreement (Bett and Johnson, 1996).

(7) Relating sensory differences to product variables.
This is certainly the meat of sensory science in
industrial practice. However, many product devel-
opers do not sufficiently involve their sensory
specialists in the underlying research questions.

They also may fall into the trap of never ending
sequences of paired tests, with little or no planned
designs and no modeling of how underlying phys-
ical variables (ingredients, processes) create a
dynamic range of sensory changes. The relation of
graded physical changes to sensory response is the
essence of psychophysical thinking.

(8) Sensory interactions. Foods and consumer prod-
ucts are multidimensional. The more sensory sci-
entists understand interactions among character-
istics such as enhancement and masking effects,
the better they can interpret the results of sen-
sory tests and provide informed judgments and
reasoned conclusions in addition to reporting just
numbers and statistical significance.

(9) Sensory education. End-users of sensory data and
people who request sensory tests often expect one
tool to answer all questions. Kamen cited the
simple dichotomy between analytical and hedo-
nic testing (e.g., discrimination versus preference)
and how explaining this difference was a constant
task. Due to the lack of widespread training in
sensory science, the task of sensory education is
still with us today, and a sensory professional must
be able to explain the rationale behind test meth-
ods and communicate the importance and logic of
sensory technology to non-sensory scientists and
managers.

1.3.1 Differences from Marketing

Research Methods

Another challenge to the effective communication of
sensory results concerns the resemblance of sensory
data to those generated from other research methods.
Problems can arise due to the apparent similarity of
some sensory consumer tests to those conducted by
marketing research services. However, some important
differences exist as shown in Table 1.3. Sensory tests
are almost always conducted on a blind-labeled basis.
That is, product identity is usually obscured other
than the minimal information that allows the prod-
uct to be evaluated in the proper category (e.g., cold
breakfast cereal). In contrast, marketing research tests
often deliver explicit concepts about a product—label
claims, advertising imagery, nutritional information,
or any other information that may enter into the mix
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Table 1.3 Contrast of
sensory evaluation consumer
tests with market research
tests

Sensory testing with consumers

Participants screened to be users of the product category
Blind-labeled samples—random codes with minimal conceptual information
Determines if sensory properties and overall appeal met targets
Expectations based on similar products used in the category
Not intended to assess response/appeal of product concept

Market research testing (concept and/or product test)

Participants in product-testing phase selected for positive response to concept
Conceptual claims, information, and frame of reference are explicit
Expectations derived from concept/claims and similar product usage
Unable to measure sensory appeal in isolation from concept and expectations

designed to make the product conceptually appeal-
ing (e.g., bringing attention to convenience factors in
preparation).

In a sensory test all these potentially biasing factors
are stripped away in order to isolate the opinion based
on sensory properties only. In the tradition of scientific
inquiry, we need to isolate the variables of inter-
est (ingredients, processing, packaging changes) and
assess sensory properties as a function of these vari-
ables, and not as a function of conceptual influences.
This is done to minimize the influence of a larger
cognitive load of expectations generated from com-
plex conceptual information. There are many potential
response biases and task demands that are entailed
in “selling” an idea as well as in selling a product.
Participants often like to please the experimenter and
give results consistent with what they think the person
wants. There is a large literature on the effect of fac-
tors such as brand label on consumer response. Product
information interacts in complex ways with consumer
attitudes and expectancies (Aaron et al., 1994; Barrios
and Costell, 2004; Cardello and Sawyer, 1992; Costell
et al., 2009; Deliza and MacFie, 1996; Giménez et al.,
2008; Kimura et al., 2008; Mielby and Frøst, 2009;
Park and Lee, 2003; Shepherd et al., 1991/1992).
Expectations can cause assimilation of sensory reac-
tions toward what is expected under some conditions
and under other conditions will show contrast effects,
enhancing differences when expectations are not met
(Siegrist and Cousin, 2009; Lee et al., 2006; Yeomans
et al., 2008; Zellner et al., 2004). Packaging and brand
information will also affect sensory judgments (Dantas
et al., 2004; Deliza et al., 1999; Enneking et al., 2007).
So the apparent resemblance of a blind sensory test and
a fully concept-loaded market research test are quite
illusory. Corporate management needs to be reminded
of this important distinction. There continues to be

tension between the roles of marketing research and
sensory research within companies. The publication by
Garber et al. (2003) and the rebuttal to that paper by
Cardello (2003) are a relatively recent example of this
tension.

Different information is provided by the two test
types and both are very important. Sensory evalua-
tion is conducted to inform product developers about
whether they have met their sensory and performance
targets in terms of perception of product characteris-
tics. This information can only be obtained when the
test method is as free as possible from the influences
of conceptual positioning. The product developer has
a right to know if the product meets its sensory goals
just as the marketer needs to know if the product meets
its consumer appeal target in the overall conceptual,
positioning, and advertising mix. In the case of prod-
uct failures, strategies for improvement are never clear
without both types of information.

Sometimes the two styles of testing will give appar-
ently conflicting results (Oliver, 1986). However, it
is almost never the situation that one is “right” and
the other is “wrong.” They are simply different types
of evaluations and are even conducted on different
participants. For example, taste testing in market
research tests may be conducted only on those per-
sons who previously express a positive reaction to the
proposed concept. This seems reasonable, as they are
the likely purchasers, but bear in mind that their prod-
uct evaluations are conducted after they have already

expressed some positive attitudes and people like to
be internally consistent. However, a blind sensory con-
sumer test is conducted on a sample of regular product
user, with no prescreening for conceptual interest or
attitudes. So they are not necessarily the same sam-
ple population in each style of test and differing results
should not surprise anyone.
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1.3.2 Differences from Traditional

Product Grading Systems

A second arena of apparent similarity to sensory eval-
uation is with the traditional product quality grading
systems that use sensory criteria. The grading of agri-
cultural commodities is a historically important influ-
ence on the movement to assure consumers of quality
standards in the foods they purchase. Such techniques
were widely applicable to simple products such as fluid
milk and butter (Bodyfelt et al., 1988, 2008), where
an ideal product could be largely agreed upon and the
defects that could arise in poor handling and process-
ing gave rise to well-known sensory effects. Further
impetus came from the fact that competitions could
be held to examine whether novice judges-in-training
could match the opinions of experts. This is much
in the tradition of livestock grading—a young per-
son could judge a cow and receive awards at a state
fair for learning to use the same criteria and critical
eye as the expert judges. There are noteworthy differ-
ences in the ways in which sensory testing and quality
judging are performed. Some of these are outlined in
Table 1.4.

The commodity grading and the inspection tradi-
tion have severe limitations in the current era of highly
processed foods and market segmentation. There are
fewer and fewer “standard products” relative to the
wide variation in flavors, nutrient levels (e.g., low
fat), convenience preparations, and other choices that

line the supermarket shelves. Also, one person’s prod-
uct defect may be another’s marketing bonanza, as in
the glue that did not work so well that gave us the
ubiquitous post-it notes. Quality judging methods are
poorly suited to research support programs. The tech-
niques have been widely criticized on a number of sci-
entific grounds (Claassen and Lawless, 1992; Drake,
2007; O’Mahony, 1979; Pangborn and Dunkley, 1964;
Sidel et al., 1981), although they still have their propo-
nents in industry and agriculture (Bodyfelt et al., 1988,
2008).

The defect identification in quality grading empha-
sizes root causes (e.g., oxidized flavor) whereas the
descriptive approach uses more elemental singular
terms to describe perceptions rather than to infer
causes. In the case of oxidized flavors, the descrip-
tive analysis panel might use a number of terms
(oily, painty, and fishy) since oxidation causes a num-
ber of qualitatively different sensory effects. Another
notable difference from mainstream sensory evalua-
tion is that the quality judgments combine an overall
quality scale (presumably reflecting consumer dis-
likes) with diagnostic information about defects, a
kind of descriptive analysis looking only at the nega-
tive aspects of products. In mainstream sensory eval-
uation, the descriptive function and the consumer
evaluation would be clearly separate in two distinct
tests with different respondents. Whether the opin-
ion of a single expert can effectively represent con-
sumer opinion is highly questionable at this time in
history.

Table 1.4 Contrast of sensory evaluation tests with quality inspection

Sensory testing
Separates hedonic (like–dislike) and descriptive information into separate tests
Uses representative consumers for assessment of product appeal (liking/disliking)
Uses trained panelists to specify attributes, but not liking/disliking
Oriented to research support
Flexible for new, engineered, and innovative products
Emphasizes statistical inference for decision making, suitable experimental designs, and sample sizes

Quality inspection
Used for pass–fail online decisions in manufacturing
Provides quality score and diagnostic information concerning defects in one test
Uses sensory expertise of highly trained individuals
May use only one or very few trained experts
Product knowledge, potential problems, and causes are stressed
Traditional scales are multi-dimensional and poorly suited to statistical analyses
Decision-making basis may be qualitative
Oriented to standard commodities
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1.4 Summary and Conclusions

Sensory evaluation comprises a set of test methods
with guidelines and established techniques for product
presentation, well-defined response tasks, statistical
methods, and guidelines for interpretation of results.
Three primary kinds of sensory tests focus on the

existence of overall differences among products (dis-
crimination tests), specification of attributes (descrip-
tive analysis), and measuring consumer likes and
dislikes (affective or hedonic testing). Correct applica-
tion of sensory technique involves correct matching of
method to the objective of the tests, and this requires
good communication between sensory specialists and

Methods 
Selection

Consumer Acceptability Question?

Choose from:
Preference/choice
Ranking
Rated Acceptability

Sensory Analytical Question?

Simple Same/different Question?

Choose from:
   Overall difference tests 
   n-alternative forced choice
   Rated difference from control   

Nature of Difference Question?

go to Panel 
Setup

Choose from:
   descriptive analysis 
techniques or modifications 

no

no

no

no

yes

yes

yes

yes

re-open

discussion

of objectives

go to Panel Setup

go to Panel 
Setup

Fig. 1.4 A sensory evaluation department may interact with
many other departments in a food or consumer products com-
pany. Their primary interaction is in support of product research
and development, much as marketing research supports the

company’s marketing efforts. However, they may also inter-
act with quality control, marketing research, packaging and
design groups, and even legal services over issues such as claim
substantiation and advertising challenges.
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end-users of the test results. Logical choices of test
participants and appropriate statistical analyses form
part of the methodological mix. Analytic tests such as
the discrimination and descriptive procedures require
good experimental control and maximization of test
precision. Affective tests on the other hand require
use of representative consumers of the products and
test conditions that enable generalization to how
products are experienced by consumers in the real
world.

Sensory tests provide useful information about the
human perception of product changes due to ingre-
dients, processing, packaging, or shelf life. Sensory
evaluation departments not only interact most heav-
ily with new product development groups but may
also provide information to quality control, marketing
research, packaging, and, indirectly, to other groups
throughout a company (Fig. 1.4). Sensory information
reduces risk in decisions about product development
and strategies for meeting consumer needs. A well-
functioning sensory program will be useful to a com-
pany in meeting consumer expectations and insuring
a greater chance of marketplace success. The utility
of the information provided is directly related to the
quality of the sensory measurement.

. . . , sensory food science stands at the intersection of
many disciplines and research traditions, and the stake-
holders are many (Tuorila and Monteleone, 2009).

Quantities derive from measurement, figures from
quantities, comparisons from figures, and victory from
comparisons (Sun Tzu – The Art of War (Ch. 4, v.18)).
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Chapter 2

Physiological and Psychological Foundations of Sensory
Function

Abstract This chapter reviews background material underpinning sensory science
and sensory evaluation methodologies. Basic and historical psychophysical methods
are reviewed as well as the anatomy, physiology, and function of the chemical senses.
The chapter concludes with a discussion of multi-modal sensory interactions.

There is no conception in man’s mind which hath not at first, totally or in parts, been begotten

upon by the organs of sense.

—Thomas Hobbes, Leviathan (1651)
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2.1 Introduction

In order to design effective sensory tests and provide
insightful interpretation of the results, a sensory pro-
fessional must understand the functional properties of
the sensory systems that are responsible for the data.
By a functional property, we mean a phenomenon like
mixture interactions such as masking or suppression.
Another example is sensory adaptation, a commonly
observed decrease in responsiveness to conditions of
more or less constant stimulation. In addition, it is
useful to understand the anatomy and physiology of
the senses involved as well as their functional limita-
tions. A good example of a functional limitation is the
threshold or minimal amount of a stimulus needed for
perception. Knowing about the anatomy of the senses
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can help us understand how consumers and panelists
interact with the products to stimulate their senses
and by what routes. Different routes of smelling, for
example, are the orthonasal or sniffing route, when
odor molecules enter the nose from the front (nos-
trils), versus retronasal smell, when odor molecules
pass into the nose from the mouth or from breathing
out, and thus have a reversed airflow pathway from that
of external sniffing.

Another basic area that the sensory professional
should have as background knowledge involves the
sensory testing methods and human measurement pro-
cedures that are the historical antecedents to the tests
we do today. This is part of the science of psy-
chophysics, the quantification and measurement of
sensory experiences. Psychophysics is a very old dis-
cipline that formed the basis for the early studies in
experimental psychology. Parallels exist between psy-
chophysics and sensory evaluation. For example, the
difference test using paired comparisons is a version of
the method used for measuring difference thresholds
called the method of constant stimuli. In descrip-
tive analysis with trained panels, we work very hard
to insure that panelists use singular uni-dimensional
scales. These numerical systems usually refer to a sin-
gle sensory continuum like sweetness or odor strength
and are thus based on changes in perceived intensity.
They do not consider multiple attributes and fold them
into a single score like the old-quality grading meth-
ods. Thus there is a clear psychophysical basis for the
attribute scales used in descriptive analysis.

This chapter is designed to provide the reader some
background in the sensory methods of psychophysics.
A second objective is to give an overview of the struc-
ture and function of the chemical senses of taste,
smell, and the chemesthetic sense. Chemesthesis refers
to chemically induced sensations that seem to be at
least partly tactile in nature, such as pepper heat,
astringency, and chemical cooling. These three senses
together comprise what we loosely call flavor and are
the critical senses for appreciating foods, along with
the tactile, force, and motion-related experiences that
are part of food texture and mouthfeel. Texture is dealt
with in Chapter 11 and color and appearance evalua-
tions in Chapter 12. The auditory sense is not a large
part of food perception, although many sounds can
be perceived when we eat or manipulate foods. These
provide another sense modality to accompany and rein-
force our texture perceptions, as in the case of crisp

or crunchy foods, or the audible hissing sound we get
from carbonated beverages (Vickers, 1991).

One growing area of interest in the senses concerns
our human biodiversity, differences among people in
sensory function. These differences can be due to
genetic, dietary/nutritional, physiological (e.g., aging),
or environmental factors. The research into the genet-
ics of the chemical senses, for example, has experi-
enced a period of enormous expansion since the first
edition of this book. The topic is too large and too
rapidly changing to receive a comprehensive treatment
here. We will limit our discussion of individual differ-
ences and genetic factors to those areas that are well
understood, such as bitter sensitivity, smell blindness,
and color vision anomalies. The sensory practitioner
should be mindful that people exist in somewhat differ-
ent sensory worlds. These differences contribute to the
diversity of consumer preferences. They also limit the
degree to which a trained panel can be “calibrated” into
uniform ways of responding. Individual differences
can impact sensory evaluations in many ways.

2.2 Classical Sensory Testing

and Psychophysical Methods

2.2.1 Early Psychophysics

The oldest branch of experimental psychology is that
of psychophysics, the study of relationships between
physical stimuli and sensory experience. The first true
psychophysical theorist was the nineteenth century
German physiologist, E. H. Weber. Building on ear-
lier observations by Bernoulli and others, Weber noted
that the amount that a physical stimulus needed to be
increased to be just perceivably different was a con-
stant ratio. Thus 14.5 and 15 ounces could be told
apart, but with great difficulty, and the same could
be said of 29 and 30 ounces or 14.5 and 15 drams
(Boring, 1942). This led to the formulation of Weber’s
law, generally written nowadays as

�I/I = k (2.1)

where �I is the increase in the physical stimulus that
was required to be just discriminably different from
some starting level, I. The fraction, �I/I, is some-
times called the “Weber fraction” and is an index of
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how well the sensory system detects changes. This
relationship proved generally useful and provided the
first quantitative operating characteristic of a sensory
system. Methods for determining the difference thresh-
old or just-noticeable-difference (j.n.d.) values became
the stock in trade of early psychological researchers.

These methods were codified by G. T. Fechner in a
book called Elemente der Psychophysik (Elements of

Psychophysics) in 1860. Fechner was a philosopher as
well as a scientist and developed an interest in Eastern
religions, in the nature of the soul, and in the Cartesian
mind–body dichotomy. Fechner’s broader philosophi-
cal interests have been largely overlooked, but his little
book on sensory methods was to become a classic
text for the psychology laboratory. Fechner also had
a valuable insight. He realized that the j.n.d. might be
used as a unit of measurement and that by adding up
j.n.d.s one could construct a psychophysical relation-
ship between physical stimulus intensity and sensory
intensity. This relationship approximated a log func-
tion, since the integral of 1/x dx is proportional to the
natural log of x. So a logarithmic relationship appeared
useful as a general psychophysical “law:”

S = k log I (2.2)

where S is sensation intensity and I is once again the
physical stimulus intensity. This relationship known as
Fechner’s law was to prove a useful rule of thumb for
nearly 75 years, until it was questioned by acoustical
researchers who supplanted it with a power law (see
Section 2.2.3).

2.2.2 The Classical Psychophysical

Methods

Fechner’s enduring contribution was to assemble and
publish the details of sensory test methods and how
several important operating characteristics of sensory
systems could be measured. Three important meth-
ods were the method of limits, the method of constant
stimuli (called the method of right and wrong cases in
those days), and the method of adjustment or average
error (Boring, 1942). The methods are still used today
in some research situations and variations on these
methods form part of the toolbox of applied sensory
evaluation. Each of the three methods was associated

with a particular type of measured response of sensory
systems. The method of limits was well suited to deter-
mine absolute or detection thresholds. The method of
constant stimuli could be used to determine difference
thresholds and the method of adjustment to establish
sensory equivalence.

In the method of limits the physical stimulus is
changed by successive discrete steps until a change
in response is noted. For example, when the stimu-
lus is increasing in intensity, the response will change
from “no sensation” to “I detect something.” When
the stimulus is decreasing in intensity, at some step
the response will change back to “no sensation.” Over
many trials, the average point of change can be taken
as the person’s absolute threshold (see Fig. 2.1). This
is the minimum intensity required for detection of the
stimulus. Modern variations on this method often use
only an ascending series and force the participants
to choose a target sample among alternative “blank”
samples at each step. Each concentration must be dis-
criminated from a background level such as plain water
in the case of taste thresholds. Forced-choice methods
for determining thresholds are discussed in detail in
Chapter 6.

In the method of constant stimuli, the test stimu-
lus is always compared against a constant reference
level (a standard), usually the middle point on a series
of physical intensity levels. The subject’s job is to
respond to each test item as “greater than” or “less
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Fig. 2.1 An example of the method of limits. The circled rever-

sal points would be averaged to obtain the person’s threshold.
A: ascending series. D: descending series. In taste and smell,
only ascending series are commonly used to prevent fatigue,
adaptation or carry-over of persistent sensations.
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Fig. 2.2 A psychometric function derived from the Method
of Constant Stimuli, a repeated series of paired comparisons
against a constant (standard) stimulus, in this case 10% sucrose.
Frequency of judgments in which the comparison stimulus is

judged sweeter than the standard are plotted against concentra-
tion. The difference threshold is determined by the concentration
difference between the standard and the interpolated 75% (or
25%) point. UDL: Upper difference limen (threshold).

than” the standard. Many replications of each inten-
sity level are presented. The percentage of times the
response is “greater than” can be plotted as in Fig. 2.2.
This S-shaped curve is called a psychometric function
(Boring, 1942). The difference threshold was taken as
the difference between the 50 and 75% points interpo-
lated on the function. The method of constant stimuli
bears a strong resemblance to current techniques of
paired comparison, with two exceptions. One point
of difference is that the method was geared toward
interval estimation, rather than testing for statistically
significant differences. That is, the technique estimated
points on the psychometric function (25, 50, and 75%)
and researchers were not concerned with statistical
significance of difference tests. Also, a range of com-
parison stimuli were tested against the standard and not
just a single paired comparison of products.

The third major method in classical psychophysics
was the method of adjustment or average error. The
subject was given control over a variable stimulus like
a light or a tone and asked to match a standard in
brightness or loudness. The method could be used to
determine difference thresholds based on the variabil-
ity of the subject over many attempts at matching, for
example, using the standard deviation as a measure

of difference threshold. A modern application is in
measuring sensory tradeoff relationships. In this type
of experiment the duration of a very brief tone could
be balanced against a varying sound pressure level to
yield a constant perception of loudness. Similarly, the
duration of a flash of light could be traded off against
its photometric intensity to create a constant perceived
brightness. For very brief tones or brief flashes, there
is summation of the intensity over time in the nervous
system, so that increasing duration can be balanced
against decreasing physical intensity to create a con-
stant perception. These methods have proven useful
in understanding the physiological response of differ-
ent senses to the temporal properties of stimuli, for
example, how the auditory and visual systems integrate
energy over time.

Adjustment methods have not proven so useful for
assessing sensory equivalence in applied food testing,
although adjustment is one way of trying to optimize
an ingredient level (Hernandez and Lawless, 1999;
Mattes and Lawless, 1985). Pangborn and co-workers
employed an adjustment method to study individual
preferences (Pangborn, 1988; Pangborn and Braddock,
1989). Adding flavors or ingredients “to taste” at the
benchtop is a common way of initially formulating
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products. It is also fairly common to make formula
changes to produce approximate sensory matches to
some target, either a standard formula or perhaps
some competitor’s successful product. However, the
method as applied in the psychophysics laboratory
is an unwieldy technique for the senses of taste and
smell where elaborate equipment is needed to provide
adjustable stimulus control. So methods of equiva-
lency adjustment are somewhat rare with food test-
ing.

2.2.3 Scaling and Magnitude Estimation

A very useful technique for sensory measurement has
been the direct application of rating scales to measure
the intensity of sensations. Historically known as the
“method of single stimuli,” the procedure is highly
cost efficient since one stimulus presentation yields
one data point. This is in contrast to a procedure like
the method of constant stimuli, where the presentation
of many pairs is necessary to give a frequency count
of the number of times each level is judged stronger
than a standard. Rating scales have many uses. One of
the most common is to specify a psychophysical func-
tion, a quantitative relationship between the perceived
intensity of a sensation and the physical intensity of
the stimulus. This is another way of describing a
dose–response curve or in other words, capturing the
input–output function of a sensory system over its
dynamic range.

The technique of magnitude estimation grew out of
earlier procedures in which subjects would be asked to
fractionate an adjustable stimulus. For example, a sub-
ject would be asked to adjust a light or tone until it
seemed half as bright as a comparison stimulus. The
technique was modified so that the experimenter con-
trolled the stimulus and the subject responded using
(unrestricted) numbers to indicate the proportions or
ratios of the perceived intensities. Thus if the test stim-
ulus was twice as bright as the standard, it would be
assigned a number twice as large as the rating for the
standard and if one-third as bright, a number one-third
as large. An important observation in S. S. Stevens’
laboratory at Harvard was that the loudness of sounds
was not exactly proportional to the decibel scale. If
Fechner’s log relationship was correct, rated loudness
should grow in a linear fashion with decibels, since

they are a log scale of sound pressure relative to a refer-
ence (db = 20 log (P/P0) where P is the sound pressure
and P0 is the reference sound pressure, usually a value
for absolute threshold). However, discrepancies were
observed between decibels and loudness proportions.

Instead, Stevens found with the direct magnitude
estimation procedure that loudness was a power func-
tion of stimulus intensity, with an exponent of about
0.6. Scaling of other sensory continua also gave
power functions, each with its characteristic exponent
(Stevens, 1957, 1962). Thus the following relationship
held:

S = kIn or log S = n log I + log k (2.3)

where n was the characteristic exponent and k was
a proportionality constant determined by the units of
measurement. In other words, the function formed a
straight line in a log–log plot with the exponent equal
to the slope of the linear function. This was in contrast
to the Fechnerian log function which was a straight
line in a semilog plot (response versus log physical
intensity).

One of the more important characteristics of a
power function is that it can accommodate relation-
ships that are expanding or positively accelerated while
the log function does not. The power function with an
exponent less than one fits a law of diminishing returns,
i.e., larger and larger physical increases are required to
maintain a constant proportional increase in the sensa-
tion level. Other continua such as response to electric
shocks and some tastes were found to have a power
function exponent greater than one (Meiselman, 1971;
Moskowitz, 1971; Stevens, 1957). A comparison of
power functions with different exponents is shown in
Fig. 2.3.

Many sensory systems show an exponent less that
one. This shows a compressive energy relationship that
may have adaptive value for an organism responding to
a wide range of energy in the environment. The range
from the loudest sound one can tolerate to the faintest
audible tone is over 100 dB. This represents over 10 log
units of sound energy, a ratio of 10 billion to one. The
dynamic range for the visual response of the eyes to
different levels of light energy is equally broad. Thus
exponents less than one have ecological significance
for sensory systems that are tuned to a broad range of
physical energy levels.
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Fig. 2.3 Power function exponents less than, equal to, or greater than one generate different curves. In a log–log plot the exponent
becomes the slope of a straight line.

Magnitude estimation as a test method and the
resulting form of the power function formed an
interlocking and valid system in Stevens’ thinking.
Power function exponents were predictable from var-
ious experiments. For example, in a cross-modality
matching experiment, separate scaling functions were
derived for two continua (e.g., brightness and loud-
ness). One continuum was then scaled as a function of
the other without using numbers. For example, a sub-
ject would be told to adjust the brightness of a light
so it matched the loudness of a tone (fixed by the
experimenter). The exponent in the matching experi-
ment could be accurately predicted from the ratios of
the exponents in the two separate scaling experiments.

When setting the sensations equal, the following rela-
tionships should hold:

loudness = brightness = k log In1 = k log In2 (2.4)

and

n1 log(Isound) + (a constant) = n2 log(Ilight)

+ (a constant)
(2.5)

and

log(Isound) = n2/n2 log(Ilight) + (a constant) (2.6)

so that plotting a function of log sound intensity as
a function of log light intensity would give a straight
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line with slope equal to n2/n1. This technique was
very reliable (Stevens, 1959) and was often used as an
undergraduate laboratory demonstration.

2.2.4 Critiques of Stevens

Other researchers were not so willing to accept the sim-
ple idea that the numbers applied to stimuli were in fact
a direct reflection of the perceived sensation intensity.
After all, the sensation was a subjective experience and
the person had to decide what numbers to apply to
the experience. So the simple stimulus–response idea
was replaced by the notion that there were at least
two separate processes: a psychophysical relationship
translating stimulus intensity into subjective experi-
ence and response output function by which the subject
applied numbers or some other response categories to
the stimulus. Obviously, different scaling techniques
could produce different response matching functions,
so it was not surprising that an open-ended scal-
ing task like magnitude estimation and a fixed-range
scaling task like category ratings produced different
psychophysical functions (a power function and a log
function, respectively).

An extended argument ensued between the pro-
ponents of magnitude estimation and proponents of
other scaling techniques like simple category scales
(Anderson, 1974). The magnitude estimation camp
claimed that the technique was capable of true ratio
scale measurement, like measurements of physical
quantities in the natural sciences (length, mass, heat,
etc.). This was a preferable level of measurement than
other techniques that merely rank ordered stimuli or
measured them on interval scales (see Chapter 7).
Opponents of these assertions remained unconvinced.
They pointed out that the interlocking theory of the
power law and the method that generated it were
consistent, but self-justifying or circular reasoning
(Birnbaum, 1982).

One problem was that category scales gave data
consistent with Fechner’s log function. Indirect scales
did as well, so these two methods produced a consis-
tent system (McBride, 1983). Category scales already
had widespread use in applied sensory testing at about
the time Stevens was spreading the doctrines of ratio-
level scaling and magnitude estimation (Caul, 1957).
Given the argument that only one kind of scale could

be a true or valid representation of sensations and the
fact that they were nonlinearly related (Stevens and
Galanter, 1957) an “either/or” mentality soon devel-
oped. This is an unfortunate distraction for applied
sensory workers. For many practical purposes, the cat-
egory and magnitude scaling data are very similar,
especially over the small ranges of intensities encoun-
tered in most sensory tests (Lawless and Malone 1986).

2.2.5 Empirical Versus Theory-Driven

Functions

Both the log function and the power function are
merely empirical observations. There are an unlimited
number of mathematical relationships that could be
fit to the data and many functions will appear nearly
linear in log plots. An alternative psychophysical rela-
tionship has been proposed that is based on physio-
logical principles. This is a semi-hyperbolic function
derived from the law of mass action and is mathe-
matically equivalent to the function used to describe
the kinetics of enzyme–substrate relationships. The
Michaelis–Menten kinetic equation states the veloc-
ity of an enzyme–substrate reaction as a function of
the substrate concentration, dissociation constant, and
the maximum rate (Lehninger 1975; Stryer, 1995).
Another version of this equation was proposed by
Beidler, a pioneering physiologist, for description of
the electrical responses of taste nerves and receptor
cells (Beidler, 1961). The relationship is given by

R = (RmaxC)/(k + C) (2.7)

where R is response, Rmax is the maximal response,
and k is the concentration at which response is half-
maximal. In enzyme kinetics, k is a quantity pro-
portional to the dissociation constant of the enzyme–
substrate complex. Since taste involves the binding of a
molecule to a protein receptor, it is perhaps not surpris-
ing that there is a parallel between taste response and
an enzyme–substrate binding relationship. So this rela-
tionship has stirred some interest among researchers
in the chemical senses (Curtis et al., 1984; McBride,
1987). In a plot of log concentration, the function
forms an S-shaped curve, with an initial flat portion,
a steep rise and then another flat zone representing
saturation of response at high levels (see Fig. 2.4).
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S-curve.

This is intuitively appealing. The response at levels
below threshold should hover around some baseline
and then grow faster as threshold is surpassed (Marin
et al., 1991). The function should eventually flatten out
as it approaches a maximum response as all receptor
sites are filled and/or as the maximum number of taste
nerves respond at their maximum rate. In other words
the system must saturate at some point.

2.2.6 Parallels of Psychophysics

and Sensory Evaluation

Each of the psychophysical techniques mentioned in
this section has its parallel or application in applied
sensory evaluation. The emphasis of sensory psy-
chology is on studying the person as the research
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object of interest, while applied sensory evaluation
uses people to understand the sensory properties of
products. Because any sensory event is an interac-
tion of person and stimulus, the parallels in techniques
should not surprise us. The major psychophysical
research questions and methods and their sensory eval-
uation parallels are shown in Table 2.1. Threshold
measurement has its applications in determining the
minimum levels for impact of flavor compounds
and the concentration ranges in which taints or off-
flavors are likely to cause problems. Difference thresh-
olds are similar in many ways to difference testing,
with both scenarios making use of forced-choice or
comparison procedures. Scaling is done in the psy-
chophysics laboratory to determine psychophysical
functions, but can also be used to describe sen-
sory changes in product characteristics as a function
of ingredient levels. So there are many points of
similarity.

The remainder of this chapter is devoted to basic
information on the structure and function of the fla-
vor senses, since they have strong influence on the
acceptability of foods. The visual and tactile senses are
discussed only briefly, as separate chapters are devoted
to color and visual perception generally (Chapter 12),
and to texture evaluation (Chapter 11). For further
information on sensory function the reader should
go to basic texts on the senses such as Goldstein
(1999) or the comprehensive Handbook of Perception

(Goldstein, 2001).

2.3 Anatomy and Physiology

and Functions of Taste

2.3.1 Anatomy and Physiology

Specialized sense organs on the tongue and soft palate
contain the receptors for our sense of taste. Taste
receptors are in the cell membranes of groups of
about 30–50 cells clustered in a layered ball called
a taste bud. These cells are modified epithelial cells
(skin-like cells) rather than neurons (nerve cells) and
they have a lifespan of about a week. New cells dif-
ferentiate from the surrounding epithelium, migrate
into the taste bud structure and make contact with
sensory nerves. A pore at the top of the taste bud
makes contact with the outside fluid environment in
the mouth and taste molecules are believed to bind to
the hair-like cilia at or near the opening. An illustra-
tion of this structure is shown in Fig. 2.5. Taste cells
in a bud are not independently operating receptors,
but make contact with each other and share junc-
tions between cells for common signaling functions.
The taste receptor cells make contact with the pri-
mary taste nerves over a gap or synaptic connection.
Packets of neurotransmitter molecules are released into
this gap to stimulate the taste nerves and send the
taste signals on to the higher processing centers of the
brain.

Table 2.1 Questions and
methods in psychophysics and
sensory evaluation

Question Psychophysical study
Sensory evaluation
examples

At what level is the
stimulus detected?

Detection or absolute
threshold
measurement

Thresholds, taint
investigation, flavor
impact studies, dilution
methods

At what level can a
change be
perceived?

Difference thresholds,
just-noticeable-
difference

Difference testing

What is the
relationship between
physical intensity
and sensory
response?

Scaling via direct
numerical responses
or indirect scales from
difference thresholds

Scaling attribute intensity
as in descriptive analysis

What is the matching
relationship between
two stimuli?

Adjustment procedures,
trade-off relationships

Adjusting ingredients to
match or optimize
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Fig. 2.5 (a) Cross-sectional drawing of a fungiform papilla. E,
epithelium; TB, taste buds; TA, trigeminal afferent nerves ter-
minating in various branched endings or encapsulated receptor
structures; FA—facial nerve (chorda tympani) taste afferents ter-
minating in taste buds. (b) Cross-sectional drawing of a taste
bud. CE, cornified epithelium; EC, epithelial cells that may dif-
ferentiate into taste receptor cells; RC, taste receptor cells, TP
taste pore; A, axons from primary taste nerves making synaptic
contact with receptor cells.

Through genetic research, the nature and types of
taste receptor proteins have now been characterized.
For sweet, bitter, and umami tastes, two families of
receptor proteins are functional, the T1Rs for sweet
and umami and the T2Rs for bitter tastes. These recep-
tor proteins have seven transmembrane segments con-
nected by intracellular and extracellular loops (hence
“7TMs”). Figure 2.6 shows the arrangement of a
7TM with its genetically variable segments, which
is also the structure of the family of odor receptors
and the visual receptor, rhodopsin. The T1R proteins
have about 850 amino acids and a large extracellular
N-terminus, sometimes referred to as a “venus fly-
trap domain” after the hypothetical pockets formed by
the paired (dimer) forms of these receptors. The T2Rs

Genetically variable segments:

I
II

III
IV

V

VI

VII

IV
VI

A

B

N

Fig. 2.6 (a) Planar schematic of a 7-transmembrane chemore-
ceptor protein. 7TMs have helical segments inside the membrane
and several intracellular and extracellular peptide loops. The
T1Rs for sweet and umami reception are associated as dimers
with a long N-terminal; The T2Rs for bitter reception do not.
(b) Schematic of the 7-transmembrane olfactory receptor, mod-
eled after the structure of rhodopsin, the visual receptor protein.
Transmembrane segments are symbolized by the cylinders and
extracellular and intracellular loops by the heavy lines connect-
ing them. Genetically variable segments include the barrels of
segments II, IV, and V and the extracellular loop connecting
segments VI and VII, making these sections candidates for a
receptor pocket.

have about 300–330 amino acids and a short extracel-
lular N-terminus (Bachmanov and Beauchamp, 2007).
The two families can exist side by side in taste buds,
but are expressed in different cells (Sugita, 2006). The
family of T2Rs contains about 40 active human vari-
ants with 38 intact genes currently known (Bachmanov
and Beauchamp, 2007). Different T2Rs may be co-
expressed in the same cells. This may explain why
most bitter taste substances are similar in quality and
difficult to differentiate. The number and variability of
this family may be responsible for the ability of mam-
mals to react to a wide range of molecular structures
among the various bitter substances. The hT2R38 vari-
ant has been identified as the receptor for molecules
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such as PTC (phenylthiocarbamide or phenylthiourea)
and PROP (6-n-propylthiouracil) to which there is
a genetically based taste “blindness.” The mutations
in hT2R38 responsible for this inherited insensitivity
have been identified (Bufe et al., 2005; Kim et al.,
2003).

The T1Rs comprise only three peptide chains in
two combinations, forming heterodimers. One dimer
is the T1R1/T1R2 combination that is sensitive to
glutamate and thus functions as an umami taste recep-
tor. The other dimer is a T1R2/T1R3 combination
that functions as the sweet receptor. The umami and
sweet receptors are expressed in different taste recep-
tor cells. Both the T1Rs and the T2Rs are G-protein
coupled receptors (GPCRs) as are olfactory and visual
receptors. The G-protein is an intracellular messenger
consisting of three subunits, associated to the recep-
tor inside the cell membrane. Stimulation of the taste
receptor (i.e., binding to the 7-TM) leads to separa-
tion of the G-protein subunits, which can then activate
other enzyme systems within the cell, causing a cas-
cade of amplified events. Notably, G-protein subunits
may activate adenylate cyclase, leading to production
of cyclic AMP and/or phospholipase C, producing
inositol triphosphate (IP3) (Sugita, 2006). Both cAMP
and IP3 cause further activation of intracellular mecha-
nisms such as activation or inactivation of ion channels
in the cell membrane. These events lead to calcium
influx or release, which is required for binding of
neurotransmitter vesicles (packets) to the cell mem-
brane and release of neurotransmitter molecules into
the synapse to stimulate the associated taste nerve.

Salt and sour taste mechanisms appear to work
more directly on ion channels, rather than via GPCRs.
Sodium entering the cell is responsible for a cell mem-
brane potential change (an ionic/electrical gradient)
associated with calcium influx. Various ion channels
have been proposed for mediating salty taste. Protons
for sour taste may enter taste receptor cells and then
stimulate ion channels such as the family of acid-
sensitive ion channels (ASICs) or potassium conduc-
tance channels (Bachmanov and Beauchamp, 2007; Da
Conceicao Neta et al., 2007; Sugita, 2006). Evidence
points to the involvement of members of the transient
receptor potential family in sour transduction, specifi-
cally members of the polycystic kidney disease family
of receptors (PKD, so named from the syndromes in
which they were first identified) (Ishimaru et al., 2006).
Recent work has also suggested a taste sensitivity to

free fatty acids, due to the presence of a fatty acid trans-
porter, CD36, in taste receptor cells (Bachmanov and
Beauchamp, 2007). This could serve as a supplement
to the textural cues which are usually thought of as the
main signal for fat in the oral cavity.

The taste buds themselves are contained in special-
ized structures consisting of bumps and grooves on the
tongue. The tongue is not a smooth uniform surface.
The upper surface is covered with small cone-shaped
filiform papillae. These serve a tactile function but
do not contain taste buds. Interspersed among the fil-
iform papillae, especially on the front and edges of
the tongue are slightly larger mushroom-shaped fungi-
form papillae, often more reddish in color. These small
button-shaped structures contain from two to four taste
buds each, on the average (Arvidson, 1979). There are
over a hundred on each side of the anterior tongue,
suggesting an average of several hundred taste buds
in the normal adult fungiform papillae (Miller and
Bartoshuk, 1991). Along the sides of the tongue there
are several parallel grooves about two-thirds of the
way back from the tip to the root, called the foliate
papillae. Each groove contains several hundred taste
buds. Other specialized structures are about seven large
button-shaped bumps arranged in an inverted-V on the
back of the tongue, the circumvallate papillae. They
contain several hundred taste buds in the outer grooves
or moat-like fissures that surround them. Taste buds are
also located on the soft palate just behind where the
hard or bony part of the palate stops, an important but
often overlooked area for sensing taste. The root of the
tongue and upper part of the throat are also sensitive to
tastes. Frequency counts of taste buds show that people
with higher taste sensitivity tend to possess more taste
buds (Bartoshuk et al., 1994).

Four different pairs of nerves innervate the tongue to
make contact with these structures. This may explain
in part why the sense of taste is resistant to disease,
trauma, and aging, in contrast to the sense of smell
(Weiffenbach, 1991). The fungiform papillae are inner-
vated by the chorda tympani branches of the facial
nerves (cranial nerve VII), which as its name sug-
gests, crosses the eardrum. This circuitous route has
actually permitted monitoring of human taste nerve
impulses during surgery on the middle ear (Diamant
et al., 1965). The glossopharyngeal nerves (cranial
nerve IX) send branches to the rear of the tongue and
the vagus nerve (cranial X) to the far posterior areas
on the tongue root. The greater superficial petrosal
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branch of the facial nerve goes to the palatal taste area
(Miller and Spangler, 1982; Nejad, 1986). Any one of
the four classical taste qualities can be perceived on
any area of the tongue, so the old-fashioned map of
the tongue with different tastes in different areas is not
accurate. For example, thresholds for quinine are lower
on the front of the tongue than the circumvallate area
(Collings, 1974).

Saliva plays an important part in taste function, both
as a carrier of sapid molecules to the receptors and
because it contains substances capable of modulat-
ing taste response. Saliva contains sodium and other
cations, bicarbonate capable of buffering acids, and a
range of proteins and mucopolysaccharides that give
it its slippery and coating properties. There are recent
suggestions that salivary glutamate may be capable
of altering food flavor perception (Yamaguchi and
Kobori, 1994). Whether saliva is actually necessary
for taste response is a matter of historical controversy.
At least in short time spans it does not seem to be
required, as extensive rinsing of the tongue with deion-
ized water through a flow system does not inhibit the
taste response, but can actually sharpen it (McBurney,
1966).

2.3.2 Taste Perception: Qualities

Various perceptual qualities have been proposed as
taste categories throughout history (Bartoshuk, 1978)
but the consistent theme was that four qualities suffice
for most purposes. These are the classical taste qual-
ities of sweet, salty, sour, and bitter. Various others
have been proposed to join the group of fundamen-
tal categories, most notably metallic, astringent, and
umami. Umami is an oral sensation stimulated by salts
of glutamic or aspartic acids. Astringency is a chem-
ically induced complex of tactile sensations. These
are discussed below. The metallic taste is occasion-
ally used to describe the side tastes of sweeteners
such as acesulfame-K and is a sensation experienced
in certain taste disorders (Grushka and Sessle, 1991;
Lawless and Zwillinberg, 1983). The classical four
taste qualities are probably not sufficient to describe all
taste sensations (O’Mahony and Ishii, 1986). However,
they describe many taste experiences and have com-
mon reference materials, making them quite useful for
practical sensory evaluation.

The umami sensation, roughly translated from
Japanese as “delicious taste,” is attributed to the taste
of monosodium glutamate (MSG) and ribosides such
as salts of 5′ inosine monophosphate (IMP) and 5′

guanine monophosphate (GMP) (Kawamura and Kare,
1987). The sensation is distinguishable from that of
saltiness, as direct comparison with equally intense
NaCl solutions demonstrates. The sensation is some-
times rendered in English by the term “brothy” due
to its resemblance to the sensations from bouillon
or soup stocks. “Savory” or “meaty” are alternatives
(Nagodawithana, 1995). The taste properties of gluta-
mate and aspartate salts form the building blocks of fla-
vor principles in some ethnic (notably Asian) cuisines,
and so perhaps it is not surprising that Japanese, for
example, have no difficulty in using this taste term
(O’Mahony and Ishii, 1986). Occidental subjects, on
the other hand, seem to be able to fractionate the taste
into the traditional four categories (Bartoshuk et al.,
1974). Many animals including humans possess recep-
tors for glutamate (Scott and Plata-Salaman, 1991;
Sugita, 2006).

2.3.3 Taste Perception: Adaptation

and Mixture Interactions

The sense of taste has two important functional proper-
ties that also have parallels in the sense of smell, sen-
sory adaptation, and mixture interactions. Adaptation
can be defined as a decrease in responsiveness under
conditions of constant stimulation. It is a property
of sensory systems that act to alert an organism to
changes; the status quo is rarely of interest. We become
largely adjusted to the ambient level of stimulation,
especially in the chemical, tactile, and thermal senses.
Placing your foot in a hot bath can be alarming at first,
but the skin senses adapt. Our eyes constantly adapt
to ambient levels of light, as we notice upon enter-
ing a dark movie theater. We are generally unaware
of the sodium in our saliva, but rinsing the tongue
with deionized water and representing that concentra-
tion of NaCl will produce a sensation above threshold.
Adaptation is easily demonstrated in taste if the stim-
ulus can be maintained on a controlled area of the
tongue, for example, when a solution is flowed over the
extended tongue or through a chamber (Kroeze, 1979;
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McBurney, 1966). Under these conditions, most taste
sensations will disappear in a minute or two. However,
when the stimulus is not so neatly controlled, as in eat-
ing or in pulsatile stimulation, the adaptation is less
robust and in some cases disappears (Meiselman and
Halpern, 1973).

One other important discovery accompanied exper-
iments on taste adaptation. Concentrations of NaCl or
any other tastant below the adapting level—of which
pure water was the extreme example—would take
on other taste qualities. Thus water after salt adapta-
tion can taste sour and/or bitter. Water tastes sweet
after quinine or acid and tastes bitter after sucrose
(McBurney and Shick, 1971). Figure 2.7 shows the
response to concentrations of NaCl after different
adaptation conditions. Above the adapting concentra-
tion, there is a salty taste. At the adapting concen-
tration, there is little or no taste. Below the adapt-
ing concentration there is a sour–bitter taste that is
strongest when water itself is presented. Water can take
on any one of the four qualities, depending upon what
has preceded it. This should alert sensory evaluation
workers to the need for controlling or at least consid-
ering the effects of taste adaptation. Both the solvent
and the taste molecules themselves can elicit sensory
responses.

A second feature of taste function is the ten-
dency for mixtures of different tastes to show partially
inhibitory or masking interactions. Thus a solution of
quinine and sucrose is less sweet than an equal concen-
tration of sucrose tasted alone (i.e., when the sucrose
in the two solutions is in equimolar concentration).
Similarly the mixture is less bitter than equimolar qui-
nine tasted alone. The general pattern is that all four
classical taste qualities show this inhibitory pattern,
commonly called mixture suppression (McBurney and
Bartoshuk, 1973). In many foods these interactions are
important in determining the overall appeal of the fla-
vors and how they are balanced. For example, in fruit
beverages and wines, the sourness of acids can be par-
tially masked by sweetness from sugar . The sugar thus
serves a dual role—adding its own pleasant taste while
decreasing the intensity of what could be an objec-
tionable level of sourness (Lawless, 1977). Some of
these mixture inhibition effects, like the inhibition of
bitterness by sweetness, appear to reside in the central
nervous system (Lawless, 1979) while others, such as
the inhibition of bitterness by salt, are more likely due
to peripheral mechanisms at the receptors themselves
(Kroeze and Bartoshuk, 1985).

There are a few exceptions to the pattern of inhi-
bition where hyperadditive relationships, sometimes

Fig. 2.7 Taste and water taste of NaCl following different
adapting concentrations. The key shows the adapting (pretreat-
ment) concentrations. Taste intensity reaches a minimum at each
adapting level. Above the adapting levels, increased salty taste is

reported. Below the adapting level, sour–bitter taste is reported,
reaching a maximum with water. (from McBurney (1966),
copyright 1966, by the American Psychological Association,
reprinted with permission).
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called enhancement or synergism occur. Hyperadditive
effects imply that there is a higher taste intensity in the
mixture than would be predicted on the basis of simple
addition of component effects. However, how this out-
come is predicted is controversial (Ayya and Lawless,
1992; Frank et al., 1989b). The most well-known claim
of synergy is the interaction of MSG with the ribo-
sides mentioned above. These are clearly hyperadditive
by any definition. Addition of even small subthreshold
amounts in mixtures will produce strong taste sensa-
tions (Yamaguchi, 1967) and there is strongly interac-
tive binding enhancement at taste receptors that could
be the physiological reason for this effect (Cagan,
1981). A second area of enhancement is seen with
sweetness from salt in low concentrations added to
sugar. NaCl has an intrinsic sweet taste seen at low lev-
els that is normally masked by the saltiness at higher
levels (Bartoshuk et al., 1978; Murphy et al., 1977).
This may explain some of the beneficial effects of
small amounts of salt in foods. A third case of hyper-
additivity appears in the sweetener mixtures (Ayya and
Lawless, 1992; Frank et al., 1989b). The search for
synergistic mixtures of sweeteners and of other flavors
is ongoing, due to the potential cost savings in this food
ingredient category.

Finally, one can ask what happens to mixture sup-
pression when one or more of the components has
reduced impact? Figure 2.8 shows a release from

inhibition that follows adaptation to one component of
a mixture. Both the sweetness of sucrose and the bitter-
ness of quinine are partially suppressed when present
in a mixture. After adaptation to sucrose, the bitterness
of a quinine/sucrose mixture rebounds to the level it
would be perceived at in an equimolar unmixed qui-
nine solution (Lawless, 1979). Likewise the sweetness
rebounds after the bitterness is reduced by adapta-
tion to quinine. These interactions are quite common
in everyday eating. They can be easily demonstrated
during a meal with tasting wines, since many wines
contain sugar/acid (sweet/sour) taste mixtures. A wine
will seem too sour after eating a very sweet dessert.
Similarly, tasting a wine after eating a salad dressed
with vinegar makes the wine seem too sweet and lack-
ing in acid (“flabby”). These are simply the adapting
effects upon the components of the wine, decreasing
some tastes and enhancing others through release from
inhibition. A similar effect can be seen in mixtures
of three components, especially with salt. In a bitter–
sweet mixture of urea and sucrose, for example, the
usually suppression of bitterness and sweetness will
be observed. But when a sodium salt is added to the
mixture, there is a disproportionate effect of the salt
inhibiting the bitter taste and consequently the sweet
taste is enhanced (Breslin and Beauchamp, 1997). This
effect is another explanation of the reported flavor
enhancement in various foods when salt is added.

Fig. 2.8 Mixture suppression and release. The left panel shows
perceived bitterness of quinine (filled circles) and mixtures with
0.00075 M aspartame (squares) and 0.00245 M aspartame (open

circles) following adaptation to water. Mixture suppression is
shown by reduced bitterness when the sweet taste is present

in the mixtures. The right panel shows the same items after
adaptation to sucrose, reducing the sweetness and returning
the bitterness to its unsuppressed level (from Lawless (1979),
copyright 1979, by the American Psychological Association,
reprinted with permission).
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2.3.4 Individual Differences and Taste

Genetics

Wide individual differences in taste sensitivity exist,
particularly for bitter compounds. The best exam-
ple of this is the genetically inherited insensitiv-
ity to compounds containing the functional group
–N–C == S typified by certain aromatic thiourea com-
pounds. This taste “blindness” was primarily studied
using the compound phenylthiourea, originally called
phenylthiocarbamide or PTC (Blakeslee, 1932; Fox,
1932). Due to the potential toxicity of PTC as well
as its tendency to give off an odor, more recent
studies have used the compound 6-n-propylthiouracil
(PROP) which is highly correlated with PTC response
(Lawless, 1980). Their structures are shown in Fig. 2.9.
The minimum detectable concentrations (thresholds)
of these compounds, PTC and PROP, follow a bimodal

distribution, with about 1/3 of Caucasian persons
unable to detect the substance at the concentration
detected by most people. Thresholds tests as well as
ratings for bitterness above threshold both allow dif-
ferentiation into “taster” (sensitive) and “nontaster”
(insensitive) groups (Lawless, 1980). Nontasters have
a modification in the TAS2R38 taste receptor and show
a simple Mendelian pattern of inheritance. Many other
bitter substances such as quinine also show wide varia-
tion (Yokomukai et al., 1993), but none so dramatic as
PTC and PROP.

Recent studies have identified hypersensitive groups
of “supertasters” and counts of papillae and taste
buds are correlated with taste sensitivity and respon-
siveness (Miller and Bartoshuk, 1991). Due to the
enhanced trigeminal innervation in such individuals
with a higher papillae density, it is perhaps not surpris-
ing that a relationship between PROP sensitivity and
some lingual tactile sensations such as the sensitivity

Fig. 2.9 PTC and PROP detection thresholds (left panels) and
perceived intensity ratings (right panels) of 0.0001 M PTC
and 0.00056 M PROP (from Lawless (1980), by permission
of Information Retrieval Limited (IRL) and Oxford University

Press). Note that PTC gives a better separation of taster
and nontaster groups, especially with the perceived intensity
ratings.
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to fat have been found. A large number of other corre-
lates to PROP sensitivity have been observed including
sensitivity to the bitterness of caffeine, saccharin, and
responses to capsaicin (Bartoshuk, 1979; Hall et al.,
1975; Karrer and Bartoshuk, 1995). However, many
of these correlations are low and some lower than the
correlations among traditional tastants (Green et al.,
2005, see also Schifferstein and Frijters, 1991). The
current view, then, is that taste and chemesthesis are
mostly independent systems and the sensory profes-
sional should be cautious in trying to use any general
marker like PROP sensitivity as a predictor of indi-
vidual response (Green et al., 2005). A potentially
important finding is that persons who are insensitive
to a bitter compound such as PTC will not show
some mixture suppression effects (since they perceive
no bitterness, there is no inhibition) on other flavors
(Lawless, 1979). This illustrates a more general prin-
ciple, that depending upon what we do not sense
in a product, the other flavors may be enhanced for
us, in a similar fashion to the effect of release from
suppression.

2.4 Anatomy and Physiology

and Functions of Smell

2.4.1 Anatomy and Cellular Function

The olfactory receptors are located in two small por-
tions of epithelium very high in the nasal cavity. This
remote location may serve some protective function
against damage, but it also means that only a small per-
centage of the airborne substances flowing through the
nose actually reach the vicinity of the sensory organs.
In order to counter this factor, the olfactory sense has
several attributes that enhance its sensitivity. There are
several million receptors on each side of the nose and
they have a terminal knob protruding into the mucus
with about 20–30 very fine cilia which “float” in the
mucus layer (Fig. 2.10). One function of these cilia is
to increase the surface area of the cell, exposing the
receptors to chemical stimuli. The main body of the
olfactory receptor cells lies inside the epithelium and
they each send a thin axon into the olfactory bulbs.

Another anatomical amplification factor is that the
millions of receptors send nerve fibers into a much

smaller number (perhaps 1,000) of glomerular struc-
tures in the olfactory bulb, after passing through a bony
plate in the top of the nose. The glomeruli are dense
areas of branching and synaptic contact of the olfac-
tory receptors onto the next neurons in the olfactory
pathway. Several thousand olfactory sensory neurons
converge onto only 5–25 mitral cells in each glomeru-
lus (Firestein, 2001). The mitral cells in turn send
axons onto more central brain structures. The olfac-
tory nerves project to many different sites in the brain,
some of them closely associated with emotion, affect,
and memory (Greer, 1991).

Unlike the taste receptors that are modified epithe-
lial cells, the olfactory receptors are true nerve cells.
They are unusual neurons in that they have a limited
life span—they are replaced in about a month. The
ability of the olfactory system to maintain its func-
tional connections in the face of this turnover and
replacement is a great puzzle of neural science. Other
parts of the nervous system do not readily regenerate
when damaged, so unlocking the mystery of olfactory
replacement may provide benefits to those suffering
from nervous system damage. The olfactory system is
not immune from damage, however. A common injury
occurs when a blow to the head severs the nerve fibers
from the olfactory receptors as they pass through small
passages in the bony cribriform plate on their way into
the olfactory bulbs. This is sometimes self-repairing
but often is not, leaving the individual without a func-
tioning sense of smell, and therefore deprived of most
food flavor perception for life. Sensory panel lead-
ers need to be aware of the condition of total loss of
smell, called anosmia, and screen panelists for sensory
analysis duties with tests of olfaction such as a smell
identification tests (Doty, 1991).

The mechanisms of odor reception are now well
understood, starting with the discovery of a family of
about 1,000 genes for olfaction in mammals, a discov-
ery that earned Buck and Axel the Nobel Prize in 2004
(Buck and Axel, 1991). This may be the single largest
gene family in the human genome. About 350 of these
receptor types are active in humans. The receptors are
G-protein coupled receptors, like the bitter receptors
and visual receptor molecules. They have a sequence
indicating seven transmembrane segments connected
by intracellular and extracellular loops and have short
N-terminals, like the bitter family of T2R receptors.
Within the peptide sequences, there are from 10 to 60%
variability (Firestein, 2001) with strong divergence in
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the third, fourth, and fifth transmembrane regions (see
Fig. 2.6). These three “barrels” face one another and
may form a receptor pocket about 1/3 of the way into
the membrane. Identifying the kinds of molecules (lig-
ands) that bind in these pockets has proven difficult
due to the difficulty in expressing olfactory receptors in
model systems. In the one case in which this was suc-
cessful, the receptor was found to be specifically tuned
to octanal and very similar molecules (Zhao et al.,
1998).

The intracellular mechanisms for stimulation are
similar to those of the G-coupled receptors in taste.
Binding to the receptor results in activation of the
G-protein subunits, which in turn activate enzymes
such as adenylyl cyclase. This turns ATP into cyclic
AMP which in turn activates various ion channels.
An influx of Na+ and Ca++ ions causes the inside of
the cell to become less negatively charged and when
this membrane potential reaches a 20 mV threshold,
an action potential is generated that travels down the
nerve axon and results in neurotransmitter release. This
is an amplification process, as the enzyme cascade
can create about a thousand molecules of cAMP per
second and hundreds of thousands of ions can cross
through each open channel (Firestein, 2001). The cal-
cium ions also open an outward flowing chloride ion
channel, which serves as a kind of intracellular battery
to reinforce the membrane potential change.

Different odor qualities are seen in spatial patterns
(Kauer, 1987). Each odor receptor cell expresses only
one type of receptor protein. Receptor cells with the
same protein project to the same set of glomeruli.
Similar odors also tend to map onto overlapping
regions (Firestein, 2001). So different odors are rep-
resented by activation of different segments of the
olfactory bulb. However, the matter is somewhat com-
plicated by the fact that receptors are tuned to multiple
odor molecules, and conversely, many odor molecules
can stimulate a wide array of receptors. This has led to
the combinatorial code for odor quality (Malnic et al.,
1999). The brain recognizes the pattern of response
across the array of neurons in order to “decide” on
the odor quality or type. Viewed this way, olfac-
tion appears to be the prototypical pattern recognition
mechanism. Such a code can explain why some odor-
ants change in their quality when the concentration
increases. Additional receptors with higher thresh-
olds for that compound are recruited as concentrations
increase, altering the patterned array.

2.4.2 Retronasal Smell

Arguably, the largest contribution to the diversity of
flavors comes from the volatile airborne molecules
sensed by the olfactory receptors. Whether sniffed
through the external nares in the direction of normal
inspiration or arising from odors present in the mouth,
the vast diversity of what we come to know as food
flavors is mediated by smell. Due to the tendency
to localize aromatics from foods in the mouth, many
people do not realize that the olfactory sense is respon-
sible for sensing most flavors other than the simple
five tastes described above. Much of what we nor-
mally speak of as taste is really smell (Murphy et al.,
1977; Murphy and Cain, 1980). The lemon character
of a lemon, for example, is derived not from lemon
taste (which is only sour, sweet, and bitter) but from
the terpene aroma compounds that arise in the mouth
and pass up into the nasal cavity from the rear direc-
tion (retronasally), opposite to that from sniffing. This
highlights the dual role of olfaction as both an external
sensory system and an internal sensory system (Rozin,
1982).

A simple demonstration can convince anyone of
the importance of this internal smelling or retronasal
smell. Take a sip of a simple fruit beverage or juice
while holding the nose pinched shut. Take care to
note the sensations present in the mouth, primarily the
sweet and sour tastes. Now swallow the sample and
while keeping the mouth shut, release the nostrils and
exhale. In about a second or so, the fruit flavor will
appear. Pinching the nose shut effectively blocks the
retronasal passage of flavor volatiles up to the olfac-
tory receptors (Murphy and Cain, 1980). When that
route is facilitated by swallowing and exhaling, the
contribution of smell becomes clear. The tendency of
people to label internal smells as “tastes” probably
contributes to the claims of sweetness enhancement
by volatile flavors such as vanilla and maltol. This
is a simple mislocation and mislabeling of the sensa-
tion (see Chapter 9). Learning to distinguish aromatics
from true tastes is one of the first tasks in panel train-
ing for any sensory analysis of food flavor. Note that
volatiles in the oral cavity may also have stimula-
tory effects there, but these seem to be limited to
trigeminal stimuli such as menthol (Halpern, 2008).
In most respects, orthonasal and retronasal smells are
qualitatively similar.
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It has been claimed that most (or even all) of
retronasal smell arises from a kind of pumping action
of air into the nose when people swallow, a so-called
swallow breath (Buettner et al., 2002). However, a
simple demonstration of exhalation without swallow-
ing shows that this is not the only mechanism for
retronasal smell: Take a small volume of liquid into the
mouth and swirl it around. Expectorate. Do not swal-
low! Breathe in while holding the nose pinched shut.
Release the nasal pinch and breathe out. There will
be a clear impression of the volatile flavors that are
perceived by retronasal smell. This kind of exhalation-
induced flavor perception (a matter of smell) is com-
monly practiced by judges such as wine tasters when
they differentiate aroma in the glass from aroma in
the mouth. So the swallow breath is not absolutely
required for retronasal smell. The swallow breath may
be an important part of perception during normal eat-
ing, but it may be supplemented by other mechanisms
in both eating and formal sensory evaluations.

2.4.3 Olfactory Sensitivity and Specific

Anosmia

The olfactory sensitivity of humans and other ani-
mals is remarkable. Our ability to detect many potent
odorants at very low concentrations still surpasses the
sensitivity of nearly all instrumental means of chem-
ical analysis. Many important flavor compounds are
detectable in the parts per billion range, such as sulfur-
containing compounds like ethyl mercaptan, a cabbage
or skunk-like compound, so potent that it is employed
as a gas odorization agent. Some food flavors are
even more potent, like the methoxy pyrazine com-
pounds that occur in bell peppers. Other small organic
molecules are not so effective at stimulating the olfac-
tory sense. The vast array of terpene aroma compounds
responsible for citrus, herbal, mint, and pine-like aro-
mas are usually potent in the parts-per million range.
In contrast, alcohol compounds like ethanol are only
sensed when their concentrations reach parts per thou-
sand, so although we may think of alcohol as “smelly,”
in contrast to potent chemicals such as the pyrazines, it
is not a very effective odor molecule.

A danger in flavor research is to assume that since
a chemical has been identified in a product, and that
chemical has an odor when smelled from a bottle that

resembles the natural flavor, it will necessarily con-
tribute to the flavor in the natural product. For example,
limonene has been often used as a marker compound
for orange juice aroma, but analysis of orange sam-
ples shows that it is often present well below threshold
(Marin et al., 1987). It has the status of a “red her-
ring” or a misleading compound. The critical question
is whether the concentration in the product exceeds
the threshold or minimum detectable concentration.
Compounds present below their thresholds are unlikely
to contribute to the perceived flavor, although some
summation of the effects of similar compounds is
always a possibility. This kind of threshold analysis
for estimating flavor impact is discussed further in
Chapter 6. The approach uses “odor units”—multiples
of threshold—as evidence of a potential sensory con-
tribution.

Thresholds are highly variable both within and
across individuals (Lawless et al., 1995; Stevens et al.,
1988). Some individuals with an otherwise normal
sense of smell are unable to detect some families
of similar smelling compounds. This is a condition
called specific anosmia, as opposed to general anos-
mia or a total inability to smell. Specific anosmia
is operationally defined as a condition in which an
individual has a smell threshold more than two stan-
dard deviations above the population mean concentra-
tion (Amoore et al., 1968; Amoore, 1971). Common
specific anosmias include an insensitivity to the fol-
lowing compounds of potential importance in foods:
androstenone, a component of boar taint (Wysocki and
Beauchamp, 1988); cineole, a common terpene com-
ponent in many herbs (Pelosi and Pisanelli, 1981); sev-
eral small branched-chain fatty acids important in dairy
flavors (Amoore et al., 1968; Brennand et al., 1989);
diacetyl, a lactic bacteria by-product (Lawless et al.,
1994); trimethyl amine, a fish spoilage taint (Amoore
and Forrester, 1976); isobutyraldehyde, responsible for
malty flavors (Amoore et al., 1976); and carvone, a ter-
pene in mint and other herbs (Pelosi and Viti, 1978, but
see also Lawless et al., 1995). A sensory panel leader
must be aware that each panel member has somewhat
different olfactory equipment and that it may not be
possible to force a panel into total agreement on all fla-
vors. Also, a panelist with one specific anosmia may
be a poor judge of that particular odor, but may func-
tion perfectly well on most other flavors. It makes little
sense to exclude this panelist from participation unless
the odor in question is a key component of all the
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foods being evaluated. This diversity presents a chal-
lenge in panel screening and detection of outliers in
data analysis.

The sense of smell has a rather poor ability to dis-
criminate intensity levels. This is observed in several
ways. Measured difference thresholds for smell are
often quite large compared to other sense modalities
(Cain, 1977) and the power function exponents are
often quite low (Cain and Engen, 1969). Early experi-
ments on the ability of untrained subjects to identify or
consistently label odor categories showed that people
could reliably identify only about three levels of odor
intensity (Engen and Pfaffmann, 1959). However, not
all of the problem may be in the nose. In review-
ing the historical literature on differential sensitivity,
Cain (1977) reported that the Weber fraction (Section
2.2.1) falls in the range of about 25–45% for many
odorants. This is about three times the size of the
change needed to discriminate between levels of audi-
tory or visual stimuli. Much of the problem was due
to variation in the physical stimulus as confirmed by
gas chromatography. The sniff bottles’ concentration
variation was highly correlated with discrimination
performance, with stimulus variation accounting for
75% of the variance in discrimination. Thus histori-
cal estimates of odor difference thresholds may be too
high.

2.4.4 Odor Qualities: Practical Systems

In contrast to its limited ability to distinguish inten-
sity changes, the sense of smell provides us with a
remarkably wide range of odor qualities. Experiments
on odor identification show that the number of famil-
iar odors people can label is quite large, seemingly
with no upper bound (Desor and Beauchamp, 1974).
However, the process of labeling odors itself is not
easy. Often we know a smell but cannot conjure up
the name, called a tip-of-the-nose phenomenon, in an
analogy to saying a word is “on the tip of your tongue”
(Lawless, 1977). This difficulty in verbal connection
is one reason why many clinical tests of smell use
a multiple choice format (Cain, 1979; Doty, 1991)
to separate true problems in smelling from problems
in verbal labeling. Our sense of smell is also limited
in the ability to analytically recognize many compo-
nents in complex odor mixtures (Laing et al., 1991;

Laska and Hudson, 1992). We tend to perceive odors as
whole patterns rather than as collections of individual
features (Engen and Ross, 1973; Engen, 1982). This
tendency makes odor profiling and flavor description
a difficult task for sensory panelists (Lawless, 1999).
It seems more natural to react to odors as pleasant or
unpleasant. The analytical frame of mind for odor and
flavor perception demanded in sensory analysis is more
difficult.

In spite of the common adage in psychology texts
that there is no accepted scheme for classifying pri-
mary odors, there is quite strong agreement among
flavor and fragrance professionals about categories for
smells (Brud, 1986). Perfumers share a common lan-
guage, developed in part on the basis of perceptual
similarities within categories (Chastrette et al., 1988)
and upon the sources of their ingredients. However,
these schemes are generally unfamiliar to those outside
these professions and may seem laden with techni-
cal jargon. Odor classification poses several challenges
and problems. First, the number of differentiable cat-
egories is large. Early attempts at odor classification
erred on the side of oversimplification. An exam-
ple is Linnaeus’s seven categories: aromatic, fragrant,
musky, garlicky, goaty, repulsive, and nauseating, to
which Zwaardemaker added ethereal and burned. A
second impediment to the understanding of odor clas-
sification outside the flavor and fragrance world is that
many of the original categories derive from the source
materials of vendors of such ingredients. Thus they
have a class for aldehydic (from aldehydes used as
perfume fixatives, later an important ingredient in per-
fumes such as Chanel No. 5) and a class for balsamic
fragrances. This nomenclature can seem a bit mys-
terious to the outsider. Balsamic fragrances include
pine-woody sorts of smells combined with sweeter
smells like vanilla. This example raises the question
whether the perfumery categories can be broken down
into more basic elements. Another approach to the
problem proposed that odor categories be based on
specific anosmias, since they may represent lack of a
specific receptor type for a related group of compounds
(Amoore, 1971). However, such attempts so far reduce
to systems that are too small.

Nonetheless, there is considerable agreement
among workers in different fields about quality cat-
egories for smells. For example, Table 2.2 shows a
practical descriptive system for fragrances in con-
sumer products derived solely from the experience
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Table 2.2 Odor category systems

Functional odor categoriesa Factor analysis groupsb

Spicy Spicy
Sweet (vanilla, maltol) Brown (vanilla, molasses)
Fruity, non-citrus Fruity, non-citrus
Woody, nutty Woody

Nutty
Green Green
Floral Floral
Minty Cool, minty
Herbal, camphoraceous Caraway, anise
(other) Animal

Burnt
Sulfidic
Rubber

aDescriptive attributes derived via principles of non-overlap and
applicability to consumer products
bFactor analysis groups derived from ratings of aroma com-
pounds on 146 attribute list

and intuition of the panel leaders during training.
The second system is based on a categorization of
tobacco flavors derived from a factor analysis of hun-
dreds of odor terms and aromatic compounds (Civille
and Lawless, 1986; Jeltema and Southwick, 1986).
Given the different approaches and product areas, the
agreement is surprisingly parallel. The terms for the
tobacco work were derived from the ASTM list of odor
character notes that contain 146 descriptors. This list
provides a useful starting point for odor description
(Dravnieks, 1982) but it is far from exhaustive and con-
tains both general and specific terms. Other multivari-
ate analyses of fragrance materials have yielded sys-
tems with similar categories (<20) (Zarzo and Stanton,
2006).

Other terminology systems for aromatic flavors
have been developed for specific industries. This nar-
rows the problem somewhat and makes the task of
developing and odor classification system more man-
ageable. One popular system is shown in Fig. 2.11 for
wine aroma, arranged in a wheel format with hierarchi-
cal structure (Noble et al., 1987). A similar approach
was taken with a circular arrangement of beer flavor
terms (Meilgaard et al., 1982). The outer terms repre-
sent fairly specific aroma notes. Each outer term has
an associated recipe for a flavor standard to act as
a prototype/standard for training wine panelists. The
system has embedded category structure that makes it
easy to use. Interior terms act as more general cate-
gories subsuming the more specific outer terms. The

more general terms have practical value. Sometimes a
wine may have some fruity character, but this will not
be sufficiently distinct or specific to enable the pan-
elist to classify the aroma as a specific berry, citrus, or
other fruit. In that case there is some utility in having
panelists simply estimate the general (overall) fruity
intensity. Different parts of the wheel may apply more
or less to different varietal wines and slightly different
versions may evolve for different wine types, e.g., for
sparkling wines.

2.4.5 Functional Properties: Adaptation,

Mixture Suppression, and Release

An important operating characteristic of the flavor
senses is their tendency to adapt or to become unre-
sponsive to stimuli which are stable in space and time.
This is perhaps most obvious for olfaction in every-
day life. When one enters the home of a friend, we
often notice the characteristic aroma of the house—the
residual smells of their cooking and cleaning, per-
sonal care products, of babies or smokers, of pets
or perfumes. These odors seem to characterize and
permeate a house in its carpets and draperies. After
several minutes, these aromas go largely unnoticed by
a visitor. The sense of smell has adapted. There is no
new information coming in, so attention and sensory
function turn in other directions. In smell, like taste and
the thermal senses, adaptation can be profound (Cain
and Engen, 1969).

The sense of smell also shows mixture interac-
tions. Odors of different qualities tend to mask or
suppress one another, much like mixture suppression
in taste. This is how most air fresheners work, by a
process of odor counteraction via intensity suppres-
sion. The effect can easily be seen in two component
mixtures where the odors are very different and easily
separated perceptually, like lavender oil and pyridine
(Cain and Drexler, 1974). Figure 2.12 shows pyri-
dine/lavender mixtures, estimates of the intensity of
the pyridine component at different levels of laven-
der, and estimates of the lavender intensity at dif-
ferent levels of pyridine (from Lawless, 1977). Odor
intensity decreases as a function of the concentra-
tion of the other component. Such intensity interac-
tions are most likely common in all complex food
flavors.
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Fig. 2.11 The wine aroma “wheel” a system for arranging
common wine aroma characteristics in a three-tiered categor-
ical system. Inner terms are more comprehensive while the

outer terms are more specific. Reference materials for the outer
terms are given in the original paper. From Noble et al. (1987),
courtesy of Ann Noble.

The contrast produced by release from mixture sup-
pression also occurs in olfaction. Figure 2.13 shows
a two-component odor mixture of vanillin and cin-
namaldehyde. These odor components are distinguish-
able, i.e., they do not seem to blend into an new
or inseparable mixture. Adapting the nose to one
component makes the other one stand out (Lawless,
1987). This is an old analytical strategy used by
some perfumers. When trying to analyze a competi-
tor’s fragrance, some components may be readily dis-
tinguished in the complex mixture and others may
be obscured. If the nose is fatigued to one of the
known components, the other components may seem
to emerge, allowing them to be more readily identified.
Patterns of adaptation to the strongest component of
a flavor over time may explain in part why some

complex foods or beverages like wine seem to change
in character over several minutes of repeated tastings.

The phenomena of adaptation and release present
important considerations for sensory testing and a
good reason why sensory tests should be done in an
odor-free environment. Testing against the background
of ambient odors will alter the quality and intensity
profile of whatever is being tested. After a short period
the olfactory system becomes immune to whatever is
ambient in the building, less responsive to those aro-
matics if they occur in the test product, and more
responsive to other flavors or aromas present due to the
release from suppression effect. This makes testing in
a factory, for example, potentially troublesome unless
care is taken to insure that the test area is odor free or
at least neutral in its background smell.
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Fig. 2.12 Odor mixture inhibition in mixtures of lavender oil
and pyridine. Decreased intensity of lavender is seen as a func-
tion of mixture with pyridine odor (upper panel) and decreased
pyridine odor as a function of mixture with lavender (lower

panel) (from Lawless, 1977 with permission).

Odor quality interactions are less predictable. Some
odors seem to blend while others remain distinct. In
general, odor mixtures bear a resemblance in their
character to the quality characteristics of the indi-
vidual components. For example, Laing and Wilcox
(1983) showed that in binary mixtures, the odor pro-
files were generally similar to or predictable from the
profiles of the components, although any intensity mis-
match tended to favor the dominant component at
the expense of the weaker item. This would suggest
that emergent qualities or deriving a completely new
odor as a function of mixing is rare. However, anec-
dotes exist about multicomponent mixtures in which
the odor of the emergent pattern is not clearly present
in any single component. For example, a mixture of
ten or so medium chain aldehydes (C6–C16) produces
a smell reminiscent of old wax crayons (Lawless,
1996). Furthermore, natural flavors consist of mix-
tures of many chemical components and no single

chemical may possess the odor quality characteristic
of the blend. The odor of cocoa is a distinctive smell,
but it is difficult to find any single chemical compo-
nent which produces this impression. In an analysis
of cheese aroma by gas chromatographic sniffing, the
components had no cheese aromas in their individ-
ual characteristics (Moio et al., 1993). Burgard and
Kuznicki (1990) noted that such synthesis may be the
rule: “Coffee aroma is contributed to by several hun-
dreds of compounds, a great many of which do not
smell anything like coffee” (p. 65).

2.5 Chemesthesis

2.5.1 Qualities of Chemesthetic

Experience

A variety of chemically induced sensations can be
perceived in the oral and nasal cavities as well as
the external skin. These chemically induced sensa-
tions do not fit neatly into the traditional classes of
tastes and smells. They are called chemesthetic sen-
sations in an analogy to “somesthesis” or the tactile
and thermal sensations perceived over the body surface
(Green and Lawless, 1991; Lawless and Lee, 1994).
Many of these sensations are perceived through stim-
ulation of the trigeminal nerve endings in the mouth,
nose, or eyes. They include the heat-related irrita-
tive sensations from chili pepper and other spices, the
non-heat related irritations from horseradish, mustard,
and wasabi, the lachrymatory (tear-inducing) stim-
uli from onions, the cooling sensations from menthol
and other cooling agents, and irritation from carbon
dioxide. Other classes of sensations that are some-
times grouped with these are astringency, which is a
chemically induced tactile sensation and the so-called
metallic taste. Others could be added, but they are
beyond the scope of this text. The ones discussed here
are the common and major types of experiences found
in foods and consumer products.

The importance of chemesthesis is evident from
anatomical and also economic considerations. Much of
the chemesthetic flavor sensations are mediated by the
trigeminal nerves and the size of the trigeminal tracts
relative to the other chemical sense nerves is impres-
sive. One study found three times as many trigeminal
fibers in the fungiform papillae of the rat than the facial
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Fig. 2.13 Odor mixture
inhibition and release
following adaptation in
mixtures of vanillin and
cinnamaldehyde. Open bars,
perceived intensity of vanilla
odor; Hatched bars, perceived
intensity of cinnamon odor.
After adaptation to vanillin,
the cinnamon odor returns to
its unmixed level. After
adaptation to cinnamaldehyde,
the vanilla odor returns to its
unmixed level (from Lawless
(1984) with permission of the
Psychonomic Society).

(taste) nerve fibers innervating taste buds (Farbman
and Hellekant, 1978). So these papillae are not just
taste sensory organs, but might be more accurately
classified as organs for the perception of chili pepper
burn (Lawless and Stevens, 1988). Even the taste bud
itself seems organized to provide trigeminal access to
the oral milieu. Trigeminal fibers ascend around the
taste bud forming a chalice-like structure (Whitehead
et al., 1985), possibly enhancing their access to the
external environment.

The economic impact of trigeminal flavors on the
food and flavor industry is growing. Carbon dioxide
is a trigeminal stimulus and the carbonated beverage
business—soda, beer, sparkling wines, etc.—amounts
to huge sales worldwide. Putting aside CO2, we can
ask about the economic impact of individual spices or
their use in various products. In the United States, so-
called ethnic foods are experiencing a period of rapid
growth due to a continuing influx of immigration of
peoples from cultures with hot spicy cuisines and a
growing trend toward less neophobic and more adven-
turous dining on the part of many Americans. Sales of
salsa have surpassed the sales of ketchup since 1992.
New programs of research have added whole new cat-
egories of chemesthetic flavorants, such as “tingle”
compounds.

2.5.2 Physiological Mechanisms

of Chemesthesis

A variety of specialized nerve endings from the tactile
somatosensory systems can be observed histologically
in skin and other epithelial tissues. For purposes of
nociception, especially those induced by chemicals, it
has long been thought that free nerve endings are the
likely sensors. Generally, the nerve fibers involved in
nociception are small diameter and slowly conducting
c-class nerves. Many of the chemesthetic sensations
are mediated by a special family of receptor proteins
known as Transient Receptor Potential (TRP) chan-
nels (Silver et al., 2008). These proteins form cation
channels and consist of four associated subunits. Each
subunit contains a long peptide with six sections that
cross the cell membrane and each contains a single
pore region. Originally discovered in Drosophila pho-
toreceptors, a wide variety of these functional channels
have been found in various organs and many differ-
ent cells (Patapoutian et al., 2003; Venkatachalam and
Montell, 2007). The first chemoreceptive TRP to be
characterized was the TRPV1, a so-called vanilloid
receptor that is sensitive to capsaicin as well as acidic
pH, heat, and mechanical stimulation. One member
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of the TRPM family, TRPM8, is sensitive to men-
thol and other cooling compounds. TRPP3 channels
have been implicated in sour taste transduction as
they are responsive to acids, and may form a func-
tional sour receptor. A type of TRP channel which is
responsive to a very wide range of chemical stimuli
including irritants and pungent stimuli such as wasabi
and horseradish is the TRPA channel (Tai et al., 2008).
TRP channels may also act in concert with the GPRC’s
to affect taste cell transduction for sweet, bitter,
and umami tastes (TRPM5). The capsaicin-sensitive
TRPV1 channel and the TRPM5 channel found in
some taste receptor cells may participate in the sens-
ing of some aspects of complex tasting divalent salts
(iron, zinc, copper, etc.) (Riera et al., 2009). Because
some TRPs are sensitive to both temperature and
chemical stimulation, simultaneous or sequential com-
binations cause enhancements. For example, capsaicin
can enhance heat pain from thermal stimulation, prob-
ably through a common action on TRP1V channels
and menthol can enhance cold-induced pain, probably
through common action on TRPM8 channels (Albin
et al. 2008). For a review of these important chemore-
ceptive mechanisms, see Calixto et al. (2005), Silver
et al. (2008), and Venkatachalam and Montell (2007).

2.5.3 Chemical “Heat”

An actively studied category of chemesthetic sensa-
tions are those that arise from pepper compounds such
as capsaicin from chili peppers, piperine from black
pepper, and the ginger compounds such as zingerone.
The potency of capsaicin is noteworthy, with thresh-
olds below 1 ppm. This is about 100 times as potent as
piperine and other irritants, based on dilution to thresh-
old measures such as the Scoville procedure (discussed
in Chapter 6). In pure form, capsaicin causes a warm or
burning type of irritation with little or no apparent taste
or smell (Green and Lawless, 1991; Lawless, 1984).
The most obvious sensory characteristic of stimula-
tion with the pepper compounds is their long-lasting
nature. Stimulation with capsaicin, piperine, or ginger
oleoresin at concentrations above threshold may last
10 min or longer (Lawless, 1984). So these flavor types
are well suited to the application of time–intensity pro-
filing (see Chapter 8). Other irritants such as ethanol
and salt produce less persistent effects over time.

The temporal properties of capsaicin are complex.
When stimulation is followed by a short rest period,
a type of desensitization or numbing of the oral tis-
sues sets in (Green, 1989). Application of the red
pepper compound, capsaicin, to the skin or oral epithe-
lium has profound desensitizing effects (Jansco, 1960;
Lawless and Gillette, 1985; Szolscanyi, 1977). This
nicely parallels the animal experimentation showing
a generalized desensitization after injection with cap-
saicin (Burks et al., 1985; Szolcsanyi, 1977), which
is believed to result from the depletion of substance
P, a neurotransmitter in the somatic pain system.
Since effects of substance P have also been linked
to the functioning of endorphins (Andersen et al.,
1978), there is a suggestion that the kind of crav-
ing or addiction that occurs for spicy foods may be
endorphin-related. High dietary levels of capsaicin also
result in a chronic desensitization, as shown in psy-
chophysical tests (Lawless et al., 1985). Figure 2.14
shows a desensitization effect seen in sequences dur-
ing a psychophysical study, and also the apparent
chronic desensitization that occurs in people who
consume chili peppers or spices derived from red
pepper on a regular basis (Prescott and Stevenson,
1996). Sensitization is also observed when the rest
period is omitted and stimulation proceeds in rapid
sequences; the irritation continues to build to higher
levels (Stevens and Lawless, 1987; Green, 1989).
These tendencies to sensitize and desensitize make
sensory evaluations of pepper heat somewhat difficult
if more than one trial per session is required. A cali-
brated descriptive panel may be useful, one whose abil-
ities can help bridge the time delays required between
repeated observations.

In addition to their numbing and sensitizing effects,
irritant stimulation in the oral or nasal cavity evokes
strong defensive reflexes in the body, including sweat-
ing, tearing, and salivary flow. There is a strong cor-
respondence between sensory ratings of pepper heat
intensity and the evoked salivary flow from the same
subjects taken simultaneously with ratings (Lawless,
1984). This provides a nice demonstration that sensory
ratings should not be dismissed as merely “subjective”
in that they have obvious correlates in “objectively”
measurable physiological reflexes.

An unresolved question in the realm of chemi-
cal irritation is the degree to which different sensory
qualities are evoked (Green and Lawless, 1991). This
is difficult to study due to a lack of vocabulary to
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Fig. 2.14 Zingerone desensitization as a function of dietary use,
numbers of exposures and a break in stimulation. The differences
in the height of the curves demonstrate the chronic desensitiza-
tion that is correlated with high dietary intake of pungent spices.
The symbols at the far right demonstrate the within-session

desensitization that occurs during a hiatus in stimulation, as
commonly seen with capsaicin, the irritant component of red
(chili) peppers. The latter effect is more pronounced for those
with low dietary intake. From Prescott and Stevenson (1996)
with permission.

describe, at least in English, the experiences from
pepper burn, CO2, mustard, and so on. Experience
with spices suggests that there are a variety of irri-
tative flavor experiences and not all irritations are
the same. Studies of synergistic interaction in mix-
tures and potentiation with different irritants in rapid
sequences are suggestive of the possibility of multi-
ple receptor mechanisms for oral chemical irritation
(Lawless and Stevens, 1989, 1990). Direct measure-
ment of qualitative differences was attempted in a
descriptive study by Cliff and Heymann (1992) using a
variety of irritant flavor materials. They found evidence
for differences in lag time (short versus long onset)
and burning versus tingling sensations among the irri-
tants tested. A lexicon for carbonation was developed
by Harper and McDaniel (1993) and involved descrip-
tors for cooling, taste, trigeminal (bite, burn, numbing),
and tactile/mechanoreception properties.

2.5.4 Other Irritative Sensations

and Chemical Cooling

The trigeminal flavor senses also affect food flavor
in other ways. Even such benign stimuli as NaCl
can be irritative at high concentrations (Green and
Gelhard, 1989). Carbon dioxide is a potent irritant in
the nasal cavity, as are many organic compounds (Cain

and Murphy, 1980; Cometto-Muñiz and Cain, 1984;
Commetto-Muñiz and Hernandez, 1990). Completely
anosmic individuals can detect many odor compounds,
presumably from the ability of odorants to stimulate
the trigeminal nerve branches in the nasal cavity (Doty
et al., 1978). There is an irritative component to many
common odorants and flavor compounds. A variety of
highly reactive sulfur compounds have been identified
in other irritative spices and food flavors, such as com-
pounds from horseradish, mustard, and the lacrimatory
(tear-inducing) factor from onions and related vegeta-
bles (Renneccius, 2006). Ethanol and cinnamaldehyde
are other examples of other common flavors that are
irritative (Prescott and Swain-Campbell, 2000).

Carbonation, or the perception of dissolved CO2,
involves a truly multimodal stimulus. In addition to the
tactile stimulation of mechanoreceptors, CO2 acts on
both trigeminal receptors (Dessirier et al., 2000) and
gustatory receptors (Chandrashekar et al., 2009). Both
of these chemical sensations involve the enzyme car-
bonic anhydrase, which can convert CO2 to carbonic
acid. For the sense of taste, the stimulation with CO2

appears to involve the extracellular anhydrase enzyme
and the transient receptor potential (TRP) mechanism
(PDK2L1) of sour receptor cells (Chandrashekar et al.,
2009). This is consistent with the enhancement of sour
taste by CO2 and suppression of sweetness (Cowart,
1998; Hewson et al., 2009). The role of nociceptors in
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CO2 perception is further substantiated by its desensi-
tization by capsaicin (Dessirier et al., 2000).

Using the method of magnitude estimation, Yau
and McDaniel (1990) examined the power function
exponent (see Section 2.2.4) for carbonation. Over a
range of approximately one to four volumes CO2 per
volume of H2O, sensation intensity grew as a power
function with an exponent of about 2.4, a much higher
value than in most other modalities. The exponent is
consistent with high sensitivity to changes in carbona-
tion levels. Given the involvement of TRP mechanisms
in both nociception and temperature sensing, interac-
tions between carbonation and temperature might be
expected. An enhancement of irritation, tactile sensa-
tions, cooling, and cold pain have all been observed
with carbonation of solutions served at low tempera-
tures (Green, 1992; Harper and McDaniel, 1993; Yau
and McDaniel, 1991). Yau and McDaniel (1991) noted
a small increase in tactile intensity at low temperatures
(3–10◦C). This may be an example of a phenomenon
called Weber’s illusion, in which Weber noted that a
cold coin seemed heavier than a warm one, an early
clue to the overlap in tactile and thermal sensing
mechanisms.

Menthol, a compound that has both odor properties
and is capable of causing cool sensations, is a trigem-
inal stimulus with obvious commercial significance
in confections, oral health care, and tobacco products
(Patel et al., 2007). Menthol has been found to interact
with thermal stimulation in complex ways . Menthol
enhances cool stimuli as would be expected, but can
either enhance or inhibit warm stimuli depending upon
the conditions of stimulation (Green, 1985, 1986).
The sensory properties of menthol itself are complex,
inducing a number of cooling, warming, aromatic, and
other sensory effects depending upon the isomer, con-
centration, and temporal parameters (Gwartney and
Heymann, 1995, 1996). A large number of hyper-
potent cooling compounds have been patented, many
of which can produce cooling without the odor sen-
sations of menthol (Leffingwell, 2009; Renneccius,
2006).

2.5.5 Astringency

Tannins in foods are chemical stimuli and yet the
astringent sensations they produce are largely tactile.

They make the mouthfeel rough and dry and cause a
drawing, puckery, or tightening sensation in the cheeks
and muscles of the face (Bate Smith, 1954). There are
two approaches to defining astringency. The first is
to emphasize the causes of astringent sensations, i.e.,
those chemicals which readily induce astringency. For
example, ASTM (1989) defines astringency as “the
complex of sensations due to shrinking, drawing or
puckering of the epithelium as a result of exposure
to substances such as alums or tannins.” A more per-
ceptually based definition is that of Lee and Lawless
(1991): “A complex sensation combining three distinct
aspects: drying of the mouth, roughing of oral tissues,
and puckery or drawing sensations felt in the cheeks
and muscles of the face.” Principal component analysis
has shown these sub-qualities to be independent factors
and furthermore, distinctly separate from taste sensa-
tions such as sourness (Lawless and Corrigan, 1994).
The fact that astringent sensations can be sensed from
areas of the mouth such as the lips, that are lacking in
taste receptors, further substantiates their classification
as tactile rather than a gustatory sensations (Breslin
et al., 1993).

The mechanisms for astringency involve the bind-
ing of tannins to salivary proteins and mucins (slippery
constituents of saliva), causing them to aggregate or
precipitate, thus robbing saliva of its ability to coat
and lubricate oral tissues (Clifford, 1986; McManus
et al., 1981). We feel this result as rough and dry sen-
sations on oral tissues. Other mechanisms may also
contribute to astringency in addition to the binding of
tannins to salivary proteins (Murray et al., 1994). Acids
commonly used foods also induce astringency in addi-
tion to their sour taste (Rubico and McDaniel, 1992;
Thomas and Lawless, 1995). The astringent impact of
acids is pH dependent (Lawless et al., 1996; Sowalski
and Noble, 1998) suggesting that a direct attack on
epithelial tissues or a pH-dependent denaturation of the
lubricating salivary proteins may also occur.

The interaction of mucins and proline-rich proteins
(PRPs) in saliva with tannins may be a key part of
astringency mechanisms as protein content is a corre-
late of sensory response (Kallikathraka et al., 2001).
Binding of polyphenols to PRPs is well known in the
beer and fruit juice industries as it can give rise to
turbidity known as chill-haze (Siebert, 1991). A sim-
ilar visible haze generation reaction has been shown
to occur with tannic acid mixed with saliva (Horne
et al., 2002). Haze development of saliva is an in vitro
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measure, a correlate of predicting individual responses
to astringency in products such as wine and a poten-
tial measure for screening and selecting panelists for
astringency evaluation (Condelli et al., 2006) as well
as analysis of wine samples. The individual differ-
ences show an inverse relationship: panelists with
high haze development and higher salivary flow rates
are less reactive (have lower ratings). Their enhanced
mucin or protein content may provide greater “protec-
tion” of oral surfaces against astringent compounds.
Another important individual difference in astringent
reactions is salivary flow rate (Fisher et al., 1994).
Individuals with a higher flow rate tend to “clean up”
faster after astringent stimulation. Repeated stimula-
tion with astringent substances tends to cause a buildup
of tactile effects rather than a decrement as one might
see in taste adaptation or capsaicin desensitization.
Figure 2.15 shows an increase in astringency upon
repeated stimulation, as might happen with multiple
sips of a beverage such as wine. Note that the pattern
changes as function of tannin concentration, interstim-
ulus interval between sips and to a small extent, as a
function of the volume tasted (Guinard et al., 1986).

2.5.6 Metallic Taste

Another quality of chemical sensations that is some-
times referred to as a taste are the metallic sensations
that arise from placing different metals in the mouth or
from contact with iron or copper salts. Two common
reference standards for metallic taste in descriptive
analysis training are (1) rinses with ferrous sulfate and
(2) a clean copper penny (Civille and Lyon, 1996).
Research now shows that these are quite different sen-
sations in terms of their mechanisms, although they
both are described as “metallic” perhaps because they
may occur at the same time.

The so-called metallic taste after rinses with fer-
rous sulfate solutions is actually a case of retronasal
smell. The sensation is virtually abolished if the nose is
pinched shut during tasting (Epke et al., 2008; Lawless
et al., 2004, 2005). Because metal salts are not volatile,
this olfactory sensation probably arises from the fer-
rous ions catalyzing a rapid lipid oxidation in the
mouth, creating well-known potent odor compounds
such as 1-octen-3-one (Lubran et al., 2005).

Fig. 2.15 Average time–intensity curves for astringency in
wine with 0 or 500 mg/l of added tannic acid upon three suc-
cessive ingestions. Sample uptake and swallowing are indicated

by a star and arrow, respectively. From Guinard et al. (1986) by
permission of the American Society for Enology and Viticulture.
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A second kind of metallic sensation is the one that
arises from the “clean copper penny.” If one scratches
the copper off part of the surface of a US penny,
exposing the zinc core, the metallic sensation increases
dramatically (Lawless et al., 2005). Due to the different
electrical potentials of the different metals, a small
current is created, making this a case of electrical
taste stimulation (McClure and Lawless, 2007; Stevens
et al., 2008). In the clinical literature on electrogustom-
etry, in which electrical taste stimulation is used for
diagnostic tests, the term “metallic” is often reported.
The sensory analyst should be careful to distinguish
between these two kinds of sensations. If the sensa-
tion is abolished or dramatically diminished by nasal
occlusion, then it is a case of retronasal olfactory sen-
sations, possibly due to potent lipid oxidation products.
If not, there may be metals in the system leading to
small electrical potentials. There is also the possibility
of a third kind of metallic sensation that may be a true
taste, but this is still controversial.

2.6 Multi-modal Sensory Interactions

Food is a multi-modal experience, so it should come
as no surprise that the sensations from one sensory
modality may influence judgments and perceptions
from another. Through our experience, we learn about
the pairings of colors and tastes, colors, and odors
and come to have expectations about what sensa-
tions may accompany one another. Through repeated
pairings or through natural co-occurrence of differ-
ent tastes and flavors, an association can be built up
leading to integration of those experiences (Stevenson
et al., 1999). Brain imaging of regions of the frontal
cortex supports that notion that the merging of these
sensations into coherent percepts are “real” percep-
tions and not just some kind of response bias (Small
et al., 2004). Interactions between sensory modali-
ties and their possible neural substrates have been
reviewed by Delwiche (2004), Small and Prescott
(2004), and Verhagen and Engelen (2006). The dis-
cussions that follow will focus on those interactions
that have been most heavily studied and are most
relevant to foods: taste/odor, flavor/irritation (chemes-
thesis), and color/flavor. Other inter-modality interac-
tions are discussed in the review papers mentioned
above.

2.6.1 Taste and Odor Interactions

An reliable observation from the psychophysical liter-
ature is that sensation intensities of tastes and odors
are additive or slightly hypo-additive (Hornung and
Enns, 1984, 1986; Murphy et al., 1977; Murphy and
Cain, 1980). The pattern of results is that intensity rat-
ings show about 90% additivity. That is, when framed
as a simple question about the summation of gusta-
tory and olfactory intensity ratings in producing overall
ratings of flavor strength, there is little evidence for
interactions between the two modalities.

However, there have been many other studies show-
ing enhancement of specific taste qualities, notably
sweetness, in the presence of odors. An impor-
tant tendency, especially among untrained consumers,
is to misattribute some volatile olfactory sensations
to “taste,” particularly retronasally perceived odors.
Retronasal smell is poorly localized and often per-
ceived as a taste from the oral cavity. Murphy and
coworkers (1977, 1980) noted that the odorous com-
pounds, ethyl butyrate and citral, contributed to judg-
ments of “taste” magnitude. This illusion is elimi-
nated by pinching the nostrils shut during tasting,
which prohibits the retronasal passage of volatile
materials and effectively cuts off the volatile flavor
impressions.

Another observation is that harsh tastes can sup-
press and pleasant tastes can enhance ratings of volatile
flavor intensity. Von Sydow et al. (1974) examined
ratings for taste and odor attributes in fruit juices
that varied in added sucrose. Ratings for pleasant
odor attributes increased and those for unpleasant
odor attributes decreased as sucrose concentration
increased. No changes in headspace concentrations
of volatiles were detected. Von Sydow et al. inter-
preted this as evidence for a psychological effect as
opposed to a physical interaction. A similar effect
was found for blackberry juice flavor at varying lev-
els of sucrose and acidity (Perng and McDaniel,
1989). Sucrose-enhanced fruit flavor ratings while
juices with high acid level showed lower fruit
ratings.

When retronasal smell is permitted, a common find-
ing is that sweetness is enhanced (Delwiche, 2004)
and odors are enhanced as well. The effect depends
upon the specific odor/taste pairings. Aspartame
enhanced fruitiness of orange and strawberry solu-
tions (sucrose showed no effect) and a somewhat
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greater enhancement occurred for orange than for
strawberry (Wiseman and McDaniel, 1989). Sweetness
was enhanced by strawberry odor, but not by peanut
butter odor (Frank and Byram, 1988). Some authors
have argued that the sweetness enhancement depends
upon the congruence and/or similarity of the taste
and odor. This makes sense because many odors are
referred to as smelling like tastes, such as the sweet
smell of honey or the sour smell of vinegar (Small and
Prescott, 2005). The spatial and temporal contiguity of
odors and tastes when foods are consumed may also be
important in facilitating this effect.

The degree of cultural experience panelists have
with particular combinations seems important. There
is an influence of learned expectancies (Stevenson
et al., 1995). The pattern of learned correlations may
determine how and when effects such as sweet taste
enhancement are seen. Common experience with the
co-occurrence of sweet tastes and carmelization odors,
for example, may drive some sweetness enhancement
effects. The influence of associative learning is shown
by the fact that sweetness enhancement is predicted by
initial sweetness ratings of odors and that pairings of
formerly neutral odors with a sweet taste will induce
this enhancement effect (Prescott, 1999; Stevenson
et al., 1998).

Is this effect a true enhancement or simply an infla-
tion of sweetness ratings due to taste/smell confusion?
Evidence for the “reality” of the effect comes from the
observation that a sweet smelling odor can suppress the
rated sourness of a citric acid solution, just like a sweet
taste would (Stevenson et al., 1999). A number of brain
imaging studies have identified multi-modal neural
activity in brain regions such as the orbitofrontal cortex
(see Small and Prescott, 2005; Verhagen and Engelen,
2006). This has led to the interesting speculation that
sniffing a sweet odor might evoke the entire experi-
ence of a taste/odor pairing (i.e., a flavor) that has
been encoded in memory (Small and Prescott, 2005).
Dalton et al. (2000) showed that detection thresholds
for an odorant were reduced when subjects held a taste
in the mouth, but only when the taste was congruent.
However, in another study, sweetness enhancement
by subthreshold odors was not observed (Labbe and
Martin, 2009).

These interactions change with instructions and
with training. In one study, citral–sucrose mixtures
were evaluated using both direct scaling and “indirect”
scale values derived from triangle test performance

(Lawless and Schlegel, 1984). A pair which was barely
discriminable according to triangle tests received sig-
nificantly different sweetness ratings when separate
taste and odor attributes were scaled. Focused atten-
tion produces different results than appreciation of the
product as a unitary whole. Sweetness enhancement
by ethyl maltol decreased when panelists were trained
to distinguish tastes from smells (Bingham et al.,
1990). In another study, sensory profile training did
not seem to promote the associative learning needed
for odor/sweetness enhancement (Labbe and Martin,
2009). Along these lines, having subjects take an ana-
lytic (rather than synthetic) approach to odor/taste mix-
tures negates the odor-enhanced sweetness (Prescott
et al., 2004). Taken together, these results show that
attentional mechanisms or modality-specific training
can alter the effect substantially.

A further consideration is that the responses that
subjects are instructed to make also influence the
apparent taste–odor interactions (van der Klaauw and
Frank, 1996). Strawberry odor enhances the sweetness
of sucrose–strawberry solutions (Frank et al., 1989a),
an effect reminiscent of the enhancement reported by
Wiseman and McDaniel (1989) and also the mislabel-
ing of volatile sensations as taste intensity estimates
seen by Murphy et al. (1977). However, when subjects
are instructed to make total intensity ratings and then
partition them into their components, no significant
enhancement of sweetness is seen (Frank et al., 1990,
1993; Lawless and Clark, 1992). Odor–taste enhance-
ment, then could in many cases merely be a case of
response shifting, and not a truly increased sensation
of sweetness at all.

This finding has broad implications for the ways
in which sensory evaluations, particularly descrip-
tive analyses in which multiple attributes of complex
foods are rated, should be conducted. It also sug-
gests some caution in substantiating claims for various
synergies or enhancement effects in which ratings
are restricted to too few attributes. Respondents may
choose to “dump” some of their impressions into the
most suitable category or the only allowable response
if the attribute they perceive is otherwise unavail-
able on the ballot (Lawless and Clark, 1992). Alleged
enhancements such as the effect of maltol on sweet-
ness should be viewed with caution unless the response
biases inherent in mislabeling smells as tastes can be
ruled out. These effects are discussed at length in
Chapter 9.
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2.6.2 Irritation and Flavor

Two other groups of interactions between modalities
are important in foods. One is the interaction of chem-
ical irritation with flavors and the second are effects in
flavor ratings caused by changes in visual appearance.
Anyone who has compared flat soda to carbonated
soda will recognize that the tingle imparted by car-
bon dioxide will alter the flavor balance in a product,
usually to its detriment when the carbonation is not
present. Flat soda is usually too sweet. Decarbonated
champagne is usually very poor wine.

Several psychophysical studies have examined
interactions of trigeminal irritation from chemicals
with taste and with odor perception. As in most lab-
oratory psychophysics, these studies have focused on
perceived intensity changes in single chemicals simple
mixtures. The first workers to examine effects of chem-
ical irritation on olfaction found mutual inhibition of
smell by carbon dioxide in the nose (Cain and Murphy,
1980). This occurs even though the onset of the sting
from carbon dioxide is delayed somewhat compared
to the onset of smell sensations. Since many smells
also have an irritative component (Doty et al., 1978;
Tucker, 1971), it is probable that some of this inhibi-
tion is a common event in everyday flavor perception.
If a person had decreased sensitivity to nasal irrita-
tion the balance of aromatic flavor perception might be
shifted in favor of the olfactory components. If irrita-
tion is reduced, then the inhibitory effects of irritation
would also be reduced.

Does chili burn mask tastes in the mouth, the way
that carbon dioxide sting masks smell in the nose?
Partial inhibition of taste responses has been found
following pretreatment of oral tissues with capsaicin,
particularly inhibition of sour and bitter tastes (Karrer
and Bartoshuk, 1995; Lawless and Stevens, 1984;
Lawless et al., 1985; Prescott et al., 1993; Prescott
and Stevenson, 1995, but see also Cowart, 1987).
Note that capsaicin desensitization takes several min-
utes to develop, i.e., it depends upon a delay between
treatment and test stimuli (Green, 1989). Such a tem-
poral gap would have occurred to varying degrees
in pretreatment experiments with tastants. Also, since
capsaicin inhibition is most reliably observed for sub-
stances sometimes reported as partially irritative, the
inhibitory effect seen in pretreatment studies may
be due to desensitization to an irritative component

of the “tastants,” rather than a direct effect on gus-
tatory intensity per se (e.g., Karrer and Bartoshuk,
1995).

Tastes can modulate or ameliorate chili burn. There
are folk remedies in various cultures, such as starchy
corn, ghee, pineapple, sugar, and beer. Systematic stud-
ies of trying to wash out chili burn with different
tasting rinses have shown some effect for sweet (most
pronounced), sour, and perhaps salt (Sizer and Harris,
1985; Stevens and Lawless, 1986). Cold stimuli pro-
vide a temporary but potent inhibition of pepper burn,
as known to many habitués of ethnic restaurants. Since
capsaicin is lipid soluble, the Indian remedy of ghee
(clarified butter) has some merit. Sour things stimu-
late salivary flow, which may provide some relief to
abused oral tissues. The combination of fatty, sour,
cold, and sweet suggests chilled yogurt as a good
choice. A culinary practice of alternating cool, sweet
chutneys with hot curries would seem to facilitate these
interactions.

2.6.3 Color–Flavor Interactions

Finally, let us consider the effects of appearance on
flavor perception. The literature concerning color–
flavor interactions is quite extensive and interested
researchers are cautioned that it is complex and at
times contradictory (e.g., Lavin and Lawless, 1998).
We make no attempt here to provide a comprehensive
review.

Humans are a visually driven species. In many soci-
eties with mature culinary arts, the visual presentation
of a food is as important as its flavor and texture char-
acteristics. A common finding is that when foods are
more deeply colored, they will obtain higher ratings for
flavor intensity (e.g., Dubose et al., 1980; Zellner and
Kautz, 1990). Effects of colored foods on flavor inten-
sity and flavor identification are discussed in Stillman
(1993). Miscolored foods or flavors are less effectively
identified (Dubose et al., 1980). However, the pattern
of results is mixed and inconsistent in this literature
(see Delwiche, 2004). Once again, learned associa-
tions may drive the patterns of influence. Morrot et al.
(2001) found that more red wine descriptors were
used by a panel when a white wine was intentionally
miscolored red.

An example of visual influences on food percep-
tion can be found in the literature on perception of
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milks of varying fat content. Most people believe that
skim milk is easily differentiated from whole milk
or even from 2% low fat milk by appearance, fla-
vor, and texture (mouthfeel). However, most of their
perception of fat content is driven by appearance
(Pangborn and Dunkley, 1964; Tuorila, 1986). Trained
descriptive panelists readily differentiate skim milk
from 2% on the basis of appearance (color) ratings,
mouthfeel, and flavor. However, when visual cues are
removed, discrimination is markedly impaired (Philips
et al., 1995). When tested in the dark with cold milk,
discrimination of skim milk from 2% milk drops
almost to chance performance, a result that many skim
milk drinkers find difficult to swallow. This research
emphasizes that humans react to the ensemble of sen-
sory stimulation available from a food. Even “objec-
tive” descriptive panelists may be subject to visual
bias.

2.7 Conclusions

An important knowledge base for any sensory profes-
sional is an appreciation of the function of the senses
through which we obtain our data. Understanding the
physiological processes of the senses helps us take
into account the limits of sensory function and how
sensations interact. The historical underpinnings of
sensory methods lie in the discipline of psychophysics,
the systematic study of relationships between stim-
ulus and response. Psychophysical thinking, then, is
not just about methods for sensory testing, but a
view of sensory function that looks at relationships
among variables. This is a valuable point of view that
can enhance the contribution of a sensory group to
their product development clients. One of our indus-
trial colleagues used to ask his product developers
not to send him products to test. At first glance such
a statement seems outrageous. But the key was in
his next request: “Send me variables to test.” This
approach is advantageous as it brings a deeper under-
standing of the relationships between ingredient or
process variables and sensory response. It moves the
sensory specialist beyond simple hypothesis testing
and into the realm of theory building and model-
ing, in other words more like engineering than the
all too common pattern of simple yes/no hypothesis
testing.
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Chapter 3

Principles of Good Practice

Abstract This chapter outlines the standards of good practice in performing
sensory evaluation studies. It briefly covers the sensory testing environment and
its requirements, serving samples to panelists, and creating serving procedures,
planning. There is a short section on designing experiments including design and
treatment structures. Subsequently, it then covers general panelist screening, select-
ing, and training as well as an overview of panelist incentives. The legal ramifications
and requirements of using humans as subjects of sensory tests are also described.
Lastly the chapter discusses data collection and tabulation.

Some of the reasons some experimenters advance in trying to resist a (scientific approach) to their

work are that: (a). there is no reason to suppose that there will be a bias; (b). it means much more

work; (c). things might get mixed up.

There is no reason to suppose that there will not be a bias. As regards (b), one may ask, “more

than what?” for that a valid experiment takes more work than an invalid experiment is irrelevant to

a man who is wanting to make valid inferences. As regards (c), one feels sympathy, but if an

experimenter isn’t willing to do a decent job why doesn’t he choose some other easier way of

earning a living.

—Brownlee (1957, p. 1)
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3.1 Introduction

In later chapters of this textbook we will often state that
a particular method should be performed using stan-
dard sensory practices. This chapter will describe what
we mean by “standard sensory practices.” Table 3.1
provides a checklist of many of the good practice
guidelines discussed in this chapter; this table can be
used by sensory specialists to ensure that the study has
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Table 3.1 Sensory checklista

Test objective
Test type
Panelist

Recruitment
Method of contact
Supervisory approval

Screening
Informed consent
Incentives

Training
Sample

Size and shape
Volume
Carrier
Serving temperature
Maximum holding time

Test setup
Panelist check-in
Palate cleansers
Instructions

To technicians
To panelists

Score sheets
Instructions
Type of scales
Attribute words
Anchor words

Coding
Randomization/counterbalancing
Booth items

Pencils
Napkins
Spit cups

Clean up
Disposal arrangements (important if security risk)
Receipts if incentive is monetary
Panelist debriefing

Test area
Separation of panelists
Temperature
Humidity
Light conditions
Noise (auditory)
Background odor/clean air handling/positive pressure
Accessibility
Security

aThis checklist is a quick way of making sure that the sensory
specialist has thought of many of the good practice guidelines
discussed in this chapter

been thought through. It should be remembered that a
good sensory specialist will always follow the standard
practices because that would help ensure that he/she

will obtain consistent, actionable data. However, an
experienced sensory scientist will occasionally break
the standard practice guidelines. When one breaks
these rules one always has to be fully aware of the con-
sequences, the risks entailed, and whether one still can
get valid data from the study.

3.2 The Sensory Testing Environment

Much of the information in this section comes from
our experiences in visiting, designing, and operating
sensory facilities both in industrial and in university
settings. The section was also written with reference
to Amerine, Pangborn, and Roessler (1965), Jellinek
(1985), Eggert and Zook (2008), Stone and Sidel
(2004), and Meilgaard et al. (2006). We feel that any-
one planning on constructing or renovating a sensory
facility should read Eggert and Zook (2008) and view
the accompanying CD, this is an extremely valuable
resource. The sensory facility should be located close
to potential judges but not in the middle of areas
with extraneous odors and/or noise. This means that
in a meat-processing plant the sensory area should not
be near the smokehouse and in a winery the facility
should be out of earshot from the noise of the bottling
line. The sensory booth area must be easily accessi-
ble to the panelists and if the facility will be used by
consumer panelists or panelists that will be traveling
some distance then there should be ample, easy park-
ing available. This frequently means that the sensory
facility should be on the ground floor of a building and
that the area should be near the entrance to the com-
plex. In companies with security concerns, the sensory
preparation facility should be within the secure area
but the panelist waiting room and possibly the sensory
booth area should be in an area that is easily accessible
and possibly not secure.

When designing the sensory testing area, the traf-
fic pattern of the panelists should be kept in mind.
Panelists should enter and exit the facility without
passing through the preparation area or the office areas
of the facility. This is to prevent panelists from having
physical or visual access to information that may bias
their responses. For example, if panelists happen to see
some empty jars of a specific brand in a trash can it
may bias their responses if they expect to evaluate that
brand as one of their coded samples. Additionally, for
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security reasons it is not a good idea to have panelists
wandering through the sensory area where they may
pick up information about projects or other panelists.

3.2.1 Evaluation Area

In its simplest form the facility would need an evalua-
tion area. This may be as simple as a large room that
could be used with tables or temporary booths placed
on tables. It is always important to remember that if
the evaluation occurs in a quiet, uninterrupted manner
the likelihood of success is increased. It is especially
important that the panelists not influence each other. If
temporary booths are not available the sensory special-
ist should at the very least arrange the tables in room
so that the participants do not face each other. Kimmel
et al. (1994) arranged a room with tables in such a
way that the panelists (in their case children) could
not influence each other. If at all possible, separate the
panelists with portable plywood booths (see Fig. 3.1
for manufacturing instructions). These can be made
inexpensively and will allow panelists to be separated
during testing.

Some consumer testing companies use a classroom
style where each consumer is seated at a small table
with space for a computer screen and the samples.
The advantage of this situation is that it is portable
(the evaluation area can be set up in hotels, conference
rooms, church basements, etc.) and the whole group
can receive any verbal instructions simultaneously. If
color or appearance is important make sure that the
testing area is well lit with balanced daylight-type flu-
orescent bulbs, however, see Chapter 12 for further
information on color evaluation.

In a situation where sensory evaluation is an integral
part of the product development and quality assurance
cycle of the product a more permanent evaluation area
should be constructed. In most sensory facilities, the
evaluation area should encompass a discussion area, a
booth area and, frequently, a waiting room area for the
panelists (Fig. 3.2).

The waiting area should have comfortable seating,
be well lit, and clean. This area is often the panelists’
first introduction to the facility and should make them
feel that the operation is professional and well orga-
nized. This area should be modeled on the waiting
room of a medical practitioner. The sensory specialist

Fig. 3.1 Construction
information for portable
sensory booths.
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Fig. 3.2 Floor plan of the
three sensory facilities in the
Robert Mondavi Sensory
Building on the University of
California at Davis Campus.
A1, is a preparation area that
includes a range and four
ovens; A2 are preparation
areas without cooking
facilities; B1 is a sensory
booth area with 24 individual
booths; B2 are two separate
sensory booths areas, each
with six booths; C is the
sensory waiting area with
chairs, tables, and sofas;
D indicates the work spaces
for individual employees and
students; E is a focus room
with a two-way mirror. (Used
with permission from ZGF
Architects LLP, Portland,
Oregon).

should always try to minimize the waiting time of pan-
elists but sometimes this is unavoidable. To relieve the
tedium of waiting the area should be equipped with
some light reading. In some facilities, a child care
area for panelists’ children may also be included. In
this case, care must be taken to prevent the noise and
distraction from this area from interfering with the
panelists’ concentration during product evaluation.

In some consumer testing facilities, a briefing area
may be adjacent to the waiting room or orientations
may be done in the waiting room itself. The orien-
tation area is very useful if chairs in the room are
arranged in rows or a semi-circle. Then instructions,
as to procedures, can be given to a whole group at
once before they enter the test booths or discussion
room. Questions can be fielded and volunteer pan-
elists having difficulties can be further instructed or
weeded out.

The discussion room would usually be arranged
similarly to a conference room but the decor and the
furnishings should be simple and in colors that would
not affect the panelists’ concentration. The area should
be easily accessible to the panelists and to the prepara-
tion area. However, the panelists should not have visual
or physical access to the preparation area. The sections
on climate control, lighting, etc., of the booth area are
equally applicable to the discussion area.

In many sensory facilities the booth area is the
heart of the operation. This area should be isolated
from the preparation area, be comfortable but not too
casual in appearance. The area should always be clean
and professional looking. Once again, neutral or non-
distracting colors are advisable. The room should be
kept quiet to facilitate panelist concentration. There are
probably as many versions of booth areas as there are
sensory facilities. Some of the variations are cosmetic
and others affect the functionality of the space. In this
section we will describe some variations, highlighting
advantages and disadvantages of each. We will con-
centrate on booths used for food evaluations; however,
specialized booths are often required for the evalua-
tion of personal care products such as shaving creams,
soaps, deodorants and home care products like insec-
ticides, floor waxes, and detergents. An example of
a purpose-built sensory booth is Renault motor com-
pany’s poly-sensorial booth described by Eterradossi
et al. (2009).

The number of booths in facilities we have seen
ranges from as low as 3 to as high as 25. The number
is usually constrained by the space available. However,
the sensory scientist should attempt to have the maxi-
mum possible number of booths constructed, since the
booth availability is frequently a bottleneck in test vol-
ume causing undue delay for panelists or decreasing
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the number of panelists that can be accommodated.
Booth sizes vary greatly in different facilities but the
ideal booth is about 1 m by 1 m in size. Smaller
booths may make the panelist feel more “cramped”
and this could potentially affect concentration. On the
other hand, excessively large booths waste space. The
booths should be separated from each other by opaque
dividers that extend about 50 cm beyond the front edge
of the counter top and 1 m above the counter top. This
is to prevent panelists in adjacent booths from affect-
ing each other’s concentration. The corridor behind
the booths should be wide enough for the panelists
to comfortably move into and out of the booth area.
Additionally, in the United States, if the booths are to
be used by disabled persons the guidelines on corridor
widths, seating configurations, and counter top heights
of the Americans with Disabilities Act of 1990 (42
USC 126 § 12101–12213) should be followed.

The booth counter height is usually either desk or
table height (76 cm) or kitchen counter height (92 cm).
The height of the booth counter is constrained by the
height of the serving counter on the other side of the
booth pass-through hatch. We have seen booths where
the serving counter was at kitchen counter height and
the booth counter was at table height. The poten-
tial mess when samples were passed from the higher
kitchen counter to the lower booth counter should dis-
courage anyone else from constructing this type of
booth. In general, either counter height is used. The
table height counters allow the panelists to sit in com-
fortable chairs but demands that the sensory specialists
bend to pass samples through the serving hatches. The
amount of bending is minimized when the counter is at
kitchen counter height but then the panelists should be
supplied stools of adjustable height.

Serving hatches should be large enough to accom-
modate sample trays, score sheets, and yet small
enough to minimize panel observation of the prepara-
tion/serving area. The hatches are often about 45 cm
wide and 40 cm high; however, the exact size is
dependent on the size of the sample serving trays that
would be used in the facility. The most popular serving
hatches are either the sliding door style or the bread
box style. The sliding door style has a door that either
slides up or to the side. These doors have the advantage
that they do not occupy space either in the booth or on
the serving counter. The major disadvantage of these
doors is that the panelists can see through the open
space into the preparation area. The amount of visual

information gleaned by the panelist can be minimized
if the sensory specialist stands in front of the open
space when serving samples. The bread box design
has a metal hatch that is either open to the booth area
or to the serving area, but not to both simultaneously.
The advantage is that the bread box visually separates
the panelist from the serving/preparation area but the
disadvantage is that the hatch takes up counter space
both in the booth and on the serving counter. The serv-
ing hatch should be mounted flush with the counter
top, allowing the sensory specialist to easily slide the
sample trays into and out of the booth.

The booth should be equipped with electrical out-
lets for use with computerized data entry systems as
well as for electrical appliances that may be needed in
the evaluation of a specific product. Data entry systems
will be discussed later in this chapter. The installation
of sinks in the booth should be discouraged. These
sinks are frequently a major source of odor contami-
nation in the booth and are very difficult to maintain
in a completely sanitary fashion. It is better to use dis-
posable spittoons and water glasses rather than sinks.
When the serving hatch is closed, the panelist should
have some means of communicating with the person
serving the samples. The ideal communication link is
a lighted two-way signal system. In some instances, the
communication link can also be an intercom between
the booths and the preparation area. In other cases, a
card or a simple piece of colored plastic is used, the
panelist pushing the signal through a small slot under
the serving hatch to gain the attention of the person
serving the samples.

Preparation areas will differ based on the product
lines evaluated in the particular facility. For example,
a facility designed to be used exclusively for frozen
desserts would have no need for ovens, but would
need ample freezer space. On the other hand, a facil-
ity designed for meat evaluations would need freezer
and refrigerator space as well as ovens, stove tops, and
other appliances used to cook meat. For these reasons
it is somewhat difficult to give many rules as to the
appliances needed in the preparation area, but there are
some appliances and features that would be required in
nearly all preparation areas.

The area needs a great deal of storage space.
Refrigerated storage is necessary for samples, refer-
ence standards, and food treats (incentives) for pan-
elists. Frozen storage space is needed for samples that
require freezing. Additionally, cabinet storage space
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is required for utensils, serving dishes, serving trays,
spittoons, paper ballots, computer printouts of data and
statistical analyses, reports, photocopies of literature,
etc. Many preparation areas have a lack of adequate
storage space. If you as the sensory specialist have
any input into the design of a sensory facility insist on
ample storage space.

The other area that is often inadequate is the hori-
zontal space required for setting up sensory tests. The
counter space should be large enough to allow the spe-
cialists to set up one or two sessions’ worth of serving
dishes at the same time. The space can be re-used
if food service trays and vertical food service carts
are used as a holding space prior to serving samples.
The entire area should be constructed with materials
that are easy to clean and to maintain. Dishwashers,
sinks with garbage disposals and trash cans should be
installed in the preparation area. There should also be
an adequate clean water supply for cleaning purposes
as well as a supply of tasteless and odorless water
to be used by the panelists for rinsing between sam-
ples. Double distilled water or bottled water from a
reputable dealer are generally preferred. Additionally,
depending on the types of products to be tested, other
appliances such as electrical or gas cook tops and
ovens, microwave ovens, deep-fat fryers may also be
required. If oven and cook tops are installed, the area
then requires hoods with charcoal filters or outside
venting to control odors from the cooking area(s).
The list of possible appliances is almost endless. In
some facilities, flexibility has been designed into the
preparation area with moveable case goods, flexible
electrical and water hookups, and the potential to roll
in new appliances and remove appliances that are not
needed for a specific test. Again, space for storage
of specialized equipment such as rice cookers or tea
pots must be considered when designing a facility.
In addition, local restaurant building codes should be
consulted to make sure that sprinklers (used for fire
safety), water quality, sewer, and all other utilities are
adequate in the preparation area.

3.2.2 Climate Control

The booth and discussion areas should be climate con-
trolled and odor free. The use of replaceable active
carbon filters in the ventilation system ducts supplying

these areas is encouraged. These areas should have
excellent ventilation. A slight positive air pressure in
these areas can minimize odor transfer from the prepa-
ration area. The sensory scientist should make sure that
any cleaning supplies used in the booth and discus-
sion areas do not add extraneous odors. These areas
should be as noise free and distraction free as possible.
Signs requiring silence in the hallways around these
areas during testing times are helpful. Additionally, the
noise added by nearby mechanical systems, e.g., freez-
ers, air conditioners, processing equipment should be
minimized.

The temperature and relative humidity for the booth
and discussion areas should be 20–22◦C and 50–55%
relative humidity. These conditions would make the
environment comfortable for the panelists and will pre-
vent them from being distracted by the temperature or
the humidity.

Illumination in these areas should be at least
300–500 lx at the table surface. Ideally it should be
controllable with a dimmer switch to a maximum of
700–800 lx, the usual illumination intensity in offices.
Incandescent lights are modifiable, by changing light
bulbs, and versatile by allowing one to control both
the light intensity and the light color. However, heat
buildup can be a problem and should be accounted for
when designing the booth area. The lighting should be
even and shadow free on the counter surface. There are
special lighting requirements for color evaluations and
these will be discussed in Chapter 12.

The above discussion was for an average sensory
facility used for food testing. However, for some prod-
uct ranges more specialized facilities should be con-
structed. For example, if the facility is to be used to test
ambient odor, for odor thresholds, room air deodor-
ants, odors associated with household cleaners, etc.,
then either an odor room or a dynamic olfactory testing
area should be created.

A dynamic olfactory test area would contain an
olfactometer. In an olfactometer a gaseous sample
flows continuously through tubes and the sample is
diluted by mixing with odor-free air. Panelists would
evaluate the samples at an exit port using a face mask
or specially designed sniffing ports (Takagi, 1989).
An odor room can be used by more than one pan-
elist simultaneously. The odor evaluation area con-
sists of an anteroom and a test room. The anteroom
shields the test chamber from the external environ-
ment. The odor area should be constructed of odor free,
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easy to clean, non-absorptive materials. Stainless steel,
porcelain, glass, or epoxy paints may be appropriate.
The test room should have a ventilation system that
can completely remove odorized air and introduce a
controllable odor-free background.

3.3 Test Protocol Considerations

3.3.1 Sample Serving Procedures

The sensory specialist should be very careful to stan-
dardize all serving procedures and sample preparation
techniques except the variable(s) under evaluation. For
example, in a study to evaluate the effect of acceler-
ated ripening on cheddar cheese flavor we decided to
do a triangle test. Two technicians were assigned to
the project and they divided cutting the cheese samples
into 1 cm3 cubes, each technician cutting either cheese
A or cheese B. One technician was very precise and all
the cubes she cut were exactly 1 cm3. The other tech-
nician was less precise and her cubes varied slightly in
size. Once the cubes were placed in serving contain-
ers it became obvious that the panelists could identify
the odd sample by visual inspection only. These cheese
samples were thrown away and the more precise tech-
nician was assigned to do all the cubing. However,
she could not cut the cheese and serve it immediately.
The cubes had to be stored overnight in a refrigera-
tor. The technician decided to store the cubes from
cheese A in one refrigerator and those from cheese B
in another. The two refrigerators varied slightly in their
temperature settings. The next morning, the samples
were served to the panelists, who by simply touch-
ing the samples could identify the odd sample. The
samples then had to be stored again, but in the same
refrigerator to equilibrate the temperature difference.
In a different study, involving threshold determination
by discrimination testing, the layout of the samples
prior to serving along a benchtop allowed a temper-
ature decrease in samples set nearer to a room air
conditioner. Some panelists could pick out the sam-
ples that were different based on this small temperature
difference.

If carriers or combinations of products are required
the timing of this process must be standardized. For
example, if milk is poured on a breakfast cereal, the
amount of time between pouring and tasting must be

the same for all samples. It may not be wise to simply
pass the milk in a container into the test booth for the
panelists to add without instructions. They may pour
the milk on all the samples at the outset, with the result
that the last one evaluated has a much different texture
than the first.

As can be seen from these examples, the sensory
specialist should pay careful attention to the following
areas when writing the test protocol and when perform-
ing the study: the visual appearance of the sample,
sample size and shape, and sample serving tempera-
ture. Additionally, the sensory specialist should decide
which serving containers should be used, whether the
sample should be served with a carrier, how many
samples should be served in a session, whether the
panelists should rinse their mouths between samples,
whether samples are to be expectorated or swallowed
and how many samples should be served in a session.
In the following sections each of these issues will be
discussed, many of the suggestions made in these sec-
tions are based on our own experiences in a variety of
sensory settings.

3.3.2 Sample Size

If the samples are evaluated in a discrimination test and
the appearance of the sample is not the variable under
evaluation then the samples should appear identical. If
it is not possible to standardize the appearance exactly,
a sequential monadic serving order may be used (Stone
and Sidel, 2004). However, if there is a possibility that
the panelists may remember that the samples were not
identical in appearance then a discrimination test is not
appropriate.

Cardello and Segars (1989) found that sample
size affected the intensity scores assigned to textural
attributes by panelists, even when the panelists were
unaware of the sample size differential. De Wijk et al.
(2003) confirmed these results with a different product.
These results make it very important that the sensory
specialist specifies the sample size and shape used in
study, since the possibility exists that a different sam-
ple size may have led to different results. Therefore,
when deciding on the sample size to serve the sensory
specialist should keep a few questions in mind, namely
What is the purpose of this study? How large is the
normal portion size for this product? How large is a
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normal mouthful of this product? How many attributes
does the panelist have to evaluate on this product? Is
it possible to easily manipulate the size of the prod-
uct? The answers to these questions should lead the
sensory specialist to a reasoned decision in determin-
ing the size of the sample to be served. Keep in mind
that it is better to err slightly on the side of a more
generous portion size than a stingier one. In some
cases a minimum amount to be eaten may be specified.
This is potentially important in consumer tests where
some participants may be timid about tasting novel
products. However, a reasonable balance between cost
associated with the product, storage, and preparation in
relation to the sample size should be maintained.

3.3.3 Sample Serving Temperatures

The serving temperature of the product must be spec-
ified in the test protocol. Serving temperatures and
holding time can present difficulties with some prod-
ucts such as meats. One approach to this is to serve
the items in containers that are themselves warmed.
In our laboratories and others, sand baths heated in an
oven to a fixed temperature (usually 50◦C) are used.
Small glass beakers or ceramic crucibles used as hold-
ing dishes sit embedded in the sand baths and these
in turn hold the samples to be tested. Even with this
arrangement it is important to minimize the time sam-
ples are held or at the very least maintain this time as a
constant across panelists.

In dairy products such as fluid milk, sensory charac-
teristics may be accentuated if the product is warmed
to a temperature above those of storage. In some tests
where sensitivity and discrimination are the primary
concerns, this is less realistic but a serving tempera-
ture allowing better discrimination is warranted. Thus
fluid milk can be served at 15◦C instead of the more
usual 4◦C to enhance the perception of volatile flavors.
Ice cream should be tempered at –15◦C to –13◦C for
at least 12 h before serving since scooping is difficult
if the ice cream is colder. At higher temperatures the
ice cream would melt. It is also usually best to scoop
ice cream directly from the freezer immediately before
serving rather than to scoop the portions and store these
in a freezer. In this latter case the surface of the sam-
ple portion is inclined to become icier than the outer
portion of a freshly scooped sample.

When samples are served at ambient temperatures
the sensory specialist should measure and record the
ambient temperature during each session. For sam-
ples served at non-ambient the serving temperature
should be specified as well as the method of main-
taining that temperature, whether it is sand baths,
thermos flasks, water baths, warming tables, refrigera-
tors, freezers, etc. The temperatures of samples that are
served at non-ambient temperatures should be checked
at the time of serving to ensure that the specified tem-
peratures were achieved. Additionally, the specialist
should specify the sample holding time at the specified
temperature.

If samples are to be held for an extended period,
the test protocol should include a discrimination test,
with sufficient power (see Chapter 4) to determine if
the holding period leads to changes in the sensory
attributes of the product. If no changes occur then
the samples could be held for an extended period.
However, if products are to be held at elevated tem-
peratures for any period the sensory specialist should
also monitor potential microbial growth that could
compromise the safety of the panelists.

3.3.4 Serving Containers

It is difficult to give rigid rules as to the choice of
containers since different conditions exist in different
sensory facilities. In some facilities, it is expensive and
time consuming to wash many dishes, thus special-
ists in these cases would tend toward using disposable
containers. In other facilities, there may be financial
or environmental constraints that preclude the use of
disposable dishes. The best advice is to use common
sense when deciding which containers to use. The sen-
sory specialist should choose the container that is most
convenient, yet the choice of container should not neg-
atively affect the sensory attributes of the product. For
example, Styrofoam cups are very convenient to use
since they are disposable and can easily be labeled
using either a permanent ink marker or a stick-on label,
yet we have found that these containers can adversely
affect the flavor characteristics of hot beverages. If
three-digit codes are applied via marking pens, care
must be taken to insure that the ink does not impart
an aroma.
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3.3.5 Carriers

The issue of whether or not to use carriers poses some
problems for the sensory specialist and deserves care-
ful consideration. “Carriers” usually refer to materials
that form a base or vehicle for the food being tested,
but may more broadly be considered as any other food
that accompanies the one being tested so that they are
ingested (and tasted) together. Examples are cream fill-
ings in pastries, butter on bread, spices in a sauce, and
salad dressing on lettuce leaves.

In discrimination testing, the goal is often to make a
test that will be very sensitive to product differences.
A carrier can mask or disguise differences or mini-
mize panelists’ abilities to perceive the difference due
to the addition of other flavors and modifications to the
texture and mouthfeel characteristics. In some cases
the carrier may simply increase the overall complex-
ity of the sensory impressions to the point where the
panelists are overwhelmed. In these cases the use of
a carrier might not be desirable since it will decrease
the effective sensitivity of the test for detecting sensory
differences. If there are serious consequences from
missing a difference (Type II error, see Chapter 4)
then the use of a carrier that could potentially mask
differences is not recommended.

If on the other hand, a false alarm or detection of a
false positive difference (Type I error, see Chapter 4)
poses serious problems, then the obscuring of a differ-
ence by the carrier is less detrimental. The degree of
realism added by the carrier may complicate the situa-
tion, but it could prevent the detection of a difference
that might be meaningless to consumers. The sen-
sory specialist should discuss with the client whether
the degree of realism in the test is a concern. For a
food product that is rarely consumed alone and almost
always involves a carrier, the “artificiality” of the sit-
uation where the carrier is omitted may be a major
psychological problem to the panelists, especially in
consumer testing. An example would be cherry pie
fillings which are rarely eaten without pie crust.

So, there are two guidelines for consideration in
determining whether a carrier should be used: the rel-
ative consequences of missing a difference versus a
false positive test result and the degree of realism that
is deemed necessary. Often the complications created
by use of the carrier will lower the degree of sample
control and uniformity that is possible, so this must

be considered. Careful discussion of these issues with
the client can help clarify the best approach. In some
cases it may be advisable to do the test both with and
without the carrier if time and resources permit. This
can be very informative about the size of the perceiv-
able difference as well as the nature of the interactions
between the carrier and the food to be tested.

Stone and Sidel (2004) give the following interest-
ing example of a compromise in the use of a carrier,
where the food product (a pizza sauce) is influenced
by the carrier (crust) in such important ways that the
preparation, but not the testing, had to involve the sub-
strate: “. . . it was agreed that flavor interactions with
crust components resulted in a sauce flavor that could
not be achieved by heating the sauce alone. However,
owing to variability in pizza crust within a brand, it
was determined that the pizza would be cooked and
the sauce scraped from the crust and tested by itself.
Thus the chemical reactions were allowed to occur and
the subjects’ responses were not influenced by crust
thickness or other non test variables.”

3.3.6 Palate Cleansing

The goal of palate cleansers should be to aid in the
removal of residual materials from previous samples.
An anecdote frequently told at wine tasting events says
that serving rare roast beef slices will help undo the
effects of high tannin in red wine samples. This makes
some sense chemically. The proteins of the meat and
its juices could form a complex removing tannins from
solution—reducing the “pucker” of the wine. There
have been numerous studies on palate cleansers to
remove red wine astringency (see Ross et al., 2007 for
a relatively recent example). However, it would seem
that no true consensus has been reached on the ideal
palate cleanser to use in these conditions.

Lucak and Delwiche (2009) evaluated the effects
of a range of palate cleansers (chocolate, pectin solu-
tion, table water crackers, warm water, water, and
whole milk) on foods representing various tastes and
mouthfeel effects such as jelly beans (sweet), coffee
(bitter), smoked sausage (fatty), tea (astringent), spicy
tortilla chip (pungent), mint (cooling), and applesauce
(non-lingering). They found that table water crack-
ers were the only palate cleanser effective across all
representative foods.
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A study of off-flavors in fish examined the
difficulties panelists have when cleaning the palate of
methyl isoborneol, a compound associated with earthy,
muddy, or musty aroma (Bett and Johnson, 1996).
They suggested the use of untainted fish itself as the
cleanser to use between test samples. This would make
sense in that the fish flesh is an effective binder of the
odor compound in question. However, these authors
did raise the concern that this would involve time and
expense in using additional fish samples as a palate
cleanser.

3.3.7 Swallowing and Expectoration

In most analytical sensory tests, swallowing is avoided
and samples are expectorated. This is assumed to pro-
vide less carry-over or unwanted influence of one prod-
uct to the next. Also swallowing high-fat products can
add unnecessary calories to panelists’ diets. Of course,
in consumer testing where acceptability is being mea-
sured, swallowing and post-ingestion effects can affect
consumers’ opinions on the products. Also in con-
sumer testing generalizing to the natural consumption
is a concern and here having respondents swallowing
the products is acceptable. Kelly and Heymann (1989)
studied the effect of swallowing versus expectoration
on thresholds and fatigue effects in paired comparison
and triangle tests using added salt in kidney beans and
added milk fat to skim milk. They found no significant
effects. However, it should be noted that the power of
the test was low and thus the likelihood of finding a
difference was slight. A time–intensity evaluation of
Yerba mate infusions by Calviño et al. (2004) found
that swallowing versus expectoration did not affect the
perceived bitterness intensity of the infusion but that
spitting did increase the rate of decay of the sensation.

One advantage of swallowing in analytical sensory
testing is the stimulation of sensory receptors in the
throat. This can be important in some products and
flavor systems. For example, throat burn is important
in pepper samples and “throat catch” (another type of
chemical irritation) is characteristic of chocolate.

3.3.8 Instructions to Panelists

These should be very clear and concise. It is frequently
desirable to give the instructions on how to perform the
sensory evaluation both verbally, before the panelists

enter the booth area, and in written form on the score
sheet. These instructions should be pre-tested by hav-
ing someone unfamiliar with sensory testing and the
project attempts to follow them. We have frequently
been amazed at how easily panelists misread or mis-
understand what seemed to us to be simple, clear
instructions. This usually occurs because we are too
familiar with the testing methodology and thus read
more into the instructions than is really there. The sen-
sory specialist should always be aware of this potential
problem.

The instructions to technicians and staff should also
be very clear and preferably should be written. It is
useful to have the technicians repeat the explanation of
the procedure to the sensory specialist. This will assure
that there were no communication gaps between the
sensory specialist and the people performing the study.
Additionally, for many tests it is useful to develop a
standard operating procedure and to keep this available
in laboratory notebooks.

3.3.9 Randomization and Blind Labeling

Samples should be blind labeled with random three-
digit codes to avoid bias and sample order should be
randomized to avoid artifacts due to order of presen-
tation. Table 3.2 gives step-by-step instructions to set
up discrimination and preference tests and Table 3.3
does the same for rating, ranking, and hedonic tests.
Figures 3.3, 3.4, 3.5, 3.6, and 3.7 show master sheets
prepared according to the instructions in Tables 3.2
and 3.3.

3.4 Experimental Design

This chapter is not designed to be a comprehen-
sive discussion on experimental design. Excellent
books and chapters have been written on experimen-
tal design and we would refer the reader to Cochran
and Cox (1957), Gacula and Singh (1984), Milliken
and Johnson (1984), MacFie (1986), Petersen (1985),
Hunter (1996), and Gacula (1997).

3.4.1 Designing a Study

In this section we want to highlight some major issues
that should be kept in mind by the sensory special-
ist when designing an experiment. At the beginning
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Table 3.2 Step-by-step instructions for setting up discrimination and preference tests

1. Prepare master sheet (see the completed master sheets in Figs. 3.3, 3.4 3.5, and 3.6).
a. Fill in the sample identification at top. For paired difference or paired preference tests two columns should be filled in

(A, B). For constant reference duo-trio tests three columns should be indicated (Reference A, A, and B). For balanced
reference duo-trio tests four columns are needed (Reference A, Reference B, A, and B). Triangle tests also need four
columns filled in (A, A, B, and B). Only the researchers should know the identity of the A and B.

b. Fill in judge numbers (i.e., 1, 2, 3. . .). Assign each judge a number and make sure that a key to these numbers is included
in the notebook associated with study. It is simpler if a specific judge retains that number throughout the study.

c. Create permutations of sample presentation. For paired difference or paired preference tests there are two possible
permutations (AB, BA). For the balanced reference duo-trio tests there are four possible permutations (RA AB, RA BA, RB
AB, RB BA).and the constant reference duo-trio tests has two possible permutations (RA AB, RA BA). For triangle tests
there are six possible permutations (AAB, ABA, BAA, BBA, BAB, ABB). Each serving order should be assigned a
number.

d. Determine order of sample presentation. Using a table of random permutations, numbers are read from top to bottom
within a column. Use only numbers corresponding to the number of serving orders in the test. Write the number (with a
red pen, indicated in bold on Figs. 3.3, 3.4, 3.5, 3.6 and 3.7) in a blank column and then write the order that the samples
will appear on the serving tray in the upper right hand corner of each square on the master sheet. This indicates the order in
which each sample is presented to each judge.

e. Assign three-digit random code numbers to each sample for each judge. Start from any point on the table of random
numbers and use three digits for each number. Do not use numbers that may have meaning to the judges (i.e., 13, 666,
911). Write the random numbers on the master sheet, one for each sample for each judge (use blue or black pen, indicated
in italics in Figs. 3.3, 3.4, 3.5, 3.6 and 3.7). An occasional duplicate of a number may be found on a random number table,
if so, skip the duplicate number.

2. Write random number codes on the sample containers. Use the random code numbers which were written on the master sheet.
Code numbers on sample containers should match the appropriate code numbers on the master sheet. The sample containers
to be filled with the reference samples should not be coded RA or RB but should be coded only with an R.

3. Prepare score sheet. Fill in the date, the judge number, and the random code numbers in the sequence in which the samples are
to be evaluated (as indicated by the random permutations).

4. Prepare samples.
a. Prepare an organized arrangement for portioning samples. A simple method is to make a master sheet template with

sufficient space for the sample containers to be placed in the squares. This template may be made out of any large paper or
available substitute. Allowing a 3 in. square for each sample is suggested, however, this will vary depending on the sample
container itself.

b. Assemble sample containers on template. Once all the containers are placed on the template it should be identical in
appearance to the master sheet.

c. Portion samples into containers.
5. Assemble samples for each judge on a tray in the sequence that they are to be evaluated. Also, place the score sheet on the tray

and water for rinsing the palate. Double check serving order.
6. Serve samples to judges for evaluations.
7. Decode score sheet on the master sheet. Circle the code that the judge circled. (Use a pen, neveruse pencil on master sheets or

score sheets). In this way, decoding is simple and orderly. In order to analyze the data, it must be represented numerically.
This may be according to the number of correct judgments (paired difference test, triangle test, and duo-trio test) or number of
judges preferring sample A or B (paired preference). Make sure that a column is left for this purpose.

8. Analyze the data.

of any project the sensory specialist and all the par-
ties that are requesting the study should define the
objective of the study. To ensure that all parties are
clearly communicating, the sensory specialist should
rephrase all the objectives as questions. These should
be circulated among all parties, who should provide
feedback to the sensory specialist. The sensory special-
ist, in consultation with the client(s), should identify
the tests required to answer the questions. At this point
it is usually instructive for the specialist to design the
perfect experiment without any cost constraints. This

exercise is instructive because the process allows the
specialist to clearly indicate the “ideal.” Then when
time and cost constraints are added and the special-
ist has to redesign the study to a scaled down version
there is a clear picture of what is “given up” in this
process. In some situations the scaled down version
may not be capable of answering the test objectives.
When this happens, the specialist and the client(s)
must renegotiate the cost and time constraints and/or
the test objectives. It is usually better to decrease the
number of test objectives to those with the highest
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Table 3.3 Step-by-step instructions for setting up ranking, rating and hedonic tests

1. Prepare master sheet (see Fig. 3.7 for completed master sheet).
a. Fill in sample identification at top. In the example, in Fig. 3.7 for a study of fish, this may be Scrod, Cod, Tuna, Hake.

Only the researchers should know the identity of the products or samples.
b. Fill in judge numbers (i.e., 1, 2, 3. . .). Assign each judge a number and make sure that a key to these numbers is placed in

the study notebook. It is simpler if a specific judge retains that number throughout the study.
c. Assign three-digit random code numbers to each sample for each judge. Start from any point on the table of random

numbers and use three digits for each number. Never use numbers that may have meaning to the judges (i.e., 13, 666, 911).
Write the random numbers on the master sheet, one for each sample for each judge (use blue or black pen, indicated in
italics in Fig. 3.8). An occasional duplicate of a number may be found on a random number table. If so, skip the duplicate
number.

d. Determine order of sample presentation. Using a table of random permutations, numbers are read from top to bottom
within a column. Use only numbers corresponding to the number of samples being tested (i.e., for four samples: use only
numbers 1, 2, 3, and 4; read the numbers in the order they appear). Write the number (with a red pen, indicated in bold in
Fig. 3.7) in the upper right-hand corner of each square on the master sheet. This indicates the order in which each sample is
presented to each judge. In the example, the first sample is served fourth, the second sample is served first, etc. for judge 1.

2. Write the random codes on the sample containers. Use the random code numbers which are written on the master sheet. Code
numbers on sample containers should match the appropriate code number on the master sheet. If there are enough people
working together, this can be done as random numbers are recorded on the master sheet.

3. Prepare score sheet. Fill in the date, the judge number, and the random code numbers in the sequence in which the samples are
to be evaluated (as indicated by random permutations).

4. Prepare samples.
a. Prepare an organized arrangement for portioning samples. A simple method is to make a master sheet template with

sufficient space for the sample containers to be placed in the squares. This template may be made out of any large paper or
available substitute. Allowing a 3 in. square for each sample is suggested, however, this will vary depending on the sample
container itself.

b. Assemble sample containers on template. Once all the containers are placed on the template it should be identical to the
master sheet.

c. Portion samples into containers.
5. Assemble samples for each judge on a tray in the sequence that they are to be evaluated. Also, place the score sheet on the tray

and water for rinsing the palate. Double check serving order.
6. Serve samples to judges for evaluations.
7. Decode score sheet on the master sheet. When judges are asked to rate only one attribute a blank column is left between

columns of random code numbers. When asked to rate more than one term more blank columns (one column for each terms
rated) should be left. These columns provide space for recording judge scores after completion of the test. (Use a pen, never

use pencil on master sheets or score sheets). In this way, decoding is simple and orderly.
8. Analyze the data.

priorities rather than cutting the power of the test (see
Appendix E for power issues). There is no point in per-
forming a study that is inadequate in answering the
major test objectives. If it is not possible to design
an adequate study, the specialist must ask for more
resources.

Next, the sensory specialist should meticulously
scrutinize the study step by step. The idea is to ask
questions at each point about the worst possible sce-
nario and how the study could be improved to min-
imize these contingencies. Sensory studies are more
complex than they appear at first glance and the poten-
tial for complications and mistakes is always present.
Samples may be lost, contaminated, or otherwise

mishandled. Panelists may drop out before complet-
ing the test sequence. Participants may not correctly
follow the test protocol or they may misunderstand
instructions. Technical personnel can make mistakes
in serving order sequences. Unwanted fluctuations in
sample temperature or other conditions may enter the
picture. Most of these problems can be eliminated or
minimized in a well-designed test.

Once the study has been redesigned it is a good idea
to write down a “skeleton” statistical analysis. This
will give the specialist a good idea about the degrees
of freedom associated with significance tests. It is also
helpful to sketch out potential figures and tables that
will be used in the final report.
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Permutation numbers (Perm #)   AB = 1 

    BA = 2 

Judge Perm. 

#

A B

1  2 169 2 507 1

2  1 212 1 194 2

3  1 962    1 644 2

4  2 273 2 693
1

Etc.

Fig. 3.3 Example of a master sheet for a paired preference test.

Permutation numbers (Perm #)    RA AB = 1 

                                 RA BA = 2 

Judge Perm. 

#

RA A B

1 1 R 557 1 485     2

2 2 R 636 2 684 1

3  1 R 325 1 238     2

4  2 R 401 2 159 1

etc..

Fig. 3.4 Example of a master sheet for a constant reference
duo–trio test.

3.4.2 Design and Treatment Structures

We like to use description of the experimental design
elucidated by Milliken and Johnson (1984). These
authors divided experimental design into two basic
structures, namely treatment structure and design
structure. They describe the treatment structure as set
of samples or treatments that the client(s) selected
to study in the specific project. The design structure

Permutation numbers (Perm #)              RA AB = 1 

                                           RA BA = 2 

                                           RB AB = 3 

                                           RB BA = 4 

Judge Perm. 

#

RA RB A B

1 4 R 1 557 3 485     2

2 1 R 1 636 2 684 3

3  2 R 1 325 3 238     2

4  3 R1 401 2 159 3

etc..

Fig. 3.5 Example of a master sheet for a balanced reference
duo–trio test.

Permutation numbers (Perm #)    BAA = 1      BBA = 4 

                                 ABA = 2      BAB = 5 

                                 AAB = 3      ABB = 6 

Judge Perm. 

#

A A B B

1 5 495 2 926 1 183     3

2 4 292 3 899 1 854 2

3  2 797 1 630     3 315 2

4  3 888 1 566 2 981 3

5 1 267 2 531 3 469 1

6 6 201 1 239 2 827     3

etc..

Fig. 3.6 Example of a master sheet for a triangle test.

is defined by sensory specialists when they group
experimental units into blocks. These two structures
are linked by the randomization performed by the
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Judge Scrod Cod Tuna Hake

1 909 4 623     3 703 2 903 1

2 690 1 558 2 578 3 383 4

3 694 3 373     1 693 4 290 2

4 890 2 763 4
787

1
661

3

etc..

Fig. 3.7 Example of a master sheet for a rating, ranking of
hedonic test.

sensory specialist prior to the study and together they
make up the experimental design of the study. The
sensory specialist should let treatment structure dic-
tate neither a poor design structure nor a favorite or
frequently used design structure affect the selection of
treatments.

3.4.2.1 Design Structures

Completely Randomized Design (CRD)

In this design all the samples are randomly assigned
to all the panelists. Most of the experimental designs
associated with sensory studies are performed to avoid
or minimize artifacts due to order of sample presenta-
tion. The simplest solution to this problem is to make
sure that the sample presentation order is completely
randomized across all panelists. This technique works
quite well in situations where the number of samples is
small and all samples can be evaluated by all panelists
in a single session. CRD is the ideal design for a central
location consumer test where each panelist evaluates
each sample. For example, in a mall intercept, test pan-
elists are asked to express their degree of liking for
each of four cola products. Each panelist receives the
four colas in a randomly assigned sequence.

CRD designs also include random assignment of
products to people where each individual only sees
one product. These so-called consumer monadic tests
are common in consumer field studies. These are also
called between-groups comparisons since there are

different groups of people evaluating each product.
The product group forms a block. An example would
be a study with three versions of a product. The total
consumer group is divided into three subgroups with
people randomly assigned to a group. Each group tests
one product, then fills out a questionnaire. Justification
for monadic designs arises when (1) the test would
be too time consuming or lengthy to have all peo-
ple evaluate all products; (2) the use of one product
would be likely to influence opinion of another; or
(3) the use of the product changes the environment,
person, or substrate. The last effect is common with
consumer products (e.g., floor wax, insecticide) and
personal care products (e.g., skin cream, hair condi-
tioner). Time pressure to complete a test might also
dictate a monadic design in consumer field work.

With trained analytical panels, the samples should
be evaluated in replicate (often triplicate) to ascertain
judge to judge variation. If the number of samples
is sufficiently small it may be possible to have each
panelist evaluate all samples in replicate in a single
session using CRD. However, this is often not possible
and then the sensory scientist would use a randomized
complete block design (RCBD).

Randomized Complete Block Design (RCBD)

In a randomized complete block design each treatment
(usually samples) is randomly assigned to each unit
(usually panelists) within each block (often sessions).
This design is frequently used when trained analytical
panelists cannot evaluate all samples in replicate in a
single session. In this case the best solution is to have
each panelist evaluate all samples in a single session
and then have them return for a subsequent session to
re-evaluate all the samples. An example is a descriptive
analysis study of six ice creams made with fat replac-
ers. In a single session the panelists can only evaluate
six samples. However, the samples should be evaluated
in triplicate. The panelists must attend three sessions
to evaluate all the samples in triplicate. In this study
the blocks are the sessions and the six samples are
randomized across those panelists within each block.

Incomplete Block Design

Incomplete block designs are used when there are too
many treatments in the experiment for the panelists to
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judge all samples in a single session (block). In this
case the panelists evaluate subsets of samples in indi-
vidual sessions. The objective may be for each panelist
to ultimately evaluate all samples often in replicate
or it may be that panelists only see a subset of sam-
ples. An example of the first type of incomplete block
design is the descriptive analysis of 13 vanilla samples
performed by one of the authors (Heymann, 1994).
The panelists could not evaluate all 13 samples in a
single session. We chose an incomplete block design
with four samples per block (session) and 13 blocks
(sessions) (plan 11.22, Cochran and Cox, 1957). At
the end of the study all the panelists had evaluated
each of the 13 vanillas four times. The second type
of incomplete block design is often used in consumer
studies where the purpose is to screen flavor or fra-
grance candidates from a large pool of potential flavors
or fragrances. For example, there may be twenty eight
possible fragrances for a new floor wax, but due to
the fatiguing nature of the fragrances consumers can-
not rate their liking for more than four fragrances
in a session. By choosing the appropriate incomplete
block design (plan 11.38, Cochran and Cox, 1957)
63 groups of nine consumers would evaluate four fra-
grances in a screening test to pick the most liked
fragrances.

3.4.2.2 Treatment Structures

One-Way Treatment Structure

In this case a set of treatments (samples) are chosen
without assuming a relationship among the treatments.
In sensory studies this occurs when a product set is
chosen from among the brands on the market. In these
cases there is no assumption the product made by one
company is related to that from another company. For
example, in a study of the sensory characteristics of
black tea, the sensory specialist may choose four black
teas, one made by each of four nationally known com-
panies. The one-way treatment structure for this study
then has four samples that are not related to each other
in any way except that they are national brands of tea.

Two-Way Treatment Structure

For two-way treatment structures a set of samples are
created by combining levels of two different types of

treatments. In the sensory setting one may choose a
product set from among the brands on the market and
then each of these products is prepared in two dif-
ferent ways prior to sensory evaluation. For example,
to return to the tea example used above, the sensory
specialist decides to evaluate the teas as a hot bev-
erage and as an iced tea. The treatment structure for
this study is then two way with a total of eight treat-
ments (four teas at two temperatures). Two-way treat-
ment structures are also known as factorial treatment
structures.

Other Treatment Structures

Many other possible treatment structures exist and are
used in sensory studies. Examples include fractional
factorial structures, a one-way structure of controls
combined with a two-way factorial arrangement treat-
ment structure. Split-plot and repeated measures exper-
imental designs are created from incomplete block
design structures and factorial arrangement treatment
structures with two or more types of treatments. In
a simple split-plot experimental design there are two
sizes of experimental units and the treatments can be
applied to differently sized experimental units by ran-
domization. An example would be the following: each
of six varieties of potatoes is grown in three rows, ran-
domly assigned, in a field; the potatoes are harvested
and the potatoes from each row are kept in separate
containers. The potatoes are the cooked, using three
cooking techniques. Each container is split into three
batches and randomly assigned a cooking procedure.
The cooked potatoes are evaluated by a descriptive
analysis panel for texture. In this case the experimental
unit to evaluate variety is the row and the experimen-
tal unit to evaluate the cooking procedure is the batch
(Milliken and Johnson (2004).

A simple repeated measures designs is similar to a
simple split-plot designs in terms of the two sizes of
experimental units but the levels of at least one treat-
ment (usually time) cannot be randomly assigned. For
example, broccoli is harvested and randomly assigned
to be packaged in four different packaging materi-
als. The packages are stored and a sensory descriptive
panel evaluates the samples daily in triplicate over
a 2-week period. In this case the one experimen-
tal unit is the packaging type and the other is time
(daily).
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The following are some of the textbooks with
numerous examples of more complex treatment struc-
tures: Milliken and Johnson (1984), Cochran and Cox
(1957), Petersen (1985).

3.4.2.3 Randomization

The setting up instructions in Tables 3.2 and 3.3 only
indicate how sample order may be randomized. It is
usually better to also ensure that sample order is coun-
terbalanced, as far as possible. When sample order
is counterbalanced each serving sequence occurs an
equal number of times. To determine if a specific mas-
ter sheet is counterbalanced, one must determine the
number of times each serving sequence appears. In
a fully counterbalanced design all potential serving
sequences will occur an equal number of times. It is
possible to use specially designed serving sequences
allowing the sensory scientist to not only have com-
pletely counterbalanced designs but also have serv-
ing sequences that are completely balanced. In other
words, every sample is preceded by every other sam-
ple an equal number of times (MacFie et al., 1989;
Wakeling and MacFie, 1995). These designs are espe-
cially helpful when the possibility of carry-over effects
between samples exist (Muir and Hunter, 1991/1992;
Schlich 1993; Williams and Arnold, 1991/1992). They
are also helpful as “insurance” against carry-over
effects, since their use allows one to determine carry-
over effects post hoc.

Randomization of presentation orders is required
for statistical validity but it is also important due to pre-
sentation order effects, specifically, first-position order
effects. Position order effects occur when the percep-
tion of the sample is affected by the position in the
presentation sequence that the sample is assessed at.
In other words, the first sample is perceived differently
than subsequent samples, solely due to its position in
the line-up. This so-called first-position effect is quite
strong (especially in consumer studies) and the sen-
sory scientist should attempt to mitigate the effect.
Randomization with each sample in the first posi-
tion an equal number of times decreases the effect by
spreading it across all samples. A better solution is
to serve a dummy sample first followed by the true
samples—in this case the panelists are told that they
would be served say five samples, but unbeknownst
to them the first sample is a dummy and samples two

through five are the actual samples. There also seems
to be a small but persistent final sample effect.

3.5 Panelist Considerations

3.5.1 Incentives

Some incentive to participate in a sensory study is
usually necessary in order to motivate people to volun-
teer. Sensory specialists should not expect automatic
agreement of a person when they are asked to be on
a panel and should be realistic about the benefits for
that person. “What is in it for me?” is a reasonable
question that sensory panel leaders should be ready to
answer. In academic settings the days of ordering grad-
uate students to participate are long gone. Likewise,
in industry, sensory panel participation should be a
volunteer activity. If it is required as a condition of
employment (this is not recommended, except in the
case noted below), the nature of the participation and
the testing must be spelled out at length during the
interviews and hiring process, otherwise the voluntary
nature of participation is violated.

A guideline for motivating participation is the con-
cept of the token incentive. By “token” we mean that
the incentive is just enough to get the person to partici-
pate in the evaluation, but not so much that it is the sole
reason for the participation. Obviously, if people are
paid a great deal they will do just about anything, but
an overpaid individual may have little or no motivation
to concentrate and work during the evaluation sessions.
In other words, they are just “in it for the money.” The
importance of the token incentive, payment or reward
is different in different testing situations. In consumer
work, where there is little or no loyalty, commitment or
long-term interest in the testing program, the payment
is of primary concern. For employees, students, or aca-
demic staff who participate in a sensory test, there are
other reasons to become involved, such as positive feel-
ings from helping out in the testing program. In some
cases and in some cultures, the sense of social respon-
sibility or support for the group effort may be strong
enough so that the tokens may be quite minimal.

Common token incentives include snacks or
“treats.” This can serve as a social or coffee-break time
for employees or staff and the opportunity for social
interaction may itself become a motivating factor.
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Small gifts for repeated testing and free company
products are also common incentives. For very high
levels of participation, larger gifts or social activities
such as a luncheon or a holiday party can recognize
the contributions of regular participants. One of us
and at least one company that we know of uses a raf-
fle system to entice panelists to attend. An entry is
made after each test session. The more tests a person
attends the better the chance of winning a prize. This
system works well as long as the winners are rotated
(you cannot win 2 months in a row) and the sensory
professionals themselves are not eligible.

One of the most important incentives for participa-
tion is management recognition. When management
acknowledges participation in sensory panels as an
important contribution to the research effort, recruiting
panelists become a great deal easier. Support for sen-
sory evaluation must extend through all levels of man-
agement. If only top management supports sensory
panel participation, the support quickly becomes “lip
service.” Supervisors may resent the time employee
panelists may spend away from their main job. Thus,
it is important to get the cooperation and support of the
panelist’s direct supervisor as well as all those higher
up. An enlightened management will recognize that
sensory panel participation enhances job skills, pro-
vides a broader motivation for project success, and can
serve as a welcome break from routine activities that
may enhance overall job performance. It is the job of
the sensory professionals to communicate these ben-
efits and to secure management support and to make
sure that the supporting attitudes are made known to
all potential panelists.

In some companies descriptive panel members are
actually additional part-time employees. In this case
these employees’ only job description is to be panel
members. If a sensory specialist decides to employ
such descriptive panelists, there must be enough work
to keep the panel busy on an ongoing basis. During
slow times the panelists may work on re-training exer-
cises or they may be laid off (not a good way to keep
the panelists motivated).

3.5.2 Use of Human Subjects

Sensory specialists should be very aware of the health
and safety of their panelists. These panelists are human

subjects and the specialist should know and follow the
guidelines that constrain the use of human subjects.
The basis for the guidelines associated with the use of
human subjects is the Nuremberg Code of Ethics in
Medical Research (United States v. Karl Brandt et al.,
1949) and the declaration of Helsinki (Morris, 1966).
These guidelines principally state the following:

(1) It is essential the subjects give voluntary consent
to participation.

(2) The subject should have the legal capacity to give
the consent.

(3) The subject should be able to exercise free power
of choice about participating in the study.

(4) The study should yield fruitful results for the good
of society.

(5) The researchers should protect the rights and wel-
fare of all the subjects.

(6) The researchers must ensure that the risks to the
subjects associated with the study do not outweigh
either the potential benefits to the participants or
the expected value of the knowledge sought to
society.

(7) Above all, the researchers must ensure that each
person participating in the study had the right
of adequate and informed consent without undue
duress.

In legal language, most sensory studies pose no risk
“above the ordinary risks of daily life.” This includes
any inherent risks associated with an individual’s cho-
sen occupation (the risks of being an astronaut are
greater than those of a college professor). In gen-
eral, in the United States, sensory testing of foods are
often exempt from human subjects oversight scrutiny
under the Federal Register (CFR 56:117 § A7 28102).
The subjects may be at increased risk if the research
plan deviates from the application of accepted and
established methods. Physical risks may sometimes be
present. For example, food ingredients and additives
are sometimes tested during the product development
cycle before these ingredients have achieved govern-
ment approval such as the “generally recognized as
safe” (GRAS) list in the United States. Employees who
are asked to participate in such tests should be told of
all possible risks and as always, participation should be
voluntary. Additionally, sensory specialists should be
sensitive to psychological risks such as embarrassment
when mistakes are made. If panel results are published,
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shown or otherwise made available, as in some panelist
training and monitoring situations, care must be taken
to protect the feelings and, if possible, the identity of
the outliers in the data.

In academic settings in the United States, all
studies involving human subjects must be reviewed
and approved by the particular institution’s Human
Subjects’ Institutional Review Board (Belmont Report,
1979; Edgar and Rothman, 1995). In industrial set-
tings this is not required. However, the ethical sensory
specialist will adhere to the principles associated with
responsible research involving human subjects (Sieber,
1992).

3.5.3 Panelist Recruitment

The sensory specialist must make sure that the people
who are recruited know what is expected of them dur-
ing the study. It is best to view their participation in
the study as a contractual relationship. As much infor-
mation as possible about time commitment and the
product categories should be available to the potential
panelists before they commit to the project. Panelists
must also be told clearly what they may expect to gain
from the study, such as daily treats, money. In most set-
tings, the sensory specialist must be sure that panelists
have approval from their supervisors to participate.
Additionally, in academic settings in the United States,
depending on the specific institution’s Human Subjects
Institutional Review Board, the sensory specialist may
also need to make sure that each panelist voluntarily
signs an informed consent form prior to participation
in the study.

3.5.4 Panelist Selection and Screening

For certain product categories it may be necessary to
have the panelists undergo a medical screening prior
to participating in the sensory study. Additionally, the
sensory specialist may need to screen the sensory acu-
ity of the potential panelists. However, the specialist
should allow some leeway in the sensory deficiencies
of the potential panelists. Some people may be very
discriminating in general, but have one or two prob-
lem areas. Also, many average panelists will improve

markedly with training. Therefore it is not necessary
to have only the most highly discriminating panelists
at the outset of training.

To screen for panelists the sensory scientist should
create a battery of tests that are appropriate to the prod-
ucts to be evaluated and the general tasks required of
the panelists. If the panelists are only going to be doing
discrimination testing then the screening tests should
only involve discrimination tasks. On the other hand,
if the panelists are going to do scaling tasks then the
screening tests may involve both discrimination and
scaling tasks. The key to screening, however, is not to
over-test panelists before performing true product eval-
uations. Too many screening tests could decrease the
panelists’ enthusiasm and motivation when it comes
time to do “real” products. Judicious decisions related
to the amount of screening needed for a specific study
are important.

3.5.4.1 Examples of Screening Tests

The sensory scientist can create a series of discrimi-
nation tests differing in difficulty. In other words, the
sensory scientist creates a series of product formula-
tions that are more and more difficult to tell apart.
Jellinek (1985) discusses how to select panelists using
an extensive training course. She required the panelist
to meet a stringent series of minimum requirements,
before the panelist will be allowed to participate in sen-
sory evaluation studies. These are generally applicable
to a broad range of food testing. If the sensory program
is more limited in scope, a series of tests may focus
on the specific attributes to be encountered in the food
products to be tested.

Additionally, it is helpful during panel screening
to determine whether the panelist can discriminate
the key ingredient flavors and the possible taints (off-
flavors) in the product. It is possible to ask the pan-
elists to rank order the intensity of the key ingredient
flavors in the product or to rank order increasing
levels of taints in the product. Panelists could also
be asked to use multiple choice tests to describe
aroma, flavor, and mouthfeel characteristics of the
products. The sensory specialist can use these data
to determine the extent of panel training. Such test-
ing may illuminate areas needing additional work or
identify panelists requiring special consideration and
training.



3.6 Tabulation and Analysis 75

If possible, the sensory specialist should recruit
two to three times as many persons as needed for
the panel. Then rank the panelists’ performance on
several screening test measures and invite the top per-
formers to participate in the actual panel. A sensory
specialist must be very tactful when potential pan-
elists are told that their services will not be needed.
When the panelists are informed of their performance
on the screening tests, the specialist should use gen-
eral labels, all of which should be positive in con-
notation. For example, the group could be divided
into good smellers, very good smellers, and excellent
smellers, rather than describing groups by using adjec-
tives like “bad” or “poor.” It is necessary to be very
diplomatic and very careful not to insult people. All
potential panelists must be made to feel appreciated,
even if they were not invited to participate at this time
since they may be recruited for a different study at a
later time.

Records of all screening tests should be kept to
compare future performance of these and new pan-
elists. It is very possible that the performance of some
panelists will improve over time and that of others
will get worse. The specialist should plan from the
beginning what to do about panel attrition because it
will occur. The decision must be made whether pan-
elists will be trained and added over time or whether
the final panel size will be smaller than originally
planned.

The most important fact to remember is that good
panelists are not born but they can be created through
the hard work of the panelist and the sensory special-
ist. Most individuals of average sensory activity can be
trained to a level of very high, reliable, and accurate
sensory evaluation performance.

3.5.5 Training of Panelists

The amount of training required is dependent on the
task and the level of sensory acuity desired. For most
descriptive tests extensive and in-depth training is nec-
essary (see Chapter 10). For many discrimination tests,
only minimal training is involved. In these cases the
panelists are oriented to the task and that is the extent
of the training (see Chapter 4).

During the training phase, especially for descriptive
panels, the sensory specialist must make the panelists

realize sensory work is difficult and requires attention
and concentration. During extensive training sessions
it is helpful if the panel develops an esprit de corps
and this can be facilitated during training by having
the panelists work as a team. As mentioned earlier,
panelists are easier to train and likely to remain more
motivated during the entire study if they feel that the
sensory work done by them is valued by management.
Attrition and turnover on panels are a factor in all set-
tings. The sensory specialist must plan for this from
the first day of recruitment. It is sometimes possible for
new trainees to work with experienced panelists, such
as people who had been trained for another product
category.

3.5.6 Panelist Performance Assessment

The performance of trained panelists used over long
periods of time may fluctuate, as the panelists become
more or less motivated to participate and to concentrate
on the task at hand during evaluation sessions. Also if
people do not participate for awhile due to transfers,
vacations, leaves-of-absence, etc., their performance
may deteriorate and require re-training. Many compa-
nies have panelist assessment and reporting programs
in place. These can be as simple as plotting the scores
given by each panelist against the mean scores for the
panel or as elaborate as using multiple assessment pro-
grams like those described by Sinesio et al. (1990),
Naes and Solheim (1991), Mangan (1992), and Schlich
(1996). The Panel Check program (available for free
from the European Sensory Network (ESN) website)
incorporates most of the above assessment programs
in a single simple-to-use software package. We will
revisit this issue in Chapter 10.

3.6 Tabulation and Analysis

3.6.1 Data Entry Systems

With the decrease in costs associated with personal
computers a number of data entry systems have
become very readily available. In this section we are
not going to compare the systems currently available,
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since these would be obsolete within a few years. We
are, however, going to list some principles that should
be kept in mind when sensory specialists explore
the feasibility of different data entry systems in their
facility.

1. The limitations of the computer system should not
dictate the form of the test. Before purchasing a sys-
tem the sensory specialists should be sure that all
the tests used in their situation can be programmed
with the specific software system.

2. Purchasing online computerized systems requires a
careful evaluation of cost-savings in terms of tech-
nician time and data entry time “by hand” and the
pay-back time versus the overall cost of the system
as well as the time needed to become comfortable
with using the system.

3. In most situations the testing volume is the pri-
mary determinant of the need for automation
or direct online entry. In situations where small
volumes of many different types of tests are
performed, a computerized system may also be
useful.

4. The sensory specialist should be aware that less
expensive alternatives to online data entry exist: the
use of digitizing to enter data or the use of optical
scanning.

5. The advantages of computerization of the sensory
booth include

(a) the speed of receiving test results
(b) a ready interface between the data entry system

and statistical and graphing programs
(c) a reduction in the errors involved in data entry

(“key punching”)

6. Disadvantages include

(a) consumers may be unfamiliar with computers
and ill-at-ease with using the system. Their con-
centration may shift to the response system
rather than the products

(b) errors in use may go undetected if data
are analyzed “automatically,” e.g., without
inspection

(c) computer programs may not be flexible enough
to handle variation in experimental designs or
requirements for specific scale types

3.7 Conclusion

In many ways the good practice techniques associated
with sensory testing are based on common sense. Many
of the coding and setting up practices seem very cum-
bersome at first glance, but the goal is to insure that
the specialist always, at all times, knows which sam-
ple is in which coded container, because inevitably
at some point in a study a sample will be spilled.
Sensory specialists should continually ask themselves
whether a specific serving container, serving proce-
dure, panelists’ recruitment method seem logical and
sensible.

Additionally, the use of good practice techniques
improves the quality of the tests performed and this
in turn will instill client confidence which ultimately
leads to increased management respect for the results
of sensory tests.
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Chapter 4

Discrimination Testing

Abstract Discrimination tests in most situations will only allow the sensory
specialist to determine that two products perceptibly differ from one another or not.
In this chapter we describe the more familiar discrimination tests such as paired com-
parison, duo–trio, triangle, dual standard, and A-not-A, as well as less used tests such
as ABX and sorting tests. Data analysis techniques for these tests are described in
detail (binomial, chi-square, z-, and beta-binomial distributions). Additionally, we
begin the discussion of the effect of statistical power in sensory tests—this is further
discussed in Chapter 5 and the Appendix of the book. The need for replication in
sensory discrimination tests and the analysis of these data are discussed. Lastly, we
discuss the need for warm-up samples in certain situations and well as some common
issues arising from the interpretation of the results of sensory discrimination tests.

Chance favors only those who knows how to court her.

—Charles Nicolle
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4.1 Discrimination Testing

Discrimination tests should be used when the sensory
specialist wants to determine whether two samples are
perceptibly different (Amerine et al., 1965; Meilgaard
et al., 2006; Peryam 1958; Stone and Sidel, 2004). It
is possible for two samples to be chemically differ-
ent in formulation but for humans not to perceive this
difference. Product developers exploit this possibility
when they reformulate a product by using different
ingredients while simultaneously not wanting the con-
sumer to detect a difference. For example, an ice cream
manufacturer may want to substitute the expensive
vanilla flavor used in their premium vanilla ice cream
with a cheaper vanilla flavor. However, they also may
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not want the consumer to perceive a difference in the
product. A properly executed discrimination test with
sufficient power indicating that the two ice cream for-
mulations are not perceptibly different would allow the
company to make the substitution with lowered risk.
This is an ideal use of sensory discrimination test-
ing. Discrimination testing may also be used when a
processing change is made which the processor hopes
would not affect the sensory characteristics of the
product. In both of these cases the objective of the dis-
crimination test is not to reject the null hypothesis, this
is also known as similarity testing.

However, when a company reformulates a product
to make a “new, improved” version then the discrim-
ination test could be used to indicate that the two
formulations are perceived to be different. In this case
the objective of the discrimination is to reject the null
hypothesis. If the data indicate that the two formula-
tions are perceptibly different then the sensory scientist
has to do a test that would indicate that the “new” for-
mulation is perceived to be an improvement by the
targeted consumer (see Chapters 13–15).

If the difference between the samples is very large
and thus obvious, discrimination tests are not useful. If
preliminary bench testing indicates that the two sam-
ples will be perceptibly different to all panelists then
these discrimination tests should not be used. In such
cases it may be useful to do scaling techniques to indi-
cate the exact magnitude of the difference between the
samples (see Chapter 7). In other words, discrimination
testing is most useful when the differences between the
samples are subtle. However, these subtle differences
make the risk of Type II errors more likely (see later in
this chapter and Appendix E).

Discrimination tests are usually performed when
there are only two samples. It is possible to do multiple
difference tests to compare more than two products but
this is not efficient or statistically defensible. Usually
ranking or scaling techniques will prove to be more
effective (see Chapter 7).

There are a number of different discrimination tests
available including triangle tests, duo-trio tests, paired
comparison tests, n-alternative forced choice tests,
tetrad tests (Frijters, 1984), polygonal and polyhedral
tests (Basker, 1980). In Chapter 1, we briefly out-
lined the history associated with the triangle, duo–trio,
and paired comparison tests. In the following section
the more usual discrimination tests and their uses are
described in more detail.

4.2 Types of Discrimination Tests

See Table 4.1 for a summary of the types of available
discrimination tests and Table 4.2 for the process of
doing a discrimination test.

4.2.1 Paired Comparison Tests

There are two analytical sensory forms of this test,
namely the directional paired comparison (also known
as the two-alternative forced choice) test and the dif-
ference paired comparison (also known as the simple
difference or the same/different) test. The decision to
use one or the other form is dependent on the objec-
tive of the study. If the sensory scientist knows that the
two samples differ only in a specific sensory attribute
then the two-alternative forced choice (2-AFC) method
is used. In fact, as we will discuss in Chapter 5, it
is always more efficient and powerful to use a direc-
tional paired comparison test specifying the sensory
attribute in which the samples differ (if known) than
to ask the panelists to identify the different sample. On
the other hand, if the sensory scientist does not know
in which sensory attribute(s) the samples differ than
other techniques, such as the difference paired compar-
ison must be employed, despite the subsequent loss of
power.

For both paired comparison methods the proba-
bility of selection of a specific product, by chance
alone (guessing), is one chance in two. However, as
explained in Chapter 5 the situation is a little fuzzier
for the same/different test where the probability is
affected by the individual panelist’s decision criterion.
In both cases the null hypothesis states that in the long
run (across all possible replications and samples of
people) when the underlying population cannot dis-
criminate between the samples they will pick each
product an equal number of times. Thus the probabil-
ity of the null hypothesis is Ppc = 0.5. Remember that
Ppc, the proportion that we are making an inference (a
conclusion) about, refers to the proportion we would
see correct in the underlying population (and not the
proportion correct in our sample or the data). That is
why statistical hypothesis testing is part of inferential
statistics. What the null hypothesis states in mathe-
matical terms can also be verbalized as follows: If the
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Table 4.1 Types of available discrimination tests

Class of test Test
Samples:
inspection phase Samples: test phase Task/instructions

Chance
probability

Oddity Triangle (None) A, A′, B (or A, B, B′) Choose the most different
sample

1/3

Matching Constant reference
duo–trio

Ref-A A, B Match sample to reference 1/2

Balanced reference
duo–trio

Ref-A, Ref-B A, B Match sample to reference 1/2

ABX Ref-A, Ref-B A (or B) Match sample to reference 1/2
Dual standard Ref-A, Ref-B A, B Match both pairs 1/2

Forced choice Paired comparison (None) A, B Choose sample with most
of specified attribute

1/2

3-AFC (None) A, A′,B (Same) 1/3
n-AFC (None) A1−An−1, B (Same) 1/n
Dual pair (None) A, B and A, A′ Choose A, B (different pair) 1/2

Sorting Two out of five (None) A, A′, B, B′, B′′ Sort into two groups 1/10
4/8 “Harris–Kalmus” (None) A1−A4, B1−B4 Sort into two groups 1/70

Yes/no Same–different (None) Pairs: A, A′ or A, B Choose response: “Same”
or “different”

N/Aa

(Response
choice)

A, not-A Ref-A A or B Choose response: “A” or
“not-A”

N/Aa

aFor the yes/no tests, a criterion may be set by each individual and therefore the probability may not be equal to 1/2. See Chapter 5
for further discussion of criterion in yes/no tasks

Table 4.2 Steps in conducting a difference test

1. Obtain samples and confirm test purpose, details, timetable, and panelists’ training (e.g., training with the
process) with client.

2. Decide testing conditions (sample size, volume, temperature, etc.) and clear with client.
3. Write instructions to the panelists and construct ballot.
4. Recruit potential panelists.
5. Screen panelists for acuity.
6. Train to do specific difference test (can use colors or shapes or spiked samples).
7. Set up counterbalanced orders.
8. Assign random three-digit codes and label sample cups/plates.
9. Conduct test.

10. Analyze results.
11. Communicate results to client or end user.

underlying population cannot discriminate between the
samples then the probability of choosing sample A
(that is the PA) is equal to the probability of choosing
sample B (PB). Mathematically, this may be written as

H0 : PA = PB = 1

2
(4.1)

However, as we will see the verbal forms of the
alternate hypotheses for the two paired comparison
tests differ.

4.2.1.1 Directional Paired Comparison Method

(or the Two-Alternative Forced-Choice

Method)

In this case, the experimenter wants to determine
whether the two samples differ in a specified dimen-
sion, such as sweetness, yellowness, crispness. The
two samples are presented to the panelist simultane-
ously and the panelist is asked to identify the sam-
ple that is higher in the specified sensory attribute.
Figure 4.1 shows a sample score sheet. The panelist
must clearly understand what the sensory specialist
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Date _______________ 

Name ______________ 

Please rinse your mouth with water before starting. There are two samples in each of the two 

paired comparison sets for you to evaluate.  Taste each of the coded samples in the set in the 

sequence presented, from left to right, beginning with Set 1.  Take the entire sample in your 

mouth.  NO RETASTING. Within each pair, circle the number of the sweeter sample. Rinse with 

water between samples and expectorate all samples and water.  Then proceed to the next set and 

repeat the tasting sequence. 

Set 

1 ________  ________ 

2 ________  ________ 

Fig. 4.1 Example of a
directional paired comparison
(2-AFC) score sheet.

means by the specified dimension and the panelist
should therefore be trained to identify the specified
sensory attribute. The panelist should also be trained to
perform the task as described by the score sheet. The
directional paired comparison test has two possible
serving sequences (AB, BA). These sequences should
be randomized across panelists with an equal num-
ber of panelists receiving either sample A or sample
B first.

The test is one tailed since the experimenter knows
which sample is supposed to be higher in the spec-
ified dimension. The alternative hypothesis for the
directional paired comparison test is that if the under-
lying population can discriminate between the samples
based on the specified sensory attribute then the sam-
ple higher in the specified dimension (say A) will be
chosen more often as higher in intensity of the spec-
ified dimension than the other sample (say B), this is
Ppc. Mathematically this may be written as Eq. (4.2)

HA : Ppc >
1

2
(4.2)

The results of the paired directional (2-AFC)
test indicate the direction of the specified difference
between the two samples. The sensory specialist must
be sure that the two samples only differ in the single
specified sensory dimension. This is often a problem
with sensory discrimination testing of foods because
changing one parameter frequently affects many other
sensory attributes of the products. For example, remov-
ing some of the sugar from a sponge cake will likely
make the cake less sweet but it would also affect the
texture and the browning of the cake. In this case
the directional paired comparison would not be an
appropriate discrimination test to use.

4.2.1.2 Difference Paired Comparison (or the

Simple Difference Test or the

Same/Different Test)

This technique is similar to the triangle and duo–trio
tests but it is not often used. It is best used, instead
of the triangle or duo–trio test, when the product has
a lingering effect or is in short supply and the pre-
sentation of three samples simultaneously would not
be feasible (Meilgaard et al., 2006). In this case, the
experimenter wants to determine whether the two sam-
ples differ without specifying the dimension(s) of the
potential difference. An example would be if the study
involves two sponge cakes, identical in formulation,
except for the amount of sugar used. It is likely that the
two cakes will differ in sweetness but probably also in
texture and crust color.

The panelists are presented simultaneously with the
two samples and are asked whether they perceive the
samples to be the same or different. See Fig. 4.2 for a
sample score sheet. The panelists only need to compare
the two samples and decide whether they are simi-
lar or different. Humans easily make these types of
comparisons and thus the task is relatively easy for
the panelists. Thus, the panelists must be trained to
understand the task as described by the score sheet
but they need not be trained to evaluate specified
sensory dimensions. The difference paired compari-
son method has four possible serving sequences (AA,
BB, AB, BA). These sequences should be randomized
across panelists with each sequence appearing an equal
number of times.

The test is one tailed since the experimenter knows
the correct answer to the question asked of each of
the panelists, i.e., whether the two samples served to a
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Date _______________ 

Name ______________ 

Please rinse your mouth with water before starting. There are two samples in each of the two 

paired comparison sets for you to evaluate.  Taste each of the coded samples in the set in the 

sequence presented, from left to right, beginning with Set 1.  Take the entire sample in your 

mouth.  NO RETASTING. Are the samples within each set the same or different?  Circle the  

corresponding word.  Rinse with water between samples and expectorate all samples and water. 

Then proceed to the next set and repeat the tasting sequence. 

 Set 

 1 _____  _____  SAME  DIFFERENT 

 2 _____  _____  SAME  DIFFERENT 

Fig. 4.2 Example of a
difference paired comparison
score sheet.

specific panelists were the same or different. The alter-
native hypothesis for the difference paired comparison
test states that the samples are perceptibly different
and that the population will correctly indicate that the
samples are the same or different more frequently than
50% of the time. The mathematical form is

HA : Ppc >
1

2
(4.3)

The verbal form of the alternative hypothesis is that
the population would be correct (saying that AB and
BA pairs are different and that AA and BB pairs are the
same) more than half the time. The results of the paired
difference test will only indicate whether the panelists
could significantly discriminate between the samples.
Unlike the paired directional test, no specification or
direction of difference is indicated. In other words, the
sensory scientist will only know that the samples are
perceptibly different but not in which attribute(s) the
samples differed. An alternative analysis is presented
in the Appendix to this chapter, where each panelist
sees an identical pair (AA or BB) and one test pair (AB
or BA) in randomized sequence.

4.2.2 Triangle Tests

In the triangle test, three samples are presented simul-
taneously to the panelists, two samples are from the
same formulation and one is from the different for-
mulation. Each panelist has to indicate either which
sample is the odd sample or which two samples are
most similar. The usual form of the score sheet asks
the panelist to indicate the odd sample. However, some
sensory specialists will ask the panelist to indicate the
pair of similar samples. It probably does not matter
which question is asked. However, the sensory spe-
cialist should not change the format when re-using
panelists since they will get confused. See Fig. 4.3 for
a sample score sheet. Similarly to the paired difference
test the panelist must be trained to understand the task
as described by the score sheet.

The null hypothesis for the triangle test states that
the long-run probability (Pt) of making a correct selec-
tion when there is no perceptible difference between
the samples is one in three (H0:Pt = 1/3). The alter-
native hypothesis states that the probability that the
underlying population will make the correct decision

Date ____________________ 

Name ___________________ 

Set _____________________ 

Rinse your mouth with water before beginning. Expectorate the water into the container 

provided. You received three coded samples. Two of these samples are the same and one is 

different.  Please taste the samples in the order presented, from left to right.  Circle the number of 

the sample that is different (odd).  Rinse your mouth with water between samples and 

expectorate all samples and the water.  

___________ ___________ __________
Fig. 4.3 Example of a
triangle score sheet.
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when they perceive a difference between the samples
will be larger than one in three.

HA : Pt >
1

3
(4.4)

This is a one-sided alternative hypothesis and the
test is one tailed. In this case there are six possible
serving orders (AAB, ABA, BAA, BBA, BAB, ABB)
which should be counterbalanced across all panelists.
As with the difference paired comparison, the trian-
gle test allows the sensory specialist to determine if
two samples are perceptibly different but the direc-
tion of the difference is not indicated by the triangle
test. Again, the sensory scientist will only know that
the samples are perceptibly different but not in which
attribute(s) the samples differed.

4.2.3 Duo–Trio Tests

In the duo–trio tests, the panelists also receive the three
samples simultaneously. One sample is marked refer-
ence and this sample is the same formulation as one of
the two coded samples. The panelists have to pick the
coded sample that is most similar to reference. The null
hypothesis states that the long-run probability (Pdt) of
the population making a correct selection when there is
no perceptible difference between the samples is one in
two (H0: Pdt = 1/2). The alternate hypothesis is that if
there is a perceptible difference between the samples
the population would match the reference and the sam-
ple correctly more frequently than one in two times.

HA : Pdt >
1

2
(4.5)

Again, the panelists should be trained to perform the
task as described by the score sheet correctly. Duo–trio
tests allow the sensory specialist to determine if two
samples are perceptibly different but the direction of
the difference is not indicated by the duo–trio test. In
other words, the sensory scientist will only know that
the samples are perceptibly different but not in which
attribute(s) the samples differed.

There are two formats to the duo–trio test, namely
the constant reference duo–trio test and the balanced
reference duo–trio test. From the point of view of the
panelists the two formats of the duo–trio test are iden-
tical (see Figs. 4.4a and b), but to the sensory specialist
the two formats differ in the sample(s) used as the
reference.

4.2.3.1 Constant Reference Duo–Trio Test

In this case, all panelists receive the same sample
formulation as the reference. The constant reference
duo–trio test has two possible serving orders (RA BA,
RA AB) which should be counterbalanced across all
panelists. The constant reference duo–trio test seems
to be more sensitive especially if the panelists have
had prior experience with the product (Mitchell, 1956).
For example, if product X is the current formulation
(familiar to the panelists) and product Z is a new refor-
mulation then a constant reference duo–trio test with
product X as reference would be the method of choice.

4.2.3.2 Balanced Reference Duo–Trio Test

With the balanced reference duo–trio test half of
the panelists receive one sample formulation as the

Date ________________ 

Name _______________ 

Before starting please rinse your mouth with water and expectorate. There are three samples in 

each of the two duo−trio sets for you to evaluate.  In each set, one of the coded pairs is the same 

as the reference.  For each set taste the reference first.  Then taste each of the coded samples in 

the sequence presented, from left to right.  Take the entire sample in your mouth. NO 

RETASTING. Circle the number of the sample which is most similar to the reference. Do not 

swallow any of the sample or the water. Expectorate into the container provided.  Rinse your 

mouth with water between sets 1 and 2. 

 Set 

 1 Reference ________ ________ 

 2 Reference ________ ________ 

Fig. 4.4a Example of a
constant reference duo–trio
score sheet.
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Date ________________ 

Name _______________ 

Before starting please rinse your mouth with water and expectorate. There are three samples in 

each of the two duo−trio sets for you to evaluate.  In each set, one of the coded pairs is the same 

as the reference.  For each set taste the reference first.  Then taste each of the coded samples in 

the sequence presented, from left to right.  Take the entire sample in your mouth. NO 

RETASTING. Circle the number of the sample which is most similar to the reference. Do not 

swallow any of the sample or the water. Expectorate into the container provided.  Rinse your 

mouth with water between sets 1 and 2. 

 Set 

 1 Reference ________ ________ 

 2 Reference ________ ________ 

Fig. 4.4b Example of a
balanced reference duo–trio
score sheet.

reference and the other half of the panelists receive
the other sample formulation as the reference. In this
case, there are four possible serving orders (RA BA,
RA AB, RB AB, RB BA) which should be counterbal-
anced across all panelists. This method is used when
both products are prototypes (unfamiliar to the pan-
elists) or when there is not a sufficient quantity of the
more familiar product to perform a constant reference
duo–trio test.

4.2.4 n-Alternative Forced Choice (n-AFC)

Methods

The statistical advantages and hypotheses associated
with and the uses of the n-AFC tests will be discussed
in detail in Chapter 5. As we have seen the 2-AFC
method is the familiar directional paired comparison
method. The three-alternative forced choice (3-AFC)
method is similar to a “directional” triangle method
where the panelists receive three samples simultane-
ously and are asked to indicate the sample(s) that
are higher or lower in a specified sensory dimension
(Frijters, 1979). In any specific 3-AFC study there are
only three possible serving orders (AAB, ABA, BAA
or BBA, BAB, ABB) that should be counterbalanced
across all panelists. As with the 2-AFC the specified
sensory dimension must be the only perceptible dimen-
sion in which the two samples may differ. The panelists
must be trained to identify the sensory dimension eval-
uated. They must also be trained to perform the task as
described by the score sheet (Fig. 4.5).

The three-alternative forced choice test will allow
the sensory scientist to determine if the two samples

differ in the specified dimension and which sample is
higher in perceived intensity of the specified attribute.
The danger is that other sensory changes will occur in
a food when one attribute is modified and these may
obscure the attribute in question. Another version of
the n-AFC asks panelists to pick out the weakest or
strongest in overall intensity, rather than in a specific
attribute. This is a very difficult task for panelists when
they are confronted with a complex food system.

4.2.5 A-Not-A tests

There are two types of A-not-A tests referenced in
the literature. The first and the more commonly used
version has a training phase with the two products
followed by monadic evaluation phase (Bi and Ennis,
2001a, b), we will call this the standard A-not-A test.
The second version is essentially a sequential paired
difference test or simple difference test (Stone and
Sidel, 2004), which we will call the alternate A-not-
A test. The alternate A-not-A test is not frequently
used. In the next section we will discuss the alternate
A-not-A test first since the statistical analysis for this
version is similar to that of the paired comparison dis-
crimination test. The statistical analyses for the various
standard A-not-A tests are based on a different the-
ory and somewhat more complex and will be discussed
later.

4.2.5.1 Alternate A-Not-A test

This is a sequential same/difference paired difference
test where the panelist receives and evaluates the first
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Date _______________ 

Name ______________ 

Please rinse your mouth with water before starting. There are three samples in the set for you to 

valuate.  Taste each of the coded samples in the set in the sequence presented, from left to right. 

Take the entire sample in your mouth.  NO RETASTING. Within the group of three, circle the 

number of the sweeter sample. Rinse with water between samples and expectorate all samples 

and water. 

  ________ ________ ________ 

Fig. 4.5 Example of a
three-alternative forced choice
score sheet.

sample, that sample is then removed. Subsequently, the
panelist receives and evaluates the second sample. The
panelist is then asked to indicate whether the two sam-
ples were perceived to be the same or different. Since
the panelists do not have the samples available simulta-
neously they must mentally compare the two samples
and decide whether they are similar or different. Thus,
the panelists must be trained to understand the task
as described by the score sheet but they need not
be trained to evaluate specified sensory dimensions.
The alternate A-not-A test, like the difference paired
comparison method, has four serving sequences (AA,
BB, AB, BA). These sequences should be random-
ized across panelists with each sequence appearing an
equal number of times. The test is one tailed since the
experimenter knows the correct answer to the question
asked of the panelists namely whether the two sam-
ples are the same or different. The null hypothesis of
the alternate A-not-A test is the same as the difference
paired comparison null hypothesis (H0: Ppc = 0.5).
The alternative hypothesis for this form of the A-not-A
test is that if the samples are perceptibly different the
population will correctly indicate that the samples are
the same or different more frequently than one in two
times. This alternative hypothesis is also the same as
that of the difference paired comparison test (HA: Ppc

> 1/2).
The results of the A-not-A test only indicate

whether the panelists could significantly discriminate
between the samples when they are not presented
simultaneously. Like the paired difference test, no
direction of difference is indicated. In other words, the
sensory scientist will only know that the samples are
perceptibly different but not in which attribute(s) the
samples differed.

This version of the A-not-A test is frequently used
when the experimenter cannot make the two formu-
lations have exactly the same color or shape or size,
yet the color or shape or size of the samples are not

relevant to the objective of the study. However, the
differences in color or shape or size have to be very
subtle and only obvious when the samples are pre-
sented simultaneously. If the differences are not subtle
the panelists are likely to remember these and they
will make their decision based on these extraneous
differences.

4.2.5.2 Standard A-Not-A Test

Panelists inspect multiple examples of products that
are labeled “A” and usually also products that are
labeled “not-A.” Thus there is a learning period. Then
once the training period has been completed the pan-
elists receive samples one at a time and are asked
whether each one is either A or not-A. As discussed
by Bi and Ennis (2001a) the standard A-not-A test
potentially has four different designs. For the monadic
A-not-A test the panelist, after the training phase, is
presented with a single sample (either A or not-A). In
the paired A-not-A version the panelist, after comple-
tion of the training phase, is presented with a pair of
samples, sequentially (one A and one not-A, counter
balanced across panelists). In the replicated monadic
A-not-A version the panelist, after completion of train-
ing, receives a series of samples of either A or not-A
but not both. This version is rarely used in practice.
Lastly, in the replicated mixed A-not-A version the
panelist, after completion of training, receives a series
of A and not-A samples. Each of these different for-
mats requires different statistical models and using an
inappropriate model could lead to a misleading con-
clusion. As described by Bi and Ennis (2001a) “The
statistical models for the A-Not A method are different
from that of other discrimination methods such as the
m-AFC, the triangle, and the duo–trio methods.”

“Pearson’s and McNemar’s chi-square statistics
with one degree of freedom can be used for the
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standard A-Not A method while binomial tests based
on the proportion of correct responses can be used for
the m-AFC, the triangle, and the duo–trio methods.
The basic difference between the two types of differ-
ence tests is that the former involves a comparison of
two proportions (i.e., the proportion of “A” responses
for the A sample versus that for the Not A sample)
or testing independence of two variables (sample
and response) while the latter is a comparison of one
proportion with a fixed value (i.e., the proportion of
correct responses versus the guessing probability)”.
Articles by Bi and Ennis (2001a, b) clearly describe
data analysis methods for these tests.. Additionally, the
article by Brockhoff and Christensen (2009) describes
a R-package called SensR (http://www.cran.r-
project.org/package=sensR/) that may be used for the
data analyses of some Standard A-not-A tests. The
data analyses associated with the standard A-not-A
tests are beyond the scope of this textbook, but see the
Appendix of this chapter which shows the application
of the McNemar chi-square for a simple A-not-A test
where each panelist received one standard product (a
“true” example of A) and one test product. Each is
presented separately and a judgment is collected for
both products.

4.2.6 Sorting Methods

In sorting tests the panelists are given a series of sam-
ples and they are asked to sort them into two groups.
The sorting tests can be extremely fatiguing and are
not frequently used for taste and aroma sensory evalu-
ation but they are used when sensory specialists want
to determine if two samples are perceptibly different
in tactile or visual dimensions. The sorting tests are
statistically very efficient since the long-run probabil-
ity of the null hypotheses of the sorting tests can be
very small. For example, the null hypothesis of the
two-out-of-five test is 1 in 10 (P2/5 = 0.1) and for
the Harris–Kalmus test the null hypothesis is 1 in 70
(P4/8 = 0.0143). These tests are discussed below.

4.2.6.1 The Two-Out-of-Five Test

The panelists receive five samples and are asked to sort
the samples into two groups, one group should con-
tain the two samples that are different from the other

three samples (Amoore et al., 1968). Historically, this
test was used for odor threshold work where the sam-
ples were very weak and therefore not very fatiguing
(Amoore, 1979). The probability of correctly choos-
ing the correct two samples from five by chance alone
is equal to 0.1. This low probability of choosing the
correct pair by chance is the main advantage of the
method. However, major disadvantage of this method
is the possibility of sensory fatigue. The panelists
would have to make a number of repeat evaluations and
this could be extremely fatiguing for samples that have
to be smelled and tasted. This technique works well
when the samples are compared visually or by tactile
methods but it is usually not appropriate for samples
that must be smelled or tasted. Recently Whiting et al.
(2004) compared the two-out-of-five and the triangle
test in determining perceptible differences in the color
of liquid foundation cosmetics. They found that the
triangle test results gave weak correlations with the
instrumental color-differences but that the results of
the two-out-of-five test were well correlated with the
instrumental values.

4.2.6.2 The Harris–Kalmus Test

The Harris–Kalmus test was used to determine indi-
vidual thresholds for phenyl thiocarbamide (PTC,
a.k.a. phenyl thiourea, PTU). In this test panelists are
exposed to increasing concentration levels of PTC in
groups of eight (four samples containing water and
four samples containing the current concentration of
PTC). The panelists are asked to sort the eight samples
into two groups of four. If the panelist does the sort-
ing task incorrectly he/she is then exposed to the next
higher concentration of PTC. The sorting task contin-
ues until the panelist correctly sorts the two groups of
four samples. That concentration level of PTC is then
identified as the threshold level for that panelist (Harris
and Kalmus, 1949–1950). The method has the same
disadvantage as the two-out-of-five test, in that it could
be fatiguing. However, as soon as the panelist correctly
sorts the samples the researcher concludes that the pan-
elist is sensitive to PTC. Panelists insensitive to PTC
only “taste” water in the solutions and are thus not
fatigued. A shortened version of this test using three-
out-of-six was used by Lawless (1980) for PTC and
PROP (6-n-propyl thiouracil) thresholds.
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4.2.7 The ABX Discrimination Task

The ABX discrimination task, as its name intends to
suggest, is a matching-to-sample task. The panelist
receives two samples, representing a control sample
and a treatment sample. As in other discrimination
tasks, the “treatment” in food research is generally an
ingredient change, a processing change or a variable
having to do with packaging or shelf life. The “X”
sample represents a match to one of the two inspected
samples and the panelist is asked to indicate which one
is the correct match. The chance probability level is
50% and the test is one tailed, as the alternative hypoth-
esis is performance in the population above 50% (but
not below). In essence, this task is a duo–trio test in
reverse (Huang and Lawless, 1998). Instead of hav-
ing only one reference, two are given, as in the dual
standard discrimination test. In theory, this allows the
panelists to inspect the two samples and to discover
for themselves the nature of the sensory difference
between the samples, if any. As the differences are
completely “demonstrated” to the panelists, the task
should enjoy the same advantage as the dual standard
test (O’Mahony et al., 1986) in that the participants
should be able to focus on one or more attributes of
difference and use these cues to match the test item
to the correct sample. The inspection process of the
two labeled samples may also function as a warm-up
period. The test may also have some advantage over
the dual standard test since only one item, rather than
two are presented, thus inducing less sensory fatigue,
adaptation, or carry-over effects. On the other hand,
giving only one test sample provides less evidence as
to the correct match, so it is unknown whether this
test would be superior to the dual standard. As in
other general tests of overall difference (triangle, duo–
trio) the nature of the difference is not specified and
this presents a challenge to the panelists to discover
relevant dimensions of sensory difference and not be
swayed by apparent but random differences. As foods
are multi-dimensional, random variation in irrelevant
dimensions can act as a false signal to the panelists
and draw their attention to sensory features that are
not consistent sources of difference (Ennis and Mullen,
1986).

This test has been widely used as a forced choice
measure of discrimination in psychological studies,
for example, in discrimination of speech sounds and

in measuring auditory thresholds (Macmillan et al.,
1977; Pierce and Gilbert, 1958). Several signal detec-
tion models (see Chapter 5) are available to predict
performance using this test (Macmillan and Creelman,
1991). The method has been rarely if ever applied to
food testing, although some sensory scientists have
been aware of it (Frijters et al., 1980). Huang and
Lawless (1998) did not see any advantages to the use
of this test over more standard discrimination tests.

4.2.8 Dual-Standard Test

The dual standard was first used by Peryam and Swartz
(1950) with odor samples. It is essentially a duo–trio
test with two reference standards—the control and the
variant. The two standards allow the panelists to cre-
ate a more stable criterion as to the potential difference
between the samples. The potential serving orders for
this test are R(A) R(B), AB, R(A) R(B) BA, R(B) R(A)

AB, R(B) R(A) BA. The probability of guessing the
correct answer by chance is 0.5 and the data analyses
for this test are identical to that of the duo–trio test.
Peryam and Swartz felt quite strongly that the tech-
nique would work best with odor samples due to the
relatively quick recovery and that the longer recovery
associated with taste samples would preclude the use
of the test. The test was used by Pangborn and Dunkley
(1966) to detect additions of lactose, algin gum, milk
salts, and proteins to milk. O’Mahony et al. (1986)
working with lemonade found that the dual-standard
test elicited superior performance over the duo–trio
test. But O’Mahony (personal communication, 2009)
feels that this result is in error, since the panelists were
not instructed to evaluate the standards prior to each
pair evaluation and therefore the panelists were prob-
ably reverting to a 2-AFC methodology. This would
be in agreement with Huang and Lawless (1998) who
studied sucrose additions to orange juice and they did
not find superiority in performance between the dual
standard and the duo–trio or the ABX tests.

4.3 Reputed Strengths and Weaknesses

of Discrimination Tests

If the batch-to-batch variation within a sample formu-
lation is as large as the variation between formulations
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then the sensory specialist should not use triangle or
duo–trio tests (Gacula and Singh, 1984). In this case
the paired comparison difference test could be used
but the first question that the sensory specialist should
ask is whether the batch-to-batch variation should not
be studied and improved prior to any study of new or
different formulations.

The major weakness of all discrimination tests is
that they do not indicate the magnitude of the sensory
difference(s) between the sample formulations. As the
simple discrimination tests are aimed at a yes/no deci-
sion about the existence of a sensory difference, they
are not designed to give information on the magnitude
of a sensory difference, only whether one is likely to be
perceived or not. The sensory specialist should not be
tempted to conclude that a difference is large or small
based on the significance level or the probability (p-
value) from the statistical analysis. The significance
and p-value depend in part upon the number of pan-
elists in the test as well as the inherent difficulty of the
particular type of discrimination test method. So these
are no acceptable indices of the size of the perceivable
difference. However, it is sensible that a comparison
in which 95% of the judges answered correctly has
a larger sensory difference between control and test
samples than a comparison in which performance was
only at 50% correct. This kind of reasoning works
only if a sufficient number of judges were tested, the
methods were the same, and all test conditions were
constant. Methods for interval level scaling of sensory
differences based on proportions of correct discrim-
inations in forced choice tests are discussed further
in Chapter 5 as Thurstonian scaling methods. These
methods are indirect measures of small differences.
They are also methodologically and mathematically
complex and require certain assumptions to be met in
order to be used effectively. Therefore we feel that
the sensory specialist is wiser to base conclusions
about the degree of difference between samples on
scaled (direct) comparisons, rather than indirect esti-
mates from choice performance in discrimination tests.
However, there are alternative opinions in the sensory
community and we suggest that interested parties read
Lee and O’Mahony (2007).

With the exception of the 2-AFC and 3-AFC tests
the other discrimination tests also do not indicate the
nature of the sensory difference between the samples.
The major strength of the discrimination tests is that
the task that the panelists perform is quite simple and

intuitively grasped by the panelists. However, it is fre-
quently the very simplicity of these tests that lead to the
generation of garbage data. Sensory specialists must
be very aware of the power, replication, and counter-
balancing issues associated with discrimination tests.
These issues are discussed later in this chapter.

4.4 Data Analyses

The data from discrimination tests may be analyzed
by any of the following statistical methods. The three
data analyses are based on the binomial, chi-square,
or normal distributions, respectively. All these analy-
ses assume that the panelists were forced to make a
choice. Thus they had to choose one sample or another
and could not say that they did not know the answer.
In other words, each panelist either made a correct or
incorrect decision, but they all made a decision.

4.4.1 Binomial Distributions and Tables

The binomial distribution allows the sensory special-
ist to determine whether the result of the study was
due to chance alone or whether the panelists actu-
ally perceived a difference between the samples. The
following formula allows the sensory scientists to cal-
culate the probability of success (of making a correct
decision; p) or the probability of failure (of making an
incorrect decision; q) using the following formula.

P(y) = n!
y!(n − y)!pypn−y (4.6)

where

n = total number of judgments
y = total number of correct judgments
p = probability of making the correct judgment by

chance

In this formula, n! describes the mathematical
factorial function which is calculated as n×(n–1)×
(n–2). . .×2×1. Before the widespread availability of
calculators and computers, calculation of the bino-
mial formula was quite complicated, and even now
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it remains somewhat tedious. Roessler et al. (1978)
published a series of tables that use the binomial for-
mula to calculate the number of correct judgments and
their probability of occurrence. These tables make it
very easy to determine if a statistical difference were
detected between two samples in discrimination tests.
However, the sensory scientist may not have these
tables easily available thus he/she should also know
how to analyze discrimination data using statistical
tables that are more readily available. We abridged the
tables from Roessler et al. (1978) into Table 4.3. Using
this table is very simple. For example, in a duo–trio test
using 45 panelists, 21 panelists correctly matched the
sample to the reference. In Table 4.3, in the section for
duo–trio tests, we find that the table value for 45 pan-
elists at 5% probability is 29. This value is larger than
21 and therefore the panelists could not detect a differ-
ence between the samples. In a different study, using
a triangle test, 21 of 45 panelists correctly identified
the odd sample. In Table 4.3, in the section for triangle
tests, we find that the table value for 45 panelists at 5%
probability is 21. This value is equal to 21 and there-
fore the panelists could detect a significant difference
between the samples at the alpha probability of 5%.

4.4.2 The Adjusted Chi-Square (χ2) Test

The chi-square distribution allows the sensory scien-
tist to compare a set of observed frequencies with a
matching set of expected (hypothesized) frequencies.
The chi-square statistic can be calculated from the fol-
lowing formula (Amerine and Roessler, 1983), which
includes the number –0.5 as a continuity correction.
The continuity correction is needed because the χ2 dis-
tribution is continuous and the observed frequencies
from discrimination tests are integers. It is not possi-
ble for one-half of a person to get the right answer and
so the statistical approximation can be off by as much
as 1/2, maximally.

χ2 =
[

(|O2 − E2| − 0.5)2

E1

]

+
[

(|O2 − E2| − 0.5)2

E2

]

(4.7)
where

O1 = observed number of correct choices

O2 = observed number incorrect choices
E1 = expected number of correct choices
E1 is equal to total number of observations (n) times

probability (p) of a correct choice, by chance
alone in a single judgment where

p = 0.100 for the two-out-of-five test
p = 0.500 for duo–trio, paired difference, paired

directional, alternate A-not-A tests
p = 0.333 for triangle tests
E2 = expected number of incorrect choices
E2 is equal to total number of observations (n) times

probability (q) of an incorrect choice, by chance
alone in a single judgment where q = 1−p

q = 0.900 for the two-out-of-five test
q = 0.500 for duo–trio, paired difference, paired

directional, alternate A-not-A tests, ABX tests
q = 0.667 for triangle tests

The use of discrimination tests allows the sensory
scientist to determine whether two products are statis-
tically perceived to be different, therefore the degrees
of freedom equal one (1). Therefore, a χ2 table using
df = 1 should be consulted, for alpha (α) at 5% the
critical χ2 value is 3.84. For other alpha levels consult
the chi-square table in the Appendix.

4.4.3 The Normal Distribution and the

Z-Test on Proportion

The sensory specialist can also use the areas under
the normal probability curve to estimate the probabil-
ity of chance in the results of discrimination tests. The
tables associated with the normal curve specify areas
under the curve (probabilities) associated with speci-
fied values of the normal deviate (z). The following two
formulae (Eqs. (4.8) and (4.9)) can be used to calcu-
late the z-value associated with the results of a specific
discrimination test (Stone and Sidel, 1978):

z =
[Pobs − Pchance] − 1

2 N√
pq/N

(4.8)

where

Pobs=X/N

Pchance = probability of correct decision by chance
For triangle test: Pchance = 1/3
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Table 4.3 Minimum numbers of correct judgmentsa to establish significance at probability levels of 5 and 1% for paired difference
and duo–trio tests (one tailed, p = 1/2) and the triangle test (one tailed, p = 1/3)

Paired difference and duo–trio tests Triangle test

Number of trials (n) Probability levels Number of trials (n) Probability levels

0.05 0.01 0.05 0.01
5 5 – 3 3 –
6 6 – 4 4 –
7 7 7 5 4 5
8 7 8 6 5 6
9 8 9 7 5 6

10 9 10 8 6 7
11 9 10 9 6 7
12 10 11 10 7 8
13 10 12 11 7 8
14 11 12 12 8 9
15 12 13 13 8 9
16 12 14 14 9 10
17 13 14 15 9 10
18 13 15 16 9 11
19 14 15 17 10 11
20 15 16 18 10 12
21 15 17 19 11 12
22 16 17 20 11 13
23 16 18 21 12 13
24 17 19 22 12 14
25 18 19 23 12 14
26 18 20 24 13 15
27 19 20 25 13 15
28 19 21 26 14 15
29 20 22 27 14 16
30 20 22 28 15 16
31 21 23 29 15 17
32 22 24 30 15 17
33 22 24 31 16 18
34 23 25 32 16 18
35 23 25 33 17 18
36 24 26 34 17 19
37 24 26 35 17 19
38 25 27 36 18 20
39 26 28 37 18 20
40 26 28 38 19 21
41 27 29 39 19 21
42 27 29 40 19 21
43 28 30 41 20 22
44 28 31 42 20 22
45 29 31 43 20 23
46 30 32 44 21 23
47 30 32 45 21 24
48 31 33 46 22 24
49 31 34 47 22 24
50 32 34 48 22 25
60 37 40 49 23 25
70 43 46 50 23 26
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Table 4.3 (continued)

Paired difference and duo–trio tests Triangle test

Number of trials (n) Probability levels Number of trials (n) Probability levels

80 48 51 60 27 30
90 54 57 70 31 34

100 59 63 80 35 38
110 65 68 90 38 42
120 70 74 100 42 45
130 75 79 110 46 49
140 81 85 120 50 53
150 86 90 130 53 57
160 91 96 140 57 61
170 97 101 150 61 65
180 102 107 160 64 68
190 107 112 170 68 72
200 113 117 180 71 76

190 75 80
200 79 83

aCreated in EXCEL 2007 using B. T. Carr’s Discrimination Test Analysis Tool EXCEL program (used with permission)

For duo–trio and paired comparison tests:
Pchance = 1/2

X = number of correct judgments
N = total number of judgments.

Alternately one can use the following equation:

z = X − np − 0.5
√

npq
(4.9)

where

X = number of correct responses
n = total number of responses
p = probability of correct decision by chance
For triangle test: p = 1/3
For duo–trio and paired comparison tests: p = 1/2

and in both cases q = 1−p

As with the χ2 calculation a continuity correction
of –0.5 has to be made. Consult a Z-table (area-under-
normal-probability curve) to determine the probability
of this choice being made by chance. The critical Z-
value for a one-tailed test at alpha (α) of 5% is 1.645.
See the Z-table in the Appendix for other values.

4.5 Issues

4.5.1 The Power of the Statistical Test

Statistically, there are two types of errors that the sen-
sory scientist of any sensory method can make when
testing the null hypothesis (H0). These are the Type I (α
or alpha) and Type II (β or beta) errors (see Appendix E
for a more extensive discussion). A Type I error occurs
when the sensory scientist rejects the null hypothesis
(H0) when it is actually true. When making a Type I
error in a discrimination test we would conclude that
the two products are perceived to be different when
they are actually not perceptibly different. The Type I
error is controlled by the sensory scientist choice of the
size of alpha. Traditionally, alpha is chosen to be very
low (0.05, 0.01, or 0.001) which means that there is a
1 in 20, 1 in 100, and 1 in 1,000 chance, respectively,
of making a Type I error. A Type II error occurs when
the sensory scientist accepts the null hypothesis (H0)
when it is actually false. The Type II error is based on
the size of and it is the risk of not finding a difference
when one actually exists and it is defined as 1–beta.
In other words, the power of a test could be defined
as the probability of finding a difference if one actu-
ally exists or it is the probability of making the correct
decision that the two samples are perceptibly different.
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The power of the test is dependent on the magnitude of
the difference between the samples, the size of alpha,
and the number of judges performing the test.

4.5.1.1 Why Is Power Important When

Performing Discrimination Tests?

A candy manufacturer wants to show that the new for-
mulation of their peanut brittle is crunchier than the
old formulation. Prior to the study the sensory scien-
tist had decided which probability of making a Type I
error (alpha) would be acceptable. If the sensory scien-
tist had decided that alpha should be 0.01, then she/he
had a 1 in 100 chance of committing a Type I error.
Consider than that this candy maker performs a two-
alternative forced choice test and the data indicate that
the null hypothesis should be rejected. The sensory sci-
entist is confronted with two possibilities. In the first
case, the null hypothesis is actually false and should
be rejected; in this case the new formulation is actu-
ally crunchier than the old formulation. In the second
case, the null hypothesis is actually true and the sen-
sory scientist has made a Type I error. In this type of
study the Type I error is usually minimized because
the sensory scientist wants to be quite certain that the
new formulation is different from the old formulation.
In this case the power of the test is only of passing
interest.

Consider a second scenario. An ice cream manufac-
turer wants to substitute the expensive vanilla flavor
used in their premium vanilla ice cream with a cheaper
vanilla flavor. However, they do not want the consumer
to perceive a difference in the product. They perform a
triangle test to determine if a panel could tell a differ-
ence between the samples. The data indicate that the
null hypothesis should not be rejected. Again the sen-
sory scientist is confronted with two possibilities. In
the first case, the null hypothesis is true and the two
formulations are not perceptibly different. In the sec-
ond case the samples are perceptibly different but the
sensory scientist was making a Type II error. In this
type of study the Type II error should be minimized
(power of the test should be maximized) so that the
sensory scientist can state with some confidence that
the samples are not perceptibly different.

In many published discrimination studies the
authors claim that a discrimination test indicated
that two samples were not significantly different.
Frequently, the power of these tests is not reported,
but it can often be calculated post hoc. It is unfortu-
nately the case that the power of these tests is often
very low, suggesting that the research would not have
revealed a difference even if a difference existed. Or in
statistical jargon, the probability of a Type II error was
high.

4.5.1.2 Power Calculations

Discrimination test power calculations are not simple.
However, this does not absolve the sensory scientist
from attempting to determine the power associated
with a specific study, especially when the objective of
the study is to make an equivalent ingredient substi-
tution and therefore the objective of the study is not
to reject the null hypothesis. In general, the sensory
specialist should consider using a large sample size
when power needs to be high (N = 50 or greater).
This is essential in any situation where there are serious
consequences to missing a true difference.

The sensory scientist will frequently make a post
hoc power calculation. In this calculation the power
of the test is calculated after the completion of the
study. The sensory scientist can also make an a pri-
ori calculation of the number of judgments needed
for a specific power. In both cases the sensory scien-
tist must make a series of assumptions and all power
calculations will only be as good as these assump-
tions. The scientists must be as extremely careful when
making the required assumptions for the power calcu-
lations. A number of authors (Amerine et al., 1965;
Ennis, 1993; Gacula and Singh, 1984; Kraemer and
Thiemann, 1987; Macrae, 1995; Schlich, 1993) have
studied power calculations for discrimination tests and
have prepared tables that can be used to determine
either the power of a specified discrimination test or
the number of judgments needed for a specific level
of power. The different tables (Ennis, 1993; Schlich,
1993) would lead one to slightly different conclusions
as to the power of the test. The reason for these differ-
ences is that these calculations are based on a series of
assumptions and slight differences in assumptions can
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lead to differences in power calculations. Power calcu-
lations will be discussed in more detail in Chapter 5
and Appendix E. Additionally the R-package SensR
(http://www.cran.r-project.org/package=sensR/) writ-
ten by Brockhoff and Christensen (2009) allows
one to calculate the power associated with most
discrimination tests.

4.5.2 Replications

As seen in the previous section and in the power sec-
tion of Appendix E the number of judgments made in
a discrimination test is very important. The number of
judgments can be increased by using more panelists or
by having a smaller number of panelists perform more
tests. These two methods of increasing the number of
judgments are clearly not equivalent. The ideal way
to increase the number of judgments is to use more
panelists. This is the only way in which the sensory
specialist can be assured that all judgments were made
independently. All the data analysis methods discussed
above assume that all judgments were made entirely
independently of one another (Roessler et al., 1978).
Frequently and perhaps unfortunately, the industrial
sensory scientist has only a limited number of pan-
elists available. In this case the number of judgments
may be increased by having each panelist evaluate the
samples more than once in a session. In practice this
is rather simply done. The panelist receives a set of
samples which he/she evaluates. The samples and the
score sheet are returned and then the panelist would
receive a second set of samples. In some cases the
panelist may even receive additional replications. It
should be remembered that if the same panelists repeat

their judgments on the same samples, there is a pos-
sibility these judgments are not totally independent.
In other words, the replicate evaluations made by a
specific individual may be related to each other. The
use of replication increases the power of the difference
test by increasing the number of judgments; however,
depending on the assumptions relating to effect size
(see Appendix E) and the type of difference test used
the increase in power may be similar or less than
when one uses the same number of independent judg-
ments (Brockhoff, 2003). As can be seen in Table 4.4,
extracted from Tables 3 and 4 in Brockhoff (2003)
assuming an alpha of 5% and a medium effect size
(37.5% above chance discriminating) for a triangle test
the power for the independent judgments is more than
for the replicated judgments. On the other hand for
an alpha of 5% and a small effect size (25% above
chance discriminator) for a duo–trio test the values
are quite similar. Therefore replication of discrimi-
nation tests and the effect of this on power are not
simple.

4.5.2.1 Analyzing Replicate Discrimination Tests

The important caution is that sensory scientists should
not simply combine the data from replications and
count the number of observations as the number of
replicates multiplied by the number of panelists. They
are not independent judgments and the situation needs
to be examined closely before any such combina-
tion can be justified. There are a few simpler options
that are available and a more complex option, the
beta-binomial model.

Table 4.4 Limits of power
(%) based on Monte Carlo
simulations (extracted from
Tables 3 and 4 of Brockhoff,
2003)

na kb=1 kb=2 kb=3 kb=4 kb=5

(a) Triangle test with alpha=5% and medium-effect size (37.5% above chance discriminator)
12 40 70 81 90 91
24 74
36 88
48 97

(b) Duo–trio test with alpha=5% and small-effect size (25% above chance discriminator)
12 11 28 39 46 58
24 27
36 37
48 44
aNumber of panelists; bNumber of replications



4.5 Issues 95

Simpler Options

First, the replications can be analyzed separately as
independent tests. This can provide information as to
whether there is a practice, warm-up, or learning effect
if the proportion correct increases over trials. This
could be useful information because a consumer in the
real world will have multiple opportunities to interact
with a product, and usually not just a single tasting.
If later replications are statistically significant (and the
first is not), that is usually grounds for concluding that
the samples are in fact perceivably different. It is also
possible, of course, that fatigue or adaptation or carry-
over could have an effect on later replications, so the
sensory scientist needs to consider the nature of each
specific product and situation and make a reasoned
judgment. If the replications lead to different results,
further investigation or analysis may be necessary.

A second approach for duplicate tests is to simply
tabulate the proportion of panelists that got both tests
correct. Now the chance probability for a three sam-
ple test is 1/9 and for a test like the duo–trio or paired
comparison, it becomes 1/4. The same z-score formula
applies for the binomial test on proportions (Eq. (4.10))
as

z = (Pobs − p) − 1/2n√
pq/n

= (X − np) − 1/2
√

npq
(4.10)

where Pobs is the proportion correct (=X/n), X is the
actual number correct, n is the number of judges, p is
the chance probability, and q = 1−p.

Solving for X as a function of n, and using p = 1/9
for the triangle or 3-AFC tests, we get the following
for Z = 1.645 (p < 0.05, one tailed):

X = n/9 + 0.517
√

n + 0.5 (4.11)

and for p = 1/4 for the duplicated paired or duo–trio
tests:

X = n/4 + 0.712
√

n + 0.5 (4.12)

These can easily be programmed on a spreadsheet,
but do not forget to change the value of z if you wish
to calculate the critical value of X for other probabil-
ity levels. Of course, you must round up the value of X

to the next highest integer since you are counting indi-
viduals. This approach is somewhat conservative, as it
only considers those people who answered correctly

on both tests, and it is possible that a person might
miss the first test but get the replicate correct as a true
discrimination. The solution to this issue (considering
that some people might have partially correct discrim-
inations) is to use a chi-square test to compare the
observed frequencies against what one would expect
by chance for zero, one or two correct judgments (e.g.,
4/9, 4/9, and 1/9 for the replicated triangle or 3/8, 3/8,
and 1/4 for the replicated duo–trio).

4.5.2.2 Are Replications Statistically

Independent?

Another approach to replication is to test whether the
two replicates are in some way independent, seem to
be varying randomly or whether there are systematic
patterns in the data. One such approach is the test of
Smith (1981), which can be used for two replications
(i.e., a duplicate test). This test essentially determines
whether there are significantly more correct choices
on one replication, or whether they are not signifi-
cantly different. It uses a binomial test on proportions
with p = 1/2, so the binomial tables for the duo–trio
test are applicable or for triangles it uses p=1/3, and
thus the binomial tables for the triangle test would be
applicable.

The total number of correct responses in each repli-
cation (C1, C2) are added together (M = C1 + C2).
M represents the total number of trials (n) and either
C1 or C2 (whichever is larger) is used to represent
the number of correct responses in the study. If C1 or
C2 is larger than the minimum number of judgments
required for significance then the difference in propor-
tions of correct responses between the two replications
is significant and the replication data cannot be pooled.
Each replication must then be analyzed independently.
If the larger of C1 and C2 is less than the minimum
number of judgments required for significance then the
difference in proportions of correct responses between
the two replications is not significant and the replica-
tion data can be pooled. The combined data can then be
analyzed as if each judgment was made by a different
panelist.

For example, a sensory specialist was asked to
determine if two chocolate chip cookie formulations
(one with sucrose as the sweetener and the other with a
non-caloric sweetener) were perceptibly different from
each other. The sensory specialist decided to use a
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constant reference duo−trio test to determine if the
two formulations differed. A panel of 35 judges did
the study in duplicate. In the first replication 28 judges
correctly matched the reference and in the second
replication 20 judges correctly matched the reference.
The sensory scientist has to determine if the data can be
pooled and if there is a significant perceived difference
between the two cookie formulations.

Using Smith’s test he found that M = 28 + 20 =
48, and that C1 = 28 is the larger of C1 and C2.
Table 4.1 for duo–trio tests indicated that for n = 48
the minimum number of correct judgments for an alpha
(α) of 5% is 31. Thus, 28 is less than 31 and the
data from the two replications were pooled. The com-
bined data were therefore 48 correct decisions out of a
potential 70 (2×35). The sensory scientist decided to
use the z-calculation to determine the exact probabil-
ity of finding this result. Using Eq. (4.2), with 48 as
the number of correct responses, with 70 as the total
number of responses, with p equal to 1/2, z = 2.9881.
The z-table showed that the exact probability of this
value occurring by chance was 0.0028. The panelists
could therefore perceive a difference between the two
formulations.

The Beta-Binomial Model

The test devised by Smith does not address the issue of
whether some panelists have different patterns across
replicates than others. If people had systematic trends
(e.g., some people getting both correct, easily discrim-
inating and others missing consistently) you could still
get a non-significant result by Smith’s test, yet the data
would hardly be independent from trial to trial. This
issue is addressed in the beta-binomial model, which
looks at patterns of consistency (versus. randomness)
among the panelists. Although Smith’s test is appro-
priate when detecting differences between replicates,
it is not an airtight proof that replications are indepen-
dent should the test not meet the significance level. The
beta-binomial model allows us to pool replicates, but
makes some adjustments in the binomial calculations
to make the criteria more conservative when the data
are not fully independent.

The beta-binomial model assumes that the perfor-
mance of panelists is distributed like a beta distribu-
tion. This distribution has two parameters, but they
can be summarized in a simple statistic called gamma.

Gamma, which varies from zero to one, is a measure
of the degree to which there are systematic behav-
iors of panelists (like always answering correctly or
incorrectly), in which case gamma approaches one, or
whether people seem to behave independently from
trial to trial (gamma approaches zero). You can think
of this as a kind of test of the independence of the
observations, but from the perspective of individual
performance, rather than group data as in Smith’s test.
Gamma is basically an estimate of the degree to which
people’s total number of correct choices varies from
the panel mean. It is given by the following formula
(Bi, 2006, p. 110):

γ = 1

r − 1

⌊

rS

µ(1 − µ)n
− 1

⌋

(4.13)

where

r = the number of replicates
S= a measure of dispersion
µ= mean proportion correct for the group (looking

at each person’s individual proportions as
shown below)

n = the number of judges. S and µ are defined as
follows:

µ =
∑n

i=1 xi/r

n
(4.14)

where xi= the number of correct judgments summed
across replicates for that panelist.

So µ is the mean of the number of correct replicates.
S is defined as

S =
n
∑

i=1

((xi/r) − µ)2 (4.15)

Once gamma is found we have two choices. We
can test to see whether the beta-binomial fits better
than the simple binomial. This is essentially testing
whether gamma is different from zero. The alternative
is to go directly to beta-binomial tables for different
levels of gamma. In these tables (see Table O), we
combine replicates to get the total number of correct
judgments, and compare that to the critical number
required, for the total number of judgments (number of
panelists times number of replicates). The tables adjust
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the binomial model requirements to be more conserva-
tive as gamma increases (i.e., as the panelists look less
random and more systematic).

To test whether the beta-binomial is a better fit, we
use the following Z-test (Bi, 2006, p. 114):

Z = E − nr√
2nr(r − 1)

(4.16)

where E is another measure of dispersion defined as

E =
n
∑

i=1

(x1 − rm)2

m(1 − m)
(4.17)

and m is the mean proportion correct defined as

m =
n
∑

i=1

xi/nr (4.18)

The advantage of doing the Z-test is that should
you find a significant Z, then there is evidence that the
panelists are not random, but that there are probably
groups of consistent discriminators and also perhaps
some people who are consistently not discriminating.
In other words, a non-zero gamma is evidence for a
consistently perceived difference for at least some of
the panel! If the Z-test is non-significant, then one
option is to pool replicates and just use the simple
binomial table. Note that now you have effectively
increased the sample size and given more power to the
test. A good example of this approach can be found in
Liggett and Delwiche (2005).

4.5.3 Warm-Up Effects

Much has been written concerning the potential advan-
tages of giving warm-up samples before discrimination
tests (e.g., Barbary et al., 1993; Mata-Garcia et al.,
2007). A warm-up strategy involves repeated alternate
tasting of the two different versions of the product,
with the panelist’s knowledge that they are different.
Often (but not always) they are encouraged to try to
figure out the way or ways in which the products dif-
fer. This is similar to giving a familiarization sample or
dummy sample before the actual test, but with “warm
up” it involves a more extended period of tasting. A
single warm-up sample was in fact part of the original
version of the duo–trio test (Peryam and Swartz, 1950).

However, evidence for the advantage of this added
procedure is not very strong. In two early reports, a
larger number of significant triangle tests were seen
with warm-up for a wine sample and a fruit beverage
(O’Mahony and Goldstein, 1986) and for NaCl solu-
tions and for orange juices (O’Mahony et al., 1988). In
the latter study it was unclear whether naming the dif-
ference gave any additional advantage. Later studies
showed mixed results.

Thieme and O’Mahony (1990) found good discrim-
ination for A, not-A, and paired comparison tests with
warm-up but a direct comparison of the same kind
of test, with and without warm-up, was lacking, so
it is difficult to draw conclusions from that study.
Dacremont et al. (2000) showed no effect of warm-up
for the first trial of repeated triangles with naïve asses-
sors nor with highly experienced judges. Panelists who
were of intermediate experience did show some benefit
of the warm-up. Kim et al. (2006) reported increased
discrimination for the triangle, duo–trio, and same–
different tests, but a 2-AFC test in which panelists
were told to identify the NaCl sample (versus water)
was also conducted before the warmed-up tests, so the
cause of the increased discrimination in this study is
not clear. Angulo et al. (2007) reported a small but non-
significant increase in discriminability with a relatively
less sensitive group in a 2-AFC test. Rousseau et al.
(1999) looked at effects of a primer (single example)
food and a familiarization with mustard samples before
discrimination tests. The primer had no effect and the
familiarization appeared to cause small increases in
discriminability.

Taken together, these studies suggest that a warm-up
protocol might have some benefits. The sensory prac-
titioner should weigh the possible benefits against the
extra burden on the panelist if the kind of extensive
warm-up (three to ten pairs) that are usually done in
the laboratory studies is adopted.

4.5.4 Common Mistakes Made in the

Interpretation of Discrimination

Tests

If a discrimination test had been performed properly,
with adequate power and the sensory scientist finds
that the two samples were not perceptibly different
then there is no point in performing a subsequent



98 4 Discrimination Testing

consumer preference test with these samples.
Logically, if two samples are sensorially perceived
to be the same then one sample cannot be preferred
over another. However, if a subsequent consumer
preference test indicates that the one of the samples
is preferred over the other, then the scientist must
carefully review the adequacy of the discrimination
test, especially the power of the test. Of course, any
test is a sampling experiment, so there is always
some probability of a wrong decision. Therefore a
discrimination test does not “prove” that there is no
perceivable difference and follow-up preference tests
will sometimes be significant.

Sometimes, novice sensory scientists will do a pref-
erence tests and find that there was no significant pref-
erence for one sample over the other. This means that
the two samples are liked or disliked equally. However,
it does not mean that the samples are not different
from one another. It is very possible for two samples
to be perceptibly very different and yet to be preferred
equally. For example, American consumers may prefer
apples and bananas equally, yet that does not mean that
apples are indistinguishable from bananas.

Appendix: A Simple Approach

to Handling the A, Not-A,

and Same/Different Tests

Both of these tests have response choices, rather than
a sample choice. The choice of either response is
affected by the criterion used by each panelist. For
example, as a panelist one may ask oneself: Do I want
to be really strict and be sure these products are differ-
ent, or can I call them different if I think there is just
an inkling of a difference? These criteria are clearly
quite different from one another and will dramatically
affect the outcome of the test. However, the sensory
scientist does not know (not can he find out) which cri-
terion each panelist used (sometimes even the panelists
do not know since they do not explicitly decided on a
criterion).

In order to get around this problem, we can give
a control sample of true A in the A, not-A test or an
identical pair (“same”) in the same/different test. The
question then becomes whether the percent of choice
of “not-A” for the test sample was greater than the

choice of “not-A” for the control (i.e., true A) sample.
Similarly, we can ask if the proportion of “different”
responses was higher for the test pair than it was for
the identical control pair. So we are comparing against
a sensible baseline.

So far so good. A simple binomial test on propor-
tions or a simple chi-square would seem to do it. But
in most situations, we give both the true A and the
test sample to the same person. In the same/different
test, we would have given both a control pair (identical
samples) and the test pair (samples that are physically
different and might in fact be called “different”). The
binomial test and the chi-square assume independent
observations, but now we have two measurements on
the same person (clearly NOT independent). So the
appropriate statistic is provided by the McNemar test.
Let us look at the A, not-A situation. We cast the data
in a two-way table as follows, with everyone counted
into one of the four cells (1, 2, 3, and 4 are the actual
frequency counts, not percents):

Now, the people who are giving the same answer on
both trials are not very interesting. They are not trans-
mitting any information as to whether the products are
different. They are counted in cells #1 and #4 above.
The critical question is whether there are significantly
more people in cell #2 (who call the test sample “not
A” and the control sample “A”) than there are people
who do the reverse in cell #3. If the cells have about
the same counts, then let us face it, there is not much
evidence for a difference. But if a lot of people call
the test sample “not-A” and they recognize the control
sample as a good example of what A should be like,
then we have evidence that something important has in
fact changed. The difference is perceivable.
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So we need to compare the size of cell 2 to cell 3.
The McNemar test does just this for us. Let C2 be the
count in cell #2, and C3 be the count in cell #3. Here is
the formula:

χ2 (|C2 − C3| − 1)2

C2 + C3

This χ2 test has one degree of freedom, so the
critical chi-square value that must be exceeded for
significance is 3.84, if we use the standard alpha at 5%.

A worked example:
During an A-not-A test a group of 50 panelists were

received (in randomized order: a control sample (the
true A) and a test sample). The results are displayed in
the figure below:

χ2 (|40 − 10| − 1)2

40 + 10
= 16.82 which is larger than 3.84.

The panelist therefore found a significant difference
between the control and the test samples.

The same kind of chart can be drawn for the
same–different test and the same comparison can
be made:

If there are just a few more people in cell 3 than
cell 2, it is probably random variation and there is no
difference. If there is a LOT more people in cell 3
and you get a significant chi-square but in the “wrong
direction,” there is something wrong with your study
(maybe you switched the codes, for example). Also, if
there are a lot of people in cells 1 and 4, that is a con-
cern because those folks are not distinguishing much,
or maybe they have some “lazy” or lax criteria.
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Chapter 5

Similarity, Equivalence Testing, and Discrimination Theory

Abstract This chapter discusses equivalence testing and how difference tests are
modified in their analyses to guard against Type II error (missing a true difference).
Concepts of test power and required sample sizes are discussed and illustrated. An
alternative approach to equivalence, namely interval testing is introduced along with
the concept of paired one-sided tests. Two theoretical approaches to the measurement
of the size of a difference are introduced: discriminator theory (also called guessing
models) and the signal detection or Thurstonian models.

Difference testing method constitute a major foundation for sensory evaluation and consumer

testing. These methods attempt to answer fundamental questions about stimulus and product

similarity before descriptive or hedonic evaluations are even relevant. In many applications

involving product or process changes, difference testing is the most appropriate mechanism for

answering questions concerning product substitutability.

—D. M. Ennis (1993)
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5.1 Introduction

Discrimination, or the ability to differentiate two stim-
uli, is one of the fundamental processes underlying
other sensory-based responses. As suggested by Ennis
above, if two items cannot be discriminated, there is
no basis for description of differences between them,
nor for consumer preference. The previous chapter
discussed simple discrimination tests that are used
to gather evidence that a product has changed from
some previous version. We might make an ingredient
change, a cost reduction, a processing or packaging
change, do a shelf life test against a fresh control,
or a quality control test against some standard prod-
uct. Questions arise as to whether the difference in
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the products is perceivable. Discrimination or simple
difference tests are appropriate for these questions.
When we find evidence of a difference, the methods are
straightforward and the interpretation is usually clear-
cut as well. However, a great deal of sensory testing
is done in situations where the critical finding is one
of equivalence or similarity. That is, a no-difference
result has important implications for producing, ship-
ping, and selling our product. Shelf life and quality
control tests are two examples. Cost reductions and
ingredient substitutions are others.

This is a much trickier situation. It is often said that
“science cannot prove a negative” and the statistical
version of this is that you cannot really prove that the
null hypothesis is correct. But in a way, this is exactly
what we are trying to do when we amass evidence
that two products are equivalent or sufficiently simi-
lar that we can substitute one for the other without any
negative consequences.

The issue is not so easy as just finding “no signifi-
cant difference.” A failure to reject the null is always
ambiguous. Just because two products are “not signif-
icantly different” does not necessarily mean that they
are equivalent, sensorially. There are a many reasons
why we may have failed to find a statistically signifi-
cant difference. We may not have tested enough people
relative to the amount of error variability in our mea-
surements. The error variability may be high for any
number of reasons, such as lack of sample control, poor
testing environment, unqualified judges, poor instruc-
tions, and/or a bad test methodology. It is easy to do a
sloppy experiment and get a non-significant result.

Students and sensory scientists should recall that
there are two kinds of statistical errors that can be made
in any test. These are shown in Fig. 5.1. We can reject
the null and conclude that products are different when
they are not. This is our familiar Type I error that we try
to keep to a long-term minimum called our alpha level.
This is commonly set at 5%, and why we try to use
probability levels of 0.05 as our cutoffs in statistical
significance testing. This kind of error is dangerous in
normal experimental science and so it is the first kind
of error that we worry about. If a graduate student is
studying a particular effect, but that effect was a spu-
rious false-positive result from some earlier test, then
he or she is wasting time and resources. If a product
developer is trying to make an improved product, but
that hunch is based on an earlier false result, the effort
is doomed. Some people refer to Type I error as a “false

Actual

Situation

Difference

exists

 No difference

Test Result

“Difference” “No difference”

(correct 

conclusion)

False

rejection

Type I error

alpha-risk

“Miss”

Type II error

beta-risk

(correct 

conclusion)

Fig. 5.1 The statistical decision matrix showing the two types
of error, Type I, when the null is rejected but there is really no
difference, and Type II, when there is a difference but none is
detected by the test (null false but accepted). The long-term risk
of Type I under a true null is the alpha risk. Beta risk is managed
by the choices made in the experiment of N, alpha, and the size
of the difference one is trying to detect.

alarm.” The second kind of error occurs when we miss
a difference that is really there. This is a Type II error,
when we do not reject the null, but the alternative
hypothesis is really the true state of the situation.

Type II error has important business ramifications,
including lost opportunities and franchise risk. We can
miss an opportunity to improve our product if we do
not find a significant effect of some ingredient or pro-
cessing change. We can risk losing market share or
“franchise risk” if we make a poorer product and put
it into the marketplace because we did not detect a
negative change. So this kind of error is of critical
importance to sensory workers and managers in the
foods and consumer products industries.

The first sections of this chapter will deal with ways
to gather evidence that two products are similar or
equivalent from a sensory perspective. The first sec-
tion will illustrate some commonsense approaches and
the question of test power. Then some formal tests for
similarity or equivalence will be considered, after we
look at a model for estimating the size of a difference
based on the proportion of people discriminating.

After discussing basic approaches to similarity and
equivalence, this chapter will examine more sophisti-
cated models for measuring sensory differences from
discrimination results. Sensory professionals need to
do more than simply “turn the crank” on routine tests
and produce binary yes/no decisions about statistical
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significance. They are also required to understand
the relative sensitivity of different test methods, the
decision processes and foibles of sensory panelists,
and the potential pitfalls of superficial decisions. For
these reasons, we have included in this chapter sec-
tions on the theory of signal detection and its related
model, Thurstonian scaling. Many questions can arise
from apparently simple discrimination tests in applied
research, as the following examples show:

(1) Clients may ask, “OK, you found a difference, but
was it a big difference?”

(2) When is it acceptable to conclude that two prod-
ucts are sensorially equivalent when the test says
simply that I did not get enough correct answers to
“reject the null?”

(3) What can I do to insure that the test is as sensi-
tive as possible and does not miss an important
difference (i.e., protect against Type II error)?

(4) Why are some test methods more stringent or more
difficult than others? Can this be measured?

(5) What are the behaviors and decision processes that
influence sensory-based responses?

Each of these questions raise difficult issues without
simple answers. This chapter is designed to provide the
sensory professional with approaches to these ques-
tions and a better understanding of methods, panelists,
and some enhanced interpretations of discrimination
results. For further detail, the books by Bi (2006a) on
discrimination testing, by Welleck (2003) on equiva-
lence testing, and the general sensory statistics book
by Gacula et al. (2009) are recommended.

5.2 Common Sense Approaches

to Equivalence

Historically, many decisions about product equiva-
lence were based on a finding of no significant dif-
ference in a simple discrimination test. This is a risky
enterprise. If the difference is subtle, it is easy to miss
it. The test might have included too few panelists for
the size of the effect. We may have let unexpected
sources of variability creep into the test situation, ones
that could easily overwhelm the difference. We may
have used unqualified panelists because too many of
our regular testers were on vacation or out sick that
week. Perhaps our sample-handling equipment like

heat lamps were not working that day. Any number
of reasons could contribute to a sloppy test that would
create situation in which a difference could be missed.
So why was this approach so prevalent during the early
history of sensory testing?

There are some common sense situations in which
it may make sense to consider a non-significant result
as important. The first requirement is that the test
instrument must be proven to detect differences in pre-
vious tests. By “test instrument” we mean the entire
scenario – a particular method, a known population
of panelists, specific test conditions, these type of
products, etc. In a company with an ongoing test pro-
gram this kind of repeated scenario may provide a
reasonable insurance policy that when a significant dif-
ference is not found, it was in fact not due to a faulty
instrument, as the instrument has a track record. For
example, a major coffee company may have ongoing
tests to insure that the blend and roasting conditions
produce a reliable, reproducible flavor that the loyal
customers will recognize as typical and accept. Other
controls may be introduced to further demonstrate the
effectiveness of the test method. Known defective or
different samples may be given in calibration tests to
demonstrate that the method can pick up differences
when they are in fact expected. Conversely, known
equivalents or near duplicates may be given to illus-
trate that the method will not result in an unacceptable
rate of false alarms. Finally, the panel may consist of
known discriminators who have been screened to be
able to find differences and who have a track record
of detecting differences that are confirmed by other
tests on the same samples, such as consumer tests or
descriptive analysis panels.

These kinds of controls are illustrated in a paper on
cross-adaptation of sweet taste materials (Lawless and
Stevens, 1983). In cross-adaptation studies, exposure
to one taste substance may have an adapting effect, i.e.,
cause a decrease in intensity of a second substance. To
claim that there is full cross-adaptation, the decrease
must be about the same as with self-exposure, i.e., the
decrement should be the same as when the substance
follows itself. To claim no cross-adaptation, the test
substance must have an intensity equivalent to its taste
after plain water adaptation. Both of these are essen-
tially equivalence tests. In order to accept these results
it is necessary to prove that the second or test item
is capable of being adapted (for example, it can adapt
itself) and that the first-presented substance in fact can
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cause an adaptation-related decrease (i.e., it also has
an effect on itself). Given these two control situations,
the claim of cross-adaptation (or lack thereof) as an
equivalence statement becomes trustworthy.

Simple logical controls can be persuasive in an
industrial situation in which there is an ongoing testing
program. Such an ongoing testing program may be in
place for quality control, shelf-life testing, or situations
in which a supplier change or ingredient substitution
is common due to variable sources of raw materials.
This kind of logic is most applicable to situations in
which the conditions of testing do not vary. If there
is a sudden decrease in the panel size during a vaca-
tion period, for example, it becomes more difficult to
claim that “we have a good instrument” and therefore
a non-significant difference is trustworthy. All the test-
ing conditions, including the panel size, must remain
fairly constant to make such a claim.

5.3 Estimation of Sample Size and Test

Power

A more statistical approach to equivalence is to man-
age the sample size and the test power to minimize the
probability of a Type II error, i.e., the chance of miss-
ing a true difference. There are commonly accepted
formulas for calculating the required sample size for
a certain test power. At first glance, this seems rather
straightforward. However, there is one important part
of the logic that managers (and often students) find
troubling. One must specify not only the acceptable
amount of alpha- and beta-risks in these calculations,
but also the size of the difference one is trying to detect.

Conversely, how much of a difference would one allow,
and still call the two products “equivalent” on a sen-
sory basis? Managers, when faced with this question,
may reply that they want no difference at all, but this
is unrealistic and not possible within the constraints of
statistical testing. Some degree of difference, no mat-
ter how minor, must be specified as a lower tolerable
limit.

The common equation for calculating the necessary
sample size is given as follows (from Amerine et al.,
1965):

N =
[

Zα
√

poqo + Zβ
√

paqa

po − pa

]2

(5.1)

where Zα and Zβ are the Z-scores associated with the
chosen levels of alpha- and beta-risk, po is the chance
probability in the test and pa is the probability cho-
sen for the alternative hypothesis (as always, q = 1–p).
This is the equation for determining the required panel
size, N, as a function of the alpha-risk, beta-risk, the
chance probability level, and the effect size one does
not want to miss. A similar equation (see Appendix at
the end of this chapter) is used for scaled data, in which
the degree of difference can be specified as a difference
on a scale or number of standard deviations.

The effect size or size of the allowable difference
is given in the denominator. It is this quantity that
management must choose in order to determine what
is sufficiently “equivalent.” Strategically, management
may not want to go out on a limb and may delegate
this choice to the statisticians or sensory personnel
involved in the program, so the sensory professional
must be prepared to make recommendations based on
prior experience with the product. Knowledge of the
degree of consumer tolerance for differences is key
in making any such recommendation. In a vacuum of
consumer information, this choice can be exceedingly
difficult.

In this case the size of the difference is given by stat-
ing some percentage of correct choices that is higher
than the chance level, noted as pa in Eq. (5.1). You
can think of this as a percent correct associated with
an alternative hypothesis, or simply as a percent cor-
rect that one would not want to miss detecting. Above
this level, there are too many people detecting the dif-
ference for our management level of comfort with the
product change. In the next section we will introduce
a useful way to think about this level, in terms of
the proportion of people detecting the difference. This
proportion is different than the actual observed per-
cent correct, because we have to apply a correction for
chance, i.e., the possibility that some people get the
correct answer just by guessing correctly. More on this
below.

For now, let us examine two worked examples for
a triangle test. In the first example, we will set alpha
and beta at 5%, so our one-tailed z-values will both be
1.645. Let us allow a fairly liberal alternative hypoth-
esis percentage of 2/3 correct or 66.7%. This might
be considered a fairly large difference, as the propor-
tion of people truly detecting, after the correction for
chance, is 50%. In other words, we might expect half
the population to detect this change. On the other hand,
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50% detection is considered one definition of a thresh-
old (see Chapter 6), so from that perspective this might
be an acceptable difference.

Working through the math, we get the following
equation and result:

[

1.645
√

(0.33)(0.67) + 1.645
√

(0.67)(0.33)

0.33 − 0.67

]2

= 21.6

So for this kind of test, looking for what some man-
agers might call a “gross difference” we need about 22
panelists. Now let us see what happens when we make
the difference smaller. In this example we can only
allow a correct performance level of 50% (which cor-
responds to 25% true detection of the difference after
correction for chance or one person in four actually
seeing the difference). The new equation is

[

1.645
√

(0.33)(0.67) + 1.645
√

(0.50)(0.50)

0.33 − 0.50

]2

= 91.9

So now that we have lowered the size of the allow-
able difference a little, the required panel size has
expanded to 92 judges. This would be a fairly large
triangle test panel by most common industrial stan-
dards. Unfortunately if you are trying to get evidence
for sensory equivalence and you can permit only a
small difference, you are going to need a lot of pan-
elists! There is just no way around it, unless one goes
to replicated measures and a beta-binomial approach
as discussed in the previous chapter. The power of dif-
ference tests with small panels can be alarmingly low,
as discussed in Appendix E. Further calculations and
tables for triangle and duo–trio tests are found there as
well. The important factor to note in our two examples
is that it is the size of the difference as specified in the
denominator of Eq. (5.1) that has the biggest influence
on the panel size requirements. In the next section, we
will examine a simple traditional way of choosing our
acceptable size of a difference based on the estimated
proportion of panelists discriminating.

5.4 How Big of a Difference Is

Important? Discriminator Theory

How can we calculate some true measure of dis-
crimination after adjustment for the chance level of
performance? That is, a certain percent correct is

expected by guessing alone in the face of no dis-
crimination at all. An old historical approach to this
was to provide a correction for the guessing level,
i.e., the level of performance expected in the face
of no discrimination whatsoever. The formula for the
corrected proportion is known as Abbot’s formula
(Finney, 1971), and is given by

UpperC.I.95% =
[

1.5(X/N) − 0.5
]

+ 1.645(1.5)
√

(X/N)(1−X/N)
N

(5.2)

where Pobserved is the observed proportion correct and
Pchance is the proportion expected by chance guessing.

This formula has been widely applied since the
1920’s in fields such as pharmacology, toxicology, and
even educational testing. In pharmacology, it is used
to adjust for the size of the placebo effect, i.e., those
test subjects that improve without the drug. In tox-
icology it is used to adjust for the baseline fatality
rate in the control group (i.e., those not exposed to
the toxin but who die anyway). This formula has also
been employed in educational testing where multiple-
choice tests are common, but adjustment for guessing
is desired. Another version of this formula appears in
publications discussing the issue of estimating true dis-
criminators in the sample and separating them from
an estimated proportion of people who are merely
guessing correctly (e.g., Morrison, 1978). The formula
will also be used in the next chapter when forced-
choice methods are used in threshold determinations.
Chance-adjusted discrimination was unfortunately dis-
cussed initially as “recognition” in the early sensory
literature (Ferdinandus et al., 1970) but we will stick
with the terms discrimination and discriminators here.
“Recognition” in the psychological literature implies a
match to something stored in memory and that is not
really the issue in discriminating a difference among
samples.

The model is simple but it embraces two assump-
tions. The first assumption states that there are
two kinds of panelists during a particular test—
discriminators, who see the true difference and select
the correct item and non-discriminators who see no dif-
ference and guess. The second assumption contains the
logical notion that non-discriminators include people
who guess correctly and those who guess incorrectly.
The best estimate of the proportion guessing correctly
is the chance performance level. Thus the total number



106 5 Similarity, Equivalence Testing, and Discrimination Theory

of correct judgments comes from two sources: People
who see the difference and answer correctly and those
who guess correctly.

In forced choice threshold measures (see Chapter 6)
50% correct performance after adjustment for chance

is taken as a working definition (Antinone et al., 1994;
Lawless, 2010; Morrison, 1978; Viswanathan et al.,
1983). For example, in the triangle test or a three-
alternative forced choice test, the chance level is 1/3,
so 50% above chance or 50% adjusted for chance
is 66.7% correct. If a paired test or duo–trio was
employed, the 50% chance level now requires a 75%
correct discrimination to be at threshold, when thresh-
old is defined as a 50% correct proportion after adjust-
ment. Another approach is to work backward, i.e., try
to find the percent correct that one would expect given
a targeted proportion of discriminators in the test. This
is given by the re-arrangement of Abbott’s formula as
follows:

Pobserved = Padjusted + Pchance(1 − Padjusted) (5.3)

So for our threshold example, if we had a 3-AFC
test and we required 50% discriminators, we would
expect one-third of the remaining (i.e., 1–Padjusted)
non-discriminators to guess correctly, thus adding 1/6
(or 1/3 of 0.5) to the 50% who see the difference and
giving us 66.7% correct.

This discrimination ability should be viewed as
momentary. It is not necessarily a stable trait for a
given judge. That is, a given judge does not have to
“always” be a discriminator or a non-discriminator.
Furthermore, we are not attempting to determine who
is a discriminator, we are only estimating the likely
proportion of such people given our results. This is an
important point that is sometimes misinterpreted in the
sensory literature. A sensory panel leader who is accus-
tomed to screening panelists to determine if they have
good discriminating ability may view “discriminators”
as people with a more or less stable ability and classify
them as such. This is not the point here. In the guessing
models, the term “discriminator” is not used to single
out any individuals, in fact there is no way of know-
ing who was a discriminator, nor is there any need to
know in order to apply the model. The model simply
estimates the most likely proportion of people who are
momentarily in a discriminating state and thus answer
correctly as opposed to those who might be answering
correctly by chance. In other words, the issue is how
often people were likely to have noticed the difference.

If we choose to think about numbers correct rather
than proportions, we can use a simple translation of
Abbott’s formula. How are the numbers of discrimina-
tors and non-discriminators estimated? The best esti-
mate of the number of non-discriminators who guess
correctly is based on the chance performance level.
Once again, the total number of correct choices by the
panel reflects the sum of the discriminators plus the
fraction of the non-discriminators who guess correctly.
This leads to the following equations: Let N = number
of panelists, C = the number of correct answers, and
D = the number of discriminators. For a triangle test,
the following relationships should hold:

C = D + 1

3
(N − D) (5.4)

This is simply a transformation of Abbott’s formula
(as in Eq. (5.3)), expressed in numbers observed rather
than proportions.

Here is an example: Suppose we do a triangle test
with 45 judges and 21 choose the odd sample correctly.
We conclude that there is a significant difference at p <
0.05. But how many people were actually discrimina-
tors? In this example, N = 45 and C = 21. Solving for
D in Eq. (5.4):

21 = D + 1

3
(45 − D) = 2

3
D + 15

and thus D = 9.
In other words, our best estimate is that 9 people out

of 45 (21% of the sample) were the most likely num-
ber to have actually seen the difference. Note that this
is very different from the percentage correct or 21/45
(=47%). Framed this way, a client may view the sen-
sory result from quite a different perspective and one
that is potentially more useful than the raw percent
correct.

Table 5.1 shows how the number of required dis-
criminators for various tests increases as a function
of sample size. Of course, as the number of judges
increases, it takes a smaller and smaller proportion
of correct responses to exceed our minimum level
above chance for statistical significance. This is due
to the fact that our confidence intervals around the
observed proportions shrink as sample size increases.
We are simply more likely to have estimated a point
nearer to the true population proportion correct. The
number of judges getting a correct answer will also
need to increase, as shown in the table. However, the
number of discriminators increases at a slower rate.
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Table 5.1 Number correct versus estimated discriminators

N

Minimum
correct,
p = 1/2

Estimated
number dis-
criminating

Minimum
correct,
p = 1/3

Estimated
number dis-
criminating

10 9 6 7 4
15 12 7 9 5
20 15 8 11 6
25 18 9 13 7
30 20 10 15 7
35 23 11 17 8
40 26 11 19 8
45 29 12 21 9
50 32 13 23 9
55 35 13 25 9
60 37 14 27 10
65 40 14 29 10
70 43 15 31 10
75 46 15 33 11
80 49 16 35 11
85 51 16 36 11
90 54 17 39 12
95 57 17 40 12

100 59 17 42 12

Minimum correct gives the required number for significance at
p < 0.05, one tailed
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For large sample sizes, we only need a small propor-
tion of discriminators to push us over the statistically
critical proportion for significance. Another impor-
tant message for clients and management here is that
although we may have found a significant difference,
not everyone can discern it.

This way of looking at difference tests has several
benefits but one serious shortcoming. One advantage is
that this concept of “the proportion of discriminators”
gives management an additional point of reference
for interpretation of the meaning of difference tests.
Statistical significance is a poor reference point, in
that the significance of a given proportion correct
also depends upon the number of judges. As N, the
number of judges increases, the minimum proportion
correct required for statistical significance gets smaller

and smaller, approaching a level nearer to chance.
So statistical significance, while providing necessary
evidence against a chance result, is a poor yardstick
for business decisions and is only a binary choice.
The estimated proportion of discriminators is not
dependent upon sample size (although confidence
intervals around it are).

Another advantage to this model is that it provides
a yardstick for setting panel size and a point of refer-
ence for the test of significant similarity, as outlined
below. In determining a desired panel size, the exper-
imenter must make a decision about the size of the
alternative hypothesis that must be detected if it is
true. That is, how much of a difference do we want
to be sure to detect if it in fact exists? The correc-
tion for guessing provides one such benchmark for
these calculations. Once we have decided upon a criti-
cal proportion of discriminators, we can calculate what
proportion correct would be expected from the addition
of (chance) guessers. This proportion correct becomes
the alternative hypothesis proportion in Eq. (5.1). In
other words, the choice of the alternative hypothesis
can now be based on the observed proportion required
to give a certain level of discriminators. We merely
have to apply Abbott’s formula to see what percent
correct is required.

The choice should consider a strategy based on
the level of normal product variability and what con-
sumers will expect. In one situation, there might be
strong brand loyalty and consumers who demand high
product consistency. In that case a low proportion of
discriminators might be desired in order to make a
process change or an ingredient substitution. Another
product might have commonplace variation that is
tolerated by consumers, like some fruit or vegetable
commodities, or wines from different vintages. In this
case a higher proportion of discriminators might be tol-
erated in a difference test. As we will discuss next, in
the statistical test for significant similarity, the propor-
tion of discriminators must be decided upon in order
to test for performance below that critical level, as
evidence for a difference too small to be practically
significant.

Let us consider a triangle test with 90 judges and 42
choose the odd sample correctly. According to Table
L, this is a significant difference at p < 0.01. Working
with Eq. (5.2), we find that the proportion of discrim-
inators is about 20% (42/90–1/3)/(1–1/3) = 0.20. So
one-fifth of the test group is our best estimate here of
the proportion discriminating. For a product with an
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extremely brand-loyal user group, this could be con-
sidered very risky. On the other hand, for a product in
which there is some degree of expected variability, the
proportion might not be a practical concern for worry,
in spite of the statistical significance.

5.5 Tests for Significant Similarity

Another approach to the problem of demonstrating
product similarity or equivalence was presented by
Meilgaard et al. (2006). It is based on the fact that
we do not have to test against the chance perfor-
mance level in applying the binomial test on propor-
tions. Rather, we can test against some higher level
of expected proportion correct, and see whether we
are significantly below that level in order to make a
decision about two products being sensorially simi-
lar enough. This is shown graphically in Fig. 5.2. Our
usual tests for discrimination involve a statistical test
against the chance performance level and we look for
a point at which the confidence interval around our
observed proportion no longer overlaps the chance

level. This is just another way of thinking about the
minimum level required for a significant difference.
When the error bar no longer overlaps the chance level,
we put that minimum number correct (for a given N) in
our tables for the triangle test, duo–trio, etc. A higher
proportion correct will be less likely to overlap and a
larger sample size will shrink the error bars. As the
“N” increases, the standard error of the proportion gets
smaller. Thus higher proportions correct and larger
panel sizes lead to less likely overlap with the chance
level and thus a significant difference.

However, we can also test to see whether we are
below some other level. The binomial test on propor-
tions can be applied to other benchmarks as well. How
can we determine this other benchmark? Once again,
our proportion of allowable discriminators will give us
a value to test against. We may have a very conser-
vative situation, in which we can allow no more than
10% discriminators, or we might have a less critical or
discerning public and be able to allow 30% or 50%
discriminators or more. From the proportion of dis-
criminators, it becomes a simple matter to calculate
the other proportion we should test against, and see
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Fig. 5.2 Difference testing and similarity testing outcomes. In
outcome one, the performance is at the chance level, so there is
obviously no difference. In the outcome, two performances are
above chance, but the 95% one-tailed confidence interval over-
laps the chance level, so no statistically significant difference is
found. This level would be below the tabulated critical number of
correct answers for that number of judges. In outcome three, the
level correct and the associated confidence level are now above

the chance level so a statistically significant difference is found.
In outcome four, the level correct is lower than the third exam-
ple, but the standard error has become smaller, due to an increase
of N, so the outcome is also significant. In the fifth example,
there is a significantly significant similarity, because the outcome
and its associated one-tailed confidence interval are below the
acceptable level based on the maximum allowable proportion of
discriminators.
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whether we are below that level. This is simply using
Abbott’s formula in reverse (Eq. (5.3)).

Tables H1 and H2 show critical values for signifi-
cant similarity in the triangle test and for the duo–trio.
Other tables are given in Meilgaard et al (2006). Here
is a worked example. Suppose we conduct a trian-
gle test with 72 panelists and 28 choose the correct
(odd) sample. Do we have evidence for significant
similarity? From Table H1 we see that for a crite-
rion of no more than 30% discriminators, the critical
value for a beta-risk of 10% is 32. Because we are
below this value, we can conclude that the products are
significantly similar.

If you examine these tables closely, you will note
that there is a very narrow window for some pro-
portions of discriminators and for a low number of
panelists. There are empty cells in the table since we
need a large panel size and low standard errors (small
confidence intervals) in order to squeeze our result and
the confidence interval between our test proportion and
the chance proportion. The chance proportion forms,
of course, a lower bound because it is not expected to
see performance below chance. Once again, as in our
power calculations, having a large sample size may be
necessary to protect against Type II error, and proba-
bly a larger number of judges than we employ in most
difference testing.

Let us look at this approach in some detail. The
method of similarity testing is based upon the compar-
ison of a maximum allowable proportion of discrim-
inators to a confidence interval around the observed
proportion correct. You can think of this test as involv-
ing three steps. First, we set an upper limit on the
proportion of acceptable discriminators. Note that
this involves professional judgment, knowledge of the
products, and the business situation regarding con-
sumer expectations about product consistency. It is not
found in any statistics book. This is the same process
as we discussed in Section 5.3 for choosing the size
of the difference we need to detect. Second, we trans-
late this into an expected percent correct by working
through Eq. (5.3). The test then compares the inferred
proportion plus its upper confidence interval to the
maximum allowable proportion you set first. If the cal-
culated value is less than the acceptable limit, we can
conclude statistically significant similarity.

Here is the derivation of the formula. There are
two items we need to know, the proportion cor-
rect we would expect, based on our proportion of

discriminators, and the confidence interval boundaries
around observed proportion correct given the num-
ber of judges. The proportion of discriminators and
proportion expected correct are calculated just as in
Eq. (5.3). The confidence interval of a proportion
is given by ± Z (standard error), where Z = nor-
mal deviate for our desired level of confidence. For
an upper one-tailed confidence interval at 95%, Z =
1.65. Equation (5.5) shows the standard error of the
proportion, SEp and Eq. (5.6) the confidence interval:

SEp =
√

(X/N)(1 − X/N)

N
=
√

pq/N (5.5)

where X is the number correct, N is the total number of
judges, p = X/N and q = 1–p.

CI95% = (X/N) ± Z(SEp) (5.6)

where Z is the Z-score for 95% confidence. The
remaining step is to recast our confidence interval to
include the fact that we are working with a limit on the
number of discriminators, not the simple percent cor-
rect. For the triangle test, for example, the proportion
of discriminators, D/N, is 1.5(X/N)–0.5. Note that the
standard error associated with the proportion of dis-
criminators also is 1.5 times as large as the standard
error associated with our observed proportion. So, our
upper confidence interval boundary for discriminators
now becomes

Upper CI95% = [1.5(X/N) − 0.5] + 1.645(1.5)
√

(X/N)(1−X/N)
N

(5.7)

Here is a worked example. Suppose we do a tri-
angle test with 60 panelists, and 30 get the correct
answer. We can ask the following questions: What is
the best estimate of the number of discriminators? The
proportion of discriminators? What is the upper 95%
confidence interval on the number of discriminators?
What is the confidence interval on the proportion of
discriminators? Finally, could we conclude that there is
significant similarity, based on a maximum allowable
proportion of discriminators of 50%?

The solution is as follows: Let X = number correct,
D = number of discriminators, so X = 30 and N = 60.
We have 1.5(30)–0.5(60) = D or 15 discriminators, or
25% of our judges detecting the difference, as our best
estimate.
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The standard error is given by

1.5

√

(30/60)[1 − (30/60)]

60
= 0.097 = 9.7%

and the upper bound on the confidence interval is given
by Eq. (5.7), or z(SE) + proportion of discriminators =
1.65 (0.097) + 0.25 = 0.41 (or 41%).

So if our maximum allowable proportion of discrim-
inators was 50%, we would have evidence that 95% of
the time we would fall below this acceptable level. In
fact, we would have 41% discriminating or less, given
our observed percent correct of 50% which gives us our
calculated best estimate of discriminators at 25%. This
worked example is given to illustrate the approach.
For practical purposes, the tables shown in Meilgaard
et al. (2006) can be used as a simple reference without
performing these calculations.

A similar approach was taken by Schlich (1993).
He combined the questions of difference and similar-
ity by calculating simultaneous alpha- and beta-risks
for different panel sizes at the critical number correct
for significant differences. Some of these values are
shown in Table N. The table has two entries, one for the
required number of judges and a second for the critical
number correct at the crossover point. If the observed
number correct is equal to or higher than the tabulated
value, you can conclude that there is a significant dif-
ference. If the number correct in your test is lower, you
can conclude significant similarity, based on the allow-
able proportion of discriminators you have chosen as
an upper limit and the beta-risk. These tables can be
very useful, but they required that you adopt the speci-
fied panel size that is stipulated for the conditions you
have chosen for beta and proportion of discriminators.

5.6 The Two One-Sided Test Approach

(TOST) and Interval Testing

The notion that equivalence can be concluded from
a non-significant test, even with high test power,
has largely been rejected by the scientific commu-
nity concerned with bioequivalence (Bi, 2005, 2007).
For example, the FDA has published guidelines for
bioequivalence testing based on an interval testing
approach (USFDA, 2001). This kind of test demands
that the value of interest falls inside some interval

and thus is sometimes referred to as interval test-
ing. In general, this kind of testing is done on some
scaled variable, like the amount of a drug delivered
to the bloodstream in a certain specific period. Such
a scaled variable is different from most discrimination
tests, which are based on proportions, not some mea-
sured quantity that varies continuously. However, some
scaled sensory data may fall under this umbrella, such
as descriptive data or consumer acceptability ratings
on a hedonic scale. Discrimination tests and preference
tests are also amenable to this approach (Bi, 2006a;
MacRae, 1995).

Logically, an interval test can be broken down into
two parts, one test against an upper acceptable limit
and one test against a lower acceptable limit. This
is similar to finding some confidence intervals for an
acceptable range of variation. In the case of many dis-
crimination tests only the upper limit is of interest. The
situation can then be a single one-tailed test. For paired
comparison tests, the TOST method is described in
detail by Bi (2007). In this article he shows some dif-
ferences between the TOST estimates and the conven-
tional two-sided confidence interval approach. Some
authors recommend comparing the interval testing
approach at 100(1–α/2) to TOST because the interval
testing approach at 100(1–α) is too conservative and
lacks statistical power (Gacula et al., 2009).

For scaled data, we may wish to “prove” that our
test product and control product have mean values
within some acceptable range. This approach can be
taken with descriptive data, for instance, or acceptabil-
ity ratings or overall degree-of-difference ratings. Bi
(2005) described a non-central t-test for this situation.
This is similar to a combination of t-tests in which we
are testing that the observed difference between the
means falls within some acceptable limit. An example
of this approach is shown in Appendix at the end of this
chapter. For purposes of using these models for equiv-
alence, the sensory professional is advised to work
closely with a statistical consultant. Further informa-
tion on formal equivalence testing can be found in
Welleck (2003) and Gacula et al. (2009).

Alternatives to the TOST method have been given
by Ennis and Ennis (2010) and have some advantages
to TOST from a statistical perspective. An alternative
to TOST that is applicable to a non-directional 2-AFC
(e.g., a two-tailed 2-AFC, much like a paired prefer-
ence) has been proposed (Ennis and Ennis, 2010). Note
that under this approach, establishing an equivalence or
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parity situation usually requires a much larger sample
size (N) than simple tests for difference. Useful tables
derived from this theory are given in Ennis (2008). The
theory states that a probability value for the equiva-
lence test can be obtained from an exact binomial or
more simply from a normal approximation as follows:

p = φ

( |x| − θ

σ

)

− φ

( |−x| + θ

σ

)

(5.8)

where phi (Φ) symbolizes the cumulative normal dis-
tribution area (converting a z-score back to a p-value),
theta (θ ) is the half-interval for parity such as ±0.05,
and sigma (σ ) is the estimated standard error of the
proportion (square root of pq/N). x in this case is
the difference between the observed proportion and
the null (for 2-AFC, subtract 0.5). A worked exam-
ple is given in Chapter 13, Section 13.3.5. Note that
the tables given in Ennis (2008) are specific to the
2-AFC and may not be used for other tests such as the
duo–trio.

5.7 Claim Substantiation

A special case of equivalence testing arises when
a food or consumer product manufacturer wishes to
make a claim of equivalence or parity against a com-
petitor. Such a claim might take the form of a statement
such as “our product is just as sweet as product X.”
Because of the legal ramifications of this kind of test,
and the need to prove that the result lies within cer-
tain limits, large numbers of consumers are typically
required for such a test, with recommended sample
sizes from 300 to 400 as a minimum (ASTM, 2008a).
This is a different scenario than most simple dis-
crimination tests that use laboratory panels of 50–75
judges. The special case of proving preference equal-
ity (products chosen equally often in a preference test)
is discussed further in Chapter 19 on strategic research.

The simple case of a paired comparison test
(2-AFC) is amenable to this kind of analysis. As noted
above, Bi (2007) discussed the TOST approach to
equivalence for 2-AFC with worked examples. There
are two different statistical scenarios: In one case we
wish to make an equality claim, and in the second,
we want to make a claim that our product is “unsur-
passed.” The equality claim involves two tests, because
neither product can have more of the stated attribute

than another. The unsurpassed claim is a simple one-
tailed alternative and just requires showing that our
product is not significantly lower than the other prod-
uct. For both of these tests, we have to choose some
lower bound that we cannot cross. For example, a com-
mon criterion for the equality claim is that the true
population percentage in the paired test lies between
45 and 55% of choices. Thus a 5% difference is con-
sidered “close enough” or of no appreciable practical
significance.

The equality claim requires that neither one of
the products cross over the lower bound and can be
viewed as two one-tailed tests. Tables for the minimum
number allowable in such tests can be found in ASTM
(2008a). For the unsurpassed claim we are stating
that our product is not inferior or not lower in the
attribute in question. For this purpose the test takes the
following form of a simple binomial-approximation
Z-score:

Z = (Pobs − 0.45) − (1/2 N)
√

(0.45)(0.55)

N

(5.9)

where Pobs is the proportion observed for your test
product. In the case of large sample sizes (N>200),
the value of the continuity correction, 1/2N, becomes
negligible. Note that this is a one-tailed test, so the
obtained Z must be greater than or equal to 1.645. If
the obtained Z is greater than that value, you have sup-
port for a claim that your product is not lower than the
competitor. In the case of our sweetness claim, we can
be justified in saying our product is “just as sweet.”

5.8 Models for Discrimination: Signal

Detection Theory

In the preceding sections, we looked at the size of the
sensory difference in terms of the proportion of pan-
elists who could be discriminating in any given test.
The calculations are based on an adjustment for chance
correct guesses. However, the chance probability level
does not tell the whole story, because some tests are
harder or involve more variability than others, even at
the same chance probability level. As an example, the
triangle test is “more difficult” than the 3-AFC test,
because it is a more difficult cognitive task to find
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the odd sample (one that entails higher variability), as
opposed to simply choosing the strongest or weakest.
In this section, we will look at a more sophisticated
model in which this issue can be taken into account.
From this theory, we can derive a universal index of
sensory similarity or difference and one that takes into
account the difficulty or variability inherent in different
discrimination tests.

One of the most influential theories in psy-
chophysics and experimental psychology is signal
detection theory (SDT). The approach grew from the
efforts of engineers and psychologists who were con-
cerned with the decisions of human observers under
conditions that were less than perfect (Green and
Swets, 1966). An example is the detection of a weak
signal on a radar screen, when there is additional visual
“noise” present in the background. Mathematically,
this theory is closely related to an earlier body of the-
ory developed by Thurstone (1927). Although they
worked in different experimental paradigms, credit
should be given to Thurstone for the original insight
that a scaled difference could be measured based
on performance and error variability. Although signal
detection usually deals with threshold-level sensations,
any question of perceived differences (when such dif-
ferences are small) can be addressed by SDT. For a
good introduction to SDT, the book on psychophysics
by Baird and Noma (1978) is useful and for a more
detailed look, Macmillan and Creelman (1991) is rec-
ommended.

5.8.1 The Problem

In traditional threshold experiments, the physical
strength of a weak stimulus is raised until the level is
found where people change their responses from “No,
I do not taste (or smell, see, hear, feel) anything” to
“Yes, now I do.” This is the original procedure for the
method of limits (see Chapter 2). The difficulty in such
an experiment is that there are many biases and influ-
ences that can affect a person’s response, in addition
to the actual sensation they experience. For example,
they may expect a change in sensation and antici-
pate the level where something will be noticeable.
Conversely, a person might adopt a very conserva-
tive stance and want to be very sure that something

is clearly perceivable before they respond. An exam-
ple in industry might be in quality control, where the
mistaken rejection of a batch of product could incur a
large cost if the batch has to be reworked or discarded.
On the other hand, a high-margin upscale product with
a brand-loyal and knowledgeable consumer base might
require narrower or more stringent criteria for product
acceptance. Any sensory problem at all might cause
rejection or retesting of a batch. The criterion for rejec-
tion would cast a wider net to be sure to catch potential
problem items before they can offend the brand-loyal
purchasers.

So a decision process is layered on top of the actual
sensory experience. A person may set a criterion that
is either conservative or lax in terms of how much evi-
dence they need to respond positively. Here is a simple
example of a decision process involved in perception:
Suppose you have just purchased a new pair of stereo
headphones. It is the end of a long work week and you
have gone home to enjoy your favorite music in a com-
fortable chair. As you settle in and turn the music up
very loud, you think the phone might be ringing. Let
us consider two scenarios: In one case, you are expect-
ing a job offer following a successful interview. Do
you get up and check the phone? In another case you
are expecting a relative to call who wants to borrow
money. Do you get up? What are the relative payoffs
and penalties associated with deciding that the phone
has actually rung? What does it take to get you up out
of that comfortable chair?

5.8.2 Experimental Setup

In a classic signal detection experiment, two levels
of a stimulus are to be evaluated, for example, the
background or blank stimulus called the “noise” and
some weak but higher level of stimulus intensity near
threshold called the “signal” (Baird and Noma, 1978;
Macmillan and Creelman, 1991) Stimuli are presented
one at a time and the observer would have to respond
“Yes, I think that is a case of the signal,” or “No, I
think that is the case of the noise.” So far this resembles
the A, not-A test in sensory evaluation. Both signal
and noise would be presented many times and the data
would be tabulated in a two-by-two response matrix
as shown in Fig. 5.3. Over many presentations, some
correct decisions would be made when a signal is in
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Actual

Trial

Signal

presented

 Noise

presented

Response

“YES” “NO”

HIT

False

alarm

Miss

Correct 

rejection

Fig. 5.3 The stimulus–response matrix for a signal detection
experiment. The hit rate is the proportion of times the subject
responds “yes” or “signal” when in fact the signal was presented.
The false alarm rate is the proportion of noise trials when the
subject also responds “yes” or “signal” (noise presented). These
two outcomes define the response space since the misses are the
total of the signal trials (which the experimenter has designed
into the study) minus hits, and the correct rejections are likewise
the number of noise trials minus false alarms (there is only one
degree of freedom per row).

fact presented and these are called “hits” in signal
detection terminology. Since the stimuli are confus-
able, sometimes the observer would respond positively
on noise trials as well, mislabeling them as signal.
These are called “false alarms.” There are also situa-
tions in which the signal is presented and the observer
fails to call it a signal (a “miss”) and cases in which the
noise trial is correctly labeled a noise trial. However,
since we have set up the experimental design and know
how many signal and noise trials we have presented,
the total number of signal trials is equal to the hits plus
misses and the total number of noise trials equals false
alarms plus correct rejections. In other words, there is
only one degree of freedom in each row and we can
define the observer’s behavior by examining only hit
and false alarm rates.

5.8.3 Assumptions and Theory

The theory makes a few sensible assumptions (Baird
and Noma, 1978; Green and Swets, 1966). Over
many trials, the sensations from signal and noise
are normally distributed with equal variance. That is,

F
re

q
u
e
n
c
y
 o

r 
P

ro
b
a
b
ili

ty

Perceived Signal Strength

noise
distribution

signal + noise 
distribution

cutoff or
 criterion
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Fig. 5.4 Signal detection assumptions include normally dis-
tributed experiences from signal and noise trials, with equal
variance and the establishment of a stable criterion or cutoff
level, above which the subject responds “yes” and below which
the subject responds “no”.

sometimes a more intense sensation will be felt from
the signal, and sometimes a weaker sensation, and
over many trials these experiences will be normally
distributed around some mean. Similarly the noise
trials will sometimes be perceived as strong enough
so that they are mistakenly called a “signal.” Once
the observer is familiar with the level of sensations
evoked, he or she will put a stable criterion in place.
When the panelist decides that the sensation is stronger
than a certain level, the response will be “signal” and
if weaker than a certain amount a “noise” response
will be given. This situation is shown in Fig. 5.4.
Remember that the panelist does not know if it is a
signal or noise trial, they just respond based on how
strong the sensation is to them.

Variabilities in the signal and noise are reasonable
assumptions. There is spontaneous variation in the
background level of activity in sensory nerves, as well
as variance associated with the adaptation state of the
observer, variation in the stimulus itself, and perhaps
in the testing environment. The greater the overlap in
the signal and noise distributions, the more difficult the
two stimuli are to tell apart. This shows up in the data
as more false alarms relative to the occurrence of hits.
Of course, in some situations, the observer will be very
cautious and require a very strong sensation before
responding “yes, signal.” This will not only minimize
the false alarm rate but also lower the hit rate. In other
situations, the observer might be very lax, and respond
“yes” a lot, producing a lot of hits, but at the cost of
increased false alarms. The hit and false alarm rates
will co-vary as the criterion changes.
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Now we need to connect the performance of the
observer (Fig. 5.3) to the underlying scheme in Fig. 5.4
to come up with a scaled estimate of performance and
one that is independent of where observers set their
particular criteria for responding. The separation of
the two distributions can be specified as the difference
between their means and the unit of measurement as
the standard deviations of the distributions (a conve-
nient yardstick). Here is the key idea: The proportion
of signal trials that are hits corresponds to the area
underneath the signal distribution to the right of the
criterion, i.e., the sensation stronger than our cutoff, so
response is “yes” to a signal presentation. Similarly,
the proportion of false alarm trials represents the tail
of the noise distribution to the right of the cutoff, i.e.,
sensations stronger than criterion but drawn from the
noise experiences. This scheme is shown in Fig. 5.5.

All we need to estimate, then, is the distance from
the criterion level or cutoff to the mean of each
distribution. These can be found from the z-scores
relating the proportion to the distance in standard
deviation units. Since we know the relationship
between proportions and z-scores, the two distances
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Fig. 5.5 Signal and noise distributions are shaded to show
the area corresponding to the proportions of hits and false
alarms, respectively. These proportions can then be converted to
z-scores.
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Fig. 5.6 How d′ is calculated based on the signal detection
scheme. Using the conversion of proportions (areas) to z-scores,
the overall difference (d′, pronounced “d prime”) is given by the
z-value for hits minus the z-value for false alarms.

can be estimated, and then summed, as shown in Fig.
5.6. Due to the way that z-scores are usually tabulated,
this turns out to be a process of subtraction and the
value of sensory difference called d′ (“d-prime”) is
equal to the z-score for the proportion of hits minus
the z-score for the proportion of false alarms.

5.8.4 An Example

The great advantage of this approach is that we
can estimate this sensory difference independently of
where the observer sets the criterion for responding.
Whether the criterion is very lax or very conservative,
the hit and false alarm z-scores will change to keep
d′ the same. The criterion can slide around, but for a
given set of products for the same panelist, the differ-
ence between the two distributions remains the same.
When the criterion is moved to the right, fewer false
alarms result and also fewer hits. (Note that the z-score
will change sign when the criterion passes the mean of
the signal distribution). If the criterion becomes very
lax, the hit and false alarm rates will both go up and
the Z-score for false alarms will change sign if the
proportion of false alarms is over 50% of the noise
trials. Table 5.2 may be used for conversion of propor-
tions of hits and false alarms to z-scores. Figure 5.7
shows a criterion shift for two approximately equal
levels of discriminability. The upper panel shows a
conservative criterion with only 22% hits and 5% false
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Table 5.2 Proportions and Z-scores for calculation of d′

Proportion Z-score Proportion Z-score Proportion Z-score Proportion Z-score

0.01 −2.33 0.26 −0.64 0.51 0.03 0.76 0.71
0.02 −2.05 0.27 −0.61 0.52 0.05 0.77 0.74
0.03 −1.88 0.28 −0.58 0.53 0.08 0.78 0.77
0.04 −1.75 0.29 −0.55 0.54 0.10 0.79 0.81
0.05 −1.64 0.30 −0.52 0.55 0.13 0.80 0.84
0.06 −1.55 0.31 −0.50 0.56 0.15 0.81 0.88
0.07 −1.48 0.32 −0.47 0.57 0.18 0.82 0.92
0.08 −1.41 0.33 −0.44 0.58 0.20 0.83 0.95
0.09 −1.34 0.34 −0.41 0.59 0.23 0.84 0.99
0.10 −1.28 0.35 −0.39 0.60 0.25 0.85 1.04
0.11 −1.23 0.36 −0.36 0.61 0.28 0.86 1.08
0.12 −1.18 0.37 −0.33 0.62 0.31 0.87 1.13
0.13 −1.13 0.38 −0.31 0.63 0.33 0.88 1.18
0.14 −1.08 0.39 −0.28 0.64 0.36 0.89 1.23
0.15 −1.04 0.40 −0.25 0.65 0.39 0.90 1.28
0.16 −0.99 0.41 −0.23 0.66 0.41 0.91 1.34
0.17 −0.95 0.42 −0.20 0.67 0.44 0.92 1.41
0.18 −0.92 0.43 −0.18 0.68 0.47 0.03 1.48
0.19 −0.88 0.44 −0.15 0.69 0.50 0.94 1.55
0.20 −0.84 0.45 −0.13 0.70 0.52 0.95 1.64
0.21 −0.81 0.46 −0.10 0.71 0.55 0.96 1.75
0.22 −0.77 0.47 −0.08 0.72 0.58 0.97 1.88
0.23 −0.74 0.48 −0.05 0.73 0.61 0.98 2.05
0.24 −0.71 0.49 −0.03 0.74 0.64 0.99 2.33
0.25 −0.67 0.50 0.00 0.75 0.67 0.995 2.58

“NO”

Proportion of Hits = 22%

Proportion of False Alarms = 5%

Z (hits) = –0.77

Z (FA) = –1.64

d' = –.77– (–1.64) = 0.87

Proportion of Hits = 90%

Proportion of False Alarms = 66%

Z (hits) = 1.28

Z (FA) = 0.41

d' = 1.28 – 0.41 = 0.87

“NO”
“YES”

“YES”

Z, F.A.

Z, HITS

Z, F.A.

Z, HITS

Very Strict Criterion

Very Lax Criterion

Fig. 5.7 The measure of sensory difference, d′, will remain con-
stant for the same observer and the same stimuli, even though the
criterion shifts. In the upper case, the criterion is very strict and
the observer needs to be sure before responding “yes” so there is

a low proportion of hits but also a low proportion of false alarms.
In the lower panel the subject sets a lax criterion, responding
“yes” most of the time, catching a lot of hits, but at the expense
of many false alarms.
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alarms. Referring to Table 5.2, the Z-scores for these
proportions are –0.77 and –1.64, respectively, giving
a d′ value of –0.77–(–1.64) or +0.87. The lower panel
illustrates a less conservative mode of responding, with
90% hits and 66% false alarms. Table 5.2 shows the Z-
scores to be 1.28 and 0.41, again giving a d′ of 0.87.

In other words, the d′ does not change, even though
the criterion has shifted. This theory permits a deter-
mination of the degree of sensory discriminability,
regardless of the bias or criterion of the observer. In the
next section, we will examine how the theory can be
extended to include just about any discrimination test.

5.8.5 A Connection to Paired

Comparisons Results Through

the ROC Curve

How can we connect the SDT approach to the kinds of
discrimination tests used in sensory evaluation? One
way to see the connection is to look at the receiver
operating characteristic or ROC curve. This curve
defines a person’s detection ability across different set-
tings of the criterion. In the ROC curve, hit rate in
different situations is plotted as a function of false
alarm rate. Figure 5.8 shows how two observers would
behave in several experiments with the same levels of
the stimulus and noise. Payoffs and penalties could
be varied to produce more conservative or more lax
behaviors, as they often were in the early psychophysi-
cal studies. As criterion shifts, the performance moves
along the characteristic curve for that observer and for
those particular stimuli. If the hit rate and false alarm
rates were equal, there is no discrimination of the two
levels, and d′ is zero. This is shown by the dotted diag-
onal line in the figure. Higher levels of discrimination
(higher levels of d′) are shown by curves that bow more
toward the upper left of the figure. Observer 2 has a
higher level of discrimination, since there are more hits
at any given false alarm rate or fewer false alarms at a
given hit rate. The level of discrimination in this figure,
then is proportional to the area under the ROC curve
(to the right and below), a measure that is related to d′.
Note that the dotted diagonal cuts off one-half of the
area of the figure. One-half (50%) is the performance
you would expect in a paired comparison test if there
were no difference between the products. From this
you can see that there should be a correspondence

between the area under the ROC curve (which is pro-
portional to d′) and the performance we would expect
in a 2-AFC or paired comparison test. Results from
other kinds of discrimination tests such as the triangle,
duo–trio, and 3-AFC can be mathematically converted
to d′ measures (Ennis, 1993).

5.9 Thurstonian Scaling

Thurstone was dealing with the kinds of studies done in
traditional psychophysics, like the method of constant
stimuli (see Chapter 2). This method is basically just a
series of paired comparisons against a constant or stan-
dard stimulus. Thurstone realized that if you got 95%
correct in a paired test, the sensory difference ought to
be bigger than if you only got 55% correct. So he set
out to come up with a method to measure the degree of
difference, working from the percent correct in a paired
test. In doing this he formulated a law of comparative
judgment (Thurstone, 1927).

5.9.1 The Theory and Formulae

Thurstone’s law of comparative judgment can be para-
phrased as follows: Let us assume that the panelist
will compare two similar products, A and B, over sev-
eral trials and we will record the number of times A
is judged stronger than B. Thurstone proposed that
the sensory events produced by A and B would be
normally distributed. Thurstone called these percep-
tual distributions “discriminal dispersions,” but they
are analogous to the distributions of signal and noise
events in the yes/no task. The proportion of times A is
judged stronger than B (the datum) comes from a pro-
cess of mental comparison of the difference between
the two stimuli. Evaluating a difference is analogous
to a process of subtraction. Sometimes the difference
will be positive (A stronger than B) and sometimes
the difference will be negative (B stronger than A)
since the two items are confusable. One remaining
question is how the sampling distribution for these
differences would arise from the two underlying dis-
criminal dispersions as shown in Fig. 5.9. The laws of
statistics can help here, since it is possible to relate
the difference sampling distribution (lower curve) to
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ROC Curve - Differing Sensitivities
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At the same false alarm rate, 
observer 1 has more hits
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d’ = 0 is shown by a diagonal ROC.
This leaves 50% of the area of the box 
to the lower left.
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forms a curve that bows
more severely to the upper left

The area under the ROC curve is another measure of discrimination.
Also, there is a relationship between this measure and forced-choice data.
(Area under the curve is approximately what would happen in 2 -AFC).

Fig. 5.8 The ROC curve, or receiver operating characteristic,
shows the behavior of a single individual under various crite-
rion shifts, plotting the proportion of hits against the proportion
of false alarms. Better discrimination (higher d′) is shown by
a curve that bows more toward the upper left corner. Thus
observer 1 has better performance and better discrimination abil-
ity than observer 2. The area under the ROC curve (to the right
and below) is another measure of discrimination and can be

converted to d′ values. Note that the diagonal describes no dis-
crimination, when hits always equal the rate of false alarms. Also
note that the area of the box below and to the right is 50% which
would be the performance in a paired test or 2-AFC when there
is no difference. Thus the area under the ROC curve is expected
to be proportional to the performance one would observe with a
given observer and a given pair of stimuli in a 2-AFC test.

the sensory events depicted by the upper distribu-
tions. This statistical result is given by the following
equation:

Sdiff =
√

S2
a + S2

b + 2rSaSb (5.10)

Mdifference = Z

√

S2
a + S2

b + 2rSaSb (5.11)

where M is the difference scale value, Z is the z-score
corresponding to the proportion of times A is judged
stronger than B, and Sa and Sb are the standard devi-
ations of the original discriminal dispersions. The “r”
represents the correlation between sensations from A
and B, which might be negative in the case of contrast

or positive in the case of assimilation. If we make
the assumptions that Sa and Sb are equal and r = 0
(no sequential dependency of the two stimuli) then the
equation simplifies to

M = Z
√

2S (5.12)

where S is the common standard deviation. These sim-
plified assumptions are referred to as “Thurstone’s
Case V” in the statistical literature (Baird and Noma,
1978). The mean of the difference scores is statisti-
cally the same as the difference of the two means. So
to get to d′, which is the mean difference divided by
the original standard deviation, we have to multiply
our z-score (from the percent correct) by the square
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Fig. 5.9 The Thurstone model proposes that the proportion of
times one stimulus is judged greater than another is predicted by
a difference sampling distribution, which in turn arises from the
sensory variability and degree of overlap in the original stimuli.

root of 2. In other words, the z-score value is smaller
than what would be estimated from the d′ of the yes/no
signal detection experiment by the square root of two
(Macmillan and Creelman, 1991). The distance of the
mean from an arbitrary zero point can be determined
by a z-score transformation of the proportion of times
A is judged stronger than B. We can conveniently work
with the zero point as the mean of distribution for the
weaker of the two stimuli (Baird and Noma, 1978).
Like d′, this gives us a measure that is expressed in
standard deviation units.

5.9.2 Extending Thurstone’s Model

to Other Choice Tests

We can extend this kind of scale value to any kind of
choice test and tables have been published for various
conversions of percent correct to d′ or delta values (Bi,
2006a; Ennis, 1993; Frijters et al., 1980; Ura, 1960).
Delta is sometimes used to refer to a population vari-
able (rather than d′ which is a sample statistic) but the
meaning is the same in terms of the sensory difference

it describes. Other theorists saw the applicability of
a signal detection model to forced-choice data. Ura
(1960) and Frijters et al. (1980) published the mathe-
matical relationships to relate triangle test performance
to d′ as well as other test procedures commonly used
in food science.

Ennis (1990, 1993) has examined Thurstonian mod-
els as one way of showing the relative power of
difference tests. Like Frijters, he showed that for
a given level of scaled difference a lower level of
percent correct is expected in the triangle test, as
opposed to the 3-AFC test. On the basis of the vari-
ability in judging differences versus intensities, one
expects higher performance in the 3-AFC test. This
has become famous as the “paradox of the discrimi-
natory non-discriminators” (Byer and Abrams, 1953;
Frijters, 1979). In the original paper, Byer and Abrams
noted that it was possible for many panelists to answer
incorrectly under the triangle test instructions, but still
accurately choose the strongest sample when it was
the odd one (or the weakest when it was the odd one).
An example of how this could occur is shown in Fig.
5.10. That is, for the 3-AFC instructions, there was
a higher percent correct. Frijters (1979) was able to
show that the different percents correct for the tri-
angle and 3-AFC in Byer and Abram’s data actually
yielded the same d′ value, hence resolving the apparent
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Fig. 5.10 An example of the paradox of the discriminatory
non-discriminators. In a hypothetical triad of products, the odd
sample, B, is chosen as the strongest sample, a correct answer
for the 3-AFC test. However, one of the duplicate samples, A,
is momentarily perceived as the outlier, leading to an incorrect
choice as the odd sample under the triangle test instructions.
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paradox. Delwiche and O’Mahony (1996) demon-
strated that similar predictions can be made for tetradic
(four-stimulus procedures).

The ability to reconcile the results from different
experimental methods and convert them to a common
scale is a major advantage of the signal detection and
Thurstonian approaches (Ennis, 1993). Studies con-
tinue to show the constancy of d′ estimates across
tasks and methods (Delwiche and O’Mahony, 1996;
Stillman and Irwin, 1995), although there are occa-
sional exceptions where other factors come into play
to complicate the situation and require further model
development (Antinone et al., 1994; Lawless and
Schlegel, 1984). Applying the correct Thurstonian
model requires that you understand the cognitive strat-
egy of the panelist (O’Mahony et al., 1994). For
example, am I looking for the smallest of three pairs
of differences (a triangle strategy for finding the odd
sample) or am I trying to discern the strongest of three
intensities (a 3-AFC “skimming” strategy)? If one has
a different strategy for a given test method or task,
the resulting d′ value will not reflect what people are
actually doing in the test. For example, if a number of
panelists are “skimming” for the strongest sample, but
have been given triangle instructions, the d′ will not
make sense if taken from the triangle test tables.

Another complicating factor concerns sequential
effects in groups of products that are presented at the
same time. The discriminability of two items depends
not only on the relative strength of signal versus noise
sensations but also on the sequence in which items
are presented. Thus a strong stimulus following a
weak one (signal after noise trial) may give a stronger
sensation of difference than a noise trial following a
signal trial. O’Mahony and Odbert (1985) have shown
how this leads to better performance for some discrim-
ination tests over others in a theory called “sequen-
tial sensitivity analysis.” Ennis and O’Mahony (1995)
showed how sequential effects can be incorporated
into a Thurstonian model. Another factor concerns
the fact that most foods are multi-dimensional and
the simple SDT and Thurstone models are usually
formalized as a one-dimensional variation. Ennis and
Mullen (1986) using a multivariate model showed
how variation in irrelevant dimensions could degrade
performance.

The important conclusion for sensory professionals
to draw from this theory is that the common tests for
overall difference, e.g., the triangle and duo–trio, are

not very sensitive tests. That is, for a given d′ value, a
much larger panel size needs to be tested to be sure that
the difference is detected by the test. This is in compar-
ison to the forced-choice procedures such as the paired
comparison and 3-AFC tests which will detect a sta-
tistically significant difference for a given d′ at much
smaller panel sizes (Ennis, 1993). Put a different way,
for a given panel size, the triangle test could easily miss
a difference that the 3-AFC test would detect, as seen
in the Byer and Abrams “paradox.” Unfortunately,
when an ingredient or processing change is made in
a complex food, one cannot always predict any simple
singular attribute to use for the AFC tests, nor perhaps
even overall strength of flavor, taste, etc. So the sen-
sory professional is stuck using the less sensitive type
of test. In the face of a statistically significant result,
this is not a problem. But if the equivalence decision is
based on a non-significant test outcome, the decision
to conclude equivalence can be very risky.

5.10 Extensions of the Thurstonian

Methods, R-Index

5.10.1 Short Cut Signal Detection

Methods

One additional method deserves mention in the appli-
cation of signal detection models to the discrimination
testing situation. A practical impediment to the appli-
cation of signal detection theory to foods has been
the large number of trials necessary in the traditional
yes/no signal detection experiment. With foods, and
especially in applied difference testing, it has rarely
been possible to give the large numbers of trials to each
subject needed to accurately estimate an individual’s d′

value.
O’Mahony (1979) saw the theoretical advantage

to signal detection measures, and proposed short-cut
rating scale methods to facilitate the application of sig-
nal detection in food evaluations. The R-index is one
example of an alternative measure developed to pro-
vide an index of discrimination ability but without the
stringent assumptions entailed by d′, namely equal and
normally distributed variances from signal and noise
distributions. The area under the ROC curve is another
measure of discrimination that does not depend upon
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the exact forms of the signal and noise distributions
(see Fig. 5.8). The R-index is one such measure and
converts rating scale performance to an index related to
the percentage of area under the ROC curve, a measure
of discrimination. It also gives an indication of what
we would expect as performance in two-alternative
forced-choice task, which is of course, mathematically
related to d′.

5.10.2 An Example

Here is an example of the R-index approach. In a
typical experiment, 10 signal and 10 noise trials are
given. Subjects are pre-familiarized with signal stim-
uli (called “A”) and noise stimuli (called “B” in this
example). Subjects are asked to assign a rating scale
value to each presentation of A and B, using labels
such as “A, definitely,” “A, maybe”, “B, maybe” and
“B, definitely.”

For a single subject, performance on the 20 trials
might look like this:

Ratings

A, definitely A, maybe B, maybe B, definitely

Signal
presented

5 2 2 1

Noise
presented

1 2 3 4

Obviously, there is some overlap in these distributions
and the stimuli are somewhat confusable.

R is calculated as follows: Pair every rating of the
signal with every rating of the noise as if there were
paired comparisons. In this example, there are 10 × 10
or 100 hypothetical pairings. R calculates how many
times would the signal “A” be identified correctly or
called the stronger of the pair. First, we consider the
five cases in which signal (A) was rated “A, definitely.”
When paired against the (2 + 3 + 4 =) 9 cases in
which the noise trial (B) received a lower rating (i.e.,
noise was judged less like “A” than signal), 45 cor-
rect judgments would have been made if there were
actually paired tests. For the five cases in which the
signal was “A, definitely” were paired with noise rated
“A, definitely,” there are five ties (5 × 1), so we pre-
sume that half the trials (2.5) would be correct and half
incorrect if a choice were forced. We then to continue

to make these hypothetical pairings of each rating of
A with ratings of B, based upon the frequencies in
each cell of our matrix. Thus the ratings of signal
as “A, maybe” give 2 × 7 = 14 “correct” pairings
(i.e., A rated higher than B) and the ratings of signal
as “B, maybe” give 2 × 4=8 correct pairings. There
are 17 total ties (counted as 8.5 correct pairings). The
R-index, then is 45 + 14 + 8 + 8.5 (for ties) = 75.5.
In other words, our best guess about the total percent
correct in a two-alternative forced-choice task like a
paired comparison test would be about 75.5%.

This result indicates a slight degree of difference
and that this pair of items is sometimes confusable.
Obviously, as the two stimuli have less overlapping
response patterns, there is better discrimination and a
higher R-value. Remember that this would correspond
to 75.5% of the area below the ROC curve for this per-
son. Taking a z-score and multiplying by the square
root of 2 gives us a d′ of 0.957 (Bi, 2006b). This value,
close to one, also suggests that the difference is above
threshold but not very clear. Statistical tests for the
R-index, including confidence intervals for similarity
testing are given in Bi (2006b).

As in other signal detection methods, the R-index
allows us to separate discrimination performance from
the bias or criterion a person sets for responding.
For example, we might have an observer who is
very conservative and calls all stimuli noise or labels
them “B” in our example. If the observer assigned
all A-trials (signals) to “B, maybe” and all B-trials
(noise) to “B, definitely” then the R-index would equal
100, in keeping with perfect discrimination. The fact
that all stimuli were considered examples of “B” or
noise shows a strong response bias, but this does not
matter. We have evidence for perfect discrimination
due to the assignment of the two stimuli to differ-
ent response classes, even though the observer was
very biased to use only one part of the rating scale.
Another advantage of R-index methods is that far
fewer trials need be given as compared with the yes/no
procedure.

5.11 Conclusions

A common issue in applied sensory testing is whether
the experimental sample is close enough to a control
or standard sample to justify a decision to substitute
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it for the standard. This is an exceedingly difficult
question from a scientific perspective, since it seems
to depend upon proving a negative, or in statistical
terms, on proving the null hypothesis. However, fail-
ure to reject the null can occur for many reasons. There
may be truly no difference, there may be insufficient
sample size (N too low), or there may be too much
variability or error obscuring the difference (standard
deviations too high). Since this situation is so ambigu-
ous, in experimental science we are usually justified in
withholding a decision if we find no significant effect.
Statisticians often say “there is insufficient evidence
to reject the null” rather than “there is no significant
difference.” However, in industrial testing, the non-
significant difference can be practically meaningful in
helping us decide that a sample is like some control, as
long as we have some knowledge of the sensitivity and
power of our test. For example, if we know the track
record of a given panel and test method for our partic-
ular product lines, we can sometimes make reasonable
decisions based on a non-significant test result.

An alternative approach is to choose some accept-
able interval of the degree of difference and see
whether we are inside that interval or below some
acceptable limit. This chapter has approached the
degree-of-difference issue from two perspectives. The
first was to convert our percent correct to an adjusted
percent correct based on the traditional correction for
guessing given by Abbott’s formula. This allows us to
estimate the percent of people actually discriminating,
assuming a simple two-category model (either you see
the difference or you guess). The second approach is
to look at the degree of difference, or conversely the
power of the test to detect that difference, as a func-
tion of a Thurstonian scaled value such as delta or d′.
This value provides a more universal yardstick for sen-
sory differences, as it takes into account the difficulty
or variability inherent in the test, and also the cognitive
strategy of the panelist in different tasks.

Note that there is an important limitation to the
correction-for-guessing models. The guessing model
and the Thurstonian model have different implications
regarding the difficulty of the triangle and 3-AFC test.
The guessing model only considers the proportion cor-
rect and the chance performance rate in estimating
the proportion of discriminators. For the same propor-
tion correct in the triangle and the 3-AFC test, there
will be the same estimated proportion of discriminators
since they have the same chance probability level (1/3).

However, the Thurstonian/SDT model tells us that the
triangle test is harder. For the same proportion correct
in an experiment, there must be much better discrim-
inability of the items to achieve that level in the triangle
test. In other words, it was necessary for the products
to be more dissimilar in the triangle test—since the tri-
angle test is harder, it took a bigger difference to get
to the observed proportion, as opposed to the 3-AFC.
Obviously, being a “discriminator” in a triangle test
requires a larger perceptual difference than being a dis-
criminatory in 3-AFC. So the notion of discriminators
is specific to the method employed. However, in spite
of this logical limitation, the correction-for-guessing
approach has some value in helping to make decisions
about sample size, beta-risk, and power estimation. As
long as one is always using the same test method, the
problem of different d′-values need not come into play.

The use of d′ as a criterion has an important limiting
factor as well. The variance of a d′ value is given as the
value of a B-factor divided by N, the number of judges
or observations (ASTM, 2008b) (see Table O for val-
ues of B). Unfortunately, the B-factor passes through a
minimum near a d′ or 2.0 and starts to increase again
as d′ approaches zero. This makes it difficult, from any
practical perspective, to find a significant difference
between some d′ that you might choose as an accept-
able upper limit and a low level of d′ that you may
find in the test you perform. For all practical purposes,
testing an obtained d′ against a d′ limit less than 1.5 is
not very efficient and demonstrating that a d′ is signif-
icantly lower than 1.0 is very difficult given the size of
most discrimination testing panels (N = 50–100). For
this reason, conclusions about similarity using d′ need
to be based on simple rules-of-thumb, for example, by
comparing the level of d′ to those that have previously
been found to be acceptable (see ASTM (2008b) for
further discussion).

In conclusion, we offer the following guidelines
for those seeking evidence of sensory equivalence or
similarity: First, apply the common sense principles
discussed at the beginning of this chapter. Make sure
you have a sensitive test instrument that is capable
of detecting differences. If possible, include a control
test to show that the method works or be prepared to
illustrate the track record of the panel with previous
results. Second, do power and sample size calculations
to be sure you have an adequate panel size and ade-
quate appreciation of what the test is likely to detect
or miss. Third, get management to specify how much
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of a difference is acceptable. A company with a long
history of difference or equivalence testing may have a
benchmark d′, a proportion of discriminators or some
other benchmark or degree of difference that is accept-
able. Fourth, adopt one of the statistical approaches
such as a similarity test, interval testing (see Ennis and
Ennis, 2010, for a new approach), or TOST to prove
that you are below (or within) some acceptable limit
of variation. Finally, be aware of the power of your
test to detect a given degree of difference. The best
measures of degree of difference from choice tests are
given by the Thurstonian delta or d′ values which are
independent of the particular test method.

Appendix: Non-Central t-Test for

Equivalence of Scaled Data

Bi (2007) described a similarity test for two means, as
might come from some scaled data such as acceptabil-
ity ratings, descriptive panel data, or quality control
panel data. The critical test statistic is TAH after the
original authors of the test, Anderson and Hauck. If
we have two means, M1 and M2, from two groups of
panelists with N panelists per group and a variance
estimate, S, the test proceeds as follows:

TAH = M1 − M2

s
√

2/N
(5.13)

The variance estimate, S, can be based on the two
samples, where

S2 =
S2

1 + S2
2

N
(5.14)

and we must also estimate a non-centrality parame-
ter, δ,

δ = �o

s
√

2/N
(5.15)

where �o is the allowable difference interval.
The calculated p-value is then

p = tν(|TAH| − δ) − tν(− |TAH| − δ) (5.16)

and tν is the p-value from the common central
t-distribution value for ν = 2(N–1) degrees of freedom.
If p is less than our cutoff, usually 0.05, then we can
conclude that our difference is within the acceptable
interval and we have equivalence.

For paired data, the situation is even simpler, but
in order to calculate your critical value, you need
a calculator for critical points of the non-central
F-distribution, as found in various statistical packages.

To apply this, perform a simple dependent samples
(paired data) t-test. Determine the maximum allowable
difference in terms of the scale difference and normal-
ize this by stating it in standard deviation units. The
obtained value of t is then compared to the critical
value as follows:

C =
√

F (5.17)

where the F value corresponds to a value for the non-
central F-distribution for 1, N–1 degrees of freedom,
and a non-centrality parameter, given by N(ε), and (ε)
is the size of the critical difference in standard devia-
tion units. If you do not have easy access to a calculator
for the critical values of a non-central F, a very useful
table is given in Gacula et al. (2009) where the value
of T may be directly compared to the critical value
based on an alpha level of 0.05 and various levels of (ε)
(Appendix Table A.30, pp. 812–813 in Gacula et al.,
2009). The absolute value of the obtained t-value must
be less than the critical C value to fall in the range of
significant similarity or equivalence.

Worked examples can be found in Bi (2005) and
Gacula et al. (2009).
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Chapter 6

Measurement of Sensory Thresholds

Abstract This chapter discusses the concept of threshold and contrasts the
conceptual notion with the idea of threshold as a statistically derived quantity. A
simple method for determining detection thresholds based on ASTM method E-679
is illustrated with a worked example. Other methods for determining thresholds are
discussed as well as alternative analyses.

A light may be so weak as not sensibly to dispel the darkness, a sound so low as not to be heard, a

contact so faint that we fail to notice it. In other words, a finite amount of the outward stimulus is

required to produce any sensation of its presence at all. This is called by Fechner the law of the

threshold—something must be stepped over before the object can gain entrance to the mind.

—(William James, 1913, p. 16)
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6.1 Introduction: The Threshold Concept

One of the earliest characteristics of human sensory
function to be measured was the absolute threshold.
The absolute or detection threshold was seen as an
energy level below which no sensation would be pro-
duced by a stimulus and above which a sensation
would reach consciousness. The concept of threshold
was central to Fechner’s psychophysics. His integra-
tion of Weber’s law produced the first psychophysical
relationship. It depended upon the physical inten-
sity being measured with the threshold for sensing
changes as the unit (Boring, 1942). Early physiolo-
gists like Weber and Fechner would use the classical
method of limits to measure this point of disconti-
nuity, the beginning of the psychophysical function.
In the method of limits, the energy level would be
raised and lowered and the average point at which
the observer changed response from “no sensation”
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to “yes, I perceive something” would be taken as the
threshold. This specification of the minimum energy
level required for perception was one of the first operat-
ing characteristics of sensory function to be quantified.
Historically, the other common property to be mea-
sured was the difference threshold or minimal increase
in energy needed to produce a noticeable increase in
sensation. Together, these two measures were used to
specify the psychophysical function, which to Fechner
was a process of adding up difference thresholds once
the absolute (minimum) threshold had been surpassed.

In practice, some complications arise in trying to
apply the threshold idea. First, anyone who attempts to
measure a threshold finds that there is variability in the
point at which observers change their response. Over
multiple measurements there is variability even within
a single individual. In a sequence of trials, even within
the same experimental session, the point at which a
person changes his or her responses will differ. An old
story has it that S.S. Stevens, one of the pioneers of
twentieth century psychophysics, used the following
classroom demonstration at Harvard: Students were
asked to take off their wristwatches and hold them at
about arm’s length, then count the number of ticks
they heard in 30 s (back in the day when spring-
wound watches still made ticking sounds). Assuming
the watch of one of these Harvard gentlemen made
uniform ticking sounds, the common result that one
would hear some but not all of the ticks illustrated the
moment-to-moment variation in auditory sensitivity.
Of course, there are also differences among individu-
als, especially in taste and smell sensitivity. This led to
the establishment of common rules of thumb for defin-
ing a threshold, such as the level at which detection
occurs 50% of the time.

The empirical threshold (i.e., what is actually mea-
sured) remains an appealing and useful concept to
many workers involved in sensory assessments. One
example is in the determination of flavor chemicals
that may contribute to the aromatic properties of a nat-
ural product. Given a product like apple juice, many
hundreds of chemical compounds can be measured
through chemical analysis. Which ones are likely to
contribute to the perceived aroma? A popular approach
in flavor analysis assumes that only those com-
pounds that are present in concentrations above their
thresholds will contribute. A second example of the

usefulness of a threshold is in defining a threshold
for taints or off-flavors in a product. Such a value
has immediate practical implications for what may
be acceptable versus unacceptable levels of undesired
flavor components. Turning from the product to the
sensory panelists, a third application of thresholds is
as one means of screening individuals for their sensi-
tivity to key flavor components. The measurement of a
person’s sensitivity has a long history in clinical test-
ing. Common vision and hearing examinations include
some measurements of thresholds. In the chemical
senses, threshold measurements can be especially use-
ful, due to individual differences in taste and smell
acuity. Conditions such as specific anosmia, a selec-
tive olfactory deficit, can be important in determining
who is qualified for sensory test panel participation
(Amoore, 1971).

Another appealing aspect of the threshold concept
is that the values for threshold are specified in physical
intensity units, e.g., moles per liter of a given com-
pound in a product. Thus many researchers feel com-
fortable with threshold specification since it appears
to be free from the subjective units of rating scales or
sensory scores. However, threshold measurements are
no more reliable or accurate than other sensory tech-
niques and are usually very labor intensive to measure.
Perhaps most importantly, thresholds represent only
one point on a dose–response curve or psychophysi-
cal function, so they tell us little about the dynamic
characteristics of sensory response as a function of
changes in physical concentration. How the sensory
system behaves above threshold requires other kinds
of measurements.

In this chapter, we will look at some threshold def-
initions and approaches and their associated problems.
Next, we will examine some practical techniques for
threshold measurement and discuss a few applications.
Throughout, we will pay special attention to the prob-
lems of variability in measurement and the challenges
that this poses for researchers who would use thresh-
olds as practical measures of peoples’ sensitivities to
a given stimulus, or conversely, of the potency or bio-
logical activity of that stimulus in activating sensory
perceptions. Most of the examples chosen come from
olfaction and taste, as the chemical senses are espe-
cially variable and are prone to difficulties due to
factors such as sensory adaptation.
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6.2 Types of Thresholds: Definitions

What is a threshold? The American Society for Testing
and Materials (ASTM) provides the following defini-
tion that captures the essence of the threshold concept
for the chemical senses: “A concentration range exists
below which the odor or taste of a substance will
not be detectable under any practical circumstances,
and above which individuals with a normal sense of
smell or taste would readily detect the presence of the
substance.”—ASTM method E-679-79 (2008a, p. 36).

Conceptually, the absolute or detection threshold is
the lowest physical energy level of a stimulus or lowest
concentration in the case of a chemical stimulus that is
perceivable. This contrasts with empirical definitions
of threshold. When we try to measure this quantity, we
end up establishing some practical rule to find an arbi-
trary value on a range of physical intensity levels that
describes a probability function for detection. In 1908,
the psychologist Urban recognized the probabilistic
nature of detection and called such a function a psycho-
metric function, as shown in Fig. 6.1 (Boring, 1942).
We portray this function as a smooth curve in order
to show how the original concept of a fixed threshold
boundary was impossible to measure in practice. That
is, there is no one energy level below which detection
never occurs and above which detection always occurs.
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It is not a sudden step function. There is a probability
function determined by an empirical method of mea-
surement on which we define some arbitrary point as
the threshold.

Recognition thresholds are also sometimes mea-
sured. These are the minimum levels that take on
the characteristic taste or smell of the stimulus and
are often a bit higher than detection thresholds. For
example, dilute NaCl is not always salty, but at low
concentrations just above the detection threshold is
perceived as sweet (Bartoshuk et al., 1978). The con-
centration at which a salty taste is apparent from NaCl
is somewhat higher. In food research, it is obvious that
the recognition threshold for a given flavor in a food
would be a useful thing to know, and perhaps more
useful than detection thresholds, since both the percept
and the appropriate label have been made consciously
available and actionable to the taster. In the case of off-
flavors or taints, recognition may have strong hedonic
correlates in predicting consumer rejection.

To be recognized and identified, discrimination
from the diluent is only one requirement. In addition,
the observer must assign the appropriate descriptor
word to the stimulus. However, it is difficult to set up
a forced-choice experiment for identification in some
modalities. In taste, for example, you can have the
observer pick from the four (or five) taste qualities,
but there is no assurance that these labels are suffi-
cient to describe all sapid substances (O’Mahony and
Ishii, 1986). Furthermore, one does not know if there
is an equal response bias across all four alternatives.
Thus the expected frequencies or null hypothesis for
statistical testing or difference from chance responding
is unclear. In an experiment on bitter tastes, Lawless
(1980) attempted to control for this bias by embed-
ding the to-be-recognized bitter substances in a series
that also included salt, acid, and sugar. However, the
success of such a procedure in controlling response
biases is unclear and at this time there are no estab-
lished methods for recognition thresholds that have
adequately addressed this problem.

The difference threshold has long been part of clas-
sical psychophysics (see Chapter 2). It represents the
minimum physical change necessary in order for a per-
son to sense the change 50% of the time. Traditionally,
it was measured by the method of constant stimuli
(a method of comparison to a constant reference) in
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which a series of products were raised and lowered
around the level of the reference. The subject would
be asked to say which of member of the pair was
stronger and the point at which the “stronger” judg-
ment occurred 75% (or 25%) of the time was taken as
the difference threshold or “just-noticeable-difference”
(JND).

One can think of sensory discrimination tests (tri-
angles and such) as a kind of difference threshold
measurement. The main difference between a psy-
chophysical threshold test and a sensory discrimination
test is that the psychophysical procedure uses a series
of carefully controlled and usually simple stimuli of
known composition. The sensory product test is more
likely to have only two products, and the pair is either
deemed different or not, based on a criterion of sta-
tistical significance. But clearly the two kinds of tests
are related. Along these lines, one can think of the
absolute threshold as a special case of a difference
threshold, when the standard happens to be some blank
or baseline stimulus (such as pure air or pure water).

In addition to detection, recognition, and difference
thresholds, a fourth category is the terminal thresh-
old or region in which no further increase in response
is noted from increasing physical stimulus intensity
(Brown et al., 1978). In other words, the sensory
response has reached some saturation level, beyond
which no further stimulation is possible due to maxi-
mal responding of receptors or nerves or some physical
process limiting access of the stimulus to receptors.
This makes sense in terms of neurophysiology as well.
There are only a limited number of receptors and
nerves and these have a maximal response rate. This
idea fits well with the notion of a threshold as a dis-
continuity or inflection point in the psychophysical
function (Marin et al., 1991).

However, in practice, this level is rarely approached.
There are few foods or products in which the satu-
ration level is a common level of sensation, although
some very sweet confections and some very hot pep-
per sauces may be exceptions. For many continua, the
saturation level is obscured by the addition of new
sensations such as pain or irritation (James, 1913).
For example, some odors have a down-turn in the
psychophysical function at high levels, as trigemi-
nal irritation begins to take place, that may in turn
have an inhibiting effect on odor intensity (Cain,
1976; Cain and Murphy, 1980). Another example is in

the bitter side taste of saccharin. At high levels, the
bitterness will overtake the sweet sensation for some
individuals. This makes it difficult to find a sweetness
match of saccharin to other sweeteners at high levels
(Ayya and Lawless, 1992). Further increases in con-
centration only increase bitterness and this additional
sensation has an inhibiting effect on sweet perception.
So although saturation of response seems physiolog-
ically reasonable, the complex sensations evoked by
very strong stimuli mediate against any measurement
of this effect in isolation.

Recently, a new type of threshold has been pro-
posed for consumer rejection of a taint or off-flavor.
Prescott et al. (2005) examined the levels at which
consumers would show an aversion to cork taint from
trichloroanisole in wines. Using a paired preference
tests with increasing levels of trichloroanisole, they
defined the rejection threshold as the concentration at
which there was a statistically significant preference
for an untainted sample. This novel idea may find wide
application in flavor science and in the study of specific
commodities (like water) in which the chemistry and
origins of taints are fairly well understood (for another
example, see Saliba et al., 2009). The method in its
original form requires some refinement as to the cri-
terion for threshold because statistical significance is
a poor choice. As they noted in their paper, the level
of statistical significance depends upon the number of
judges, a more or less arbitrary choice of the experi-
menter (not a function of the sensory response of the
participants). A better choice would be something akin
to the difference threshold, i.e., the concentration at
which 75% preference was reached. Of course, con-
fidence intervals can be drawn around any such level
for those that need statistical assurance.

6.3 Practical Methods: Ascending Forced

Choice

In the early days of psychophysics, the method of
limits was the most common approach to measur-
ing thresholds. In this procedure, stimulus intensity
would be raised in an ascending series and then low-
ered in a descending series to find points at which the
observer’s response changed from a negative to a posi-
tive response or from positive to negative. Over several
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ascending and descending runs, an average changing
point could be taken as the best estimate of threshold
(McBurney and Collings, 1977). This method is illus-
trated in Fig. 6.2.

Although this procedure seems straightforward, it
has several problems. First, the descending series
may cause such fatigue or sensory adaptation that
the observer fails to detect stimulus presentations that
would be clearly perceived if they were presented
in isolation. To avoid the adaptation or fatigue prob-
lem that is common in the taste and smell senses,
the method is usually performed only in an ascend-
ing series. A second difficulty is that different persons
may set different criteria for how much of a sensa-
tion they require before changing their response. Some
people might be very conservative and have to be pos-
itively sure before they respond, while others might
take any inkling at all as a reason to report a sensation.
Thus the classical method of limits is contaminated
by the panelist’s individual bias or criterion, which is
not a function of their sensitivity, i.e., what the test
is actually trying to measure. This is a central issue
in the theory of signal detection (see Chapter 5). To
address the problem of uncontrolled individual crite-
rion, later workers introduced a forced choice element
to the trials at each intensity level or concentration step
(e.g., Dravnieks and Prokop, 1975). This combines
the method of limits with a discrimination test. The
task requires that the observer gives objective proof
of detection by discriminating the target stimulus from

the background level. A forced choice technique is
compatible with signal detection principles and is bias
free, since the observer does not choose whether or not
to respond—response is required on each trial.

6.4 Suggested Method for

Taste/Odor/Flavor Detection

Thresholds

6.4.1 Ascending Forced-Choice Method

of Limits

This procedure is based on a standard method des-
ignated ASTM E-679 (ASTM, 2008a). It follows the
classical method of limits, in which the stimulus inten-
sity, in this case concentration of a taste or odor
chemical, is raised in specified steps until the substance
is detected. The procedure adds a forced choice task in
which the substance to be detected is embedded in a set
of stimuli or products that includes other samples that
do not contain any of the added substance. The stimu-
lus or product with the taste or odor chemical is called
a “target” and the other items with no added chemical
are often referred to as “blanks.” One can use various
combinations of targets and blanks, but it is common
to have one target and in the case of E-679, two addi-
tional blanks. So the task is a three-alternative forced
choice task (3-AFC), because the person being tested
is forced to choose the one different sample in the set
of three. That is if they are uncertain, they are told to
guess.

6.4.2 Purpose of the Test

This method is designed to find the minimum level
(minimum concentration) of a substance that is
detected by 50% of the sample group. In practice, this
is calculated as the geometric mean of the individual
threshold estimates. The geometric mean is a reason-
able choice because it is often very close to the median
(50th percentile) of a positively skewed distribution.
Threshold data tend to show high outliers, i.e., some
insensitive individuals cause positive skew.
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6.4.3 Preliminary Steps

Before the test is conducted, there are several tasks and
some choices that must be made, as shown in Table 6.2.
First, a sample of the substance of known purity must
be obtained. Second, the diluent (solvent, base) or car-
rier must be chosen. For the detection threshold for
flavors, for example, it is common to use some kind
of pure water such as deionized or distilled. Third, the
size of the concentration steps must be chosen. It is
common to use factors of two or three. In other words,
the concentrations will be made up in a geometric pro-
gression, which are equal steps on a log scale. Fourth,
some sample concentrations should be set up for pre-
liminary or “benchtop screening” to estimate the range
in which the threshold is likely to occur. This can be
done by successive dilutions using factors of five or
ten, but beware the effects of adaptation on reducing
one’s sensitivity to subsequent test items. Exposure to a
strong sample early in this series may cause subsequent
samples to seem odorless or tasteless, when they might
in fact be perceived when tasted alone. The outcome of
the preliminary test should bracket the likely concen-
tration range, so that most, if not all, of the people who
participate in the formal test will find an individual
threshold estimate somewhere within the test series.
It is common to use about eight to ten steps in this
procedure.

Next, the panel should be recruited or selected. A
sample group should have at least 25 participants. If
the goal is to generalize the result to some larger

population, then the panel should be representative of
that population with respect to age, gender, and so on
and a larger panel of 100 or more is recommended. It is
common practice to exclude people with known health
problems that could affect their sense of taste or smell
and individuals with obvious sensory deficits in the
modality being tested. Of course, all the appropriate
setup work must be done that is associated with con-
ducting any sensory test, such as securing a test room
that is free from odors and distractions, scheduling the
panelists, setting up the questionnaire or answer sheet,
writing instructions for the participants. See Chapter 3
for further details on good practices in sensory testing.
For threshold work it is especially important to have
clean odor-free glassware or plastic cups that are abso-
lutely free of any odor that would contaminate the test
samples. In odor testing the sample vessels are usually
covered to preserve the equilibrium in the headspace
above the liquid. The covers are removed by each
panelist at the moment of sniffing and then replaced.
Finally, external sources of odor must be minimized
or eliminated, such as use of perfumes or fragrances
by participants, hand lotions, or other fragranced cos-
metics that could contaminate the sample vessels or
the general area. Avoid using any markers or writing
instruments that might have an odor when marking
the samples. As always, sample cups or vessels should
be marked with blind codes, such as randomly cho-
sen three digit numbers. The experimenter must set up
random orders for the three items at each step and use
a different randomization for each test subject. This

Table 6.1 Types of thresholds

Detection (absolute) threshold: Point at which the substance is differentiated from the background
Recognition threshold: Point at which the substance is correctly named
Difference threshold: (just-noticeable-difference, JND) Point at which the change in concentration is noted
Terminal threshold: Point at which no further intensity increase is found with increasing concentration
Consumer rejection threshold: Point at which a consumer preference occurs for a sample not containing the substance

Table 6.2 Preliminary tasks
before threshold testing

1. Obtain test compound of known purity (note source and lot number)
2. Choose and obtain the solvent, carrier, or food/beverage system
3. Set concentration/dilution steps, e.g., 1/3, 1/9, 1/27
4. Begin benchtop screening to bracket/approximate threshold range
5. Choose number of dilution steps
6. Recruit/screen panelists. N ≥ 25 is desirable
7. Establish procedure and pilot test if possible
8. Write verbatim instructions for panelists
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should be recorded on a master coding sheet showing
the randomized three-digit codes and which sample is
the correct choice or target item.

6.4.4 Procedure

The steps in the test are shown in Table 6.3. The partic-
ipant or test subject is typically seated before a sample
tray containing the eight or so rows of three samples.
Each row contains one target sample and two blank
samples, randomized. The instructions, according to
E-679-04 (ASTM, 2008a) are the same as in the trian-
gle test, that is to pick out the sample which is different
from the other two. The subject is told to evaluate the
three samples in each row once, working from left to
right. The test proceeds through all the steps of the con-
centration series and the answers from the subject are
recorded, with a forced guess if the person is uncer-
tain. According to E-679, if a person misses at the
highest level, that level will be repeated. If a person
answers correctly through the entire series, the low-
est level will also be repeated for confirmation. If the
response changes in either case, it is the repeated trial
that is counted.

6.4.5 Data Analysis

Figure 6.3 shows an example of how the data are ana-
lyzed and the threshold value is determined. First, an
individual estimated threshold is determined for each
person. This is defined as the concentration that is
the geometric mean of two values (the square root

of the product of the two values). One value is the
concentration at which they first answered correctly
and all higher concentrations were also correct. The
other value is the concentration just below that, i.e.,
the last incorrect judgment. This interpolation provides
some protection against the fact that the forced-choice
procedure will tend to slightly overestimate the indi-
vidual’s threshold (i.e., the concentration at which they
have a 0.5 probability of sensing that something is dif-
ferent from the blanks). If the subject gets to the top
of the series with an incorrect judgment, or starts at
the bottom with all judgments correct, then a value is
extrapolated beyond the test series. At the top, it is the
geometric mean of the highest concentration tested and
the next concentration that would have been used in the
series if the series had been continued. At the bottom,
it is the geometric mean of the lowest concentration
tested and the next lower concentration that would have
been used had the series been continued lower. This
is an arbitrary rule, but it is not unreasonable. Once
these individual best estimates are tabulated, the group
threshold is the geometric mean of the individual val-
ues. The geometric mean is easily calculated by taking
the log of each of the individual concentration values,
finding the average of the logs, and then taking the
antilog of this value (equivalent to taking the Nth root
of the product of N observations).

6.4.6 Alternative Graphical Solution

An alternative analysis is also appropriate for this kind
of data set. Suppose that 3-AFC tests had been con-
ducted and the group percent correct calculated at
each step. For examples, see Antinone et al. (1994)

Table 6.3 Ascending forced-choice testing steps

1. Obtain randomized or counterbalanced orders via software program or random number generator.
2. Setup trays or other staging arrangements for each participant, based on random orders.
3. Instruct participants in procedure per verbatim script developed earlier.
4. Show suprathreshold example (optional).
5. Present samples and record results. Force a choice if participant is unsure.
6. Tally results for panel as series of correct/incorrect answers.
7. Calculate estimated individual thresholds: Geometric mean of first correct answer with all higher

concentrations correct and last incorrect step.
8. Take geometric mean of all individual threshold estimates to get group threshold value.
9. Plot graphic results of proportion correct against log concentration. Interpolate 66.6% correct point and drop

line to concentration axis to get another estimate of threshold (optional).
10. Plot upper and lower confidence interval envelopes based on ±1.96(p (1–p)/N). Drop lines from the upper

and lower envelopes at 66.6% to concentration axis to convert envelope to concentration interval.
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Fig. 6.3 Sample data analysis from ascending 3-AFC method
Notes: Correct choices indicated by + and incorrect by o. BET,
Best estimate of individual threshold, defined as the geometric
mean of the first correct trial with all subsequent trials cor-
rect and the previous (incorrect) trial. The group threshold is

calculated from the geometric mean of the BET values. In prac-
tice, this is done by taking the logs of the BET values, finding
the mean of the logs (x), then taking the antilog of that value
(or 10x).

and Tuorila et al. (1981). We can take the marginal
count of the number of correct choices from the bot-
tom row in Fig. 6.3 and expressing it as the proportion
correct. As the concentration increases, this propor-
tion should go from near the chance level (1/3) to
nearly 100% correct. Often this curve will form an
S-curve similar to the cumulative normal distribution.
The threshold can then be defined as the level at which
performance is 50% correct, once we have adjusted the
data for chance, i.e., the probability that a person could
guess correctly (Morrison, 1978; Tuorila et al., 1981;
Viswanathan et al., 1983). This is done by Abbott’s for-
mula, a well-known correction for guessing as shown
in Eqs. (6.1) and (6.2):

Pcorr = (Pobs − Pchance)/(1 − Pchance) (6.1)

where Pcorr is the chance-corrected proportion, Pobs is
the observed proportion correct in the data, and Pchance

is the chance probability, e.g., 1/3 for the 3-AFC.
Another form is

Preq = (Pchance − Pcorr)/(1 − Pchance) (6.2)

where Preq is the observed proportion that is required
in order to achieve a certain chance corrected level
of performance. So if one needed to get a chance
corrected proportion of 0.5 (i.e., a threshold, 50%
detection) in a 3-AFC test, you would need to see
1/3 + 0.5 (1–1/3) or 2/3 (= 66.7%) correct.

Once a line or curve is fitted to the data, the con-
centration at which the group would achieve 66.6%
correct can be solved (or simply interpolated by eye

if the data are fairly linear and a curve is fit by eye).
A useful equation that can be fit to many data sets is
based on logistic regression, shown in Eq. (6.3) (e.g.,
Walker et al., 2003).

ln

(

p

1 − p

)

= b0 + b1 log C (6.3)

where p is the proportion correct at concentration C

and b0 and b1 are the intercept and slope. The quantity,
p/1–p, is sometimes referred to as the odds ratio. The
interpolation is shown in Fig. 6.4. Note that this also
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allows one to estimate percentages of the population
that would detect with other probabilities and not just
the arbitrary 50% detection that we use as the thresh-
old value. That is, one could interpolate at 10 or 90%
detection if that was of interest. A lower percentage of
detection might be of interest, for example, in setting
level to protect consumers from an off-flavor or taint.

This graphical method has certain assumptions and
limitations that the user should be aware of. First, it
assumes that persons are either detecting or guess-
ing (Morrison, 1978). In reality, every person has an
individual threshold gradient or gradually increasing
probability of detection around their own threshold.
Second, the model does not specify what percent of the

time that a given percentage of the group will detect.
In the data set examined below, the ASTM method
and the graphical solution provide a good estimate of
when 50% of the group will detect 50% of the time.
More extensive statistical models have been developed
for this kind of data and an extensive paper on alter-
native statistical analyses is given in USEPA (2001),
again using the data set we have chosen as an example
below.

6.4.7 Procedural Choices

Note that although the instructions are the same as
in the triangle test, all the possible combinations of
the three samples are not used, i.e., the test is not a
fully counterbalanced triangle. Only the three possible
orders that are given by combinations of two blanks
and one target are used. In a fully counterbalanced tri-
angle, the additional three combinations of two targets
and one blank would have been used (thus a total of six
possible), but this is not done according to E-679. For
taste or flavor, there is generally no rinsing between
samples, although testers may be instructed to rinse
between rows (triads). If possible, it is wise to give
the subject a preliminary sample at a detectable level,
in order to show them the target item that they will
be trying to sense in the test. Of course, one must be
careful when using such an above-threshold sample so
that it does not adapt or fatigue the senses. An appro-
priate waiting time and/or rinsing requirement should
be used to prevent any effect on the subsequent test
samples in the formal test. The experimenters should
also decide whether they will allow re-tasting or not.

Re-tasting could either confuse the subjects or it might
help them get a better idea of which item is the target.
We would generally argue against re-tasting, because
that will introduce a variable that is left up to the
individual subject and will thus differ among people.
Some will choose to re-taste and others will not. So,
on the basis of maintaining a consistent test proce-
dure across all participants, re-tasting is generally not
recommended.

Another important choice is that of a “stopping
rule.” In the published version of E-679, every subject
must continue to the top of the series. There are some
pitfalls in this, because of the possibility that the senses
will become fatigued or adapted by the high levels at
the top of the series, especially for an individual with a
low personal threshold. For this reason, some threshold
procedures introduce a “stopping rule.” For example,
the panelist may be allowed to stop tasting after giving
three correct answers at adjacent levels (Dravnieks and
Prokop, 1975). This prevents the problem of exposing
a sensitive individual to an overwhelming stimulus at
high levels. Such an experience, if unpleasant (such
as a bitter taste), might even cause them to quit the
test. On the downside, the introduction of a stopping
rule can raise the false positive rate. We can think of a
false positive as finding a threshold value for an indi-
vidual that is due to guessing only. In the most extreme
case, it would be a person who is completely insen-
sitive (e.g., anosmic to that compound if it is an odor
threshold) finding a threshold somewhere in the series.
With an eight-step series, for the ASTM standard rule
(everyone completes the series), the probability of find-
ing a threshold somewhere in steps one through eight,
for a completely anosmic person who is always guess-
ing is 33.3%. For the three-in-a-row stopping rule, the
chances of the anosmic person making three lucky
guesses in a row somewhere rise above 50%. The sen-
sory professional must weigh the possible negatives
from exposing the participant to strong stimuli against
the increased possibility of false positives creating a
low-threshold estimate when using a stopping rule.

6.5 Case Study/Worked Example

For the ascending forced choice method of limits
(ASTM E-679), we can use a published data set for
odor thresholds. The actual data set is reproduced in
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the Appendix at the end of this chapter. The data are
from a study conducted to find the odor detection
threshold for methyl tertiary butyl ether (MTBE), a
gasoline additive that can contaminate ground water,
rendering some well waters unpotable (Stocking et al.,
2001; USEPA, 2001). The ASTM procedure was fol-
lowed closely, including the triangle test instructions
(choose the sample different from the other two), using
the 3-AFC in eight concentration steps differing by
a factor of about 1.8. Individual best estimates were
taken as the geometric mean of the last step missed
and the first step answered correctly, with all higher
steps also correct. Individuals who got the first and all
subsequent steps correct (there were 10/57 or 17.5% of
the group) had their estimated threshold assigned as the
geometric mean of the first concentration and the hypo-
thetical concentration one step below that which would
have been used had the series been extended down.
A similar extrapolation/estimation was performed at
the high end for persons that missed the target on the
eighth (highest) level.

The geometric mean of the individual threshold
estimates across a panel of 57 individuals, balanced
for gender and representing a range of ages, was
14 µg/l (14 ppb). Figure 6.5 shows the graphical solu-
tion, which gives a threshold of about 14 ppb, in
good agreement with the geometric mean calculation.
This is the interpolated value for 66.7% correct, the
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chance-adjusted level for 50% probability of detec-
tion in the group. Confidence intervals (CI) for this
level can be found by constructing upper and lower
curves form an envelope of uncertainty around the fit-
ted curve. The standard error is given by the square
root of (p(1–p)/N) or in this case 0.062 for p = 1/3 and
N = 57.

The 95% CI is found by multiplying the z-score
for 0.95 ( = 1.96) times the standard error, in this
case equal to ± 0.062(1.96) or ± 0.122. Constructing
curves higher and lower than the observed proportions
by this amount will then permit interpolation at the
66.7% level to find concentrations for the upper and
lower CI bounds. This method is simple, but it pro-
vides conservative (wider) estimate of the confidence
intervals that found with some other statistical methods
such as bootstrap analysis (USEPA, 2001). Another
method for error estimation based on the standard error
of the regression line is given in Lawless (2010).

Note that by the graphical method, the interpo-
lated value for 10% detection (= 40% correct by
Abbott’s formula) will be at about 1–2 ppb. Similarly
the interpolated value for 25% detection (50% correct
by Abbott’s formula), will be between 3 and 4 ppb.
These values are practically useful to a water company
who wanted to set lower limits on the amount of MTBE
that could be detected by proportions of the population
below the arbitrary threshold value of 50% (Dale et al.,
1997).

6.6 Other Forced Choice Methods

Ascending forced-choice procedures are widely used
techniques for threshold measurement in the experi-
mental literature on taste and smell. One early exam-
ple of this approach is in the method for determin-
ing sensitivity to the bitter compound phenylthiourea,
formerly called phenylthiocarbamide or PTC, and
the related compounds 6-n-propylthiouracil or PROP.
Approximately one-third of Caucasian peoples are
insensitive to the bitterness of these compounds, as a
function of several mutations in a bitter receptor that
usually manifests as a simple homozygous recessive
status for this trait (Blakeslee, 1932; Bufe et al., 2005).
Early researchers felt the need to have a very stringent
test of threshold, so they intermingled four blank sam-
ples (often tap water) with four target samples at each



6.6 Other Forced Choice Methods 135

concentration step (Harris and Kalmus, 1949). The
chance probability of sorting correctly is only 0.014,
so this is a fairly difficult test. In general, the formula
for the chance probability of sorting any one level of X

target samples among N total samples is given by Eq.
(6.4):

p = X!/[N!/(N − X)!] (6.4)

Obviously, the larger the number of target and blank
samples, the more stringent the test and the higher
the eventual threshold estimate. However, arbitrarily
increasing X and N may make the task tedious and
may lead to other problems such as fatigue and flag-
ging motivation among the participants. The rigor of
the test estimate must be weighed against undue com-
plexity that could lead to failures to complete the series
or poor quality data.

Another example of a threshold test for olfaction
is Amoore’s technique for assessing specific anos-
mia (Amoore, 1979; Amoore et al., 1968). Specific
anosmia describes a deficit in the ability to smell a
compound or closely related family of compounds
among people with otherwise normal olfactory acuity.
Being classified as anosmic was operationally defined
by Amoore as having olfactory detection thresholds
more than two standard deviations above the popula-
tion mean (Amoore et al., 1968). The test is sometimes
called a “two-out-of-five” test because at each concen-
tration level there are two target stimuli containing the
odorant to be tested and three diluent or blank con-
trol samples. The tester must sort the samples correctly
in this two-out-of-five test, and the chance probability
of obtaining correct sorting by merely guessing is one
in ten. Performance is normally confirmed by testing
the next highest concentration (an example of a “stop-
ping rule”). The chance occurrence of sorting correctly
on two adjacent levels is then 1 in 100. This makes
the test somewhat difficult but provides a good deal of
insurance against a correct answer by guessing.

Another way to reduce the chance performance on
any one level is to require multiple correct answers at
any given concentration. This is part of the rationale
behind the Guadagni multiple pairs test (Brown et al.,
1978) in which up to four pairs may be given for a
two-alternative forced choice test in quadruplicate at
any one concentration. Brown et al. commented upon
the user-friendliness of this technique, i.e., how simple
it was to understand and administer to participants. A

variation was used by Stevens et al. (1988) in a land-
mark paper on the individual variability in olfactory
thresholds. In this case, five correct pairs were required
to score the concentration as correctly detected, and
this performance was confirmed at the next highest
concentration level. The most striking finding of this
study was that among the three individuals tested 20
times, their individual thresholds for butanol, pyridine,
and phenylethylmethylethyl carbinol (a rose odorant)
varied over 2,000- to 10,000-fold in concentration.
Variation within an individual was as wide as the varia-
tion typically seen across a population of test subjects.
This surprising result suggests that day-to-day varia-

tion in olfactory sensitivity is large and that thresholds

for an individual are not very stable (for an exam-
ple, see Lawless et al., 1995). More recent work using
extensive testing of individuals at each concentration
step suggests that these estimates of variability may
be high. Walker et al. (2003) used a simple yes/no
procedure (like the A, not-A test, or signal detection
test) with 15 trials of targets and 15 trials of blanks at
each concentration level. Using a model for statistical
significant differences between blank and target trials,
they were able to get sharp gradients for the individual
threshold estimates.

In summary, an ascending forced-choice method is
a reasonably useful compromise between the need to
precisely define a threshold level and the problems
encountered in sensory adaptation and observer fatigue
when extensive measurements are made. However, the
user of an ascending forced-choice procedure should
be aware of the procedural choices that can affect the
obtained threshold value. The following choices will
affect the measured value: the number of alternatives
(both targets and blanks), the stopping rule, or the
number of correct steps in a row required to estab-
lish a threshold, the number of replicated correct trials
required at any one step, and the rule to determine at
what level of concentration steps the threshold value is
assigned. For example, the individual threshold might
be assigned at the lowest level correct, the geomet-
ric mean between the lowest level correct and highest
level incorrect. Other specific factors include the cho-
sen step size of concentration units (factors of two or
three are common in taste and smell), the method of
averaging or combining replicated ascending runs on
the same individual and finally the method of aver-
aging or combining group data. Geometric means are
commonly used for the last two purposes.
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6.7 Probit Analysis

It is often useful to apply some kind of transforma-
tion or graphing method to the group data to linearize
the curve used to find the 50% point in a group. Both
the psychometric curve that represents the behavior of
an individual in multiple trials of a threshold test and
the cumulative distribution of a group will resemble
an S-shaped function similar to the cumulative nor-
mal distribution. A number of methods for graphing
such data are shown in the ASTM standard E-1432
(ASTM, 2008b). One simple way to graph the data is
simply to plot the cumulative percentages on “prob-
ability paper.” This pre-printed solution provides a
graph in which equal standard deviations are marked
off along the ordinate, effectively stretching the per-
centile intervals at the ends and compressing them in
the midrange to conform to the density of the normal
distribution. Another way to achieve the straightening
of the S-shaped response curve is to transform the data
by taking z-scores. Statistical packages for data anal-
ysis often provide options for transformation of the
data.

A related method was once widely used in threshold
measurement, called Probit analysis (ASTM, 2008b;
Dravnieks and Prokop, 1975; Finney, 1971). In this
approach, the individual points are transformed relative
to the mean value, divided by the standard deviation
and then a constant value of +5 is added to translate all
the numbers to positive values for convenience. A lin-
ear fitted function can now be interpolated at the value
of 5 to estimate the threshold as in Fig. 6.6. The conver-
sion (to a z-score +5) tends to make an S-shaped curve
more linear. An example of this can be found in the
paper by Brown et al. (1978), using data from a mul-
tiple paired test. First the percent correct is adjusted
for chance. Then the data are transformed from the
percent correct (across the group) at each concentra-
tion level by conversion to z-scores and a constant of
5 is added. The mean value or Probit equal to 5 can
be found by interpolation or curve fitting. An exam-
ple of this technique for estimating threshold from a
group of 20 panelists is shown in Meilgaard et al.
(1991) and in ASTM (2008b). Probit plots can be
used for any cumulative proportions, as well as ranked
data and analysis of individuals who are more exten-
sively tested than in the 3-AFC method example shown
earlier.
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6.8 Sensory Adaptation, Sequential

Effects, and Variability

Individual variability, both among a group of people
and within an individual over repeated measurements
presents a challenge to the idea that the threshold
is anything like a fixed value. For example, stable
olfactory thresholds of an individual are difficult to
measure. The test–retest correlation for individual’s
olfactory threshold is often low (Punter, 1983). Even
within an individual, threshold values will generally
decrease with practice (Engen, 1960; Mojet et al.,
2001; Rabin and Cain, 1986), and superimposed upon
this practice effect is a high level of seemingly ran-
dom variation (Stevens et al., 1988). Individuals may
become sensitive to odorants to which they were for-
merly anosmic, apparently through simple exposure
(Wysocki et al., 1989). Increased sensitivity as a func-
tion of exposure may be a common phenomenon
among women of childbearing age (Dalton et al., 2002;
Diamond et al., 2005).

Sensory adaptation and momentary changes in
sensitivity due to sequences may have occurred in
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the experiments of Stevens et al. (1988) and could
have contributed to some instability in the measure-
ments. As predicted by sequential sensitivity analysis
(Masuoka et al., 1995; O’Mahony and Odbert, 1985)
the specific stimulus sequence will render discrimina-
tion more or less difficult. After the stronger of two
stimuli, an additional second strong stimulus presented
next may be partially adapted and seem weaker than
normal. Stevens et al. remarked that sometimes sub-
jects would get all five pairs correct at one level with
some certainty that they “got the scent” but lost the sig-
nal at the next level before getting it back. This report
and the reversals of performance in threshold data are
consistent with adaptation effects temporarily lessen-
ing sensitivity. The sensory impression will sometimes
“fade in and out” at levels near threshold.

In attempts to avoid adaptation effects, other
researchers have gone to fewer presentations of the
target stimulus. For example, Lawless et al. (1995)
used one target among three blank stimuli, a 4-AFC
test that has appeared in previous studies (e.g., Engen,
1960; Punter, 1983). This lowers the chance perfor-
mance level and lessens the potential adaptation at any
one concentration step. To guard against the effects
of correct guessing, threshold was taken as the low-
est concentration step with a correct choice when all
higher concentrations were also correct. Thresholds
were measured in duplicate ascending runs in a test
session, and a duplicate session of two more ascend-
ing runs was run on a second day. Correlations across
the four ascending series ranged from 0.75 to 0.92 for
cineole and from 0.51 to 0.92 for carvone. For car-
vone, thresholds were better duplicated within a day
(r = 0.91 and 0.88) than across days (r from 0.51
to 0.70). This latter result suggests some drift over
time in odor thresholds, in keeping with the variabil-
ity seen by Stevens et al. (1988). However, results
with this ascending method may not be this reliable
for all compounds. Using the ascending 4-AFC test
and a sophisticated olfactometer, Punter (1983) found
median retest correlations for 11 compounds to be only
0.40. The sense of taste may fare somewhat better. In a
study of electrogustometric thresholds with ascending
paired tests requiring five correct responses, retest cor-
relations for an elderly population were 0.95 (Murphy
et al., 1995).

In many forced-choice studies, high variability in
smell thresholds is also noted across the testing pool.

Brown et al. (1978) stated that for any test compound, a
number of insensitive individuals would likely be seen
in the data set, when 25 or more persons were tested to
determine an average threshold. Among any given pool
of participants, a few people with otherwise normal
smell acuity will have high thresholds. This is poten-
tially important for sensory professionals who need to
screen panelists for detection of specific flavor or odor
notes such as defects or taints. In an extensive survey
of thresholds for branched-chain fatty acids, Brennand
et al. (1989) remarked that “some judges were unable
to identify the correct samples in the pairs even in the
highest concentrations provided” and that “ panelists
who were sensitive to most fatty acids found some
acids difficulty to perceive” (p. 109). Wide variation
in sensitivity was also observed to the common fla-
vor compound, diacetyl, a buttery-smelling by-product
of lactic bacteria fermentation (Lawless et al., 1994).
Also, simple exposure to some chemicals can modify
specific anosmia and increase sensitivity (Stevens and
O’Connell, 1995).

6.9 Alternative Methods: Rated

Difference, Adaptive Procedures,

Scaling

6.9.1 Rated Difference from Control

Another practical procedure for estimating threshold
has involved the use of ratings on degree-of-difference
scales, where a sample containing the to-be-recognized
stimulus is compared to some control or blank stimu-
lus (Brown et al., 1978; Lundahl et al., 1986). Rated
difference may use a line scale or a category scale,
ranging from no difference or “exact same” to a large
difference, as discussed in Chapter 4. In these pro-
cedures ratings for the sensory difference from the
control sample will increase as the intensity of the tar-
get gets stronger. A point on the plot of ratings versus
concentration is assigned as threshold. In some vari-
ations on this method, a blind control sample is also
rated. This provides the opportunity to estimate a base-
line or false alarm rate based on the ratings (often
nonzero) of the control against itself. Identical samples
will often get nonzero difference estimates due to the
moment-to-moment variability in sensations.
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In one application of this technique for taste and
smell thresholds, a substance was added in various lev-
els to estimate the threshold in a food or beverage.
In each individual trial, three samples would be com-
pared to the control sample with no added flavor—two
adjacent concentration steps of the target compound
and one blind control sample (Lundahl et al., 1986).
Samples were rated on a simple 9-point scale, from
zero (no difference) to eight (extreme difference). This
provided a comparison of the control to itself and a
cost-effective way of making three comparisons in one
set of samples. Since sample concentrations within the
three rated test samples were randomized, the proce-
dure was not a true ascending series and was dubbed
the “semi-ascending paired difference method.”

How is the threshold defined in these procedures?
One approach is to compare the difference ratings for a
given level with the difference ratings given to the con-
trol sample. Then the threshold can be based on some
measure of when these difference ratings diverge, such
as when they become significantly different by a t-test
(see Brown et al., 1978). Another approach is simply to
subtract the difference score given to the blind control
from the difference score give to each test sample and
treat these adjusted scores as a new data set. In the orig-
inal paper of Lundahl et al. (1986), this latter method
was used. In the analysis, they performed a series of t-
tests. Two values were taken to bracket the range of the
threshold. The upper level was the first level yielding
a significant t-test versus zero, and the lower level was
the nearest lower concentration yielding a significant t-
test versus the first. This provided an interval in which
the threshold (as defined by this method) lies between
the two bracketing concentrations.

One problem with this approach is that when the
threshold is based on the statistical significance of
t-statistics (or any such significance test), the value of
threshold will depend upon the number of observa-
tions in the test. This creates a nonsensical situation
where the threshold value will decrease as a function
of the number of panelists used in the test. This is
an irrelevant variable, a choice of the experimenter,
and has nothing to do with the physiological sen-
sitivity of the panelist or the biological potency of
the substance being tested, a problem recognized by
Brown et al. (1978) and later by Marin et al. (1991).
Marin et al. also pointed out that a group threshold,
based on a larger number of observations than an
individual threshold, would be lower than the mean

of the individual thresholds, due to the larger num-
ber of observations, another oddity of using statistical
significance to determine the threshold.

Instead of using statistical significance as a crite-
rion, Marin et al. determined the point of maximum
curvature on the dose–response curve as the threshold.

Such an approach makes sense from consideration
of the general form of the dose–response (psychophys-
ical) curve for most tastes and odors. Figure 6.7 shows
a semi-log plot for the Beidler taste equation, a widely
applied dose–response relationship in studies of the
chemical senses (see Chapter 2). This function has two
sections of curvature (change in slope, i.e., accelera-
tion) when plotted as a function of log concentration.
There is a point at which the response appears to be
slowly increasing out from the background noise and
then rises steeply to enter the middle of the dynamic
range of response. The point of maximum curvature
can be estimated graphically or determined from curve
fitting and finding the maximum rate of change (i.e.,
maximum of the second derivative) (Marin et al.,
1991).
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6.9.2 Adaptive Procedures

Popular methods for threshold measurement for visual
and auditory stimuli have been procedures in which
the next stimulus intensity level to be tested depends
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upon detection or non-detection at the previous inter-
val. In these procedures, the subject will track around
the threshold level, ascending in intensity when perfor-
mance is incorrect (or non-detection is the response)
and descending in physical intensity when perfor-
mance is correct (or detection is indicated). A common
example of this procedure is in some automated hear-
ing tests, in which the person being tested pushes a
button as long as the signal is not audible. When the
button is depressed, the tone will increase in inten-
sity and when the button is released, the tone will
decrease in intensity. This automated tracking pro-
cedure leads to a series of up and down records,
and an average of reversal points is usually taken to
determine the threshold. Adaptive procedures may be
more efficient than a traditional procedure like the
method of limits. They focus on the critical range
around threshold and do not waste time testing inten-
sity levels very much higher or very much lower than
the threshold (McBurney and Collings, 1977). Further
information on these methods can be found in Harvey
(1986).

With discrete stimuli, rather than those that are
played constantly as in the example of the hearing
test, the procedure can be used for the taste and smell
modalities as well. This procedure is sometimes called
a staircase method, since the record of ascending and
descending trials can be connected on graph paper to
produce a series of step intervals that visually resemble
a staircase. An example is shown in Fig. 6.8. The pro-
cedure creates a dependence of each trial on previous
trials that may lead to some expectations and bias on
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the part of the respondent. Psychophysical researchers
have found ways to undo this sequential dependence
to counteract observer expectancies. One example is
the double random staircase procedure (Cornsweet,
1962) in which trials from two staircase sequences are
randomly intermixed. One staircase starts above the
threshold and descends, while the other starts below
the threshold and ascends. On any given trial, the
observer is unaware which of the two sequences the
stimulus is chosen from. As in the simple staircase
procedure, the level chosen for a trial depends upon
detection or discrimination in the previous trial, but
of that particular sequence. Further refinements of the
procedure involve the introduction of forced-choice
(Jesteadt, 1980) to eliminate response bias factors
involved in simple yes/no detection.

Another modification to the adaptive methods has
been to adjust the ascending and descending rules so
that some number of correct or incorrect judgments is
required before changing intensity levels, rather than
the one trial as in the simple staircase (Jesteadt, 1980).
An example is the “up down transformed response”
rule or UDTR (Wetherill and Levitt, 1965). Wetherill
and Levitt gave an example where two positive judg-
ments were required before moving down, and only
one negative judgment at a given level before mov-
ing up. An example is shown in Fig. 6.9. Rather than
estimating the 50% point on a traditional psycho-
metric function, this more stringent requirement now
tends to converge on the 71% mark as an average of
the peaks and valleys in the series. A forced choice
can be added to an adaptive procedure. Sometimes
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the initial part of the test sequence is discarded in
analysis as it is unrepresentative of the final thresh-
old and derives from a time when the observer may
still be warming up to the test procedure. Examples
of the up-down procedure can be found in the liter-
ature on PTC/PROP tasting (e.g., Reed et al., 1995).
Recent advances in adaptive methods have shown that
thresholds may be estimated in very few trials using
these procedures, a potential advantage for taste and
smell measurement (Harvey, 1986; Linschoten et al.,
1996).

6.9.3 Scaling as an Alternative Measure

of Sensitivity

Threshold measurements are not the only way to
screen individuals for insensitivity to specific com-
pounds like PTC or to screen for specific anosmia. Do
thresholds bear any relation to suprathreshold respond-
ing? While it has been widely held that there is no nec-
essary relationship between threshold sensitivity and
suprathreshold responding (Frijters, 1978; Pangborn,
1981), this assertion somewhat overstates the case.
Counter-examples of good correlations can be seen in
tests involving compounds like PTC where there are
insensitive groups. For example, there is a –0.8 correla-
tion between simple category taste intensity ratings for
PTC and the threshold, when the rated concentration
is near the antimode or center between the modes of
a bimodal threshold frequency distribution (Lawless,
1980). Thus ratings of a carefully chosen level can be
used for a rapid screening method for PTC taster status
(e.g., Mela, 1989).

Similar results have been noted for smell. Berglund
and Högman (1992) reported better reliability of
suprathreshold ratings than threshold determinations
in screening for olfactory sensitivity. Stevens and
O’Connell (1991) used category ratings of perceived
intensity as well as qualitative descriptors as a screen-
ing tool before threshold testing for specific anosmia.
Threshold versus rating correlations were in the range
of –0.6 for cineole, –0.3 for carvone, and –0.5 for
diacetyl (Lawless et al., 1994, 1995). The correla-
tions were obtained after subtraction of ratings to a
blank stimulus, in order to correct for differences in
scale usage. Thus there is a moderate negative cor-
relation of sensitivity and rated intensity when one

examines the data across a highly variable group as is
the case with specific anosmia or tasting PTC bitter-
ness. The correlation is negative since higher thresh-
olds indicate lower sensitivity and thus lower rated
intensity.

6.10 Dilution to Threshold Measures

6.10.1 Odor Units and

Gas-Chromatography

Olfactometry (GCO)

In this section, several applied methods will be
described that make use of the threshold concept in
trying to determine the sensory impact of various fla-
vors and odor materials. The first group of methods
concerns the olfactory potency of volatile aroma com-
pounds as they are found in foods or food components.
The issue here becomes one of not just threshold deter-
mination, but determination of both the threshold and
the actual concentration present in a food sample. The
ratio of these concentrations (actual concentration to
threshold concentration) can help indicate whether or
not a given flavor substance is likely to contribute
to the overall sensory impression in a food. These
ratios are commonly called “odor units.” The sec-
ond much older method is similar in logic and was
developed to determine the point at which the irrita-
tive or heat sensations from pepper compounds would
be first detectable when diluted to a given extent,
the Scoville procedure. Both of these techniques then
use dilution-to-threshold as a measure of sensory
impact.

When a complex natural product like a fruit extract
is analyzed for its chemical components, hundreds or
even thousands of chemicals may be identified, many
of which have odor properties. The number of poten-
tial flavor compounds identified in any product seems
only to be limited by the resolution and sensitivity
of the current methods in analytical chemistry. These
methods are always improving leading to longer and
longer lists of possible contributing flavor materials
(Piggott, 1990). Flavor scientists need to find a way
to narrow the list or to separate those compounds
which are most likely contributing to the overall
flavor from those compounds that are present in
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such low concentrations that they are probably not
important. Obviously, a sensory-based method is
needed in conjunction with the analytical chemistry
to provide a bioassay for possible sensory impact
(Acree, 1993).

Thresholds can be useful in addressing this kind
of problem. The reasoning goes that only those com-
pounds that are present in the product in concentrations
above their threshold are likely to be contributors
to the flavor of the product. There are a number
of potential flaws in this thinking discussed below,
but for now let us see how this can be put to use.
Given a concentration C present in a natural product,
a dimensionless quantity can be derived by divid-
ing that concentration by the threshold concentration
Ct, and the ratio C/Ct defines the number of odor
units (or flavor units) for compounds assessed by
smell. According to this logic, only those compounds
with odor units greater than one will contribute to
the aroma of the product. This reasoning is extended
sometimes to include the idea that the greater the
number of odor units, the greater the potential con-
tribution. However, it is now widely recognized that
the odor unit is a concentration multiple and not a
measure of subjective magnitude. Only direct scaling
methods can assess the actual magnitude of sensation
above threshold and the psychophysical relationship
between concentration and odor intensity (Frijters,
1978). Furthermore, this idea ignores the possibility of
subthreshold additivity or synergy (Day et al., 1963).
A closely related group of chemical compounds might
all be present below their individual thresholds, but
together could stimulate common receptors so as to
produce an above-threshold sensation. Such additivity
is not predicted by the odor unit approach and such
a group of compounds could be missed in dilution
analysis.

Nonetheless, thresholds provide at least one iso-
intense reference point on the dose response curve, so
they have some utility as a measure of potency used
to compare different odor compounds. In analyzing a
food, one could look up literature values for all the
identified compounds in the product in one of the pub-
lished compendia of thresholds (e.g., ASTM, 1978;
van Gemert, 2003). If the concentration in the product
is determined, then the odor unit value can be calcu-
lated by simply dividing by threshold. However, it is
important to remember that the literature values for
thresholds depend upon the method and the medium

of testing. Unless the same techniques are used and
the same medium was used as the carrier (rarely the
case) the values may not be necessarily comparable for
different compounds.

A second approach is to actually measure the dilu-
tions necessary to reach threshold for each compound,
starting with the product itself. This necessitates the
use of a separatory procedure, so that each compound
may be individually perceived. The combination of gas
chromatography with odor port sniffing of a dilution
series is a popular technique (Acree, 1993). Various
catchy names have been applied to such techniques in
the flavor literature, including Aroma Extract Dilution
Analysis (for examples, see Guth and Grosch, 1994;
Milo and Grosch, 1993; Schieberle and Grosch, 1988),
CHARM analysis (Acree et al., 1984) or more gener-
ically, gas chromatography olfactometry or GCO. The
basis of these techniques is to have subjects respond
when an odor is perceived when sniffing the exit port
during a GC run. In recent years, the effluent has
been embedded in a cooled, humidified air stream to
improve the comfort of the observer and to increase
sensory resolution of the eluting compounds. Over sev-
eral dilutions, the response will eventually drop out,
and the index of smell potency is related to the recip-
rocal of the dilution factor. The sniffer’s responses
occur on a time base that can be cross-referenced to
a retention index and then the identity of the com-
pound can be determined by a combination of reten-
tion index, mass spectrometry, and aroma character.
In practice, these techniques considerably shorten the
list of potential aroma compounds contributing to fla-
vor in a natural product (e.g., Cunningham et al.,
1986).

The method has also been used as an assessment
technique for measuring the sensitivity of human pan-
elists, as opposed to being a tool to determine the sen-
sory impact of flavor compounds (Marin et al., 1988).
In this approach, the gas chromatograph once again
serves as an olfactometer. Known compounds can be
presented as a dilution series of mixtures. Variation in
individual thresholds can readily be assessed for a vari-
ety of compounds since they can be combined in a GC
run as long as they have different retention times, i.e.,
do not co-elute on the column of choice. The potential
use of GCO for screening panelists, for assessing odor
responses in general, and for assessing specific anos-
mias has also been attempted (Friedrich and Acree,
2000; Kittel and Acree, 2008).
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6.10.2 Scoville Units

Another example of a dilution method is the tra-
ditional Scoville procedure for scoring pepper heat
in the spice trade. This procedure was named for
W. Scoville who worked in the pharmaceutical indus-
try in the early twentieth century. He was interested
in the topical application of spice compounds like
pepper extracts as counterirritants, and he needed to
establish units that could be used to measure their
potency. His procedure consisted of finding the num-
ber of dilutions necessary for sensations to disappear
and then using this number of dilutions as an esti-
mate of potency. In other words, potency was defined
as a reciprocal threshold. A variation of this proce-
dure was adopted by the Essential Oil Association,
British Standards Institution, International Standards
Organization, American Spice Trade Association
(ASTA), and adopted as an Indian standard method
(for a review, see Govindarajan, 1987).

The procedure defined units of pungency as the
highest dilution at which a definite “bite” would be per-
ceived and thus contains instructions consistent with a
recognition threshold. Scoville units were dilution fac-
tors, now commonly given as mL/g. ASTA Method
21 (ASTA, 1968) is widely used and contains some
modifications in an attempt to overcome problems with
the original Scoville procedure. In brief, the method
proceeds as follows: Panelists are screened for acuity
relative to experienced persons. Dilution schedules are
provided which simplify calculations of the eventual
potency. Solutions are tested in 5% sucrose and negli-
gible amounts of alcohol. Five panelists participate and
concentrations are given in ascending order around the
estimated threshold. Threshold is defined as the con-
centration at which three out of five judges respond
positively.

This method is difficult in practice and a number of
additional variations have been tried to improve on the
accuracy and precision of the method (Govindarajan,
1987). Examples include the following: (1) substitu-
tion of other rules for 3/5, e.g., mean + SD of 20–30
judgments, (2) use of a triangle test, rather than simple
yes/no at each concentration, (3) requiring recogni-
tion of pungency (Todd et al., 1977), (4) reduction
of sucrose concentration in the carrier solution to
3%, and (5) use of a rating scale from 1 (definitely
not detectable) to 6 (definitely detectable). This latter

modification defined a detection threshold at mean
scale value of 3.5. Almost all these methods specify
mandatory rest periods between samples due to the
long lasting nature of these sensations. The measure-
ments are still difficult. One problem is that capsaicin,
the active heat principle in red pepper, is prone to
desensitize observers within a session and also regu-
lar consumers of hot spices also become less sensitive,
leading to wide individual differences in sensitivity
among panelists (Green, 1989; Lawless et al., 1985).
Alternative procedures have been developed based on
rating scales with fixed physical references (Gillette
et al., 1984) and these have been endorsed by ASTM
(2008c) as standard test methods. These rating scale
procedures show good correlations with instrumental
measures of capsaicin content in pepper samples and
can be cross-referenced to Scoville units for those who
prefer to do business in the traditional units (Gillette
et al., 1984).

6.11 Conclusions

Threshold measurements find three common uses in
sensory analysis and flavor research. First, they can be
used to compare the sensitivities of different panelists.
Second, they can be used as an index of the biological
potency of a flavor compound. Third, they can provide
useful information regarding the maximum tolerable
levels of an off-flavor or taint. A variety of differ-
ent techniques have been used to find thresholds or
have employed the threshold concept in practical fla-
vor work. Examples of different threshold methods are
given in Table 6.4. In spite of their practical appli-
cations, the usefulness of threshold measures is often
questioned in sensory evaluation. One criticism is that
thresholds are only one point on an intensity function
and thus they do not tell us anything about above-
threshold responding. There are some good examples
in which thresholds do not predict or do not correlate
very well with suprathreshold responses. For exam-
ple, patients irradiated for cancer may lose their sense
of taste temporarily and thresholds return to normal
long before suprathreshold responsiveness is recov-
ered (Bartoshuk, 1987). However, as we have seen
both in the case of PTC tasting and in specific anos-
mias, insensitive individuals (as determined by their
threshold) will also tend to be less responsive above



Appendix 143

Table 6.4 Threshold procedures

Method Citations/examples Response Threshold

Ascending forced choice ASTM E-679-79 3-AFC Geometric mean of individual threshold
Ascending forced choice Stevens et al. (1988) 2-AFC, 5 replicates Lowest correct set with confirmation at next

concentration
Semi-ascending paired

difference
Lundahl et al. (1986) Rated difference from

control
t-test for significant difference from zero with

all blank trials (blind control scores)
subtracted

Adaptive, up-down
transformed response rule

Reed et al. (1995) 2-AFC Average of responses ascending after one
incorrect, descending after two correct at
each level

Double Random Staircase Cornsweet (1962) Yes/No Average of reversal points
CHARM analysis Acree et al. (1986) Yes/No Nonresponse on descending concentration

runs (implied)

threshold. These correlations are strong when compar-
ing individuals of very different sensitivities, but the
threshold–suprathreshold parallel may not extend to all
flavor compounds. A more complete understanding of
the whole dynamic range of dose–response, as found
in scaling studies, would be more informative.

Other shortcomings need to be kept in mind by
sensory workers who would use threshold measure-
ments for making product decisions. First, thresholds
are statistical constructs only. Signal detection theory
warns us that the signal and noise diverge in a con-
tinuous fashion and discontinuities in perception may
be an idealized construction that is comfortable but
unrealistic. There is no sudden transition from non-
detection to 100% detection. Any modern concept of
threshold must take into account that a range of values,
rather than a single point is involved in the speci-
fication. Thresholds depend upon the conditions of
measurement. For example, as the purity of the dilu-
ent increases, the threshold for taste will go down. So a
measure of the true absolute threshold for taste (if such
a thing existed) would require water of infinite purity.
The threshold exists not in this abstract sense, but only

as a potentially useful construct of our methods and
informational requirements.

Finally, because of the problems mentioned above,
sensory professionals need to keep the following prin-
ciples firmly in mind when working with threshold
procedures: First, changes in method will change the
obtained values. Literature values cannot be trusted
to extend to a new product or a new medium or
if changes are made in test procedure. Next, thresh-
old distributions do not always follow a normal bell
curve. There are often high outliers and possibly cases
of insensitivity due to inherited deficits like specific
anosmia (Amoore, 1971; Brown et al., 1978; Lawless
et al., 1994). Threshold values for an individual are
prone to high variability and low test–retest reliabil-
ity. An individual’s threshold measure on a given day
is not necessarily a stable characteristic of that person
(Lawless et al., 1995; Stevens et al., 1988). Practice
effects can be profound, and thresholds may stabilize
over a period of time (Engen, 1960; Rabin and Cain,
1986). However, group averaged thresholds are reli-
able (Brown et al., 1978; Punter, 1983) and provide a
useful index of the biological activity of a stimulus.

Appendix: MTBE Threshold Data for Worked Example

Concentration (µg/L)
Panelist 2 3.5 6 10 18 30 60 100 BET log(BET)

1 + o + + + + + + 4.6 0.663
2 o o o + + + + + 7.7 0.886
3 o + o o o o + + 42 1.623
4 o o o o o o + + 42 1.623
5 + o + o + + o + 77 1.886
6 o o + + + + + + 4.6 0.663
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Concentration (µg/L)
Panelist 2 3.5 6 10 18 30 60 100 BET log(BET)
7 o + + o + + + + 13 1.114
8 + + o + + + + + 7.7 0.886
9 o o + o + + + + 13 1.114

10 o o o o o o o + 77 1.886
11 + o + + + + + + 4.6 0.663
12 o o o o + o + o 132 2.121
13 + + + + + + + + 1.4 0.146
14 + + + + + + + + 1.4 0.146
15 o + + o + + + + 13 1.114
16 o o + o o o + o 132 2.121
17 + o + + + + + + 4.6 0.663
18 o o + + + + + + 4.6 0.663
19 + + + + + + + + 1.4 0.146
20 + o + + o + o o 132 2.121
21 + + + + + + + + 1.4 0.146
22 + + + + + + + + 1.4 0.146
23 + + o o + + + + 13 1.114
24 + + + + + + + + 1.4 0.146
25 o + + + o + + + 23 1.362
26 o + + + o + + + 23 1.362
27 + o o o + o o + 77 1.886
28 o o + + + + + o 132 2.121
29 o + o o + + + + 13 1.114
30 o + + o + + + + 13 1.114
31 + o o + o o + o 132 2.121
32 + + + + o o o + 77 1.886
33 + + + o + o + + 42 1.623
34 o o o o o o + o 132 2.121
35 o o o + o + + o 132 2.121
36 o o o + o + + + 23 1.362
37 + + + + + + + + 1.4 0.146
38 + o + + + + + + 1.4 0.146
39 + + o o + + + + 13 1.114
40 o o + o + + + + 13 1.114
41 + + + + + + + + 1.4 0.146
42 o + o + + + + + 7.7 0.886
43 o o o o o o + + 42 1.623
44 o + + o + o + + 42 1.623
45 o + + o + + + + 13 1.114
46 + + + + + + o + 77 1.886
47 o + o o o + + o 132 2.121
48 o + o + o + + + 23 1.362
49 o o o + o + + + 23 1.362
50 o o + + + + + + 4.6 0.663
51 o o o + + + + + 7.7 0.886
52 + + + + + + + + 1.4 0.146
53 + + + + + + + + 1.4 0.146
54 + o o o o + + + 23 1.362
55 o o + + + + + + 4.6 0.663
56 o o o o o + + + 23 1.362
57 o o + + o + o + 77 1.886
Prop. Corr. 0.44 0.49 0.61 0.58 0.65 0.77 0.89 0.86 Mean (log(BET)) 1.154

10ˆ1.154= 14.24
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Chapter 7

Scaling

Abstract Scaling describes the application of numbers, or judgments that are
converted to numerical values, to describe the perceived intensity of a sensory expe-
rience or the degree of liking or disliking for some experience or product. Scaling
forms the basis for the sensory method of descriptive analysis. A variety of methods
have been used for this purpose and with some caution, all work well in differentiating
products. This chapter discusses theoretical issues as well as practical considerations
in scaling.

The vital importance of knowing the properties and limitations of a measuring instrument can

hardly be denied by most natural scientists. However, the use of many different scales for sensory

measurement is common within food science; but very few of these have ever been validated. . . .

—(Land and Shepard, 1984, pp. 144–145)
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7.1 Introduction

People make changes in their behavior all the time
based on sensory experience and very often this
involves a judgment of how strong or weak something
feels. We add more sugar to our coffee if it is not sweet
enough. We adjust the thermostat in our home if it is
too cold or too hot. If a closet is too dark to find your
shoes you turn the light on. We apply more force to
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chew a tough piece of meat if it will not disintegrate
to allow swallowing. These behavioral decisions seem
automatic and do not require a numerical response. But
the same kinds of experiences can be evaluated with a
response that indicates the strength of the sensation.
What was subjective and private becomes public data.
The data are quantitative. This is the basis of scaling.

The methods of scaling involve the application of
numbers to quantify sensory experiences. It is through
this process of numerification that sensory evalua-
tion becomes a quantitative science subject to statis-
tical analysis, modeling, prediction, and hard theory.
However, as noted in the quote above, in the practi-
cal application of sensory test methods, the nature of
this process of assigning numbers to experiences is
rarely questioned and deserves scrutiny. Clearly num-
bers can be assigned to sensations by a panelist in a
variety of ways, some by mere categorization, or by
ranking or in ways that attempt to reflect the intensity
of sensory experience. This chapter will illustrate these
techniques and discuss the arguments that have been
raised to substantiate the use of different quantification
procedures.

Scaling involves sensing a product or stimulus and
then generating a response that reflects how the person
perceives the intensity or strength of one or more of
the sensations generated by that product. This process
is based on a psychophysical model (see Chapter 2).
The psychophysical model states that as the physical
strength of the stimulus increases (e.g., the energy of a
light or sound or the concentration of a chemical stim-
ulus) the sensation will increase in some orderly way.
Furthermore, panelists are capable of generating dif-
ferent responses to indicate these changes in what they
experience. Thus a systematic relationship can be mod-
eled of how physical changes in the real world result in
changing sensations.

Scaling is a tool used for showing differences and
degrees of difference among products. These differ-
ences are usually above the threshold level or just-
noticeable difference. If the products are very similar
and there is a question of whether there is any differ-
ence at all, the discrimination testing methods are more
suitable (Chambers and Wolf, 1996). Scaling is usually
done in one of the two scenarios. In the first, untrained
observers are asked to give responses to reflect changes
in intensity and it is presumed that (1) they understand
the attribute they are asked to scale, e.g., sweetness and
(2) there is no need to train or calibrate them to use
the scale. This is the kind of scaling done to study a

dose–response curve or psychophysical function. Such
a study would perhaps be done on a student sample or a
consumer population. A second kind of scaling is done
when trained panelists are used as if they were measur-
ing instruments, as in descriptive analysis. In this case
they may be trained to insure a uniform understanding
of the attribute involved (e.g., astringency) and often
they are calibrated with reference standards to illustrate
what is a little and what is a lot of this attribute. In this
case the focus is in on the products being tested and not
the more basic process of specifying a psychophysical
function that has general application.

Note that these are “cheap data” (a term used by
my advisor in graduate school, but perhaps “cost-
effective” sounds a little less negative). One stimulus
gives at least one data point. This is in contrast to indi-
rect methods like forced choice tests. Many responses
on a triangle test are needed to give one data point, i.e.,
the percent correct. Fechner and others referred to scal-
ing as “the method of single stimuli” and considered it
less reliable than the choice methods that were used to
generate difference thresholds. However, direct scaling
came into its own with the advent of magnitude estima-
tion, an open-ended numerical response method. One
or another type of scaling forms the basis for virtually
all descriptive analysis techniques. In descriptive anal-
ysis, panelists generate scaled responses for various
sensory attributes to reflect their subjective intensity.

There are two processes involved in scaling as
shown in Fig. 7.1. The first is the psychophysical chain
of events in which some energy or matter impinges
upon receptors and the receptors send signals to the

Fig. 7.1 The two processes involved in scaling. The first, phys-
iological process is the psychophysical translation of energy in
the outside world into sensation, i.e., conscious experience. The
second is the translation of that experience into some response.
The psychophysical process can be modified by physiological
processes such as adaptation and masking. The judgment func-
tion can be modified by cognitive processes such as contextual
effects, number usage, and other response biases.
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brain. These signals are interpreted in conscious per-
ception as a sensation with some intensity or strength.
The translation can be modified (i.e., the experience
will change) by processes like adaptation or mask-
ing from another stimulus. The second process is the
translation of that experience into an overt response
(the data). This judgment function is influenced by the
nature of the scaling task that the panelist is asked to
perform. Factors such as contextual effects, the choice
of comparison products, and response biases of that
particular person can modify the process. The bet-
ter the data reflect the experience, the more valid is
the scaling method. The sensory professional must be
careful to avoid response methods that introduce biases
or non-sensory influences on the response output. For
example, I might be asked to generate some open-
ended numerical response to reflect my perception, but
I might have some “favorite” numbers I find easy to use
(e.g., integers or multiples of 2, 5, and 10) so this num-
ber bias interferes to some degree with the translation
of my experience into a truly accurate response.

This chapter will focus on various methods that have
been used in sensory evaluation and in psychophysics
for scaling. Theory, principles, and issues will be dis-
cussed to provide depth of understanding. For the
student who wishes to learn just the basic practices,
Sections 7.3 and 7.4 are the most practically rele-
vant sections. Section 7.5 illustrates some alternative
methods that have appeared in the sensory evaluation
literature, but have not at this time enjoyed widespread
adoption in industrial practice. The sensory scientist
should be aware of these additional methods for the
potential advantages they may provide.

7.2 Some Theory

Measurement theory tells us that numbers can be
assigned to items in different ways. This distinction
was popularized by S. S. Stevens, the major propo-
nent of magnitude estimation (1951). At least four
ways of assigning numbers to events exist in common
usage. These are referred to as nominal scaling, ordinal
scaling, interval scaling, and ratio scaling.

In nominal scaling, numbers are assigned to events
merely as labels. Thus gender may be coded as a
“dummy variable” in statistical analysis by assigning
a zero to males and a one to females; no assumption is
made that these numbers reflect any ordered property

of the sexes. They merely serve as convenient labels.
The meals at which a food might be eaten could be
coded with numbers as categories—one for breakfast,
two for lunch, three for supper, and four for snacks.
The assignment of a number for analysis is merely a
label, a category or pigeonhole. The appropriate analy-
sis of such data is to make frequency counts. The mode,
the most frequent response, is used as a summary
statistic for nominal data. Different frequencies of
response for different products or circumstances can be
compared by chi-square analysis or other nonparamet-
ric statistical methods (Siegel, 1956; see Appendix B).
The only valid comparisons between individual items
with this scale is to say whether they belong to the
same category or to different ones (an equal versus not
equal decision).

In ordinal scaling, numbers are assigned to recog-
nize the rank order of products with regard to some
sensory property, attitude, or opinion (such as pref-
erence). In this case increasing numbers assigned to
the products represent increasing amounts or intensi-
ties of sensory experience. So a number of wines might
be rank ordered for perceived sweetness or a num-
ber of fragrances rank ordered from most preferred to
least preferred. In this case the numbers do not tell us
anything about the relative differences among the prod-
ucts. We cannot draw conclusions about the degree of
difference perceived nor the ratio or magnitude of dif-
ference. In an analogy to the order of runners finishing
in a race, we know who placed first, second, third, etc.
But this order does indicate neither the finishing dis-
tances between contestants nor the differences in their
elapsed times. In general, analyses of ranked data can
report medians as the summary statistic for central ten-
dency or other percentiles to give added information.
As with nominal data, nonparametric statistical analy-
ses (see Appendix B) are appropriate when ranking is
done (Siegel, 1956).

The next level of scaling occurs when the subjec-
tive spacing of responses is equal, so the numbers
represent equal degrees of difference. This is called
interval-level measurement. Examples in the physi-
cal sciences would be the centigrade and Fahrenheit
scales of temperature. These scales have arbitrary zero
points but equal divisions between values. The scales
are inter-convertible through a linear transformation,
for example, ◦C = 5/9 (◦F–32). Few scales used in sen-
sory science have been subjected to tests that would
help establish whether they achieved an interval level
of measurement and yet this level is often assumed.
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One scale with approximately equal subjective spacing
is the 9-point category scale used for like–dislike judg-
ments, the 9-point hedonic scale (Peryam and Girardot,
1952). The phrases are shown below:

Like extremely
Like very much
Like moderately

Like slightly
Neither like nor dislike

Dislike slightly
Dislike moderately
Dislike very much
Dislike extremely

These response choices are commonly entered as
data by assignment of the numbers one through nine.
Extensive research was conducted to find the apparent
spacing of various adjective labels for the scale points
(Jones and Thurstone, 1955; Jones et al., 1955). The
technique for deciding on the subjective spacing was
the use of one kind of Thurstonian scaling method.
The original data do not fully support the notion of
equality of spacing, as discussed below. However, the
scale worked well in practice, so this tradition of inte-
ger assignment has persisted. The method is illustrated
in Appendix 1 at the end of this chapter. Thurstonian
theory is discussed further in Chapter 5.

The advantage of interval-level measurement is that
the data allow added interpretation. In a horse-racing
example, we know the order the horses finished in
and about how many “lengths” separated each horse.
A second advantage is that more powerful statistical
methods may be brought to bear the parametric meth-
ods. Computation of means, t-tests, linear regression,
and analysis of variance are appropriate analyses.

Another even more desirable level of measurement
is ratio measurement. In this case the zero level is
fixed and not arbitrary and numbers will reflect relative
proportions. This is the level of measurement com-
monly achieved in the physical sciences for quantities
like mass, length, and temperature (on the absolute
or Kelvin scale). Statements can be made that this
item has twice as much length or mass than that
item. Establishing whether a sensory scaling method
actually assigns numbers to represent the relative pro-
portions of different sensation intensities is a dif-
ficult matter. It has been widely assumed that the
method of magnitude estimation is a priori a ratio scal-
ing procedure. In magnitude estimation, subjects are

instructed to assign numbers in relative proportions
that reflect the strength of their sensations (Stevens,
1956). However, ratio instructions are easy to give,
but whether the scale has ratio properties in reflecting
a person’s actual subjective experiences is difficult to
determine, if not impossible.

Because of these different measurement types with
different properties, the sensory professional must be
careful about two things. First, statements about dif-
ferences or ratios in comparing the scores for two
products should not be made when the measurement
level is only nominal or ordinal. Second, it is risky
to use parametric statistics for measurements that
reflect only frequency counts or rankings (Gaito, 1980;
Townsend and Ashby, 1980). Nonparametric methods
are available for statistical analyses of such data.

7.3 Common Methods of Scaling

Several different scaling methods have been used to
apply numbers to sensory experience. Some, like mag-
nitude estimation, are adapted from psychophysical
research, and others, like category scaling have become
popular through practical application and dissemi-
nation in a wide variety of situations. This section
illustrates the common techniques of category scales,
line marking, and magnitude estimation. The next
section discusses the less frequently used techniques
of hybrid category–ratio scales, indirect scales, and
ranking as alternatives. Two other methods are illus-
trated. Intensity matching across sensory modalities,
called cross-modality matching, was an important psy-
chophysical technique and a precedent to some of the
category–ratio scales. Finally, adjustable rating tech-
niques in which panelists make relative placements and
are able to alter their ratings are also discussed.

7.3.1 Category Scales

Perhaps the oldest method of scaling involves the
choice of discrete response alternatives to signify
increasing sensation intensity or degrees of liking
and/or preference. The alternatives may be presented
in a horizontal or vertical line and may offer choices of
integer numbers, simple check boxes, or word phrases.
Examples of simple category scales are shown in



7.3 Common Methods of Scaling 153

Super Good Really Good Good
Maybe Good

or 
Maybe Bad

Bad Really Bad Super Bad

A)  INTENSITY

1          2          3          4          5          6          7          8          9

Weak Strong

B)  Oxidized not noticeable

trace, not sure

faint

slight

mild

moderate

definite

strong

very strong

___

___

___

___

___

___

___

___

___

C) Difference from reference

___ No difference

___ Very slight difference

___ Slight difference

___ Moderate difference

___ Large difference

___ Very large difference

D)   

Not sweet

at all

Extremely

sweet

E) 

Weaker R Stronger

F)  Hedonic scale for children

Sweetness

Sweetness

Fig. 7.2 Examples of category scales. (a) a simple integer scale
for sensation strength (after Lawless and Malone, 1986b); (b) a
verbal scale for degree of oxidized flavor (after Mecredy et al.,
1974; (c) a verbal scale for degree of difference from some ref-
erence or control sample (after Aust et al., 1985), (d) a simple

check-box scale for perceived intensity; (e) a simple check-box
scale for difference in intensity from some reference sample,
marked R (after Stoer and Lawless, 1993); (f) a facial scale
suitable for use with children, after Chen et al. (1996).

Fig. 7.2. The job of the consumer or panelist is to
choose the alternative that best represents their reac-
tion or sensation. In a category scale the number of
alternative responses is limited. Seven to 15 categories
are commonly used for intensity scaling depending
upon the application and the number of gradations that
the panelists are able to distinguish in the products.
As panel training progresses, perceptual discrimination

of intensity levels will often improve and more scale
points may be added to allow the panel to make
finer distinctions. A key idea is to present an eas-
ily understandable word like “sweetness” and ask the
participant to evaluate the perceived intensity of that
attribute. A second important factor concerns the ver-
bal labels that appear along the alternatives. At the very
least, the low and high ends of the scale must be labeled
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with words that make sense, e.g., “not sweet at all” to
“extremely sweet.”

A wide variety of these scales have been used.
A common version is to allow integer numerical
responses of approximately nine points (e.g., Lawless
and Malone, 1986a, b). Further gradations may be
allowed. For example, Winakor et al. (1980) allowed
options from 1 to 99 in rating attributes of fabric hand-
feel. In the Spectrum method (Meilgaard et al., 2006) a
15-point category scale is used, but allows intermediate
points in tenths, rendering it (at least in theory) a 150-
point scale. In hedonic or affective testing, a bipolar
scale is common, with a zero or neutral point of opin-
ion at the center (Peryam and Girardot, 1952). These
are often shorter than the intensity scales. For exam-
ple, in the “smiling face” scale used with children, only
three options may be used for very young respondents
(Birch et al., 1980, 1982), although with older children
as many as nine points may be used (Chen et al., 1996;
Kroll, 1990). Lately there has been a move away from
using labels or integers, in case these may be biasing
to subjects. People seem to have favorite numbers or
tendencies to use some numbers more than others (e.g.,
Giovanni and Pangborn, 1983). A solution to this prob-
lem is to use an unlabeled check-box scale as shown in
Fig. 7.2.

In early applications of category scaling, the pro-
cedure specifically instructed subjects to use the cate-
gories to represent equal spacing. They might also be
instructed to distribute their judgments over the avail-
able scale range, so the strongest stimulus was rated
at the highest category and the weakest stimulus at
the lowest category. This use of such explicit instruc-
tions surfaces from time to time. An example is in
Anderson’s (1974) recommendation to show the sub-
ject specific examples of bracketing stimuli that are
above and below the anticipated range of items in
the set to be judged. A related method is the relative
scaling procedure of Gay and Mead (1992) in which
subjects place the highest and lowest stimuli at the
scale endpoints (discussed below). The fact that there
is an upper boundary to the allowable numbers in a cat-
egory scaling task may facilitate the achievement of a
linear interval scale (Banks and Coleman, 1981).

A related issue concerns what kind of experience the
high end anchor refers to. Muñoz and Civille (1998)
pointed out that for descriptive analysis panels, the
high end-anchor phrase could refer to different situ-
ations. For example, is the term “extremely sweet”

referring to all products (a so-called universal scale)?
Or is the scale anchored in the panelists’ minds only
to products in this category? In that case, extremely
sweet for a salt cracker refers to something different
than extremely sweet for a confectionary product or
ice cream. Or is the high end of the scale the most
extreme attribute for this product? That would yield a
product-specific scale in which comparisons between
different attributes could be made, e.g., this cracker is
much sweeter than it is salty, but not comparisons to
another type of product. These are important concerns
for a descriptive panel leader.

However, some experimenters nowadays avoid any
extra instructions, allowing the subject or panelist to
distribute their ratings along the scale as they see
fit. In fact, most people will have a tendency to dis-
tribute their judgments along most of the scale range,
although some avoid the end categories, reserving
them in case extreme examples show up. However,
panelists do not like to overuse one part of the scale
and will tend to move these judgments into adjoining
response categories (Parducci, 1965). These tendencies
are discussed in Chapter 9.

In practice, simple category scales are about as
sensitive to product differences as other scaling tech-
niques, including line marking and magnitude estima-
tion (Lawless and Malone, 1986a, b). Due to their
simplicity, they are well suited to consumer work.
In addition, they offer some advantages in data cod-
ing and tabulation for speed and accuracy as they
are easier to tabulate than measuring lines or record-
ing the more variable magnitude estimates that may
include fractions. This presumes, of course, that the
data are being tabulated manually. If the data are
recorded online using a computer-assisted data collec-
tion system, this advantage vanishes. A wide variety of
scales with fixed alternatives are in current use. These
include Likert-type scales used for opinions and atti-
tudes, which are based on the degree to which a person
agrees or disagrees with a statement about the prod-
uct. Examples of such scales used in consumer tests
are found in Chapter 14. Lately the term “Likert scale”
has been used to refer to any category type of scale,
but we prefer to reserve the name of Likert to the
agree/disagree attitude scale in keeping with his origi-
nal method (Likert, 1932). The flexibility of categori-
cal alternatives for many different situations is thus one
important aspect of the appeal of this kind of response
measurement.
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7.3.2 Line Scaling

A second widely used technique for intensity scaling
involves making a mark or slash on a line to indi-
cate the intensity of some attribute. Marking a line is
also referred to as using a graphic-rating scale or a
visual analog scale. The response is recorded as the
distance of the mark from one end of the scale, usu-
ally whatever end is considered “lower.” Line marking
differs from category scales in the sense that the per-
son’s choices seem more continuous and less limited.
In fact, the data are limited to the discrete choices mea-
surable by the data-encoding instrument, such as the
resolution of a digitizer or the number of pixels resolv-
able on a computer screen. The fundamental idea is
that the panelist makes a mark on a line to indicate
the intensity or amount of some sensory characteris-
tic. Usually only the endpoints are labeled and marked
with short line segments at right angles to the main
line. The end-anchor lines may be indented to help
avoid end effects associated with the reluctance of sub-
jects to use the ends of scale. Other intermediate points
may be labeled. One variation uses a central reference
point representing the value of a standard or baseline
product on the scale. Test products are scaled relative
to that reference. Some of these variations are shown in
Fig. 7.3. These techniques are very popular in descrip-
tive analysis in which multiple attributes are evaluated
by trained panels.

The first use of line scales for sensory evaluation
appears in an experiment from the Michigan State
Agricultural Experiment Station conducted during
World War II (Baten, 1946). Various storage temper-
atures of apples were tested. A simple category scale
for fruit appeal was used (ratings from very desirable
to very undesirable with seven alternatives) and then a
6 in. line scale was used, with the words “very poor”
over the left end and “excellent” over the right end.
Responses on the line were measured in inches. A poll
of the participants revealed a strong preference for the
category scale over the line marking scale. However,
Baten reported that the t-values comparing apples were
about twice as large using the line-marking technique,
implying a greater ability to statistically differentiate
the items using the line scale. Unfortunately, Baten
did not report any numerical values for the t-statistics,
so it is difficult to evaluate the size of the advantage
he saw.

very poor excellent

weak moderate strong

AROMA

Pepper Heat

O

threshold slight moderate strong

reference strongerweaker

a)

b)

c)

d)

e)

overall opinion

dislike
moderately

like 
moderately

neither

Sweetness

X Xf)
least
liked

most
liked

Fig. 7.3 Examples of line-marking scales: (a) with endpoints
labeled (after Baten, 1946); (b) with indented “goal posts” (after
Mecredy et al., 1974); (c) with additional points labeled as in
ASTM procedure E-1083 (ASTM, 2008b); (d) a line for ratings
relative to a reference as in Stoer and Lawless (1993); (e) hedo-
nic scaling using a line; (f) the adjustable scale of Gay and Mead
(1992) as pictured by Villanueva and D Silva (2009).

An important historical trend to use lines in descrip-
tive analysis was instrumental in the popularization of
line marking. Stone et al. (1974) recommended the use
of line marking for Quantitative Descriptive Analysis
(QDA), then a relatively new approach to specifying
the intensities of all important sensory attributes. It
was important to have a scaling method in QDA that
approximated an interval scale, as analysis of variance
was to become the standard statistical technique for
comparing products in descriptive analysis. The justi-
fication for the application in QDA appears to rest on
the previous findings of Baten regarding the sensitivity
of the method and the writings of Norman Anderson
on functional measurement theory (Anderson, 1974).
In his approach, Anderson used indented end anchors
(see Weiss, 1972, for another example). Anderson
also showed his subjects examples of the high and
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low stimuli that one might encounter in the experi-
ment, and sometimes even more extreme examples, in
order to orient and stabilize their scale usage. Whether
such examples make sense for sensory evaluation is
questionable.

Since the advent of QDA, the line-marking tech-
niques have been applied in many different situa-
tions requiring sensory response. In an early sen-
sory application, Einstein (1976) successfully used a
line-marking scale with consumers to evaluate beer
attributes of flavor intensity, body, bitterness, and after-
taste. By “successful” we mean that statistically sig-
nificant differences were obtained among test samples.
The use of line marking is not limited to foods and con-
sumer products. Measurement of pain and pain relief
has employed line marking in clinical settings, using
both vertical and horizontal lines (Huskisson, 1983;
Sriwatanakul et al., 1983). Lawless (1977) used a line-
marking technique along with ratio instructions for
both intensity and hedonic judgments in taste and odor
mixture studies. This was a hybrid procedure in which
subjects were instructed to mark lines as if perform-
ing magnitude estimation. For example, if one product
were twice as sweet as a previous item, a mark would
be made twice as far down the line (which could be
extended if the panelist ran out of room). Villanueva
and colleagues used a scale with equally spaced dots
along the line and obtained good results for acceptabil-
ity scaling (Villanueva and Da Silva, 2009; Villanueva
et al., 2005). In comparisons of category ratings, line
marking, and magnitude estimation, the line-marking
method is about as sensitive to product differences
as other scaling techniques (Lawless and Malone,
1986a, b).

Marking a point on a line has also been used widely
in time–intensity scaling methods. The simplest ver-
sion of this is to move a pointer along a scale while a
moving roll of paper is marked to see the continuous
changes in sensation over time. Originally this could
be done with a simple marking pen held by the partic-
ipant (e.g., Moore and Shoemaker, 1981). The record
of the pen track would usually be obscured from the
person’s view, so as not to exert any influence on their
response. The pen-tracking method has also been used
with ratio instructions (Lawless and Skinner, 1979).
In some cases, the participant has turned a dial or
other response device while observing a linear display
(Lawless and Clark, 1992). Often the time–intensity
scale will look much like a vertical “thermometer”

with a cursor that moves up and down via the com-
puter mouse. Time–intensity methods are reviewed
more fully in Chapter 8.

7.3.3 Magnitude Estimation

7.3.3.1 The Basic Techniques

A popular technique for scaling in psychophysical
studies has been the method of magnitude estimation.
In this procedure, the respondent is instructed to assign
numbers to sensations in proportion to how strong the
sensation seems. Specifically, the ratios between the
numbers are supposed to reflect the ratios of sensation
magnitudes that have been experienced. For example,
if product A is given the value of 20 for sweetness
intensity and product B seems twice as sweet, B is
given a magnitude estimate of 40. The two critical parts
of the technique are the instructions given to the partic-
ipant and the techniques for data analysis. Two primary
variations of magnitude estimation have been used. In
one method, a standard stimulus is given to the sub-
ject as a reference and that standard is assigned a fixed
value such as 10. All subsequent stimuli are rated rel-
ative to this standard, sometimes called a “modulus.”
It is often easier for panelists if the reference (i.e., the
item used as the modulus) is chosen from somewhere
near the middle of the intensity range.

In the other variation of magnitude estimation, no
standard stimulus is given and the participant is free
to choose any number he or she wishes for the first
sample. All samples are then rated relative to this first
intensity, although in practice people probably “chain”
their ratings to the most recent items in the series.
Because people can choose different ranges of num-
bers in this “non-modulus” magnitude estimation, the
data have to be treated to bring all judgments into the
same range, an extra step in the analysis. Variations on
magnitude estimation and guidelines for data analysis
are found in ASTM Standard Test Method E 1697–05
(ASTM, 2008a).

In the psychophysical laboratory, where magnitude
estimation has found its primary usage, generally only
one attribute is rated at a time. However, rating mul-
tiple attributes or profiling has been used in taste
studies (McBurney and Bartoshuk, 1973; McBurney
and Shick, 1971; McBurney et al., 1972) and this can
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naturally be extended to foods with multiple taste and
aromatic attributes. Magnitude estimation has not been
used very often for descriptive analysis, but in princi-
ple there is no reason why it could not be used for that
purpose.

Participants should be cautioned to avoid falling
into previous habits of using bounded category scales,
e.g., limited ranges of numbers from zero to ten. This
may be a difficult problem with previously trained pan-
els that have used a different scaling method, as people
like to stick with a method they know and feel com-
fortable with. Panelists who show such behavior may
not understand the ratio nature of the instructions. It
is sometimes useful with a new panelist to have the
participant perform a warm-up task to make sure they
understand the scaling instructions. The warm-up task
can involve estimation of the size or area of differ-
ent geometric figures (Meilgaard et al., 2006) or the
length of lines (McBurney et al., 1972). Sometimes
it is desired to have panelists rate multiple attributes
at the same time or to break down overall intensity
into specific qualities. If this kind of “profiling” is
needed, the geometric figures can include areas with
different shading or the lines can be differently col-
ored. A practice task is highly recommended so that the
sensory scientist can check on whether the participant
understands the task.

Values of zero are allowed in this method as some
of the products may in fact have or no sensation for a
given attribute (like no sweetness in our example). Of
course, the rating of zero should not be used for the ref-
erence material. While the value of zero is consistent
with common sense for products with no sensation of
some attributes, it does complicate the data analysis as
discussed below.

7.3.3.2 Instructions

The visual appearance of the ballot in magnitude esti-
mation is not critical; it is the instructions and the
participant’s comprehension of the ratio nature of the
judgments that are important. Some ballots even allow
the subject/participant to view all previous ratings.
Here are sample instructions for the use of magnitude
estimation with a reference sample or modulus with a
fixed number assigned to it:

Please taste the first sample and note its sweetness. This
sample is given the value of “10” for its sweetness

intensity. Please rate all other samples in proportion to
this reference. For example, if the next sample is twice as
sweet, assign it a value of “20”, if half as sweet, assign it
a value of “5” and if 3.5 times as sweet, assign in a value
of 35. In other words, rate the sweetness intensity so that
your numbers represent the ratios among the intensities of
sweetness. You may use any positive numbers including
fractions and decimals.

The other major variation on this method uses no
reference. In this case the instructions may read as
follows:

Please taste the first sample and note its sweetness. Please
rate all other samples relative to this reference, applying
numbers to the samples to represent the ratios of sweet-
ness intensity among the samples. For example, if the
next sample was twice as sweet, you would give it a num-
ber twice as big as the rating assigned to the first sample,
if half as sweet, assign it a number half as big and if 3.5
times as sweet, assign it a number 3.5 times as big. You
may use any positive numbers including fractions and
decimals.

7.3.3.3 Data Treatment

In non-modulus methods, participants will generally
choose some range of numbers they feel comfort-
able with. The ASTM procedure suggests having them
pick a value between 30 and 100 for the first sample,
and avoiding any number that seems small. If partici-
pants are allowed to choose their own number range,
it becomes necessary to re-scale each individual’s data
to bring them into a common range before statistical
analysis (Lane et al., 1961). This will prevent subjects
who choose very large numbers from having undue
influence on measures of central tendency (means)
and in statistical tests. This rescaling process has been
referred to as “normalizing” (ASTM, 2008a) although
it has nothing to do with the normal distribution or
Z-scores. A common method for rescaling proceeds as
follows:

(1) Calculate the geometric mean of each individual’s
ratings across their data set.

(2) Calculate the geometric mean of the entire data set
(of all subjects combined).

(3) For each subject, construct a ratio of the grand geo-
metric mean of the entire data set to each person’s
geometric mean. The value of this ratio provides
a post hoc individual rescaling factor for each
subject. In place of the grand geometric mean,
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any positive numerator may also be chosen in
constructing this factor, e.g., a value of 100.

(4) Multiply each data point for a given person by
their individual rescaling factor. Do this for all
participants using their own individual re-scaling
factors.

These re-scaled data are then analyzed. Note that
due to the extra data treatment step in this method, it
is simpler to use the modulus-based variation with a
standard reference item.

Magnitude estimation data are often transformed to
logs before data analysis (Butler et al., 1987; Lawless,
1989). This is done primarily because the data tend
to be positively skewed or log-normally distributed.
There tends to be some high outlying values for any
given sample. Perhaps this is not surprising because
the scale is open-ended at the top, and bounded by
zero at the bottom. Transformation into log data and/or
taking geometric means presents some problems, how-
ever, when the data contain zeros. The log of zero is
undefined. Any attempt to take a geometric mean by
calculating the product of N items will yield a zero
on multiplying. Several approaches have been taken to
this problem. One is to assign a small positive value to
any zeros in the data, perhaps one-half of the smallest
rating given by a subject (ASTM, 2008a). The resulting
analysis, however, will be influenced by this choice.
Another approach is to use the median judgments in
constructing the normalization factor for non-modulus
methods. The median is less influenced by the high
outliers in the data than the arithmetic mean.

7.3.3.4 Applications

For practical purposes, the method of magnitude esti-
mation may be used with trained panels, consumers,
and even children (Collins and Gescheider, 1989).
However, the data do tend to be a bit more variable
than other bounded scaling methods, especially in the
hands of untrained consumers (Lawless and Malone,
1986b). The unbounded nature of the scale may make
it especially well suited to sensory attributes where
an upper boundary might impose restrictions on the
panelists’ ability to differentiate very intense sensory
experiences in their ratings. For example, irritative or
painful sensations such as chili pepper intensity might
all be rated near the upper bound of a category scale

of intensity, but an open-ended magnitude estimation
procedure would allow panelists more freedom to dif-
ferentiate and report variations among very intense
sensations.

With hedonic scaling of likes and dislikes, there is
an additional decision in using magnitude estimation
scaling. Two options have been adopted in using this
technique, one employing a single continuum or unipo-
lar scale for amount of liking and the other applying a
bipolar scale with positive and negative numbers plus
a neutral point (Pearce et al., 1986). In bipolar magni-
tude scaling of likes and dislikes, positive and negative
numbers are allowed in order to signify ratios or pro-
portions of both liking and disliking (e.g., Vickers,
1983). An alternative to positives and negatives is to
have the respondent merely indicate whether the num-
ber represents liking or disliking (Pearce et al., 1986).
In unipolar magnitude estimation only positive num-
bers (and sometimes zeros) are allowed, with the lower
end of the scale representing no liking and higher num-
bers given to represent increasing proportions of liking
(Giovanni and Pangborn, 1983; Moskowitz and Sidel,
1971). It is questionable whether a unipolar scale is
a sensible response task for the participant, as it does
not recognize the fact that a neutral hedonic response
may occur, and that there are clearly two modes of
reaction, one for liking and one for disliking. If one
assumes that all items are on one side of the hedo-
nic continuum—either all liked to varying degrees or
all disliked to varying degrees then the one-sided scale
makes sense. However, it is a rare situation with foods
or consumer product testing in which at least some
indifference or change of opinion was not visible in at
least some respondents. So a bipolar scale fits common
sense.

7.4 Recommended Practice

and Practical Guidelines

Both line scales and category scales may be used effec-
tively in sensory testing and consumer work. So we
will not expend much effort in recommending one
of these two common techniques over another. Some
practical concerns are given below to help the stu-
dent or practitioner avoid some potential problems.
The category–ratio or labeled magnitude scales may
facilitate comparisons among different groups, and this
issue is discussed below in Section 7.5.2.
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7.4.1 Rule 1: Provide Sufficient

Alternatives

One major concern is to provide sufficient alternatives
to represent the distinctions that are possible by pan-
elists (Cox, 1980). In other words, a simple 3-point
scale may not suffice if the panel is highly trained
and capable of distinguishing among many levels of
the stimuli. This is illustrated in the case of the flavor
profile scale, which began with five points to repre-
sent no sensation, threshold sensation, weak, moderate,
and strong (Caul, 1957). It was soon discovered that
additional intermediate points were desirable for pan-
elists, especially in the middle range of the scale where
many products would be found. However, there is a
law of diminishing returns in allowing too many scale
points—further elaboration allows better differentia-
tion of products up to a point and then the gains dimin-
ish as the additional response choices merely capture
random error variation (Bendig and Hughes, 1953).

A related concern is the tendency, especially in
consumer work, to simplify the scale by eliminating
options or truncating endpoints. This brings in the dan-
ger caused by end-use avoidance. Some respondents
may be reluctant to use the end categories, just in case
a stronger or weaker item may be presented later in
the test. So there is some natural human tendency to
avoid the end categories. Truncating a 9-point scale to
a 7-point scale may leave the evaluator with what is
functionally only a 5-point scale for all practical pur-
poses. So it is best to avoid this tendency to truncate
scales in experimental planning.

7.4.2 Rule 2: The Attribute Must Be

Understood

Intensity ratings must be collected on an attribute
which the participants understand and about which
they have a general consensus and agreement as to its
meaning. Terms like sweetness are almost universal
but a term like “green aroma” might be interpreted
in different ways. In the case of a descriptive panel,
a good deal of effort may be directed at using refer-
ence standards to illustrate what is meant by a specific
term. In the case of consumer work, such training is not
done, so if any intensity ratings are collected, they must
be about simple terms about which people generally

agree. Bear in mind that most early psychophysics was
done on simple attributes like the loudness of a sound
or the heaviness of a weight. In the chemical senses,
with their diverse types of sensory qualities and fuzzy
consumer vocabulary, this is not so straightforward.

Other problems to avoid include mixing sensation
intensity (strength) and hedonics (liking), except in
the just-right scale where this is explicit. An example
of a hedonically loaded sensory term is the adjective
“fresh.” Whatever this means to consumers, it is a poor
choice for a descriptive scale because it is both vague
and connotes some degree of liking or goodness to
most people. Vague terms are simply not actionable
when it comes to giving feedback to product devel-
opers about what needs to be fixed. Another such
vague term that is popular in consumer studies is “nat-
ural.” Even though consumers might be able to score
products on some unknown basis using this word, the
information is not useful as it does not tell formula-
tors what to change if a product scores low. A similar
problem arises with attempting to scale “overall qual-
ity.” Unless quality has been very carefully defined, it
cannot be scaled.

7.4.3 Rule 3: The Anchor Words Should

Make Sense

In setting up the scales for descriptive analysis or for a
consumer test, the panel leader should carefully con-
sider the nature of the verbal end anchors for each
scale as well as any intermediate anchors that may
be needed. Should the scale be anchored from “very
weak” to “very strong” or will there be cases in which
the sensory attribute is simply not present? If so, it
makes sense to verbally anchor the bottom of the scale
with “not at all” or “none.” For example, a sweetness
scale could be anchored with “not at all sweet” and a
scale for “degree of oral irritation” could be anchored
using “none.”

7.4.4 To Calibrate or Not to Calibrate

If a high degree of calibration among the panelists
is desired, then physical standards can be given for
intensity. Often this is done with end examples as
discussed above, but it may be advantageous to give
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examples of intermediate points on the scales as well.
An example of this kind of calibration is found in the
ASTM procedures for evaluating pepper heat, where
three points on the scale are illustrated (weak, mod-
erate, and approaching strong) (ASTM, 2008b). The
traditional texture profile technique (Brandt et al.,
1963) used nine scale points for most texture attributes
like hardness and would give examples of common
products representing each point on the scale. In the
Spectrum descriptive method, the scales for intensity
are intended to be comparable across all attributes and
all products so scale examples are given from various
sensory domains representing points on the 15-point
scale for intensity (Meilgaard et al., 2006). Whether
or not this degree of calibration is required for a spe-
cific project should be considered. There may also be
a limit to the ability to stabilize the scale usage of
respondents. There are limits on the abilities of humans
to be calibrated as measuring instruments (Olabi and
Lawless, 2008) and in spite of decades of research in
scaling, this is not well understood. People differ in
their sensitivities to various tastes and odors and thus
may honestly differ in their sensory responses.

Another decision of the test designer will be
whether to assign physical examples to intermediate
scale points. Although reference items are commonly
shown for the end categories, this is less often done
with intermediate categories. The apparent advantage
is to achieve a higher level of calibration, a desirable
feature for trained descriptive panelists. A potential
disadvantage is the restriction of the subject’s use of
the scale. What appears to be equal spacing to the
experimenter may not appear so to the participant. In
that case, it would seem wiser to allow the respon-
dent to distribute his or her judgments among the scale
alternatives, without presuming that the examples of
intermediate scale points are in fact equally spaced.
This choice is up to the experimenter. The decision
reflects one’s concerns as to whether it is more desir-
able to work toward calibration or whether there is
more concern with potential biasing or restriction of
responses.

7.4.5 A Warning: Grading and Scoring

are Not Scaling

In some cases pseudo-numerical scales have been set
up to resemble category scales, but the examples cut

across different sensory experiences, mixing qualities.
An example is the pseudo-scale used for baked prod-
ucts, where the number 10 is assigned for perfect
texture, 8 for slight dryness, 6 for gumminess, and 4 if
very dry (AACC, 1986). Gumminess and dryness are
two separate attributes and should be scaled as such.
This is also an example of quality grading, which is
not a true scaling procedure. When the numbers shift
among different sensory qualities, this violates the psy-
chophysical model for scaling the intensity of a single
attribute. Although numbers may be applied to the
grades, they cannot be treated statistically, as the aver-
age of “very dry ” (4) and slightly dry (8) is not gummy
(6) (see Pangborn and Dunkley, 1964, for a critique
of this in the dairy grading arena). The numbers in a
quality-grading scheme do not represent any kind of
unitary psychophysical continuum.

7.5 Variations—Other Scaling

Techniques

An important idea in scaling theory is the notion that
people may have a general idea of how weak or strong
sensations are, and that they can compare different
attributes of a product for their relative strength, even
across different sensory modalities. So, for example,
someone could legitimately say that this product tastes
much more salty than it is sweet. Or that the trum-
pets are twice as loud as the flutes in a certain passage
in a symphony. Given that this notion is correct, peo-
ple would seem to have a general internal scale for
the strength of sensations. This idea forms the basis
for several scaling methods. It permits the compari-
son of different sensations cross-referenced by their
numerical ratings, and even can be used to compare
word responses. Methods derived from this idea are
discussed next.

7.5.1 Cross-Modal Matches

and Variations on Magnitude

Estimation

The method of magnitude estimation has a basis in
earlier work such as fractionation methods and the
method of sense ratios in the older literature (Boring,
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1942) where people would be asked to set one stimulus
in a given sensation ratio to another. The notion of
allowing any numbers to be generated in response
to stimuli, rather than adjusting stimuli to represent
fixed numbers appeared somewhat later (Moskowitz,
1971; Richardson and Ross, 1930; Stevens, 1956). An
important outcome of these studies was the finding
that the resulting psychophysical function generally
conformed to a power law of the following form:

R = kIn (7.1)

or after log transformation:

log(R) = n log(I) + log(k) (7.2)

where R was the response, e.g., perceived loudness
(mean or geometric mean of the data) and I was the
physical stimulus intensity, e.g., sound pressure, and
k was a constant of proportionality that depends upon
the units of measurement. The important characteristic
value of any sensory system was the value for n, the
exponent of the power function or slope of the straight
line in a log–log plot (Stevens, 1957). The validity
of magnitude estimation then came to hang on the
validity of the power law—the methods and resulting
functions formed an internally consistent theoretical
system. Stevens also viewed the method as provid-
ing a direct window into sensation magnitude and did
not question the idea that these numbers generated
by subjects might be biased in some way. However,
the generation of responses is properly viewed as
combining at least two processes, the psychophysical
transformation of energy into conscious sensation and
the application of numbers to those sensations. This
response process was not given due consideration in
the early magnitude estimation work. Responses as
numbers can exhibit nonlinear transformations of sen-
sation (Banks and Coleman, 1981; Curtis et al., 1968)
so the notion of a direct translation from sensation to
ratings is certainly a dangerous oversimplification.

Ratio-type instructions have been applied to other
techniques as well as to magnitude estimation. A his-
torically important psychophysical technique was that
of cross-modality matching, in which the sensation
levels or ratios would be matched in two sensory con-
tinua such as loudness and brightness. One continuum
would be adjusted by the experimenter and the other
by the subject. For example, one would try to make the

brightness of the lights about in the same proportions
as the loudness of the sounds. Stevens (1969) pro-
posed that these experiments could validate the power
law, since the exponents of the cross-modality match-
ing function could be predicted from the exponents
derived from separate scaling experiments. Consider
the following example:

For one sensory attribute (using the log transform,
Eq. (7.2)),

log R1 = n1 log I1 + log k1 (7.3)

and for a second sensory attribute

log R2 = n2 log I2 + log k2 (7.4)

Setting R1 = R2 in cross-modality matching gives

n1 log I1 + log k1 = n2 log I2 + log k2 (7.5)

and rearranging,

log I1 = (n2/n1) log I2 + a constant (7.6)

If one plots log I1 against log I2 from a cross-
modality matching task, the slope of the function can
be predicted from the ratio of the slopes of the individ-
ual exponents (i.e., n2/n1, which you can derive from
two separate magnitude estimation tasks). This predic-
tion holds rather well for a large number of compared
sensory continua (Steven, 1969). However, whether it
actually provides a validation for the power law or
for magnitude estimation has been questioned (e.g.,
Ekman, 1964).

For practical purposes, it is instructive that people
can actually take disparate sensory continua and com-
pare them using some generalized notion of sensory
intensity. This is one of the underpinnings of the use
of a universal scale in the Spectrum descriptive proce-
dure (Meilgaard et al., 2006). In that method, different
attributes are rated on 15-point scales that can (in the-
ory) be meaningfully compared. In other words, a 12
in sweetness is twice as intense a sensation as a 6
in saltiness. Such comparisons seem to makes sense
for tastes and flavors but may not cut across all other
modalities. For example, it might seem less sensible to
compare the rating given for the amount of chocolate
chips in a cookie to the rating given for the cookie’s
hardness—these seem like quite different experiences
to quantify.
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Cross-modality matches have been performed suc-
cessfully with children even down to age 4, using line
length compared to loudness (Teghtsoonian, 1980).
This may have some advantage for those with limited
verbal skills or trouble understanding the numerical
concepts needed for category scales or magnitude esti-
mation. The use of line length points out that the line-
marking technique might be considered one form of
a cross-modality matching scale. Some continua may
seem simpler, easier, or more “natural” to be matched
(for example, hand grip force to perceived strength of
tooth pain). King (1986) matched the pitches of tones
to concentrations of benzaldehyde and Ward (1986)
used duration as a matching continuum for loudness
and brightness. One of the advantages of the cross-
modality matching procedure is that it is possible to
specify the intensity of a sensation in physical units,
i.e., as a physical level on the other continuum. So
sweetness, for example, could be represented in a
decibel (sound pressure) equivalent. In one amusing
variation on this idea, Lindvall and Svensson (1974)
used hedonic matching to specify the unpleasantness
of combustion toilet fumes to different levels of H2S
gas that were sniffed from an olfactometer. Thus the
lucky participant could dial up a concentration that
was perceived as being equally as offensive as the test
samples.

If line marking can be considered a kind of cross-
modality match, then why not the numbers them-
selves? It should be possible to cross-reference one
continuum to another simply through instructions to
use a common response scale. Stevens and Marks
(1980) developed the technique of magnitude matching
to do just that (see also Marks et al., 1992). Subjects
were instructed to judge loudness and brightness on
a common scale of intensity so that if a sound had
the same sensory impact as the brightness of a light,
then the stimuli would be given the same number. This
type of cross-referencing should facilitate comparisons
among people. For example, if it can be assumed that
two people have the same response to salt taste or
to loudness of tones, then differences in some other
continuum like bitter taste, hot chili pepper intensity,
or a potential olfactory loss can be cross-referenced
through salty taste or through loudness of tones they
have rated in magnitude matching (e.g., Gent and
Bartoshuk, 1983). Furthermore, if numbers can pro-
vide a cross-referencing continuum, then why not scale
the word phrases used as anchor points on a category

or line scale? The idea of scaling word phrases takes
shape in the labeled magnitude scales discussed next.

7.5.2 Category–Ratio (Labeled

Magnitude) Scales

A group of hybrid techniques for scaling has recently
enjoyed some popularity in the study of taste and
smell, for hedonic measurement and other applica-
tions. One of the problems with magnitude estimation
data is that it does not tell in any absolute sense
whether sensations are weak or strong, only giving the
ratios among them. This group of scales attempts to
provide ratio information, but combines it with com-
mon verbal descriptors along a line scale to provide
a simple frame of reference. They are referred to as
category–ratio scales, or more recently, labeled mag-
nitude scales. They all involve a horizontal or vertical
line with deliberately spaced labels and the panelists’
task is to make a mark somewhere along the line to
indicate the strength of their perception or strength of
their likes or dislikes. In general, these labeled line
scales give data that are consistent with those from
magnitude estimation (Green et al., 1993). An unusual
characteristic of these scales is the verbal high end-
anchor phrase, which often refers to the “strongest
imaginable.”

The technique is based on early work by Borg and
colleagues, primarily in the realm of perceived physi-
cal exertion (Borg, 1982, 1990; see Green et al., 1993).
In developing this scale, Borg assumed that the seman-
tic descriptors could be placed on a ratio scale and
that they defined the level of perceptual intensity and
that all individuals experienced the same perceptual
range. Borg suggested that for perceived exertion, the
maximal sensation is roughly equivalent across people
for this sensory “modality” (Marks et al., 1983). For
example, it is conceivable that riding a bicycle to the
point of physical exhaustion produces a similar sensory
experience for most people. So the scale came to have
the highest label referring to the strongest sensation
imaginable.

This led to the development of the labeled mag-
nitude scale (LMS) shown in Fig. 7.4. It is truly a
hybrid method since the response is a vertical line-
marking task but verbal anchors are spaced according
to calibration using ratio-scaling instructions (Green
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LMS

Barely detectable

Weak

Moderate

Strong

Very strong

Strongest imaginable (95.5)

(50.12)

(33.1)

(16.2)

(5.8)

(1.4)

Fig. 7.4 The labeled magnitude scale (LMS) of Green et al.
(1993).

et al., 1993). In setting up the scale, Green and col-
leagues had subjects provide magnitude estimates of
different verbal descriptors after giving magnitude
estimates of familiar oral sensations (e.g., the bitter-
ness of celery, the burn of cinnamon gum). These
results were generally in line with previous scaling of
verbal descriptors, so-called semantic scaling. Other
researchers have developed scales with only direct
scaling of the verbal descriptors and have not always
included a list of everyday or common experiences
(Cardello et al., 2003; Gracely et al., 1978a, b).

After the introduction of the LMS, a number of
researchers tried to extend this approach into the realm
of hedonics (measuring food acceptability). A widely
used scale is the labeled affective magnitude (LAM)
scale developed by Schutz and Cardello (2001). They
used direct ratio scaling of the verbal descriptors of
the 9-point hedonic scale and included Borg’s type
of high (and low) end anchor (“greatest imaginable
like/dislike”). The scale is shown in Fig. 7.5. This
shows some advantages in differentiating well-liked
items (El Dine and Olabi, 2009; Greene et al., 2006;
Schutz and Cardello, 2001), although that finding
is not universal (Lawless et al., 2010a). The LAM
scale or similar versions of it have been applied in
a variety of studies with different foods (Chung and
Vickers, 2007a, b; El Dine and Olabi, 2009; Forde and
Delahunty, 2004; Hein et al., 2008; Keskitalo et al.,

2007; Lawless et al., 2010a, b, c). A growing number
of similar scales have been developed for various appli-
cations including oral pleasantness/unpleasantness (the
“OPUS” scale, Guest et al., 2007), perceived satiety
(the “SLIM” scale, Cardello et al., 2005), clothing fab-
ric comfort (the “CALM” scale, Cardello et al., 2003),
and odor dissimilarity (Kurtz et al., 2000). All of these
scales depend upon a ratio scaling task to determine
the spacing of the verbal descriptors and almost all use
a Borg-type high end-anchor phrase. Others will surely
be developed.

Instructions to participants have differed in the use
of these scales. In the first application of the LMS,
Green et al. (1993) instructed subjects to first choose
the most appropriate verbal descriptor, and then to
“fine tune” their judgment by placing a mark on the
line between that descriptor and the next most appro-
priate one. In current practice less emphasis may be
placed on the consideration of the verbal labels and
instructions may be given to simply make a mark “any-
where” on the line. A common observation with the
hedonic versions of the scale is that some panelists will
mark at or very near a verbal descriptor, seeming to use
it as a category scale (Cardello et al., 2008; Lawless
et al., 2010a). The proportion of people displaying this
behavior may depend upon the physical length of the
line (and not the instructions or examples that may be
shown) (Lawless et al., 2010b).

Results may depend in part on the nature of the high
end-anchor example and the frame of reference of the
subject in terms of the sensory modality they are think-
ing about. Green et al. (1996) studied the application
of the LMS to taste and odor, using descriptors for
the upper bound as “strongest imaginable” taste, smell,
sweetness, etc. Steeper functions (a smaller response
range) were obtained when mentioning individual taste
qualities. This appears to be due to the omission of
painful experiences (e.g., the “burn of hot peppers”)
from the frame of reference when sensations were
scaled relative to only taste. The steepening of the
functions for the truncated frame of reference is con-
sistent with the idea that subjects expanded their range
of numbers as seen in other scaling experiments (e.g.,
Lawless and Malone, 1986b). The fact that subjects
appear to adjust their perceptual range depending on
instructions or frame of reference suggests that the
scales have relative and not absolute properties, like
most other scaling methods. Cardello et al. (2008)
showed that the hedonic version of the scale (the LAM
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Fig. 7.5 Affective labeled
magnitude scales, including
the LAM scale (Cardello and
Schutz, 2004) and the OPUS
scale (Guest et al., 2007).

scale) will also show such range effects. A compressed
range of responses is obtained when the frame of
reference is greatest imaginable like (dislike) for an
“experience of any kind” rather than something more
delimited like “foods and beverages.” Apparently the
compression is not very detrimental to the ability of the
LAM scale to differentiate products (Cardello et al.,
2008, but see also Lawless et al., 2010a).

Is this a suitable method for cross-subject com-
parisons? To the extent that Borg’s assumptions of
common perceptual range and the similarity of the
high end-anchor experience among people are true,
the method might provide one approach to valid
comparisons of the ratings among different respon-
dents. This would facilitate comparisons of clinical
groups or patients with sensory disorders or genetically
different individuals such as anosmics, PTC/PROP
taster groups. Bartoshuk and colleagues (1999, 2003,

2004a, b, 2006) have argued that the labeled magnitude
scales should anchor their endpoints to “sensations
of any kind” as such a reference experience would
allow different individuals to use the scale in similar
ways/and thus facilitate inter-individual comparisons.
Scales with this kind of high end anchor have been
termed “generalized” labeled magnitude scales (or
gLMS). However, the sensory evaluation practitioner
should be aware of the compression effects that can
occur with this kind of scale, which could potentially
lead to lessened differentiation among products.

7.5.3 Adjustable Rating Techniques:

Relative Scaling

A few methods have been tried that allow consumers
or panelists to change their ratings. An example is



7.5 Variations—Other Scaling Techniques 165

the “rank-rating” technique developed by O’Mahony,
Kim, and colleagues (Kim and O’Mahony, 1998; Lee
et al., 2001; O’Mahony et al., 2004; Park et al., 2004).
In this method, the consumer has a visual scale in front
of him or her on the table and after tasting a sample is
instructed to physically place the sample on the scale.
Subsequent samples are also tasted and placed and the
important feature is that the consumer can change the
position of any previous item based on their perception
of the new sample(s). This procedure has relatively lit-
tle to do with rank ordering per se (in fact ties can be
allowed). Cordinnier and Delwiche (2008) chose the
more descriptive name of “positional relative rating”
for this technique.

O’Mahony and Kim examined the efficiency of this
technique, mostly in simple salt solutions, on the basis
of people’s ordering of salt solutions in increasing con-
centrations (Kim and O’Mahony, 1998; Park et al.,
2004). The important data were “reversals” in which
a higher concentration was rated lower than a lower
one, and vice versa. A good scale would minimize
the amount of reversals. Given this criterion, the rank-
rating has fewer errors than non-adjustable ratings. At
this point it is not clear whether this apparent advan-
tage arises because people are allowed to re-taste, or
that they are allowed to re-position previously tasted
items. Both factors may be important. There is some
evidence that adjustable ratings can produce statisti-
cally significant ratings with fewer subjects, but the
procedure can take up to twice as long as normal rat-
ings. A limitation of this technique is that only one
attribute can be evaluated at a time. If a second or
third attribute is needed, the procedure starts over. This
may be acceptable for consumer like/dislike ratings
(O’Mahony et al., 2004), but would not be suitable for
a descriptive analysis task. The option to change pre-
vious ratings is an interesting notion and is allowed by
some of the sensory data-collection software packages
at this time. Whether the option is advantageous should
be the subject of further study. Re-tasting (Koo et al.,
2002; Lee et al., 2001) is a potentially important fea-
ture of this method, and should be evaluated separately,
and in consideration of the extra adaptation, fatigue, or
carryover that could occur with some products.

A completely relative rating procedure is the
method of Gay and Mead (Gay and Mead, 1992; Mead
and Gay, 1995). In this task, a panelist inspects the
entire set of samples and places the most intense (or
most liked) at the top end of the scale and the least

intense (or least liked) at the bottom. All other samples
are distributed along the full scale. This can provide
good differentiation of the products, but obviously any
absolute information about what is weak or strong,
liked or disliked, is lost (as is the case with magnitude
estimation). Because all the ratings are truly relative,
contextual effects such as contrast might be expected to
be larger with such a technique, but this is not known.

Another relative scaling method is when panelists
purposely rate each sample relative to a reference item,
which is usually marked on the center of the response
scale. Relative-to-reference scaling was studied by
Larson-Powers and Pangborn (1978) and compared to
traditional scaling for the descriptive profiling of bev-
erages and gelatins. Significant differences were found
with the relative scale (“anchored” in their terms)
in 22.8% of all possible comparisons as compared
with 19.5% of comparisons using the unanchored
scale. However, panelists were given the relative scale
first, and more practice using that scale. In an exten-
sive study of both trained and untrained respondents,
Stoer and Lawless (1993) found a similar advantage,
with 33% of all possible comparisons were signifi-
cant for the relative scaling versus 27% for traditional
scaling. However, this was not a statistically signif-
icant increase based on meta-analytic comparisons
(Rosenthal, 1987). The relative-to-reference scale was
also discussed by Land and Shepard (1984), who noted
that it facilitates comparisons across occasions that
would be otherwise difficult to make. They also warn
that the choice of standard may have an effect on
the scaling functions that result. The task is certainly
easy for subjects and was touted by Land and Shepard
as showing “good reproducibility” (see also Mahoney
et al., 1957). Whether the method offers any consis-
tent advantage over traditional scaling is questionable.
It may be useful in situations where comparison to a
reference is a natural feature or explicit objective of
the experiment at hand, for example in quality control
or shelf life studies where an identified control sample
is used as a baseline for comparison.

7.5.4 Ranking

Another alternative to traditional scaling is the use
of ranking procedures. Ranking is simply ordering
the products from weakest to strongest on the stated
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attribute or from least liked to most liked for consumer
acceptance testing. Ranking has the advantages of sim-
plicity in instructions to subjects, simplicity in data
handling, and minimal assumptions about level of mea-
surement since the data are treated as ordinal. Although
ranking tests are most often applied to hedonic data,
they are also applicable to questions of sensory inten-
sity. When asked to rank items for the intensity of a
specific attribute, e.g., the sourness of taste of several
fruit juices, for example, the ranking test is merely
an extension of a paired comparison procedure into
more than two products. Due to its simplicity, rank-
ing may be an appropriate choice in situations where
participants would have difficulty understanding scal-
ing instructions. In working with non-literates, young
children, across cultural boundaries or in linguistically
challenging situations, ranking is worth considering
(Coetzee and Taylor, 1996). This is especially true if
decisions are likely to be very simple, e.g., whether
or not two juice samples differ in perceived sour-
ness. Ranking may allow differentiation of products
that are all similar in acceptability. With medications,
for example, all formulas may be to some degree
unpalatable. It might be useful then to use ranking in
choosing alternative flavorings in order to find the least
offensive.

Analysis of ranked data is straightforward. Simple
rank-sum statistics can be found in the tables pub-
lished by Basker (1988) and Newell and MacFarlane
(1987, see also Table J). Another very sensitive test
of differences in ranked data is the Friedman test,
also known as the “analysis of variance on ranks.”
These are discussed in Appendix B. The tests are rapid,
straightforward, and easy to perform. It is also possible
to convert other data to rankings. This is a conservative
approach if the interval nature of the data is in ques-
tion or when violations of statistical assumptions such
as the normality of the data are suspect. For exam-
ple, Pokorńy et al. (1986) used ranking analysis of
line-marking data to compare the profiles of different
raspberry beverages sweetened with aspartame.

7.5.5 Indirect Scales

A conservative approach to scaling is to use the vari-
ance in the data as units of measurement, rather than
the numbers taken at face value. For example, we could

ask how many standard deviations apart are the mean
values for two products. This is a different approach
to measurement than simply asking how many scale
units separate the means on the response scale. On
a 9-point scale, one product may receive mean rat-
ing of seven, and another nine, making the difference
two scale units. If the pooled standard deviation is two
units, however, they would only be one unit apart on
a variability-based scale. As one example, Conner and
Booth (1988) used both the slope and the variance of
functions from just-right scales to derive a “tolerance
discrimination ratio.” This ratio represents a measure
of the degree of difference along a physical contin-
uum (such as concentration of sugar in lime drink) that
observers find to make a meaningful change in their
ratings of difference-from-ideal (or just-right). This is
analogous to finding the size of a just-noticeable differ-
ence, but translated into the realm of hedonic scaling.
Their insight was that it is not only the slope of the
line that is important in determining this tolerance or
liking-discrimination function, but also the variance
around that function.

Variability-based scales are the basis for scal-
ing in Thurstone’s models for comparative judgment
(Thurstone, 1927) and its extension into determin-
ing distances between category boundaries (Edwards,
1952). Since the scale values can be found from choice
experiments as well as rating experiments, the tech-
nique is quite flexible. How this type of scaling can
be applied to rating data is discussed below in the
derivation of the 9-point hedonic scale words. When
the scale values are derived from a choice method like
the triangle test or paired comparison method, this is
sometimes called “indirect scaling” (Baird and Noma,
1978; Jones, 1974). The basic operation in Thurstonian
scaling of choice data is to convert the proportion cor-
rect in a choice experiment (or simply the proportions
in a two-tailed test like paired preference) to Z-scores.
The exact derivation depends upon the type of test
(e.g., triangle versus 3-AFC) and the cognitive strat-
egy used by the subject. Tables for Thurstonian scale
values from various tests such as the triangle test were
given by Frijters et al. (1980) and Bi (2006) and some
tables are given in the Appendix. Mathematical details
of Thurstonian scaling are discussed in Chapter 5.

Deriving measures of sensory differences in such
indirect ways presents several problems in applied sen-
sory evaluation so the method has not been widely
used. The first problem is one of economy in data
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collection. Each difference score is derived from a
separate discrimination experiment such as a paired
comparison test. Thus many subjects must be tested
to get a good estimate of the proportion of choice,
and this yields just one scale value. In direct scaling,
each participant gives at least one data point for each
item tasted. Direct scaling allows for easy comparisons
among multiple products, while the discrimination test
must be done on one pair at a time. Thus the methods
of indirect scaling are not cost-efficient.

A second problem can occur if the products are too
clearly different on the attribute in question, because
then the proportion correct will approach 100%. At
that point the scale value is undefined as they are
some unknown number of standard deviations apart.
So the method only works when there are small dif-
ferences and some confusability of the items. In a
study of many products, however, it is sometimes pos-
sible to compare only adjacent or similar items, e.g.,
products that differ in small degrees of some ingredi-
ent or process variable. This approach was taken by
Yamaguchi (1967) in examining the synergistic taste
combination of monosodium glutamate and disodium
5′ inosinate. Many different levels of the two ingredi-
ents were tasted, but because the differences between
some levels were quite apparent, an incomplete design
was used in which only three adjacent levels were
compared.

Other applications have also used this notion of
variability as a yardstick for sensory difference or sen-
sation intensity. The original approach of Fechner in
constructing a psychophysical function was to accu-
mulate the difference thresholds or just-noticeable dif-
ferences (JNDs) in order to construct the log function
of psychophysical sensory intensity (Boring, 1942;
Jones, 1974). McBride (1983a, b) examined whether
JND-based scales might give similar results to cate-
gory scales for taste intensity. Both types of scaling
yielded similar results, perhaps not surprising since
both tend to conform to log functions. In a study of
children’s preferences for different odors Engen (1974)
used a paired preference paradigm, which was well
suited to the abilities of young children to respond in a
judgment task. He then converted the paired preference
proportions to Thurstonian scale values via Z-scores
and was able to show that the hedonic range of children
was smaller than that of adults.

Another example of choice data that can be con-
verted to scale values is best–worst scaling, in which

a consumer is asked to choose the best liked and least
liked samples from a set of three or more items (Jaeger
et al., 2008). With three products, it can be considered a
form of a ranking task. When applied to sensory inten-
sity, this is sometimes known as maximum-difference
or “max-diff.” Best–worst scaling is also discussed in
Section 13.7. Simple difference scores may be calcu-
lated based on the number of times an item is called
best versus worst and these scores are supposed to have
interval properties. If a multinomial logistic regression
is performed on the data, they are theorized to have true
ratio properties (Finn and Louviere, 1992). A practi-
cal problem with the method, however, is that so many
products must be tasted and compared, rendering it
difficult to perform with foods (Jaeger and Cardello,
2009).

The sensory professional should bear in mind that
in spite of their theoretical sophistication, the indirect
methods are based on variability as the main deter-
minant of degree of difference. Thus any influence,
which increases variability, will tend to decrease the
measured differences among products. In the well-
controlled psychophysical experiment under constant
standard conditions across sessions and days, this may
not be important—the primary variability lies in the
resolving power of the participant (and secondarily
in the sample products). But in drawing conclusions
across different days, batches, panels, factories, and
such, one has a less pure situation to consider. Whether
one considers the Thurstonian-type indirect measures
comparable across different conditions depends upon
the control of extraneous variation.

7.6 Comparing Methods: What is a Good

Scale?

A large number of empirical studies have been
conducted comparing the results using different
scaling methods (e.g., Birnbaum, 1982; Giovanni and
Pangborn, 1983; Hein et al., 2008; Jaeger and Cardello,
2009; Lawless and Malone, 1986a, b; Lawless et al.,
2010a; Marks et al., 1983; Moskowitz and Sidel, 1971;
Pearce et al., 1986; Piggot and Harper, 1975; Shand
et al., 1985; Vickers, 1983; Villanueva and Da Silva,
2009; Villanueva et al., 2005). Because scaling data are
often used to identify differences between products,
the ability to detect differences is one important
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practical criterion for how useful a scaling method
can be (Moskowitz and Sidel, 1971). A related crite-
rion is the degree of error variance or similar measures
such as size of standard deviations or coefficients of
variation. Obviously, a scaling method with low inter-
individual variability will result in more sensitive tests,
more significant differences, and lower risk of Type II
error (missing a true difference). A related issue is the
reliability of the procedure. Similar results should be
obtained upon repeated experimentation.

Other practical considerations are important as well.
The task should be user friendly and easy to understand
for all participants. Ideally, the method should be appli-
cable to a wide range of products and questions, so that
the respondent is not confused by changes in response
type over a long ballot or questionnaire. If panelists
are familiar with one scale type and are using it effec-
tively, there may be some liability in trying to introduce
a new or unfamiliar method. Some methods, like cate-
gory scales, line scales, and magnitude estimation, can
be applied to both intensity and hedonic (like–dislike)
responses. The amount of time required to code, tab-
ulate and process the information may be a concern,
depending upon computer-assisted data collection and
other resources available to the experimenters.

As in any method, validity or accuracy are also
issues. Validity can only be judged by reference to
some external criterion. For hedonic scaling, one might
want the method to correspond to other behaviors such
as choice or consumption (Lawless et al., 2010a). A
related criterion is the ability of the scale to identify or
uncover consumer segments with different preferences
(Villanueva and Da Silva, 2009).

Given these practical considerations, we may then
ask how the different scaling methods fare. Most
published studies have found about equal sensitivity
for the different scaling methods, provided that the
methods are applied in a reasonable manner. For exam-
ple, Lawless and Malone (1986a, b) performed an
extensive series of studies (over 20,000 judgments)
with consumers in central location tests using differ-
ent sensory continua including olfaction, tactile, and
visual modalities. They compared line scales, magni-
tude estimation, and category scales. Using the degree
of statistical differentiation among products as the cri-
terion for utility of the methods, the scales performed
about equally well. A similar conclusion was reached
by Shand et al. (1985) for trained panelists. There

was some small tendency for magnitude estimation
to be marginally more variable in the hands of con-
sumers as opposed to college students (Lawless and
Malone, 1986b). Statistical differentiation increased
over replicates, as would be expected as people came
to understand the range of items to be judged (see Hein
et al., 2008, for another example of improvement over
replication in hedonic scaling). Similar findings for
magnitude estimation and category scales in terms of
product differentiation were found by Moskowitz and
Sidel (1971), Pearce et al. (1986), Shand et al. (1985),
and Vickers (1983) although the forms of the mathe-
matical relations to underlying physical variables was
often different (Piggot and Harper, 1975). In other
words, as found by Stevens and Galanter (1957) there
is often a curvilinear relationship between the data
from the two methods. However, this has not been
universally observed and sometimes simple linear rela-
tionships have been found (Vickers, 1983). Similar
results for category scales and line scales were found
by Mattes and Lawless (1985).

Taken together, these empirical studies paint a pic-
ture of much more parity among methods than one
might suppose given the number of arguments over the
validity of scaling methods in the psychological lit-
erature. With reasonable spacing of the products and
some familiarization with the range to be expected,
respondents will distribute their judgments across the
available scale range and use the scale appropriately
to differentiate the products. A reasonable summary of
the literature comparing scale types is that they work
about equally well to differentiate products, given a
few sensible precautions.

7.7 Issues

7.7.1 “Do People Make Relative

Judgments” Should They See Their

Previous Ratings?

Baten’s (1946) report of an advantage for the line
scale is illustrative of how observant many researchers
were in the older literature. He noted that a category
scale with labeled alternatives might help some judges,
but could hinder others by limiting the alternative
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responses (i.e., judgments that might fall in-between
categories). The line scale offers a continuously graded
choice of alternatives, limited only by the measurement
abilities in data tabulation. Baten also noted that the
line scale seemed to facilitate a relative comparison
among the products. This was probably due to his
placement of the scales one above the other on the bal-
lot, so judges could see both markings at the same time.
In order to minimize such contextual effects it is now
more common to remove the prior ratings for products
to achieve a more independent judgment of the prod-
ucts. However, whether that is ever achieved in practice
is open to question—humans are naturally compara-
tive when asked to evaluate items, as discussed in
Chapter 9. Furthermore, there may be potential for
increased discrimination in methods like the rela-
tive positioning technique. The naturally comparative
nature of human judgment may be something we could
benefit from rather than trying to fight this tendency by
over-calibration.

7.7.2 Should Category Rating Scales Be

Assigned Integer Numbers in Data

Tabulation? Are They Interval

Scales?

There is also a strong suspicion that many numeri-
cal scaling methods may produce only ordinal data,
because the spacing between alternatives is not subjec-
tively equal. A good example is the common market-
ing research scale of “excellent—very good—good—
fair—poor.” The subjective spacing between these
adjectives is quite uneven. The difference between two
products rated good and very good is a much smaller
difference than that between products rated fair and
poor. However, in analysis we are often tempted to
assigned numbers one through five to these categories
and take means and perform statistics as if the assigned
numbers reflected equal spacing. This is a pretense at
best. A reasonable analysis of the 5-point excellent to
poor scale is simply to count the number of respon-
dents in each category and to compare frequencies.
Sensory scientists should not assume that any scale has
interval properties in spite of how easy it is to tabulate
data as an integer series.

7.7.3 Is Magnitude Estimation a Ratio

Scale or Simply a Scale with Ratio

Instructions?

In magnitude estimation, subjects are instructed to use
numbers to reflect the relative proportions between
the intensities experienced from different stimuli. A
beverage that is twice as sweet as another should
be given a response number that is twice as large.
S. S. Stevens felt that these numbers were accurate
reflections of the experience, and so the scale had
ratio properties. This assumed a linear relationship
between the subjective stimulus intensities (sensations
or percepts) and the numerical responses. However,
there is a wealth of information showing that the pro-
cess of numerical assignment is prone to a series of
contextual and number usage biases that strongly ques-
tion whether this process is linear (Poulton, 1989).
So Stevens’ original view of accepting the numeri-
cal reporting as having face validity seems misplaced.
Although it would be advantageous to achieve a level
of measurement that did allow conclusions about pro-
portions and ratios (“this is liked twice as much as
that”), this seems not fully justified at this time. It is
important to differentiate between a method that has
ratio-type instructions, and one that yields a true ratio
scale of sensation magnitude, where the numbers actu-
ally reflect proportions between intensities of sensory
experiences.

7.7.4 What is a “Valid” Scale?

An ongoing issue in psychophysics is what kind of
scale is a true reflection of the subject’s actual sen-
sations? From this perspective, a scale is valid when
the numbers generated reflect a linear translation of
subjective intensity (the private experience). It is well
established that category scales and magnitude esti-
mates, when given to the same stimuli, will form a
curve when plotted against one another (Stevens and
Galanter, 1957). Because this is not a linear relation-
ship, one method or the other must result from a
non-linear translation of the subjective intensities of
the stimuli. Therefore, by this criterion, at least one
scale must be “invalid.”
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Anderson (1974, 1977) proposed a functional mea-
surement theory to address this issue. In a typical
experiment, he would ask subjects to do some kind
of combination task, like judging the total combined
intensity of two separately presented items (or the aver-
age lightness of two gray swatches). He would set up
a factorial design in which every level of one stimu-
lus was combined with every level of the other (i.e., a
complete block). When plotting the response, a family
of lines would be seen when the first stimulus contin-
uum formed the X-axis and the second formed a family
of lines. Anderson argued that only when the response
combination rule was additive, and the response output
function was linear, would a parallel plot be obtained
(i.e., there would be no significant interaction term in
ANOVA). This argument is illustrated in Fig. 7.6. In
his studies using simple line and category scales, par-
allelism was obtained in a number of studies, and thus
he reasoned that magnitude estimation was invalid by
this criterion. If magnitude estimation is invalid, then
its derivatives such as the LMS and LAM scales are
similarly suspect.
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Fig. 7.6 The functional measurement scheme of Anderson
(1974).

Others have found support for the validity of mag-
nitude estimation in studies of binaural loudness sum-
mation (Marks, 1978). This argument continues and
is difficult to resolve. A review of the matter was
published by Gescheider (1988). For the purposes of
sensory evaluation, the issue is not terribly important
for two reasons. First, any scale that produces statisti-
cally significant differentiation of products is a useful
scale. Second, the physical ranges over which category
scaling and magnitude estimation produce different
results is usually quite large in any psychophysical
study. In most product tests, the differences are much
more subtle and generally do not span such a wide
dynamic range. The issue dissolves from any practical
perspective.

7.8 Conclusions

Much sound and fury has been generated over the years
in the psychophysical literature concerning what meth-
ods yield valid scales. For the sensory practitioner,
these issues are less relevant because the scale val-
ues do not generally have any absolute meaning. They
are only convenient indices of the relative intensities
or appeal of different products. The degree of differ-
ence may be a useful piece of information, but often
we are simply interested in which product is stronger
or weaker in some attribute, and whether the differ-
ence is both statistically significant and practically
meaningful.

Scaling provides a quick and useful way to get
intensity or liking information. In the case of descrip-
tive analysis, scaling allows collection of quantitative
data on multiple attributes. The degree of variability or
noise in the system is, to a large part, determined by
whether the panelists have a common frame of refer-
ence. Thus reference standards for both the attribute
terms and for the intensity anchors are useful. Of
course, with consumer evaluations or a psychophysical
study such calibration is not possible and usually not
desired. The variability of consumer responses should
offer a note of caution in the interpretation of consumer
scaling data.

Students and sensory practitioners should exam-
ine their scaling methods with a critical eye. Not
every task that assigns numbers will have useful scale
properties like equal intervals. Bad examples abound
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in the commodity grading (quality scoring) literature
(Pangborn and Dunkley, 1964). For example, different
numbers may be assigned to different levels of oxida-
tion, but that is scoring a physical condition based on
inferences from sensory experience. It is not a report of
the intensity of some experience itself. It is not track-
ing changes along a single perceptual continuum in the
psychophysical sense. Scoring is not scaling.

All hedonic scales seem to measure what they are
intended to measure rather effectively, as long as no gross
mistakes are made (Peryam, 1989, p. 23).

Appendix 1: Derivation

of Thurstonian-Scale Values

for the 9-Point Scale

The choice of adjective words for the 9-point hedonic
scale is a good example of how carefully a scale can
be constructed. The long-standing track record of this
tool demonstrates its utility and wide applicability in
consumer testing. However, few sensory practitioners
actually know how the adjectives were found and what
criteria were brought to bear in selecting these descrip-
tors (slightly, moderately, very much, and extremely
like/dislike) from a larger pool of possible words. The
goal of this section is to provide a shorthand descrip-
tion of the criteria and mathematical method used to
select the words for this scale.

One concern was the degree to which the term
had consensual meaning in the population. The most
serious concern was when a candidate word had an
ambiguous or double meaning across the population.
For example, the word “average” suggests an interme-
diate response to some people, but in the original study
by Jones and Thurstone (1955) there were a group of
people who equated it with “like moderately” perhaps
since an average product in those days was one that
people would like. These days, one can think of nega-
tive connotations to the word “average” as in “he was
only an average student.” Other ambiguous or bimodal
terms were “like not so much” and “like not so well.”
Ideally, a term should have low variability in meaning,
i.e., a low standard deviation, no bimodality, and lit-
tle skew. Part of this concern with the normality of the
distribution of psychological reactions to a word was
the fact that the developers used Thurstone’s model

for categorical judgment as a means of measuring the
psychological-scale values for the words. This model
is at its most simple form when the items to be scaled
show normal distributions of equal variance.

Which leads us to the numerical method. Jones
and Thurstone modified a procedure used earlier by
Edwards (1952). A description of the process and
results can be found in the paper “Development of
a scale for measuring soldiers’ food preferences”
by Jones et al. (1955). Fifty-one words and phrases
formed the candidate list based on a pilot study with
900 soldiers chosen to be a representative sample of
enlisted personnel. Each phrase was presented on a
form with a rating scale from –4 to +4 with a check off
format. In other words, each person read each phrase
and assigned in an integer value from –4 to +4 (includ-
ing zero as an option). This method would seem to
presume that these integers were themselves an inter-
val scale of psychological magnitude, an assumption
that to our knowledge has never been questioned.

Of course, the mean scale values could now
be assigned on a simple and direct basis, but the
Thurstonian methods do not use the raw numbers as
the scale, but transform them to use standard devia-
tions as the units of measurement. So the scale needs
to be converted to Z-score values. The exact steps are
as follows:

1. Accumulate frequency counts for all the tested
words across the –4 to + 4 scale. Think of these
categories as little “buckets” into which judgments
have been tossed.

2. Find the marginal proportions each value from –4 to
+4 (summed across all test items). Add up the pro-
portions from lowest to highest to get a cumulative
proportion for each bucket.

3. Convert these proportions to z-scores in order to
re-scale the boundaries for the original −4 to +4
cutoffs. Let us call these the “category z-values”
for each of the “buckets.” The top bucket will
have a value of 100%, so it will have no z-score
(undefined/infinite).

4. Next examine each individual item. Sum its individ-
ual proportions across the categories, from where
it is first used until 100% of the responses are
accumulated.

5. Convert the proportions for the item to Z-scores.
Alternatively, you can plot these proportions on
“cumulative probability paper,” a graphing format
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that marks the ordinate in equal standard deviations
units according to the cumulative normal distribu-
tion. Either of these methods will tend to make
the cumulative S-shaped curve for the item into a
straight line. The X-axis value for each point is the
“category z-value” for that bucket.

6. Fit a line to the data and interpolate the 50% point
on the X-axis (the re-scaled category boundary esti-
mates). These interpolated values for the median for
each item now form the new scale values for the
items.

An example of this interpolation is shown in
Fig. 7.7. Three of the phrases used in the original scal-
ing study of Jones and Thurstone (1955) are pictured,
three that were not actually chosen but for which we
have approximate proportions and z-scores from their
figures. The small vertical arrows on the X-axis show
the scale values for the original categories of −4 to
+3 (+4 has cumulative proportion of 100% and thus
the z-score is infinite). Table 7.1 gives the values and
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Fig. 7.7 An illustration of the method used to establish spacings
and scale values for the 9-point hedonic scale using Thurstonian
theory. Arrows on the X-axis show the scale points for the
z-scores based on the complete distribution of the original –4
to +4 ratings. The Y-axis shows the actual z-scores based on the
proportion of respondents using that category for each specific
term. Re-plotted from data provided in Jones et al. (1955).

proportions for each phrase and the original categories.
The dashed vertical lines dropped from the intersection
at the zero z-score (50% point) show the approximate
mean values interpolated on the X-axis (i.e., about –1.1
for “do not care for it” and about +2.1 for “preferred.”).
Note that “preferred” and “don’t care for it” have a lin-
ear fit and steep slope, suggesting a normal distribution
and low standard deviation. In contrast, “highly unfa-
vorable” has a lower slope and some curvilinearity,
indicative of higher variability, skew, and/or pockets of
disagreement about the connotation of this term.

The actual scale values for the original adjectives
are shown in Table 7.2, as found with a soldier popu-
lation circa 1950 (Jones et al., 1955). You may note
that the words are not equally spaced, and that the
“slightly” values are closer to the neutral point than
some of the other intervals, and the extreme points are
a little farther out. This bears a good deal of similarity
to the intervals found with the LAM scale as shown in
the column where the LAM values are re-scaled to the
same range as the 9-point Thurstonian Values.

Appendix 2: Construction of Labeled

Magnitude Scales

There are two primary methods for constructing
labeled magnitude scales and they are very similar.
Both require magnitude estimates from the participants
to scale the word phrases used on the lines. In one case,
just the word phrases are scaled, and in the second
method, the word phrases are scaled among a list of
common everyday experiences or sensations that most
people are familiar with. The values obtained by the
simple scaling of just the words will depend upon the
words that are chosen, and extremely high examples
(e.g., greatest imaginable liking for any experience)
will tend to compress the values of the interior phrases
(Cardello et al., 2008). Whether this kind of context
effect will occur for the more general method of scal-
ing amongst common experiences is not known. But
the use of a broad frame of reference could be a
stabilizing factor.

Here is an example of the instructions given to sub-
jects in construction of a labeled affective magnitude
scale. Note that for hedonics, which are a bipolar con-
tinuum with a neutral point, it is necessary to collect
a tone or valence (plus or minus) value as well as the
overall “intensity” rating.
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Table 7.1 Examples of scaled phrases used in Fig. 7.7

Original “Preferred” “Do not care for it” “Highly unfavorable”

category Proportion Z-score Proportion Z-score Proportion Z-score Proportion Z-score

4 1.000 (undef.) 0.80 0.84
3 0.999 3.0 0.50 0.00 0.96 1.75
2 0.983 2.1 0.20 −0.84 0.93 1.48
1 0.882 1.2 0.07 −1.48 0.92 1.41
0 0.616 0.3 0.03 −1.88 0.96 1.75 0.90 1.28

−1 0.383 −0.3 0.83 0.95 0.86 1.08
−2 0.185 −0.9 0.55 0.13 0.84 0.99
−3 0.068 −1.5 0.30 −0.52 0.82 0.92
−4 0.008 −2.4 0.14 −1.08 0.46 −0.10

Table 7.2 Actual 9-point
scale phrase values and
comparison to the LAM
values

Scale value
Descriptor (9-point) Interval LAM value LAM rescaled Interval

Like extremely 4.16 74.2 4.20
Like very much 2.91 1.26 56.1 3.18 1.02
Like moderately 1.12 1.79 36.2 2.05 1.13
Like slightly 0.69 0.43 11.2 0.63 1.52
Neither like nor dislike 0.00 0.69 0.0 0.00 0.63
Dislike slightly −0.59 0.59 −10.6 −0.60 0.60
Dislike moderately −1.20 0.61 −31.9 −1.81 1.21
Dislike very much −2.49 1.29 −55.5 −3.14 1.33
Dislike extremely −4.32 1.83 −75.5 −4.28 1.14

Next to each word label a response area appeared
similar to this:

Phrase: Tone: + − 0 How much:
Like extremely __________ _______

Words or phrases are presented in random order.
After reading a word they must decide whether the
word is positive, negative or neutral and place the cor-
responding symbol on the first line. If the hedonic tone
was not a neutral one (zero value), they are instructed
to give a numerical estimate using modulus-free mag-
nitude estimation. The following is a sample of the
instructions taken from Cardello et al. (2008):

After having determined whether the phrase is positive
or negative or neutral and writing the appropriate sym-
bol (+, −, 0) on the first line, you will then assess the
strength or magnitude of the liking or disliking reflected
by the phrase. You will do this by placing a number
on the second blank line (under “How Much”). For the
first phrase that you rate, you can write any number you
want on the line. We suggest you do not use a small
number for this word/phrase. The reason for this is that
subsequent words/phrases may reflect much lower lev-
els of liking or disliking. Aside from this restriction you
can use any numbers you want. For each subsequent

word/phrase your numerical judgment should be made
proportionally and in comparison to the first number. That
is, if you assigned the number 800 to index the strength
of the liking/disliking denoted by the first word/phrase
and the strength of liking/disliking denoted by the second
word/phrase were twice as great, you would assign the
number 1,600. If it were three times as great you would
assign the number 2,400, etc. Similarly, if the second
word/phrase denoted only 1/10 the magnitude of liking
as the first, you would assign it the number 80 and so
forth. If any word/phrase is judged to be “neutral” (zero
(0) on the first line) it should also be given a zero for its
magnitude rating.

In the cased of Cardello et al. (2008), positive and
negative word labels were analyzed separately. Raw
magnitude estimates were equalized for scale range
using the procedure of Lane et al. (1961). All positive
and negative magnitude estimates for a given subject
were multiplied by an individual scaling factor. This
factor was equal to the ratio of the grand geometric
mean (of the absolute value of all nonzero ratings)
across all subjects divided by the geometric mean for
that subject. The geometric mean magnitude estimates
for each phrase were then calculated based on this
range-equated data. These means became the distance
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from the zero point for placement of the phrases along
the scale, usually accompanied by a short cross-hatch
mark at that point.
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Chapter 8

Time–Intensity Methods

Abstract Time–intensity methods represent a special form of intensity scaling that
is either repeated at short intervals or continuous. It offers some advantages over a
single intensity estimate, giving more detailed information on changes in flavor and
texture over time. This chapter reviews the history of these methods, various current
techniques, issues, and approaches to data analysis and provides examples of various
applications.

In general, humans perceived tastes as changing experiences originating in the mouth, which

normally existed for a limited time and then either subsided or transformed into qualitatively

different gustatory perceptions. Taste experiences did not begin at the moment of stimulus arrival in

the mouth, did not suddenly appear at full intensity, were influenced by the pattern of taste

stimulation, and often continued well beyond stimulus removal.

—(Halpern, 1991, p. 95)

Does your chewing gum lose its flavor (on the bedpost overnight)?

—Bloom and Brever, lyrics (recorded by Lonnie Donegan, May 1961, Mills Music, Inc./AA
Music)
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8.1 Introduction

Perception of aroma, taste, flavor, and texture in foods
is a dynamic not a static phenomenon. In other words,
the perceived intensity of the sensory attributes change
from moment to moment. The dynamic nature of food
sensations arises from processes of chewing, breath-
ing, salivation, tongue movements, and swallowing
(Dijksterhuis, 1996). In the texture profile method for
instance, different phases of food breakdown were rec-
ognized early on as evidenced by the separation of
characteristics into first bite, mastication, and residual
phases (Brandt et al., 1963). Wine tasters often discuss
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how a wine “opens in the glass,” recognizing that the
flavor will vary as a function of time after opening the
bottle and exposing the wine to air. It is widely believed
that the consumer acceptability of different intensive
sweeteners depends on the similarity of their time pro-
file to that of sucrose. Intensive sweeteners with too
long a duration in the mouth may be less pleasant
to consumers. Conversely, a chewing gum with long-
lasting flavor or a wine with a “long finish” may be
desirable. These examples demonstrate how the time
profile of a food or beverage can be an important aspect
of its sensory appeal.

The common methods of sensory scaling ask the
panelists to rate the perceived intensity of the sensation
by giving a single (uni-point) rating. This task requires
that the panelists must “time-average” or integrate any
changing sensations or to estimate only the peak inten-
sity in order to provide the single intensity value that is
required. Such a single value may miss some important
information. It is possible, for example, for two prod-
ucts to have the same or similar time-averaged profiles
or descriptive specifications, but differ in the order in
which different flavors occur or when they reach their
peak intensities.

Time–intensity (TI) methods provide panelists with
the opportunity to scale their perceived sensations over
time. When multiple attributes are tracked, the profile
of a complex food flavor or texture may show differ-
ences between products that change across time after a
product is first tasted, smelled, or felt. For most sensa-
tions the perceived intensity increases and eventually
decreases but for some, like perceived toughness of
meat, the sensations may only decrease as a function
of time. For perceived melting, the sensation may only
increase until a completely melted state is reached.

When performing a TI study the sensory special-
ist can obtain a wealth of detailed information such
as the following for each sample: the maximum inten-
sity perceived, the time to maximum intensity, the rate
and shape of the increase in intensity to the max-
imum point, the rate and shape of the decrease in
intensity to half-maximal intensity and to the extinc-
tion point, and the total duration of the sensation.
Some of the common time–intensity parameters are
illustrated in Fig. 8.1. The additional information
derived from time–intensity methods is especially use-
ful when studying sweeteners or products like chewing
gums and hand lotions that have a distinctive time
profile.

INTENSITY

Other Parameters:
DUR, Total duration = Tend – Tstart
AUC, Area under the curve

TIME

Fig. 8.1 Example of a time–intensity curve and common curve
parameters extracted from the record.

The remainder of this chapter will be devoted to
an overview of the history and applications of this
method, as well as recommended procedures and anal-
yses. For the student who wants only the basic informa-
tion, the following sections are key: variations on the
method (Section 8.3), steps and recommended proce-
dures (Section 8.4), data analysis options (Section 8.5),
and conclusions (8.8).

8.2 A Brief History

Holway and Hurvich (1937) published an early report
of tracking taste intensity over time. They had their
subjects trace a curve to represent the sensations from a
drop of either 0.5 or 1.0 M NaCl placed on the anterior
tongue surface over 10 s. They noted several general
effects that were later confirmed as common trends in
other studies. The higher concentration led to a higher
peak intensity, but the peak occurred later, in spite of a
steeper rising slope. Most importantly they noted that
taste intensity was not strictly a function of concentra-
tion: “while the concentration originally placed on the
tongue is ‘fixed,’ the intensity varies in a definite man-
ner from moment to moment. Saline intensity depends
on time as well as concentration.” A review of studies
of temporal factors in taste is found in Halpern (1991).
A review of TI studies of the 1980s and early 1990s
can be found in Cliff and Heymann (1993b).

Sjostrom (1954) and Jellinek (1964) also made early
attempts to quantify the temporal response to perceived
sensory intensities. These authors asked their panelists
to indicate their perceived bitterness of beer at 1 s
intervals on a ballot, using a clock to indicate time.
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They then constructed TI curves by plotting the x–y

coordinates (time on the x-axis and perceived inten-
sity on the y-axis) on graph paper. Once panelists had
some experience with the method it was possible to
ask them simultaneously to rate the perceived intensi-
ties of two different attributes at 1 s intervals. Neilson
(1957) in an attempt to make the production of the
TI curves easier, asked panelists to indicate perceived
bitterness directly on graph paper at 2 s timed inter-
vals. The clock could be distracting to the panelists
and thus Meiselman (1968), studying taste adaptation
and McNulty and Moskowitz (1974), evaluating oil-
in-water emulsions, improved the TI methodology by
eliminating the clock. These authors used audible cues
to tell the panelists when to enter perceived intensities
on a ballot, placing the timekeeping demands on the
experimenter rather than the participant.

Larson-Powers and Pangborn (1978), in another
attempt to eliminate the distractions of the clock or
audible cues, employed a moving strip-chart recorder
equipped with a foot pedal to start and stop the move-
ment of the chart. Panelists recorded their responses
to the perceived sweetness in beverages and gelatins
sweetened with sucrose or synthetic sweeteners, by
moving a pen along the cutter bar of the strip-chart
recorder. The cutter bar was labeled with an unstruc-
tured line scale, from none to extreme. A cardboard
cover was placed over the moving chart paper to pre-
vent the panelists from watching the evolving curves
and thus preventing them from using any visual cues to
bias their responses. A similar setup was independently
developed and used at the General Foods Technical
Center in 1977 to track sweetness intensity (Lawless
and Skinner, 1979). In this apparatus, the actual pen
carriage of the chart recorder was grasped by the sub-
ject, eliminating the need for them to position a pen;
also the moving chart was obscured by a line scale with
a pointer attached to the pen carriage. In yet another
laboratory at about the same time, Birch and Munton
(1981) developed the “SMURF” version of TI scal-
ing (short for “Sensory Measuring Unit for Recording
Flux”). In the SMURF apparatus, the subject turned a
knob graded from 1 to 10, and this potentiometer fed
a variable signal to a strip-chart recorder out of sight
of the panelist. The use of strip-chart recorders pro-
vided the first continuous TI data-collection methods
and freed the panelists from any distractions caused
by a clock or auditory signal. However, the meth-
ods required a fair degree of mental and physical

coordination by the participants. For example, in the
Larson-Powers setup, the strip-chart recorder required
the panelists to use a foot pedal to run the chart
recorder, to place the sample in the mouth, and to move
the pen to indicate the perceived intensity. Not all pan-
elists were suitably coordinated and some could not do
the evaluation. Although the strip-chart recorder made
continuous evaluation of perceived intensities possible,
the TI curves had to be digitized manually, which was
extremely time consuming.

The opportunity to use computers to time sample
an analog voltage signal quite naturally led to online
data collection to escape the problem of manual mea-
surement of TI curves. To the best of our knowledge,
the first computerized system was developed at the
US Army Natick Food Laboratories in 1979 to mea-
sure bitter taste adaptation. It employed an electric
sensor in the spout just above the subject’s tongue in
order to determine the actual onset of stimulus arrival.
Subthreshold amounts of NaCl were added to the stim-
ulus and thus created a conductance change as the
flow changed from the preliminary water rinse to the
stimulus interface in the tube. A special circuit was
designed to detect the conductance change and to con-
nect the response knob to the visual line scale. Like the
SMURF apparatus developed by Birch and Munton,
the subject turned a knob controlling a variable resis-
tor. The output of this potentiometer moved a pointer
on a line scale for visual feedback while a parallel
analog signal was sent to an analog-to-digital con-
verter and then to the computer. The programming was
done using FORTRAN subroutines on a popular lab
computer of that era. The entire system is shown in
Fig. 8.2.

The appearance of desktop computers led to an
explosion in the use of TI methodology in the 1980s
and 1990s. A number of thesis research projects from
U.C. Davis served as useful demonstrations of the
method (Cliff, 1987; Dacanay, 1990; Rine, 1987) and
the method was championed by Pangborn and cowork-
ers (e.g., Lee and Pangborn, 1986). Several scientists
(Barylko-Pikielna et al., 1990; Cliff, 1987; Guinard
et al., 1985; Janusz et al., 1991; Lawless, 1980; Lee,
1985; Rine, 1987; Yoshida, 1986) developed com-
puterized TI systems using a variety of hardware
and software products. Computerized TI systems are
now commercially available as part of data-collection
software ensembles, greatly enhancing the ease and
availability of TI data collection and data processing.
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Fig. 8.2 An early computerized system for time–intensity scal-
ing used for tracking bitterness adaptation in a flow system for
stimulating the anterior tongue. Heavy lines indicate the flow
of stimulus solution, solid lines the flow of information, and
dashed lines the experimenter-driven process control. Stimulus
arrival at the tongue was monitored by conductivity sensors fitted
into the glass tube just above the subject’s tongue. The subjects’

responses change on a line scale while the experimenter could
view the conductivity and response voltage outputs on the com-
puter’s display screen, which simultaneously were output to a
data file. The system was programmed in FORTRAN subrou-
tines controlling the clock sampling rate and analog-to-digital
conversion routine. From Lawless and Clark (1992), reprinted
with permission.

However, despite the availability of computerized sys-
tems, some research was still conducted using the
simple time cueing at discrete intervals (e.g., Lee
and Lawless, 1991; Pionnier et al., 2004), and the
semi-manual strip-chart recorder method (Ott et al.,
1991; Robichaud and Noble, 1990). A discussion of
some common applications of TI methods is given in
Section 8.6.

8.3 Variations on the Method

8.3.1 Discrete or Discontinuous Sampling

The sensory scientist has several options for collecting
time-dependent sensory data. The methods for time-
related scaling can be divided into four groups. The

oldest approach is simply to ask the panelists to rate the
intensity of sensation during different phases of con-
suming a food. This is particularly applicable to texture
which may be evaluated in phases such as initial bite,
first chew, mastication, and residual. An example of
time division during the texture evaluation of a baked
product is shown in Table 8.1.

When using a descriptive panel, it may be useful
to have residual flavor or mouthfeel sensations rated
at a few small intervals, e.g., every 30 s for 2 min, or
immediately after tasting and then again after expecto-
ration. For an example of this approach used with hot
pepper “burn” see Stevens and Lawless (1986). Each
measurement is then treated like a separate descriptive
attribute and analyzed as a separate variable, with little
or no attempt to reconstruct a time-connected record
like the TI curve shown in Fig. 8.1. For researchers
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Table 8.1 Texture attributes at different phases of descriptive analysis

Phase Attributes Word anchors

Surface Roughness Smooth–rough
Particles None–many
Dryness Oily–dry

First bite Fracturability Crumbly–brittle
Hardness Soft–hard
Particle size Small–large

First chew Denseness Airy–dense
Uniformity of chew Even–uneven

Chew down Moisture absorption None–much
Cohesiveness of mass Loose–cohesive
Toothpacking None–much
Grittiness None–much

Residual Oiliness Dry–oily
Particles None–much
Chalky Not chalky–very chalky

interested in some simple aspect like “strength of bitter
aftertaste” this method may suffice.

Another related approach is to ask for repeated rat-
ings of a single or just a few attributes at repeated
smaller time intervals, usually cued by the panel leader
or experimenter. These ratings are then connected and
graphed on time axis. This is a simple procedure that
can be used to track changes in the intensity of a flavor
or texture attribute and requires no special equipment
other than a stopwatch or other timing device. The
panel must be trained to rate their sensations upon
the time cue and to move rapidly through the list of
attributes. The cue may be given verbally or on a
computer screen. It is not known how many attributes
can be rated in this way, but with faster time cueing
and shorter intervals, obviously fewer attributes may
be rated. This method also requires some faith in the
assumption that the attributes are being rated close to
the actual time when the cue is given. The accuracy
with which panelists can do this is unknown, but given
that there is a reaction time delay in any perceptual
judgment, there must be some inherent error or delay-
related variance built into the procedure. An example
of the repeated, discrete time interval method with
verbal cueing and multiple attributes can be found in
studies of sweetener mixtures (e.g., Ayya and Lawless,
1992) and astringency (Lee and Lawless, 1991). The
time record is treated as a connected series and time is
analyzed as one factor (i.e., one independent variable)
in the statistical analysis.

8.3.2 “Continuous” Tracking

A third and widely used method for TI scaling is con-
tinuous tracking of flavor or texture using an analog
response device such as a lever, a rotating knob, a joy-
stick, or computer mouse. The response device may
change a variable resistance and the resulting current
is fed through an analog-to-digital conversion. The sig-
nal is time sampled at whatever rate is programmed
into the recording device. As noted above, continuous
records may also be produced by using a chart recorder
but digitizing the records may be quite laborious. The
advantage of continuous tracking is the detail in the fla-
vor or texture experience that is captured in the record
(Lee, 1989; Lee and Pangborn, 1986). It is difficult to
capture the rising phase of a flavor with a verbal due
or discrete point methods, as the onset of many tastes
and odors is quite rapid. The continuous tracking meth-
ods are very widely used and are discussed further in
Section 8.4. Although the records are continuous, the
jagged nature of these records indicates that panelists
are not moving the response device in a continuous
manner.

Two-dimensional response tasks have been devel-
oped so that two attributes can be tracked simulta-
neously (Duizer et al., 1995). In an experiment on
sweetness and mint flavor of chewing gum, it was
possible for panelists to track both flavor perceptions
simultaneously (Duizer et al., 1996). Panelists were
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trained to move a mouse diagonally and a visual scale
included pointers on both horizontal and vertical scales
to represent the intensity of the individual attributes.
With a slowly changing product like chewing gum,
with a sampling time that is not too frequent (every
9–15 s in this case), the technique would seem to be
within the capabilities of human observers to either
rapidly shift their attention or to respond to the overall
pattern of the combined flavors.

However, as currently used, most TI tracking meth-
ods must repeat the evaluation in order to track addi-
tional attributes. Ideally, this could lead to a composite
profile of all the dynamic flavor and texture attributes
in a product and how they changed across time. Such
an approach was proposed by DeRovira (1996), who
showed how the descriptive analysis spider-web plot
of multiple attributes could be extended into the time
dimension to produce a set of TI curves and thus to
characterize an entire profile.

8.3.3 Temporal Dominance Techniques

A fourth method for gathering time-dependent changes
has been to limit the reported profile to a subset of
key sensations, called the Temporal Dominance of
Sensations (TDS) method (Pineau et al., 2009). This
method is still evolving, and descriptions of the pro-
cedure and analysis vary somewhat. The basic idea is
to present a set of predetermined attributes together on
the computer screen for the panelist’s choice and scales
for rating the intensity of each. The important choice
is the selection of the dominant quality and thus the
method is related to Halpern’s technique for taste qual-
ity tracking (Halpern, 1991). Panelists are instructed
to attend to and choose only the “dominant” sensation
at any one time after tasting the sample and clicking
on a start button. “Dominant” has been described as
the “most striking perception” (Pineau et al., 2009),
“the most intense sensation” (Labbe et al., 2009), “the
sensation catching the attention,” or “new sensation
popping up” at a given time (and not necessarily the
most intense) (Pineau et al., 2009) and by no additional
definition (Le Reverend et al., 2008). To the extent
that one is scoring attributes in order of appearance,
the method has some precedent in the original Flavor
Profile method.

After sipping or swallowing the sample, the pan-
elist is instructed to click on the start button and
immediately choose which attribute on the screen is

the dominant one and to rate its intensity, usually on a
10 point or 10 cm line scale. The computer continues
to record that intensity until something changes, and
a new dominant attribute is selected. In one version of
this method, multiple changing attributes can be scored
at various time intervals (Le Reverend et al., 2008)
“until all sensations have been scored as chronologi-
cally perceived.” Other publications seem to imply that
only one dominant attribute is recorded at any given
time (Pineau et al., 2009).

This technique produces a detailed time-by-
panelist-by-attribute-by-intensity record. Curves for
each attribute can be constructed then by summing
across panelists and smoothing the curves. In two other
procedures, the data are simplified. Labbe et al. (2009)
describe the derivation of an overall TDS score by
averaging the intensity multiplied by the duration of
each choice, divided by the sum of the durations (i.e.,
weighted). This produces an integrated value similar to
the area-under-the-curve TI scores or those recorded
by the SMURF method (intensity multiplied by per-
sistence) in Birch’s group (Birch and Munton, 1981).
Note that temporal information is used but lost in the
scores, i.e., no curves can be constructed from these
derived scores. These overall scores were found to cor-
relate well with traditional profiling scores in a series
of flavored gels (Labbe et al., 2009). A second derived
statistical measure is the proportion of panelists report-
ing a given attribute as dominant at any given time
(Pineau et al., 2009). This ignores the intensity infor-
mation but produces a simple percentage measure that
can be plotted over time to produce a (smoothed)
curve for each attribute. “Significance” of an attribute’s
proportion versus chance is evaluated using a simple
one-tailed binomial statistic against a baseline propor-
tion of 1/k where k is the number of attributes. The
required significance level can be plotted as a hori-
zontal line on the plot of dominance curves to show
where attributes are significantly “dominant.” Any two
products can be compared using the simple binomial
test for the difference of two proportions (Pineau et al.,
2009). The other information that is available from this
procedure is the computation of a difference score for
pairs of products, which when plotted over time pro-
vides potentially useful information on differences in
the dominance of each attribute and how the pattern
changes.

The purported advantages of this method are that
(1) it is more time and cost efficient than the
one-at-a-time TI tracking methods because multiple
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attributes are rated in each trial, (2) that it is simple and
easy to do, requiring little or no training, and (3) that
it provides a picture of enhanced differences relative to
the TI records. Because panelists are forced to respond
to only one attribute at a time, differences in the tem-
poral profile may be accentuated. However, at the time
of this publication, no standard procedure seemed to be
agreed upon. The technique requires specialized soft-
ware to collect the information, but at least one of
the major sensory software systems has implemented a
TDS option. Attributes are assumed to have a score of
zero before they become dominant, and some attributes
may never be rated. This would seem to necessarily
lead to an incomplete record. Different panelists are
contributing at different times to different attributes,
so statistical methods for comparison of differences
between products using the raw data set are difficult.
However, products can be statistically compared using
the simplified summary scores (summed intensity by
duration measures, but losing time information) or
by comparison of the proportion of responders (los-
ing intensity information) as in Labbe et al. (2009).
Qualitative comparisons can be made from inspect-
ing the curves, such as “this product is initially sweet,
then becoming more astringent, compared to product X
which is initially sour, then fruity.”

Is information provided by TDS and by traditional
TI tracking methods different? One study found a
strong resemblance of the constructed time curves for
both methods, providing virtually redundant informa-
tion for some attributes (Le Reverend et al., 2008). In
another study, correlations with TI parameters were
high for intensity maxima versus dominance propor-
tion maxima, as might be expected since a higher num-
ber of persons finding an attribute dominant should be
related to the mean intensity in TI. Correlations with
other time-dependent parameters such as time to Imax

(Tmax) and duration measures were low, due to the dif-
ferent information collected in TDS and the limited
attention to one attribute at a time (Pineau et al., 2009).

8.4 Recommended Procedures

8.4.1 Steps in Conducting a

Time–intensity Study

The steps in conducting a time–intensity study are
similar to those in setting up a descriptive analy-
sis procedure. They are listed in Table 8.2. The first

Table 8.2 Steps in conducting a time–intensity study

1. Determine project objectives: Is TI the right method?
2. Determine critical attributes to be rated.
3. Establish products to be used with clients/researchers.
4. Choose system and/or TI method for data collection.

a. What is the response task?
b. What visual feedback is provided to the panelists?

5. Establish statistical analysis and experimental design.
a. What parameters are to be compared?
b. Are multivariate comparisons needed?

6. Recruit panelists.
7. Conduct training sessions.
8. Check panelist performance.
9. Conduct study.

10. Analyze data and report.

important question is to establish whether TI methods
are appropriate to the experimental research objec-
tive. Is this a product with just one or a few critical
attributes that are likely to vary in some important way
in their time course? Is this difference likely to impact
consumer acceptance of the product? What are these
critical attributes? Next, the product test set should be
determined with the research team, and this will influ-
ence the experimental design. The TI method itself
must be chosen, e.g., discrete point, continuous track-
ing, or TDS. The sensory specialist should by this time
have an idea of what the data set will look like and what
parameters can be extracted from the TI records for
statistical comparisons such as intensity maxima, time
to maxima, areas under the curve, and total duration.
Many of the TI curve parameters are often correlated,
so there is little need to analyze more than about ten
parameters. Practice is almost always essential. You
cannot assume that a person sitting down in a test
booth will know what to do with the TI system and feel
comfortable with the mouse or other response device.
A protocol for training TI panelists was outlined by
Peyvieux and Dijksterhuis (2001) and this protocol or
similar versions have been widely adopted. It is also
wise that some kind of panel checking be done to make
sure the panelists are giving reliable data (see Bloom
et al., 1995; Peyvieux and Dijksterhuis, 2001) and to
examine the reasonableness of their data records. At
this time the researchers and statistical staff should
also decide how to handle missing data or records
that may have artifacts or be incomplete. As in any
sensory study, extensive planning may save a lot of
headaches and problems, and this is especially true for
TI methods.
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8.4.2 Procedures

If only a few attributes are going to be evaluated,
the continuous tracking methods are appropriate and
will provide a lot of information. This usually requires
the use of computer-assisted data collection. Many, if
not all, of the commercial software packages for sen-
sory evaluation data collection have TI modules. The
start and stop commands, sampling rate, and inter-trial
intervals can usually be specified. The mouse move-
ment will generally produce some visual feedback
such as the motion of a cursor or line indicator along a
simple line scale. The display often looks like a vertical
or horizontal thermometer with the cursor position
clearly indicated by bar or line that rises and falls. The
computer record can be treated as raw data for aver-
aging across panelists. However, statistical analysis by
simple averaging raises a number of issues (discussed
in Section 8.5). A simple approach is to pull charac-
teristic curve parameters off each record for purposes
of statistical comparisons such as intensity maximum
(Imax), time to maximum (Tmax), and area under the
curve (AUC). These are sometimes referred to as “scaf-
folding parameters” as they represent the fundamental
structure of the time records. Statistical comparison of
these parameters can provide a clear understanding of
how different products are perceived with regard to the
onset of sensations, time course of rising and falling
sensations, total duration, and total sensory impact
of that flavor or textural aspect of the products. If a
computer-assisted software package is not available
or cannot be programmed, the research can always
choose to use the cued/discontinuous method (e.g.,
with a stopwatch and verbal commands). This may
be suitable for products in which multiple attributes
must be rated in order to get the full picture. However,
given the widespread availability of commercial sen-
sory data-collection systems in major food and con-
sumer product companies, it is likely that a sensory
professional will have access to a continuous tracking
option.

The starting position of the cursor on the visible
scale or computer screen should be considered care-
fully. For most intensity ratings it makes sense to start
at the lower end, but for hedonics (like/dislike) the
cursor should begin at the neutral point. For meat
tenderness or product melting, the track is usually uni-
directional, so the cursor should start at “not tender” or

“tough” for meat and “not melted” for a product that
melts. If the cursor is started at the wrong end of a uni-
directional tracking situation, a falsely bi-directional
record may be obtained due to the initial movement.

An outline of panel training for TI studies was illus-
trated in a case study by Peyvieux and Dijksterhuis
(2001) and the sensory specialist should consider using
this or a similar method to insure good performance
of the panelists. These authors had panelists evaluate
flavor and texture components of a complex meat prod-
uct. The prospective panelists were first introduced
to the TI method, and then given practice with basic
taste solutions over several sessions. The basic tastes
were considered simpler than the complex product and
more suitable for initial practice. Panelist consistency
was checked and a panelist was considered reliable
if they could produce two out of three TI records on
the same taste stimulus that did not differ more than
40% of the time. A vertical line scale was used and
an important specification was when to move the cur-
sor back to zero (when there was no flavor or when
the sample was swallowed for the texture attribute of
juiciness). Problems were noted with (1) nontraditional
curve shapes such as having no return to zero, (2) poor
replication by some panelists, (3) unusable curves due
to lack of a landmark such as no Imax. The authors also
conducted a traditional profiling (i.e., descriptive anal-
ysis) study before the TI evaluations to make sure the
attributes were correctly chosen and understood by the
panelists. If TI panelists are already chosen from an
existing descriptive panel, this step may not be needed.
The authors conducted several statistical analyses to
check for consistent use of the attributes, to look for
oddities in curve shapes by some panelists, and to
examine individual replicates. Improvements in con-
sistency and evidence of learning and practice were
noted.

8.4.3 Recommended Analysis

For purposes of comparing products, the simplest
approach is to extract the curve parameters such as
Imax, Tmax, AUC, and total duration from each record.
Some sensory software systems will generate these
measures automatically. Then these curve parameters
can be treated like any data points in any sensory
evaluation and compared statistically. For three or
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more products, analysis would be by ANOVA and
then planned comparisons of means (see Appendix C).
Means and significance of differences can be reported
in graphs or tables for each curve attribute and product.
If a time by intensity curve is desired, the curves can
be averaged in the time direction by choosing points
at specific time intervals. This averaging method is not
without its pitfalls; however, a number of alternative
methods are given in the next section. An example of
how to produce a simplified averaged curve is given
below in the case study of the trapezoidal method
(Lallemand et al., 1999).

8.5 Data Analysis Options

8.5.1 General Approaches

Two common statistical approaches have been taken
to perform hypothesis testing on TI data. Perhaps the
most obvious test is simply to treat the raw data at
whatever time intervals were sampled as the input
data to analyses of variance (ANOVA) (e.g., Lee and
Lawless, 1991). This approach results in a very large
ANOVA with at least three factors—time, panelists,
and the treatments of interest. Time and panelists
effects may not be of primary interest but will always
show large F-ratios due to the fact that people dif-
fer and the sensations change over time. This is not
news. Another common pattern is a time-by-treatment
interaction since all curves will tend to converge near
baseline at later time intervals. This is also to be

expected. Subtle patterns in the data may in fact be
captured in other interaction effects or other causes
of time-by-treatment interaction. However, it may be
difficult to tell whether the interaction is due to the
eventual convergence at baseline or to some more
interesting effects such as a faster onset time or decay
curves that cross over.

As noted above, researchers often select parameters
of interest from the TI curve for analysis and compar-
isons. Landmarks on the curve included the perceived
maximum intensity of the sensation, the time needed to
reach maximum intensity and duration or time to return
to baseline intensity. With computer-assisted data col-
lection many more parameters are easily obtained and
parameters such as the area under the curve, the area
under the curve before and after perceived maximum
intensity, as well as rate from onset to maximum and
rate of decay from maximum to endpoint. Additional
parameters include plateau time at perceived maximum
intensity, lag time prior to start of responses, and the
time needed to reach half of the perceived maximum
intensity. A list of parameters is shown in Table 8.3.

Thus a second common approach is to extract the
curve parameters on each individual record and then
perform the ANOVA or other statistical comparison on
each of the aspects of the TI curve, as recommended
above. For an example, see Gwartney and Heymann
(1995) in a study of the temporal perception of men-
thol. One advantage of this method is that it captures
some (but probably not all) of the individual vari-
ation in the pattern of the time records. Individual
judges’ patterns are unique and reproducible within
individuals (Dijksterhuis, 1993; McGowan and Lee,

Table 8.3 Parameters extracted from time–intensity curves

Parameter Other names Definition

Peak intensity Imax, Ipeak Height of highest point on TI record
Total duration DUR, Dtotal Time from onset to return to baseline
Area under the curve AUC, Atotal Self-explanatory
Plateau Dpeak Time difference between reaching maximum and beginning descent
Area under plateau Apeak Self-explanatory
Area under descending phase Ptotal Area bounded by onset of decline and reaching baseline
Rising slope Ri Rate of increase (linear fit) or slope of line from onset to peak intensity
Declining slope Rf Rate of decrease (linear fit) or slope of line from initial declining point to baseline.
Extinction Time at which curve terminates at baseline
Time to peak Tmax, Tpeak Time to reach peak intensity
Time to half peak Half-life Time to reach half maximum in decay portion

Modified from Lundahl (1992)
Other shape parameters are given in Lundahl (1992), based on a half circle of equivalent area under the curve and dividing the half
circle into rising and falling phase segments
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2006), an effect that is sometimes described as an indi-
vidual “signature.” Examples of individual signatures
are shown in Fig. 8.3. The causes of these individual
patterns are unknown but could be attributed to dif-
ferences in anatomy, differences in physiology such as
salivary factors (Fischer et al., 1994), different types of
oral manipulation or chewing efficiency (Brown et al.,
1994; Zimoch and Gullet, 1997), and individual habits
of scaling. Some of this information may be lost when
analyzing only the extracted parameters.
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Fig. 8.3 Examples of time–intensity records showing character-
istic signatures or shapes. Judge 1 shows a record with multiple
plateaus, a common occurrence. Judge 2 shows a smooth and
continuous curve. Judge 3 shows a steep rise and fall.

A third approach is to fit some mathematical model
or set of equations to each individual record and then
use the constants from the model as the data for com-
parisons of different products (Eilers and Dijksterhuis,
2004; Garrido et al., 2001; Ledauphin et al., 2005,
2006; Wendin et al., 2003). Given the increasing activ-
ity and ingenuity in the area of sensometrics, it is likely
that such models will continue to be developed. The
sensory scientist needs to ask how useful they are in the
product testing arena and whether the model fitting is
useful in differentiating products. Various approaches
to modeling and mathematical description of TI curves
are discussed in the next section.

8.5.2 Methods to Construct or Describe

Average Curves

The analysis of TI records has produced a sustained
interest and response from sensometricians, who have

proposed a number of schemes for curve fitting and
summarization of individual- and group-averaged TI
records. Curve-fitting techniques include fitting by
spline methods (Ledauphin et al., 2005, 2006) and
various exponential logistic or polynomial equations
(Eilers and Dijksterhuis, 2004; Garrido et al., 2001;
Wendin et al., 2003). An important question for anyone
attempting to model TI behavior by a single equation
or set of equations is how well it can take into account
the individual “signatures” of panelists (McGowan and
Lee, 2006). What appears to be a good approximation
to a smooth TI record from one panelist may not be a
very good model for the panelist who seems to show a
step function with multiple plateaus. It is unknown at
this time how many of these schemes have found use
in industry or whether they remain a kind of academic
exercise. Their penetration into the mainstream of sen-
sory practice may depend on whether they are incor-
porated into one of the commercial sensory evaluation
software data-collection systems.

In the simplest form of averaging, the height of each
curve at specific time intervals is used as the raw data.
Summary curves are calculated by averaging the inten-
sity values at given times and connecting the mean
values. This has the advantage of simplicity in analysis
and keeps a fixed-time base as part of the information.
However, with this method there may be no detection
of an atypical response. As noted above, judges will
have characteristic curve shapes that form a consistent
style or signature in their response, but that differ in
shape from other judges. Some rise and fall sharply.
Others form smooth rounded curves while others may
show a plateau. Simple averaging may lose some infor-
mation about these individual trends, especially from
outliers or a minority pattern. Furthermore, the average
of two different curves may produce a curve shape that
does not correspond to either of the input curves. An
extreme (and hypothetical) example of this is shown in
Fig. 8.4, where the two different peak intensity times
lead to an average curve with two maxima (Lallemand
et al., 1999). Such a double-peaked curve is not present
in the contributing original data.

To avoid these problems, other averaging schemes
have been proposed. These approaches may better
account for the different curve shapes exhibited by
different judges. To avoid irregular curve shapes, it
may be necessary or desirable to group judges with
similar responses before averaging (McGowan and
Lee, 2006). Judges can be subgrouped by “response
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Fig. 8.4 Two curves with different peak times, if averaged, can
lead to a double-peaked curve that resembles neither original
data record.

style” either by simple visual inspection of the curves
or by a clustering analysis or other statistical meth-
ods (van Buuren, 1992; Zimoch and Gullet, 1997).
Then these subgroups can be analyzed separately. The
analysis may proceed using the simple fixed-time aver-
aging of curve heights or one of the other methods
described next.

An alternative approach is to average in both the
intensity and time directions, by setting each individ-
ual’s maximum of the mean time to maximum across
all curves, and then finding mean times to fixed per-
centages of maximum in the rising and falling phases
of each curve. This procedure was originally published
by Overbosch et al. (1986) and subsequent modifica-
tions were proposed by Liu and MacFie (1990). The
steps in the procedure are shown in Fig. 8.5. Briefly, the
method proceeds as follows: In the first step, the geo-
metric mean value for the intensity maximum is found.
Individual curves are multiplicatively scaled to have
this Imax value. In the second step, the geometric mean
time to Imax is calculated. In the next steps, geometric
mean times are calculated for fixed percentage “slices”
of each curve, i.e., at fixed percentages of Imax. For
example, the rising and falling phases are “sliced” at
95% of Imax and 90% of Imax and the geometric mean
time values to reach these heights are found.

This procedure avoids the kind of double-peaked
curve that can arise from simple averaging of two dis-
tinctly different curve shapes as shown in Fig. 8.4.
The method results in several desirable properties that
do not necessarily occur with simple averaging at
fixed times. First, the Imax value from the mean curve
is the geometric mean of the Imax of the individual
curves. Second, the Tmax value from the mean curve
is the geometric mean of the Tmax of the individual

curves. Third, the endpoint is the geometric mean of
all endpoint times. Fourth, all judges contribute to all
segments of the curve. With simple averaging at fixed
times, the tail of the curve may have many judges
returned to zero and thus the mean is some small
value that is a poor representation of the data at those
points. In statistical terms, the distribution of responses
at these later time intervals is positively skewed and
left-censored (bound by zero). One approach to this
problem is to use the simple median as the measure
of central tendency (e.g., Lawless and Skinner, 1979).
In this case the summary curve goes to zero when over
half the judges go to zero. A second approach is to use
statistical techniques designed for estimating measures
of central tendency and standard deviations from left-
censored positively skewed data (Owen and DeRouen,
1980).

Overbosch’s method works well if all individual
curves are smoothly rising and falling with no plateaus
or multiple peaks and valleys, and all data begin and
end at zero. In practice, the data are not so regular.
Some judges may begin to fall after the first maxi-
mum and then rise again to a second peak. Due to
various common errors, the data may not start and
end at zero, for example, the record may be truncated
within the allowable time of sampling. To accommo-
date these problems, Liu and MacFie (1990) developed
a modification of the above procedure. In their proce-
dure, Imax and four “time landmarks” were averaged,
namely starting time, time to maximum, time at which
the curve starts to descend from Imax and ending time.
The ascending and descending phases of each curve
were then divided into about 20 time interval slices. At
each time interval, the mean I value is calculated. This
method then allows for curves with multiple rising and
falling phases and a plateau of maximum intensity that
is commonly seen in some judges’ records.

8.5.3 Case Study: Simple Geometric

Description

A simple and elegant method for comparing curves and
extracting parameters by a geometric approximation
was described by Lallemand et al. (1999). The authors
used the method with a trained texture panel to evaluate
different ice cream formulations. The labor-intensive
nature of TI studies was illustrated in the fact that
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Fig. 8.5 Steps in the data analysis procedure recommended by
Overbosch et al. (1986). (a) Two hypothetical time–intensity
records from two panelists showing different intensity maxima at
different times. (b) The geometric mean value for the intensity
maximum is found. Individual curves may then by multiplica-
tively scaled to have this Imax value. (c) The two Tmax values.
(d) The geometric mean time to maximum (Tmax) is calculated.

(e) Geometric mean times are calculated for fixed percentage
“slices” of each curve, i.e., at fixed percentages of Imax. The
rising phase is “sliced” at 95% of Imax and the time values deter-
mined. A similar value will be determined at 95% of maximum
for the falling phase. (f) The geometric mean times at each per-
cent of maximum are plotted to generate the composite curve.

12 products were evaluated on 8 different attributes
in triplicate sessions, requiring about 300 TI curves
from each panelist! Texture panelists were given over
20 sessions of training, although only a few of the
final sessions were specifically devoted to practice

with the TI procedure. Obviously, this kind of exten-
sive research program requires a significant time and
resource commitment.

Data were collected using a computer-assisted rat-
ing program, where mouse movement was linked to
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the position of a cursor on a 10 cm 10-point scale. The
authors noted a number of issues with the data records
due to “mouse artifacts” or other problems. These
included sudden unintended movement of the mouse
leading to false peaks or ratings after the end of the sen-
sation, mouse blockage leading to unusable records,
and occasional inaccurate positioning by panelists
causing data that did not reflect their actual percep-
tions. Such ergonomic difficulties are not uncommon
in TI studies although they are rarely reported or dis-
cussed. Even with this highly trained panel, from 1 to
3% of the records needed to be discarded or manu-
ally corrected due to artifacts or inaccuracies. Sensory
professionals should not assume that just because they
have a computer-assisted TI system, the human fac-
tors in mouse and machine interactions will always
work smoothly and as planned. Examples of response
artifacts are shown in Fig. 8.6.
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Fig. 8.6 Response artifacts in TI records. The solid line shows
some perhaps unintended mouse movement (muscle spasm?)
near the peak intensity. The dashed line shows a bump in the
mouse after sensation ceased and returned to zero. The dotted

line illustrates an issue in determining at what point the intensity
plateau has ended. The short segment between T1 and T2 may
have simply been an adjustment of the mouse after the sudden
rise, when the panelist felt they overshot the mark. The actual
end of the plateau might more reasonably be considered to occur
at T3. (see Lallemand et al. 1999).

Lallemand and coworkers noted that TI curves often
took a shape in which the sensation rose to a plateau
near peak intensity for a period during which intensity
ratings changed very little and then fell to the baseline.
They reasoned that a simple geometric approximation
by a trapezoid shape might suffice for extracting curve
parameters and finding the area under the curve (not
unlike the trapezoidal approximation method used for
integration in calculus). In principle, four points could

be defined that would describe the curve: the onset
time, the time at the intensity maximum or beginning
of the plateau, the time at which the plateau ended and
the decreasing phase began, and the time at which sen-
sation stopped. These landmarks are those originally
proposed by Lui and MacFie (1990). In practice, these
points turned out to be more difficult to estimate than
expected, so some compromises were made. For exam-
ple, some records would show a gradually decreasing
record during the “plateau” and before the segment
with a more rapidly falling slope was evident. How
much of a decrease would justify the falling phase
or conversely, how little of a decrease would be con-
sidered still part of the plateau (see Fig. 8.6)? Also,
what should one do if the panelist did not return to
zero sensation or unintentionally bumped the mouse
after reaching zero? In order to solve these issues, the
four points were chosen at somewhat interior sections
of the curve, namely the times at 5% of the intensity
maximum for the onset and endpoint of the trapezoid,
and the times at 90% of the intensity maximum for the
beginning and end of the plateau.

This approximation worked reasonably well, and
its application to a hypothetical record is shown in
Fig. 8.7. Given the almost 3,000 TI curves in this one
study, the trapezoid points were not mapped by hand
or by eye, but a special program written to extract the
points. However, for smaller experiments it should be
quite feasible to do this kind of analysis “by hand” on
any collection of graphed records. The establishment
of the four trapezoid vertices now allows extraction of
the six basic TI curve parameters for statistical analy-
sis (5 and 90% of maximum intensity points, the four
times at those points), as well as the intensity maxi-
mum from the original record, and derived (secondary)
parameters such as rising and falling slopes and the
total area under the curve. Note that the total area
becomes simply the sum of the two triangles and the
rectangle described by the plateau. These are shown in
the lower section of Fig. 8.7. A composite trapezoid
can be drawn from the averaged points.

The utility and validity of the method was illus-
trated in one sample composite record, showing the
fruity flavor intensity from two ice creams differing
in fat content. Consistent with what might be expected
from the principles of flavor release, the higher fat sam-
ple had a slower and more delayed rise to the peak
(plateau) but a longer duration. This would be pre-
dicted if the higher fat level was better able to sequester
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Fig. 8.7 The trapezoidal method of Lallemand et al. (1999)
for assessing curve parameters on TI records. The upper panel

shows the basic scheme in which four points are found when the
initial 5% of the intensity maximum (Imax) occurs, when 90% of
Imax is first reached on the ascending segment, when the plateau
is finished at 90% of Imax on the descending phase and the end-
point approximation at 5% of Imax on the descending phase. The
lower panel shows the derived parameters, namely Ri, Ai, and Di

for the rate (slope), area, and duration of the initial rising phase;
Am and Dm for the area and duration of the middle plateau sec-
tion; and Rd, Ad, and Dd for the rate (slope), area, and duration
of the falling phase. A total duration can be found from the sum
of Di, Dm, and Dd. The total area is given by the sum of the A

parameters or by the formula for the area of a trapezoid: Total
area = (I90–I5) (2Dm + Di + Dd)/2. (Height times the sum of the
two parallel segments, then divided by 2).

a lipophilic or nonpolar flavor compound and thus
delay the flavor release. They also examined the corre-
lation with a traditional texture descriptive analysis and
found very low correlations of individual TI parame-
ters with texture profiling mean scores. This would be
expected if the TI parameters were contributing unique
information or if the texture profilers were integrat-
ing a number of time-dependent events in coming up

with their single-point intensity estimates. Consistent
with the latter notion, the profiling scores could be
better modeled by a combination of several of the TI
parameters. The simplicity and validity of this analysis
method suggests that it should find wider application
in industrial settings.

8.5.4 Analysis by Principal Components

Another analysis uses principal components analysis
(PCA, discussed in Chapter 18) (van Buuren, 1992).
Briefly, PCA is a statistical method that “bundles”
groups of correlated measurements and substitutes a
new variable (a factor or principal component) in place
of the original variables, thus simplifying the picture.
In studying the time–intensity curves for bitterness or
different brands of lager beer, van Buuren noticed that
individuals once again produced their own character-
istic “style” of curve shape. Most people showed a
classic TI curve shape, but some subjects were clas-
sified as “slow starters,” with a delayed peak and some
showed a tendency to persist and not come back down
to baseline within the test period. Submission of the
data to PCA allowed the extraction of a “principal
curve” which captured the majority trend. This showed
a peaked TI curve and a gradual return to baseline. The
second principal curve captured the shape of the minor-
ity trends, with slow onset, a broad peak and slow
decline without reaching baseline. The principal curves
were thus able to extract judge trends and provide a
cleaned-up view of the primary shape of the combined
data (Zimoch and Gullet, 1997). Although a PCA pro-
gram may extract a number of principal components,
not all may be practically meaningful (for an example,
see Reinbach et al., 2009), and the user should examine
each one for the story it tells. Reasonable questions are
whether the component reflects something important
relative to the simple TI curve parameters, and whether
it shows any patterns related to individual differences
among panelists.

Dijksterhuis explored the PCA approach in greater
detail (Dijksterhuis, 1993; Dijksterhuis and van den
Broek, 1995; Dijksterhuis et al., 1994). Dijksterhuis
(1993) noted that the PCA method as applied by van
Buuren was not discriminating of different bitter stim-
uli. An alternative approach was “non-centered PCA”
in which curve height information was retained during
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data processing, rather than normalizing curves to a
common scale. The non-centered approach works on
the raw data matrix. Stimuli or treatments were better
distinguished. The first principal curve tends to look
like the simple average, while the second principal
curve contains rate information such as accelerations
or inflection points (Dijksterhuis et al., 1994). This
could be potentially useful information in differen-
tiating the subtle patterns of TI curves for different
flavors. The PCA approach also involves the possibil-
ity of generating weights for different assessors that
indicate the degree to which they contribute to the dif-
ferent principal curves. This could be an important
tool for differentiating outliers in the data or pan-
elists with highly unusual TI signatures (Peyvieux and
Dijksterhuis, 2001).

8.6 Examples and Applications

A growing number of studies have used TI methods for
the evaluations of flavor, texture, flavor release, hedo-
nics, and basic studies of the chemical senses. A short
review of these studies follows in this section, although
the reader is cautioned that the list is not exhaustive.
We have cited a few of the older studies to give credit
to the pioneers of this field as well as some of the
newer applications. The examples are meant to show
the range of sensory studies for which TI methods are
suitable.

8.6.1 Taste and Flavor Sensation Tracking

A common application of continuous time–intensity
scaling is tracking the sensation rise and decay
from important flavor ingredients, such as sweeten-
ers (Swartz, 1980). An early study of Jellinek and
Pangborn reported that addition of salt to sucrose
extended the time–intensity curve and made the taste
“more rounded” in their words (Jellinek, 1964). One
of the salient characteristics of many intensive or
non-carbohydrate sweeteners is their lingering taste
that is different from that of sucrose. Time–intensity
tracking of sweet tastes was an active area of study
(Dubois and Lee, 1983; Larson-Powers and Pangborn,
1978; Lawless and Skinner, 1979; Yoshida, 1986) and

remains of great interest to the sweetener industry.
Another basic taste that has often been scaled using
time–intensity methods is bitterness (Dijksterhuis,
1993; Dijksterhuis and van den Broek, 1995; Leach
and Noble, 1986; Pangborn et al., 1983). Beer fla-
vor and bitterness were two of the earliest attributes
studied by time–intensity methods (Jellinek, 1964;
Pangborn et al., 1983; Sjostrom, 1954; van Buuren,
1992). Robichaud and Noble (1990) studied the bitter-
ness and astringency of common phenolics present in
wine and found similar results using traditional scaling
and the maximum intensity observed in time–intensity
scaling.

Taste properties have been studied in foods and
model systems and how they change with other food
ingredients and/or flavors present. Sweetness and other
flavors may also change in their temporal properties
with changes in food formulation, such as changes
in viscosity caused by addition of thickening agents
or changes due to addition of fat substitutes (Lawless
et al., 1996; Pangborn and Koyasako, 1981). In breads,
Barylko-Pikielna et al. (1990) measured saltiness,
sourness, and overall flavor. TI parameters such as
maximum intensity, total duration, and area under the
TI curve increased monotonically with salt added to
wheat breads. Lynch et al. (1993) found evidence for
suppression of taste in gelatin samples when the mouth
was precoated with various oils. For some tastes, espe-
cially bitter, suppression was evident both in decreased
peak intensity and shorter overall duration. Recently,
several sensory scientists have applied TI studies to
examine flavor intensity in different media and via
different routes of olfactory perception. Shamil et al.
(1992) showed that lowering the fat content of cheeses
and salad dressings caused increases in persistence
time and alters the rate of flavor release. Kuo et al.
(1993) examined differences in citral intensity com-
paring orthonasal and retronasal conditions in model
systems of citral and vanillin with different tastants
or xanthan gum added. In time–intensity study of fla-
vors in different dispersion media, Rosin and Tuorila
(1992) found pepper to be more clearly perceived in
beef broth than potato, while garlic was equally potent
in either medium. Another active area for time-related
judgments has been in the study of flavor interac-
tions. Noble and colleagues have used time–intensity
measurements to study the interactions of sweetness,
sourness, and fruitiness sensations in beverages and
simple model systems (Bonnans and Noble, 1993;
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Cliff and Noble, 1990; Matysiak and Noble, 1991).
Using these techniques, enhancement of sweetness by
fruity volatiles has been observed, and differences in
the interactions were seen for different sweetening
agents.

8.6.2 Trigeminal and Chemical/Tactile

Sensations

Reactions to other chemical stimuli affecting irri-
tation or tactile effects in the mouth have been a
fertile area for time-related sensory measurements.
Compounds such as menthol produce extended fla-
vor sensations and the time course is concentration
dependent (Dacanay, 1990; Gwartney and Heymann,
1995). A large number of studies of the burning
sensation from hot pepper compounds have used
time–intensity scaling, using repeated ratings at dis-
crete time intervals as well as continuous tracking
(Cliff and Heymann, 1993a; Green, 1989; Green and
Lawless, 1991; Lawless and Stevens, 1988; Stevens
and Lawless, 1986). Given the slow onset and extended
time course of the sensations induced by even a sin-
gle sample of a food containing hot pepper, this is a
highly appropriate application for time-related judg-
ments. The repeated ingestion paradigm has also been
used to study the short- and long-term desensitization
to irritants such as capsaicin and zingerone (Prescott
and Stevenson, 1996). The temporal profile of differ-
ent irritative spice compounds is an important point of
qualitative differentiation (Cliff and Heymann, 1992).
Reinbach and colleagues used TI tracking to study
the oral heat from capsaicin in various meat products
(Reinbach et al., 2007, 2009) as well as the interac-
tions of oral burn with temperature (see also Baron
and Penfield, 1996). When examining the decay curves
following different pepper compounds, different time
courses can be fit by different decay constants in a
simple exponential curve of the form

R = Roe−kt (8.1)

or

ln R = ln Ro − kt (8.2)

where Ro is the peak intensity and t is time, k is the
value determining how rapid the sensation falls off

from peak during the decay portion of the time curve
(Lawless, 1984).

Another chemically induced tactile or feeling fac-
tor in the mouth that has been studied by TI methods
is astringency. Continuous tracking has been applied
to the astringency sensation over repeated ingestions
(Guinard et al., 1986). Continuous tracking can pro-
vide a clear record of how sensations change dur-
ing multiple ingestions, and how flavors may build
as subsequent sips or tastings add greater sensations
on an existing background. An example of this is
shown in Fig. 8.8 where the saw-tooth curve shows an
increase and builds astringency over repeated inges-
tions (Guinard et al., 1986). Astringency has also
been studied using repeated discrete-point scaling.
For example, Lawless and coworkers were able to
show differences in the time profiles of some sensory
sub-qualities related to astringency, namely dryness,
roughness in the mouth, and puckery tightening sen-
sations (Lawless et al., 1994; Lee and Lawless, 1991)
depending on the astringent materials being evaluated.

Fig. 8.8 Continuous tracking record with multiple ingestions
producing a “sawtooth” curve record. The abscissa shows the
time axis in seconds and the ordinate the mean astringent inten-
sity from 24 judges. The dashed curve is from a 15 ml sample of
a base wine with 500 gm/l added tannin and the solid curve from
the base wine with no added tannin. Sample intake and expec-
toration are indicated by stars and arrows, respectively. From
Guinard et al. (1986), reprinted with permission of the American
Society of Enology and Viticulture.

8.6.3 Taste and Odor Adaptation

The measurement of a flavor sensation by tracking
over time has a close parallel in studies of taste and
odor adaptation (Cain, 1974; Lawless and Skinner,
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1979; O’Mahony and Wong, 1989). Adaptation may
be defined as the decrease in responsiveness of a
sensory system to conditions of constant stimulation
providing a changing “zero point” (O’Mahony, 1986).
Adaptation studies have sometimes used discrete, sin-
gle bursts of stimulation (e.g., Meiselman and Halpern,
1973). An early study of adaptation used a flow-
ing system through the subject’s entire mouth using
pipes inserted through a dental impression material
that was held in the teeth (Abrahams et al., 1937).
Disappearance of salt taste was achieved in under 30 s
for a 5% salt solution, although higher concentra-
tions induced painful sensations over time that were
confusing to the subjects and sometimes masked the
taste sensation. By flowing a continuous stream over a
section of the subject’s tongue or stabilizing the stim-
ulus with wet filter paper, taste often disappears in
under a few minutes (Gent, 1979; Gent and McBurney,
1978; Kroeze, 1979; McBurney, 1966). Concentrations
above the adapting level are perceived as having the
characteristic taste of that substance, e.g., salty for
NaCl. Concentrations below that level, to which pure
water is the limiting case, take on other tastes so
that water after NaCl, for example, is sour–bitter
(McBurney, and Shick, 1971). Under other conditions
adaptation may be incomplete (Dubose et al., 1977;
Lawless and Skinner, 1979; Meiselman and Dubose,
1976). Pulsed flow or intermittent stimulation causes
adaptation to be much less complete or absent entirely
(Meiselman and Halpern, 1973).

8.6.4 Texture and Phase Change

Tactile features of foods and consumer products
have been evaluated using time-related measurements.
Phase change is an important feature of many prod-
ucts that undergo melting when eaten. These include
both frozen products like ice cream and other dairy
desserts and fatty products with melting points near
body temperature such as chocolate. Using the chart-
recording method for time–intensity tracking, Moore
and Shoemaker (1981) evaluated the degree of cold-
ness, iciness, and sensory viscosity of ice cream with
different degrees of added carboxymethyl cellulose.
The added carbohydrate shifted the time for peak
intensity of iciness and extended the sensations of
coldness on the tongue. Moore and Shoemaker also

studied melting behavior. Melting is an example of a TI
curve that does not reach a maximum and then decline,
since items placed in the mouth do not re-solidify
after melting. In other words, it is unidirectional,
from not melted to completely melted. Melting rates
have also been studied in table spreads of varying fat
composition, with similar unidirectional time curves
(Tuorila and Vainio, 1993; see also Lawless et al.,
1996).

Other reports have been published applying time–
intensity methods to texture evaluation. Larson-Powers
and Pangborn (1978) used the strip-chart method to
evaluate a number of taste properties of gelatins sweet-
ened with sugar or intensive sweeteners and also
evaluated hardness. The hardness curves showed the
one-directional decay as expected. Rine (1987) used
time–intensity techniques to study the textural proper-
ties of peanut butter. Pangborn and Koyasako (1981)
were able to track differences in perceived viscosity of
chocolate pudding products that differed in their thick-
ening agents. Meat texture has been evaluated during
chewing, and tenderness is usually an example of a uni-
directional TI curve (Duizer et al., 1995, but see also
Zimoch and Gullett (1997) which is bi-directional).
Juiciness is another meat texture variable that is well
suited to TI evaluation (Peyvieux and Dijksterhuis,
2001; Zimoch and Gullett, 1997). In one early applica-
tion of TI methods to meat texture, Butler et al. (1996)
noted the tendency toward individual “signatures” in
the TI records, now a common finding (Zimoch and
Gullett, 1997). Jellinek (1985, p. 152) gave an interest-
ing example of how texture may be judged by auditory
cures for crispness, and showed time–intensity records
of two product differing in both initial crispness and
duration. One product made louder sounds initially, but
dropped off a steeper rate than another during chewing.
Jellinek pointed out that the maintenance of crispness
during chewing could be important. Time–intensity
methods can thus provide potentially important sen-
sory information about the rate of destruction of a
product and texture change during deformation.

8.6.5 Flavor Release

A potentially fertile area for the application of time-
related sensory measurements is in flavor release from
foods during eating. Not only are texture changes
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obvious during chewing but also a number of factors
operate to change the chemical nature of the matrix
within which food flavors exist once the food enters
the mouth. The degree to which the individual flavor
compounds are held in the matrix as opposed to being
released into the mouth space and into the breath and
nose of the judge will depend on their relative sol-
ubility and binding to the matrix of the food bolus
and saliva (McNulty, 1987; Overbosch, 1987). Saliva
is a complex mixture of water, salts, proteins, and gly-
coproteins. It has pH buffering capacity and active
enzymes. The flavor volatilization changes as a func-
tion of mixing with saliva, pH change, enzymatic pro-
cesses such as starch breakdown by salivary amylase,
warming, mechanical destruction of the food matrix,
and changes in ionic strength (Ebeler et al., 1988;
Haring, 1990; Roberts and Acree, 1996). Temperature
may not only affect the partial vapor pressure of a
flavor above the liquid phase but also the degree of
association of flavor compounds to proteins and other
components of the food matrix (O’Keefe et al., 1991).
The flavor balance, interactions with other tastes, and
the time properties of release may all be different as a
function of sniffing (the orthonasal route to the olfac-
tory receptors) as opposed to sipping (the retronasal
route) (Kuo et al., 1993).

A number of devices have been developed to study
how volatile flavors are released from food in sim-
ulated conditions of oral breakdown (Roberts and
Acree, 1996). These usually involve some degree of
mechanical agitation or stirring, warming, and dilution
in some medium that is designed to reflect the chemical
composition of saliva to some degree. Some research
has focused on chemical sampling of this altered
“headspace,” i.e., the vapor phase above the simu-
lated oral mixture (Lee, 1986; Roberts et al., 1996).
de Roos (1990) examined flavor release in chewing
gum, a matrix from which different flavor compounds
are released at different rates, changing the flavor
character and detracting from consumer appeal. Large
individual differences were observed for common fla-
vors such as vanillin. de Roos was further able to divide
his groups into efficient, highly efficient, and ineffi-
cient chewers, who differed in their degree and rate of
flavor release. This serves to remind us that not every-
one masticates in the same way and that mechanical
breakdown factors will be different among individu-
als. Mastication and salivation variables were related to
inter-individual differences in flavor release in model

cheese systems (Pionnier et al., 2004) using a discrete
point TI method.

8.6.6 Temporal Aspects of Hedonics

Since the pleasantness or appeal of a sensory charac-
teristic is largely dependent on its intensity level, it is
not surprising that one’s hedonic reaction to a prod-
uct might shift over time as the strength of a flavor
waxes and wanes. Time-related shifts in food likes and
dislikes are well known. In the phenomenon known
as alliesthesia, our liking for a food depends a lot on
whether we are hungry or replete (Cabanac, 1971). The
delightful lobster dinner we enjoyed last night may
not look quite so appealing as leftovers at lunchtime
the next day. Wine tasters may speak of a wine that
is “closed in the glass, open on the palate, and hav-
ing a long finish.” Accompanying such a description is
the implicit message that this particular wine got bet-
ter over the course of the sensory experience. Given
the shorter time span of flavor and texture sensations
in the mouth, we can ask whether there are shifts in
liking and disliking. This has been measured in several
studies. Taylor and Pangborn (1990) examined liking
for chocolate milk with varying degrees of milk fat.
Different individual trends were observed in liking for
different concentrations, and this affected the degree of
liking expressed over time. Another example of hedo-
nic TI scaling was in a study of the liking/disliking
for the burning oral sensation from chili (hot ) pep-
per (Rozin et al., 1982). They found different patterns
of temporal shifting in liking as the burn rose and
declined. Some subjects liked the burn at all time
intervals, some disliked the burn at all time intervals,
and some shifted across neutrality as strong burns
became more tolerable. This method was revisited by
Veldhuizen et al. (2006) who used a simple bipolar
line scale for pleasantness and had subjects evaluated
both intensity and hedonic reactions to a citrus bever-
age flowed over the tongue from a computer-controlled
delivery system (see Fig. 8.2 for an early example of
this kind of device). Note that with a bipolar hedonic
scale, the mouse and cursor positions must begin at the
center of the scale and not the lower end as with inten-
sity scaling. The authors found a delayed pleasantness
response compared to the intensity tracking, a similar
time to maximum, but an unexpectedly quicker offset
of response for pleasantness tracking. Some panelists
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produced a double-peaked pleasantness response, as
the sensation could rise in pleasantness, but then
become too intense, but become more pleasant again as
adaptation set in and the perceived strength decreased.

8.7 Issues

Sensory scientists who wish to use time–intensity
methods for any particular study need to weigh the
potential for obtaining actionable information against
the cost and time involved in collecting these data.
Some orientation or training is required (Peyvieux
and Dijksterhuis, 2001) and in some published stud-
ies, the training and practice is quite extensive. For
example, Zimoch and Gullet (1997) trained their meat
texture panel for 12 h. Panelists must be trained to
use the response device and sufficiently practiced to
feel comfortable with the requirements of the task
in terms of maintaining focused attention to momen-
tary sensation changes. With the use of online data
collection the tabulation and processing of informa-
tion is generally not very labor intensive; but without
computer-assisted collection the time involved can be
enormous. Even with computerized systems, the data
collection is not foolproof. Responses may be trun-
cated or fail to start at zero in some records (Liu and
MacFie, 1990; McGowan and Lee, 2006) making auto-
matic averaging of records infeasible. In one study of
melting behavior (Lawless et al., 1996), some subjects
mistakenly returned the indicating cursor to zero as
soon as the product was completely melted, instead of
leaving the cursor on maximum, producing truncated
records. Such unexpected events remind us to never
assume that panelists are doing what you think they
should be doing.

A fundamental issue is information gain. In the case
where changes in duration are observed at equal max-
imum intensities, it can be argued that the traditional
scaling might have missed important sensory differ-
ences. For example, TI can capture information such
as when the TI curves cross over, e.g., the interest-
ing case when a product with a lower peak intensity
has a longer duration (e.g., Lallemand et al., 1999;
Lawless et al., 1996). However, this pattern is not often
seen. Usually products with stronger peak height have
longer durations. In general there is a lot of redundant
information in TI parameters. Lundahl (1992) studied
the correlation of 15 TI parameters associated with TI

curves’ shapes, sizes, and rates of change. Curve size
parameters were highly correlated and usually loaded
on the first principal component of a PCA, capturing
most of the variance (see also Cliff and Noble, 1990).
Curve size parameters, including peak height, were
correlated with simple category ratings of the same
beverages. So an open question for the sensory scien-
tist is whether there is any unique information in the
TI parameters extracted from the records and whether
there is information gain over what would be provided
by more simple direct scaling using a single intensity
rating.

A potential problem in time–intensity methods is
that factors affecting response behavior are not well
understood. In TI measurements, there are dynamic
physical processes (chewing, salivary dilution) lead-
ing to changes in the stimulus and resulting sensations
(Fischer et al., 1994). A second group of processes
concerns how the participant translates the conscious
experience into an overt response, including a deci-
sion mechanism and motoric activation (Dijksterhuis,
1996). The notion that TI methods provide a direct link
from the tongue of the subject to the hand moving the
mouse is a fantasy. Even in continuous tracking, there
must be some decision process involved. There is no
information as to how often a panelist in the continuous
procedure reflects upon the sensation and decides to
change the position of the response device. Decisions
are probably not continuous even though some records
from some subjects may look like smooth curves.

An indication that response tendencies are impor-
tant is when the conditions of stimulation are held
constant, but the response task changes. For exam-
ple, using the graphic chart-recorder method, Lawless
and Skinner (1979) found median durations for sucrose
intensity that were 15–35% shorter than the same stim-
uli rated using repeated category ratings. Why would
the different rating methods produce apparently differ-
ent durations? Very different patterns may be observed
when taste quality and intensity are tracked. Halpern
(1991) found that tracked taste quality of 2 mM sodium
saccharin had a delayed onset (by 400 ms) compared
with tracked intensity. This might be understandable
from the point of requiring a more complex decision
process in the case of tracking intensity. However, it
still alerts us to the fact that the behavior probably trails
the actual experience by some unknown amount. What
is more surprising in Halpern’s data is that tracked
quality also stopped well before tracked intensity (by
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600 ms). Can it be possible that subjects are still expe-
riencing a taste of some definable intensity and yet the
quality has disappeared? Or is there another response
generation process at work in this task?

A third area where potential response biases can
operate is in contextual effects. Clark and Lawless
(1994) showed that common contextual affects like
successive contrast also operated with TI methods,
as they do with other scaling tasks. Also, some rat-
ings could be enhanced when a limited number of
scales were used by subjects. As observed in single-
point scaling, enhancement of sweetness by fruity
flavors tends to occur when only sweetness is rated.
When the fruity flavor is also rated, the sweetness
enhancement often disappears (Frank et al., 1989), an
effect sometimes referred to as halo dumping or sim-
ply “dumping.” Using the discrete-point version of
TI scaling, so that multiple attributes could be rated,
Clark and Lawless showed a similar effect. This is
potentially troublesome for the continuous tracking
methods, since they often limit subjects to responding
to only one attribute at a time. This may explain in part
why sweetness enhancement by flavors can occur so
readily in TI studies (e.g., Matysiak and Noble, 1991).

A final concern is the question of whether the
bounded response scales often used in TI measurement
produces any compression of the differences among
products. In analog tracking tasks, there is a limit as
to how far the joystick, mouse, lever, dial, or other
response device can be moved. With some practice,
judges learn not to bump into the top. Yet the very
nature of the tracking response encourages judges to
sweep a wide range of the response scale. If this
were done on every trial, it would tend to attenuate
the differences in maximum tracked intensity between
products. As an example, Overbosch et al. (1986, see
Fig. 2) showed curves for pentanone where doubling
the concentration changed peak heights by only about
8%. A similar sort of compression is visible in Lawless
and Skinner’s (1979) data for sucrose, compared to the
psychophysical data in the literature.

8.8 Conclusions

In most cases TI parameters show similar statisti-
cal differentiation as compared to traditional scales,
but this is not universally the case (e.g., Moore and
Shoemaker, 1981).

Many sensory evaluation researchers have sup-
ported increased application of time–intensity mea-
surements for characterization of flavor and texture
sensations. In particular, the method was championed
by Lee and Pangborn, who argued that the methods
provide detailed information not available from single
estimates of sensation intensity (Lee, 1989; Lee and
Pangborn, 1986). TI methods can provide rate-related,
duration, and intensity information not available from
traditional scaling. However, the utility of the meth-
ods must be weighed against the enhanced cost and
complexity in data collection and analysis. In deciding
whether to apply TI methods over conventional scal-
ing, the sensory scientist should consider the following
criteria:

(1) Is the attribute or system being studied known
to change over time? Simply eating the food can
often settle this issue; in many cases it is obvious.

(2) Will the products differ in sensory time course as a
function of ingredients, processing, packaging, or
other variables of interest?

(3) Will the time variation occur in such a way that
it will probably not be captured by direct single
ratings?

(4) Is some aspect of the temporal profile likely to be
related to consumer acceptability?

(5) Does the added information provided by the
technique outweigh any additional costs or time
delays in panel training, data acquisition, and data
analysis?

Obviously, when more answers are positive on these
criteria, a stronger case can be made for choosing a
TI method from the available set of sensory evaluation
tools.
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Chapter 9

Context Effects and Biases in Sensory Judgment

Abstract Human judgments about a sensation or a product are strongly influenced
by items that surround the item of interest, either in space or in time. This chapter
shows how judgments can change as a function of the context within which a prod-
uct is evaluated. Various contextual effects and biases are described and categorized.
Some solutions and courses of action to minimize these biases are presented.

By such general principles of action as these everything looked at, felt, smelt or heard comes to be

located in a more or less definite position relatively to other collateral things either actually

presented or only imagined as possibly there.

— James (1913, p. 342)
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9.1 Introduction: The Relative Nature

of Human Judgment

This chapter will discuss context effects and com-
mon biases that can affect sensory judgments. Context
effects are conditions in which the judgment about a
product, usually a scaled rating, will shift depending
upon factors such as the other products that are evalu-
ated in the same tasting session. A mediocre product
evaluated in the context of some poor-quality items
may seem very good in comparison. Biases refer to
tendencies in judgment in which the response is influ-
enced in some way to be an inaccurate reflection of
the actual sensory experience. In magnitude estima-
tion ratings, for example, people have a tendency to use
numbers that are multiples of 2, 5, and 10, even though
they can use any number or fraction they wish. At the
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end of the chapter, some solutions to these problems
are offered, although a sensory scientist should real-
ize that we can never totally eliminate these factors.
In fact, they are of interest and deserve study on their
own for what they can tell us about human sensory and
cognitive processes.

An axiom of perceptual psychology has it that
humans are very poor absolute measuring instruments
but are very good at comparing things. For example,
we may have difficulty estimating the exact sweetness
level of our coffee, but we have little trouble in telling
whether more sugar has been added to make it sweeter.
The question arises, if people are prone to making
comparisons, how can they give ratings when no com-
parison is requested or specified? For example, when
asked to rate the perceived firmness of a food sample,
how do they judge what is firm versus what is soft?
Obviously, they must either choose a frame of refer-
ence for the range of firmness to be judged or be trained
with explicit reference standards to understand what is
high and low on the response scale. In other words,
they must relate this sensory judgment to other prod-
ucts they have tried. For many items encountered in
everyday life, we have established frames of reference
based on our experiences. We have no trouble forming
an image of a “large mouse running up the trunk of a
small elephant” because we have established frames of
reference for what constitutes the average mouse and
the average elephant. In this case the judgment of large
and small is context dependent. Some people would
argue that all judgments are relative.

This dependence upon a frame of reference in mak-
ing sensory judgments demonstrates the influence of
contextual factors in biasing or changing how prod-
ucts are evaluated. We are always prone to see things
against a background or previous experience and eval-
uate them accordingly. A 40◦ (Fahrenheit) day in
Ithaca, New York, in January seems quite mild against
the background of the northeastern American winter.
However, the same 40◦C temperature will feel quite
cool on an evening in August in the same location.
This principle of frame of reference is the source of
many visual illusions, where the same physical stim-
ulus causes very different perceptual impressions, due
to the context within which it is embedded. Examples
are shown in Fig. 9.1.

A simple demonstration of context is the visual
afterimage effect that gave rise to Emmert’s law
(Boring, 1942). In 1881, Emmert formalized a

A

B

C

Fig. 9.1 Examples of contextual effects from simple visual illu-
sions. (a) The dumbell version of the Muller–Lyer illusion. (b)
The Ebbinghaus illusion. (c) Illusory contours. In this case the
contexts induce the perceptions of shapes.

principle of size constancy based on the following
effect: Stare for about 30 s at a brightly illuminated
colored paper rectangle (it helps to have a small dot
to aid in fixation in the center) about a meter away.
Then shift your gaze to a white sheet on the table in
front of you. You should see the rectangle afterimage in
a complementary color and somewhat smaller in size
as compared to the original colored rectangle. Next,
shift your gaze to a white wall some distance off. The
afterimage will now appear much larger, as the brain
finds a fixed visual angle at greater distance to repre-
sent larger physical objects. Since the mind does not
immediately recognize that the afterimage is just a cre-
ation of the visual sensory system, it projects it at the
distance of the surface upon which it is “seen.” The
more distant frame of reference, then, demands a larger
size perception.

The close link between sensory judgments and con-
text presents problems for anyone who wants to view
ratings as absolute or comparable across different
times, sessions, or settings. Even when the actual sen-
sory impression of two items is the same, we can shift
the frame of reference and change the overt behav-
ior of the person to produce a different response. This
problem (or principle of sensory function) was glossed
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over by early psychophysical scientists. In psycho-
logical terms, they used a simple stimulus–response
(S–R) model, in which response was considered a
direct and unbiased representation of sensory experi-
ences. Certain biases were observed, but it was felt
that suitable experimental controls could minimize or
eliminate them (Birnbaum, 1982; Poulton, 1989).

A more modern view is that there are two or three
distinct processes contributing to ratings. The first is
a psychophysical process by which stimulus energy
is translated into physiological events that result in a
subjective experience of some sensory intensity. The
second, equally important process is the function by
which the subjective experience is translated into the
observed response, i.e., how the percept is translated
onto the rating scale (see Fig. 9.2). Many psychophysi-
cal researchers now consider a “judgment function” to

Stimulus Response

Stimulus Sensation Response

Psychophysical 
Process

Judgment 
Process

Stimulus Sensation Response

Psychophysical 
Process

Judgment 
Process

A)

B)

C)
ENCODED

SENSATION,
“PERCEPT”

Perceptual
Process

Fig. 9.2 Models for sensory-response processes. (a) The sim-
ple stimulus–response model of twentieth-century behavioral
psychology. (b) Two processes are involved in sensation and
response, a psychophysical process and then a response out-
put or a judgment process in which the participant decides
what response to give for that sensation. (c) A more complex
model in which the sensation may be transformed before the
response is generated. It may exist in short-term memory as
an encoded percept, different from the sensation. Contextual
effects of simultaneous or sequential stimuli can influence the
stimulus–response sequence in several ways. Peripheral phys-
iological effects such as adaptation or mixture inhibition may
change the transduction process or other early stages of neural
processing. Other stimuli may give rise to separate percepts that
are integrated into the final response. Contextual factors may
also influence the frame of reference that determines how the
response output function will be applied. In some models, an
additional step allows transformation of the percept into covert
responses that are then translated as a separate step into the overt
response R.

be an important part of the sequence from stimulus to
response (Anderson, 1974, Birnbaum, 1982, McBride
and Anderson, 1990; Schifferstein and Frijters, 1992;
Ward, 1987). This process is also sometimes referred
to as a response output function. A third intermediate
step is the conversion of the raw sensory experience
into some kind of encoded percept, one that is avail-
able to memory for a short time, before the judgment
is made (Fig. 9.2c).

Given this framework, there are several points at
which stimulus context may influence the sensory pro-
cess. First, of course, the actual sensation itself may
change. Many sensory processes involve interaction
effects of simultaneous or sequential influences of mul-
tiple items. An item may be perceived differently due
to the direct influence of one stimulus upon another
that is nearby in time or space. Simultaneous color
contrast is an example in color vision and some types
of inhibitory mixture interactions and masking in taste
and smell are similarly hard wired. Quinine with added
salt is less bitter than quinine tasted alone, due to
the ways that sodium ions inhibit bitterness transduc-
tion. Sensory adaptation weakens the perception of a
stimulus because of what has preceded it. So the psy-
chophysical process itself is altered by the milieu in
which the stimulus is observed, sometimes because of
physical effects (e.g., simple buffering of an acid) or
physiological effects (e.g., neural inhibition causing
mixture suppression) in the peripheral sensory mecha-
nisms. A second point of influence is when the context
shifts the frame of reference for the response output
function. That is, two sensations may have the same
subjective intensity under two conditions, but because
of the way the observer places them along the response
continuum (due to different contexts), they are rated
differently. A number of studies have shown that con-
textual factors such as the distribution of stimuli along
the physical continuum affect primarily (although not
exclusively) the response output function (Mellers and
Birnbaum, 1982, 1983). A third process is sometimes
added in which the sensation itself is translated into
an implicit response or encoded image that may also
be affected by context (Fig. 9.2c). This would pro-
vide another opportunity to influence the process if
contextual factors affect this encoding step.

Contextual change can be viewed as a form of
bias. Bias, in this sense, is a process that causes a
shift or a change in response to a constant sensa-
tion. If one situation is viewed as producing a true
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and accurate response, then the contextual conditions
that cause shifts away from this accurate response are
“biased.” However, bias need only have a negative
connotation if there is a reason to presume that one
condition of judgment is more accurate than all others.
A broader view is to accept the idea that all judgments
are a function of observing conditions and therefore
all judgments are biased from one another in differ-
ent ways. Fortunately, many of these biases and the
conditions that cause them are predictable and well
understood, and so they can be eliminated or mini-
mized. At the very least, the sensory practitioner needs
to understand how these influences operate so as to
know when to expect changes in judgments and rat-
ings. An important endpoint is the realization that few,
if any, ratings have any absolute meaning. You cannot
say that because a product received a hedonic rating
of 7.0 today, it is better than the product that received a
rating of 6.5 last week. The context may have changed.

9.2 Simple Contrast Effects

By far the most common effect of sensory context
is simple contrast. Any stimulus will be judged as
more intense in the presence of a weaker stimulus
and as less intense in the presence of a stronger stim-
ulus, all other conditions being equal. This effect
is much easier to find and to demonstrate than its
opposite, convergence or assimilation. For example,
an early sensory worker at the Quartermaster Corp.,
Kamenetsky (1957), noticed that the acceptability rat-
ings for foods seemed to depend upon what other foods
were presented during an evaluation session. Poor
foods seemed even worse when preceded by a good
sample. Convergence is more difficult to demonstrate,
although under some conditions a group of items may
seem more similar to each other when they are in the
presence of an item that is very different from that
group (Zellner et al., 2006).

9.2.1 A Little Theory: Adaptation Level

As we noted above, a 40◦ day in January (in New
York) seems a lot warmer than the same temperature in
August. These kinds of effects are predicted Helson’s

theory of adaptation level. Helson (1964) proposed that
we take as a frame of reference the average level of
stimulation that has preceded the item to be evaluated.
The mild temperature in the middle of a hot and humid
summer seems a lot more cool and refreshing than is
the mild temperature after a period of cold and icy
weather. So we refer to our most recent experiences
in evaluating the sensory properties of an item. Helson
went on to elaborate the theory to include both imme-
diate and distant predecessors. That is, he appreciated
the fact that more recent items tend to have a stronger
effect on the adaptation level. Of course, mere refer-
ence to the mean value of experience is not always
sufficient to induce a contrast effect—it is more influ-
ential if the mean value comes to be centered near the
middle of the response scale, an example of a centering
bias, discussed below (Poulton, 1989).

The notion of adaptation, a decrease in respon-
siveness under conditions of constant stimulation, is
a major theme in the literature on sensory processes.
Physiological adaptation or an adjustment to the ambi-
ent level of stimulation is obvious in light/dark adap-
tation in vision. The thermal and tactile senses also
show profound adaptation effects—we become easily
adjusted to the ambient room temperature (as long as it
is not too extreme) and we become unaware of tactile
stimulation from our clothing. So this mean reference
level often passes from consciousness or becomes a
new baseline from which deviations in the environment
become noticeable. Some workers have even suggested
that this improves discrimination—that the difference
threshold is smallest right around the adaptation level
or physiological zero, in keeping with Weber’s law
(McBurney, 1966). Examples of adaptation effects are
discussed in Chapter 2 for the senses of taste and smell.
In the chemical, thermal, and tactile senses, adaptation
is quite profound.

However, we need not invoke the concept of neu-
ral adaptation to a preceding item or a physiological
effect to explain all contrast effects. It may be simply
that more or less extreme stimuli change our frame of
reference or the way in which the stimulus range and
response scales are to be mapped onto one another. The
general principle of context is that human observers
act like measuring instruments that constantly recali-
brate themselves to the experienced frame of reference.
What we think of as a small horse may depend upon
whether the frame of reference includes Clydesdales,
Shetland ponies, or tiny prehistoric equine species. The
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following examples show simple effects of context on
intensity, sensory quality, and hedonics or acceptabil-
ity. Most of these examples are cases of perceptual
contrast or a shift in judgment away from other stimuli

presented in the same session.

9.2.2 Intensity Shifts

Figure 9.3 shows a simple contrast effect of soups
with varying salt levels presented in different contexts
(Lawless, 1983). The central stimulus in the series was
presented either with two lower or two higher concen-
trations of salt added to a low sodium soup. Ratings
of saltiness intensity were made on a simple nine-point
category scale. In the lower context, the central soup
received a higher rating, and in the higher context, it
received a lower rating, analogous to our perception of
a mild day in winter (seemingly warmer) versus a mild
day in summer (seemingly cooler). Note that the shift
is quite dramatic, about two points on the nine-point
scale or close to 25% of scale range.

A simple classroom demonstration can show a simi-
lar shift for the tactile roughness of sandpapers varying
in grit size. In the context of a rougher sample, a
medium sample will be rated lower than it is in the
context of a smoother sample. The effects of simple
contrast are not limited to taste and smell.
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Fig. 9.3 Saltiness ratings of soups with added NaCl. The sam-
ple at 0.25 M was evaluated in two contexts, one with higher
concentrations and one with lower concentrations. The shift is
typical of a simple contrast effect of contrast. Replotted from
Lawless (1983). Copyright ASTM, used with permission.

Contrast effects are not always observed. In some
psychophysical work with long series of stimuli, some
item-to-item correlations have been observed. The
effects of immediately preceding versus remotely pre-
ceding stimuli have been measured and a positive
correlation among adjacent responses in the series was
found. This can be taken as evidence for a type of
assimilation, or underestimation of differences (Ward,
1979, 1987; but see also Schifferstein and Frijters,
1992).

9.2.3 Quality Shifts

Visual examples such as color contrast were well
known to early psychologists like William James:
“Meanwhile it is an undoubted general fact that the
psychical effect of incoming currents does depend on
what other currents may be simultaneously pouring
in. Not only the perceptibility of the object which the
current brings before the mind, but the quality of it
is changed by the other currents.” (1913, p. 25). A
gray line against a yellow background may appear
somewhat bluish, and the same line against a blue
background may seem more yellowish. Paintings of
the renowned artist Josef Albers made excellent use
of color contrast. Similar effects can be observed for
the chemical senses. During a descriptive panel train-
ing period for fragrance evaluation, the terpene aroma
compound dihydromyrcenol was presented among a
set of woody or pine-like reference materials. The pan-
elists complained that the aroma was too citrus-like
to be included among the woody reference materials.
However, when the same odor was placed in the con-
text of citrus reference materials, the same panelists
claimed that it was far too woody and pine-like to be
included among the citrus examples. This contextual
shift is shown in Fig. 9.4. In a citrus context, the item is
rated as more woody in character than when placed in a
woody context. Conversely, ratings for citrus intensity
decrease in the citrus context and increase in the woody
context. The effect is quite robust and is seen whether
or not a rest period is included to undo the poten-
tial effects of sensory adaptation. It even occurs when
the contextual odor follows the target item and judg-
ments are made after both are experienced (Lawless
et al., 1991)! This striking effect is discussed further in
Section 9.2.5.
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Fig. 9.4 Odor quality contrast noted for the ambiguous terpene
aroma compound dihydromyrcenol. In a citrus context, woody
ratings increase and citrus character decreases. In a woody con-
text, the woody ratings decrease. The group using different

scales did not rate citrus and woody character during the con-
textual exposure phase, only overall intensity and pleasantness
were rated. From Lawless et al. (1991) by permission of Oxford
University Press.

Context effects can also alter how items are identi-
fied and characterized. When people categorize speech
sounds, repeated exposure to one type of simple
phoneme changes the category boundary for other
speech sounds. Repeated exposure to the sound of the
phoneme “bah,” which has an early voice onset time,
can shift the phoneme boundary so that speech sounds
near the boundary are more likely classified as “pah”
sounds (a later voice onset) (Eimas and Corbit, 1973).
Boundary-level examples are shifted across the bound-
ary and into the next category. This shift resembles a
kind of contrast effect.

9.2.4 Hedonic Shifts

Changes in the preference or acceptance of foods can
be seen as a function of context. Hedonic contrast
was a well-known effect to early workers in food
acceptance testing (Hanson et al., 1955; Kamenetzky,
1959). An item seems more appealing if it followed

an item of poor quality and less appealing if it fol-
lowed something of better quality. The effect was
known to Beebe-Center (1932), who also attributed
it to Fechner in 1898. This kind of contrast has been
observed for tastes (Riskey et al., 1979; Schifferstein,
1995), odors (Sandusky and Parducci, 1965), and art
(Dolese et al., 2005). Another effect observed in these
kinds of experiments is that a contrasting item causes
other, generally lower rated stimuli to become more
similar or less discriminable, an effect termed conden-
sation (Parker et al., 2002; Zellner et al., 2006;). In
the study by Zellner et al. (2006), pre-exposure to a
good-tasting juice reduced the magnitude of preference
ratings among less appealing juices. Mediocre items
were both worse and more similar.

An example of hedonic shifting was found in a study
on the optimization of the saltiness of tomato juice and
also the sweetness of a fruit beverage using the method
of adjustment (Mattes and Lawless, 1985). When try-
ing to optimize the level of sweetness or saltiness in
this study, subjects worked in two directions. In an
ascending series, they would concentrate a dilute solu-
tion by mixing the beverage with a more concentrated
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version having the same color, aroma, and other flavor
materials (i.e., only sweetness or saltiness was differ-
ent). In a second descending series, they would be
given a very intense sample as the starting point and
then dilute down to their preferred level. This effect
is shown in Fig. 9.5. The adjustment stops too soon
and the discrepancy is remarkable, nearly a concen-
tration range of 2:1. The effect was also robust—it
could not be attributed to sensory adaptation or lack
of discrimination and persisted even when subjects
were financially motivated to try to achieve the same
endpoints in both trials. This is a case of affective con-
trast. When compared to a very sweet or salty starting
point, a somewhat lower item seems just about right,
but when starting with a relatively sour fruit beverage

Fig. 9.5 Optimized concentrations of salt in tomato juice and
sucrose in a fruit beverage. In the trials labeled D, the concentra-
tion was diluted from a concentrated version of the test sample.
In the trials marked A, the concentration was increased from a
dilute version of the test sample. Concentrations of other ingre-
dients were held constant. The contextual shift is consistent with
reaching the apparent optimum too soon as if the apparent opti-
mum was shifted in contrast to the starting point. From Mattes
and Lawless (1985) with permission.

or bland tomato juice, just a little bit of sugar or salt
helps quite a bit. The stopping point contrasts with the
starting material and seems to be better than it would
be perceived in isolation. In an ascending or descend-
ing sequence of products, a change in responses that
happens too soon is called an “error of anticipation.”

9.2.5 Explanations for Contrast

At first glance, one is tempted to seek a physio-
logical explanation for contrast effects, rather than
a psychological or a judgmental one. Certainly sen-
sory adaptation to a series of intense stimuli would
cause any subsequent test item to be rated much lower.
The importance of sensory adaptation in the chemical
senses of taste and smell lends some credence to this
explanation. However, a number of studies have shown
that precautions against sensory adaptation may be
taken, such as sufficient rinsing or time delays between
stimuli and yet the context effects persist (Lawless
et al., 1991; Mattes and Lawless, 1985; Riskey, 1982).
Furthermore, it is difficult to see how sensory adapta-
tion to low-intensity stimuli would cause an increase in
the ratings for a stronger item, as adaptation necessar-
ily causes a decrement in physiological responsiveness
compared to a no-stimulation baseline.

Perhaps the best evidence against a simple adap-
tation explanation for contrast effects is from the
reversed-pair experiments in which the contextual
item follows the to-be-rated target item and there-
fore can have no physiologically adapting effect on
it. This paradigm calls for a judgment of the target
item from memory after the presentation of the con-
textual item, in what has been termed a reversed-pair
procedure (Diehl et al., 1978). Due to the reversed
order, the context effects cannot be blamed on phys-
iological adaptation of receptors, since the contextual
item follows rather than precedes the item to be rated.
Reversed-pair effects are seen for shifts in odor qual-
ity of aroma compounds like dihydromyrcenol and are
only slightly smaller in magnitude than the contex-
tual shift caused when the contextual item comes first
(Lawless et al., 1991). The reversed-pair situation is
also quite capable of causing simple contrast effects
in sensory intensity. A sweetness shift was observed
when a higher or a lower sweetness item was inter-
polated between the tasting and rating (from memory)
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of a normal-strength fruit beverage (Lawless, 1994).
Looking back at Fig. 9.2, it seems more likely that the
effect changes the response function. However, not all
workers in the field agree. In particular, Marks (1994)
has argued that the contextual shifts are much like an
adaptation process and that for auditory stimuli this is a
peripheral event. It is possible that what changes is not
the sensation/experience, but to some encoded version
of the sensation, or to some kind of implicit response,
not yet verbalized. If a person, when rating, is evaluat-
ing some memory trace of the experience, it is possible
that this memory, for example, could be altered.

9.3 Range and Frequency Effects

Two of the most common factors that can affect ratings
are the sensory range of the products to be evaluated
and the frequency with which people use the available
response options. These factors were nicely integrated
into a theory that helped to explain shifts in category
ratings. They are also general tendencies that can affect
just about any ratings or responses.

9.3.1 A Little More Theory: Parducci’s

Range and Frequency Principles

Parducci (1965, 1974) sought to go beyond Helson’s
(1964) simple idea that people respond to the mean
or the average of their sensory experiences in deter-
mining the frame of reference for judgment. Instead,
they asserted that the entire distribution of items in a
psychophysical experiment would influence the judg-
ments of a particular stimulus. If this distribution was
denser (bunched up) at the low ends and a lot of weak
items were presented, product ratings would shift up.
Parducci (1965, 1974) proposed that behavior in a rat-
ing task was a compromise between two principles.
The first was the range principle. Subjects use the cat-
egories to sub-divide the available scale range and will
tend to divide the scale into equal perceptual segments.
The second was the frequency principle. Over many
judgments, people like to use the categories an equal
number of times (Parducci, 1974). Thus it is not only

the average level that is important but also how stim-
uli may be grouped or spaced along the continuum
that would determine how the response scale was used.
Category scaling behavior could be predicted as a com-
promise between the effects of the range and frequency
principles (Parducci and Perrett, 1971).

9.3.2 Range Effects

The range effect has been known for some time, both
in category ratings and other judgments including ratio
scaling (Engen and Levy, 1958; Teghtsoonian and
Teghtsoonian, 1978). When expanding or shrinking the
overall range of products, subjects will map their expe-
riences onto the available categories (Poulton, 1989).
Thus short ranges produce steep psychophysical func-
tions and wide ranges produce flatter functions. An
example of this can be seen in two published exper-
iments on rating scales (Lawless and Malone, 1986a,
b). In these studies, four types of response scales and a
number of visual, tactile, and olfactory continua were
used to compare the abilities of consumers to use the
different scales to differentiate products. In the first
study, the consumers had no trouble in differentiating
the products and so in the second study, the stimuli
were spaced more closely on the physical continua
so that the task would be more challenging. However,
when the experimenters closed the stimuli in, the range
principle took over, and participants used more of the
rating scale than expected. In Fig. 9.6, ratings for
perceived thickness of (stirred) silicone samples are
shown in the wide and narrow stimulus ranges. Note
the steepening of the response function. For the same
one log unit change in physical viscosity, the range of
responses actually doubled from the wide range to the
narrower range.

Another kind of stimulus range effect occurs with
anchor stimuli. Sarris (1967) previously showed a
strong effect of anchor stimuli on the use of rating
scales, unless the anchors were very extreme, at which
point their influence would tend to diminish, as if they
had become irrelevant to the judgmental frame of refer-
ence. Sarris and Parducci (1978) found similar effects
of both single and multiple end anchors that gener-
ally take the form of a contrast effect. For example,
a low anchor stimulus, whether rated or unrated, will
cause stronger stimuli to receive higher ratings than
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Fig. 9.6 A simple range
effect. When products are
presented over a wide range, a
shallow psychophysical
function is found. Over a
narrow range, a steeper
psychophysical function will
be observed. This is in part
due to the tendency of
subjects to map the products
(once known) onto the
available scale range. From
Lawless and Malone (1986b),
with permission.

they would if no anchor were presented, unless the
“anchor” is so extreme as to seem irrelevant. Sarris
and Parducci (1978) provided the following analogy:
A salesman will consider his commissions to be larger
if coworkers receive less than he does. However, he
is unlikely to extend or shift his scale of judgment by
hearing about others who are in an entirely different
bracket of income (1978, p. 39). Whether an outly-
ing product is similar enough to have an influence (or
whether it is a “horse of a different color”) should be
of concern in product comparisons of diverse items.

9.3.3 Frequency Effects

The frequency effect is the tendency of people to try
to use the available response options about the same
number of times across a series of products or stimuli
to be rated. The frequency effect can cause shifts that
look like simple contrast and also a local steepening of
the psychophysical function around points where stim-
uli were closely spaced or very numerous (compared
with less “dense” portions of the stimulus range). The
frequency principle dictates that when judging many
samples, products that are numerous or bunched at
the low or high ends of the distributions tend to be
spread out into neighboring categories. This is illus-
trated in the two panels of Fig. 9.7. The upper panel
shows four hypothetical experiments and how prod-
ucts might be bunched in different parts of the range.
In the upper left panel, we see how a normal replicated
psychophysical experiment would be conducted with

equal presentations of each stimulus level. The com-
mon outcome of such a study using category ratings
would be a simple linear function of the log of stimulus
intensity. However, if the stimulus presentations were
more frequent at the high end of the distribution, i.e.,
negative skew, the upper categories would be overused,
and subjects would begin to distribute their judgments
into lower categories. If the samples were bunched at
the lower end, the lower response categories would
be overused and subjects would begin to move into
higher categories. If the stimuli were bunched in the
midrange, the adjacent categories would be used to
take on some of the middle stimuli, pushing extreme
stimuli into the ends of the response range, as shown
in the panel for a quasi-normal distribution.

Such behavior is relevant to applied testing situa-
tions. For example, in rating the presence of off-flavors
or taints, there may be very few examples of items with
high values on the scale and lots of weak (or zero) sen-
sations. The frequency effect may explain why the low
end of the scale is used less often than anticipated, and
higher mean values are obtained than one would deem
appropriate. Another example is screening a number
of flavor or fragrance candidates for a new product. A
large number of good candidates are sent for testing by
suppliers or a flavor development group. Presumably
these have been pre-tested or at least have received
a favorable opinion from a flavorist or a perfumer.
Why do they then get only mediocre ratings from the
test panel? The high end of the distribution is over-
represented (justifiably so and perhaps on purpose), so
the tendency for the panel is to drop into lower cate-
gories. This may partly explain why in-house testing
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Fig. 9.7 Predictions from the Parducci range–frequency the-
ory. Distributions of stimuli that are concentrated at one part of
the perceptual range (upper quartet) will show local steepen-
ing of the psychophysical functions (lower quartet). This is due
to subjects’ tendencies to use categories with equal frequency,
the resulting shifting into adjacent categories from those that are
overused.

panels are sometimes more critical or negative than
consumers when evaluating the same items.

Although the great majority of experiments on
the range and frequency effects have been performed
with simple visual stimuli, there are also examples
from taste evaluation (Lee et al., 2001; Riskey et al.,
1979; Riskey, 1982; Schifferstein and Frijters, 1992;
Vollmecke, 1987). Schifferstein and Frijters found sim-
ilar effects of skewed distributions with line-marking
responses as seen in previous studies with category
ratings. Perhaps line marking is not a response scale
with infinite divisions, but panelists sub-divide the line
into discrete sub-ranges as if they were using a limited

number of zones or categories. The effect of grouping
or spacing products also intensifies as the exposure to
the distributions increases. Lawless (1983) showed that
the shift that occurred with a negative skew (bunch-
ing at the upper end) into lower response categories
would intensify as the exposure to the skewed distri-
bution went from none to a single exposure to three
exposures. Thus the contextual effects do not suddenly
appear but will take hold of the subjects’ behavior as
they gain experience with the sample set.

9.4 Biases

9.4.1 Idiosyncratic Scale Usage

and Number Bias

People appear to have preferred ranges or numbers on
the response scale that they feel comfortable using.
Giovanni and Pangborn (1983) noted that people using
magnitude estimation very often used numbers that
were multiples of 2 and 5 (or obviously 10), an effect
that is well known in the psychophysical literature
(Baird and Noma, 1978). With magnitude estimation,
the idiosyncratic usage of a favorite range of numbers
causes a correlation of the power function exponents
across different sensory continua for an individual
(Jones and Marcus, 1961; Jones and Woskow, 1966).
This correlation can be explained if people are more or
less expansive (versus restrictive) in their response out-
put functions, i.e., in how they apply numbers to their
sensations in magnitude estimation studies. Another
version of such personal idiosyncrasy is the common
observation in time–intensity scaling that people show
a kind of personal “signature” or a characteristic curve
shape (Dijksterhuis, 1993; McGowan and Lee, 2006).

Another version of self-induced response restriction
can be seen when people use only selected portions
of the scale in a line-marking rating task. On a line
scale with verbal labels, people may choose to make
markings only near the verbal labels, rather than dis-
tributing them across the response scale. This was first
observed by Eng (1948) with a simple hedonic line
scale labeled Like Very Highly at one end, Dislike Very
Highly at the other, and Neither Like nor Dislike at the
center. In a group of 40 consumers, 24 used only the
three labeled parts of the scale, and Eng deleted them
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from the data analysis! This kind of behavior was also
noted with the labeled affective magnitude scale (LAM
scale) by Cardello et al. (2008) with both Army labora-
tory and student groups. Lawless et al. (2010a) found
a very high frequency (sometimes above 80%) of peo-
ple making marks within ±2 mm of a phrase mark on
the LAM scale in a multi-city consumer central loca-
tion test. Lawless et al. (2010b) found that instructions
did not seem to change this behavior much but that
expanding the physical size of the scale on the ballot
(from about 120 to 200 mm) decreased the “categor-
ical” behavior somewhat. Categorical rating behavior
can also be seen as a step function in time–intensity
records (rather than a smooth continuous curve).

Finding product differences against the background
of these individual response tendencies can be facil-
itated by within-subject experimental designs. Each
participant is used as his or her own baseline in
comparisons of products, as in dependent t-tests or
repeated measure analysis of variance in complete
block designs. Another approach is to compute a
difference score for a comparison of products in
each individual’s data, rather than merely averaging
across people and looking at differences between mean
values.

9.4.2 Poulton’s Classifications

Poulton (1989) published extensively on biases in rat-
ings and classified them. Biases in Poulton’s system
go beyond Parducci’s theory but are documented in
the psychophysical literature. These include centering
biases, contraction biases, logarithmic response bias
with numerical ratings, and a general transfer bias that
is seen when subjects carry the context from a previous
session or study into a new experiment. The centering
bias is especially relevant to just-right scales and is dis-
cussed in a later section. The response range bias is
also a special case and follows this section.

The contraction biases are all forms of assimila-
tion, the opposite of contrast. According to Poulton,
people may rate a stimulus relative to a reference
or a mean value that they hold in memory for simi-
lar types of sensory events. They tend to judge new
items as being close (perhaps too close) to this ref-
erence value, causing underestimation of high values
and overestimation of low values. There may also be

overestimation of an item when it follows a stronger
standard stimulus or underestimation when it follows
a weaker standard stimulus, a sort of local contraction
effect. Poulton also classifies the tendency to gravitate
toward the middle of the response range as a type of
contraction effect, called a response contraction bias.
While all of these effects undoubtedly occur, the ques-
tion arises as to whether contrast or assimilation is a
more common and potent process in human sensory
judgment. While some evidence for response assimi-
lation has been found in psychophysical experiments
through sequential analysis of response correlations
(Ward, 1979), contrast seems much more to be the rule
with taste stimuli (Schifferstein and Frijters, 1992) and
foods (Kamenetzky, 1959). In our experience, assim-
ilation effects are not as prevalent as contrast effects,
although assimilation has certainly been observed in
experiments on consumer expectation (e.g., Cardello
and Sawyer, 1992). In that case, the assimilation is
not toward other actual stimuli but toward expected
levels.

The logarithmic response bias can be observed with
open-ended response scales that use numbers, such
as magnitude estimation. There are several ways to
view this type of bias. Suppose that a series of stim-
uli have been arranged in increasing magnitude and
they are spaced in subjectively equal steps. As the
intensity increases, subjects change their strategy as
they cross into ranges of numerical responses where
there are more digits. For example, they might be rat-
ing the series using numbers like 2, 4, 6, and 8, but
then when they get to 10, they will continue by larger
steps, perhaps 20, 40, 60, 80. In Poulton’s view they
proceed through the larger numerical responses “too
rapidly.” A converse way of looking at this problem is
that the perceived magnitude of the higher numbers is
in smaller arithmetic steps as numbers get larger. For
example, the difference between one and two seems
much larger compared to the difference between 91
and 92. Poulton also points out that in addition to
contraction of stimulus magnitude at very high levels,
the converse is also operating and that people seem to
illogically expand their subjective number range when
using responses smaller than the number 3. One obvi-
ous way to avoid the problems in number bias is to
avoid numbers altogether or to substitute line scaling
or cross-modality matching to line length as a response
instead of numerical rating techniques like magnitude
estimation (Poulton, 1989).
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Transfer bias refers to the general tendency to
use previous experimental situations and remembered
judgments to calibrate oneself for later tasks. It may
involve any of the biases in Poulton’s or Parducci’s
theories. The situation is common when subjects are
used in multiple experiments or when sensory pan-
elists are used repeatedly in evaluations (Ward, 1987).
People have memories and a desire to be internally
consistent. Thus the ratings given to a product on one
occasion may be influenced by ratings given to similar
products on previous occasions. There are two ways to
view this tendency. One is that the judgments may not
shift appropriately when the panelists’ sensory experi-
ence, perception, or opinion of the product has in fact
changed. On the other hand, one of the primary func-
tions of panelist training and calibration in descriptive
analysis is to build up exactly those sorts of mem-
ory references that may stabilize sensory judgments.
So there is a positive light to this tendency as well.
An open question for sensory evaluation is whether
exposure to one continuum of sensory intensities or
one type of product will transfer contextual effects
to another sensory attribute or a related set of prod-
ucts (Murphy, 1982; Parducci et al., 1976; Rankin and
Marks, 1991). And if so, how far does the transfer
extend?

9.4.3 Response Range Effects

One of Poulton’s biases was called the “response range
equalizing bias” in which the stimulus range is held
constant but the response range changes and so do the
ratings. Ratings expand or contract so that the entire
range is used (minus any end-category avoidance).
This is consistent with the “mapping” idea mentioned
for stimulus range effects (stimuli are mapped onto
the available response range). Range stabilization is
implicit in the way some scaling studies have been
set up and in the instructions given to subjects. This
is similar to the use of physical reference standards in
some descriptive analysis training (Muñoz and Civille,
1998) and is related to Sarris’s work on anchor stim-
uli (Sarris and Parducci, 1978). In Anderson’s work
with 20-point category scales and line marking, high
and low examples or end anchors are given to sub-
jects to show them the likely range of the stimuli to
be encountered. The range of responses is known since

it is visible upon the page of the response sheet or has
been pre-familiarized in a practice session (Anderson,
1974). Thus it is not surprising that subjects distribute
their responses across the range in a nicely graded
fashion, giving the appearance that there is a reason-
ably linear use of the scale. Anderson noted that there
are end effects that work against the use of the entire
range (i.e., people tend to avoid using the endpoints)
but that these can be avoided by indenting the response
marks for the stimulus end anchors, for example, at
points 4 and 16 on the 20-point category scale. This
will provide psychological insulation against the end
effects by providing a comfort zone for unexpected or
extreme stimuli at the ends of the scale while leaving
sufficient gradations and room to move within the inte-
rior points. The “comfort zone” idea is one reason why
early workers in descriptive analysis used line scales
with indented vertical marks under the anchor phrases.

An exception to the response range mapping rule is
seen when anchor phrases or words on a scale are noted
and taken seriously by participants. An example is in
Green’s work on the labeled magnitude scale, which
showed a smaller response range when it was anchored
to “greatest imaginable sensation” that included all
oral sensations including pain, as opposed to a wider
range when the greatest imaginable referred only to
taste (Green et al., 1996). This also looks like an
example of contrast in which the high-end anchor can
evoke a kind of stimulus context, at least in the par-
ticipant’s mind. If the image evoked by the high-end
phrase is very extreme, it acts like a kind of stimu-
lus that compresses ratings into a smaller range of the
scale. A similar kind of response compression was seen
with the LAM scale when it was anchored to great-
est imaginable liking for “sensations of any kind” as
opposed to a more delimited frame such as “foods
and beverages” (Cardello et al., 2008). A sensory sci-
entist should consider how the high anchor phrase is
interpreted, especially if he or she wants to avoid any
compression of ratings along the response range. As
Muñoz and Civille (1998) pointed out, the use of a
descriptive analysis scale also depends a lot on the con-
ceptualization of the high extreme. Does “extremely
strong” refer to the strongest possible taste among all
sensations and products, the strongest sensation in this
product type, or just how strong this particular attribute
can become in this particular product? The strongest
sweetness in this product might be more intense than
the strongest saltiness. The definition needs to be a
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deliberate choice of the panel leader and an explicit
instruction to the panelist to give them a uniform frame
of reference.

9.4.4 The Centering Bias

The centering bias arises when subjects become aware
of the general level of stimulus intensity they are likely
to encounter in an experiment and tend to match the
center or midpoint of the stimulus range with the
midpoint of the response scale. Poulton (1989) dis-
tinguished a stimulus centering bias from a response
centering bias, but this distinction is primarily a func-
tion of how experiments are set up. In both cases,
people tend to map the middle of the stimulus range
onto the middle of the response range and otherwise
ignore the anchoring implications of the verbal labels
on the response scale. Note that the centering bias
works against the notion that respondents can use
unbalanced scales with any effectiveness. For exam-
ple, the “Excellent–very good–good–fair–poor” scale
commonly used in marketing research with consumers
is unbalanced. The problem with unbalanced scales is
that over many trials, the respondents will come to cen-
ter their responses on the middle category, regardless
of its verbal label.

The centering bias is an important problem when
there is a need to interpolate some value on a psy-
chophysical function or to find an optimal product
in just-right scaling. Poulton gives the example of
McBride’s method for considering bias in the just-
about-right (JAR) scale (McBride, 1982; see also
Johnson and Vickers, 1987). In any series of products
to be tested, say for just-right level of sweetness, there
is a tendency to center the series so that the middle
product will come out closest to the just-right point.
The function shifts depending upon the range that is
tested. One way to find the true just-right point would
be to actually have the experimental series centered
on that value, but then of course you would not need
to do the experiment. McBride gives a method for
interpolation across several experiments with differ-
ent ranges. The point at which the just-right function
and the median of the stimulus series will cross shows
the unbiased or true just-right level. This method of
interpolation is shown in Fig. 9.8. In this method, you

Fig. 9.8 Adjusting for the centering bias in just-right ratings.
Three series of sucrose concentrations in lemonade were tested,
a low series (2–8%), a middle series (6–14%), and a high range
(10–22%). In the upper panel, the method of Poulton is used to
interpolate the unbiased just-right point from the series where
the midpoint concentration would correspond to the just-right
item. In the lower panel, the method of McBride is used to
interpolate the just-right point from a series in which the aver-
age response would correspond to the just-right point. When
the average response would be just right (zero on this scale),
the hypothetical stimulus range would have been centered on
the just-right level. Replotted from Johnson and Vickers (1987),
with permission.

present several ranges of the products in separate ses-
sions and plot how the judgments of the JAR point shift
up and down. You can then interpolate to find the range
in which the just-right point would have been from the
center product in the series. This obviously takes more
work to do the test a couple of times, but it could avoid
a mistaken estimate of the JAR level.
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9.5 Response Correlation and Response

Restriction

Early experimental psychologists like Thorndike
(1920) noted that one very positive attribute of a per-
son could influence judgments on other, seemingly
unrelated characteristics of that individual. In person-
nel evaluations of military officers, Thorndike noted
a moderate positive correlation among the individ-
ual rated factors. People evaluate others like this in
real life. If achievement in sports is influential in our
assessment of a person, we might suppose a gifted
athlete to also be kind to children, generous to chari-
ties, etc., even though there is no logical relationship
between these characteristics. People like to have cog-
nitive structures that form consistent wholes and are
without conflicts or contradictions (called cognitive
dissonance) that can make us uncomfortable. The halo
effect has also been described as a carry-over from one
positive product to another (Amerine et al., 1965), but
its common usage is in reference to a positive correla-
tion of unrelated attributes (Clark and Lawless, 1994).
Of course, there can also be negative or horns effects,
in which one salient negative attribute causes other,
unrelated attributes to be viewed or rated negatively.
If a product makes a mess in the microwave, it might
be rated negatively for flavor, appearance, and texture
as well.

9.5.1 Response Correlation

A simple example of a halo effect is shown in Fig. 9.9.
In this case, a small amount of vanilla extract was
added to low-fat milk, near the threshold of percep-
tibility. Ratings were then collected from 19 milk
consumers for sweetness, thickness, creaminess and
liking for the spiked sample, and for a control milk.
In spite of the lack of relationship between vanilla
aroma and sweet taste and between vanilla and texture
characteristics, the introduction of this one positive
aspect was sufficient to cause apparent enhancement
in sweetness, creaminess, and thickness ratings.

Apparent enhancement of sweetness is an effect
long known for ethyl maltol, a caramelization prod-
uct that has an odor similar to heated sugar (Bingham
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Fig. 9.9 Adding a just perceivable level of vanilla extract to
low-fat milk causes increases in rated sweetness, thickness,
creaminess, and liking, an example of the Halo effect. From
Lawless and Clark (1994), with permission.

et al., 1990). When maltol is added to various prod-
ucts, sweetness ratings may rise compared to products
lacking this flavor. However, the effect seems to be a
case of the misattribution of olfactory stimulation to
the taste sense. Murphy and Cain (1980) showed that
citral (a lemon odor) could enhance taste ratings, but
only when the nostrils were open, which allows diffu-
sion of the odor into the nose and stimulation of the
olfactory receptors (i.e., retronasal smell). When the
nostrils are pinched shut, the diffusion is effectively
eliminated and the enhancement disappears. Murphy
and Cain interpreted this as convincing evidence that
there was no true enhancement of taste intensity by
citral, but only olfactory referral, a kind of confu-
sion between taste and smell. Studies with other odors
have also shown that the taste enhancement effect from
volatile flavors can be eliminated by nose pinching
(Frank and Byram, 1988) even for maltol (Bingham
et al., 1990). The maltol effect is also minimized by
training subjects who then learn to more effectively
separate or localize their odor experiences from taste
(Bingham et al., 1990). The sweetness enhancement
may arise as a function of conditioning or experience
with the pairing of sweet tastes with some odors in
foods (Stevenson et al., 1995).

Several lessons can be learned from the vanilla halo
effect shown in Fig. 9.9. First, untrained consumers
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cannot be trusted to provide accurate sensory speci-
fications of product characteristics. While it may be
common practice to collect some diagnostic attribute
ratings from consumers in central location or home use
tests, such information must be viewed with caution.
There are well-known correlations among attributes
(easily shown by principal components analysis, see
Chapter 18), halo effects, and taste–smell confusions,
all of which can bias the obtained ratings. Second,
consumers see products as Gestalten, as whole pat-
terns. They do not act analytically in short product
tests. They do not learn to separate their sensations
and attend effectively to individual product attributes.
Third, if consumers do not have a chance to comment
on a salient product characteristic, they may find some
other place on the questionnaire to voice that feeling,
perhaps in an inappropriate place. This last tendency
was taken advantage of in our milk example—note that
no scale for vanilla flavor was provided. The effect of
misusing response scales in this way on a questionnaire
is called response restriction or simply the “dumping
effect.”

9.5.2 “Dumping” Effects: Inflation Due

to Response Restriction in Profiling

It is part of the folklore of consumer testing that if there
is one very negative and salient attribute of a product,
it will influence other attributes in a negative direction,
an example of a horns effect. The effect is even worse
when the salient negative attribute is omitted from the
questionnaire. Omission could be due to some over-
sight or failure to anticipate the outcome in a consumer
test or simply that it was not observed in the labora-
tory conditions of preliminary phases of testing. In this
case, consumers will find a way to dump their frustra-
tion from not being able to report their dissatisfaction
by giving negative ratings on other scales or reporting
negative opinions of other even unrelated attributes. In
other words, restricting responses or failure to ask a
relevant question may change ratings on a number of
other scales.

A common version of this restriction effect can
be seen in sweetness enhancement. Frank et al.
(1993) found that the enhancement of sweet rat-
ings in the presence of a fruity odor was stronger
when ratings were restricted to sweetness only. When

both sweetness and fruitiness ratings were allowed,
no enhancement of sweetness was observed. Exactly
the same effect was seen for sweetness and fruiti-
ness ratings and for sweetness and vanilla ratings
(Clark and Lawless, 1994). So allowing the appro-
priate number of attributes can address the problem
of illusory enhancement. Schifferstein (1996) gave the
example of hexenol, a fresh green aroma, which when
added to a strawberry flavor mixture caused mean
ratings in several other scales to increase. The enhance-
ment of the other ratings occurred only when the
“green” attribute was omitted from the ballot. When
the “green” attribute was included in the ballot, the
response was correctly assigned to that scale, and there
was no apparent enhancement in the other attributes in
the aroma profile.

There is good news and bad news in these obser-
vations. From a marketing perspective, ratings can
be easily obtained from consumers that will show
apparent sweetness enhancements if the questionnaires
cleverly omit the opportunity to report on sensations
other than sweetness. However, the nose pinch condi-
tions and the use of complete sets of attributes show us
that these volatile odorants such as maltol are not sweet
taste enhancers but they are sweet rating enhancers.
That is, they are not affecting the actual perception
of sweet taste intensity but are changing the response
output function or perhaps broadening the concept of
sweetness to go beyond taste and include pleasant aro-
mas as well. It would not be wise to try to use maltol
to sweeten your coffee.

Are there other situations in sensory testing where
the dumping effect can show up? One area in which
responses are usually restricted to one attribute at a
time is in time–intensity scaling (Chapter 8). In a com-
mon version of this technique, the subject moves a
pointer, a mouse, or some other response device to
provide a continuous record of sensory intensity for
a specified attribute. Usually, just one attribute at a
time is rated since it is very difficult to attend continu-
ously or even by rapid shifting of attention to more than
one attribute. This would seem to be a perfect oppor-
tunity for the dumping tendency to produce illusory
enhancements (e.g., Bonnans and Noble, 1993). This
idea was tested in experiments with repeated category
ratings across time, a time–intensity procedure that
allows for ratings of multiple attributes. These studies
showed sweetness enhancement in sweet–fruity mix-
tures when sweetness alone was rated, but little or
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no enhancement when both sweetness and fruit inten-
sity were rated over time (Clark and Lawless, 1994).
This is exactly parallel to the sweetness enhancement
results seen by Frank and colleagues. Workers using
single-attribute time–intensity ratings should be wary
of apparent enhancements due to response restriction.

9.5.3 Over-Partitioning

In the data of van der Klaauw and Frank (1996),
one can also see cases in which having too many
attributes causes a deflation in ratings. As in the dump-
ing examples, their usual paradigm was to compare the
sweetness ratings of a simple sucrose solution to the
same concentration with a fruity odor added. When
rating sweetness only, the rating is higher than when
rating sweetness and fruitiness, the common dump-
ing effect. But when total intensity and six additional
attributes were rated, the sweetness rating was signifi-
cantly lower than either of the other two conditions. In
another example, including a bitterness rating (in addi-
tion to the sweetness and fruitiness ratings) lowered
the sweetness rating compared to rating sweetness (the
highest condition) and also compared to rating sweet-
ness and fruitiness (an intermediate sweetness rating
was obtained). This effect appears to be a deflation
due to people over-partitioning their sensations into too
many categories. The specific choices may be impor-
tant in this effect. Adding only a bitter or a bitter and
a floral rating had little or no effect and dumping infla-
tion was still observed probably because there was no
fruity rating.

In the study by Clark and Lawless (1994), the con-
trol condition (sweetener only) showed some evidence
of a decrement when the attributes for volatiles were
also available. Even more dramatic was the complete
reversal of sweet enhancement to inhibition when a
large number of response categories were provided for
simple mixtures (Frank et al., 1993).

Although this effect has not been thoroughly stud-
ied, it serves to warn the sensory scientist that the
number of choices given to untrained consumers may
affect the outcome and that too many choices may be
as dangerous as too few. Whether this effect might be
seen with trained panels remains an open question.
It is sometimes difficult to predetermine the correct
number of attributes to rate in order to guard against

the dumping effect. Careful pre-testing and discussion
phases in descriptive training may help. It is obviously
important to be inclusive and exhaustive, but also not
to waste the panelists’ time with irrelevant attributes.

9.6 Classical Psychological Errors

and Other Biases

A number of psychological errors in judgment
have been described in the literature and are com-
monly listed in references in sensory evaluation (e.g.,
Amerine et al., 1965; Meilgaard et al., 2006). They
are only briefly listed here, as they serve primarily as
empirical descriptions of behavior, without much refer-
ence to cause or any theoretical bases. It is important to
distinguish between description and explanation, and
not to confuse naming something with trying to explain
why it occurred in terms of mechanism or larger the-
ory. The sensory evaluation practitioner needs to be
aware of these errors and the conditions under which
they may occur.

9.6.1 Errors in Structured Sequences:

Anticipation and Habituation

Two errors may be seen when a non-random sequence
of products is presented for evaluation, and the
observer is aware that a sequence or a particular order
of items is going to be presented. The error of anticipa-
tion is said to occur when the subject shifts responses
in the sequence before the sensory information would
indicate that it is appropriate to do so (Mattes and
Lawless, 1985). An example is found in the method
of limits for thresholds, where an ascending sequence
is presented and the observer expects a sensation to
occur at some point and “jumps the gun.” The oppo-
site effect is said to be the error of habituation, in
which the panelist stays put too long with one pre-
vious response, when the sensory information would
indicate that a change is overdue. Obviously, the pre-
sentation of samples in random order will help to undo
the expectations involved in causing the error of antici-
pation. Perseveration is a little bit harder to understand
but may have to do with lack of attention or motivation
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on the part of the observer or having an unusually strict
criterion for changing responses. Attention and moti-
vation can be addressed by sufficient incentives and
keeping the test session from being too long.

9.6.2 The Stimulus Error

The stimulus error is another classical problem in
sensory measurement. This occurs when the observer
knows or presumes to know the identity of the stimu-
lus and thus draws some inference about what it should
taste, smell, or look like. The judgment is biased due
to expectations about stimulus identity. In the old par-
lor game of trying to identify the origin and vintage
of a wine, stimulus error is actually a big help. It is
much easier to guess the wine if you know what the
host is prone to drink or you have taken a peek at
the bottles in the kitchen beforehand. In sensory eval-
uation, the principle of blind testing and the practice
using random three-digit coding of samples mitigate
against the stimulus error. However, panelists are not
always completely in the dark about the origin or the
identity of samples. Employee panels may have a fair
amount of knowledge about what is being tested and
they may make inferences, correctly or incorrectly.
For example, in small-plant quality assurance, workers
may be aware of what types of products are being man-
ufactured that day and these same workers may serve
as sensory panelists. In the worst possible scenario,
the persons drawing the samples from production are
actually doing the tasting. As much as possible, these
situations should be avoided. In quality control pan-
els, insertion of blind control samples (both positive
controls and flawed samples) will tend to minimize the
guesswork by panelists.

9.6.3 Positional or Order Bias

Time-order error is a general term applied to sequen-
tial effects in which one order of evaluating two or
more products produces different judgments than does
another order (Amerine et al., 1965). There are two
philosophies for dealing with this problem. The first
approach is to provide products in all possible orders,
counterbalanced orders, or randomized orders so that

the sequential effects may be counterbalanced or aver-
aged out in the group data. The second approach is
to consider the order effects of interest. In this case,
different orders are analyzed as a purpose of the exper-
iment and, if order effects are observed, they are duly
noted and discussed. Whether order effects are of inter-
est will depend upon the circumstances of the product
evaluation and its goals. If counterbalanced orders or
randomization cannot be worked into the experimen-
tal design, the experimenter must consider whether
product differences are true sensory differences or are
artifacts of stimulus order. Purposeful experimentation
and analysis of order effects in at least some of the
routine evaluations may give one an appreciation for
where and when these effects occur in the product
category of interest.

Another well-known order effect in acceptance test-
ing is the reception of a higher score for the first sample
in a series (Kofes et al., 2009). Counterbalancing
orders is of course appropriate, but one can also give
a “dummy” product first to absorb the first prod-
uct’s score. With monadic (single product) tests, such
inflation could be misleading (Kofes et al., 2009).
Positional bias was also of concern in early paired tests
and also the triangle procedure (Amerine et al., 1965).
Another bias was seen when preference questions were
asked following the triangle difference test (Schutz,
1954). Following a difference test with a preference
test is not recommended in good sensory practice, in
part because these early studies showed a bias against
the sample that was considered the odd one in the tri-
angle test. Recent research indicates that this effect
may not be so robust—a replication of Schutz’s orig-
inal experiment but using the words “different” rather
than “odd” did not find much evidence for this bias (El
Gharby, 1995). Perhaps the meaning of the term “odd”
in the 1950s was in itself sufficiently biasing.

9.7 Antidotes

9.7.1 Avoid or Minimize

At first glance, one way to avoid contextual effects
would seem to be only to present products as single
items, in other words to perform only monadic tests.
This may be appropriate in some consumer testing sit-
uations where the test itself changes the situation so
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dramatically that future evaluation would be unduly
influenced by the first product tested. Examples occur
in testing consumer products such as insecticides or
hair conditioners. However, monadic testing is rarely
practical for analytical sensory tests such as descriptive
analyses. It would be highly inefficient both finan-
cially and statistically to have trained panels evaluate
only single samples in a session. More importantly,
monadic testing does not take any advantage of the
inherent comparative abilities of human observers.
Furthermore, because of transfer bias (panelists, after
all, have memories), this solution may be illusory for
an ongoing testing program. Even without an imme-
diate frame of reference in the experimental session,
people will evaluate products based on their memory of
similar items that have been recently experienced. So
they will adopt a frame of reference if none is explicitly
provided.

Poulton (1989) asserted that in most Western cul-
tures, this baseline would be fairly constant (perhaps
for consumers) and neutral based on the compara-
ble experiences of experimental participants. He went
on to suggest monadic testing as a way to avoid fre-
quency and centering biases. However, experimental
evidence for this assertion is lacking. Also, given the
high degree of idiosyncratic food preferences and food
habits, a constant baseline across individuals seems
rather unlikely in sensory evaluation of foods. So
monadic testing could actually add noise to the data.
Furthermore, monadic test designs necessitate the use
of between-subject comparisons and lose the statisti-
cal and scaling advantages inherent in using subjects
as their own controls or baselines for comparison.

The problem can be rephrased as to how sen-
sory evaluation specialists can control for contextual
biases or minimize them. There are four approaches to
dealing with context effects: randomization (including
counterbalancing), stabilization, calibration, and inter-
pretation. Stabilization refers to the attempt to keep
context the same across all evaluation sessions so that
the frame of reference is constant for all observers.
Calibration refers to the training of a descriptive
panel so that their frame of reference for the scale is
internalized through training with reference standards.
Interpretation is simply the careful consideration of
whether ratings in a given setting may have been influ-
enced by experimental context, e.g., by the specific
items that were also presented in that session. Each of
these approaches is considered below.

9.7.2 Randomization and

Counterbalancing

The use of different random or counterbalanced orders
has long been a principle of good practice in applied
sensory testing. Simple order effects, sequential depen-
dencies, and contrast between any two items can be
counteracted by using sufficient orders so that the
immediate frame of reference for any one product is
different across a group of respondents. Using an order
that mixes up products from different positions on the
scale range will also help avoid the occurrence of a
local frequency bias. That is, if too many samples are
given from the high end of the sensory continuum to
be rated, it may give the respondent the impression
that there is bunching at that end, even though there
may not be in the product set as a whole. Poulton
(1989) noted that a “controlled balanced order” might
help to avoid this. As in the discussion of the classi-
cal time-order effect above, there are two philosophies
here. Whether one randomizes and ignores the local
sequential effects, or systematically counterbalances
orders and analyzes the order dependencies as effects
of experimental interest will depend upon the exper-
imental objectives, the resources of the experimenter
and the information needed by the end users of the
experimental results.

However, using random or counterbalanced orders
will not in itself undo the broader effects of context
that develop during an experiment with repeated rat-
ings. The broader frame of reference still exists and is
still used by judges to frame the range of products and
to map the products onto the known scale range. Thus
the use of randomization or counterbalancing of orders
does not get around the problem of altered context
when results from two different experimental sessions
are compared.

Note that the examination of multiple stimulus
ranges is similar philosophically to the approach of
randomization or counterbalancing. One approach to
avoiding the centering bias in just-right scaling is to
use different ranges so that the stimulus set that would
be centered on the true just-right point can be found
by interpolation (Johnson and Vickers, 1987; McBride,
1982) (see Fig. 9.8). Multiple contexts become part of
the experimental design. The goal is to purposefully
examine the range effects, rather than averaging or
neutralizing them through randomization. As a general
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principle, the greater the number of contexts within
which a product is evaluated, the greater the under-
standing and accuracy of the final interpretation by the
sensory scientist.

9.7.3 Stabilization and Calibration

The second approach to dealing with context effects
is to try and hold the experimental context constant
across all sessions containing products that will be
compared. This can be difficult if the products are
fatiguing or if adaptation or carryover effects are likely
to restrict the number of products that can be given.
In its simplest form, this strategy takes the form of
a simple comparison of all test products to one con-
trol item (e.g., Stoer, 1992). Difference scores may
then be constructed and serve as the primary form
of the data. Alternatively, difference-from-reference
ratings (Larson-Powers and Pangborn, 1978) or magni-
tude estimation with a constant reference item may be
used. The presentation of a warm-up or practice sample
probably has some stabilizing effect, another good rea-
son to use such “throw-away” samples if the product
is not too fatiguing. Another approach is to attempt to
stabilize the endpoints by using reference standards for
high and low stimuli that appear in every session. Also,
high and low examples can be given as blind “catch tri-
als” and judges suitably motivated to expand their scale
usage if they are caught exhibiting contraction bias,
end-of-scale avoidance, or simply gravitating toward
the middle of the scale as sometimes occurs in repeated
testing. In magnitude estimation and also in the use
of the labeled magnitude scale, the reference standard
used for comparison may have a stabilizing effect and
reduce some of the contrast effects seen with all scaling
methods (Diamond and Lawless, 2001; Lawless et al.,
2000).

Calibration can refer to the use of bracketing ref-
erence standards in the experimental session, or ref-
erence standards given in training. Considering the
context within the evaluation session is an important
part of collecting good sensory judgments. Anderson
(1974), for example, in discussing the use of category
scales gives the following advice: “Several precautions
have been standard with ratings scales in functional
measurement. First, is the use of preliminary prac-
tice, which has several functions. The general range of

stimuli is not known to the subject initially, and the rat-
ing scale is arbitrary. Accordingly, the subject needs
to develop a frame of reference for the stimuli and
correlate it with the given response scale.” (emphasis
added; pp. 231–232). Anderson notes that the effect of
such practice is a decrease in variability. His practice
in the psychological laboratory for stabilizing scale
usage is similar to the training of descriptive panelists
with examples of products to be evaluated. Anderson
goes on to describe end-anchor stimuli, which serve as
low- and high-intensity standards on his 20-point scale:
“Stimulus end-anchors are extremely important. These
are additional stimuli that are more extreme than the
experimental stimuli to be studied. One function of the
end-anchors is to help define the frame of reference.”
(p. 232). In this view then, the proper use of rating
scales includes a definition of the context in which the
sample is to be judged. In practice, this is achieved by
presentation of specific examples that bracket the sen-
sory range. An explicit (if extreme) example of this is
the relative scaling method of Gay and Mead (Gay and
Mead 1992; Mead and Gay, 1995) in which the sam-
ples are inspected, then the highest and lowest placed
at the endpoints, and all others distributed along the
scale. This does insure usage of the whole scale but
renders the data totally relative and totally specific to
that context and set of samples.

Calibration of observers is a common practice
in descriptive analysis, especially in techniques with
intensity reference standards such as the texture pro-
file and the Spectrum method (Meilgaard et al., 2006).
Anderson (1974) warned that endpoint calibration was
in fact a necessary practice with category scales in
order to fix the linear usage of the scale by experimen-
tal subjects. What appears to be a problem in obtaining
unbiased scale usage may be turned to an advantage
if a stable frame of reference can be induced in sub-
jects through training. Evidence shows that contextual
effects do not appear all at once but are contingent
upon and strengthened by experience (e.g., Lawless,
1983). So the question arises whether it is possible to
“inoculate” a trained panelist against the day-to-day
context of the experimental session by sufficient train-
ing. That is, is it possible to calibrate and stabilize
judges’ frame of reference to make them immune to
contextual effects? Some of the examples of trans-
fer bias cited by Poulton (1989) certainly make this
seem reasonable. However, a recent study using exten-
sive training on a 15-point sweetness scale failed to
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eliminate simple contrast effects (Olabi and Lawless,
2008). Reference standards were similarly ineffective.
Perhaps it is asking too much of human nature to get
panelists to act like absolute measuring instruments.

9.7.4 Interpretation

The last approach to context effects and biases is to be
aware that they are operating and to draw conclusions
about product differences with suitable caution. It is
not appropriate to conclude that two products evaluated
in different sessions are in fact different unless they
were examined in similar contexts. The sensory profes-
sional must look at the whole experimental context and
not just the summary statistics for the products in ques-
tion in order to draw accurate conclusions. In drawing
conclusions about product differences, it is necessary
to question whether the observed difference could pos-
sibly have arisen from contextual effects or whether it
is likely to be a true sensory-based difference. In situa-
tions of apparent enhancement or synergistic influence
of one flavor upon another, one must always question
how the data were gathered. Were there sufficient and
appropriate response categories or was there the pos-
sibility that the apparent enhancement occurred due
to dumping into the available but restricted set of
response attributes?

9.8 Conclusions

Notes make each other sweeter in a chord, and so do col-
ors when harmoniously applied. A certain amount of skin
dipped in hot water gives the perception of a certain heat.
More skin immersed makes the heat much more intense
although of course the water’s heat is the same. (James,
1913, p. 25).

William James reminds us that complex patterns of
stimulation alter the perception of things around us.
What something looks like, feels like, or tastes like
depends upon the other patterns of stimulation that
are present and that have come before the stimulus to
be judged. Context effects are present in all scaling
methods, and human behavior appears to be a sort of
compromise between a completely relative system of

judgment and one that retains some absolute or cali-
brated properties (Ward, 1987). A main point of this
chapter has been to show the importance of a frame
of reference in influencing people’s judgments about
products. We have seen that other products in the same
session can have a marked effect, usually one of con-
trast. The word anchors or phrases on the scale can
influence the frame of reference (what you ask and how
you ask it) and, from the dumping effect, we find that
even what you do not ask can also influence responses.
One goal of the sensory evaluation specialist should
be to minimize unwanted effects that endanger the
accuracy of results. Poulton (1989) discussed range
biases as potential problems and stated that they were
unavoidable in category scaling. Another perspective is
to consider them interesting human phenomena, wor-
thy of study for what they tell us about the judgment
process. A third approach is to embrace the relative
nature of human judgment and reduce all data to dif-
ference scores or similar explicit comparisons. This
would be difficult for most practitioners of descriptive
analysis methods.

From a practical perspective, a very real danger
exists in sensory evaluation when people try to com-
pare ratings given to products in different settings or
from different experimental sessions. Unless the con-
text and frame of reference is the same in both sessions,
it is not possible to say whether differences between
the products arose from true sensation differences or
from differences in ratings due to contextual effects. A
difference in the data set might occur merely because
the two items were viewed among higher or lower val-
ued items in their test sessions. Conversely, two items
might appear similar in ratings across two sessions, but
their ratings might be similar only due to range or cen-
tering effects. How can a sensory practitioner know
whether the scale value of 5.3 for this week’s prod-
uct is actually superior to the value of 4.9 given to the
prototype evaluated last week?

Unless the sensory professional is aware of con-
text effects and guards against them, inappropriate
conclusions may be drawn from evaluation sessions,
especially if products evaluated in different contexts
are to be compared. Sometimes the effects can be sub-
tle and insidious. Consider the context effect discussed
above in optimization (Mattes and Lawless, 1985).
Ascending in concentration results in the estimation of
a preferred sensory optimum that is too low relative to
the peak that would be obtained from a randomized
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order of samples. Yet adding a flavor ingredient “to
taste” is what product developers commonly do at the
benchtop or chefs do in a research kitchen when they
come up with a seemingly optimized ingredient level.
However, even an informal tasting has its own context.
We cannot assume that the results of such informal
tastings are accurate—only properly randomized or
counterbalanced sensory testing using acceptability
ratings or a just-right scale with precautions against
centering bias would give accurate direction as to the
appropriate flavor level.

It is sometimes difficult to pin down exactly which
of the many biases discussed in this chapter may be
operating in an experiment. For example, the con-
trast effect and response contraction effects can work
against each other so that there may be little evi-
dence that these tendencies are present in a particular
evaluation session (Schifferstein and Frijters, 1992).
Communication with test panelists, careful examina-
tion of the data, and looking at historical records can
all give hints about what may be going on with a
panel that does repeated testing. Is there evidence of
response contraction or gravitation toward the center
of the scale? If these conservative tendencies are creep-
ing in, they should show up through examination of
data sets over time. The contraction effect is insidious
since the trend may appear as reduced standard devia-
tions that may give the false impression that the panel
is achieving higher levels of calibration or consensus.
However, the reduced error will not be accompanied by
a higher rate of significant differences among products,
since the product means will also gravitate toward the
middle of the scale and differences between means will
be smaller. This type of insight highlights the depth of
analysis that is needed in good sensory practice and
that a sensory professional must be more than a person
who merely conducts tests and reports results. They
must be in touch with the trends and finer grain of the
data set along with the psychological tendencies of the
respondents that may arise as a function of changes in
frame of reference and other biases.

References

Amerine, M. A., Pangborn, R. M. and Roessler, E. B. 1965.
Principles of Sensory Evaluation of Food. Academic, New
York.

Anderson, N. 1974. Algebraic models in perception. In: E.
C. Carterette and M. P. Friedman (eds.), Handbook of
Perception. II. Psychophysical Judgment and Measurement.
Academic, New York, pp. 215–298.

Baird, J. C. and Noma, E. 1978. Fundamentals of Scaling and
Psychophysics. Wiley, New York.

Beebe-Center, J. G. 1932. The Psychology of Pleasantness and
Unpleasantness. Russell & Russell, New York.

Bingham, A. F., Birch, G. G., de Graaf, C., Behan, J. M. and
Perring, K. D. 1990. Sensory studies with sucrose maltol
mixtures. Chemical Senses, 15, 447–456.

Birnbaum, M. H. 1982. Problems with so called “direct” scaling.
In: J. T. Kuznicki, A. F. Rutkiewic and R. A. Johnson (eds.),
Problems and Approaches to Measuring Hedonics (ASTM
STP 773). American Society for Testing and Materials,
Philadelphia, pp. 34–48.

Bonnans, S. and Noble, A. C. 1993. Effects of sweetener type
and of sweetener and acid levels on temporal perception
of sweetness, sourness and fruitiness. Chemical Senses, 18,
273–283.

Boring, E. G. 1942. Sensation and Perception in the History
of Experimental Psychology. Appleton-Century-Crofts, New
York.

Cardello, A. V. and Sawyer, F. M. 1992. Effects of discon-
firmed consumer expectations on food acceptability. Journal
of Sensory Studies, 7, 253–277.

Cardello, A. V., Lawless, H. T. and Schutz, H. G. 2008.
Effects of extreme anchors and interior label spacing on
labeled magnitude scales. Food Quality and Preference, 21,
323–334.

Clark, C. C. and Lawless, H. T. 1994. Limiting response alter-
natives in time–intensity scaling: An examination of the
halo-dumping effect. Chemical Senses, 19, 583–594.

Diamond, J. and Lawless, H. T. 2001. Context effects and ref-
erence standards with magnitude estimation and the labeled
magnitude scale. Journal of Sensory Studies, 16, 1–10.

Diehl, R. L., Elman, J. L. and McCusker, S. B. 1978.
Contrast effects on stop consonant identification. Journal
of Experimental Psychology: Human Perception and
Performance, 4, 599–609.

Dijksterhuis, G. 1993. Principal component analysis of time–
intensity bitterness curves. Journal of Sensory Studies, 8,
317–328.

Dolese, M., Zellner, D., Vasserman, M. and Parker, S. 2005.
Categorization affects hedonic contrast in the visual arts.
Bulletin of Psychology and the Arts, 5, 21–25.

Eimas, P. D. and Corbit, J. D. 1973. Selective adaptation of lin-
guistic feature detectors. Cognitive Psychology, 4, 99–109.

El Gharby, A. 1995. Effect of Nonsensory Information on
Sensory Judgments of No-Fat and Low-Fat Foods: Influences
of Attitude, Belief, Eating Restraint and Label Information.
M.Sc. Thesis, Cornell University.

Eng, E. W. 1948. An Experimental Study of the Reliabilities
of Rating Scale for Food Preference Discrimination.
M. S. Thesis, Northwestern University, and US Army
Quartermaster Food and Container Institute, Report # 11–50.

Engen, T. and Levy, N. 1958. The influence of context on
constant-sum loudness judgments. American Journal of
Psychology, 71, 731–736.

Frank, R. A. and Byram, J. 1988. Taste–smell interactions are
tastant and odorant dependent. Chemical Senses, 13, 445.



224 9 Context Effects and Biases in Sensory Judgment

Frank, R. A., van der Klaauw, N. J. and Schifferstein, H.
N. J. 1993. Both perceptual and conceptual factors influ-
ence taste–odor and taste–taste interactions. Perception &
Psychophysics, 54, 343–354.

Gay, C. and Mead, R. 1992 A statistical appraisal of the prob-
lem of sensory measurement. Journal of Sensory Studies, 7,
205–228.

Giovanni, M. E. and Pangborn, R. M. 1983. Measurement of
taste intensity and degree of liking of beverages by graphic
scaling and magnitude estimation. Journal of Food Science,
48, 1175–1182.

Green, B. G., Dalton, P., Cowart, B., Shaffer, G., Rankin, K.
and Higgins, J. 1996. Evaluating the ‘labeled magnitude
scale’ for measuring sensations of taste and smell. Chemical
Senses, 21, 323–334.

Hanson, H. L., Davis, J. G., Campbell, A. A., Anderson, J. H.
and Lineweaver, H. 1955. Sensory test methods II. Effect
of previous tests on consumer response to foods. Food
Technology, 9, 56–59.

Helson, H. H. 1964. Adaptation-Level Theory. Harper & Rowe,
New York.

James, W. 1913. Psychology. Henry Holt and Company, New
York.

Johnson, J. and Vickers, Z. 1987. Avoiding the centering
bias or range effect when determining an optimum level
of sweetness in lemonade. Journal of Sensory Studies, 2,
283–291.

Jones, F. N. and Marcus, M. J. 1961. The subject effect in
judgments of subjective magnitude. Journal of Experimental
Psychology, 61, 40–44.

Jones, F. N. and Woskow, M. J. 1966. Some effects of context on
the slope in magnitude estimation. Journal of Experimental
Psychology, 71, 177–180.

Kamenetzky, J. 1959. Contrast and convergence effects in
ratings of foods. Journal of Applied Psychology, 43(1),
47–52.

Kofes, J., Naqvi, S., Cece, A. and Yeh, M. 2009. Understanding
Presentation Order Effects and Ways to Control Them in
Consumer Testing. Paper presented at the 8th Pangborn
Sensory Science Symposium, Florence, Italy.

Larson-Powers, N. and Pangborn, R. M. 1978. Descriptive anal-
ysis of the sensory properties of beverages and gelatins
containing sucrose or synthetic sweeteners. Journal of Food
Science, 43, 47–51.

Lawless, H. T. 1983. Contextual effect in category ratings.
Journal of Testing and Evaluation, 11, 346–349.

Lawless, H. T. 1994. Contextual and Measurement Aspects
of Acceptability. Final Report #TCN 94178, US Army
Research Office.

Lawless, H. T. and Malone, G. J. 1986a. A comparison of scaling
methods: Sensitivity, replicates and relative measurement.
Journal of Sensory Studies, 1, 155–174.

Lawless, H. T. and Malone, J. G. 1986b. The discriminative
efficiency of common scaling methods. Journal of Sensory
Studies, 1, 85–96.

Lawless, H. T., Glatter, S. and Hohn, C. 1991. Context dependent
changes in the perception of odor quality. Chemical Senses,
16, 349–360.

Lawless, H. T., Horne. J. and Speirs, W. 2000. Contrast and range
effects for category, magnitude and labeled magnitude scales.
Chemical Senses, 25, 85–92.

Lawless, H. T., Popper, R. and Kroll, B. J. 2010a. Comparison
of the labeled affective magnitude (LAM) scale, an 11-point
category scale and the traditional nine-point Hedonic scale.
Food Quality and Preference, 21, 4–12.

Lawless, H. T., Sinopoli, D. and Chapman, K. W. 2010b. A com-
parison of the labeled affective magnitude scale and the nine
point hedonic scale and examination of categorical behavior.
Journal of Sensory Studies, 25, S1, 54–66.

Lee, H.-S., Kim, K.-O. and O’Mahony, M. 2001. How do the
signal detection indices react to frequency context bias for
intensity scaling? Journal of Sensory Studies, 16, 33–52.

Marks, L. E. 1994. Recalibrating the auditory system: The per-
ception of loudness. Journal of Experimental Psychology:
Human Perception & Performance, 20, 382–396.

Mattes, R. D. and Lawless, H. T. 1985. An adjustment error in
optimization of taste intensity. Appetite, 6, 103–114.

McBride, R. L. 1982. Range bias in sensory evaluation. Journal
of Food Technology, 17, 405–410.

McBride, R. L. and Anderson, N. H. 1990. Integration psy-
chophysics. In R. L. McBride and H. J. H. MacFie (eds.),
Psychological Basis of Sensory Evaluation. Elsevier Applied
Science, London, pp. 93–115.

McBurney, D. H. 1966. Magnitude estimation of the taste of
sodium chloride after adaptation to sodium chloride. Journal
of Experimental Psychology, 72, 869–873.

McGowan, B. A. and Lee, S.-Y. 2006. Comparison of methods
to analyze time–intensity curves in a corn zein chewing gum
study. Food Quality and Preference, 17, 296–306.

Mead, R. and Gay, C. 1995. Sequential design of sensory trials.
Food Quality and Preference, 6, 271–280.

Meilgaard, M., Civille, G. V. and Carr, B. T. 2006.
Sensory Evaluation Techniques, Third Edition. CRC, Boca
Raton, FL.

Mellers, B. A. and Birnbaum, M. H. 1982. Loci of contextual
effects in judgment. Journal of Experimental Psychology:
Human Perception and Performance, 4, 582–601.

Mellers, B. A. and Birnbaum, M. H. 1983. Contextual effects in
social judgment. Journal of Experimental Social Psychology,
19, 157–171.

Muñoz, A. M. and Civille, G. V. 1998. Universal, product and
attribute specific scaling and the development of common
lexicons in descriptive analysis. Journal of Sensory Studies,
13, 57–75.

Murphy, C. 1982. Effects of exposure and context on
hedonics of olfactory-taste mixtures. In: J. T. Kuznicki,
R. A. Johnson and A. F. Rutkeiwic (eds.), Selected
Sensory Methods: Problems and Applications to Measuring
Hedonics. American Society for Testing and Materials,
Philadelphia, pp. 60–70.

Murphy, C. and Cain, W. S. 1980. Taste and olfaction:
Independence vs. interaction. Physiology and Behavior, 24,
601–605.

Olabi, A. and Lawless, H. T. 2008. Persistence of context
effects with training and reference standards. Journal of Food
Science, 73, S185–S189.

Parducci, A. 1965. Category judgment: A range-frequency
model. Psychological Review, 72, 407–418.

Parducci, A. 1974. Contextual effects: A range-frequency anal-
ysis. In: E. C. Carterette and M. P. Friedman (eds.),
Handbook of Perception. II. Psychophysical Judgment and
Measurement. Academic, New York, pp. 127–141.



References 225

Parducci, A. and Perrett, L. F. 1971. Category rating scales:
Effects of relative spacing and frequency of stimulus values.
Journal of Experimental Psychology (Monograph), 89(2),
427–452.

Parducci, A., Knobel, S. and Thomas, C. 1976. Independent
context for category ratings: A range-frequency analysis.
Perception & Psychophysics, 20, 360–366.

Parker, S., Murphy, D. R. and Schneider, B. A. 2002. Top-
down gain control in the auditory system: Evidence from
identification and discrimination experiments. Perception &
Psychophysics, 64, 598–615.

Poulton, E. C. 1989. Bias in Quantifying Judgments. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Rankin, K. M. and Marks, L. E. 1991. Differential context effects
in taste perception. Chemical Senses, 16, 617–629.

Riskey, D. R. 1982. Effects of context and interstimulus pro-
cedures in judgments of saltiness and pleasantness. In: J. T.
Kuznicki, R. A. Johnson and A. F. Rutkeiwic (eds.), Selected
Sensory Methods: Problems and Applications to Measuring
Hedonics. American Society for Testing and Materials,
Philadelphia, pp. 71–83.

Riskey, D. R., Parducci, A. and Beauchamp, G. K. 1979. Effects
of context in judgments of sweetness and pleasantness.
Perception & Psychophysics, 26, 171–176.

Sandusky, A. and Parducci, A. 1965. Pleasantness of odors as
a function of the immediate stimulus context. Psychonomic
Science, 3, 321–322.

Sarris, V. 1967.Adaptation-level theory: Two critical exper-
iments on Helson’s weighted-average model. American
Journal of Psychology, 80, 331–344.

Sarris, V. and Parducci, A. 1978. Multiple anchoring of category
rating scales. Perception & Psychophysics, 24, 35–39.

Schifferstein, H. J. N. 1995. Contextual shifts in hedonic judg-
ment. Journal of Sensory Studies, 10, 381–392.

Schifferstein, H. J. N. 1996. Cognitive factors affecting
taste intensity judgments. Food Quality and Preference, 7,
167–175.

Schifferstein, H. N. J. and Frijters, J. E. R. 1992. Contextual
and sequential effects on judgments of sweetness intensity.
Perception & Psychophysics, 52, 243–255.

Schutz, H. G. 1954. Effect of bias on preference in the
difference-preference test. In: D. R. Peryam, J. J. Pilgram
and M. S. Peterson (eds.), Food Acceptance Testing
Methodology. National Academy of Sciences, Washington,
DC, pp. 85–91.

Stevenson, R. J., Prescott, J. and Boakes, R. A. 1995. The acqui-
sition of taste properties by odors. Learning and Motivation,
26, 433–455.

Stoer, N. L. 1992. Comparison of Absolute Scaling and
Relative-To-Reference Scaling in Sensory Evaluation of
Dairy Products. Master’s Thesis, Cornell University.

Teghtsoonian, R. and Teghtsoonian, M. 1978. Range and
regression effects in magnitude scaling. Perception &
Psychophysics, 24, 305–314.

Thorndike, E. L. 1920. A constant error in psychophysical
ratings. Journal of Applied Psychology, 4, 25–29.

van der Klaauw, N. J. and Frank, R. A. 1996. Scaling compo-
nent intensities of complex stimuli: The influence of response
alternatives. Environment International, 22, 21–31.

Vollmecke, T. A. 1987. The Influence of Context on Sweetness
and Pleasantness Evaluations of Beverages. Doctoral disser-
tation, University of Pennsylvania.

Ward, L. M. 1979. Stimulus information and sequential depen-
dencies in magnitude estimation and cross-modality match-
ing. Journal of Experimental Psychology: Human Perception
and Performance, 5, 444–459.

Ward, L. M. 1987. Remembrance of sounds past: Memory
and psychophysical scaling. Journal of Experimental
Psychology: Human Perception and Performance, 13,
216–227.

Zellner, D. A., Allen, D., Henley, M. and Parker, S. 2006.
Hedonic contrast and condensation: Good stimuli make
mediocre stimuli less good and less different. Psychonomic
Bulletin and Review, 13, 235–239.



Chapter 10

Descriptive Analysis

Abstract This chapter describes the potential uses for descriptive analysis in
sensory evaluation. We then discuss the use of language and concept formation as
well as the requirements for appropriate sensory attribute terms. This is followed by
a historical review of the first descriptive analysis technique, the Flavor Profile. We
then describe the Texture Profile, as well as proprietary descriptive methods such as
Quantitative Descriptive Analysis and the Spectrum method. We then lead the reader
through a step-by-step application of consensus and ballot-trained generic descriptive
analyses. We then highlight and discuss some of the studies comparing conventional
descriptive analysis technique. This is followed by an in-depth discussion of the vari-
ations on the theme of descriptive analysis such as free choice profiling and flash
profiling.

I want to reach that state of condensation of sensations which constitutes a picture.

—Henri Matisse
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10.1 Introduction

Descriptive sensory analyses are the most sophisti-
cated tools in the arsenal of the sensory scientist.
These techniques allow the sensory scientist to obtain
complete sensory descriptions of products, to iden-
tify underlying ingredient and process variables, and/or
to determine which sensory attributes are important
to acceptance. A generic descriptive analysis would
usually have between 8 and 12 panelists that would
have been trained, with the use of reference stan-
dards, to understand and agree on the meaning of
the attributes used. They would usually use a quan-
titative scale for intensity which allows the data to
be statistically analyzed. These panelists would not
be asked for their hedonic responses to the products.
However, as we will see in this chapter, there are
several different descriptive analysis methods and, in
general, these reflect very different sensory philoso-
phies and approaches. Usually, descriptive techniques
produce objective descriptions of products in terms
of the perceived sensory attributes. Depending on
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the specific technique used, the description can be
more or less objective, as well as qualitative or
quantitative.

10.2 Uses of Descriptive Analyses

Descriptive analyses are generally useful in any sit-
uation where a detailed specification of the sensory
attributes of a single product or a comparison of the
sensory differences among several products is desired.
These techniques are often used to monitor com-
petitors’ offerings. Descriptive analysis can indicate
exactly how in the sensory dimension the competitor’s
product is different from yours. These techniques are
ideal for shelf-life testing, especially if the judges were
well trained and are consistent over time. Descriptive
techniques are frequently used in product develop-
ment to measure how close a new introduction is to
the target or to assess suitability of prototype prod-
ucts. In quality assurance, descriptive techniques can
be invaluable when the sensory aspects of a problem
must be defined. Descriptive techniques tend to be too
expensive for day-to-day quality control situations, but
the methods are helpful when troubleshooting major
consumer complaints. Most descriptive methods can
be used to define sensory–instrumental relationships.
Descriptive analysis techniques should never be used
with consumers because in all descriptive methods,
the panelists should be trained at the very least to be
consistent and reproducible.

10.3 Language and Descriptive Analysis

There are three types of language, namely everyday
language, lexical language, and scientific language.
Everyday language is used in daily conversations and
may vary across cultural subgroups and geographical
regions. Lexical language is the language found in the
dictionary and this language may be used in everyday
conversations. However, few people use primarily lex-
ical language in conversation. For most of us lexical
language is best represented in our written documents.
Scientific language is specifically created for scientific
purposes and the terms used are usually very precisely
defined. This is frequently the “jargon” associated with
a specific scientific discipline.

The training phase of most descriptive analysis
techniques includes an effort to teach the panel or
to have the panel create their own scientific lan-
guage for the product or product category of inter-
est. Psychologists and anthropologists have argued for
years about the interplay between language and per-
ception. An extreme view is that of Benjamin Whorf
(1952) who said that language both reflects and deter-
mines the way in which we perceive the world. On the
other side of the coin are psychologists who say that
perception is largely determined by the information
and structure offered by stimulation from the environ-
ment. Words serve merely as instruments to convey
our perceptions to other people. There is evidence that
humans learn to organize patterns of correlated sensory
characteristics to form categories and concepts. The
concepts formed are labeled (given language descrip-
tions) to facilitate communication.

Concept formation is dependent on prior experi-
ence. Thus different people or cultures may form
different concepts from the same characteristics.
Concepts are formed by a process involving both
abstraction and generalization (Muñoz and Civille,
1998). A number of studies have shown that concept
formation may require exposure to many similar prod-
ucts, certainly if the end result is a desire to align a
concept among a group of people (Ishii and O’Mahony,
1991). A single example may define the prototype for
the concept (usually called a descriptor in sensory stud-
ies) but does not necessarily allow the panelists to
generalize, abstract, or learn where the concept bound-
aries are. To generalize and learn to distinguish weakly
structured concepts (such as creaminess) the panelists
should be exposed to multiple reference standards
(Homa and Cultice, 1984).

In practice this means that when we train a descrip-
tive panel, we must be careful to facilitate meaning-
ful concept formation by exposing the panel to as
many standards as feasible. However, if the concept
boundaries are very clear and narrow (for example,
sweetness) a single standard may be adequate. Concept
formation is improved when it occurs within the prod-
uct category under study. For example, Sulmont et al.
(1999) working with orange juice found that panels
receiving spiked orange juice samples as reference
standards were more discriminant and homogeneous
than panelists receiving either a single reference stan-
dard for each attribute or three reference standards per
attribute. In their case it seemed that multiple reference
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standards actually had a negative effect on the panel
performance. But, Murray et al. (2001) caution that ref-
erence standards external to the product category also
have a role to play in concept formation. It is impor-
tant to note that the use of reference standards does not
necessarily eliminate contrast effects and the sensory
scientist should keep that in mind.

If panelists are to use exact sensory descriptors’
descriptions they must be trained. And untrained pan-
elists frequently realize this when they are asked to
evaluate products on attributes for which they have no
clear concept. Armstrong et al. (1997) quote one of
their untrained panelist: “I would rather we sat down
and decided on what certain words and descriptions
meant.” The goal is for all panelists to use the same
concepts and to be able to communicate precisely with
one another; in other words the training process creates
a “frame of reference” for the panel as a group (Murray
et al., 2001). Thus, almost as an a priori assump-
tion, descriptive analysis requires precise and specific
concepts articulated in carefully chosen scientific lan-
guage. The language used by consumers to describe
sensory characteristics is almost always too imprecise
and non-specific to allow the sensory specialist to mea-
sure and understand the underlying concepts in a way
that will provide meaningful data.

Concept formation and definition can be illustrated
as follows. In the United States and most Western
countries our everyday concepts of colors are very sim-
ilar, because we are taught as children to associate
certain labels with certain stimuli. In other words, if
a child says that the leaves of an oak tree are blue, the
child will be told that the leaves are green. If the child
persists in misnaming the color then the child would
be tested for vision and/or other problems. Color is
thus a well-structured concept for most individuals and
possesses a widely understood scientific language for
its description. However, with other sensory attributes
such as flavor this is not true. In our culture we rarely
describe the flavor of a food in precise terms. We usu-
ally say things like “the freshly baked bread smells
good” or “the cough syrup tastes bad.” There are charts
with standard colors with coded labels (for example,
the Munsell Book of Colors) but for taste, odor, and
texture there is no “Munsell Book” and thus when
we want to do research on these concepts we need to
precisely define (preferably with reference standards)
the scientific language used to describe the sensory
sensations associated with the products studied.

When selecting terms (descriptors) to describe the
sensory attributes of products we must keep the several
desirable characteristics of descriptors in mind (Civille
and Lawless, 1986). The desirable characteristics dis-
cussed by Civille and Lawless and others are listed
in order of approximate importance in Table 10.1.
We will consider each of these characteristics in turn.
The selected descriptors should discriminate among
the samples; therefore, they should indicate perceived
differences among the samples. Thus, if we are evalu-
ating cranberry juice samples and all the samples are
the exact same shade of red then “red color intensity”
would not be a useful descriptor. On the other hand, if
the red color of the cranberry juice samples differs, due
to processing conditions for example, then “red color
intensity” would be an appropriate descriptor.

Table 10.1 Desirable characteristics that should be remem-
bered when choosing terms for descriptive analysis studies (in
order of importance)

Discriminate More important
Non-redundant
Relate to consumer acceptance/rejection
Relate to instrumental or physical

measurements
Singular
Precise and reliable
Consensus on meaning
Unambiguous
Reference easy to obtain
Communicate
Relate to reality Less important

The chosen term should be completely non-
redundant with other terms; an example of redun-
dancy is when the panelists are evaluating a steak
and they are asked to rate both the perceived tender-
ness and the toughness of the meat (Raffensperger
et al., 1956) since they both indicate the same con-
cept in meat. It would be much better to decide that
either the term “toughness” or the term “tenderness”
should be used in the evaluation of the meat sam-
ples. Additionally the terms should be orthogonal.
Orthogonal descriptors are not correlated with each
other. Non-orthogonal descriptors overlap; for exam-
ple, asking a panel to score the “red fruit intensity”
of a Pinot noir wine and to score “cherry intensity”
would be asking them to score non-orthogonal terms.
It is very confusing, de-motivating, and mentally frus-
trating to the panelists when they are asked to score
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redundant and non-orthogonal terms. Sometimes, it is
impossible to entirely eliminate term redundancy and
to ensure that all terms are orthogonal. For example, in
a study describing differences among vanilla essences,
Heymann (1994a) trained a panel to evaluate both but-
terscotch odor and sweet milk flavor. The panel was
convinced that these two terms described different sen-
sations. Yet, during the data analysis it became clear
from the principal component analysis that the two
terms were redundant and that they exhibited a great
deal of overlap. But, it is possible that while these
terms were correlated in this product category, they
may not be for another set of products!

Panelists often have preconceived notions about
which terms are correlated and which are not. During
training it is often necessary to help panelists “decor-
relate” terms (Civille and Lawless, 1986; Lawless
and Corrigan, 1993). In texture analysis panelists fre-
quently cannot grasp the differences between dense-
ness and hardness, since these terms are correlated
in many foods but not all. Some foods are dense
but not hard (cream cheese, refrigerated butter) and
other foods are hard but not dense (American malted
milk bars, refrigerated “aerated chocolate bars” in the
United Kingdom). Exposing panelists to these prod-
ucts would help de-correlate these terms, allowing the
panel to understand that the two terms do not always
have to vary together.

The data from descriptive analyses are often used
to interpret consumer hedonic responses to the same
samples. Therefore, it is very helpful if the descrip-
tors used in the descriptive analysis can be related to
concepts that lead consumers to accept or reject the
product. In a sensory profiling of aged natural cheeses
the panel trained by Heisserer and Chambers (1993)
chose to use the term “butyric acid” (a chemical name)
instead of the panel’s consensus term for the sensory
odor impression, namely “baby vomit.” In this case the
term that they discarded might have been more help-
ful in relating consumer acceptance or rejection of the
cheese than the more precise chemical term chosen.
Also, the ideal descriptors can be related to the under-
lying natural structure (if it is known) of the product.
For example, many terms associated with the texture
profile are tied to rheological principles (Szczesniak
et al., 1963). It is also possible to use terms that are
related to the chemical nature of the flavor compounds
found in the product. For example, Heymann and
Noble (1987) used the term “bell pepper” to describe

the odor sensation in Cabernet sauvignon wines associ-
ated with the chemical 2-methoxy-3-isobutyl pyrazine.
The pyrazine odorant is present in Cabernet sauvignon
wines and it is also the impact compound for bell pep-
per aroma. The use of “butyric acid” by Heisserer and
Chambers (1993) to describe a specific odor in aged
cheese is tied to the compound probably responsible
for the odor.

Descriptors should be singular rather than combina-
tions of several terms. Combination or holistic terms
such as creamy, soft, clean, fresh are very confusing
to panelists. Integrated terms may be appropriate in
advertising but not in sensory analysis. These terms
should be broken down into their elemental, analyt-
ical, and primary parts. For example, a number of
scientists have found that creaminess perception is a
function of smoothness, viscosity, fatty mouth feel,
and cream flavor (see Frøst and Janhøj, 2007, for an
excellent overview). A study involving creaminess will
likely be more easily interpreted and understood if
most or all of these terms are examined. Also, the term
acrid is a combination of aroma and tactile sensations
(Hegenbart, 1994), and panelists should be trained to
evaluate the components of acrid rather than the inte-
grated term itself. The term soft, as used with fabrics, is
a combination of compressibility, springiness, smooth-
ness to touch, and a lack of crisp edges when folded.
The problem with compound descriptors like creamy
is that they are not actionable. Product developers do
not know what to fix if the data indicate that there is a
problem with this descriptor. Do they change the vis-
cosity? The particle size? The aroma? It is possible
that the term is not weighted similarly by all panelists;
some may emphasize the thickness concept and others
the cream aroma which often vary independently, thus
“muddling up” the analysis. This is clearly not a good
state of affairs for a descriptive analysis panel.

Suitable descriptors are ones that can be used with
precision and reliability by the panelists. Panelists
should fairly easily agree on the meaning of a speci-
fied term, the term should thus be unambiguous. They
should be able to agree on the prototypical exam-
ples related to the descriptor and they should agree
on the boundaries of the descriptor. Using reference
standards to signify these boundaries is encouraged.
It simplifies the life of the panel leader if the phys-
ical reference standards for the descriptor are easy
to obtain. However, difficulties in obtaining physical
reference standards should not prevent the panel leader
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or the panelists from using terms that are ideal in every
other way.

The chosen descriptors should have communication
value and should not be jargon. In other words, the
terms should be understandable to the users of the
information obtained in the study and not only to the
descriptive panel and their leader. It is also helpful if
the term had been used traditionally with the prod-
uct or if it can be related to the existing literature.
The reference standards associated with each descrip-
tor have a two-fold purpose: to align the underlying
concepts for the panelists and to act as “translation”
devices for users of the information obtained from the
study. Giboreau et al. (2007) stressed that circularity
should be avoided in defining sensory descriptors, for
example, “noisy” should not be defined as “that which
makes noise” but rather as “that which produces sound
when it is bitten.” These authors also stress that ref-
erence standards would increase the utility of these
definitions and that definitions should be exact substi-
tutes for the defined terms. An example would be “This
piece of meat is very tough” and substituting the defi-
nition for “tough” one would say “This piece of meat
is very difficult to chew.”

Krasner (1995) working with water taints showed
that some reference standards, for example, a
hypochlorite solution for chlorine odor in water or a
piece of boiled rubber hose for a rubbery smell, were
distinctive and a large percentage of panelists agreed
on the odor. Other chemicals were not successful as
reference standards, for example, hexanal evoked a
grassy odor descriptor from about 24% of his pan-
elists and a lettuce aroma descriptor from 41% of the
panelists with the rest divided between celery, olives,
tobacco smoke, and old produce. We are of the opin-
ion that this occurs relatively frequently with single
chemical compounds.

The use of multiple reference standards for a sin-
gle concept enhances learning and use of the concept
(Ishii and O’Mahony, 1991). Additionally, panel lead-
ers with a broad sensory reference base facilitate learn-
ing. For example, panelist responses to the odor of
oil of bitter almonds may include descriptors such as
almond, cherry, cough drops, Amaretto, and Danish
pastries. All of these descriptors refer to the underly-
ing benzaldehyde character in all these products. In
another study the panelists may state that the prod-
uct reminds them of cardboard, paint, and linseed oil.
The experienced panel leader will realize that all these

terms are descriptive of the sensation associated with
the oxidation of lipids and fatty acids. It is also helpful
if the panel leader has background knowledge of the
product category.

10.4 Descriptive Analysis Techniques

In the following section we will review the major
approaches and philosophies of descriptive analysis
techniques. Reviews can be found in Amerine et al.
(1965), Powers (1988), Einstein (1991), Heymann
et al. (1993), Murray et al. (2001), Stone and Sidel
(2004), and Meilgaard et al. (2006). Additionally,
Muñoz and Civille (1998) clearly explained some
of the philosophical differences with respect to
panel training and scale usage among the different
techniques.

10.4.1 Flavor Profile R©

In its original incarnation the Flavor Profile (FP) is
a qualitative descriptive test. The name and the tech-
nique were trademarked to Arthur D. Little and Co.,
Cambridge, MA. This technique was developed in the
late 1940s and early 1950s at Arthur D. Little by Lören
Sjostrom, Stanley Cairncross, and Jean Caul. FP was
first used to describe complex flavor systems mea-
suring the effect of monosodium glutamate on flavor
perception. Over the years FP was continually refined.
The latest version of FP is known as Profile Attribute
Analysis (Cairncross and Sjöstrom, 1950; Caul, 1957,
1967; Hall, 1958; Meilgaard et al., 2006; Moskowitz,
1988; Murray et al., 2001; Powers, 1988; Sjöström,
1954).

Flavor profiling is a consensus technique. The
vocabulary used to describe the product and the prod-
uct evaluation itself is achieved by reaching agree-
ment among the panel members. The FP considers
the overall flavor and the individual detectable flavor
components of a food system. The profile describes
the overall flavor and the flavor notes and estimates
the intensity of these descriptors and the amplitude
(overall impression). The technique provides a tabu-
lation of the perceived flavors, their intensities, their
order of perception, their aftertastes, and their over-
all impression (amplitude). If the panelists are trained
appropriately this tabulation is reproducible.
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Using standardized techniques of preparation, pre-
sentation, and evaluation, the four to six judges are
trained to precisely define the flavors of the product
category during a 2- to 3-week program. The food sam-
ples are tasted and all perceived notes are recorded for
aroma, flavor, mouth feel, and aftertaste. The panel
is exposed to a wide range of products within the
food category. After this exposure the panelists review
and refine the descriptors used. Reference standards
and definitions for each descriptor are also created
during the training phase. Use of appropriate refer-
ence standards improves the precision of the consensus
description. At the completion of the training phase
the panelists have defined a frame of reference for
expressing the intensities of the descriptors used.

The samples are served to the panelists in the same
form that they would be served to the consumer. Thus,
if the panel was studying cherry pie fillings the filling
would be served to the panel in a pie.

Originally, the intensities of the perceived flavor
notes were rated on the following scale (this scale
has subsequently been expanded with up to 17 points
including the use of arrows, 1/2’s, or plus and minus
symbols):

Rating Explanation

0 Not present
)( Threshold or just recognizable
1 Slight
2 Moderate
3 Strong

The order in which the flavor notes are perceived is
also indicated on the tabulated profile. The aftertaste is
defined as one or two flavor impressions that are left on
the palate after swallowing. The panel rates the after-
taste intensities 1 min after the product is swallowed.

The amplitude is the degree of balance and blend-
ing of the flavor. It is not supposed to be indicative
of the overall quality of the product nor is it sup-
posed to include the panelists’ hedonic responses to
the product. Proponents of FP admit that it is very
difficult for novice panelists to divorce their hedonic
responses from the concept of amplitude. However,
panelists do reach an understanding of the term with
training and exposure to the FP method and the prod-
uct category. The amplitude is defined as an overall
impression of balance and blending of the product. In
a sense, the amplitude is not to be understood, just

to be experienced. For example, heavy cream, when
whipped, has a low amplitude; heavy cream whipped
with the addition of some sugar has a higher amplitude;
and heavy cream whipped with the addition of some
sugar and vanilla essence has a much higher amplitude.
Usually, FP panelists determine the amplitude before
they concentrate on the individual flavor notes of the
product. However, the amplitude may be placed last in
the tabular profile. The following scale is used to rate
amplitude:

Rating Explanation

)( Very low
1 Low
2 Medium
3 High

The panel leader derives a consensus profile from
the responses of the panel. In a true FP this is not a
process of averaging scores, but rather that the consen-
sus is obtained by discussion and re-evaluation of the
products by the panelists and panel leader. The final
product description is indicated by a series of sym-
bols. As described earlier, these are a combination of
numerals and other symbols that are combined by the
panelists into potentially meaningful patterns, whether
as a descriptive table (Table 10.2) or as a graphic, the
“sunburst.”

The “sunburst,” which is not used currently, was a
graphical representation of FP results (Cairncross and
Sjöstrom, 1950). A semi-circle indicates the thresh-
old intensity and the radiating line lengths indicated
the consensus intensity of each attribute evaluated.
The order in which various characteristics “emerge”
from the sample is noted by the order (from left to
right) on the graph. While these symbols can be used
to describe the product, it is impossible to analyze
the data obtained in this way by conventional statis-
tical procedures. Therefore, the FP is classified as a
qualitative descriptive technique.

With the introduction of numerical scales, between
1 and 7 points, (Moskowitz, 1988), the Flavor Profile
was renamed the Profile Attribute Analysis (PAA).
Data derived from PAA may be statistically analyzed
but it is also possible to derive a FP-type consen-
sus description. The use of numerical scales allows
researchers employing this method to use statisti-
cal techniques to facilitate data interpretation. PAA
is more quantitative than FP (Hanson et al., 1983).
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Table 10.2 Example of the consensus result of a flavor pro-
file study. Composite flavor profile for turkey patties with 0.4%
added phosphate

Flavor Attributes

Intensitya

Protein 2–
Meat identity 1
Serumy 1
[pause]
Metallic (aromatic and feel) 1+
(Carries through) 1–
Poultry 1+
Brothy 1–
[lag]
Turkey 1
Organ meat 1–
Metallic (aromatic and feel) 1
Bitter )(
Aftertaste Intensitya

Metallic feel 2–
Poultry 1–
Otherb

Turkey )(+
Organ meat )(+

Adapted from Chambers et al. (1992)
aScale: )( = threshold, 1 = slight, 2 = moderate, 3 = strong
b“Other” characteristics in the aftertaste were not found by the
entire panel

Syarief and coworkers (1985) compared flavor profile
results derived through consensus with flavor profile
results derived by calculating mean scores. The mean
score results had a smaller coefficient of variation
than the consensus results and the principal compo-
nent analysis (PCA) of the mean score data accounted
for a higher proportion of the variance than the PCA
of the consensus scores. Based on these criteria the
authors concluded that the use of mean scores gave
superior results to that of consensus scores. Despite
these results, some practitioners still use both the FP
and PAA as a consensus technique.

Proponents of FP state that the data are accurate
and reproducible if the panelists are well trained. The
necessity for vocabulary standardization among pan-
elists cannot be overestimated. Detractors of these
procedures complain that the derived consensus may
actually be the opinion of the most dominant per-
sonality in the group or the panel member per-
ceived to have the greatest authority, often the panel
leader. Advocates of the techniques counter that with
proper training the panel leader will prevent this from
occurring. Additionally, champions of the method

maintain that a trained FP panel produces results
rapidly. Proper training is critical when using these
techniques successfully.

True FP resists most attempts for mathematical
characterization of the data. Usually a series of sym-
bols must be interpreted using intuition and experience
on the part of the researcher. PAA, on the other hand,
can be analyzed using parametric techniques such as
analysis of variance and suitable means separation
procedures. Currently, the FP technique is used exten-
sively in the evaluation of water, probably because
water utilities usually only have three to four people to
troubleshoot taste and odor complaints (AWWA, 1993;
Bartels et al., 1986, 1987; Ömür-Özbek and Dietrich,
2008).

10.4.1.1 Flavor Profile Judge Selection

Flavor Profile judges should be screened for long-
term availability. It takes time, effort, and money to
train a panel and the panelists should make a com-
mitment to be available for years, if possible. It is
not unusual to find FP panelists who have served
on the same panel for more than 10 years. Potential
panelists should have a keen interest in the product
category and it is helpful if they have some back-
ground knowledge on the product type. These panelists
should be screened to have normal odor and taste
perceptions. Panelists are screened for normal acu-
ity using solutions and pure diluted odorants (see
Chapter 2). They should be very articulate and sincere
with an appropriate personality (not timid or overly
aggressive).

The panel leader is an active participant in both
the language development and evaluation phases of
the study. The panel leader must moderate the inter-
actions between panelists, leading the entire group
toward some unanimity of opinion. It is clear that the
key element in a FP panel is the panel leader. This
person coordinates the sample production, directs the
panel evaluations, and finally verbalizes the consensus
conclusions of the entire panel. The panel leader will
often resubmit samples until reproducible results are
obtained. Therefore, the panel leader should be espe-
cially articulate and knowledgeable about the product
type. This person will also be responsible for com-
munication with the panel and preparation of samples
and reference standards. The panel leader should also
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be infinitely patient, socially sensitive, and diplomatic
since he/she will be responsible for moving the panel
to a consensus description of the product.

10.4.2 Quantitative Descriptive

Analysis R©

Quantitative Descriptive Analysis (QDA) was devel-
oped during the 1970s to correct some of the perceived
problems associated with the Flavor Profile analy-
sis (Stone and Sidel, 2004; Stone et al., 1974). In
contrast to FP and PAA, the data are not generated
through consensus discussions, panel leaders are not
active participants, and unstructured line scales are
used to describe the intensity of rated attributes. Stone
et al. (1974) chose the linear graphic scale, a line that
extends beyond the fixed verbal end points, because
they found that this scale may reduce the tendency
of panelists to use only the central part of the scale
avoiding very high or very low scores. Their decision
was based in part on Anderson’s studies (1970) of
functional measurement in psychological judgments.
As with FP, QDA has many advocates and the tech-
nique has been extensively reviewed (Einstein, 1991;
Heymann et al., 1993; Meilgaard et al., 2006; Murray
et al., 2001; Powers, 1988; Stone and Sidel, 2004;
Stone et al., 1980; Zook and Wessman, 1977).

During QDA training sessions, 10–12 judges are
exposed to many possible variations of the product to
facilitate accurate concept formation. The choice of
range of samples is dictated by the purpose of the study
and, similar to FP, panelists generate a set of terms
that describe differences among the products. Then
through consensus, panelists develop a standardized
vocabulary to describe the sensory differences among
the samples. The panelists also decide on the refer-
ence standards and/or verbal definitions that should
be used to anchor the descriptive terms. Actual refer-
ence standards are only used about 10% of the time;
usually, only verbal definitions are used (Murray et al.,

2001). In addition, during the training period the panel
decides the sequence for evaluating each attribute.
Late in the training sequence, a series of trial evalu-
ations are performed. This allows the panel leader to
evaluate individual judges based on statistical analy-
sis of their performance relative to that of the entire
panel. Evaluations of panelist performance may also
be performed during the evaluation phase of the study.

Panelists begin training by generating a consen-
sus vocabulary. During these early meetings, the panel
leader acts only as a facilitator by directing discussion
and supplying materials such as reference standards
and product samples as required by the panel. The
panel leader does not participate in the final product
evaluations.

Unlike FP, QDA samples may not be served exactly
as seen by the consumer. For example, if a Flavor
Profile panel is to evaluate pie crusts, they would
receive samples of pie crust filled with a standard
pie filling. The QDA philosophy states that the pie
filling could affect the discrimination of the crust sam-
ples. However, a case could also be made that crust
baked without filling may perform differently than
crust baked with filling. Depending on the situation,
the QDA panelists may receive two different pie crust
samples, one baked without filling and the other baked
with filling, which was removed before the panelists
received the crust samples.

The actual product evaluations are performed by
each judge individually, usually while seated in iso-
lated booths. Standard sensory practices such as sam-
ple coding, booth lighting, expectorating, and rinsing
between samples are used for the evaluation phase.
A 6 in. graphic line scale anchored with words gen-
erated by the panel is used (Fig. 10.1).

The resulting data can be analyzed statistically
using analysis of variance and multivariate statisti-
cal techniques. It is necessary for judges to replicate
their judgments, up to six times in some cases, to
allow the sensory scientist to check the consistency
of the individual panelists and of the whole panel.

Word anchor Word anchor 

| / |
| / |

Fig. 10.1 An example of the
QDA graphic line scale. The
mark made by the panelist is
converted to a numerical value
by measuring from the left

end of the line.
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 Panelist 1 ratings Panelist 2 ratings

Sample A Sample B Sample A Sample B

Crispness | |
Less More

|____________| |____________|

perceived differences within panelists

|_

|_

________________________|

_________________________|

Perceived differences between panelists

Fig 10.2 Different uses of
the line scale by panelists that
are calibrated relative to each
other. All ratings were plotted
on the same line scale for
illustration purposes.

Replications also allow one-way analysis of variance
of individual panelists across products. This allows the
sensory specialist to determine whether the panelists
can discriminate or need more training. The number of
repeat judgments is somewhat product dependent and
should be decided before the study is initiated. Studies
where repeated evaluations are not performed should
be viewed with extreme caution.

QDA may be used to completely describe the sen-
sory sensations associated with a product from initial
visual assessment to aftertaste, or panelists may be
instructed to focus on a narrow range of attributes such
as texture descriptors. However, limiting the range
of attributes evaluated may lead to the “dumping”
effect (see Chapter 9). This effect is especially impor-
tant when a conspicuous sensory attribute that varies
across the samples was omitted from the ballot. When
this occurs panelists will, probably sub-consciously,
express their frustration by modulating the scores on
some of the scales used in the study. For this rea-
son, the sensory scientist should be extremely careful
about restricting the type and number of descriptors
used in a descriptive analysis study. Sometimes, sim-
ply adding a scale labeled “other” can prevent this
effect and if the panelists are allowed to describe the
“other” characteristic valuable information may also
be obtained.

During training, one of the challenges faced by the
panel leader is how to help judges sort out the individ-
ual intensity characteristics of a product from overall
impressions of quality or liking (Civille and Lawless,
1986). All descriptive evaluations should only be based
on perceived intensities and should be free of hedonic
responses.

Despite the extensive training employed in this
method, most researchers assume that judges will
use different parts of the scale to make their

determinations. Thus, the absolute scale values are not
important. It is the relative differences among products
that provide valuable information. For example, Judge
A scores the crispness of potato chip sample 1 as an
8, but Judge B scores the same sample as a 5; this
does not mean that the two judges are not measuring
the same attribute in the same way, but may mean that
they are using different parts of the scale (Fig. 10.2).
The relative responses of these two judges on a second
different sample (say 6 and 3, respectively) would indi-
cate that the two judges are calibrated with respect to
the relative differences between the samples. Judicious
choices of statistical procedures such as dependent
t-tests and ANOVA allow the researcher to remove the
effect of using different parts of the scale.

QDA training often takes less time than that
required by FP. Consensus by personality domina-
tion, a potential problem with FP, is unlikely to
occur since individual judgments are used in the
data analysis. In addition, QDA data are readily ana-
lyzed by both univariate and multivariate statistical
techniques. Statistical procedures such as multivari-
ate analysis of variance, principal component analysis,
factor analysis, cluster analysis have found applica-
tion in the analysis of data generated by QDA-type
procedures (Martens and Martens, 2001; Meullenet
et al., 2007; Piggott, 1986). Graphical presenta-
tions of the data often involve the use of “cobweb”
graphs (polar coordinate graphs a.k.a. radar plots,
Fig. 10.3).

There is some argument about the assumption of
normal distribution of the data set and hence the use
of parametric statistics such as analysis of variance,
t-tests. A few authors feel that non-parametric sta-
tistical treatment of the data is required (O’Mahony,
1986; Randall, 1989), but this appears to be a minority
opinion.
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Fig. 10.3 An example of a cobweb or radar plot of Descriptive
Analysis data. The data are from aroma profile descriptive anal-
ysis of Sauvignon blanc wines as a function of country of origin
(France or New Zealand) and sub-region (France: Saint Bris,
Sancerre, Loire; New Zealand: Awatere, Brancott, Rapaura). For

each sensory attribute the perceived mean intensity increases
outward from the center point. Sub-region means differing by
more than the LSD value for that attribute differ in a Fisher’s
LSD multiple comparison test (Parr et al., 2009, used with
permission).

The ease of data analysis using QDA may actually
be considered one of the problems of the technique.
The tendency to use the scales as absolute measures
of an attribute rather than as a tool to see relative dif-
ferences between samples is very common. Returning
to the potato chip example, a decision may be made
that samples scoring less than 5 on the crispness scale
are not acceptable for sale. As we saw, Judge B’s
crispness intensity of 5 was very different from Judge
A’s 5. By extension, we can see that if the entire
panel used the upper end of the scale, no samples
would be considered unacceptable by this criterion. If
another panel, analyzing the same samples, uses only
the lower end of the scale, no sample is acceptable.
The QDA data must therefore be viewed as relative

values and not as absolutes. QDA studies should there-
fore be designed to include more than one sample
and/or a benchmark or standard product as often as
possible.

QDA has been extensively used, but often the
experiments are not designed exactly as described by
Stone and Sidel (2004). The relative simplicity of the
technique allows it to be adapted in many different
ways. However, any adaptation invalidates the use of
the name QDA to describe the procedure.

Advantages cited by advocates of QDA include
the ideas that the panelists perform independent judg-
ments and that results are not consensus derived.
Additionally, the data are easily analyzed statistically
and graphically represented. Panel language develop-
ment is free of panel leader influences and is, in gen-
eral, based on consumer language descriptions. QDA
suffers from the same disadvantage as FP, since in
both cases the panels must be trained for the specific
product category. Many US food companies maintain
separate panels for their many product categories. This
is very expensive and may limit the use of this tech-
nique by smaller firms. Unlike FP, the QDA results
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do not necessarily indicate the order of perception of
sensations. However, the panel could be instructed to
list the descriptors on the ballot in sequence of appear-
ance, if that is needed to meet the objective of the study.
Additionally, as indicated above, the results are rela-
tive and not absolute, since panelists may use different
scale ranges.

10.4.2.1 Selection of Judges for Quantitative

Descriptive Analysis

Similar to FP judges, Quantitative Descriptive
Analysis (QDA) panelists should be screened for long-
term availability. As with FP, it takes time, effort, and
money to train a panel and the panelists should make
a commitment to be available for years, if possible.
This becomes a management support issue when the
panelists are selected from within company since these
employees may spend substantial time away from their
main jobs. These panelists are screened for normal
odor and taste perceptions using actual products from
the category. The potential panelists should be very
articulate and sincere.

Unlike FP, the panel leader is not an active par-
ticipant in either the language development or the
evaluation phases of the study. The panel leader acts
as a facilitator only and does not lead or direct the
panel. This person will be responsible for communi-
cation with the panel and preparation of samples and
reference standards.

10.4.3 Texture Profile R©

The Texture Profile was created by scientists work-
ing for General Foods during the 1960s and was
subsequently modified by several sensory specialists
(Brandt et al., 1963; Civille and Liska, 1975; Muñoz,
1986; Szczesniak, 1963, 1966, 1975; Szczesniak et al.,
1963). The goal of the Texture Profile (TP) was to
devise a sensory technique that would allow the assess-
ment of all the texture characteristics of a product,
from first bite through complete mastication, using
engineering principles. The creators based the Texture
Profile on the concepts pioneered by developers of
the Flavor Profile. The texture profile was defined by
Civille and Liska (1975) as

the sensory analysis of the texture complex of a food in
terms of its mechanical, geometrical, fat and moisture
characteristics, the degree of each present and the order
in which they appear from fist bite through complete
mastication (p. 19).

The Texture Profile uses a standardized terminology
to describe the textural characteristics of any prod-
uct. Specific characteristics are described by both their
physical and sensory aspects. Product-specific terms
to be employed are chosen from the standardized
terminology to describe the texture of a specific prod-
uct. Definitions and order of appearance of the terms
are decided through consensus by the TP panelists.
Rating scales associated with the textural terms are
standardized (Table 10.3).

Table 10.3 Example texture profile hardnessa scale

Scale value Product Sample size Temperature Composition

1.0 Cream cheese 1/2” cube 40–45◦C Philadelphia cream cheese (Kraft)
2.5 Egg white 1/4” cube Room Hard-cooked, 5 min
4.5 American cheese

1/2”’ cube
40–45◦C Yellow pasteurized

cheese (Land O
Lakes)

6.0 Olive 1 piece Room Stuffed, Spanish olives with pimentos
removed (Goya Foods)

7.0 Frankfurterb 1/2” slice Room Beef Franks, cooked for 5 min in
boiling water (Hebrew National
Kosher Foods)

9.5 Peanut 1 piece Room Cocktail peanuts in vacuum tin
(Planters, Nabisco Brands)

11.0 Almond 1 piece Room Shelled almonds (Planter, Nabisco
Brands)

14.5 Hard candy 1 piece Room Life Savers (Nabisco Brands)

Adapted from Muñoz (1986)
aHardness is defined as the force required to bite completely through sample placed between molar teeth
bArea compressed with molars is parallel to cut
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Within each scale, the full range of a specific param-
eter is anchored by products having the specific char-
acteristic as a major component. The reference product
must be instrumentally evaluated to determine whether
they conform to the intensity increments for the spec-
ified scale. The reference scales anchor both the range
and the concept for each term (Szczesniak et al., 1963).
For example, the hardness scale (Table 10.3) measures
the compression force applied to the product between
the molars. Note that the different foods (cream cheese,
cooked egg white, cheese, olives, wieners, peanuts,
raw carrots, almonds, and hard candies) used as refer-
ence points in the TP hardness scale increase in inten-
sity from cream cheese to candy. However, these prod-
ucts alternately may shear, shatter, or compress when
the compression force is applied. Thus when using the
hardness reference scale panelists must understand that
although all these products vary in a specific and defin-
able dimension, hardness, they do not necessarily react
in the same way to an applied compressive force.

It is crucial to the success of the TP that the frame
of reference for all panelists be the same. All pan-
elists must receive the same training in the principles
of texture and TP procedures. Preparation, serving,
and evaluation of samples should be rigidly con-
trolled. Panelists should also be trained to bite, chew,
and swallow in a standardized way. Usually, during
panel training the panelists are first exposed to the
Szczesniak (1963) classification of textural charac-
teristics. They are subsequently exposed to a wide
variety of food products and reference scales. During
the third phase, the panelists refine their skills in rec-
ognizing, identifying, and quantifying degrees within
each textural characteristic in a specific food category.
This normally takes several weeks of daily train-
ing sessions but this may be worthwhile. Otremba
et al. (2000), working with beef muscles, found that
the extensive training led to greater consistency and
accuracy.

The Texture Profile has been applied to many spe-
cific product categories including breakfast cereals,
rice, whipped toppings, cookies, meat, snack foods.
However, in many cases the experimenters will state
that they had used TP in their studies but careful anal-
ysis of their methodology reveals that the exacting
requirements of true TP were not adhered to during
these studies. Often panelists are not trained using the
standardized methodology to the degree recommended
by the original proponents of this technique.

10.4.4 Sensory Spectrum R©

Gail Civille, while working at General Foods in the
1970s, became an expert using the Texture Profile. She,
subsequently, created the Sensory Spectrum technique
using many of the ideas inherent to the Texture Profile.
The Sensory Spectrum procedure is a further expan-
sion of descriptive analysis techniques. The unique
characteristic of the Spectrum approach is that pan-
elists do not generate a panel-specific vocabulary to
describe sensory attributes of products, but that they
use a standardized lexicon of terms (Civille and Lyon,
1996). The language used to describe a particular prod-
uct is chosen a priori and remains the same for all
products within a category over time. Additionally,
the scales are standardized and anchored with multi-
ple reference points. The panelists are trained to use
the scales identically; because of this, proponents of
the Spectrum method state that the resultant data val-
ues are absolute. This means that it should be possible
to design experiments that include only one sample
and to compare the data from that sample with data
derived in a different study. This philosophy suggests
that since each panel is a unique group, allowing pan-
els to generate their own consensus terms may lead to
misleading results when attempting to apply the find-
ings to a generalized population. The proponents of the
method state that the descriptors used for the Spectrum
method are more technical than the QDA descriptors.
According to Sensory Spectrum users, QDA terms
are generated by the panelists themselves and they
are more likely to be related to consumer language.
Reviews of the Spectrum method have been provided
by Powers (1988), Murray et al. (2001), and Meilgaard
and coworkers (2006).

Panelist training for the Spectrum method is much
more extensive than QDA training and the panel leader
has a more directive role than in QDA. As in QDA,
the judges are exposed to a wide variety of the prod-
ucts in the specific product category. As in the Texture
Profile, the panel leader provides extensive information
on the product ingredients. The underlying chemi-
cal, rheological, and visual principles are explored by
the panelists and the relationships between these prin-
ciples and sensory perceptions of the products are
considered. Similar to the Texture Profile the panelists
are provided word lists (called lexicons by Sensory
Spectrum) that may be used to describe perceived
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sensations associated with the samples. The ultimate
goal is to develop an “. . .‘expert panel’ in a given
field, . . . [to] demonstrate that it can use a concrete
list of descriptors based on an understanding of the
underlying technical differences among the attributes
of the product” (Meilgaard et al., 2006). Additionally,
panelists are supplied with reference standards. For
attributes, specific singular references as well as stan-
dards in combination with a few other attributes are
provided. An example would be vanilla and vanilla in
milk and/or cream (Muñoz and Civille, 1998).

Panelists use intensity scales that are numerical,
usually 15-point scales, and absolute also known as
universal (Table 10.4; Muñoz and Civille, 1997).
Civille (April 1996, personal communication) states
that the scales are created to have equi-intensity across
scales. In other words, a “5” on the sweetness scale
is equal in intensity to a “5” on the salty scale
and this is even equal in intensity to a “5” on the
fruity scale (Table 10.5). Civille (April 1996, per-
sonal communication) says this goal has been achieved
for fragrance, aroma, and flavor scales but not for
texture scales. We are somewhat skeptical of this
equi-intensity claim since there are no published data

Table 10.4 Example of aromatic reference samples used for
spectrum scales

Descriptor
Scale
valuea Product

Astringency 6.5 Tea bags soaked for 1 h
6.5 Grape juice (Welch’s)

Caramelized
sugar

3.0 Brown Edge Cookies (Nabisco)

4.0 Sugar Cookies (Kroger)
4.0 Social Tea Cookies (Nabisco)
7.0 Bordeaux Cookies (Pepperidge

Farm)
Egg 5.0 Mayonnaise (Hellmann’s)
Egg flavor 13.5 Hard boiled egg
Orange

complex
3.0 Orange Drink (Hi-C)

6.5 Reconstituted frozen orange
concentrate (Minute Maid)

7.5 Freshly squeezed orange juice
9.5 Orange concentrate (Tang)

Roastedness 7.0 Coffee (Maxwell House)
14.0 Espresso coffee (Medaglia

D’Oro)
Vanilla 7.0 Sugar Cookies (Kroger)

Adapted from Meilgaard et al. (2006)
aAll of the above scales run from 0 to 15

Table 10.5 Intensity values used for spectrum scales assigned
to the four basic tastes in assorted products

Descriptor
Scale
valuea Product

Sweet 2.0 2% sucrose-water solution
4.0 Ritz cracker (Nabisco)
7.0 Lemonade (Country Time)
9.0 Coca Cola Classic

12.5 Bordeaux Cookies (Pepperidge
Farm)

15.0 16% sucrose-water solution
Sour 2.0 0.05% citric acid-water solution

4.0 Natural apple sauce (Motts)
5.0 Reconstituted frozen orange juice

(Minute Maid)
8.0 Sweet pickle (Vlasic)

10.0 Kosher dill pickle (Vlasic)
15.0 0.20% citric acid-water solution

Salt 2.0 0.2% sodium chloride-water
solution

5.0 Salted soda cracker (Premium)
7.0 American cheese (Kraft)
8.0 Mayonnaise (Hellman’s)
9.5 Salted potato chips (Frito-Lay)

15.0 1.5% sodium chloride-water
solution

Bitter 2.0 Bottled grapefruit juice (Kraft)
4.0 Chocolate bar (Hershey)
5.0 0.08% caffeine-water solution
7.0 Raw endive
9.0 Celery seed

10.0 0.15% caffeine-water solution
15.0 0.20% caffeine-water solution

Adapted from Meilgaard et al. (2006)
aAll the above scales run from 0 to 15

to support it. However, the concept of cross-modal
matching may make the above claim reasonable for
light and tones, tastants (sweetness and sourness), but
it may not be reasonable for sweetness and hardness or
fruitiness and chewiness (Stevens, 1969; Stevens and
Marks, 1980; Ward, 1986).

Also, the stability of the absolute scale is not clear.
Olabi and Lawless (2008) found contextual shifting in
the 15-point scale even after extensive training.

As with the Texture Profile, scales are anchored by
a series of reference points. In this schema at least
two and preferably three to five references are recom-
mended. The reference points are chosen to represent
different intensities on the scale continuum. The refer-
ence points are used to precisely calibrate the panelists
in the same way as pH buffers calibrate a pH meter.
The panelists are “tuned” to act like true instruments.
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After training, all panelists must use the scales in an
identical fashion. Thus, they should all score a spe-
cific attribute of a specific sample at the same intensity.
Testing is performed in isolated booths, using typical
sensory practices.

The principal advantage claimed for the Spectrum
method should be apparent after reading the discus-
sion of the QDA procedure. In QDA, judges frequently
use the scales provided in idiosyncratic but consis-
tent ways. In contrast to the QDA, the Spectrum
method trains all panelists to use the descriptor scales
in the same way. Thus, scores should have abso-
lute meaning. This means that mean scores could
be used to determine if a sample with a specified
attribute intensity fits the criterion for acceptability
irrespective of panel location, history, or other vari-
ables. This has obvious advantages to organizations
wishing to use a descriptive technique in routine qual-
ity assurance operations or in multiple locations and
facilities.

Disadvantages of the procedure are associated with
the difficulties of panel development and maintenance.
Training of a Spectrum panel is usually very time
consuming. Panelists have to be exposed to the sam-
ples and understand the vocabulary chosen to describe
the product. They are asked to grasp the underly-
ing technical details of the product and they are
expected to have a basic understanding of the phys-
iology and psychology of sensory perception. After
all that, they must also be extensively “tuned” to
one another to ensure that all panelists are using
the scales in the same way. We are not sure that
this level of calibration can be achieved in reality.
In practice, individual differences among panelists
related to physiological differences like specific anos-
mias, differential sensitivities to ingredients can lead to
incomplete agreement among panelists. Theoretically,
if panelists were in complete agreement one would
expect the standard deviation (see Appendix) for any
specific product–attribute combination to be close to
zero. However, most Spectrum studies have attributes
with non-zero standard deviations indicating that the
panel is not absolutely calibrated. Civille (April 1996,
personal communication) has stated that absolute cal-
ibration is feasible for most attributes but proba-
bly not for bitterness, pungency, and certain odor
perceptions.

Data from the Spectrum technique are analyzed in a
similar fashion to the QDA data. The deviation of mean

values for particular attributes is of definite interest to
the analyst, since these values can be directly related to
the “tuning” or precision of the panel.

10.5 Generic Descriptive Analysis

QDA and Sensory Spectrum techniques have been
adapted in many different ways. It is important to
note, however, that any adaptations invalidate the
use of the trademarked names “QDA” and “Sensory
Spectrum.” Unfortunately, it is often difficult to eval-
uate the effect that the myriad deviations from the
standard methodologies have on the validity of the
data. Academic researchers frequently employ the gen-
eral guidelines of these methodologies to evaluate
products. Table 10.6 shows the steps in conducting
a generic descriptive analysis; these steps will be
described in detail in the next sections. Additionally,
some very interesting variations on the conventional
generic descriptive analysis have been created and
these will be discussed in Section 10.4.7.

10.5.1 How to Do Descriptive Analysis

in Three Easy Steps

It is possible for any competent sensory scientist to per-
form a descriptive analysis study in three easy steps.
These steps are train the judges, determine the judge
reproducibility/consistency, and have the judges evalu-
ate the samples. We will discuss each of these steps in
more detail.

10.5.1.1 Training the Panelists

As we have seen with the QDA and Sensory Spectrum
methods, there are two methods of judge training. The
first is to provide the panelists with a wide range of
products in the specific category. Panelists are asked
to generate the descriptors and reference standards
needed to describe differences among the products,
usually by coming to some consensus. For simplic-
ity we will call this “consensus training.” The second
method is to provide the panelists with a wide range
of products within the category as well as a word
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Table 10.6 Steps in conducting a generic descriptive analysis

1. Determine project objective: Is descriptive analysis the right
method?

2. Establish products to be used with clients/researchers
3. Determine whether consensus or ballot training is most

appropriate
4. Establish experimental design and statistical analyses

a. Main effects and interactions for analyses of variance
b. Multivariate techniques?

5. Select (and optionally, screen) panelists
If choosing to do consensus training go to 6. If choosing to
do ballot training go to 7

6. Consensus training
a. During initial training sessions provide panelists with a

wide range of products in the specific category
b. Panelists generate descriptors (and ideas for reference

standards)
c. During subsequent training sessions panel leader provides

potential reference standards as well as products
d. Panelists reach consensus in terms of attributes, reference

standards, and score sheet sequencing
7. Ballot training

a. During initial training sessions provide panelists with a
wide range of products in the specific category.

b. Provide panelists with a word list (sample score sheet)
and reference standards

c. During subsequent training sessions panel leader provides
reference standards as well as products

d. Panelists indicate which attributes and reference
standards from the word list should be used in the specific
study. Panelists may also indicate sequence of attributes
on score sheet

8. Once the training phase has been completed, panelists
performance is checked
a. A subset of samples are provided in duplicate (triplicate)

under actual testing conditions
b. Data are analyzed and any issues with reproducibility

and/or attribute usage lead to additional training; testing
may occur again after re-training.

9. Conduct study
10. Analyze and report data

list of possible descriptors and references that could
be used to describe the products. We will refer to
this method as “ballot training.” In practice, both
the consensus and the ballot methods have an appli-
cation. However, keep in mind that Sulmont et al.
(1999) found that panelists tended to perform better
when trained by the “consensus” (trained by doing)
rather than “ballot” (trained by being told) method.
Frequently, however, a combination method is used. In
the combination method panelists derive some descrip-
tors on their own through consensus and others are

added through suggestions by the panel leader or from
word lists. The panel leader may also reduce redun-
dant terms. In our laboratories the consensus method
is usually used in research studies with the excep-
tion of meat research studies. For meat we tend to
use the ballot method, mostly because a multitude of
studies in the area has convinced us only a limited
number of descriptors are readily applicable to meat.
In contract work for US food and consumer products
companies, we tend to use the combination method,
since the client companies often have certain terms
that they deem important. These will then be suggested
by the panel leader, if the panelists do not use them
spontaneously.

A typical sequence of “consensus training” sessions
would be the following:

Initially, the panelists are exposed to the entire range
of the products. They are asked to evaluate the sensory
differences among the samples and to write down the
descriptors that describe these differences. This occurs
in silence. When all panelists complete this portion of
the assignment, the panel leader asks each panelist to
list the words used to describe each sample. During this
phase of the training it is extremely important that the
panel leader must be cautious not to lead or to judge
any descriptor from any panelist. However, the panel
leader may ask for clarification, if needed. Usually, the
panelists themselves will begin to move toward initial
consensus when they see the total list of descriptors
elicited.

Subsequently, the panel leader should attempt to
provide potential reference standards based on the
initial consensus. These reference standards are chem-
icals, spices, ingredients, or products that can be used
to help the panelists identify and remember the sen-
sory attribute found in the samples evaluated (Rainey,
1986). In general, the panel leader should strive to use
actual physical objects as the reference standards but
in some cases precise written description may be used
instead (Table 10.7). At the next session, the panelists
are exposed to the samples again and asked to decide
on the possible reference standards. If reference stan-
dards are not feasible, the panelists can also be asked
to verbally define the specific descriptor. This refine-
ment of the consensus list of descriptors, reference
standards, and definitions continues until the panelists
are satisfied that they have the best possible list and that
everyone understands each term completely. Murray
and Delahunty (2000) had their panelists determine
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Table 10.7 Composition of reference standards for aroma and flavor evaluations. These reference standards were used in a
descriptive study of vanilla essences from different geographic locations (Woods, 1995)

Aroma attribute Composition

Smoky 20"’ of binding twine lit with lighter, allowed to burn and then blown out, smell smoke
Scotcha 15 ml of 5% solution of J&B Justerini & Brooks Ltd., rare blended scotch whiskies (London, England)
Bourbon 15 ml of 5% solution of Walker’s deluxe straight Bourbon Whiskey (Hiram Walker & Sons Co.,

Bardstown, KY)
Rum 15 ml of 5% solution of Bacardi Superior Puerto Rican Rum (Bacardi Corp., San Juan, Puerto Rico)
Almond 15 ml of 1.25% solution of McCormick R© Pure Almond extract (McCormick & Co., Inc., Hunt Valley,

MD)
Kahlua 15 ml of 1.25% solution of original Mexican Kahlua (Kahlua S.A., Rio San Joaquin, Mexico)
Medicinal 15 ml of 20% solution of Cepacol R© mouthwash (Merrell Dow Pharmaceuticals, Inc., Cincinnati, OH)
Buttery One piece of Lifesavers R© Butter Rum candy (©Nabisco Foods, Inc., Winston-Salem, NC)
Creme Soda 15 ml of 2% solution of Shasta R© creme soda (Shasta Beverages Inc., Hayward, CA)
Fruity 15 ml of 30% (5:1) solution of Welch’s Orchard R© apple-grape-cherry fruit juice cocktail frozen

concentrate and Welch’s R© 100% white grape juice from concentrate (no sugar added) (©Welch’s,
Concord, MA)

Prune One Sunsweet R© medium prune (Sunsweet Growers, Stockton, CA)
Tobacco One pinch of large size Beech-nut Softer & Moister chewing tobacco (©National Tobacco, Louisville,

KY)
Earthy 19 g of black dirt from Missouri
Musty Verbally defined as “a damp basement”

Nutty 2–3 Kroner R© salted pistachios (shelled and cut into pieces) (Kroner Co., Cincinnati, OH)
Flavor attributeb Composition

Amaretto 15 ml of 5% solution of Disaronno-Amaretto Originale (Illva Saronno, Saronno, Italy)
Sweet Panelists were not provided with a reference, but were given a 2 and 6% solution of sugar water during

training to anchor the scale
Fruity 15 ml of 5% (5:1) solution of Welch’s Orchard R© apple-grape-cherry fruit juice frozen concentrate and

Welch’s R© 100% white grape juice from concentrate (no sugar added) (©Welch’s, Concord, MA)
Earthy 1 Campbell Soup Company fresh packaged mushrooms—diced (Camden, NJ)

Please note that for most of these attributes very precise reference standards were created—this is the ideal. But for the attribute
in bold a definition and no reference standard is given—this is not an ideal situation
aAll solutions made using Culligan sodium-free drinking water (Culligan Water Ltd., Columbia, MO)
bAll other flavor standards were the same as those for aroma standards

the suitability of each potential reference standard for
cheddar cheese by having them score the attributes on
an appropriateness scale.

During the final training session the panelists cre-
ate the score sheet. They may be allowed to decide
on the scale to use, although in our laboratories we
usually use either the unstructured line scale (simi-
lar to Fig. 10.1) or the 15-point unlabeled box scale
(Fig. 10.4) for most studies.

Sweetness intensity 

Weak Strong

Fig. 10.4 Example of a 15-point unlabeled box scale.

The panelists are asked to decide on the words
needed to anchor the scales such as none to extreme
or slight to very strong. We also frequently allow the
panelists to determine the sequence in which they
would like to evaluate the attributes, for example,
visual attributes first (unless these are performed sep-
arately in a color evaluation chamber such as the
Gretag-MacBeth Judge II); then aroma; followed by
taste, flavor-by-mouth, and mouth feel; and lastly, after
expectoration or swallowing, after-taste. For some pan-
els this order may be changed—for example they may
choose to do the taste, flavor by mouth, and mouth
feel terms prior to aroma. Once again, the panel leader
makes sure that the panelists are comfortable with all
the terms, references, and definitions used. At this
point the panel leader will start to evaluate judge
reproducibility.
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A typical sequence of “ballot training” sessions
would be the following: Initially, the panelists are
exposed to the entire range of the products. They
are asked to evaluate the sensory differences among
the samples. This occurs in silence. When all pan-
elists complete this portion of the assignment, the
panel leader gives each panelist a word list (or sam-
ple score sheet) for the products. The word list con-
tains words, definitions, and often the panel leader
will also have reference standards available to anchor
the descriptors. There are a number of published
word lists (lexicons) available for a variety of food
and personal care products. A non-exhaustive list
is given at the end of this section. The panelists
are then asked to indicate through consensus which
of these words, reference standards, and definitions
should be used in the specific study. The panelists
are allowed to add or delete terms through consensus.
They are also asked to sequence the descriptors on the
ballot.

In subsequent sessions the panelists are exposed
to the samples again and asked to look at the bal-
lot that they previously created. They then have to
decide if this is truly the score sheet they want to use
with these products. Refinement of the score sheet, ref-
erence standards, and definitions continues until the
panelists are satisfied that this is the best possible score
sheet, best sequence, and that everyone understands
each term completely. Now the panel leader is ready
to determine judge reproducibility.

Some of the available sensory lexicons (vocabu-
laries) are the ASTM publications that cover a large
number of product categories (Civille and Lyon, 1996;
Rutledge, 2004) as well as Drake and Civille (2003)
which covers the creation of flavor lexicons and has
numerous references to available word lists. A few
recent word lists are Cliff et al. (2000) for apple
juices, Dooley et al. (2009) for lip products, Drake
et al. (2007) for soy and whey proteins in two coun-
tries, Retiveau et al. (2005) for French cheeses, Lee
and Chambers (2007) for green tea, Krinsky et al.
(2006) for edamame beans, and Riu-Aumatell et al.
(2008) for dry gins. There are also published reports
of generic descriptive analysis using terminology that
are extremely localized. An example would be Nindjin
et al. (2007) who trained a group of adult villagers in
the Ivory Coast to use the local language to describe
the sensory differences among samples of “foutou”
(pounded yams).

10.5.1.2 Determining Panelist Reproducibility

During Training

Immediately after the training phase the panelists are
told that the evaluation phase of the study will begin.
However, in reality, the first two or three sessions are
used to determine judge consistency. A subset of sam-
ples to be used for the real study is served to the
panelists in triplicate. The data from these sessions are
analyzed; the sensory scientist will study the signifi-
cance levels of the interaction effects associated with
panelists. In a well-trained panel these effects would
be not significantly different among judges. If there are
significant panelist-associated interaction effects the
sensory scientist will determine which judges should
be further trained in the use of which descriptors. If all
judges are not reproducible then they all need to return
to the training phase. However, the results usually indi-
cate that one or two subjects have problems with one
or two descriptors. These problems can usually be
resolved during a few one-on-one training sessions.
Cliff et al. (2000) showed that as training progressed
the standard deviations associated with 10 of their 16
attributes decreased. In some cases this decrease was
large (0.90 on a 10 cm line scale for oxidized aroma
and flavor) and in others smaller (<0.05 for green-
grassy and sour). Their panelists anecdotally found that
the biggest training effects occurred when the cho-
sen reference standards were unambiguous. See below
for a more in-depth discussion on panel performance
monitoring.

Recently some work on the effect of feedback cali-
bration on panel training has been published (Findlay
et al., 2006, 2007). These authors found that immedi-
ate graphical computerized feedback on performance
in the sensory booths during training led to reduced
training time as well as excellent panel performance.
McDonell et al. (2001) also found that feedback in the
form of principal component analysis plots, analysis
of variance shown to the panel after each descriptive
analysis sped up the training process and made the
panel more consistent. Nogueira-Terrones et al. (2008)
trained a descriptive panel over the Internet to evaluate
sausages. Their training process essentially involved
feedback on performance at each session and increased
training duration increased their Internet panelists’
performance relative to the performance of panelists
trained more conventionally. However, Marchisano
et al. (2000) had found that feedback was positive
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for recognition tests, had no effect on discrimination
tests (triangle tests), and may have been a negative for
scaling tests. Clearly, additional studies are needed.
There is an ongoing discussion in sensory circles as
to whether panelists should be recruited from within
or from outside companies, in other words, whether
company employees should be expected to volunteer
for panel duty as part of their other duties or whether
panelists should be employed to only be on sensory
panels. There is very little research to guide on in this
discussion. One of the few studies was the one by
Lund et al. (2009). They surveyed panelists in New
Zealand, Australia, Spain, and the United States and
found that the key drivers stimulating people to partic-
ipate in sensory panels were a general interest in food
and extra income. Additionally, panelists on external
panels (those not otherwise employed by the com-
pany) were more intrinsically motivated than internal
panelists (those otherwise employed by the company).
Panelists’ experience also improved their intrinsic
motivation.

10.5.1.3 Evaluating Samples

Standard sensory practices, such as sample cod-
ing, randomized serving sequences, use of individual
booths, should be employed during the evaluation
phase of the study. The sample preparation and serving
should also be standardized. The judges should eval-
uate all samples in at least duplicate, but preferably
in triplicate. Samples are usually served monadically
and all attributes for a specific sample are evaluated
before the next sample is served. However, as shown
by Mazzucchelli and Guinard (1999) and Hein (2005)
there are no major differences between the results
when samples are served monadically or simultane-
ously (all samples served together and attributes rated
one at a time across samples). However, in both stud-
ies the actual time taken to do the evaluation increased
for the simultaneous serving condition. Under ideal
conditions, all samples will be served in a single ses-
sion, with different sessions as the replicates. If it
is not possible to do so then an appropriate experi-
mental plan such as a Latin square, balanced incom-
plete block should be followed (Cochran and Cox,
1957; Petersen, 1985). The data are usually analyzed
by analysis of variance. However, analysis by one

or more appropriate multivariate statistical techniques
may yield additional information (see Chapter 18).

10.5.1.4 Panel Performance Monitoring

As stated in Section 10.5.1.2—Determining Panelist
reproducibility during training—, the sensory scientist
will usually have panelists evaluate a subset of prod-
ucts in replicate and then analyze that data to determine
whether further training is warranted. However, one
may also be interested in monitoring panelist perfor-
mance over the life span of the panel. This is more
usually done when a panel continues to be used over
a number of projects or for a number of years, i.e.,
when one has a “permanent panel.” For example,
some of the panelists in the Kansas State University
Sensory Analysis Center panel have been participat-
ing in the panel since 1982 (personal communication,
Edgar Chambers, IV, October 2009). When one has a
“temporary panel”—a panel that is trained for one spe-
cific project and then disbanded—it is more unusual
to do ongoing panelist performance monitoring. One
may also be interested in panelist performance mon-
itoring when newly trained panelists are merged into
an ongoing panel, something that occurs routinely in
many commercial settings.

The techniques used to monitor panel performance
are similar whether one is monitoring the panel toward
the end of training or for the other reasons listed above.
The key pieces of information the sensory scientist
needs are (a) individual panelist discriminating ability;
(b) individual panelist reproducibility; (c) individual
panelist agreement with the panel as a whole; (d) panel
discriminating ability; and (e) panel reproducibility.
Numerous statistical analyses are available to find
these pieces of information from the panel data. Please
see Meullenet et al. (2007), Tomic et al. (2007), and
Martin and Lengard (2005) for additional information
on this topic. Derndorfer and coworkers (2005) pub-
lished code in R to evaluate panel performance. Pineau
et al. (2007) published a mixed-model and control
chart approach using SAS (SI, Cary, NC). SensomineR
(a freeware R-package) also contains panel perfor-
mance techniques, as well as many sensory data anal-
ysis techniques (Lê and Husson, 2008). Additionally,
Panel Check, another freeware R-based program, is
available for download at http://www.panelcheck.com/
(Kollár-Hunek et al., 2007; Tomic et al., 2007). In this
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section we will briefly discuss four of these techniques.
In order to simplify the discussion of panel perfor-
mance monitoring we assume that each member of the
sensory panel evaluated the entire set of products in
triplicate.

Univariate Techniques

One-way analyses of variance with product as the
main effect for each panelist and each attribute allow
the sensory scientist to evaluate the individual pan-
elists’ discriminability as well as their repeatability.
The assumption is that panelists with excellent dis-
criminability for a specific attribute would have large
F-values and small probability (p) values. Panelists
with good repeatability would tend to have small mean
square error (MSE) values. A plot of p-values by
MSE values allows the sensory scientist to simultane-
ously evaluate both discriminability and repeatability
(Fig. 10.5).

A three-way analysis of variance with main effects
(product, panelist, and replication) and interaction
effects (panelist by product, panelist by replication,
and product by replication) will fairly quickly indicate

Fig. 10.5 An example of a p by MSE plot for all panelists
(only some panelists are named) for caramel aroma (caramel)
and viscous mouth feel (viscMF). Panelist 8 shows excellent
discriminability (low p-value) as well as excellent repeatability
(low MSE) for viscous mouth feel. For caramel this panelist also
has excellent discriminability (low p-value) despite repeatabil-
ity issues. Panelist 9 has repeatability issues, especially for both
attributes but also has discriminability issues with viscous mouth
feel and to a lesser extent with caramel aroma.

some trouble spots in panelist performance rela-
tive to the rest of the panel. The sensory scientist
should be on the lookout for attributes with signif-
icant panelist by product interactions. These would
indicate that at least one (and possibly more pan-
elists) is not scoring these attributes similarly. One
should always plot the data. If a panelist’s results
decrease (increase) while the panel means increase
(decrease) it is called a cross-over interaction and it
is a major problem. If a panelist’s results decrease
(increase) while the panel means decrease (increase)
but at a different rate then the interaction is less of a
problem.

Panelist performance relative to the panel as a whole
for each attribute can also be visually shown with
eggshell plots (Hirst and Næs, 1994). In this case the
panelist’s scores for each attribute are transformed into
ranks. A consensus ranking for each attribute is then
created by finding the mean rank over panelists for
each product and then ranking these means. Each pan-
elist’s cumulative scores are then plotted relative to
the consensus ranks. The resultant plot looks similar
to an eggshell, and the intention is to have as few
“cracks” as possible in the shell for each attribute
(Fig. 10.6).

Multivariate Techniques

A principal component analysis (PCA) of each
attribute for all the panelists will indicate the con-
sonance (agreement) among the panelists for that
attribute (Dijksterhuis, 1995). In this case the pan-
elist scores for each product for the specified attribute
are used as the variables (columns) in the analysis.
If there is substantial agreement (consonance) among
the panelists then the majority of the variance should
be explained by the first dimension. In other words
if the panelists use the specific attribute similarly
then the PCA should tend to become unidimensional.
Usually, for well-trained panels the amount of variance
explained on the first dimension ranges from about 50
to 70% (Fig. 10.7).

Worch et al. (2009) found that for untrained con-
sumers these values tend to be much lower, ranging
from about 15 to about 24%. The sensory scientist
can also calculate a consonance (C) score for each
attribute from the PCA results. Dijksterhuis (1995)
defined C as the ratio of the variance explained by
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a b

Fig. 10.6 Two examples of eggshell plots. The smooth line on
the bottom of the plot is the consensus rank for the specific
attribute. From the plots it is evident that the panelists were more

in agreement with each other on the oak aroma attribute (a) than
on the citrus aroma attribute (b).

Fig. 10.7 An example of two
PCA panelist consonance
plots. In the first plot (a) there
is disagreement among the
panelists in their usage of the
specific term. In the second
plot (b) there is more
agreement among the
panelists in terms of their use
of the second term (reprinted
with permission from Le
Moigne et al., 2008).

the first dimension to the sum of the remaining vari-
ances. Large values of C would indicate that there
was agreement among the panelists in the usage of a
specified term since the vectors for the terms would
“point” in the same direction. The sensory scientist
must be careful to not just blindly calculate C since
large values of C are possible when there are large neg-
ative loadings on the first dimension as well as large
positive ones. Thus prior to calculating C one should
always plot the PCA for each attribute. Dellaglio et al.
(1996) reported C values ranging from about 0.4 to
2.3 for a panel evaluating Italian dry-cured sausages.
Carbonell et al. (2007) found C values ranging from
0.46 to 4.6 for a panel evaluating Spanish mandarin
juices.

10.5.2 Studies Comparing Different

Conventional Descriptive Analysis

Techniques

Risvik et al. (1992) and Heymann (1994a) found that
well-trained independent panels (in two different coun-
tries, Norway and Britain, and in the same university
setting, respectively) gave very comparable results. A
study by Lotong et al. (2002) on the evaluation of
orange juices by two independently highly trained pan-
els (one panel used individual judgments and the other
created a consensus evaluation) showed that the results
from the different panels were comparable. Drake et al.
(2007) evaluated the descriptive sensory analyses of
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whey and soy proteins by two independently, and
extensively, trained panels (one in the United States
trained through the Spectrum method and one in New
Zealand trained using a general descriptive analysis
approach). They found that the two panels found dis-
tinct and consistent differences between the whey and
soy proteins and that they performed similarly. As
stated by the authors “. . .product differentiation was
similar, but attribute usage was not. . . . A key result
from this study . . . is that well-trained panels using
independent sensory languages can produce compa-
rable results.” Italics are ours—the key to adequate
consistency across languages and philosophies is in
the training of the panels. A comparison of cheddar
cheese descriptive analyses from Ireland, the United
States, and New Zealand also indicated that highly
trained panels using standardized, representative lan-
guages can provide comparable results (Drake et al.,
2005). Bárcenas et al. (2007) had five highly trained
panels (two in Spain, one each in Italy, France, and
Portugal) evaluate European ewes milk cheeses and
found that the panels all significantly discriminated
among the cheeses, although there were some differ-
ences in the use of attributes. However, McEwan et al.
(2002) found that the performances of 12 European
panels evaluating red wines were not comparable and it
seems that a lack of adequate training may be to blame
for this result. Similarly studies comparing trained
descriptive analysis panels and untrained consumer
panels asked to rate attribute intensities tend to show
non-comparable results (Gou et al., 1998). This study,
once again, emphasizes the need to adequately train
descriptive panels to ensure reliable, consistent valid
results. There are numerous additional studies compar-
ing descriptive panels from different countries, using
different training techniques, different vocabulary gen-
eration, etc., and all essentially conclude that results
are similar as long as the panels were highly trained.

10.6 Variations on the Theme

10.6.1 Using Attribute Citation

Frequencies Instead of Attribute

Intensities

Currently this technique has usually been used with
wines, but it would be appropriate for other products
as well. This technique involves a similar training

schedule to normal generic descriptive analysis but in
the case of the citation frequency descriptive analy-
sis the aim is to have as many relevant terms with
their appropriate consensus-derived reference stan-
dards as possible. The number of attributes retained
by the trained panel has varied from an unusually low
10 attributes (McCloskey et al., 1996) to 73 terms
(Campo et al., 2008) to 113 attributes (Campo et al.,
2009) to 144 terms (Le Fur et al., 2003). The sec-
ond difference from generic descriptive analysis is
that the panels for citation frequency descriptive anal-
ysis are much larger than the usual 8–12 used in
generic descriptive analysis. Panel sizes have ranged
from an unusually low 14 (Le Fur et al., 2003) to
26 (McCloskey et al., 1996) to 28 (Campo et al.,
2008) to 38 (Campo et al., 2009). Once they are
trained the panelists are asked to evaluate the wines
in duplicate or triplicate but unlike generic descriptive
analysis they do not use a scale. Instead each panelist is
asked to indicate a specified number of attributes that
are most descriptively associated with each product.
McCloskey et al. (1996) asked panelists to use between
two and five terms per Chardonnay wine, Le Fur used
five to six terms for each Chardonnay wine, Campo
et al. (2009, 2008) used either a maximum of five
terms for Burgundy Pinot noir wines or a maximum
of six terms for Spanish monovarietal white wines,
respectively.

It is possible to calculate an average reproducibil-
ity index (Ri) to assess individual panel performance
across duplicate evaluations:

Ri =
∑

[2 × descom/(desrep1 + desrep2)/n] (10.1)

where

descom = number of common terms used by the spe-
cific panelist in the two replicates

desrep1 = number of terms used by the specific panelist
in Replicate 1

desrep2 = number of terms used by the specific panelist
in Replicate 2

n = number of products

The Ri value can range from 0 (no reproducibil-
ity across replicates) to 1 (perfect agreement between
replicates). It has been suggested that the data from
panelists with Ri values less than 0.2 should not be
used for further data analyses. Campo et al. (2008)
found a mean Ri of 0.51 (on average 51% of the terms
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were used by panelists in both replicates), a median
Ri of 0.32, and a low Ri of 0.17. In the Burgundy Pinot
noir study Campo et al. (2009) found a mean Ri of 0.69
and a low Ri of 0.24.

For data analyses the terms are ranked by their
citation frequency (Cf) to determine the most rele-
vant attributes. Usually, only attributes with a Cf of at
least 15% (in other words used in at least one wine
by replication situation by at least 15% of the pan-
elists) are used in the subsequent data analyses. A chi-
square analysis is performed on the mean Cf (averaged
across replications) of each attribute and wine to deter-
mine discriminating attributes. Correspondence anal-
ysis is then used to create two- or three-dimensional
maps of the product–attribute spaces (Greenacre, 2007;
Murtagh, 2005). Correspondence analysis requires
contingency tables. In this case the data are orga-
nized into a contingency table of the mean Cf

with rows as the products and attributes as the
columns.

Currently (2009), only one study has been published
that compared citation frequency descriptive analysis
with conventional descriptive analysis. In this study
Campo et al. (2009) found that there were some sim-
ilarities between the two methods but that the citation
frequency method, despite its longer training require-
ments and its requirement for more panelists and thus
more products, may lead to more nuanced results. In
other words the technique may detect more subtle dif-
ferences than conventional descriptive analyses. This
should be studied further.

10.6.2 Deviation from Reference Method

The Deviation from Reference method (Larson-
Powers and Pangborn, 1978) uses a reference sample
against which all other samples are evaluated. The
scale is a degree of difference scale with the refer-
ence as the midpoint anchor. The example in Fig. 10.5
is an unstructured line scale but numerical scales are
also used. The reference is often included as a sample
(not identified as the reference) and used as an internal
measurement of subject reliability. The results are eval-
uated in relation to the reference. Thus samples that
score less than the reference for specified descriptors
are indicated by negatives and those that score more
are indicated with positives (Fig. 10.8).

Larson-Powers and Pangborn (1978) concluded that
the deviation-from-reference scale improved the pre-
cision and accuracy of the responses in a descriptive
analysis study. However, Stoer and Lawless (1993)
found that the method did not necessarily increase pre-
cision. They felt that the technique would best be used
when distinctions among sample are difficult or when
the objective of the study involves comparisons to a
meaningful reference. An example of a meaningful ref-
erence would be a control sample that had been stored
in such a way as to undergo no changes, compared to
samples that have undergone accelerated shelf-life test-
ing (Labuza and Schmidl, 1985). This is exactly the
protocol Boylston et al. (2002) used when evaluating
the effects of radiation on papayas, rambutans, and kau
oranges. The panelists used deviation from reference

Fig. 10.8 (Top) Example of a
Deviation from Reference
scale and (Bottom) Graphical
representation of
deviation-from-reference
results.



10.6 Variations on the Theme 249

scales to evaluate the fruits with the reference being a
control, un-irradiated sample.

10.6.3 Intensity Variation Descriptive

Method

This method was developed by Gordin (1987) to pro-
vide the sensory scientist information about changes
in descriptive attribute intensities as the sample is
consumed. Specifically, the technique was created to
quantify changes occurring in the sensory character-
istics of a cigarette during consumption. Conventional
time–intensity and conventional descriptive techniques
were not suitable for this product since the variability
in smoking rate would not allow the same portions of
the cigarette to be evaluated by all panelists within the
same time frame. The Intensity Variation Descriptive
method concentrated panelist evaluations within spec-
ified locations of the product, rather than within spec-
ified time intervals. The cigarette was divided into
sections by drawing lines on the tobacco rod with
marking pen. Through consensus the panelists derived
attributes that would be evaluated within each marked
section of the cigarette. Panelist training, ballot devel-
opment, and data analyses were standard descriptive
methodology. As far as we can ascertain this method
has only been used with cigarettes but it could be
adapted for use with other products.

10.6.4 Combination of Descriptive

Analysis and Time-Related

Intensity Methods

10.6.4.1 Dynamic Flavor Profile Method

The Dynamic Flavor Profile Method (DeRovira, 1996)
is a further extension of the combination of descriptive
analysis and time–intensity methodology. As described
by DeRovira the panelists are trained to evaluate the
perceived intensities of 14 odor and taste components
(acids, esters, green, terpenoid, floral, spicy, brown,
woody, lactonic, sulfury, salt, sweet, bitter, and sour)
over time. The data are graphically represented by
isometric three-dimensional techniques, where a cross
section of the graph at any specified time instant
yields a spider-web profile for that time instant. The

technique seems to have some potential uses, yet we
are concerned that the specification of 14 attributes
may be too restrictive. It would be better to allow
the panelists to determine the descriptors that they
would like to use to describe the sensory characteris-
tics associated with the product. It is conceivable that
the panelists would decide that some attributes do not
change over time and that others do. They would then
do descriptive analysis of the attributes that do not
change and a variation of the dynamic flavor profile
for the attributes that do change.

10.6.4.2 Temporal Dominance of Sensations

(TDS) Method

This method is described in the Time–Intensity chapter
(Chapter 8). Briefly, the idea is to present a set of pre-
determined attributes together on the computer screen
for the panelist’s choice and scales for rating the inten-
sity of each. Panelists are instructed to attend to and
choose only the “dominant” sensation at any one time
after tasting the sample and clicking on a start button.

10.6.4.3 Time-Scanning Descriptive Analysis

This method was devised by Seo and coworkers (2009)
to evaluate hot beverages. They were concerned that
panelists may take different amounts of time to do
their evaluations and hence may be smelling and/or
tasting the beverages at differing temperatures. In
order to avoid this potential source of variability, they
employed a time limit for the evaluation of each
attribute. This ensured that all attributes across pan-
elists were evaluated at the same time and at the same
beverage temperature. One of us had done something
similar many years ago in the evaluation of a series of
body wash products (liquid soaps). Panelists were sup-
plied with stop watches and were asked to evaluate the
tackiness (stickiness) and smoothness of their skin at
specified time intervals after stepping out of a shower
and drying themselves.

10.6.5 Free Choice Profiling

During the 1980s British sensory scientists created
and promoted a descriptive technique known as
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Free Choice Profiling. The procedure was employed
by several European researchers early on (Arnold
and Williams, 1986; Langron, 1983; MacFie, 1990;
Marshall and Kirby, 1988; Schlich, 1989; Williams and
Langron, 19841984). The Free Choice Profiling tech-
nique shares much with the other techniques discussed
previously. However, the method differs radically on at
least two counts.

In the first place, vocabulary to describe the fla-
vor notes is generated in a novel way. Instead of
extensively training the panelists to create a consensus
vocabulary for the product, FCP requires that each pan-
elist creates his/her own idiosyncratic list of descriptive
terms. Panelists are allowed to evaluate the product
in different ways. They may touch, taste, or smell.
They may evaluate shape, color, gloss, or other stim-
uli that interests them. Each sensation is rated on a
scale using terms of the panelist’s own devising. These
individually generated terms need only be understood
by the specific panelist. However, the individual must
use the terms consistently when evaluating the prod-
ucts. Each panelist then uses his/her own unique list
of terms to evaluate the products. As with QDA and
the Spectrum methods, evaluations are performed in
individual booths, under standard conditions.

The second unique feature of the FCP is in the statis-
tical treatment of the scores from the panelists. These
data are mathematically manipulated through the use
of a procedure known as the Generalized Procrustes
Analysis (Gower, 1975; Gower and Dijksterhuis, 2004;
Oreskovich et al., 1991; Schlich, 1989). The Procrustes
analysis usually provides a consensus picture of the
data from each individual panelist in two- or three-
dimensional space. It is possible to have a Procrustes
solution with more than three dimensions but these are
usually not interpretable.

The most distinct advantage of this technique is the
avoidance of panel training. Experiments may be com-
pleted faster and at less expense. However, there is a
significant time burden in creating a different ballot
for each individual panelist. The ability of the pan-
elist to use words that have unique meaning to that
individual may allow for a more complete analysis
of the sample flavor components. On the other hand,
the idiosyncratic nature of the vocabularies may make
interpretation of the sources of individual flavor notes
difficult or impossible. For example, a panelist may
use the word “camping” to describe the flavor note
of a product. The researcher is forced to guess what

aspect of “camping” the panelist means: the smells of
the woods, the musty leaves, the campfire smoke, etc.
If this descriptor is in the same space as the musty,
earthy, dirty descriptors of other panelists, the scien-
tist has a clue to the flavor attribute being evaluated
by that particular panelist. It is possible to imagine an
analysis where all the words used by the individual
panelists do not provide any clue as to their origin. For
instance, in an evaluation of tea leaves performed in
our laboratories, one panelist used the descriptor “cool-
stuff” to label one scale. Our curiosity was aroused, so
we asked the panelist at the completion of the exper-
iment what she meant by this descriptor. Cool Stuff
is the name of a sundries store, in the town where
one of us used to live, selling an eclectic collection
of products, most notably to anyone walking into the
store—incense. In this case it was possible to get to
the underlying sensory characteristic being evaluated.
However, in the same panel one individual used the
descriptor “mom’s cooking” which seems hopeless to
characterize in more traditional sensory nomenclature.

As we have seen, in a FCP each individual panelist
evaluates the products using their own idiosyncratic
descriptors. Some panelists may use very few descrip-
tors and others may use many descriptors. Additionally
the terms rated by the panelists may not coincide.
Therefore, standard univariate and multivariate sta-
tistical techniques like analysis of variance, principal
component analysis, multi-linear regression cannot be
used. The data from FCP studies are analyzed using
generalized Procrustes analysis. The technique allows
one to scale, reflect, and rotate multiple data matri-
ces (one for each panelist for each replication) to
obtain a consensus space (Gower, 1975). The itera-
tive technique is called Procrustes analysis in reference
to Hellenic mythology. Procrustes, a nickname for
Damastes or Polypemon, meaning “the stretcher” was
a robber who invited travelers to stay at his house
(Kravitz, 1975). If the visitor did not fit his bed he
would either stretch them or cut off their legs to make
them fit the bed. His guests being thus incapacitated,
Procrustes was able to help himself to his guests’
possessions at his leisure.

The Procrustes analysis also in a sense force-fits
the data matrices from the individual panelists into a
single consensus space. The most important aspect of
the Procrustes analysis is that it allows the analyst to
determine the terms used by individual panelists that
appear to be measuring the same sensory attributes as
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the other judges. With this technique each judge’s data
are transformed into individual spatial configurations.
These configurations of individual judges are then
matched by Procrustes analysis to a consensus configu-
ration. The consensus configuration may be interpreted
in terms of each individual assessor’s vocabulary and
the scientists may also determine how the different
terms used by different assessors may be interrelated.
For example, if the judges are evaluating vanilla ice
creams, there might be a dimension where the judges’
individual terms include “musty,” “earthy,” “dirty,”
“old refrigerator.” In this case the sensory scientist
may recognize these as attributes that are associated
with the source of vanilla used in the flavoring. Thus
the data analysis reduces the information to a few
dimensions with a great loss of detail. This is a major
problem with these studies. The results of FCP studies
rarely allow the sensory scientist to give the prod-
uct developer actionable information. In other words,
the results show gross differences among samples but
they do not indicate the subtle differences among
products that are often very important to product devel-
opers. On the other hand, by allowing a “non-standard”
evaluation technique creative or astute panelists may
identify characteristics of a product that have not been
considered using a more traditional approach. These
novel dimensions may provide researchers new ways
to differentiate products.

A few recent examples of FCP are Narain et al.
(2003) for coffee, Kirkmeyer and Tepper (2003) to
evaluate creaminess, and Aparicio et al. (2007) for
orange juice.

Some authors have found that naïve panelists
have difficulty in generating sensory terms (Heymann,
1994b; McEwan et al., 1989). A more structured
FCP descriptor generation based on the repertory grid
method may improve the term generation process
(Kelly, 1955; Ryle and Lunghi, 1970; Stewart et al.,
1981) and should be implemented. In the simplest
terms, the repertory grid method is a way of elicit-
ing multiple descriptive terms from panelists through
a series of comparisons among groups of objects. In
this method the panelists are presented with objects
arranged in groups of three (triads) (Gains, 1994). The
arrangement is such that each object appears in at least
one triad and that an object from each triad is car-
ried over to the next triad. Two objects in each triad
are arbitrarily associated with each other and the pan-
elist is asked to describe how these two objects (A and

B) are similar and, in the same way, different from
the third (C). Once all possible similarities and dif-
ferences, within the specified group of two with a
third one as the odd object, have been exhausted, the
researcher then presents the remaining two combina-
tions (A and C with B as the odd object, as well as
B and C, with A as the odd object) within the triad to
the panelist who repeats the effort to describe similari-
ties and differences. This is repeated for all triads. The
descriptors used are placed on scales and the panelists
then use their own sets of scales to describe the objects
in the study. The data are then analyzed by Generalized
Procrustes Analysis. McEwan et al. (1989) and Piggott
and Watson (1992) compared the results from conven-
tional FCP and FCP with attribute generation through
the repertory grid method. They found that the reper-
tory grid method of attribute generation did not have
an advantage over conventional FCP.

Heymann (1994b) and Narain et al. (2003) also
found that naïve panelists and panelists with mixed
sensory experiences, respectively, did not use their
individual vocabularies consistently. This resulted in
non-significant GPA results. Narain et al. (2003) actu-
ally used the vocabulary derived by the panel individ-
ually for the FCP as a starting point for training the
same panelists in a generic descriptive analysis. They
felt that doing this improved the training of the panel
for the descriptive analysis. However, we feel that this
is a somewhat roundabout way to training a descriptive
panel.

FCP is under scrutiny from sensory scientists who
are somewhat skeptical that the results from this tech-
nique are not subject to the desired interpretation of
the researcher. Williams and Arnold (1984) published
the first comparison of FCP with other descriptive sen-
sory procedures. Other authors have also compared
FCP to more conventional descriptive techniques. For
example, using canned cat food, Jones et al. (1989)
compared FCP to generic descriptive analysis results.
It seems that the best use for the FCP technique is
in the area of perceptual mapping of product spaces.
Perceptual maps are frequently created in marketing
research and research in our and other laboratories has
shown that FCP allows the creation of perceptual maps
that are very similar to those created by traditional
mapping techniques, such as multidimensional scaling
of sorting techniques, principal component analysis
of descriptive data, and principal component analysis
of consumer attribute analysis (Elmore and Heymann,
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1999; Steenkamp et al., 1988, 1994; Wright, 1994).
These and subsequent studies have shown that under
certain circumstances one would reach similar conclu-
sions about differences among products as with other
descriptive techniques (Gilbert and Heymann, 1995;
Heymann, 1994b; Oreskovich et al., 1990; Skibba and
Heymann, 1994a, b). There are indications that FCP is
capable of revealing large differences among products
but is less successful at more subtle differences. These
subtle differences are more easily determined using
a trained descriptive panel (Cristovam et al., 2000;
Saint-Eve et al., 2004).

10.6.6 Flash Profiling

Flash profiling was invented in 2000 by Sieffermann.
The technique combines individual panelist vocabu-
lary generation through free choice profiling followed
by a ranking of the simultaneously presented whole
product set for each attribute. Proponents of this tech-
nique insist that the panelists chosen for the Flash
profile have to be sensory evaluation experts and/or
product experts (Dairou and Sieffermann, 2002; Rason
et al., 2006). In the first session the panelists receive
the entire product set and are asked to individually
generate sensory descriptors that differentiate among
the products. They are also instructed to avoid hedonic
terms. At the session, the panelists are shown a pooled
attribute list and are asked to update (add and/or sub-
tract) their own individual lists if they wanted to. At
the next session the panelists rank the whole product
set for each of their individual attribute lists. Ties are
usually allowed. At subsequent sessions the ranking
process is repeated. It is preferable to do at least three
replications (Delarue and Sieffermann, 2002) but some
authors have done flash profiling with only duplicate
rankings (Rason et al., 2006).

All products are served to the panelists simulta-
neously, this seems reasonable when the numbers of
samples are relatively low. For example, Delarue and
Sieffermann (2000) served 16 strawberry yogurts to
their panel; Dairou and Sieffermann (2002) served 14
jams; Delarue and Sieffermann (2004) served either 6
strawberry yogurts or 5 apricot-flavored fresh cheeses;
Rason et al. (2006) served 12 dry pork sausages;
Blancher et al. (2007) served 20 jellies; Lassoued et al.
(2008) served 15 wheat breads; and Jaros et al. (2009)

served 6 cloudy apple juices. However, Tarea et al.
(2007) seriously pushed the limits of their panel by
asking them to evaluate 49 pear and apple purees. The
panel actually completed the task despite complaining
about the tedium of the task and the results look valid.
However, we would seriously question whether these
numbers are sustainable with products that are more
fatiguing.

Similar to free choice profiling the data are eval-
uated by generalized Procrustes analysis, where each
panelist corresponds to a data matrix and a consen-
sus configuration is produced. If the sensory scientist
wants to evaluate the individual panelist’s performance
the data are analyzed by one-way analysis of variance
(main effect: product) for each individual panelist.
Keep in mind that the ranking data are nonparamet-
ric and should ideally be analyzed by a nonparametric
test such as the Friedman test; however, the Friedman
analysis does not handle replications and thus the
individual panelists’ data are usually analyzed by anal-
ysis of variance. It should be noted that doing this is
contrary to the normality assumption of analysis of
variance but Dairou and Sieffermann (2002) felt that
the results were adequate to evaluate panelist repro-
ducibility and attribute discriminability. Since Rason
et al. (2006) did only two replications they could use
the Spearman’s correlation coefficient to determine
each individual panelist’s reproducibility.

According to Dairou and Sieffermann (2002) the
advantages of flash profiling are (a) its speed because
there is no training of the panelists and also all products
are evaluated simultaneously, thus three replications
only require three sessions and (b) that the technique
allows for a diversity in panelist point of view since
each panelist uses his/her own internalized vocabu-
lary. However, this requires that the panelists either are
experts in sensory description or are experts in terms
of knowledge and experience with the product cate-
gory. According to the above authors disadvantages of
the technique are that (a) all products must be avail-
able simultaneously and thus it could probably not be
used for shelf-life testing; (b) the panelists have to be
experts; (c) interpretation of sensory characteristics is
difficult since the terms are idiosyncratic to each pan-
elist (this is similar to free choice profiling); and (d) the
terminology cannot be used by a different panel.

Comparisons between flash profiling and generic
descriptive analysis have been published. Dairou and
Sieffermann (2002) found that the two procedures
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produced similar groupings of the jams. The flash
profiling process was quicker but the standard
generic descriptive analysis provided more explanatory
descriptors. Delarue and Sieffermann (2002) found
that for strawberry yogurts the two techniques pro-
vided very similar sensory spaces but that for apricot-
flavored fresh cheeses the spaces were somewhat dif-
ferent. Blancher et al. (2007) also found that the
conventional descriptive profile sensory spaces were
similar to the flash profile spaces regardless of whether
the flash profiling was done by French or Vietnamese
panelists. We agree with Delarue and Sieffermann
(2004) when they state “. . ., we think it would be
misleading to consider flash profiling as a substi-
tute for conventional profiling, which is certainly the
most adapted and accurate profiling method to date.
Furthermore, these two methods do not fulfill exactly
the same objectives. We rather propose to consider
flash profile as a convenient sensory mapping tool for
conducting preliminary phases of thorough sensory
studies. . .. One could also use it as a screening tool for
selecting products or factors when designing a larger
experiment.”
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Chapter 11

Texture Evaluation

Abstract In this chapter the sensory evaluation of texture is discussed. The concept
of texture is defined and then the visual, auditory, and tactile textures related to food
(and to some extent textiles) are described in detail. Sensory texture measurements,
specifically the Texture Profile Method, are described followed by a relatively brief
discussion of correlations between instrumental and sensory texture measurements.

Whenever I

Eat ravioli

I fork it quick

But chew it sloli.

—(Italian Noodles, 1992)
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11.1 Texture Defined

Alina Szczesniak (2002) states that a generally
accepted definition of texture is the following “tex-
ture is the sensory and functional manifestation of the
structural, mechanical and surface properties of foods
detected through the senses of vision, hearing, touch
and kinesthetics.” She then goes on to emphasize

a. “texture is a sensory property” which can only be
perceived and described by humans (and animals)
and any instrumental measurements must be related
to sensory responses.

b. “texture is a multi-parameter attribute.”
c. “texture derives from the structure of the food.”
d. “texture is detected by several senses.”

A number of texture review articles and textbooks
have been published (Bourne, 2002; Chen, 2007, 2009;
Christensen, 1984; Guinard and Mazzuccheli, 1996;
Kilcast, 2004; McKenna, 2003; Moskowitz, 1987;
Rosenthal, 1999; Szczesniak, 2002; Wilkinson et al.,
2000; van Vliet et al., 2009).
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The texture of an object is perceived by the senses
of sight (visual texture), touch (tactile texture), and
sound (auditory texture), in some products only one
of these senses is used to perceive the product texture
and in other cases the texture is perceived by a com-
bination of these senses. For example, the skin of an
orange has a visual and tactile roughness that is absent
in the skin of an apple. The crispness of a potato chip
in the mouth is both a tactile and an auditory textural
perception (Vickers, 1987b). The thickness (viscosity)
of a malted milkshake can be assessed visually, in the
glass, and then by proprioceptive sensations when stir-
ring the milkshake with a straw as well as by tactile
sensations in the mouth.

Ball and coworkers (1957) were among the first to
distinguish between “sight” (visual) and “feel” (tac-
tile) definitions of texture. Visual texture is often used
by consumers as an indication of product freshness,
for example, wilted spinach and shriveled grapes are
deemed to be unacceptable in quality (Szczesniak
and Kahn, 1971). Additionally, visual texture clues
create expectations as to the mouth feel charac-
teristics of the product. When the visual and tac-
tile texture characteristics of a product are at vari-
ance the discrepancy causes a decrease in product
acceptance.

Food texture can be extremely important to the
consumer. Yet, unlike color and flavor, texture is fre-
quently used by the consumer not as an indicator
of food safety, but as an indicator of food quality.
Szczesniak and Kahn (1971) found that socioeconomic
class affected consumers’ awareness of texture. Those
individuals in higher socioeconomic classes were more
aware of texture as a food attribute than those in lower
socioeconomic classes. Also, consumers employed by
a major food company placed relatively more empha-
sis on texture than the general population (Szczesniak
and Kleyn, 1963). Szczesniak (2002) states that one of
the main drivers of consumers’ responses to food tex-
ture is that “people like to be in full control of the food
placed in their mouth. Stringy, gummy or slimy foods
or those with unexpected lumps or hard particles are
rejected for fear of gagging or choking.” Table 11.1
indicates the relative importance of consumers placed
on texture versus flavor in a wide variety of
foods.

In some foods, the perceived texture is the most
important sensory attribute of the product. For these
products a defect in the perceived texture would have

Table 11.1 Relative importance of texture to flavor for a wide
variety of food products (texture/flavor indexa)

Item
American
consumersb

Consumers
employed by
general foodsc

Total group 0.89 1.20

Sex
Male 0.76 1.10
Female 1.02 1.30

Socioeconomic class
Upper lower 0.60
Lower middle 0.95
Upper middle 1.20

Geographic location
Chicago, IL 0.96
Denver, CO 0.95
Charlotte, NC 0.63

Adapted from Szczesniak and Kahn (1971)
aIndex values less than unity mean consumers placed relatively
more emphasis on flavor, values larger than unity mean more
emphasis was placed on texture
bOne hundred and forty-nine consumers (three geographic
areas) did a word-association test using the names of 29 foods
(Szczesniak, 1971)
cOne hundred consumers did a word-association test using the
names of 74 foods (Szczesniak and Kleyn, 1963)

an extremely negative impact on consumers’ hedonic
responses to the product. Examples are soggy (not
crisp) potato chips, tough (not tender) steak, and wilted
(not crunchy) celery sticks. In other foods, the texture
of the product is important but it is not the princi-
pal sensory characteristic of the product. Examples are
candy, breads, and many vegetables. Lassoued et al.
(2008) stated that about 20% of bread acceptability
was related to crumb texture. In still other foods, the
perceived texture has a minor role in the acceptance
of the product and examples are liquids with relatively
low viscosities such as wine and sodas.

The texture contrast within a food, on the plate, or
across food products in a meal is important. A meal
consisting of mashed potato, pureed winter squash,
and ground beef sounds much less appetizing than
one consisting of Salisbury steak, French fries, and
chunks of winter squash, yet the difference between
the two meals are all related to texture. Szczesniak
and Kahn (1984) formulated general principles that
should be kept in mind when creating textural con-
trasts in individual foods or across foods within a meal.
Hyde and Witherly (1993) formulated the principle
that dynamic contrast (the moment-to-moment change
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in sensory textural contrast in the mouth during chew-
ing) is responsible for the high palatability of potato
and corn chips and of ice cream. Additional examples
of foods with dynamic contrast would be ice cream
with candy inclusions and chocolate covered peanut
M&M candies.

The importance of texture in the identification of
foods was shown by Schiffman (1977) who blended
and pureed 29 food products to eliminate their textural
characteristics. She then asked her panelists to eat the
food and to identify the food products. Overall about
40% of food products were identified correctly by nor-
mal weight college students. Only 4% of the panelists
could correctly identify blended cabbage; 7% cor-
rectly identified pureed cucumber; 41% correctly iden-
tified blended beef; 63% correctly identified pureed
carrots; and 81% correctly identified pureed apple.
These data indicate that American consumers use tex-
ture information when they identify and classify food
products.

In a word-association test Szczesniak and Kleyn
(1963) found that foods elicited texture responses dif-
ferentially. The percentage of texture-related responses
was relatively high (over 20%) for peanut butter, cel-
ery, angel-food cake, and pie crust. Their panelists used
a total of 79 texture words, with 21 words used 25
or more times by the 100 panelists to describe the
74 foods. The most frequently used words described
hardness (soft, hard, chewy, and tender), crispness or
crunchiness, and moisture content (dry, wet, moist,
juicy). Yoshikawa et al. (1970) used the Szczesniak
and Kleyn (1963) study as a basis to study the tex-
ture descriptions of female Japanese panelists. They
found that the Japanese used many more words to
describe texture (406) than the American panelists
(79). This was probably not due to genetic differences
between the two groups but more likely due to cultural
differences since Japanese foods tend to have more
textural variety than American foods. Additionally,
the Japanese language is also very rich in subtle
nuances and older respondents would likely have used
even more terms since they “would have a greater
knowledge of Japanese than younger people.” Later,
Szczesniak (1979a, b) commented on the onomatopo-
etic nature of Japanese texture terms. That is, the
word tends to sound like the type of texture that is
experienced.

Rohm (1990) also used the Szczesniak and Kleyn
(1963) study as a basis to study Austrian texture

descriptors. They found that Viennese students (100
males and 108 females) used 105 texture terms in
a word association with 50 foods. Eighteen of these
terms were used more than 25 times each while
47 terms were used less than 5 times each. When
Rohm (1990) compared his data with Szczesniak and
Kleyn (1963), Szczesniak (1971) and Yoshikawa et al.
(1970), he found that five of the ten most frequently
used terms were similar across studies (Table 11.2).
Based on these studies we can thus state that cer-
tain textural terms and sensations are universal across
cultures. However, there are some major exceptions.
As pointed out by Roudaut et al. (2002) in France
vegetables and fruits are not considered “croustillant”
(crisp) yet in the United States these products, when
fresh, are frequently described as crisp. The sensory
specialist in any country, culture, or region should
therefore pay attention not only to the perceived flavor,
taste, and color dimensions of food products but also
to the perceived textural characteristics. Drake (1989)
published a list of textural terms in 23 languages.
This list is invaluable when training panelists who
are non-native English speakers or panels in different
countries.

Table 11.2 The ten most frequently used texture terms in
Austriaa, Japanb, and the United Statesc,d

United States

Austriaa Japanb 1963c 1971d

Crisp Hard Crisp Crisp

Hard Soft Dry Crunchy

Soft Juicy Juicy Juicy

Crunchy Chewy Soft Smooth
Juicy Greasy Creamy Creamy

Sticky Viscous Crunchy Soft
Creamy Slippery Chewy Sticky
Fatty Creamy Smooth Stringy
Watery Crisp Stringy Fluffy
Tough Crunchy Hard Tender

Words in bold occurred in the top ten in all four studies
aTwo hundred and eight Viennese students did a word-
association test using the names of 50 foods (Rohm, 1990)
bOne hundred and forty Japanese students did a word-
association test using the names of 97 foods (Yoshikawa et al.,
1970).
cOne hundred and forty-nine consumers (three geographic
areas) did a word-association test using the names of 29 foods
(Szczesniak, 1971)
dOne hundred consumers did a word-association test using the
names of 74 foods (Szczesniak and Kleyn, 1963)
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11.2 Visual, Auditory, and Tactile

Texture

In this section we will discuss visual, auditory, and
tactile perceptions of texture in more detail and then
we will discuss how the sensory specialist can mea-
sure these perceived textures in food products. The
usual sequence of texture perception when consum-
ing a food product is visual evaluation of texture
followed by direct (with the fingers) and/or indirect
(with eating utensils such as knife, fork, or spoon) tac-
tile evaluations followed by oral–tactile (with the lips,
tongue, palate, saliva) evaluations. Concurrent with the
oral–tactile evaluation (and sometimes also when cut-
ting/stabbing the food with a utensil) are also the aural
(sound) evaluations of crunchy, crispy, crackly, etc.
(Kilcast, 1999).

11.2.1 Visual Texture

Many surface characteristics of a food product do not
only affect the perceived appearance of the product but
also affect the perception of the texture. Consumers
know from prior experience that the lumps seen in
tapioca pudding are also perceived as lumps in the
mouth. Visual texture assessment has some overlap
with appearance characteristics such as shine, gloss,
and reflectance (discussed in Chapter 12). In this
section we will discuss visual texture not related to
these appearance terms. These visual texture terms
would include roughness, uniformity, surface powder-
iness or bloom, oiliness, greasiness, flakiness, stringi-
ness, smoothness, wilting, and surface wetness (Chen,
2007).

The surface roughness of an oatmeal or the cookie
can be assessed both visually and through oral and
hand tactile evaluations. The blister level of tortilla
chips was assessed by Bruwer et al. (2007) who found
that the blister level was negatively related to orally
perceived denseness of the tortilla chip. In a bread
crumb appearance study trained panelists have evalu-
ated fineness (“. . . visual estimation of the amount of
gas cells”), degree of homogeneity (“. . .refers to the
degree of uniformity of the pore sizes”), and orien-
tation (“. . .degree of orientation of the crumb grain”)
(Gonzalez-Barron and Butler, 2008b). Lassoued et al.

(2008) used flash profiling (see Chapter 10) to evaluate
the visual crumb texture of wheat breads.

Using custards and a two level cup where the vis-
ible custards could be manipulated independently of
the invisible ingested custards, de Wijk et al. (2004)
found that the visual texture of the visible custards
changed the oral texture ratings of the ingested cus-
tards. Carson et al. (2002) trained a descriptive panel
to assess strawberry yogurts using visual texture terms
including spoon impression (“the degree to which the
product is jellified evaluated by looking at the impres-
sion left at the surface after lifting a spoonful from the
unstirred product”) and spoon covering (“the degree to
which the product covers the back of the spoon eval-
uated by lifting a spoonful from the sample cup”).
They found that both spoon impression and spoon
covering were highly correlated with perceived oral
thickness. The viscosity of a fluid can be assessed visu-
ally by pouring the fluid from a container, by tilting a
container, or by evaluating the spreading of the fluid
on a horizontal surface (Elejalde and Kokini, 1992;
Kiasseoglou and Sherman, 1983; Sherman, 1977).
Janhøj et al. (2006) trained a descriptive panel to evalu-
ate low-fat yogurts using visual texture attributes such
as grainy on lid and continuous flow from spoon.
Lee and Sato (2001) used a paired comparison scal-
ing technique to visually evaluate the perceived texture
of real textile samples as well as photographic images
of the samples. They found that the principal compo-
nent spaces derived by the two methods were quite
similar.

11.2.2 Auditory Texture

In some cases, consumers may find that the sounds
(auditory texture) associated with eating a food prod-
uct negatively impact the hedonic responses associated
with the product. An example is the gritty sound of
sand against the teeth when eating creamed spinach
made with inadequately rinsed spinach leaves. On the
other hand, auditory texture can add positively to con-
sumers eating enjoyment as well, examples are the
crisp sounds associated with many breakfast cereals
or the crunchy sounds associated with eating a juicy
apple. Consumers often use sound as an indication of
food quality. Many of us have all thumped a water-
melon to determine its ripeness (a hollow sound is
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indicative of a ripe watermelon) or broken a carrot to
determine its crunchiness.

Auditory texture is to a large extent synonymous
with crispness, crunchiness, and crackliness in foods.
The early work in this area was done by Vickers and
Bourne (1976). Lately there has been a resurgence of
interest in the area with a review by Duizer (2001),
and work by Luyten and van Vliet (2006), Salvador
et al. (2009), and Varela et al. (2009). Sounds are
produced by mechanical disturbances which generate
sound waves which are propagated through the air or
other media, such as bone conduction from the jaw
bone to the bones of the middle ear (Dacremont, 1995).

Crisp and/or crunchy foods fall in two categories,
namely wet foods and dry foods. Sound generation dif-
fers in these two types of foods (Vickers, 1979). Wet
crisp foods, like fresh fruits and vegetables, are com-
posed of living cells that are turgid if enough water
is available. In other words, the cell contents exert
an outward pressure against the cell walls. The tissue
structure is thus similar to a collection of tiny water-
filled balloons cemented together. When the structure
is destroyed, by breaking or chewing, the cells pop and
this produces a noise. In an air-filled balloon the pop-
ping sound is due to the explosive expansion of the air
compressed inside the balloon. With turgid cells the
noise is due to the sudden release of the turgor pres-
sure. The amount of noise produced is less when the
surface tension of the liquid is high. Exposing plant
cells to sufficient moisture increases the turgor pres-
sure of the cells and increases the perceived crispness
of the product.

On the other hand, exposing dry crisp foods, like
cookies, crackers, chips, and toast to moisture (humid
air) decreases the perceived crispness of the food.
These products have air cells or cavities surrounded by
brittle cell or cavity walls. When these walls are bro-
ken any remaining walls and fragments snap back to
their original shape. When the walls snap back vibra-
tions are caused that generate sound waves (similar to
a tuning fork). When the moisture content of dry crisp
foods increases, the walls are less likely to snap back
and the amount of sound generated is less.

Vickers (1981) and Christensen and Vickers (1981)
showed that crispness and crunchiness of specified
foods can be rated on the basis of sound alone, on
the basis of oral–tactile clues alone, or on the basis
of a combination of auditory and oral–tactile infor-
mation. Crispness seemed to be acoustically related to

the vibrations produced by the food as it is deformed
(Christensen and Vickers, 1981). However, later work
by Edmister and Vickers (1985) indicated that auditory
crispness is not redundant with oral–tactile crispness
evaluations and Vickers (1987a) also indicated that the
oral–tactile sensations are very important to evaluating
crispness.

Vickers and Wasserman (1979) studied the sen-
sory characteristics associated with food sounds. They
had panelists evaluate the similarity between pairs
of sounds produced by crushing the food with pliers
(Table 11.3). The results of their study indicated that
there may be two sensory characteristics separating
food sounds, the evenness of the sound and the loud-
ness of the sound. As the loudness of the sounds
increased the panelists’ perceptions of the intensities
of crunchiness, crispness, crackliness, sharpness, brit-
tleness, hardness, and snappiness also increased. When
the sound is continuous (even) the panelists perceived

Table 11.3 Foods crushed with rubber-coated pliers to produce
recorded sounds

Food Description

Hard candy 1 whole Reeds Rootbeer candy
Fresh celery 1 cm piece cut perpendicular to stalk
Blanched celery 1 cm piece cut perpendicular to stalk

and immersed in rapidly boiling
water for 30 s

Cracker 1 whole Sunshine saltine cracker
Unripe pear 1 cm wedge
Peanut 1 whole Fisher’s Virginia style peanut
Ginger snap 1 whole Nabisco Brands ginger snap
Fresh carrot Crosswise section, 1 cm long and

1.5 cm wide
Blanched carrot Crosswise section, 1 cm long and

1.5 cm wide, immersed in rapidly
boiling water for 1 min

Potato chip 1 whole Pringles potato chip
Ruffled potato chip 1 whole Pringles ruffled potato chip
Unripe golden

delicious apple
1 cm wedge

Ripe golden
delicious apple

1 cm wedge

Graham cracker 1 whole (manufacturer unknown)
Milk chocolate 1 square of Hershey’s milk chocolate,

cold
Water chestnut 1 whole Geisha canned water chestnut
Shortbread cookie 1 whole Lorna Doone (Nabisco

Brands) cookie
Shredded wheat 1 whole shredded wheat cake

(Nabisco Brands)

Adapted from Vickers and Wasserman (1979)
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the texture as popping or snappy and when the sound is
not continuous the perception is of tearing or grinding.
Zampini and Spence (2004) showed that potato chips
were perceived as being crisper by panelists when the
authors increased the overall sound level associated
with biting the chip between the front teeth or when
they increased was increased, or when they selectively
amplified the high-frequency sounds (in the range of
2–20 kHz).

Dacremont (1995) found that crispy foods were
characterized by high levels of air-conducted
high-frequency sounds (5 kHz), crunchy foods
were characterized by low pitched sounds with a peak
in air-conduction at 1.25–2 kHz, and crackly foods
were characterized by low-pitched sounds with a high
level of bone conduction. Crunchiness is acoustically
most related to a larger proportion of low-pitched
sounds with frequencies less than 1.9 kHz, while a
relatively larger proportion of high-pitched sounds,
frequencies higher than 1.9 kHz, is related to crispness
(Seymour and Hamann, 1988; Vickers, 1984a,b,
1985). It is more difficult to determine the crunchiness
of a food through listening to someone else since
many of the lower pitched sounds one hears while
eating a crunchy food is conducted through the bones
of the skull and jaw to the ear (Dacremont, 1995).
The human jawbone and skull resonate at about 160
HZ and sounds in this frequency range are amplified
by the bones, thus the panelists’ own crunch sounds
are perceived to be lower and louder than those of
a person next to the panelist (Kapur, 1971). When
training panelists to evaluate the perceived intensity of
crunchiness one should train them to chew the food
with the molars while the mouth is kept closed. Most
of the high frequency sounds will be damped by the
soft tissue and the crunchy sounds will be transmitted
through the skull and jaw bones to the ear. Similarly,
when training panelists to evaluate the perceived
intensity of crispness one should train them to chew
the food with the molars while the mouth is kept open
(Lee et al., 1990). This method of chewing is seen as
a violation of courtesy in some cultures but during
training most panelists will succeed in chewing in this
fashion. Most of the higher frequency sounds will
travel undistorted through air to the ears (Dacremont
et al., 1991).

Another view of crisp and crunchy foods looks
at the time-sequence of breakage, the deformation
and rupture of the food upon application of force

(Szczesniak, 1991). Crisp foods break in a single stage
whereas crunchy foods break in several successive
stages. Thus, a crisp food will always be perceived
as crisp regardless of the way the breaking force
is applied, but a crunchy food may be perceived as
crunchy or crisp depending on the applied force. A
celery stick when chewed by the molars will be per-
ceptibly crunchy since it will break in successive steps,
but a celery stick snapped between the hands will be
perceptibly crisp since the stalk will break in a single
step.

Vickers (1981) found that it was possible to evaluate
the perceived hardness of crisp foods based on sound
alone. Castro-Prada et al. (2007) indicates that the best
method of acquiring acoustical profiles of crispy foods
to correlate with human sensory methods may be dif-
ferent from the best profiles to be used for fracture
mechanical analyses. This may be because hardness
is a component of crispness in these foods. Vickers
(1984a, b) also evaluated the auditory component of
the crackliness of foods. She found that like crisp-
ness and crunchiness, crackliness could be assessed
by either sound or tactile evaluation. The number and
amplitude of sharp repeated noises correlated with the
perception of crackliness. However, oral–tactile sensa-
tions were more useful than auditory sensations for the
assessment of hardness for most foods. As pointed out
by Chen (2009) the vibrotactile perception of the teeth
allows those hard of hearing to still enjoy crisp and
crunchy foods.

11.2.3 Tactile Texture

Tactile texture can be divided into oral–tactile texture,
mouth feel characteristics, phase changes in the oral
cavity, and the tactile texture perceived when manipu-
lating an object by hand (often used for fabric or paper
and called “hand”) or with utensils.

11.2.3.1 Oral–Tactile Texture

Oral–tactile texture encompasses all the textural sensa-
tions elicited in the mouth. The lips, teeth, oral mucosa,
saliva, tongue, and the throat are involved in the per-
ception of oral texture. Chen (2009), Lenfant et al.
(2009), Xu et al. (2008), van der Bilt et al. (2006),
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Bourne (2004), and Lucas et al. (2002) provide reviews
of food oral processing, mastication, and the effects
of oral physiology on the perception of food texture.
According to van Vliet et al. (2009) and others the
sequence of oral texture perception involves ingestion
by the lips, biting by the front (incisor) teeth, chew-
ing of hard foods by the molars, wetting with saliva
and enzymatic breakdown, deformation of semi-solid
foods between the tongue and hard palate, manipu-
lation of the food into a bolus by the tongue and
swallowing.

During ingestion the lips may signal that the food is
sticky, slimy, hard, grainy, etc. For example, Engelen
et al. (2007) had their panelists rate perceived rough-
ness and slipperiness of custards and mayonnaises by
rubbing the tongue against the inside of the lip.

The first bite allows the perceptions of hard, springy,
cohesive, crumbly, etc., to occur. The force applied
during the first bite is related to the food itself. Mioche
and Peyron (1995) using pellet-shaped models found
that for elastic food models (silicone elastomers) the
bite force was symmetric, the food did not fracture and
the perceived hardness was related to the perceived
deformation under constant bite force. A food exam-
ple of such a food probably does not exist but some
foods such as gelatin gels come close. For food models
that were more plastic (dental waxes) the biting force
increases until a yield point is reached where the food
begins to flow and then fracture. They found that the
maximal bite force was highly correlated to perceived
hardness (r=0.96). A real food example of a plastic
food is butter. For brittle food models (pharmaceuti-
cal tablets) they found that the first bite biting cycle
was the shortest with abrupt increases and decreases
in force and again perceived hardness was highly
correlated to maximal bite force (r=0.99). Cookies
are a real world food example of a brittle product.
Perceived hardness based on first bite increases with
food thickness (Agrawal and Lucas, 2003). De Wijk
et al. (2008) found that the bite size through a straw for
a chocolate-flavored dairy semi-solid was significantly
smaller (5.8±0.3 g) than for a chocolate-flavored liq-
uid dairy drink (8.7±0.45 g). However, when these
authors removed the bite effort (by using a pump) they
found that these differences disappeared.

Chewing fragments solid and semi-solid foods into
small enough particles to swallow and to mix these
particles with saliva to form a lubricated bolus for
swallowing. There is large variation in chewing cycles

and the length of chewing across individuals and across
foods (Brown et al., 1994, 1995; Wintergerst et al.,
2004, 2005, 2007). Engelen et al. (2005a) found that
for 87 subjects with normal dentition the chewing
cycles to ready 9.1 cm3 peanuts for swallowing ranged
from 17 to 110. In general, individuals producing more
saliva tended to need fewer chewing cycles to ready
a piece of dry toast for swallowing (Engelen et al.,
2005a). These authors also found that buttering toast
decreased the number of chew cycles prior to swal-
lowing. Food hardness is also positively correlated to
chewing length, chewing cycle, and muscle activity
associated with chewing (Foster et al., 2006, Hutchings
et al., 2009; Wintergerst et al., 2007). Blissett et al.
(2007) showed that increased sample size (in their case
1, 2, or 4 orange-flavored Tooty-Frooties from Nestle,
York, the United Kingdom) led to multiple changes in
chewing behavior and that some of these changes were
idiosyncratic.

A number of studies have shown wide ranges
in salivary flow rates among individuals. Engelen
et al. (2005a) found a mean flow rate of 0.45 ±
0.25 ml/min for unstimulated flow and a mean of 1.25
± 0.67 ml/min for stimulated flows. Saliva has many
functions but from an oral texture perspective it acts as
a lubricant. The mucins (glycoproteins) are responsi-
ble for the lubrication effects of saliva. As shown by
Prinz et al. (2007) salivary lubrication is increasingly
efficient with high surface speeds and increased sur-
face load. A few studies have shown that tougher meat
samples lead to higher incorporation of saliva into the
bolus prior to swallowing (Claude et al., 2005; Mioche
et al., 2003). The salivary pH and α-amylase content
also affects perceived texture. Engelen et al. (2007)
found that α-amylase activity was negatively corre-
lated to perceived thick mouth feel of custards and to
perceived prickly mouth feel for mayonnaise.

11.2.3.2 Size and Shape

Tyle (1993) evaluated the effect of size, shape, and
hardness of suspended particles on the oral perception
of grittiness of syrups. He found that soft, rounded,
or relatively hard, flat particles were not perceptually
gritty up to about 80 µm. However, hard angular par-
ticles contributed to grittiness perception when they
were above a size range of 11–22 µm. Richardson
and Booth (1993) found that some of their panelists
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could distinguish between average fat-globule size
and distance distributions of less than 1 µm (range:
0.5–3 µm, depending on the individual). Engelen et al.
(2005b) found that polystyrene spheres between 2
and 80 µm decreased the perceived smoothness and
slipperiness and increased perceived roughness of cus-
tards. Above 80 µm the perception of roughness
decreased. In other studies the minimum individual
particle size detectable in the mouth was less than
3 µm (Monsanto, 1994). Richardson and Booth (1993)
working with milks and creams found that their pan-
elists were sensitive to viscosity changes of about
1 mPa. Runnebaum (2007) working with wine found
that his panelists could distinguish viscosity changes
of about 0.057 mPa.

By definition (Peleg, 1983) a property is a charac-
teristic of a material which is practically independent
of the method of assessment. A property can only be
called objective if its magnitude is independent of the
particular instrument used and of the specimen mass
and size. For example, the percentage of fat in an ice
cream is the same regardless of the amount of the ice
cream analyzed. However; sensory textural properties
are affected by sample size. Large and small sam-
ple sizes may or may not be perceptually the same
in the mouth. A debated question is whether humans
compensate automatically for the difference in sam-
ple size or whether humans are only sensitive to very
large changes in sample size. It is not known which
of these happen, if either. One of the few studies to
explicitly study the effect of sample size on texture per-
ception was done by Cardello and Segars in 1989. They
evaluated the effect of sample size on the perceived
hardness of cream cheese, American cheese, and raw
carrots and on the perceived chewiness of center cut
rye bread, skinless all beef franks, and Tootsie roll
candies. The sample sizes (volumes) evaluated were
0.125, 1.00, and 8.00 cm3 and their experimental con-
ditions were sequential versus simultaneous presenta-
tion of samples, sample presentation in random order
or by ascending size; evaluation of samples by blind-
folded and not blindfolded panelists; panelists allowed
to handle the sample or not. These authors found both
hardness and chewiness increased as a function of sam-
ple size independent of subject awareness of sample
size. Therefore, texture perception does not appear to
be independent of sample size. Additionally, as shown
by Dan et al. (2008) the sensory perception of hard-
ness varies with the specific definition associated with

the bite procedure. Initially panelists were instructed
to evaluate the hardness of a cheese sample by biting
the cheese normally with the molars on their habit-
ual chewing side (Control condition). Subsequently,
they were asked to evaluate hardness by either biting
into the sample with the molar teeth (H1 condition) or
to bite completely through the sample with the molar
teeth (H2 condition). They found that the H2 condition
led to high inter-panelist differences while the panelists
were relatively homogeneous across the H1 condition.
However, both conditions led to the same rank ordering
of the cheese samples. For the sensory specialist the
important “take-home” message is that all conditions
such as sample dimensions, samples size, or volume
must be specified since these could materially affect
the results.

11.2.3.3 Mouth Feel

Mouth feel characteristics are tactile but often tend to
change less dynamically than most other oral–tactile
texture characteristics. For example, the mouth feel
property astringency associated with a wine usually
does not change perceptibly while the wine is manip-
ulated in the mouth but the chewiness of a piece of
steak or the consistency of ice cream will change dur-
ing in-mouth manipulation. Often cited mouth feel
characteristics are astringency, puckering (sensations
associated with astringent compounds), tingling, tick-
ling (associated with carbonation in beverages), hot,
stinging, burning (associated with compounds that pro-
duce pain in the mouth such as capsaicin), cooling,
numbing (associated with compounds that produce
cooling sensations in the mouth such as menthol), and
mouth coating by the food product. From this list it is
clear that mouth feel characteristics are not necessarily
related to the force of breakdown or to the rheolog-
ical properties of the product. However, some mouth
feel attributes are related to the rheology of the product
and/or the force of breakdown, examples are viscosity,
pulpy, sticky. Other mouth feel attributes are chemi-
cally induced tactile sensations such as astringency and
cooling and these were discussed in Chapter 2.

As will be seen later (Brandt et al., 1963), the
original Texture Profile method had only a single
mouth feel-related attribute “viscosity.” Szczesniak
(1966) classified mouth feel attributes into nine groups:
Viscosity-related (thin, thick); feel of soft tissue
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surfaces related (smooth, pulpy); carbonation related
(tingly, foamy, bubbly); body related (watery, heavy,
light); chemical related (astringent, numbing, cooling);
coating of the oral cavity related (clinging, fatty, oily);
related to resistance to tongue movement (slimy, sticky,
pasty, syrupy); mouth after feel related (clean, linger-
ing); physiological after feel related (filling, refresh-
ing, thirst quenching); temperature related (hot, cold);
and wetness related (wet, dry). Jowitt (1974) defined
many of these mouth feel terms. Bertino and Lawless
(1993) used multidimensional sorting and scaling to
determine the underlying dimensions associated with
mouth feel attributes in oral health-care products. They
found that these clustered in three groups: astringency,
numbing, and pain.

11.2.3.4 Phase Change (Melting) in the Oral

Cavity

The melting behaviors of foods in the mouth and
the associated textural changes have not been stud-
ied extensively. Many foods undergo a phase change
in the mouth due to the increased temperature in the
oral cavity. Examples are chocolates and ice cream.
As mentioned earlier Hyde and Witherly (1993) pro-
posed an “ice cream effect.” They stated that dynamic
contrast (the moment-to-moment change in sensory
texture contrasts in the mouth) is responsible for the
high palatability of ice cream and other products. The
work by Hutchings and Lillford (1988) on empha-
sizing the dynamic breakdown of the sample in the
mouth during mastication was a breakthrough that
should (but has not yet) lead to the testing of a general
physical and psychophysical hypothesis of perceived
texture.

For some time the trend in food marketing and
product development has been to eliminate as much
fat as possible from food products. However, the fat
is primarily responsible for the melting of ice cream,
chocolates, yogurt, etc., in the oral cavity (Lucca and
Tepper, 1994). Thus the characteristics associated with
phase change should receive additional scrutiny as
product developers attempt to replace the mouth feel
characteristics of fats with fat replacer compounds.

In an early study Kokini and Cussler (1983, 1987)
found that the perceived thickness of melting ice cream
in the oral cavity was related to the following equation:

Thickness ∞µ
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]1/4

where

µ = liquid phase viscosity
T = temperature difference between the solid phase

(frozen ice cream) and the tongue
φ = volume fraction of air in the product (overrun)
Hi= heat of fusion of ice
ρ= density of ice
V = velocity of tongue movements
F = force applied by tongue
R = tongue radius (assuming a circle) in contact with

the food
K = thermal conductivity of melted ice cream

As pointed out by Lawless et al. (1996) “while this
equation may be useful to point out the various fac-
tors influencing melting systems, it is doubtful that all
the parameters could be known in practice or stan-
dardized among sensory panelists.” Thus, at this time,
the study of melting is still being done empirically
using panelists and descriptive sensory evaluation or
time–intensity methodology. There has been a plethora
of low-fat ice cream-related perceived texture and
melt rate studies using generic descriptive analysis
(Hyvönen et al., 2003; Liou and Grün, 2007; Roland
et al., 1999). Lawless et al. (1996) studied the melt-
ing of a simple cocoa butter model food system and
found that this system could be used to study the tex-
tural and melt properties of fat replacers. Changes in
melting behavior, as assessed by descriptive analysis
and by time–intensity measurements, were related to
the degree of fat substitution by carbohydrate poly-
mers. Mela et al. (1994) had found that panelists could
not use the degree of melting in the oral cavity to accu-
rately predict the fat content in oil-in-water emulsions
(products similar to butter) with a melting range of
17–41ºC.

11.2.3.5 Oral Crispness, Crunchiness,

and Crackliness

As discussed in the section on auditory texture crisp-
ness, crunchiness, and crackliness clearly have an
auditory component but these sensations also have an
oral textural component. See the review by Roudaut



268 11 Texture Evaluation

et al. (2002) for a critical appraisal of the evaluation of
crispness.

Vincent (1998) stated that these sensations are
related to the sudden drop in force experienced by the
teeth and the jaw muscles when a food item breaks
between the teeth. Initially he thought that crumbli-
ness, crispness, crunchiness, and hardness are descrip-
tors falling on a continuous load-drop-size continuum.
Subsequently (Vincent, 2004), he suggested that crack
initiation and propagation in hard and crunchy foods
are related to the force needed to fracture the sample
and that crispness is a distinct and separate sensation
related to fracturability of glassy cellular materials.
Crispness decreases as product water activity (aw)
increases and at a water activity of 0.40–0.55 (depend-
ing on the product) the perceived crispness of the prod-
uct decreases dramatically (Heidenreich et al., 2004).
Primo-Martin et al. (2008) found that toasted rusk rolls
lost 50% of their perceived crispness at critical water
activities between 0.57 and 0.59.

11.2.4 Tactile Hand Feel

Tactile hand feel of foods are usually evaluated through
the use of utensils (the amount of effort to cut a piece
of steak, the ease of butter spreadability with a knife,
the ease with which a fork penetrates a boiled potato,
etc.) or by manipulation by hand (the ease of snap-
ping a celery stalk, the difficulty in compressing a
piece of cheese between the thumb and forefinger,
etc.). Table 11.4 summarizes a few tactile hand feel
attributes. Pereira et al. (2002) used a trained descrip-
tive panel to evaluate cheese analogs and all of their
texture attributes were through tactile hand feel. Ares
et al. (2006) used non-oral texture evaluation to charac-
terize dulce de leche. Dooley et al. (2009) used some
tactile hand attributes in their evaluation of lip prod-
ucts. Darden and Schwartz (2009) found that their
trained descriptive analysis panel could reproducibly
score fabric abrasiveness, sensible texture, slipperi-
ness, and fuzziness using their finger tips. Lassoued
et al. (2008) used flash profiling to evaluate the tactile
crumb texture of wheat breads.

The texture evaluation of fabric or paper frequently
includes touching or manipulating the material with
the fingers. Much of the work in this area comes from
the textile literature; however, we feel that this area

Table 11.4 Examples of sensory hand tactile attributes

Texture attribute Manipulation by hand

Fracturability Extent to which a cheese slice (1 cm thick,
9 cm long) can be bent between the
thumb and the index and middle fingers,
until the ends touch, without breaking

Firmness
(compression)

Amount of resistance to compression
offered by a 1 cm thick slice of cheese,
when pushed between the thumb and
the index finger, until fingers touch each
other (force required to deform the
cheese structure)

Firmness
(cutting)

Force required to cut through a 1 cm thick
slice of cheese with a knife (pushed
down on an angular, guillotine-like
movement, from tip to full length of the
knife)

Curdiness Extent to which the original sample
produces curdy lumps after being
kneaded seven times between thumb
and index and middle finger

Hardness Force required scooping up a teaspoonful
of the sample

Ropiness The amount of threads or drops that fall
down when introducing the spoon
vertically into the sample and raising it
vertically from the sample once

Spreadability The ease with which the product can be
manipulated on the surface of the
forearm (Vaseline=5, Classic
Chapstick=9; Johnson & Johnson 24-h
Moisturizer = 13)

Tackiness The degree to which fingers adhere to the
product; amount of adhesiveness
(Johnson & Johnson Baby Oil=0,
Post-it note=7.5)

Adapted from Pereira et al. (2002), Ares et al. (2006), and
Dooley et al. (2009)

of sensory evaluation has potential application in the
food arena as well. We will thus describe some of the
vocabulary associated with fabric or paper hand with
the intention of stimulating food sensory specialists to
allow their panelists “to play with their food” on occa-
sion when it could lead to appropriate results. Most of
the information in this section was drawn from Civille
and Dus (1990), Meilgaard et al. (2006), and Civille
(1996).

Civille and Dus (1990) describe the tactile prop-
erties associated with fabric and paper as mechan-
ical characteristics (force to compress, resilience,
and stiffness), geometrical characteristics (fuzzy,
gritty), moisture (oily, wet) and thermal character-
istics (warmth), and non-tactile properties (sound).
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The fabric/paper methodology developed by Civille is
based on the General Foods Texture Profile (described
in the next section) and includes a series of standard
scales with reference anchors and precise definitions
for each attribute evaluated. Some of these are listed in
Table 11.5.

In a series of studies Japanese textile scientists
(Kawabata and Niwa, 1989; Kawabata et al., 1992a,
b; Matsudaira and Kawabata, 1988) quantified and
correlated sensory evaluation results of textiles with
instrumental measurements. Their techniques have
been extensively used, studied, and adapted within the
textile industry (Bertaux et al., 2007; Cardello et al.,
2003; Chen et al., 1992; Kim et al., 2005; Koehl et al.,
2006; Sztandera, 2009; Weedall et al., 1995).

Other sensory textile measurements have also been
developed. Paired comparison discrimination tests
have been used to assess the stiffness, smoothness,
and softness of cotton fabrics (Ukponmwan, 1988).
Burns et al. (1995) found that subjects who viewed
and felt fabrics described the sensory properties of
fabrics differently than did subjects who only felt the
fabrics for their hand. They cautioned that laboratory
techniques that only concentrated on hand may not

correlate with consumer perceptions of fabric textures.
Bertaux et al. (2007) used a paired comparison method
to evaluate roughness and prickle of woven and knitted
fabrics. Hu et al. (1993) used Steven’s law as a psy-
chophysical description of fabric hand evaluations. In
another study, the tactile qualities of fabrics were eval-
uated using bipolar descriptive scales (Jacobsen et al.,
1992). The authors found good correlations between
the values obtained by the panel and with instrumental
bending and compression evaluations. Philippe et al.
(2004) and Cardello et al. (2003) described the use
of generic descriptive analysis in the evaluation of
the textile hand of cotton fabric treated with differ-
ent industrial finishes and in military clothing fabrics,
respectively.

Mahar et al. (1990) found that there were cultural
differences in the handle preferences for men’s winter
suit fabrics. The panelists from Australia, India, New
Zealand, the United States, and Hongkong/Taiwan had
consistent preferences based on their evaluation of the
fabric hand using the descriptors sleekness, fullness
firmness, and drape. The panelists from Japan and the
People’s Republic of China had internally consistent
and somewhat opposite preferences to that of the first

Table 11.5 Selected fabric hand profile attribute definitions and reference anchors

Attribute Definition Scale value Fabric type

Force to compress Amount of force required to compress
gathered sample in palm (low force to
high force)

1.5 Polyester/cotton 50/50 knit tubular
3.4 Cotton cloth greige
9.3 Cotton terry cloth

14.5 #10 Cotton duck greige

Resilience Force with which sample presses against
cupped hands (creased to folded
original shape)

1.0 Polyester/cotton 50/50 knit tubular
7.0 Filament nylon 6.6 semi-dull

taffeta
14.0 Dacron

Stiffness Degree to which sample feels pointed,
ridged, and cracked, not round, pliable,
curved (pliable to stiff)

1.3 Polyester/cotton 50/50 knit tubular
4.7 Mercerized cotton print cloth
8.5 Mercerized combed cotton poplin

14.0 Cotton organdy

Geometrical properties
Fuzziness Amount of pile, fiber, fuzz on surface of

sample (bald to fuzzy or nappy)
0.7 Dacron
3.6 Cotton crinkle gauze
7.0 Cotton T-shirt, tubular

15.0 Cotton fleece

Grittiness Amount of small picky particles in surface
of sample (smooth to gritty)

1.5 Filament arnel tricot
6.0 Cotton cloth greige

10.0 Cotton print cloth
11.5 Cotton organdy

Adapted from Civille (1996)
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group. Raheel and Liu (1991) used a mathematical
technique called fuzzy sets logic to integrate sensory
fabric hand data with instrumental assessments. This
is one of the earliest uses of the fuzzy logic technique
with sensory data; however, it is still in use (Koehl
et al., 2006).

11.3 Sensory Texture Measurements

Many texture attributes can be measured using stan-
dard sensory techniques such as discrimination testing,
ranking, and descriptive techniques. Textural differ-
ences between two samples can be determined using
the two-alternative forced choice test. The panelists
should be trained to discriminate between the samples
based on the specified textural attribute. For example,
panelists can be trained to evaluate viscosity as “the
amount of force required to draw a liquid from a spoon
over the tongue” (Szczesniak et al., 1963) and could
then be asked to determine if the perceived viscosity of
two maple syrup samples differed.

It is also possible to quantify texture attributes using
ordinal or interval scales. Examples would be “rank
the . . ..” or “score the . . ..” Visual texture, especially,
lends itself well to simple intensity or ordinal scales,
such as apparent roughness of the surface, size or num-
ber of surface indentations, and density or amount of
sediment in a container of a liquid product. Most of
these simple and concrete attributes require little train-
ing and can be easily worked into a descriptive profile
of the product. Of course, as in any other descriptive or
scaling technique, the scale becomes more calibrated
and there is better agreement among panelists if the
low and high ranges are shown to provide the frame of
reference that anchors the scale.

Szczesniak et al. (1975) used consumers to evalu-
ate foods using terminology developed for the General
Foods Texture Profile method (see below) and they
found that consumers could use the scales and were
sufficiently aware of the texture of food products to do
a rudimentary and “fuzzy” texture profile.

11.3.1 Texture Profile Method

The Texture Profile method was developed at General
Foods Corporation in the early 1960s. The scientists

at General Foods based their texture evaluation
approach on the Flavor Profile developed by A.D.
Little. They were interested in developing a method
that would allow the evaluation of texture and
which would be built on a well-defined and rational
foundation.

Szczesniak (1963) developed a texture classification
system to bridge the gap between consumer texture ter-
minology and the rheological properties of the product
(Table 11.6). She categorized the perceived textural
characteristics of products as three groups: mechanical
characteristics, geometrical characteristics, and other
characteristics (alluding mostly to the fat and moisture
content of foods). This classification formed the basis
of the Texture Profile method (Brandt et al., 1963).
These authors defined their method as a technique that
would allow the description of the mechanical, geo-
metric, and other textural sensations associated with
a product from the first bite through complete mas-
tication. The technique therefore borrows the “order
of appearance” principle from the Flavor Profile and
is thus a time-dependent method. The time sequence
is the “first bite” or initial phase, the “chewing” or
masticatory second phase followed by the residual or
third phase. The textural sensations were evaluated
by extensively trained panelists using standard rat-
ing scales. The original standard rating scales were
developed by Szczesniak et al. (1963) to cover the
range of intensity sensations found in foods. They used

Table 11.6 Texture classification and the bridge to some con-
sumer texture descriptions

Primary terms
Secondary
terms Consumer terms

Adhesiveness Sticky, tacky, gooey
Cohesiveness Brittleness Crumbly, crunchy, brittle

Chewiness Tender, chewy, tough
Gumminess Short, mealy, pasty,

gummy
Elasticity Plastic, elastic
Hardness Soft, firm, hard
Viscosity Thin, thick
Particle shape

and orientation
Cellular, crystalline,

fibrous, etc.
Particle size and

shape
Coarse, grainy, gritty,

etc.
Fat content Greasiness Greasy

Oiliness Oily
Moisture content Dry, moist, wet, watery

Adapted from Szczesniak (1963)
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specified food products to anchor each scale point.
The earliest standardized texture scales were devel-
oped for adhesiveness, brittleness, chewiness, gummi-
ness, hardness, and viscosity. These authors validated
their scales by correlating the results obtained by
the sensory panelists to the results obtained instru-
mentally by viscometer and texturometer. A later
section will discuss sensory and instrumental texture
correlations.

The Texture Profile method was used extensively
at General Foods and the number of standardized
rating scales was expanded over time, for example,
Brandt et al. (1963) added elasticity which was later
changed to springiness (Szczesniak, 1975), Szczesniak
and Bourne (1969) added firmness and later brittleness
was renamed fracturability (Civille and Szczesniak,
1973). The original Texture Profile had scales of vary-
ing length, for example, the scale for chewiness had
seven points, gumminess had five points, and hardness
had nine points (Bourne, 1982). The article by Civille
and Szczesniak (1973) uses a 14-point intensity scale
and the paper by Muñoz (1986) describes a 15 cm
line scale with the intensity anchors positioned on
the scale.

Civille and Szczesniak (1973) succinctly described
how a Texture Profile panel should be selected and
trained. They suggested training about ten panelists
with the goal of having at least six available at all
times. The panelists should undergo a physiological
screening to eliminate potential panelists with dentures
and those without the ability to discriminate among
textural differences. Panelists are also interviewed to
assess interest, availability, attitude, and communica-
tion skills. During panel training, the panelists are
exposed to the basic concepts associated with flavor
and texture perception and the underlying principles
of the Texture Profile. They are also trained to use
the standard rating scales in a uniform and consis-
tent fashion. The panel will practice using the rating
scales on a series of food products. This practice
may be quite extensive, lasting several months. Any
inconsistencies among panelists are discussed and
resolved.

Once the panel has been trained, which in some
cases could mean a time commitment of 2–3 h daily
sessions for 2 weeks followed by 6 months of 1 h ses-
sion four to five times a week; the panel can begin
evaluating test products. On the other end of the time
scale one of us was trained as a fish texture panelist

where the training lasted only about 2 weeks. A well-
trained panel should be maintained by testing their
reproducibility with blind samples and by reviewing
their results regularly. During these review sessions
any inconsistencies among panelists should be ironed
out. Additionally, the panel leader should continually
strive to keep the panel motivated.

The Texture Profile has been modified and refined
since its original creation. Civille and Liska (1975)
described the modifications to that date. These
included modifying some of the food products used to
anchor the standard intensity scales, adding the evalu-
ation of the products surface properties to the initial
stage of the evaluation, and adding standard scales
to evaluate liquids and semi-solids. Additionally, the
cohesiveness of mass standard scale was developed as
was a scale for bounce or elasticity.

Muñoz (1986) published a paper describing the
selection of new products to anchor the intensity points
on the standard scales. Between 1963 and 1986 many
products had changed in formulation and were no
longer representative of a specific intensity on a speci-
fied Texture Profile scale and others were not available
anymore. She also modified and fleshed out a number
of the scale definitions. Tables 11.7 and 11.8 are princi-
pally based on the improvements to the Texture Profile
made by Muñoz (1986).

Others have modified the standard scales to bet-
ter suit their needs, see, for example, Chauvin et al.
(2008) who created new scales for the wet and dry food
attributes: crispness, crunchiness, and crackliness. In
this case the authors used acoustical parameters and
sensory panelists to determine the appropriate prod-
ucts to use on the standard scales. In a few cases the
modifications of the Texture Profile standard scales
were made because the American food products used
as anchors were not available in other countries, for
example, Bourne et al. (1975), or Otegbayo et al.
(2005); for non-food products, see Schwartz (1975).
The Schwartz paper is a useful starting place for skin
care products and related personal care or cosmetic
items that have important skin feel properties. The
review by Skinner (1988) is a very complete trea-
tise on the state of the texture profile to that date.
The sensory texture profile is still in use, see, for
example, Lee and Resurreccion (2001) who used the
technique for peanut butter and Breuil and Meullenet
(2001) who used it for cheeses. Chauvin et al.
(2008) developed new standard scales for crispness,
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Table 11.7 Texture profile attribute definitions

Texture attribute Definition

Non-oral
Manual adhesiveness Force required to separate individual pieces adhering to each other using the back of a spoon,

after placing entire contents of the standard cup on a plate
Viscosity Degree of resistance when stirred by a spoon

Rate at which sample flows down the side of a tilted container
Oral
Initial lip contact
Adhesiveness to lips Degree to which the product stick/adheres to the lips. The sample is placed between the lips and

compressed once slightly and released to assess lip adhesiveness
Wetness Amount of moisture perceived on the surface of the product, when in contact with the upper lip

Initial insertion in mouth
Roughness Degree of abrasiveness of the product’s surface, as perceived by the tongue
Self-adhesiveness Force required to separate individual pieces with the tongue, when the sample is placed in the

mouth
Springiness Force with which the sample returns to its original size/shape, after partial compression (without

failure) between the tongue and the palate
Initial bite
Cohesiveness Amount of deformation undergone by the material before rupture when biting completely

through sample with molars
Adhesiveness to palate Force required to remove product completely from palate, using tongue, after compression of the

sample between tongue and palate
Denseness Compactness of the cross section of the sample after biting completely through with molars
Fracturability Force with which the sample ruptures when placed between molars and bitten completely down

at a fast rate
Hardness Force required to bite completely through sample placed between molars

After chewing
Adhesiveness to teeth Amount of product adhering on/in the teeth after mastication of the product
Cohesiveness of mass Degree to which the mass holds together after mastication of product
Moisture absorption Amount of saliva absorbed by the sample after mastication of product

Adapted from Muñoz (1986) and Sherman (1977)

crackliness, and crunchiness in dry and wet foods
(Table 11.9).

Cardello et al. (1982) used free-modulus magni-
tude estimation to rescale the standard texture profile
scales of adhesiveness, chewiness, fracturability, hard-
ness, gumminess, and viscosity. They found that the
category scales of the traditional Texture profile were
concave downward when plotted against the magni-
tude estimation scales. This indicates that for these
attributes the panelists exhibit a greater discrimination
at the lower levels of intensity. This is a pattern con-
sistent with Weber’s law (see Chapter 2). Weber’s law
predicts smaller difference thresholds at low levels of
intensity. The data also suggest that the results from
category scales and magnitude estimation scales are
different but similar.

11.3.2 Other Sensory Texture Evaluation

Techniques

The sensory scientist does not have to train a panel
use the sensory texture profile analysis technique. It
is entirely possible to use generic sensory descriptive
analysis to describe differences in the textures of prod-
ucts. For example, Weenen et al. (2003) used consen-
sus training to train a panel to evaluate mayonnaises,
salad dressings, custards, and warm sauces. They
found that the panel grouped the sensory texture of
these semi-solid foods into six clusters (visco-elastic-
related attributes; surface feel-related attributes; bulk
homogeneity-related attributes; adhesion/cohesion-
related attributes; wetness/dryness-related attributes;
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Table 11.8 Examples of
texture attribute intensity
anchors

Texture attribute Scale Product

Adhesiveness Low Hydrogenated vegetable oil
Medium Marshmallow topping
High Peanut butter

Adhesiveness to lips Low Tomato
Medium Bread stick
High Rice cereal

Adhesiveness to teeth Low Clam
Medium Graham cracker
High Jujubes

Cohesiveness Low Corn muffin
Medium Dried fruit
High Chewing gum

Cohesiveness of mass Low Licorice
Medium Frankfurter
High Dough

Denseness Low Whipped topping
Medium Malted milk balls
High Fruit jellies

Fracturability Low Corn muffin
Medium ginger snap (inside part)
High Hard candy

Hardness Low Cream cheese
Medium Frankfurter
High Hard candy

Manual adhesiveness Low Marshmallow
Medium Dough
High Nougat

Moisture absorption Low Licorice
Medium Potato chip
High Cracker

Roughness Low Gelatin dessert
Medium Potato chip
High Thin bread wafer

Self-adhesiveness Low Gumi-bear
Medium American cheese
High Caramel

Springiness Low Cream cheese
Medium Marshmallow
High Gelatin dessert

Wetness Low Cracker
Medium Ham
High Wafer

Adapted from Muñoz (1986) and Meilgaard et al. (2006)

and fat-related attributes). These authors subsequently
used generic descriptive analysis panels to evaluate a
wide range of semi-solid foods under different con-
ditions (Engelen et al., 2003; Weenen et al., 2005).
Others have also used generic descriptive analysis
to describe the texture of cooked potatoes (Thybo

et al., 2000), ketchup (Varela et al., 2003), oat breads
(Salmenkallio-Marttila et al., 2004), creamy foods
(Tournier et al., 2007), crisp and crunchy dry foods
(Dijksterhuis et al., 2007), mango puree with added
barium sulfate (Ekberg et al., 2009), and mayonnaises
(Terpstra et al., 2009).
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Table 11.9 Crispness, crackliness, and crunchiness standard scales for dry foods

Attribute Reference Manufacturer Sample size and scale value

Crispness (dry food)
2 Rice Krispies treats Kellogg’s, Battle Creek, MI 1/6 bar
5 Fiber rye bread Wasa, Bannockburn, IL 1/3 slice
8 Multigrain mini rice cakes Honey Graham, Quaker, Chicago, IL 1 cake
10 Bite size Tostitos tortilla chips Frito Lay, Dallas, TX 1 chip
15 Kettle Chips Frito Lay, Dallas, TX 1 chip

Crackliness (dry food)
2 Club cracker Keebler, Battle Creek, MI 1/2 cracker
7 Multigrain mini rice cakes Honey Graham, Quaker, Chicago, IL 1/2 cake
9 Le Petit Beurre tea cookie Lu, Barcelona Spain 1/8 square
12 Triscuit Nabisco/Kraft Foods, Chicago, IL 1/4 broken with grain
15 Ginger snap Archway, Battle Creek, MI 1/2 cookie

Adapted from Chauvin et al. (2008)

11.3.3 Instrumental Texture

Measurements and Sensory

Correlations

“Texture is a sensory property” (Szczesniak (2002)
and thus the goal of instrumental “texture” measure-
ments is to produce a mechanical test that can replace
sensory panels as texture evaluation tools. The need to
replace the sensory panel is usually due to cost or effi-
ciency. Basic questions that should be asked are what
are meant by objective mechanical “texture” properties
and does a sensory textural property have universal

meaning across food products? For example, is the
sensory hardness of cheese the same as the hardness of
a cookie, or is the perceived juiciness associated with
a grape the same as that perceived in cooked steak?

A glance at the literature would indicate many
examples where the authors use the same word (e.g.,
hardness) for their measurements of both sensory and
instrumental texture parameters in the food product.
The problem is that these measurements are often not
highly correlated with one another. When this occurs
the author of a protocol or paper should be extremely
careful to distinguish between the sensory and the
instrumental measurement. Figure 11.1 indicates a
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linear regression and correlation between a modified
Texture Profile Analysis (TPA) and the sensory texture
attribute (sample recovery) for cereal snack bars (Kim
et al., 2009).

In this case the authors were very careful to use
different terms for their sensory and instrumental mea-
surements. Originally, many instrumental texture mea-
surements were attempts to find a single parameter
(or an overall value) to correlate with sensory texture
evaluations. But “. . .it is often extremely difficult to
predict sensory attributes from a unique instrumental
parameter . . .” (Breuil and Meullenet, 2001) and thus
recently, many scientists have been exploring methods
that would be more multivariate in nature (Varela et al.,
2006).

One of the earliest papers to correlate instrumental
texture parameters with sensory texture attributes was
Friedman et al. (1963). These authors were part of the
group developing the General Foods Texture Profile.
They designed a new piece of equipment to trans-
late the texture measurements defined by Szczesniak
(1963) in physical measurements. The General Foods
Texturometer had plungers which penetrated the food
in two cycles, the penetration force was recorded
and attributes of the instrumental texture profile were
selected to correlate well with the sensory texture
parameters rated by the trained Texture Profile pan-
elists. Due to this careful selection of the instrumen-
tal texture parameters the authors had high correla-
tion between their sensory and instrumental measure-
ments. They continued to refine the Texturometer and
published a number of papers correlating instrumen-
tal and sensory texture attributes (Szczesniak et al.,
1963). The measurement technique based on the
Texturometer became known as the Texture Profile
Analysis (TPA) which is different from the sensory
Texture Profile method. Later, the TPA techniques,
developed with the Texturometer, were used with the
Instron Universal Testing Machine and other related
equipments (Breene, 1975; Finney, 1969; Szczesniak,
1966, 1969; Varela et al., 2006).

Szczesniak (1968, 1987) cautioned sensory special-
ists and food engineers against blindly correlating sen-
sory and instrumental attributes. She cited a series of
studies correlating sensory tenderness and shear force
values obtained by Warner-Bratzler shear, the correla-
tion coefficients ranged from –0.94 to –0.16. She stated
that if one assumes that both the sensory and instru-
mental measurements were performed using standard

good practices (not always an appropriate assumption)
then these inconsistent correlations are due to other
contributing conditions such as

(a) The correlation coefficient is dependent on the
range and number of samples used. Additionally,
the Pearson’s correlation coefficient is based on a
linear relationship, thus if the relationship is curvi-
linear the values may need to be logarithmically
transformed.

(b) The instrumental measurement should mimic as
far as possible the conditions used to evaluate
the sensory attribute. Thus if tenderness is eval-
uated by a single bite through the sample with
the incisors then a shear force measurement is
more likely to be highly correlated. On the other
hand, if the tenderness of the sample is evalu-
ated by chewing with the molars then a shear
force measurement may not be correlated with
the perceived tenderness. If the sample is eval-
uated at above ambient temperature then the
instrumental measurement should be made at the
same temperature. Despite the evident obvious-
ness of this statement this is not always done.
Hyldig and Nielsen (2001) pointed out that in
salmon-related studies the instrumental texture
measurement is frequently performed on the raw
fish and the sensory texture is measured on the
cooked fish. It should not be surprising that resul-
tant correlations between the two measurements
are low.

(c) Since the sample is often destroyed during either
measurement the same sample cannot be evalu-
ated by both methods. Therefore the sample itself
may be part of the problem, especially, if there is
considerable variation in the texture attributes of
samples from the same source. This is frequently
a problem with meat samples where the tender-
ness within a single muscle can vary longitudinally
(Cavitt et al., 2005). Newer non-destructive meth-
ods such as near-infrared spectroscopy (Blazquez
et al., 2006) allow the sensory scientist to use the
same sample for both the instrumental and texture
measurements but many of these methods are in
their infancy.

(d) Natural variability among panelists in terms of
chewing cycles, dentition, salivary flow rates, etc.,
is a factor that will affect the quality of instrumen-
tal texture relationships.
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Brennan and Jowitt (1977) categorized the
instrumental texture measurement techniques as
fundamental, imitative, and empirical. The funda-
mental techniques measure well-defined physical
properties and at that time the authors felt that no
measurement technique actually did a fundamental
measurement. Recently, Ross (2009) stated that steady
shear and dynamic viscometer measurements on fluids
as well as measurements of deformation on solids are
probably fundamental measurements of texture. Kim
et al. (2009) stated that the 3-point bending test used to
measure the fracturability of sheet-shaped foods was
also a fundamental measurement. This technique was
used with success by Rojo and Vincent (2008) to study
perceived crispness in potato chips. With imitative
techniques the measurement mimics the actions of the
teeth and the jaws during the sensory measurement as
closely as possible. Hyldig and Nielsen (2001) stated
that the instrumental firmness evaluation of salmon
by compression was an imitative method related
to the sensory firmness evaluation of pressing the
salmon with the index finger. Examples of imitative
techniques are the puncture test which measures
the force required to punch a hole in the food (a
combination of shear and compression forces), the use
of sound measurements (gnathosonics, Duizer, 2001;
Ross, 2009; Kim et al., 2009), and electromyography
(EMG). The early work by Vickers and coworkers
(see Vickers, 1987b) on using the sounds associated
with biting/chewing dry and wet crisp/crunchy food
to determine perceived crispness and crunchiness
has been expanded through the use of fast Fourier
transform algorithms (Al-Chakra et al., 1996) and
fractal analyses (Barrett et al., 1994, Gonzalez-Barron
and Butler, 2008a) to analyze sound frequencies
(de Belie et al., 2002). See González et al. (2001)
for reviews of EMG in food texture evaluations.
Additional information on EMG can be found in
Foster et al., 2006; González et al., 2004; Ioannides
et al., 2007, 2009.

Most instrumental texture measurements are empir-
ical and do not necessarily “translate” across food
products. This is not necessarily a problem since
Drake et al. (1999) stated that “While fundamen-
tal rheological test reveal important information
on network structure and molecular arrangement
[in cheese], . . . empirical texture evaluations work
equally well or better at predicting sensory texture
properties.”

Image analyses and/or microscopy are also used
in relationship to visual and, sometimes, oral and
nonoral–tactile texture (Di Monaco et al., 2008;
Gonzalez-Barron and Butler, 2008b; Lassoued et al.,
2008; Martens and Thybo, 2000; Zheng et al., 2006).
Chen (2007) reviews these instrumental techniques and
their uses in the characterization of perceived surface
texture.

11.4 Conclusions

The sensory evaluation of texture has advanced a great
deal since the middle of this century, yet in 1991
Alina Szczesniak, surely the doyenne of food texture
in the United States, could still state that “there are still
many important gaps in the consumer/texture interface
where progress has not kept up with that in the area
of instrumental texture measurements.” She continues
“Quantitative measures of the relative importance of
texture in specific food categories should be developed
and related to the level of textural quality.” This state of
affairs is emphasized by Chen (2009) who stated that
“. . . a thorough understanding of the principles and
mechanisms involved in food oral processing will be
essential. Without such knowledge, our studies of food
texture probably would not go far.” Given the impor-
tance of food texture in food quality and acceptance,
there is still a great deal of work that must be done in
this area.
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Chapter 12

Color and Appearance

Abstract In this chapter we discuss what color is and then go on to describe color
vision. We pay attention to variations in normal color vision due to genetic variations
in the color receptor genes as well as to color blindness. We then discuss the mea-
surement of appearance with attention to turbidity and glossiness. Instrumental color
measurements are briefly described with special attention to the Munsell, RGB, and
various CIE color systems.

Some days are yellow.

Some days are blue.

On different days I’m different too.

You’d be surprised how many ways

I change on different colored days.

On bright RED days how good it feels

to be a horse and kick my heels!

—(My Many Colored Days by Dr. Seuss)
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12.1 Color and Appearance

In food products, especially meats, fruits, and vegeta-
bles, the consumer often assesses the initial quality of
the product by its color and appearance. The appear-
ance and color of these products are thus the primary
indicators of perceived quality. The importance of
color and appearance can be demonstrated when we
think of drinking milk from a Coca-Cola bottle, when
we choose bananas in the grocery store (a green–
yellow–black continuum that indicates ripeness), when
a friend serves green-colored bread and beer on
St. Patrick’s day, and when someone serves us a water-
melon with yellow flesh instead of the more usual
red. In food processing and cooking, color serves as
a cue for the doneness of foods and is correlated
with changes in aroma and flavor. Simple examples
include the browning of baked and fried foods. For
other foods, color or lightness is important to identity
and to grading as in the lightness of canned tuna fish.
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Scientific studies have also shown that the color of
the product affects our perception of other attributes,
such as aroma, taste, and flavor. For example, DuBose
et al. (1980) found that the number of correct iden-
tification of fruit-flavored beverage flavors decreased
significantly when the beverage was atypically colored
and that the number of correct identifications increased
when the beverage was colored correctly. Shankar et al.
(2009) studied the effect of color and label on per-
ceived chocolate intensity and likability of brown and
green milk and dark chocolate M&Ms (candy-coated
chocolate buttons) and found that the color and the
label affected the perceived chocolate intensity but not
the likability. Additionally, they found no interaction
effect of label and color. Christensen (1983) found that
when sighted panelists scored the aroma intensity of
appropriately and inappropriately colored cheese, soy
analog bacon, margarine, raspberry-flavored gelatin
and orange drink, the perceived intensity of the
appropriately colored product was higher than for
the inappropriately colored product. Interestingly, the
bacon analog was a notable exception. The effect
on perceived flavor intensity was less pronounced
and there was no effect on perceived texture of the
products.

Osterbauer et al. (2005) showed through func-
tional magnetic resonance imaging (fMRI) of the
brains of their subjects that as these subjects increased
their rating of color–odor matches their brain activ-
ity in the caudal regions of the orbitofrontal cor-
tex and in the insular cortex increased progres-
sively with their perceptions of color-odor congruency.
Therefore, these color–flavor interactions are likely
“real.”

Based on these studies and others (Demattè et al.,
2009; Stevenson and Oaten, 2008) we can con-
clude that not only is the color and appearance
of foods and products important to the consumer
in and of themselves, but that color and appear-
ance affect the consumers’ perceptions of other sen-
sory modalities in that food or product as well.
Therefore it is very important that the sensory spe-
cialist knows how to ask panelists to evaluate product
appearance and color and how to perform sensory
tests to minimize the subjects’ color and appearance
biases from affecting the sensory results of other
modalities.

12.2 What Is Color?

Color is the perception in the brain that results from the
detection of light after it has interacted with an object.
The perceived color of an object is affected by three
entities: the physical and chemical composition of the
object, the spectral composition of the light source illu-
minating the object, and the spectral sensitivity of the
viewer’s eye(s). As we will see in the following discus-
sion changing any one of these entities can change the
perceived color of the object.

The light striking an object may be refracted,
reflected, transmitted, or absorbed by that object. If
nearly all the radiant energy in the visible range of the
electromagnetic spectrum is reflected from an opaque
surface then the object appears white. If light through
entire visible range of the electromagnetic spectrum is
absorbed in part then the object appears gray. If light
from the visible spectrum is absorbed almost com-
pletely then the object appears black. This also depends
upon the surrounding conditions. The black type from
this book in direct sunlight reflects more light than the
white page under a reading lamp, yet they appear black
and white under both conditions due to their relative
reflectance of light.

The color of an object can vary in three dimen-
sions, namely hue, this is typically what the consumer
refers to as the “color” of the object (for example,
green); lightness, also called the brightness of the
object (light versus dark green); and saturation, also
called the purity or chroma of the color (pure green
versus grayish green). The perceived hue of an object
is the perception of the color of the object and results
from differences in the absorption of radiant energy at
various wavelengths by the object. Thus if the object
absorbs more of the longer wavelengths and reflects
more of the shorter wavelengths (400–500 nm) then
the object will be described as blue. An object with
maximum light reflection in the medium wavelengths
results in an object described as yellow-green in color
and an object with maximal light reflection in the
longer wavelengths (600–700 nm) will be described
as red in color. The lightness (value) of the perceived
color of an object indicates the relationship between
reflected and absorbed light with no regard to spe-
cific wavelength(s) involved. The chroma (saturation
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or purity) of the color indicates how much a specified
color differs from gray.

The visual perception of color arises from stim-
ulation of photoreceptors in the retina by light in
greater intensities at some wavelengths than others in
the visible region (380–770 nm; Table 12.1) of the
electromagnetic spectrum. The entire electromagnetic
spectrum encompasses gamma rays (wavelengths of
10–5 nm) to radio waves (wavelengths at 1013 nm).
However, the photoreceptors in the human eye only
respond to a small range of this energy. Thus, color
is an appearance property attributable to the spectral
distribution of light interacting with the photoreceptors
in the eye and visual color perception is the brain’s
response to this stimulus of the photoreceptors that
results from the detection of light after it has interacted
with an object. Or stated differently, wavelengths in
the visual portion of the electromagnetic spectrum not
absorbed by the viewed object are seen by the eye and
interpreted by the brain as color.

Table 12.1 Visible portion of the electromagnetic spectrum

Color Wavelength range (nm)

Violet 380–400
Blue 400–475
Green 500–570
Yellow 570–590
Orange 590–700
Red 700–770

Certainly color is an appearance property of an
object attributable to the spectral distribution of
light emanating from that object. However, gloss,
transparency, haziness, and turbidity are appearance
properties of materials attributable to the geometric
manner in which light is reflected and transmitted.
Something as simple as uneven reflection of light from
a surface can make the object appear dull or matte.
If the reflection is stronger at a specific angle or in a
beam, then the resultant perception of gloss or sheen
is a result of specular and/or directional reflectance.
The reflectance is caused by the surface of the object.
Smooth objects reflect in a directional manner and
irregular, patterned, or particulate objects reflect light
diffusely. The appearance of an object is affected
by the optical properties associated with the object,

namely the geometric light distribution, over the sur-
face of the object and within the object if it is not
opaque, the translucence of the object, the gloss, the
size, shape, viscosity (Hutchings, 1999).

12.3 Vision

The light reflected from an object, or the light passing
through an object, falls on the cornea of the viewer’s
eye(s), travels through the aqueous humor to the lens,
and from there travels through the vitreous humor to
the retina, where most of the light falls on or near a
small hollow in the retina, the foveal pit. The visual
receptors, the rods and cones, are located in the retina
of the eye. These receptors contain light-sensitive pig-
ments which change shape when stimulated by light
energy, leading to the generation of electrical nerve
impulses which travel along the optic nerves to the
brain. There are approximately 120 million rods in
the retina and the rods are capable of operating at
extremely low light intensities (less than 1 lux). The
rods yield only achromatic (black/white) information
and under low-light conditions humans have scotopic
vision with no color perception. This is why we cannot
see colors by moonlight (“all cats are gray in the dark”)
although we can usually see well enough to move
around. The maximum rod concentration is approxi-
mately 20◦ from the foveal area, this area is called
the parafovea. Thus under low levels of illumination
an object is more likely to be perceived when viewed
slightly from the side than directly, called averted
vision (Hutchings, 2002).

The 6 million cones operate at higher light inten-
sities (levels of illumination) and provide chromatic
information (color), allowing photopic vision. The
cones are concentrated on the fovea, a small (2 mm
diameter) depression located in a yellow colored spot
(macula lutea) on the retina, where the highest color
resolution occurs. When viewing an object, the uncon-
scious movement of our eyes serves to bring the
image of the object onto the foveal areas. The cones
contain three color-sensitive pigments each respond-
ing most sensitively to red (two polymorphic vari-
ants at ∼560 nm), the L-pigment also known as the
ρ-receptors; to green (at ∼530 nm), the M-pigment
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also known as the γ-receptors; or to blue (at ∼420 nm),
the S-pigment also known as the β-receptors (Deeb,
2006; Hutchings, 2002). A phenomenon called the
Purkinje shift occurs under decreasing light conditions
when humans become more sensitive to blue-green,
with blues seemingly becoming brighter and reds rel-
atively darker. Due to the Purkinje shift at very low
light intensities the reds will appear almost black and
the blues will appear gray.

12.3.1 Normal Human Color Vision

Variations

It has been shown that variations in normal color vision
are due to polymorphisms in the L- and M-pigments
with amino acid substitutions at position 180 (alanine
versus serine) accounting for most of the variations
(Merbs and Nathans, 1992, 1993). There are addi-
tional amino acid substitutions at positions 277 and
285 but these are not as well studied, yet. In humans
with normal color vision, Deeb (2005) found that
among Caucasian males, 62% have serine at position
180 in the L-pigments (Lserine) and 38% have alanine
(Lalanine). Using a color-matching test (the Rayleigh
test) they asked their subjects to match a standard yel-
low (590 nm) light with a mixture of red (644 nm) and
green (541 nm) lights. They found that males need-
ing less red light to make the match (hence ones that
were more sensitive to red light) were much more
likely to have serine at position 180 of the L-pigment.
The L-pigments are linked to the X-chromosome, thus
men have two variants (about 60% express Lserine and
about 40% Lalanine) and women have three variants
(about 50% of women are heterozygous and express
both Lserine and Lalanine; and the other 50% of women
homozygously express either Lalanine or Lserine). Pardo
et al. (2007) showed that due to the above gender-
related L-pigment expressions, on average women per-
ceive some colors significantly differently from men.
Jameson et al. (2001) specifically showed those women
who were homozygous for the L- or M-pigments did
not perform differently from men but those women
who were heterozygous to L- and/or M-pigments had
a relatively richer color experience. Additionally, age-
ing, glaucoma, and cataracts affect color vision. Older
subjects (60–70 years old) perceive colored surfaces to
be less chromatic (“colored”) than subjects under 30
years of age (Hutchings, 2002).

12.3.2 Human Color Blindness

Humans either lacking one or more of the L-, M-, and
S-pigments or having specific mutations in these pig-
ments fall in various color-blind categories and com-
prise about 8% of males and 0.44% of females. Color-
blind individuals are classified into different groups.
The first group is the protanopes or protoanomalous
trichromats who have no or a reduced ability, respec-
tively, to see red due to absence or anomaly with
ρ-receptors (L-pigments) and comprise about 1/4 of
the color-blind population. The second group is the
deuteranopes or deuteranomalous trichromats who
have no or a reduced ability, respectively, to see
green due to absence or anomaly with γ-receptors (M-
pigments) and comprise about 3/4 of the color-blind
population. The last and by far the smallest group is
the tritanopes who have no or a reduced ability to
see blue due to absence or anomaly with β-receptors
(S-pigments). The genes for the more common forms
of color blindness are recessive and carried on the
X-chromosome. Thus the trait is seen much more
frequently with men than with women.

It is possible to test panelists for color blindness
and all panelists should be screened if they will be
evaluating the color of samples. Techniques include
pseudo-isochromatic plates such as the Ishihara plates,
created in 1917, the Farnsworth Dichotomous Test
for Color Blindness, or the Farnsworth–Munsell
110 Hue test (Farnsworth, 1943). Ishihara pseudo-
isochromatic plates and the various Farnsworth tests
can be obtained from any reputable optometric supply
company.

12.4 Measurement of Appearance

and Color Attributes

12.4.1 Appearance

Some scientists (Hutchings, 1999) maintain that prod-
uct appearance is inclusive of product color and other
appearance properties such as physical form (shape,
size, and surface texture), temporal aspects (move-
ment, etc.), and optical properties (reflectance, trans-
mission, glossiness, etc.) For our purpose we will
discuss color and appearance as separate entities, while
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keeping in mind that appearance attributes clearly
affect perceived color.

Usually, physical appearance characteristics can
easily be measured through sensory techniques.
Standard descriptive techniques can quantify size,
shape, and visual surface textures using simple inten-
sity scales. An example would be “amount of chocolate
chips visible on the surface of the cookie.” In this
case, “amount” might be rated from none to many, with
examples being given in training to anchor the high and
low ends of the scale. Visual texture is another exam-
ple that lends itself well to simple intensity scales, such
as apparent roughness of the surface, size or number
of surface indentations, and density or amount of sed-
iment in a container of a liquid product. Most of these
simple and concrete attributes require little training and
can be easily worked into a descriptive profile of the
product. Of course, as in any other descriptive tech-
nique, the scale becomes more calibrated and there is
better agreement among panelists if the low and high
ranges are shown to provide the frame of reference that
anchors the scale.

In food, temporal appearance characteristics are
more rarely measured, even though they exist.
Examples would be the viscosity of molasses as it
drips from a spoon, the jiggle of JellO R©, or the stringi-
ness of pizza cheese. Optical properties (reflectance,
transmission, glossiness, etc.) have been called “cesia”
(Caivano et al., 2004); however, this term has not yet
been widely used in the appearance research world. In
the following section we will discuss few food-relevant
appearance optical properties such as turbidity, translu-
cency, and glossiness.

12.4.1.1 Turbidity (Cloudiness)

An important characteristic of many beverages is how
clear versus how cloudy they appear. Turbidity (cloudi-
ness or haze) occurs when small suspended particles
divert light from a straight path through the mate-
rial and scatter it in different directions. In physical
terms, turbidity is the total light scattered from an inci-
dent beam as it transverses a suspension (Carrasco and
Siebert, 1999). Consumers often expect beverages such
as beer, fruit juices, and wines to be clear. In other
beverages, for example, cider, cloudiness is expected
and here again particulate matter is responsible for the
light scattering. Various steps in beverage processing

may be aimed at reduction in turbidity and increas-
ing the clarity, such as the use of fining agents in
wine making. In some products such as beer, cider,
and fruit juices, haze development is a function of
polyphenol–protein interactions; others are due to car-
bohydrates and yet others are due to the growth of
microorganisms (Siebert, 2009). Haze can also result
from colloidal or larger particles that may precipitate
in a container.

Instrumental methods for turbidity, such as neph-
elometers, use a focused light beam to measure light
scattering at several angles. It is always prudent to
cross-reference instrumental values to human percep-
tion. It is fairly simple to train a panel to evaluate tur-
bidity. If the relationship between perceived turbidity
and instrumental turbidity is not well known for a prod-
uct, it is recommended that one performs the human
testing to understand their sensory reactions to the
product (Carrasco and Siebert, 1999). In other words,
light scattering as a physically measured phenomenon
may not tell you what you need to know about per-
ceived turbidity. Relationships between instrumental
measures of light scattering and human sensory ratings
have been determined. Malcolmson et al. (1989) found
a linear relationship between instrumentally measured
turbidity and perceived clarity for commercial apple
juices. Other studies have found relationships between
physical measurements of cloudiness and sensory eval-
uations in different media including coffee (Pangborn,
1982) and beer (Hough et al., 1982; Leedham and
Carpenter, 1977; Venkatasubramanian et al., 1975).
Pieczonka and Cwiekala (1974, cited in Carrasco and
Siebert, 1999) obtained an instrumental–sensory cor-
relation between nephelometer values and a 5-point
sensory scale of –0.81 in juices. Since light scattering
is dependent upon particle size, it should be possible
to measure a direct relationship between sensory clar-
ity and the size and distribution of suspended matter in
a product.

Clarity arises from the transmission of light, and
fluids that transmit more light will appear more translu-
cent. However, the relationship may be complicated by
other factors such as the color of the medium (Siebert,
2009). Carrasco and Siebert (1999) addressed these
issues in model systems and beverages, comparing
turbidimeter results to those of human sensory pan-
els. Haze perception thresholds were measured and
while they varied with particle size and concentra-
tion depending upon the medium, the human sensory
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threshold was in a small range of instrumental haze
values of about 0.5 Nephelos Turbidity Units. This
suggested a good sensory–instrumental relationship at
low levels. At ranges above threshold, perceived inten-
sity followed the instrumental response until a satura-
tion level was reached. After this point the instrument
determined values continued to increase, but the sen-
sory response was flat, even if panelists were allowed
to use an open-ended magnitude estimation method of
scaling (see Fig. 12.1). Sensory response (scaled inten-
sity) was predicted on the basis of particle size, particle
concentration, and suspension color.

Two situations arise when sensory–instrumental
correlations break down. The most common example is
when the human responds but the instrument does not,
as in the case of olfactory sensitivities to some com-
pounds which exceed the sensitivity of common ana-
lytical methods in chemistry. Another situation arises
when the instrument responds, but the human does
not. The scaling results in Carrasco and Siebert’s study
provide an interesting example of where the machine
response has a broader dynamic range than the sensory
judge. However, the upper range of turbidity becomes
irrelevant when the sensory response does not change.
This obviously imposes an upper limit on the utility of
turbidimeter responses when a high level of cloudiness
has been reached and the human eye no longer sees any
further increase.

12.4.1.2 Glossiness (Shine)

Another important visual attribute is gloss or shine.
Once again there are a variety of physical instruments

to measure light reflectance, but the sensory data are
still important to determine what humans will perceive
in a specific situation. This becomes more important
if the surface is non-uniform, since most instrumen-
tal reflectance measures are designed to work with
uniform surfaces such as paints, waxes, and finishes.
Many foods and consumer products will not conform
well to these conditions. For example, the glaze on
a cake or other baked product may not be a smooth
surface or the shine on an apple may vary across the
surface of the fruit. Just asking panelists about overall
shine without appropriate training with reference stan-
dards may lead to different interpretations by different
panelists, since there are two primary types of light
reflectance. Specular reflectance refers to the mirror-
like shine perceived when the actual image of a light
source appears on the surface of the product (Beck
and Prazdny, 1981). Obviously, standard angles and
viewing conditions are necessary in order to test this
in a reliable manner. Another important type of shine
arises from diffuse reflectance. In this case the light
is reflected, but it is scattered by the surface over
such different angles that the reflected image of the
light source is not seen. Buffing a metal surface with
an abrasive cloth to produce many fine scratches will
result in a good example of a surface with diffuse
reflectance. The surface may seem quite shiny, but
there is no mirror-like image, only the brightness of
the light source. This type of shininess is also quite
common with foods such as glazed doughnuts and egg-
washed bread. A few example of studies on glossiness
are Obein et al. (2004) and Xiao and Brainard (2008)
where objects and pictures were used to determine

Fig. 12.1 Haze intensities (geometric means) perceived by sen-
sory panelists using non-modulus magnitude estimation (left)
and instrumentally measured turbidity (right) versus particle

concentration for medium (2.600 mm diameter) particles in clear
(�), yellow (•), and red (�) liquids (Reprinted with permission
from Carrasco and Siebert, 1999).
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perceived glossiness. Chong et al. (2008) created a
machine vision system to evaluate the surface gloss of
eggplant fruit.

Translucency

Translucency is defined as the property of a specimen
by which it transmits light diffusely without permitting
a clear view of objects beyond the specimen (ASTM,
1987). Joshi and Brimelow (2002) gave a simple test
to determine whether a sample is translucent or not.
They suggest measuring the sample with a reflectance
spectrophotometer at maximum area of illumination
and with the maximum viewing aperture. Then repeat
the measurement with the same viewing aperture but
with a smaller area of illumination. If there is a large
increase in the lightness reading (L∗ in CIELAB, see
below) then the sample is translucent.

This property is important in orange juice
(MacDougall, 2002), tomato skins (Hetherington
et al., 1990), fresh-cut tomatoes (Lana et al., 2006),
and pineapples (Chen and Paull, 2001) where flesh
translucency is a defect associated with off-flavors and
fruit fragility during harvest. Hetherington et al. (1990)
found that increased sensory translucency scores of
tomatoes were associated with increased opacity and
that the translucency scores were inversely related to
the L∗ values (r=0.774). Standard sensory techniques
are used in the sensory assessment of translucency
and instrumentally a reflectance spectrophotometer
followed by the Kubelka-Munk data analysis is used
(Talens et al., 2002).

The Kubelka-Munk theory is a relatively crude
model to describe light scattering and its effect on
translucency (see Nobbs (1985) as well as Vargas and
Niklasson (1997) for excellent overviews of the the-
ory and its applicability). Simply put a “scattering”
coefficient (S) and an “adsorption” coefficient (K) are
calculated and the ratio (K/S) is related to translu-
cency of the object. For example, Lana et al. (2006)
found that during storage the pericarp of tomato slices
but not that of intact tomatoes became more translu-
cent. The sensory translucency scores were related to
changes in the K/S ratio of the Kubelka-Munk anal-
ysis of the reflection spectra of the sliced tomatoes.
Additionally they found that removing the locular
gel inhibited the development of translucency in the
pericarp.

MacDougall (2002) gives an example that makes
it very clear that only using instrumental values in
measurement of translucent samples can give results
that are totally inconsistent with visually observed val-
ues. In his example, 4-fold orange juice concentrate is
diluted to a concentration of 0.2 and 4. When glasses
of these oranges juices are viewed with overhead
illumination they range from pale yellow (concentra-
tion less than 1) to deep orange (concentration of 4).
Instrumentally, the most dilute juice had the lowest
L∗ and it was the darkest according to the instru-
ment. On the other hand, the most concentrated juice
had the highest L∗ and was the lightest according to
the instrument. This occurred due to the loss of light
scatter in the more diluted samples. He cautions that
one should remember that the instrument only sees
light reflected from a limited solid angle while the
human “is influenced by the multidirectionality of illu-
mination, which makes coloured translucent materials
glow.”

One can do a simple experiment to visually demon-
strate the above effect. Pour an equal amount of orange
juice into two identical transparent glasses. Cover both
glasses completely with white paper. The paper cov-
ering the side of one glass should have a circular hole
cut into it the size of a dime (approximately 1.5 cm
in diameter). The paper covering the side of the other
glass should have a circular hole cut into it the size
of a quarter (approximately 2.5 cm in diameter). Then
evaluate the color of the juices by viewing the visible
juice through the holes at a 90◦ angle. The juice in the
glass covered with the paper with the small hole seems
darker because much of the scattered light is “trapped”
within the glass and not seen by the viewer.

12.4.2 Visual Color Measurement

Sensory evaluation of color is frequently performed.
Sensory scientists have used the whole range of sen-
sory testing tools to do visual color measurements.
For example, Whiting et al. (2004) used triangle and
two-out-of-five difference tests to investigate perceived
color differences in liquid foundation cosmetics; and
Eterradossi et al. (2009) used descriptive analysis and
consumer satisfaction scales to evaluate red and blue
automotive paints with different levels of quality.
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When doing sensory color evaluation it is even
more important than usual to standardize all fac-
tors that can affect the perceived color. In general
the sensory scientist performing color assessment
should carefully standardize, control, and report the
following:

(a) the background color in the viewing area. Ideally
the background color should be non-reflective and
neutral, usually a matte gray, cream, or off-white is
used (ASTM 1982).

(b) the light source (Table 12.2) in Kelvin and its
intensity (in lux or foot candles) at the product
surface. Eggert and Zook (2008) recommend a

light intensity between 750 and 1,200 lux. Also,
the light source (if it is not a standard illuminant)
should be chosen to have a high color rendering
index (Ra, see below) (Hutchings, 1999).

(c) the panelists’ viewing angle and the angle of light
incidence on the sample. These should not be the
same since that leads to specular reflection of the
incident light and a potential glossiness that may
be an artifact of the method. Usually the booth
area is set up with the light source vertically above
the samples and the panelists viewing angle when
they are seated is about 45◦ to the sample, this
minimizes specular reflection effects.

Table 12.2 Light sources, color temperatures, and color rendering indicesa

Color rendering

Light source
Color
temperature (K)

Ambiance
description Index (Ra) Quality

Candle 1,800 Very warm
High-pressure sodium lamp 2,100 Very warm 22 Poor
40 watt incandescent light bulb 2,770 Warm Close to 100 Excellent
100 watt incandescent light bulb 2,870 Warm Close to 100 Excellent
CIE source A 2,856 Warm Close to 100 Excellent

Warm white fluorescent light
Sylvania T5-warm 3,000 Warm 82 Very good

Metal halide lamp
Sylvania MetalArc ProTech 3,000 Warm 85+ Very good
GroLux Wide Spectrum lamp 3400 Neutral 89 Excellent

Neutral fluorescent light
PureLite 3,500 Neutral 85 Very good

Cool white fluorescent light
Sylvania T5-cool 4,100 Cool 82 Very good

Tungsten/halogen light
SoLux 4,700 Cool 99 Excellent
CIE source B (direct sunlight) 4,870 Cool

Full spectrum fluorescent light
DuroTest Vitalite 5,500 Cool 90 Excellent

Daylight fluorescent light
Sylvania F40D 6,300 Cool-blue 76 Good
CIE source D65 6,500 Cool-blue 100 Excellent

Daylight fluorescent light
DuroTest DayLite 65 6,500 Cool-blue 92 Excellent
CIE source C (overcast daylight) 6,774 Cool-blue
CIE source D (daylight) 7,500 Cool-blue
aValues collated from commercial literature and Hutchings (1999)
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(d) the distance from the light source and the product.
This will affect the amount of light incident on the
sample. The light intensity should be measured at
the product surface.

(e) whether the sample is lit with reflected or transmit-
ted light.

Frequently, very little or none of the above infor-
mation appears in the literature associated with food
or personal care product color evaluations. Whiting
et al. (2004) were exceptional in explicitly indicating
the color of the sensory booth wall and table (gray with
specified color system values); the color of the sample
tray bottoms (a gray-woven fabric with specified color
system values); the light source (D65 at 1,000 lux); the
viewing distance (60 cm); and the viewing angle (each
sample was subtended at 6º).

In color and appearance evaluations the light source
is usually specified by its color temperature. The color
temperature is determined from the temperature in
Kelvin to which a black body that absorbs all energy
that falls onto it needs to be heated to emit light
of a spectral distribution characteristic of the specific
light source (Table 12.2). The light emitted by the
black body changes as the color temperature changes.
At lower temperatures (2,000 K) the light emitted is
redder, at higher temperatures (about 4,000–5,000 K)
the light is whiter, and at high temperatures (8,000–
10,000 K) the light becomes bluer (1999). Standard
lights used in food color evaluation tend to be illu-
minants A (with a color temperature of 2,856 K), C
(6,774 K), D65 (6,500 K), and D (7,500 K). These
illuminants are all based on tungsten filaments. The
spectral distribution of illuminant A is very different
from the spectral distribution of illuminants B and C
(Fig. 12.2). The spectral distribution of illuminant A is
high in red-yellow wavelengths while it is low in blue-
violet wavelengths. Illuminants C and D50, through
D65, are high in blue wavelengths. Illuminants C, D65,
and the other D variants are designed to mimic varia-
tions of daylight. Standard fluorescent lights have very
different spectral distributions (they tend to be more
spiky and less smooth, see F11 in Fig. 12.2) than those
from tungsten and incandescent lamps. The result is
that objects viewed under fluorescent and tungsten
lights often have differences in perceived color than
when the same objects are viewed under say illumi-
nant C. These differences in perceived color occur
because the color depends on the absorption of light by

the product and the incident spectrum’s wavelengths.
For example, under a standard illuminant if the product
absorbs red wavelengths and not those in the green area
of the spectrum the object would look green. However,
if the incident light only has red wavelengths then the
object would not appear green since there were no
green wavelengths to reflect to the eye. Depending on
the light source this object may appear black.

The color rendering index (Ra) is a measure of the
effect of an illuminant on the perceived color of an
object (CIE, 1995a). The Ra is measured by assess-
ing the size of the color change of eight Munsell color
samples under the light of interest versus a reference
light, usually an incandescent light (a 60 W tungsten
lamp, 2,900 K). Lights with a 100 Ra index exactly
reproduce the perceived color of the reference light
(Table 12.2).

Panelists should be tested for color blindness (see
above). If reference color standards are desired they
can be paint chips, Munsell spinning disks, model
products, or digital images (Hernández et al., 2004;
Kane et al., 2003). However, when using these stan-
dards the sensory specialist should keep in mind that
the color of the standard and the sample may only be
a metameric match. A metameric match is an apparent
match in the colors of two objects when viewed under
one light source but the colors of the objects are not
matched when viewed under most other light sources
(MacKinney and Little, 1962). Metameric matches
also occur when two objects match under a specified
light source when viewed by one observer but not when
viewed by a second observer (Kuo and Luo, 1996).

Recently, a number of studies have been published
on the use of digital images as reference standards or
the use of virtual product images to evaluate color dif-
ferences in foods. It could be very useful if it were
possible to obtain accurate reproductions of color and
appearance of products as images. These can then be
displayed to the panelists (anywhere in the world) as
long as they are viewed using the identical reference
display and viewing conditions. Kane et al. (2003)
studied the possibility of using digital references for
the brownness of cookies and found that the panelists’
scores when using either digital references or physical
references led to the same trends in differences among
cookie formulations but in some cases the panelists’
scores were lower when using the digital references
than when using the physical references. Hernández
et al. (2004) created digitally processed color charts of
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Fig. 12.2 The relative wavelength distributions for CIE stan-
dard illuminants A, B, C, D65, and D variants and F11.
Illuminant A has more yellow-red wavelengths, illuminant
D65 and the D variants have more blue wavelengths, and

illuminant F11 (a fluorescent light) has a more spiky distri-
bution in terms of wavelengths (Reprinted with permission
from Gernot Hoffman, University of Applied Sciences, Emden,
Germany).

Piquillo peppers to use as a color reference standard
and they found that the repeatability of the visual
color chart scores was satisfactory. Examples of dig-
ital images used as reference standards: Pointer et al.
(2002) successfully used digital images of bananas,
tomatoes, oranges, peas, and biscuits (cookies) that
had been perturbed in terms of lightness or color in
triangle tests; Valous et al. (2009) similarly used dig-
ital images of ham slices and successfully determined

the CIE color characterization of these slices from the
digital images using a computer vision system;
Kang et al. (2008) successfully did something sim-
ilar with a more complex product—bicolor mango
fruit.

When asking panelists to evaluate color the sensory
scientist has to keep in mind that humans are very good
at evaluating color differences when samples are side
by side or when they have access to color standards but
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humans are not good at evaluating color differences
from memory. Additionally, research has shown that
humans are quite good at evaluating hue (see Munsell
color solid) and lightness (value) changes in objects
but not good at discriminating chroma (saturation of
color) changes (Melgosa et al., 2000). Additionally,
Zhang and Montag (2006) confirmed Melgosa and
coworkers’ results and conclude with the following
statement: “. . .people do not have ready access to
the lower level color descriptors such as the common
attributes used to define color spaces, and that higher
level psychological processing involving cognition and
language may be necessary for even apparently simple
tasks involving color matching and describing color
differences.”

12.5 Instrumental Color Measurement

“There are a bewildering variety of methods and instru-
ments available to the food technologist in the field
of colour measurement. When one is approaching the
subject for the first time or when attempting to devise
a method for a material outside the normal experience
the wealth of possibilities available sometimes makes
the choice difficult” (Joshi and Brimelow, 2002). In
the next section we will endeavor to shed some light
on color measurement. For additional information
the following are suggested: Hutchings (1999, 2003),
MacDougall (2002), and Lee (2005).

12.5.1 Munsell Color Solid

Prior to the advent of instrumental techniques, sev-
eral visual color solids were developed to describe
color; one of the more famous was the Munsell color
solid. The Munsell color solid was developed by
A.H. Munsell around 1900 (Clydesdale, 1978). The
Munsell system had three attributes: hue (H), value
(V), and chroma (C). A specific color was described
as a point in the three-dimensional hue–value–chroma
space. In the Munsell color solid (or color space)
the hue–value and chroma values for each color were
arranged in a sphere composed of individual color
“plates” separated by equal visual steps (Fig. 12.3).
Hues are spaced around the circumference with ten

major hues (grouped into major divisions of red,
yellow-red, yellow, green-yellow, green, blue-green,
blue, purple-blue, purple, and red-purple), each being
ten hue steps apart. These hue steps were supposed to
be equal but research has shown that the hue spacing
in the yellow-red, yellow-green, and blue regions is
actually not equally spaced (Oleari, 2001). The value
is a darkness or lightness scale with absolute black
(at the bottom of the sphere) to absolute white (at the
top of the sphere).The chromatic colors are positioned
at the value that is equally spaced between absolute
black and absolute white. The chroma is the amount by
which a given hue deviates from a neutral gray of the
same value. The chroma of a hue is imagined as a line
of constant hue drawn from the center of the sphere to
the edge of the sphere at a constant value.

Visual color solid systems are useful when one
wants to specify a color but one always needs a human
to do the matching of the sample color to the color solid
(usually a color chip). However, due to the idiosyn-
cratic nature of color vision, it was not possible to have
an instrument measure color as specified in Munsell

Fig. 12.3 A schematic of the Munsell color solid
indicating the three dimensions of hue, chroma, and light-
ness (From Jacobolus, Wikimedia Commons, http://en.
wikipedia.org/wiki/File:Munsell-system.svg. This file is
licensed under the Creative Commons Attribution ShareAlike
2.5 License. In short: you are free to share and make derivative
works of the file under the conditions that you appropriately
attribute it and that you distribute it only under a license
identical to this one).
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notation. In order to develop instrumentation that could
measure color, it was necessary to devise mathematical
relationships to describe color (the so-called mathe-
matical color solids).

12.5.2 Mathematical Color Systems

In order to develop meaningful mathematical color
systems the approach used by Munsell had to be
changed. Mathematical color systems are based on
the physical laws related to the addition of lights
and these are based on the existence of L-, M-, and
S-receptor cones and rods in the human eye. The most
used mathematical color systems are the CIE ver-
sions. The CIE acronym is based on the French name
for the International Commission on Illumination or
“La Commission Internationale de l’Eclairage” (CIE,
1978, 1986). In order to explain the CIE system it is
easier to start with a less complex version, the so-called
three lights system. The three lights system simply
specifies color in terms of how colors are perceived by
the human eye.

12.5.2.1 The R, G, B Mathematical Color System

Three projectors, one with a red filter (R), one with a
green filter (G), and one with a blue filter (B), are set
up to shine on a screen in such a way that they com-
pletely overlap. The sum of the wavelengths hitting the
screen, the so-called spectral radiant flux, is perceived
by an observer as a single color. Then, another pro-
jector with an unknown color filter is projected onto
a separate portion of the same screen. It is now possi-
ble to adjust the energy (radiant flux) projected through
the R, G, and B filters on the first three projectors
until the combined radiant flux from these projectors
matches the unknown color. One can then specify the
unknown color as the energy combination from R, G,
and B. The amounts of energy required to match the
unknown from each of the three lights are the so-called
tristimulus values. These values may be expressed as
radiant flux (watts), luminous flux (lumens), or, more
usually, in arbitrary psychophysical scales of red, blue,
and green.

In practice this approach is overly simple leading to
a number of problems. Some colors are too bright to
match because no light source can project the required

radiant flux. Other colors are too saturated. For exam-
ple, some yellows cannot be matched using just red
and green filters even if the blue filter is eliminated.
“Matchable colors” are within the color gamut (or
the acceptable color range) of a specific mathematical
color system while “non-matchable colors” are out-
side the color range. Even if different filters had been
chosen for the three projectors in this simple system
it is still not possible to match all colors. In theory,
the three lights system is based on the physiological
response of the three cone types of the eye. In prac-
tice, it is further simplified by isolating the responses
that are analogous to actual physiological responses.
This simplification results in the unfortunate effect that
there are always some colors outside the color gamut
because nearly all parts of the color magnetic spec-
trum excite more than one of the cones to some extent.
If it were possible to find a part of the spectrum that
excited only one cone type while having no effect on
the other two cone types, then a color gamut based on
the three lights system would include all perceived col-
ors. Despite its limitations, the three color system has
been used extensively as the basis for other tristimulus
color systems.

It is possible to express the color matching produced
by the three lights algebraically (Clydesdale, 1978). If
we assume that C is a color in the three-dimensional
color space and its color is matched by the three lights
red, green, and blue with tristimulus values R, G and
B, then the following equation describes the color
match:

C(R,G,B) = R + G + B (12.1)

Based on the physical law of additivity of lumi-
nances, the intensity of color C (also known as the
luminance L) in the three-dimensional space can be
described by the next equation:

L = lR + lG + lB (12.2)

where lR, lB, and lG are the luminances (intensities) of
the corresponding light primaries in their unit amount
with R = B = G = 1. If the tristimulus values R, G, and
B of color C are changed by a constant factor “a” then
the luminance of C changes to “aL.” If color D with
tristimulus values RD, GD, and BD is added to color C

with tristimulus values GC, BC, and RC then the new
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color E has tristimulus values of RE, GE, and BE. This
can be expressed algebraically:

E(RE,GE,BE) = (RC + RD) + (GC + GD) + (BC + BD)
(12.3)

So, the tristimulus values of a mixture of colors are
equal to the sum of the tristimulus values of the com-
ponent colors. Based on the above explanation it is
possible to describe both the luminance (l) and tristim-
ulus values r, g, b of a color in terms of three colored
lights, if the color falls within the color gamut of the
mathematical color solid.

It is also possible to define a unit plane within the
three-dimensional mathematical color solid which has
within it all colors with the same luminance. This unit
plane is a plane of constant luminance in the three-
dimensional mathematical color space and is similar to
the plane of constant value in the Munsell color solid.
Differences in colors within this plane are a function
of hue and chroma of the specified colors. This unit
plane is called a chromaticity diagram and a color point
within the chromaticity diagram is not specified by the
arbitrary tristimulus values R, G, and B but by fractions
of their total:

r = R

R + G + B
(12.4)

g = G

R + G + B
(12.5)

b = B

R + G + B
(12.6)

A color may be therefore specified in the three-
dimensional color by description of the luminance (l)
and two of the color’s three chromaticity coordinates.
This will be illustrated in the next section (Fig. 12.4)
for the CIExyz tristimulus system. This simple three-
light system is the basis for all mathematical color
solids like the CIE tristimulus system. However, this
simple system does not work in reality because (1)
some colors are outside the color gamut and a nega-
tive amount of radiant flux is needed to match these
colors, (2) the color solid is not visually uniform, (3)
a vector analysis is needed to calculate the luminance.
The CIE system eliminates all of these problems.

12.5.2.2 CIE Mathematical Color Systems

In the CIE mathematical color system theoretical pri-
maries were developed to remove the disadvantages
of the actual lights (R, G, and B) while still retaining
the advantages of the simple three-light system. The
primaries are X, Y, and Z and their chromaticity coor-
dinates are x, y, and z. The developers mathematically
included luminance into one of the primaries (Y) and
thus avoided the problem of needing vector analysis
to calculate luminance. This was possible because the
cones of the eyes are most sensitive to luminance in the
green region of the spectrum. Careful choice allowed
the theoretical primaries X, Y, and Z to cover the entire
color gamut with positive values, thus the horseshoe-
shaped CIE spectrum locus has a color gamut that
includes all colors (Fig. 12.4).

In the CIE system it is possible to locate a color
in the three-dimensional color space by specifying Y

and two of the three possible chromaticity coordinates
(x, y, and z). The chromaticity coordinates are related
to each other by the following equation: x+y+z = 1.
Thus, knowledge of two of the three possible values
will define a specific color.

The CIE data are usually expressed as tristimulus
values (X, Y, and Z) or as chromaticity coordinates
(x, y, and z). The x, y chromaticity coordinates are
often plotted on the horseshoe-shaped CIE spectrum
locus with %Y superimposed (Fig. 12.5, please note
that not all colors are present at all levels of %Y). The
color can then be specified as x, y, and %Y. Since
CIE spectrum locus is not based on Cartesian coor-
dinates, it is difficult to express mathematically and
even more difficult to explain to most people. One
attempt to simplify the CIE system plots the CIE spec-
trum locus at constant %Y. Then x and y chromaticity
coordinates, at a given Y value, appear on a unit
plane.

The problem with the x, y, z chromaticity system
is that the space looks like a horseshoe which makes
any linear relationship calculations between these val-
ues and say sensory scales very difficult. Other color
systems have been developed with more uniform dia-
grammatic representations of color spaces than the
horseshoe-shaped CIE space. Early versions of these
color spaces were the Gardner and the Hunter L,A,B
spaces (which were associated with specific instru-
ments) where the value (also known as the degree
of whiteness or blackness) is represented by L. The
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Fig. 12.4 Horseshoe-shaped chromaticity diagram (Reprinted with permission from Gernot Hoffman, University of Applied
Sciences, Emden, Germany).

chromatic portion of the color space is based on
rectangular Cartesian coordinates (a, b) with red rep-
resented by +a, green represented by –a, yellow rep-
resented by +b, and blue represented by –b. These
systems made it easier to meaningfully communicate
color data. Subsequently other spaces that were instru-
ment invariant, like the CIELAB and CIELUV, also
known as the L∗a∗b∗ and L∗u∗v∗, respectively, were
developed by CIE to improve the linearity of the CIE
system (CIE, 1986). The L∗u∗v∗ system has been
applied to food but was primarily devised for color
additive mixing such as television and lighting. The
L∗a∗b∗ space approximates the Munsell space. For
both the L∗u∗v∗ and L∗a∗b∗ systems the three axes are
mutually perpendicular. An increase in the value of +a

indicates an increase in red; a larger –a value indicates
an increase in green. An increase in +b indicates an
increase in yellow and an increase in –b indicates an
increase in blue. Increasing L∗ values indicate increas-
ing lightness (or whiteness). One has to be careful not
to oversimplify the space—this occurs when authors
incorrectly describe a as redness and b as yellow-
ness. In actuality (a b) are Cartesian coordinates that

together describe a point in space (Hutchings, 1999;
Wrolstad et al., 2005).

In an effort to make the color coordinate values
more intuitive the L∗C∗h∗ color space was devised
(Sharma, 2003). This space uses the same diagram
as the L∗a∗b∗ color space but uses angles rather than
Cartesian coordinates for a and b. The L∗ in L∗C∗h∗

is identical to the L∗ in the L∗a∗b∗. The C∗ indicates
chroma (an indication of color saturation) and is equal
to zero at the center of the color space and increases
based on the distance from the center. The h∗ is the
hue angle and it is expressed in degrees. Starting from
the +a∗ axis, 0◦ is +a (red), 90◦ is +b (yellow), 180◦ is
–a (green), and 270◦ is –b (blue).

The above color systems are helpful in specifying a
color but are not very useful when one wants to spec-
ify the differences between colors. Color difference
can be calculated in the L∗a∗b∗, the L∗u∗v∗, and the
L∗C∗h∗ systems. For the L∗a∗b∗ the equation for color
difference between two samples is as follows:

�E∗ =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2

(12.7)
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Fig. 12.5 Horseshoe-shaped chromaticity diagram with third
dimension (Y). The third dimension is indicated by the tristim-
ulus value Y. As previously mentioned, this value indicates the
lightness or luminance of the color. The scale for Y extends from
the white spot in a line perpendicular to the plane formed by x

and y using a scale that runs from 0 to 1. The fullest range of

color exists at 0 where the white point is equal to CIE illuminant
C. As the Y value increases and the color becomes lighter, the
range of color, or gamut, decreases so that the color space at 1
is just a sliver of the original area (Reprinted with permission
from Gernot Hoffman, University of Applied Sciences, Emden,
Germany).

It is important to note that once the �E is calculated
the size of the difference is known but not whether it is
due to L, a, b singly or in some combinations (Sharma,
2003). Because the L, a, b space is not uniform the
�E is more accurate in some parts of the color space
than others. In an attempt to improve the situation a
number of other color difference equations have been
proposed. The most popular are the CIE94 (also known
as �E94, CIE 1995b) and the CIEDE2000 (Luo et al.,
2001; Sharma et al., 2005). The CIEDE2000 has been
extensively studied and seems to be an improvement
over the standard �E and CIE94 (Melgosa et al., 2008;
Xu et al., 2002).

There are also mathematical color systems that
may be less familiar to North American read-
ers but very familiar to others, for example, the
Swedish Natural Color System (NCS, Hard and Sivik,
1981), the DIN99 (Cui et al., 2002), and the CMC

(AATCC, 2005). Fortunately, values derived from any
of these systems can be interconverted, provided con-
ditions are appropriately specified. A few examples
of color conversion tables and equations are listed in
Table 12.3.

Interconversion between color systems can have
problems. In food matrices there are frequently dis-
crepancies when converting from the other systems to
the CIE XYZ system, because the conversion calcula-
tions are based on the responses of opaque standards.
Food systems, on the other hand, are often somewhat
translucent and do not behave exactly as would be
predicted by the standards.

Angela Little (MacKinney and Little, 1962) stated
“Once we accept that color belongs to the realm of sen-
sory perception, we must also accept that is can only
be measured directly in psychological terms. From
physical measurements, nevertheless, we can obtain
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Table 12.3 Conversion equations and tables for some common color systems

Convert CIE XYZ to CIELUV L∗u∗v∗a

L∗ = 116(Y/Yn)1/3 – 16 for Y/Yn >0.008856 where Yn is the value for reference white
L∗ = 903.3(Y/Yn)1/3 for Y/Yn ≤ 0.008856 where Yn is the value for reference white
u∗ = 13L∗(u′–u′n) where u′ is calculated as described below and u′n is for reference white
v∗ = 13L∗(v′–v′n) where v′ is calculated as described below and v′n is for reference white
Calculation of u′ and v′:

u′ = (4X)/(X+15Y+3Z) = (4x)/(–2x+12y+3)
v′ = (9Y)/(X+15Y+3Z) = (9y)/(–2x+12y+3)

Convert CIE XYZ to CIELAB L∗a∗b∗b

L∗ = 116(Y/Yn)1/3 for Y/Yn >0.008856 where Yn is the value for reference white
a∗ = 500{(X/Xn)1/3 – (Y/Yn)1/3} where Xn is the value for reference white
b∗ = 200 {(Y/Yn)1/3 – (Z/Zn)1/3} where Zn is the value for reference white

Convert CIELAB L∗a∗b∗ to CIE XYZc

Y1/3 = (L∗ + 16)/24.99 if illuminant C was used
X%1/3 = (a∗/107.72) + Y1/2 if illuminant C was used
Z%1/3 = Y1/3 – (b∗/43.09) if illuminant C was used

Convert CIELAB L∗a∗b∗ to HunterLABc

L = 10Y
1/2 if illuminant C was used

a = 17(X%–Y)/Y
1/2 if illuminant C was used

b = 7.0(Y–Z%)/Y
1/2 if illuminant C was used

Convert CIE XYZ to HunterLABd

L = 10Y
1/2

a = 175(1.02X–Y)/(Y
1/2)

b = 70(Y–0.847Z)/(Y
1/2)

Convert Munsell values to CIE XYZ

Use tables by Glenn and Killian (1940)
Convert Munsell values to CIE xy

Use tables by Glenn and Killian (1940)
aHutchings (1999) (CIELUV was intended for color additive mixing in the television and lighting industries, but it has been used
in food color measurements)
bASTM (1991)
cPattee et al. (1991)
dClydesdale (1978)

data which provide the basis for establishing psy-
chophysical scales, from which we can predict visual
color appearance.” She suggests that usually the pri-
mary concern in color measurement is to measure what
the eyes see. Thus it is necessary to produce data
that correlate with human visual perception. Often the
instrumental data (tristimulus values) do not correlate
well with the data derived from panelists and further
manipulation of the instrumental data may be needed
to improve the correlation.

When the color of foods is measured instrumentally
the scientist should keep in mind that the instrument
was designed to measure the reflectance color of ideal
samples, namely samples that are homogeneously
pigmented, opaque, flat, and evenly light scattering
(Clydesdale, 1975, 1978). Foods are far from the ideal

sample. Nearly all foods have shape and texture irreg-
ularities and surface characteristics that scatter and
transmit light. Additionally, the pigment distribution
in most foods is also irregular. Instruments are also
designed to measure the transmittance color of ideal
samples, and in this case the ideal sample is clear
and moderately light absorbing. Real liquids (where
one usually measures transmittance color) tend to have
hazes and may be very light absorbing (Clydesdale,
1978).

It is possible to obtain an approximate ideal
reflectance color measuring surface for dry powders,
such as flour and cocoa, by compressing the dry pow-
dered sample into a pellet. Other dry foods such as
instant coffee, potato flakes, dry gelatin crystals (dry
Jell-O R©) can be pressed into very thin wafers between
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Teflon disks. When measuring the color of translucent
liquids the area exposed should be much larger than
the area illuminated. This allows any light entering
the sample and traveling laterally within the sample
to emerge in the direction where it will be measured.
This minimizes the selective absorption effect that
can change the hue of the liquid (see above under
translucency).

12.6 Conclusions

Sensory color measurement is frequently neglected by
sensory specialists or they add this measurement as an
afterthought. We hope that this chapter has made the
reader realize that the measurement of color, whether
visually or by instrument, is no simple task. The sen-
sory specialist should be very careful to standardize
all possible conditions associated with these measure-
ments and to carefully report the specific conditions
used in a test. Additionally, it is important to realize
that most (if not all) visual and appearance charac-
teristics can be evaluated using standard descriptive
analysis techniques.
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Chapter 13

Preference Testing

Abstract Preference testing refers to consumer tests in which the consumer is given
a choice and asked to indicate their most liked product, usually from a pair. Although
these tests appear straightforward and simple, several complications are encountered
in the methods, notably how to treat replicated data and how to analyze data that
include a “no-preference” option as a response. Additional methods are discussed
including ranking more than two products, choosing both the best and worst from a
group, and rating the degree of preference.

The number of judges that are involved in a study may be such that rather unimportant differences

may receive undue attention. It is quite possible to produce statistically significant differences in

preference for product which have little practical value by simple increasing the number o judges

that are utilized.

—H. G. Schutz (1971).
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13.1 Introduction—Consumer Sensory

Evaluation

Consumer sensory evaluation is usually performed
toward the end of the product development or refor-
mulation cycle. At this time the alternative product
prototypes have usually been narrowed down to a man-
ageable subset through the use of analytical sensory
tests. Frequently, the sensory testing is followed by
additional testing done through market research. The
big difference between consumer sensory and market-
ing research testing is that the sensory test is generally
conducted with coded, not branded, products while
market research is most frequently done with branded
products (van Trijp and Schifferstein, 1995). Also, in
consumer sensory analysis the investigator is interested
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in whether the consumers like the product, prefer it
over another product, or find the product acceptable
based on its sensory characteristics. The consumer sen-
sory specialist often has no interest in purchase intent,
effect of branding, and/or cost factors. Thus, a prod-
uct will not necessarily be financially successful just
because it had high hedonic scores (was well liked) or
because it was preferred over another product. Success
in the marketplace is also affected by price, market
image, packaging, niche, etc. However, a product that
does not score well in a consumer acceptance test will
probably fail despite great marketing.

Sensory techniques are widely used to assess the
reactions of the public to a variety of stimuli, even
environmental annoyances (Berglund et al., 1975).
Historically, acceptance testing of foods with con-
sumers represented an important departure from earlier
methods based on the opinions of expert tasters or
the assignment of quality scores by panels looking
for product defects (Caul, 1957; Jellinek, 1964; Sidel
et al., 1981). The growth of acceptance testing helped
to foster the logical separation of the analytical sensory
techniques from affective tests, a distinction that was
lacking in the earlier traditions of expert grading and
quality testing. Acceptability information is extremely
useful. For example it can be combined with other sen-
sory analyses, knowledge of consumer expectations,
and product formulation constraints in determining the
optimal design of food products (Bech et al., 1994;
Moskowitz, 1983).

In foods and consumer products, there are two main
approaches to consumer sensory testing, the measure-
ment of preference and the measurement of accep-
tance (Jellinek, 1964). In preference measurement the
consumer panelist has a choice. One product is to
be chosen over one or more other products. In the
measurement of acceptance or liking the consumer
panelists rate their liking for the product on a scale.
Acceptance measurements can be done on single prod-
ucts and do not require a comparison to another prod-
uct. An efficient procedure is to determine consumers’
acceptance scores in a multi-product test and then to
determine their preferences indirectly from the scores.
Both of these types of testing are called hedonic or
affective tests. The term hedonic refers to pleasure.
The goal of both types of tests is to assess the appeal
of a product to a consumer on a sensory basis, i.e.,
to get the consumer’s reaction on the basis of appear-
ance, aroma, taste, flavor, mouthfeel, and texture. For

non-food products, other sensory factors may come
into play as well as the perceived efficacy or per-
formance of a product. Other factors related to the
product appeal are discussed in the next chapters such
as the appropriateness of a product for its intended use
and the consumer’s satisfaction with a product (perfor-
mance relative to expectations). This chapter will deal
with simple preference choice. Historically, the term
preference test has also been used to refer to surveys
of people’s likes and dislikes based on presenting lists
of food names (Cardello and Schutz, 2006). Such data
are generally scaled and thus could be called an accep-
tance test as the term is used in the next chapter. In this
chapter we will use the term preference only to refer to
experiments in which a choice is made between two or
more alternatives.

The key to a successful consumer test is finding the
right participants. Persons in the test must be repre-
sentative of the population to which the results will be
generalized. They should be users of the product and
probably frequent users. The sensory specialist will
often negotiate with the client (the person requesting
the test and who will use the results and conclusions)
as to just how frequently the person must use the
product to qualify for the test. Obviously, no trained
panelists are used for such a test as they approach the
product in a different frame of mind from the average
consumer. Sometimes employees may be used in the
early stages of testing, but they must be users of the
product category being tested. Further information on
qualifying and screening consumer test participants is
found in Chapter 15, but this principle applies equally
to the next three chapters on preference, acceptability
scaling, and consumer field tests.

The sensory test is to some degree an artificial sit-
uation and may not always be a good predictor of
consumer behavior in the real world regarding pur-
chase and/or consumption (Lucas and Bellisle, 1987;
Sidel et al., 1972; Tuorila et al., 1994; Vickers and
Mullan, 1997). However, purchase decisions and even
consumption involve many other influences than the
simple sensory appeal of a product. In spite of this
shortcoming, preference and acceptance tests can pro-
vide important information about the relative sensory
appeal of a group of products that need blind-labeled
consumer testing at some phase in the product devel-
opment scenario. That is, the objective is to find the
product among a group that has to be best potential
for success, on a sensory basis. So in spite of the
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limitations of the methods imposed by the artificial
context of the testing situation, they are still quite
valuable to the sensory specialist and the clients who
request the product test.

The following three chapters will discuss preference
testing, acceptability testing, and then consumer field
tests and questionnaire design, respectively. This chap-
ter will focus on the simple paired preference test. In
spite of its appeal and its apparent simplicity, sensory
and market researchers have added additional varia-
tions that complicate the test and analysis. The two
main variations involve replication and the offering
of a “no-preference” option (or both). We will rec-
ommend as a good practice the simplest version of a
paired preference test, but the other more complicated
versions and ranking are also discussed in this chap-
ter. Some worked examples are provided in the chapter
itself and in the appendices that follow.

13.2 Preference Tests: Overview

13.2.1 The Basic Comparison

Preference tests are choices involving comparisons
between two products or among several products. If
there are two products, this is known as a paired pref-
erence test. It is the simplest (and most popular) type of
test that looks at the appeal of products to consumers.
Paired preference tests are some of the oldest sensory
tests. A publication in 1952 described a mail panel
maintained (for the preceding 20 years!) by the Kroger
Company food retailers that would receive pairs of
products for comparison in the mail along with a ques-
tionnaire (Garnatz, 1952). Paired tests are popular in
part because of their simplicity, because they mimic
what consumers do when purchasing (choosing among
alternatives), and because some people believe they are
more sensitive than scaled acceptance. We have seen
no hard data to substantiate this latter belief although
intuitively it is possible that two products might receive
the same score on a scale, but one might be slightly
preferred to the other. However, it is also possible that
a product could win in a choice test, but still be unap-
pealing on its own (like an election where you do not
like either candidate but vote based on the lesser of
two evils). This is one shortcoming of a preference test

that it gives you no absolute information on the overall
appeal of a product. Acceptance testing with a scale is
designed to do just that.

13.2.2 Variations

Variations on preference testing involve choosing a
preferred product from multiple alternatives. One ver-
sion of this is ranking, in which products are ordered
from best liked to least liked. Another version gives
products in small groups (usually three) and the con-
sumer is asked which one is liked best and which one
is worst. This is known as best–worst scaling, because
the resulting data can be placed on a scale, even though
the task itself involves a choice and not a response on
a scale. Best–worst and paired tests are both special
cases of ranking, i.e., you can think of a paired test
as a ranking of only two products. Both ranking and
best–worst scaling are discussed in this chapter in later
sections.

Other important variations on the preference test
involve the use of a “no-preference option” and the
replication of the test on the same persons. The no-
preference option provides more information, but com-
plicates the statistical analysis. It is generally avoided
by product researchers although in advertising claim
substantiation, it may be required for legal reasons
(ASTM, 2008). Replication is not common in prefer-
ence tests. However, recent research has shown that
replication will enhance the consumer’s discrimination
among products in an acceptance test. Also, replication
can provide evidence as to whether there are stable seg-
ments of consumers who prefer different versions of a
product. The primary goal of a preference test is to find
a “winner,” i.e., that product which has significantly
higher appeal to consumers than other versions in the
test.

There have been studies on the efficacy of the paired
preference test with illiterate and semi-literate con-
sumers (Coetzee, 1996; Coetzee and Taylor, 1996).
These consumers, many of whom could not read or
write, could reliably perform paired preference tests
given verbal instructions and using paired symbols (the
same symbol but one outlined and the other solid).
When one of the authors tested the methods in a dif-
ferent country the method worked well with illiterate
consumers (Coetzee, 1996). Paired preference tests
using color codes have also been successfully used
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(Beckman et al., 1984) and could be used with illit-
erate or semi-literate consumers. Preference tests are
also suitable for young children as the task is straight-
forward and easily understood (Engen, 1974; Kimmel
et al., 1994; Schmidt and Beauchamp, 1988; Schraidt,
1991).

Multiple paired preference tests form the basis for
a new kind of threshold test, the consumer rejection
threshold. Prescott et al. (2005) gave groups of wine
consumers increasing levels of trichloroanisole in wine
to try and find the level at which there was a con-
sistent preference for wine without this “cork taint.”
This technique, discussed in Chapter 6, should find
wide application in commodities in which the chem-
istry and origins of various taints and off-flavors are
well understood (see Saliba et al., 2009, for another
example).

13.2.3 Some Cautions

A common methodological problem comes from the
temptation to add a preference test at the end of some
other kind of sensory test. This should be avoided. It is
very unwise to ask for preference choices after a dif-
ference test, for example. This is not recommended for
a number of reasons. First, the participants in the two
tests are not chosen on the same basis. In preference
tests, the participants are users of the product, while
in discrimination tests, panelists are screened for acu-
ity, oriented to test procedures, and may even undergo
rudimentary training. The discrimination panel is not
representative of a consumer sample and it is usually
not intended to be so. The emphasis instead is on pro-
viding a sensitive tool that will function as a safety
net in detecting differences. Second, participants are
in an analytic frame of mind for discrimination while
they are in an integrative frame of mind (looking at
the product as a whole, usually) and are reacting hedo-
nically in preference tasks. Third, there is no good
solution to the question of what to do with prefer-
ence judgments from correct versus incorrect panelists
in the discrimination test. Even if data are used only
from those who got the test correct, some of them are
most likely guessing (correct by chance). Exclusion of
panelists from a consumer test on any other basis than
their product usage is a poor practice. They have been
selected based on their being a representative sample
of the target group.

When doing a paired preference test keep in mind
that the technique is designed to answer one and only
one important question. Consumers are in an integra-
tive frame of mind and are responding to the product
as a whole. They are generally not analyzing it as to
its individual attributes, although one or two salient
characteristics may sometimes drive their decisions.
However, these one or two salient characteristics may
also cause other attributes to be viewed in a positive
light, an example of what is called the “halo effect”
(see Chapter 9). For these reasons, it is difficult to
get consumers to accurately explain the basis for their
choice. Although it is fairly common to ask for diag-
nostic information in a large and expensive multi-city
consumer field test, one should recognize the “fuzzi-
ness” of this information that it can be difficult to
interpret and that it may or may not be useful in any
kind of important decision making.

Choice tests and rankings indicate the direction of
preferences for the product but are not designed to find
the relative differences in preference among the prod-
ucts. In other words, the results give no indication of
the size of the preference. However, it is possible to
derive Thurstonian scale values from proportions, giv-
ing some indication of the magnitude of the difference
on a group basis. For example, Engen (1974) compared
the hedonic range of odor preference among adults
to the range of likes and dislikes for children using
indirect scale values based on multiple paired compar-
isons. Adults showed a wider range of preferences on
this basis.

13.3 Simple Paired Preference Testing

13.3.1 Recommended Procedure

In paired preference tests the participant receives two
coded samples. The two samples are presented to the
panelist simultaneously and the panelist is asked to
identify the sample that is preferred. Often, to sim-
plify the data analysis and interpretation, the subject
must make a choice (forced choice) although it is pos-
sible to include a no-preference option (discussed later
in this chapter). Figure 13.1 shows a sample score
sheet without the no-preference option. The sensory
specialist should make sure that the consumer pan-
elist understands the task described by the score sheet.
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Paired preference test

Orange Beverage

Name________________________________ Date____________________

Tester Number____  ____  ____  ____ Session Code  ___  ___  ___

Please rinse your mouth with water before starting

Please taste the two samples in the order presented, from left to right.
You may drink as much as you would like, but you must consume at least

half the sample provided.

If you have any questions, please ask the server now

Circle the number of the sample you prefer
(you must make a choice)

387 456

Thank you for your participation.
Please return your ballot through the window to the server

Fig. 13.1 Ballot example for a paired preference test when a choice is forced.

The paired preference test has two possible serving
sequences (AB, BA). These sequences should be ran-
domized across panelists with an equal number of
panelists receiving either sample A or sample B first.

The steps in setting up and conducting a paired
preference test are shown in Table 13.1. It is always
appropriate to confirm the test objectives with the end
user of the test results. Testing conditions should also
be made clear in terms of the amount being served,
temperature and other aspects of the physical setup.
It is wise to write down these conditions and the pro-
cedures for serving as a standard operating procedure
(SOP), so that the staff conducting the test has a clear
understanding of what to do. Of course, the ballot has
to be prepared, random codes assigned to products,

and a counterbalancing scheme set up for the alternat-
ing positions of the two products. Consumers must be
recruited and screened so that they are suitable for the
test; usually frequent users of the product are appropri-
ate. In this test, consumers are forced to make a choice.
Responding with “no preference” or equally preferred
is not an option.

13.3.2 Statistical Basis

For paired preference methods the probability of selec-
tion of a specific product is one chance in two. The
null hypothesis states that in the long run (across all
possible replications and samples of people) when the
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Table 13.1 Steps in conducting a paired preference test

1. Obtain samples and confirm test purpose, details, timetable,
and consumer qualifications (e.g., frequency of product
usage) with client.

2. Decide testing conditions (sample size, volume,
temperature, etc.).

3. Write instructions to the panelists and construct ballot.
4. Recruit potential consumers.
5. Screen for product usage to qualify.
6. Set up counterbalanced orders (AB, BA).
7. Assign random three digit codes and label sample

cups/plates.
8. Conduct test.
9. Analyze results.
10. Communicate results to client or end-user.

underlying population does not have a preference for
one product over the other, consumers will pick each
product an equal number of times. Thus the probabil-
ity of the null hypothesis is Ppop = 0.5. Remember that
Ppop, the proportion that we are making an inference
about, refers to the proportion we would see prefer
one product over another in the underlying popula-
tion. It is not the proportion preferring that sample in
our data. Mathematically, this may be written as Ho:
p(A) = p(B) = 1/2. The test is two tailed since prior
to the study the experimenter does not know which
sample will be preferred by the consumer population.
There is no right answer; it is a matter of opinion. The
alternative hypothesis for the paired preference test is
written as Ha: p(A) 
= p(B). Three data analyses can
be used based on the binomial, chi-square, or normal
distributions, respectively.

The binomial distribution allows the sensory spe-
cialist to determine whether the result of the study was
due to chance alone or whether the panelists actually
had a preference for one sample over the other. The
following formula allows the exact probability of one
specific outcome (but not the overall probability for the
hypothesis test). This equation gives the probability of
finding y judgments out of N possible, with a chance
probability of one-half:

py = (1/2)N N!
(N − y)!y! (13.1)

where

N = total number of judgments

y = total number of preference judgments for the
sample that was most preferred

py = probability of making the number of preference
choices for the most preferred sample

In this formula, N! describes the mathematical fac-
torial function which is calculated as N·(N–1)·(N–2)
. . . 2·1. For example, the exact probability of five out
of eight people preferring one sample over another is
(1/2)8 • (8!)/(3!)(5!) or 56/256 or 0.219. Bear in mind
that this is the probability of just one outcome (one
term in a binomial expansion, see Appendix B) and
two other considerations need to be taken into account
in testing for the significance of preferences. The first
of these is that we consider the probability of detecting
an outcome this extreme or more extreme in testing for
significance, so the other terms farther out in the tail
of the distribution must also be added to the probabil-
ity value. So in our example, we would also have to
calculate the probability of getting 6 out of 8, 7 out of
8, and 8 out of 8 and add them all together. You can
see that this becomes very cumbersome for large con-
sumer tests and so this approach is rarely done by hand,
although there are good statistical tables that use exact
binomial probabilities (Roessler et al., 1978). The sec-
ond consideration is that the test is two tailed, so once
you have added all the necessary terms, the total proba-
bility in the tail should be doubled. Remember we have
no a priori prediction that the test will go one way or
the other and so the test is two tailed. These considera-
tions lead to the calculated values shown in Table 13.2.
The table gives the minimal values for statistical sig-
nificance as a function of the number of people tested.
If the obtained number preferring one product (the
larger of the two, i.e., the majority choice) is equal
to or exceeds the tabled value, there is a significant
preference.

13.3.3 Worked Example

In a paired preference test using 45 consumer panelists,
24 panelists preferred sample A. In Table 13.2 we find
that the table value for 45 consumer panelists with an
alpha criterion of 5% is 30. This value is larger than
24 and therefore the consumer panelists did not have a
preference for one sample over the other. Let us assume
that in a different study, 35 of 50 consumer panelists
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Table 13.2 Minimum value (X) required for a significant
preference

N X N X N X

20 15 60 39 100 61
21 16 61 39 105 64
22 17 62 40 110 66
23 17 63 40 115 69
24 18 64 41 120 72
25 18 65 41 125 74
26 19 66 42 130 77
27 20 67 43 135 80
28 20 68 43 140 83
29 21 69 44 145 85
30 21 70 44 150 88
31 22 71 45 155 91
32 23 72 45 160 93
33 23 73 46 165 96
34 24 74 46 170 99
35 24 75 47 175 101
36 25 76 48 180 104
37 25 77 48 185 107
38 26 78 49 190 110
39 27 79 49 195 112
40 27 80 50 200 115
41 28 81 50 225 128
42 28 82 51 250 142
43 29 83 51 275 155
44 29 84 52 300 168
45 30 85 53 325 181
46 31 86 53 350 194
47 31 87 54 375 207
48 32 88 54 400 221
49 32 89 55 425 234
50 33 90 55 450 247
51 34 91 56 475 260
52 34 92 56 500 273
53 35 93 57 550 299
54 35 94 57 600 325
55 36 95 58 650 351
56 36 96 59 700 377
57 37 97 59 800 429
58 37 98 60 900 480
59 38 99 60 1000 532

Notes: N is the total number of consumers
X is the minimum required in the larger of the two segments
Choice is forced
Values of X were calculated in Excel from the z-score approxi-
mation to the binomial distribution
Values of N and X not shown can be calculated from X =
0.98

√
N + N/2 + 0.5

Calculated values of X must be rounded up to the nearest whole
integer
Tests with N < 20 are not recommended but critical values
can be found by reference to the exact binomial (cumulative)
probabilities in Table I
Values are based on the two-tailed Z-score of 1.96 for α = 0.05
Critical minimum values for α = 0.01 can be found in Table M

preferred sample A over sample B. In Table 13.2, we
find that the table value for 50 panelists at alpha of 5%
is 33. The obtained value of 35 is greater than this min-
imum and therefore the consumers had a significant
preference for sample A over sample B.

13.3.4 Useful Statistical Approximations

Most sensory specialists use these simple lookup
tables for finding the significance of a test outcome.
Remember that the test is two tailed and that you can-
not use the tables for the paired difference test, which
are one tailed. If you do not have the tables handy or
wish to calculate the probability for some value not
in the table, you can also use the Z-score formula for
proportions shown in Chapter 4 and Appendix B for
discrimination tests. The binomial distribution begins
to give values very near the normal distribution for
large sample sizes, and since most consumer tests are
large (N > 100), this approach is nearly mathemati-
cally equivalent. The following formula can be used
to calculate the z-value associated with the results of a
specific paired preference test (Stone and Sidel, 1978).
The formula is based on the test for a difference of two
proportions (the observed proportion preferring ver-
sus the expected number or one-half the sample, as
follows:

z = (pobs − p) − 1/2 N√
pq/N

= (X − Np) − 0.5√
Npq

(13.2a)

Or

z =
[

(X − N/2) − 0.5
]

/

0.5
√

N (13.2b)

where

X = number of preference judgments for the most
preferred sample

pobs = X/N
N = total number of judgments (usually the number of

panelists)
p = probability of choosing the most preferred sample

by chance
q = 1–p and for paired preference tests: p = q = 1/2

The probability associated with the paired prefer-
ence test is two-tailed so that a Z-value of 1.96 is
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appropriate for a two-tailed test with alpha equal to
0.05. The obtained Z-score must be larger than 1.96 for
the result to be statistical significant. For other alpha
levels, the Z-table in the Appendix, Table A, may be
consulted.

Another approach is to use the chi-square distri-
bution which allows the sensory scientist to compare
a set of observed frequencies with a matching set of
expected (hypothesized) frequencies. The chi-square
statistic can be calculated from the following formula
(Amerine and Roessler, 1983), which includes the
number –0.5 as a continuity correction. The continu-
ity correction is needed because the χ2 distribution is
continuous and the observed frequencies from prefer-
ence tests are integers. It is not possible for one-half
of a person to have a preference and so the statistical
approximation can be off by as much as 1/2, maxi-
mally. As in any chi-square test against expected values
we have five steps: 1) subtract the observed value from
the expected value and take the absolute value, 2)
subtract the continuity correction (0.5), 3) square this
value, 4) divide by the expected value, 5) sum all the
values from step 4.

χ2 = [|(O1 − E1)| − 0.5]2

E1
+ [|(O2 − E2)| − 0.5]2

E2
(13.3)

O1 = observed number choices for sample 1
O2 = observed number choices for sample 2
E1 = expected number choices for sample 1 (in a

paired test = N/2)
E2 = expected number of choices for sample 2 (N/2

again)

The critical value for χ2 with one degree of free-
dom is 3.84. The obtained value must exceed 3.84 for
the test to be significant. Note that this is the square
of 1.96, our critical z-score. The binomial z-score and
chi-square test are actually mathematically equivalent
as long as both use or both do not use the continuity
correction (see Proof, Appendix B, Section B.6).

13.3.5 The Special Case of Equivalence

Testing

A parity or equivalence demonstration may be
important for situations such as advertising claims.

Establishing an equivalence or parity situation for a
preference test usually requires a much larger sam-
ple size (N) than a simple paired preference test for
superiority. The theoretical basis for a statistical test
of equivalence is given in Ennis and Ennis (2009)
and tables derived from this theory are given in Ennis
(2008). The theory states that a probability value can
be obtained from an exact binomial or from a normal
approximation as follows:

p = �

( |x| − θ

σ

)

− �

(− |x| + θ

σ

)

(13.4)

where phi (�) symbolizes the cumulative normal dis-
tribution area (converting a z-score back to a p-value),
theta (θ ) is the half-interval, in this case 0.05, and
sigma (σ ) is the estimated standard error of the pro-
portion (square root of pq/N). x in this case is the
difference between the observed proportion and the
null (subtract 0.5). Here is an example, modified from
Ennis and Ennis (2009).

In a paired preference test of a soft drink, 295 of
600 consumers prefer one product and 305 choose the
other. Using a boundary of 0.50±0.05 as the “equiv-
alence” region (i.e., a true population proportion that
lies between 45 and 55%), we can perform a simple
test from Eq. (13.4).

First, we continuity correct the proportion of 295 to
294.5, giving a proportion of 0.4908. Subtracting 0.5
gives our x value of –0.0092. Then our standard error
is estimated by

σ =
√

0.45(0.55)

600
= 0.02031

and our p-calculation proceeds as follows:

p = �

( |0.0092| − 0.05

0.02031

)

− �

(− |0.0092| + 0.05

0.02031

)

= .0204

and so the value of 0.0204 (p<0.05) is good evidence
that the true population proportion lies within the inter-
val of 0.5±0.05, based on the obtained proportion in
our data. Further information on preference tests in
claim substantiation is given in Chapter 19.
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13.4 Non-forced Preference

A no-preference option is sometimes included in a
paired preference test, in spite of the fact that it com-
plicates the analysis considerably. Many practitioners
question whether it is worth the effort. However, it
may be required due to the legal regulations for claim
substantiation (ASTM, 2008). The size of the no-
preference response group could be useful information
in its own right. Also, some have proposed that it could
help decide if an equal preference split was due to
indifferent response or whether there might in fact be
stable groups of about equal size with strong prefer-
ences (Gridgeman, 1959). In other words, a 50/50 split
in a preference test is no clear win for either product,

but might be the result of two segments of con-
sumers that each likes different versions of the product.
Unfortunately this situation is not resolved by offer-
ing the no-preference option. A very robust finding is
that people will avoid making this response, even with
physically identical samples (Chapman and Lawless,
2005; Chapman et al., 2006; Marchisano et al., 2003).
Although Gridgeman was correct in stating that the
no-preference option offers additional information, the
response option does not in fact resolve the ques-
tion of stable segments. Nonetheless, the no-preference
response may be required by someone requesting
the test or be included for other legal considerations
(ASTM, 2008). A ballot for a preference test with the
no-preference option is shown in Fig. 13.2.

Paired preference test

Orange Beverage

Name________________________________ Date____________________

Tester Number____  ____  ____  ____ Session Code  ___  ___  ___

Please rinse your mouth with water before starting

Please taste the two samples in the order presented, from left to right.
You may drink as much as you would like, but you must consume at least

half the sample provided.

If you have any questions, please ask the server now

Please indicate your preference by 
Circling one of the following three answers:

387 456

No Preference

Thank you for your participation.
Please return your ballot through the window to the server

Fig. 13.2 Ballot for a paired
preference test when a choice
is not forced and a
no-preference response is
allowed.
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There are four approaches to dealing with the no-
preference responses in a paired preference test: (1)
eliminate them, (2) apportion them, (3) use a con-
fidence interval analysis, (4) use a signal detection
model analysis. To some degree the choice of how to
deal with the responses depends on what you assume
the basis for the no-preference choices was. For exam-
ple, if you assume that people responding “no pref-
erence” really do not care, then it would make sense
to apportion them 50/50 to each of the other response
options. Unfortunately there is rarely any good basis
(i.e., some additional information or data) for making
such assumptions.

In the first approach, they are simply discounted.
The analysis proceeds using the simple two-tailed
binomial statistics for a difference of proportions.
This approach lowers the sample size and thus the
power of the test to finding significant preferences.
This approach seems reasonable if the actual num-
ber is fairly low, say less than 10% of the responses.
If the proportion of no-preference responses is high,
say above 20%, but there is still a significant result
in the remaining sample, the test result may be qual-
ified in the report as follows: “Among those expressing

a preference, there was a significant preference for
product X” (see ASTM, 2008). The researcher should
also state the raw percentages including the size of the
no-preference response group.

In the second approach, the no-preference responses
are apportioned. One way to do this is simply split
them 50/50 into the existing preference groups. This
maintains the sample size but does dilute the test result
somewhat since the 50/50 split is what one expects by
chance. Another option is to divide the no-preference
votes in proportion to those who did express a pref-
erence. That is, if there is a 60/40 split among those
who did express a preference, the no-preference votes
would be apportioned to those groups in the same
60/40 ratio. This approach is based on some findings
from Odesky (1967), who found that the proportions of
people expressing a preference when the no-preference
option was available were similar to the obtained
proportions when choice was forced. However, this
finding has been questioned and it may not be a valid
generalization (Angulo and O’Mahony, 2005). In some
cases for advertising claims of product superiority, they
must be apportioned to the competitor’s product, pro-
viding a very strict hurdle for proving a significant
preference (ASTM, 2008).

In the third approach, a confidence interval may be
constructed around each proportion of those who did
express a preference. If the confidence intervals do not
overlap, one may conclude that there is a significant
preference win for the product with the larger pro-
portion. This approach is justified if the sample size
is large (N > 100) and the number of no-preference
choices is relatively low (less than 20%). The formula
for the confidence interval is

CI =
χ2 + 2X ±

√

χ2
[

χ2+4X(N−X)
N

]

2
(

N + χ2
) (13.5)

where X is the number of panelists preferring one of
the two products, N is the total number of panelists, and
χ2 is the chi-square value for 2 df or 5.99. A worked
example is shown in Appendix 3 at the end of this
chapter.

A fourth approach is based on a Thurstonian model,
which states that the degree of difference in liking must
exceed a person’s criterion, called tau, below which
they will choose a no-preference option. This approach
is based on an extension of the paired comparison test
for difference with an “equal” option (see Braun et al.,
2004). The degree of preference/difference is called
d-prime (or in some literature, the Greek letter delta).
See Chapter 5 for more information on Thurstonian
models. The size of the difference, d-prime (d′), and
the tau criterion can be solved by the following
equations:

z1 = (−tau − d′)/
√

2 (13.6a)

z2 = (+tau − d′)/
√

2 (13.6b)

where z1 is the z-score for the proportion preferring
product A and z2 is the z-score for the sum of the
proportion for A and the no-preference votes.

This provides two equations in two unknowns,
which can be solved for tau and d′. Once d′ is obtained,
a z-test can be performed which will tell if the d′ value
is significantly different from zero. The standard devi-
ation (S) is found from the value

√
B/N. Then z = d′/S,

which must be greater than 1.96. This would be taken
as evidence of a significant preference. B-values (see
Bi, 2006) are found for different d′ values in Table O.
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13.5 Replicated Preference Tests

Although replication is not often done with preference
tests, there are a few good reasons to consider repli-
cating in the design of a sensory test. First, the effort
and cost to recruit, screen, and get a consumer panelist
on-site is far larger than the time and cost associated
with the conduct of the actual test. So why not get
some additional information while the consumers are
present? Second, there is evidence that many people
will change their minds from trial to trial. Koster et al.
(2003) summarized some data with children and novel
foods and found, on the average, less than 50% consis-
tency from trial to trial in the most liked (chosen) food
and somewhat higher levels with adults. This result is
similar to findings of Chapman and Lawless (2005)
who found about 45% switching in a test of milks
that allowed the no-preference option, although the
marginal proportions of the groups that preferred each
milk remained stable. Finally, repeated testing may be
the only way to answer the question of whether a 50/50
split in preference represents equal appeal of the two
products (or lack of preference) or whether there are
two stable segments of equal size preferring each ver-
sion of the product. In other words, repeated testing
could yield evidence for stable segments, in which case
both versions of the product become candidates for
further consideration, development, and marketing.

Analysis of these data can be simple or more com-
plex. A simple approach is to consider the expected
value one would obtain on a replicated test if people
were behaving randomly (i.e., had no real stable pref-
erence). For example, on a test with two trials, one
would expect 25% of the consumers to choose prod-
uct A twice, 25% to choose product B twice, and 50%
to choose one of each. Given these expected frequen-
cies, a simple chi-square analysis can be performed
to see if the results differ from chance expectations
(Harker et al., 2008; Meyners, 2007). The approach
can obviously be extended to tests with more than two
trials. In the case of two trials the data can also be
cast in a 2 × 2 contingency table (showing the prefer-
ences on trial 1 in the columns and trial 2 in the rows)
which classifies each consumer into one of four cells.
A chi-square analysis can be conducted on this table as
well. Individual binomial tests on proportions can also
be done to compare the group consistently preferring
A to that consistently preferring product B (but note

that this lowers the N by eliminating the people who
switched choices).

A variety of other approaches have been suggested,
and several are reviewed in the extensive paper by
Cochrane et al. (2005). A beta-binomial approach is
discussed by Bi (2006), similar to the beta-binomial
analysis used with replicated difference tests. This
approach is informative as it not only gives some over-
all statistical significance level but also calculates the
gamma statistic which shows how random versus con-
sistently grouped the panel appears to be behaving.
If there are stable segments with consistent prefer-
ences, a significant (non-zero) gamma statistic could
be obtained. Further information on gamma and the
beta-binomial is given in Chapter 4. Also, this analysis
formally recognizes that the data on the two trials are
related, and that individual consistency or variation is
part of the picture (i.e., “overdispersion”). In the next
section we will see an approach that combines both
replication and allowance for the no-preference option.

13.6 Replicated Non-forced Preference

Next we will look at perhaps the most complicated sit-
uation, involving both replication and the use of the
no-preference response option. A simple yet elegant
approach to the issue of stable preference segments
is found in a 1958 paper by George E. Ferris (also
discussed in Bi, 2006). An alternative analysis uses
the Dirichlet-multinomial (DM) model, an extension
of the beta-binomial approach to the multinomial sit-
uation. This is discussed in Gacula et al. (2009) and
illustrated with a worked example. The DM model is
attractive because it considers the heterogeneity of the
consumer group, i.e., whether there are different pock-
ets of individuals with consistent patterns or response
across replications, much like the gamma statistic of
the beta-binomial.

Ferris called his approach the k-visit method of
consumer testing and the examples he gives are in
sequential home use tests for paired preference, with
a no-preference option (for our purposes, k = 2). In
other words, there were at least two separate tests
conducted using the same consumers, with a prefer-
ence choice between products “A” and “B.” There
are several reasonable assumptions made, which are
as follows: (1) persons with a consistent preference
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would choose A on both trials or B on both trials;
(2) sometimes consumers would choose to respond
A or B even if they had no preference or could not
discriminate the samples, in order to please the exper-
imenter; (3) thus the double response for A (or B)
could include some people who had no preference (or
could not discriminate); (4) the amount of switching
responses (i.e., inconsistency) that goes on was a clue
to the proportion of false preference expressed by non-
preferring consumers. Ferris was then able to get some
good estimates of (1) the true proportion of consumers
who consistently liked A, (2) the true proportion of
consumers who consistently liked B, (3) and the true
proportion of everyone left over (people with consis-
tent non-preference, non-discriminators, and switch-
ers). The calculations for this analysis and some simple
tests for statistical significance are shown below. Note
that if you wanted to just test for a difference between
the two trials, you could do a Stuart–Maxwell test, but
this would not answer the questions about a product
win nor give any information about stable segments.

There are several areas for minor concern in using
this analysis. First, it is possible that a person could
have a real preference on the first trial, but change his
or her mind on the second trial (Koster et al., 2003).
For example, I might like product A on trial one, then
get tired of the product, fatigued by the test, lose inter-
est, etc., so that on trial two I really do not care any
more and so I respond “no preference.” Second, the
opinion could actually change from trial to trial for
good reason, e.g., perhaps with some very sweet foods
which are liked at first, then become too cloying. Third,
it is possible that the preference is not all-or-nothing
(as assumed in this model) but rather that people have
some percentage of the time they like A and another
percentage they like B and perhaps even some of the
time when the same person simply does not care. If
any of these is the case, then this model is a bit too
simple, but it can still be applied for decision-making
purposes.

Here are the two experimental questions: Is there
a significant preference? Is there a consistent segment
even if there is not a “win”? The test design uses N

consumers, who participate in each of two paired tests
and must respond either “Prefer A,” “Prefer B,” or no
preference on each questionnaire. The samples have
different blind codes in each trial so the consumers are
unaware that the test is repeated. The data are tabu-
lated in a 3 × 3 table as shown below, with trial one

answers in the columns and trial two answers in the
rows. We have retained the original notation of Ferris
in the calculations (see also Bi, 2006). N’s in the table
are the actual frequency counts (not proportions). The
subscript a means the consumer chose product A, b for
product B, and o for no preference. Thus Nao refers
to the number of consumers who choose product A on
the first trial and said “no preference” on the second. N

without a subscript is the total number of consumers in
the test (Table 13.3).

Table 13.3 Notation for analysis of non-forced replicated
preference

Trial 1 response

Prefer A No preference Prefer B

Trial 2 response
Prefer A Naa Noa Nba

No preference Nao Noo Nbo

Prefer B Nab Nob Nbb

Calculations:

(1) Tabulate some “inconsistent behavior” totals.
These will help to shorten some of the further
calculations below.

Ny = Nao + Noa + Nbo + Nob (13.7a)

(some people switching to or from no pref)

Nx = Nab + Nba (13.7b)

(some people switching products, A to B or B to A)

M = N − Naa − Nbb (13.7c)

(all those showing no consistent preference)
(2) Calculate a consistency parameter, p.

p =
M −

√

[

M2 − (Noo + Ny/2)(2Nx + Ny)
]

2Noo + Ny

(13.8)
(3) Figure the maximum likelihood estimates, fitted

proportions πA and πB and πo. These are the true
or population estimates we are trying to obtain
from the analysis. Note that πA does not equal
Naa/N. In other words we are going to adjust the
pA estimate based on the notion that some of the
consistent Naa responders may have included some
non-preferring consumers who were just trying to
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please the experimenter. This was a remarkable
insight on the part of Ferris, given the rediscov-
ery of false preferences in the tests with identical
products, just recently (see Chapman et al., 2006;
Marchisano et al., 2003). This is the reason for the
consistency parameter, p, in Eq. (13.8). Put another
way, we can get a good estimate of the amount of
random responding or false consistency by look-
ing at the amount of no-preference votes and the
amount of switching that went on in the data set.

πA =
[

Naa(1 − p2)
]

−
[

(N − Nbb)p2
]

N(1 − 2p2)
(13.9a)

πB =
[

Nbb(1 − p2)
]

−
[

(N − Naa)p2
]

N(1 − 2p2)
(13.9b)

πo = 1 − πA − πB (13.9c)

Note that it is these adjusted proportions πA and
πB that we really want to know giving us estimates
for the sizes of the consistent segments, not simply
Naa/N or Nbb/N which are the proportions of suppos-
edly “consistent” consumers in the original data. The
original raw data are probably tainted by some ran-
dom responders or no-preference responders trying to
please the experimenter.

(4) These are point estimates, so in order to get con-
fidence limits and do some statistical testing, we
need some variability estimates, too. Next, calcu-
late some variance and covariance estimates using
the parameters calculated so far:

Var(πA) =
πA(1 − πA) + (3πop2)

/

2

N
(13.10a)

Var(πB) =
πB(1 − πB) + (3πop2)

/

2

N
(13.10b)

COV(πA, πB) =
(πop2

/

2) − (πAπB)

N
(13.10c)

(5) Now we can see if there is a win for product A or
for product B. We test for difference of πA versus
πB using a Z-test:

Z = πA − πB√
Var(πA) + Var(πB) − 2CovπAπB

(13.11)

This assumes we have a good-sized consumer test
with N > 100 and preferably N > 200.

(6) If needed, test for the size of a consistent seg-
ment versus some benchmark. For example, if we
needed to see the proportion of true preference for
product A greater than 45% to make some adver-
tising claim or take some action in further product
marketing we would also use a Z-test against that
benchmark, e.g., π A = 0.45 (a 45% segment
size).

Z = πA − 0.45√
Var(πA)

(13.12)

We can also test to see whether we have sur-
passed a certain size of the no-preference segment
by a Z-test using πo and its benchmark. For exam-
ple, we might have an action standard which states
that the no-preference segment must be at or below
20%. We might also have an action standard that
included several of these tests. For example, if πo

was less than 20% and πA and πB both higher than
35%, we might explore marketing two versions of the
product.

A worked example of this analysis for the Ferris
k-visit method is shown in Appendix 1 at the end of
this chapter.

13.7 Other Related Methods

13.7.1 Ranking

In these tests the consumers are asked to rank several
products in either descending or ascending order of
preference or liking. The participants are usually not
allowed to have ties in the ranking, thus the method is
usually a forced choice. The paired preference test is
a special case of a preference ranking, when the par-
ticipant is asked to rank only two samples. Note that
rankings do not give a direct estimate of the size of
any difference in preference, although it is possible to
derive some Thurstonian scale values from the propor-
tions. Preference ranking is intuitively simple for the
consumer, it can be done quickly and with relatively
little effort. The ranks are based on a frame of refer-
ence that is internal to the specific set of products and
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thus the consumer does not have to rely on memory.
A disadvantage of preference ranking is that the data
from different sets of overlapping products cannot be
compared since the rankings are based on this inter-
nal frame of reference. Visual and tactile preference
rankings are relatively simple but the multiple compar-
isons involved in ranking samples by flavor or taste can
be very fatiguing. A sample score sheet is shown in
Fig. 13.3. An example of the use of ranking in sensory
consumer testing is found in the study by Tepper et al.
(1994).

13.7.2 Analysis of Ranked Data

The data are ordinal and are treated as nonparamet-
ric. Preference ranking data may be analyzed either by
using the so-called Basker tables (Basker 1988a, b),
those by Newell and MacFarlane (1987) (see Table J)
or the Friedman test (Gacula and Singh, 1984). The
tables require that the panelists were forced to make a
choice and that there are no tied ranks. The Friedman
test is tolerant of a small number of tied opinions.
Examples follow.

Fig. 13.3 Sample ballot for a
ranking test.
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To use Table J, assign numerical values to each of
the n products (1–n) starting with one for the most pre-
ferred sample. Then sum the values across the group of
panelists to obtain a rank sum for each sample. Next,
consult a table for rank totals (Table J). In this exam-
ple, six consumers ranked seven products using a rank
scale with 1 = preferred most and 7 = preferred least.
Clearly we would never, in real life, do a consumer
ranking study with only six panelists, but this is only an
example to illustrate the calculations associated with
the tables. In this example rank totals for the products
A through G are as follows:

Product A B C D E F G

Rank total 18 28 20 10 26 32 34
Significance

group
ab ab ab a ab ab b

The table indicates that the critical difference value
for six consumers and seven products is 22. Products
with the same letter below their rank sum are not
significantly different by this test. Product D is thus
significantly more preferred to Product G with no other
preferences observed in this comparison.

The Friedman test is the nonparametric equivalent
to the two-way analysis of variance without interac-
tion. The Friedman test equation is based on the χ2

distribution:

χ2 =

⎧

⎨

⎩

12

[K(J)(J + 1)]

⎡

⎣

J
∑

j=1

T2
j

⎤

⎦

⎫

⎬

⎭

− 3 K(J + 1)

(13.13)
where

J = number of samples
K = number of panelists
Tj = rank total and
degrees of freedom for χ2 = (J–1)

Once we determine that the χ2 test is significant
then a comparison of rank total separation is done to
determine which samples differ in preference from one
another. Informally we have called the value that deter-
mines the significant difference in preference ranking
the “least significant ranked difference” or LSRD, in
an analogy to the LSD test used to test differences of
means after analysis of variance.

LSRD = t

√

JK(J + 1)

6
(13.14)

where

J = number of samples
K = number of panelists and
t is the critical t-value at a = 5% and degrees of

freedom = 1

To return to the example previously used to explain
the use of the Newell and MacFarlane or Basker
tables, we will now use those data in a Friedman
test. First, according to the overall test for differ-
ences, χ2 = 15.43. The critical χ2-value for α at 5%
and six degrees of freedom is 12.59. Therefore, the
preference ranks for this data set differ significantly
at p < 5%. We now need to determine which prod-
ucts were ranked significantly higher in preference
from one another. The least significant rank differ-
ence (LSRD) for the Friedman test is calculated from
Eq. (13.14). In the example above, the LSRD = 14.7,
giving the following pattern of statistical differences in
preference:

Product A B C D E F G

Rank total 18 28 20 10 26 32 34
Significance

group
ab bc abc a bc bc c

Products sharing the same significance group letter
show no difference in ranked preference. This pattern
can be summarized as follows: Product D is signifi-
cantly more preferred than products B, E, F, and G.
Product G is significantly less preferred than prod-
ucts A and D. Note that the results from the Basker
table were more conservative than the results from the
Friedman test. Slight differences will sometimes occur
in these two approaches.

13.7.3 Best–Worst Scaling

Best–worst scaling (also called maximum difference or
max-diff) is a technique in which more than two prod-
ucts are given and the person chooses the one he or
she likes best and the one he or she likes the least.
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Although the data can result in scaled values for the
overall appeal of each product, it is really a choice
method and therefore falls into the same class as paired
preference choice and ranking. This method has been
popular in other areas like marketing research but has
recently received some attention for food testing (Hein
et al., 2008; Jaeger and Cardello, 2009; Jaeger et al.,
2008). The psychometric models for the data from this
method suggest that the data can yield scores on an
interval and sometimes ratio scale (Finn and Louviere
1992). The method would seem to have some psy-
chological benefit in terms of ease of use, under the
notion that it is easier for people to differentiate prod-
ucts at the end of a continuum, as opposed to what is in
the middle. However, it may not work well with very
fatiguing products like wines (see Mueller et al., 2009).

The method works as follows: the set of products is
partitioned into a series of three or more products, with
each product representing an equal number of times. In
one example, there are four products presented in tri-
ads, with four possible combinations of three products
at a time (Jaeger et al., 2008). The consumer sees all
four triads in random order and with each triad indi-
cates which product is liked best and which is liked
the least. There are then two ways of handling the
data. The simplest is to sum up the number of times
a product was liked best, and then subtract from that
the number of times it was liked the least. This differ-
encing procedure generates a score from every panelist
which can then be submitted to analysis of variance
or any other parametric statistical test. An alternative
analysis is to fit the data by a multinomial logistic
analysis, which will also yield scores and variance esti-
mates, as well as test for differences among products
and any other variables in the test. It is claimed that the
simple difference scores have interval scale properties
and that the multinomial logistic analysis has true ratio
properties (one of the only scales for which this has
any reasonable substantiation). See Finn and Louviere
(1992) for the psychometric model upon which these
claims are based.

Given the “natural” user-friendly nature of the task
and the potential to get detailed interval or ratio scale
data from the method, it has some appeal for food pref-
erence testing. The only drawback is that it requires
much more testing to do all the possible combina-
tions than a more straightforward acceptance tests,
although the number of trials is somewhat more effi-
cient than giving all possible pairs in a set of multiple

preference tests. Furthermore the number of combi-
nations will decrease as more products are included
in each trial (there is no law against using more than
three), although the task may become more complex
for the consumer as they have more choices to con-
sider. Recent data in real food tests show the task to be
easy to do, and the resulting data are as good or bet-
ter than acceptance scales (9-point or labeled affective
magnitude (LAM) scales, see Chapter 14) in differ-
entiating among products (Jaeger and Cardello, 2009;
Jaeger et al., 2008). This was confirmed by a compar-
ison to the 9-point, LAM, unstructured line scale and
ranking test by Hein et al. (2008). However, it should
be noted that when the acceptance scales were repli-
cated in that study, in order to better equate the total
number of product exposures and judgments, the scal-
ing data improved in terms of product differentiation,
with the 9-point scale improving markedly on the sec-
ond trial. Thus it seems that the better differentiation
with best–worst may simply be a function of having
more product comparisons.

The future for this choice method presents some
opportunities. First, it may be well suited to food pref-
erence surveys, in which no foods are tasted (only
names of foods presented) and thus the fatigue fac-
tor is not present. Second, incomplete block designs
should be applicable to the situation where many prod-
ucts are tested, reducing the burden of a large number
of triads that would be needed in a complete design. In
their original study, Jaeger et al. (2008) also found that
the best–worst scaling provided more useful data for
preference mapping than did the line scaling for accep-
tance. That is the data were better fit and more informa-
tion was forthcoming from the preference maps (Jaeger
et al., 2008). There were also better fits to vectors from
descriptive analysis attributes that were projected into
the preference maps (see Chapter 18, under external
preference mapping).

13.7.4 Rated Degree of Preference

and Other Options

A few additional options are available for preference
and ranking tests which we will briefly describe here,
mostly because they appear in the literature. One
option is to provide a rating scale for the degree of
preference (Filipello, 1957). The simple preference test
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Fig. 13.4 Sample ballot for a preference test with rated degree-of-preference and a no-preference option is allowed.

does not indicate the strength of the consumer’s opin-
ion. Their preferences might be a small matter or they
might have a strong favorite among the alternatives.
To get this information a rating scale could be used
as shown in Fig. 13.4. If the sample size is large, as
it is usually in a consumer test, the choices can be
transcribed as –3 to +3 and the resulting distribution
tested against a population value of zero by a simple
t-test. As in the case of the just-right scale discussed

in the next chapter, it is important to look at the fre-
quency counts in each category and not just the mean
score, in case there are unexpected patterns of response
(perhaps two groups that strongly prefer different prod-
ucts). Scheffe’ (1952) proposed an analysis of variance
model for these kinds of data.

Another option that is sometimes used is “dislike
both equally” and “like both equally” as a variation
of the no-preference option. This obviously provides
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some additional information. The data should be exam-
ined and then both of these combined and treated as
if they were the usual no-preference option. An addi-
tional category is “do not care” which would provide a
response for those individuals who have no preference
and no liking or disliking anyway.

13.8 Conclusions

Preference testing is primarily based on a simple
choice procedure. A consumer must choose from a pair
of products which one is liked best. The analysis is
straightforward: A two-tailed test is conducted against
a binomial expectation of a 50/50 split under the null
hypothesis. If one product has a significantly higher
percentage than the expected 50%, a win is declared
and the product may move forward in the development
scenario.

Two complications arise, however, in common prac-
tice. The first is the use of a “no-preference” option.
This non-forced preference task is desired for some
advertising claim substantiation scenarios due to reg-
ulatory agency requirements. However, it complicates
the analysis and under most product development
situations, the option is not needed. A choice is
forced under the assumption that if there is no clear
preference (or people just do not care) they will
split their votes according to the null expectations.
Recent research demonstrates that people avoid the
no-preference option, even with physically identical
products, so its utility is questionable.

The second complication arises from replication.
Replication is less troublesome than the non-forced
or no-preference option. It offers a chance to exam-
ine the stability of preference choices. In the case
where there is nearly an even split among the two
products, replication can offer some evidence as to
whether there are stable segments with strong loyalty
to one of the two versions of the product or whether
a substantial amount of shifting might occur. Various
analyses of replicated preference are available, includ-
ing a beta-binomial analysis similar to the one used
for discrimination tests. The sensory scientist should
weigh the advantages and disadvantages of these pro-
cedures carefully before choosing one of them over
the simpler and more straightforward paired preference
test.

Appendix 1: Worked Example of the

Ferris k-Visit Repeated Preference Test

Including the No-Preference Option

A consumer test with 900 respondents is completed
with the following results.

Questions: (1) Is there a significantly higher prefer-
ence for product A or product B? (2) Is the preference
for the winning product higher than 45%? (Example
from Ferris (1958) and Bi (2006), pp. 72–76).

Prefer A No preference Prefer B

Prefer A Naa = 457 Noa = 12 Nba = 14
No preference Nao = 14 Noo = 24 Nbo = 17
Prefer B Nab = 8 Nob = 11 Nbb = 343

(N = 900)
Here are the basic equations we need:

Ny = Nao + Noa + Nbo + Nob

Nx = Nab + Nba

M = N–Naa–Nbb

p =
M −

√

[

M2 − (Noo + Ny/2)(2Nx + Ny)
]

2Noo + Ny

So for this data set:
M = 100 (all those not showing AA or BB behavior,

i.e., a consistent choice for one of the two prod-
ucts)

Nx = 8 + 14 = 22
Ny = 14 + 12 + 17 + 11 = 54
p = 0.257

Now we need the equations for the best estimates of
each segment/proportion:

πA =
[

Naa(1 − p2)
]

−
[

(N − Nbb)p2
]

N(1 − 2p2)

πB =
[

Nbb(1 − p2)
]

−
[

(N − Naa)p2
]

N(1 − 2p2)

and

πo = 1 − πA − πB
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Now we can get our segment size estimates:

πA = 0.497 or 49.7% true preference for product A.
πB = 0. 370 or 37% true preference for product B.
πo = 0.133 or 13.3% no real preference.

Next, we need the variability and covariance esti-
mates for the Z-tests:

Var(πA) =
πA(1 − πA) + (3πop2)

/

2

N

Var(πB) =
πB(1 − πB) + (3πop2)

/

2

N

COV(πA, πB) =
(πop2

/

2) − (πAπB)

N

Var(πA) = 0.000296 (so πA is 47.9% ± 1.7%, 0.017 =√
0.000296)

Var(πB) = 0.000297
COV(πA, πB) = –0.000198

Now for the hypothesis tests:

Z = πA − πB√
Var(πA) + Var(πB) − 2CovπAπB

Note that this is a little different from the simple
binomial test for paired preference. In the simple case
we test the larger of the two proportions against a null
value of 0.5. In this case we actually test for a differ-
ence of the two proportions, since we do not expect a
50/50 split any more with the no-preference option.

So the Z for test of A versus B gives Z = 4.067, an
obvious win for product A.

Finally, a test against a minimum required propor-
tion or benchmark:

Z = πA − 0.45√
Var(πA)

Z-test for A versus benchmark of 0.45 (45%).

Appendix 2: The “Placebo” Preference

Test

In this method a pair of identical samples are given
on one of two preference test trials (Alfaro-Rodriguez
et al., 2007; Kim et al., 2008). These physically iden-
tical samples are not expected to differ, hence the
parallel to a placebo, or a sham medical interven-
tion with no expected therapeutic value. In theory, this
could provide a baseline or control condition, against
which performance in the preference test (with a no-
preference option) could be measured. However, the
amount of information gained from this design is rel-
atively small and once again the analysis becomes
more complicated. For these reasons, the sensory
professional should consider the potential cost, addi-
tional analysis, and interpretations that are necessary.
A recommended analysis is given at the end of this
section.

Issues and complications. The use of a no-
preference option was proposed to be a solution to
the problem of a 50/50 preference test result, which
could result from two stable segments of consumers
who have a (perhaps strong) preference for each of
the versions, respectively. Hence the idea was to
offer a no-preference option with the reasoning that
if there were no preferences (rather than stable seg-
ments) respondents should opt for the no-preference
response. However, persons given identical samples
will avoid the no-preference option 70–80% of the
time, as discussed earlier in this chapter. So an answer
concerning the question of stable segments cannot be
obtained by this approach. Evidence for stable seg-
ments could be found by replicated testing or by con-
verging evidence from different kinds of tests and/or
questions.

Possible analyses. It might be tempting to just elim-
inate those persons expressing a preference for one of
the identical pair members, on the grounds that such
respondents are biased. However, this could eliminate
70–80% of the consumers. It is generally not advisable
to pre-select consumers on any other grounds than their
product consumption, and this approach eliminates
individual who are in fact a portion of the represen-
tative population we are trying to generalize the results
to. Such persons may not be “biased” in any dysfunc-
tional way. Even identical samples may seem different
from moment to moment. Furthermore, individuals are
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clearly responding to the demands of the task (you are
expecting them to state a preference in a preference
test!).

If historical data are available concerning the fre-
quencies of response to identical pairs, a chi-square
test can be performed as shown below. Note that this
analysis cannot be done for a test in which the same
subjects provide the “placebo” judgments because the
chi-square test assumes independent samples.

Placebo analysis #1. Using historical data for
expected frequencies.

Cells in the top row (A1, NP1, and B1) are expected
frequencies (expected proportion × N judges). Cells in
row 2 (A2, NP2, and B2) are the obtained data, fre-
quencies of response in the preference comparison for
the actual (different) test samples.

Prefer A No preference Prefer B

Historical data
for identical
samples

A1 NP1 B1

Test samples A2 NP2 B2

Placebo analysis #2. The same consumers partici-
pate in the placebo trial and the test pair.

If the same people are used for the “placebo”
trial and the normal preference comparison trial, an
option is to recast the data into another 2 × 3 table,
with the rows now representing whether the individ-
ual expressed a preference (or not) on the placebo trial.
The columns remain Prefer A, no preference, Prefer B.
A chi-square test will now tell you whether the pro-
portions of preference changed comparing those who
elected the no-preference option for the placebo pair
versus those who expressed a “false preference” for
the identical pair. This does not provide evidence for
the existence of any stable segments nor will it tell you
if there is a significant preference from this analysis
alone.

If there is no significant chi square, you can feel jus-
tified in combining the two rows. If not, you may then
analyze each row separately. The correct analyses are
as stated in the no-preference Section 13.4: eliminating
no-preference judgments, apportioning them, doing
a test of d-prime values, or the confidence interval
approach if the assumptions are met.

Each judge is classified into one of the six cells, A1,
A2, B1, B2, NP1, or NP2. The first row contains the
data from people who reported no preference on the

placebo pair. The second row contains the data from
people who expressed a preference with the placebo
pair. A chi-square test will now show whether the two
rows have different proportions. If not, the rows may
be combined. If they are different, separate analyses
may be performed on each row, using the methods of
analysis of the no-preference option discussed earlier
in the chapter.

Response—Trial 2:

Prefer A No preference Prefer B

Response,
Trial 1:

No preference
on Trial 1

A1 NP1 B1

Preference on
Trial 1

A2 NP2 B2

Appendix 3: Worked Example of

Multinomial Approach to Analyzing Data

with the No-Preference Option

This approach yields multinomial distribution
confidence intervals for “no-preference” option,
Data should be from a large test, N > 100, and
the no-preference option was used rarely (<20%)
(Quesenberry and Hurst, 1964, p. 193, Eq. (2.9)).

Upper and lower confidence interval boundaries are
given by

CI =
χ2 + 2X ±

√

χ2

[

χ2 + 4X(N − X)

N

]

2
(

N + χ2
)

where

χ2
critical = 5.99 for α at 5% and 2 df,

X = number of observed preference votes for one
sample,

N = sample size.

Example: For: N = 162, X1 = 83, X2 = 65, and no
preference = 14.
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First find the confidence interval for product X1

(choices = 83/162)

CI =
5.99 + 2(83) ±

√

5.99
[

5.99+4(83)(162−83)
162

]

2 (162 + 5.99)

= 171.99 ± 31.15

335.98

which gives an interval from 0.42 to 0.60 for product

X1.
Then find the confidence interval for product X2

(choices = 65/162)

CI =
5.99 + 2(65) ±

√

5.99
[

5.99+4(65)(162−65)
162

]

2 (162 + 5.99)

= 135.99 ± 30.39

335.98

which gives an interval from 0.31 to 0.50 for product

X2. The lower bound of the higher proportion (0.42)
overlaps with the upper bound of the lower propor-
tion (0.50). We therefore conclude that there is not
enough evidence for any difference in the preference
proportions.
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Chapter 14

Acceptance Testing

Abstract An alternative to choice procedures for assessing the consumer appeal of
foods is to use a rating scale for the degree of liking or disliking, otherwise known
as acceptability scaling or acceptance testing. This chapter illustrates procedures for
acceptability scaling, starting with the traditional 9-point hedonic scale in widespread
use. Alternative types of acceptance scales are shown. The just-about-right (JAR)
scale is illustrated and its statistical analyses are discussed.

About 1930, Dr. Beebe-Center, psychologist at Harvard, wrote a book in which he reported the

results of investigations of the pleasantness/unpleasantness of dilute solutions of sucrose and

sodium chloride. He called his measurements hedonics. I liked the word, which is both historically

accurate and now well installed, and used it in the first official report on the new scale.

—David Peryam, “Reflections” (1989)
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14.1 Introduction: Scaled Liking Versus

Choice

The previous chapter dealt with consumer tests involv-
ing choices among alternatives and ranking of alterna-
tive products. In this chapter we will look at methods
for scaling the degree of acceptability of foods. Note
that these methods do not require a choice between
alternatives. In theory, acceptance scaling can be done
on a single product, although a one-product test is usu-
ally not very informative and lacks any baseline for
making comparisons. A scale that measures the sen-
sory appeal of a product has distinct advantages over a
simple choice task. Most importantly, it provides some
information on whether the product is liked or disliked
in some absolute sense. In a preference test, I might
dislike both products and choose the least offensive.
In such a case it would obviously not be a good idea
to produce or try to sell either version of the product,
but the preference test does not tell you this fact. In
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addition to the liking or disliking information, prefer-
ence can be inferred from a superior acceptance score
of one product over another. For these reasons, many
sensory professionals consider acceptance tests to be
a better choice than a preference test. Of course, there
is no rule against asking both kinds of questions in a
test with multiple products and this is often done in
consumer field tests as discussed in Chapter 15.

Acceptability data from scales are useful for a
number of additional purposes. It is also possible to
convert the hedonic scale results to paired preference
or rank data (Rohm and Raaber, 1991). Since the
scaled acceptance data are “richer” in information, it
is possible to derive these other simpler measures from
them. Hedonic data can be used in preference mapping
techniques (for examples, see Greenhoff and MacFie,
1994; Helgensen et al., 1997; McEwan, 1996). This
is a useful technique that allows visualization of the
directions for product preferences in spatial models
of a product set (see Chapter 19). In spatial models
from multivariate analyses, products are represented
by points in the space and products that are similar
are positioned close together. Dimensions or attributes
that differentiate the products can be inferred from
product positions, from opposites positioned at differ-
ent sides, and from interpretation of the axes of the
space. Preferences of individual consumers can be pro-
jected as vectors through the space to show directions
of increased liking. These vectors can then suggest
directions for product optimization. Also, differences
in the preferred directions for different consumers can
help discover market segments or groups with different
likes and dislikes.

14.2 Hedonic Scaling: Quantification of

Acceptability

The most common hedonic scale is the 9-point hedo-
nic scale shown in Fig. 14.1. This is also known as a
degree of liking scale. This scale has achieved wide
popularity since it was first invented in the 1940s at
the Food Research Division of the Quartermaster Food
and Container Institute in Chicago, Illinois (Peryam
and Girardot, 1952). David Peryam coined the name
hedonic scale for the 9-point scale used to deter-
mine degree of liking for food products (Peryam and
Girardot, 1952). The hedonic scale assumes consumer

LIKE EXTREMELY

LIKE VERY MUCH

LIKE MODERATELY

LIKE SLIGHTLY

NEITHER LIKE NOR DISLIKE

DISLIKE SLIGHTLY

DISLIKE MODERATELY

DISLIKE VERY MUCH

DISLIKE EXTREMELY

Fig. 14.1 The phrases for the 9-point hedonic scale for food
acceptance testing. Responses on this scale are usually assigned
values from 1 to 9, 1 for dislike extremely and 9 for like
extremely.

preferences exist on a continuum and that preference
can be categorized by responses based on like and
dislike. The scientists at the Quartermaster Institute
evaluated the scale using soldiers in the field, in the lab-
oratory, and in attitude surveys (Peryam and Pilgrim,
1957). Samples were served to panelists monadically
(one at a time) and the panelists were asked to indi-
cate their hedonic response to the sample on the scale.
Research at the Quartermaster Institute had indicated
that the specific way the scale appeared on the score
sheet, whether the scale was printed horizontally or
vertically, or whether the like or dislike side was
encountered first, did not affect results. Jones et al.
(1955) found that the ideal number of categories was 9
or 11 and the researchers at the University of Chicago
and the Quartermaster Institute decided to use the
9-point version, because it fits better on the typing
paper of that era (Peryam, 1989).

Why does the hedonic scale have nine categories, rather
than more or less? Economy perhaps? Preliminary
investigation had shown that discrimination between
foods and reliability tended to increase up to eleven
categories, but we encountered, in addition to the dearth
of appropriate adverbs, a mechanical problem due to
equipment limitations. Official government paper was
only 8′′ wide and we found that typing eleven categories
horizontally was not possible. So we sacrificed a
theoretical modicum of precision for a real improvement
in efficiency at the moment. p. 23

The words chosen for each scale option were based
on approximately equal differences as determined by
Thurstonian methods (see Chapter 7). Thus the scale,
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psychologically, has ruler-like properties that are not
necessarily present in other less carefully constructed
liking scales. This equal-interval property is impor-
tant in the assignment of numerical values to the
response choices and to the use of parametric statis-
tics in analysis of the data. Thus the sensory scientist
should be cautious and avoid “tinkering” with the scale
alternatives. It is important to resist pressure from non-
sensory specialists or managers familiar with other
scales to modify the scale or adopt alternatives.

The 9-point scale is very simple to use and is
easy to implement. It has been widely studied and
has been shown to be useful in the hedonic assess-
ment of foods, beverages, and non-food products for
decades. The US military has studied its applicability,
validity, and reliability and the positive aspects of this
scale have been widely accepted. Peryam and Pilgrim
(1957) note that the hedonic rating can be affected
by changes in environmental conditions (for instance,
under field conditions versus cafeteria conditions) but
the relative order of sample preference was usually
not affected. In other words, the absolute magnitude
of the hedonic score may increase or decrease but
all samples had similar relative changes. Tepper et al.
(1994) showed that consumers rank ordered and hedo-
nically scored products similarly. It has been reported
that the scale is reliable and has a high stability of
response that is independent of region and to some
extent of panel size. However, the applicability of the
scale in other languages and cultures have not been as
widely studied and it should be used cautiously in these
situations.

The 9-point scale has been criticized on several
grounds. Moskowitz (1980) suggested that the 9-point
hedonic scale has potential problems associated with
category scales such as the categories are not quite
equally spaced, the neutral (“neither like nor dislike”)
category makes the scale less efficient and consumers
tend to avoid the extreme categories. However, the
initial calibration work indicated that this particu-
lar category scale has nearly equal-interval spacing
although direct scaling methods seem to indicate that
the distance from neutral to the like/dislike slightly
categories is smaller than the other intervals (Schutz
and Cardello, 2001). The neutral response category is
important as it is a valid reaction to the product for
some participants. Although many scales show “end
use avoidance,” this serves as a warning to those who
are tempted to truncate the scale to fewer than nine

points. Truncating a scale to seven or five points may
effectively reduce it to five or three useful categories
since end-category avoidance may still come into play.
This is one of the forms of “tinkering” to be avoided.
The other temptation is to reduce the number of neg-
ative response options, often under the misplaced phi-
losophy that the company does not make or test any
really bad products. Due to some of these concerns,
sensory researchers have used other scales for assess-
ing liking, including various line scales and magnitude
estimation, discussed further below.

A recent approach that is growing in popularity
is a modification of the hedonic scale based on re-
scaling of the word phrases using magnitude estima-
tion and placing them on a line scale with the added
end anchors, “greatest imaginable like” and “greatest
imaginable dislike.” This is the labeled affective mag-
nitude scale or LAM scale discussed in detail later in
this chapter (Schutz and Cardello, 2001). The scale
development is based on the procedures for the labeled
magnitude scale of Green and colleagues (see Chapter
7). Since the development of this scale, others have
been developed using similar techniques, notably for
oral pleasantness and wetness/dryness (Guest et al.,
2007), clothing comfort (Cardello et al., 2003), taste
pleasantness (Keskitalo et al., 2007), hedonics in gen-
eral (Bartoshuk et al., 2006), and perceived satiety
(Cardello et al., 2005).

14.3 Recommended Procedure

14.3.1 Steps

The procedure for conducting a scaled acceptance test
is very similar to that for the simple paired preference
test, except of course that the responses are required
after each individual product, rather than each pair. The
steps in conducting an acceptance test are shown in
Table 14.1. Samples may be served one at a time, a
response required after each sample and then the sam-
ple returned to the kitchen or prep area. Alternatively,
the samples can be placed all on one tray, but this
requires the panelist to match the correct test sample to
the correct three-digit code on the questionnaire. This
is usually done correctly but there are no guarantees.
Therefore it is safest with truly naïve consumers to
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Table 14.1 Steps in
conducting an acceptance test

1. Obtain samples and confirm test purpose, details, timetable, and consumer
qualifications (e.g., frequency of product usage) with client

2. Decide testing conditions (sample size, volume, temperature, etc.)
3. Write instructions to the panelists and construct ballot
4. Recruit potential consumers
5. Screen for product usage to qualify
6. Set up counterbalanced orders
7. Assign random three-digit codes and label sample cups/plates
8. Conduct test
9. Analyze results

10. Communicate results to client or end user

serve products one at a time and retrieve them after
each response. A sample ballot for acceptance scaling
is shown in Fig. 14.2.

14.3.2 Analysis

The data from the 9-point scales are assigned the val-
ues one through nine, nine usually being the “like
extremely” category. They are then analyzed using
parametric statistics, t-tests on means for two prod-
ucts, or analysis of variance followed by comparisons
of means for more than two products. Even though
the scale may not achieve a true interval level of mea-
surement, the parametric approach is usually justified
based on the larger sample size in a consumer test.

14.3.3 Replication

Acceptance tests do not commonly involve replicated
tastings on the same products by the same consumers.
However, there are several reasons to consider replica-
tion. The first is that it may provide some additional
information. Byer and Saletan (1961) used repeated
tests on beers (judges were blind to the replication)
over several days to see if there were systematic
increasing or decreasing liking for some beers as
opposed to others. Second, a replication may greatly
increase the discrimination of products once con-
sumers have a better idea of the range of products
to be evaluated. In a study by Hein et al. (2008), the
increase in product discrimination was especially pro-
nounced for the 9-point hedonic scale. Third, the first
judgment by a consumer may not be well predictive of
later behaviors (Koster et al., 2003). Finally, replication
will allow one to reduce the effects of serving order,

especially any advantage that might occur for the item
in the first position (Hottenstein et al., 2008; Wakeling
and MacFie, 1995).

14.4 Other Acceptance Scales

A number of other methods have been used to quantify
consumer acceptance and this should not perhaps be
surprising given the amount of consumer testing done
by sensory evaluation personnel as well as marketing
researchers. The 9-point scale itself has been modified
in various ways in attempts to improve product dis-
crimination. For example, Yao et al. (2003) found that
an unstructured version of the 9-point scale (lacking
the verbal labels) produced a somewhat wider range
of scale usage among American and Japanese (but not
Korean) consumers. In the early development and test-
ing of various hedonic scales, Peryam (1989) noted
that there could be room for expansion, especially
at the positive end of the scale, stating, “An 8-point
unbalanced scale with more ‘like’ than ‘dislike’ cat-
egories was shown to be somewhat better than the
standard 9-point one, but only when dealing with rela-
tively well-liked foods” (1989, p. 24). In the section
below, we will briefly consider line scales, magni-
tude estimation, labeled magnitude scales, which are
a combination of line marking and ratio-type scaling,
and some relative scales which allow adjustment of
previous ratings.

14.4.1 Line Scales

There are a number of studies where the panelists
were asked to indicate their hedonic responses on
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Acceptability Test
Braised Trake

Name________________________________ Date____________________

Tester Number____  ____  ____  ____ Session Code  ___  ___  ___

In a previous survey you indicated you are a consumer of BRAISED TRAKE.
Please check an answer below that describes your recent consumption of this 
product.

In the last __3__ months, about how often have you eaten BRAISED TRAKE?
(check one)
____ less than once a month
____ more than once a month but less than every week
____ once a week or more

Please rinse your mouth with water before starting.
Your can rinse at any time during the test if you need to.

Please taste the samples according to the number on each page.
Do NOT go back and re-taste the samples once you have turned the page.

If you have any questions, please ask the server now.

Check one phrase to indicate your overall opinion of the product.

Sample #___387___

___ Like extremely
___ Like very much
___ Like moderately
___ Like slightly
___ Neither like nor dislike
___ Dislike slightly
___ Dislike moderately
___ Dislike very much
___ Dislike extremely

PLEASE GO TO THE NEXT PAGE.

Fig. 14.2 A sample ballot for an acceptability test. The sam-
ples are evaluated on the 9-point balanced hedonic scale. Each
subsequent page will have a new scale for a product with a new
three-digit code. The order of evaluation is thus controlled by
what is printed on each page, with randomization, rotation, or
counterbalancing of orders. There is also a check on product
usage frequency at the top of the page. This could be used to
confirm that the panelists selected are still users of the product

and are thus qualified to be in the test. Such confirmation is rec-
ommended for standing panels, such as employees or consumers
chosen from a data bank, where the product-usage questionnaire
might have been filled out some time in the past. In a consumer
field test, the usage frequency would confirm what had been
determined in a telephone screening or other recruiting interview
(e.g., mall intercept).

unstructured line scales, sometimes anchored by like
and dislike on each end (Hough, et al., 1992; Lawless,
1977; Rohm and Raaber, 1991). Line scales are

sometimes referred to as visual analog scales (or
VAS). That line scales would find some application in
hedonics is not surprising, as they became the standard
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scaling method for descriptive analysis in the 1970s,
and their extension into acceptance scaling would seem
logical. Recently, a version of the line scale with pips
or markers equally spaced along the line has been
studied by Villanueva and colleagues and found to
compare favorably against the 9-point scale in terms of
product differentiation and identification of consumer
segments (Villanueva and Da Silva, 2009; Villanueva
et al., 2005). However, on a statistical basis any advan-
tages were slight (Lawless, 2009). A simplified version
of the labeled affective magnitude scale (LAM scale)
was used by Wright (2007) in which the end anchors
“greatest imaginable like(/dislike)” were used instead
of the usual “like (dislike) extremely.” Some line scales
are shown in Fig. 14.3.

14.4.2 Magnitude Estimation

As discussed in Chapter 7, magnitude estimation is a
scaling procedure in which people can use any num-
bers they wish and are asked to consider the ratios or
proportions between products. In the case of accep-
tance, they would be told to make a mark twice as
far from the origin if the product is liked twice as
much. In bipolar magnitude estimation, there are pos-
itive and negative numbers used to indicate likes and
dislikes. This is not done in unipolar magnitude esti-
mation in which products are only scaled as a distance

from the bottom, which presumably represents a prod-
uct which would not be liked at all. Given that people
have likes and dislikes, a bipolar scale makes much
more sense. In a study comparing the results of the 9-
point hedonic scale to those obtained from a unipolar
magnitude estimation scale and a bipolar magnitude
estimation scale, Pearce et al. (1986) found that the
three scales gave data that were very similar in terms
of reliability, precision, and discrimination. However,
the product category was fabric and the fabrics were
evaluated by touching. It is possible that these results
could have been different if a more fatiguing product
category such as a tasted food was evaluated.

Magnitude estimation went through a period of
some interest and has been used for evaluation of a
number of food products (Lavanaka and Kamen, 1994;
McDaniel and Sawyer, 1981). In an unusual combi-
nation of line scaling with ratio instructions, Lawless
(1977) used a bipolar line scale with a zero or neu-
tral point in the middle. Participants were instructed
to consider ratios, for example, “if the next sample is
liked twice as much, make a mark on the line twice as
far from zero.” The problem of having a bounded scale
was circumvented by telling the subjects they could
tape additional scales to the end of the strip of paper
to extend the scale beyond the strip if needed.

These scales have not found much favor in industrial
practice, in part because of the popularity of the 9-point
scale and in part because of the complicated task of
having consumers consider ratios of liking/disliking.

LINE SCALES FOR ACCEPTABILITY (HEDONICS)

A) LINE SCALE WITH PIPS

   DISLIKE NEITHER LIKE      LIKE
EXTREMELY NOR DISLIKE EXTREMELY

|_____._____._____._____._____|_____._____._____._____._____|

B) UNMARKED LINE SCALE

DISLIKE NEITHER LIKE      LIKE
EXTREMELY NOR DISLIKE EXTREMELY

|___________________________|___________________________|

C) SLAM SCALE

 GREATEST NEITER LIKE   GREATEST
IMAGINABLE NOR DISLIKE IMAGINABLE
 DISLIKING    LIKING

|___________________________|___________________________|

Fig. 14.3 Line scales for
acceptability testing. (a) Line
scale with small position
markers, after Villanueva
et al. (2005). (b) Unstructured
line scale. (c) Simplified
labeled affective magnitude
scale (SLAM scale) after
Wright (2007).
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To make the process a little more user-friendly, other
approaches have tried to simplify the task. In exploring
the spacing of anchor terms for the LAM scale, a two-
step process has been used, in which the magnitude of
the hedonic reaction was considered, and then the sign,
positive or negative, for the feeling evoked by the word
(Cardello et al., 2008; Schutz and Cardello, 2001).

14.4.3 Labeled Magnitude Scales

The labeled affective magnitude scale (LAM,
Fig. 14.4) was developed by Schutz and Cardello
(2001) as an alternative to the commonly used 9-point
category scale for measuring food acceptability (see
also Cardello and Schutz, 2004). This scale was
an extension of the procedure called the Labeled
Magnitude Scale (LMS) that had been used for
psychophysical intensity scaling. The LMS was
developed by Green and colleagues and was based
on earlier work by Borg for a hybrid “category–ratio
scale” (Borg, 1982; Green et al., 1993). The LAM
scale has been used for evaluation of consumer liking
for teas (Chung and Vickers, 2007a, b) and in a
comparison of young and older person’s liking for
different orange juices (Forde and Delahunty, 2004).
The theoretical advantages to the LAM scale were
proposed to be the following: First, because the word
spacings were determined by magnitude estimation
(ratio scaling instructions) one might presume that
the data allow ratio-type conclusions (“Product A
was liked twice as much as B.”). In the published
literature there are no examples in which this kind of
conclusion has been drawn. Second, due to the high
end anchors (greatest imaginable liking) people might
have a similar idea of the intensity of reaction to this
anchor (as proposed by Borg for his original intensity
scale) and thus they would be working on the same or
a similar psychological continuum.

Does the LAM scale provides any practical advan-
tage over the traditional 9-point hedonic scale? The
most important criterion for an advantage is whether
one scale is better at finding differences among prod-
ucts (Lawless and Malone, 1986). In the original set
of studies, performances of the LAM scale and the 9-
point scale were similar (Schutz and Cardello, 2001).
Two direct comparisons were conducted, one involv-
ing 51 food names and one involving 5 foods that were

NEITHER LIKE NOR DISLIKE

GREATEST IMAGINABLE DISLIKE

GREATEST IMAGINABLE LIKE

DISLIKE EXTREMELY

LIKE EXTREMELY

LIKE VERY MUCH

LIKE MODERATELY

LIKE SLIGHTLY

DISLIKE SLIGHTLY

DISLIKE MODERATELY

DISLIKE VERY MUCH

The LAM Scale
Label Positions

–100 to +100 0 to 100

100.00 100.00

74.22 87.11

56.11 78.06

36.23 68.12

11.24 55.62

0.00 50.00

–10.63 44.69

–31.88 34.06

–55.50 22.25

–75.51 12.25

–100.00 0.00

Fig. 14.4 The labeled affective magnitude (LAM) scale, from
Schutz and Cardello (2001). For those who wish to construct the
scale, the label positions are given on a 100-point and 200-point
basis (–100 to +100), from Cardello and Schutz (2004).

actually tasted. Correlations between the mean values
obtained on the two scales were +0.99 for the 51 food
names and +0.98 for the tasted foods. Statistical dif-
ferentiation was about the same in both cases. For the
food names, there were about the same number of sta-
tistically different pairs of means (467 (LAM) versus
459 (9-point) out of 1,275 possible comparisons). A
small advantage for the LAM scale was observed in
comparing well-liked foods, i.e., those above the grand
mean. The higher ends of the scale range were used
more frequently with the LAM scale, consistent with
the idea that it might be valuable for differentiating
well-liked foods.

Several other studies have examined the perfor-
mance of the two scales in direct comparisons. Greene
et al. (2006) examined consumers’ reactions to peanuts
with and without fruity-fermented flavor defects. The
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9-point hedonic scale only uncovered one significant
pair of differences on one of the four scales, whereas
the LAM scale showed four pairs of significant dif-
ferences (out of 12 possible) and on three of the four
scales. Rather than well-liked foods, these peanut sam-
ples scored very near the neutral point on both scales.
El Dine and Olabi (2009) found that the LAM scale
was as good and sometimes better than the 9-point
scale in differentiating well-liked foods. However, in
an extensive consumer study with several product cat-
egories, Lawless et al. (2009) found that in some cases
the LAM was superior to the 9-point and in others the
9-point scale fared better. This was true for both prod-
uct differentiation and correlation between the product
that was best liked and the type of product the con-
sumers said they most often purchased (a kind of
validity check).

At this point it appears that the scales perform simi-
larly, with a slight advantage to the LAM scale, which
could be considered a viable alternative to the tradi-
tional 9-point scale, especially if well-liked foods are
to be compared. There has been some discussion of
whether the high end anchor should refer to the great-
est imaginable like (dislike) for any kind of sensory
experience (food or non-food) or whether the anchor
should be more general or refer specifically to “foods
like this.” Using a more extreme end anchor (any imag-
inable sensory experience of any kind) will result in
compression of the ratings toward the center of the
scale, a context effect (Cardello et al., 2008). Because
response compression is generally undesirable and it
would be better to encourage fuller use of the scale,
the choice of an extreme high end anchor (such as
“greatest imaginable liking for any experience”) is best
avoided.

14.4.4 Pictorial Scales and Testing with

Children

Hedonic scaling can also be achieved using face scales,
frequently these are simple “smiley” faces (see Chapter
7) but they may also be more representational, involv-
ing animal cartoons (Moskowitz, 1986) or more realis-
tic pictures of adults (Meilgaard et al., 1991). A variety
of these pictorial scales can be found in Resurreccion
(1998). These scales were invented for use by children

or illiterate persons (Coetzee, 1996). However, young
children may not have the cognitive skills to infer
that the picture is supposed to indicate their internal
responses to the product. Additionally, they may be
distracted by the pictures. Kroll (1990) showed that
verbal descriptors, the so-called P&K scale worked
better with children than either the 9-point hedonic
scale or facial scales. The terms in this scale are shown
in Fig. 14.5. Kroll urged further exploration of the

Super Good 

Really Good 

Good 

Just a little good 

Maybe good or 
maybe bad 

Just a little bad 

Bad 

Really Bad 

Super bad

Maybe 
Good 

or  
Maybe 

Bad

Super 
Bad

Really 
Bad

Bad

Super 
Good

Really 
Good

Good

Fig. 14.5 Scales used with children. The left side shows an
example of a facial scale constructed by Chen et al. (1996). The
right side shows the super good–super bad verbal scale of Kroll
(1990).
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P&K scale with low-preference samples and with chil-
dren under 5 years old (Schraidt, 1991). Chen et al.
(1996) showed that 3-point facial hedonic scales with
P&K verbal descriptors could be used with 36–47-
month-old children, that a 5-point facial version could
be used with 47–59-month-old children and that a
7-point version could be used with children 5 years and
older. The facial scale used by Chen et al. is shown
in Fig. 14.5. The facial scales have a long history of
use in the study of food preferences and food habits
among children (Birch 1979, Birch et al., 1980, 1982).
Pagliarini et al. (2003) and Pagliarini et al. (2005) used
an Italian version of the smile scale with verbal labels
to study the acceptability of school lunch items and
meal item combinations among Italian schoolchildren.
Head et al. (1977) found that a 5-point scale (great,
good, OK, bad, and terrible) was used reliably by ele-
mentary school children in grades 4–6 and secondary
school children in grades 10–12.

An alternative to facial scales when testing children
is to resort to simple paired preference. Kimmel et al.
(1994) concluded that children as young as 2 years
old could reliably perform a paired preference test if
the appropriate environment and a one-on-one verbal
test protocol were used. These authors also found that
a 7-point facial hedonic scale anchored with words
ranging from “super good” to “super bad” could be
used consistently by children as young as 4 years old.
Schmidt and Beauchamp (1988) also observed that
3-year-old children could reliably indicate their pref-
erence for odors using a paired test involving puppets.
Bahn (1989) analyzed preference judgments for cere-
als made by 4- and 5-year-old children and by 8- and
9-year-old children using multidimensional scaling.
Brand names had little effect on children’s preferences
and most preferences were based on sensory-affective
responses to the cereals. Perceptual maps from the
younger and older children were similar.

Preference or acceptance testing with children can
be done with a few modifications from the adult
methods. These often include the following: (1) one-
on-one testing in most cases, to insure compliance,
understanding, and to minimize social influences, (2)
children can respond to either verbal scales or picto-
rial scales, (3) scales may need to be truncated for use
with younger children, (4) paired preference testing is
suitable for very young children in the ranges about
4–5 years. Below that age, likes and dislikes must be
inferred from behaviors, such as counting oral contacts

in an ad lib situation (Engen, 1974, 1978; Lawless
et al., 1982–1983) or from ingestion or sucking (Engen
et al., 1974).

14.4.5 Adjustable Scales

Two kinds of adjustable scales have appeared in the
literature although to our knowledge they have not
found wide acceptance in industrial practice. Gay and
Mead proposed a method of scaling in which con-
sumers would look at all the products to be scaled,
and place the highest at the top of the scale, the low-
est at the bottom, and then partition all of the others at
appropriate intermediate marks on the scale (Gay and
Mead, 1992; Mead and Gay, 1995), much like a rank-
ing. The advantage of this method is that it eliminates
differences among respondents in their choice of what
scale range to use, as everyone uses the whole range
of the scale. The disadvantage is that the scale is truly
relative, i.e., no absolute information about degree of
liking is obtained, only the relative positions of prod-
ucts. Although this can be applied to evaluating the
perceived intensity of an attribute (like sweetness), and
perhaps is most sensible for that purpose, it can be used
for hedonics as well (Villanueva and Da Silva, 2009).

Another adjustable scaling method is the “rank
rating” method (Kim and O’Mahony, 1998). In this
method, the category scale is represented pictorially
on the table in front of the consumer. Each prod-
uct is tasted and the cup or sample is placed on the
table in its appropriate category. As the participant
proceeds through the test, they are allowed to change
the position of products already rated. There are thus
two important aspects of this procedure that could
potentially enhance product discrimination. First, the
consumer can see where the previous products were
rated and second, they can change their minds. If the
first product was placed too high or too low on the
scale, relative to the position of the second product,
the situation can be remedied. Whether this proce-
dure is advantageous remains to be seen as it does
not have an extensive record at this point. The initial
experiments using intensity ratings of salt solutions
showed fewer reversals, defined as a high concentra-
tion of NaCl being rated lower on the scale (Kim and
O’Mahony, 1998). Comparisons to the 9-point hedo-
nic scale have shown only small advantages (if any) to
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the rank-rating procedure (Cordonnier and Delwiche,
2008; O’Mahony et al., 2004). Like the adjustable
scale of Gay and Mead, rank rating may add some
degree of relativity to the ratings (as opposed to prod-
uct having absolute meanings regarding degree of
liking). Both of these methods could be more suscepti-
ble to context effects and sequential dependencies (see
Chapter 9).

14.5 Just-About-Right Scales

14.5.1 Description

A popular scale that combines intensity and hedonic
judgments is the just-right or just-about-right (JAR)
scales (Rothman and Parker, 2009). These scales,
shown in Fig. 14.6 are bipolar, having opposite end-
anchors and a center point. The end anchors are
“Too little” and “Too much” of a specific attribute
or a phrase such as “Too sweet” and “Not sweet
enough.” The center point can be labeled “just-right”
but because it is felt that the choice of “just-right”
may entail too strong a commitment on the part of the
respondent, the center choice is usually rephrased as
“just-about-right.” The just-right scale is designed to
measure the consumer’s reaction to a specific attribute.
For example, a just-right scale anchored with “Not
salty enough” on the left, “Just-right” in the center and
"Much too salty" on the right was used by Shepherd
et al. (1989) to evaluate soups.

The just-right scales are popular for the direct
information that they give on specific attributes to
be optimized. Product developers like this informa-
tion and so do managers. Furthermore, the concept of
deviation from ideal taps into a basic decision when
we react to products. For example, people commonly
say that the coffee is too strong or too weak or that
the wine is too sweet or too tannic. Whether we are
aware of it or not, our opinions can be affected by
what we expect and what we would like to obtain in
terms of the sensory stimulation from a product. Many
sensory continua have an optimum or “bliss point”
(McBride, 1990). Booth has formulated a quantita-
tive theory of food quality based upon the deviation
of sensory attributes from their ideal levels (Booth,
1994, 1995). Using regular hedonic scaling, the “bliss

JUST ABOUT RIGHT SCALES

Category:

____ Very much too sweet

____ Too sweet

____ Slightly too sweet

____ Just about right

____ Slightly not sweet enough

____ Not sweet enough

____ Very much not sweet enough

Line Scale:

Not Nearly Just about Much too
Sweet enough     Right Sweet

|______________________ |_______________________|

Directional Scale:

_____ Increase it a lot

_____ Increase it  moderately

_____ Increase it slightly

_____ Don’t change, leave it the same

_____ Decrease it slightly

_____ Decrease it moderately

_____ Decrease it a lot

Fig. 14.6 Just-about-right scales. Top: a simple category scale.
Center: an unstructured line scale. Bottom: a direction-of-change
scale. Further examples can be found in Rothman and Parker
(2009).

point” appears as a peak in a non-monotonic function.
The just-right data, however, “unfold” this function
as shown in Fig. 14.7. Sometimes the unfolded func-
tion is linear or at least monotonic, leading to simpler
modeling or curve fitting.

The most obvious application of this information is
in optimization of a product’s key attributes. Intensity
and hedonic judgments are combined to provide direc-
tional information for product re-formulation. In a
consumer test, this can be part of the final field test
to insure that no gross errors have been made in
the product formulation. The JAR scale gives infor-
mation that can be diagnostic or explanatory if the
overall product appeal is lacking. Earlier in the prod-
uct development process, the scales can be useful in
comparing different versions of the product. Another
useful piece of information can be the identification
of different segments of consumers who prefer dif-
ferent levels of a sensory attribute. When combined
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Fig. 14.7 “Unfolding” of the peaked hedonic function by the
just-right scale. This can produce a linear relationship of just-
right scores against sensory intensity or against ingredient con-

centrations (usually on a log scale). The slope of this line,
relative to error, is indicative of the tolerance of the consumer
for deviations from the ideal level.

with hedonic judgments, the potential impact of being
off from the just-right point can be estimated using
“penalty analysis” (discussed below). Another advan-
tage is that these scales give directional information for
change and can do so by testing only a single product
(no complicated designed experiments are required).
Some direct comparisons have been made concern-
ing the performance of JAR scales versus other more
traditional methods and no consistent advantage is
apparent at this time (Bower and Boyd, 2002; Epler
et al., 1997; Popper and Kroll, 2005). A good review
of the issues involved can be found in Van Trijp et al.
(2007).

14.5.2 Limitations

There are several concerns and pitfalls to be aware of
when using JAR scales. The use of JAR scales assumes
that all the consumers understand what the attribute
listed on the score sheet is referring to. In other words,
the consumers must have a common idea or consen-
sus understanding of the attribute in question. This

limits the just-right scale to a few simple attributes
that are widely understood such as sweetness and salti-
ness. Other more technical descriptive attributes that
require training would be unsuitable in a consumer
test. Of course, JAR scales should not be used with
trained panels as the judgment is about product likes
and dislikes.

The endpoints must be true opposites. “Too thin”
versus “Too thick” is a legitimate example. But “Too
sour” versus “Too sweet” are not opposites even
though they may show a negative correlation (as one
goes up the other goes down) in a product. These
should be separate scales. Avoid complex attributes
like “creamy” which are made up of several com-
bined qualities (smoothness, slipperyness, mouthcoat-
ing, viscosity, and dairy aroma can all contribute to
creaminess). Avoid inherent negatives like bitterness
unless they are actually desired in a product such as
beer. Bitterness in milk has no optimum. Avoid vague
positive terms like “natural.” As with all scales in con-
sumer tests, avoid redundancy. It does not make sense
to have separate JAR scales for thin and thick when
they are true opposites.
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One must also be careful with the actions that
are taken after obtaining JAR scale information. Any
attempt to reduce or increase the intensity of an
attribute may decrease the product’s acceptance among
those people who felt it was just-right. Also, the JAR
ratings do not indicate how much to change the prod-
uct to get a better result. Finally, foods and beverages
are complex systems and any change in one attribute is
likely to affect others. It is difficult to change sweetness
without altering the sourness of a product due to taste
mixture interactions, for example. Other problems and
issues are discussed below.

14.5.3 Variations on Relative-to-Ideal

Scaling

There are several types of scales that have used this
idea of a central optimal point for the intensity of an
attribute. A simple line scale was used by Johnson and
Vickers (1987) and Vickers (1988) to study the opti-
mization of sweetness. It was labeled “not nearly sweet
enough” at the left end, “just-right” at the center, and
“much too sweet” at the right. Pokorny and Davidek
(1986) gave examples of several just-right scales to
optimize the most important attributes of a product. In
one case, the scale points were labeled to show how the
product should be changed to be improved. At one end
the response label was (the attribute should be) “very
much stronger” and the opposite end was “very much
weaker.” The center point was “without change; it is
optimal” and intermediate points were labeled “very
slightly stronger” (or weaker), “slightly stronger” (or
weaker), and “much stronger” (or weaker). Data were
depicted graphically in terms of the percent of respon-
dents giving the “optimal” response for each of nine
key characteristics and an improvement in an appe-
tizer product after reformulation was shown. Note that
this phrasing is reversed from the common just-right
scale where the descriptors refer to difference from
ideal whereas in Pokorny and Davidek’s example, the
descriptors refer to the direction of change that would
bring the product back toward the ideal level.

Another variation is to present a normal intensity
scale for judging the product, and then ask respondents
to place a second mark on the scale for their “ideal”
product (van Trijp et al., 2007). An early example of

this can be found in Szczesniak and Skinner (1975)
in using a modified texture profile for consumers,
where the ideal values for a whipped topping were also
scored. This approach presents several advantages.
First, the absolute intensity information is obtained as
well as where the ideal product lies for that person on
a scale. The second advantage is that the individual’s
scores can be expressed as deviation from ideal, so
the just-right directional information can be obtained.
Finally, and perhaps most importantly, an “ideal prod-
uct profile” can be constructed if the data from the
panelists are reasonably homogeneous, as well as mean
deviations of each the test products from this ideal pro-
file. The major limitation to this approach lies in the
abilities of untrained consumers to act in such an ana-
lytical fashion, whether they can understand the terms
that are being scaled and whether they can report their
true feelings about an ideal product in the necessary
detail.

A direct approach to product optimization is to
have consumers adjust the level of some ingredient
until they feel it is optimal (Pangborn and Pecore,
1982). This technique is commonly referred to as
a “method of adjustment.” However, this procedure
must be performed in both directions, concentrating
and diluting, to avoid context and/or adaptation effects
which cause a consumer to stop too soon in the series
(Mattes and Lawless, 1985). Hernandez and Lawless
(1999) adapted the method of adjustment for liquid
and solid food systems by sequentially weighing the
amount added, then subtracting the amount consumed
before the next addition in order to estimate the given
concentration on any trial.

14.5.4 Analysis of JAR Data

When should product modifications be made based on
JAR data? JAR data are actionable when there is an
insufficient proportion of responses in the just-right
category, when the data are asymmetric, or when there
is evidence of a bimodal distribution. When should the
current product be deemed acceptable at the current
level? Obviously, a desirable set of responses on the
just-right scale is centered on the optimum, is sym-
metric, and has low frequencies in the extremes of the
scale. So the first step in analysis is to examine the fre-
quencies across the scale, usually by plotting the data
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Fig. 14.8 Graphing JAR
data. The upper panel shows a
simple histogram in which
product 456 is centered on the
JAR category and symmetric,
suggesting no change needs to
be made. Product 873 is not
symmetric (skewed) and has a
large segment of “somewhat
not sweet enough” suggesting
an increase in the sweetener
level could be an
improvement. The lower

panel shows the same data
graphed as a constant sum bar
graph.

as a simple bar graph (histogram) or a fractionated bar
as shown in Fig. 14.8. One could easily be misled by
examining only the means. For example, there might
be two segments of consumers, one group that prefers
a stronger level of the attribute and another group that
prefers less. Examining only the mean from such opin-
ions could lead to a false impression that the product
was at or near the optimum level. So plot your data.
The second question is, “Do I have enough just-right
votes to leave the product as-is?” A common bench-
mark is something like 80% JAR votes in the center
category (Rothman and Parker, 2009). One quantitative
test for being skewed away from the just-right point is a
simple one-sample t-test of the product’s mean versus
the center point’s value on the scale. A simple non-
parametric test is to compare the frequencies of those

who are above JAR to those below JAR, while ignor-
ing the JAR votes (Stone and Sidel, 2004). This can be
a simple binomial probability test against an expected
value of 0.5 (equal proportions). Both the t-test for the
mean and the binomial test can provide evidence that
the data are skewed higher or lower than the midpoint,
for a single product.

The next consideration is how to compare multi-
ple products to see if any are different or closer to
the ideal. If each consumer has evaluated all the prod-
ucts (a within-subjects design or complete block), the
chi-square statistic based on a cross-tabulation is not
appropriate as it is based on the assumption that the
data are from independent samples. Since the evalua-
tions are related, several alternatives are available. Fritz
(2009) provides a good discussion of these methods
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and worked examples. For more than two products,
the Cochran-Mantel-Haenszel (“CMH”) method can
be used, but it is computationally intensive and requires
statistical software. For comparing any two products,
the data can be cross-tabulated by the frequencies in
a 3×3 table, after collapsing the data into three cat-
egories (above just-right, just-right, below just-right)

for each product. This is shown in Fig. 14.9. Then
the appropriate statistic is the Stuart–Maxwell test, as
shown in the figure and Appendix B (Best and Raynor,
2001; Fleiss, 1981). If the data can be collapsed fur-
ther, the simple McNemar test can be applied. For
example, one might suspect that it is the “too sweet”
category that is different for the two products. Then

Fig. 14.9 The Stuart–Maxwell test for the differences between
two products assessed on JAR scales. The data are first col-
lapsed into three categories, those above just-right (i.e., too
strong), those below just-right (i.e., too weak), and those falling
in the just-right or just-about-right category. Entries A through
I are the frequencies falling into each category considering
their ratings for both products. The χ2 test is done against

a critical value for 2 df, which is 5.99. This value must be
exceeded for a significant difference to be obtained. After
a finding of a significant difference, the rows and columns
can be collapsed into a 2 × 2 table for further analysis by
the McNemar test to see if there are particular cells driv-
ing the Stuart–Maxwell result. See Appendix B for a worked
example.



14.5 Just-About-Right Scales 339

the McNemar can be applied to a 2×2 table pitting
“too sweet” against the combined frequencies of the
other categories. If the scales are continuous like a line
scale or have contain seven or nine categories, then one
can treat them as any other scaled response, with para-
metric statistics like t-tests and analysis of variance
to compare means. If there are only a few response
categories the data should be treated as categorical or
ordinal.

14.5.5 Penalty Analysis or “Mean Drop”

Another source of valuable information can be from
overall acceptance ratings collected in the same ques-
tionnaire. The JAR data can be combined with this
information to assess the potential impact of being
non-JAR (off from just-right) on the overall acceptabil-
ity of the product. The approach is simple and proceeds
as follows (from Schraidt, 2009):

(1) Separate the data into groups that were above,
below, and at the just-right category.

(2) Calculate the mean hedonic scores from the
acceptability scales for each of the three groups.

(3) Subtract the mean of the above-JAR group from
the JAR group and likewise subtract the mean of
the below-JAR group from the JAR group. (Note:
it is important to use the JAR group’s mean and not
the overall data mean for this purpose.)

(4) Plot the resulting difference scores, the “mean
drop,” or penalty in a scatter plot of the mean drop
versus the percentage of the total consumer panel
in each category.

In this plot, a point that shows a large mean drop and
a large percentage is a cause for concern and suggests
that the product be modified in the appropriate direc-
tion. An example is shown in Table 14.2 and plotted
in Fig. 14.10. In this plot we see that there is a large
group who felt the product was too sweet and had a
large mean drop or reduction in the overall acceptance
score. The product development team might want to
increase the sweetness level in a new version. There
were two large groups, one of which felt the product
was too thick and one too thin, but their penalties were
small so no action need be taken. Regarding the fruit

Table 14.2 Data for penalty analysis and mean drop in
Fig. 14.10

Mean Drop %

Attribute Sweetness

Too sweet 6.2 –1.4 15
Just-about-right 7.6 50
Not sweet enough 5.2 –2.4 35

Thickness

Too thick 6.5 –0.7 28
Just-about-right 7.2 37
Too thin 6.2 –1.0 35

Fruit flavor

Too strong 5.2 –2.6 17
Just-about-right 7.8 63
Too weak 6.5 –1.3 20

flavor strength, there was a small but strongly dissat-
isfied group in the upper left corner. Further research
might be warranted to see whether a different style
of product with a milder flavor would appeal to this
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Fig. 14.10 Penalty analysis and mean drop for one hypothetical
product. For each of the three scales shown in Table 14.2, con-
sumers are categorized as rating each scale above, below or in the
just-right category. The mean hedonic score (9-point scale value)
is then calculated for each group. For groups above or below
the JAR group, their scores are subtracted from the mean of the
JAR group. This produces a “mean drop” score for each group.
The percent of the consumer panel that fell into each category
are plotted against their mean drops. Note that the category “not
sweet enough” has both a high percentage and high mean drop,
suggesting a potential improvement with increased sweetness.
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group, perhaps leading to a lighter styled version for a
consumer segment.

Various statistical tests and methods for model-
ing the penalty analysis are given in Rothman and
Parker (2009). A simple approach is to make a 2×2
classification table of the above/below JAR versus lik-
ers/dislikers for the product and perform a chi-square
test (Templeton, 2009). A significant result would
suggest that one kind of JAR response was more detri-
mental to the product than the other. A parametric
comparison could compare the group of above-JAR
consumers to the below-JAR consumers to see whether
their acceptance scores were in fact different (i.e., an
independent groups t-test).

14.5.6 Other Problems and Issues with

JAR Scales

In spite of their apparent simplicity, JAR scales are
subject to a number of complications. These issues
are discussed in Rothman and Parker (2009). Bear in
mind that JAR scales only work with attributes where
there is an optimum. If an attribute is a case of “more
is always better” or “any of this is bad” then JAR
scales are not appropriate. As noted before, one poten-
tial problem is that consumers may misinterpret the
attribute. An example is the confusion that many peo-
ple have concerning sour and bitter. A second concern
is that consumers are generally integrative when they
perceive a product as opposed to being analytical, and
the JAR scale asks them to attend to a specific attribute
in isolation. Consumers often show halo effects, in
which one salient attribute can affect the ratings of
other, logically unrelated attributes. Thus is it possible
that a product could be rated less than ideal on sweet-
ness, merely because the consumer is annoyed by some
other taste or flavor. They can also bring in cognitive
biases that have nothing to do with their own likes and
dislikes. For example, if a person believes that salt is
bad for you, the product could be rated as too salty,
even if it is ideal. Some attributes are linked or may
show trade-offs. Increasing sweetness may decrease
sourness but the sweet/sour balance may be key as it
is in some wines and fruit products. Some attributes
may change with time or the hedonic reaction may
change with time. Sweetness may seem acceptable at
first, but may be cloying after consuming the entire

portion. Portion size effects may influence JAR ratings.
What seems good in a small bite may not seem so
appealing in a larger portion. Other problems can occur
when JAR scales are used in isolation without asking
any additional intensity-related questions. Thus two
groups of respondents might both mark “just-right” but
one might think the product is very strong (the level
they prefer) while the other group thinks the product is
fairly mild (the level they prefer). So the results might
mislead product developers into thinking that there is
a homogeneous population while there are really two
consumer segments. The sensory professional should
consider the usefulness of collecting both intensity and
JAR information on the consumer questionnaire.

The centering tendency or bias is particularly prob-
lematic for JAR scales, especially in a multi-product
test. The centering bias in this case is a tendency to
put the product which is intermediate in intensity (i.e.,
the middle product) at the just-right point. This could
lead to a false conclusion that the middle product was
just-right when in fact the true optimum could still
be higher or lower. Johnson and Vickers (1988) com-
pared several methods for dealing with the centering
problem, based on approaches of McBride (1982) and
Poulton (1989). Both of these methods involve test-
ing multiple ranges of products to interpolate the JAR
point based on different ranges of the key ingredient.
They are discussed further in Chapter 9. It may not
always be possible to do the multiple sessions required
to interpolate the true optimum, so the sensory scien-
tist should be aware that a false reading for the middle
product in a series can be a problem with this method.

14.6 Behavioral and Context-Related

Approaches

It is difficult to measure a stable attitude toward a food
when it is tasted in isolation. Our likes and dislikes
may certainly change as a function of the context of
a meal, the time of day, or the number of times we
have consumed the food recently. Foods and beverages
may be liked more or less depending upon the temper-
ature at which they are served (Kahkonen et al., 1995)
and whether that temperature is consistent with con-
sumer’s expectations (Cardello and Maller, 1982a). A
person’s recent history with similar foods can be an
important influence. Some people are prone to seek a
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high degree of variety in their diet (van Trijp et al.,
1992) and may tire of eating foods with consistent
or similar sensory properties (Vickers, 1988). Eating
steak or lobster may seem highly appealing in the
abstract, but consuming steak or lobster for ten days in
a row will certainly change a person’s feelings about
the item toward the end of that period. Preferences are
also specific to foods that are combined. So although
we may like ketchup in general, ketchup on mashed
potatoes may or may not seem appealing to a given
individual. A person’s historical preferences across
many foods may fail to predict their hedonic accep-
tance scores for items in an actual tasting (Cardello and
Maller, 1982b). Context and expectations can affect
simple hedonic judgments (Deliza and MacFie, 1996;
Meiselman, 1992; Schifferstein, 1995), so we should
expect them to have important effects in actual food
choice and consumption situations. The eating situa-
tion can have a big effect (Edwards et al., 2003; King
et al., 2007). Habit, experience, context, and attitudes
are important contributors to the actual consumption of
a food in a specific situation. To address some of these
limitations of simple acceptance testing some more
behaviorally oriented approaches have been utilized.

14.6.1 Food Action Rating Scale (FACT)

An example of a behaviorally oriented approach to
scaling food acceptability was devised by Schutz
(1965). He developed a scale based on attitudes and
actions, combining some statements about frequency
of consumption (“I would eat this food every oppor-
tunity I had”) and some motivationally related state-
ments (“I would eat this food only if I were forced
to”) to produce a more action-oriented index of food
acceptance. This was called the Food Action Rating
Scale or FACT. The complete list of descriptors is
shown in Table 14.3. Although Schutz reasoned that
the behaviors might not always match up with accep-
tance as scaled on a traditional 9-point hedonic scale,
a study of the correspondence of the two measures
showed a high degree of positive correlation (r =
+0.97 in a questionnaire study of food likes). Data
from the FACT scale gave lower mean values but
less skew compared to the 9-point hedonic scale. In
spite of this correlation, the scales are not necessarily
interchangeable.

Table 14.3 Descriptors in the food action rating scale (FACT)

I would eat this food every opportunity I had
I would eat this very often
I would frequently eat this
I like this and would eat it now and then
I would eat this if available but would not go out of my way
I do not like it but would eat it on an occasion
I would hardly ever eat this
I would eat this only if there were no other food choices
I would eat this only if I were forced to

After Schutz (1965)

14.6.2 Appropriateness Scales

In related work, Shutz carried the contextual theme
one step farther. Appropriateness ratings can be used
to assess the effects of context associated with hedo-
nic responses to food (Schutz, 1988). For example,
one may really like pizza but when asked to rate
one’s liking at 8 A.M. may not find the pizza appeal-
ing since this is an inappropriate time to consume
pizza, at least for most people. So pleasantness on a
purely sensory basis and appropriateness in a context
may not always be completely parallel. Inappropriate
contexts for a given culture may override influences
of sensory liking (Lahteenmaki and Tuorila, 1997).
While it is certainly possible to poll consumers about
the appropriateness of foods in different contexts, the
sensory scientist should be sensitive to the testing bur-
den that can arise in asking too many questions. If
15 foods are evaluated for appropriateness in 20 con-
texts each consumer panelist would have to rate 300
scales.

Appropriateness judgments are traditionally done
for both a food and a usage statement like “eaten
for breakfast.” The scale commonly used is a 7-point
scale ranging from “never” to “always.” Note that this
is not a scale that ranges from “not appropriate” to
“very appropriate.” Rather, it attempts to tap into a
notion of the frequency with which an item would
apply for that usage situation, in a graded fashion.
The questionnaire often takes the form of a matrix
or grid, with foods as rows and usage statements
as columns. A good review of appropriateness ques-
tions and sample applications can be found in Schutz
(1994). In some studies comparing appropriateness to
the 9-point hedonic scale, Cardello and Schutz (1996)
showed that foods with equal acceptability could differ
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dramatically in their appropriateness for various sit-
uations. Although this is perhaps not surprising, it
should be noted that liking and appropriateness are
often highly correlated. Foods that are highly liked find
appropriate uses in a variety of situations. However, the
work of Cardello and Schutz demonstrates that they are
not equivalent. This study also noted that acceptability
scores were unaffected by asking the appropriateness
questions. So there seems to be no harm in asking
for this additional information, keeping in mind the
added burden on test subjects due to the length of the
questionnaire.

Data from appropriateness judgments can be ana-
lyzed by principal component analysis to determine
the underlying features common to the different foods
and contexts. Jack et al. (1994) used a repertory grid
triad method to derive all potential use occasions for
cheeses. The appropriateness of the use of each of 16
cheeses was then evaluated on line scales anchored by
suitable and unsuitable. They found that the melting
characteristics and the texture of the cheeses were the
major factors affecting the appropriateness of cheese
for different occasions. In consumer products, it is
often important to have fragrances that are consonant
with the intended use of a product. The type of fra-
grance that is appropriate in a shampoo may not work
well as a fragrance used to mask insecticide chemical
smells and vice versa (Jellinek, 1975). So in screening
candidate fragrances for specific product applications,
it is necessary to go beyond simple hedonics and ask
people about the fit of the smell to the intended prod-
uct. A fruity-floral fragrance may be appealing as an
air freshener, but may seem out of place in an insti-
tutional heavy-duty sanitizing cleaner. An appropriate-
ness scale in this kind of situation would range from
“not appropriate” to “very appropriate” in contrast to
the frequency scale of Schutz.

14.6.3 Acceptor Set Size

Another variation in hedonic assessment brings the
food acceptance measure back to a simple count of
the proportion of people who find the product appeal-
ing. Norback and colleagues (Beausire et al., 1988;
LaGrange and Norback, 1987) examined the propor-
tion of acceptors as a variable in product optimization.
The acceptor set size was defined as the proportion of

consumers who find the product acceptable. LaGrange
and Norback (1987) reasoned quite logically that the
causal chain in optimizing the sensory appeal of a
product should consider an acceptability measure, such
as the proportion of acceptors, to be driven by a set
of sensory attributes. The sensory attributes in turn
would be determined by the physical characteristics of
the food, ingredient variables, and so on. This is sim-
ply a straightforward psychophysical model extended
to include multiple attributes and a hedonic or behav-
ioral consequence. They reasoned that those variables
that have a strong impact on changing the acceptor set
size (i.e., produce a steep slope or high rate of change)
would be most influential in optimization. This is much
in the tradition of modeling acceptance as a function
of a set of contributing attributes (e.g., Moskowitz and
Krieger, 1995). Beausire et al. (1988) made use of this
approach in a linear programming model to explore
the relationship between acceptor set size, toughness
scores, and ingredients in turkey bratwurst. Various
ingredient combinations were explored for their effects
on the toughness attribute and the resulting acceptabil-
ity function.

This approach makes use of some minimal infor-
mation, basically whether people find the product
acceptable or not. In the Beausire et al. (1988) study,
participants were simply asked to decide “yes” or “no”
as to whether they found the product acceptable. On
the positive side, this measure taps into a fundamen-
tal concern for food marketers, the size of the pool of
potential users. On the negative side, the measure is
dichotomous and lacks the graded richness of informa-
tion available on the 9-point acceptance scale. It is also
possible to think of this measure as a kind of prefer-
ence split, but based on only one product versus the
consumer’s minimal expectations for the category. As
Stone and Sidel (2004) pointed out, preference may not
always match up with acceptance. People who have
no liking at all for the category do not belong in the
test, but they may express a preference if mistakenly
included in the study. It is also possible to have a pref-
erence win for a product based on the proportion of
people preferring one product over another. However, a
minority with strong opinions in the opposite direction
may give the preferred product low hedonic ratings
with the result that the mean acceptability scores are
reversed from the preference split. For example, prod-
uct A was higher than B in acceptance, but product
B was preferred over A in simple choice (see Stone
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and Sidel, 2004, for numerical example). This same
problem could potentially arise with the acceptor set.
There might be fair proportion of people finding the
product acceptable, but a group that dislikes it strongly
since it is not in their favorite or accustomed style.
Acceptor set size and simple preference/choice might
miss this fact. Examination of acceptability scores, on
the other hand, would uncover both the proportion and
the degree of dislike in the minority segment.

14.6.4 Barter Scales

Another approach to food acceptance was developed
for use in predicting meal combinations. Lawless
(1994) examined meal combinations for military field
rations. The dependent measure was based on the num-
ber of chocolate bars that a soldier would trade for
individual items and for meal combinations. This mea-
sure was based on the observation that trading for
food items within the prepackaged meals did occur in
the field that the chocolate bar was a highly desirable
item and that it could function as a kind of “com-
mon coinage” for swapping. The overall goal was
to develop a measure that could predict the value or
total appeal of meal combinations and then to use
this measure along with nutritional information and
other constraints in developing a linear optimization
model for ration improvement. One concern of the
product developers was that the 9-point scale was too
constrained and would lack the additive properties nec-
essary for an estimate of total hedonic value in meal
combinations. For example, two items might be rated
an eight and a five on the hedonic scale, but there is no
scale point corresponding to 13 or the sum of the reac-
tions to the two items since the scale is bounded by
nine points. It was hypothesized that the barter value
of the items and meal combinations would show more
reasonable patterns of additivity that could be used in
linear programming.

The values in chocolate bars of 33 individual items
were estimated and then they were combined to form
two-item combinations and five-item meals, similar or
identical to actual field package combinations. The
question of interest was whether the values of the
meals and combinations could be predicted by the sum
or some simple linear combination of the values of the
items. The data showed almost perfect additivity with
one notable exception. The data showed an “a la carte”

effect. That is, the value expected in trade for the meal
was one chocolate bar less than the sum of the indi-
vidual items. This is similar to the common pricing
of meals versus a la carte or individual items where
the sum of the individual prices would be higher than
the price paid for the actual meal as a combination.
The utility of this method may depend upon a con-
sistent positive value of the bartered item among the
participants.

14.7 Conclusions

The assessment of blind-labeled product acceptabil-
ity is one of the cornerstones of sensory evaluation.
Consumer acceptance is essential “bottom line” infor-
mation for product developers and marketers alike. A
variety of useful methods are available to the sensory
scientist in order to assess the appeal of products and
the relative preferences among a set of choices. Choice
itself is fundamental to consumer behavior, as it is the
decision process that we all make when faced with a
number of different foods for purchase or for use in
a meal. Acceptance can be related to other properties
of foods such as the descriptive profile of a product
or to physical ingredient, processing and packaging
variables. We can study how the appeal of a prod-
uct declines over periods of storage, in the distribution
chain and over its shelf life.

In spite of the obvious importance of product
acceptability, this group of sensory methodologies
is prone to misuse, misinterpretation, and challenges
from other fields. In particular, marketing researchers
may not understand the importance of testing prod-
ucts on a blind-labeled basis, i.e., with a minimal
conceptual framework. The rule of thumb for sensory
research is to present only enough information so that
the product is evaluated within the correct frame of ref-
erence, usually the product category. So participants
in a sensory acceptance test are given a product with
a random three-digit code, they know only that it is
a test of scrambled eggs, and they are unaware that
the eggs are frozen, reconstituted, microwaved, choles-
terol reduced, or any number of other factors that might
eventually form part of the product concept. The sole
question is whether they are appealing to scrambled
egg consumers on the basis of their sensory attributes
(taste, texture, appearance, etc.).
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A common complaint among marketers is that the
blind test is unrealistic since the product will not
appear on the store shelves in its unlabeled form with-
out package and concept (see Garber et al., 2003,
for a critique of sensory practice from a market-
ing perspective). However, they miss the point. The
sensory test is the only way to assess true sensory
appeal without the biasing effects of conceptual label-
ing (Gacula et al., 1986) and as such it gives essential
feedback to product developers as to whether they
have truly met their target profiles. Without the blind
test, no one can tell. The product may succeed or
fail in the concept-laden market research test for any
number of reasons. Given the tendency of consumers
to integrate their information, to show halo effects
and other biases, you cannot always trust their stated
reasons for liking in a questionnaire from a con-
cept test. As stated above, high-sensory acceptability
does not insure that the product will be a market-
place success. Purchase probability (and more impor-
tantly, repurchase) depends upon price, concept, posi-
tioning, promotions, advertising, package information,
consumer awareness, nutritional characteristics, and
many other factors (Garber et al., 2003). However,
the sensory appeal is the essential “platform” with-
out which the product is unlikely to succeed. This
platform—of sensory-based acceptance—provides the
foundation for successful marketers to then apply their
artistry to sell the product to consumers in the real
world.
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Chapter 15

Consumer Field Tests and Questionnaire Design

Abstract This chapter presents an introduction to consumer testing in various
settings including central location and home use tests. The construction of a useful
consumer questionnaire requires both skill and experience. General rules for ques-
tionnaire design and question construction are presented. Various question formats
such as agree–disagree scales and open-ended questions are discussed.

Developing products is easy, developing products that appeal to consumers is less so, and

developing products that appeal to a sufficient number of consumers and achieve commercial

success based on specific business criteria is very difficult.

—Stone and Sidel (2007)
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15.1 Sensory Testing Versus Concept

Testing

Why do so many products fail in the competitive mar-
ketplace? To minimize new product failures, one strat-
egy is to insure that the consumer perceives, through
the senses and repeated experiences, the characteristics
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Table 15.1 Sensory tests versus product concept tests

Test characteristic Sensory test Product concept test

Conducted by Sensory Evaluation Department Marketing research Department
Primary end user of information Research and Development Marketing
Product labeling Blind-minimal concept Full-conceptual presentation
Participant selection Users of product category Positive response to concept

that make the company’s product superior to competi-
tors’ products and thus more desirable. Furthermore,
this perception must be maintained to build brand
loyalty and to insure repurchase. The sustainability of
the perception of quality is important long after the
initial rush of interest from advertising claims and pro-
motions that surround a new product introduction. The
purpose of this chapter is to discuss the techniques for
consumer product testing in the field on a blind-labeled
basis that insure the sustainable perception of positive
product characteristics.

A consumer field test with new product prototypes
or market candidates can provide several pieces of
useful information to product developers. The blind-
labeled sensory test can be an important step before
a multi-city marketing research field test and prod-
uct “launch.” It provides an opportunity to determine
consumer acceptability on a sensory basis, without the
concepts and claims that will normally appear in adver-
tising or on packaging. The sensory consumer test can
facilitate diagnosis of problems before more expensive
marketing tests. Costly mistakes can be avoided and
problems uncovered that may not have been caught in
laboratory tests or more tightly controlled central loca-
tion tests. It can provide direction for re-formulation
if needed. Multiple formulas or candidates can be
compared on a blind-labeled, pure performance basis.
Poorly performing products can be dropped from fur-
ther consideration. Finally, since the tests are done
with target consumers, the company can obtain data
that may be used for claim substantiation. This can
be valuable in defending challenges from competi-
tors and responding to the requirements of advertising
regulators.

At first glance, a consumer sensory evaluation field
test looks a lot like the consumer tests done in mar-
keting research. It is worth understanding some of the
important differences. The research arm of a consumer
product manufacturer may rely on the important tech-
nical support provided by the sensory consumer test.
It provides validating data about reaching goals in
terms of sensory factors and the perception of product

performance by consumers. Important differences exist
between sensory consumer tests and the typical mar-
keting research consumer tests. Some of these are
shown in Table 15.1. In both tests products will be
placed with consumers and their opinions surveyed
after a trial period. However, they differ in the amount
of information given the consumer about the product
and its conceptual features.

The marketing research “product concept” test
usually proceeds as follows: participants are shown
the product concept, via a storyboard or videotape
mockup that often resembles a rudimentary advertise-
ment for the idea. They are then questioned about their
response and expectations of the product based on
the presentation. Note that this is important strategic
information for marketers. Next, those that respond

positively are asked to take the product home and
use it, and later to evaluate its sensory properties,
appeal and performance relative to expectations. This
selection may appear biased, but it is based on the
idea that people who do not like your idea to begin
with are probably not part of the target market. In
the sensory-oriented consumer tests the conceptual
information is kept to a minimum. The rule of thumb
is to give only enough information to ensure proper
use of the product and evaluation relative to the appro-
priate product category. For example, the product
may be labeled simply “pizza” or “frozen pizza.” In a
market research test, it might be being evaluated after
a conceptual presentation that communicates a number
of features such as “new—improved—low-fat—high
fiber—whole-wheat—stuffed-crust—convenient—mi-
crowavable—pizza.” Ratings of attributes and prod-
uct acceptance are contaminated by any additional
information or by the expectations that are built up as
a function of showing the detailed product concept.
The sensory product test attempts to ascertain their
perceptions about the sensory properties in isolation
from other influences. These other influences can be
quite profound. For example, the introduction of brand
identity or other information can produce differences
in the apparent acceptability of products where there
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is no differentiation on a blind-tested basis (Allison
and Uhl, 1964; El Gharby, 1995; Gacula et al., 1986).

Sensory consumer tests and marketing product con-
cept tests also differ in the participant selection. Only
those who show an interest and react positively to
the product concept are usually included in the actual
product test in the marketing research scenario. As
these participants have shown an initial positive bias,
it is perhaps not surprising when the product receives
good scores in the test. On the other hand, the sensory
consumer test merely screens participants for being
users of the product category. Given these differences,
the two types of tests may give different evaluations of
the consumer appeal of the product. The tests provide
different types of information, viewed from different
frames of reference by the consumers and they use dif-
ferent pools of respondents. In the concept test, product
perception may be biased in the direction of assimila-
tion toward their expectations (Cardello and Sawyer,
1992). Results from both types of tests may be equally
“correct;” they are simply different techniques seeking
different types of information. Both types of informa-
tion should be weighed in management decisions to go
forward or to seek further modifications to optimize the
product.

Critics of the sensory approach often remark that
the product will never be seen on the store shelf with
a generic description and a three-digit code, so why
bother evaluating it in the blind-labeled, concept-free
form? The answer is simple. Suppose the product fails
in the marketplace? How does one know what went
wrong if only the product concept test was performed?
Perhaps it did not have good sensory properties or per-
haps the marketplace did not respond to the concept as
predicted by the marketing tests. Without the sensory
test, the situation is ambiguous and the direction for
fixing the product is unclear. The research team may
have designed a poor product that was only carried
along by a catchy concept. However, after extended
use, consumers may have figured out that the prod-
uct does not deliver benefits in keeping with their
expectations and they stopped buying it. On the other
hand, the marketing team may have simply designed a
poor concept that somehow moved forward in the rush
of initial enthusiasm for a new product idea (Oliver,
1986). The research and development team has a need
to know if their efforts at meeting sensory and per-
formance targets were successful in an unambiguous
blind test.

The following sections of this chapter are devoted
to how consumer tests are conducted, emphasizing
field testing and questionnaire construction. Although
there is a substantial literature on survey techniques
and questionnaire design for marketing research and
for opinion polling, there is little published research
on sensory field testing of consumer products. Product
placement and interviewing in the field is a com-
plicated, expensive, and time-consuming enterprise.
Training is often obtained by “shadowing” an experi-
enced researcher in industry. However, there are some
general guides to consumer sensory tests (Schaefer,
1979; Sorensen, 1984). The book, Consumer Sensory

Tests for Product Development, by Resurreccion
(1998) contains guidelines and much practical advice.
It provides detailed information on topics such as
checklists for conducting various types of consumer
tests, sample questionnaires, project management
guidelines, and maintaining consumer databases of test
participants for recruitment. Another resource dealing
specifically with the issues and methods for claim sub-
stantiation is the extensive ASTM standard E-1958
(ASTM, 2008).

15.2 Testing Scenarios: Central Location,

Home Use

15.2.1 Purpose of the Tests

The primary goal of a consumer field test is to assess
the acceptability of a product or group of products or
to determine whether a product is preferred over other
products. Some typical situations that justify a con-
sumer field test are (1) a new product entering the mar-
ketplace, (2) a reformulated product, that is, ingredient,
process or packaging changes of a major nature, (3)
entering a competitor’s product category for the first
time, or (4) competitive surveillance, as in a category
appraisal (see Chapter 19). It is also an opportunity
to collect some diagnostic information on the reasons
behind consumer likes and dislikes. Reasons for lik-
ing are usually probed with a variety of techniques
such as open-ended questions, agree–disagree scales,
and just-right scales. Agreement with label claims of
a perceptual nature (e.g., “crispier”), assessing con-
sumer expectations and consumer satisfaction with the
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product can all be surveyed through questionnaires and
interviews.

Four general categories of consumer sensory tests
are often distinguished. The first is the use of internal
panels checking acceptance using on-site testing, usu-
ally with employees. The second is the use of a local
standing consumer panel. These are people, sometimes
from social groups that are recruited for multiple tests
for a period of time. We will refer to these two types of
panels as “consumer models.” The third is the central
location test or CLT and the fourth is the home use test
or HUT.

15.2.2 Consumer Models

A variety of consumer testing situations are used to
assess the appeal and overall acceptability of products.
Due to resource constraints in time, money, or security
concerns, there are several types of acceptance testing
that use what can be termed “consumer models.” Such
“consumer” groups may consist of employees or local
residents, but often there is little or no attempt to insure
that the group is representative of consumers at large.
It is of course essential that the group be users of the
product category. It would make no sense to ask people
about the appeal of several extruded puffed breakfast
cereals if they never consume such a product.

Internal consumer tests are tests conducted in the
sensory test facility of a company or research depart-
ment using employees. A major liability of employee
panels is that they are not necessarily blind to the brand
of the product and they may have potentially bias-
ing information and assumptions about what is being
tested (Resurreccion, 1998). Technical personnel may
view the product quite differently from consumers,
focusing on entirely different attributes. Such an inter-
nal consumer panel should be routinely compared to
an outside sample of non-employee consumers by test-
ing the same products with both groups. Stone and
Sidel (2004) describe the use of a split-plot ANOVA
with internal and external panelists evaluating the
same products to assess the degree of agreement.
Unfortunately this is rarely done during product devel-
opment, because the diagnostic information from the
early tests with the internal panel is used to make
adjustments or optimizations before subsequent expen-
sive field tests. So the product changes as it moves
through the development process.

Another cost-efficient approach using consumer
models is to use local standing consumer panels. The
oldest record of a local standing panel that we could
find was the use of 300 families in the Columbus,
Ohio area by the Ohio State University and Ohio
Agricultural Experiment Station in the 1950s (Gould
et al., 1957). The families were stratified by socioe-
conomic class via census records of rental costs and
they participated in simple preference tests. This panel
was similar to the Kroger company’s mail panel of the
1940s, described by Garnatz (1952), which had a more
geographically diverse makeup. Test products were
delivered to their homes and questionnaires returned
by mail. Another way to recruit and set up standing
panels is through community groups. These groups
may be affiliated with schools, churches, fraternal, or
hobby-oriented clubs (e.g., singing groups) or virtually
any other organization that meets in a nearby loca-
tion on a regular basis. Social groups can be used for
central location tests, sometimes in their own facilities
(Schaefer, 1979) or to facilitate distributions for home
placement. They can be contacted through a panel
leader or coordinator for product and questionnaire
distribution, offering some time savings. Such panels
are re-used for a period of time, so like the employee
consumer models, they offer convenience and time
savings in recruiting respondents and testing products
on a routine basis. Incentives can be directed to the
organization itself, so there can be social pressure, a
powerful motivator, to participate.

However, there are several liabilities with a locally
recruited and ongoing consumer panel. First, the sam-
ple is not necessarily representative of opinions beyond
the delimited geographic area of the club or group.
Second, the participants may know each other and talk
to each other on a regular basis, so there is no guarantee
that the opinions are completely independent. Using a
variety of random codes for products may reduce this
liability, but there is no airtight guarantee that their
judgments are not influenced by others. Finally, unless
an outside agency or a disguised testing lab is used
for the contact and distribution, the participants may
become aware of what company is conducting the test.
Opinions or pre-existing attitudes about products from
the originating company may bias results. If they view
the company favorably, they may evaluate its products
more favorably. As in any consumer acceptance test,
the participants should be carefully screened for reg-
ular usage of the product category. That is, you must
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eliminate those members of the group who are not reg-
ular users even if it engenders some disappointment
among people who were looking forward to being in
the test. This possibility must be spelled out during
orientation sessions after the group is recruited.

In spite of the apparent savings in recruitment and
completion time for tests, the setup and maintenance
of a local ongoing consumer panels can require con-
siderable effort on the part of the sensory staff. If
the program is big enough and has contact with ten
or more consumer groups, a full-time staff member
may be required to supervise such a program. Pickup
and recall of products and questionnaires must be
arranged, and returned questionnaires should be care-
fully examined for any evidence of cheating. People
may fill out questionnaires and return them without
actually trying the product. Containers returned full
or nearly full, questionnaires with illogical answers
or use of only one scale point on every question are
some hints (Resurreccion, 1998). These respondents
should be deleted from the data set and noted for
future exclusion or monitoring. Maintaining good rela-
tions and close communication with a member of the
group acting as the local contact person is key. These
group coordinators or contact persons have many of
the responsibilities for oversight that a field agency
supervisor has, but bear in mind that this is not their
profession. Cultivating this important contact person,
orienting them to procedures and providing motivation
may also take time and considerable social influence
on the part of the sensory specialist. Such a program of
local panels should also involve periodic furlough of
each group and rotation of active participation cycles
since some boredom and disinterest in the tests can
set in over time. A 6-month active testing cycle within
every 18 months to 2 years is reasonable.

In spite of their obvious problems in being non-
representative of outside consumers, employee pan-
els and local consumer panels can provide valuable
information on a cost-efficient basis. For decades, the
US Army has used employee panels at the Natick,
Massachusetts laboratories to evaluate military rations
and other foods. These panels have been reasonably
well predictive of soldiers’ opinions of the same foods
(Meiselman and Schutz, 2003; Peryam and Haynes,
1957). However, more recent work showed that the
correlations were higher for snack foods than main
dishes and meal components and were more predictive
when the laboratory test involved an element of choice

(de Graaf et al., 2005). In food companies, the risks
from using an internal panel can be a bit higher. For a
major roll-out of a new product with millions of dollars
of advertising to be spent, it is much safer if not imper-
ative to continue testing with a true consumer field test,
in a home use scenario in multiple locations.

15.2.3 Central Location Tests

Probably the most popular type of consumer test with
foods involves product trials at a central location. The
central location test (CLT) is often conducted in the
facilities of a field testing agency (a service provider),
for example, in a shopping mall. However, there are
just about as many variations on this theme as one
could imagine including testing in retail outlets, recre-
ational facilities, and schools (Resurreccion, 1998;
Sorensen, 1984). A picture of a CLT setup classroom
style is shown in Fig. 15.1. Consumers can come to
a corporate sensory test lab, although that defeats the
non-branded nature of the blind sensory test since the
company identity is obvious. Having consumers on
the company property may entail some security risks.
If the testing program is extensive, it may be eco-
nomically justifiable to set up a disguised test facility
actually administered by the company’s own sensory
program, rather than subcontracting to outside testing
services. A sensory group can use a mobile testing lab-
oratory to change locations. The University of Georgia

Fig. 15.1 A consumer central location test being conducted in
a classroom style arrangement. Photo courtesy of Peryam and
Kroll Research.
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maintained such a mobile testing laboratory moved by
a truck (Resurreccion, 1998). This offers enormous
flexibility in the opportunities for consumer contact.
For example, foods targeted at summer picnics or out-
door cooking could be tested at or near campgrounds or
parks. Such on-site testing can introduce a realistic ele-
ment in the testers’ frame of reference. Products aimed
at children could be brought to school locations and
the mobile test laboratory can provide a site for proper
product preparation and controlled presentation. For
some foods, special considerations for preparation are
minimal and tests can be conducted at any site where
people are gathered in large numbers and have flexible
time. For example, sensory testing can be done at state
fairs or other recreational events.

The central location test offers conditions of reason-
ably good control of product preparation as the staff
can be trained in product preparation and handling.
Compliance with instructions, manner of examining
samples, and ways of responding may be monitored
and controlled (Resurreccion, 1998; Schaefer, 1979).
It is easier to isolate respondents in test booths or sep-
arate areas to minimize outside influence. Security can
be maintained more easily than in a home placement.
The tradeoff occurs against the necessarily limited
product usage, i.e., participants’ exposure to the prod-
uct is much shorter than in the home placement and
usually only limited amounts of the product are tasted
or consumed (Schaefer, 1979). It is of course possible
that the limited product interaction in a CLT can give
erroneous results or lead to faulty conclusions (Oliver,
1986).

15.2.4 Home Use Tests (HUT)

The most expensive but most realistic situation is when
consumers take the product home and try it under nor-
mal circumstances on several occasions. Home use
tests are time consuming to set up and administer.
They can be costly, especially if external field testing
services are hired to do most of the work. However,
HUTs offer tremendous advantages in terms of face
validity of the data. This can be important in adver-
tising claim support. Also, the opinions of other family
members can enter the picture as they do in everyday
use of purchased products. The primary advantage is
that the consumer uses the product over a period of

time and can examine its performance on several occa-
sions before forming an overall opinion. For foods, this
becomes less of an issue where flavor, appearance, and
texture are rapidly appreciated and the hedonic reac-
tion of a person is virtually immediate upon tasting
the item. For consumer products such as a shampoo
or a floor wax, it may be critically important to have
some extended use in the actual home and to see how
the treated substrate (in this case the hair or the floor)
holds up over time. Home placement provides a chance
to look at the product in a variety of settings (Anon.,
1974). Another important opportunity is the chance to
test product and packaging interactions. Some prod-
ucts may be well or poorly suited to their package
design (Gacula et al., 1986) and the home use test pro-
vides an excellent chance to probe this. Finally, the
home use test can facilitate a more critical assessment
of the product relative to the consumer’s expectations.

In the case of product fragrance testing, the short
exposure in a central location may overestimate the
appeal of very sweet or perfume-like fragrances. When
used in the home for extended periods, such fragrances
may become cloying and a type of hedonic fatigue can
set in, even though they score well in briefer labora-
tory sniffing tests. In general, it may be dangerous to
screen fragrance candidates in lab-based sniffing tests,
especially for functional products. A very appealing
fragrance sniffed from a bottle may not communicate
a message of efficacy with industrial cleaning products
or insecticides. For functional products, the fragrance
has to be chosen to support the perception of product
efficacy. Mismatches can occur in flavors as well, for
example, there is some resistance to candy-like flavors
in toothpastes (Jellinek, 1975). Similarly, very sweet
food products may score well in a central location, but
do less well when used over an extended period.

In summary, four major categories of consumer
tests are commonly used—employee consumer mod-
els, local standing consumer models, central location
tests, and home placements. The remainder of the
chapter will focus on field tests and on questionnaire
design. Table 15.2 shows the characteristics of these
levels of consumer testing and how they vary. The
employee tests are the quickest, least expensive, and
the most secure but have the greatest liabilities in terms
of potential bias, lack of a representative sample, and
lack of realism in the testing situation. The choice of
test in any specific situation usually represents a com-
promise between time and expense on the one hand and
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Table 15.2 Kinds of consumer tests

Type Advantages Disadvantages

Internal employee panel Secure Not representative
Low cost
Rapid results

Local standing panels Reasonably secure Not a random sample
Lower (?) cost Panelists may discuss products
Easy distribution

Central location test Representative sample Requires test agencies
Control over product preparation Cost, slower results

Home use test Representative sample Requires test agencies
Realistic testing Slowest to conduct, costliest
Whole family input Lack of product control
Can test use directions Security risk

the need for the most valid information on the other.
The business risk of basing major decisions on less
valid testing situations should be weighed against the
cost of more extensive testing.

15.3 Practical Matters in Conducting

Consumer Field Tests

15.3.1 Tasks and Test Design

A number of considerations will enter into the design
of a home use test, many of which need to be negoti-
ated with the client or end-users of the information and
also with any field testing services that collect data.
Some of the primary decisions of the sensory profes-
sional will include sample size, experimental design,
qualification of participants, choice of locations and
agencies, and structure of the interview or question-
naire. There are several dozen activities and decision
points in setting up and conducting a field test, render-
ing this type of test as one of the most complicated
projects that a sensory specialist may perform. The
most important decisions that affect the experimen-
tal design include the number of consumer required,
the number of products, and how the products will be
compared. Statistical consultants, if needed, should be
brought in at this stage. The specific tasks involved in
conducting a consumer field test are discussed below.
Resurreccion (1998) provides checklists for the various
types of consumer tests, home use, central location,
etc. These can be very useful for the sensory specialist
who is new to consumer field tests and may not realize

the added levels of complexity compared to simple
in-house acceptance/preference testing. Field tests are
costly and require a high level of attention to detail.
Simple mistakes can render the results of a test invalid
(Schutz, 1971), at potentially great expense if the test
must be repeated.

15.3.2 Sample Size and Stratification

In this instance, sample size refers to the numbers of
consumer participants, not the size of the portion or
amount of product served. How many people should
be in the test? More powerful tests are less likely to
miss a real difference or an important effect and hav-
ing a sufficient sample size is the first concern in test
design. A statistical consultant can help with estimates
of test power, but there are ultimately some subjective
decisions to be made about the size of a difference
one is willing to miss, or conversely, that one must
be sure to detect. This decision is akin to determin-
ing how big of a difference is practically meaningful or
what small differences can safely be ignored. Once the
effect size is specified, the probability of detection (one
minus beta-risk) also must be chosen. This is called
the power of the test (see Appendix E). These may
be difficult concepts for management to understand,
unless they have had extensive statistical training and
a good deal of practical experience. The level of vari-
ability also affects the test power but it can be used
as a kind of yardstick. The size of the difference you
wish to detect can be stated in terms of standard devi-
ations. A reasonable rule of the thumb for the level of
error in consumer tests is that standard deviations will
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be in the range of 20–30% of the scale (or about two
points on a 9-point scale, which has only eight inter-
vals). The range of variability can be slightly lower for
intensity scales than for hedonic scales. Variability will
also be lower for “easy” attributes, like those having to
do with appearance or some simple texture attributes,
as opposed to taste characteristics or olfactory or aro-
matic attributes, which are the most difficult of all.
Given this rule of thumb, it makes sense to have a
sample size in the range of 75–150 persons (per prod-
uct) for most tolerable levels of risk. A generally useful
equation for evaluating the required sample size based
on scaled data (like the 9-point hedonic scale) is shown
here:

N = (Zα + Zβ )2S2

(µ1 − µ2)2
(15.1)

where N is the number of consumers needed in the test,
Zα and Zβ are the Z-scores associated with your chosen
levels of alpha- and beta-risk, S is the anticipated stan-
dard deviation of the scores (or a pooled estimate), and
µ1–µ2 is the difference between means or the size of
the difference you want to be sure to detect.

Can a test be too big? Although some marketing
groups are prone to do tests with hundreds or even
thousands of respondents, this derives from a false
sense of security in numbers (Stone and Sidel, 2004).
There is a law of diminishing returns with sample
size and statistical power, just as there is in interview-
ing in general. The largest amount of information is
obtained from the first few interviews and additional
testers yield less and less new information (Sorensen,
1984). It is also possible to have a test that is too sen-
sitive, i.e., to show statistically significant results in an
area that is of little practical consequence to consumers
(Hays, 1973; Schutz, 1971). Stone and Sidel (2004)
discuss “the curse of N” in testing in the sense that
people put too much faith in large numbers. Statistical
significance must be weighed against practical signifi-
cance. It is unfortunate that the technical meaning of
statistical significance refers to issues of confidence
and likelihood, while the common everyday mean-
ing is synonymous with “important” (Sorensen, 1984).
Management must be reminded of the difference in
these usages in order to keep from over-interpreting
statistical significance, especially in large test pop-
ulations. Finally, it is better to have a small test
of high quality that is well designed, with careful

attention to detail and close monitoring of field agen-
cies than it is to have a sloppy test that uses large
numbers of consumers to compensate for the added
variability.

Of course, the sampling strategy may not be from a
single group. It is sometimes desirable to look at differ-
ent geographic locations, different demographic strata
(e.g., age, gender, income) or groups with different
product usage habits (Schaefer, 1979). There are two
reasons for stratification of the sample group. The first
is to insure a certain amount of diversity in the group
so that it mirrors the target population. Thus there
may be quotas for men, women, different age brack-
ets, etc. This kind of quota sampling is very important
in central location tests where the participants may be
recruited through a mall intercept (recruitment on site).
The second reason for stratification is that examining
differences among these groups may be part of the
research plan. If the test groups are stratified in this
way, it becomes necessary to increase the total pool to
maintain the minimum subgroup size in the range of
50–100 respondents. Obviously, such variables should
be chosen very carefully and with solid justification,
for they can dramatically increase the size and cost of
the test.

15.3.3 Test Designs

There are three primary designs used in consumer test-
ing. Side-by-side tests are sometimes done in which
both products are placed simultaneously. These are
more often performed in central location tests than
in home placements. Under controlled circumstances,
the side-by-side test will have great sensitivity, since
the same people view both products. Difference scores
(as in the dependent or paired t-test) or complete
block (repeated measures) analysis of variance can
be used to analyze the data. Comparisons are both
statistically and perceptually direct. However, putting
more than one product out simultaneously in a home
placement test can lead to confusion for the partici-
pants. There are many chances for errors in following
directions for product use, order of evaluation, and
questionnaire usage if it is self-administered. The side-
by-side evaluation is better suited to situations where
the product–person interaction can be controlled and
monitored.
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More common designs in field tests are the monadic
and monadic sequential placements. In the monadic
test, only one product is placed with an individual.
This is usually a faster test scenario, and can be com-
pleted more quickly with fewer drop-outs. However,
it requires larger numbers of participants, one group
for each product. It may not be practical if the inci-
dence of product use is fairly low or participants are
difficult to find and recruit. The statistical compari-
son between products is necessarily a “between-group”
comparison. The opportunity to use consumers as their
own baseline of comparison cannot be taken advantage
of when different groups are compared. So there is a
potential loss of sensitivity in this design due to high
inter-individual variability. Conversely, the monadic
sequential design permits the use of individuals as their
own baseline. Scale usage habits or other individual
peculiarities are the same for both products and can be
statistically factored out of the analysis. This generally
leads to a more sensitive test (discussed in the section
on the paired t-test in Appendix A).

In the monadic sequential design, the products are
placed one at a time in sequence. A questionnaire
is normally administered at the end of each prod-
uct’s usage period, while the sensory characteristics
and performance are fresh in the person’s memory.
Of course, careful counterbalancing of orders across
the subgroups is necessary. Bear in mind that the first
product used in a monadic sequential test will have the
same frame of reference (or lack thereof) as a simple
monadic design (Sorensen, 1984). So analysis of the
first product used by each person can be informative
if there is concern about sequential bias or any order
effects on the second or third product. The monadic
test leads to higher rates of attrition (non-completion).
It does permit a preference question after completion
of the second product placement.

Some situations arise in which monadic sequential
tests are inapplicable. When the substrate or evaluation
process is irreparably or severely altered by the initial
product usage, the second placement becomes unwork-
able. For example, with a pharmaceutical, a personal
care product like a hair conditioner or a home insec-
ticide, use of the product may create such changes in
the substrate that it is not practical to get a clear pic-
ture of product performance for the second product in
a sequence. Of course, multiple products can be tested
after a “wash-out” or recovery period, as is sometimes
done in pharmaceutical tests. This may not be practical

for market-driven new product tests where time is of
the essence.

The number of products to include is also a consid-
eration in test design. It is possible to test more than
two products in sequence or to use incomplete sam-
pling designs like balanced incomplete block designs
(Cochran and Cox, 1957; Gacula and Singh, 1984;
Gacula et al., 2009) to test a number of possible
alternatives. Due to the expense and effort in con-
ducting home placement or central location field tests,
the number of alternative formulas should have been
reduced to only a few highly promising candidates
through earlier phases of testing. One design to avoid is
the one-product monadic test, which is really not a test
at all, but an exercise in confirmation of the intuition of
the project supervisors. A one-product “test” puts far
too much faith in the raw value of the scores received.
As humans are very poor absolute measuring instru-
ments (see Chapter 9) and prone to context effects, the
absolute value of the scores is nearly meaningless, even
in comparison to historical data with similar products
due to a potential change of context. It is far safer and
much more scientifically valid to include a baseline
product for comparison. Examples of useful baselines
for comparison are an alternative formula, the current
product, or a repackaged sample of a competitor’s most
successful formula.

A final consideration in the test design is whether to
include a question of paired preference. In a monadic
sequential test, there may be considerable challenge
to the participants’ memory if a preference question
is asked following the use of the last product in the
sequence. Due to the possibility of sequence effects,
it is also wise to look at preference ratios for each
separate order of presentation and not just for the
overall test population. Paired preference may still
be confirmatory to comparison of (scaled) acceptabil-
ity scores, so it can be used as an additional source
of information in developing the “story” that is told
by the test and the scorecard. It is also possible to
get conflicting results from acceptance and preference
questions from some individuals. This can occur if
they change their basis for decision-making between
the two questions. For example, the acceptability ques-
tion may be answered with sensory properties like taste
or texture in mind, while the preference question may
consider preparation time or some convenience fac-
tor. It is also possible that a product may win in a
preference comparison, but because there is a highly
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dissatisfied minority, the acceptance scores for the win-
ning product are lower (an example is given in Stone
and Sidel, 2004). There is a widespread belief that
the paired preference question is somehow more sen-
sitive than acceptability ratings, but this notion lacks
empirical support. Nonetheless, considerable pressure
may arise from clients to include a preference question.
Practical considerations such as the length of the prod-
uct usage period, results from pre-testing and needs for
information for claim substantiation (claims such as
superior to, unsurpassed, equally preferred) may deter-
mine whether or not to include a paired preference
question.

15.4 Interacting with Field Services

15.4.1 Choosing Agencies,

Communication, and Test

Specifications

Field services are variously called agencies, vendors,
suppliers, and field services. Some workers in this
area prefer the term “suppliers” because they are sup-
plying research information. Choosing a good field
service or a test agency is largely a matter of experi-
ence. In a company with an ongoing product testing
program, it makes sense to keep a record of those
agencies that deliver timely and cooperative service,
demonstrate quality in their interviewing, and show
attention to detail in handling of products and ques-
tionnaires. The quality of service is not necessarily
proportional to cost—high bidders may not always
provide the best service (Schaefer, 1979). Costs of field
services will depend upon their level of involvement.
In some cases there may be two levels of contracting,
a primary agency that administers the test, and sub-
contracting field test agencies in different cities that
actually conduct the test under the direction of the pri-
mary contractor. It is important to distinguish between
full-service suppliers and basic field test sites. Full-
service suppliers can provide valuable input on the
screening and product questionnaires, the design, exe-
cution, analysis, and reporting of results. They act as
an extension of your professional team. In other cases,
the subcontractors can merely provide a testing ser-
vice, i.e., product placement and interviewing, and act
according to your specific directions.

In each agency, it is important to identify a single
person, sometimes called the field service supervisor
or project manager, who is ultimately responsible for
the conduct and quality of the test. Reporting to this
person there are often many part-time employees who
may have different degrees of training in interview-
ing techniques. The nature of interviewing is that it
attracts a lot of freelance or part-time workers. They
should have excellent interpersonal skills, the abil-
ity to follow directions, and a sense of caring and
integrity about the quality of the job (Schaefer, 1979).
The field service supervisor should visit any subcon-
tracting sites and participate in or view the testing
process if at all possible. There has to be good com-
munication, a written test specification sheet, and a
briefing of the field sites (well before the actual test)
to answer any questions. Good agencies will provide
training for the interviewers and a briefing for each
test to review respondent qualifications, instructions
for sampling, and placement and questionnaire struc-
ture. Supervision of the interviewers is important in
quality control. Practice interviews have been found to
predict field behavior and can be used as a screening
device (Blair, 1980). Problem areas include cheating
on screening and qualification of improper respon-
dents and faking of part or all of the interview (Boyd
et al., 1981). Checkups or validation of a given per-
centage of the completed questionnaires (usually by
phone) should be requested and monitored by the field
supervisor.

In using a field service for central location tests,
facilities are very important. They must allow for
proper experimental control, product serving and
preparation, and provide an environment free from dis-
tractions and conducive to sensory testing (Schaefer,
1979). If there is a central location test involved, it
may be necessary to hire an agency with facilities
for product preparation. If agencies derive most of
their business from servicing marketing research tests
and/or focus groups, they may not be set up for food
preparation and serving. So confirming the facilities,
preferably by an in-person visit, can be an impor-
tant detail. Considerations include the ability to isolate
respondents to minimize interaction and the resulting
loss of independence in their judgments. In a home
placement, the agency test facilities are less important.
Having a focus group room for follow-up discussions
is one consideration if follow-up groups are a part of
the project plan. As most testing companies maintain
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websites, some idea of the nature of the facilities can
be assessed from the pictorial material on the website.

After the agency is hired, it is important to make
sure all the test details and instructions are commu-
nicated in writing. Most of the general facts will
have already been communicated in order for the
agency to make a cost estimate. Further details are
critical to a successful test. Test specification sheets
should normally be sent to an agency, giving as many
details as possible about the test design, qualification
of respondents, quotas, deadlines and services to be
delivered, including data tabulation and analysis, if
any. Expectations about security, confidentiality, and
the professional conduct of interviewers can also be
spelled out. Arrangements for product retrieval and
disposal can be specified, as well as shipping of com-
pleted questionnaires. A sample test specification sheet
is shown in Appendix 1.

15.4.2 Incidence, Cost, and Recruitment

It is up to the sensory professional, in consultation with
the clients and perhaps with input from the field super-
visor, to determine the screening qualifications of the
participants. Certainly participants should be users of
the product category and usually people who also actu-
ally like the product—the two are often overlapping
but not completely synonymous. In addition, one needs
to determine what level of product usage is sufficient to
qualify an individual. A screening questionnaire will
normally include several usage frequency categories,
in order to eliminate those consumers that only use
the product so rarely that they are really not in the tar-
get market. A sample screening questionnaire is shown
in Appendix 2. A major consideration in determining
the cost of the test is the incidence of users of the
product category (Sorensen, 1984). What percentage
of consumers in the general population use this prod-
uct or category of products? When hiring an agency
or requesting a cost estimate, incidence figures will be
required to estimate the time required and thus the cost
of recruitment. Marketing data can be helpful in this
regard.

Another consideration is whether to recruit partici-
pants by phone, by intercept or from existing subject
pools using a database of product use information.
Some recruiting may be done over the Internet. It

has become increasingly common to recruit from a
national database and then ship the product to the con-
sumer’s home. E-mail or Internet recruiting may work
well with younger consumers. Recruiting by telephone
can be time consuming, but may provide the clos-
est approximation to a random sample of the area.
Unfortunately it may miss people with unlisted num-
bers or people with no land lines (only cell/mobile
phones), who represent a demographically different
population segment (Brunner and Brunner, 1971).
Intercepting individuals at a site like a shopping mall
has been popular when the field agency has a testing
facility in a mall. However, the nature of the sam-
ple must be carefully scrutinized due to the biases
inherent in sampling shoppers. If there are stratifi-
cation quotas for age, gender, etc., these are very
important. Some larger testing agencies may main-
tain databases on pools of local consumers who have
been recruited for general service in multiple tests.
They may have answered questions on product use and
therefore can save a lot of time in locating regular users
of the products. However, since habits and situations
change (e.g., health, dietary restrictions, family mem-
bers changing residence), it is necessary to confirm
their current suitability through the normal screening
questionnaire. Furthermore, it is important to guard
against overuse of people from standing databases or
retested subject pools. They can become jaded or take
on characteristics of professional testers. The partic-
ipants should be screened for testing frequency or
having not participated within a given time frame, usu-
ally several months. Three months between tests is
a common requirement although Resurreccion (1998)
recommends 6 months between tests.

Some other requirements and choices will affect the
activities of the field agencies. Consider the stability
of the product relative to the holding time that may
be encountered during recruitment, for example. This
is especially pertinent if there is a low incidence of
users. Recruiting time may be very long, but should
not exceed the freshness limitations on the product.
Distribution or shipping may be a factor as well. One
of the authors supervised a test in which frozen pizzas
were shipped to the United States from Europe, but due
to unexpected delays in U.S. Customs clearance were
ruined and useless by the time they reached the test
site. The method of product distribution can also be an
issue. The two primary choices are personal pickup or
mailing. Delivery to the home is also possible but can



360 15 Consumer Field Tests and Questionnaire Design

be costly. If the individuals pick up the product at the
agency facility it may be necessary to build in an extra
incentive payment to cover their time and travel costs
into the overall incentive for participation. Mailing a
product risks mishandling, misdirection or delay, and
the possibility of unknown temperature history, but it
is a low-cost alternative if product stability is good.

15.4.3 Some Tips: Do’s and Don’ts

A successful and useful relationship between a sensory
researcher and a test agency requires good communi-
cation and a good working relationship. Here are some
suggestions for situations to avoid when dealing with
field services: First, resist the temptation to change
the study design at the last minute. Do not expect to
change your design, questionnaire, number of prod-
ucts, or recruitment criteria the day before the test. The
testing service has scheduled the facilities and set up
the test based on your specifications. It may not be pos-
sible to make the changes and keep the same schedule.
It may be a simple matter to add or change a ques-
tion or two, but it may not. Second, when requesting
shelf life testing do not expect testing agencies to have
a time machine. If you need shelf life data you must be
willing to wait for it. Do not wait until 3 weeks before
the product launch if you need 6 month’s data. Even
accelerated testing and the Arrhenius equation will not
save you. Third, do not take any assumptions that the
field service will fill in details the way you expect them
to. Spell out all the test details in the test request or
specification sheet (in writing) and re-visit them dur-
ing the agency briefing (verbally) to field questions
and resolve ambiguities. It is also a good idea to visit
some of the test sites during actual testing. Finally, if
the results do not turn out the way you would like, do
not blame the field service.

15.4.4 Steps in Testing with Research

Suppliers

Table 15.3 lists steps in conducting a test using sub-
contracting field services. Most of the items are self-
explanatory and some are part of the normal test-
ing process for any sensory test (such as problem
identification). A few comments are made here as

guides to the sensory professional. Bear in mind that
the exact nature of testing differs from product to
product, among companies as a function of policies
including security concerns. Electronic means of data
collection will continue to supplant paper question-
naires.

The setup of the questionnaire takes considerable
effort and involves negotiation with the clients and cir-
culation of drafts. The contact person in the agency
may be involved to some extent as appropriate to
their level of expertise and the degree to which tasks
are delegated to the field service. They may also be
able to assist in some pre-testing of the question-
naire. Interviewers should be given explicit instruc-
tions. These usually include the following: (1) read the
questions exactly as worded, (2) do not comment on
meaning, (3) do not suggest any acceptable answers,
(4) answer every question, even if recorded as “do not
know,” and (5) do not deviate from the sequence or
skip pattern. In spite of such instructions, monitoring
shows that many interviewers do not follow these rules
(Boyd et al., 1981).

At this time, a number of details need to be arranged
concerning the physical products to be tested. If the
test is large enough, it may not be practical to have
the products made in the laboratory, and arrangements
for pilot plant or manufacturing time may be neces-
sary. Storage conditions can also be arranged to mimic
the conditions encountered in the normal distribution
system (Schaefer, 1979). If competitive products are
to be evaluated, they may need to be disguised or re-
packaged for the test to insure the blind, unbranded
nature of the test. It is important to obtain represen-
tative materials and to avoid samples that are abused
or defective (Sorensen, 1984). Samples will have to be
labeled with codes and the generic title of the product.
The label usage directions should be carefully con-
sidered as part of the test design. Finally, shipping
of products and questionnaires is arranged. For heat
or cold-sensitive products, delivery, handling, pack-
ing, and unpacking are major considerations. Weekend
delivery is sometimes difficult to coordinate. Delays
in delivery may result in temperature abuse, as in our
frozen pizza example.

Contact with the field agency is important before the
testing begins. The questionnaires should be reviewed
by their staff and any residual questions about the test,
procedures, instructions, the qualifications of respon-
dents, or the scorecard should be cleared up. A pre-test
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Table 15.3 Steps in conducting a home use test using field services (“agencies”)

Stage 1: Before the test
Identify problem, goals, and negotiate test design with client
Write proposal, including budget
Confer with statistical consultant if necessary (sample size, etc.)
Obtain approvals
Obtain bids and hire agencies
Send test specification sheets concerning participants, products, timing, questionnaires, etc.
Prepare questionnaire
Confer with client, marketing, etc. to make sure all issues are included
Pre-test, revise if necessary
Obtain samples, place request with pilot plant or other supplier
Obtain competitive product if necessary
Design labels
Choose coding system
Confirm usage instructions with developers
Get labels printed and affix to sample product
Prepare shipping orders and send product to agencies
Print questionnaires (if paper questionnaires are used)
Ship questionnaires to agencies with instructions
Visit agencies before the test or hold telephone briefings to review test details and to field any questions

Stage 2: During and after the data collection
Visit agencies to observe testing and/or participate in “callbacks”
Arrange for keypunching and data analysis confer with statistical consultant if necessary
Develop coding sheets for open-ended questions
Receive questionnaires (if paper), unpack and check for completeness, cull mistakes, incompletes
Arrange for data entry if paper
Conduct follow-up discussion groups if desired
Perform statistical analysis
Write report
Schedule presentation
Prepare visual aids for presentation
Present results
Revise, print, and distribute reports
Process bills from agencies
Archive questionnaires and data
Dispose of unused or returned product

visit to handle these matters in person is called a brief-
ing. It may be appropriate to physically visit the agency
and observe the test in progress and to participate in
some of the interviews or “callbacks” if the product has
already been placed and used. Personal visits ensure a
quality check on the conduct of the data collection and
can provide valuable insight into the degree of atten-
tion to detail paid by the agency’s professional staff
and interviewers.

Following the test, it is incumbent upon the sensory
professional to guide and oversee the data entry and
analysis, even if this has also been subcontracted. This
does not mean that a physical presence is always nec-
essary, but auditing of questionnaires, screening them

for potential fakes and eliminating botched interviews
is part of the quality control of the test process. The
person in charge of the test should also develop a cod-
ing scheme for answers to open-ended questions, to
guide the data entry process. A second area of involve-
ment comes in questionnaire validation. This is usually
achieved by some telephone callbacks from the field
supervisor to a proportion of the respondents, usually
10 or 15% to verify that their opinions were correctly
recorded and the interview was not faked (Schaefer,
1979). The sensory project leader will set these quo-
tas for validation and of course they enter into the cost
analysis of the field agency. Common areas of dif-
ficulty occur from interviewers failing to follow the
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sampling plan or screening criteria and allowing peo-
ple to slip in who are actually unqualified. Validate
the respondent’s qualifications as well as participation
and responses. Close supervision of the interviewers
by the field supervisor may help curtail many of these
problems. A large percentage of the errors may be
concentrated in just a few interviewers (Case, 1971).

A final opportunity to interact with the field ser-
vice comes after analysis of some or all of the data.
Answers to some questions, particularly open-ended
probed questions, may suggest additional issues that
require follow-up. Most agencies have or can provide
focus group interview facilities. It may be advanta-
geous to recruit a number of participants for group
interviews to probe additional issues. For example, you
can call back consumers who were very positive or
very negative (perhaps in different discussion groups)
to further probe their reasons for liking or disliking the
product. Review of the questionnaire results may sug-
gest potential alternative formulations or line extension
opportunities or features that need to be added to meet
consumers’ expectations.

15.5 Questionnaire Design

15.5.1 Types of Interviews

The exact form and nature of the research instrument
will depend upon the test objectives, constraints of
funding or time and other resources, and the suitability
of the interview format. Interviews may take place in
person, be self-administered by paper, conducted via a
website, or by phone. Each method has advantages and
disadvantages (Schaefer, 1979). Self-administration is
obviously the least expensive, but does not lend itself
to probing of open-ended questions, is open to respon-
dent confusion and mistakes in following directions,
and is not suitable for complex issues that may require
an explanation. There is no insurance that the person
will not read ahead or scan the entire questionnaire
before answering any questions. They may not fol-
low the order of questions as printed on the survey.
Cooperation and completion rates are poorer with self-
administration (Schaefer, 1979). In addition, illiteracy
is a problem so a self-administered questionnaire may
simply be unusable. Many people will try to hide their
inability to read.

Telephone interviews are a reasonable compromise,
but may not lend themselves to complex multi-point
scales—questions are necessarily short and direct.
Respondents may also feel an urge to limit the time
they spend on the phone and may produce shorter
answers to open-ended questions (Groves, 1978).
Telephone interviews are somewhat prone to early ter-
mination by the respondent. The in-person interview is
the most flexible and the questionnaire can be complex
and include a variety of scales since the interviewer
and questionnaire are both present for clarification
(Boyd et al., 1981). Visual aids can be brought along
to illustrate scales and scale alternatives if the inter-
viewer is reading the questionnaire to the respondent.
Advantages of this method may be offset by the higher
cost (Boyd et al., 1981).

Consider carefully the length of the interview. A
good rule of thumb for the length of consumer sur-
veys is about 15–20 min, the attention span of most
adults. The issue is not the number of questions, but
the time commitment. Boredom and extraneous factors
will begin to take a toll on the quality of responses
if the time required is too long (Schaefer, 1979).
Questionnaires that are too long will annoy respon-
dents and may generate negative responses due to
declining interest and change of attitude toward the
interview. Length problems can arise when many indi-
viduals, perhaps both in research and marketing, have
input into the survey issues and thus the number of
questions gets too large. A good test for the necessity
of each question is whether it is an issue that you need

to know or whether it would simply be nice to know.
The test procedure should not incur any costs to the
participant like return postage for a mailed question-
naire. Prepaid incentives can reduce nonresponse rates
(Armstrong, 1975; Furse et al., 1981).

15.5.2 Questionnaire Flow: Order

of Questions

When designing a questionnaire, it is useful to make a
flow chart of the topics to be covered. The flow chart
can be very detailed and include all skip patterns or
it may simply list the general issues in order. A flow
chart can be very helpful to clients and other person-
nel who review the instrument before the actual test.
It allows them to see the overall plan of the interview.
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The primary rule for questionnaire flow is to go from
the general to the specific. With food and consumer
product testing, this requires asking about the person’s
overall opinion of the product first. An overall opinion
question is recommended using the 9-point balanced
hedonic scale. It is immediately followed by open-
ended probing of the reasons for liking or disliking
with an appropriate “skip pattern.” The skip pattern
drops to reasons for liking if the respondent was posi-
tive and then probes any dislikes. Conversely, the skip
pattern next probes any reasons for disliking if the per-
son was negative and then follows up to see if there
were any positive characteristics. Open-ended ques-
tions (discussed further below) provide an important
opportunity to get at some reasons for likes and dis-
likes in the respondents own words before other issues
are brought to mind. Next, more specific attributes are
investigated through the use of intensity, just-right, or
liking scales (e.g., appeal of taste, appearance, texture).
Finally, overall satisfaction or some other correlated
index of liking can be checked again at the end and
a preference question asked if more than one product
has been tested.

The important principle here is to ask overall
acceptability first, before specific issues are raised.
These issues may not have been on the person’s mind
and may take on false importance if asked before the
overall acceptance question. Respondents will try to
figure out what the issues are and give the right answer
or try to please the interviewer (Orne, 1962; Orne
and Whitehouse, 2000). As the interview is a social
interaction, respondents will adjust their answers to
what they feel is appropriate for the situation (Boyd
et al., 1981). They will begin to use the terminology
that you introduce in the specific attribute questions
(Sorensen, 1984). Also, consumers are naturally in
an integrative frame of mind when thinking about a
product (Lawless, 1994). Questions about individual
attributes may cause respondents to become unrealis-
tically analytical.

In addition to the screening questions that qualify
a person for participation, other personal information
can be gathered at the time of the final interview.
Demographic information about personal character-
istics such as age and income, number of family
members, residence, occupation, and so on can be col-
lected. Some of this material is of a sensitive nature.
Participants may feel some reluctance about disclos-
ing their income level, for example. Before the test

proceeds, it is important to assure them of the confi-
dential nature of the data and its end use. It is also
best to ask sensitive demographic questions last. At
that time the participant should feel comfortable and
familiar with the interview process and may feel some
rapport with the interviewer. Since they have already
committed to answering questions during the product-
oriented phase of the interview, it should seem natural
to simply continue along and answer a few questions
about their personal situation.

In summary, the questioning should follow this
flow under most circumstances (Sorensen, 1984): (1)
screening questions to qualify the respondent if they
have not been previously qualified; (2) general accept-
ability; (3) open-ended reasons for liking or disliking;
(4) specific attribute questions; (5) claims, opinions,
and issues; (6) preference if a multi-sample test and/or
rechecking acceptance via satisfaction or other scale;
(7) sensitive personal demographics. An example of
a well-designed questionnaire for a consumer product
test is shown in Appendix 3.

15.5.3 Interviewing

Participating in a few interviews can be a valuable
exercise to get an impression of how the questionnaire
flows in practice, as well as providing an opportunity
to interact with actual respondents and get an appreci-
ation of their opinions and concerns first hand rather
than exclusively in a data summary. Of course, this
is a time-consuming process and the potential value
must be weighed against other uses of professional
time. If the sensory professional actually takes part
in the interview process, there are several guidelines
to keep in mind. Remember to introduce yourself.
Establishing some rapport with the respondent is use-
ful in getting them to volunteer more ideas. A small
to moderate degree of social distance may provide
the most unbiased results (Dohrenwend et al., 1968).
Second, be sensitive to the time demands of the inter-
view. Try not to take more time than expected. If asked,
inform the respondent about the approximate length
of the interview (Singer and Frankel, 1982). This may
hurt the overall agreement rate (Sobal, 1982), but will
result in fewer terminated interviews. Third, if con-
ducting an in-person interview, be sensitive to body
language. Probe issues if there are signs of discomfort.
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Fourth, do not be a slave to the questionnaire. It is
your response instrument. While the agency personnel
should be cautioned about deviating from the flow, the
sensory project leader can be more flexible.

Some of the response types may not be familiar to
the participants. Be prepared to explain scales, using
examples like “thermometers” or “ladders.” Rank
ordering can be described as analogous to the finishing
order of a horse race or the order of Olympic medals.
Interval scales can be likened to expressing the dis-
tance between the horses that finish a race (Schaefer,
1979). Ratio scales can be described as pails of water
that are half full, twice as full, and so on. However,
the concept of ratio scaling and magnitude estima-
tion is sometimes difficult for consumers (Lawless and
Malone 1986).

At the close of the interview, give the person a
chance to add anything that has recently come to mind
or that they might have omitted earlier in the struc-
tured interview. For example, “Is there anything else
you’d like to tell me?” Successful interviewing, like
focus group moderation, requires a fair amount of sen-
sitivity and interpersonal skills. Being a good listener
helps. Bear in mind that the interview is a social inter-
change. The interviewer should never “talk down” to
the respondent or make them feel subordinate. Getting
cooperation and honest responses can be achieved by
rewarding the respondent by showing positive regard,
verbal appreciation, and making the respondents feel
their opinions are important (Dillman, 1978). Chances
for embarrassment should be minimized in demo-
graphic questions.

15.6 Rules of Thumb for Constructing

Questions

15.6.1 General Principles

There are a few general principles to keep in mind
when constructing questions and setting up a question-
naire (shown in Table 15.4). One should never assume
that people will know what you are talking about,
that they will understand a question or that they will
approach the issue from a given frame of reference
(Schaefer, 1979). Pre-testing the instrument can expose
faulty assumptions. Each of these rules is explained
below. Resurreccion (1998) notes that it is wise to keep

Table 15.4 Ten guidelines for questionnaire construction

1. Be brief.
2. Use plain language.
3. Do not ask what they do not know.
4. Be specific.
5. Multiple choice questions should be mutually exclusive and

exhaustive.
6. Do not lead the respondent.
7. Avoid ambiguity.
8. Beware effects of wording.
9. Beware of halos and horns.

10. Pre-testing is usually necessary.

the direction of all scales the same, to avoid confu-
sion. A current trend in opinion polling is to vary the
direction on scaled questions (e.g., good to bad, then
bad to good) to keep the respondent from acting too
mechanically without thoroughly reading and thinking
about the question. In our opinion, the value of the
reversals does not outweigh the liabilities and potential
confusion.

15.6.2 Brevity

Keep the question as short as possible. Brevity
affects both respondent motivation and comprehen-
sion. Brevity applies to the overall questionnaire as
well. Good visual layout with lots of “white space”
can help avoid problems. It has become fashionable
in attitude surveys to have a list of issues or opinion
statements that are followed by “importance” scales.
The idea is that attitude should be weighted by impor-
tance in the subsequent analysis and modeling. As
sensible as this sounds, the presentation of dozens of
attitude statements for two sets of ratings (agreement
and importance) can cause a good deal of apprehension
on the part of the respondent. A monotonous format
can also arise if too many products are rated on too
many scales. This can look especially tedious if it takes
for form of a matrix of boxes for the respondent to
fill in. A matrix format may save space for repeti-
tive questions but it may also result in non-response
and incomplete questionnaires (Rucker and Arbaugh,
1979).

15.6.3 Use Plain Language

A common problem with consumer tests designed
to support new product development or process
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optimization is that the research staff knows a technical
language, complete with acronyms (e.g., UHT milk).
Qualitative probing and pre-testing should indicate
whether consumers understand the technical issues and
terminology. If they do not, such terms are better
avoided, even if it means that some issues are dropped.

15.6.4 Accessibility of the Information

Do not ask what they do not know. Only ask for infor-
mation that a reasonable person has available and/or
accessible in memory. Events that intervene can cause
“juggling” of the facts. Respondents may have selec-
tive recall of different factors and not all memories
decay at the same rates. The initial acts of perception
themselves are selective—people usually note what
they expected to see (Boyd et al., 1981). Since memory
and perception present these challenges to the valid-
ity of the interview process, do not make things worse
by placing unreasonable demands on the respondent.
Common sense can be a useful guide here and also
pre-testing to see if the question is reasonable. Asking
for recall of exact amounts or about time frames that
are too wide can create difficulties. Consider the ques-
tion, how many times did you buy milk in the last
year? Asking for product usage over a weekly or
monthly period may bring answers to mind more eas-
ily. Resurreccion (1998) gives the example of “How
much salt do you use when you prepare food?” This
is not only hard to estimate, as it may differ for the
specific food, but it is vague, an additional problem, as
discussed in the next guideline.

15.6.5 Avoid Vague Questions

Be specific. A common mistake is the assumed frame
of reference. The person that designs the interview may
be addressing one issue, or the project leaders may
assume some delimited frame of reference, but con-
sumers may go in another direction or may range much
more widely in their interpretations. Another common
problem is the English pronoun, you, which is used
both in singular and plural. For the singular mean-
ing, it is better to say, “you, yourself,” so the person
does not interpret this as meaning “you and/or your

family.” Questions about product use can be easily
misconstrued. For example, “When did you last eat a
pizza?” Does this include chilled pizzas, frozen piz-
zas, hot-delivered pizzas as well as those consumed in
restaurants? Providing a checklist of alternatives can
be informative, especially if a blank “other” category
is left for listing what you may have left out. Questions
about “usual” habits can also be vague. For example,
“What brand of ice cream do you buy?” is vague. A
more specific phrasing is, “What brand of ice cream
have you, yourself most recently purchased?”

15.6.6 Check for Overlap

and Completeness

Multiple choice questions should be mutually exclu-
sive and exhaustive. Mistakes here are easy to make
in demographic questions and screening items, such
as marital status or educational levels. Questions about
age and income level can have overlapping categories
if one is not careful. This can also be avoided with care-
ful pre-testing and review of the draft questionnaire
by colleagues. Remember to allow for a “don’t know”
or “no answer” category, especially in demographics
and attitude questions. If multiple combinations of the
alternatives are possible, make sure these are listed or
otherwise explicit or use a checklist with “check all
that apply.”

15.6.7 Do Not Lead the Respondent

Avoid questions that suggest a correct or desirable
answer. Consider these questions: “Given the ease of
preparation, what is your overall opinion of the prod-
uct?” “Should we raise prices to maintain the quality of
cheese or should we keep them about the same?” Both
of these questions suggest an answer that the inter-
viewer is looking for. There is always strong social
pressure to give an appropriate answer just to please
the experimenter (Orne, 1962; Orne and Whitehouse,
2000). Unbalanced value questions can have a leading
influence. For example, “How much did you like the
product?” may seem relatively harmless. However, the
use of the word “like” suggests an acceptable response.
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A balanced question would be “how much do you like
or dislike the product?” “What is your overall opinion
of the product?” is an even more neutral phrasing.

15.6.8 Avoid Ambiguity and Double

Questions

Along with being specific, avoiding ambiguous ques-
tions is easier than it sounds. One common problem
is that verbs in the English language have multiple
meanings and we often determine which meaning is
appropriate by the context. Consider the classic exam-
ple “check your sex.” Does “check” mean to mark,
to restrain, or to verify? Another common problem
is the construction of questions with multiple sub-
jects or predicates. The question, “Do you think frozen
yogurt and ice cream are nutritious?” is an example
of the classic problem called a double-barreled ques-
tion. Logic dictates that the use of the conjunction
“and” requires that both parts be positive for there to
be an overall positive response. However, consumers
are not always logical and may respond positively to
this question even though they think only one is nutri-
tious. It is also easy for product developers to set up
double-barreled questions for sensory characteristics
that they see as always correlated. For example, if a
cookie is usually soft and chewy but as aging occurs
changes to hard and brittle, there is a strong tempta-
tion to combine these adjectives into a single question
or a single scale. However, this ignores the possibility
that some day a product may in fact be both hard and
chewy.

15.6.9 Be Careful in Wording: Present

Both Alternatives

As in the case of leading questions, wording a question
with only positive or negative terminology can be influ-
ential on respondents. The literature on opinion polling
shows that dichotomous questions will elicit differ-
ent answers depending whether both alternatives are
mentioned. If only one alternative is mentioned in the
question, different frequencies of response are found
depending upon which alternative is mentioned in the

question (Payne, 1951; Rugg, 1941). Less-educated
respondents are more likely to go along with one-
sided agree/disagree statements (Bishop et al., 1982).
Try to give all explicit alternatives in asking opinion
questions. For example, “Do you plan to buy another
microwave in the future, or not?” If possible, balance
the order of the alternatives so that one does not have
precedence on all questionnaires.

15.6.10 Beware of Halos and Horns

Halo effects are biases involving the positive influence
of one very important characteristic on other, logi-
cally unrelated characteristics. Someone might like the
appearance of a product and consequently rate it more
appealing in taste or texture as well. Asking questions
only about good attributes can bias the overall rating
in a positive direction. Conversely, asking questions
about only defects can bias opinion in a negative way.
As stated above, it is better to get overall opinion rat-
ings before more specific issues are probed. Otherwise
issues may be brought to mind and be given more
weight than would otherwise occur.

15.6.11 Pre-test

Pre-testing questionnaires are necessary (Shaefer,
1979). At the very least, a few colleagues should
review the draft for potential problems in interpre-
tation. If the questionnaire will be administered by
a group of interviewers, they should also look over
the draft to see if there are potential problems in the
flow, skip patterns, or interpretation. If at all possi-
ble, a small group of representative consumers should
go through the items, even if it is a “mock” test with
no actual product usage. A pre-test with consumers
will also provide the opportunity to see whether items
and issues are in fact applicable to all the potential
respondents. For example, screening questions about
food habits in the last month may not be appropriate
for someone who was on vacation with small children
and ate an unusually large amount of convenience
foods.
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15.7 Other Useful Questions:

Satisfaction, Agreement,

and Open-Ended Questions

15.7.1 Satisfaction

A consumer field test questionnaire can include some
additional types of questions that may be useful to
clients. A common issue is the degree of satisfac-
tion with the sensory properties or performance of
the product. This is often highly correlated with over-
all acceptance, but may be somewhat more related
to performance relative to expectations than it is to
acceptability. A typical phrasing would be “All things
considered, how satisfied or dissatisfied were you with
the product?” Typically, a short 5-point scale is used,
as shown in Table 15.5. The appropriate analysis for
a short scale like this is by frequency counts, some-
times collapsing the two highest alternatives into what
is known as a “top two box score.” Do not assign inte-
ger values to the response alternatives and assume the
numbers have interval properties and then do paramet-
ric statistical analyses such as taking means and per-
forming t-tests. Frequency counts and nonparametric
tests like chi-square are appropriate.

Some variations on satisfaction scales include pur-
chase intent and continue-to-use questions. Purchase
intent is difficult to assess with a blind-labeled sensory
test since the pricing and positioning of the prod-
uct relative to the competition are not specified and
label claims and advertising claims are not usually pre-
sented. So this is like trying to measure purchase intent
in an information vacuum and it is not recommended.
A variation that is a little more palatable is intent of
continued use: “If this product were available to you
at a reasonable price, how likely would you be to con-
tinue to use it?” A simple 3- or 5-point scale can be

constructed based on “very likely” to “very unlikely”
and nonparametric frequency analysis done as in the
case of the short satisfaction scale.

15.7.2 Likert (Agree–Disagree) Scales

Attitudes can also be probed during a consumer test.
This is often done by assessing the degree of agreement
or disagreement with statements about the product.
The agree/disagree scales are sometimes referred to as
“Likert” scales for the person who first studied them.
An example follows: “Please check a box to indicate
your feeling about the following statement: Product X
ends dry skin.” Scale points are shown in Table 15.5.
Such information can be important in substantiating
claims about consumer perception of the product in
subsequent advertising and label information and for
defense against any legal challenges of competitors.
Broader issues can be studied such as product-usage
situations, e.g., “I would allow my children to prepare
this snack in the microwave.”

15.7.3 Open-Ended Questions

An example of an open-ended question is “What did
you like about the product?” No answers or any check-
list of alternatives is given. The person can answer
in his or her own words. The answers are generally
probed if the interview is in-person or by phone. That
is, when the person is done answering, the interviewer
says something like “Is there anything else?” Such
probes are generally recorded on the questionnaire
with a code like w/e for “what else?”

There are different opinions about the usefulness
of open-ended questions (Stone and Sidel, 2004).

Table 15.5 Examples of satisfaction and Likert scales

Overall, how satisfied or dissatisfied were you
with the product? (Check one answer)

Do you agree or disagree with the following statement:
This product ends dry skin. (Check one answer)

____ Very satisfied _____ Agree strongly
____ Somewhat satisfied _____ Agree
____ Neither satisfied nor dissatisfied _____ Agree slightly
____ Somewhat dissatisfied _____ Disagree slightly
____ Very Dissatisfied _____ Disagree

_____ Disagree strongly
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Table 15.6 Advantages and
disadvantages of open-ended
questions

Advantages Disadvantages

Easy to write Difficult to code/combine answers
Participants use their own words Favors verbal/intelligent consumers
Can uncover new issues; problems Unintelligible/ambiguous answers
Can confirm other results Statistical analysis difficult
Allows opinionated respondents to “vent”
Amenable to probing, follow-up

Open-ended questions have advantages and disad-
vantages (Resurreccion, 1998). A summary of these
is listed in Table 15.6. A sense of their usefulness
can be gained by experience and the sensory profes-
sional must decide whether they are worth the trouble.
They can provide corroborating evidence for opin-
ions voiced elsewhere in the questionnaire and can
sometimes provide insights about issues that were not
anticipated in setting up the more structured parts of
the survey. They can also allow respondents a chance
to vent dissatisfactions, which if left unprobed may
lead to potential horns effects (negative halo effects)
on other logically unrelated questions (see Chapter 9).
One of our colleagues refers to this as “dumping”
their frustrations. Aggregating responses or reporting
only frequency counts can hide important information
from a few insightful respondents. Sorensen stated that
“sometimes one articulate respondent is worth a buck-
etful of illiterate rambling” (1984, p. 4). The sensory
project leader should read over each of the verbatim
remarks if time permits.

Their are several advantages to open-ended ques-
tions. They are easy to write. They are unbiased in
the sense that they do not suggest specific responses,
issues, or characteristics. They are courteous to opin-
ionated respondents who may feel frustrated or limited
by the issues in a more structured instrument. They
allow for issues to come up that may have been omit-
ted from the structured rating scales and fixed-answer
questions. They are good for soliciting suggestions,
for example, opportunities for product improvement,
added features or variations on the theme of the
product. They may confirm information gathered in
the more structured part of the attribute questions
(Sorensen, 1984).

The disadvantages of open-ended questions are sim-
ilar to those that arise in qualitative research methods.
First, they are difficult to code and tabulate. If one
person says the product is creamy and another says
smooth, they may or may not be responding to the

same sensory characteristics. The project leader has
to decide which answers to group and count together
as the same response. Obviously, there may be experi-
menter bias in the coding and aggregation of different
responses into categories. If the questionnaire is self-
administered, it is sometimes difficult to read the hand-
writing of respondents. Responses may be ambiguous
or misleading. Consider “not like real chocolate.” Does
the statement refer to taste or texture? Respondents
may omit the obvious, that is feel that an issue does
not require commentary since it is so clear. The open-
ended question is more readily answered by more
outspoken or better educated respondents. There will
be a higher non-response rate to open-ended than to
fixed-alternative questions. Finally, statistical analysis
of the frequencies of response is not straightforward
(Sorensen, 1984). Multiple responses can be given by
the same person, so they cannot be treated as counts of
independent observations.

Roughly the opposite situation holds for closed-
option questions. There is tight control over the topic
and possible responses. They are easily quantifiable
and statistical analysis is straightforward. But they can
give a false sense of security. Remember that people
will answer any question, even if it is unimportant, mis-
understood, nonsensical to them or even an imaginary
issue. This is well known in opinion polling. The clas-
sic example in marketing research is the high level of
responses obtained for the “Metallic Metals Act,” a fic-
titious construction of a pollster’s imagination (Boyd
et al., 1981). Finally, the fixed-option question is not
always amenable to further probing. The story ends.

15.8 Conclusions

Conducting a skillful consumer field test is a com-
plex activity. For the sensory professional used to
the analytical world of trained panels and laboratory
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control, the number of issues raised, the decisions in
test design, the time and cost compromises, and the
new skills needed can be quite daunting. Textbooks
on marketing research (e.g. Boyd et al., 1981) can
provide general guidance. Resurreccion (1998) con-
tains many step-by-step guidelines for conducting con-
sumer field tests. One approach is to subcontract the
entire field test—from design to execution, analysis
and reporting—to a full-service field agency. This is
a costly solution, but one that may save the sen-
sory project leader a lot of time and avoid common
mistakes. Enlisting the guidance of experienced pro-
fessionals from within the company or from the field
agencies in the planning and design of the question-
naire can be very valuable. The sensory professional
must be willing to accept criticism and advice and
be willing to make changes in the test plan and
questionnaire. Also bear in mind that the consumer
interview is social process and that the quality of the
data is determined in part by the social skills of the
field interviewers. This underscores the need to have
good field agencies with experienced supervisors and
interviewers.

Reporting results from consumer field tests is
much like any other sensory test, except that the
amount and detail of the numerical results are often
greater. The methodology and screening criteria (usu-
ally placed in an appendix) should be sufficiently
detailed that another investigator, if given the same
products and questionnaires, would obtain the same
results (Sorensen, 1984). It is important to extract
the important pattern of results rather than burying
the reader in endless summaries of frequency counts
and descriptive statistics. The sensory project leader
should know the key issues and report conclusions

and recommendations in order of importance. More
detailed results that are broken down by location or
demographic segments can be appended. Often multi-
variate analysis such as principal components analysis
or regression of acceptance against key driving vari-
ables can focus the conclusions. Attributes are often
correlated in consumer work and there is a strong
tendency for “latent variables” or underlying causal
factors to drive several items on the questionnaire.

As noted at the beginning of this chapter, some-
time contentious issues related to company policy can
arise in field testing, sometimes due to the apparent
similarity of a consumer test to the activities of a mar-
keting research group. It is important to communicate
the value of blind “sensory” testing (with minimal
concept) to upper management. Sensory field testing
can provide vital information to product developers
concerning the achievement of desired product char-
acteristics and the potential for success. Sometimes
management may decide to forego the sensory (blind-
labeled) field test. Common justifications for skipping
steps include the following: (1) other evidence of clear
product superiority to competition, (2) high anticipated
profitability, (3) unique attributes relative to compe-
tition, and (4) potential for competition launching a
similar product first (Schaefer, 1979). The value of
the research can be measured by its impact on busi-
ness decisions. Timing may be critically important. If
it takes too long to conduct the research, decisions may
be made before results are reported (Sorensen, 1984).
This can be an unfortunate and frustrating experience
for sensory project leaders. Planning ahead and work-
ing with field agencies that can provide timely results
can help avoid testing that is merely confirmatory, or
in the worst case, not even considered at all.
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Appendix 1: Sample Test Specification

Sheet

Client____________________________ Field Service____________________________

Contact Person Info:

_________________________________ _______________________________________

_________________________________ _______________________________________

Number of products to be tested:_____3_____

Placement: _____monadic sequential, counterbalanced orders____

Coding: ____Random, 3-digits, supplied by client____

Target for placement: ____12/24/96____

Target for completion of test:___12/25/96___

Placement time: ___one week per product____

Interview procedure: telephone callback following completion of each use phase

Minimum number of respondents:____150____

RESPONDENT QUALIFICATION:

Female, heads of household between 21 and 65 inclusive.

Users of aerosol air fresheners, purchasing more than 2 cans per year

Disqualify: if any family members

employees of consumer products companies

marketing research, marketing or advertising companies

Disqualify if: participated in any product test or focus group in the last six months

Special handling requirements:___none_____

Unused/returned product:___ship to client_______

CLIENT PROVIDES:

Questionnaires (screening and callback), labeled products, instructions for placement.  

Coding scheme for data tabulation including open-ended questions.

AGENCY PROVIDES:

Placement, interviews (screening and callback), product retrieval.

Tabulation and entry of data.  NO STATISTICAL ANALYSIS REQUIRED.

Assurance of confidentiality, adherence to MRA standards, timely completion and quota as

stated.
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Appendix 2: Sample Screening

Questionnaire

secivreShcraeseRyrraHdnadrahciR,samohT
sionillI,ogacihC

SCREENER 

:enohPemoH:emaN

:enohPkroWsserddA

4321:egAelaMelameF:redneGpiZ/etatS/ytiC

Day/Date of Stud y: Day: Date: Group Time: 

:slaitinIreweivretnI:detiurceRemiT/etaD

Eth:  AFRICAN AMERICAN   
        CAUC, HIS, ASIAN, OTHER = ALL OTHER ETH. 

USER                   USER 1        USER 2  

• USER 1 HEAVY USER – ONCE A WEEK OR MORE 

• USER 2 LIGHT USER – AT LEAST ONCE A MONTH BUT NO MORE THAN ONCE A WEEK 

Hello, this is _____ from ___________________.  We are conducting a survey and would like to ask you some 
questions. 

1. Are you the male/female head of your household?  

YES -- CONTINUE 
NO -- TERMINATE 

DON’T KNOW -- SCHEDULE CALL BACK 

 MALE  20 % 

FEMALE  80 % 

2a. When it comes to grocery shopping, would you say…?

You do all or most of the grocery shopping for your household (CONTINUE) – skip Q. 2b 

You share the responsibility equally with someone else (CONTINUE) – skip Q. 2b

Someone else in your household does most of the shopping (CONTINUE) – ask Q. 2b 

Someone else in your household does all of the shopping (CONTINUE) – ask Q. 2b 

2b. Which of the following statements best describes you…?

Although someone else in my household does most of the grocery shopping, I 
request some specific products and brands that I want them to buy 

(CONTINUE) 

Although I request specific products to buy, the person in my household who 
does most of the grocery shopping generally decides which brands of these 
products to buy 

(TERMINATE)

The person in my household responsible for the grocery shopping makes nearly 
all of the decisions on which products and brands to buy 

(TERMINATE)

3. Which of the following groups includes your age?  AGE: ____    DOB: ________ 

Under 21 TERMINATE 

21–29  
30–39  
40–49  
50–65  
66 and over TERMINATE 

refuse TERMINATE 

ALWAYS INCLUDE TO OBTAIN SOME DISTRIBUTION 

4. Have you participated in a food or beverage survey/study in the past 3 months?  (IF THREE MONTHS 
OR LESS, TERMINATE) 

      _______________________________ 
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5.  Do you or any member of your immediate family or a close friend . . .  ? 

Work for an advertising agency  
Work for a marketing agency  
Work for a broadcast or print media  
Work for a public relations firm  
Work for a marketing research company 
or a marketing research department of a 
company 
Work for a food or beverage 
manufacturer, processor or wholesaler 
Have a management position in a 
company that sells food or beverages 
(IF YES TO ANY, TERMINATE) 

6. Now, think about some specific companies, are you, any member of your household, relatives or close 
friends employed by . . . (READ LIST ONE AT A TIME.) 

Borden NO 

Con Agra YES NO 
Clorox YES NO 
Unilever YES NO 
Nabisco YES NO 
Altria YES NO 

YES
Sara Lee YES NO 
Kraft Foods YES NO 
Hellmann’s YES NO 
Ken’s YES NO 
Lipton YES NO 
Procter & Gamble YES NO 
Hunt’s YES NO 
Heinz YES NO 
Reckitt Benckiser YES NO 

)ETANIMRET--YNAOT"SEY"FI(

7a.      Please tell me if any of the following applies to you.  Do you have . . . ?  (Read list – if any number 
circled, thank and terminate including don’t know). 

ANY MEDICAL RELATED DIETARY 
RESTRICTIONS -- Thank and TERMINATE 

-- Thank and TERMINATE 

-- Thank and TERMINATE SETEBAID
WONKT’NOD

7b. Are you allergic or sensitive to any food/food ingredients?  (Do not read list). 

YES -- Thank and TERMINATE 

NO -- CONTINUE 
DON’T KNOW -- Thank and TERMINATE 

7c. Have you had gastric bypass surgery?   

YES -- Thank and TERMINATE 
NO -- CONTINUE 

7d. ASK FEMALES ONLY:  Are you currently pregnant or nursing?   

YES -- Thank and TERMINATE

NO -- CONTINUE 
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8. Which of the following products have you purchased and eaten in the past month? (READ LIST) 

9. You mentioned that you purchase and eat pasta.  Which of the following types of pasta have you 
personally purchased and eaten in the past month? (READ LIST AND RECORD BELOW) 

HTNOMTSAP

inirtsiniF

inamodopoD

inihccerO

azzehcititS

ittelozzaF

inolatnaP

illobocnarF

* TERMINATE IF NO TO ALL 

10. How often you do personally purchase and eat pasta products? 

__ QUALIFIES AS USER 1 
Three or more times a week __ QUALIFIES AS USER 1 
At  least  once a week 
Once every two-three weeks __ QUALIFIES AS USER 2 
At least once a month __ QUALIFIES AS USER 2 
Less often than once a month __ TERMINATE 

11. For our study, we need to speak to people of different ethnic backgrounds.  Which ethnic background 
do you consider yourself? (READ LIST) 

 White/Caucasian  

African-American  
 Hispanic/Latino 

Asian-American 
 Other _________________     

INCLUDE TO REPRESENT US CENSUS – NOT MANDATORY 

Mayonnaise 
Ketchup  
Meats/Chicken 
Bottled Salad 
Dressing 
Pasta   (MUST BE CHECKED.  IF NOT, TERMINATE) 

BBQ Sauce  
None (DO NOT READ)   (TERMINATE) 

12.  Would you be interested in trying several samples of pasta products WITH SAUCE? 

Yes -- CONTINUE 
No -- Thank and TERMINATE 

Thank you. We are conducting a test. The test will be conducted on ________ and will take . And you 
will be paid $_____ for your time. Would you be interested?   

)ETANIMRET–",ON"FI(

)NOITATIVNIOTEUNITNOC–",SEY"FI(

EHTDAERESAELP,SEIFILAUQTNEDNOPSERFI
FOLLOWING VERBATIM: 

Because you would be participating in a research study on food products, it is important that you follow the 
following guidelines: 

 Bring a picture ID that verifies your name and age. 
 Do not eat a large meal before the study. 
 Refrain from smoking or drinking coffee at least 30 minutes before the study. 
 Do not wear any fragrances on this day.  (Those that arrive with fragrances on will be asked to leave 

without compensation.) 
 Arrive at least  10–15 minutes before your scheduled time to allow for check-in processes.  Late arrivals 

cannot be guaranteed admittance or compensation. 
 If you need glasses to read, please bring them as you will be reading and answering a questionnaire. 
 To eliminate distractions and because we cannot provide supervision, no children under 12 will be 

allowed to wait alone at the facility. 

Do you have any problems with these guidelines?  (IF "YES", TERMINATE) 
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Appendix 3: Sample Product

Questionnaire

Mary & Beverley’s Research Services 

Chicago, IL 

Serial #

          User #   

 Pasta  Fazzoletti 

NAME: _____________________________________________________________________________________________  

ADDRESS: _________________________________________________________________________________________  

CITY: _______________________________ STATE: ____________________________ ZIP CODE: ________________  

TELEPHONE #:  (AREA CODE) ________________________________________________________________________  

City—Circle Below 

mahgnimarF2—anabrU1Dallas— -3 

naS5—apmaT4—elttaeS Diego—6 

Before you taste each product, take a sip of water and bite of cracker so that you remove any lingering

tastes in your mouth. You will then be given a serving of the fazzoletti to eat. Please make sure to at

least one-half of the product so that you can form an opinion. Once you are done with the entire ques-

tionnaire, there will be a 5-min break and then you will go on to the next product. The same procedu-

res will be followed for the second product. 

Circle the number on the item you are tasting. 

Sample # 387              426     Serial #  

PLEASE TASTE THE PRODUCT AND ANSWER THE FOLLOWING 

QUESTIONS. PLEASE EAT AT LEAST ONE-HALF OF THE PRODUCT SO THAT 

YOU WILL BE ABLE TO FORM AN OPINION.

1. Everything considered, how much do you LIKE or DISLIKE this product 

OVERALL?  (“X” ONE BOX BELOW)   

Like it extremely ............  

Like it very much ...........  

Like it moderately ..........  

Like it slightly ................  

Neither like nor dislike it  

Dislike it slightly............  

Dislike it moderately .....  

Dislike it very much ......  

Dislike it extremely .......  

2a. What, if anything, did you LIKE about the product?  (WRITE IN BELOW) 

(INTERVIEWER PROBE FOR COMPLETENESS—THIS PROBE 

INSTRUCTION IS NOT SHOWN ON THE QUESTIONNAIRE) 
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2b. What, if anything, did you DISLIKE about the product?  (WRITE IN BELOW) 

(INTERVIEWER PROBE FOR COMPLETENESS—THIS PROBE 

INSTRUCTION IS NOT SHOWN ON THE QUESTIONNAIRE) 

WE WOULD LIKE YOU TO EVALUATE THE PRODUCT ON A NUMBER OF 

CHARACTERISTICS, USING THE SCALE INDICATED BELOW EACH 

QUESTION.

THINKING SPECIFICALLY ABOUT THE WAY THE PASTA PRODUCT 

LOOKS . . . 

3. How much do you LIKE or DISLIKE the OVERALL APPEARANCE of 

thisP?  (“X” ONE BOX BELOW)  

Like it extremely ............  

Like it very much ...........  

Like it moderately ..........  

Like it slightly ................  

Neither like nor dislike it  

Dislike it slightly............  

Dislike it moderately .....  

Dislike it very much ......  

Dislike it extremely .......  

4. And how would you DESCRIBE the COLOR of this fazzoletti? (“X” ONE 

BOX BELOW) 

Much too light ........................ 

Somewhat too light ................ 

Just about right ....................... 

Somewhat too dark ................ 

Much too dark ........................ 
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Chapter 16

Qualitative Consumer Research Methods

Abstract Qualitative methods are used to probe issues in depth with small groups
of consumers. They can provide valuable information about product concepts and
prototypes. This chapter describes quantitative methods and especially the use of
focus groups. The setup, conduct, analysis, and reporting of focus groups are
discussed as well as moderator skills and techniques.

Discussing consumer perceptions of food quality is somewhat similar to exploring new and

unknown land – it is not immediately clear where to begin or by what means to travel, and it is

nearly impossible to foresee where one will end up.

—Schutz and Judge (1984)
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16.1 Introduction

16.1.1 Resources, Definitions,

and Objectives

A number of techniques can be used to probe con-
sumer responses to new products in addition to the
traditional mode of inquiry using questionnaires and
large statistical samples. Exploratory research meth-
ods often use small numbers of participants but allow
for greater interaction and deeper probing of attitudes
and opinions (Chambers and Smith, 1991). As a class
of methods, they are referred to as qualitative tech-
niques to distinguish them from quantitative survey
work that stresses statistical treatment of numerical
data and representative projectable sampling. This
chapter reviews the principles and applications of qual-
itative research methods. We have drawn from the
authors’ experience and from the overviews of the
area by Casey and Krueger (1994), Krueger (1994),
Chambers and Smith (1991), Stewart and Shamdasani
(1990), and Goldman and McDonald (1987) to which
the reader is referred for further information. The
updated and detailed guidebook on focus groups by
Krueger and Casey (2009) is especially helpful for
those planning to conduct qualitative research. The
paper by Cooper (2007) reviews the history of qual-
itative research and its relationship to the forms of
psychology that have been in vogue during recent
decades.

Qualitative research methods are techniques that
involve interviews or observations that are less struc-
tured than controlled laboratory experiments. They are
also less structured than survey research based on
fixed questionnaires. The methods are flexible in the
sense that as new information arises, the flow and
content of the investigation may change. This is one
of the strengths of these methods. Qualitative con-
sumer research is most applicable to the exploration
and development of new concepts that go hand in hand
with the development of successful products. Although
this chapter will focus primarily on sensory research,
the reader should bear in mind that discovery and/or
optimization of sensory attributes may be only one
part of the qualitative research done in any study.
The process of concept development places qualitative
research more traditionally in the bailiwick of mar-
keting research than sensory research. However, the

sensory scientist is often part of a team looking for a
well-integrated sensory–conceptual product.

A variety of evolving techniques are used to inter-
face with consumers in new product development.
Many researchers now think of consumers as “co-
designers” of products (Bogue et al., 2009; Moskowitz
et al., 2006). Common methods include group inter-
views (focus groups), one-on-one interviews (also
called “in-depth interviews”), observational methods
(ethnography), focus panels that do repeated eval-
uations, and consumer immersion techniques where
innovative and/or vocal consumers can work along-
side product developers as the product prototypes are
formulated and modified. These innovative consumers
are sometimes referred to as “lead users,” people with
strong needs that will sooner or later be met by product
innovations in the marketplace (von Hippel, 1986). The
approach of making consumers part of the design team
is the reverse of observational ethnographic research.
Rather than making the researcher part of the con-
sumer’s situation, it makes the consumer part of the
researchers’ and designers’ world. Sometimes com-
binations of methods are used. For example, entho-
graphic observation coupled with in-depth interviews
can yield insights about what consumers do as well as
what they say and provide compelling real-life video
clips to illustrate the main points and conclusions.
Qualitative techniques are instrumental in starting
projects off on the right foot and avoiding “type zero
error,” i.e., asking the wrong questions to begin with.
Some researchers refer to this exploratory work as the
“fuzzy front end.” Companies are becoming increas-
ingly consumer-centric although there is a danger that
overreliance on the “average consumer’s” input may
miss some truly inspired, entrepreneurial, and/or cre-
ative opportunities (Cooper, 2007; von Hippel, 1986).
New approaches and techniques continue to evolve.
The Internet has opened a new area for mining prod-
uct ideas, with blogs and websites that can be searched
for innovative opinions, expectations, and/or points of
dissatisfaction that could suggest new product oppor-
tunities.

16.1.2 Styles of Qualitative Research

The most common form of qualitative research is the
group depth interview or focused group discussion,
which has come to be known simply as a “focus
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group.” This typically involves about ten consumers
sitting around a table and discussing a product or idea
with the seemingly loose direction of a professional
moderator. The interview is focused in the sense that
certain issues are on the agenda for discussion, so the
flow is not entirely unstructured, but rather centered
on a product, advertisement, concept, or perhaps pro-
motional materials. The method has been widely used
for over 50 years by social science researchers, gov-
ernment policy makers, and business decision makers.
In 2007, Cooper estimated that there are about a half
million focus groups conducted each year worldwide,
with about half of those occurring in the United States.
Of course, not all focus groups are concerned with new
product development, and they are used for a variety
of purposes such as research on advertising, assessing
political opinions, and developing election strategies.

Historically, the focused group discussion grew
from R.K. Merton’s use of group interviews to assess
audience reactions to radio programs in the 1940s,
and later his use of the same techniques for analy-
sis of Army training films (Stewart and Shamdasani,
1990). Currently, the methods are widely used in mar-
keting research for probing of product concepts and
advertising research concerning product presentation
and promotion. Sensory evaluation departments have
added these techniques to their repertoire. In 1987,
Marlowe stated that many sensory evaluation groups
in industry were already using these techniques to sup-
port product development, and that there was growing
interest in professional organizations such as ASTM
in these methods. This interest was generated by the
realization that the methods could be used to develop
insights and direction for sensory evaluation issues in
early stages of new product development. This activ-
ity primarily serves product development clients, just
as a marketing research department probes consumers’
reactions to product concepts and potential advertis-
ing or promotions in order to provide information for
their marketing clients. The main difference is that
a sensory evaluation group is more likely to focus
on product attributes, functional consumer needs, and
perceptions of product performance, while a concept
study done by marketing research addresses more of
the ideas underlying a new product opportunity, i.e., its
benefits, emotional connotations, and brand imagery.
Obviously, there is often overlap. For example, both
approaches usually involve probing of consumer atti-
tudes toward the product category based on experience

and expectations. More and more often, a sensory spe-
cialist will be invited to “sit at the table” as the early
qualitative work is done to initiate and then refine the
product concept.

In general, qualitative methods are best suited
for clarification of problems and consumer perspec-
tives, identifying opportunities, and generating ideas
and hypotheses (Stewart and Shamdasani, 1990). For
example, a qualitative study of consumer attitudes
toward irradiated poultry suggested directions for con-
sumer education and label design (Hashim et al.,
1996). The techniques are well suited to new product
exploration and for follow-up to probe issues raised
in other work, e.g., puzzling results from a consumer
in-home test or survey. Groups can also function as
a disaster check to make sure the conceptualization
and realization of the product in the laboratory has
not overlooked something important to consumers.
Sometimes a high level of enthusiasm may follow a
technical breakthrough in product research, but con-
sumers may not share this enthusiasm. Conducting a
few consumer groups to explore the new development
may provide a sobering reality check (Marlowe, 1987).
Qualitative research tends to be hypothesis generating
but rarely stands alone to prove anything. It is good
for exploration, rather than verification, and for cre-
ative stimulation and adding direction and deepening
understanding. The techniques can be used to probe
consumer opinion of a product category, to examine
prototypes, to explore new product opportunities, to
design questionnaires, and to examine motivations and
attitudes about products (Marlowe, 1987).

The style of the interview, whether in a group or
one-on-one, is characterized by careful probing of
comments. The probing leads to deeper understand-
ing of the reasons behind the comment. A classic
question is “Why is that important to you?” This tech-
nique is commonly referred to as “laddering” because
it takes steps down into the underlying reasons for an
attitude, belief, or choice. Examples of laddering tech-
niques can be found in Krystallis et al. (2008) and
Ares et al. (2008) in studies of consumers’ motivations
in purchasing functional foods. Laddering may either
be “hard” or “soft.” Hard laddering refers to a fixed
question sequence such as “Why did you choose that
yogurt?” followed by “Why is that important to you?”
and “Why is the latter important to you?” (Ares et al.,
2008). Soft laddering refers to the same kind of ques-
tion, but with more latitude given the interviewer to
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tailor the probing question to the specific comment or
consumer. Bystedt et al. (2003) give an entire chap-
ter to laddering techniques in consumer interviews.
They stress that at the surface, there are a collec-
tion of desired attributes. Beneath these functional
characteristics there are a set of objective benefits.
Beneath the objective benefits is a set of emotional
benefits. Beneath the emotional benefits are basic val-
ues (self-esteem, health, attraction to the opposite sex)
that should be understood. Laddering works down this
chain.

Because it is based on the reactions of small num-
bers of specifically recruited consumers who have
limited interaction with the product, caution is justi-
fied in generalizing the findings to the population at
large. Even if the respondents are selected on the basis
of regular use of the product category, it is not pos-
sible to insure a representative sample of the public
on all relevant demographic variables. This stands in
contrast to a large-scale consumer home use test that
may be conducted with hundreds of participants in sev-
eral geographic areas. Other limitations are recognized
in the method. Dominant members may have undue
influence on expressed attitudes and the direction of
the discussion. There is often only limited exposure to
the product or it may not be used at all by the par-
ticipants. Both the direction of the interview and the
interpretation of results involve some subjectivity on
the part of the moderator and analyst. Qualitative inter-
view methods trade off a certain amount of objectivity
and structure in favor of flexibility. Some differences
of qualitative and quantitative research are shown in
Table 16.1. Chambers and Smith (1991) point out that
qualitative research may precede or follow quantitative
research, and that both types of research gain in valid-
ity when they can be focused together on a research
problem.

The trade-off between depth of understanding and
the acknowledged limitations in sampling and projec-
tion was well stated in a study of food choice by Furst
et al. (1996). This study used an interview method
to uncover influences, valued aspects of each per-
son’s food choice system, and strategies used during
purchase decisions. Important personal system val-
ues included sensory attributes, quality, convenience,
health and nutrition concerns, cost, and interpersonal
relationships. The study identified these consistent
themes underlying food choice behavior and how they
could interact with each other and with contextual
factors. The rationale for the trade-off between exten-
sive sampling and in-depth interaction was summa-
rized as follows:

In developing the conceptual model, depth of under-
standing was accorded a higher priority than breadth in
sampling, and to this end a group of people in a particu-
lar food choice setting were invited to articulate their own
thoughts and reflections on food choice. The sample was
not designed to be representative, but was used to exam-
ine the range of factors involved in food choice among a
group of diverse people. The component and processes
represented by the model acknowledge and illuminate
considerable variation in many dimensions, such as per-
sonal life course, extent of personal system, social setting
and food context, even among a relatively small group of
people operating within a specific context (Furst et al.,
1996, p. 262).

16.1.3 Other Qualitative Techniques

In addition to the popular focus group method, other
techniques are available. In some cases, one-on-one
interviews are more appropriate for gathering the
information of interest. This may be necessary when
the issue is very personal, emotionally charged, or

Table 16.1 Some differences
of qualitative and quantitative
consumer research

Qualitative research Quantitative research

Well suited to generate ideas and probe issues Poorly suited to generate ideas, probe issue
Small numbers of respondents Large projectable samples
(N < 12 per group) (N > 100 per group)
Interactions among group members Independent judgments
Flexible interview flow, modifiable content Fixed and consistent questions
Analysis is subjective, non-statistical Well suited to numerical analysis
Poorly suited to numerical analysis Statistical analysis is appropriate
Difficult to assess reliability Easy to assess reliability

Modified from Chambers and Smith (1991)
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involves experts who are better probed individually.
Experts include such individuals as culinary profes-
sionals, dieticians, physicians, lawyers, depending, of
course, on the research question. Sometimes people
with a high degree of ego involvement in the topic
may give more complete information alone than in
a group. Sometimes the topic lends itself more com-
fortably to individual interviews than to group dis-
cussion. Examples can be found in studies of food
choice with consumers (Furst et al., 1996), older adults
(Falk et al., 1996), and cardiac patients (Janas et al.,
1996). Groups also run the risk of social competition,
one-upsmanship, or unproductive arguing. One-on-one
interviews are also better suited to groups that are
extremely sensitive to social pressures. An example
is teenagers, who are easily swayed by group influ-
ence (Marlowe, 1987). The limitation of one-on-one
interviews is the loss of opportunity for synergistic dis-
cussion among participants. Of course, opinions from
earlier interviews can be presented to later participants
for their consideration. Thus the interview plan itself
becomes dynamic and makes use of what is learned in
further information gathering as the study progresses
(Furst et al., 1996; Janas et al., 1996). This flexibility
is a major point of separation from fixed quantitative
questionnaire methods and is one advantage of the
qualitative approach.

A third type of qualitative research is naturalistic
observation, also known as ethnography (Bystedt et al.,
2003; Eriksson and Kovalainen, 2008; Moskowitz
et al., 2006). This is a process of observing and
recording unguided behavior with the product, much
in the ways that ethologists study animal behaviors
by observing from concealed positions. This can be
done by observing, videotaping, viewing from a one-
way glass, or even going to live with a family to
study their food habits, for example. Of course, peo-
ple must be informed of the observation, but the goal
is to be as unobtrusive as possible. Such methods
are applicable to issues that involve behavior with
the product, such as cooking and preparation; use of
sauces, condiments, or other additions; spice usage,
package opening and closure; time and temperature
factors; whether directions are read; how food is actu-
ally served and consumed; plate waste; and the storage
or use of leftovers. Data have high face validity since
actual behavior is observed rather than relying on ver-
bal report. However, data collection may be very slow
and costly. Observational methods are well suited to

studying behaviors where consumers actively interact
with the product (i.e., perhaps more than just eating
it). Bystedt et al. (2003) give the example of observ-
ing women at a cosmetics counter in a department
store. Suppose your company manufactured a non-
stick spray product for barbecue grills. It would be
appropriate to observe how grillers actually used the
product, when they sprayed it, how much they used and
how often, etc.

16.2 Characteristics of Focus Groups

16.2.1 Advantages

There are several advantages to qualitative research.
The first is the depth of probing that is possible with
an interactive moderator. Issues may be raised, atti-
tudes probed, and underlying motivations and feelings
uncovered. Beliefs may be voiced that would not eas-
ily be offered by consumers in a more structured and
directed questionnaire study. Since the moderator is
present (and often some of the clients, out of sight),
issues that were not expected beforehand can be fol-
lowed up on the spot, since the flow of the interview
is usually quite flexible. The second advantage is the
interaction that is possible among participants. One
person’s remark may bring an issue to mind in another
person, who might never have thought about it in a
questionnaire study. Often the group will take on a
life of its own, with participants discussing, contrast-
ing opinions, and even arguing about product issues,
product characteristics, and product experiences. In a
successful group interview, such interaction will occur
with minimal direction from the moderator.

A perceived advantage of these methods is that they
are quick and inexpensive to do. This perception is illu-
sory (Krueger and Casey, 2009). In practice, multiple
groups are conducted, often in several locations, so that
moderators and observers may spend days in travel.
Recruiting and screening participants also take time.
The data analysis may be very time consuming if video
or audiotapes must be reviewed. So time to completion
of the report is no faster than other types of con-
sumer research and professional hours involved may
substantially add to costs. There are also some obvi-
ous efficiencies in the procedure for the users of the
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data who attend the groups. Consumer contact with 12
people can be directly observed, all within the space of
an hour, and with the participants collected by appoint-
ment. So the rate of information transfer is very high
once the groups are underway, as opposed to in-home
individual interviews or waiting for a mail-in survey to
be retrieved and tabulated.

16.2.2 Key Requirements

The environment is designed to be non-threatening and
encourages spontaneity. One principle is the “strangers
on a train” phenomenon. People may feel free to air
their opinions because they will probably never meet
these same people again. So there is nothing to lose in
being candid, and there is no need to adopt socially
expected postures as one might find in a group of
neighbors. Of course, in every community there is
some chance that people will be connected through a
previous neighborhood or community group, but this
is not a big problem. The commonly held belief that
better data are given when the participants are total
strangers has been opened to question (Stewart and
Shamdasani, 1990). Commonly used warm-up proce-
dures that are intended to facilitate acquaintance and
interpersonal comfort would seem to contradict this
notion of anonymity as a requirement for good data.

There are key requirements for a productive focus
group study (Casey and Krueger, 1994; Chambers and
Smith, 1991; Krueger, 2009). They include careful
design, well thought-out questions, suitable recruiting,
skillful moderating, prepared observers, and appropri-
ate, insightful analysis. As in other sensory evalua-
tion procedures, fitting the method to the questions
of the client is key. For example, if the end users
of the data want to say that over 55% of people
prefer this product to the competition, then a quanti-
tative test is needed and they must be dissuaded from
using focus groups. The sensory professional must
also consider the overall quality of the information
produced and consider the reliability and validity of
the method both in general and as practiced in their
programs and research projects. The primary steps
in conducting a focus group study were summarized
by Stewart and Shamdasani (1990) as follows: define
the problem, specify characteristics of participants and
means of recruitment, choose the moderator, generate

and pre-test the discussion guide, recruit participants,
conduct the study, analyze and interpret the data, and
report the results (a more detailed list is given below).
It should be fairly obvious from this list that the
image of qualitative research as quick and easy is com-
pletely false. Conducting a good focus group study is
as involved as any other behavioral research study or
sensory test and it requires careful planning.

16.2.3 Reliability and Validity

Reliability and validity are issues in qualitative
research, just like any other information gathering pro-
cedure or analysis tool. Concerns are often raised that
the procedure would yield different results if con-
ducted by a different moderator or if analyzed by a
different person (Casey and Krueger, 1994). Having
multiple moderators and more than one person’s input
on the analysis provides some protection. Reliability in
a general sense is easy to judge although it is difficult
to calculate in any mathematical way. When conduct-
ing several focus groups, common themes begin to
emerge that are repeated in subsequent groups. After
awhile, there is diminishing return in conducting addi-
tional groups since the same stories are repeated. This
common observation tells us that the results from one
group are incomplete, but that there is some retest reli-
ability in the sense that additional groups yield similar
information. Janas et al. (1996) framed this issue in
terms of the “trustworthiness” of the data and cited
three guiding processes during extended individual
interviews that could be used to enhance trustworthi-
ness: (1) peer debriefing where emerging concepts are
questioned and discussed by co-investigators, (2) using
return interviews that can assess consistency of emerg-
ing themes, and (3) checking conclusions and key
findings with participants. The consistent themes also
become part of the data coding and then provide a basis
for categorization strategies and grouping of similar
concepts. The principles for these guiding processes
are found in “grounded theory” methods (discussed by
Eriksson and Kovalainen, 2008).

The reliability of group interview information was
examined by Galvez and Resurreccion (1992) in a
study of attributes used to describe oriental noo-
dles. Five consumer focus groups were run to gen-
erate important terms for the sensory aspects of the
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noodles and to sort them into positive and negative
groups. Highly similar lists were generated by all five
groups and they agreed on which terms were desir-
able versus undesirable. The lists of terms from the
consumer groups included 12 of 14 terms used by
a trained descriptive panel (apparently two attributes
from the descriptive panel were not important to the
consumers). In some cases, the words generated were
not identical, but were synonyms, such as shiny and
glossy. At least for this kind of sensory evaluation
application the method seems to have good reliability.
Galvez and Resurreccion were careful to screen their
participants for product familiarity, which may have
contributed to the consistency of results.

Validity is a little more difficult to judge. A study of
consumer attitudes and self-reported behaviors found
good directional agreement between the results of a
series of 20 focus groups and the results of a quan-
titative mail survey (Reynolds and Johnson, 1978).
Validity can also be sensed by the flow of the research
process. If the qualitative attribute discovery process
is complete, there will be few if any new issues rose
on a subsequent consumer questionnaire in the open-
ended questions. If the qualitative prototype explo-
ration works well and changes are realized in product
characteristics or even conceptual direction, consumer
needs and expectations will be fulfilled in the later
quantitative consumer test. Phased coordination of
qualitative exploration and quantitative testing may
enhance utility of results from both types of research
(and note that this is a two-way street!) (Chambers and
Smith, 1991; Moskowitz et al., 2006). Since conduct-
ing a number of groups provides similar information,
there is validity in the sense that the information is
projectable to additional consumer groups. Although
we are careful to disclaim the ability to make any
quantitative statistical inferences, the information must
be representative of the larger consuming public or
it would not be useful. Finally, one can examine the
validity in terms of risk from making decisions based
on the information. From a practical view, the ques-
tion arises as to whether the end users of the data will
make poor decisions or choose unwarranted courses of
action. The sensory professional can aid in this regard
in trying to keep product managers from overreaching
in their deductions from the information.

The process of conducting focus groups or any kind
of flexible interview can be thought of as a commu-
nication link (Krueger and Casey, 2009). There are

at least five assumptions or key requirements for this
process. First, the respondents must understand the
question(s). Second the environment is conducive to
an open honest answer. Third, the respondents know
some answers, that is, they have information to pro-
vide. Fourth, the respondents are able to articulate
their knowledge or beliefs. Finally, the researcher must
understand the respondents’ comments. A lack of
accuracy or validity can creep in if any of these com-
munication links is weak or poorly functioning. These
concerns are key when developing good questions and
a good discussion guide.

16.3 Using Focus Groups in Sensory

Evaluation

How are qualitative methods employed for questions
asked of sensory evaluation specialists? Here are some
common applications.

Qualitative methods can be used for exploration of
new product prototypes. While product concepts are
usually explored by a marketing research group, prod-
uct development groups that are most often the primary
clients of sensory evaluation services may need early
consumer input on the direction and success or short-
comings of newly developed variations. Rather than
make mistakes that are not detected from the labora-
tory perspective, consumer opinions and concerns can
be explored as part of the refinement and optimiza-
tion process (Marlowe, 1987; Moskowitz et al., 2006).
Prototypes can be evaluated in the group itself, or may
be taken home to use, after which a group is con-
vened. This may be very helpful in determining how
a food product was prepared, served, and consumed
and whether any abuse or unexpected uses and varia-
tions were tried (Chambers and Smith, 1991). Changes
of direction and additional opportunities may be sug-
gested in these interviews and this information should
be shared with marketing managers. If they are part-
ners in the development process they will use this
information to the company’s advantage. A key strat-
egy is to explore consumer needs and expectations
and whether the product in its early stages is mov-
ing toward meeting those needs and satisfying those
expectations.

Consumer opinion may also help the sensory group
focus on key attributes to evaluate in later descriptive
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analysis and quantitative consumer surveys. A com-
mon application of group interviews is in the iden-
tification and exploration of specific sensory char-
acteristics. One issue is to try and define attributes
that are strongly influential on consumer acceptance
(Chambers and Smith, 1991). The early stages of a
QDA procedure (Stone and Sidel, 1993) involving ter-
minology discovery for descriptive scorecards resem-
ble the information gathering nondirective approach in
consumer focus groups. Attribute discovery can also
be conducted with consumers or with technical person-
nel, e.g., technical sales support and quality assurance
staff (Chambers and Smith, 1991). This can help insure
that everyone is speaking the same language, or that the
different languages can be related to one another, or at
the very least that difficulties can be anticipated. In one
such application, Ellmore et al. (1999) used qualitative
interviews to explore dimensions related to product
“creaminess” before further descriptive analysis and
consumer testing. This phase was important to iden-
tify smoothness, thickness, melt rate, and adhesiveness
as potential influences on consumer perception of the
creaminess of puddings.

Such “ballot building” is very useful before a con-
sumer questionnaire study. Research personnel may
think that they have all the important attributes covered
in a questionnaire, but it is likely that some additional
consumer feedback will point out a few omissions.
Consumers do not necessarily think like research staff.
Chambers and Smith (1991) suggest that prescreen-
ing questionnaire items with qualitative interviews can
address the following issues: Are questions under-
stood? Are they likely to generate biased answers? Are
questions ambiguous? Do they have more than one
interpretation? Will they be viewed from the expected
context? Were there unstated assumptions?

One can get an impression of the potential impor-
tance or weight that different product characteris-
tics have in determining overall appeal of the prod-
uct. This is a classic use of qualitative methods to
explore variations in attributes that consumers might
find appealing (or not). These variations can then be
used in a designed study with a larger group of con-
sumers to uncover the “hedonic algebra” of different
attributes and combinations (Moskowitz et al., 2006).
A case study linking focus groups with later quan-
titative consumer testing is given below. Of course,
the exploratory groups can be integrated with the goal
of getting consumer feedback on early prototypes, as

mentioned above. Insights may arise for new prod-
uct opportunities here, too. For example, a discussion
of flavor characteristics may easily lead to new direc-
tions in flavor variations that were not previously
considered.

Another useful application is when groups are inter-
viewed as a follow-up after a consumer test. After data
have been analyzed or even partially analyzed, it is
possible to convene groups of test participants, per-
haps some of those who were generally positive toward
the product and some who were negative. The inter-
view can probe certain issues in depth, perhaps issues
that were unclear from the quantitative questionnaire
results or results that were puzzling, unexpected, and
in need of further explanation. Chambers and Smith
(1991) give the example of a barbecue sauce that
received a low rating for spice intensity in a survey,
where the actual problem was that the flavor was atyp-
ical. Interviews can help confirm or expand upon ques-
tionnaire results. For sensory professionals who need
face-to-face consumer contact on a project, convening
several focus groups is more cost efficient for com-
pany personnel than one-on-one interviews. Feedback,
probing, and explanation from 20 or 30 consumers can
be obtained in an afternoon. Groups are much more
efficient than single interviews and have the interactive
and synergistic idea-generation characteristics that are
not present in other quantitative surveys.

If the company has standing panels of local con-
sumers who regularly test products, it may be possible
to bring them in at several points to discuss product
characteristics. This is a special case of focus group
research termed “focus panels” by Chambers and
Smith (1991). This type of setup loses the anonymity
factor that is seen as beneficial in most group inter-
views. However, it may work well in some cultures
in which people do not feel comfortable speaking in
front of strangers. Local standing consumer panels can
be very cost efficient (see Chapter 15), as donations
can be made to community groups rather than pay-
ing individuals for participation (Casey and Krueger,
1994).

16.4 Examples, Case Studies

The following case studies illustrate two appropriate
uses of qualitative methods.
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16.4.1 Case Study 1: Qualitative Research

Before Conjoint Measurement

in New Product Development

Raz et al. (2008) published a protocol for new product
development using qualitative consumer information
and quantitative data at several stages. Focus groups
were used to identify the sensory factors that were
used later in a large consumer study based on con-
joint analysis principles. This is a classic application
of qualitative research that is used to guide further
quantitative research. Conjoint analysis is a technique
in which consumers evaluate various combinations
of attributes at different levels or options and rate
their overall appeal. It seeks to find optimal combi-
nations of key attributes at different levels and can
estimate the individual contributions of each attribute
(called “utilities”) to the overall appeal of the prod-
uct. Moskowitz et al. (2006) show several examples
of how the mental algebra of product benefits can be
uncovered using conjoint methods. Another example
of qualitative interviews used before more structured
concept development (also using conjoint measure-
ment) can be found in the paper by Bogue et al.
(2009) who looked at foods and beverages with a
possible therapeutic or pharmacological function. In
order to have meaningful variations of the product,
the qualitative work must precede the construction of
the product prototypes (or conceptual prototypes) to be
evaluated.

The product in this case was a healthful juice drink
targeted primarily at women. Two focus groups of
nine consumers each were used in the initial stages.
Consumers were selected based on socio-demographic
characteristics of the target market and were users
of the brand or people who switched among brands
in the category. Groups were conducted by a psy-
chologist and lasted from 2.5 to 3 h, an unusually
lengthy session. The interviews consisted of three
phases: an evocative phase involving free association,
collage, product, and consumer profiling; a second
phase involving presentation of the concept; and then
exploration of sensory factors, use properties, and sym-
bolic content of the product and package. The desired
result was a set of key attributes with two to four
levels or variants of each key attribute and an assess-
ment of the potential products’ fit to the concept (i.e.,
appropriateness).

The flow of the group interviews proceeded as
follows: After the introductions, there was an explo-
ration of the brand image and the imagined universe of
the product category for that brand. Then the concept
was explored and profiled without any additional stim-
uli. Next, actual samples of taste, odor, and mouthfeel
“experiences” were presented to see how they might fit
the concept. Visual images were presented that were
evocative of the concept and finally packaging vari-
ables presented for tactile exploration. Next, the prod-
uct identity was explored using a collage technique
(patching together of visual images) to see if the prod-
uct identity (as these consumers envisioned it) was in
line with the brand image and with the target concept.

These results were used to set up product prototypes
for evaluation in a conjoint design with a larger group
of consumers generating liking scores for the various
attribute combinations. “Importance” scores were also
generated which reflected the degree of change across
levels of an attribute. That is, attributes which showed
a large change in liking scores as the attribute lev-
els changed were high in “importance.” A key part of
the final analysis was an evaluation of potential seg-
ments of consumers, groups who might like different
styles of the product, rather than assuming that there
was just one overall optimal product from a single set
of attribute combinations. The potential segments were
explored using cluster analysis.

16.4.2 Case Study 2: Nutritional

and Health Beliefs About Salt

Qualitative research is well suited to exploring
and understanding consumers’ attitudes, beliefs, and
knowledge systems and understanding the vocabulary
they use to talk about foods and nutritional issues. This
study (Smith et al., 2006) examined beliefs and atti-
tudes about salt and high salt-containing foods among
at-risk groups of older Americans in the “stroke belt”
of the rural southern United States. They conducted
both in-depth (one-on-one) and focus group interviews
with minority and white community-dwelling elders
aged 60–90. The one-on-one interviews consisted
of 60–90 min semi-structured interviews to uncover
knowledge, beliefs, and folk phraseology. Themes dis-
covered in these interviews were used to develop the
interview guide for later focus groups. Seven groups
with approximately eight to nine participants were
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conducted. Some groups were homogeneous in eth-
nic makeup (African American, Native American, or
white) and others were mixed.

A short demographic questionnaire was admin-
istered before the group discussions. A moderator
and note-taker participated and discussions were tape
(audio) recorded. Tapes were transcribed verbatim.
From the transcripts and notes, a codebook was devel-
oped of key phrases consisting of core concepts and
significant points. Multiple researchers checked the
code system for accuracy. The combined transcripts
and code system were submitted to ethnographic
software analysis of the text. Segments of the text
were extracted using the codes for further analysis.
Researchers then reviewed the abstracted text samples
for “themes.” Themes were developed according to
the level of consensus, strength, and depth of concepts
and frequency. In the analysis and reporting, interpre-
tation of the themes was supported by illustration with
supporting quotes from individuals.

Results showed that participants believed that salt
was an important element in their diet and regional
cuisine (those foods loyally described as “southern”)
and that salt was important to counteract bland taste
in fresh foods. Participants recognized a connection
between discretionary (table salt, so-called raw salt)
usage and high blood pressure, but less connection
between salt used in cooking and blood pressure. There
was also a connection to a folk condition termed “high
blood” which included both dietary sugar and diabetes
as linked concepts. The authors contrasted these folk
systems and cultural beliefs with medical knowledge
and common medical practice. The reader is referred
to the full report for further details. A conceptual map
depicting the results is shown in Figure 16.2, p. 400.

16.5 Conducting Focus Group Studies

16.5.1 A Quick Overview

A typical focus group procedure could be described as
follows: At first glance, we have 8–12 people sitting
around a table with an interviewer throwing out ques-
tions for discussion. An example of the room setup
for a focus group is shown in Fig. 16.1. Some smaller
or “mini-groups” have become fashionable, although
the probability of respondent synergy goes down with
smaller groups, and the possibility of trouble from

Viewing area

one-way window/mirror

moderator

consumers

Stereo  
microphone

pickups
(in ceiling)

videocam

(ceiling mount)

“clients”

Fig. 16.1 A typical room setup for focus groups. Participants
are seated in such a way that their facial expressions and body
language are visible to clients behind the one-way glass and can
be captured on videotape. Note the trapezoidal shaped table to
facilitate this view. Stereo microphones are important to rein-
troduce the spatial distribution of sounds on the audio track,
as a single microphone may lose this and create difficulties in
isolating comments if two people speak at the same time.

unresponsive participants goes up. A common style
of questioning is the open-ended form that avoids the
possibility of a simple yes/no response. For example,
a moderator would probably not ask “Is this easy to
prepare?” but rather “How do you feel about cooking
this product?” Another useful question style is the
“think back” type of question when probing previ-
ous experience with the product category (Casey and
Krueger, 1994). Probing can proceed by asking for
examples, for clarification or simply admitting that
you do not understand something. In summary, the
visible activity in a focus group resembles the open-
ended questions in a structured interview, but allows
for more in-depth probing and, of course, considerable
interaction of respondents.

A common rule of thumb is to conduct at least three
groups (Casey and Krueger, 1994). In case two groups
conflict one can get a sense of which group’s opin-
ions may be more unusual. However, since the method
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is not based on the need for quantitative projection,
the usefulness of this rule is questionable. The dis-
covery of differing opinions is in itself an important
and reportable result. It may have later implications
for market segments or the need to engineer different
products for different consumer groups. Large market-
ing research projects often require multiple groups in
multiple cities to insure some geographically diverse
sampling in the United States. Exploratory projects
for product development prototypes or language explo-
ration as conducted by a sensory service will generally
not be that extensive. However, if there is an important
segmentation in the experimental design (e.g., ages,
ethnic groups, gender, users versus non-users), then it
may be necessary to conduct three groups from each
segment (Krueger and Casey, 2009). As noted above,
there is a marginal utility in increasing the number of
groups, as repeated themes will emerge (Chambers and
Smith, 1991).

The steps in conducting a focus group study are
similar to those in other consumer research. They are
outlined in Table 16.2 and another checklist can be
found in Resurreccion (1998). A focus group study
resembles a central location consumer test in many
aspects of the setup and procedural details, with the
notable exception that a moderator or trained inter-
viewer is needed and that the activities are almost
always recorded. The project team must be careful to

insure that the facility is set up properly and that all
recording equipment is pre-tested and functioning cor-
rectly. Do not leave this pre-testing up to the facility
owners. The researchers may also have to arrange for
transcriptions of the verbal record. It is advisable to
send the tapes to the transcriptionist as they are com-
pleted because each 90 min group may require a day
or more of transcription even from a professional.

16.5.2 A Key Requirement: Developing

Good Questions

Questions and probes for focus groups are different
from the structured questions one finds on a quanti-
tative questionnaire. Examples of probing techniques
and alternate methods to direct questions are given in
Bystedt et al. (2003). Krueger and Casey (2009) list
the following attributes of good questions in group
interviews: A good question evokes conversation as
well as a single response. It is phrased in common
language (not technical jargon). It is short and easy
to say/read, is open ended (not yes/no), and is spe-
cific, not double-barreled (“Do you think ice cream
and frozen yogurt are healthful and nutritious?” is
twice double-barreled). Often, focus group questions
consider feelings and emotions. That is, they are not

Table 16.2 Steps in
conducting focus group
studies

1. Meet with clients, research team: Identify project goals and objectives
2. Determine best tools for meeting objectives
3. Identify, contact, and hire moderator
4. Develop screening criteria for participants
5. Develop questions, discussion guide, and sequence
6. Schedule room, facilities, taping equipment
7. Screen and recruit participants; send directions/map
8. Send reminders to participants, time/place/directions/parking
9. Identify and brief assistant moderator, if used

10. Arrange for incentive payments, refreshments
11. Pre-test recording equipment
12. Conduct groups

12a. Conduct de-briefings after each group
12b. Write summaries after each group

13. Arrange for transcriptions if used
14. Modify discussion guide as new information arises
15. Analyze information

15a. Review summaries
15b. Read transcripts or review audio or video tapes
15c. Select themes; find verbatim quotes to illustrate
15d. Confer with another team member to check themes and conclusions

16. Write report and present results
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always about knowledge or factual issues. Even in
laddering probes (searching for underlying benefits,
emotions, values), focus group moderators will tend
to avoid the simple question, “Why?” because it may
be seen as a criticism or challenge. These can often
be rephrased such as “What prompted you to buy X?”
or “What aspect of the product motivated you to buy
X?” Moderators should avoid giving any examples of
answers, as this will tend to tell participants how to
answer and get the group in a rut. If directed toward
an action, the direction is detailed and specific, such as
the following: “Take these magazines and clip out any
images you associate with this concept. Put them in a
pile in front of you on the table” (Bystedt et al., 2003).

Developing the questions and discussion guide
(sequence) is not a solo activity. One should dis-
cuss important issues with the clients (people who are
requesting the research), including any details, use of
product prototypes, other sensory stimuli that might
be used as “props,” the concept, and review the gen-
eral objectives. Questions should be brainstormed with
five or six other researchers. One should seek appropri-
ate phrasing (e.g., open ended, “think back”). Then the
questions or topics can be sequenced. There are a few
general rules, including the following: Proceed from
general topics to more specific issues. Probing posi-
tive aspects generally should precede negatives. The
researcher should estimate the time per topic or ques-
tion area. Then the question guide or discussion flow
guide can be drafted. Finally, it should be reviewed
with the staff and clients. At this point, the client or
research manager may think of all kinds of other issues
to include. This can lead to length problems and the
researcher has to remind people that this is a 90-min
interview. The critical test is to separate what is simply
nice to know from what you really need to know.

16.5.3 The Discussion Guide and Phases

of the Group Interview

It is most common to have a scripted sequence of
questions, but some highly skilled moderators may
simply work from a list of issues. There are commonly
about five distinct phases to the group and these will
be organized on the discussion guide. The moderator
may deal with the guide flexibly as new or unexpected
potentially useful insights arise and call for probing.

The group begins with a warm-up phase. Turns may
be taken or people will just go around the table in
order and introduce themselves. One approach is the
“introduce your neighbor” option. For example take
5 min to introduce yourself to your neighbor and get
one or two interesting facts about this person next to
you. Then participants go around and introduce their
neighbor to the group. The purpose of the warm-up
phase is to engage each participant and make him or
her connect his or her thought process with the act of
speaking. For many people, it is necessary to commit
this simple act of speaking to be able to contribute
later. There is otherwise a strong tendency to think
about the issues being raised without actually engaging
the vocal chords. The warm-up also helps the group
members feel more comfortable with each other, as
the other people become more of known entities rather
than complete strangers, which can be inhibiting to
some participants. The introduction phase should try
to avoid status indicators. For example, it is better to
get them to talk about hobbies than what they own or
where they work.

Next comes the introduction to get the topic rolling.
Sometimes they may be asked to say something about
what products they use in the general category to be
discussed that day. A common approach is to ask
them to “think back,” i.e., tell us about your latest or
recent experience with the product. Some issues can
be broached at this point, e.g., probe: “What comes to
mind when you hear . . . X. . . about this kind of prod-
uct?” The flow of the interview from the general to
the specific is the normal trend, and occurs quite natu-
rally in conversation. Stewart and Shamdasani (1990)
refer to this as “the funnel” approach. The third phase
is a transition phase that moves toward key issues.
More specific questions are asked. A product concept
may be introduced here or a sample prototype product
explored.

The fourth phase gets to the meat of the key ques-
tions and issues. Now we get their overall reactions
to product, concept, or issue(s) and any individual,
personal reactions and thoughts, issues, concerns, and
expectations. The bulk of the interview will occur
in this phase and one must allow lots of time to
probe issues and have them discussed. More spe-
cific issues are raised, finally focusing specifically
on aspects of interest to the product developers. For
example, what characteristics would you like to see in
a microwaveable frozen pizza (browning? nutritional
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content? convenience? shelf life?). Often the critical
issues will arise in the natural flow of the conversation.
However, the moderator has a discussion guide, which
will direct the flow in a general way and insure that all
the issues get on the table.

Finally, there is an ending question period. The
moderator can review issues and state tentative con-
clusions. He or she can ask again for overall opinions:
“Given what you have heard. . .?” At this point, ask
for comments or corrections of moderator summaries
or conclusions that can be thrown out to the group.
For example, are there any differing opinions that may
not have been stated or included? Was there anything
overlooked, something we should have explored but
did not? Was there anything that should be included
in the next group or should be done differently? Of
course, after this phase the group is thanked, paid, and
dismissed.

The discussion guide should be developed after a
brainstorming session with key people involved in the
project to get all potential issues included. The moder-
ator can then draft the discussion guide and submit it
for further revision. Examples of discussion guides are
found in Table 16.3 and in Chambers and Smith (1991)
and Resurreccion (1998). The keyword here is “guide,”
since flexibility is needed, especially when unexpected
but potentially important issues come up. If the mod-
erator recognizes such an opportunity, he or she can

ignore the guide for the moment and change direc-
tion. Alternatively, the group could return to the issue
later but the moderator must note this. If the discussion
drifts in a totally unrelated direction (weather, politics,
sports, TV shows are all common), the moderator can
bring the group back to the main line of discussion.

16.5.4 Participant Requirements, Timing,

Recording

As in most consumer tests, participants will be fre-
quent users of the product category and have been
carefully prescreened. One exception may be when
the goal is to probe non-users, for example, when
exploring what it would take for them to try the prod-
uct or switch into the category or to another brand.
In setting up the study, the project leaders should
consider the demographic characteristics of the target
consumers and set up screening mechanisms to recruit
them based on such variables as gender, age, ethnic
background; type of household; and location of resi-
dence. Generally, the participants will not know each
other although in some areas it may be impossible not
to get occasional acquaintances in the same group. The
key for a group is not necessarily homogeneity, but
compatibility (Stewart and Shamdasani, 1990). Some
differences in background and opinion may facilitate

Table 16.3 Sample
discussion guide: high fiber,
microwave pizza

1. Introduce self, note ground rules, mention taping.
2. Warm up—go around table and state name and what type of pizzas you bought most

recently (briefly).
3. Discuss pizza category. What is out there? What is most popular? What is changed in your

pizza eating habits in the last 5 years?
4. When cooking pizza at home, what kinds do you make (frozen, chilled, baked, microwaved,

etc.) Any related products?
Probe issues: convenience, costs, variations, family likes and dislikes
Probe issues: Any nutritional concerns?

5. Present concept. Better nutritional content from whole wheat and bran crust, high in dietary
fiber. Strong convenience position due to microwavability. Competitive price. Several
flavors available. Get reactions.
Probe: Is fiber a concern? Target opportunity for some consumers?
Probe: Is microwave preparation appealing? Concerns about browning, sogging/crispness?

6. Taste and discuss representative protypes. Discuss pros and cons. Probe important sensory
attributes. Reasons for likes or dislikes.

7. Review concept and issues. Ask for clarification.
Ask for new product suggestions or variations on the theme.
Last chance for suggestions. False close (go behind mirror).

8. If further discussion or probes from clients, pick up thread and restart discussion.
9. Close, thanks, distribute incentives, dismissal.
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the discussion. It is generally advisable to overbook
the participants to anticipate no-shows (Resurreccion,
1998). No-shows can be minimized by sending maps,
directions, and a follow-up reminder the day before the
group.

The time necessary for most groups is about 90 min,
and participants must be informed of this commitment.
Motivating people to spend this time (plus travel to
a facility) is not always easy. Participants are gen-
erally paid and may be provided with refreshments
and child care. Incentives must be carefully consid-
ered so that the amount is neither too big nor too
small, but just sufficient to motivate people to spend
the time (Casey and Krueger, 1994). It is sometimes
necessary to screen out people who enjoy the activ-
ity so much that they become professional participants
in the recruiting pools of different testing services. On
the other hand, it is sometimes desirable to screen for
people who are more vocal. For example, a screen-
ing interview might ask, “Do you enjoy talking about
___________?”

The discussion is almost always recorded on video-
tape and/or audiotape. In marketing research, some or
all of the clients (those requesting the research) will
view the proceedings from behind a one-way mirror.
This unusual piece of equipment is not a necessity.
Casey and Krueger (1994) point out that the environ-
ment will seem more natural without it, and there is a
wider range of choices for facilities if you do not use
one. Of course, it would be distracting to have clients
sit in the same room with participants, so the alterna-
tive is to skip direct observation, which entails a good
deal of faith in the skills and reporting abilities of the
moderator. Participants must of course be told that they
are being taped and viewed if that is the case. Usually
they forget about this after the discussion starts. There
is little reason to believe that the act of taping influ-
ences the discussion, since the opinions that are aired
are being given publicly in any event (Stewart and
Shamdasani, 1990). Debriefing the respondents after
the interview about the general purpose of the study is
considered polite as at least some participants always
want to know. The amount of information disclosed
may depend on the security concerns of the client.

Because there is remarkably little action involved,
the question is sometimes raised whether videotape
is necessary. The advantage is that facial expressions,
gestures, and body language can be captured in this
medium. This is information that is routinely lost in

using only written transcripts for analysis (Stewart and
Shamdasani, 1990). Whether non-verbal information is
useful depends on the skill of people observing and
interpreting the tapes. One or more people may be
responsible for generating a report that summarizes
the attitudes and opinions uncovered by the proce-
dure. Often this responsibility falls to the moderator,
but sometimes to another observer. It may be use-
ful to have at least two independent interpreters view
the tapes or proceedings, as a check on the subjective
biases of the observers, as a kind of inter-judge reli-
ability check. Tapes may be transcribed to facilitate
the use of verbatim quotes to illustrate points and con-
clusions in the report (see section on reporting results,
below). Backup systems for taping are a common rec-
ommendation to insure against equipment problems
(Chambers and Smith, 1991).

16.6 Issues in Moderating

16.6.1 Moderating Skills

Like descriptive panel leadership, good moderating
skills are developed with practice and training. First
and foremost, a good moderator is a good listener
(Chambers and Smith, 1991). People who like to talk
a lot may not be able to suppress the temptation to
give their own opinions. Social skills are also required,
including the ability to put people at ease, and if neces-
sary to be assertive but diplomatic (Casey and Krueger,
1994). Not everyone can develop a high level of facility
in getting respondents to feel comfortable and express
their candid personal opinions. Most moderators work
well with consumers that are most like them. The same
moderator may not fit both a group of female heads
of household and a group of male sport fishermen. A
weight loss product targeted at obese women should
not have a professional racing cyclist as the moderator.
Training and practice is important in the develop-
ment of moderating skills. Videotaping and critique by
experienced professionals can be beneficial.

Certain personality traits are helpful. A success-
ful moderator is one who has a sense of humor, is
interested in other people’s opinions, is expressive
and animated, is aware of his or her own biases, and
is insightful about people (Stewart and Shamdasani,
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1990). They will also show a good deal of flexibility,
as the direction of a group can change rapidly. It
is advisable to watch a trained moderator in several
different groups and preferably in several different
products in order to gain insights into the kinds of
problems and opportunities that can occur in the flow
of the discussion. A good next step is to moderate
or co-moderate a session and have the tapes viewed
and critiqued by an experienced moderator. Each group
will differ so the key to doing this well is experience.

When moderating is done well the focus is on the
participants and they discuss issues with one another,
rather than answering probes of an interviewer in one
direction only, i.e., back at the interviewer. Like a ref-
eree in a boxing match, a good moderator becomes
invisible as the event progresses. Krueger and Casey
(2009) list the following attributes of a good mod-
erator: A good moderator understands the objectives
of the project. The moderator has at least some basic
familiarity with the product or product category. A
good moderator communicates clearly, respects the
participants (and shows it), and is open to new ideas. A
moderator, by definition, is good at eliciting informa-
tion. He or she gets people to talk and to elaborate on
their comments. Three issues are keys to good moder-
ating: nondirection, full participation, and coverage of
issues.

16.6.2 Basic Principles: Nondirection, Full

Participation, and Coverage of

Issues

The primary goal of the moderator is to guide the
discussion without suggesting answers or directing dis-
cussion toward a specific conclusion. In this respect,
the moderator acts like a conceptual midwife, extract-
ing ideas, perceptions, opinions, attitudes, and beliefs
from the group without imparting his or her own
opinions. The technique draws heavily from the client-
centered interview techniques of psychologists such
as Carl Rogers. Whenever participants look to the
moderator for an answer or opinion, the question
is thrown back to them, perhaps rephrased or in
some general terms like “I hear what you are ask-
ing. Why is this issue important to you?” To avoid
the temptation of subtle direction, many users of focus
group information prefer to have a moderator who is

technically uninformed about the issues and has no
preformed opinions. While this goes a certain distance
in helping insure an unbiased discussion and report,
it can sometimes miss an opportunity to probe impor-
tant technical issues that arise, that only an informed
moderator would recognize.

Much of the questioning from the moderator
will take the form of probing for further thoughts.
Sometimes silence is useful as a probe, as the recent
participants may want to fill the gap with further elab-
oration. In general, an experienced moderator will use
carefully placed silences to advantage (Stewart and
Shamdasani, 1990). Silence is by its nature nondirec-
tive. Other useful probes are to ask for reasons behind
feelings or to expand the discussion to other partic-
ipants by asking whether anybody else “shares this
view.” However, it is important to avoid emotionally
loaded phrases like “Does anybody agree (or disagree)
with this?”

Moderator bias can easily creep in. This can arise
from a need to please the client, reasons of personal
bias on the issue at hand, or a need for consistency
in the moderator’s own thoughts and beliefs (Stewart
and Shamdasani, 1990). It is a relatively simple mat-
ter to give undue support to the ideas of a participant
you agree with by a number of different means: giv-
ing more eye contact, verbal affirmation, head nodding,
being more patient, or calling on them first (Kennedy,
1976). Conversely, the unwanted opinions can be eas-
ily de-emphasized by failing to probe, summarize or
reiterate contrasting, minority or unfavorable opinions.
A good moderator will recognize these actions and
avoid them as well as recognize when they may have
occurred when viewing the taped records.

Moderators should also be sensitive to the answers
that are generated due to social factors. Often respon-
dents will choose to try and please the moderator by
giving answers that they suppose are the desired ones.
Chambers and Smith (1991) give the example of a
discussion of brown bread, in which participants may
claim to like or use it, but are actually fond of white
bread.

A good moderator tries to encourage inclusion of
all participants to insure that all sides of an issue are
raised and aired. Depending on the culture, different
techniques can be used by the moderator to this end. A
good idea after some discussion of the idea is to probe
the lack of consensus, encouraging new opinions by
asking if anyone disagrees with what has been said.
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Overly talkative or too quiet participants are a com-
mon problem. Dominant respondents may be experts,
either real or self-appointed. True experts will tend to
ruin a group since less knowledgeable participants will
look to them for answers. These individuals can usu-
ally be screened out during recruiting. Self-appointed
experts are a more difficult problem, and need to be
controlled or they will have undue influence on the
discussion. Dominating participants can be restrained
somewhat by subtle negative reinforcement by the
moderator. Non-verbal cues such as lack of eye con-
tact (looking at the ceiling or floor), drumming fingers,
reading the discussion guide, shuffling notes, getting
up and doing something in the room, or even standing
behind the person—each of these can provide nega-
tive feedback (Wells, 1974). Often a confrontational or
aggressive individual will choose a seat directly oppo-
site to the moderator. A change of seating, if this can
be done comfortably (e.g., shifting name placards dur-
ing a 5 min break) may help. Conversely, a shy person
may choose to sit to the side, in a corner or facing the
same direction as the moderator to avoid eye contact.
Drawing such people out demands additional strate-
gies. Nodding and smiling when they speak or leaning
forward to show interest will reinforce their participa-
tion. Casey and Krueger (1994) suggest a combination
of pausing with eye contact to elicit a response from
a quiet participant. People feel a little uncomfortable
with silences of even 5 s and will want to fill the gap.

Another goal of every moderator is to insure that
all issues are covered. This entails careful develop-
ment of the discussion guide with the people who
request the groups. Interviewing them is no less impor-
tant than interviewing the consumers in the actual
group. All issues should be included, barring major
time constraints. Time management is an important
skill of the moderator as groups can become surly if
held over the stated time (Stewart and Shamdasani,
1990). The moderator should have flexibility if some
issues arise naturally and out of the order of the dis-
cussion guide. It is often best to keep the ball rolling.
In some very good groups, the participants will antic-
ipate the next issue and the stream of discussion will
flow with little pushing and probing by the modera-
tor. If a one-way viewing room is used, the moderator
may wish to step out for a minute and visit with the
observers to see if there are new issues or further
probing that they desire. This may also provide the
opportunity for a “false close,” when the moderator

makes it appear that the discussion is ended and leaves
the room, only to observe a sudden burst of discussion
in his or her absence. People may voice opinions they
did not feel comfortable saying in front of the moder-
ator (Chambers and Smith, 1991). This should trigger
some follow-up, as it is a clear indication that there
are other issues on the people’s minds that need to be
probed. Data gathering on multiple occasions should
be viewed as a learning process rather than a repeated
experiment (e.g., Falk et al., 1996; Furst et al., 1996,
Janas et al., 1996).

16.6.3 Assistant Moderators and

Co-moderators

Some texts recommend the use of an assistant modera-
tor (Krueger and Casey, 2009). This is not often seen in
marketing research but makes a lot of practical sense.
The assistant can check the equipment, arrange for
food and incentive payments, check in the participants,
and take care of any forms that need to be filled out.
An assistant can take notes from behind the one-way
mirror or off to the side of the room, paying care-
ful attention to be unobtrusive and draw no attention
from the participants. If there is only one professional
moderator, the assistant can come from the research
team. If so, it is important for other team members or
clients to realize that they are not allowed to sit in on
the groups in the same room. The assistant modera-
tor’s notes become an important source of data for the
eventual report, along with the moderator summaries
and any recorded and transcribed records. The person
requesting the research act can also act as an assistant
to the moderator. This insures that he or she sees a
representative number of groups and does not rush to
premature conclusions based on the first group alone.

Another variation of the group interview uses mul-
tiple moderators. It may be helpful in a group to
have co-moderators to probe discussions from differ-
ent points of view. The second moderator may also
make some people feel more at ease, if they can iden-
tify better with that person in terms of gender and
other social variables. Like an assistant moderator, an
important function of a co-moderator is to assist in
debriefing and constructing the immediate summary
of the results. Co-moderators may also be technically
experienced people (Marlowe, 1987). Such persons
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can clarify some issues or technical questions that arise
and may recognize the potential importance of some
unexpected lines of discussion to future projects. Not
all focus group specialists recommend this approach.
Casey and Krueger (1994), for example, feel that it
may be confusing to respondents to have two moder-
ators on an equal footing. They prefer the use of an
assistant moderator, who can take care of latecomers,
taping, refreshments, props, and other details.

16.6.4 Debriefing: Avoiding Selective

Listening and Premature

Conclusions

One advantage of viewing focus groups is to hear
actual consumer comments in their own words, with
tone of voice, gestures, and body language. The obser-
vation can be compelling. However, the act of viewing
groups entails a major liability as well. Selective lis-
tening may occur and people will often remember
the comments that tend to confirm their preconceived
notions about the issues. The immediate and personal
nature of viewing a group discussion can often be
quite compelling and much more so than any written
report or numerical summary of a quantitative sur-
vey. Some observers will tend to form their opinions
long before they see the report, and sometimes without
the information from subsequent groups, which may
be contradictory. It is also quite possible to skew the
reporting of comments by extracting them out of con-
text, in order to confirm a client’s favorite hypothesis.
As noted by Stewart and Shamdasani, “Almost any
contention can be supported by taking a set of unrep-
resentative statements out of the context in which they
were spoken” (p. 110). One job of the sensory project
leader should be to discourage selective listening and
out-of-context reporting, as well as to caution against
early conclusions and reports to management before
the analyst can convert the data into information.

There are several ways to avoid this. If one observer
is the biggest proponent of a project, concept, or pro-
totype, that individual can be given the job of writing
down every negative comment or consumer concern.
Give the job of writing down positive information to
the biggest skeptic. There is no rule against assign-
ing tasks to observers, although whether you use the
information later is optional. Of course, people who

are used to passively listening to focus groups (or
worse yet, making comments or even jokes about the
participants) may not be receptive to the idea that
this experience requires their complete attention (cell
phones off!). Marlowe (1987) suggests that listen-
ing behind the glass takes discipline, concentration,
self-control, and objectivity, especially toward negative
attitudes that are difficult to swallow. A debriefing ses-
sion is held just after the group is concluded and can
promote a balanced view of the proceedings (Bystedt
et al., 2003; Chambers and Smith, 1991; Marlowe,
1987). Asking, “Did you hear what I heard?” about
key points can also remind people of comments they
may have missed, since human attention will eventu-
ally wander during the observation. Peer debriefing can
be an important tool in enhancing the trustworthiness
of conclusions (Janas et al., 1996).

16.7 Analysis and Reporting

16.7.1 General Principles

The type and style of analysis should be driven by
the purpose of the study. Once again the objectives of
project are the key concerns. The analysis must be sys-
tematic, verifiable, sequential, and ongoing (Krueger
and Casey, 2009). By systematic, we mean the analysis
follows a specified plan that is documented and under-
stood. By verifiable we mean that there is a sufficient
trail of evidence and documentation of how conclu-
sions were arrived at. Another researcher would arrive
at the same or very similar conclusions.

Analysis follows a sequence; it has phases includ-
ing note taking, debriefing, and writing summary notes
and transcript evaluation. Analysis may be ongoing,
as the design and questioning may be modified as the
group’s progress. This flexibility is an asset. Eriksson
and Kovalainen (2008) discuss various approaches to
content analysis, including software programs used for
text analysis in a variety of business applications. A
detailed example of systematic and quantitative text
analysis is given in Dransfield et al. (2004).

The data can take several forms including a full
verbatim transcript, an abridged transcript, note-based
analysis, and memory-based analysis. A full verba-
tim transcript is the most expensive and slowest but
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simplest for researchers. Transcripts can be useful for
lifting verbatim quotes to illustrate points. Stewart and
Shamdasani (1990) suggest transcribing as a first step
in analysis. This allows the analyst to cut and paste
(either physically or on a word processor) to group
comments of a similar nature. An abridged transcript
must be done by someone familiar with the project
and its goals (they may not be a skilled transcriber).
It cuts out introductory material and comments that
are deemed irrelevant or off-topic. Note-based analy-
sis depends on ability of the note-taker. If notes are
the main source it is important to also have the audio
record for review. Data will also consist of assistant
moderator notes, moderator summary notes, and any
debriefing notes. Memory-based analysis requires the
most skill. It may be done with highly experienced
moderators who offer an on-the-spot summary to those
watching behind the one-way mirror.

16.7.2 Suggested Method

(“Sorting/Clustering Approach”),

also Called Classical Transcript

Analysis

The systematic analysis of a verbatim transcript can
be a detailed and objective approach to dealing with
a collection of consumer discussions. However, it is
time consuming and may be a bit slow for some
marketing research requirements. In this section we
describe a simple straightforward method that requires
no specialized software, but will require a serious time
commitment. It is based on groupings of similar ideas,
sometimes called “affinity analysis” in new product
design. The transcript analysis proceeds as follows
(abridged from Krueger and Casey, 2009):

1. Setup: Obtain two verbatim transcripts, a large
room with a large table (or similar functionality),
flip chart paper (or similar, about 18 × 24 in.
minimum) for each of the 8–10 key questions or
thematic areas, scissors, and tape. Label each large
paper sheet with the key question or theme from
the discussion guide. Number the lines on the tran-
scripts sequentially by word processor, to be able to
refer to where they came from. If you have multi-
ple groups with multiple transcripts: use different

colored paper for each transcript to be able to
recover which group it came from.

2. Extracting quotes: Take one transcript and cut off
the introductory material. Start with the first sub-
stantive comment. Does it offer any information? If
so, slice it out and tape (or make a pile) under the
appropriate key question or theme. If irrelevant or
content free, discard. If uncertain, place aside in a
pile to review later.

3. Organize: Continue to extract and categorize useful,
information-rich quotes. As sub-themes emerge,
organize quotes within sub-categories by dividing
up each large sheet of paper into a matrix of sub-
areas with a word or two describing each. If a
quote seems to fall into two areas, photocopy it
and place one in each area. Note: Do not worry if
a sub-category has only one quote. One insightful
idea may be quite valuable even if only one person
thought of it.

4. After you have completed all transcripts, review
the piles and sub-categories to make sure similar
ideas are put together. Reorganize and make fur-
ther sub-categories as needed. Be sure to review and
contrast statements extracted earlier to insure that
they are related, a method of “constant comparison”
(Eriksson and Kovalainen, 2008).

5. If possible, have a second researcher review your
work to see if there are ambiguities, points of dis-
agreement, or outright differences in interpretation
or groupings.

This simple cutting, pasting, and organizing task
forms the basic information matrix from which you can
begin to construct themes. Next, the analysis proceeds
to written summaries and analysis of specific questions
and themes as follows:

(1) Write a descriptive summary of responses to each
question and organize by sub-theme or category.

(2) Contrast across groups if there are group dif-
ferences (demographic, users versus non-users,
gender, etc.).

(3) Weight the importance of each theme using the
following criteria:

Frequency and extent: Important themes tend to
emerge repeatedly. Frequency is the number
of times something is mentioned, extent is the
number of people who voice that opinion or
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comment. One person who continues to ram-
ble may not be as significant as when similar
comments emerge in different groups.

Specificity: Comments that are detailed, specific,
and actionable rather than merely generaliza-
tions tend to be more useful.

Emotion: Opinions strongly voiced may be of
greater importance.

Potential insight: Unanticipated, breakthrough,
paradigm shifting, innovative, actionable.

(4) Develop the transcript summary using the
weighted themes, organized by question or topic,
then subtopic, and choose about three quotes
to best illustrate each summary point. Use this
transcript summary as the centerpiece of your
written report.

There are a number of alternative analyses that can
be done on a verbatim transcript. A similar approach
can be done with a word processor instead of the
physical cut-and-paste method. The researcher must
be careful to “tag” the extracted quotes so that there
is a record of what group they came from and what
question or topic elicited that comment. An increas-
ingly common technique is to use specialized software
for text and content analysis (Dransfield et al., 2004;
Eriksson and Kovalainen, 2008). A number of com-
mercial packages are available for this purpose. They
involve coding of various response types, categories,
or sub-categories so that the text can be searched. This
may require skill with the software program as well
as skill in developing the codes. Programs also exist
to analyze sound files. In a simple version of this, the
researcher may be able to mark comments on the sound
recording, to tag them for later analysis and sorting.

Once the transcripts are analyzed, one must return
to the summaries that were written by the modera-
tor or assistant back when the groups were initially
conducted.

A good moderator will write a summary of key
points immediately after each group (Casey and
Krueger, 1994). These original summaries should be
compared to the transcript summaries and combined
and modified to begin the construction of the report.
Any debriefing notes should also be considered. They
should be reviewed one point at a time, usually in the
order that issues arise in the discussion guide. In other
words, read all of the summaries looking at a single

issue and then write the overarching conclusion based
on this impression.

16.7.3 Report Format

In general, for industrial reports, a bulleted style
is recommended. Include a cover page, objectives,
summary, key findings, interpretations (if needed),
and recommendations. Append details of method,
groups, locations, dates, etc. The discussion guide
may be appended. A sample industrial report is
shown in Appendix of this chapter. Some guidelines
follow.

First, limit your points. Go from the most poten-
tially important findings to the least. Within each
category go from general ideas to more specific items
(Casey and Krueger, 1994). The big ideas can form
the basis for an executive summary if one is needed.
Sometimes people will raise an issue in different con-
texts or different words, and these may fall under
some general theme like packaging, convenience of
preparation, concerns about nutritional content, and
flavor. A good analyst will recognize overarching
issues and organize the report around them. Such
organization will make the report more digestible,
actionable, and memorable to readers, as opposed to
a disorganized list of opinions or quotes. Use ver-
batim quotes (limit of three) for each bullet point.
This has high face validity and illustrates to readers
of the report how consumers actually talked about
the product or concept. The written report will nor-
mally summarize key points following the discussion
guide and then raise new issues. If the report is an
oral presentation or in electronic format, you may
be able to illustrate with video clips which can be
compelling.

Avoid the temptation to “count heads.” It is a
very natural tendency to report results using phrases
like “the majority of participants,” “most consumers
agreed,” or “a minority opinion was that . . ..” Guard
against such unintended quantitative comments, as
these may sound like projections to the reader about
the larger consumer population.

Concept maps or pictorial maps of the associational
structure can be valuable. They can illustrate different
results from different groups of individuals. For exam-
ple, it may be desired to compare experts to novices for
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some products, or culinary professionals to consumers,
or groups of regular and infrequent purchasers of a
product. Concept mapping is a method by which the
ideas (nouns, mostly) are presented as nodes (boxes
or circles in the display) and their relationships (verb
phrases) are pictured by labeled lines connecting the
nodes (Novak and Gowin, 1984). A good example
of this approach was a comparison of consumers to
fishing industry experts in their approach to seafood
quality (Bisogni et al., 1986). Experts were concerned
with a wider array of technical issues and processing
factors, while consumers were more focused on sen-
sory attributes. This difference was plainly obvious in
the pictorial concept maps. Another example can be
found in Grebitus and Bruhn (2008) who examined
consumers’ concepts of pork quality. The individual
maps were subjected to quantitative analysis to provide
degrees of relationship between 15 key concepts. The
complexity of the discussion, the information elicited,
and its underlying conceptual structure can all be easily
appreciated in this kind of pictorial display. A sample
concept map from the previous case study on salt and
health is shown in Fig. 16.2.

16.8 Alternative Procedures and

Variations of the Group Interview

16.8.1 Groups of Children, Telephone

Interviews, Internet-Based Groups

Krueger and Casey (2009) discuss several other vari-
ations on focus groups. Three areas are potentially
useful in sensory evaluation and new product devel-
opment: focus groups with children, telephone focus
groups, and “discussion” groups held via the Internet.
Each of these requires modification of the usual pro-
cedures for group discussions and a good deal of flex-
ibility. As always, making sure the tool is appropriate
for the project objectives is key. The following descrip-
tions and guidelines are summarized from Krueger and
Casey (2009).

In focus groups with children or teenagers, smaller
groups need to be assembled and about six kids is a
good number. The time of the group must be shorter,
usually no longer than 1 h. Getting a good modera-
tor that can relate to kids and make them comfortable
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Fig. 16.2 A sample concept
map summarizing the key
findings from consumers in
the salt study (Case Study 2,
Smith et al., 2006). Key ideas
are represented as boxes
(nodes) and are connected by
verb phrases to indicate their
relationships. When this kind
of map is created by
individual consumers as part
of an interview or focus group
exercise it is referred to as
“mind-mapping” (Bysted
et al., 2003).
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talking to new acquaintances is important. Children
must be of about the same age, no more than 2 years
difference among the group. Avoid recruiting close
friends who know each other. If possible, prescreen
for kids that are willing to speak up. Food is a good
idea. Groups should be conducted in a friendly and
possibly familiar location, and one that is not asso-
ciated with adults in authority such as a school if
possible. Questions should be appropriate to the age of
the children and yes/no questions should be avoided as
usual. It is common to spend a good 15 min in warm-
up talking about a popular topic like music or video
games.

Telephone interviews allow for more geographic
diversity in the group but they also have restric-
tions and special requirements. Because no travel is
involved, incentives can be small or non-monetary.
The disadvantage is that any body language or facial
expressions are lost. Phone interviews are conducted
like a conference call in which the participants call
in via a pre-arranged service. Participants should be
instructed to call in from a private, comfortable place
in which they will not be tempted to be multi-tasking
or doing other business during the call. The clarity
of the connections should be carefully assessed when
people sign in. Groups must be smaller (4–5 partici-
pants) and shorter (about an hour). People should state
their names before comments, at least at first until it is
clear by voice who is speaking. Be prepared to stimu-
late the discussion when silences occur and intervene
when conversations seem to be stuck on one topic.

The Internet offers several options as alternatives
to the traditional discussion group. There must be a
secure, password-protected system. Like phone inter-
views, there can be geographic diversity but there are
no visual observations of expressions or body lan-
guage. There may be less spur-of-the-moment syner-
gistic interactions because responses may be delayed.
Before or during the group, images, sounds, complex
concepts, and such can be posted on another website
for viewing. The Internet interaction will avoid some
of the issues of social dominance or hierarchies that
can surface in a face-to-face group.

One option for the Internet is to set up a chat room
with a specified time to enter and interact. Typically
the chat room could have six to eight participants and
last up to 90 min. A sequence of questions are posted
often ahead of time for consideration. Information
for inspection and comment before the group can be

posted on another website. A chat room will tend to
get more top-of-mind comments that may not be well
thought-out responses. The format favors people who
type fast and do not edit their thoughts, and such per-
sons may dominate the exchange. Moderators should
be careful to identify their own comments, questions,
and probes, for example, by using all capital letters.
Participants should be warned if time is running out on
a topic so those who are waiting to respond can do so.
An obvious advantage of the chat room is that it can
provide a written record of all comments.

Another alternative is an Internet bulletin board.
This functions like a chat room extended over time
with posted comments. Participants must agree to
spend 15–30 min per day reading and posting through-
out the duration of the project and they should be
informed of the duration. The extended timetable may
entail some attrition as personal schedules change
or emergencies arise. Bulletin boards can evoke
more reflective in-depth comments than a chat room.
Participants are urged to post comments on the gen-
eral topic of the day as well as respond to com-
ments of others. The moderator may summarize a
previous day’s findings for further commentary or
amendments.

16.8.2 Alternatives to Traditional

Questioning

Within classical focus groups, there are a number of
special activities that can be done that involve more
“doing” than “talking.” There are no rules that pro-
hibit the use of tasks or consumer interactions with
sample products or sensory experiences. Bystedt et al.
(2003) list a variety of techniques as alternatives to
traditional question and answer. These include free
association (what comes immediately to mind when I
say X?), mind-mapping (drawing a map of your ideas
similar to the concept map discussed above), making
collages of the product image from magazine cutouts,
responding to a pre-arranged deck of visual images
(which of these pictures is associated with the prod-
uct concept?), various techniques for laddering, and
several other methods to stimulate imagery and probe
associations.

Sometimes tasting or using a product may help
bring to mind advantages and concerns. To facilitate
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discussion, participants can be asked to bring along
a similar product or one they regularly use from the
category. Having been presented an idea or prototype,
they can be asked to write down three positive and
three negative aspects of the product, in their opin-
ion. This can provide some time for reflection and if
written, can be collected later to see if they voiced the
actual items they wrote down. Such information could
be presented to subsequent groups for their commen-
tary. Building from recorded positives and negatives
is very much in the tradition of Merton, who orig-
inally focused his group discussions on the positive
and negative comments recorded during the playing of
the radio programs (Stewart and Shamdasani, 1990).
Writing down comments on index cards to be passed
to the moderator can allow anonymous opinions to be
opened for discussion.

Interaction with products can involve other orga-
nized tasks. For example, participants can be asked
to sort a group of items into clusters or pairs and
give the reasons for their categorization. This can be
done individually or as a group exercise. They can be
given triads of items, as in the repertory grid method
(McEwan and Thomson, 1988) in which they describe
the reasons why two of the three items are similar to
each other and different from a third. Alternatively,
they can be given pairs and asked to describe similar-
ities and differences. Another method for exploration
is a product placement or mapping task, in which par-
ticipants place objects on the table to represent their
similarities, differences, dimensions of difference, and
perhaps categorical relationships (Bystedt et al., 2003;
Light et al., 1992; Risvik et al., 1994). The reverse
task of dividing up the group sequentially can also be
performed. Participants are asked to divide the prod-
uct first into two piles, to discuss the reasons for this
division, and then further divide the piles if possible
(see Ellmore and Heymann, 1999 and Olson, 1981 for
examples).

Probing information on underlying attitudes and
motivations can also benefit from some special tech-
niques. Additional tools have been borrowed from the
projective techniques in psychoanalysis (Stewart and
Shamdasani, 1990). These are called projective in the
Freudian sense in that respondents need not couch
their responses in terms of their own feelings, but
state them as belonging to someone else. For example,

participants could describe the type of house or house-
hold that a person who would use the product would
have. “Making up a story” about the product or user
is another approach (Bystedt et al., 2003). Seemingly
unrelated aspects can give insights into how the prod-
uct is perceived in relation to attitudes. What kind of
car does the person drive who would buy this? What
sports do they like? What TV shows do they watch?
The line of questioning can include constructing a
complete story about the potential user of the product.
Participants may be asked to draw a stick figure of the
person and label/describe them. Another common pro-
jective technique is “filling in bubbles.” This describes
a partially blank or ambiguous picture, such as a con-
sumer thinking, and a “bubble” appearing above her as
in a cartoon or comic strip. In this way, participants can
place the attitudes outside themselves onto the person
in the picture. Many variations on these techniques are
available and more continue to be developed.

16.9 Conclusions

Some people consider observational or qualitative
methods “soft” science or not even scientific at all, that
is, an unfortunate and unduly pejorative view of this
form of research, which can be systematic and verifi-
able (see discussions of “grounded theory” in Eriksson
and Kovalainen, 2008). The dominant model for sci-
entific research over the past 150 years has been that
of controlled experimentation and logical hypothesis
testing. This “positivist” model has served us well,
but it is not the only way to gather useful informa-
tion. Almost all science begins with observation of
some phenomenon in order to develop a framework for
later experimentation and tests of theory. Field biology
using observational methods to study animal behavior
is one example, and in principle, it is not unlike the
kinds of methods discussed in this chapter (except per-
haps that there is more interaction of the observed and
the observer). As always, the key is to find the right
tool to address the objectives of the study or research
project:

The decision to use a focus group or some other research
tool must be based on the appropriateness of the method
for obtaining answers for specific research questions. It
has been noted before that to a man with a hammer,
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everything is a nail. . . . . Focus groups are useful for par-
ticular purposes and specific situations — for exploring
the way particular groups of individuals think and talk
about a phenomenon, for generating ideas and for gen-
erating diagnostic information. For these purposes, focus
groups represent a rigorous scientific method of inquiry
(Stewart and Shamdasani, 1990, p. 140).

A number of myths surround the use of focus groups
(Krueger and Casey, 1994). One common misconcep-
tion is that they are inexpensive. If three groups are
conducted in each geographic location or three groups
of each demographic segment, the budget will grow
quite large in a hurry. A second myth is that they
give rapid feedback. If one considers all the steps from
recruitment, hiring test agencies or moderators, con-
ducting the study and the analysis, it can easily take
a minimum of 6 weeks to get the information needed.
Another common notion is that a one-way mirror is
required. With video transmission this is hardly nec-
essary and the situation may seem more natural to the
participants without it. Giving up the one-way mirror
allows a greater flexibility for the kinds of locations
that can be used for the study. Finally, there is the
question of whether one needs an expert facilitator

(or conversely that anyone can run a focus group).
Certainly some skills are needed, particularly that of
being a good listener.

Qualitative research methods have become impor-
tant tools for consumer research in the methods avail-
able to sensory specialists. For uses such as explor-
ing important sensory attributes and issues related
to functional product characteristics (packaging, use
directions, convenience, etc.) they are quite valu-
able. As sensory specialists become more a part
of cross-functional teams during product develop-
ment, they will be exposed to an increasing array of
consumer-centric qualitative and quantitative methods,
many of which are used for conceptual optimization
(Moskowitz et al., 2006). It is important for sensory
professionals to understand these tools and how they
are used, in order to make the best use of the infor-
mation. Conducting qualitative research is in some
ways like sailing a boat or taking a hot air bal-
loon ride. Some things are under your control, many
others are not, and each experience provides some
surprises. They are almost always valuable learning
experiences.



402 16 Qualitative Consumer Research Methods

Appendix: Sample Report Group Report

Boil-in-bag Pasta Project Followup Groups

Abstract

Three discussion groups were conducted following a home use test of the boil-in-bag pasta product. Potential
areas for improvement were identified in bag strength, sauce formulation and usage instructions. The conve-
nience aspect of the product was perceived as a major point of attractiveness to the participants. There was some
interest in a low calorie version of the product.

Objective

To assess consumer reactions to the boil-in-bag pasta product in an in-depth group interview, to allow further
probing of issues identified during the formal in home test and quantitative questionnaire.

Methods

[appropriate methods would be described here or appended]

Results

1. The major consumer-perceived advantage was the product’s convenience:

“I really liked the product since you could just pop the thing in boiling water and pull the bag out five minutes
later with a completely cooked dish with sauce and everything. You just throw the pouch away and cleanup
was easy.”

“I liked the speed of preparation. When I get home from work, my kids are screaming for their dinner, and
well, you know, my husband doesn’t lift a finger to help, so I need to get this done to keep the kids from
rioting.”

2. Problems were seen with the sauce flavor, particularly regarding salt level:

“The pasta was nice and firm, but I thought the sauce was, you know, way too salty. My husband is on a low
salt diet for high blood pressure, and he just went right through the roof.”

“The herb sauce was just too strong. It didn’t seem like an authentic Italian dish to me. My mother’s version
was much more subtle.”

3. Problems were seen with the bag strength:

“With both the products I tried, the bag broke. I would never buy a product like this again if that happened
just once. It makes a terrible mess and besides, is just a waste of money since you can’t do anything with the
food once it gets into a whole pot of hot water.”

4. Usage instructions were not clear, especially regarding done-ness:

“It says to cook until firm. But, uh, you know, like how do I tell its firm when its inside a bag and in a pot of
boiling water?”
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5. There was some interest in nutritionally-oriented versions of the product:

“I liked the taste, but when I read the nutritional information, I was surprised at the fat level as well as the
sodium. I mean, if we can have lite beer and lite everything else these days, we should have a line of these
products that’s better for you, too.”

Conclusions

[appropriate conclusions would appear here]

Recommendations

[appropriate recommendations would appear here]

[in some companies, they will appear at the top of the report]

[abstract may then be replaced with “executive summary”]

Disclaimer

“Qualitative research provides a rich source of information in clarifying existing theories, creating hypotheses
and giving directions to future research. This research is based on a limited non-random sample of participants.
Such qualitative research is not projectable. No statistical inferences should be drawn from these results. Any
results should be viewed as tentative without quantitative corroboration.”
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Chapter 17

Quality Control and Shelf-Life (Stability) Testing

Abstract Two routine functions of a sensory department may be quality control
testing and the measurement of product stability or shelf life. These activities may
involve any of the three main kinds of sensory testing or modifications of them.
However, there are unique constraints for these tests, different types of analyses,
and specific models for these data. This chapter discusses different procedures for
sensory quality control, presents a recommended procedure, and outlines the pro-
grammatic requirements for establishing and maintaining a sensory QC function. The
second section of the chapter presents an introduction to shelf-life testing, its special
considerations, and some of the models used for stability testing data.

Consumer researchers are well aware of the quality of products. The food industry constantly faces

the demand to maintain both quality and profitability simultaneously. Quality, however, is an

elusive concept and as such must be operationalized and measured in order for it to be maintained.

—H. R. Moskowitz (1995)
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17.1 Introduction: Objectives

and Challenges

Product quality has been defined in a variety of dif-
ferent ways (Lawless, 1995). Most sensory researchers
focus on issues of consumer satisfaction as a measure
of quality (Cardello, 1995; Moskowitz, 1995) although
there is an historic tradition of using expert judges,
commodity graders, or government inspectors to be the
arbiters of product quality (Bodyfelt et al., 1988; York,
1995). This tradition is tied to use of the senses for
detection of well-known defects or expected problem
areas. The approach was well suited to standard com-
modities where minimum levels of quality could be
insured, but excellence was rarely the issue. Another
strong tradition has been the emphasis on conformance
to specifications (Muñoz et al., 1992). This approach is
useful in the manufacturing of durable goods whose
attributes and performance could be measured using
instrumental or objective means. Another popular def-
inition of quality has been fitness for use (Lawless,
1995). This definition recognizes that quality does not
exist in a vacuum, but only in a context or frame of
reference for the consumer. Finally, the reliability or
consistency in sensory and performance experiences
with a product has been recognized as an impor-
tant feature of product quality. Consumer expectations
arise out of experience, and maintaining the con-
stancy of that experience does a lot to build consumer
confidence.

There are a number of challenges and problems
that face a sensory evaluation program when trying to
provide sensory information for quality control (QC).
Difficult situations occur in the manufacturing envi-
ronment where sensory assessment is needed during
the processing itself. Such online sensory quality test-
ing is likely to be done under tight time constraints,
for example, while the product is cooling and before
a decision is made to bottle or pack a production
run. Only a few qualified judges may be available on
third shift in the middle of the night when these deci-
sions have to be made. There is little luxury involved
in terms of time, and a detailed descriptive evalua-
tion and statistical analysis may not be possible due
to time and resource constraints. At the same time,
a flexible and comprehensive system may be desired,
one that is also applicable to raw materials testing,
finished products, packaging materials, and shelf-life

tests (Reece, 1979). Such constraints and demands
often entail compromises in sensory practices.

A basic requirement of any sensory QC system is
the definition of standards or tolerance limits on a sen-
sory basis for the product. This requires calibration
studies. If the sensory QC program is new, manage-
ment may be surprised to learn that some research
needs to be done before the QC panel can be trained
and begin to operate. Sometimes the identification of
standard products and tolerance limits may incur more
expense than the sensory panel operation itself, espe-
cially if consumers are used to define the limits of
what is acceptable quality. Maintaining reference stan-
dards for a standard quality product may also present
difficulties. Foods and consumer products may have
short shelf lives, and even with optimal storage con-
ditions the standards will need to be replaced sooner or
later. It is difficult to prevent some drift in the product
over time. Multiple references including both opti-
mally stored and fresh products may be needed (Wolfe,
1979). Some products simply change with age and this
is a desirable feature like the proteolysis in ham or
in cheese ripening (Dethmers, 1979). Furthermore, the
frame of reference of the panel can drift or change sea-
sonally. This makes it difficult to insure that a sensory
specification of a standard product is in fact the same
as the last standard.

Other barriers to acceptance involve the different
ways that sensory evaluation is performed as opposed
to traditional quality control. Most sensory tests are
designed to look at a few or limited number of prod-
ucts. Sometimes the products are even considered to
be identical, as in a homogeneous product evaluated
from the same batch, like a well-mixed tank-produced
beverage. The major source of variability in this sen-
sory test is in the measuring instruments, the panelists.
Statistical tests are designed to look at mean scores
against the background of variation among people.
This is quite different from the usual operation of qual-
ity control, where many samples of the product are
taken and measured only once or a very few times on
an instrument. The variability measured by traditional
QC and pictured in control charts and other plots is
across products, not instruments. Sensory QC has to
deal with both sources of variation. In the instrumen-
tal measures, one can sample hundreds of products
and take one measurement on each. In sensory QC,
there may be one sample of each product but multiple
measurements across panelists.
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17.2 A Quick Look at Traditional Quality

Control

Traditional quality control involves three major
requirements: the establishment of specifications, the
establishment of tolerance limits, and a sampling plan
appropriate to the product being manufactured or the
system being monitored. By specification, we mean
the characteristics of the ideal or average product.
To set tolerance limits, the liabilities of Type I error,
rejecting product that is acceptable and therefore incur-
ring unnecessary cost, must be weighed against the
potential for Type II error, letting bad product into
the marketplace and offending loyal consumers. This
is a management decision that will impact the nature
of the tolerance limits that are set. These tolerance
limits are the levels of variability and/or the ranges
that are deemed acceptable (in specification) versus
unacceptable (out of specification).

Historically, such analysis was born in the advent
of statistical quality control. W.A. Shewhart, work-
ing with Bell Labs in the early 1900s, noticed that
there was variability in the functioning of some sig-
nal transmission components and that since these were
often buried, they were a problem to dig up and repair.
Failures or severe problems needed to be differentiated
from the normal expected variability in these systems.
To address this, he coined the ideas of assignable cause
versus chance cause variation. The idea was that some
variation was to be expected, but when the observation
was outside of some common range, it was likely that
some other cause was at work, and the item would need
to be replaced, repaired, or otherwise dealt with. Thus
the approach was statistical and involved a number of
charts or graphs depicting this variation and the limits
at which an assignable cause might be suspected. His
notions of statistical quality control were later adopted
by W.E. Deming in support of the war effort and later
in the reconstruction of Japanese industrial practices.

There are several common types of charts used
in statistical quality control and the sensory evalua-
tion specialist should be familiar with them as they
are part of the common language used by traditional
quality control departments. Three kinds of control
charts are common: X-bar charts, R charts, and I charts.
Various rules exist for warning levels and action lev-
els using these charts. Warning levels generally mean
that the process needs to be investigated but no change

is necessary. If action levels are surpassed, then there
is good evidence for an out-of-control situation or
assignable cause, and the process must be changed.

The X-bar chart plots the mean scores for different
test batches over some time period. Typically three to
five products are pulled for evaluation (Muñoz et al.,
1992). Upper and lower confidence limits (UCL and
LCL) are generally set by ± 3 standard errors (some-
times referred to as 3-sigma) as shown in Fig. 17.1.
Out-of-control conditions are spotted by a number of
criteria, such as a point beyond the 3-sigma UCL or
LCL, or some pattern of points such as “nine points in
a row all on one side of the historical mean” or “six
points in a row all increasing or decreasing” (Nelson,
1984). The R-chart measures the range of observations
in any batch of product. Upper and lower limits are set
as in the X-bar charts with warning and action levels at
2-sigma and 3-sigma (or 95 and 99% confidence lev-
els). Sometimes the X-bar chart and the R chart may
be combined to give a fuller picture. If only one unit
is evaluated per batch, then the mean and range cannot
be used, only the observed value itself. This is plotted
on an I chart (Muñoz et al., 1992). As in the X and R

charts, a mean and confidence limits can be set, as well
as warning levels and action levels.

17.3 Methods for Sensory QC

17.3.1 Cuttings: A Bad Example

Muñoz and coauthors (1992) give both good and bad
examples of applications of sensory QC procedures.
Here is an example of a poor implementation of the
in/out procedure:

The panel consists of a small group of company employ-
ees (4 to 5) mainly from the management team. The panel
evaluates a large amount of production samples (up to
20 to 40) per session without standardized and controlled
protocols. Each product is discussed to determine if it is
to be considered “in” or “out” of specifications. In this
program, no defined specifications or guidelines for prod-
uct evaluation exist, and no training or product orientation
was held. As a result, each panelist makes decisions based
on his or her individual experience and familiarity with
production, or based on the highest ranking person on the
panel. (p. 141)

This scenario highlights some of the pitfalls of
a pass/fail procedure. It resembles a common daily
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Fig. 17.1 X-bar and R charts
for a hypothetical analysis of
product thickness ratings over
several batches. The X-bar
chart shows the historic mean
and upper and lower control
limits, usually set at three
standard deviations. The
X-bar chart shows one batch
with a mean value below the
lower limits and the batches
on either side show a range
beyond the range limit as
well. This should suggest
action and/or investigation by
process control personnel.
Batch 13 was also above the
range limit suggesting an
out-of-control situation.
Batches 5–10 also show the
alarm pattern of six points on
one side of the historic mean.

check on production that was often done by a convened
committee of technical personnel and managers, called
“cuttings.” Without the guidance of a sensory evalua-
tion specialist, such a method can be put in place with
a number of poor practices, such as having an open
discussion to reach consensus and determining a final
score.

17.3.2 In–Out (Pass/Fail) System

Muñoz et al. (1992) discuss four different approaches
to sensory quality assessment. Their book, Sensory

Evaluation in Quality Control, gives a detailed treat-
ment of each. One of the methods is the in/out or pass–
fail procedure. This method differentiates normal pro-
duction from products that are considered different or
outside specifications. It is a popular procedure at the
plant level and is used in some binary decision-making

scenarios such as Canadian fish inspection (York,
1995).

Panelists are trained to recognize the characteris-
tics that defined “out-of-spec” products as well as the
range of characteristics that are considered “in spec”
(Nakayama and Wessman, 1979). This enhances the
uniformity of criteria among the panelists. As in any
yes/no procedure, the effects of bias and criterion set-
ting can be as influential as the actual sensory experi-
ence (see Section 5.8). Different panelists may be more
or less conservative in the degree of sensory difference
they require in order to call something out of spec. In
quality control, the liability of differences in criterion
setting is high, since there are always pressures to pass
poor products to maintain productivity. Obviously, the
presentation of blind control samples is necessary to
estimate a false alarm rate (false positives), and the
introduction of purposely defective samples can be
useful in estimating the false-negative (miss) rate.
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Muñoz and coauthors stressed the need for standard-
ized protocols for sample handling and evaluation and
the need for independent judgments, rather than dis-
cussion and consensus. York (1995) described how
government fish inspectors are involved in standards
development workshops. Training includes definition
of sensory characteristics that define wholesomeness,
taint, and decomposition and how these characteristics
at different levels contribute to the binary decision for
acceptance or rejection.

The major advantages of the in/out procedure are its
apparent simplicity and use as a decision-making tool.
It is especially suited to simple products or those with
a few variable attributes. The disadvantages include
the criterion-setting problems described above. Also,
the method does not necessarily provide diagnostic
reasons for rejection or failure, so there is a lack of
direction to be used in fixing problems. It may also
be difficult to relate these data to other measures such
as microbial or instrumental analyses of food quality.
The data necessarily consist of mere frequency counts
of the number of panelists judging the product out of
spec. Finally, it may also be difficult for some panelists
to be analytical and look for specific problems and
defects, while at the same time providing an overall
integrated judgment of product quality.

17.3.3 Difference from Control Ratings

A second major approach to sensory quality control is
to use ratings for an overall degree of difference from a
standard or control product. This works well if it is fea-
sible to maintain a constant “gold standard” product for
comparison (Muñoz et al., 1992). It is also well suited
to products where there is a single sensory character-
istic or just a few sensory characteristics that vary in
production. The procedure uses a single scale as illus-
trated in the paper by Aust et al. (1985) such as the
following:

_________________________________________________________

|   |

extremely different the same as  

from the standard the standard

Ratings on this scale may be transcribed from zero
(rightmost point) to ten (leftmost point). For purposes
of rapid analysis, a simple 10-point category scale

can be used. Additional points along the scale are
sometimes labeled with other verbal descriptions of
different degrees of difference.

Training with a range of references and establish-
ing the nature and conditions for reproducing the
control sample are critical in this procedure. The pan-
elists must be shown samples in training that represent
points along the scale. These can be cross-referenced
to consumer opinion or chosen by management tast-
ings (Muñoz et al., 1992). Preferably there is some
consumer input for calibration at an early stage of
the program development. Muñoz and coauthors also
presented a more descriptive version where differ-
ences from control on several individual attributes
of a flaked breakfast cereal were evaluated. This
more detailed procedure can provide more action-
able information about the attributes responsible for
any differences. If just a single scale is used, pan-
elists may weight attributes differently in determining
an overall degree of difference. Specific character-
istics may be more or less influential for a given
panelist.

Management should choose some level of the differ-
ence as a cutoff for action. The scale is useful in that
it provides for a range of differences that are accept-
able. At some point, regular users of the product will
notice and object to differences, and this should be
the benchmark for action standards. If at all possi-
ble, the panelists should not be informed of where the
breakpoint in decision making occurs along the scale.
If they know where management sets the cutoff, they
may become too cautious and tend to give scores that
may approach but not surpass the cutoff (Rutenbeck,
1985).

As with the pass/fail method, an important part of
this procedure is the introduction of blind control sam-
ples. During every test session, a blind-labeled sample
of the standard should be inserted into the test set,
to be compared against the labeled version of itself.
This can help establish the baseline of variation on
the scale, since two products are rarely rated as identi-
cal. Another way to think about this is that it provides
a false alarm rate or an estimate of a placebo effect
(Muñoz et al., 1992). In the original paper by Aust
et al. (1985), an additional control sample was a prod-
uct from a different batch of the same production. Thus
a test product’s variability could be measured against
the response bias or variation within the ratings of the
standard against itself, as well as the batch-to-batch
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variation. This approach could also be useful in com-
paring products from different manufacturing sites.
Aust et al. proposed an analysis of variance model for
this design. If the control comparison is simply the
standard against itself, a paired or dependent t-test can
compare the mean scores for the test product against
the mean score of the standard product rated against
itself. This presumes that there are sufficient judges to
warrant a statistical test. With small panels, more qual-
itative criteria for action have to be adopted, e.g., any
three out of five panelists below some cutoff score. The
false alarm level should also be considered in making
decisions. The ratings for the blind standard against
itself must be low relative to the test product scores
in order to reject a batch.

The major disadvantage of this test, like the yes/no
procedure, is that it does not necessarily provide any
diagnostic information on the reasons for the dif-
ference if only the single scale is used. Of course,
open-ended reasons for difference can be given, or
additional questions, scales, or checklists can be pro-
vided for attributes that are common problems or show
common variation.

17.3.4 Quality Ratings with Diagnostics

A third method, similar to the overall difference from
control method, is to use quality ratings. This entails
an even more complex judgment procedure on the part
of the panelists, since it is not only the differences that
matter but also how they are weighted in determining
product quality. This idea of an integrated quality score
is part of the tradition of food commodity judging, as
discussed in Section 17.6.

There are three main abilities of the trained or expert
judge that are necessary in order to use a quality judg-
ing system. The expert judge must maintain a mental
standard of what the ideal product is in terms of sen-
sory characteristics. Second, the judge must learn to
anticipate and identify common defects that arise as a
function of poor ingredients, poor handling or produc-
tion practices, microbial problems, storage abuse, and
so on. Finally, the judge needs to know the weight or
influence of each defect at different levels of severity
and how they detract from overall quality. This usu-
ally takes the form of a point deduction scheme. In the
case of seafood, deterioration as a function of aging

or mishandling will go through a sequence of flavor
changes and sensory spoilage characteristics. These
changes in sensory characteristics can be translated
into a scale for fish quality (Regenstein, 1983).

The common characteristics of quality ratings are
these (Muñoz et al., 1992): Scales directly represent
the quality judgment, rather than just sensory differ-
ence, and can use words like poor to excellent. This
wording itself can be a motivator, as it gives the
impression to panelists that they are directly involved
in decision making. Quality grading works best when
there is management or industry consensus on what
is good. In some cases specific product characteristics
can be rated in addition to overall quality, for exam-
ple, quality of texture, flavor, appearance. In some
schemes like wine judging, quality scores for individ-
ual attributes are then summed to give the overall score
(Amerine and Roessler, 1981). Unfortunately, the qual-
ity scoring approach is prone to abuse, where small
numbers of poorly trained judges evaluate dozens of
product “cuttings,” use their own personal criteria, and
use consensus (discussion) methods to make decisions.
Muñoz and coauthors presented this example of good
practice:

The panel consists of 8 to 12 panelists who are trained
in the procedures to assess the quality of a given prod-
uct type. They learned the company’s quality guidelines,
which were established using the input from consumers
and management. . . . These guidelines are shown to
panelists by actual products representing various quality
levels. The program was designed by a sensory profes-
sional using sound methodology and adequate testing
controls for the evaluation process. In routine evalua-
tions, panelists rate “overall” quality as well as the quality
of selected attributes using a balanced scale (very poor
to excellent). The data are treated like interval data and
panel means are used to summarize the results of the eval-
uations. The results are provided to management, which
makes decisions on the disposition of the production
batches evaluated. (p. 109)

Although there are apparent time and cost advan-
tages in this direct approach, there are also disad-
vantages. The ability to recognize all the defects and
integrate them into a quality score may require a
lengthy training process. There is a liability that indi-
vidual subjectivity in likes and dislikes can creep into
the judge’s evaluations. The specialized vocabulary of
technical defects may seem arcane to non-technical
managers. Finally, with small panels, statistical differ-
ence tests are rarely applied to such data, so the method
is primarily qualitative.
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17.3.5 Descriptive Analysis

A fourth approach to sensory quality control is
a descriptive analysis method, as described in
Chapter 10. The goal is to provide intensity ratings for
individual sensory attributes by a trained panel. The
focus is on the perceived intensity of single attributes
and not quality or overall difference. Intensity rating
of single sensory characteristics demands an analytical
frame of mind and focused attention on dissecting the
sensory experience into its component parts. Muñoz
and coauthors called this as a “comprehensive descrip-
tive method,” but they do allow for limitation of the
scorecard to a small set of critical attributes. For QC
purposes, attention to a few critical attributes may be
appropriate.

As in the other techniques, calibration must be
done. Specifications for the descriptive profile must
be set via consumer testing and/or management input.
This will consist of a range of allowable intensity
scores for the key attributes. Table 17.1 shows an
example of a descriptive evaluation of potato chip
samples and the range of sensory specifications, as
previously determined in a calibration study with con-
sumers and/or management input (from Muñoz et al.,
1992). This sample is below the acceptable specifi-
cation limits in evenness of color and is too high in
cardboard flavor, a characteristic of lipid oxidation
problems.

Table 17.1 Evaluation of potato chip samples using descrip-
tive specification

Mean panel score Acceptable range

Appearance
Color intensity 4.7 3.5–6.0
Even color 4.8 6.0–12.0
Even size 4.1 4.0–8.5

Flavor
Fried potato 3.6 3.0–5.0
Cardboard 5.0 0.0–1.5
Painty 0.0 0.0–1.0
Salty 12.3 8.0–12.5

Texture
Hardness 7.5 6.0–9.5
Crisp/crunch 13.1 10.0–15.0
Denseness 7.4 7.4–10.0

From Muñoz et al. (1992)

Descriptive analysis requires extensive panel train-
ing. Panelists should be shown reference standards to
learn the meaning of the key attributes. Next they must
be shown intensity standards to anchor their quantita-
tive ratings on the intensity scale. They do not have
to be shown examples that are labeled as “in specifi-
cation” or “out of specification,” however, since that
decision is based on the overall profile of the prod-
uct and is done by the sensory panel leader or QC
management. Defective samples can be used in train-
ing intensity ratings, but the actual cutoff points are
better kept in confidence by managers making the deci-
sions about product disposition (Muñoz et al., 1992).
This will avoid the tendency for panelists to gravi-
tate toward scores that are just within the acceptable
range.

Advantages. The detail and quantitative nature of
the descriptive specification lends itself well to correla-
tion with other measures such as instrumental analysis.
The second advantage is that it presents less of a cog-
nitive burden on panelists, once they have adopted
the analytical frame of mind. They are not required
to integrate their various sensory experiences into an
overall score, but merely report their intensity per-
ceptions of the key attributes. Finally, the reasons for
defects and corrective actions are easier to infer since
specific characteristics are rated. These can be more
closely associated with ingredients and process factors
than an overall quality score.

Limitations. Because the method depends on good
intensity anchoring, it tends to be more laborious in
panel training than some of the other techniques. Due
to the need for data handling and statistical analysis, as
well as having a sufficient number of trained judges on
hand for the method, it is better suited for quality evalu-
ation of finished products. It may be difficult to arrange
for descriptive evaluation for ongoing production, par-
ticularly on later work shifts if production is around
the clock. The training regimen is difficult and time
consuming to set up since examples must be found for
the range of intensities for each sensory attribute in the
evaluation. This can require a lot of technician time in
sample preparation. Another liability is that problems
may occur in some attributes that were not included on
the scorecard and/or outside of the training set. Thus,
the method lends itself to situations where the problem
areas are well known and the production and ingredi-
ent variability can be easily reproduced to make up the
training set.
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17.3.6 A Hybrid Approach: Quality

Ratings with Diagnostics

Gillette and Beckley proposed a reasonable compro-
mise between the quality rating method and a com-
prehensive descriptive approach at the 1992 meeting
of the Institute of Food Technologists (described in
Beckley and Kroll, 1996). The centerpiece of this pro-
cedure is a scale for overall quality. The quality scale
is accompanied by a group of diagnostic scales for
individual attributes. These attributes are key sensory
components that are known to vary in production.
Muñoz et al. (1992, pp. 138–139) describe a similar
modification of the overall quality ratings method to
include the collection of descriptive information on key
attributes. In the method of Gillette and Beckley the
main scale takes this form:

1 2 3 4 5 6 7 8 9 10

Reject Unacceptable Acceptable Match

On this scale, a product that is so clearly deficient
to call for immediate disposal gets a score of 1 or
2. Products that are unacceptable to ship but might
be reworked or blended get a score in the range of
3–5. If evaluation is online during processing, these
batches would not be filled into retail containers or
packaged but would be held for rework or blending.
If the samples are different from the standard but in an
acceptable range, they receive scores of 6–8, and sam-
ples that are a near match or considered identical to
the standard receive a 9 or 10, respectively. According
to Muñoz et al. (1992), the use of the terms “accept-
able” and “unacceptable” here is unfortunate, for it
gives the panelists an impression of the action stan-
dards for products passing or failing and the feeling
that they are responsible for decisions about product
disposition. This creates a tendency to use the middle
to the upper end of the scale, to avoid grading products
as unacceptable (Rutenbeck, 1985).

The advantages of this method are its outward sim-
plicity in using an overall rating and the addition of
attribute scales to supply reasons for product rejec-
tion. The method also recognizes that there are situ-
ations where products will not match the gold standard
exactly, but still are acceptable to ship. As in the other

procedures, the boundaries for out-of-spec product and
the selection of a gold standard must be undertaken
before training, preferably in a consumer study, but at
least with management input. These defined samples
must then be shown to subjects to establish concept
boundaries. In other words, tolerance ranges must be
shown to panelists (Nakayama and Wessman, 1979).

17.3.7 The Multiple Standards

Difference Test

Amerine et al. (1965) mentioned a variation on sim-
ple difference tests that would include a non-uniform
or variable standard. This has come to be known as
the multiple standards difference test. Although there
is scant literature on the procedure, it has apparently

enjoyed some popularity. The idea is to give a forced-
choice test in which participants pick which one of
several alternative products is the most different from
the rest of the set. The simplest approach is to have
one test product and K alternative versions of the
standard product. Rather than representing identical
versions of a gold standard, the standards are now cho-
sen to represent the acceptable range of production
variability. The choice of standards to represent the
range of acceptable variation is critical to the success
of this approach. Historically, this method resembles
Torgerson’s “method of triads” of which the triangle
test is a special case (Ennis et al., 1988). Pecore et al.
(2006) and Young et al. (2008) used a similar approach,
except that overall degree of difference rating was
used (discussed below). The choice of products to be
included in the set of acceptable standards is critical. If
they do not reasonably bracket the range of acceptable
variation, then the test will be too sensitive (if the range
is small) or too insensitive to detecting bad samples (if
their range is too large).

If there are a large number of testers (N = 25 or
more), as in a discrimination procedure, the z-score
approximation to the binomial distribution may be
used for hypothesis testing. The approximation is
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z = (P − 1/k) − (1/2 N)
√

(1/k)(1 − 1/k)
/

N

(17.1)

where k is the total number of alternatives (test product
plus variable standards), P is the proportion select-
ing the test product as the outlier (the most different
sample), and N is the number of judges. This is the
same formula as in the triangle and other forced-choice
procedures, except that k may be 4 or larger, depending
on the number of references.

Although this method appears simple at first, there
are a few concerns and potential pitfalls in its appli-
cation. First, in many QC situations, it may not be
feasible to conduct a difference test with sufficient
numbers of judges to have a meaningful and sensitive
application of the statistical significance test. Second,
the failure to reject the null (failure to get a significant
result) does not necessarily imply sensory equivalence.
From a statistical perspective, it is difficult to have con-
fidence in a “no-difference” result, unless the power of
the test is very high. Statistical confidence in the equiv-
alence decision can only be obtained after beta-risk
is estimated against a suitable alternative hypothesis
(see Appendix E on test power). One approach is to
use the analysis for significant similarity, as outlined in
Chapter 5. This will necessarily entail a larger number
of judges (N = 80 or so). Finally, the tests for over-
all difference such as the triangle procedure are known
to have high inherent variability, so the introduction of
even more variability by multiple standards makes it
very difficult to get a significant difference and reject
product. This factor may contribute to a high level of
beta-risk, i.e., the chance of missing a true difference.

1 2 3 4 5 6 7 8 9 10

Completely

different

Very

different

Somewhat

different
Match

A similar approach to the multiple standards choice
test was described by Pecore et al. (2006) and Young
et al. (2008) but using degree of difference ratings,
rather than a choice test. This approach was part of
the original intent of the degree of difference test pro-
posed by Aust et al. (1985). In this method, a test
lot is compared to each of two control lots. The two
control lots are also compared to each other. From

these three pieces of data, three comparisons can be
made: Each mean difference score of the test–control
pair is compared to the mean difference score of
the control–control pair. Also the average test–control
rating is compared to the same baseline. Thus the
within-control variation is taken into account in the
comparisons, which must be significantly exceeded if
the test lot is to be found different (and thus action-
able). Of course, this kind of test requires a sufficient
panel size to get a meaningful and statistically pow-
erful test. Later, Young et al. (2008) extended the
model and procedure to include two test lots as well as
two control lots and used an incomplete block design
to limit the six comparisons to three comparisons
per panelist. The critical comparison in this case is
between the average of the four means comparing tests
to controls versus the average of the mean control–
control score and the mean test–test lot score. So the
baseline becomes the average difference within control
lots and within test lots.

17.4 Recommended Procedure:

Difference Scoring with Key

Attribute Scales

This method is similar to the hybrid procedure of
Gillette and Beckley except that it substitutes the over-
all difference scale for the quality scale. This avoids the
problem that panelists may react to words like “reject”
and avoid them. So the method is similar to that of
Section 17.3.6. Some category or line version of the
difference scale should be used such as the following:

The ballot should also include diagnostics on key
attributes, those that will vary in production and are
likely to cause consumer rejection. For attributes that
can be too strong or too weak, using just-right scales
is appropriate. Some defects may be a problem at
higher levels, and intensity scales are useful for those
attributes. Others may warrant product rejection at any
level whatsoever, and a checklist can be provided for
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Apple Juice QC Ballot

Sample____589___________ Judge_____14 (MK)____

Date/session___12/25/09____ Plant site_Dunkirk______

Overall difference Rating:

1 2 3 4 5 6 7 8√ 9 10

Extremely Moderately Slightly       Match  

Different different different

Attributes:

too low      about right      too high

Sweet ___ _X_ ___ ___ ___

Sour ___ ___ ___ _X_ ___

Color ___ ___ _X_ ___ ___

too sour     about right too sweet

Sweet/sour ___ _X__ ___ ___ ___

RATIO

Strength:

       none / low very strong

Sweet ___ _X__ ___ ___ ___

Sour ___ ___ _X_ ___ ___

Apple Aroma ___ ___ _X_ ___ ___

Apple Flavor ___ ___ _X_ ___ ___

Off aroma _X_ ___ ___ ___ ___

(list/describe) ____________

Off Flavor _X_ ___ ___ ___ ___

(list/describe) ____________

Checklist: (circle any defects)

Vinegar-like    Butyric Lactic acid Painty/solvent Fusel Oil

Sauerkraut-like Other fermented Bitter Astringent     Musty

Other (list)_________________________________________

Comments_________________________________________

Fig. 17.2 A sample ballot for
apple juice, using the
recommended procedure of
degree-of-difference scale
plus diagnostic attribute
ratings. Note that some
attributes use the
just-about-right scale while
others are better suited to a
simple intensity scale. For
off-flavors or defects that are
objectionable at any level, a
simple checklist is useful.
Note that this method must be
used with a well-trained
panel.

those more serious faults. A sample ballot for apple
juice is shown in Fig. 17.2.

Screening panelists for sensory acuity and a good
training regimen are key here, as in setting up other
quality control panels. The screening procedure should
use the types of products that people are going to
eventually judge and insure that they can discrimi-
nate among common levels of ingredients like sugar or
acid content and process variables like heating times
or processing temperatures. A sample screening pro-
cedure for an apple juice panel is shown in Appendix 1
of this chapter. Screening should involve a number
of attributes and, if possible, different tasks or tests
(Bressan and Behling, 1977). The top performers can

be invited for panel training and others who score well
can be kept on file for future replacements as panelist
attrition occurs (plan from day 1!). Ideally the screen-
ing pool of volunteers should be two to three times
the desired panel size. Supervisory approval is a key
to good attendance and participation.

After screening, training may take six to ten ses-
sions depending on the complexity of the product.
Gross differences are illustrated early in training and
smaller differences shown as training progresses. The
goal is to solidify the conceptual structure of the pan-
elists so they know the category boundaries for the
quality ratings and the expected levels of the sensory
attributes. Panelists must also come to recognize how
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off-flavors, poor texture, or appearance problems factor
into their overall score.

With small panels, there is no statistical analysis,
but rules of thumb must be established for taking
actions. It is difficult to apply mean ratings to less than
about eight panelists. Since there are differences in
individual sensory ability, poor ratings by just a few
individuals may be indicative of potential problems.
Thus action criteria should take into account negative
minority opinions and weight them more heavily than
high outliers or a few panelists who thought the prod-
uct matched the standard (but who may have missed
some important difference). For example, if two pan-
elists rate the sample on scale point two, but the rest
give it six, seven, or eight, the mean score could be
in the acceptable range in spite of the two panelists
who spotted potentially important problems. The panel
leader should take note of the two low values and at
least call for retesting of this questionable sample. Of
course, consistent patterns of disagreement between
panelists are a hint that some retraining may be
needed.

17.5 The Importance of Good Practice

In all small-panel sensory assessments, the general
principles of good testing become especially important
since there are shortcuts often taken in these proce-
dures that are not part of standard sensory evaluation
practices. Most notably, quality assessment may not
entail any statistical analysis, due to the small numbers
of panelists. Statistical methods provide some insur-
ance against false alarms due to random variation or
errors of missing important differences. Without the
aid of statistical analysis, other safeguards for insuring
the quality of the information take on an even higher
level of importance.

It is worth considering an example concerning pork
inspection since it illustrates many of the pitfalls
involved in small-panel experiments. This was a study
of boar taint or sex aroma from androstenone, a prob-
lem odor in the fatty tissues of adult male swine.
The goal was to correlate sensory panel scores for
this taint with instrumental measures of androstenone
content (Thompson and Pearson, 1977). Two sensory
analyses were done. In the first, three to five pan-
elists sampled boar taint aroma in the packinghouse

using a hot-iron technique to elicit the aroma and
came to a consensus judgment using a 6-point scale
for odor intensity. A second evaluation was done after
the samples were sent to the laboratory for instru-
mental analysis. In this case, three panelists were
screened for sensitivity to androstenone, and means
were calculated from a 9-point scale for odor intensity.
Evaluations were performed in a laboratory exhaust
hood and preparation procedures were standardized.
The correlation with instrumental measures was +0.27
for the first evaluation (not significantly different from
zero correlation) and +0.40 (statistically significant)
in the second. The increased correlation could be
due to a number of methodological factors that were
improvements in the second evaluation. These include
(1) better evaluation location (fume hood versus pack-
ing house), (2) screening of judges, (3) constancy of
panel members instead of people dropping in and out,
(4) averaging scores versus a consensus procedure, and
(5) a more standardized sample preparation method.
Each of the shortcuts might have been introduced on
some practical grounds, but their combined effect was
to increase the error level in the data. This made
a difference in the statistical significance and con-
clusions of the study regarding instrumental-sensory
correlations.

Table 17.2 gives a number of guidelines for good
sensory practice in quality evaluations and Table 17.3
gives guidelines for judges (adapted from Nelson and
Trout, 1964). As in any other sensory test, product
samples should be blind coded and presented in dif-
ferent random orders to each panelist. If production
personnel are used in the panel who know the identities
of some of the products pulled for evaluation, another
technical person must blind code them and insert blind
controls into the test set. The person who pulls the
samples must not evaluate the samples. It is not reason-
able to expect that person to be objective and discount
any knowledge of the product identity. Serving tem-
perature, volume, and any other details concerning
product preparation and the tasting method should
be standardized and controlled. Facilities should be
odor free and distraction free. Evaluations should be
made in a clean sensory testing environment with
booths or separators, not on the benchtop of an ana-
lytical instrument lab or on the manufacturing floor
(Nakayama and Wessman, 1979). Warm-up samples
are useful. Blind replicates can be introduced to check
judge consistency. Judges should taste a representative
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Table 17.2 Ten guidelines for sensory quality testing

1. Establish standards for optimum quality (“gold standard”) target plus ranges of acceptable and unacceptable products
2. Standards should be calibrated by consumer testing if possible. Alternatively, experienced personnel may set standards but

these should be checked against consumer opinion (users of product)
3. Judges must be trained, i.e., familiarized with standards and limits of acceptable variation
4. Unacceptable product standards should include all types of defects and deviations likely to occur from materials, processing,

or packaging
5. Judges may be trained to give diagnostic information on defects, if standards are available typifying these problems. Scaled

responses for intensity or checklists may be used
6. Data should always be gathered from at least several panelists. Ideally, statistically meaningful data should be gathered (ten

or more observations per sample
7. Test procedures should follow rules of good sensory practice—blind testing, proper environment, test controls, random orders
8. Blind presentation of standards within each test should be used to check for judge’s accuracy. It is important to include a

(blind) gold standard for reference purposes as well
9. Judge reliability may be tested by blind duplicates

10. Panel agreement is necessary. If unacceptable variation or disagreement occurs, re-training is warranted

Table 17.3 Guidelines for participation in sensory assessments

1. Be in correct physical and mental condition
2. Know the score card
3. Know the defects and the range of probable intensities
4. For some foods and beverages, it is useful to observe aroma immediately after opening the sample container
5. Taste a sufficient volume (Be professional—not timid!)
6. Pay attention to the sequence of flavors
7. Rinse, occasionally, as the situation and product type warrant
8. Concentrate. Think about your sensations and block out all other distractions
9. Do not be too critical. Also, do not gravitate to the middle of the scale

10. Do not change your mind. Often the first impression is valuable, especially for aromas
11. Check your scoring after the evaluation. Get feedback on how you are doing
12. Be honest with yourself. In the face of other opinions, “stick to your guns”
13. Practice. Experience and expertise come slowly. Be patient
14. Be professional. Avoid informal lab banter and ego trips Insist on proper experimental controls—watch out for benchtop

“experiments”
15. Do not smoke, drink, or eat for at least 30 min before participation
16. Do not wear perfume, cologne, aftershave, etc. Avoid fragranced soaps and hand lotions

Modified from Nelson and Trout (1964)

portion (not end of batch or other anomalous parts of
production).

Other rules of thumb apply to the judges or pan-
elists. Panelists should be screened, qualified, and
motivated with suitable incentives. They must not
be overtaxed or asked to test too many samples in
one day. Rotation of the panel at regular intervals
can improve motivation and relieve boredom. Judges
should be in good physical condition, i.e., free from
ailments like colds or allergies that would detract
from their performance. They should not be men-
tally harried from other problems on the job when
arriving for testing, but should be relaxed and able
to concentrate on the task at hand. They must be

trained to recognize the attributes, scoring levels and,
of course, know the scorecard. Judgments should be
independent without conferring, jury style. Discussion
or feedback can be given later to provide for ongoing
calibration. A special liability arises when manufac-
turing personnel are used who have a lot of pride in
the product accompanied by false confidence in the
infallibility of the manufacturing process. Such pan-
elists may be unwilling to “rock the boat” and call
attention to problem areas. Testing with blind out-of-
spec samples, known defects, and other such “catch
trials” accompanied by feedback when they pass defec-
tive samples can help counteract this overly positive
attitude.
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The data should consist of interval scale mea-
surements where possible. If large panels are used
(ten or more judges), statistical analysis is appro-
priate and data can be summarized by means and
standard errors. If very small panels are used, the
data should be treated qualitatively. Frequency counts
of individual scores should be reported and consid-
ered in action standards. Deletion of outliers can be
considered, but a few low scores (i.e., a minority opin-
ion) may be indicative of an important problem, as
noted above. Re-tasting may be warranted in situa-
tions where there is strong disagreement or high panel
variability.

17.6 Historical Footnote: Expert Judges

and Quality Scoring

17.6.1 Standardized Commodities

The food industry benefits from standardization of
grades for foods that are minimally processed from
raw ingredients, from a single source without multiple
components, and closely associated with a single agri-
cultural commodity. Such “food commodities” include
many dairy products such as milk, cheese, and but-
ter; fruits such as olives; some kinds of meat; and
wine. Various industries and governments have estab-
lished quality grades for food commodities or systems
for scoring them based on two main factors: sim-
ilarity to a product ideal and lack of defects. The
value in such quality grading, scoring, or monitoring
is the assurance to the consumer that the product will
have the sensory properties that they have come to
expect.

Sometimes these systems are defined by interna-
tional organizations in order to provide standards of
identity for the food commodity. An example is the
International Olive Oil Council (COI). The COI pro-
vides written standards for sensory evaluation includ-
ing definitions for the vocabulary of sensory properties
and defects, a standardized scorecard, a point sys-
tem for assigning grades or classifications, methods
for panel training, certification of laboratories eval-
uating olive oil, and even specifications of the tast-
ing glasses that are to be used in the evaluations.
Their website provides all of this information in the

various languages of olive oil producing countries
(International Olive Oil Council, 2007).

Two further examples of commodity judging sys-
tems by trained or expert panels are shown below. The
sensory specialist should search for such professional
organizations and specifications if they are assigned
to develop methods for such a food commodity. The
methods are poorly suited to processed engineered
foods that do not fall into the category of a standard-
ized commodity, but they can provide a useful starting
place for development of a quality monitoring system
for a closely related product. The sensory specialist
should be careful, however, not to force-fit a standard-
ized grading scheme to a product that is substantially
different. For example, the quality evaluation scheme
for grading vanilla ice cream would be only poorly
suited to sensory testing on a frozen yogurt product
made from goat’s milk.

17.6.2 Example 1: Dairy Product Judging

A longstanding tradition in the field of dairy products
has been the quality grading schemes for assessing
product defects and assigning overall quality scores.
The American Dairy Science Association continues
to hold a decades-old student judging competition, in
which students and teams of students attempt to dupli-
cate the quality scores of established experts. Various
defective products are supplied, and students must be
able to recognize the defect, subtract the appropriate
penalty given the type and severity of the problem,
and arrive at an overall score (Bodyfelt et al., 1988).
The support for quality judging in dairy products is not
universal, however. Some countries like New Zealand
have replaced the overall quality judging method with
ratings on specific key attributes for dairy product
analysis.

However, these methods do persist and find some
utility in small plant quality control and in govern-
ment inspections (Bodyfelt et al., 1988; York, 1995).
An example of the quality judging scheme for cot-
tage cheese is shown in Table 17.4, listing defects and
their point deduction values for slight, definite, and
pronounced levels of sensory intensity. An extensive
discussion of quality judging for dairy products can be
found in “Sensory Evaluation of Dairy Products” by
Bodyfelt et al. (1988).
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Table 17.4 A point deduction scheme for cottage cheese quality grading. Cottage cheese scoring guide

Slight Distinct Pronounced

Appearance (5 points maximum):
Lacks cream 4 3 2
Shattered curd 4 3 2
Free cream 4 2 1
Free whey 4 2 1

Texture (5 points maximum):
Weak/soft 4 3 2
Firm/rubbery 4 2 1
Mealy/grainy 4 2 1
Pasty 3 2 1
Gelatinous 3 2 1

Flavor (10 points maximum):
High acid 9 7 5
High salt 9 8 7
Flat 9 8 7
Bitter 7 4 1
Diacetyl/coarse 9 7 6
Feed 9 7 5
Acetaldehyde/green 9 7 5
Lacks freshness 8 5 1
Malty 6 3 1
Oxidized 5 3 1
Fruity 5 3 1
Musty 5 3 1
Yeasty 4 2 1
Rancid 4 2 1

Rate the presence of each defect as slight, distinct, or pronounced. Give scores for appearance, texture, and
flavor based on the table.
Other problems may include discoloration, matted curd, slimy texture, foreign flavors, unclean flavors
(describe), and fermented flavors
Modified from Bodyfelt et al. (1988)

Such methods are poorly suited to food research
where the processed or engineered food is not a stan-
dard commodity and/or when the sensory changes are
not likely to be a set of predictable defects. In new
food product development, it is not necessarily clear
what consumers or segments of consumers may like,
so assignment of quality scores based on some arcane
or traditional knowledge of experts is not useful. The
dairy judging methods have been repeatedly criticized
for lack of applicability to research problems, viola-
tions of sensory evaluation principles, and problems in
scaling and statistical analysis (Hammond et al., 1986;
McBride and Hall, 1979; O’Mahony, 1981; Pangborn
and Dunkley, 1964; Sidel et al., 1981). Furthermore,
the opinions of expert judges and standard point
deduction schemes may not correspond to consumer
opinion as shown in Fig. 17.3. The oxidized defects

in milk were viewed less critically on the average by
consumers than the suggested ADSA scores would dic-
tate. Of course, having a point deduction scheme that
is more severe that the average consumer opinion pro-
vides a kind of safety net and insures that the most
sensitive consumers will not be offended by poor prod-
ucts. The liability in a stringent “safety net” is that
acceptable product batches will be rejected.

17.6.3 Example 2: Wine Scoring

Beyond manufacturing control and government
inspection there are other situations in which the
consuming public desires information on product
quality. Rather than deducting points from some
widely accepted standard, there are also products
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Fig. 17.3 Consumer ratings of abused milk samples compared
to the recommended ADSA scores for those products based on
the recipes and rating systems shown in Bodyfelt et al. (1988).
From Lawless and Claassen (1993) with permission.

where excellence is recognized beyond the merely
acceptable. Garvin (1987) remarked that considera-
tions of quality should include the ability to please
consumers, not just protect them from annoyances.
This idea is further developed in the Kano model in
Chapter 19. Some products show a wide range of
better-than-acceptable variation. Wines are a good
example. What kind of quality measurement system
can go beyond point deductions for defects to provide
degrees of difference on the positive end of the quality
continuum?

An early method for wine quality assessment was
the 20-point rating system developed at the University
of California at Davis (Amerine and Roessler, 1981;
Ough and Baker, 1961). This was an additive scheme
for giving overall quality scores. It was based on
the analysis of quality for sensory categories such
as appearance, body, flavor, and aftertaste, as well
as some specific attributes like sweetness, bitterness,
and acidity. As shown in Table 17.5, different points
are given for different categories, i.e., there is uneven
weighting, presumably due to the different contribu-
tions of each category to the overall quality. Note that
this does not produce a scale value in the psychophys-
ical sense, but a score.

Like other quality grading schemes, this method can
be criticized on a number of grounds. First, the weight-
ing system is somewhat arbitrary—different versions
can be found—and it was based on the expert opinion
of the method’s originators, rather than any consumer
opinion. Second, whether wine quality can actually
be captured by an additive scheme is questionable.
Some defects (e.g., bitterness) are simply too serious
to provide any good score at all, even though all other
attributes might add up to some positive number. Some
versions of the technique try to allow for this by pro-
viding a few overall quality points to add into the total,
a kind of global fudge factor. Also, it is an anecdo-
tal observation that some judges who gain experience
with the technique score an overall quality level of
wines first and do not bother assigning individual cat-
egory points to start. Rather, they first decide on an
overall score and then allot points into the individual
categories, using the method backward.

A simplified alternative procedure is based on
hedonic scoring by experienced fine wine drinkers
(Goldwyn and Lawless, 1991). The assumption was
that a small panel of experienced tasters can provide
recognition of good to superior products based on
their personal likes and dislikes. The method works
to the extent that fine wine drinkers form a cul-
tural and linguistic community (Solomon, 1990) with
known and consensual standards of taste at least within
a given geographical area. The method used a bal-
anced 14-point hedonic scale (like extremely to dislike
extremely) with no neutral center point. Wines were
tasted twice and the second final score was recorded.
The procedure followed principles of good practice
such as randomized orders, blind coding, independent
judgments (no conferring), standardized presentation,
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Table 17.5 Example of 20-point wine scoring scheme

Characteristic Scoring guide Maximum points

Appearance Cloudy 0, clear 1, brilliant 2 2
Color Distinctly off 0, slightly off 1, correct 2 2
Aroma and bouquet Vinous 1, distinct but not varietal 2, varietal 3 subtract 2 for off-odors and 1 for bottle

bouquet
4

Vinegary Obvious 0, slight 1, none 2 2
Total acidity Distinctly high or low 0, slightly high or low 1, normal 2 2
Sweetness Too high or low 0, normal 1 1
Body Too high or low 0, normal 1 1
Flavor Distinctly abnormal 0, slightly abnormal 1, normal 2 2
Bitterness Distinctly high 0, slightly high 1, normal 2 2
General quality Lacking 0, slight 1, impressive 2 2

Total score 20

Modified from Amerine and Roessler (1981)

palate cleansers, and a reasonable pace of tasting.
Flights consisted of seven wines and the pace was
limited to at least 30 min per flight, allowing time
for palate recovery. Blind duplicates were periodically
introduced to check on judge reliability.

These methods represent improvements over the
types of informal consensus tastings done by juries to
award medals at state fair competitions. Such evalu-
ations have almost no scientific merit, i.e., they are
of about the same value as a movie critic’s review.
Analysis of 3 years of data from blind duplicate sam-
ples in the California state wine judging has shown that
among non-defective wines, any grade or medal may
be assigned to any wine in different competitions, and
about 90% of judges were unable to reproduce their
scores (Hodgson, 2008).

17.7 Program Requirements

and Program Development

17.7.1 Desired Features of a Sensory QC

System

Rutenbeck (1985) and Mastrian (1985) outlined the
program development of a sensory QC system in terms
of specific tasks. These included research into avail-
ability and expertise of panelists, availability or access
to reference materials, and time constraints. Panelist
selection, screening, and training on objective terms
(such as “high saltiness,” as opposed to vague terms
like “poor quality”) must be undertaken. Sampling

schemes must be developed and agreed upon as well
as standard procedures for sample handling and stor-
age. Data handling, report format, historical archiving,
and tracking and panelist monitoring are all important
tasks. It is extremely important that a sensory evalu-
ation coordinator with a strong technical background
in sensory methods should be assigned to carry out
these tasks (Mastrian, 1985). Aside from these prac-
tical operational concerns, the system should also have
certain features that maintain the quality of the eval-
uation procedures themselves. For example, a method
for measuring the overall effectiveness of the system
should be identified (Rutenbeck, 1985). External audit-
ing at periodic intervals may be useful (Bauman and
Taubert, 1984).

Gillette and Beckley (1992) listed requirements for
a good in-plant sensory QC program and ten other
desirable features. These concerns are taken from the
perspective of ingredient suppliers to a major food
manufacturer but can be modified to fit other man-
ufacturing situations. A sensory QC program must
involve human evaluation of the products. It must be
acceptable to both suppliers and customers. Results
must be easily communicated so that reasons for rejec-
tion and actions to be taken are both made clear. It
should take into account an acceptable range of devi-
ation, recognizing that some products will not match
the gold standard but will still be acceptable to con-
sumers. Of course, the program must be able to detect
unacceptable production samples.

Additional desirable features include the following:
Potential transfer over time to an instrumental measure
is a good goal if the evaluations are very repetitive,
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as instruments do not become fatigued or bored with
the testing regimen. This presumes that tight sensory–
instrumental correlations can be established. Ideally, a
sensory QC program should provide rapid detection for
online corrections. Information should be quantitative
and interface with other QC methods. As quality con-
trol and shelf-life tests are often similar, the methods
will be more useful if they are transferable to shelf-life
monitoring. Many of the changes over time in a stored
product are also quality problems, such as deterioration
in texture, browning, oxidation, syneresis, oiling-out,
staling, and off-flavor development (Dethmers, 1979).
Sensory evaluations may include raw ingredient test-
ing as well as in-process and finished products. A good
sensory QC program will produce a track record of
actually flagging bad products to prevent further prob-
lems down the line or in consumer opinion in the
marketplace.

Considering these desired features, there are some
traditional test methods from the mainstream of sen-
sory evaluation that simply do not apply well to in-
plant quality control work. Problems arise if the tests
cannot handle a sufficient volume of production sam-
ples. Any test procedure that has a slow turnaround
in analysis and reporting of results will not be suit-
able for online corrective action in the manufacturing
environment. For example, it is difficult to implement
a descriptive analysis panel for QC work if decisions
have to be made in the middle of the night on third shift
and the data cannot be statistically analyzed through
an automated system. At first glance, finding defective
products would seem to suggest that a simple differ-
ence test from a standard product would be a good
approach. However, most sensory difference tests take
the form of forced-choice tasks, like the triangle pro-
cedure. The triangle test is useful for detecting any
difference at all, but is not suitable when there is a
range of acceptable variation. Just because a product is
found to be different from the standard does not mean
that it is unacceptable.

17.7.2 Program Development

and Management Issues

Management may need to be educated as to the cost
and practical issues that are involved in sensory QC.
Rutenbeck (1985) described the “selling” of a sensory

QC program and suggested calculations of measurable
results, such as reductions in consumer complaints,
cost savings in avoiding rework or scrapping materials,
and potential impact on sales volume. Manufacturing
executives unfamiliar with sensory testing can eas-
ily underestimate the complexity of sensory tests, the
need for technician time to setup, the costs of panel
startup and panelist screening, and training of techni-
cians and panel leaders as well as panelist incentive
programs (Stouffer, 1985). If employees are used as
panelists, another stumbling block can be the personnel
time away from the person’s main job to come to sen-
sory testing (and any associated costs). However, panel
participation can be a welcome break for workers,
can enhance their sense of participation in corpo-
rate quality programs, can expand their job skills and
their view of manufacturing, and does not necessarily
result in a loss of productivity. There are considerable
advantages in using panelists from the processing oper-
ation, notably in accessibility and interest (Mastrian,
1985). Arranging for a sensory testing space may also
involve some startup costs. An important issue con-
cerns what will be done to insure continuity in the
program. Management must be made to see that the
sensory instrument will need maintenance, calibration,
and eventual replacement. Concerns include panelist
attrition and retraining, refreshment, or replacement of
reference standards (Wolfe, 1979).

An early issue in program development concerns the
definition of standards and cutoffs or specification lim-
its (Stevenson et al., 1984). Management or preferably
experienced technical personnel can do the evaluation
and set the limits. This approach is fast and simple, but
risky, since there is no consumer input (McNutt, 1988).
The safest but slowest and most expensive approach
is to give a range of products with representative pro-
duction variation to consumers for evaluation. This
calibration set should include known defects that are
likely to occur and all ranges of processing and ingre-
dient variables. As a small number of consumers will
always be insensitive to any sensory differences, a
conservative estimate of problem areas should be set
based on rejection or failing scores from a minority of
participants.

A third issue concerns the level of thoroughness
in sampling that is needed for management comfort
versus the cost of overtesting. Ideal quality control
programs would sample materials along all stages of
production, in every batch and every shift (Stouffer,
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1985). This is rarely practical for sensory testing.
Sampling multiple products from a batch or produc-
tion run or performing replicate measurements with a
sensory panel will give insurance against missing out-
of-spec products, but will increase time and costs of
testing.

Additional challenges arise from reporting struc-
tures, multiple test sites, and the temptation to sub-
stitute instruments for sensory panels. A built-in con-
flict of interest occurs when a QC department reports
directly to manufacturing, since manufacturing is usu-
ally rewarded for productivity. A separate reporting
structure may be desirable for quality control, so that
executives committed to a corporate quality program
can insulate the QC department from pressures to
pass bad products. Across multiple plants, there is a
need to standardize sensory QC procedures and coor-
dinate activities (Carlton, 1985; Stouffer, 1985). This
includes maintenance of consistent production sam-
ples and reference materials that can be sent to all
other plants for comparison. Setting up similar sen-
sory QC systems in different countries and cultures
may present difficult challenges to the sensory program
coordinator. Considerations in panel setup in other cul-
tures are given in Carlton (1985). Finally, instruments
cannot replace sensory evaluation for many impor-
tant product characteristics (Nakayama and Wessman,
1979). Odor analysis is a good example. In other cases,
the instrumental–sensory relationship may be nonlin-
ear or indicate changes that are not perceivable at all
(Rutenbeck, 1985; Trant et al., 1981).

17.7.3 The Problem of Low Incidence

A special problem with QC testing as well as shelf-
life studies is that the majority of the evaluations result
in positive results (favorable decisions for manufactur-
ing). This is in the very nature of the test scenario.
Good products are much more often tested than defec-
tive ones, and there is a much lower incidence of
negative test results than those found in research sup-
port testing. This can present a special challenge to the
credibility of the sensory testing program.

Table 17.6 shows an incidence diagram for a fairly
high rate of problem products, in this case 10% (the
credibility problem gets even worse if there is a lower
rate of defective products). In over 1,000 tests, then,

100 are objectively defective, while 900 are objectively
trouble free. If the tests are properly done, and there is
statistical protection against Type I and Type II errors,
there will still be some occasions where errors do
occur. For the sake of easy calculation, let the long-
term alpha- and beta-risks for the testing program be
10%. This means that 10% of the time when a defective
product is sent for testing, it will go undetected by the
evaluation, and 10% of the time a product which has
no defects will be flagged, due to random error. This
will lead to 810 correct “pass” decisions and 90 correct
detections of sensory problems. Unfortunately, due to
the high incidence of good products being tested, the
10% false alarm rate leads to 90 products also being
flagged where there is no true sensory problem. Note
that this assumes that there is good sensory testing and
proper statistical treatment of the results! The prob-
lem arises when the sensory QC leader picks up the
phone and calls the manufacturing manager and “rings
the alarm bell.” Given this incidence, the probability
of being right about the problem is only 50%, in other
words, no better than a coin toss! Even if alpha is
reduced to the usual 5%, there is still a one-in-three
chance of false alarms.

How can this occur if good sensory testing is done
and proper statistics are applied? The answer is that
our normal inferential statistics are used to view the
outcome chart in Table 17.6 across rows and not down
columns. The problem in sensory QC is that given a
low incidence of problems, there is simply a high rate
of false alarms relative to correct detections. This can
hurt the credibility of the program if manufacturing
managers develop a feeling that the sensory depart-
ment is prone to “cry wolf.” Thus it is wise to build
in a system for additional or repeated testing of prod-
uct failures to insure that marginal products are in fact
defective before action is taken.

17.8 Shelf-Life Testing

17.8.1 Basic Considerations

Shelf-life or stability testing is an important part of
quality maintenance for many foods. It is an inherent
part of packaging research because one of the primary
functions of food packaging is to preserve the integrity
of a food in its structural, chemical, microbiological
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Table 17.6 Bayesian incidence chart

Outcome of evaluation

Problem reported No problem reported Incidence (=total across row)

Problem exists 90 10 100
(description) (“hit rate”) (Type II error)
No problem exists 90 810 900

(“false alarm”) (correct acceptance)

(Total) 180 820 1000

Let alpha = 0.10 and beta = 0.10
Assume 1,000 tests are conducted, with a 10% rate of faulty products
Numbers in cells show estimated numbers of problems reported or not, based on alpha and beta rates of 10%
Given that a problem was reported, you stand a 50/50 chance of having made the wrong decision (90/180)!

and sensory properties. A good review of shelf-life
testing can be found in the packaging text by Robertson
(2006) and the reader is referred there for further infor-
mation on modeling and accelerated storage tests. For
many foods, the microbiological integrity of the food
will determine its shelf life, and this can be estimated
using standard laboratory practices; no sensory data
are required. The sensory aspects of a food are the
determining factor for the shelf life of foods that do not
tend to suffer from microbiological changes such as
baked goods. Sensory tests on foods are almost always
destructive tests, so sufficient samples must be stored
and available, especially during the period in which the
product is expected to deteriorate (Gacula, 1975).

Shelf-life testing may employ any of the three
major kinds of sensory tests, discrimination, descrip-
tive, or affective, depending on the goals of the pro-
gram (Kilcast, 2000). Thus one can view shelf-life
tests as no special category of sensory testing, but
simply a program of repeated testing using accepted
methods. The objectives of the study may dictate
what method is most suitable to answer the research
questions (Dethmers, 1979). For a designed study to
evaluate the effects of a new packaging film, a sim-
ple discrimination test might be appropriate to test
for changes versus the existing packaging. For pur-
poses of establishing an open dating system, consumer
acceptability tests would be appropriate to establish
the time that the product is likely to become unac-
ceptable. If the product is new, a descriptive analysis
profile is needed to establish the full sensory specifi-
cation of what a fresh product tastes like. If a product
has failed a consumer evaluation, it is often appropriate
to submit the samples to descriptive testing to try and
understand the reasons for failure and which aspects
have deteriorated (Dethmers, 1979). If the purpose is

to establish a suitable degree of stability, i.e., that the
failure time exceeds the typical distribution and use
time by consumers, a combination of two tests may be
appropriate. It is cost efficient in this case to perform
discrimination tests against a fresh control or standard
product and then perform consumer acceptance tests if
any difference is detected.

According to Peryam (1964) and Dethmers (1979)
a shelf-life program will involve the following steps:
(1) formulating objectives, (2) obtaining representative
samples, (3) determining the physical and chemical
composition of the test products, (4) setting up a test
design, (5) choosing the appropriate sensory method,
(6) choosing the storage conditions, (7) establishing
the control product or products to which the stored
product will be compared, (8) conduct the periodic
testing, and (9) determine the shelf life based on the
results.

Important strategic choices include the nature of
the control product and the storage conditions. Storage
conditions should mimic the conditions found in dis-
tribution and those in stores, unless some accelerated
storage conditions are required. Ideal conditions are
generally a poor choice. The control product presents
special problems. If a fresh product is available at the
different time intervals, how does one know that sub-
sequent batches have not drifted or changed since the
initial product was manufactured? If a fresh product
is stored from the initial batch under ideal condi-
tions, how does one know it has not changed? There
is no perfect solution to this problem. Sometimes a
study will involve more than one standard. Reference
standards should be clearly identified by date, lot
number, production location, etc. A separate program
may be instituted to insure the integrity and con-
stancy of reference standards. Descriptive evaluation
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may be beneficial for this purpose. Options for refer-
ences include the following: current plant product that
has passed QC, current pilot-plant prototype, historical
product, optimally stored product, a written descriptive
profile, and a mental reference (Wolfe, 1979).

Two main choices are used for criteria for product
failure. These include a cutoff point from a critical
descriptive attribute (or set of them) and consumer
data when the product is rejected as unacceptable.
Statistical modeling with equations such as a hazard
function or survival analysis is discussed below. Note
that product failure is an all-or-none phenomenon, and
decreases in sensory measures such as falling accept-
ability or increasing percents of consumer rejection are
more continuous in nature. This opens the opportunity
for other kinds of models, such as logistic regression
against percent rejecting (Giminez et al., 2007).

17.8.2 Cutoff Point

The choice of a cutoff point has two implications. The
first occurs when the cutoff point itself is used as an
action standard. When the product gets to this point,
we consider it to have reached the end of its useful life.
It is no longer salable. The time estimate may be used
for some purpose like open dating or “use-by” dates
printed on the product package. The second implica-
tion is that when a product in a designed study reaches
this cutoff point, it defines “failure” and will be used as
a data point in some kind of statistical modeling such
as survival analysis.

Determination of a cutoff point requires careful
consideration. Several options are available including
(1) a significant difference in a discrimination test,
(2) some degree of difference from control product
on a scaled attribute or overall degree of difference
scale, and (3) consumer reaction. Consumer data may
involve a significant difference in acceptability rat-
ings from control, a cutpoint on an acceptance score,
or some percent of consumer rejection (e.g., 50% or
25%). Giminez et al. (2007) found the first signifi-
cant difference to be too conservative an estimate in
the sense that acceptance scores were still above 6
on the 9-point scale. This makes sense because two
products may differ but still be acceptable (Kilcast,
2000). Another option is to use any value less than 6
on the 9-point hedonic scale (6 = like slightly, i.e., just

above neutral) (Muñoz et al., 1992). Another option is
to use consumer rejection (“I would not buy/eat this
product”) (Hough et al., 2003). These two measures
are not necessarily equivalent. Giminez et al. (2008)
found that for certain baked products, consumers might
not like the product, but they would answer “yes”
when asked if they would consume it at home (having
already purchased it). This finding suggests that con-
sumer rejection may not be sufficiently conservative,
i.e., that a product may become disliked and even gen-
erate consumer complaints before it reaches the point
of rejection. Giminez et al. (2007) found that accept-
ability scores could be related to percent of rejection
by logistic regression analysis. The logistic equations
for two different countries (Spain and Uruguay) for
a baked product were different, a warning about cul-
tural and/or national differences. Logistic regression is
a useful general approach to data in the form of pro-
portions that accumulate in an S-shaped curve. The
general form is

ln
p

1 − p
= bo + b1X (17.2)

where p is the proportion rejected and X is the vari-
able that is the predictor, such as time, or in this case
acceptability scores (b are constants).

17.8.3 Test Designs

Several options are available for shelf-life tests regard-
ing how samples are stored and test times. The simplest
method is to make one large batch of product, store it
under normal conditions, and test it at various intervals.
However, this is not very efficient in terms of test time
and risks the panel drifting its criteria. Another option
is to stagger the production times, so all the products
of different ages are tested on the same day. A vari-
ation on this is to store the product under conditions
that essentially stop all aging processes, for example,
at very low temperature. This is obviously not possi-
ble with all products (you cannot freeze lettuce). Then
products are pulled from the optimal storage condi-
tions at different times and allowed to age at normal
temperatures. Another variation of this procedure is
to allow products to age for different times and then
place them into the optimal storage conditions, pulling
everything out of storage at the test date.
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17.8.4 Survival Analysis and Hazard

Functions

The literature on survival analysis is very large,
because a number of different fields use these kinds
of statistical models, such as actuarial science for the
insurance industry. Some of the models are similar to
those used in chemical kinetics. These functions are
useful when the product has a single process or a group
of processes that are occurring at about the same time.
However, some products will show a “bathtub” func-
tion with two phases of product failure (Robertson,
2006). In the early stages, some product failures occur
due to faulty packaging or improper processing (see
Fig. 17.4). Then the remaining products from that
batch enter a period of product stability. After some
time, X, the products begin to fail again, due to dete-
rioration. Gacula and Kubala (1975) suggest that the
shelf-life modeling should only consider those failures
after time X2.
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Fig. 17.4 The “bathtub” function showing a common pattern
of failure rates changing over the sampling time in a shelf-
life study. From time X0 to X1, some products will fail due to
improper processing or faulty packaging. This is followed by
a period of fairly low failure rates when products are stable or
within specification limits. At time X2, failures start to increase
markedly. Researchers fitting hazard functions or doing survival
analysis for estimation of shelf life should consider using only
those times after X2 in curve fitting as earlier failures are due to
causes other than the time-related deterioration.

Survival analysis as applied to sensory data has two
main tasks, the fitting of a hazard function to the data
and the interpolation of some point used as the criterion
for shelf life (such as 25 or 50% consumer rejection).
Various functions have been used to fit the function of

failure data (or percent of failures) over time. Percent
survival (one minus percent of failures) often takes the
form of a decaying exponential function.

An important choice of model includes the distribu-
tion used to fit the percent of failures. Many distribu-
tions have been tried (Gacula and Kubala, 1975) but
two useful models are a log–normal distribution (sur-
viving is a positively skewed distribution, few people
live to 100) and a Weibull distribution. Weibull func-
tions are useful distributions that can be used to fit a
variety of data sets. They include a shape parameter
and a scale parameter. When the shape parameter takes
a value greater than 2, the distribution is approximately
bell shaped and symmetric. These equations for failure
take the following forms:

F(t) = �

(

ln(t) − µ

σ

)

(log −normal) (17.3)

where � is the cumulative normal distribution func-
tion, t is time, F(t) is the failure proportion at time
t, µ is the mean failure time, and σ is the standard
deviation.

F(t) = 1 − exp

[

− exp

(

ln(t) − µ

σ

)]

(Weibull)

(17.4)
where exp(x) is the notation for ex.

If we make two substitutions and determine the
mean (µ) and standard deviation (σ ) of our failure
times, a simple model can help us find the time for
a given percentage of failures from the fitted Weibull
equation. Let ρ = exp (–µ). Then the following rela-
tionship holds for any proportion (F(t)):

t = − ln (1 − F(t))σ

ρ
(17.5)

Using the log–normal model for F(t), a simple
graphic method for finding the interpolated 50% fail-
ure level is to do the following: For N samples of foods
sampled over time that have known failure times Ti,
rank all the batches, i as to the time of failure (i = 1
to N). Calculate the median ranks, MR values. The
median rank can be found in some statistical tables or
estimated as

MR = (i − 0.3)/(N + 0.4)

Plot the median rank on log probability paper ver-
sus Ti and interpolate at the 50% point. If a straight
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line fits the data, the 50% point can be estimated from
the linear equation and standard deviations estimated
from the probability paper. This is essentially a fit of
log MRs to z-scores. Other percentages may be inter-
polated, of course, because 50% may be too high a
failure percentage for many products in setting a useful
limit. An equivalent mathematical solution is given in
Appendix 2 of this chapter.

Hough et al. (2003) point out that the usual sensory
experiment produces censored data. That is, for any
batch that has failed, we only know that the time of
failure was in some interval between the last test and
the current test. Similarly, for a batch that has not failed
at the final interval, we only know that its failure time
is sometime after that final test. So the data are cen-
sored and the survival function can be estimated using
maximum likelihood techniques.

17.8.5 Accelerated Storage

Sooner or later, product developers may figure out that
sensory specialists do not own a time machine and can-
not deliver shelf-life estimates without a long study.
So they may request some accelerated storage tests to
shorten the time. Such tests are based on the idea that
at higher temperatures, many chemical reactions will
proceed in a predictable manner, according to simple
kinetic models, and thus the shelf life at long time
intervals can be simulated by shorter intervals at higher
temperatures (Mizrahi, 2000). Kinetic models are often
based on the Arrhenius equation, and rate constants
can be found from experiments conducted at differ-
ent temperatures. Some of the models are shown in
Appendix 3 of this chapter.

Problems in accelerated testing occur when changes
in the product due to temperature are not the same
as those due to storage time at normal temperatures
(Robertson, 2006). Obviously, trying to measure the
shelf life of a frozen food at higher temperatures
makes little sense. Other foods may not follow simple
predictive models as multiple processes occur with dif-
ferent rates. For example, at higher temperatures phase
change may occur, solid to liquid. Carbohydrates in the
amorphous state may crystallize. The water activity of
dry foods may increase with temperature causing an
increased reaction rate and overprediction of true shelf
life at the normal temperature. If two reactions with

different kinetic constants change at different rates
with different temperatures, the one with the higher
value may come to predominate. The sensory special-
ist should be familiar with the logic of this testing and
the modeling that is commonly done, as well as the
pitfalls.

17.9 Summary and Conclusions

Insuring the quality of products on a sensory basis is an
important corporate goal in a competitive environment.
Consumers have fixed expectations and will become
disloyal to a brand if they experience substandard prod-
ucts. However, in spite of the need for sensory quality
control, setting up and maintaining an in-plant QC
program is difficult and costly. Commitment to the
program is the corporate equivalent of diet and exer-
cise. Everyone admits that it is a good idea. However,
maintaining program integrity, avoiding shortcut pro-
cedures, and dealing with dwindling panel size can
be challenging. The success of any program demands
strong management commitment. Without manage-
ment support, especially from manufacturing, a sen-
sory QC program is bound to fail. In a typical case
the program will amount to nothing more than “rub-
ber stamping” of supervisory opinion, thus supporting
a management policy that maximizes productivity at
the expense of producing unacceptable products. Such
programs will blow hot and cold, usually receiving
some emergency attention when a truly bad product
hits the retail shelves and consumer complaints filter
back (Rutenbeck, 1985). After a period of improved
production, some complacency may set in and loss of
interest in sensory QC efforts (until the next disaster).

Implementation of a sensory QC program will
involve four technical tasks. First, a range of products
must be prepared for establishing quality specifications
and limits. Specifications must be set in a research
study with consumers or by management or expert
opinion after sampling the various products. This range
of products can also be used in panel training. The
second step in the program is recruitment, screening,
and training, in other words, panel setup. Next, stan-
dard protocols for product sampling, handling, storage,
serving, blind coding, and maintenance of reference
standards must be established. The fourth step is in
systematizing the paperflow (Mastrian, 1985). This
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includes establishing standard reporting formats and
processes for data handling, recommendations, and
action criteria. This activity should also include mech-
anisms for archiving results and tracking both products
and panelist performance across time.

Appendix 1: Sample Screening Tests

for Sensory Quality Judges

Part 1. Paired comparison of sweetness levels
Adjust samples to three levels, e.g., 10, 11, and 12%

sucrose wt/vol.
Give four pairs in counterbalanced orders, e.g.,

10 versus 11%, 11 versus 10% (hard discrimination)
10 versus 12 %, 12 versus 10% (easier discrimination)

Use a different order for different panelists. Blind
code with random 3-digit labels.

Good performance: All four correct.
Acceptable performance: One error if other test sec-

tions perfect.

Part 2. Multiple choice odor identification. Done with
blotters in capped jars

Circle correct answers on sheet. Make up multiple
forms with different orders.

Use random 3-digit codes on bottles. Odors repre-
sent common notes in the product.

Use four alternatives, e.g., fruity, smoky, vinegar,
onion

(a) Dilute ethyl hexanoate (or similar ester)
(b) Dilute ethyl 2-methyl butyrate
(c) Dilute vinegar
(d) Dilute phenylethanol
(e) Trans-2-hexenol(dilute until green or leafy smell is

obtained)

Good performance: 4/5 correct
Acceptable performance:3/5 correct

Part 3. Odor discrimination test

Run triangle tests with base juice and base juice + 1%
vinegar.

Run triangle test with base juice + 0.1% butyric acid.
Subjects should sniff first, then taste.

Provide palate cleansers (water, crackers).
Run duplicates of each test.

Good performance: 3/4 correct.
Acceptable performance: 2/4 correct.

Part 4. Acidity test
Adjust pH to about 0.5 versus 1% titratable acidity.
Use four paired comparisons, as in sweetness test

above.

Good performance: 3/4 correct.
Acceptable performance: 2/4 correct.

After scoring, rank order candidates from highest to
lowest.

Invite the top 50% from each shift for training.
Send thank you notes to all the people who try out.
Keep the rest “on file” for possible replacements if

scores are acceptable.

Appendix 2: Survival/Failure Estimates

from a Series of Batches with Known

Failure Times

This procedure follows the graphic method given in
Section 17.8.3 but allows a more exact fit by least
squares regression.

1. For N samples of foods sampled over time that have
known failure times Ti, rank all the batches, i as to
the time of failure (i = 1 to N).

2. Calculate the median ranks, MR values. The
median rank can be found in some statistical tables
or estimated as

MR = (i − 0.3)/(N + 0.4)

3. Convert each Ti to ln(Ti), called Yi. This will permit
a fit of MR to the log–normal model.

4. Calculate the z-score for each MR at each Ti. Call
this Xi.

5. Regress Y against X using least squares to get the
linear equation Y = a + bX.

This is equivalent to finding the straight line fit to
the log probability plot described in Section 17.8.
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6. Then solve for Y = 0 (z-score for 50%) which is
X = –a/b, to get the 50th percentile.

7. Convert back to the original units by exponentiating
Time at 50% failure = eX = e−a/b.

Appendix 3: Arrhenius Equation

and Q10 Modeling

The reaction time for product failures may be linear
(zero order) or a decaying exponential (first order).
Both allow determination of a rate constant, K. Let us
consider a cutoff point rating on some scale, R, as the
event to be modeled as function of time, t. R could also
be any event that signals product failure.

The zero-order equation is

R = Ro − kt (17.6)

And the first-order relationship is

R = Roe−kt (17.7)

where Ro is the rating or failure at t=0
and

ln
R

Ro
= −kt (17.8)

Reaction rates are also dependent on temperature,
so in accelerated storage studies, the Arrhenius equa-
tion provides a starting point or a generally useful
approximation:

k = koe

(−EA
RT

)

(17.9)

and

ln k = ln ko − EA

R

(

1

T

)

(17.10)

where k is the rate constant to be estimated, ko is a con-
stant independent of temperature (also known as the
Arrhenius, pre-exponential, collision, or frequency fac-
tor), EA is the activation energy (J/mol), R is the ideal
gas constant, T is temperature (absolute, K).

So a plot of ln(k) versus 1/T can be used to find the
activation energy, EA.

This sometimes takes its derivative form:

d(ln k)

dT
= EA

RT2
(17.11)

The activation energy is fictitious in a way, because
there is not a single chemical reaction going on dur-
ing the aging of a food product, but a large number of
simultaneous processes. Nonetheless, we can think of
this as useful for two reasons. First, it gives an indi-
cation of the fragility of the food (lower activation
energy would mean faster deterioration). Second, the
EA value becomes useful in predicting what happens at
different temperatures. Of specific interest is predicting
what will happen at “normal” temperature given that an
accelerated storage study has been conducted at higher
temperatures.

Experiments are often performed at varying temper-
atures, 10◦C apart, to generate what is known as the
Q10 factor.

Q10 = kT+10

kT

= ST

ST+10
(17.12)

where kT+10 and kT are the rate constants at
temperature T and T + 10, and ST and ST+10 are the cor-
responding shelf-life estimates. Note that the ratio of
rate constants is the inverse of the ratio of the shelf-life
times.

This produces some useful relationships, for exam-
ple, to use in estimating the activation energy, EA

ln Q10 = 10EA

RT2
(17.13)

Again, EA can give some idea of the susceptibility
of the product to deterioration. Once the Q10 factor has
been determined for a product, the time–temperature
relationship can be predicted for the accelerated tests.
A useful factor to determine is an acceleration factor,
AF. This will help us convert from the accelerated tem-
perature back to a usage temperature or normal storage
condition temperature like 20◦C. Hough (2010) gives
the following example, based on an off-flavor rating
(OF) as a function of time and temperature:

OFT ,temp = OFo + (AF)ku(Ttemp) (17.14)

where OFo is the off-flavor at time zero, ku is the
rate constant at usage temperature, and Ttemp is the
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accelerated test temperature. Knowing EA, we can also
estimate the AF from

AF = exp

[

EA

R

(

1

Tu
− 1

Ttest

)]

(17.15)

where exp(X) is eX, Tu is the usage temperature, and
Ttest is the accelerated test temperature.

For example, if we determine that the EA is
6,500 cal/mol, then we can calculate an acceleration
factor based on a test at 40◦C and a usage temperature
at 20◦C:

AF = exp

[

6500

(

1

293
− 1

313

)]

= 4.13

Suppose we determine that at accelerated tempera-
ture of 40◦C, we have a failure time of 35 days. Then
we can find the failure time, FTu, at usage temperature
Tu, we merely multiply by the acceleration factor

FTu = FTtest(AF) = 35(4.13) = 145

Thus our accelerated test predicts a (mean) fail-
ure time at 145 days for the product stored at room
temperature or about 20◦C.
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Chapter 18

Data Relationships and Multivariate Applications

Abstract Multivariate statistics have found great application in all areas of
quantitative sensory science. In this chapter we will briefly describe the two major
work horses in the field: principal component analysis (PCA) and canonical variate
analysis (CVA). PCA should be used with mean data and CVA with raw data, namely
data including replicate observations. We also discuss generalized Procrustes analysis
(GPA) which is used with free-choice profiling data as well as in any situation where
one may want to compare the data spaces associated with multiple data measure-
ments on the same products. Lastly we discuss (as a preliminary to further in-depth
discussion in Chapter 19) internal and external preference mapping. We conclude by
stressing that multivariate analyses should always be performed in conjunction with
univariate analyses.

The researcher will find that there are certain costs associated with benefits of using multivariate

procedures. Benefits from increased flexibility in research design, for instance, are sometimes

negated by increased ambiguity in interpretation of results.

—Tabachnik and Fidell (1983) (Italics added)
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18.1 Introduction

Descriptive sensory tests are often performed to
determine the effects of changes in raw material,
processing, and packaging on the sensory qualities
of products. It is also frequently desirable to relate
the hedonic results to the sensory and/or instrumental
results of the same study. In all of these cases, multiple
attributes on a single set of samples were evaluated
and must now be analyzed. To do this, one must
use a group of analysis tools known as multivariate
statistics. During the last 30 years, the widespread
access to computers and the increasing sophistication
in statistical packages have expanded the use and
utility of multivariate statistical analyses. This “easy
access” often tempts novices to use these techniques
with sometimes surprising (and often suspect) results.
Before using any of these statistical techniques, the
user must be sure that the method is used appropriately
and correctly. Many multivariate techniques require
additional statistical assumptions beyond those of
the simple univariate tests. This leads to additional
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liabilities and potential pitfalls when using multivari-
ate methods. Even when used correctly, it is safest to
draw conclusions from multivariate results when these
results converge with other information. Occasionally
one can use these techniques for hypothesis gen-
eration, but only rarely are multivariate statistical
techniques stand-alone methods that “prove” a point.

In general multivariate statistical analyses aim to
extract information from the product–attribute matrix
and to present it in understandable form. Their great
advantage lies in giving the sensory specialist the
ability to detect broader patterns of interrelationships
among products and among sensory attributes than
given by individual univariate analyses. There are
numerous multivariate techniques and prior to analysis
the sensory specialist must determine which technique
is most appropriate in the specific case. In this chap-
ter we will give an overview of a few of the fre-
quently used multivariate techniques used in sensory
studies—these analyses fall within the realm of sen-
sometrics. This overview is a very brief introduction
to specifically principal component analysis, multivari-
ate analysis of variance, discriminant/canonical variate
analysis, Procrustes analysis, and preference mapping
analyses. Some very useful multivariate techniques
(STATIS, multi-factor analysis, partial least squares
analysis, cluster analysis) are not covered and the
reader is encouraged to refer to the large number of
available textbooks. Additionally, multi-dimensional
scaling (MDS) sometimes classified as a multivariate
technique although it does not use multiple dependent
measures as input, only some measure of overall sim-
ilarity, is discussed in Chapter 19. The following texts
are good introductions to multivariate statistical meth-
ods: Anderson (2003), Hair et al. (2005), Johnson and
Wichern (2007), Krzanowski (1988), Stevens (1986),
and Tabachnik and Fidell (2006). Useful sensomet-
rics textbooks are Dijksterhuis (1997), Gower and
Dijksterhuis (2004), Martens and Martens (2001), and
Meullenet et al. (2007).

18.2 Overview of Multivariate Statistical

Techniques

18.2.1 Principal Component Analysis

Principal component analysis (PCA) is a mul-
tivariate technique that simplifies and describes

interrelationships among multiple dependent variables
(in sensory data these are usually the descriptors)
and among objects (in sensory data these are usually
the products) (Anderson, 2003; Tabachnik and Fidell,
2006). The PCA should be performed on the mean data
for products averaged across panelists and replications.
If one wants to use PCA with raw data one should
use the PCA with confidence ellipses as described by
Husson et al. (2004, 2006) in SensomineR (Lê and
Husson, 2008). PCA transforms the original dependent
variables into new uncorrelated dimensions, and this
simplifies the data structure and helps one to interpret
the data (Johnson and Wichern, 2007). PCA will be
discussed in this chapter and in Chapter 19.

The product of a PCA is frequently a graphical rep-
resentation of the interrelationships among variables
and objects. The technique is very useful when sev-
eral dependent variables are collinear (correlated with
one another), a situation that often occurs with sensory
descriptive data. From the ANOVA, we may find that
many descriptors significantly discriminate among the
samples; however, several descriptors may be describ-
ing the same characteristic of the product. For example,
in descriptive studies, panelists often evaluate both
aroma and flavor attributes of the products, yet it is
very possible that the aroma and flavor attributes are
redundant and measure the same underlying character-
istics (Heymann and Noble, 1989). The PCA shows
these redundancies by transforming the original data
into a new set of variables called principal components;
redundant or highly positively correlated attributes will
lie close to one another in the new space. Products
will have values on these new variables (PCs) just as
they did on the original attributes. These are some-
times called factor scores. They allow plotting of the
products in the new principal component space.

The principal components are obtained through a
linear combination of the dependent variables that
maximizes the variance within the sample set. The
first principal component (PC) accounts for the max-
imum possible amount of variance among the sam-
ples. Subsequent PCs account for successively smaller
amounts of the total variance in the data set and are
uncorrelated with (orthogonal to or at 90◦ angles to)
prior PCs. If there are more samples than variables
(the ideal situation, see below) then the total num-
ber of PCS that can be extracted from a data set is
equal to the number of dependent variables. The lin-
ear combinations of the PCs can be based on the data
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correlation matrix (the data are standardized) or the
data covariance matrix (the data are not standardized).
The correlation matrix should be used when the vari-
ables were measured on widely divergent scales since
in that case scale range can affect the outcome dra-
matically. Sensory scientists usually use the covariance
matrix since sensory descriptive data are usually mea-
sured on the same scale (say a 15 cm unstructured line
scale).

If all the PCs are retained then the PCA acts
as a method of data transformation without loss of
information. This is similar to transforming the tem-
perature from the Fahrenheit to the Celsius scale.
However, usually the PCA is performed to simplify
and describe interrelationships. In this case, the first
few PCs account for the majority of the variance in the
data set, and often only these components are retained
for further interpretation. Thus, once the PCA has been
performed, the analyst must decide how many PCs
should be retained. In general, it is recommended that
one should use a combination of the criteria listed
below when determining the number of PCs to retain
(Hatcher and Stepanski, 1994; Stevens, 1986). The
usual criteria are:

(1) The Kaiser criterion states that one should retain
and interpret PCs with eigenvalues1 greater than 1.
This criterion is based on the assumption that the
retained PCs should explain more variance than
a single dependent variable, and a PC with an
eigenvalue equal to 1 explains the same amount
of variance as a single dependent variable (Kaiser,
1960). The Kaiser criterion may be too lenient
and retain too many PCs. It is usually fairly accu-
rate when the original data set had more than 20
dependent variables that had high communality
(Stevens, 1986). The communality of each vari-
able is the amount of variance associated with that
variable that is account for by the retained PCs.
If all PCs are retained, then the communality of all
dependent variables will be 100%; if fewer PCs are
retained, then the communality of each variable

1 An eigenvalues is proportional to the amount of variance
collected by the new factor, the PC. Eigenvalues greater than
1 explain more variance than one of the original variables
(descriptors).

Fig. 18.1 A scree plot of the eigenvalues for a PCA with nine
descriptors. The dotted lines indicate the elbow in the graph. In
this case the scree test would indicate that one should keep three
principal components.

depends on how well the retained PCs describe the
original data space.

(2) The scree test is a graphical method where the
eigenvalues associated with each PC are plotted on
a scatter plot (Fig. 18.1). PCs are retained based
on the identification of an “elbow” or a break
in the graph. PCs appearing before the “elbow”
are retained, while those after the break are not
(Cattell, 1966). The test derives its name from the
scree or talus found at the bottom of vertical cliffs.
The scree test tends to retain too few PCs, but the
test is reasonably accurate for data sets with more
than 250 observations and mean communalities
over 0.60 (Cattell and Vogelmann, 1977; Stevens,
1986).

(3) Often the analysts will retain the number of PCs
that account for a pre-specified proportion of the
variance in the data set. The amount of variance is
frequently pre-specified as 70, 80, or 85%.

(4) The last criterion used is that of common sense and
interpretability. In other words, retaining the PCs
that make sense based on existing knowledge of
the subject under investigation. Interpretability is
based on several criteria (Hatcher and Stepanski,
1994), namely, variable loading on a given dimen-
sion should share some common meaning; vari-
ables loading on different dimensions should mea-
sure different meanings; and the factor pattern
should display a simple structure.
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The result of a PCA is an unrotated factor pattern
matrix. The factor pattern may be rotated if it is dif-
ficult to interpret the unrotated pattern. The goal of
the rotation is to derive a PCA with simple struc-
ture. In a PCA with simple structure the variables load
highly on a single PC. In a two-dimensional PCA,
unlike PCAs with higher dimensions, it is possible to
manually rotate the axes. For example, Fig. 18.2 (top)

Fig. 18.2 Top: Unrotated two-dimensional PCA solution of
hypothetical data. Open arrows indicate direction of rotation.
Bottom: Manually rotated PCA solution of hypothetical data.
This PCA plot may be interpreted as follows: PC1 explains
45% of the variance in the data set and this PCA is a contrast
between sweetness and sourness, PC2 explains an additional
38% of the variance and it is primarily a function of thick-
ness. Sample 1 is sweet and less thick than sample 3; sample
4 is balanced between sour and sweet and is less thick than
the other samples; sample 2 is thicker than samples 1 and 4
but less thick than sample 3. It is also more sour than the
other samples and less sweet. Sample 3 is somewhat simi-
lar in sourness and sweetness to sample 4 but is thicker in
consistency.

is the PCA map of hypothetical data. It is clear that
rotating the two PCs in the direction of the arrows will
lead to Fig. 18.2 (bottom), which has a simpler struc-
ture. When one chooses to retain more than two PCs
a mathematical rotation must be performed. During
mathematical rotation, the PC loadings are trans-
formed either with retention of orthogonality (usually
used) or not (rarely used). Orthogonal rotations such
as varimax and quartimax retain the orthogonality
(uncorrelated aspect) of the PCs, while oblique rota-
tion such a promax and orthoblique do not (Stevens,
1986).

Once a simple structure has been obtained, the PCs
must be interpreted. This is done by describing the
relationships of the dependent variables (descriptors)
to one another and to the retained PCs. Descriptors
loaded heavily (either positively or negatively) on a
particular PC are used to interpret that dimension.
What is meant by an attribute that is loaded heav-
ily? Hatcher and Stepanski (1994) indicated that these
are attributes that have loadings larger than absolute
0.40. However, Stevens (1986) is more conservative
and suggests that important loadings are those that
are twice the size of significant correlation coefficient
for the specific sample size. We recommend that the
analyst decides on a loading value that he/she feels
comfortable with (in our case this is usually 0.75
or so) and that he/she then only uses these loadings
(attributes) to describe each PC. Another view is that
all loadings are meaningful and should be interpreted.
Small loadings (near zero) mean that that PC is not
related to those variables, and this can also be useful
information.

Finally, the samples (objects or products) are plot-
ted into the PCA space described by the retained
PCs. Scores are calculated for each sample to deter-
mine its location on the retained PCs. Samples further
apart on the PC map are perceptually more differ-
ent from each other than samples grouped closer
together (Coxon, 1982). Husson et al. (2004, 2005)
and Monteleone et al. (1998) have developed boot-
strapping methods to determine the 95% confidence
intervals around the products in the PCA space
(Fig. 18.3).

PCA is extensively used with sensory descriptive
data. A few examples are Bredie et al. (1997), Guinard
et al. (1998), Wortel and Wiechers (2000), Lotong
et al. (2002), van Oirschot et al. (2003), and Pickering
(2009).
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Fig. 18.3 An example of a
PCA plot with 95%
confidence ellipses generated
by bootstrapping. Circles that
overlap are not significantly
different from one another at
the 95% level (reprinted with
permission from Lê et al.,
2008).

18.2.2 Multivariate Analysis of Variance

Multivariate analysis of variance (MANOVA) is a pro-
cedure that allows one to determine whether significant
differences exist among treatments when compared
on all dependent variables of interest (Ståhle and
Wold, 1990; Stevens, 1986). Like univariate analysis
of variance (ANOVA), MANOVA tests for differences
between two or more treatments, but, in contrast to
ANOVA where one evaluates one dependent variable
at a time, in MANOVA all dependent variables are
evaluated simultaneously.

In sensory descriptive analysis, multiple descrip-
tors are used to describe and evaluate a product set.
For example in a descriptive analysis of ice creams,
the panelists might evaluate six ice creams for iciness,
smoothness, hardness, and melt rate. Usually each
attribute (dependent variable) is analyzed by ANOVA,
requiring four ANOVAs (one for each attribute) to
be performed on the data. Theoretical analysis has
revealed that a large number of ANOVAs performed
on the same data set may lead to an inflated overall
Type I error (Stevens, 1986). For example, suppose
a panel evaluated two yogurts by descriptive analy-
sis using eight descriptors. The data are then analyzed
using t-tests, one t-test for each descriptor. Remember
that the F-value for a two-sample ANOVA is equal
to the square of the t-test value. The alpha (Type I

error) is fixed at 0.05. If we assume that all eight tests
are independent (which is not entirely true since each
of the yogurts was evaluated by the same panelists
and some of the variables are probably collinear, that
is, related to each other), then the overall probabil-
ity of no Type I error is (0.95) × (0.95) × (0.95) ×
(0.95) × (0.95) × (0.95) × (0.95) × (0.95) ≈ 0.66.
Thus the probability of at least one false rejection
(given that all null hypotheses are true) is equal to
1–0.66=0.34. From this simple example, it is easy to
see that the overall Type I error quickly becomes very
high when multiple tests are performed. It is also not
possible to accurately estimate the increase in size of
the Type I error. Ideally, the data should be analyzed
by MANOVA prior to the individual ANOVAs, since
performing a MANOVA prior to individual ANOVAs
protects against this situation (Hatcher and Stepanski,
1994; Johnson and Wichern, 2007; Stevens, 1986).
There are a minority of statisticians that do not feel
that multiple ANOVAs necessarily lead to better con-
trol of the Type I error (Huberty and Morris, 1989,
Ståhle and Wold, 1990). The MANOVA provides a
single F-statistic, based on Wilks’ Lambda (λ), which
assesses the influence of all descriptors simultane-
ously. A significant MANOVA F-statistic (due to a
small Wilks’ lambda) indicates that the samples dif-
fer significantly across the dependent variables. At
this point, an ANOVA on each dependent variable
should be performed to determine which dependent
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variables significantly differentiate among the sam-
ples. On the other hand, a non-significant MANOVA
F-statistic (based on a larger Wilks’ lambda) indi-
cates that the samples do not differ across the depen-
dent variables and that individual ANOVAs are not
warranted.

MANOVA protects the sensory specialist from
another problem associated with multiple ANOVAs.
Individual ANOVAs do not account for one very
important piece of information, namely, the collinear-
ity (correlations) among the descriptive variables.
MANOVA includes collinearity (through the covari-
ance matrix) into the test statistic. The effect of cor-
relations among the dependent variables is taken into
account within the analysis. In addition, the possi-
bility exists that samples do not differ on any one
variable but that some combination of variables sig-
nificantly discriminate among the samples. MANOVA
allows the sensory specialist to explore this possi-
bility whereas performing individual ANOVAs does
not. Determining that a combination of variables dis-
criminates among samples when single variables do
not is important protection against a Type II error,
that is, against missing a true difference. Sensory spe-
cialists should use this tool, especially when there
is potentially a market impact in making a mistake
by declaring products to be equivalent when in fact

they are different. Examples of MANOVA in the sen-
sory literature are Lee et al. (2008), Cano-López et al.
(2008), Adhikari et al. (2003), and Montouto-Graña
et al. (2002).

18.2.3 Discriminant Analysis (Also Known

as Canonical Variate Analysis)

Discriminant analysis has two functions—
classification and separation (Huberty, 1984). We
prefer to use the name discriminant analysis (DA)
for the classification function and canonical variate
analysis (CVA) for the separation function. DA is
rarely used in pure sensory science studies; but is
frequently used in classification of samples based on
chemical and instrumental analyses (Luan et al., 2008;
Martín et al., 1999; Pillonel et al., 2005; Serrano et al.,
2004). On the other hand, CVA is very frequently
used with sensory data (Delarue and Sieffermann,
2004; Etaio et al., 2008; Martin et al., 2000) and
similarly to PCA provides a two-dimensional or three-
dimensional graphic display of the relationships within
and between products (Fig. 18.4). CVA is especially
useful when one wants to use raw data to get some
information of between-product to within-product
variation.

Fig. 18.4 Canonical variate analysis plot of sensory data
for significant parameters. Attribute loadings (lines) and fac-
tor scores (circles) for carbonic maceration wines made
with Tempranillo (◦) or Tempranillo and Viura (•), and for
wines made from destemmed grapes (triangles) made with

Tempranillo (△) or Tempranillo and Viura (�). Ellipses at 90%
of confidence. CAN, canonical variable. Ellipses that overlap are
not different from one another at the 90% level (reprinted with
permission from Etaio et al., 2008).
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The easiest way to understand how sensory special-
ists use canonical variate analysis (CVA) is to refer
back to univariate ANOVA. The ANOVA indicates
which of the main or interaction effects are signifi-
cant. However, if the sample mean effect is significant
the ANOVA does not indicate which samples differ
from one another. To determine this, one of the mean
separation techniques, such as Fisher’s protected least
significant difference (LSD), the honestly significant
difference (HSD), Dunnett’s test, Duncan’s test, has
to be applied to the data. The means separation test
allows the sensory specialist to determine which sam-
ples differ from one another. Fisher’s protected LSD
requires that the ANOVA for the specific main effect
or interaction must be significant before one can exam-
ine differences between pairs of means by calculating
the LSD (Snedecor and Cochran, 1989). Similarly,
the CVA is the multi-dimensional mean separation
technique for MANOVA (Ståhle and Wold, 1990).

If the specific main effect or interaction is sig-
nificant in the MANOVA then one can use CVA to
get a graphical map of the sample mean separation
(Chatfield and Collins, 1980; Fig. 18.4). This tech-
nique has been used extensively in the sensory litera-
ture (a few examples are Adhikari et al., 2003; Etaio
et al., 2009; Lund et al., 2009; Martin et al., 2000;
Wienberg and Martens, 2000). Heymann and Noble
(1989) compared CVA and PCA and found that the
CVA of the raw sensory descriptive data matrix gave
superior results. Brockhoff (2000) showed that CVA
is a better choice for sensory descriptive data analy-
sis than PCA because it accounts for uncertainties and
error correlations in the raw data.

18.2.4 Generalized Procrustes Analysis

Generalized Procrustes analysis (GPA) is a statisti-
cal technique that derives a consensus configuration
from two or more data sets (Dijksterhuis, 1997; Gower,
1975; Gower and Dijksterhuis, 2004). The requirement
is that all of these data sets have to include the same
products. The technique is named after Procrustes, an
inn-keeper and highway robber in Greek mythology
who had only one bed in his inn. For better or worse,
he made all his customers fit the bed by stretching them
to fit or by hacking of their limbs to fit (Kravitz, 1975).
The GPA in a sense force fits the individual data sets
into a single consensus space.

In a GPA, two or more configurations of points
in a multi-dimensional space are matched by transla-
tion (making the origins equal, i.e., centering), scale
change (stretching or shrinking), and rotation or reflec-
tion (Gower, 1975). The analysis proceeds through
an iterative process that minimizes a value known
as the Procrustes statistic, s∗∗ (Langron, 1983). The
Procrustes statistic is the residual distance between the
individual configurations and the consensus configura-
tion at the completion of the GPA, i.e., it is a measure
of badness of fit.

When GPA is used with sensory data the individ-
ual data sets can come from individual panelists or
from different data-collection methods. For example
when GPA is used with free-choice profiling data,
the individual data sets are the data from each indi-
vidual panelist (Dijksterhuis, 1997; Heymann, 1994a;
Meudic and Cox, 2001). Similarly, it is possible to ana-
lyze descriptive data through GPA using the data from
each panelist as the individual data sets used to derive
the consensus configuration (Dijksterhuis and Punter,
1990, Heymann, 1994b). However, it is also possi-
ble to use GPA to integrate data derived by different
methods. For example, one can use GPA to compare
hedonic and descriptive sensory data (Popper et al.,
1997) or to compare descriptive data derived by dif-
ferent panels and methods (Alves and Oliveira, 2005;
Aparicio et al., 2007; Delarue and Sieffermann, 2004;
Heymann, 1994b; Martin et al., 2000) or to compare
data collected instrumentally with data collected by
sensory means (Berna et al., 2005; Chung et al., 2003;
Dijksterhuis, 1997).

When GPA is performed on data from individ-
ual panelists the translation phase standardizes the
scores for each panelist by centering at their origin.
This is similar to removing the main effect for pan-
elist from the main effect for sample in an ANOVA
model. During the scale change phase, the GPA adjusts
for the effect of panelists using scales differentially.
During the rotation/reflection phase, the GPA mini-
mizes panelist inconsistencies in the use of attributes.
This phase is the reason why GPA may be sued to
analyze free-choice profiling data, because the anal-
ysis takes into account the possibility that panelists
may use different terms to describe the same sen-
sations. GPA is also useful in analyzing descriptive
profiling data when the sensory specialist is not sure
that all panelists consistently used the terms to describe
their sensations. In this case the assumption is that the
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panelists’ scores represent different inherent configu-
rations. A Procrustes “ANOVA” can be calculated to
determine which of the above transformations were
the most important in the formation of the consensus
configuration (Dijksterhuis and Punter, 1990).

Like the PCA, GPA provides a simplified configu-
ration based on correlation patterns among variables.
The GPA provides a consensus map of the data in a
two-dimensional or three-dimensional space. It is pos-
sible to have a GPA solution with more than three
dimensions but these are frequently very difficult to
interpret. The consensus configuration is interpreted
similarly to the PCA map (Fig. 18.5). Additionally,
it is possible to plot the individual panelists’ data
spaces and to compare the different panelists with each
other (Fig. 18.6). A plot of the panelists’ variance
explained by dimension (Fig. 18.7) allows the sensory
specialist to determine which dimensions were more
important to which panelists. It is also possible to plot
the descriptors used by the individual panelists into
the consensus space (Fig. 18.8). These descriptors are
interpreted in the same fashion as the descriptors on a
PCA plot.

Fig. 18.5 Generalized Procrustes consensus plot. This plot is
interpreted as follows: Dimension 1 (F1) accounts for 42% of
the variance and dimension 2 (F2) for an additional 23%. F1
is loaded with the green teas on the right and the flavored and
perfumed teas on the left. F2 is loaded with the black teas on the
positive side and the raspberry zinger on the negative side. The
two green teas are similar in sensory characterics to each other.
The China Black and the black teas are also quite similar and
they are similar to the Soothing Moments tea.

Fig. 18.6 Generalized Procrustes plot of samples evaluated by
individual panelists. For clarity only two panelists (#1 and #4)
are plotted. The ellipses indicate the positions of these panelists’
samples in the consensus space. Samples enclosed in larger
ellipses “fit” less well.

18.3 Relating Consumer and Descriptive

Data Through Preference Mapping

Multi-dimensional preference mapping is a perceptual
mapping method that yields a graphical display of
hedonic data (MacFie and Thomson, 1988). Preference
mapping is also discussed in Chapter 19. On a single
plot, hedonic information for each consumer partici-
pating in the study is simultaneously presented in a
multi-dimensional space representing and containing
the products evaluated (Kuhfield, 1993). The result-
ing perceptual map provides a clear presentation of the
relationships among the products and the individual
differences in liking by consumers for these prod-
ucts. In this chapter we will discuss the nuts and bolts
of preference mapping and in Chapter 19 the use of
preference mapping will be described further.

With this methodology, consumers evaluate six2 or
more products and score their hedonic responses for
each product. The data analysis is on an individual

2 This is based on simulation studies done by Lavine et al.
(1988) who showed that one should select no more than n/3 PCs,
with n=number of samples, in an external preference map (prin-
cipal regression). Examples of studies with fewer samples are
found (Gou et al., 1998) but the results should be viewed with
caution.
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Fig. 18.7 A plot of the
generalized Procrustes
variance by panelist
(configuration) and dimension
(factor). For clarity only the
variances assocated with two
panelists (#1 and #4) are
plotted. Panelist 4 had much
more varaince explained in
dimension 1 than panelist 1.
For dimensions 2 through 5
panelist 1 had more variance
explained than panelist 4.

Fig. 18.8 The positions of the descriptors in the consensus
space. Descriptors used by panelist 4 is in italics. There does
not seem to be much consensus in the use of attributes between
these two panelists.

rather than an aggregated (group) level. Preference
mapping may be performed by either internal or exter-
nal analysis. In the simplest form of internal preference
mapping, sometimes called MDPREF, the only data
used to derive the preference map are the consumers’
hedonic data. Thus the entire perceptual map is only
based on the acceptance data from the consumers. In
the simplest version of external preference mapping,
sometimes called PREFMAP, data from an external
source are used to derive the preference map, called
a product space, and the consumers’ hedonic data
are then projected into this space through polynomial
regression. According to van Kleef et al. (2006), the
two main branches of preference mapping “emphasize
fundamentally different perspectives on the same data”
with internal preference mapping providing “a clear
advantage on marketing actionability and new product
creativity” and external preference mapping is “more
actionable for food technological tasks” (Table 18.1).

Table 18.1 The basic differences between internal and external preference mapping (based on van Kleef et al., 2006)

Internal preference mapping External preference mapping

Emphasizes Preference Sensory perception
Product positions

in map
Account for variation in hedonic or preference data Account for variation in sensory data (usually

descriptive data)
First map

dimension
Explains maximum variability in preference

directions between products
Explains maximum variability in sensory directions

between products
Preference data Drive orientation of product space Is supplementary: fitted into the sensory product space
Sensory data Is supplementary: fitted into the preference-driven

product space
Drive orientation of the product space
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Please note that ‘if analyzed in maximum dimension-
ality (i.e., number of consumers in internal and number
of products [if fewer products than variables] in exter-
nal preference analysis), the two approaches will show
identical results, but with different geographical ori-
entations in space. In practice, however, these data are
never analysed in maximum dimensionality, as the pur-
pose is to visualise the most important information in
a lower dimensional space’ (van Kleef et al., 2006).

18.3.1 Internal Preference Mapping

This analysis is usually a PCA with the products as
the samples (rows) and the consumer hedonic scores
as the variables (columns). The purpose of the internal
preference map is to find a small number of principal
components (usually two or three) that explain a large
percentage of the variation in the consumer hedonic
responses. It is felt that these PCs then indicate under-
lying perceptual concepts that “explain” the consumer
hedonic scores. In this format the internal preference
map is a vector model with each consumer represented
by an arrow from the zero point intersection point-
ing in the direction on increased preference for that
consumer. Essentially, the arrow indicates that for a
specific consumer “more is better” in the direction of
the arrow.

It is likely that eventually the consumer will
find that more is no longer liked more—the prod-
uct may become cloying sweet, etc. Thus models
such as unfolding models, that are similar to multi-
dimensional scaling models (Busing et al., 2009;
DeSarbo et al., 2009; MacKay, 2001, 2006), which
indicate ideal points would be more useful. These
have been used very infrequently in sensory studies
and are more popular in marketing research studies
(DeSarbo et al., 2009). Most published studies of sen-
sory hedonic internal preference maps use the vector
model (Alves et al., 2008; Ares et al., 2009; Costell
et al., 2000; Resano et al., 2009; Rødbotten et al., 2009;
Yackinous et al., 1999).

An example of a perceptual map from internal pref-
erence mapping is shown in Fig. 18.9. As mentioned
before, in order to have a reasonable perceptual map
the sensory specialist should have the consumers eval-
uate at least six products that span the perceptual space
(Lavine et al., 1988). The products should differ from

one another otherwise the consumers may not have an
differentiation in liking scores. There are examples of
spaces with fewer products (Gou et al., 1998) but the
interpretation of these spaces should be done extremely
cautiously since overfitting is a serious problem. For
internal preference mapping all consumers should
evaluate all the products. It is possible to do impu-
tation, usually mean substitution, if there are a few
missing values in the consumer data (Hedderley and
Wakeling, 1995). Monteleone et al. (1998) described
a boot strapping procedure to determine the 95%
confidence ellipses around the products, based on the
consumer hedonic scores. These authors also used
a permutation test to determine if a specific con-
sumer is significantly fitted into the internal preference
map.

18.3.1.1 Extended Internal Preference Mapping

The basic internal preference map is based on only

the consumer hedonic data. The PCs can be inter-
preted based on the sensory specialist’s product knowl-
edge, as was done in Fig. 18.9. However, the spe-
cialist may have access to descriptive data on the
same products and could then do an extended inter-
nal preference map, where the external information on
the products is projected into the internal preference
map through regression (Jaeger et al., 1998; Daillant-
Spinnler et al., 1996; Martínez et al., 2002; Santa
Cruz et al., 2003; van Kleef et al., 2006). This allows
one to “name” the underlying perceptual dimensions
(Fig. 18.10).

18.3.2 External Preference Mapping

In this case a product space is usually created from
sensory profiling data, although the data used to cre-
ate the product space may be obtained from descriptive
analysis methods, from free-choice profiling, from
multi-dimensional scaling techniques, from instrumen-
tal measurements, etc. These methods differ in their
basic principles but they can all be analyzed to yield a
spatial representation or a map. For the descriptive data
a product space is derived by PCA or CVA (Ares et al.,
2009; Lovely and Meullenet, 2009; Schmidt et al.,
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Fig. 18.9 Internal preference map based on 10 ham samples.
PC1 and PC2 account for 33.24 and 13.22% of the variance,
respectively. Every consumer is shown on the map as a black

dot, which corresponds to the endpoint of the fitted vector. A
vector line for each consumer can be obtained by drawing a line
between the endpoint and the origin. The length of the vector
line indicates how well that individual’s preference is explained
by the dimensions that are plotted. Panel A shows the positions
of the individual consumers and that in panel B the consumer

clusters. Panel A indicates that most consumers are positioned to
the right of the map in the direction of Spanish. Only about 7% of
the consumers are located to the left of the map in the direction
of the French (f15, f16, f17) and two additional Spanish samples
of unspecified origin (S20, S21). Panel B shows the four clus-
ters of consumers (based on k-means clustering). The clusters
are almost superimposed and make interpretation of this internal
preference map difficult (reprinted with permission from Resano
et al., 2009).

Fig. 18.10 Extended internal preference mapping of four con-
sumer clusters and descriptive sensory properties of the 11 coffee
samples indicating the position of (a) the coffee samples and
(b) the sensory descriptors (the vectors represent the direction

of liking for the consumer clusters: PC, pure coffees; CB, cof-
fee blends; CID, chicory instant drink; dec, decaffeinated; XYZ
refers to three coffee manufacturers: f, flavor; o, odor/aroma.)
(reprinted with permission from Geel et al., 2005).
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2010; Young et al., 2004). For the free-choice profil-
ing a GPA will yield a product space (Gou et al., 1998)
and the result of a multi-dimensional scaling of simi-
larity data is also a product space (Faye et al., 2006).
A product space can also be obtained from instrumen-
tal measurements, for example, Gámbaro et al. (2007)
used color measurements to create a product space into
which they projected the consumer hedonic scores for
honey color. It is important to realize that “for exter-
nal [preference] analysis to be successful it is essential
that the external stimulus [product] space contains
dimensions which pertain to preference” (Jaeger et al.,
2000).

The individual consumers’ hedonic responses (or
clusters of consumer responses) are projected into
the product space by regressing each consumer’s
responses onto the spatial dimensions of the products
(Fig. 18.11). Each consumer’s hedonic scores can be

Fig. 18.11 External preference map of combined consumer
data with descriptive analysis data for US choice longissimus

steaks (loin) that were cooked to various endpoint tempera-
tures. Clusters 1, 2, and 6 liked rare steaks that were defined
by juiciness, tenderness, and bloody attributes. In addition, clus-
ters 2 and 6 preferred medium rare steaks over steaks cooked to
increased endpoint temperatures. Cluster 4 consumers preferred
rare, medium rare, and medium steaks over other treatments.
It appears that these consumers like all attributes but either do
not like roasted and brown/burnt flavors or like steaks that are
as juicy and/or tender as possible. Cluster 3 does not like rare
steaks, predominantly due to the bloody and metallic attributes
(reprinted with permission from Schmidt et al., 2010).

regressed as a series of polynomial preference models:
elliptical ideal point with rotation, elliptical ideal
point, circular ideal point, and vector models (Coxon,
1982; McEwan, 1996; Schlich, 1995). McEwan (1996)
cautions that the elliptical and quadratic models tend
to lead to saddle-type ideal points and are thus difficult
to interpret, with the result that these models are
rarely used. However, Johansen et al. (2009) found
a saddle point for one of their clusters and it was
relatively easy to interpret (Fig. 18.12). The variance
explained by each model is determined, and the most
appropriate model is identified for each individual
consumer (Callier and Schlich, 1997). If the variance
explained by all models for a specific consumer is low,
then the behavior of that consumer was not adequately
explained by the product space (Callier and Schlich,
1997).

Why does this happen? There are several reasons.
It is possible that some consumers do not differenti-
ate among the products at all; they would thus not fit
well into the product space. Additionally, some con-
sumers may base their hedonic responses on factors
that were not included in the product space derived
from the analytical sensory data. The information used
by these consumers may have been lost during con-
struction of the product space, or consumers may have
used other sensory or non-sensory cues not included in
the descriptive analysis of the products. Additionally,
some consumers simply yield inconsistent, unreliable
responses, possibly because they changed their criteria
for acceptance during the test.

Consumer fit ranges from a low of 36% (Helgesen
et al., 1997) to less than 50% Tunaley et al. (1988) to
nearly 69% (Monteleone et al., 1998). Guinard et al
(2001) found that 75% of their beer consumers fit the
sensory perceptual map derived for 24 beers. They
felt that this occurred due to the widely divergent
and large number of beers used in the study. On the
other hand, Elmore et al. (1999) found that more than
90% of their consumers fit in to a descriptive sensory
space on the perception of creaminess. The major dif-
ference between the studies was that the Elmore and
coworkers had carefully designed the samples, served
to the panelists and the consumers, to be quite differ-
ent from one another. When samples actually differ
perceptually the consumer has a much better chance
at determining true like and dislikes—one of use calls
this stretching the space to cover all possible responses
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Fig. 18.12 Saddle point
contour plot for the second
consumer segment. Cheese
presented to consumer group
1 is marked with a square and
cheese presented to consumer
group 2 is marked with a
circle. The average scores
from the 30 consumers are
shown (reprinted with
permission from Johansen
et al., 2009).

to the products. In an effort to improve consumer fit in
an external preference map, Faber et al. (2003), devel-
oped a heuristic or a common sense rule to determine
the number of PCs to keep to improve the fit. In their
case the fit improved from 51% with two PCs to 80%
with five PCs. However, we would caution the sensory
specialist to be careful of potentially overfitting the
space!

One of the drawbacks of external preference map-
ping was that all consumers must evaluate all products;
however, work by Slama et al. (1998) and Callier and
Schlich (1997) have shown that it is possible to have
consumers evaluate subsets of products and still get
a reasonable external preference map based on the
quadratic and the vector models, respectively. Recently
Johansen et al. (2009) selected subsets of products for
consumer hedonic evaluation from the results of the
PCA on the descriptive data. They then analyzed the
resultant data using a fuzzy cluster analysis and found
that the method worked relatively well for their cheese
samples.

Other external preference map techniques are
through the use of partial least squares (PLS) where
the product space and the consumer space related
to the product space are created simultaneously
through an iterative process (Martens and Martens,
2001; Meullenet et al., 2002) and logistic regression
(Malundo et al., 2001).

18.4 Conclusions

In this chapter and in the next chapter a number of mul-
tivariate techniques were discussed. In many cases the
output from one of these methods is a two-dimensional
or three-dimensional map of the loadings (the posi-
tions of the attributes) and the scores (the positions of
the products). If both the loadings and the scores are
plotted in the same map then the map is often called
a biplot. The use of multivariate statistics with sen-
sory science data is very useful but there is a danger of
over-reliance on the biplot as can be seen by looking
at a journal such as Food Quality and Preference. This
and other journals have a large number of articles deal-
ing with sensory methodology and its related statistical
branch, now called sensometrics. A common theme in
these articles is that almost no matter what the sen-
sory test, sooner or later the data are visualized (after
some multivariate statistical manipulation) as a biplot.
This biplotting has become so common that it seems
to be obligatory. However, there is a clear and present
danger in assuming that we have done good sensory
science just because we have a multivariate analysis
that produced a biplot.

It is quite possible, for example, to have some
attribute from a descriptive analysis that is uncorre-
lated with other variables, but has a strong influence on
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Table 18.2 A summary of the multivariate techniques described in this chapter

Technique Input Output Other information

Principal component analysis
PCA Means of scaleda data Product/attribute space Variance explained

Canonical variate analysis
CVA Raw (with replication)

scaled data
Product/attribute space Between sample to within

sample variance
explained

Generalized Procrustes analysis
GPA Individual matrices of

scaled data
Consensus product/attribute

space
Fit of individuals

Internal preference map
Hedonic data Product space with

consumers as vectors
External Preference map

Configuration derived from
scaled data plus hedonic
data

Product/attribute space with
consumers as vectors,
ideal points, etc.

aScaled data could be from descriptive analysis attributes as well as instrumental and/or chemical measurements

consumer acceptance or rejection. If it is uncorrelated,
it will not appear in the first two or three principal com-
ponents and would not be represented in the biplot at
all. It is also possible for two attributes to be highly cor-
related in the two-dimensional space but not be corre-
lated once one looks at the third or higher dimensions.
The sensory scientist should always be mindful that the
biplot is a two-dimensional or three-dimensional rep-

resentation of a much larger dimensional space. So the
practicing sensory scientist must always be careful to
examine all the traditional univariate statistical analy-
ses (one attribute at a time) and resist being seduced
by the latest hot statistical technique that results in a
two-dimensional or three-dimensional perceptual map.
Perceptual maps are only one (arguably minor) tool in
the techniques available for data summarization. One
of us frequently tells students that biplot are a “virtual”
reality and univariate data analyses are reality!

Table 18.2 gives a short overview of the multivari-
ate techniques described in this chapter and should
help sensory scientists decided which technique to use
where.
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Chapter 19

Strategic Research

Abstract Sensory professionals often assist their companies with strategic
research. One common example is the category appraisal, in which competitive
products are evaluated relative to one’s own. Often the information is summarized
by perceptual mapping, using multivariate statistical analyses. An important part of
product development is optimization of specific attributes. A third area involves iden-
tifying patterns of consumer preferences and groups to whom different versions of a
product may be appealing.

Thus, what is of supreme importance in war is to attack the enemy’s strategy . . . Therefore I say:

‘Know the enemy and know yourself; in a hundred battles you will never be in peril.’

—Sun Tzu, The Art of War (Ch. 3, v. 4, 31)
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19.1 Introduction

19.1.1 Avenues for Strategic Research

A full-service sensory evaluation program is more
than a department that merely fulfills test requests.
Such technical services are critically important, of
course, to provide information about product develop-
ment and optimization of sensory attributes. Routine
testing can also provide support for questions of qual-
ity maintenance—in sensory quality control, shelf-life
testing, and other common services. An important
service arises when advertising claim substantiation
requires sensory data, as discussed in Chapter 13.
This service and its statistical basis are discussed
in the ASTM standard for claim substantiation
(ASTM, 2008) and also by Gacula (1993). Many
sensory departments, especially those in larger and
forward-looking companies, are also providing strate-
gic research and long-term research guidance to their
product development and marketing clients.

The distinction between strategic and tactical
research is obviously based on a military metaphor.
Tactical research concerns all of the focused activities
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aimed at launching new products and positioning or
re-positioning existing brands. This is where the bulk
of corporate expenditures on product development and
sensory research are aimed. Substantial funds are spent
on positioning and pricing studies and on advertising
research before and after a new product launch to gain
a point or two of market share (Laitin and Klaperman,
1994). However, these funds are not well spent if the
bigger picture of the product category and a long-
range view of consumer needs and trends are not seen.
Research efforts may have resulted in a better apple
when consumers really wanted a better orange. At the
tactical stage, the company is stuck with the apple and
has to do their best with it (Laitin and Klaperman,
1994). To avoid this kind of problem, some companies
use innovative research techniques such as perceptual
mapping. Strategic research may also identify con-
sumer trends and demographic changes and uncover
new product or even whole new business opportunities
(Miller and Wise, 1991; Von Arx, 1986).

The most common question in the realm of strate-
gic research is, “How do our products stack up relative
to the competition?” The approach is different than
the marketing research attack on this question, which
would usually be based on market share, profitabil-
ity, or some other sales-related measure. In contrast,
the sensory department can provide information on
the perceived performance of products, usually on
a blind basis. The relative strengths and/or weak-
nesses of the company’s products in terms of sensory
characteristics can be assessed in isolation from the
contaminating influences of complex concepts, posi-
tioning, brand image, label claims, price, and promo-
tions. Assessment of one’s own products and those
of the competition is an integral part of such system-
atic product development schemes as Quality Function
Deployment (QFD) and the “house of quality” meth-
ods (Benner et al., 2003). These methods seek to
connect known consumer “wants” with efficient new
product delivery of those characteristics.

A second avenue for strategic research comes from
the continuing growth of qualitative research meth-
ods as a sensory tool. Many sensory professionals
now receive training for moderating group interviews.
Their services may be highly valued by product
research clients who desire the kind of rich and prob-
ing information provided and for the creative ideas
that are often generated (Goldman and McDonald,
1987). There is a growing need to communicate

effectively with consumers at the early stages of
research. Qualitative methods such as group inter-
views can meet this need (Von Arx, 1986). Consumer
interviews not only are tools for answering advertis-
ing and positioning questions but can also be used to
address more concrete questions about desired sensory
attributes and features like convenience and packag-
ing issues. These methods are discussed in detail in
Chapter 16. The group depth interview is an impor-
tant tool in uncovering the reasons for brand pref-
erences, perceived shortcomings, or faults in one’s
product relative to the competition, points of supe-
riority that should be emphasized or strengthened
and opportunities for improvement and new product
ideas.

On the borderline of tactical and strategic research is
the evaluation of new or alternative versions of a prod-
uct (Laitin and Klaperman, 1994). Once the relative
importance of different product attributes is estab-
lished, consumer needs and priorities become better
defined. Should the package be re-sealable? Do con-
sumers want additional flavor variations? Have they
been adding other foods in unusual combinations that
suggest a product variation (e.g., granola to yogurt)?
Is there a desire for a low-sodium version, a low-
fat version, or other nutritional modification? Does
the product perform well in a microwave oven, and
if not, should that performance feature be improved?
Various combinations and profiles can be evaluated
both in conceptual stages and in prototypes (Mantei
and Teorey, 1989). Redirection of the concept or refine-
ment may be necessary (Von Arx, 1986). At this point,
a sensory evaluation department can become involved
in exploratory research to determine if consumer per-
ception of a product prototype, in terms of sensory
characteristics and performance, matches the target of
the conceptual developers and the product research
team. The overall goal is to facilitate more success-
ful product development with less waste of work, time,
and money (Benner et al., 2003; Von Arx, 1986).

A related area for strategic research, both in mar-
keting and sensory evaluation, is the identification
of product profiles that represent undeveloped com-
binations of characteristics that would have potential
consumer appeal. For example, at one time people
had radios and alarm clocks, but no clock radios. This
new product filled an undeveloped niche in the appli-
ance market. In foods, there are a wealth of items
that are oven-ready, and some (but not all) of these
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have microwavable counterparts or are themselves
microwavable. This represents an opportunity for some
products that do not yet offer this feature of conve-
nience in preparation. Analysis of the entire scope of
products that fulfill a similar purpose can help iden-
tify these unfilled niches and bring innovative products
to the market. This procedure is sometimes referred to
as market gap analysis (Laitin and Klaperman, 1994).
Very often the niche will be defined by a set of sen-
sory or performance characteristics as part and parcel
of the defining concept and the sensory group can be of
assistance in measuring the fit relative to expectations.
The sensory and performance characteristics must be
discovered, defined, and measured during exploratory
research, and conformance of the product prototypes
to the desired target must be measured in sensory tests.
A full-service sensory evaluation department can assist
in all phases of the process.

Another important area for strategic research is
the identification of consumer segments. A segmenta-
tion study seeks to identify groups of consumers who
respond in a similar way and who are definably dif-
ferent from other groups in their perceptions, needs,
or response to product attributes. Various multivari-
ate techniques are available such as cluster analysis
that can group individuals on the basis of correlated
responses across attributes on a questionnaire or sur-
vey (Plaehn and Lundahl, 2006; Qannari et al., 1997;
Wajrock et al., 2008). Consumer segmentation may
then be defined on the basis of usage habits or sen-
sory preferences (Miller and Wise, 1991; Moskowitz
and Krieger, 1998).

19.1.2 Consumer Contact

A full-service sensory evaluation department can inter-
act directly with consumers in a number of ways. In
fact, the sensory department has unique opportunities
to monitor consumer reactions to the company’s prod-
ucts. When combined with strategic activities such as
category reviews, the sensory department can be a
major conduit for consumer input that can affect exec-
utive decisions. Opportunities can also arise through
interactions with other departments. For example,
many companies maintain consumer hotlines or toll-
free telephone numbers for comments and complaints.
These communications are periodically summarized

in reports and the sensory professionals in charge of
certain product lines should monitor these summaries
carefully. Complaints usually represent “the tip of the
iceberg” of a larger problem and may help identify
important issues to be addressed in future optimization
or product improvements.

An important avenue for consumer contact arises in
home placement tests. If at all possible, the sensory
professional should not assign 100% of the interviews
to a field service, but should reserve a small percent-
age of the actual interviews to be conducted in person.
A marketing research group typically will delegate all
of the interviewing as well as the statistical analysis
to subcontracting field agencies. Statistical summaries
will reflect majority opinion and can miss important
segments and minority opinions. For example, if the
vast majority of consumers liked the product, but two
people cut their fingers while opening the package,
there is an important issue in package design that needs
to be addressed. Such infrequent problems and strong
negative opinions of those people can get lost in group
averages and “top box” scores. Face-to-face contact
can facilitate the probing of issues that were missed
on the formal quantitative questionnaire.

A third opportunity for direct consumer contact is
in focus group moderating, as noted above. In some
home placement tests, it may be cost effective to con-
duct group interviews as a follow-up to the structured
questionnaire survey. Issues may be identified in the
questionnaire data that require further investigation,
and a recall of participants for group interviews may
allow those issues to be probed.

19.2 Competitive Surveillance

19.2.1 The Category Review

A category review or category appraisal is a survey
of most or all of the products that serve a similar
function and are viewed as belonging to the same
group by consumers. A “category” is often a group
of products that appear in the same part of a food
store or in the same aisle or on one section of shelf
space. For example, cold breakfast cereals are a cate-
gory and a distinct category from hot breakfast cereals.
The category review is an important strategic search to
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identify and characterize the company’s products and
their competitors. The information may include sales
and marketing data, physical characteristics, objective
sensory specifications (such as descriptive data), and
consumer perceptions and opinions. In the sections that
follow, we will examine category review research from
a sensory and consumer perspective. A full-service
sensory department will be capable of conducting such
an extensive review at periodic intervals as called for
by changes in the market and the appearance of new
or innovative products. In many ways the category
review is similar to the product evaluations conducted
by Consumer’s Union for publication in their maga-
zine, Consumer Reports. As noted above, evaluation
of competitive products is an important step in meth-
ods for systematic new product development (Benner
et al., 2003).

A review of a product category might be limited to
key brands or could be quite comprehensive in scope.
In some product categories the number of producers
is quite large, or alternatively a small number of large
companies may each have an extensive offering of dif-
ferent products within the category, as in the breakfast
cereal industry. It may be advantageous to sample all
the products that might be substitutable in the con-
sumer’s mind. Inclusion in the study can be based
on market share data, such as warehouse case move-
ment information. In a large and diversified category,
it is probably wise to include the top 80 or 90% of
brands. In the case of a category that is relatively new
or in which there are limited data, a store retrieval
study can precede the formal sensory and consumer
work to see what is out there. A guideline for the
size of a store retrieval study in the United States is
approximately ten stores in each of ten cities to get a
geographical representation from different areas of the
country. The stores should represent different types of
outlets for those products (e.g., grocery, convenience,
food club/warehouse). Field agencies can be hired to
purchase the products (usually one of each and every
variety they see) and send them back to the originating
sensory department. The sensory department can then
catalog what was actually found and how often differ-
ent brands appeared. If seasonal changes are involved,
it may be necessary to repeat the retrieval or spread the
purchasing over time. The results of the store retrieval
can be used to help select competitive products for
inclusion in the main study, based on frequency of
retrieval as an estimate of market penetration. They are

also a rich source of qualitative information and can be
used for idea generation.

If conducted by a sensory evaluation department,
the category review will probably involve several
phases of analytical descriptive testing and assess-
ment of consumer perceptions. It may be advantageous
to coordinate the sensory data collection with brand
image questions as determined by marketing concerns,
either in a parallel study or as part of the same large
research program. Of course, the sensory questions
will be focused on sensory attributes and perception
of performance (Muñoz et al., 1996) and will be con-
ducted on a blind basis if it is possible to do so. In
some cases it may not be possible to have a fully
blind study when the competitive products are well
known. Sometimes re-packaging can be done to dis-
guise the product identity or brand identity for the
sensory study. However, there are limits to this and
common sense should be used as a guide. An aerosol
air freshener with a distinctive pink cap may be a
dead giveaway, but changing the cap might change the
dispersal pattern of the product and the resulting con-
sumer perception. In such a case it is probably less
damaging to stay with the cap color than risk a change
in product performance. Cap color simply becomes
part of the product perception and can be analyzed
for its potential effects. Similar problems can arise
in food products with unique or distinctive packaging
features.

Mullet (1988) discussed the use of multivariate
techniques in assessing a brand image relative to com-
petitive products. Relative “position” in this case refers
to geometric modeling and the perceptual standing in
the product set (the spatial imagery underlying the idea
of “position” is clear). Relative position is interpreted
via attribute scales from questionnaires, and dimen-
sions of the perceptual model are derived from these
attributes. The overall goal is to inform management
about attributes that might be strengthened or changed
through changes in formulation, processing, changes
in marketing strategy, or advertising. Mullet illustrated
this approach with a consumer study of beer brand
perceptions and showed four analyses: factor analy-
sis, multi-dimensional scaling to create a perceptual
map, discriminant analysis, and correspondence analy-
sis Hoffman and frank (1986). Multivariate analyses
were discussed in Chapter 18, and the use of these
tools for perceptual mapping is discussed in the next
section.
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19.2.2 Perceptual Mapping

Almost all perceptual maps have two important com-
mon features. Products are represented as points in the
space (if three dimensional) or plane (if two dimen-
sional). First, products that are similar to one another
will be positioned close to one another in the map and
products that are very different will be far apart. Which
positions are similar or dissimilar can be a matter of
interpretation, although there are some techniques that
will plot confidence intervals around the positions of
points in the model. The techniques are not suited to
hypothesis testing about product differences—they are
best used for comprehending the pattern of relation-
ships among a set of products. A second feature of
most perceptual maps is that vectors corresponding to
product attributes can be projected through the space
to help interpret the positions of different products and
the meanings of the axes or other directions through
the space. These may be provided by the analysis itself
as is the case in factor analysis or PCA or are added
in a second step of data collection as in some multi-
dimensional scaling studies (e.g., Lawless et al., 1995;
Popper and Heymann, 1996).

The overall goals of perceptual mapping fit well
with strategic research. Johnson (1988) stated these
goals as (1) learning how the products in a class are
perceived with respect to strengths, weaknesses, and
similarities, (2) learning what potential buyers want,
and (3) learning how to produce or modify a product
to optimize its appeal. Ideally, the map will relate to
consumer’s opinions, acceptance, or desire for a prod-
uct so that the appeal or “density of demand” through
the space can be determined. This is the essential goal
of preference mapping (see Sections 18.3 and 19.4).

A variety of multivariate statistical techniques are
available to produce pictorial representations that cap-
ture the relationships among a set of products (Elmore
and Heymann, 1999; Mullet, 1988). Most of the pro-
cedures provide a simplified picture or map in two
or three dimensions (rarely more). A complex multi-
dimensional set of products is then described by
a smaller set of dimensions or factors or derived
attributes, sometimes referred to as “latent variables.”
This simplification of a large data set into a spa-
tial representation that is easily grasped is one of the
attractive features of perceptual mapping. However,
simplification entails a risk of losing important details

about product differences. Thus the safest uses of these
procedures are in exploration and in conjunction with
more traditional methods such as univariate analysis
of variance (Popper and Heymann, 1996). By “uni-
variate” we mean analyzing each response scale or
attribute separately from the others. The analysis of
variance then provides information about differences
among products for each individual attribute. This can
aid in interpretation of the simplified picture as well.

Perceptual maps have other limitations. Perceptual
maps represent consumer perceptions at one point in
time. The static nature of a single map limits its value
as a predictor of future behavior (Johnson, 1988).
However, multiple studies can be conducted to com-
pare the perceptions after different changes are made
in a product. For example, maps may be constructed
before and after consumers are given information
about the products and their expectations and points
of focus are manipulated. A second limitation is that
the map will usually represent the majority opinion,
so segments of differing opinions may not be captured
in the aggregate summary. Also, the degree to which
an individual’s likes and dislikes are correlated with
the dimensions of the map is necessarily limited by the
degree to which the map corresponds to his or her per-
ceptions. If the map is not a good summary for that
person, any preference directions will not be clear.

Lawless et al. (1995) suggested criteria for evaluat-
ing the utility of a perceptual map. These are shown
in Table 19.1. Considerations involve the correspon-
dence of the model to the data or goodness of fit,
precision and reliability, the model’s validity, and the
overall usefulness of the modeling exercise, i.e., what
was learned. Reliability may be assessed from anal-
ysis of split data sets, by the positions of duplicate
pairs, or the positions of near-duplicate pairs from
similar production runs or batches. In terms of valid-
ity, the map should relate to descriptive attributes
and/or to consumer preferences. A useful map can
elicit new hypotheses or add confirming evidence to
support previous findings. Utility is also a function of
visualization—a map that tells a story in few dimen-
sions and is easily interpreted is more useful than a
complex, ambiguous model. Finally, the data collec-
tion and computation should both be rapid, simple,
and cost effective. In the section below, multivariate
techniques for mapping will be described and some
examples given from the more common and popular
techniques (see also Chapter 18).
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Table 19.1 Desired qualities
in perceptual mapping

Goodness of fit: High variance accounted for, low badness-of-fit measures (e.g., stress)
Reliability: Blind duplicates should plot together
Reliability: Similar pairs (batches) should plot nearby
Dimensionality: Model has a few dimensions and can be plotted
Interpretation: Map should be interpretable
Validity: Map should relate to descriptive attributes
Validity: Map should relate to consumer preferences
Payoff: Map should suggest new hypotheses
Payoff: Map may help confirm previous hypotheses
Cost efficiency: Data collection is rapid, simple

19.2.3 Multivariate Methods: PCA

In the class of methods commonly referred to as factor
analysis, the technique of principal component analy-
sis (PCA) has a long history in sensory and consumer
research. The input to PCA usually consists of attribute
ratings describing a set of products. Often the mean
ratings are used as input, although in some cases raw
data from individuals are used (Kohli and Leuthesser,
1993). Given that many attributes have been evalu-
ated, some will be correlated. A product that receives a
high value on one attribute will receive a high value
on a positively correlated attribute. The PCA finds
these patterns of correlation and substitutes a new vari-
able, called a factor, for the group of original attributes
that were correlated. The analysis then seeks a second
and third group of attributes and derives a factor for
each, based on the variance left over. This is analo-
gous to finding a new set of axes in space to replace
the N-dimensional space of the original data set with
a smaller set of axes or dimensions. The original
attributes have a correlation with the new dimensions,
called a factor loading, and the products will have val-
ues on the new dimensions, called factor scores. The
factor loadings are useful in interpreting the dimen-
sions and the factor scores show the relative positions
(and therefore similarities and differences) among the
products in the map or picture (see Section 18.2 for
further discussion). Examples are given below.

Principal component analysis can be applied to
any data set where there are attribute ratings for a
set of products as in descriptive analysis. An exam-
ple of the application of PCA to descriptive data
can be found in a study of a creamy-textured semi-
solid dessert, vanilla puddings (Elmore et al., 1999).
The goal was to illuminate those product dimensions

that would influence the creaminess of the product,
a complex sensory characteristic. Texture variation
was induced by modifying the starch type and con-
tent, and milk fat, and sodium salts. Puddings differed
on 16 sensory attributes. These were reduced to a
set of three factors, explaining 81% of the original
variance, a considerable simplification. Examination
of the three correlated groups of attributes showed
that they could be interpreted as being related
to thickness, smoothness, and dairy flavor. This
result was intuitively appealing since the overall
creaminess of semi-solid foods appears to be deter-
mined by a combination of such elemental sensory
attributes.

Case study: air fresheners. Another example of how
PCA can simplify a complex data set, produce insights,
and generate hypotheses can be found descriptive data
from a strategic category review. Figure 19.1 shows
a perceptual map based on descriptive analysis of
aerosol air fresheners in the US market circa 1986.
This is a sensory space determined from fragrance
analysis. At that time the market leader had a large
number of different fragrances and several competing
companies were also represented in a category review.
Fifty-eight aerosol air fresheners were included, based
on market share, and were submitted to a trained
descriptive panel for characterization. Mean values on
fragrance descriptive scales were submitted to PCA.
The dimensions of the space, as interpreted from
the factor loading are roughly as follows: Products
in the upper left corner are high in spicy fragrance
notes and represent high-intensity “odor killer” types
of products. Items on the far right represent citrus
(usually lemon types) so the right-to-left dimension
contrasts spicy with citrus types of fragrances. Items
in the front and left front quadrant of the map (the
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Fig. 19.1 Principal component analysis of fragrance evalua-
tions (trained descriptive panel) of aerosol air fresheners circa
1986. Symbols represent different brands (companies). Three

factors were extracted from nine original rating scales, repre-
senting spicy versus citrus, floral/sweet, and woody dimensions.
Results are further described in the text.

main grouping) are green-floral and sweet-floral types,
respectively. Finally, items that are high in the vertical
dimension tend to have some woody character (e.g.,
cedar).

This map can be used to characterize different cor-
porate strategies, from a sensory perspective. First note
that the market leader symbolized by the circles has
a large number of products and a high concentration
in the floral zone. This could arise if new products
were launched at regular intervals on the basis of fixed
test criteria and older similar smelling products were
not “retired.” If the new products were selected from
a pool of candidates using simple hedonics and con-
sumer acceptance, they might be somewhat similar in
odor type, for example, since floral types generally
score well. The company symbolized by the triangles is
concentrated in the sweet floral zone of the map. This
strategy could lead to a kind of “cannibalization”—
competition with oneself for market share in similar
product types. Avoiding duplication and overlap as
well as reaching the maximum number of consumers is
one important marketing strategy, the so-called TURF
analysis (Miaoulis et al., 1990). The company shown
by circles also suffers from this problem of too many
similar products. Having too many similar products

could also lead to problems in maintaining the in-store
shelf space, a difficulty for the sales force in dealing
with retailers.

The company shown by the crosses appears to have
a different strategy—a smaller number of products
are represented, and they are distributed throughout
the space to sample diverse fragrance types, perhaps
appealing to different consumer segments. The brand
shown by the cloverleaf symbols, a newcomer to the air
freshener business, has yet a different strategy. Their
four fragrance types are in the same part of the space
and surround the best-selling product of the market
leader at that time. Their competitive strategy seems to
be to attempt to steal market share by copying the most
popular and successful fragrance type. Finally, note
that there is a section between the floral, fruity, and
spicy types that is open for new and different products
to fill. This gap suggests new product opportunities that
could differentiate a product from the existing mar-
ket types. This sample map illustrates how a corporate
strategy can be described or discovered using sensory
data (in this case from a trained descriptive panel). The
perceptual map can be helpful in seeing the relative
positions and sensory qualities of one’s own products
relative to competition.
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A variety of other techniques will also yield percep-
tual maps, such as generalized procrustes analysis or
GPA, discriminant analysis, and partial least squares
(PLS) (Dijksterhuis, 1997; Fox, 1988). Discriminant
analysis will produce a map by examining the vari-
ance of the means of different products relative to the
amount of error or disagreement among people rat-
ing the products (Johnson, 1988; Kohli and Leuthesser,
1993). The discriminant analysis will find a weighted
combination of all the attributes that would produce
the highest F-ratio. It then proceeds to find the best
weighted combination of attributes that produces a
new dimension uncorrelated with the first combina-
tion, and so on (Johnson, 1988). Discriminant analysis
may come up with slightly different patterns of fac-
tors than a PCA, since it is looking a discrimination
of products relative to error or disagreement among
people, whereas the PCA simply looks for patterns
of correlation (Kohli and Leuthesser, 1993). A num-
ber of these multivariate techniques were discussed in
Chapter 18.

19.2.4 Multi-dimensional Scaling

An alternative to using attribute ratings and PCA
is multi-dimensional scaling (MDS) (Kohli and
Leuthesser, 1993). An introduction can be found in
Schiffman et al. (1981) and a review by Popper and
Heymann (1996). MDS programs use some measure
of the similarity of products as input. From these sim-
ilarity estimates, a map is constructed in as many
dimensions as the experimenter requests from the soft-
ware. Similarity may be found from direct ratings of
the similarity of pairs of products or from derived
measures of similarity. Derived measures include the
following: frequencies that items are sorted together
in a sorting task, a correlation coefficient across an
attribute profile, and numbers of errors in a set of dis-
crimination tests (so-called confusability measures).
So this class of methods is very flexible and can be
applied to a variety of situations with a minimum of
statistical constraints (Popper and Heymann, 1996).
Similarity ratings are considered to be less biasing
than rating specific attributes since the participant is
not directed to use any particular words or dimensions
in assessing similarity—it is up to them. The PCA

depends on the attributes that are selected for descrip-
tion and analysis, but it is not guaranteed that these are
the ones that might be important to consumers. MDS
methods such as sorting (described below) allow con-
sumers to use whatever criteria they deem appropriate
for the product set.

The number of dimensions in the model is a func-
tion of the interpretability of the output, its commu-
nication value, and the degree to which the model
fits the data. For a set of N products, the data can
always be fit perfectly by a model with N–1 dimen-
sions (two points define a line, three define a plane,
and so on). Reducing the model to fewer and fewer
dimensions or increasing the number of products in
the experiment will increase the difficulty of fitting the
model to the data. This badness of fit is measured in
MDS programs and is called “stress.” Stress reflects
the sum of squared deviations between the distances in
the model and the (dis)similarities of the input data. As
the program proceeds to find its best solution, stress
is minimized through an iterative process of moving
the points around in the space to achieve the best fit
to the data. MDS programs can try to minimize these
deviations based on actual measured distances or on
the basis of relating the rank orders, called non-metric
programs (Kruskal, 1964).

Traditionally, input to MDS was obtained by simi-
larity ratings of all possible product pairs, often rated
by marking a line scale. The scale was analogous to an
overall degree of difference scale and anchored with
suitable terms like “very similar” at one end and “very
dissimilar” at the other. The major problem in apply-
ing MDS to foods and consumer products has always
been that a large number of paired comparisons are
required for similarity ratings (Katahira, 1990). For a
group of N products, there are N(N–1)/2 possible pairs.
So for a small set of five products there are ten pairs.
Tasting 10 pairs or 20 products is feasible, but using
only 5 products does not make a very interesting study.
For sets of 10 or 20 products, the numbers of pairs
are 45 or 190, respectively. Tasting 90 or 380 foods
is simply out of the question unless the participants
return for multiple evaluation sessions. This difficulty
has led to an emphasis on incomplete statistical designs
for multivariate studies in general and MDS in par-
ticular (Bijmolt, 1996; Kohli and Leuthesser, 1993;
Malhotra et al., 1988). An alternative approach is to
use one of the derived measures of similarity such as
sorting.
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19.2.5 Cost-Efficient Methods for Data

Collection: Sorting

A derived measure of similarity that is rapid and easy
to obtain comes from the simple task of having con-
sumers categorize or sort the product set into groups
of similar products. This method appeared in the early
MDS literature in studies of person perception and
studies of word meanings such as kinship terms in
anthropology (Rosenberg and Kim, 1975, Rosenberg
et al., 1968). Similarity can be inferred from the num-
ber of times two items are sorted into the same groups,
summed across a panel of participants. Items that are
like one another should be placed in the same group
very often and items that are unlike one another should
be placed together rarely or not at all. Another way to
treat the data is to transform each individual similarity
matrix into a cross product or covariance matrix (Abdi
and Valentin, 2007). Individual data matrices are of
course a series of zeros and ones, not very informative
about distance or similarity. But the covariance matrix
looks at the pattern across the entire row and column
for each product and compares it to the pattern for each
other product. This is a little indirect (“the friend of
my enemy is also my enemy”) but provides for a more
graded or scaled value, rather than a simple binary
entry, in each person’s data matrix. A program has

been developed to analyze individual judge data from
sorting, called DISTATIS (Abdi et al., 2007). Sorting
with MDS has been applied to consumer product fra-
grances (Lawless, 1989), cheeses (Lawless et al. 1995),
oxidation odors (MacRae et al., 1992), vanilla sam-
ples (Heymann, 1994), mouthfeel words (Bertino and
Lawless, 1993), ice cream novelties (Wright, 1995),
snack bars (King et al., 1998), and grape jellies (Tang
and Heymann, 2002), to list just a few.

The sorting technique is simple, rapid, and easy for
panelists to perform with sets of about 10–20 items.
In the inspection phase, as participants are beginning
to make their categories, it is useful to allow them to
make notes to aid their memory as they taste the prod-
ucts. The most reasonable application is in product sets
that are moderately dissimilar, i.e., a range of differ-
ences where sometimes items will be grouped together
and sometimes not. The results (MDS configurations)
appear to stabilize with about 20 participants. Large
groups of consumers are not required in data collec-
tion, adding to its overall efficiency. Another advantage
is that the consumers can decide for themselves what
characteristics are most important to differentiate the
groups; there is no imposition of any attributes by the
experimenter.

Case study: cheeses. A map from an exploratory
study of cheeses is shown in Fig. 19.2 (Lawless et al.,
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1995). Similar pairs are positioned close together in
the model—the blue cheeses are close to one another,
the white moldy cheeses are close to one another, and
the “Swiss”-type cheeses, Jarlsberg and Emmenthaler,
are also close. These three different pairs are found in
different corners of the map. The unusual cheese, feta
(from goat milk), is unlike any other cheese and thus
is placed in the center of the map, a compromise posi-
tion on the part of the program. In other words, feta
was an outlier in the data but becomes an “inlier” in
the model. Determining whether a centrally positioned
item is actually an outlier requires examination of the
input data. Intermediate positions between clusters can
sometimes represent intermediate or blended sensory
character. This pattern for centrally located items was
seen in an early study of sorting citrus and woody
odors. A blended or ambiguous set of odors having
both citrus and woody attributes fell midway between
a citrus group and a pine-woody cluster in the output
(Lawless, 1989).

There are several limitations to MDS studies in gen-
eral and to sorting methods in particular. Most MDS
programs do not produce any confidence intervals
around the points in space, although there are some
exceptions (Bijmolt, 1996; Ramsay, 1977; Schiffman
et al., 1981). There is usually some subjectivity in
interpretation of positions in the map. The reliability
of the map can be unclear. There are a few approaches
to gain some insight or feeling for the stability of the
model. One is to test twice as many participants as are
needed and split the data set into two arbitrary halves.
If the resulting maps are similar the results may be con-
sidered reliable. Another approach is to impose further
analyses on the map such as cluster analysis to aid in
the interpretation of groupings, clusters, or categories.
This approach was taken in the study of terpene aromas
(Lawless, 1989) and mouthfeel characteristics (Bertino
and Lawless, 1993). Another “trick” is to insert a blind
duplicate of one of the products to see whether dupli-
cate items plot close together in the map. In sorting,
a duplicate pair should be sorted together most fre-
quently in the set, unless there is a lot of batch-to-batch
or sample-to-sample variation.

In comparisons of MDS sorting of terpene aro-
mas by people with different degrees of training, good
agreement among groups was observed (Lawless and
Glatter, 1990). That is, trained or experienced pan-
elists and untrained consumers all tended to give sim-
ilar responses, an effect also observed for the cheese

data shown earlier. This may be an advantage in
that basic perceptual dimensions are uncovered by
this procedure—dimensions that are relatively uninflu-
enced by higher “cognitive” considerations or concep-
tualizations of the product set. On the other hand, it
may also reflect an insensitivity of the sorting method
to differences among people. The sorting task may
oversimplify relationships. Perhaps this finding is not
surprising since the sorting is a group-derived measure
of association. Kohli and Leuthesser (1993) recom-
mend the use of MDS when products are not very
complex and most participants will extract common
underlying dimensions in judging overall similarity.

19.2.6 Vector Projection

In order to interpret an MDS map or model it was
common practice to examine the edges and opposing
corners of the map to gain insight into the contrasts
being made by people during their ratings or sortings.
However, a second step of data collection can add
more objectivity to the interpretation process (Popper
and Heymann, 1996). At the conclusion of the MDS
phase, people can be asked about their criteria for
similarity or sorting. The most frequently mentioned
attributes could then be used on a ballot for profiling
in a subsequent session. A simple follow-up session
for re-tasting of the products can be held. Each prod-
uct need only be tasted once by a subject and rated
using the attributes. Mean ratings can then be regressed
against the coordinates of the product points in space
to find a direction through the space that represents
that attribute. The regression weights are related to the
degree of correlation of the attribute with the dimen-
sions of the model and the overall R2 indicates whether
or not there is a relationship between the attribute rat-
ings and the positions of the products. Discussions of
this procedure can be found in Schiffman et al. (1981)
and in Kruskal and Wish (1978). Figure 19.3 shows the
vector projection for the cheeses shown in Fig. 19.2.
We can see a group of flavor-related vectors and a
group of texture-related vectors, roughly at right angles
to one another.

This method of vector projection is mathematically
equivalent to some external PREFMAP procedures
(see Sections 18.3 and 19.4). The basic goal is to find
a direction through the space such that the coordinates



19.2 Competitive Surveillance 461

INTENSITY

SPREAD

FIRM

SMOOTH

SALTY

MOLDY

MOIST

SHARP

SPICY

Fig. 19.3 Attribute ratings of the cheese shown in Fig. 19.2
were regressed against the positions in the model to plot vectors
to aid in interpretation of the perceptual map. Only attributes
with significant differences among cheese in ANOVA and
regression p-values less than 0.01 are plotted. Replotted from
Lawless et al. (1995), copyright 1995, used with permission of
Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington
OX51GB, UK.

along the new vector (think of it as a new axis or ruler)
will be maximally correlated with the original scores
for each product on that attribute. This is shown in
Fig. 19.5. Obviously, if the scores were highly corre-
lated with values on the X-axis of the perceptual map
and uncorrelated with the Y-axis, the vector would fall
right on the X-axis. If it was equally and positively cor-
related with X and Y, then it would fall at a 45◦ angle
pointing to the upper right quadrant. If it were equally
and negatively correlated with both axes it would point
to the lower left. The standardized regression coeffi-
cients (beta weights) give the direction for the vector
in a unitized space (–1 to +1).

19.2.7 Cost-Efficient Methods for Data

Collection: Projective Mapping,

aka Napping

Another cost-effective and rapid method for assessing
product similarities and producing a map is projec-
tive mapping. This technique instructs the consumer

to place each product on a surface such as a large
blank sheet of paper. Products are placed so that their
positions and distances represent their similarities and
dissimilarities. Like sorting and direct similarity scal-
ing, the criterion used by each consumer is up to
him/her, and no structure or point of view or attributes
are imposed by the experimenter. Thus, we are free to
discover what is actually important to that person. This
is a potential advantage over PCA, which at least in
the beginning weights all the attributes equally (it is
only the pattern of correlation that matters). The data
are the X and Y coordinates of each product, which
can be transformed of course into a distance matrix.
Obviously, the data set is a bit richer from that of
sorting, because the individual similarity data do not
consist of zeros and ones, but actual scaled distance
measures.

This method was introduced by Risvik and col-
leagues in the 1990s, but it did not receive much
attention until recently (Risvik et al., 1994, 1997).
Pages and colleagues re-introduced it as the “napping”
procedure, based on the French word for tablecloth
(Pages, 2005; Perrin et al., 2008). An important addi-
tion to their version of the procedure was the analysis
by multiple factor analysis (MFA), which exists now
in the R language as part of a free add-on library
(R Development Core Team, 2009). This useful pro-
gram can uncover more than two dimensions in the
data, depending on how individual consumers might
pay attention to different attributes. For example, if
half of the consumer group maps the products based
on taste and texture and the other half uses color and
texture, the MFA will arrive at a group configuration
with three dimensions, and 50% of the variance will
be assigned to texture (the common attribute) and 25%
each to color and taste (Nestrud and Lawless, 2010a).
Thus the method, when analyzed by MFA, is not lim-
ited to two underlying attributes, as one might expect
from a planar array produced by each consumer.

Projective mapping or napping has been applied
to a variety of products, such as cheeses (Barcenas
et al., 2004), wines (Pages, 2005; Perrin et al., 2008),
citrus juices (Nestrud and Lawless, 2008), chocolates
(Kennedy and Heymann, 2009), and apples (Nestrud
and Lawless, 2010b). In some cases it has produced
a more informative or richer set of information, as
indicated by better correlations with attribute ratings
and the vector projections through the group config-
urations (Nestrud and Lawless, 2010b). Like sorting,
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the method is fast and easy for consumers and should
find wide application in exploratory work as well as
category appraisals.

19.3 Attribute Identification

and Classification

19.3.1 Drivers of Liking

A popular concept in recent years has been the notion
that some attributes may be more critical than others
in determining consumer preferences for a particular
product. Such a critical attribute can be called a “driver
of liking” (van Trijp et al., 2007). There are a number
of ways to identify these critical attributes, some qual-
itative and some quantitative. Qualitatively, you can
find out what aspects of a product are important to con-
sumers by interviews like focus groups (see Chapter
16). This assumes that people can articulate what is
important to them and they are doing so faithfully.
Neither assumption is very solid. A related approach
is to ask consumers directly for “importance” ratings.
This also relies on people’s ability to accurately report
their opinions. Quantitatively, you can attempt to relate
sensory changes in the product to changes in liking
or preference. There are number of ways to go about
this, but they all assume that you can make perceivable
changes in the product over a range of ingredients or
processes and that these changes matter to consumers.

Assume you start by looking at the variables one
at a time. The simple correlation between the sensory
scores and the liking scores should give us some idea
of the strength of the relationship. Another approach
is to use just-about-right scales (see Chapter 14) and
what is called penalty analysis, i.e., what the cost is
in overall liking for not being “just right.” A third
approach is to use intensity scales, but place a rating
for the ideal product along with the actual product rat-
ing to get an idea of deviation from ideal (van Trijp
et al., 2007). Embedded in these notions is that the
slope of the line relating hedonic response to sen-
sory intensity is an indicator of the importance of that
attribute. If it has a steep slope, small changes in the
sensory attribute cause large changes in liking. Thus it
is probably a “driver.” One liability of this approach
concerns whether you have made a meaningful change

in the sensory intensity. If the range of sensory vari-
ation is too small, you may fail to find a correlation
due to restricting the range (van Trijp et al., 2007).
If the variation is too large, you may have concocted
some products that would never be seen on the mar-
ketplace, i.e., something so wacky that it by default
receives low ratings. So it is hard to know how much to
vary a given attribute in this approach. Common sense
is called for. Beware, however, that the slope or cor-
relation for different attributes may be a function of
how effectively you have spanned the realistic product
variation.

As another approach, one could try to build a mul-
tiple regression model, a multiple linear model such
that the overall liking for a product would be deter-
mined by some linear combination of the variables you
changed (e.g., Hedderly and Meiselman, 1995). The
regression weights (linear coefficients) would give us
some idea of the strength of the relationship between
the predictors and overall liking for the products. For
example, the liking for a fruit beverage might be a
function of sweetness and sourness, which in turn is
driven by the psychophysical relationships between
sugar level and sweetness and between acid level and
sourness. However, life is rarely that simple. Acid
and sugar interact, perceptually, to partially mask each
other through mixture suppression (see Chapter 2).
So this approach is somewhat limited by the covaria-
tion among the predictor variables in many products.
To address the correlation problem, you can perform
a PCA or other data reduction procedure and then
regress liking against the new factors (PCs or latent
variables), but then they become more difficult to
interpret.

Another approach useful with more discrete
attributes (rather than psychophysical or continuous
ones) is conjoint analysis (discussed at length in
Moskowitz et al., 2006). In this approach, combina-
tions of attributes or product features are varied, and
overall liking is assessed. For example, would you
like a jelly or fruit spread that has high sweetness,
low fruit solids, and no seeds? One that has medium
sweetness, high fruit solids, and seeds? All the combi-
nations can be presented, and then from the pattern of
results, the contribution of sweetness, solids, and the
variable with/without seeds can be calculated, often by
specialized software packages. This approach was his-
torically used with durable goods (washing machines,
automobiles, etc.).
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The typical conjoint measurement design is simi-
lar to a factorial design we would use in analysis of
variance: all possible combinations are presented an
equal number of times. Other mixture designs have
been used (Gacula et al., 2009) for product optimiza-
tion, in which continuous variables are combined at
various levels to find an optimum combination.

19.3.2 The Kano Model

The Kano model proposes that not all attributes are cre-
ated equal, and they contribute to overall acceptance
in different ways (Riviere et al., 2006). The model in
its usual English translation looks at satisfaction as
the primary consumer response, but one can think of
this dimension as a generally positive versus generally
negative response to a product (e.g., delighted versus
disgusted). Satisfaction, of course, differs from liking
in that it includes meeting expectations. The second
dimension is the delivery of that attribute, from unful-
filled to fulfilled/delivered. How well is this aspect of
the product executed? These two axes and the three
attribute classes are shown in Fig. 19.4.

There are three classes of attributes in the Kano
model (Matzler and Hinterhuber, 1998). The first
attribute is a performance attribute. A performance
attribute is expected, and if not delivered will leave the
consumer dissatisfied. When it is fully delivered or in

high amounts or intensity, the consumer is delighted.
So, more of this attribute is better. In some foods,
sweetness acts like this when there is no optimum or
bliss point. This performance-type attribute is similar
to the vector models for product optimization dis-
cussed under preference mapping (Section 19.4). The
second kind of attribute is one that is expected, and if
not delivered, will dissatisfy a consumer. When deliv-
ered, satisfaction is only neutral because the attribute
is expected. I expect my car door, when opened, not
to scrape the curb. I expect my dry breakfast cereal
to start out crisp. If my car door scrapes the curb, or
my bran flakes are limp or soggy right out of the box,
I’m unhappy. These “must-haves” are givens, basic
requirements. Consumers may not even articulate them
in focus groups or surveys, because they are considered
obvious. My hotel room must have toilet paper. But if it
has three rolls, I’m not going to brag about it. The third
type of attribute is unexpected and not required, so if it
is not delivered there is no problem. If it is delivered,
it delights the customer, generates excitement or other
emotions. These unexpected benefits can drive product
innovations.

Other aspects can be added to the model. A com-
mon one is a time dimension. Over time, the delightful
attributes may come to be expected and then they turn
into performance attributes. Further in time, they may
become expected and required, so they become must-
haves. Pay-at-the-pump gas stations and Internet ser-
vice in hotel rooms have gone through this transition.
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Fig. 19.4 The Kano model (for details, see text).
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Many frozen foods are expected to be microwavable,
even some baked goods and pizza crusts. In product
development, the trick is to prioritize these attributes
as consumer needs and figure what the potential payoff
may be for delivery versus the penalty for underper-
formance. Of course, attributes that are unexpected
delighters may be points of innovation and differen-
tiation from the competition. For food research, we
would add two more, not originally part of the Kano
model. First, product defects, which can be viewed as
“negative-must-haves.” If they are present, they dis-
satisfy the customer, but they are not expected so
when they are not present, there is no added benefit.
The second is a nuisance attribute. This is one that
is expected and even tolerated, although its removal
would increase customer satisfaction. At one time,
chewing gum would stick to your dentures. People
expected it to. Gummy candy sticks in the spaces
between my teeth, but I eat it anyway. The advent of
chewing gum that did not stick to your bridgework
was a plus for some of us. Olives have pits, grapes
have seeds, and lobsters have shells that are tough to
break open. These attributes are often tolerated, but
a pitted olive, seedless table grape variety, or a lob-
ster tail served without the shell all have consumer
appeal.

19.4 Preference Mapping Revisited

19.4.1 Types of Preference Maps

Preference maps are a special class of perceptual maps
in which products and consumer preferences are both
illustrated (Elmore et al., 1999). In the previous chap-
ter, two kinds of preference maps were described,
internal and external. Internal preference maps are
basically derived from a PCA of consumer acceptance
data. As such, they have limited utility in understand-
ing the product differences and reasons for preference.
A more useful tool is the external preference map. In
this method, the product space is derived separately, for
example, from a PCA on descriptive data. The place-
ment of the products represents their similarities and
differences, and the attributes can be projected as vec-
tors through the plot. Then consumer acceptance data
can also be projected. Directions can be discovered for
the optimal products (for the group as a whole or for

individual preferences) or parts of the space that would
represent an optimum point for each consumer. These
two approaches can be called vector models and ideal
point models, respectively. Both provide the oppor-
tunity to look for segments of consumers that may
prefer one part of the product space, i.e., one style of
product.

19.4.2 Preference Models: Vectors Versus

Ideal Points

With vector models, as in the Kano performance
attributes, more is better. There is a theoretical direc-
tion through the space that lines up best with a
consumer’s likes and dislikes. As you move on a posi-
tive direction along this line, the product’s acceptance
improves. The direction that best fits the consumer
(assuming one does) is the one that provides a max-
imum correlation between the acceptance ratings and
the positions marked off on this vector from perpen-
dicular lines dropped from each product. Think of the
vector as a ruler or axis and each product (point in
space) has a value on this ruler. Those values have been
maximally correlated with the person’s acceptance rat-
ings. This is the same notion behind the vector fitting
discussed above in Section 19.2.6. In the case of inten-
sity attributes, the products on the outside of the space
usually have more of that attribute than products on
the opposite side or in the center. So there is a certain
sense to this kind of model for descriptive attributes,
especially if the space is derived from a PCA, which is
after all based on linear correlations among a group of
intensity scales.

A good example of this kind of external prefer-
ence mapping is the classic paper by Greenhof and
MacFie (1994), showing individual vector directions
for a group of consumers for some meat products.
Notably, almost all directions through the space were
represented. If one had tried to fit a group average vec-
tor, the result may have been meaningless or shown
nearly zero correlation. There were some apparent
clusters of preference vectors with a high density, sug-
gesting segments of consumers who liked the same
kind of product.

An alternative model to the vector approach is a
model in which a specific spot in the product space has
the highest liking or acceptability. For many attributes,
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the “more is better” (or “less is better” in the case of a
defect or undesired quality) does not fit very well. That
is, there is an optimum or “bliss point” as discussed in
the just-about-right scaling section. Sweetness in many
foods is a good example. We like our fruit juices and
some of our wines to have a certain level of sweet-
ness, but more than that is too much. Extending this
idea into the product space or perceptual map, there
is often some collection of attributes and intensity val-
ues that seems to be the best combination. If you come
from New York or Vermont, you may prefer your ched-
dar cheese sharp, firm and crumbly, with a good hit of
acid and fecal notes, but if you are from the west coast
of the United States you may like it mild, moist, and
pasty. These two cheese consumers would have ideal
points in different parts of the sensory space. The vec-
tor model and the ideal point model are contrasted in
Fig. 19.5.

Finding the optimum point for a consumer is mathe-
matically straightforward, as long as there are hedonic
(acceptability) ratings for all the products by each
consumer. The trick is to find the point that has the
maximum inverse correlation of the acceptance ratings
with the distance from each product. This makes sense
because products that you like should be closer to your
ideal point than products you dislike. This is shown in

Fig. 19.5, where the length of the rays from the ideal
product spot must have the maximum negative corre-
lation with a person’s liking ratings. The higher the
correlation, the better the fit of the product space/model
to that person’s favorite type of product. It is possi-
ble of course to have a poor fit. The person may not
have strong preferences or the combination that per-
son prefers is an unlikely combination that does not
reflect the usual pattern of correlation turned up by the
PCA. Another desirable feature of an ideal point model
is some estimate of the gradient or density around the
person’s ideal point. For some people, small deviations
from the ideal will make a large difference in accept-
ability. Other people may be more tolerant of sensory
changes, and the ideal point position is a little fuzzier.
So a kind of contour plot around each point is a useful
kind of information. Various types of preference maps
and models are discussed extensively in Meullenet
et al. (2007).

19.5 Consumer Segmentation

A traditional approach to consumer segmentation has
been to look for some patterns of liking and disliking
across a set of products and then try to identify the
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Fig. 19.5 Vector versus ideal point models for six hypothetical
products P1–P6. For the vector model, the direction through the
space is such that the intersection points from the dropped per-
pendicular segments, I1–I6, are maximally correlated with the

original liking ratings. For the ideal point model, the position
of the ideal point is such that the distances to the products, d1–
d6, are maximally inversely correlated with the original liking
ratings.
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characteristics of those liking segments. Age, gender,
and any number of demographic or lifestyle patterns
can then be correlated to try to characterize the kinds
of people who like different types of products. The
marketing and advertising literature are full of such
approaches. An alternative approach is one in which
the sensory scientist can contribute, and that is segmen-
tation by sensory properties, and, more specifically,
sensory optimization. Even with a Kano-type clas-
sification of attributes, it may be important to look
for different patterns among different groups of con-
sumers (e.g., Riviere et al., 2006). There are powerful
statistical tools for examining patterns of responses
and/or demographic data. Perhaps the most common
one is some form of cluster analysis, which can group
people based on the similarities in the patterns of their
responses. A variety of clustering algorithms are avail-
able (Plaehn and Lundahl, 2006; Qannari et al., 1997;
Wajrock et al., 2008).

Sensory segmentation is a potentially powerful tool
for getting the highest ratings for a new product or
line extension of existing items. Consider a scenario
in which a company wishes to launch a single prod-
uct with the maximum possible overall liking score.
Product developers and sensory scientists team up
and they make the single best product based on a
number of attributes that they vary and optimize.
The combination looks pretty good and the product
is launched. But they may have missed an impor-
tant pattern. If they were aware that the consumer
base for this product category had three distinctly dif-
ferent sensory/preference segments, they might have
made three products in different styles in order to
please those segments. The missed opportunity is that
the scores for each of the different styles (scores
from their appropriate segment) may have been much
higher than the single score for the composite prod-
uct. Without realizing it, they probably created “airline
food” that is acceptable to a wide audience and does
not offend anyone, but does not really delight anyone
at all.

It is well established that the relationship between
sensory intensity and liking is often an inverted
U-shaped curve (Moskowitz, 1981) or an inverted V
(Conner and Booth, 1992). However, Pangborn (1970)
showed that consumers could be grouped based on salt
or sweet preferences in products. Some like increasing
levels of saltiness while others prefer none at all and
yet a third group shows the classic inverted U with an

optimum or bliss point. When you average these three
groups you get a somewhat flattened inverted U, but
this obscures the two groups that have monotonic rela-
tionships (see Fig. 19.6). A classic example of this was
uncovered by Moskowitz and Krieger (1998) in their
re-analysis of a set of coffee preference data shared
among the European Sensory Network members in
1995. The key finding is shown in Fig. 19.7. When seg-
mented by country, five countries showed more or less
similar patterns with some intermediate level of bit-
terness appearing optimal. However, when individual
data were considered, there were three clear groups,
one favoring no bitterness at all (more is worse), one
favoring high bitterness (more is better), and a third
group with a very steep optimum. The important result
was that all three sensory segments were included in
all five countries. So segmentation by sensory pref-
erence would be a much better strategy for a coffee
company than trying to tailor a universal coffee, and
making slightly different styles for each country was
probably a waste of time. Note that the optimum rat-
ings for two of the sensory-based groups in Fig.19.7b
are higher than the optima from the geographi-
cally based groups (Fig. 19.7a). Another example of
sensory segmentation is found in Moskowitz et al.
(1985).

Fig. 19.6 Data from Pangtborn (1970) showing different seg-
ments of consumers liking different amounts of sweetness in a
product. Three distinct groups were found.
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Fig. 19.7 Data replotted from Moskowitz and Krieger (1998).
For optimizing coffee bitterness, all five European countries
showed similar inverted U functions. However, within each
country there were distinct sensory-based segments (Curves are
quadratic functions fit to the data).

19.6 Claim Substantiation Revisited

Claim substantiation is another strategic activity that
sensory evaluation may participate in using blind con-
sumer tests. Regulatory agencies and networks have
certain requirements and expectations for these kinds
of tests (NBC, 2009) and the results are often chal-
lenged by competitors (ASTM, 2008). Sticky legal
battles may ensue, with one side trying to prove that the
test was invalid because of some methodological flaw.
The sensory department may be called upon to defend

the test methods and results. Here are some guidelines
for preference testing that have been extracted from the
ASTM and NBC documents, which are very similar.

For claims of superiority as well as equivalence, the
consumer central location test (CLT) with a paired pre-
sentation is generally required. Home use tests, trained
panels, and experts are not favored. The test should
be double blind, meaning neither the server nor the
consumer knows the identity of the products. This
requires an extra person compared to most CLT’s for
research purposes because the person preparing the
samples must not be the server. The products must
be tested in several different regions of the country.
Products must be representative of what consumers
find on the shelves in their area, usually requiring store
retrievals of products with the same or similar use-by
or expiration dates.

The “no-preference” option is required by NBC but
discussed with varying opinions in the ASTM guide.
To satisfy the authorities, a no-preference response
should be offered. For superiority, the winning product
must have a significant difference from the total sam-
ple, which implies that no-preference votes are added
to the losing proportion.

The simple formula for a binomial preference test is
given as follows:

z = P − 0.5

0.5/
√

N
(19.1)

where P is the proportion for the winner, N is the total
sample size, and z must exceed 1.645. Note that this
test is one tailed, unlike most preference tests, which
are two tailed! This is justified on the basis that you
are looking only for a win, not for a loss for your
product. NBC explicitly states that no-preference votes
must not be split among the two products, because “the
response is fundamentally different.” The sample size
required for superiority claims run from 200 to 300
consumers per pair of products. If one wishes to make
the claim that it is “America’s best” meaning preferred
to all competitors, there are requirements for national
sampling. Also the products should represent at least
85% of the market by volume (unless there are a large
number of small regional brands).

The statistical test may also be conducted between
the preference votes only, with the no preference omit-
ted from the analysis. In that case, a qualified claim
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is made, for example, “Among those with a prefer-
ence our hot dog beat the leading competitor.” This
qualification is referred to as a “super” in advertising
lingo. The super is required if there were 20% or more
no-preference votes. Obviously if there were a very
high percentage of no-preference votes (e.g., 50%),
then any claim would be difficult to substantiate.

A parity result is treated somewhat differently than
the equality discussion of Chapter 5. Some authorities
such as NBC recommend that the analysis be done as
a two-tailed test at the 90% confidence interval. Then
a non-significant result is accepted as evidence of par-
ity, as long as your product does not lose at that level.
Other companies set the alpha level even lower (as
insurance against missing a difference, Type II error),
for example, at 67%. Although this lowers the beta-
risk, the use of a two-tailed test actually raises it a bit.
For a parity result to be substantiated, a sample size of
at least 500 is now required.

19.7 Conclusions

19.7.1 Blind Testing, New Coke,

and the Vienna Philharmonic

Sensory-based optimization is only one aspect of prod-
uct development that helps insure product success in
the marketplace. Obviously the concept development,
advertising, positioning, promotion, and other mar-
keting strategies are equally, if not more, important.
However, most marketers will admit that you cannot
make a bad product successful. It must combine a good
product idea with the delivery of sensory and perfor-
mance attributes. But this raises the question, because
the product concept is so important, does it make sense
to do blind consumer tests at all? Some authors (e.g.,
Gladwell, 2005) have argued that they are virtually
irrelevant and even potentially harmful. Products are
not purchased or consumed on a blind basis. The clas-
sic debacle from an overreliance on blind testing was
the story of New Coke. In the 1980s, Coke had lost
some market share to their prime competitor, Pepsi,
and was faced with the curious and annoying finding
that in blind paired-preference tests, Pepsi won. This
led to the reformulation of Coke’s flagship product to
make it sweeter and more citrusy, i.e., more like Pepsi.

Loyal Coke drinkers rejected this flavor. They rebelled.
“Classic Coke” was brought back to the market and
New Coke died a quiet death.

In contrast to this story, however, Gladwell later
considers what is perhaps the greatest success story
for blind testing. This was the advent of the pro-
fessional musical audition conducted from behind a
screen, so that the judges would not know the iden-
tity (or gender!) of the performer. He tells the story of
Abbie Conant, who was playing trombone (a “man’s
instrument”) for the Royal Opera of Turin, when
a chance to audition for the Vienna Philharmonic
opened up, and “Herr” Conant was invited to try
out. Because one of the applicants was the son of
a well-known musician from the Munich orchestra,
they decided to conduct the auditions behind a screen.
Conant played Ferdinand David’s Konzertino for trom-
bone, a “warhorse” piece in the German repertoire.
Although she “cracked” one note, the judges were
so impressed that they sent the remaining applicants
home. To their surprise, Herr Conant turned out to
be Frau Conant. Gladwell goes on to describe how
the use of the screen led to more and more women
being hired for symphony orchestras (a rarity 100 years
ago), a classic case of where blind testing worked
to create a virtual social revolution in the music
world.

So what is the place of blind sensory tests in strate-
gic research and competitive surveillance? One can ask
whether the debacle of New Coke could have been
avoided, and the answer in our opinion is yes. One
point that many sensory practitioners know is that in a
paired comparison test, often the sweeter of two prod-
ucts will win. This does not mean that the product
will be preferred after an entire portion is consumed
or after the product is used for a period of time. Thus
there is also the well-known limitation to the predictive
value of a central location test (CLT) versus the more
extended testing that one can get in a home use test
(HUT). Finally, one can ask whether the outcome of a
blind CLT should have been given so much weight in
the face of a product that appeared to be driven by its
image and its extensive history of brand-loyal users.
The paired-preference test was just one piece of data
in a sea of other information. The loss of market share
turned the corporate attention to technical reformula-
tion, but overlooked other factors, such as the highly
effective use by Pepsi of the pop star Michael Jackson
in its advertising.
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19.7.2 The Sensory Contribution

Making a successful innovative product depends on
getting a good idea at the beginning. Much of this can
be achieved by front-end research, using techniques
such as the qualitative methods outlined in Chapter 16.
For an extensive discussion of “getting the right idea”
to start with, see Moskowitz et al. (2006). This chapter
has examined product optimization, consumer seg-
mentation, competitive analysis, and perceptual mod-
eling. These are all areas in which the sensory pro-
fessional can participate and reach beyond the world
of simple product testing. In these arenas, the sensory
professional can have a strong impact and influence on
the strategy of a company in making successful prod-
ucts. Most importantly, we bring a special expertise
to the table and a special point of view that can com-
plement other styles of thinking and perception on the
product team.
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It is important when taking a sample or designing an

experiment to remember that no matter how powerful

the statistics used, the inferences made from a sample

are only as good as the data in that sample. . . . No

amount of sophisticated statistical analysis will make

good data out of bad data. There are many scien-

tists who try to disguise badly constructed experiments

by blinding their readers with a complex statistical

analysis.

—O’Mahony (1986, pp. 6, 8)

This chapter provides a quick introduction to statistics
used for sensory evaluation data including measures of
central tendency and dispersion. The logic of statisti-
cal hypothesis testing is introduced. Simple tests on
pairs of means (the t-tests) are described with worked
examples. The meaning of a p-value is reviewed.

A.1 Introduction

The main body of this book has been concerned with
using good sensory test methods that can generate
quality data in well-designed and well-executed stud-
ies. Now we turn to summarize the applications of
statistics to sensory data analysis. Although statistics
are a necessary part of sensory research, the sensory
scientist would do well to keep in mind O’Mahony’s
admonishment: statistical analysis, no matter how
clever, cannot be used to save a poor experiment.
The techniques of statistical analysis, do however,
serve several useful purposes, mainly in the efficient
summarization of data and in allowing the sensory
scientist to make reasonable conclusions from the
information gained in an experiment. One of the most
important conclusions is to help rule out the effects
of chance variation in producing our results. “Most
people, including scientists, are more likely to be con-
vinced by phenomena that cannot readily be explained
by a chance hypothesis” (Carver, 1978, p. 387).

Statistics function in three important ways in the
analysis and interpretation of sensory data. The first is
the simple description of results. Data must be summa-
rized in terms of an estimate of the most likely values
to represent the raw numbers. For example, we can
describe the data in terms of averages and standard
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deviations (a measure of the spread in the data). This is
the descriptive function of statistics. The second goal
is to provide evidence that our experimental treatment,
such as an ingredient or processing variable, actually
had an effect on the sensory properties of the product,
and that any differences we observe between treat-
ments were not simply due to chance variation. This
is the inferential function of statistics and provides a
kind of confidence or support for our conclusions about
products and variables we are testing. The third goal
is to estimate the degree of association between our
experimental variables (called independent variables)
and the attributes measured as our data (called depen-
dent variables). This is the measurement function of
statistics and can be a valuable addition to the normal
sensory testing process that is sometimes overlooked.
Statistics such as the correlation coefficient and chi-
square can be used to estimate the strength of relation-
ship between our variables, the size of experimental
effects, and the equations or models we generate from
the data.

These statistical appendices are prepared as a gen-
eral guide to statistics as they are applied in sensory
evaluation. Statistics form an important part of the
equipment of the sensory scientist. Since most eval-
uation procedures are conducted along the lines of
scientific inquiry, there is error in measurement and a
need to separate those outcomes that may have arisen
from chance variation from those results that are due to
experimental variables (ingredients, processes, pack-
aging, shelf life). In addition, since the sensory scien-
tist uses human beings as measuring instruments, there
is increased variability compared to other analytical
procedures such as physical or chemical measurements
done with instruments. This makes the conduct of sen-
sory testing especially challenging and makes the use
of statistical methods a necessity.

The statistical sections are divided into separate
topics so that readers who are familiar with some
areas of statistical analysis can skip to sections of
special interest. Students who desire further expla-
nation or additional worked examples may wish
to refer to O’Mahony (1986), Sensory Evaluation

of Foods, Statistical Methods and Procedures. The
books by Gacula et al. (2009), Statistical Methods in

Food and Consumer Research, and Piggott (1986),
Statistical Procedures in Food Research, contain infor-
mation on more complex designs and advanced topics.
This appendix is not meant to supplant courses in

statistics, which are recommended for every sensory
professional.

It is very prudent for sensory scientists to maintain
an open dialogue with statistical consultants or other
statistical experts who can provide advice and sup-
port for sensory research. This advice should be sought
early on and continuously throughout the experimen-
tal process, analysis, and interpretation of results. R.
A. Fisher is reported to have said, “To call the statisti-
cian after the experiment is done may be no more than
asking him to perform a postmortem examination: he
may be able to tell you what the experiment died of”
(Fisher, Indian Statistical Congress, 1938). To be fully
effective, the sensory professional should use statistical
consultants early in the experimental design phase and
not as magicians to rescue an experiment gone wrong.
Keep in mind that the “best” experimental design for a
problem may not be workable from a practical point of
view. Human testing can necessarily involve fatigue,
adaptation and loss of concentration, difficulties in
maintaining attention, and loss of motivation at some
point. The negotiation between the sensory scientist
and the statistician can yield the best practical result.

A.2 Basic Statistical Concepts

Why are statistics so important in sensory evaluation?
The primary reason is that there is variation or error
in measurement. In sensory evaluation, different par-
ticipants in a sensory test simply give different data.
We need to find the consistent patterns that are not due
to chance variation. It is against this background of
uncontrolled variation that we wish to tell whether the
experimental variable of interest had a reliable effect
on the perceptions of our panelists. Unfortunately, the
variance in our measurements introduces an element
of risk in making decisions. Statistics are never com-
pletely foolproof or airtight. Decisions even under the
best conditions of experimentation always run the risk
of being wrong. However, statistical methods help us
to minimize, control, and estimate that risk.

The methods of statistics give us rules to estimate
and minimize the risk in decisions when we general-
ize from a sample (an experiment or test) to the greater
population of interest. They are based on considera-
tion of three factors: the actual measured values, the
error or variation around the values, and the number
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of observations that are made (sometimes referred to
as “sample size,” not to be confused with the size of a
food sample that is served). The interplay of these three
factors forms the basis for statistical calculations in all
of the major statistical tests used with sensory data,
including t-tests on means, analysis of variance, and
F-ratios and comparisons of proportions or frequency
counts. In the case of t-test on means, the factors are
(1) the actual difference between the means, (2) the
standard deviation or error inherent in the experimen-
tal measurement, and (3) the sample size or number of
observations we made.

How can we characterize variability in our data?
Variation in the data produces a distribution of values
across the available measurement points. These distri-
butions can be represented graphically as histograms.
A histogram is a type of graph, a picture of frequency
counts of how many times each measurement point is
represented in our data set. We often graph these data
in a bar graph, the most common kind of histogram.
Examples of distributions include sensory thresholds
among a population, different ratings by subjects on a
sensory panel (as in Fig. A.1), or judgments of product
liking on a 9-point scale across a sample of consumers.
In doing our experiment, we assume that our mea-
surements are more or less representative of the entire
population of people or those who might try our prod-
uct. The experimental measurements are referred to
as a sample and the underlying or parent group as a
population. The distribution of our data bears some
resemblance to the parent population, but it may dif-
fer due to the variability in the experiment and error in
our measuring.

Rating on a 15-point scale
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Fig. A.1 A histogram showing a sample distribution of data
from a panel’s ratings of the perceived intensity of a sensory
characteristic on a 15-point category scale.

A.2.1 Data Description

How do we describe our measurements? Consider a
sample distribution, as pictured in Fig. A.1. These
measurements can be characterized and summarized
in a few parameters. There are two important aspects
we use for the summary. First, what is the best single
estimate of our measurement? Second, what was the
variation around this value?

Description of the best or most likely single value
involves measures of central tendency. Three are com-
monly used: the mean is commonly called an average
and is the sum of all data values divided by the number
of observations. This is a good representation of the
central value of data for distributions that are symmet-
ric, i.e., not too heavily weighted in high or low values,
but evenly dispersed. Another common measure is the
median or 50th percentile, the middle value when the
data are ranked. The median is a good representation of
the central value even when the data are not symmetri-
cally distributed. When there are some extreme values
at the high end, for example, the mean will be unduly
influenced by the higher values (they pull the average
up). The median is simply the middle value after the
measurements are rank ordered from lowest to highest
or the average of the two middle values when there is
an even number of data points. For some types of cat-
egorical data, we need to know the mode. The mode
is the most frequent value. This is appropriate when
our data are only separated into name-based categories.
For example, we could ask for the modal response to
the question, when is the product consumed (breakfast,
lunch, dinner, or snack)? So a list of items or responses
with no particular ordering to the categories can be
summarized by the most frequent response.

The second way to describe our data is to look
at the variability or spread in our observations. This
is usually achieved with a measure called the stan-
dard deviation. This specifies the degree to which our
measures are dispersed about the central value.

The standard deviation of such an experimental
sample of data (S) has the following form:

S =

√

∑N
i=1 (Xi − M)2

N − 1
(A.1)

where M = mean of X scores = (� X)/N.
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The standard deviation is more easily calculated as

S =

√

∑N
i=1 X2

i −
(

(�X)2
/

N
)

N − 1
(A.2)

Since the experiment or sample is only a small rep-
resentation of a much larger population, there is a
tendency to underestimate the true degree of variation
that is present. To counteract this potential bias, the
value of N–1 is used in the denominator, forming what
is called an “unbiased estimate” of the standard devia-
tion. In some statistical procedures, we do not use the
standard deviation, but its squared value. This is called
the sample variance or S2 in this notation.

Another useful measure of variability in the data is
the coefficient of variation. This weights the standard
deviation for the size of the mean and can be a good
way to compare the variation from different methods,
scales, experiments, or situations. In essence the mea-
sure becomes dimensionless or a pure measure of the
percent of variation in our data. The coefficient of vari-
ation (CV) is expressed as a percent in the following
formula:

CV(%) = 100
S

M
(A.3)

where S is the sample standard deviation and M is the
mean value. For some scaling methods such as mag-
nitude estimation, variability tends to increase with
increasing mean values, so the standard deviation by
itself may not say much about the amount of error in
the measurement. The error changes with the level of
mean. The coefficient of variation, on the other hand,
is a relative measure of error that takes into account the
intensity value along the scale of measurement.

The example below shows the calculations of the
mean, median, mode, standard deviation, and coef-
ficient of variation for data shown in Table A.1.

N = 41
Mean of the scores = (�X)/N = (2 + 3 + 3 + 4 + . . . +

11 + 12 +13) / 41 = 7.049
Median = middle score = 7
Mode = most frequent score = 6
Standard deviation = S

Table A.1 First data set, rank ordered

2 5 7 9
3 5 7 9
3 6 7 9
4 6 8 9
4 6 8 10
4 6 8 10
4 6 8 10
5 6 8 11
5 6 8 11
5 7 9 12

13

S =

√

∑N
i=1 X2

i −
(

(�X)2
/

N
)

N − 1

=
√

2, 303 − (83, 521)/41

40
= 2.578

CV (%) = 100 (S/mean) = 100 (2.578/ 7.049) =
36.6%.

A.2.2 Population Statistics

In making decisions about our data, we like to infer
from our experiment to what might happen in the pop-
ulation as a whole. That is, we would like our results
from a subsample of the population to apply equally
well when projected to other people or other products.
By population, we do not necessarily mean the pop-
ulation of the nation or the world. We use this term
to mean the group of people (or sometimes products)
from which we drew our experimental panel (or sam-
ples) and the group to which we would like to apply
our conclusions from the study. The laws of statistics
tell us how well we can generalize from our experiment
(or sensory test) to the rest of the population of interest.
The population means and standard deviations are usu-
ally denoted by Greek letters, as opposed to standard
letters for sample-based statistics.

Many things we measure about a group of people
will be normally distributed. That means the values
form a bell-shaped curve described by an equation
usually attributed to Gauss. The bell curve is symmet-
ric around a mean value—values are more likely to
be close to the mean than far from it. The curve is
described by its parameters of its mean and its standard
deviation as shown in Fig. A.2. The standard deviation
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Z
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(marks off equal standard deviation units)

34% 34%

14% 14%
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1

Important properties of the normal  distribution curve:  

1)  areas (under the curve) correspond 
to proportions  of the population.

2) each standard deviation subsumes 
a known proportion

3) Since proportions are related to probabilities, 
we know how likely or unlikely certain values are going to be.
 Extreme scores (away from the mean) are rare or improbable.

Fig. A.2 The normal
distribution curve is described
by its parameters of its mean
and its standard deviation.
Areas under the curve mark
off discrete and known
percentages of observations.

of a population, σ , is similar to our formula for the
sample standard deviation as is given by

σ =

√

∑N
i=1 (Xi − µ)2

N
(A.4)

where
X = each score (value for each person, product); µ

= population mean; N = number of items in popula-
tion.

How does the standard deviation relate to the nor-
mal distribution? This is an important relationship,
which forms the basis of statistical risk estimation and
inferences from samples to populations. Because we
know the exact shape of the normal distribution (given
by its equation), standard deviations describe known
percentages of observations at certain degrees of dif-
ference from the mean. In other words, proportions
of observations correspond to areas under the curve.
Furthermore, any value, X, can be described in terms
of a Z-score, which states how far the value is from the
mean in standard deviation units. Thus,

Z = X − µ

σ
(A.5)

Z-scores represent differences from the mean value
but they are also related to areas under the normal
curve. When we define the standard deviation as one
unit, the Z-score is also related to the area under the
curve to the left of right of its value, expressed as a
percentage of the total area. In this case the z-score
becomes a useful value to know when we want to
see how likely a certain observation would be and
when we make certain assumptions about what the
population may be like. We can tell what percent of
observations will lie a given distance (Z-score) from
the mean. Because the frequency distribution actually
tells us how many times we expect different values to
occur, we can convert this z-score to a probability value
(sometimes called a p-value), representing the area
under the curve to the left or right of the Z-value. In
statistical testing, where we look for the rarity of calcu-
lated event, we are usually examining the “tail” of the
distribution or the smaller area that represents the prob-
ability of values more extreme than the z-score. This
probability value represents the area under the curve
outside our given z-score and is the chance (expected
frequency) with which we would see a score of that
magnitude or one that is even greater. Tables convert-
ing z-values to p-values are found in all statistics texts
(see Table A).
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A.3 Hypothesis Testing and Statistical

Inference

A.3.1 The Confidence Interval

Statistical inference has to do with how we draw con-
clusions about what populations are like based on
samples of data from experiments. This is the logic that
is used to determine whether our experimental vari-
ables had a real effect or whether our results were
likely to be due to chance or unexplained random
variation. Before we move on to this notion of statisti-
cal decision making, a simpler example of inferences
about populations, namely confidence intervals, will be
illustrated.

One example of inference is in the estimation of
where the true population values are likely to occur
based on our sample. In other words, we can examine
the certainty with which our sample estimates will fall
inside a range of values on the scale of measurement.
For example, we might want to know the follow-
ing information: Given the sample mean and standard
deviation, within what interval is the true or population
value likely to occur? For small samples, we use the t-
statistic to help us (Student, 1908). The t-statistic is like
Z, but it describes the distribution of small experiments
better than the z-statistic that governs large popula-
tions. Since most experiments are much smaller than
populations, and sometimes are a very small sample
indeed, the t-statistic is useful for much sensory evalu-
ation work. Often we use the 95% confidence interval
to describe where the value of the mean is expected
to fall 95% of the time, given the information in our
sample or experiment.

For a mean value M of N observations, the 95%
confidence interval is given by

M ± t
(

S/
√

N
)

(A.6)

where t is the t-value corresponding to N–1 degrees
of freedom (explained below), that includes 2.5% of
expected variation in the upper tail outside this value
and 2.5% in the lower tail (hence a two-tailed value,
also explained below). Suppose we obtain a mean
value of 5.0 on a 9-point scale, with a standard devia-
tion of 1.0 in our sample, and there are 15 observations.
The t-value for this experiment is based on 14 or n – 1
degrees of freedom and is shown in Table B to be

2.145. So our best guess is that the true mean lies in
the range of 5 ± 2.145(1/

√
15) or between 4.45 and

5.55. This could be useful, for example, if we wanted
to insure that our product had a mean score of at least
4.0 on this scale. We would be fairly confident, given
the sample values from our experiment that it would in
fact exceed this value.

For continuous and normally distributed data, we
can similarly estimate a 95% confidence interval on the
median (Smith, 1988), given by

Med ± 1.253t
(

S/
√

N
)

(A.7)

For larger samples, say N > 50, we can replace the
t-value with its Z approximation, using Z = 1.96 in
these formulas for the 95% confidence interval. As
the number of observations increases, the t-distribution
becomes closer to the normal distribution.

A.3.2 Hypothesis Testing

How can we tell if our experimental treatment had an
effect? First, we need to calculate means and standard
deviations. From these values we do further calcu-
lations to come up with values called test statistics.
These statistics, like the Z-score mentioned above,
have known distributions, so we can tell how likely or
unlikely the observations will be when chance varia-
tion alone is operating. When chance variation alone
seems very unlikely (usually one chance in 20 or
less), then we reject this notion and conclude that our
observations must be due to our actual experimental
treatment. This is the logic of statistical hypothesis
testing. It is that simple.

Often we need a test to compare means. A use-
ful statistic for small experiments is called Student’s
t-statistic. Student was the pseudonym of the origi-
nal publisher of this statistic, a man named Gosset
who worked for the Guinness Brewery and did not
want other breweries to know that Guinness was using
statistical methods (O’Mahony, 1986). By small exper-
iments, we mean experiments with numbers of obser-
vations per variable in the range of about 50 or less.
Conceptually, the t-statistic is the difference between
the means divided by an estimate of the error or uncer-
tainty around those means, called the standard error of
the means.
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Imagine that we did our experiment many times
and each time calculated a mean value. These means
themselves, then, could be plotted in a histogram and
would have a distribution of values. The standard error
of the mean is like the standard deviation of this sam-
pling distribution of means. If you had lots of time and
money, you could repeat the experiment over and over
and estimate the population values from looking at the
distribution of sample mean scores. However, we do
not usually do such a series of experiments, so we need
a way to estimate this error. Fortunately, the error in
our single experiment gives us a hint of how likely it
is that our obtained mean is likely to reflect the popu-
lation mean. That is, we can estimate that the limits of
confidence are around the mean value we got. The laws
of statistics tell us that the standard error of the mean
is simply the sample standard deviation divided by the
square root of the number of observations (“N”). This
makes sense in that the more observations we make,
the more likely it is that our obtained mean actually
lies close to the true population mean.

In order to test whether the mean we see in our
experiment is different from some other value, there
are three things we need to know: the mean itself, the
sample standard deviation, and the number of obser-
vations. An example of this form of the t-test is given
below, but first we need to take a closer look at the
logic of statistical testing.

The logical process of statistical inference is simi-
lar for the t-tests and all other statistical tests. The only
difference is that the t-statistic is computed for testing
differences between two means, while other statistics
are used to test for differences among other values, like
proportions, standard deviations, or variances. In the t-
test, we first assume that there is no difference between
population means. Another way to think about this is
that it implies that the experimental means were drawn
from the same parent population. This is called the null
hypothesis. Next, we look at our t-value calculated in
the experiment and ask how likely this value would
be, given our assumption of no difference (i.e., a true
null hypothesis). Because we know the shape of the t-
distribution, just like a Z-score, we can tell how far out
in the tail our calculated t-statistic lies. From the area
under the curve out in that tail, we can tell what percent
of the time we could expect to see this value. If the t-
value we calculate is very high and positive or very
low and negative, it is unlikely—a rare event given our
assumption. If this rarity passes some arbitrary cutoff

point, usually one chance in 20 (5%) or less, we con-
clude that our initial assumption was probably wrong.
Then we make a conclusion that the population means
are in fact different or that the sample means were
drawn from different parent populations. In practical
terms, this usually implies that our treatment variable
(ingredients, processing, packaging, shelf life) did pro-
duce a different sensory effect from some comparison
level or from our control product. We conclude that the
difference was not likely to happen from chance varia-
tion alone. This is the logic of null hypothesis testing. It
is designed to keep us from making errors of conclud-
ing that the experiment had an effect when there really
was only a difference due to chance. Furthermore, it
limits our likelihood of making this mistake to a max-
imum value of one chance in 20 in the long run (when
certain conditions are met, see postscript at the end of
this chapter).

A.3.3 A Worked Example

Here is a worked example of a simple t-test. We do
an experiment with the following scale, rating a new
ingredient formulation against a control for overall
sweetness level:

much less

sweet

about the

same

much more

sweet

We convert their box ratings to scores 1 (for the left-
most box) through 7 (for the rightmost). The data from
ten panelists are shown in Table A.2.

We now set up our null hypothesis and an alternative
hypothesis different from the null. A common notation
is to let the symbol Ho stand for the null hypothesis and

Table A.2 Data for t-test example

Panelist Rating

1 5
2 5
3 6
4 4
5 3
6 7
7 5
8 5
9 6

10 4
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Ha stand for the alternative. Several different alterna-
tives are possible, so it takes some careful thought as to
which one to choose. This is discussed further below.
The null hypothesis in this case is stated as an equa-
tion concerning the population value, not our sample,
as follows:

Ho: µ = 4.0. This is the null hypothesis.
Ha: µ 
= 4.0 This is the alternative hypothesis.

Note that the Greek letter “mu” is used since these
are statements about population means, not sample
means from our data. Also note that the alternative
hypothesis is non- directional, since the population
mean could be higher or lower than our expected value
of 4.0. So the actual t-value after our calculations might
be positive or negative. This is called a two-tailed test.
If we were only interested in the alternative hypothe-
sis (Ha) with a “greater than” or “less than” prediction,
the test would be one tailed (and out critical t-value
would change) as we would only examine one end of
the t-distribution when checking for the probability and
significance of the result.

For our test against a mean or fixed value, the t-test
has the following form:

t = M − µ

S/
√

N
(A.8)

where M is the sample mean, S is the standard devia-
tion, N is the number of observations (judges or pan-
elists, usually), and µ is the fixed value or population
mean.

Here are the calculations from the data set
above:

Mean = �X/N= 5.0
�X = 50
�X2 = 262
(�X)2 = 2500

S =
√

(262) − (2500)/10

9
= 1.155

t = 5.0 − 4.0

1.155/
√

10
= 1

0.365
= 2.740

So our obtained t-value for this experiment is 2.740.
Next we need to know if this value is larger than what

we would expect by chance less than 5% of the time.
Statistical tables for the t-distribution tell us that for a
sample size of 10 people (so degrees of freedom = 9),
we expect a t-value of ±2.262 only 5% of the time. The
two-tailed test looks at both high and low tails and adds
them together since the test is non-directional, with t

high or low. So this critical value of +2.262 cuts off
2.5% of the total area under the t-distribution in the
upper half and −2.262 cuts off 2.5% in the lower half.
Any values higher than 2.262 or lower than −2.262
would be expected less than 5% of the time. In statis-
tical talk, we say that the probability of our obtained
result then is less than 0.05, since 2.738 > 2.262. In
other words, we obtained a t-value from our data that
is even more extreme than the cutoff value of 2.262.

So far all of this is some simple math, and then
a cross-referencing of the obtained t-value to what
is predicted from the tabled t-values under the null
hypothesis. The next step is the inferential leap of sta-
tistical decision making. Since the obtained t-value was
bigger in magnitude than the critical t-value, Ho is
rejected and the alternative hypothesis is accepted. In
other words, our population mean is likely to be dif-
ferent than the middle of our scale value of 4.0. We do
not actually know how likely this is, but we know that
the experiment would produce the sort of result we see
only about 5% of the time when the null is true. So
we infer that it is probably false. Looking back at the
data, this does not seem too unreasonable since seven
out of ten panelists scored higher than the null hypoth-
esis value of 4.0. When we reject the null hypothesis,
we claim that there is a statistically significant result.
The use of the term “significance” is unfortunate, for in
simple everyday English it means “important.” In sta-
tistical terms significance only implies that a decision
has been made and does not tell us whether the result
was important or not. The steps in this chain of rea-
soning, along with some decisions made early in the
process about the alpha-level and power of the test, are
shown in Fig. A.3.

A.3.4 A Few More Important Concepts

Before going ahead, there are some important concepts
in this process of statistical testing that need further
explanation. The first is degrees of freedom. When we
look up our critical values for a statistic, the values are
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Formulate null and
alternative hypotheses

Choose alpha level for Type I error

Choose sample size
Calculate beta risk, power

(conduct experiment, gather data)

Calculate summary statistics
Central tendency and variation

Calculate statistics
for Hypothesis tests

Compare statistics to critical levels
or probability values to alpha

Decision time:
reject null, withhold judgment 

or accept null (depending on power)

Draw conclusions and make recommendations

STATISTICAL 
FLOWCHART

Fig. A.3 Steps in statistical decision making in an experi-
ment. The items before the collection of the data concern the
experimental design and statistical conventions to be used in
the study. After the data are analyzed the inferential process
begins, first with data description, then computation of the test
statistic, and then comparison of the test statistic to the criti-
cal value for our predetermined alpha-level and the size of the
experiment. If the computed test statistic is greater in magni-
tude than the critical value, we reject the null hypothesis in
favor of the alternative hypothesis. If the computed test statis-
tic has a value smaller in magnitude than the critical value,
we can make two choices. We can reserve judgment if the
sample size is small or we can accept the null hypothesis
if we are sure that the power and sensitivity of the test are
high. A test of good power is in part determined by having a
substantial number of observations and test sensitivity is deter-
mined by having good experimental procedures and controls (see
Appendix E).

frequently tabled not in terms of how many observa-
tions were in our sample, but how many degrees of
freedom we have. Degrees of freedom have to do with
how many parameters we are estimating from our data
relative to the number of observations. In essence, this
notion asks how much the resulting values would be
free to move, given the constraints we have from esti-
mating other statistics. For example, when we estimate
a mean, we have freedom for that value to move or
change until the last data point is collected. Another
way to think about this is the following: If we knew
all but one data point and already knew the mean, we
would not need that last data point. It would be deter-
mined by all the other data points and the mean itself,
so it has no freedom to change. We could calculate
what it would have to be. In general, degrees of free-
dom are equal to the sample size, minus one for each
of the parameters we are estimating. Most statistics
are tabled by their degrees of freedom. If we wanted
to compare the means from two groups of N1 and N2

observations, we would have to calculate some param-
eters like means for each group. So the total numbers of
degrees of freedom are N1−1 + N2−1, or N1 + N2−2.

A second important consideration is whether our
statistical test is a one- or a two-tailed test. Do we
wish to test whether the mean is simply different from
some value or whether it is larger or smaller than
some value? If the question is simply “different from”
then we need to examine the probability that our test
statistic will fall into either the low or high tail of its
distribution. As stated above in the example of the sim-
ple t-test, if the question is directional, e.g., “greater
than” some value, then we examine only one tail. Most
statistical tables have entries for one- and two-tailed
tests. It is important, however, to think carefully about
our underlying theoretical question. The choice of sta-
tistical alternative hypotheses is related to the research
hypothesis. In some sensory tests, like paired prefer-
ence, we do not have any way of predicting which
way the preference will go, and so the statistical test
is two-tailed. This is in contrast to some discrimina-
tion tests like the triangle procedure. In these tests we
do not expect performance below chance unless there
is something very wrong with the experiment. So the
alternative hypothesis is that the true proportion cor-
rect is greater than chance. The alternative is looking
in one direction and is therefore one-tailed.

A third important statistical concept to keep in mind
is what type of distribution you are concerned with.
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There are three different kinds of distributions we have
discussed. First, there are overall population distribu-
tions. They tell us what the world would look like
if we measured all possible values. This is usually
not known, but we can make inferences about it from
our experiments. Second, we have sample distributions
derived from our actual data. What does our sample
look like? The data distribution can be pictured in a
graph such as a histogram. Third, there are distribu-
tions of test statistics. If the null hypothesis is true, how
is the test statistic distributed over many experiments?
How will the test statistic be affected by samples
of different sizes? What values would be expected,
what variance due to chance alone? It is against these
expected values that we examine our calculated value
and get some idea of its probability.

A.3.5 Decision Errors

Realizing that statistical decisions are based on prob-
abilities, it is clear that some uncertainty is involved.
Our test statistic may only happen 5% of the time under
a true null hypothesis, but the null might still be true,
even though we rejected it. So there is a chance that
our decision was a mistake and that we made an error.
It is also possible sometimes that we fail to reject the
null, when a true difference exists. These two kinds of
mistakes are called Type I and Type II errors. A Type I
error is committed when we reject the null hypothesis
when it is actually true. In terms of a t-test comparison
of means, the Type I error implies that we concluded
that two population means are different when they are
in fact the same, i.e., our data were in fact sampled
from the same parent population. In other words, our
treatment did not have an effect, but we mistakenly
concluded that it did. The process of statistical testing
is valuable, though, because it protects us from com-
mitting this kind of error and going down blind alleys
in terms of future research decisions, by limiting the
proportion of times we could make these decisions.
This upper limit on the risk of Type I error (over the
long term) is called alpha-risk.

As shown in Table A.3, another kind of error occurs
when we miss a difference that is real. This is called
a Type II error and is formally defined as a failure to
reject the null hypothesis when the alternative hypoth-
esis is actually true. Failures to detect a difference in

Table A.3 Statistical errors in decision making

Outcome of sensory
evaluation

Difference
reported

No difference
reported

True situation Products are
different

Correct
decision

Type II error
Prob. is
beta-risk

Products are
not
different

Type I error
Prob. is
alpha-risk

Correct
decision

a t-test or more generally to fail to observe that an
experimental treatment had an effect can have impor-
tant or even devastating business implications. Failing
to note that a revised manufacturing process was in
fact an improvement would lose the potential benefit
if the revision were not adopted as a new standard pro-
cedure. Similarly, revised ingredients might be passed
over when they in fact produce improvements in the
product as perceived by consumers. Alternatively, bad
ingredients might be accepted for use if the modi-
fied product’s flaws are undetected. It is necessary to
have a sensitive enough test to protect against this kind
of error. The long-term risk or probability of making
this kind of mistake is called beta-risk, and one minus
the beta-risk is defined as the statistical power of the
test. The protection against Type II error by statisti-
cal means and by experimental strategy is discussed in
Appendix E.

A.4 Variations of the t-Test

There are three kinds of t-tests that are commonly used.
One is a test of an experimental mean against a fixed
value, like a population mean or a specific point on
a scale like the middle of a just-right scale, as in the
example above. The second test is when observations
are paired, for example, when each panelist evaluates
two products and the scores are associated since each
pair comes from a single person. This is called the
paired t-test or dependent t-test. The third type of t-test
is performed when different groups of panelists eval-
uate the two products. This is called the independent
groups t-test. The formulas for each test are simi-
lar, in that they take the general form of a difference
between means divided by the standard error. However,
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the actual computations are a bit different. The sec-
tion below gives examples of the three comparisons of
means involving the t-statistic.

One type of t-test is the test against a population
mean or another fixed value, as we saw above in our
example and Eq. (A.8). The second kind of t-test is
the test of paired observations also called the depen-
dent t-test. This is a useful and powerful test design in
which each panelist evaluates both products, allowing
us to eliminate some of the inter-individual variation.
To calculate this value of t, we first arrange the pairs
of observations in two columns and subtract each one
from the other member of the pair to create a difference
score. The difference scores then become the num-
bers used in further calculations. The null hypothesis
is that the mean of the difference scores is zero. We
also need to calculate a standard deviation of these dif-
ference scores, and a standard error by dividing this
standard deviation by the square root of N, the number
of panelists

t = Mdiff

Sdiff/
√

N
(A.9)

where Mdiff is the mean of the difference scores and
Sdiff is the standard deviation of the difference scores.
Here is an example of a t-test where each panelist
tasted both products and we can perform a paired t-test.
Products were rated on a 25-point scale for acceptance.
Note that we compute a difference score (D) in this
situation, as shown in Table A.4.

Table A.4 Data for paired t-test example

Panelist Product A Product B Difference (Difference)2

1 20 22 2 4
2 18 19 1 1
3 19 17 −2 4
4 22 18 −4 16
5 17 21 4 16
6 20 23 3 9
7 19 19 0 0
8 16 20 4 16
9 21 22 1 1

10 19 20 1 1

Calculations:

sum of D = 10, mean of D = 1
sum of D2 = 68
standard deviation of D =

Sdiff =

√

∑N
i=1 D2

i −
(

(�D)2
/

N
)

N − 1

=

√

68 −
(

100
/

10
)

9
= 2.539 ,

and t comes from

t = Mdiff

Sdiff/
√

N
= 1.0

2.5390/
√

10
= 1.25

This value does not exceed the tabled value for the
5%, two-tailed limit on t (at 9 df), and so we conclude
there is insufficient evidence for a difference. In other
words, we do not reject the null hypothesis. The two
samples were rather close, compared to the level of
error among panelists.

The third type of t-test is conduced when there are
different groups of people, often called an independent
groups t-test. Sometimes the experimental constraints
might dictate situations where we have two groups that
taste only one product each. Then a different formula
for the t-test applies. Now the data are no longer paired
or related in any way and a different calculation is
needed to estimate the standard error, since two groups
were involved and they have to be combined somehow
to get a common estimate of the standard deviations.
We also have some different degrees of freedom, now
given by the sum of the two group sizes minus 2 or
(NGroup1 + NGroup2−2). The t-value is determined by

t = M1 − M2

SEpooled
(A.10)

where M1 and M2 are the means of the two groups and
SEpooled is the pooled standard error. For the indepen-
dent t-test, the pooled error requires some work and
gives an estimate of the error combining the error lev-
els of the two groups. The pooled standard error for
two groups, X and Y, is given by the following formula:

SEpooled =

√

√

√

√

[

1/N1 + 1/N2
]

[

�x2 −
(

(�x)2
/

N1

)

+ �y2 −
(

(�y)2
/

N2

)]

(

N1 + N2 − 2
)

(A.11)
Here is a worked example of an independent group’s

t-test. In this case, we have two panels, one from
a manufacturing site and one from a research site,
both evaluating the perceived pepper heat from an
ingredient submitted for use in a highly spiced product.
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The product managers have become concerned that the
plant QC panel may not be very sensitive to pepper
heat due to their dietary consumption or other factors,
and that the use of ingredients is getting out of line
with what research and development personnel feel is
an appropriate level of pepper. So the sample is evalu-
ated by both groups and an independent group’s t-test
is performed. Our null hypothesis is that there is no
difference in the population means and our alternative
hypothesis that the QC plant will have lower mean rat-
ings in the long run (one-tailed situation). The data
set is comprised of pepper heat ratings on a 15-point
category scale as shown in Table A.5.

Table A.5 Data for independent group’s t-test

Manufacturing QC panel (X) R&D test panel (Y)

7 9
12 10
6 8
5 7
8 7
6 9
7 8
4 12
5 9
3

First, some preliminary calculations:

N1 = 10 �x = 63 Mean = 6.30 �x2 = 453 (�x)2=3969
N2 = 9 �y = 79 Mean = 8.78 �y2 = 713 (�y)2=6291

Now we have all the information we need to calcu-
late the value of

SEpooled =

√

√

√

√

(1/10 + 1/9)

[

453 − 3969
10 + 713 − 6241

9

]

(10 + 9 − 2)
= 0.97

t = [(6.30–8.78)]/0.97 = −2.556.
Degrees of freedom are 17 (= 10 + 9 − 2). The

critical t-value for a one-tailed test at 17 df is 1.740,
so this is a statistically significant result. Our QC panel
does seem to be giving lower scores for pepper heat
than the R&D panel.

Note that the variability is also a little higher in the
QC panel. Our test formula assumes that the variance
is about equal. For highly unequal variability (1 SD
more than three times that of the other) some adjust-
ments must be made. The problem of unequal variance

becomes more serious when the two groups are also
very different in size. The t-distribution becomes a
poor estimate of what to expect under a true null,
so the alpha-level is no longer adequately protected.
One approach is to adjust the degrees of freedom
and formulas for this are given in advanced statis-
tics books (e.g., Snedecor and Cochran, 1989). The
non-pooled estimates of the t-value are provided by
some statistics packages and it is usually prudent to
examine these adjusted t-values if unequal group size
and unequal variances happen to be the situation with
your data.

A.4.1 The Sensitivity of the Dependent

t-Test for Sensory Data

In sensory testing, it is often valuable to have each
panelist try all of the products in our test. For sim-
ple paired tests of two products, this enables the use
of the dependent t-test. This is especially valuable
when the question is simply whether a modified pro-
cess or ingredient has changed the sensory attributes
of a product. The dependent t-test is preferable to the
separate-groups approach, where different people try
each product. The reason is apparent from the calcula-
tions. In the dependent t-test, the statistic is calculated
on a difference score. This means that the differences
among panelists in overall sensory sensitivity or even
in their idiosyncratic scale usage are removed from the
situation. It is common to observe that some panelists
have a “favorite” part of the scale and may restrict their
responses to one section of the allowable responses.
However, with the dependent t-test, as long as panelists
rank order the products in the same way, there will
be a statistically significant result. This is one way to
partition the variation due to subject differences from
the variation due to other sources of error. In general,
partitioning of error adds power to statistical tests, as
shown in the section on repeated measures (or com-
plete block) ANOVA (see Appendix C). Of course,
there are some potential problems in having people
evaluate both products, like sequential order effects
and possible fatigue and carry-over effects. However,
the advantage gained in the sensitivity of the test
usually far outweighs the liabilities of repeated testing.
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A.5 Summary: Statistical Hypothesis

Testing

Statistical testing is designed to prevent us from con-
cluding that a treatment had an effect when none was
really present and our differences were merely due to
chance or the experimental error variation. Since the
test statistics like Z and t have known distributions,
we can tell whether our results would be extreme, i.e.,
in the tails of these distributions a certain percent of
the time when only chance variation was operating.
This allows us to reject the notion of chance varia-
tion in favor of concluding that there was an actual
effect. The steps in statistical testing are summarized
in the flowchart shown in Fig. A.3. Sample size or
the number of observations to make in an experiment
is one important decision. As noted above, this helps
determine the power and sensitivity of the test, as the
standard errors decrease as a function of the square
root of N. Also note that this square root function
means that the advantage of increasing sample size
becomes less as N gets larger. In other words there
is a law of diminishing returns. At some point the
cost considerations in doing a large test will outweigh
the advantage in reducing uncertainty and lowering
risk. An accomplished sensory professional will have
a feeling for how well the sensitivity of the test bal-
ances against the informational power and uncertainty
and risks involved and about how many people are
enough to insure a sensitive test. These issues are dis-
cussed further in the section on beta-risk and statistical
power.

Note that statistical hypothesis testing by itself is
a somewhat impoverished manner of performing sci-
entific research. Rather than establishing theorems,
laws, or general mathematical relationships about how
nature works, we are simply making a binary yes/no
decision, either that a given experimental treatment
had an effect or that it did not. Statistical tests can be
thought of as a starting point or a kind of necessary
hurdle that is a part of experimentation in order to help
rule out the effects of chance. However, it is not the
end of the story, only the beginning. In addition to sta-
tistical significance, the sensory scientist must always
describe the effects. It is easy for students to forget this
point and report significance but fail to describe what

happened.

A.6 Postscript: What p-Values Signify

and What They Do Not

No single statistical concept is probably more often
misunderstood and so often abused than the obtained
p-value that we find for a statistic after conducting an
analysis. It is easy to forget that this p-value is based
on a hypothetical curve for the test statistic, like the
t-distribution, that is calculated under the assumption
that the null hypothesis is true. So the obtained p-value
is taken from the very situation that we are trying to
reject or eliminate as a possibility. Once this fact is
realized, it is easier to put the p-value into proper per-
spective and give it the due respect it deserves, but no
more.

What does the p-value mean? Let us reiterate. It is
the probability of observing a value of the test statistic
(t, z, r, chi-square, or F-ratio) that is as large or larger
than the one we obtain in our experimental analysis,
when the null hypothesis is true. That much, no more
and no less. In other words, assuming a true null, how
likely or unlikely would the obtained value of the t-
test be? When it becomes somewhat unlikely, say it
is expected less than 5% of the time, we reject this
null in favor of the alternative hypothesis and conclude
that there is statistical significance. Thus, we have
gained some assurance of a relationship between our
experimental treatments and the sensory variables we
are measuring. Or have we? Here are some common
misinterpretations of the p-value:

(1) The p-value (or more specifically, 1–p) represents
the odds-against chance. Absolutely false (Carver,
1978). This puts the cart before the horse. The
chance of observing the t-statistic under a true null
is not the same as the chance of the null (or alterna-
tive) being true given the observations. A p < 0.05
does not mean there is only a 5% chance of the
null being true. In mathematical logic, the proba-
bility of A given B is not necessarily the same as B

given A. If I find a dead man on my front lawn, the
chance he was shot in the head is quite slim (less
than 5%) at least in my neighborhood, but if I find
a man shot through the head, he is more than likely
dead (95% or more).

(2) A related way of misinterpreting the p-value is
to say that the p-value represents the chance of
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making a Type I error. This is also not strictly
true although it is widely assumed to be true
(Pollard and Richardson, 1987). Indeed, that is
what our alpha-cutoff is supposed to limit, in the
long run. But the actual value of alpha in restrict-
ing our liability depends also upon the incidence
of true differences versus no differences in our
long-term testing program. Only when the chance
of true difference is about 50% is the alpha-value
an accurate reflection of our liability in rejecting
a true null. The incidence is usually not known,
but can be estimated. In some cases like quality
control or shelf-life testing, there are a lot more
“no difference” situations, and then alpha wildly
underestimates our chances of being correct, once
the null is rejected. The following table shows how
this can occur. In this example, we have a 10%
incidence of a true difference, alpha is set at 0.05
and the beta-risk (chance of missing a difference)
is 10%. For ease of computation, 1000 tests are
conducted and the results are shown in Table A.6.

Table A.6 Incidence diagram

(True state) Incidence
Difference
found

Difference not
found

Difference
exists

100 90 10 (at β= 10%)

Difference does
not exist

900 45 (at α = 5%) 855

The chance of being correct, having decided
there is a significant difference, is 90/(90+45) or
2/3. There is a 1/3 chance (45/135) of being wrong
once you have rejected the null (not 5%!), even
though we have done all our statistics correctly
and are sure we are running a good testing pro-
gram! The problem in this scenario is the low
probability before hand of actually being sent
something worth testing. The notion of estimating
the chance of being right or wrong given a cer-
tain outcome is covered in the branch of statistics
known as Bayesian statistics, after Bayes theorem
which allows the kind of calculation illustrated in
Table A.6 (see Berger and Berry, 1988).

A related mistake is made when we use the
words “confident” to describe our level of signifi-
cance (1 – p or 1 – α). For example, a well-known
introductory statistics text gives the following
incorrect information: “The probability of reject-
ing Ho erroneously (committing a Type I error) is

known, it is equal to alpha. . . . Thus you may be
95% confident that your decision to reject Ho is
correct” (Welkowitz et al., 1982, p. 163) [italics
inserted]. This is absolutely untrue, as the above
example illustrates. With a low true incidence of
actual differences, the chance of being wrong once
Ho is rejected may be very high indeed.

(3) One minus the p-value gives us the reliability of
our data, the faith we should have in the alterna-
tive hypothesis, or is an index of the degree of
support for our research hypothesis in general. All
of these are false (Carver, 1978). Reliability, cer-
tainly, is important (getting the same result upon
repeated testing) but is not estimated simply as
1–p. A replicated experiment has much greater
scientific value than a low p-value, especially if
the replication comes from another laboratory and
another test panel.

Interpreting p-values as evidence for the alternative
hypothesis is just as wrong as interpreting them as
accurate measures of evidence against the null. Once
again, it depends upon the incidence or prior probabil-
ity. There is a misplaced feeling of elation that students
and even some more mature researchers seem to get
when we obtain a low p-value, as if this was an indica-
tion of how good their experimental hypothesis was. It
is surprising then that journal editors continue to allow
the irrelevant convention of adding extra stars, aster-
isks, or other symbols to indicate low p-values (∗∗0.01,
∗∗∗0.001, etc.) beyond the pre-set alpha-level in exper-
imental reports. The information given by these extra
stars is minimal. They only tell you how likely the
result is under a true null, which you are deciding is
false anyway.

Overzealous teachers and careless commentators have
given the world the impression that our standard sta-
tistical measures are inevitable, necessary, optimal and
mathematically certain. In truth, statistics is a branch of
rhetoric and the use of any particular statistic . . . is noth-
ing more than an exhortation to your fellow humans to
see meaning in data as you do. (Raskin, 1988, p. 432).

A.7 Statistical Glossary

Alpha-risk. The upper acceptable limit on committing
Type I errors (rejecting a true null hypothesis) set
by the experimenter before the study, often at 5% or
less.
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Beta-risk. The upper acceptable limit on committing
Type II errors (accepting a false null hypothesis).
See Appendix VI.

Degrees of freedom. A value for the number of obser-
vations that are unconstrained or free to vary once
our statistical observations are calculated from a
sample data set. In most cases the degrees of free-
dom are given by the number of observations in the
data minus one.

Dependent variable. The variable that is free to move
in a study, what is measured (such as ratings, num-
bers of correct judgments, preference choices) to
form the data set.

Distribution. A collection of values describing a data
set, a population, or a test statistic. The distribu-
tion plots the values (usually on the horizontal axis)
against their frequency or probability of occurrence
(on the vertical axis).

Independent variable. The experimental variable or
treatment of interest that is manipulated by the
experimenter. A set of classes, conditions, or groups
that are the subject of study.

Mean. A measure of central tendency. The arithmetic
mean or average is the sum of all the observed values
divided by the number of observations. The geo-
metric mean is the Nth root of the product of N

observations.
Null hypothesis. An assumption about underlying pop-

ulation values. In simple difference testing for scaled
data (e.g., where the t-test is used) the null assumes
that the population mean values for two treatments
are equal. In simple difference testing on propor-
tions (e.g., where the data represent a count of
correct judgments, as in the triangle test) the null
hypothesis is that the population proportion correct
equals the chance probability. This is often mis-
phrased as “there is no difference” (a conclusion
from the experiment, not a null hypothesis).

One- and two-tailed tests. Describes the consideration
of only one or two ends of a statistic’s distribution
in determining the obtained p-value. In a one-tailed
test, the alternative hypothesis is directional (e.g.,
the population mean of the test sample is greater
than the control sample) while in a two-tailed test,
the alternative hypothesis does not state a direction
(e.g., the population mean of the test sample is not
equal to the population mean of the control sample).

Parameter. A characteristic that is measured about
something, such as the mean of a distribution.

P-value. The probability of observing a test statistics
as large or larger than the one calculated from an
experiment, when the null hypothesis is true. Used
as the basis for rejecting the null hypothesis when
compared to the pre-set alpha-level. Often mistak-
enly assumed to be the probability of making an
error when the null hypothesis is rejected.

Sample size. The number of observations in our data,
usually represented by the letter “N.”

Standard deviation. A measure of variability in a data
sample or in a population.

Statistic. A value calculated from the data, with a
known distribution, based on certain assumptions.

Treatment. A word often used to describe two different
levels of an experimental variable. In other words,
what has been changed about a product and is the
subject of the test. See independent variable.

Type I error. Rejecting the null hypothesis when it is
true. In simple difference testing, the treatments are
thought to be different when in fact they are the
same.

Type II error. Accepting the null hypothesis when it
is false. In simple difference testing, the treatments
are thought to be equal when in fact the population
values for those treatments are different.
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Although statistical tests provide the right tools for

basic psychophysical research, they are not ideally

suited for some of the tasks encountered in sensory

analysis.

—M. O’Mahony (1986, p. 401)

Frequently, sensory evaluation data do not consist of
measurements on continuous variables, but rather are
frequency counts or proportions. The branch of statis-
tics that deals with proportions and ranked data is
called nonparametric statistics. This chapter illustrates
statistics used on proportions and ranks, with worked
examples.

B.1 Introduction to Nonparametric Tests

The t-test and other “parametric” statistics work well
for situations in which the data are continuous as
with some rating scales. In other situations, how-
ever, we categorize performance into right and wrong
answers or we count the numbers who make a choice
of one product over another. Common examples of
this kind of testing include the triangle test and the
paired preference tests. In these situations, we want
to use a kind of distribution for statistical testing that
is based on discrete, categorical data. One example
is the binomial distribution and is described in this
section. The binomial distribution is useful for tests
based on proportions, where we have counted people
in different categories. The binomial distribution is a
special case where there are only two outcomes (e.g.,
right and wrong answers in a triangle test). Sometimes
we may have more than two alternatives for classify-
ing responses, in which case multinomial distribution
statistics apply. A commonly used statistic for compar-
ing frequencies when there are two or more response
categories is the chi-square statistic. For example, we
might want to know if the meals during which a food
product is consumed (say, breakfast, lunch, dinner,
snacks) differed among teenagers and adults. If we
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asked consumers about the situation in which they
most commonly consumed the product, the data would
consist of counts of the frequencies for each group of
consumers. The chi-square statistic could then be used
to compare these two frequency distributions. It will
also indicate whether there is any association between
the response categories (meals) and the age group or
whether these two variables are independent.

Some response alternatives have more than cate-
gorical or nominal properties and represent rankings
of responses. For example, we might ask for ranked
preference of three or more variations of flavors for a
new product. Consumers would rank them from most
appealing to least appealing, and we might want to
know whether there is any consistent trend, or whether
all flavors are about equally preferred across the group.
For rank order data, there are a number of statistical
techniques within the nonparametric toolbox.

Since it has been argued that many sensory mea-
surements, even rating scales, do not have interval-
level properties (see Chapter 7), it often makes sense
to apply a nonparametric test, especially those based
on ranks, if the researcher has any doubts about the
level of measurement inherent in the scaling data. The
nonparametric tests can also be used as a check on
conclusions from the traditional tests. Since the non-
parametric tests involve fewer assumptions than their
parametric alternatives, they are more “robust” and
less likely to lead to erroneous conclusions or mis-
estimation of the true alpha-risk when assumptions
have been violated. Furthermore, they are often quick
and easy to calculate, so re-examination of the data
does not entail a lot of extra work. Nonparametric
methods are also appropriate when the data devi-
ate from a normal distribution, for example, with a
pattern of high or low outliers, marked asymmetry
or skew.

When data are ranked or have ordinal-level proper-
ties, a good measure of central tendency is the median.
For data that are purely categorical (nominal level), the
measure of central tendency to report is the mode, the
most frequent value. Various measures of dispersion
can be used as alternatives to the standard deviation.
When the distribution of the data is not normally dis-
tributed, the 95% confidence interval for the median of
N scores can be approximated by

N + 1

2
± 0.98

√
N (B.1)

When the data are reasonably normal, the confi-
dence interval for the median is given by

Med ± 1.253t(S/
√

N) (B.2)

where t is the two-tailed t-value for N–1 degrees of
freedom (Smith, 1988). Another simple alternative is
to state the semi-interquartile range or one-half the dif-
ference between the data values from the 75th and 25th
percentiles.

There are several nonparametric versions of
the correlation coefficient. One commonly used is
the rank order correlation attributed to Spearman.
Nonparametric statistical tests with worked exam-
ples are given in Siegel (1956), Hollander and Wolfe
(1973), Conover (1980), and a book tailored for sen-
sory evaluation by Rayner et al. (2005). It is advisable
that the sensory professional have some familiarity
with the common nonparametric tests so they can be
used when the assumptions of the parametric tests
seem doubtful. Many statistical computing packages
will also offer nonparametric modules and various
choices of these tests. The sections below illustrate
some of the common binomial, chi-square, and rank
order statistics, with some worked examples from
sensory applications.

B.2 Binomial-Based Tests on Proportions

The binomial distribution describes the frequencies
of events with discrete or categorical outcomes.
Examples of such data in product testing would be
the proportion of people preferring one product over
another in a test or the proportion answering correctly
in a triangle test. The distribution is based on the bino-
mial expansion, (p+q)n , where p is the probability of
one outcome, q is the probability of the other outcome
(q = 1–p), and n is the number of samples or events.
Under the null hypothesis in most discrimination tests,
the value of p is determined by the number of alter-
natives and so equals one-third in the triangle test and
one-half in the duo–trio or paired comparison tests.

A classic and familiar example of binomial-based
outcomes is in tossing a coin. Assuming it is a fair coin
puts the expected probability at one-half for each out-
come (heads or tails). Over many tosses (analogous to
many observations in a sensory test) we can predict the
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likely or expected numbers of heads and tails and how
often these various possibilities are likely to occur. To
predict the number of each possibility, we “expand” the
combinations of (p+q)n letting p represent the numbers
of heads and q the numbers of tails in n total throws as
follows:

For one throw, the values are (p+q)1 or p + q = 1.
One head or one tail can occur and they will occur with
probability p = q = 1/2. The coefficients (multipliers)
of each term divided by the total number of outcomes
gives us the probability of each combination. For two
throws, the values are (p+q)2 so the expansion is p2 +
2pq + q2 = 1 (note that the probabilities total 1). p2 is
associated with the outcome of two heads, and the mul-
tiplicative rule of probabilities tells us that the chances
are (1/2) (1/2) = 1/4. 2pq represents one head and one
tail (this can occur two ways) and the probability is
1/2. In other words, there are four possible combina-
tions and 2 of them include one head and one tail, so
the chance of this is 2/4 or 1/2. Similarly, q2 is asso-
ciated with two tails and the probability is 1/4. Three
throws will yield the following outcomes: (p+q)3 = p3

+ 3p2q + 3pq2 + q3. This expansion tells us that there is
a 1/8 chance of three heads or three tails, but there are
three ways to get two heads and one tail (HHT, HTH,
THH) and similarly three ways to get one head and two
tails, so the probability of these two outcomes is 3/8
for each. Note that there are eight possible outcomes
for three throws or more generally 2n outcomes of n

observations (Fig. B.1).
As such an expansion continues with more events,

the distribution of events, in terms of the possible
numbers of one outcome, will form a bell-shaped dis-
tribution (when p = q = 1/2), much like the normal
distribution bell curve. The coefficient for each term
in the expansion is given by the formula for combi-
nations, where an outcome appears A times out of N

tosses (that is A heads and N–A tails), as follows:

Coefficient = N!
(N − A)!A!

This is the number of times the particular out-
come can occur. When the coefficient is multiplied by
pAqN−A we get the probability of that outcome. Thus
we can find an exact probability for any sample based
on the expansion. This is manageable for small sam-
ples, but as the number of observations becomes large,

the binomial distribution begins to resemble the normal
distribution reasonably well and we can use a z-score
approximation to simplify our calculations. For small
samples, we can actually do these calculations, but
reference to a table can save time.

Here is an example of a small experiment (see
O’Mahony, 1986 for similar example). Ten people are
polled in a pilot test for an alternative formula of a
food product. Eight prefer the new product over the
old: two prefer the old product. What is the chance
that we would see a preference split of 8/10 or more, if
the true probabilities were 1/2 (i.e., a 50/50 split in the
population)?

The binomial expansion for 10 observations, p = q

= 1/2 is

p10 + 10p9q + 45 p8q2 + 120 p7q3... etc.

In order to see if there is an 8-to-2 split or larger we
need to calculate the proportions of times these out-
comes can occur. Note that this includes the values in
the “tail” of the distribution, which includes the out-
comes of a 9-to-1 and a 10-to-none preference split.
So we only need the first three terms or (1/2)10 + 10
(1/2)9(1/2) + 45 (1/2)8 (1/2)2.

This sums to about 0.055 or 5.5%. Thus, if the
true split in the population as a whole was 50/50, we
would see a result this extreme (or more extreme)
only about 5% of the time. Note that this is about

where we reject the null hypothesis. But we have only
looked at one tail of the distribution for this compu-
tation. In a preference test we would normally not
predict at the outset that one item is preferred over
another. This requires a two-tailed test and so we need
to double this value, giving a total probability of 11%.
Remember, this is the exact probability of seeing an
8–2 split or something more extreme (i.e., 9 to 1 or 10
to zero).

For small experiments, we can sometimes go
directly to tables of the cumulative binomial distri-
bution, which gives us exact probabilities for our
outcomes based on the ends of the expansion equation.
For larger experiments (N > 25 or so), we can use the
normal distribution approximation. The extremeness
of a proportion can be represented by a z-score, rather
than figuring all the probabilities and expansion terms.
The disparity from what is expected by chance can be
expressed as the probability value associated with that
z-score. The formula for a binomial based z-score is
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Fig. B.1 The binomial
expansion is shown
graphically for tossing a coin
with outcomes of heads and
tails for various numbers of
throws. (a) frequencies
(probabilities) associated with
a single toss. (b) frequencies
expected from two tosses,
(c) from three tosses, (d) from
four tosses, and (e) from ten
tosses. Note that as the
number of events (or
observations) increases, the
distribution begins to take on
the bell-shaped appearance of
the normal distribution.

z = (Pobs − p) − (1/2 N)√
pq/N

= (x − Np) − (0.5)√
Npq

(B.3)

where Pobs is the proportion observed, p is the chance
probability q = 1–p, N is the number of observations,
and x is the number of those outcomes observed (Pobs=
x/N).

The continuity correction accounts for the fact that
we cannot have fractional observations and the distri-
bution of the binomial outcomes is not really a con-
tinuous measurement variable. In other words, there
are a limited number of whole number outcomes since
we are counting discrete events (you cannot have half
a person prefer product A over product B). The con-
tinuity correction accounts for this approximation by
adjusting by the maximum amount of deviation from a

continuous variable in the counting process or one-half
of one observation.

The standard error of the proportion is estimated to
be the square root of p times q divided by the number
of observations (N). Note that as with the t-value, our
standard error, or the uncertainly around our observa-
tions, decreases as the reciprocal of the square root of
N. Our certainty that the observed proportion lies near
to the true population proportion increases as N gets
large.

Tables for minimum numbers correct, commonly
used for triangle tests, paired preference tests, etc.,
solve this equation for X as a function of N and z

(see Roessler et al., 1978). The tables show the min-
imum number of people who have to get the test
correct to reject the null hypothesis and then conclude
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that a difference exists. For one-tailed discrimination
tests at an alpha-risk of 0.05, the z-value is 1.645.
In this case the minimum value can be solved from
the inequalities where Eq. (B.3) is solved for X,
and the equal sign is changed to “greater than” (Z
must exceed 1.645), and rounded up to the nearest
whole number since you cannot have a fraction of a
person.

Given the value of 1.645 for Z (at p = 0.05), and 1/3
for p and 2/3 for q as in a triangle test, the inequality
can be solved for X and N as follows:

X ≥ 2 N + 3

6
+ 0.775

√
N (B.4)

and for tests in which p is 1/2, the corresponding
equation is

X ≥ N + 1

2
+ 0.8225

√
N (B.5)

We can also use these relationships to determine
confidence intervals on proportions. The 95% confi-
dence interval on an observed proportion, Pobs (= X/N,
where X is the number correct in a choice test) is
equal to

Pobs ± Z
√

pq/N (B.6)

where Z will take on the value of 1.96 for the two-tailed
95% intervals for the normal distribution. This equa-
tion would be useful for estimating the interval within
which a true proportion is likely to occur. The two-
tailed situation is applicable to a paired preference test
as shown in the following example. Suppose we test
100 consumers and 60% show a preference for prod-
uct A over product B. What is the confidence interval
around the level of 60% preference for product A and
does this interval overlap the null hypothesis value of
50%? Using Eq. (B.6),

Pobs ± Z
√

pq/N = 0.60 ± 1.96
√

0.5(0.5/100) = 0.60 ± 0.098

In this case the lower limit is above 50%, so there is
just enough evidence to conclude that the true popula-
tion proportion would not fall at 50%, given this result,
95% of the time.

B.3 Chi-Square

B.3.1 A Measure of Relatedness of Two

Variables

The chi-square statistic is a useful statistic for com-
paring frequencies of events classified in a table of
categories. If each observation can be classified by two
or more variables, it enters into the frequency count
for a part of a matrix or classification table, where
rows and columns represent the levels of each variable.
For example, we might want to know whether there is
any relationship between gender and consumption of a
new reduced-fat product. Each person could be classi-
fied as high- versus low-frequency users of the product
and also as male or female. This would create a two-
way table with four cells representing the counts of
people who fall into one of the four groups. For the
sake of example, let us assume we had a 50/50 split
in sampling the two sexes and also an even propor-
tion of our high- and low-frequency groups. Intuitively,
we would expect 25% of observations to fall in each
cell of our table, assuming no difference between men
and women in frequency of use. To the extent that one
or more cells in the table is disproportionally filled
or lacking in observations, we would find evidence of
an association or lack of independence of gender and
product use. Table B.1 shows two examples, one with
no association between the variables and the other with
a clear association (numbers represent counts of 200
total participants).

Table B.1 Examples of different levels of association

No association Clear association

Usage group Usage group

Low High Low High (Total)

Males 50 50 75 25 (100)
Females 50 50 20 80 (100)
(Totals) (100) (100) (95) (105) (200)

In the left example, the within-cell entries for fre-
quency counts are exactly what we would expect based
on the marginal totals, with one-half of the groups clas-
sified according to each variable, we expect one-fourth
of the total in each of the four cells (Of course, a result
of exactly 25% in each cell would rarely be found in
real life. In the right example, we see that females are
more inclined to fall into the high-usage group and
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that the reverse is true for males. So knowing gender
helps us predict something about the usage group, and
conversely, knowing the usage, we can make a pre-
diction about gender. So we conclude that there is a
relationship between these two variables.

B.3.2 Calculations

More generally, the chi-square statistic is useful for
comparing distributions of data across two or more
variables. The general form of the statistic is to (1)
compute the expected frequency minus the observed
frequency, (2) square this value, (3) divide by the
expected frequency, and (4) sum these values across
all cells (Eq. (B.7)). The expected frequency is what
would be predicted from random chance or from some
knowledge or theory of what is a likely outcome based
on previous or current observations.

χ2 =
∑ (observed − expected)2

expected
(B.7)

The statistic has degrees of freedom equal to the
number of rows minus one, times the number of
columns minus one. For a 2 × 2 table, the function
is mathematically equivalent to the z-formula from the
binomial probability in Eq. (B.3) (i.e.,χ2 = z2, see
postscript to this chapter for a proof). For small sam-
ples, N < 50, we can also use a continuity correction,
as with the Z-formula, where we subtract 1/2, so the
Yates correction for continuity gives us this equation:

χ2 Yates =
∑ (|observed − expected| − 0.5)2

expected
(B.8)

Note that the absolute value must be taken before
the continuity correction is subtracted and that the sub-
traction is before squaring (this is incorrect in some
texts).

A simple form of the test for 2 × 2 matrices and a
computational formula are shown in Fig. B.2.

Some care is needed in applying chi-square tests,
as they are temptingly easy to perform and so widely
applicable to questions of cross-classification and asso-
ciation between variables. Tests using chi-square usu-
ally assume that each observation is independent, e.g.,
that each tally is a different person. It is not appropriate

A B

C D

G=A+B

H=C+D

 E=

A+C

F=

B+D
N=A+B+C+D

2 = N(AD–BC)2

(E)(F)(G)(H)

Example : A, not–A  test

Sample  Presented

Response

A

not–A

A Not–A

30 15

10 25

40 40

45

35

80

2 = 11.43 = 

80[(30)(25)–(10)(15)]2

     (40)(40)(45)(35)

Sample data:

Fig. B.2 Some uses of the chi-square test for 2 × 2 contin-
gency tables. The example shows the short cut formula applied
to the A, not-A test situation. The same analysis applies to the
same/different test. However, this is only appropriate if there are
different individuals in each cell, i.e., each tester only sees one
product. If the testers see both versions, then the McNemar test
is appropriate instead of the simple chi-square.

for related-samples data such as repeated observations
on the same person. The chi-square test is not robust if
the frequency counts in any cells are too small, usu-
ally defined as minimum count of five observations
(expected) as rule of thumb. Many statistical tests are
based upon the chi-square distributions, as we will see
in the section on rank order statistics.

B.3.3 Related Samples: The McNemar Test

The chi-square statistic is most often applied to inde-
pendent observations classified on categorical vari-
ables. However, many other statistical tests follow
a chi-square distribution as a test statistic. Repeated
observations of a group on a simple dichotomous
variable (two classes) can be tested for change or



Appendix B 495

difference using the McNemar test for the significance
of changes. This is a simple test well suited to before-
and-after experiments such as the effect of information
on attitude change. It can be applied to any situa-
tion where test panelists view two products and their
responses are categorized into two classes. For exam-
ple, we might want to see if the number of people
who report liking a product changes after the presen-
tation of some information such as nutritional content.
Stone and Sidel (1993) give an example of using the
McNemar test for changes to assess whether just-right
scales show a difference between two products.

The general form of the test classifies responses in a
two-by-two matrix, with the same response categories
as rows and columns. Since the test is designed to
examine changes or differences, the two cells with the
same values of row and column variables are ignored.
It is only the other two corners of the table where the
classification differs that we are interested in. Table B.2
gives example, with the frequency counts represented
by the letters “a” through “d.”

Table B.2 Example for McNemar calculations

Before information is presented

Number liking
the product

Number disliking
or neutral

After information is
presented

Number liking a b
Number disliking or

neutral
c d

The McNemar test calculates the following statistic:

χ2 = (|b − c| − 1)2

b + c
(B.9)

Note that the absolute value of the difference is
taken in the two cells where change occurs and that
the other two cells (a and d) are ignored. The obtained
value must exceed the critical value of chi-square for
df = 1, which is 3.84 for a two-tailed test and 2.71 for
a one-tailed test with a directional alternative hypothe-
sis. It is important that the expected cell frequencies
be larger than 5. Expected frequencies are given by
the sum of the two cells of interest, divided by two.
Table B.3 gives an example testing for a change in
preference response following a taste test among 60
consumers.

Table B.3 Sample data for McNemar test

Before tasting

Prefer product A Prefer product B

After tasting
Prefer product A 12 33
Prefer product B 8 7

And so our calculated value becomes:

χ2 = (|33 − 8| − 1)2

33 + 8
= 576/41 = 14.05

This is larger than the critical value of 3.84, so we
can reject the null hypothesis (of no change in prefer-
ence) and conclude that there was a change in prefer-
ence favoring Product A, as suggested by the frequency
counts. Although there was a 2-to-1 preference for B
before tasting (marginal totals of 40 versus 20), 33 of
those 40 people switched to product A while less than
half of those preferring product A beforehand switched
in the other direction. This disparity in changes drives
the significance of the McNemar calculations and
result. This test is applicable to a variety of situations,
such as the balanced A, not-A, and same/different tests
in which each panelist judges both kinds of trials and
thus the data are related observations. The generaliza-
tion of the McNemar test to a situation with related
observations and multiple rows and columns is the
Stuart test for two products or the Cochran-Mantel-
Haenzel test for more than two products.

B.3.4 The Stuart–Maxwell Test

A useful test for 3×3 matrices such as those generated
from just-about-right (JAR) scale data is the Stuart–
Maxwell test discussed in Chapter 14. For example,
we might have two products rated on JAR scales and
want to see if there is any difference in the distribution
of ratings. The data are collapsed into three categories,
those above just-right, those at or near just-right, and
those below the just-right point. Then the frequencies
in the off-diagonal cells are used to calculate a chi-
square variable. The cells with identical classifications
(the diagonal) are not used. The critical value is com-
pared to a chi-square value for two degrees of freedom,
which is 5.99. The calculations are shown in Fig. B.3
and a worked example in Fig. B.4.
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Stuart Maxwell Calculations

A B C

D
E

F

G H I

P1=(D+B)/2

P3=(H+F)/2

P2=(G+C)/2

R1

R2

R3

(=A+B+C)

C1 C2 C3
(=A+D+G)

ROW

TOTALS:

COLUMN TOTALS:

4.  Chi-square is calculated.  Note that the cell

averages (P1, P2, P3) are multiplied by the squared

differences (D1, D2, D3) of row and column totals

in which they DO NOT participate.

[(P1)(D3)2
 + (P2)(D2)2

 + (P3)(D1)2]

2[(P1)(P2) + (P2)(P3) + (P1)(P3)]
Chi-square =

1.  Entries A thorugh I are the cell totals.

2. Average the off-diagonal pairs, P1 - P3

3. Find differences of row and column totals:

D1=C1–R1    D2=C2–R2     D3=C3–R3

Fig. B.3 The calculations
involved in the
Stuart–Maxwell test as
applied to just-about-right
(JAR) scale data.

B.3.5 Beta-Binomial, Chance-Corrected

Beta-Binomial, and Dirichlet

Multinomial Analyses

These three models can be used for replicated data
from choice tasks. The beta-binomial is applicable
to replicated tests where there are two outcomes
(e.g., right and wrong answers) or two choices, as
in a preference test. The Dirichlet multinomial is
applicable to tests where there are more than two
choices, such as a preference test with the no pref-
erence option. The equations below describe how to
conduct tests for overdispersion, when panelists or
consumers are not acting like random events (like

flipping coins) but rather show consistent patterns of
response. Worked examples are not shown here but
can be found in Gacula et al. (2009) and Bi (2006).
Students are urged to look at those worked examples
before attempting these tests. Maximum likelihood
solutions are also given in those texts, using S-plus
programs.

In all the examples below, the letters n, r, and m

are used to refer to the number of panelists, replicates,
and choices, respectively. We think these are easier
to remember, but they are different than the notations
of Bi and Gacula who use n for replicates and k for
panelists (be forewarned). Lowercase x with subscripts
will refer to a single observation or count of choices
for a given panelist and/or replicate.
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35 12

10
10

8

2 5 5

P3=6.5

P2=7

60

28

12

25 50 25

ROW

TOTALS:

COLUMN TOTALS:

Example for Just–About–Right Scales:

Product X

Too weak

Just right

Too Strong

Too weak

Just right

Too Strong

P
ro

d
u

c
t Y

13

P1=(10+35)/2=22.5

This value is then compared to the critical value of chi–square for 2 df (=5.99).

As 21.7>5.99, there was a significant difference in the ratings of the two products.  

Inspection of the 3X3 matrix suggests that Product Y is too weak relative to Product X.

(D1)2
 = (60–25)2

 = 352
 = 1225

(D2)2
 = (28–50)2

 = –222
 = 484

(D3)2
 = (12–25)2

 = –132
 = 169

Chi–square =
22.5(169)    +    7(484)    +    6.5(1225)

2[22.5(7)    +    22.5(6.5)    +    (6.5(7)]
=21.7

Fig. B.4 A worked example
of the Stuart–Maxwell test.

B.3.5.1 Beta-Binomial

The beta-binomial model assumes that the perfor-
mance of panelists is distributed like a beta distribution
(Bi, 2006). This distribution has two parameters, but
they can be summarized in a statistic called gamma.
Gamma varies from zero to one and is a measure
of the degree to which there are systematic patterns
of response versus apparent random variation across
replications.

First we calculate a mean proportion and a variance
parameter, µ and S, respectively:

µ =
∑n

i=1 xi/r

n
(B.10)

where each xi is the number of correct judgments
summed across replicates for that panelist. So µ is the
mean of the number of correct replicates. S is defined
as:

S =
n
∑

i=1

(xi − µ)2 (B.11)

and then we can calculate our gamma:

γ = 1

r − 1

[

rS

µ(1 − µ)n
− 1

]

(B.12)

where r is the number of replicates, S is a measure of
dispersion, µ is the mean proportion correct for the
group (looking at each person’s individual proportions
as shown below), and n is the number of judges.
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To test whether the beta-binomial or binomial is a
better fit, we use the following Z-test, sometimes called
Tarone’s Z-test (Bi, 2006, p. 114):

Z = E − nr√
2nr(r − 1)

(B.13)

where E is another measure of dispersion,

E =
n
∑

i=1

(xi − rm)2

m(1 − m)
(B.14)

and m is the mean proportion correct

m =
n
∑

i=1

xi/nr (B.15)

If this Z is not significant, you have some justifica-
tion for combining replicates and looking at the total
proportion correct over n x r trials.

If we wish to test our obtained value of µ against
some null hypothesis value of µo, we can use another
simple Z-test:

Z = |µ − µo|√
Var(µ)

(B.16)

where Var(µ) is

Var(µ) = µ(1 − µ)

nr
[(r − 1)γ + 1] (B.17)

Using this general equation, most significance tests
can be done on any two-choice format such as forced
choice or preference tests. The appealing factor is that
the above equation has taken into account the overdis-
persion in the data. That is, the issue of whether there
are segments of panelists performing consistently ver-
sus apparent random performance from replicate to
replicate has been addressed.

B.3.5.2 The Chance-Corrected Beta-Binomial

Some authors have argued that the beta-binomial is
unrealistic, because there is a lower limit on the popu-
lation mean performance that is dictated by the chance
performance level (see Bi, 2006, for a whole chapter on
this approach). This is intuitively appealing, although

some published comparisons of the two models show
only modest differences with real data sets.

Let p be the mean proportion correct, now we can
defined a chance-corrected mean proportion as

µ̂ = p − C

1 − C
(B.18)

where C is the chance proportion correct, e.g., 1/3 for
the triangle test or the chance-expected preference in
a two product test of 1/2. Now we need our variance
parameter, S,

S =
n
∑

i=1

(pi − µ)2 (B.19)

where pi is the proportion correct for panelist i. Now
we need a new and slightly more complex estimate of
gamma as

γ = 1

(r − 1)(p − C)

[

rS

n(1 − p)
− p

]

(B.20)

The same Z-test still applies for testing again a
null proportion, µo, but now we need a new variance
calculation, actually two of them:

Var(µ̂) = Var(p)

(1 − C)2
(B.21)

and

Var(p) = (1 − C)2(1 − µ̂)

[

(r − 1)µ̂γ + C

1 − C
+ µ̂

]

/nr

(B.22)
(whew! But now we have worked gamma back into

the picture).

B.3.5.3 The Dirichlet-Multinomial Model

This model extends the reasoning of the beta-binomial
approach to the situation where there are more than two
alternatives (Gacula et al., 2009). In its simplest form,
it can be used to test against some fixed proportions
like an equal one-third split in a preferences test or a
35/30/35% split if one uses the commonly observed
no preference rate from identical samples of 30% (see
Chapter 13).



Appendix B 499

Suppose we have three options: “prefer product A”,
“no preference,” and “prefer product B.” Let X1 be the
sum for product A over all choices, X2 be the sum of
no preference, and X3 the sum for product B. Let there
be n panelists, r replicates, and m choices (in this case
three). We have N total observations (= n × r). The
first thing we can do is try to see if there is a pat-
tern of responding analogous to a nonzero gamma in
Tarone’s Z-test. This is yet another Z-statistic, given by
the following formula:

Z =
N

m
∑

j=1
1/Xj

n
∑

i=1
xij(xij − 1) − [nr(r − 1)]

√
2(m − 1)[nr(r − 1)]

(B.23)

where xij is the total number of that choice, j, for
panelist i, multiplied by xij–1, then summed across
all panelists, then weighted by 1/Xj. Repeat for each
choice, j.

We can also do a simple test against expected pro-
portions, based on a weighted chi-square with 2df. But
first we need the heterogeneity parameter, C, which is
analogous to 1-gamma in the beta-binomial model. Let
pj = Xj/N, where we just convert the total for each
choice to the corresponding proportion:

C = r

(n − 1)(m − 1)

m
∑

j=1

1/pj

n
∑

j=1

(
xij

m
− pj)

2 (B.24)

Once we have our correction factor, C, for panelist
“patterns” or overdispersion, we can perform a simple
χ2 test as follows:

χ2 = nr

C

m
∑

j=1

(pj − pexp)2

pexp
(B.25)

where pj is again our observed proportion for each
choice, and pexp is the proportion we expect based
on our theory. This is tested against a χ2 distribution
with m–1 degrees of freedom. A significant χ2 would
indicate a deviation from our expected proportions.
Such a test could also be applied to just-about-right
data if we have some basis for assuming some rea-
sonable or predicted distribution of results in the JAR
categories.

B.4 Useful Rank Order Tests

B.4.1 The Sign Test

A simple nonparametric test of difference with paired
data is the sign test. The simplest case of ranking is
the paired comparison, when only two items are to be
ranked as to which is stronger or which is preferred.
The sign test based on comparisons between two sam-
ples is based on binomial statistics. The sign test can
also be used with any data such as scaled responses that
have at least ordinal properties. Obviously, in cases of
no difference, we expect the number of rankings in one
direction (for example, product A over B) to equal the
number of rankings in the opposite direction (product
B over A) so the null probability of 1/2 can be used.

In a two-sample case, when every panelist scores
both products, the scores can be paired. Probabilities
can be examined from the binomial tables, from the
critical value tables used for discrimination tests (for
one-tailed hypotheses) with p = 1/2 or from the paired
preference tables (for two tailed) (Roessler et al.,
1978). The sign test is the nonparametric parallel of
the dependent groups or paired t-test. Unlike the t-test,
we do not need to fulfill the assumption of normally
distributed data. With skewed data, the t-test can be
misleading since high outliers will exert undue lever-
age on the value of the mean. Since the sign test only
looks for consistency in the direction of comparisons,
the skew or outliers are not so influential. There are
also several nonparametric counterparts to the indepen-
dent groups t-test. One of these, the Mann–Whitney
U-test, is shown below.

Table B.4 gives an example of the sign test. We sim-
ply count the direction of paired scores and assume a

Table B.4 Data for sign test example

Panelist
Score,
Product A

Score,
Product B Sign, for B > A

1 3 5 +
2 7 9 +
3 4 6 +
4 5 3 –
5 6 6 O
6 8 7 −
7 4 6 +
8 3 7 +
9 7 9 +

10 6 9 +
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50/50 split under the null hypothesis. In this example,
panelists scored two products on a rating scale (every
panelist tasted both products) so the data are paired.
Plus or minus “signs” are given to each pairing for
whether A is greater than B or B is greater than A,
respectively, hence the name of the test. Ties are omit-
ted, losing some statistical power, so the test works best
at detecting differences when there are not too many
ties.

Count the number of +’s (= 7), and omit ties. We
can then find the probability of (at least) 7/9 in a
two-tailed binomial probability table, which is 0.09.
Although this is not enough evidence to reject the null,
it might warrant further testing, as there seems to be a
consistent trend.

B.4.2 The Mann–Whitney U-Test

A parallel test to the independent groups t-test is the
Mann–Whitney U-test. It is almost as easy to calculate
as the sign test and thus stands as a good alternative
to the independent groups t-test when the assumptions
of normal distributions and equal variance are doubt-
ful. The test can be used for any situation in which
two groups of data are to be compared and the level
of measurement is at least ordinal. For example, two
manufacturing sites or production lines might send rep-
resentative samples of soup to a sensory group for
evaluation. Mean intensity scores for saltiness might
be generated for each sample and then the two sets
of scores would be compared. If no difference were
present between the two sites, then rankings of the
combined scores would find the two sites to be inter-
spersed. On the other hand, if one site was producing
consistently more salty soup than another, then that site
should move toward higher rankings and the other site
toward lower rankings. The U-test is sensitive to just
such patterns of overlap versus separation in a set of
combined ranks.

The first step is to rank the combined data and then
find the sum of the ranks for the smaller of the two
groups. For a small experiment, with the larger of
the two groups having less than 20 observations, the
following formula should be used:

U = n1n2 + [n1(n1 + 1)/2] + R1 (B.26)

where n1 is the smaller of the two samples, n2 is the
larger of the two samples, and R1 is the sum of the
ranks assigned to the smaller group. The next step is
to test whether U has the correct form, since it may
be high or low depending upon the trends for the two
groups. The smaller of the two forms is desired. If U

is larger than n1n2/2, it is actually a value called U′

and must be transformed to U by the formula, U =
n1n2–U′.

Critical values for U are shown in Table E. Note that
the obtained value for U must be equal to or smaller

than the tabled value in order to reject the null, as
opposed to other tabled statistics where the obtained
value must exceed a tabled value . If the sample size
is very large, with n2 greater than 20, the U statistic
can be converted to a z-score by the following formula,
analogous to the difference between means divided by
a standard deviation:

z = [U − (n1n2)/2]√
[n1n2(n1 + n2 + 1)/12]

(B.27)

If there are ties in the data, the standard devia-
tion(denominator) in the above formula needs adjust-
ment as follows:

SD =
√

[n1n2/(N(N − 1))][((N3 − N)/12) − �T]
(B.28)

where N = n1+n2 and T = (t3–t)/12 where t is the
number of observations tied for a given rank. This
demands an extra housekeeping step where ties must
be counted and the value for T computed and summed
before Z can be found.

A worked example for a small sample is shown next.
In our example of salty scores for soups, let us assume
we have the following panel means (Table B.5).

So there were 6 samples (= n2) taken from site A
and 5 (= n1) from site D. The ranking of the 11 scores
would look like this (Table B.6).

Table B.5 Data for Mann–Whitney U-test

Site A Site D

4.7 8.2
3.5 6.6
4.3 4.1
5.2 5.5
4.2 4.4
2.7
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Table B.6 Ranked data for Mann–Whitney U-test

Score Rank Site

8.2 1 D
6.6 2 D
5.5 3 D
5.2 4 A
4.7 5 A
4.4 6 D
4.3 7 A
4.2 8 A
4.1 9 D
3.5 10 A
2.7 11 A

R1 is then the sum of the ranks for site D (= 1 + 2 +
3 + 6 + 9 = 21). Plugging into the formula we find that
U = 30 + 15–21 = 24.

Next, we check to make sure we have U and not U′

(the smaller of the two is needed). Since U is larger
than n1n2/2 = 15, we did in fact obtain U′, so we
subtract U from 30 giving a value of 6. This is then
compared to the maximum critical value in Table E.
For these sample sizes, the U value must be three or
smaller to reject the null at a two-tailed probability of
0.05, so there is not enough evidence to reject the null
in this comparison. Inspection of the rankings shows
a lot of overlap in the two sites, in spite of the gen-
erally higher scores at site D. The independent groups
t-test on these data also give a p value higher than 0.05,
so there is agreement in this case. Siegel (1956) states
that the Mann–Whitney test is about 95% as power-
ful as the corresponding t-test. There are many other
nonparametric tests for independent samples, but the
Mann–Whitney U-test is commonly used and simple
to calculate.

B.4.3 Ranked Data with More Than Two

Samples, Friedman and Kramer

Tests

Two tests are commonly used in sensory evaluation for
ranked products where there are three or more items
being compared. The Friedman “analysis of variance”
on ranked data is a relatively powerful test that can be
applied to any data set where all products are viewed
by all panelists, that is, there is a complete ranking by
each participant. The data set for the Friedman test thus
takes the same form as a one-way analysis of variance
with products as columns and panelists as rows, except

that ranks are used instead of raw scores. It is also
applicable to any data set where the rows form a set of
matched observations that can be converted to ranks.
The Friedman test is very sensitive to a pattern of con-
sistent rank orders. The calculated statistic is compared
to a chi-square value that depends upon the number of
products and the number of panelists. The second test
that is common in sensory work is Kramer’s rank sum
test. Critical values for significance for this test were
recalculated and published by Basker (1988) and by
Newell and MacFarlane (1987) (see Table J). A varia-
tion of the Friedman test is the rank test of Page (1963),
which is a little more powerful than the Friedman test,
but is only used when you are testing against one spe-
cific predicted ranking order. Each of these methods is
illustrated with an example below.

Example of the Friedman test: Twenty consumers
are asked to rank three flavor submissions for their
appropriateness in a chocolate/malted milk drink. We
would like to know if there is a significant overall dif-
ference among the candidates as ranked. The Friedman
test constructs a chi-square statistic based on column
totals, Tj, in each of the J columns. For a matrix of K

rows and J columns, we compared the obtained value
to a chi-square value of J–1 degrees of freedom. Here
is the general formula:

χ2 =

⎧

⎨

⎩

12

[K(J)(J + 1)]

⎡

⎣

J
∑

j=1

T2
j

⎤

⎦

⎫

⎬

⎭

− 3 K(J + 1)

(B.29)
Table B.7 shows the data and column totals.
So the calculations proceed as follows:

χ2 =
{

12

[20(3)(4)]
[(43.5)2 + (46.5)2 + (30)2]

}

− 3(20)(4) = 7.725

In the chi-square table for J–1 degrees of freedom,
in this case df = 2, the critical value is 5.99. Because
our obtained value of 7.7 exceeds this, we can reject
the null. This makes sense since product C had a
predominance of first rankings. Note that in order to
compare individual samples, we require another test.
The sign test is appropriate, although if many pairs
of samples are compared, then the alpha level needs
to be reduced to compensate for the experiment-wise
increase in risk. Another approach is to use the least-
significant-difference (LSD) test for ranked data, as
follows:

LSD = 1.96

√

K(J)(J + 1)

6
(B.30)
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Table B.7 Data for Friedman test on ranks

Ranks

Panelist Product A Product B Product C

1 1 3 2
2 2 3 1
3 1 3 2
4 1 2 3
5 3 1 2
6 2 3 1
7 3 2 1
8 1 3 2
9 3 1 2

10 3 1 2
11 2 3 1
12 2 3 1
13 3 2 1
14 2 3 1
15 2.5 2.5 1
16 3 2 1
17 3 2 1
18 2 3 1
19 3 2 1
20 1 2 3
Sum (column totals, Tj) 43.5 46.5 30

for J items ranked by K panelists. Items whose rank
sums differ by more than this amount may be consid-
ered significantly different.

An example of the (Kramer) Rank Sum test. We
can also use the rank sum test directly on the previ-
ous data set to compare products. We merely need the
differences in the rank sums (column totals):

Differences: A versus B = 3.0
B versus C = 16.5
A versus C = 13.5

Comparing to the minimum critical differences at
p < 0.05, (= 14.8, see J), there is a significant differ-
ence between B and C, but not any other pair. What
about the comparison of A versus C, where the differ-
ence was close to the critical value? A simple sign test
between A and C would have yielded a 15 to 5 split,
which is statistically significant (two-tailed p = 0.042).
In this case when the rank sum test was so close to the
cutoff value, it would be wise to examine the data with
an additional test.

B.4.4 Rank Order Correlation

The common correlation coefficient, r, is also
known as the Pearson product–moment correlation
coefficient. It is a useful tool for estimating the degree

of linear association between two variables. However,
it is very sensitive to outliers in the data. If the data
do not achieve an interval scale of measurement, or
have a high degree of skew or outliers, the nonparamet-
ric alternative given by Spearman’s formula should be
considered. The Spearman rank order correlation was
one of the first to be developed (Siegel, 1956) and is
commonly signified by the Greek letter, ρ (rho). The
statistic asks whether the two variables line up in simi-
lar rankings. Tables of significance indicate whether an
association exists based on these rankings.

The data must first be converted to ranks, and a dif-
ference score calculated for each pair of ranks, similar
to the way differences are computed in the paired t-
test. These differences scores, d, are then squared and
summed. The formula for rho is as follows:

ρ = 6
∑

d2

(N3 − N)
(B.31)

Thus the value for rho is easy to calculate unless
there are a high proportion of ties. If greater than one-
fourth of the data are tied, an adjustment should be
made. The formula is very robust in the case of a few
ties, with changes in rho usually only in the third dec-
imal place. If there are many ties, a correction must be
calculated for each tied case based on (t3–t)/12 where t

is the number of items tied at a given rank. These val-
ues are then summed for all the ties for each variable x

and y, to give values Tx and Ty. rho is then calculated
as follows:

ρ =
∑

x2 +
∑

y2 −
∑

d2

2
√

∑

x2
∑

y2
(B.32)

and

∑

x2 = [(N3 − N)/12] −
∑

Tx and similarly
∑

y2 = [(N3 − N)/12] −
∑

Ty

(B.33)
For example, if there are two cases for X in which

two items are tied and one case in which three are tied,
the Tx becomes the sum:
∑

Tx = (23 − 2)/12 + (23 − 2)/12 + (33 − 3)/12 = 3

and this quantity is then used as �Tx in Eq. (B.17).
Suppose we wished to examine whether there was

a relationship between mean chewiness scores for
a set of products evaluated by a texture panel and
mean scores on scale for hardness. Perhaps we suspect



Appendix B 503

that the same underlying process variable gives rise
to textural problems observable in both mastication
and initial bite. Mean panel scores over ten products
might look like Table B.8, with the calculation of rho
following:

Table B.8 Data and calculations for rank order correlation

Product Chewiness Rank Hardness Rank Difference D2

A 4.3 7 5.0 6 1 1
B 5.6 8 6.1 8 0 0
C 5.8 9 6.4 9 0 0
D 3.2 4 4.4 4 0 0
E 1.1 1 2.2 1 0 0
F 8.2 10 9.5 10 0 0
G 3.4 5 4.7 5 0 0
H 2.2 3 3.4 2 1 1
I 2.1 2 5.5 7 5 25
J 3.7 6 4.3 3 3 9

The sum of the D2 values is 36, so rho computes to
the following:

1 − 6(36)/(1, 000 − 10) = 1 − 0.218 = 0.782

This is a moderately high degree of association, sig-
nificant at the 0.01 level. This is obvious from the good
agreement in rankings, with the exception of product I
and J. Note that product F is a high outlier on both
scales. This inflates the Pearson correlation to 0.839,
as it is sensitive to the leverage exerted by this point
that lies away from the rest of the data set.

B.5 Conclusions

Some of the nonparametric parallels to common sta-
tistical tests are shown in Table B.1. Further examples
can be found in statistical texts such as Siegel (1956).
The nonparametric statistical tests are valuable to the
sensory scientist for several reasons and it should be
part of a complete sensory training program to become
familiar with the most commonly used tests. Also, the
binomial distribution forms the basis for the choice
tests commonly used in discrimination testing, so it is
important to know how this distribution is derived and
when it approximates normality. The chi-square statis-
tics are useful for a wide range of problems involving
categorical variables and as a nonparametric measure
of association. They also form the basis for other sta-
tistical tests such as the Friedman and McNemar tests.
Nonparametric tests may be useful for scaled data

where the interval-level assumptions are in doubt or
for any data set when assumptions about normality of
the data are questionable. In the case of deviations from
the assumptions of a parametric test, confirmation with
a nonparametric test may lend more credence to the
significance of a result (Table B.9).

Table B.9 Parametric and nonparametric statistical tests

Purpose Parametric test Nonparametric parallel

Compare two
products
(matched data)

Paired (dependent)
t-test on means

Sign test

Compare two
products
(separate
groups)

Independent groups
t-test on means

Mann–Whitney U-test

Compare
multiple
products
(complete
block design)

One-way analysis of
variance with
repeated measures

Friedman test or rank
sum test

Test association
of two
variables

Pearson
(product–moment)
correlation
coefficient

Spearman rank order
correlation

Nonparametric tests are performed on ranked data instead of raw
numbers.
Other nonparametric tests are available for each purpose, the
listed ones are common.

B.6 Postscript

B.6.1 Proof showing equivalence

of binomial approximation Z-test

and χ
2 test for difference

of proportions

Recall that

χ2 =
∑ (observed − expected)2

expected
(B.34)

and

z = x/N − p√
pq/N

(B.35)

where

X = number correct,
N = total judgments or panelists,
p = chance proportion,
q = 1–p.
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Note that continuity corrections have been omitted

for simplicity.

Alternative Z-formula (multiply Eq. (B.35) by N/N)

z = x − Np√
pqN

(B.36)

Although the χ2 distribution changes shape with
different df, the general relationship of the χ2 distri-
bution to the Z-distribution is that χ2 at 1 df is a square
of Z. Note that critical χ2 at 1 df = 3.84 = 1.962 =
Z0.95

2:

z2 = (x − Np)2

pqN
(B.37)

and

z2 = x2 − 2xNp + N2p2

pqN
(B.38)

The proof will now proceed to show the equivalence
of Eq. (B.38) toχ2.

Looking at any forced choice test, the χ2 approach
requires these frequency counts:

Correct judgments Incorrect

Observed X N–X

Expected Np Nq

χ2 = (x − Np)2

Np
+ [(N − x) − Nq]2

Nq
(B.39)

Simplifying (N–X)–Nq to N(1–q)–X
then since p = 1–q

(N–X)–Nq = Np–X

Thus we can recast Eq. (B.39) as

χ2 = (x − Np)2

Np
+ (Np − X)2

Nq
(B.40)

and expanding the squared terms

χ2 = (x2 − 2xNp + N2p2)

Np
+ (x2 − 2xNp + N2p2)

Nq
(B.41)

To place them over a common denominator of Npq,
we will multiple the left expression by q/q and the right
expression by p/p giving

χ2 = (qx2 − 2xNpq + qN2p2)

Npq
+ (px2 − 2xNpp + pN2p2)

Npq
(B.42)

Collecting common terms

χ2 = [(q + p)x2 − (q + p)2xNp + (q + p)N2p2]/Npq

(B.43)
Recall that q + p = 1, so Eq. (B.43) simplifies to

χ2 = [(1)x2 − (1)2xNp + (1)N2p2]/Npq (B.44)

and dropping the value 1 in each of the three terms in
the numerator gives Eq. (B.38), the formula for Z2:

z2 = x2 − 2xNp + N2p2

pqN
= χ2

Recall that the continuity correction was omitted for
simplicity of the calculations. The equivalence holds if

and only if the continuity correction is either omitted

from both analyses or included in both analyses. If it
is omitted from one analysis but not the other, the one
from which it is omitted will stand a better chance of
attaining significance.
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Analysis of Variance
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For tests with more than two products and data that
consist of attribute scale values, analysis of variance
followed by planned comparisons of means is a com-
mon and useful statistical method. Analysis of variance
and related tests are illustrated in this chapter, with
worked examples.

C.1 Introduction

C.1.1 Overview

Analysis of variance is the most common statistical test
performed in descriptive analysis and many other sen-
sory tests where more than two products are compared
using scaled responses. It provides a very sensitive tool
for seeing whether treatment variables such as changes
in ingredients, processes, or packaging had an effect
on the sensory properties of products. It is a method
for finding variation that can be attributed to some
specific cause, against the background of existing vari-
ation due to other perhaps unknown or uncontrolled
causes. These other unexplained causes produce the
experimental error or noise in the data.

The following sections illustrate some of the basic
ideas in analysis of variance and provide some worked
examples. As this guide is meant for students and
practitioners, some theory and development of mod-
els has been left out. However, the reader can refer
to the statistics texts such as Winer (1971), Hays
(1973), O’Mahony (1986), and Gacula et al. (2009).
A particularly useful book is the Analysis of Variance

for Sensory Data, by Lea et al. (1998), Lundahl and
McDaniel (1988). We have tried to use the same
nomenclature as O’Mahony (1986) since that work is

507
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already familiar to many workers in sensory evaluation
and of Winer (1971), a classic treatise on ANOVA for
behavioral data.

C.1.2 Basic Analysis of Variance

Analysis of variance is a way to examine differences
among multiple treatments or levels and to compare
several means at the same time. Some experiments
have many levels of an ingredient or process variable.
Factors in ANOVA terminology mean independent
variables, the variables that you manipulate, i.e., the
variables under your direct control in an experiment.
Analysis of variance estimates the variance (squared
deviations) attributable to each factor. This can be
thought of as the degree to which each factor or vari-
able moves the data away from the grand or overall
mean of the data set. It also estimates the variance due
to error. Error can be thought of as other remaining
variation not attributable to the factors we manipulate.

In an analysis of variance we construct a ratio of the
factor variance to the error variance. This ratio follows
the distribution of an F-statistic. A significant F-ratio
for a given factor implies that at least one of the indi-
vidual comparisons among means is significant for that
factor. We use a model, in which there is some overall
mean for the data and then variation around that value.
The means from each of our treatment levels and their
differences from this grand mean represent a way to
measure the effect of those treatments. However, we
have to view those differences in the light of the ran-
dom variation that is present in our experiment. So,
like the t- or z-statistic, the F-ratio is a ratio of signal-
to-noise. In a simple two product experiment with one
group of people testing each product, the F statistic is
simply the square of the t-value, so there is an obvious
relationship between the F- and t-statistics.

The statistical distributions for F indicate whether
the ratio we obtain in the experiment is one we would
expect only rarely by the operation of chance. Thus we
apply the usual statistical reasoning when deciding to
accept or reject a null hypothesis. The null hypothesis
for ANOVA is usually that the means for the treat-
ment levels would all be equal in the parent population.
Analysis of variance is thus based on a model, a linear
model, that says that any single data point or observa-
tion is result of several influences—the grand mean,
plus (or minus) whatever deviations are caused by

each treatment factor, plus the interactions of treatment
factors, plus error.

C.1.3 Rationale

The worked example below will examine this in more
detail, but first a look at some of the rationale and
derivation. The rationale proceeds as follows:

(a) We wish to know whether there are any significant
differences among multiple means, relative to the
error in our experimental measures.

(b) To do this, we examine variance (squared standard
deviations).

(c) We look at the variance of our sample means from
the overall (“grand”) mean of all of our data. This
is sometimes called the variance due to “treat-
ments.” Treatments are just the particular levels of
our independent variable.

(d) This variance is examined relative to the vari-
ance within treatments, i.e. the unexplained error
or variability not attributed to the treatments
themselves.

The test is done by calculating a ratio. When the
null is true (no difference among product means) it is
distributed as an F-statistic. The F-distribution looks
like a t-distribution squared (and is in the same family
as the chi square distribution). Its exact shape changes
and depends upon the number of degrees of freedom
associated with our treatments or products (the numer-
ator of the ratio) and the degrees of freedom associated
with our error (the denominator of the ratio).

Here is a mathematical derivation and a similar but
more detailed explanation can be found in O’Mahony
(1986). Variance (the square of a standard deviation) is
noted by S2, x represents each score, and M is the mean
of x scores or (�x)/N. Variance is the mean difference
of each score from the mean, given by

S2 =
∑N

i=1 (Xi − M)2

N − 1
(C.1)

and computationally by

S2 =

∑N
i=1 X2

i − (�X)

N

2

N − 1
(C.2)
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This expression can be thought of as the “mean
squared deviation.” For our experimental treatments,
we can speak of the means squared due to treatments,
and for error, we can speak of the “mean squared
error.” The ratios of these two quantities give us the
F-ratio, which we compare to the expected distribution
of the F-statistic(under a true null). Note that in the
computational formula for S2, we accumulate sums of
squared observations. Sums of squares form the basis
of the calculations in ANOVA.

To calculate the sums of squares, it is helpful to
think about partitioning the total variation.

Total variance is partitioned into variance between
treatments and variance within treatments (or error).
This can also be done for the sums of squares (SS):

SStotal = SSbetween + SSwithin (C.3)

This is useful since SSwithin (“error”) is tough to
calculate—it is like a pooled standard deviation over
many treatments. However, SStotal is easy! It is simply
the numerator of our overall variance or

SStotal =
N
∑

i=1

X2
i − (�X)

N

2

over all x data points.

(C.4a)

So we usually estimate SSwithin (error) as SStotal

minus SSbetween. A mathematical proof of how the
SS can be partitioned like this is found in O’Mahony
(1986), appendix C, p. 379.

C.1.4 Calculations

Based on these ideas, here is the calculation in a sim-
ple one-way ANOVA. “One-way” merely signifies that
there is only one treatment variable or factor of inter-
est. Remember, each factor may have multiple levels,
which are usually the different versions of the prod-
uct to be compared. In the following examples, we
will talk in terms of products and sensory judges or
panelists.

Let T = a total (It is useful to work in sums)
let a = number of products (or treatments)
let b = number of panelists per treatment.
The product, ab = N.

SStotal =
N
∑

i=1

X2
i − T

N

2
(C.4b)

T without subscript is the grand total of all data or
simply �x, over all data points.

O’Mahony calls T2/N a “correction factor” or “C,”
a useful convention:

SSbetween = (1/b)
∑

T2
a − T2/N (C.5)

where the “a” subscript refers to different products.
Now we need the error sums of squares, which is
simply from

SSwithin = SStotal − SSbetween (C.6)

The next step is to divide each SS by its associ-
ated degrees of freedom to get our mean squares. We
have mean squares associated with products and mean
squares associated with error. In the final step, we use
the ratio of these two estimates of variance to form our
F-ratio.

C.1.5 A Worked Example

Our experimental question is did the treatment we used
on the products make any difference? In other words,
are these means likely to represent real differences, or
just the effects of chance variation? The ANOVA will
help address these questions. The sample data set is
shown in Table C.1.

Table C.1 Data set for simple one-way ANOVA

Panelist Product A Product B Product C

1 6 8 9
2 6 7 8
3 7 10 12
4 5 5 5
5 6 5 7
6 5 6 9
7 7 7 8
8 4 6 8
9 7 6 5

10 8 8 8
Totals 61 68 79
Means 6.1 6.8 7.9
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First, column totals are calculated and a grand total,
as well as the correction factor (“C”) and the sum of
the squared data points.

Sums Ta = 61 Tb = 68 Tc = 79
(Product A) (Product B) (Product C)

Grand T (sum of all data) = 208
T2/N = (208)2/30 = 1442.13 (O’Mahony’s “C ” factor)
�(x2) = 1530 (sum of all squared scores)

Given this information, the sums of squares can be
calculated as follows:

SStotal =1530–1442.13=87.87
SS due to treatments (“between”) = (Ta

2 + Tb
2 +

Tc
2)/ b – T2/N

(remember b is the number of panelists)
= (612 + 682 + 792)/10–1442.13 = 16.47

Next, we need to find the degrees of freedom.
The total degrees of freedom in the simple one-way
ANOVA are the number of observation minus one
(30–1=29). The degrees of freedom for the treatment
factor are the number of levels minus one. The degrees
of freedom for error are the total degrees of freedom
minus the treatment (“between”) df.

df total = N–1 =29
df for treatments = 3–1 = 2
df for error = dftotal–dfbetween = 29–2 = 27

Finally, a “source table” is constructed to show the
calculations of the mean squares (our variance esti-
mates) for each factor, and then to construct the F-ratio.
The mean squares are the SS divided by the appropri-
ate degrees of freedom (MS=SS/df). Table C.2 is the
source table.

Table C.2 Source table for first ANOVA

Source of variance SS df Mean squares F

Total 87.867 (29)
Between 16.467 2 8.233 3.113
Within (error) 71.4 27 2.644

A value of F = 3.119 at 2 and 27 degrees of freedom
is just short of significance at p = 0.06. Most statistical
software programs will now give an exact p-value for
the F-ratio and degrees of freedom. If the ANOVA is

done “by hand” then the F-ratio should be compared to
the critical value found in a table such as Table D. We
see from this table that the critical value for 2 and 27 df
is about 3.35 (we are interpolating here between 2, 26
and 2, 28 df), and our obtained value did not exceed
this critical value.

C.2 Analysis of Variance from Complete

Block Designs

C.2.1 Concepts and Partitioning Panelist

Variance from Error

The complete block analysis of variance for sensory
data occurs when all panelists view all products, or
all levels of our treatment variable (Gacula and Singh,
1984). This type of design is also called the “repeated
measures” analysis of variance in the behavioral sci-
ences, when the experimental subject participates in
all conditions (O’Mahony, 1986; Winer, 1971). Do not
confuse the statistical term, “repeated measures” with
replication. The design is analogous to the dependent
or paired observations t-test, but considers multiple
levels of a variable, not just two. Like the dependent
t-test, it has added sensitivity since the variation due to
panelist differences can be partitioned from the analy-
sis, in this case taken out of the error term. When the
error term is reduced, the F-ratio due to the treatment
or variable of interest will be larger, so it is “easier” to
find statistical significance. This is especially useful in
sensory evaluation, where panelists, even well trained
ones, may use different parts of the scale or they may
simply have different sensitivities to the attribute being
evaluated. When all panelists rank order products the
same, the complete block ANOVA will usually pro-
duce a significant difference between products, in spite
of panelists using different ranges of the scale.

The example below shows the kind of situation
where a complete block analysis, like the dependent
t-test, will have value in finding significant differ-
ences. In this example, two ratings by two subjects
are shown in Fig. C.1. The differences between prod-
ucts, also called “within subject differences” are in
the same direction and of the same magnitude. The
“within-subject” effects in repeated measures termi-
nology corresponds to between-treatment effects in
simple ANOVA terminology. (This can be confusing.)
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Panelist vs. product variation

Line scale ratings for two products, A and B, 
by two panelists, Judge 1 and Judge 2.

(Ratings indicated by this mark: / )

weak strong

/

weak strong

/

Product A

Product B

Judge 1 

weak strong

/

weak strong

/

Product A

Product B

Judge 2 

Differences between products
(“within subjects”)

Differences between subjects (judges)

Fig. C.1 Two hypothetical panelists rating two products. They
agree on the rank order of the products and the approximate
sensory difference, but use different parts of the scale. The dif-
ferences can be separated into the between-products (within
panelist) differences and the difference between the panelists in
the overall part of the scale they have used. The dependent t-test
separates these two sources of difference by converting the raw
scores to difference scores (between products) in the analysis.
In a complete block design when panelist variation can be parti-
tioned, the ANOVA provides a more sensitive comparison than
leaving the inter-individual difference in the error term.

In this example, the difference between panelists in
the part of the scale they use is quite large. In any
conventional analysis, such variation between people
would swamp the product effect by creating a large
error term. However, the panelist differences can be
pulled out of the error term in a complete block design,
i.e. when every panelist evaluated all of the products in
the experiment.

To see the advantage of this analysis, we will show
examples with and without the partitioning of pan-
elist variance. Here is a worked example, first without
partitioning panelist effects or as if there were three
independent groups evaluating each product. This is
a simple one-way ANOVA as shown above. Three
products are rated. They might differ in having three
levels of an ingredient. The sample data set is shown
in Table C.3, with one small change from the first
example of simple ANOVA. Note that panelist #10 has

Table C.3 Data set for the complete block design

Panelist Product A Product B Product C

1 6 8 9
2 6 7 8
3 7 10 12
4 5 5 5
5 6 5 7
6 5 6 9
7 7 7 8
8 4 6 8
9 7 6 5

10 1 2 3
Totals 54 62 74
Means 5.4 6.2 7.4

now produced the values 1, 2, and 3 instead of 8, 8, and
8. The panelist is no longer a non-discriminator, but is
probably insensitive.

Here is how the one-way ANOVA would look:

Sums Ta = 54 Tb = 62 Tc = 74

Grand T (sum of all data points)= 190
T2/N = (190)2/30 = 1203.3 (O’Mahony’s “C” factor)
�(x2) = 1352
SStotal =1352–1203.3=148.7
SS due to products = (Ta

2 +Tb
2 + Tc

2)/ b – T2/N
(remember b here refers to the number of panelists)
= (542 + 622 + 742)/10–1203.3 = 20.3
SSerror = SSTotal–SSProducts = 148.7–20.3 = 128.4

Table C.4 shows the source table.

Table C.4 Source table for complete block ANOVA

Source of variance SS df Mean squares F

Total 148.67 (29)
Between 20.26 2 10.13 2.13
Within (error) 128.4 27 4.76

For 2 and 27 degrees of freedom, this F gives us
a p = 0.14 (p > 0.05, not significant). The critical
F-ratio for 2 and 27 degrees of freedom is about 3.35
(interpolated from values in Table D).

Now, here is the difference in the complete block
ANOVA. An additional computation requires row
sums and sums of squares for the row variable, which
is our panelist effect as shown in Table C.3. In the one-
way analysis, the data set was analyzed as if there were
30 different people contributing the ratings. Actually,
there were ten panelists who viewed all products. This
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Table C.5 Data set for the complete block design showing panelist calculations (rows)

Panelist Product A Product B Product C �panelist (�panelist)2

1 6 8 9 23 529
2 6 7 8 21 441
3 7 10 12 19 841
4 5 5 5 15 225
5 6 5 7 18 324
6 5 6 9 20 400
7 7 7 8 22 484
8 4 6 8 18 324
9 7 6 5 18 324

10 8 8 8 6 36
Totals 61 68 79 3, 928

fits the requirement for a complete block design. We
can thus further partition the error term into an effect
due to panelists (“between-subjects” effect) and resid-
ual error. To do this, we need to estimate the effect due
to inter-panelist differences. Take the sum across rows
(to get panelist sums), then square them. Sum again
down the new column as shown in Table C.5. The pan-
elist sum of squares is analogous to the product sum of
squares, but now we are working across rows instead
of down the columns:

SSpanelists =
∑

(

∑

panelist
)2

/3−C = 3928/3 − 1203.3 = 106

“C ”, once again is the “correction factor” or the
grand total squared, divided by the number of obser-
vations. In making this calculation, we have used nine
more degrees of freedom from the total, so these are no
longer available to our estimate of error df below.

A new sum of squares for residual error can now be
calculated:

SSerror = SStotal − SSproducts − SSpanelists = 148.7 − 20.3 − 106 = 22.36

and the mean square for error (MS error) is
SSerror/18 = 22.36/18 = 1.24

Note that there are now only 18 degrees of free-
dom left for the error since we took another nine to
estimate the panelists’ variance. However, the mean
square error has shrunk from 4.76 to 1.24. Finally, a
new F-ratio for the product effect (“within subjects”)
having removed the between-subjects effect from the
error term as shown in our source table, Table C.6.

So the new F = MSproducts/MSerror = 10.15/1.24
= 8.17

At 2 and 18 degrees of freedom, this is significant at
p = 0.003, and it is now bigger than the critical F for 2
and 18 degrees of freedom (Fcrit = 3.55)

Table C.6 Source table for two-way ANOVA

Source of variance SS df Mean squares F

Total 148.7 (29)
Products 20.3 2 10.13 8.14
Panelists 106 9
Error 22.4 18 1.24

Why was this significant when panelist variance was
partitioned, but not in the usual one-way ANOVA?
The answer lies in the systematic variation due to pan-
elists’ scale use and the ability of the two-way ANOVA
to remove this effect from the error term. Making
error smaller is a general goal of just about every sen-
sory study, and here we see a powerful way to do
this mathematically, by using a specific experimental
design.

C.2.2 The Value of Using Panelists

As Their Own Controls

The data set in the complete block example was quite
similar to the data set used in the one-way ANOVA
illustrated first. The only change was in panelist #10,
who rated the products all as an 8 in the first example.
In the second example, this non-discriminating panelist
was removed and data were substituted from an insen-
sitive panelist, but one with correct rank ordering. This
panelist rated the products 1, 2, and 3 following the
general trend of the rest of the panel, but on an overall
lower level of the scale.

Notice the effect of substituting a person who is an
outlier on the scale but who discriminates the prod-
ucts in the proper rank order. Because these values are
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quite low, they add more to the overall variance than to
the product differences, so the one-way ANOVA goes
from nearly significant (p = 0.06) to much less evi-
dence against the null (p = 0.14). In other words, the
panelist who did not differentiate the products, but who
sat in the middle of the data set was not very harmful
to the one-way ANOVA, but the panelist with overall
low values contributes to error, even though he or she
discriminated among the products. Since the complete
block design allows us to partition out overall panelist
differences, and focus just on product differences, the
fact that he or she was a low rater does not hurt this type
of analysis. The F-ratio for products is now significant
(p = 0.003). In general, the panelists are monotoni-
cally increasing, with the exceptions of #4, 5, and 9
(dotted lines) as shown in Fig. C.2. The panelist with
low ratings follows the majority trend and thus helps
the situation.
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Fig. C.2 Panelist trends in the complete block example. Note
that panelist #10 has rank ordered the products in same way as
the panel means, but is a low outlier. This panelist is problematic
for the one-way ANOVA but less so for when the panelist effects
are partitioned as in the repeated measures models.

The same statistically significant result is obtained
in a Friedman “analysis of variance” on ranks (see

Appendix B). A potential insight here is the following:
having a complete design allows repeated measures
ANOVA. This allows us to “get rid of” panelist dif-
ferences in scale usage, sensory sensitivity, anosmia,
etc., and focus on product trends. Since humans are
notoriously hard to calibrate, this is highly valuable in
sensory work.

C.3 Planned Comparisons Between

Means Following ANOVA

Finding a significant F-ratio in ANOVA is only one
step in statistical analysis of experiments with more
than two products. It is also necessary to compare
treatment means to see which pairs were different.
A number of techniques are available to do this,
most based on variations on the t-test. The rationale
is to avoid inflated risk of Type I error that would
be inherent in making comparisons just by repeat-
ing t-tests. For example, the Duncan test attempts to
maintain “experiment-wise” alpha at 0.05. In other
words, across the entire set of paired comparisons of
the product means, we would like to keep alpha-risk at
a maximum of 5%. Since risk is a function of number
of tests, the critical value of the t-statistic is adjusted to
maintain risk at an acceptable level.

Different approaches exist, differing in assumptions
and degree of “liberality” in amount of evidence
needed to reject the null. Common types include
the tests called Scheffé, Tukey, or HSD (honestly-
significant-difference), Newman-Keuls, Duncans,
LSD (“least-significant-difference”). The Scheffé
test is most conservative and the LSD test the least
(for examples see Winer, 1971, pp. 200–201). The
Duncan procedure guards against Type I error among
a set of comparisons, as long as there is already a
significant F-ratio found in the ANOVA. This is a
good compromise test to use for sensory data. The
LSD test and the Duncan test are illustrated below.

The least significant difference, or LSD test is
quite popular, since you simply compute the differ-
ence between means required for significance, based
on your error term from the ANOVA. The error term
is a pooled estimate of error considering all your treat-
ments together. However, the LSD test does little to
protect you from making too many comparisons, since
the critical values do not increase with the numbers of
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comparisons you make, as is the case with some of the
other statistics such as Duncan and Tukey (HSD) tests:

LSD = t

√

2MSerror

N
(C.7)

where n is the number of panelists in a one-way
ANOVA or one factor repeated measures, and t is the
t-value for a two-tailed test with the degrees of freedom
for the error term. The difference between the means
must be larger than the LSD.

Calculations for the Duncan multiple range test
use a “studentized range statistic”, usually abbreviated
with a lower case “q”. The general formula for com-
paring pairs of individual means is to find the quantity
to the right of this inequality and compare it to q:

qp ≤ Mean1 − Mean2
√

2MSerror

N

(C.8)

The calculated value must exceed a tabled value of
qp, which is based on the number of means separat-
ing the two we wish to compare, when all the means
are rank ordered. MSerror is the error term associated
with that factor in the ANOVA from which the means
originate, n is the number of observations contributing
to each mean, and qp is the studentized range statistic
from Duncan’s tables (see table G). The subscript, p,
indicates the number of means between the two we are
comparing (including themselves), when they are rank
ordered. If we had three means, we would use the value
for p of 2 for comparing adjacent means when ranked
and for p of 3 for comparing the highest and lowest
means. The degrees of freedom are n–1. Note that the
values for q are similar to but slightly greater than the
corresponding t-values.

The general steps proceed as follows:

1. Conduct ANOVA and find MS error term
2. Rank order the means
3. Find q values for each p (number of means between,

plus 2) and n–1 df.
4. Compare q to the formula in Eq. C.8 or
5. Find critical differences than must be exceeded by

the values of

Difference ≥ qp

√

2MSerror

N

Note that this is just like the LSD test, but uses q

instead of t. These critical differences are useful when
you have lots of means to compare.

Here is a sample problem. From a simple one-
way ANOVA on four observations, the means were
as follows: Treatment A = 9, Treatment B = 8, and
Treatment C = 5.75. The MSerror = 0.375. If we com-
pare treatments A and C, the quantity to exceed q

becomes

(9 − 5.75)√
2(0.375)/4

= 3.25/0.433 = 7.5

The critical value of q, for p = 3, alpha = 0.05 is
4.516, so we can conclude that treatments A and C

were significantly different.
An alternative computation is to find a critical dif-

ference by multiplying our value of q times the denom-
inator (our error term) to find the difference between
the means that must be exceeded for significance. This
is sometimes easier to tabulate if you are comparing
a number of means “by hand”. In the above example,
using the steps above for finding a critical difference,
we multiply q (or 4.516) by the denominator term for
the pooled standard error (0.433), giving a critical dif-
ference of 1.955. Since 9–5.75 (= 3.25) exceeds the
critical difference of 1.955, we can conclude that these
two samples were different.

C.4 Multiple Factor Analysis of Variance

C.4.1 An Example

In many experiments, we will have more than one vari-
able of interest, for example, two or more ingredients
or two or more processing changes. The applicable sta-
tistical tool for analysis of scaled data where we have
two or more independent variables (called factors) is
the multiple factor analysis of variance. These are
called two-way ANOVAs for two variables, three-way
for three variables, and so on.

Here is a simple sample problem and the data set is
shown in Table C.7. We have two sweeteners, sucrose
and high-fructose corn syrup (HFCS), being blended
in a food (say a breakfast cereal), and we would like to
understand the impact of each on the sweetness of the
product. We vary the amount of each sweetener added
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Table C.7 Data set for a two-factor analysis of variance (entries
such as 1,1,2,4 represent four data points)

Factor 1: Level of sucrose

Level 1 Level 2 Level 3

Level of HFCS 2% 4% 6%
Level A (2%) 1,1,2,4 3,5,5,5 6,4,6,7
Level B (4%) 2,3,4,5 4,6,7,5 6,8,8,9
Level C (6%) 5,6,7,8 7,8,8,6 8,8,9,7

to the product (2, 4 and 6% of each) and have a panel of
four individuals rate the product for sweetness. (Four
panelists are probably too few for most experiments
but this example is simplified for the sake of clarity.)
We use three levels of each sweetener, in a factorial
design. A factorial design means that each level of
one factor is combined with every level of the other
factor.

We would like to know whether these levels of
sucrose had any effect, whether the levels of HFCS had
any effect and whether the two sweeteners in combina-
tion produced any result that would not be predicted
from the average response to each sweetener. This last
item we call an interaction (more on this below).

First, let us look at the cell means, and marginal
means, shown in Table C.8:

Table C.8 Means for two factor experiment

Factor (variable) 1

Factor 2 Level 1 Level 2 Level 3 Row mean

Level A 2.0 4.5 5.75 4.08
Level B 3.5 5.5 7.75 5.58
Level C 6.5 7.25 8.0 7.25
Column mean 4.0 5.75 7.17 5.63 (Grand mean)

Next let us look at some graphs of these means to
see what happened. Figure C.3 shows the trends in the
data.

C.4.2 Concept: A Linear Model

Here is what happened in the analysis of the previous
data set: The ANOVA will test hypotheses from a gen-
eral linear model. This model states that any score in
the data set is determined by a number of factors:

Score = Grand mean + Factor 1 effect + Factor 2 effect
+ Interaction effect + Error.
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Fig. C.3 Means from the two-factor sweetener experiment.

In plain English, there is an overall tendency for
these products to be sweet that is estimated by the
grand mean. For each data point, there is some pertur-
bation from that mean due to the first factor, some due
to the second factor, some due to the particular ways
in which the two factors interact or combine, and some
random error process. The means for the null hypoth-
esis are the population means we would expect from
each treatment, averaged across all the other factors
that are present. These can be thought of as “marginal
means” since they are estimated by the row and col-
umn totals (we would often see them in the margins of
a data matrix as calculations proceeded).

For the effects of our two sweeteners, we are testing
whether the marginal means are likely to be equal (in
the underlying population), or whether there was some
systematic differences among them, and whether this
variance was large relative to error, in fact so large that
we would rarely expect such variation under a true null
hypothesis.

The ANOVA uses an F-ratio to compare the effect
variance to our sample error variance. The exact cal-
culations for this ANOVA are not presented here, but
they are performed in the same way as the two-factor
complete design ANOVA (sometimes called “repeated
measures” (Winer, 1971)) that is illustrated in a later
section.

The output of our ANOVA will be presented in a
table like Table C.9.

We then determine significance by looking up the
critical F-ratio for our numerator and denominator
degrees of freedom. If the obtained F is greater than the
tabulated F, we reject the null hypothesis and conclude
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Table C.9 Source table for two-way ANOVA with interaction

Effect Sums of squares df MS F

Factor 1 60.22 2 30.11 25.46
Error 7.11 6 1.19
Factor 2 60.39 2 30.20 16.55
Error 10.94 6 1.82
Interaction 9.44 4 2.36 5.24
Error 5.22 12 0.43

that our factor had some effect. The critical F-values
for these comparisons are 5.14 for the sweetener fac-
tors (2 and 6 df, both significant) and 3.26 (for 4 and
12 df) for the interaction effect (see Table D). The
interaction arises since the higher level of sweetener
2 in Fig. C.3 shows a flatter slope than the slopes at
the lower levels. So there is some saturation or flatten-
ing out of response, a common finding at high sensory
intensities.

C.4.3 A Note About Interactions

What is an interaction? Unfortunately, the word has
both a common meaning and a statistical meaning.
The common meaning is when two things act upon or
influence one another. The statistical meaning is sim-
ilar, but it does not imply that a physical interaction,
say between two food chemicals occurred. Instead, the
term “interaction” means that the effect of one vari-
able changed depending upon the level of the other
variable. Here are two examples of interaction. For the
sake of simplicity, only means are given to represent
two variables at two points each.

In the first example, two panels evaluated the firm-
ness of texture of two food products. One panel saw

a big difference between the two products while the
second found only a small difference. This is visible
as a difference in the slope of the lines connecting the
product means. Such a difference in slope is called a
magnitude interaction when both slopes have the same
sign, and it is fairly common in sensory research. For
example, panelists may all evaluate a set of products
in the same rank order, but some may be more fatigued
across replications. Decrements in scores will occur for
some panelists more than others, creating a panelist by
replicate interaction.

The second example of an interaction is a little less
common. In this case the relative scores for the two
products change position from one panel to the other.
One panel sees product 1 as deserving a higher rating
than product 2, while the other panel finds product 2 to
be superior. This sort of interaction can happen with
consumer acceptance ratings when there are market
segments or in descriptive analysis if one panel mis-
understands the scale direction or it is misprinted on
the ballot (e.g., with end-anchor words reversed). This
is commonly called a crossover interaction. Figure C.4
shows these interaction effects. A crossover interaction
is much more serious and can be a big problem when
the interaction effect is part of the error term as in some
ANOVAs (see Sections C.5 below and C.6.1).

C.5 Panelist by Product by Replicate

Designs

A common design in sensory analysis is the two-
way ANOVA with all panelists rating all products
(complete block) and replicated ratings. This design

1

3

5

7

9

M
e
a
n

 f
ir

m
n

e
s
s
 r

a
ti

n
g

Product 1 Product 2

Panel 2

Panel 1

1

3

5

7

9

M
e
a
n

 a
c
c
e
p

ta
b

il
it

y
 r

a
ti

n
g

Product 1 Product 2

Consumer group 2

Consumer group 1

Fig. C.4 Interaction effect.
Upper panel: Magnitude
interaction. Lower panel:
Crossover interaction.
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would be useful with a descriptive panel, for example,
where panelists commonly evaluate all the products.
An example of the two factors is when there is one set
of products and replications. Each score is a function of
the panelist effect, treatment effect, replication effect,
interactions, and error.

Error terms for treatment and replication are the
interaction effects of each with panelists, which form
the denominator of the F-ratio. This is done because
panelist effects are random effects (see Section C.6.1),
and the panelist by treatment interaction is embedded
in the variance estimate for treatments. For purposes
of this example, treatments and replications are con-
sidered fixed effects (this is a mixed model or TYPE
III in some statistical programs like SAS). The sample
data set is shown in Table C.10. Once again there are a
small number of panelists so that the calculations will
be a little simpler. Of course, in most real sensory stud-
ies the panel size would be considerably larger, e.g.,
10–12 for descriptive data and 50–100 for consumer
studies.

Table C.10 Data set for a two-factor ANOVA with partitioning
of panelist variation

Replicate 1 Replicate 2

Product A B C A B C

Panelist 1 6 8 9 4 5 10
Panelist 2 6 7 8 5 8 8
Panelist 3 7 10 12 6 7 9

The underlying model says that the total variance
is a function of the product effect, replicate effect,
panelist effect, the three two-way interactions, the
three-way interaction, and random error. We have no
estimate of the smallest within-cell error term other
than the three-way interaction. Another way to think
about this is that each score deviates from the grand
mean as a function of that particular product mean,
that particular panelist mean, that particular replication
mean, plus (or minus) any other influences from the
interactions.

Here are the calculations, step by step. This is a little
more involved than our examples so far. We will call
the effect of each factor a “main effect” as opposed to
the interaction effects and error.

Step 1. First, we calculate sums of squares and main
effects.

As in the one way ANOVA with repeated measures,
there are certain values we need to accumulate:

Grand total = 135
(Grand total)2/N = T2/N= 18,255/18 = 1012.5

(O’Mahony’s “correction factor”, C)
Sum of squared data = 1083

There are three “marginal sums” we need to calcu-
late, in order to estimate main effects.

The product marginal sums (across panelists and
reps):

�A = 34 (�A)2 = 1156
�B = 45 (�B)2 = 2025
�C = 56 (�C)2 = 3136

The sum of squares for products then becomes

SSproducts = [(1156 + 2025 + 3136)/6] − correction factor, C

= 052.83 − 1012.5 = 40.33

(We will need the value, 1052.83, later. Let us call
it PSS1, for “partial sum of squares” #1)

Similarly, we calculate replicate and panelist sums
of squares.

The replicate marginal sums (across panelists and
products):

�rep1 = 73 (�rep1)2 = 5,329
�rep2 = 62 (�rep2)2 = 3,844

The sum of squares for replicates then becomes

SSreps = [(5329 + 3844)/9] − correction factor
= 1019.2 − 1012.5 = 6.72

Note: the divisor, 9, is not the number of reps
(2), but the number of panelists times the number of
products (3×3 = 9). Think of this as the number of
observations contributing to each marginal total. (We
need the value, 1019.2, later in calculations. Let us call
it PSS2).

As in other repeated measures designs, we need the
panelist sums (across products and reps):

�pan1 = 42 (�pan1)2 = 1764
�pan2 = 42 (�pan2)2 = 1764
�pan3 = 51 (�pan3)2 = 2601

The sum of squares for panelists then becomes

SSpan = [(1764 + 1764 + 2601)/6] − correction factor, C
= 1021.5 − 1012.5 = 9.00

(We will need the value, 1021.5, later in calcula-
tions. Let us call it PSS3, for partial sum of squares #3)
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Step 2. Next, we need to construct summary tables
of interaction sums.

Here are the rep-by-product interaction calcula-
tions. We obtain a sum for each replicate by product
combination and then square them. The three interac-
tion tables are shown in Table C.11.

Table C.11 Interaction calculations

Product Rep 1 Rep 2 Squared values

A 19 15 361 225
B 25 20 625 400
C 29 27 841 729

Product Panelist 1 Panelist 2 Panelist 3 Squared values

A 10 11 13 100 121 169
B 13 15 17 169 225 289
C 19 16 21 361 256 441

Panelist Rep 1 Rep 2 Squared values

1 23 19 529 361
2 21 21 441 441
3 29 22 841 484

First for the product by replicate table, we obtain the
following information:

Sum of squared values = 3181; 3181/3 = 1060.3
(= PSS4, needed later)

To calculate the sum of squares, we need to subtract
the PSS values for each main effect and then add back
the correction term (this is dictated by the underlying
variance model):

SSrep×prod = (3181/3) − PSS1 − PSS2 + C

= 1060.3 − 1052.83 − 1019.2 + 1012.5
= 0.77

Next we look at the panelist by product interaction
information. The panelist by product interaction cal-
culations are based on the center of Table C.11. Once
again, we accumulate the sums for each combination
and then square them giving these values:

Sum of squared values = 2131; 2131/2 = 1065.5
(= PSS5, needed later)

SSpan×prod = (2131/2) − PSS1 − PSS3 + C

= 1065.5 − 1052.83 − 1021.5 + 1012.5
= 3.67

Here are the replicate by panelist interaction calcu-
lations, based on the lower part of Table C.11:

Sum of squared values = 3097; 3097/3 = 1032.3
(= PSS6, needed later)

SSR×pan = (3097/3) − PSS2 − PSS3 + C

= 1032.3 − 1021.5 − 1019.2 + 1012.5
= 4.13

The final estimate is for the sum of squares for the
three-way interaction. This is all we have left in this
design, since we are running out of degrees of freedom.
This is found by the sum of the squared (data) values,
minus each PSS from the interactions, plus each PSS
from the main effects, minus the correction factor. Do
not worry too much about where this comes from, you
would need to dissect the variance component model
to fully understand it:

SS (3 way) =
∑

x2 − PSS4 − PSS5 − PSS6 + PSS1
+ PSS2 + PSS3 − C = 1083 − 1060.3
− 1065.5 − 1032.3 + 1052.83
+ 1019.2 + 1021.5 − 1012.5 = 5.93

Step 3. Using the above values, we can calculate the
final results as shown in the source Table C.12.

Table C.12 Source table for panelist by product by replicate
ANOVA

Effect Sum of squares df Mean square F

Products 40.33 2 20.17 21.97
Prod × panelist 3.67 4 0.92
Replicates 6.72 1 6.72 3.27
Rep × panelist 4.13 2 2.06
Product × rep 0.77 2 0.39 0.26
Prod × rep × panelist 5.93 4 1.47

Note that the error terms for each effect are the
interaction with panelists. This is dictated by the fact
that panelists are a random effect and this is a “mixed
model” analysis.

So only the product effect was significant. The crit-
ical F-ratios were 6.94 for the product effect (2,4 df),
19.00 for the replicate effect (1,2 df), and 6.94 for the
interaction (2,4 df).

Degrees of freedom are calculated as follows:

For the main effects, df = levels–1, e.g., three products
gives 2 df.

For interactions, df = product of df for individual
factors, (e.g., prod × pan df = (3–1) × (3–1) = 4).
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C.6 Issues and Concerns

C.6.1 Sensory Panelists: Fixed or Random

Effects?

In a fixed effects model, specific levels are chosen
for a treatment variable, levels that may be repli-
cated in other experiments. Common examples of
fixed effect variables might be ingredient concentra-
tions, processing temperatures, or times of evaluation
in a shelf life study. In a random effects model, the
values of a variable are chosen by being randomly
selected from the population of all possible levels.
Future replications of the experiment might or might
not select this exact same level, person, or item. The
implication is that future similar experiments would
also seek another random sampling rather than tar-
geting specific levels or spacing of a variable. In this
ANOVA model, the particular level chosen is thought
to exert a systematic influence on scores for other vari-
ables in the experiment. In other words, interaction is
assumed.

Examples of random effects in experimental design
are common in the behavioral sciences. Words chosen
for a memory study or odors sampled from all available
odor materials for a recognition screening test are ran-
dom, not fixed, stimulus effects. Such words or odors
represent random choices from among the entire set of
such possible words or odors and do not represent spe-
cific levels of a variable that we have chosen for study.
Furthermore, we wish to generalize to all such possi-
ble stimuli and make conclusions about the parent set
as a whole and not just the words or odors that we hap-
pened to pick. An persistent issue is whether sensory
panelists are ever fixed effects. The fixed effects model
is simpler and is the one most people learn in a begin-
ning statistics course, so it has unfortunately persisted
in the literature even though behavioral science dictates
that human subjects or panelists are a random effect,
even as they are used in sensory work.

Although they are never truly randomly sampled,
panelists meet the criteria of being a sample of a
larger population of potential panelists and of not being
available for subsequent replications (for example, in
another lab). Each panel has variance associated with
its composition, that is, it is a sample of a larger pop-
ulation. Also, each product effect includes not only
the differences among products and random error, but

also the interaction of each panelist with the product
variable. For example, panelists might have steeper or
shallower slopes for responding to increasing levels
of the ingredient that forms the product variable. This
common type of panelist interaction necessitates the
construction of F-ratios with interaction terms in the
denominator. Using the wrong error term (i.e., from
simple fixed effects ANOVAs) can lead to erroneous
rejection of the null hypothesis.

Fixed effects are specific levels of a variable
that experimenters are interested in, whereas random
effects are samples of a larger population to which they
wish to generalize the other results of the experiment.
Sokal and Rohlf (1981) make the following useful dis-
tinction: [Fixed versus random effects models depend]
“on whether the different levels of that factor can be
considered a random sample of more such levels, or
are fixed treatments whose differences the investigator
wishes to contrast.” (p. 206).

This view has not been universally applied to pan-
elist classification within the sensory evaluation com-
munity. Here are some common rejoinders to this
position.

When panelists get trained, are they no longer a
random sample and therefore a fixed effect. This is
irrelevant. We wish to generalize these results to any
such panel of different people, similarly screened and
trained, from the population of qualifying individu-
als. Hays (1973) puts this in perspective by stating
that even though the sample has certain characteris-
tics, that does not invalidate its status as a sample of a
larger group: “Granted that only subjects about whom
an inference is to be made are those of a certain age,
sex, ability to understand instructions, and so forth, the
experimenter would, nevertheless, like to extend his
inference to all possible such subjects.” (p. 552).

A second problem arises about the use of the inter-
action term in mixed model ANOVAs. We can assume
no interaction in the model or even test for the exis-
tence of a significant interaction. The answer is that
you can, but why choose a riskier model, inflating your
chance of Type I error? If you test for no significant
interaction, you depend upon a failure to reject the null,
which is an ambiguous result, since it can happen from
a sloppy experiment with high error variance, just as
well as from a situation where there is truly no effect.
So it is safer to use a mixed model where panelists
are considered random. Most statistical packages will
select the interaction effect as the error term when you
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specify panelists as a random effect, and some even
assume it as the default.

Further discussion of this issue can be found in
the book by Lea et al. (1998), Lundahl and McDaniel
(1988) and in Lawless (1998) and the articles in the
same issue of that journal.

C.6.2 A Note on Blocking

In factorial designs with two or more variables, the sen-
sory specialist will often have to make some decisions
about how to group the products that will be viewed
in a single session. Sessions or days of testing often
form one of the blocks of an experimental design. The
examples considered previously are fairly common in
that the two variables in a simple factorial design are
often products and replicates. Of course judges, are a
third factor, but a special one. Let us put judges aside
for the moment and look at a complete block design in
which each judge participates in the evaluation of all
products and all of the replicates. This is a common
design in descriptive analysis using trained panels.

Consider the following scenario: Two sensory tech-
nicians (students in a food company on summer intern-
ships) are given a sensory test to design. The test will
involve comparisons of four different processed soft
cheese spreads and a trained descriptive panel is avail-
able to evaluate key attributes such as cheese flavor
intensity, smoothness, and mouthcoating. Due to the
tendency of this product to coat the mouth, only four
products can be presented in each session. The panel
is available for testing on four separate sessions on dif-
ferent days. There are then two factors to be assigned
to blocks of sessions in this experiment, the products
and the replicates.

Technician “A” decides to present one version of the
cheese spread on each day, but replicate it four times
within a session. Technician “B” on the other hand
presents all four products on each day, so that the ses-
sions (days) become blocked as replicates. Both tech-
nicians use counterbalanced orders of presentation,
random codes, and other reasonable good practices of
sensory testing. The blocking schemes are illustrated
in Fig. C.5.

Which design seems better? A virtually unanimous
opinion among sensory specialists we asked is that
assigning all four products within the same session
is better than presenting four replicates of the same
product within a session. The panelists will have a
more stable frame of reference within a session than

across sessions, and this will improve the sensitivity
of the product comparison. There may be day-to-day
variations in uncontrolled factors that may confound
the product comparisons across days (changes in con-
ditions, changes in the products while aging, or in the
panelists themselves) and add to random error. Having
the four products present in the same session lends a
certain directness to the comparison without any bur-
den of memory load. There is less likelihood of drift
in scale usage within a session as opposed to testing
across days.

Why then assign products within a block and repli-
cates across sessions? Simply stated, the product com-
parison is most often the more critical comparison of
the two. Product differences are likely to be the critical
question in a study. A general principle for assignment
of variables to blocks in sensory studies where the
experimental blocks are test sessions: Assign the vari-
able of greatest interest within a block so that all levels
of that factor are evaluated together. Conversely, assign
the variable of secondary interest across the blocks if
there are limitations in the number of products that can
be presented.

C.6.3 Split-Plot or Between-Groups

(Nested) Designs

It is not always possible to have all panelists or con-
sumers rate all products. A common design uses dif-
ferent groups of people to evaluate different levels of a
variable. In some cases, we might simply want to com-
pare two panels, having presented them with the same
levels of a test variable. For example, we might have a
set of products evaluated in two sites in order to see if
panelists are in agreement in two manufacturing plants
or between a QC panel and an R and D panel. In this
case, there will be repeated measures on one variable
(the products) since all panelists see all products. But
we also have a between-groups variable that we wish to
compare. We call this a “split plot” design in keeping
the nomenclature of Stone and Sidel (1993). It origi-
nates from agricultural field experiments in which plots
were divided to accommodate different treatments.
Bear in mind that we have one group variable and
one repeated measures variable. In behavioral research,
these are sometimes called “between-subjects” and
“within-subjects” effects. Examples of these designs
can be found in Stone and Sidel (1993) and Gacula
et al. (2009).
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Four product are available on four days.  Four replicates are desired. 
The product causes carry-over and fatigue and tends to coat the mouth, 
          so only four products can be tested in any one day.
How are the two factors to be assigned to the blocks of days (sessions)?

A Blocking Problem

Day 1 Day 2 Day 3 Day 4

Approach "A" : assign replicates within a block, products across days 
(sessions):

Day 1 Day 2 Day 3 Day 4

Rep 1 Rep 1 Rep 1 Rep 1

Rep 2 Rep 2 Rep 2 Rep 2

Rep 3 Rep 3 Rep 3 Rep 3

Rep  4 Rep  4 Rep  4 Rep  4

Product 1 Product 2 Product 3 Product 4

Approach "B":  Test all four products in each day, once:

Which blocking scheme is better and why?

Rep 1 Rep 2 Rep 3 Rep 4

prod1 prod1 prod1 prod1

prod2 prod2 prod2 prod2

prod3 prod3 prod3 prod3

prod4 prod4 prod4 prod4

Fig. C.5 Examples of
blocking strategy for the
hypothetical example of the
processed cheese spread.

C.6.4 Statistical Assumptions and the

Repeated Measures ANOVA

The model underlying the repeated measures analy-
sis of variance from complete block designs has more
assumptions than the simple one-way ANOVA. One of
these is an assumption that the covariance (or degree
of relationship) among all pairs of treatment levels

is the same. Unfortunately, this is rarely the case in
observations of human judgment.

Consider the following experiment: We have sen-
sory judges examine an ice cream batch for shelf life
in a heat shock experiment on successive days. We
are lucky enough to get the entire panel to sit for
every experimental session, so we can use a complete
block or repeated measures analysis. However, their
frame of reference is changing slightly, a trend that
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seems to be affecting the data as time progresses. Their
data from adjacent days are more highly correlated
than their data from the first and last test. Such time-
dependencies violate the assumption of “homogeneity
of covariance.”

But all is not lost. A few statisticians have sug-
gested some solutions, if the violations were not too
bad (Greenhouse and Geisser, 1959; Huynh and Feldt,
1976). Both of these techniques adjust your degrees of
freedom in a conservative manner to try and account
for a violation of the assumptions and still protect
you from that terrible deed of making a Type I error.
The corrections are via an “epsilon” value that you
will sometimes see in ANOVA package printouts,
and adjusted p-values, often abbreviated G-G or H-
F. Another solution is to use a multivariate analysis
of variance approach or MANOVA, which does not
labor under the covariance assumptions of repeated
measures. Since most packaged printouts give you
MANOVA statistics nowadays anyway, it does not hurt
to give them a look and see if your conclusions about
significance would be any different.

C.6.5 Other Options

Analysis of variance remains the bread-and-butter
everyday statistical tool for the vast majority of sensory
experiments and multi-product comparison. However,
it is not without its shortcomings. One concern is that
we end up examining each scale individually, even
when our descriptive profile many contain many scales
for flavor, texture, and appearance. Furthermore, many
of these scales are intercorrelated. They may be provid-
ing redundant information or they may be driven by the
same underlying of latent causes. A more comprehen-
sive approach would include multivariate techniques
such as principal components analysis, to assess these
patterns of correlation. Analysis of variance can also
be done following principal components, using the
factor scores rather than the raw data. This has the
advantage of simplifying the analysis and reporting
of results although the loss of detail about individ-
ual scales may not always be desired. See Chapter 18
for descriptions of multivariate techniques and their
applications.

A second concern is the restrictive assumptions of
ANOVA that are often violated. Normal distributions,

equal variance, and in the case of repeated measures,
homogeneity of covariance, are not always the case in
human judgments. So our violations lead to unknown
changes in the risk levels. Risk may be underesti-
mated as the statistical probabilities of our analysis
are based on distributions and assumptions that are
not always descriptive of our experimental data. For
such reasons, it has recently become popular to use
MANOVA. Many current statistical analysis software
packages offer both types of analysis and some even
give them automatically or as defaults. The sensory
scientist can then compare the outcomes of the two
types of analyses. If they are the same, the conclu-
sions are straightforward. If they differ, some caution
is warranted in drawing conclusions about statistical
significance.

The analyses shown in this section are relatively
simple ones. It is obvious that more complex experi-
mental designs are likely to come the way of a sen-
sory testing group. In particular, incomplete designs
in which people evaluate only some of the products
in the design are common. Product developers often
have many variables at several different levels each to
screen. We have stressed the complete block designs
here because of the efficient and powerful partition-
ing of panelist variance that is possible. Discussions
of incomplete designs are their efficiency can be found
in various statistics texts.

We recognize that it is unlikely at this point in the
history of computing that many sensory professionals
or statistical analysis services will spend much time
doing ANOVAs by hand. If the experimental designs
are complex or if many dependent measures have been
collected, software packages are likely to be used. In
these cases the authors of the program have taken over
the burden of computing and partitioning variance.
However, the sensory scientist can still make decisions
on a theoretical level. For example, we have included
all interaction terms in the above analyses, but the lin-
ear models upon which ANOVAs are based need not
include such terms if there are theoretical or practical
reasons to omit them. Many current statistical analysis
packages allow the specification of the linear model,
giving discretionary modeling power to the scientist.
In some cases it may be advantageous to pool effects
or omit interactions from the model if their variance
contribution is small. This will increase the degrees
of freedom for the remaining factors and increase the
chances of finding a significant effect.
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The correlation coefficient is frequently abused. First,

correlation is often improperly interpreted as evidence

of causation. . . . Second; correlation is often improp-

erly used as a substitute for agreement.

—Diamond (1989)

This chapter is a short introduction to correlation and
regression. Pearson’s correlation coefficient and the
coefficient of determination for interval data are dis-
cussed followed by a section on linear regression.
There is an example on how to calculate a linear
regression. An extremely brief discussion of multiple
linear regression is followed by a discussion of other
measures of association. These are Spearman’s rank
correlation coefficient for ordinal data and Cramér’s
measure for nominal data.

D.1 Introduction

Sensory scientists are frequently confronted with the
situation where they would like to know if there is a
significant association between two sets of data. For
example, the sensory specialist may want to know if
the perceived brown color intensity (dependent vari-
able) of a series of cocoa powder–icing sugar mixtures
increased as the amount of cocoa (independent vari-
able) in the mixture increased. Another example, the
sensory scientist may want to know if the perceived
sweetness of grape juice (dependent variable) is related
to the total concentration of fructose and glucose
(independent variable) in the juice, as determined by
high-pressure liquid chromatography.

In these cases we need to determine whether there is
evidence for an association between independent and
dependent variables. In some cases, we may also be
able to infer a cause and effect relationship between
independent and dependent variables. The measures of
association between two sets of data are called correla-
tion coefficients and if the size of the calculated corre-
lation coefficient leads us to reject the null hypothesis

525
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of no association then we know that the change in
the independent variables—our treatments, ingredi-
ents, or processes—were associated with a change in
the dependent variables—the variables we measured,
such as sensory-based responses or consumer accep-
tance. However, from one point of view, this hypoth-
esis testing approach is scientifically impoverished. It
is not a very informative method of scientific research,
because the statistical hypothesis decision is a binary
or yes/no relationship. We conclude that either there
is evidence for an association between our treatments
and our observations or there is not. Having rejected
the null hypothesis, we still do not know the degree of
relationship or the tightness of the association between
our variables. Even worse, we have not yet specified
any type of mathematical model or equation that might
characterize the association.

Associational measures also known as correlation
coefficients can address the first of these two questions.
In other words, the correlation coefficient will allow us
to decide whether there is an association between the
two data series. Modeling, in which we attempt to fit
a mathematical function to the relationship, addresses
the second question. The most widespread measure
of association is the simple correlation coefficient
(Pearson’s correlation coefficient). The most common
approach to model fitting is the simple linear regres-
sion. These two approaches have similar underlying
calculations and are related to one another. The first
sections of this chapter will show how correlations
and regressions are computed and give some simple
examples. The later sections will deal with related top-
ics: how to build some more complex models between
several variables, how measures of association are
derived from other statistical methods, such as anal-
ysis of variance, and finally how to compute measures
of association when the data do not have interval scale
properties (Spearman rank correlation coefficient and
Cramér’s φ̂′2).

Correlation is of great importance in sensory sci-
ence because it functions as a building block for
other statistical procedures. Thus, methods like prin-
cipal components analysis draw part of their calcula-
tions from measures of correlation among variables.
In modeling relationships among data sets, regres-
sion and multiple regression are standard tools. A
common application is the predictive modeling of con-
sumer acceptability of a product based upon other
variables. Those variables may be descriptive attributes

as characterized by a trained (non-consumer) panel
or they may be ingredient or processing variables or
even instrumental measures. The procedure of multi-
ple regression allows one to build a predictive model
for consumer likes based on a number of such other
variables. A common application of regression and
correlation is in sensory–instrumental relationships.
Finally, measures of correlation are valuable tools in
specifying how reliable our measurements are—by
comparing panelist scores over multiple observations
and to assess agreement among panelists and panels.

When the sensory scientist is investigating possi-
ble relationships between data series the first step is
to plot the data in a scatter diagram with the X-series
on the horizontal axis and the Y-series on the verti-
cal axis. Blind application of correlation and regression
analyses may lead to wrong conclusions about the rela-
tionship between the two variables. As we will see
the most common correlation and regression meth-
ods estimate the parameters of the “best” straight line
through the data (regression line) and the closeness
of the points to the line (simple correlation coeffi-
cient). However, the relationship may not necessarily
be described well by a straight line, in other words the
relationship may not necessarily be linear. Plotting the
data in scatter diagrams will alert the specialist to prob-
lems in fitting linear models to data that are not linearly
related (Anscombe, 1973). For example, the four data
sets listed in Table D.1 and plotted in Fig. D.1 clearly
are not all accurately described by a linear model. In all
four cases the 11 observation pairs have mean x-values
equal to 9.0, mean y-values equal to 7.5, a correlation

Table D.1 The Anscombe quartet—four data sets illustrating
principles associated with linear correlation1

a b c d

x y x y x y x y

4 4.26 4 3.10 4 5.39 8 6.58
5 5.68 5 4.74 5 5.73 8 5.76
6 7.24 6 6.13 6 6.08 8 7.71
7 4.82 7 7.26 7 6.42 8 8.84
8 6.95 8 8.14 8 6.77 8 8.47
9 8.81 9 8.77 9 7.11 8 7.04

10 8.04 10 9.14 10 7.46 8 5.25
11 8.33 11 9.26 11 7.81 8 5.56
12 10.84 12 9.13 12 8.15 8 7.91
13 7.58 13 8.74 13 12.74 8 6.89
14 9.96 14 8.10 14 8.84 19 12.50
1Anscombe (1973)
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Fig. D.1 Scatter plots of the
Anscombe quartet data
(Table D.1) (redrawn from
Anscombe).

coefficient equal to 0.82, and a regression line equation
of y = 3 + 0.5x.

However as Fig. D.1 clearly indicates the data sets
are very different. These data sets are the so-called
Anscombe quartet created by their author to highlight
the perils of blindly calculating linear regression mod-
els and Pearson correlation coefficients without first
determining through scatter plots whether a simple
linear model is appropriate (Anscombe, 1973).

D.2 Correlation

When two variables are related, a change in one is usu-
ally accompanied by a change in the other. However,
the changes in the second variable may not be linearly
related to changes in the first. In these cases, the corre-
lation coefficient is not a good measure of association
between the variables (Fig. D.2).

The concomitant change between the variables may
occur because the two variables are causally related. In
other words, the change in the one variable causes the
change in the other variable. In the cocoa–icing sugar
example the increased concentration of cocoa powder
in the mixture caused the increase in perceived brown

color. However, the two variables may not be neces-
sarily causally related because a third factor may drive
the changes in both variables or there may be several
intervening variables in the causal chain between the
two variables (Freund and Simon, 1992). An anecdotal
example often used in statistics texts is the following:
Some years after World War II statisticians found a cor-
relation between the number of storks and the number
of babies born in England. This did not mean that the
storks “caused” the babies. Both variables were related
to the re-building of England (increase in families and
in the roofs which storks use as nesting places) after
the war. One immediate cautionary note in associa-
tional statistics is that the causal inference is not often
clear. The usual warning to students of statistics is that
“correlation does not imply causation.”

The rate of change or dependence of one variable on
another can be measured by the slope of a line relating
the two variables. However, that slope will numerically
depend upon the units of measurement. For exam-
ple, the relationship between perceived sweetness and
molarity of a sugar will have a different slope if con-
centration is measured in percent-by-weight or if units
should change to milli-molar instead of molar concen-
tration. In order to have a measure of association that is
free from the particular units that are chosen, we must
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Fig. D.2 The correlation
coefficient could be used as a
summary measure for plots A
and B, but not for plots C and
D (in analogy to Meilgaard
et al., 1991).

standardize both variables so that they have a com-
mon system of measurement. The statistical approach
to this problem is to replace each score with its stan-
dard score or difference from the mean in standard
deviation units. Once this is done, we can measure the
association by a measure known as the Pearson corre-
lation coefficient (Blalock, 1979). When we have not
standardized the variables, we still can measure the
association, but now it is simply called covariance (the
two measures “vary together”) rather than correlation.
The measure of correlation is the extremely useful and
very widespread in its applications.

The simple or Pearson correlation coefficient is
calculated using following computational equation
(Snedecor and Cochran, 1980):

r =
∑

xy −
∑

x
∑

y

n
√

[

∑

x2 − (
∑

x)2

n

] [

∑

y2 − (
∑

y)2

n

]

(D.1)

where the series of x data points = the independent
variable and the series of y data points = the dependent
variable.

Each data set has n data points and the degrees of
freedom associated with the simple correlation coeffi-
cient are n–2. If the calculated r-value is larger than

the r-value listed in the correlation table (Table F2) for
the appropriate alpha, then the correlation between the
variables is significant.

The value of Pearson’s correlation coefficient
always lies between −1 and +1. Values of r close to
absolute 1 indicate that a very strong linear relation-
ship exists between the two variables. When r is equal
to zero, then there is no linear relationship between
the two variables. Positive values of r indicate a ten-
dency for the variables to increase together. Negative
values of r indicate a tendency of large values of one
variable to be associated with small values of the other
variable.

D.2.1 Pearson’s Correlation Coefficient

Example

In this study a series of 14 cocoa–icing sugar mixtures
were rated by 20 panelists for brown color intensity
on a nine-point category scale. Was there a significant
correlation between the percentage of cocoa powder
added to the icing sugar mixture and the perceived
brown color intensity?
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Cocoa added, % Mean Brown color intensity X2 Y2 XY

30 1.73 900 2.98a 51.82
35 2.09 1225 4.37 73.18
40 3.18 1600 10.12 127.27
45 3.23 2025 10.42 145.23
50 4.36 2500 19.04 218.18
55 4.09 3025 16.74 225.00
60 4.68 3600 21.92 280.91
65 5.77 4225 33.32 375.23
70 6.91 4900 47.74 483.64
75 6.73 5625 45.26 504.54
80 7.05 6400 49.64 563.64
85 7.77 7225 60.42 660.68
90 7.18 8100 51.58 646.36
95 8.54 9025 73.02 811.82
�X = 875 �Y = 73.32 �X2 = 60375 �Y2 = 446.56 �XY = 5167.50a

aValues rounded to decimals after calculation of squares and products

r =
5167.50 − 875×72.32

14
√

[

60.375 − (875)2

14

] [

446.56 − (73.32)2

14

]

= 0.9806

At an alpha-level of 5% the tabular value of the cor-
relation coefficient for 12 degrees of freedom is 0.4575
(Table F2). The calculated value = 0.9806 exceeds the
table value and we can conclude that there is a sig-
nificant association between the perceived brown color
intensity of the cocoa–icing sugar mixture and the per-
centage of cocoa added to the mixture. Since the only
ingredient changing in the mixture is the amount of
brown color we can also conclude that the increased
amount of cocoa causes the increased perception of
brown color.

D.2.2 Coefficient of Determination

The coefficient of determination is the square of
Pearson’s correlation coefficient (r2) and it is the esti-
mated proportion of the variance of the data set Y that
can be attributed to its linear correlation with X, while
1–r2 (the coefficient of non-determination) is the pro-
portion of the variance of Y that is free from effect of
X (Freund and Simon, 1992). The coefficient of deter-
mination can range between 0 and 1 and the closer the
r2 value is to 1 the better the straight line fits.

D.3 Linear Regression

Regression is a general term for fitting a function, usu-
ally a linear one, to describe the relationship among
variables. Various methods are available for fitting
lines to data, some based on mathematical solutions
and others based on iterative or step-by-step trials to
minimize some residual error or badness-of-fit mea-
sure. In all of these methods there must be some
measurement of how good the fit of the model or equa-
tion is to the data. The least-squares criterion is the
most common measure of fit for linear relationships
(Snedecor and Cochran, 1980, Afifi and Clark, 1984).
In this approach, the best fitting straight line is found
by minimizing the squared deviations of every data
point from the line in the y-direction (Fig. D.3).

The simple linear regression equation is

y = a + bx (D.2)

where a is the value of the estimated intercept; b the
value of the estimated slope.

The estimated least-squares regression is calculated
using the following equations:

b =
�xy − (�x)(�y)

n

�x2 − (�x)2

n

(D.3)

a =
∑

y/n−b =
∑

x/n (D.4)
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Fig. D.3 Least-squares regression line. The least-squares crite-
rion minimizes the squared residuals for each point. The arrow

indicates the residual for an example point. The dashed line indi-
cates the mean X and Y values. The equation for the line is
Y = bx + a.

It is possible to assess the goodness of fit of the
equation in different ways. The usual methods used
are the coefficient of determination and the analysis of
variance (Piggott, 1986).

D.3.1 Analysis of Variance

In a linear regression it is possible to partition the total
variation into the variation explained by the regres-
sion analysis and the residual or unexplained variation
(Neter and Wasserman, 1974). The F-test is calculated
by the ratio of the regression mean square to the resid-
ual mean square with 1 and (n–2) degrees of freedom.
This tests whether the fitted regression line has a non-
zero slope. The equations used to calculate the total
sums of squares and the sums of squares associated
with the regression are as follows:

SStotal =
∑

(Yi − Ȳ)2 (D.5)

SSregression =
∑

(Ŷ − Ȳ) (D.6)

SSresidual =
∑

(Yi − Ŷ)2 = SStotal − SSregression

(D.7)

where Yi is the value of a specific observation, Ȳ is the
mean for all the observations, and Ŷ is the predicted
value for the specific observation.

D.3.2 Analysis of Variance for Linear

Regression

Source of
variation

Degrees
of
freedom

Sum of
squares Mean squares F-value

Regression 1 SSregression SSregression/1 MSregression/
MSresidual

Residual n–2 SSresidual SSresidual/
(n–2)

Total n–1 SStotal

D.3.3 Prediction of the Regression Line

It is possible to calculate confidence intervals for
the slope of the fitted regression line (Neter and
Wasserman, 1974). These confidence intervals lie on
smooth curves (the branches of a hyperbola) on either
side of the regression line (Fig. D.4). The confidence
intervals are at their smallest at the mean value of

Fig. D.4 The confidence region for a regression line is two
curved lines on either side of the linear regression line. These
curved lines are closest to the regression line at the mean values
for X and Y.
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the X-series and the intervals become progressively
larger as one moves away from the mean value of
the X-series. All predictions using the regression line
should fall within the range used to calculate the fitted
regression line. No predictions should be made outside
this range. The equations to calculate the confidence
intervals are as follows:

Ŷ0 ± t

{

1 + 1

n
+ (x0 − x̄)2
∑

(xi − x̄)2

}

1
2

S (D.8)

where x0 is the point you are estimating around; xi

are the measured points; x̄ is the mean value for the
x-series; n is the number of observations; and S is the
residual mean square of regression (see below). The
t-value is determined by the degrees of freedom (n–1)
since this is a two-tailed test at an α/2 level (Rawlings
et al., 1998).

D.3.4 Linear Regression Example

We will return to the cocoa powder–icing sugar
mixture example used as an example in Pearson’s
correlation coefficient section. A linear regression line
was fitted to the data using the equations given above:

b = 5167.50− 875×72.32
14

60,375− (875)2
14

= 0.102857

a = 5.237 − (0.102857)(62.5) = −1.19156

The fitted linear regression equation is y = 0.1028
X–1.1916 and the coefficient of determination is
0.9616 with 12 degrees of freedom. However, we
should round this equation to y = 0.10 X–1.19 since
our level of certainty does not justify four decimal
places!

D.4 Multiple Linear Regression

Multiple linear regression (MLR) calculates the lin-
ear combination of independent variables (more than
one X) that is maximally correlated with the depen-
dent variable (a single Y). The regression is performed
in a least-squares fashion by minimizing the sum of
squares of the residual (Afifi and Clark, 1984; Stevens,
1986). The regression equation must be cross-validated
by applying the equation to an independent sample
from the same population—if predictive power drops

sharply then the equation has only limited utility. In
general, one needs about 15 subjects (or observations)
per independent variable to have some hope of suc-
cessful cross-validation, although some scientists will
do multiple linear regression with as few as five times
as many observations as independent variables. When
the independent variables are intercorrelated or mul-
ticollinear it spells real trouble for the potential use
of MLR. Multicollinearity limits the possible mag-
nitude of the multiple correlation coefficient (R) and
makes determining the importance of a given indepen-
dent variable in the regression equation difficult as the
effects of the independent variables are confounded
due to high inter-correlations. Also, when variables
are multicollinear then the order that independent vari-
ables enter the regression equation makes a difference
with respect to the amount of variance on Y that each
variable accounts for. It is only with totally uncorre-
lated independent variables that the order has no effect.
As seen in Chapter 18, principal component analysis
(PCA) creates orthogonal (non-correlated) principal
components (PCs). It is possible to MLR using these
new variables when one started with highly multi-
collinear data (as is often found in sensory descriptive
data). The biggest problem with doing MLR on PCs
is that it may be very difficult to interpret the resul-
tant output. Multiple linear regression analyses can
be performed using any reputable statistical analysis
software package (Piggott, 1986).

D.5 Other Measures of Association

D.5.1 Spearman Rank Correlation

When the data are not derived from an interval scale
but from an ordinal scale the simple correlation coef-
ficient is not appropriate. However, the Spearman rank
correlation coefficient is appropriate. This correlation
coefficient is a measure of the association between the
ranks of independent and dependent variables. This
measure is also useful when the data are not normally
distributed (Blalock, 1979).

The Spearman coefficient is often indicated by
the symbol ρ (rho); however, sometimes rs is also
used. Similar to the simple correlation coefficient the
Spearman coefficient ranges between –1 and 1. Values
of rs close to absolute 1 indicate that a very strong
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relationship exists between the ranks of the two vari-
ables. When ρ is equal to zero, then there is no
relationship between the ranks of the two variables.
Positive values of ρ indicate a tendency for the ranks
of the variables to increase together. Negative values of
ρ indicate a tendency of large rank values of one vari-
able to be associated with small rank values of the other
variable. The Spearman correlation coefficient for data
with a few ties is calculated using the following equa-
tion; the equation to use for data with many ties see
Appendix B:

ρ = 1 − 6�d2

n(n2 − 1)
(D.9)

where n is the number of ranked products and d the
differences in ranks for each product between the two
data series.

Critical values of ρ are found in Spearman rank
correlation tables (Table F1). When the value for n is
more than 60 then the Pearson tabular values can be
used to determine the tabular values for the Spearman
correlation coefficient.

D.5.2 Spearman Correlation Coefficient

Example

We are returning to the cocoa powder example used for
Pearson’s correlation coefficient. In this case the two
panelists were asked to rank the perceived brown inten-
sities of the 14 cocoa powder–icing sugar mixtures.
Was there a significant correlation between the ranks
assigned by the two panelists to the cocoa mixtures?

rs = 1 − 6 × 42

14(156 − 1)
= 0.8839

The tabular value for the Spearman correlation coef-
ficient with 14 ranks at an alpha-value of 5% is equal
to 0.464 (see Table F1). We can conclude that the two-
panelist rank ordering of the brown color intensities
of the cocoa powder–icing sugar mixtures were sig-
nificantly similar. However, there is no direct causal
relationship between the rank order of panelist A and
that of panelist B.

D.5.3 Cramér’s V Measure

When the data are not derived from an interval or
an ordinal scale but from a nominal scale then the
appropriate measure of association is the Cramér mea-
sure, φ̂′2 (phi–hat prime squared) (Herzberg, 1989).
This association coefficient is a squared measure and
can range from 0 to 1. The closer the value of Cramér’s
V measure is to 1 the greater the association between
the two nominal variables, the closer Cramér’s V mea-
sure is to zero the smaller the association between
the two nominal variables. In practice, you may find
that a Cramer’s V of 0.10 provides a good minimum
threshold for suggesting there is a substantive relation-
ship between two variables. The Cramér coefficient of
association is calculated using the following equation:

V =

√

x2

n(q − 1)
(D.10)

Cocoa in mixture, % Panelist A(X) Panelist B(Y) d d2

30 1 1 0 0
35 2 2 0 0
40 4 3 1 1
45 6 4 2 4
50 7 7 0 0
55 5 8 −3 9
60 9 6 3 9
65 3 5 −2 4
70 10 9 1 1
75 8 10 −2 4
80 11 12 1 1
85 14 13 1 1
90 13 11 2 4
95 12 14 −2 4

�d2 = 42
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where n is equal to the sample size; q is the smaller of
the category variables represented by the rows (r) and
the columns (c); and χ2 is chi-square observed for the
data (see Table C).

D.5.4 Cramér Coefficient Example

The following data set is hypothetical. One hundred
and ninety consumers of chewing gum indicated which
flavor of chewing gum they usually used. The sensory
scientist was interested in determining whether there
was an association between gender and gum flavors.

Observed values

Fruit flavor gum Mint flavor gum Bubble gum

Men 35 15 50 100
Women 12 60 18 90

47 75 68 190

Expected value for women using fruit flavored gum
is 47 × (90/190) = 22.263 and for men using bubble
gum the expected value is 68 × (100/190) = 35.789.

Expected values

Fruit flavor Mint flavor Bubble
gum gum gum

Men 24.737 39.474 35.789 100.000
Women 22.263 35.526 32.210 89.999

47.000 75.000 67.999 189.998

χ2 =
∑ (Oij − Eij)2

Eij

χ2 = (35 − 24.737)2

24.737
+ (15 − 39.474)2

39.474

+ (50 − 35.789)2

35.789
+ (12 − 22.263)2

22.263

+ (60 − 35.526)

35.526
+ (18 − 32.210)2

32.210
= 52.935

Thus the calculated χ2 = 52.935 and the degrees of
freedom are equal to (r–1)×(c–1).

In this case with two rows and three columns df =
(2–1)×(3–1) = 2. The tabular value for χ2

0.05, df =2

is 5.991 (see Table C). The χ2 value is significant.
However, to determine whether there is an association
between the genders and their use of gum flavors we
use the following equation:

V =

√

√

√

√

χ2

n(q − 1)
=
√

52.935

190(2 − 1)
= 0.572830714

The Cramér value of association is 0.5278. There is
some association between gender and the use of gum
flavors.
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Research reports in the literature are frequently flawed

by conclusions that state or imply that the null hypoth-

esis is true. For example, following the finding that the

difference between two sample means is not statisti-

cally significant, instead of properly concluding from

this failure to reject the null hypothesis that the data do

not warrant the conclusion that the population means

differ, the writer concludes, at least implicitly that there

is no difference. The latter conclusion is always strictly

invalid, and it is functionally invalid unless power is

high.

—J. Cohen (1988)

The power of a statistical test is the probability that
if a true difference or effect exists, the difference or
effect will be detected. The power of a test becomes
important, especially in sensory evaluation, when a no-
difference decision has important implications, such as
the sensory equivalence of two formulas or products.
Concluding that two products are sensorially similar or
equivalent is meaningless unless the test has sufficient
power. Factors that affect test power include the sam-
ple size, alpha level, variability, and the chosen size of
a difference that must be detected. These factors are
discussed and worked examples given.

E.1 Introduction

Sensory evaluation requires experimental designs and
statistical procedures that are sensitive enough to find
differences. We need to know when treatments of
interest are having an effect. In food product devel-
opment, these treatments usually involve changes in
food constituents, the methods of processing, or types
of packaging. A purchasing department may change
suppliers of an ingredient. Product development may
test for the stability of a product during its shelf life.
In each of these cases, it is desirable to know when a
product has become perceivably different from some
comparison or control product, and sensory tests are
conducted.

In normal science, most statistical tests are done to
insure that a true null hypothesis is not rejected with-
out cause. When enough evidence is gathered to show
that our data would be rare occurrences given the null
assumption, we conclude that a difference did occur.
This process keeps us from making the Type I error

535
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discussed in Appendix A. In practical terms, this keeps
a research program focused on real effects and insures
that business decisions about changes are made with
some confidence.

However, another kind of error in statistical decision
making is also important. This is the error associated
with accepting the null when a difference did occur.
Missing a true difference can be as dangerous as find-
ing a spurious one, especially in product research. In
order to provide tests of good sensitivity, then, the sen-
sory evaluation specialist conducts tests using good
design principles and sufficient numbers of judges and
replicates. The principles of good practice are dis-
cussed in Chapter 3. Most of these practices are aimed
at reducing unwanted error variance. Panel screening,
orientation, and training are some of the tools at the
disposal of the sensory specialist that can help mini-
mize unwanted variability. Another example is in the
use of reference standards, both for sensory terms and
for intensity levels in descriptive judgments.

Considering the general form of the t-test, we dis-
cover that two of the three variables in the statistical
formula are under some control of the sensory scientist.
Remember that the t-test takes this form:

t = difference between means/standard error

and the standard error is the sample standard deviation
divided by the square root of the sample size (N). The
denominator items can be controlled or at least influ-
enced by the sensory specialist. The standard deviation
or error variance can be minimized by good exper-
imental controls, panel training, and so on. Another
tool for reducing error is partitioning, for example in
the removal of panelist effects in the complete block
ANOVA (“repeated measures”) designs or in the paired
t-test. As the denominator of a test statistic (like a F-
ratio or a t-value) becomes smaller, the value of the
test statistic becomes larger and it is easier to reject the
null. The probability of observing the results (under
the assumption of a true null) shrinks. The second fac-
tor under the control of the sensory professional is the
sample size. The sample size usually refers to the num-
ber of judges or observations. In some ANOVA models
additional degrees of freedom can also be gained by
replication.

It is sometimes necessary to base business decisions
on acceptance of the null hypothesis. Sometimes we
conclude that two products are sensorially similar, or

that they are a good enough match that no system-
atic difference is likely to be observed by regular users
of the product. In this scenario, it is critically impor-
tant that a sensitive and powerful test be conducted
so that a true difference is not missed, otherwise the
conclusion of “no difference” could be spurious. Such
decisions are common in statistical quality control,
ingredient substitution, cost reductions, other refor-
mulations, supplier changes, shelf life and packaging
studies, and a range of associated research questions.
The goal of such tests is to match an existing product
or provide a new process or cost reduction that does
not change or harm the sensory quality of the item. In
some cases, the goal may be to match a competitor’s
successful product. An equivalence conclusion may
also be important in advertising claims, as discussed
in Chapter 5.

In these practical scenarios, it is necessary to esti-
mate the power of the test, which is the probability
that a true difference would be detected. In statistical
terms, this is usually described in an inverse way, first
by defining the quantity beta as the long-term probabil-
ity of missing a true difference or the probability that
a Type II error is committed. Then one minus beta is
defined as the power of the test. Power depends upon
several interacting factors, namely the amount of error
variation, the sample size, and the size of the differ-
ence one wants to be sure to detect in the test. This
last item must be defined and set using the professional
judgment of the sensory specialist or by management.
In much applied research with existing food products,
there is a knowledge base to help decide how much a
change is important or meaningful.

This chapter will discuss the factors contributing to
test power and give some worked examples and prac-
tical scenarios where power is important in sensory
testing. Discussions of statistical power and worked
examples can also be found in Amerine et al. (1965),
Gacula and Singh (1984), and Gacula (1991, 1993).
Gacula’s writings include considerations of test power
in substantiating claims for sensory equivalence of
products. Examples specific to discrimination tests
can be found in Schlich (1993) and Ennis (1993).
General references on statistical power include the
classic text by Cohen (1988), his overview article writ-
ten for behavioral scientists (Cohen, 1992) and the
introductory statistics text by Welkowitz et al. (1982).
Equivalency testing is also discussed at length by
Wellek (2003), Bi (2006), and ASTM (2008). Let the
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reader note that many scientific bodies have rejected
the idea of using test power as justification for accept-
ing the null, and prefer an approach that proves that any
difference lies within a specified or acceptable interval.
This idea is most applicable to proving the equivalence
of measured variables (like the bioequivalence of drug
delivery into the bloodstream). However, this equiva-
lence interval approach has also been taken for simple
sensory discrimination testing (see Ennis, 2008; Ennis
and Ennis, 2009).

E.2 Factors Affecting the Power

of Statistical Tests

E.2.1 Sample Size and Alpha Level

Mathematically, the power of a statistical test is a func-
tion of four interacting variables. Each of these entails
choices on the part of the experimenter. They may
seem arbitrary, but in the words of Cohen, “all conven-
tions are arbitrary. One can only demand of them that
they not be unreasonable” (1988, p. 12). Two choices
are made in the routine process of experimental design,
namely the sample size and the alpha level. The sam-
ple size is usually the number of judges in the sensory
test. This is commonly represented by the letter “N”
in statistical equations. In more complex designs like
multi-factor ANOVA, “N” can reflect both the num-
ber of judges and replications, or the total number of
degrees of freedom contributing to the error terms for
treatments that are being compared. Often this value is
strongly influenced by company traditions or lab “folk-
lore” about panel size. It may also be influenced by cost
considerations or the time needed to recruit, screen,
and/or train and test a sufficiently large number of par-
ticipants. However, this variable is the one most often
considered in determinations of test power, as it can
easily be modified in the experimental planning phase.

Many experimenters will choose the number of
panelists using considerations of desired test power.
Gacula (1993) gives the following example. For a mod-
erate to large consumer test, we might want to know
whether the products differ one half a point on the
9-point scale at most in their mean values. Suppose we
had prior knowledge that for this product, the standard
deviation is about 1 scale point (S = 1), we can find the

required number of people for an experiment with 5%
alpha and 10% beta (or 90% power). This is given by
the following relationship:

N = (Zα + Zβ)2S2

(M1 − M2)2

(1.96 + 1.65)212

(0.5)2
∼= 52 (E.1)

where M1–M2 is the minimal difference we must be
sure to detect and Zα and Zβ are the Z-scores associated
with the desired Type I and Type II error limits. In other
words, there are 52 observers required to insure that a
one-half point difference in means can be ruled out at
90% power when a non-significant result is obtained.
Note that for any fractional N, you must round up to
the next whole person.

The second variable affecting power is the alpha
level, or the choice of an upper limit on the probabil-
ity of rejecting a true null hypothesis (making a Type I
error). Usually we set this value at the traditional level
of 0.05, but there are no hard and fast rules about this
magical number. In many cases in exploratory testing
or industrial practice, the concern over Type II error—
missing a true difference—are of sufficient concern
that the alpha level for reporting statistical signifi-
cance will float up to 0.10 or even higher. This strategy
shows us intuitively that there is a direct relationship
between the size of the alpha level and power, or in
other words, an inverse relationship between alpha-
risk and beta-risk. Consider the following outcome: we
allow alpha to float up to 0.10 or 0.20 (or even higher)
and still fail to find a significant p-value for our sta-
tistical test. Now we have an inflated risk of finding a
spurious difference, but an enhanced ability to reject
the null. If we still fail to reject the null, even at such
relaxed levels, then there probably is no true difference
among our products. This assumes no sloppy experi-
ment, good laboratory practices, and sufficient sample
size, i.e., meeting all the usual concerns about reason-
able methodology. The inverse relationship between
alpha and beta will be illustrated in a simple example
below.

Because of the fact that power increases as alpha is
allowed to rise, some researchers would be tempted to
raise alpha as a general way of guarding against Type
II error. However, there is a risk involved in this, and
that is the chance of finding false positives or spurious
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random differences. In any program of repeated test-
ing, the strategy of letting alpha float up as a cheap
way to increase test power should not be used. We
have seen cases in which suppliers of food ingredients
were asked to investigate quality control failures of
their ingredient submissions, only to find that the client
company had been doing discrimination tests with a
lax alpha level. This resulted in spurious rejections
of many batches that were probably within acceptable
limits.

E.2.2 Effect Size

The third factor in the determination of power concerns
the effect size one is testing against as an alternative
hypothesis. This is usually a stumbling block for sci-
entists who do not realize that they have already made
two important decisions in setting up the test—the
sample size and alpha level. However, this third deci-
sion seems much more subjective to most people. One
can think of this as the distance between the mean of a
control product and the mean of a test product under an
alternative hypothesis, in standard deviation units. For
example, let us assume that our control product has a
mean of 6.0 on some scale and the sample has a stan-
dard deviation of 2.0 scale units. We could test whether
the comparison product had a value of less than 4.0
or greater than 8.0, or one standard deviation from the
mean in a two-tailed test. In plain language, this is the
size of a difference that one wants to be sure to detect
in the experiment.

If the means of the treatments were two standard
deviations apart, most scientists would call this a rela-
tively strong effect, one that a good experiment would
not want to miss after the statistical test is conducted.
If the means were one standard deviation apart, this
is an effect size that is common in many experiments.
If the means were less than one half of one standard
deviation apart, that would a smaller effect, but one
that still might have important business implications.
Various authors have reviewed the effect sizes seen
in behavioral research and have come up with some
guidelines for small, medium, and large effect sizes
based on what is seen during the course of experimen-
tation with humans (Cohen, 1988; Welkowitz et al.,
1982).

Several problems arise. First, this idea of effect size
seems arbitrary and an experimenter may not have any
knowledge to aid in this decision. The sensory profes-
sional may simply not know how much of a consumer
impact a given difference in the data is likely to pro-
duce. It is much easier to “let the statistics make the
decision” by setting an alpha level according to tra-
dition and concluding that no significant difference
means that two products are sensorially equal. As
shown above, this is bad logic and poor experimen-
tal testing. Experienced sensory scientists may have
information at their disposal that makes this decision
less arbitrary. They may know the levels of variabil-
ity or the levels important to consumer rejection or
complaints. Trained panels will show standard devi-
ations around 10% of scale range (Lawless, 1988).
The value will be slightly higher for difficult sen-
sory attributes like aroma or odor intensity, and lower
for “easier” attributes like visual and some textural
attributes. Consumers, on the other hand will have
intensity attributes with variation in the realm of 25%
of scale range and sometimes even higher values for
hedonics (acceptability). Another problem with effect
size is that clients or managers are often unaware of it
and do not understand why some apparently arbitrary
decision has to enter into scientific experimentation.

The “sensitivity” of a test to differences involves
both power and the overall quality of the test.
Sensitivity entails low error, high power, sufficient
sample size, good testing conditions, good design, and
so on The term “power” refers to the formal statistical
concept describing the probability of accepting a true
alternative hypothesis (e.g. finding a true difference).
In a parallel fashion, Cohen (1988) drew an important
distinction between effect size and “operative effect
size” and showed how a good design can increase
the effective sensitivity of an experiment. He used the
example of a paired t-test as opposed to an independent
groups t-test. In the paired design subjects function as
their own controls since they evaluate both products.
The between-person variation is “partitioned” out of
the picture by the computation of difference scores.
This effectively takes judge variation out of the picture.

In mathematical terms, this effect size can be stated
for the t-test as the number of standard deviations sep-
arating means, usually signified by the letter “d”. In
the case of choice data, the common estimate is our
old friend d′ (d-prime) from signal detection theory,
sometimes signified as a population estimate by the
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Greek letter delta (Ennis, 1993). For analyses based
on correlation, the simple Pearson’s r is a common
and direct measure of association. Various measures of
effect size (such as variance accounted for by a fac-
tor) in ANOVAs have been used. Further discussion of
effect sizes and how to measure them can be found in
Cohen (1988) and Welkowitz et al. (1982).

E.2.3 How Alpha, Beta, Effect Size, and N

Interact

Diagrams below illustrate how effect size, alpha, and
beta interact. As an example, we perform a test with
a rating scale, e.g., a just-about-right scale, and we
want to test whether the mean rating for the product is
higher than the midpoint of the scale. This is the sim-
ple t-test against a fixed value, and our hypothesis is
one tailed. For the simple one-tailed t-test, alpha repre-
sents the area under the t-distribution to the right of the
cutoff determined by the limiting p-value (usually 5%).
It also represents the upper tail of the sampling distri-
bution of the mean as shown in Fig. E.1. The value of
beta is shown by the area underneath the alternative

hypothesis curve to the left of the cutoff as shaded in
Fig. E.1. We have shown the sampling distribution for
the mean value under the null as the bell-shaped curve
on the left. The dashed line indicates the cutoff value
for the upper 5% of the tail of this distribution. This
would be the common value set for statistical signifi-
cance, so that for a give sample size (N), the t-value at
the cutoff would keep us from making a Type I error
more than 5% of the time (when the null is true). The
right-hand curve represents the sampling distribution
for the mean under a chosen alternative hypothesis. We
know the mean from our choice of effect size (or how
much of a difference we have decided is important) and
we can base the variance on our estimate from the sam-
ple standard error. When we choose the value for mean
score for our test product, the d-value becomes deter-
mined by the difference of this mean from the control,
divided by the standard deviation. Useful examples
are drawn in Gacula’s (1991, 1993) discussion and in
the section on hypothesis testing in Sokal and Rohlf
(1981).

In this diagram, we can see how the three interacting
variables work to determine the size of the shaded area
for beta-risk. As the cutoff is changed by changing the
alpha level, the shaded area would become larger or

Region of rejection (of null)Region of acceptance (of null)

cutoff determined by chosen alpha level

alpha risk associated with 
area under null curve above
cutoff, e.g. 5%

sampling distribution of 
mean under a
true null

beta risk associated with area under 
alternative hyothesis curve below cutoff

sampling distribution
of  mean under a fixed
alternative hypothesis
based on “d” 

d =  µa – µo  / 

µo µa

Fig. E.1 Power shown as the tail of the alternative hypothesis,
relative to the cutoff determined by the null hypothesis distribu-
tion. The diagram is most easily interpreted as a one-tailed t-test.
A test against a fixed value of a mean would be done against
a population value or a chosen scale point such the midpoint
of a just-right scale. The value of the mean for the alternative

hypothesis can be based on research, prior knowledge, or the
effect size, d, the difference between the means under the
null and alternative hypotheses, expressed in standard deviation
units. Beta is given by the shaded area underneath the sam-
pling distribution for the alternative hypothesis, below the cutoff
determined by alpha. Power is one minus beta.
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Region of rejection (of null)Region of acceptance (of null)

original cutoff 
determined by 
alpha level

alpha risk increasedbeta risk reduced
by change in alpha

Effect of increasing alpha level
to decrease beta risk

New cutoff
from increased
alpha level

Fig. E.2 Increasing the alpha level decreases the area associated with beta, improving power (all other variables held equal).

smaller (see Fig. E.2). As the alpha-risk is increased,
the beta-risk is decreased, all other factors being held
constant. This is shown by shifting the critical value for
a significant t-statistic to the left, increasing the alpha
“area,” and decreasing the area associated with beta.

A second influence comes from changing the effect
size or alternative hypothesis. If we test against a larger
d-value, the distributions would be separated, and the
area of overlap is decreased. Beta-risk decreases when
we choose a bigger effect size for the alternative
hypothesis (see Fig. E.3). Conversely, testing for a
small difference in the alternative hypothesis would
pull the two distributions closer together, and if alpha
is maintained at 5%, the beta-risk associated with the
shaded area would have to get larger. The chances of
missing a true difference are very high if the alternative
hypothesis states that the difference is very small. It is
easier to detect a bigger difference than a smaller one,
all other things in the experiment being equal.

The third effect comes from changing the sam-
ple size or the number of observations. The effect of
increasing “N” is to shrink the effective standard devia-
tion of the sampling distributions, decreasing the stan-
dard error of the mean. This makes the distributions

taller and thinner so there is less overlap and less area
associated with beta. The t-value for the cutoff moves
to the left in absolute terms.

In summary, we have four interacting variables and
knowing any three, we can determine the fourth. These
are alpha, beta, “N,” and effect size. If we wish to spec-
ify the power of the test up front, we have to make
at least two other decisions and then the remaining
parameter will be determined for us. For example, if
we want 80% test power (beta = 0.20), and alpha equal
to 0.05, and we can test only 50 subjects, then the
effect size we are able to detect at this level of power
is fixed. If we desire 80% test power, want to detect
0.5 standard deviations of difference, and set alpha at
0.05, then we can calculate the number of panelists
that must be tested (i.e., “N” has been determined by
the specification of the other three variables). In many
cases, experiments are conducted only with initial con-
cern for alpha and sample size. In that case there is
a monotonic relationship between the other two vari-
ables that can be viewed after the experiment to tell us
what power can be expected for different effect sizes.
These relationships are illustrated below. Various free-
ware programs are available for estimating power and
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Region of rejection (of null)Region of acceptance (of null)

alpha risk maintained at 5%beta risk reduced
by  increase in effect 
size to be detected

Effect of increasing alternative
hypothesis effect size (“d”)
to decrease beta risk

“d” - increased

Fig. E.3 Increasing the effect size that must be detected increases the power, reducing beta. Larger effects (larger d, difference
between the means of the alternative and null hypotheses) are easier to detect.

sample size (e.g., Erdfelder et al., 1996). Tables for the
power of various statistical tests can also be found in
Cohen (1988). The R library “pwr” package specif-
ically implements power analyses outlined in Cohen
(1988).

E.3 Worked Examples

E.3.1 The t-Test

For a specific illustration, let us examine the indepen-
dent groups t-test to look at the relationship between
alpha, beta, effect size, and “N.” In this situation, we
want to compare two means generated from indepen-
dent groups, and the alternative hypothesis predicts
that the means are not equal (i.e., no direction is pre-
dicted). Figure E.4 shows the power of the two-tailed
independent groups t-test as a function of different
sample sizes (N) and different alternative hypothesis
effect sizes (d). (Note that N here refers to the total
sample, not N for each group. For very different sam-
ple sizes per group, further calculations must be done.)
If we set the lower limit of acceptable power at 50%,

we can see from these curves that using 200 panelists
would allow us to detect a small difference of about
0.3 standard deviations. With 100 subjects this differ-
ence must be about 0.4 standard deviations, and for
small sensory tests of 50 or 20 panelists (25 or 10
per group, respectively) we can only detect differences
of about 0.6 or 0.95 standard deviations, respectively,
with 50/50 chance of missing a true difference. This
indicates the liabilities in using a small sensory test to
justify a “parity” decision about products.

Often, a sensory scientist wants to know the
required sample size for a test, so they can recruit the
appropriate number of consumers or panelists for a
study. Figure E.5 shows the sample size required for
different experiments for a between-groups t-test and
a decision that is two tailed. An example of such a
design would be a consumer test for product accept-
ability, with scaled data and each of the products
placed with a different consumer group (a so-called
monadic design). Note that the scale is log trans-
formed, since the group size becomes very large if we
are looking for small effects. For a very small effect
of only 0.2 standard deviations, we need 388 con-
sumers to have a minimal power level of 0.5. If we
want to increase power to 90%, the number exceeds
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Fig. E.4 Power of the
two-tailed independent groups
t-test as a function of different
sample sizes (N) and different
alternative hypothesis effect
sizes (d); the decision is
two-tailed at alpha = 0.05.
The effect size “d” represents
the difference between the
means in standard deviations.
Computed from the
GPOWER program of
Erdfelder et al. (1996).

Fig. E.5 Number of judges
required for independent
groups t-test at different levels
of power; the decision is two
tailed at alpha = 0.05. Note
that the sample size is plotted
on a log scale. Computed
from the GPOWER program
of Erdfelder et al. (1996).

1,000. On the other hand, for a big difference of 0.8
standard deviations (about 1 scale point on the 9-point
hedonic scale) we only need 28 consumers for 50%
power and 68 consumers for 90% power. This illus-
trates why some sensory tests done for research and
product development purposes are smaller than the cor-
responding marketing research tests. Market research
tests may be aimed at finding small advantages in a
mature or optimized product system, and this requires
a test of high power to keep both alpha- and beta-risks
low.

E.3.2 An Equivalence Issue with Scaled

Data

Gacula (1991, 1993) gives examples of calculations of
test power using several scenarios devoted to substanti-
ating claims of product equivalence. These are mostly
based on larger scale consumer tests, where the sam-
ple size justifies the use of the normal distribution (Z)
rather than the small sample t-test. In such an experi-
ment, the calculation of power is straightforward, once
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the mean difference associated with the alternative
hypothesis is stated. The calculation for power follows
this relationship:

Power = 1 − β = 1 − �

[

Xc − µD

SE

]

(E.2)

where Xc represents the cutoff value for a significantly
higher mean score, determined by the alpha level. For
a one-tailed test, the cutoff is equal to the mean plus
1.645 times the standard error (or 1.96 standard errors
for a two-tailed situation). The Greek letter � repre-
sents the value of the cumulative normal distribution;
in other words we are converting the Z-score to a
proportion or probability value. Since many tables of
the cumulative normal distribution are given in the
larger proportion, rather than the tail (as is true in
Gacula’s tables), it is sometimes necessary to subtract
the tabled value from 1 to get the other tail. The param-
eter µD represents the mean difference as determined
by the alternative hypothesis. This equation simply
finds the area underneath the alternative hypothesis
Z-distribution, beyond the cutoff value Xc. A diagram
of this is shown below.

Here is a scenario similar to one from Gacula
(1991). A consumer group of 92 panelists evaluates
two products and gives them mean scores of 5.9 and
6.1 on a 9-point hedonic scale. This is not a significant
difference, and the sensory professional is tempted
to conclude that the products are equivalent. Is this
conclusion justified?

The standard deviation for this study was 1.1, giv-
ing a standard error of 0.11. The cutoff values for the
95% confidence interval are then 1.96 standard errors,
or the mean plus or minus 0.22. We see that the two
means lie within the 95% confidence interval so the
statistical conclusion of no difference seems to be jus-
tified. A two-tailed test is used to see whether the new
product is higher than the standard product receiving
a 5.9. The two-tailed test requires a cutoff that is 1.96
standard errors above, or 0.22 units above the mean.
This sets our upper cutoff value for Xc at 5.9 + 0.22 or
6.12. Once this boundary has been determined, it can
be used to split the distributions expected on the basis
of the alternative hypotheses into two sections. This is
shown in Fig. E.6. The section of the distribution that is
higher than this cutoff represents the detection of a dif-
ference or power (null rejected) while the section that

is lower represents the chance of missing the difference
or beta (null accepted).

In this example, Gacula originally used the actual
mean difference of 0.20 as the alternative hypothesis.
This would place the alternative hypothesis mean at
5.9 + 0.2 or 6.1. To estimate beta, we need to know
the area in the tail of the alternative hypothesis distri-
bution to the left of the cutoff. This can be found once
we know the distance of the cutoff from out alternative
mean of 6.1. In this example, there is a small differ-
ence from the cutoff of only 6.1–6.12 or 0.02 units
on the original scale, or 0.02 divided by the standard
error to give about 0.2 Z-score units from the mean of
the alternative to the cutoff. Essentially, this mean lies
very near to the cutoff and we have split the alterna-
tive sampling distribution about in half. The area in the
tail associated with beta is large, about 0.57, so power
is about 43% (1 minus beta). Thus the conclusion of
no difference is not strongly supported by the power
under the assumptions that the true mean lies so close
to 5.9. However, we have tested against a small differ-
ence as the basis for our alternative hypothesis. There
is still a good chance that such a small difference does
exist.

Suppose we relax the alternative hypothesis. Let
us presume that we determined before the experiment
that a difference of one-half of one standard devia-
tion on our scale is the lower limit for any practical
importance. We could then set the mean for the alter-
native hypothesis at 5.9 plus one half of the standard
deviation (1.1/2 or 0.55). The mean for the alterna-
tive now becomes 5.9 + 0.55 or 6.45. Our cutoff is
now 6.12–6.45 units away (0.33) or 0.33 divided by
the standard error of 0.11 to convert to Z-score units,
giving a value of 3. This has effectively shifted the
expected distribution to the right while our decision
cutoff remains the same at 6.12. The area in the tail
associated with beta would now be less than 1% and
power would be about 99%. The choice of an alter-
native hypothesis can greatly affect the confidence of
our decisions. If the business decision justifies a choice
of one half of a scale unit as a practical cutoff (based
on one-half of one standard deviation) then we can
see that our difference of only 0.2 units between mean
scores is fairly “safe” when concluding no difference.
The power calculations tell us exactly how safe this
would be. There is only a very small chance of see-
ing this result or one more extreme, if our true mean
score was 0.55 units higher. The observed events are
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Region of rejection (of null)

If product scores higher than 6.12,
 reject the null.

Region of acceptance (of null)

Cutoff for decision determined by alpha 
level = 6.12

alpha risk at 5%

5.9

6.12

Sampling distribution of the 
mean under the true null.

Alternative hypothesis sampling distribution
based on actual mean obtain for comparison product
 = 6.1 or 0.2 units of difference.

Power = 43%
(null rejected under true alternative)

beta = .57
(null accepted under true alternative)

Alternative hypothesis relaxed to test against a true comparison 
product mean of 6.45 or larger. 

Power = 99%
(null rejected under true alternative)

beta = .01
(null accepted under true alternative)

6.45

6.1

Fig. E.6 Power first depends
upon setting a cutoff value
based upon the sample mean,
standard error, and the alpha
level. In the example shown,
this value is 6.12. The cutoff
value can then be used to
determine power and beta-risk
for various expected
distributions of means under
alternative hypotheses. In
Gacula’s first example, the
actual second product mean of
6.1 was used. The power
calculation gives only 43%,
which does not provide a
great deal of confidence in a
conclusion about product
equivalence. The lower
example shows the power for
testing against an alternative
hypothesis that states that the
true mean is 6.45 or higher.
Our sample and experiment
would detect this larger
difference with greater power.

fairly unlikely given this alternative, so we reject the
alternative in favor of the null.

E.3.3 Sample Size for a Difference Test

Amerine et al. (1965) gave a useful general formula for
computing the necessary numbers of judges in a dis-
crimination test, based on beta-risk, alpha-risk, and the
critical difference that must be detected. This last item
is conceived of as the difference between the chance
probability, po and the probability associated with an
alternative hypothesis, pa. Different models for this are
discussed in Chapter 5 [see also Schlich (1993) and
Ennis (1993)]. For the sake of example, we will take

the chance-adjusted probability for 50% correct, which
is halfway between the chance probability and 100%
detection (i.e., 66.7% for the triangle test).

N =
[

Zα

√
po(1 − po) + Zβ

√
pa(1 − pa)

|po − pa|

]2

(E.3)

for a one-tailed test (at a = 0.05), Zα = 1.645, and if
beta is kept to 10% (90% power) then Zβ = 1.28. The
critical difference, po–pa, has a strong influence on the
equation. In the case where it is set to 33.3% for the
triangle test (a threshold of sorts) we then require 18
respondents as shown in the following calculation:

N =
[

1.645
√

0.333(.667) + 1.28
√

0.667(0.333)

|0.333 − 0.667|

]2

= 17.03
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So you would need a panel of about 18 persons to
protect against missing a difference this big and limit
your risk to 10%. Note that this is a fairly gross test,
as the difference we are trying to detect is large. If
half of a consumer population notices a difference, the
product could be in trouble.

Now, suppose we do not wish to be this lenient, but
prefer a test that will be sure to catch a difference about
half this big at the 95% power level instead of 90%.
Let us change one variable at a time to see which has
a bigger effect. First the beta-risk goes from 90 to 95%
and if we remain one tailed, Zβ now equals 1.645. So
the numbers become

N =
[

1.645
√

0.333(0.667) + 1.645
√

0.667(0.333)

|0.333 − 0.667|

]2

= 21.55

So with the increase only in power, we need
four additional people for our panel. However, if we
decrease the effect size we want to detect by half the
numbers become

N =
[

1.645
√

0.333(0.667) + 1.28
√

0.667(0.333)

|0.167|

]2

= 68.14

Now the required panel size has quadrupled. The
combined effect of changing both beta and testing for
a smaller effect is

N =
[

1.645
√

0.333(0.667) + 1.645
√

0.667(0.333)

|0.167|

]2

= 86.20

Note that in this example, the effect of halving the
effect size (critical difference) was greater than the
effect of halving the beta-risk. Choosing a reasonable
alternative hypothesis is a decision that deserves some
care. If the goal is to insure that almost no person will
see a difference, or only a small proportion of con-
sumers (or only a small proportion of the time) a large
test may be necessary to have confidence in a “no-
difference” conclusion. A panel size of 87 testers is
probably a larger panel size than many people would
consider for a triangle test. Yet it is not unreasonable
to have this extra size in the panel when the research
question and important consequences concern a parity
or equivalence decision. Similar “large” sample sizes
can be found in the test for similarity as outlined by
Meilgaard et al. (1991).

E.4 Power in Simple Difference

and Preference Tests

The scenarios in which we test for the existence of
a difference or the existence of a preference often
involve important conclusions when no significant
effect is found. These are testing situations where
acceptance of the null and therefore establishing the
power of the test are of great importance. Perhaps for
this reason, power and beta-risk in these situations have
been addressed by several theorists. The difference
testing approaches of Schlich and Ennis are discussed
below and a general approach to statistical power is
shown in the introductory text by Welkowitz et al.
(1982).

Schlich (1993) published risk tables for discrim-
ination tests and offered a SAS routine to calculate
beta-risk based on exact binomial probabilities. His
article also contains tables of alpha-risk and beta-risk
for small discrimination tests and minimum numbers
of testers, and correct responses associated with dif-
ferent levels of alpha and beta. Separate tables are
computed for the triangle test and for the duo–trio
test. The duo–trio table is also used for the direc-
tional paired comparison as the tests are both one tailed
with chance probability of one-half. The tables show-
ing minimum numbers of testers and correct responses
for different levels of beta and alpha in the triangle test
are abridged and shown for the triangle test and for the
duo–trio test as Tables N1 and N2.

The effect size parameter is stated as the chance-
adjusted percent correct. This is based on Abbott’s
formula, where the chance adjusted proportion, pd,. is
based on the difference between the alternative hypoth-
esis percent correct, pa, and the chance percent correct,
po, by the following formula:

pd = pa − po

1 − po
(E.4)

This is the so-called discriminator or guessing
model discussed in Chapter 5. Schlich suggests the
following guidelines for effect size, that 50% above
chance is a large effect (50% discriminators), 37.5%
above chance is a medium effect, and 25% above
chance is a small effect.

Schlich also gave some examples of useful scenar-
ios in which the interplay of alpha and effect size are
driven by competing business interests. For example,
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manufacturing might wish to make a cost reduction
by changing an ingredient, but if a spurious difference
is found they will not recommend the switch and will
not save any money. Therefore the manufacturing deci-
sion is to keep alpha low. A marketing manager, on
the other hand, might want to insure that very few if
any consumers can see a difference. Thus they wish
to test against a small effect size, or be sure to detect
even a small number of discriminators. Keeping the
test power higher (beta low) under both of these condi-
tions will drive the required sample size (N) to a very
high level, perhaps hundreds of subjects, as seen in the
examples below.

Schlich’s tables provide a crossover point for a sit-
uation in which both alpha and beta will be low given
a sufficient number of testers and a certain effect size.
If fewer than the tabulated number (“x”) answer cor-
rectly, the chance of Type I error will increase should
you decide that there is a difference, but the chance of
Type II error will decrease should you decide that there
is no difference. Conversely, if the number of correct
judges exceeds that in the table, the chance of finding a
spurious difference will decrease should you reject the
null, but the chance of missing a true difference will
increase if you accept the null. So it is possible to use
these minimal values for a decision rule. Specifically,
if the number is less than x, accept the null and there
will be lower beta-risk than that listed in the column
heading. If the number correct is greater than X, reject
the null and alpha-risk will be lower than that listed. It
is also possible to interpolate to find other values using
various routines that can be found on the web.

Another set of tabulations for power in discrimina-
tion tests has been given by Ennis (1993). Instead of
basing the alternative hypothesis on the proportions of
discriminators, he has computed a measure of sensory
difference or effect size based on Thurstonian mod-
eling. These models take into account the fact that
different tests may have the same chance probability
level, but some discrimination methods are more diffi-
cult than others. The concept of “more difficult” shows
up in the signal detection models as higher variabil-
ity in the perceptual comparisons. The more difficult
test requires a bigger sensory difference to obtain the
same number of correct judges. The triangle test is
more difficult than the three-alternative forced-choice
test (3-AFC). In the 3-AFC, the panelist’s attention
is usually directed to a specific attribute rather than
choosing on the odd sample. However, the chance

percent correct for both triangle and 3-AFC test is 1/3.
The correction for guessing, being based on the chance
level, does not take into account the difficulty of the
triangle procedure. The “difficulty” arises due to the
inherent variability in judging three pairs of differences
as opposed to judging simply how strong or weak a
given attribute is.

Thurstonian or signal detection models (see
Chapter 5) are an improvement over the “proportion
of discriminators” model since they do account for
the difference in inherent variability. Ennis’s tables use
the Thurstonian sensory differences symbolized by the
lower case Greek letter delta, δ. Delta represents the
sensory difference in standard deviations. The standard
deviations are theoretical variability estimates of the
sensory impressions created by the different products.
The delta values have the advantage that they are com-
parable across methods, unlike the percent correct or
the chance-adjusted percent correct. Table E.1 shows
the numbers of judges required for different levels of
power (80, 90%) and different delta values in the duo–
trio, triangle, 2AFC (paired comparison), and 3AFC
tests. The lower numbers of judges required for the
2AFC and 3AFC tests arise from their higher sensitiv-
ity to differences, i.e., lower inherent variability under
the Thurstonian models.

In terms of delta values, we can see that the usual
discrimination tests done with 25 or 50 panelists will

Table E.1 Numbers of judges required for different levels of
power and sensory difference for paired comparison (2-AFC),
duo–trio, 3-AFC, and triangle tests with alpha = 0.05

δ 2-AFC Duo–trio 3-AFC Triangle

80% power
0.50 78 3092 64 2742
0.75 35 652 27 576
1.00 20 225 15 197
1.25 13 102 9 88
1.50 9 55 6 47
1.75 7 34 5 28
2.00 6 23 3 19

90% power
0.50 108 4283 89 3810
0.75 48 902 39 802
1.00 27 310 21 276
1.25 18 141 13 124
1.50 12 76 9 66
1.75 9 46 6 40
2.00 7 31 5 26

Abstracted from Ennis (1993)
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only detect gross differences (δ >1.5) if the triangle
or duo–trio procedures are used. This fact offers some
warning that the “non-specific” tests for overall differ-
ence (triangle, duo–trio) are really only gross tools that
are better suited to giving confidence when a differ-
ence is detected. The AFC tests, on the other hand, like
a paired comparison test where the attribute of differ-
ence is specified (e.g., “pick which one is sweeter”) are
safer when a no-difference decision is the result.

Useful tables for the power of a triangle test can
be found in Chambers and Wolf (1996). A more gen-
erally useful table for various simple tests was given
by Welkowitz et al. (1982) where the effect size and
sample size are considered jointly to produce a power
table as a function of alpha. This produces a value we
will tabulate as the capital Greek letter delta (�, to dis-
tinguish it from the lowercase delta in Ennis’s tables),
while the raw effect size is given by the letter “d.” �

can be thought of as the d-value corrected for sam-
ple size. The � and d-values take the forms shown
in Table E.2 for simple statistical tests. Computing
these delta values, which take into account the sam-
ple size, allows the referencing of power questions to
one simple table, (Table E.3). In other words, all of
these simple tests have power calculations via the same
table.

Here is worked example, using a two-tailed test
on proportions (Welkowitz et al., 1982). Suppose a
marketing researcher thinks that a product improve-
ment will produce a preference difference of about 8%
against the standard product. In other words, he expects
that in a preference test, the split among consumers of
this product would be something like 46% preferring
the standard product and 54% preferring the new prod-
uct. He conducts a preference test with 400 people,
considered by “intuition” to be a hefty sample size and
finds no difference. What is the power of the test and
what is the certainty that he did miss a true difference
of that size?

Table E.2 Conversion of effect size (d) to delta (�) value,
considering sample size

Test d-value �

One-sample t-test d = (µ1–µ2)/σ � = d
√

N

Dependent t-test d = (µ1–µ2)/σ � = d
√

N

Independent t-test d = (µ1–µ2)/σ � = d

√

2N1N2
N1+N2

Correlation r � = d
√

N − 1
Proportions po−pa√

po(1−po)
� = d

√
N

Table E.3 Effect size adjusted for sample size to show power
as a function of alpha

Two-tailed alpha 0.05 0.025 0.01 0.005
One-tailed alpha 0.10 0.05 0.02 0.01

� Power

0.2 0.11 0.05 0.02 0.01
0.4 0.13 0.07 0.03 0.01
0.6 0.16 0.09 0.03 0.01
0.8 0.21 0.13 0.06 0.04
1.0 0.26 0.17 0.09 0.06
1.2 0.33 0.22 0.13 0.08
1.4 0.40 0.29 0.18 0.12
1.6 0.48 0.36 0.23 0.16
1.8 0.56 0.44 0.30 0.22
2.0 0.64 0.52 0.37 0.28
2.2 0.71 0.59 0.45 0.36
2.4 0.77 0.67 0.53 0.43
2.6 0.83 0.74 0.61 0.51
2.8 0.88 0.80 0.68 0.59
3.0 0.91 0.85 0.75 0.66
3.2 0.94 0.89 0.78 0.70
3.4 0.96 0.93 0.86 0.80
3.6 0.97 0.95 0.90 0.85
3.8 0.98 0.97 0.94 0.91
4.0 0.99 0.98 0.95 0.92

Reprinted with permission from Welkowitz et al. (1982),
Table H

The d-value becomes 0.08 and the delta value is
1.60. Referring to Table E.3, we find that with alpha set
at the traditional 5% level, the power is 48% so there
is still a 52% chance of Type II error (missing a differ-
ence) even with this “hefty” sample size. The problem
in this example is that the alternative hypothesis pre-
dicts a close race. If the researcher wants to distinguish
advantages that are this small, even larger tests must be
conducted to be conclusive.

We can then turn the situation around and ask how
many consumers should be in the test given the small
win that is expected, and the importance of a “no-
preference” conclusion? We can use the following
relationship for proportions:

N = 2

(

�

d

)2

(E.5)

For a required power of 80% and keeping alpha at
the traditional 5% level, we find that a delta value of
2.80 is required. Substituting in our example, we get

N = 2

(

2.80

0.08

)2

= 2450
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This might not seem like a common consumer
test for sensory scientists, who are more concerned
with alpha-risk, but in marketing research or politi-
cal polling of close races, these larger samples are
sometimes justified, as our example shows.

E.5 Summary and Conclusions

Equations for the required sample sizes for scaled data
and for discrimination tests were given by Eqs. (E.1)
and (E.3), respectively. The equation for power for
scaled data was given in Eq. (E.2). The corresponding
equation for choice data from discrimination tests is

Power = 1 − β = 1 − �

[

Zα
√

po(1 − po)/N − (po − pa)√
pa(1 − pa)/N

]

(E.6)
Table E.4 summarizes these formulae.
A finding of “no difference” is often of impor-

tance in sensory evaluation and in support of product
research. Many business decisions in foods and con-
sumer products are made on the basis of small product
changes for cost reduction, a change of process vari-
ables in manufacturing, a change of ingredients or
suppliers. Whether or not consumers will notice the
change is the inference made from sensory research.
In many cases, insurance is provided by performing a
sensitive test under controlled conditions. This is the
philosophy of the “safety net” approach, paraphrased
as follows: “If we do not see a difference under con-
trolled conditions using trained (or selected, screened,
oriented, etc.) panelists, then consumers are unlikely
to notice this change under the more casual and vari-
able conditions of natural observation.” This logic
depends upon the assumption that the laboratory test
is in fact more sensitive to sensory differences than
the consumer’s normal experience. Remember that
the consumer has extended opportunities to observe
the product under a variety of conditions, while the
laboratory-based sensory analysis is often limited in
time, scope, and the conditions of evaluation.

As stated above, a conclusion of “no difference”
based only on a failure to reject the null hypothesis is
not logically airtight. If we fail to reject the null, at least
three possibilities arise: First, there may have been too
much error or random noise in the experiment, so the
statistical significance was lost or swamped by large
standard deviations. It is a simple matter to do a sloppy
experiment. Second, we may not have tested a suf-
ficient number of panelists. If the sample size is too
small, we may miss statistical significance because the
confidence intervals around our observations are sim-
ply too wide to rule out potentially important sensory
differences. Third, there may truly be no difference
(or no practical difference) between our products. So
a failure to reject the null hypothesis is ambiguous and
it is simply not proper to conclude that two products
are sensorially equivalent simply based on a failure to
reject the null. More information is needed.

One approach to this is experimental. If the sensory
test is sensitive enough to show a difference in some
other condition or comparison, it is difficult to argue
that the test was simply not sensitive enough to find
any difference in a similar study. Consideration of a
track record or demonstrated history of detecting dif-
ferences with the test method is helpful. In a particular
laboratory and with a known panel, it is reasonable
to conclude that a tool, which has often shown differ-
ences in the past, is operating well and is sufficiently
discriminative. Given the history of the sensory proce-
dure under known conditions, it should be possible to
use this sort of common sense approach to minimize
risk in decision making. In an ongoing sensory testing
program for discrimination, it would be reasonable to
use a panel of good size (say 50 screened testers), per-
form a replicated test, and know whether the panel had
shown reliable differences in the past.

Another approach is to “bracket” the test compar-
ison with known levels of difference. In other words,
include extra products in the test that one would
expect to be different. Baseline or positive and nega-
tive control comparisons can be tested and if the panel
finds significant differences between those benchmark

Table E.4 Sample size and power formulas (see text for details)

Form of data Sample size Power

Proportion or frequency N =
[

Zα

√
po(1−po)+Zβ

√
pa(1−pa)

|po−pa|

]2
1 − �

[

Zα

√
po(1−po)/N−(po−pa)√

pa(1−pa)/N

]

Scaled or continuous N = (Zα+Zβ)2S2

(M1−M2)2 1 − �

[

Xc−µD
SE

]

= 1 − �

[

Zα(SE)−µD
SE

]
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products, we have evidence that the tool is working. If
the experimental comparison was not significant, then
the difference is probably smaller than the sensory dif-
ference in the benchmark or bracketing comparisons
that did reach significance. Using meta-analytic com-
parisons (Rosenthal, 1987), a conclusion about relative
effect size may be mathematically tested. A related
approach is to turn the significance test around, as in
the test for significant similarity discussed in Chapter
5. In that approach, the performance in a discrimina-
tion test must be at or above chance, but significantly
below some chosen cutoff for concluding that products
are different, practically (not statistically) speaking.

The third approach is to do a formal analysis of
the test power. When a failure to reject the null is
accompanied by evidence that the test was of sufficient
power, reasonable scientific conclusions may be stated
and business decisions can be made with reduced risk.
Sensory scientists would do well to make some esti-
mates of test power before conducting any experiment
where a null result will generate important actions. It is
easy to overestimate the statistical power of a test. On
the other hand, it is possible to design an overly sen-
sitive test that finds small significant differences of no
practical import. As in other statistical areas, consider-
ations of test power and sensitivity must also be based
on the larger framework of practical experience and
consumer and/or marketplace validation of the sensory
procedure.

Finally, it should be noted that many fields have
rejected the approach that sufficient test power allows
one to accept the null for purposes of equivalence. For
example, in bioequivalence of drugs, one must demon-
strate that the test drug falls within a certain range of
the control or comparison (USFDA, 2001). This has
led to an interval testing approach to equivalence, also
discussed by Wellek (2003) and more specifically for
sensory testing by Bi (2006), Ennis (2008), and Ennis
and Ennis (2009).
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Table F.A Cumulative probabilities of the standard normal distribution. Entry area 1–α under the standard normal curve from –∞
to z(1–α)

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Table F.B Table of critical values for the t-distribution

Level of significance for one-tailed test
0.01 0.05 0.025 0.01 0.005 0.001 0.0005

Level of significance for two-tailed test
df 0.02 0.1 0.05 0.02 0.01 0.002 0.001

1 3.078 6.314 12.706 31.821 63.656 318.289 636.578
2 1.886 2.92 4.303 6.965 9.925 22.328 31.600
3 1.638 2.353 3.182 4.541 5.841 10.214 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.894 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.689
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.660
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.091 3.291



554 Appendix F

Table F.C Table of critical values of the chi-square (χ2) distribution

Alpha 0.1 0.05 0.025 0.01 0.005

df
1 2.71 3.84 5.02 6.64 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.82 9.35 11.35 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.65 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.54 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59

10 15.99 18.31 20.48 23.21 25.19
11 17.28 19.68 21.92 24.73 26.76
12 18.55 21.03 23.34 26.22 28.30
13 19.81 22.36 24.74 27.69 29.82
14 21.06 23.69 26.12 29.14 31.32
15 22.31 25.00 27.49 30.58 32.80
16 23.54 26.30 28.85 32.00 34.27
17 24.77 27.59 30.19 33.41 35.72
18 25.99 28.87 31.53 34.81 37.16
19 27.20 30.14 32.85 36.19 38.58
20 28.41 31.41 34.17 37.57 40.00
21 29.62 32.67 35.48 38.93 41.40
22 30.81 33.92 36.78 40.29 42.80
23 32.01 35.17 38.08 41.64 44.18
24 33.20 36.42 39.36 42.98 45.56
25 34.38 37.65 40.65 44.31 46.93
26 35.56 38.89 41.92 45.64 48.29
27 36.74 40.11 43.20 46.96 49.65
28 37.92 41.34 44.46 48.28 50.99
29 39.09 42.56 45.72 49.59 52.34
30 40.26 43.77 46.98 50.89 53.67
40 51.81 55.76 59.34 63.69 66.77
50 63.17 67.51 71.42 76.15 79.49
60 74.40 79.08 83.30 88.38 91.95
70 85.53 90.53 95.02 100.43 104.22
80 96.58 101.88 106.63 112.33 116.32
90 107.57 113.15 118.14 124.12 128.30

100 118.50 124.34 129.56 135.81 140.17
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Table F.D1 Critical values of the F-distribution at α = 0.05

df1 1 2 3 4 5 10 20 30 40 50 60 70 80 100 ∞
df2

5 6.61 5.79 5.41 5.19 5.05 4.74 4.56 4.50 4.46 4.44 4.43 4.42 4.42 4.41 4.37
6 5.99 5.14 4.76 4.53 4.39 4.06 3.87 3.81 3.77 3.75 3.74 3.73 3.72 3.71 3.68
7 5.59 4.74 4.35 4.12 3.97 3.64 3.44 3.38 3.34 3.32 3.30 3.29 3.29 3.27 3.24
8 5.32 4.46 4.07 3.84 3.69 3.35 3.15 3.08 3.04 3.02 3.01 2.99 2.99 2.97 2.94
9 5.12 4.26 3.86 3.63 3.48 3.14 2.94 2.86 2.83 2.80 2.79 2.78 2.77 2.76 2.72

10 4.96 4.10 3.71 3.48 3.33 2.98 2.77 2.70 2.66 2.64 2.62 2.61 2.60 2.59 2.55
11 4.84 3.98 3.59 3.36 3.20 2.85 2.65 2.57 2.53 2.51 2.49 2.48 2.47 2.46 2.42
12 4.75 3.89 3.49 3.26 3.11 2.75 2.54 2.47 2.43 2.40 2.38 2.37 2.36 2.35 2.31
13 4.67 3.81 3.41 3.18 3.03 2.67 2.46 2.38 2.34 2.31 2.30 2.28 2.27 2.26 2.22
14 4.60 3.74 3.34 3.11 2.96 2.60 2.39 2.31 2.27 2.24 2.22 2.21 2.20 2.19 2.14
15 4.54 3.68 3.29 3.06 2.90 2.54 2.33 2.25 2.20 2.18 2.16 2.15 2.14 2.12 2.08
16 4.49 3.63 3.24 3.01 2.85 2.49 2.28 2.19 2.15 2.12 2.11 2.09 2.08 2.07 2.02
17 4.45 3.59 3.20 2.96 2.81 2.45 2.23 2.15 2.10 2.08 2.06 2.05 2.03 2.02 1.97
18 4.41 3.55 3.16 2.93 2.77 2.41 2.19 2.11 2.06 2.04 2.02 2.00 1.99 1.98 1.93
19 4.38 3.52 3.13 2.90 2.74 2.38 2.16 2.07 2.03 2.00 1.98 1.97 1.96 1.94 1.89
20 4.35 3.49 3.10 2.87 2.71 2.35 2.12 2.04 1.99 1.97 1.95 1.93 1.92 1.91 1.86
22 4.30 3.44 3.05 2.82 2.66 2.30 2.07 1.98 1.94 1.91 1.89 1.88 1.86 1.85 1.80
23 4.26 3.40 3.01 2.78 2.62 2.25 2.03 1.94 1.89 1.86 1.84 1.83 1.82 1.80 1.75
26 4.23 3.37 2.98 2.74 2.59 2.22 1.99 1.90 1.85 1.82 1.80 1.79 1.78 1.76 1.71
28 4.20 3.34 2.95 2.71 2.56 2.19 1.96 1.87 1.82 1.79 1.77 1.75 1.74 1.73 1.67
30 4.17 3.32 2.92 2.69 2.53 2.16 1.93 1.84 1.79 1.76 1.74 1.72 1.71 1.70 1.64
35 4.12 3.27 2.87 2.64 2.49 2.11 1.88 1.79 1.74 1.70 1.68 1.66 1.65 1.63 1.57
40 4.08 3.23 2.84 2.61 2.45 2.08 1.84 1.74 1.69 1.66 1.64 1.62 1.61 1.59 1.53
45 4.06 3.20 2.81 2.58 2.42 2.05 1.81 1.71 1.66 1.63 1.60 1.59 1.57 1.55 1.49
50 4.03 3.18 2.79 2.56 2.40 2.03 1.78 1.69 1.63 1.60 1.58 1.56 1.54 1.52 1.46
60 4.00 3.15 2.76 2.53 2.37 1.99 1.75 1.65 1.59 1.56 1.53 1.52 1.50 1.48 1.41
70 3.98 3.13 2.74 2.50 2.35 1.97 1.72 1.62 1.57 1.53 1.50 1.49 1.47 1.45 1.37
80 3.96 3.11 2.72 2.49 2.33 1.95 1.70 1.60 1.54 1.51 1.48 1.46 1.45 1.43 1.35

100 3.94 3.09 2.70 2.46 2.31 1.93 1.68 1.57 1.52 1.48 1.45 1.43 1.41 1.39 1.31
∞ 3.86 3.01 2.62 2.39 2.23 1.85 1.59 1.48 1.42 1.38 1.35 1.32 1.30 1.28 1.16
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Table F.D2 Critical values of the F-distribution at α = 0.01

df1 1 2 3 4 5 10 20 30 40 50 60 70 80 100 ∞
df2

3 34.12 30.82 29.46 28.71 28.24 27.23 26.69 26.50 26.41 26.35 26.32 26.29 26.27 26.24 26.15
4 21.20 18.00 16.69 15.98 15.52 14.55 14.02 13.84 13.75 13.69 13.65 13.63 13.61 13.58 13.49
5 16.26 13.27 12.06 11.39 10.97 10.05 9.55 9.38 9.29 9.24 9.20 9.18 9.16 9.13 9.04
6 13.75 10.92 9.78 9.15 8.75 7.87 7.40 7.23 7.14 7.09 7.06 7.03 7.01 6.99 6.90
7 12.25 9.55 8.45 7.85 7.46 6.62 6.16 5.99 5.91 5.86 5.82 5.80 5.78 5.75 5.67
8 11.26 8.65 7.59 7.01 6.63 5.81 5.36 5.20 5.12 5.07 5.03 5.01 4.99 4.96 4.88
9 10.56 8.02 6.99 6.42 6.06 5.26 4.81 4.65 4.57 4.52 4.48 4.46 4.44 4.42 4.33

10 10.04 7.56 6.55 5.99 5.64 4.85 4.41 4.25 4.17 4.12 4.08 4.06 4.04 4.01 3.93
11 9.65 7.21 6.22 5.67 5.32 4.54 4.10 3.94 3.86 3.81 3.78 3.75 3.73 3.71 3.62
12 9.33 6.93 5.95 5.41 5.06 4.30 3.86 3.70 3.62 3.57 3.54 3.51 3.49 3.47 3.38
13 9.07 6.70 5.74 5.21 4.86 4.10 3.66 3.51 3.43 3.38 3.34 3.32 3.30 3.27 3.19
14 8.86 6.51 5.56 5.04 4.70 3.94 3.51 3.35 3.27 3.22 3.18 3.16 3.14 3.11 3.03
15 8.68 6.36 5.42 4.89 4.56 3.80 3.37 3.21 3.13 3.08 3.05 3.02 3.00 2.98 2.89
16 8.53 6.23 5.29 4.77 4.44 3.69 3.26 3.10 3.02 2.97 2.93 2.91 2.89 2.86 2.78
17 8.40 6.11 5.19 4.67 4.34 3.59 3.16 3.00 2.92 2.87 2.83 2.81 2.79 2.76 2.68
18 8.29 6.01 5.09 4.58 4.25 3.51 3.08 2.92 2.84 2.78 2.75 2.72 2.71 2.68 2.59
19 8.19 5.93 5.01 4.50 4.17 3.43 3.00 2.84 2.76 2.71 2.67 2.65 2.63 2.60 2.51
20 8.10 5.85 4.94 4.43 4.10 3.37 2.94 2.78 2.69 2.64 2.61 2.58 2.56 2.54 2.44
30 7.56 5.39 4.51 4.02 3.70 2.98 2.55 2.39 2.30 2.25 2.21 2.18 2.16 2.13 2.03
40 7.31 5.18 4.31 3.83 3.51 2.80 2.37 2.20 2.11 2.06 2.02 1.99 1.97 1.94 1.83
50 7.17 5.06 4.20 3.72 3.41 2.70 2.27 2.10 2.01 1.95 1.91 1.88 1.86 1.82 1.71
60 7.08 4.98 4.13 3.65 3.34 2.63 2.20 2.03 1.94 1.88 1.84 1.81 1.78 1.75 1.63
70 7.01 4.92 4.07 3.60 3.29 2.59 2.15 1.98 1.89 1.83 1.78 1.75 1.73 1.70 1.57
80 6.96 4.88 4.04 3.56 3.26 2.55 2.12 1.94 1.85 1.79 1.75 1.71 1.69 1.65 1.53

100 6.90 4.82 3.98 3.51 3.21 2.50 2.07 1.89 1.80 1.74 1.69 1.66 1.63 1.60 1.47
∞ 6.69 4.65 3.82 3.36 3.05 2.36 1.92 1.74 1.63 1.57 1.52 1.48 1.45 1.41 1.23

Table F.E Critical values of U for a one-tailed alpha at 0.025 or a two-tailed alpha at 0.05

n1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n2

5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41
9 7 10 12 15 17 21 23 26 28 31 34 37 39 42 45 48

10 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55
11 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62
12 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69
13 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76
14 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83
15 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90
16 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98
17 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105
18 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112
19 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119
20 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

Reworked from Auble, D. 1953. Extended tables for the Mann–Whitney U-statistic. Bulletin of the Institute
of Educational Research, 1(2). Indiana University
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Table F.F1 Table of critical values of ρ (Spearman Rank
correlation coefficient)

One-tailed alpha values
0.05 0.025 0.01 0.005

Two-tailed alpha values
0.10 0.05 0.02 0.01

n

4 1.000
5 0.900 1.000 1.000
6 0.829 0.886 0.943 1.000
7 0.714 0.786 0.893 0.929
8 0.643 0.738 0.833 0.881
9 0.600 0.700 0.783 0.833

10 0.564 0.648 0.745 0.794
11 0.536 0.618 0.709 0.755
12 0.503 0.587 0.678 0.727
13 0.484 0.560 0.648 0.703
14 0.464 0.538 0.626 0.679
15 0.446 0.521 0.604 0.654
16 0.429 0.503 0.582 0.635
17 0.414 0.488 0.566 0.618
18 0.401 0.472 0.550 0.600
19 0.391 0.460 0.535 0.584
20 0.380 0.447 0.522 0.570
21 0.370 0.436 0.509 0.556
22 0.361 0.425 0.497 0.544
23 0.353 0.416 0.486 0.532
24 0.344 0.407 0.476 0.521
25 0.337 0.398 0.466 0.511
26 0.331 0.390 0.457 0.501
27 0.324 0.383 0.449 0.492
28 0.318 0.375 0.441 0.483
29 0.312 0.368 0.433 0.475
30 0.306 0.362 0.425 0.467
35 0.283 0.335 0.394 0.433
40 0.264 0.313 0.368 0.405
45 0.248 0.294 0.347 0.382
50 0.235 0.279 0.329 0.363

Reworked from Ramsey, P. H. 1989. Critical values for
Spearman’s rank order correlation. Journal of Educational and
Behavioral Statistics, 14, 245–253
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Table F.F2 Table of critical values of r (Pearson’s correlation
coefficient)

One-tailed alpha values
0.05 0.025 0.01 0.005

Two-tailed alpha values
0.1 0.05 0.02 0.01

df (n–2)
1 0.988 0.997 0.999 0.999
2 0.900 0.950 0.980 0.990
3 0.805 0.878 0.934 0.959
4 0.729 0.811 0.882 0.917
5 0.669 0.754 0.833 0.875
6 0.622 0.707 0.789 0.834
7 0.582 0.666 0.750 0.798
8 0.549 0.632 0.716 0.765
9 0.521 0.602 0.685 0.735

10 0.497 0.576 0.658 0.708
11 0.476 0.553 0.634 0.684
12 0.458 0.532 0.612 0.661
13 0.441 0.514 0.592 0.641
14 0.426 0.497 0.574 0.623
15 0.412 0.482 0.558 0.606
16 0.400 0.468 0.542 0.590
17 0.389 0.456 0.528 0.575
18 0.378 0.444 0.516 0.561
19 0.369 0.433 0.503 0.549
20 0.360 0.423 0.492 0.537
21 0.352 0.413 0.482 0.526
22 0.344 0.404 0.472 0.515
23 0.337 0.396 0.462 0.505
24 0.330 0.388 0.453 0.496
25 0.323 0.381 0.445 0.487
26 0.317 0.374 0.437 0.479
27 0.311 0.367 0.43 0.471
28 0.306 0.361 0.423 0.463
29 0.301 0.355 0.416 0.456
30 0.296 0.349 0.409 0.449
35 0.275 0.325 0.381 0.418
40 0.257 0.304 0.358 0.393
45 0.243 0.288 0.338 0.372
50 0.231 0.273 0.322 0.354
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Table F.G Critical values for Duncan’s multiple range test (p, df, α = 0.05)

Number of means bracketing comparison (p)a

2 3 4 5 10 15 20

df
1 17.969 17.969 17.969 17.969 17.969 17.969 17.969
2 6.085 6.085 6.085 6.085 6.085 6.085 6.085
3 4.501 4.516 4.516 4.516 4.516 4.516 4.516
4 3.926 4.013 4.033 4.033 4.033 4.033 4.033
5 3.635 3.749 3.796 3.814 3.814 3.814 3.814
6 3.461 3.586 3.649 3.68 3.697 3.697 3.697
7 3.344 3.477 3.548 3.588 3.625 3.625 3.625
8 3.261 3.398 3.475 3.521 3.579 3.579 3.579
9 3.199 3.339 3.42 3.47 3.547 3.547 3.547

10 3.151 3.293 3.376 3.43 3.522 3.525 3.525
11 3.113 3.256 3.341 3.397 3.501 3.510 3.510
12 3.081 3.225 3.312 3.37 3.484 3.498 3.498
13 3.055 3.200 3.288 3.348 3.470 3.49 3.490
14 3.033 3.178 3.268 3.328 3.457 3.484 3.484
15 3.014 3.16 3.25 3.312 3.446 3.478 3.480
16 2.998 3.144 3.235 3.297 3.437 3.473 3.477
17 2.984 3.130 3.222 3.285 3.429 3.469 3.475
18 2.971 3.117 3.21 3.274 3.421 3.465 3.474
19 2.96 3.106 3.199 3.264 3.415 3.462 3.474
20 2.95 3.097 3.190 3.255 3.409 3.459 3.473
22 2.933 3.080 3.173 3.239 3.398 3.453 3.472
24 2.919 3.066 3.160 3.226 3.390 3.449 3.472
26 2.907 3.054 3.149 3.216 3.382 3.445 3.471
28 2.897 3.044 3.139 3.206 3.376 3.442 3.470
30 2.888 3.035 3.131 3.199 3.371 3.439 3.470
35 2.871 3.018 3.114 3.183 3.360 3.433 3.469
40 2.858 3.005 3.102 3.171 3.352 3.429 3.469
60 2.829 2.976 3.073 3.143 3.333 3.419 3.468
80 2.814 2.961 3.059 3.130 3.323 3.414 3.467

120 2.800 2.947 3.045 3.116 3.313 3.409 3.466
∞ 2.772 2.918 3.017 3.089 3.294 3.399 3.466

Reworked from Harter, H. L. 1960. Critical values for Duncan’s new multiple range test. Biometrics,
16, 671–685.
aNumber of means, when rank ordered, between the pair being compared and including the pair itself
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Table F.H1 Critical valuesa of the triangle test for similarity (maximum number correct as a
function of the number of observations (N), beta, and proportion discriminating)

Proportion discriminating

Beta 10% 20% 30%

N

30 0.05 11
0.1 10 11

36 0.05 11 13
0.1 10 12 14

42 0.05 11 13 16
0.1 12 14 17

48 0.05 13 16 19
0.1 14 17 20

54 0.05 15 18 22
0.1 16 20 23

60 0.05 17 21 25
0.1 18 22 26

66 0.05 19 23 28
0.1 20 25 29

72 0.05 21 26 30
0.1 22 27 32

78 0.05 23 28 33
0.1 25 30 34

84 0.05 25 31 35
0.1 27 32 38

90 0.05 27 33 38
0.1 29 35 38

96 0.05 30 36 42
0.1 31 38 44

Created in analogy to Meilgaard, M., Civille, G. V., Carr B. T. 1991. Sensory Evaluation Techniques.
CRC Boca Raton, FL. Using B.T. Carr’s Discrimination Test Analysis Tool EXCEL program
aAccept the null hypothesis with 100(1–beta) confidence if the number of correct choices does not
exceed the tabled value for the allowable proportion of discriminators
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Table F.H2 Critical valuesa of the duo–trio and paired comparison tests for similarity (maximum number
correct as a function of the number of observations (N), beta, and proportion discriminating

Proportion discriminating

Beta 10% 20% 30%

N

32 0.05 12 14 15
0.1 13 15 16

36 0.05 14 16 18
0.1 15 17 19

40 0.05 16 18 20
0.1 17 19 21

44 0.05 18 20 22
0.1 19 21 24

48 0.05 20 22 25
0.1 21 23 26

52 0.05 22 24 27
0.1 23 26 28

56 0.05 24 27 29
0.1 25 28 31

60 0.05 26 29 32
0.1 27 30 33

64 0.05 28 31 34
0.1 29 32 36

68 0.05 30 33 37
0.1 31 35 38

72 0.05 32 35 39
0.1 33 37 41

76 0.05 34 38 41
0.1 35 39 43

80 0.05 36 40 44
0.1 37 41 46

84 0.05 38 42 46
0.1 39 44 48

Created in analogy to Meilgaard, M., Civille, G. V., Carr B. T. 1991. Sensory Evaluation Techniques. CRC
Boca Raton, FL. Using B.T. Carr’s Discrimination Test Analysis Tool EXCEL program
aAccept the null hypothesis with 100(1–beta) confidence if the number of correct choices does not exceed the
tabled value for the allowable proportion of discriminators
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Table F.I Table of probabilities for values as small as observed values of x associated with the binomial test (p=0.50)a,b

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

5 0.031 0.188 0.500 0.813 0.969
6 0.016 0.109 0.344 0.656 0.891 0.984
7 0.008 0.063 0.227 0.500 0.773 0.938 0.992
8 0.004 0.035 0.145 0.363 0.637 0.855 0.965 0.996
9 0.002 0.020 0.090 0.254 0.500 0.746 0.910 0.980 0.998

10 0.001 0.011 0.055 0.172 0.377 0.623 0.828 0.945 0.989 0.999
11 0.000 0.006 0.033 0.113 0.274 0.500 0.726 0.887 0.967 0.994
12 0.000 0.003 0.019 0.073 0.194 0.387 0.613 0.806 0.927 0.981 0.997
13 0.000 0.002 0.011 0.046 0.133 0.291 0.500 0.709 0.867 0.954 0.989 0.998
14 0.001 0.006 0.029 0.090 0.212 0.395 0.605 0.788 0.910 0.971 0.994 0.999
15 0.000 0.004 0.018 0.059 0.151 0.304 0.500 0.696 0.849 0.941 0.982 0.996
16 0.000 0.002 0.011 0.038 0.105 0.227 0.402 0.598 0.773 0.895 0.962 0.989 0.998
17 0.000 0.001 0.006 0.025 0.072 0.166 0.315 0.500 0.685 0.834 0.928 0.975 0.994 0.999
18 0.001 0.004 0.015 0.048 0.119 0.240 0.407 0.593 0.760 0.881 0.952 0.985 0.996 0.999
19 0.000 0.002 0.010 0.032 0.084 0.180 0.324 0.500 0.676 0.820 0.916 0.968 0.990 0.998
20 0.000 0.001 0.006 0.021 0.058 0.132 0.252 0.412 0.588 0.748 0.868 0.942 0.979 0.994
21 0.000 0.001 0.004 0.013 0.039 0.095 0.192 0.332 0.500 0.668 0.808 0.905 0.961 0.987
22 0.000 0.002 0.008 0.026 0.067 0.143 0.262 0.416 0.584 0.738 0.857 0.933 0.974
23 0.000 0.001 0.005 0.017 0.047 0.105 0.202 0.339 0.500 0.661 0.798 0.895 0.953
24 0.000 0.001 0.003 0.011 0.032 0.076 0.154 0.271 0.419 0.581 0.729 0.846 0.924
25 0.000 0.002 0.007 0.022 0.054 0.115 0.212 0.345 0.500 0.655 0.788 0.885
26 0.000 0.001 0.005 0.014 0.038 0.084 0.163 0.279 0.423 0.577 0.721 0.837
27 0.000 0.001 0.003 0.010 0.026 0.061 0.124 0.221 0.351 0.500 0.649 0.779
28 0.000 0.002 0.006 0.018 0.044 0.092 0.172 0.286 0.425 0.575 0.714
29 0.000 0.001 0.004 0.012 0.031 0.068 0.132 0.229 0.356 0.500 0.644
30 0.000 0.001 0.003 0.008 0.021 0.049 0.100 0.181 0.292 0.428 0.572
35 0.000 0.001 0.003 0.008 0.020 0.045 0.088 0.155 0.250
40 0.000 0.001 0.003 0.008 0.019 0.040 0.077

aThese values are one tailed. For a two-tailed test double the value.
bThe alpha level is equal to (1–probability)
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Table F.J Critical values for the differences between rank sums (α = 0.05)

Number of samples

3 4 5 6 7 8 9 10 11 12

Number of panelists
3 6 8 11 13 15 18 20 23 25 28
4 7 10 13 15 18 21 24 27 30 33
5 8 11 14 17 21 24 27 30 34 37
6 9 12 15 19 22 26 30 34 37 42
7 10 13 17 20 24 28 32 36 40 44
8 10 14 18 22 26 30 34 39 43 47
9 10 15 19 23 27 32 36 41 46 50

10 1 15 20 24 29 34 38 43 48 53
11 11 16 21 26 30 35 40 45 51 56
12 12 17 22 27 32 37 42 48 53 58
13 12 18 23 28 33 39 44 50 55 61
14 13 18 24 29 34 40 46 52 57 63
15 13 19 24 30 36 42 47 53 59 66
16 14 19 25 31 37 42 49 55 61 67
17 14 20 26 32 38 44 50 56 63 69
18 15 20 26 32 39 45 51 58 65 71
19 15 21 27 33 40 46 53 60 66 73
20 15 21 28 34 41 47 54 61 68 75
21 16 22 28 35 42 49 56 63 70 77
22 16 22 29 36 43 50 57 64 71 79
23 16 23 30 37 44 51 58 65 73 80
24 17 23 30 37 45 52 59 67 74 82
25 17 24 31 38 46 53 61 68 76 84
26 17 24 32 39 46 54 62 70 77 85
27 18 25 32 40 47 55 63 71 79 87
28 18 25 33 40 48 56 64 72 80 89
29 18 26 33 41 49 57 65 73 82 90
30 19 26 34 42 50 58 66 75 83 92
35 20 28 37 45 54 63 72 81 90 99
40 21 30 39 48 57 67 76 86 96 106
45 23 32 41 51 61 71 81 91 102 112
50 24 34 44 54 64 75 85 96 107 118
55 25 34 46 56 67 78 90 101 112 124
60 26 37 48 59 70 82 94 105 117 130
65 27 38 50 61 73 85 97 110 122 135
70 28 40 52 64 76 88 101 114 127 140
75 29 41 53 66 79 91 105 118 131 145
80 30 42 55 68 81 94 108 122 136 150
85 31 44 57 70 84 97 111 125 140 154
90 32 45 58 72 86 100 114 129 144 159
95 33 46 60 74 88 103 118 133 148 163

100 34 47 61 76 91 105 121 136 151 167

Reworked from Newell, G. and MacFarlane, J. 1988. Expanded tables for multiple comparison procedures
in the analysis of ranked data. Journal of Food Science, 52, 1721–1725
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Table F.K Critical valuesa of the beta binomial distribution

Gamma

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8

p = 1/3, one sidedb

N

20 19 19 19 19 19 19 19 20
25 22 23 23 23 23 24 24 24
30 26 27 27 27 27 28 28 28
35 30 30 31 31 31 32 32 32
40 34 34 34 34 35 35 36 36
45 38 38 38 39 39 39 39 40
50 41 42 42 42 43 43 43 44
55 45 45 46 46 46 47 47 48
60 49 49 49 50 50 50 51 51
70 56 56 57 57 58 58 58 59
80 63 64 64 64 65 65 66 66
90 70 71 71 72 72 72 73 74

100 77 78 79 79 79 80 80 81
125 95 96 96 97 97 98 98 99
150 113 114 114 115 115 116 116 117
200 148 149 149 150 151 151 152 153
p = 1/2, one sidedb

20 26 26 26 26 27 27 27 27
25 31 32 32 32 32 33 33 33
30 37 37 37 38 38 38 39 39
35 42 43 43 43 44 44 44 45
40 48 48 49 49 49 50 50 50
45 53 54 54 54 55 55 55 56
50 59 59 60 60 60 61 61 61
55 64 65 65 65 66 66 66 67
60 70 70 70 71 71 72 72 73
70 80 81 81 82 82 82 83 84
80 91 91 92 92 93 93 94 94
90 101 102 103 103 104 104 104 105

100 112 113 113 114 114 115 115 116
125 138 139 140 140 141 141 142 143
150 165 165 166 167 167 168 169 170
200 217 218 218 219 220 221 221 223
p = 1/2, two sidedc

20 27 27 27 28 28 28 28 29
25 32 33 33 33 34 34 34 35
30 38 38 39 39 39 40 40 41
35 44 44 44 45 45 46 46 46
40 49 50 50 50 51 51 52 52
45 55 55 56 56 56 57 57 58
50 60 61 61 62 62 62 63 64
55 66 66 67 67 68 68 68 69
60 71 72 72 73 73 74 74 75
70 82 83 83 84 84 85 85 86
80 93 93 94 95 95 96 96 97
90 104 104 105 105 106 107 107 108

100 114 115 116 116 117 118 118 119
125 141 142 142 143 144 144 145 146
150 167 168 169 170 171 171 172 173
200 220 221 222 223 224 224 225 227

aValues are rounded up to 1 except where the exact value was less than 0.05 higher than the integer
bWhen used for discrimination tests, the total number of correct choices must equal or exceed the tabled value
cFor this test, when used for preference tests, the total number of preference choices for the larger proportion (more preferred
item) must equal or exceed the tabled value
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Table F.L Minimum numbers of correct judgmentsa to establish significance at probability levels of 5 and 1% for paired
difference and duo–trio tests (one tailed, p = 1/2) and the triangle test (one tailed, p = 1/3)

Paired difference and duo–trio tests Triangle test

Probability levels Probability levels

Number of trials (n) 0.05 0.01 Number of trails (n) 0.05 0.01

7 7 7 5 4 5
8 7 8 6 5 6
9 8 9 7 5 6

10 9 10 8 6 7
11 9 10 9 6 7
12 10 11 10 7 8
13 10 12 11 7 8
14 11 12 12 8 9
15 12 13 13 8 9
16 12 14 14 9 10
17 13 14 15 9 10
18 13 15 16 9 11
19 14 15 17 10 11
20 15 16 18 10 12
21 15 17 19 11 12
22 16 17 20 11 13
23 16 18 21 12 13
24 17 19 22 12 14
25 18 19 23 12 14
26 18 20 24 13 15
27 19 20 25 13 15
28 19 21 26 14 15
29 20 22 27 14 16
30 20 22 28 15 16
31 21 23 29 15 17
32 22 24 30 15 17
33 22 24 31 16 18
34 23 25 32 16 18
35 23 25 33 17 18
36 24 26 34 17 19
37 24 26 35 17 19
38 25 27 36 18 20
39 26 28 37 18 20
40 26 28 38 19 21
41 27 29 39 19 21
42 27 29 40 19 21
43 28 30 41 20 22
44 28 31 42 20 22
45 29 31 43 20 23
46 30 32 44 21 23
47 30 32 45 21 24
48 31 33 46 22 24
49 31 34 47 22 24
50 32 34 48 22 25
60 37 40 49 23 25
70 43 46 50 23 26
80 48 51 60 27 30
90 54 57 70 31 34

100 59 63 80 35 38
90 38 42

100 42 45
aCreated in EXCEL 2007 using B. T. Carr’s Discrimination Test Analysis Tool EXCEL program (used with permission)
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Table F.M Minimum numbers of correct judgmentsa to establish significance at probability levels
of 5 and 1% for paired preference test (two tailed, p = 1/2)

Trials (n) 0.05 0.01 Trails (n) 0.05 0.01

7 7 7 45 30 32
8 8 8 46 31 33
9 8 9 47 31 33

10 9 10 48 32 34
11 10 11 49 32 34
12 10 11 50 33 35
13 11 12 60 39 41
14 12 13 70 44 47
15 12 13 80 50 52
16 13 14 90 55 58
17 13 15 100 61 64
18 14 15 110 66 69
19 15 16 120 72 75
20 15 17 130 77 81
21 16 17 140 83 86
22 17 18 150 88 92
23 17 19 160 93 97
24 18 19 170 99 103
25 18 20 180 104 108
26 19 20 190 109 114
27 20 21 200 115 119
28 22 22 250 141 146
29 21 22 300 168 173
30 21 23 350 194 200
31 22 24 400 221 227
32 23 24 450 247 253
33 23 25 500 273 280
34 24 25 550 299 306
35 24 26 600 325 332
36 25 27 650 351 359
37 25 27 700 377 385
38 26 28 750 403 411
39 27 28 800 429 437
40 27 29 850 455 463
41 28 30 900 480 490
42 28 30 950 506 516
43 29 31 1, 000 532 542
44 29 31
aCreated in EXCEL 2007 using B. T. Carr’s Discrimination Test Analysis Tool EXCEL program
(used with permission)
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Table F.N1 Minimum number of responses (n) and correct responses (x) to obtain a level of Type I and
Type II risks in the triangle test. Pd is the chance-adjusted percent correct or proportion of discriminators

Type II risk

Type I risk 0.20 0.10 0.05
N X N X N X

Pd = 0.50
0.10 12 7 15 8 20 10
0.05 16 9 20 11 23 12
0.01 25 15 30 17 35 19
Pd = 0.40
0.10 17 9 25 12 39 14
0.05 23 12 30 15 40 19
0.01 35 19 47 24 56 28
Pd = 0.30
0.10 30 14 43 19 54 23
0.05 40 19 53 24 66 29
0.01 62 30 82 38 97 44
Pd = 0.20
0.10 62 26 89 36 119 47
0.05 87 37 117 48 147 59
0.01 136 59 176 74 211 87

Abstracted from Schlich, P. 1993. Risk tables for discrimination tests. Food Quality and Preference, 4,
141–151.

Table F.N2 Minimum number of responses (n) and correct responses (x) to obtain a level of Type I and
Type II risks in the duo–trio test. Pc is the chance-adjusted percent correct or proportion of discriminators

Type II risk

Type I risk 0.20 0.10 0.05
N X N X N X

Pd = 0.50
0.10 19 13 26 17 33 21
0.05 23 16 33 22 42 27
0.01 40 28 50 34 59 39
Pd = 0.40
0.10 28 18 39 24 53 32
0.05 37 24 53 33 67 41
0.01 64 42 80 51 96 60
Pd = 0.30
0.10 53 32 72 42 96 55
0.05 69 42 93 55 119 69
0.01 112 69 143 86 174 103
Pd = 0.20
0.10 115 65 168 93 214 117
0.05 158 90 213 119 268 148
0.01 252 145 325 184 391 219

Abstracted from Schlich, P. 1993. Risk tables for discrimination tests. Food Quality and Preference, 4,
141–151
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Table F.O1 d ′ and B (variance factor) values for the duo–trio
and 2-AFC (paired comparison) difference tests

Duo–trio 2-AFC

PC d ′ B d ′ B

0.51 0.312 70.53 0.036 3.14
0.52 0.472 36.57 0.071 3.15
0.53 0.582 25.28 0.107 3.15
0.54 0.677 19.66 0.142 3.15
0.55 0.761 16.32 0.178 3.16
0.56 0.840 14.11 0.214 3.17
0.57 0.913 12.55 0.250 3.17
0.58 0.983 11.40 0.286 3.18
0.59 1.050 10.52 0.322 3.20
0.60 1.115 9.83 0.358 3.22
0.61 1.178 9.29 0.395 3.23
0.62 1.240 8.85 0.432 3.25
0.63 1.301 8.49 0.469 3.27
0.64 1.361 8.21 0.507 3.29
0.65 1.421 7.97 0.545 3.32
0.66 1.480 7.79 0.583 3.34
0.67 1.569 7.64 0.622 3.37
0.68 1.597 7.53 0.661 3.40
0.69 1.565 7.45 0.701 3.43
0.70 1.715 7.39 0.742 3.47
0.71 1.775 7.36 0.783 3.51
0.72 1.835 7.36 0.824 3.56
0.73 1.896 7.38 0.867 3.61
0.74 1.957 7.42 0.910 3.66
0.75 2.020 7.49 0.954 3.71
0.76 2.084 7.58 0.999 3.77
0.77 2.149 7.70 1.045 3.84
0.78 2.216 7.84 1.092 3.91
0.79 2.284 8.01 1.141 3.99
0.80 2.355 8.21 1.190 4.08
0.81 2.428 8.45 1.242 4.18
0.82 2.503 8.73 1.295 4.29
0.83 2.582 9.05 1.349 4.41
0.84 2.664 9.42 1.406 4.54
0.85 2.749 9.86 1.466 4.69
0.86 2.840 10.36 1.528 4.86
0.87 2.935 10.96 1.593 5.05
0.88 3.037 11.65 1.662 5.28
0.89 3.146 12.48 1.735 5.54
0.90 3.263 13.47 1.812 5.84
0.91 3.390 14.67 1.896 6.21
0.92 3.530 16.16 1.987 6.66
0.93 3.689 18.02 2.087 7.22
0.94 3.867 20.45 2.199 7.95
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Table F.O1 (continued)

Duo–trio 2-AFC

PC d ′ B d ′ B

0.95 4.072 23.71 2.326 8.93
0.96 4.318 28.34 82.476 10.34
0.97 3.625 35.52 2.660 12.57
0.98 5.040 48.59 2.900 16.72
0.99 5.701 82.78 3.290 27.88

B-factors are used to compute variance of the d′ values, where
Var(d′)= B/N, where N is the sample size
Reprinted with permission from “Tables for Sensory Methods,
The Institute for Perception, February, 2002”

Table F.O2 d′ and B (variance factor) values for the triangle
and 3-AFC difference tests

Triangle 3-AFC

PC d′ B d′ B

0.34 0.270 93.24 0.024 2.78
0.35 0.429 38.88 0.059 2.76
0.36 0.545 25.31 0.093 2.74
0.37 0.643 19.17 0.128 2.72
0.38 0.728 15.67 0.162 2.71
0.39 0.807 13.42 0.195 2.69
0.40 0.879 11.86 0.229 2.68
0.41 0.948 10.71 0.262 2.67
0.42 1.013 9.85 0.295 2.66
0.43 1.075 9.17 0.328 2.65
0.44 1.135 8.62 0.361 2.65
0.45 1.193 8.18 0.394 2.64
0.46 1.250 7.82 0.427 2.64
0.47 1.306 7.52 0.459 2.64
0.48 1.360 7.27 0.492 2.63
0.49 1.414 7.06 0.524 2.63
0.50 1.466 6.88 0.557 2.64
0.51 1.518 6.73 0.589 2.64
0.52 1.570 6.60 0.622 2.64
0.53 1.621 6.50 0.654 2.65
0.54 1.672 6.41 0.687 2.65
0.55 1.723 6.34 0.719 2.66
0.56 1.774 6.28 0.752 2.67
0.57 1.824 6.24 0.785 2.68
0.58 1.874 6.21 0.818 2.69
0.59 1.925 6.19 0.852 2.70
0.60 1.976 6.18 0.885 2.71
0.61 2.027 6.18 0.919 2.73
0.62 2.078 6.19 0.953 2.75
0.63 2.129 6.21 0.987 2.77
0.64 2.181 6.28 1.022 2.79
0.65 2.233 6.29 1.057 2.81
0.66 2.286 6.32 1.092 2.83
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Table F.O2 (continued)

Triangle 3-AFC

PC d ′ B d ′ B

0.67 2.339 6.38 0.128 2.86
0.68 2.393 6.44 1.164 2.89
0.69 2.448 6.52 1.201 2.92
0.70 2.504 6.60 1.238 2.95
0.71 2.560 6.69 1.276 2.99
0.72 2.618 6.80 1.314 3.03
0.73 2.676 6.91 1.353 3.07
0.74 2.736 7.04 1.393 3.12
0.75 2.780 7.18 1.434 3.17
0.76 2.860 7.34 1.475 3.22
0.77 2.924 7.51 1.518 3.28
0.78 2.990 7.70 1.562 3.35
0.79 3.058 7.91 1.606 3.42
0.80 3.129 8.14 1.652 3.50
0.81 3.201 8.40 1.700 3.59
0.82 3.276 8.68 1.749 3.68
0.83 3.355 8.99 1.800 3.79
0.84 3.436 9.34 1.853 3.91
0.85 3.522 9.74 1.908 4.04
0.86 3.611 10.19 1.965 4.19
0.87 3.706 10.70 2.026 4.37
0.88 3.806 11.29 2.090 4.57
0.89 3.913 11.97 2.158 4.80
0.90 4.028 12.78 2.230 5.07
0.91 4.152 13.75 2.308 5.40
0.92 4.288 14.92 2.393 5.81
0.93 4.438 16.40 2.487 6.30
0.94 4.607 18.31 2.591 6.95
0.95 4.801 20.88 2.710 7.83
0.96 5.031 24.58 2.850 9.10
0.97 5.316 30.45 3.023 11.10
0.98 5.698 41.39 3.253 14.85
0.99 6.310 71.03 3.618 25.00

B-factors are used to compute variance of the d′ values, where
Var(d′)= B/N, where N is the sample size
Reprinted with permission from “Tables for Sensory Methods,
The Institute for Perception, February, 2002”



Appendix F 571

Table F.P Random permutations of nine

6 4 9 3 8 7 2 5 1 2 1 6 7 5 8 4 3 9
4 2 1 9 3 8 7 6 5 9 8 3 7 6 4 5 2 1
3 5 4 1 6 8 7 9 2 3 6 2 4 9 7 1 8 5
5 3 4 2 1 6 8 9 7 4 9 5 7 1 3 8 6 2
8 7 1 9 2 5 6 4 3 1 7 2 6 9 3 5 4 8
3 6 9 7 2 8 5 1 4 6 7 5 9 8 3 1 4 2
3 1 7 6 5 2 4 9 8 4 8 7 3 5 6 9 1 2
3 1 2 9 4 5 6 8 7 8 3 9 6 7 1 4 5 2
1 3 5 7 2 6 8 9 4 4 3 5 9 8 2 1 7 6
6 3 8 9 7 4 2 5 1 6 8 7 9 5 2 1 4 3
1 7 5 3 6 8 4 2 9 8 5 1 7 9 3 6 4 2
6 3 9 7 5 8 1 4 2 8 2 1 4 6 9 5 3 7
7 5 1 2 8 4 9 3 6 3 5 1 4 2 7 9 8 6
1 2 4 8 9 3 6 5 7 2 6 3 9 7 5 8 4 1
4 6 3 9 5 7 2 8 1 9 6 8 5 2 4 7 1 3
7 6 1 5 4 8 2 9 3 8 3 2 5 9 6 4 1 7
3 9 7 5 4 6 8 1 2 7 3 4 2 1 9 5 8 6
1 3 5 7 6 8 2 4 9 6 5 4 3 2 1 7 9 8
2 9 4 7 1 3 5 8 6 1 5 4 2 6 7 9 3 8
5 2 8 3 4 7 1 9 6 6 5 1 4 9 7 2 3 8
2 1 8 7 3 5 9 4 6 7 8 1 2 3 4 5 9 6
5 7 2 8 6 3 4 9 1 3 9 1 4 6 5 8 2 7
4 1 6 2 5 3 7 9 8 8 6 5 7 4 3 9 2 1
1 6 7 9 4 8 2 5 3 8 9 2 5 4 3 7 1 6
9 8 5 1 6 2 3 7 4 5 4 3 6 9 8 1 7 2
5 3 1 6 7 8 2 9 4 1 9 7 2 3 8 4 5 6
1 3 2 7 8 5 4 6 9 4 1 2 6 3 5 7 8 9
3 4 9 7 5 8 1 6 2 5 2 3 7 4 6 8 9 1
5 4 6 8 2 1 7 9 3 4 6 8 9 2 3 1 7 5
1 3 7 9 4 8 6 2 5 4 2 9 3 1 7 6 8 5
6 2 5 1 9 8 4 7 3 2 5 6 9 4 7 3 1 8
5 2 9 8 3 1 4 6 7 4 9 2 6 1 5 7 3 8
8 5 1 3 6 2 9 7 4 6 3 2 4 9 1 5 8 7
1 7 4 3 2 9 5 6 8 2 3 6 4 5 8 7 1 9
9 3 4 5 6 7 1 8 2 6 1 4 5 8 7 2 3 9
1 6 4 3 5 9 7 8 2 7 8 9 4 2 5 3 6 1
4 5 9 8 1 2 3 6 7 7 3 8 1 9 2 6 5 4
9 8 5 4 2 7 3 1 6 7 2 1 9 5 4 6 3 8
9 8 2 6 4 5 7 1 3 9 6 3 8 7 2 5 4 1
9 3 1 5 6 2 4 8 7 7 1 8 2 3 9 5 4 6
4 7 6 9 3 2 1 8 5 7 3 4 9 1 5 2 6 8
7 1 8 5 6 9 4 2 3 2 3 7 9 4 8 5 6 1

Each row with a column has the number 1–9 in random order. Start with any row (do not always start with the first or last rows) and
read either from right to left or from left to right
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Table F.Q Random numbers

8 2 0 3 1 4 5 8 2 1 7 2 7 3 8 5 5 2 9 0 6 3 1 8 4
0 8 7 3 3 1 9 7 5 2 5 7 8 9 8 0 3 8 2 5 1 2 7 5 2
2 3 3 8 8 1 4 2 4 0 2 6 1 8 9 5 2 8 9 8 3 4 0 1 0
4 7 5 5 8 3 0 7 7 1 9 1 8 1 7 4 1 7 1 3 7 9 3 3 7
1 9 3 9 5 3 4 9 5 5 2 7 5 8 0 3 4 8 8 1 2 7 5 3 4
2 8 7 8 1 4 1 4 9 4 2 4 1 5 2 9 4 8 2 1 5 2 8 1 9
8 4 8 5 1 3 9 8 6 0 7 2 1 9 0 2 0 8 7 0 8 0 1 3 0
0 3 8 8 4 7 5 1 5 1 7 3 4 5 2 0 7 4 7 9 8 6 7 7 4
3 5 3 1 9 3 7 4 9 5 0 2 0 1 4 6 2 5 4 5 8 5 0 9 2
3 4 5 9 5 2 7 9 8 9 0 5 5 8 5 1 7 7 3 5 5 4 7 7 2
4 1 5 3 0 9 1 3 7 2 5 8 7 7 1 3 6 3 9 7 8 7 9 1 7
7 2 9 5 6 7 8 5 4 5 3 4 5 4 1 9 8 8 7 5 7 9 3 1 8
5 9 2 8 9 8 6 4 4 1 5 3 7 7 0 8 0 2 5 6 0 8 1 2 0
1 3 3 3 9 0 5 2 8 7 4 0 9 0 3 7 3 1 7 9 4 5 5 2 8
4 8 0 1 0 8 6 2 1 0 0 5 0 3 1 5 4 9 0 3 7 4 7 0 1
7 7 0 8 6 3 2 8 8 5 8 9 5 8 4 0 5 9 1 8 0 5 4 9 4
3 3 8 5 7 5 7 4 3 4 5 7 9 8 9 5 0 7 7 6 8 8 8 5 9
9 1 7 1 3 6 9 2 9 1 9 4 2 3 3 0 8 1 8 7 7 6 4 7 2
6 2 2 8 0 9 4 5 3 7 2 5 4 8 8 5 6 6 5 0 4 6 5 6 8
1 7 5 9 0 0 2 0 5 8 5 8 5 1 9 5 3 3 7 4 0 5 8 2 4
0 3 9 6 9 4 7 3 5 7 0 8 5 4 7 1 1 8 5 3 2 8 0 9 8
3 0 8 2 8 1 4 4 1 8 7 8 6 9 9 9 7 5 8 9 8 4 5 9 0
9 4 9 1 2 2 0 1 3 2 4 8 7 9 1 8 8 2 9 8 3 2 8 2 9
7 2 5 1 4 4 9 8 5 2 8 5 5 1 0 8 2 6 2 0 8 9 2 2 3
9 9 2 5 7 4 3 1 2 3 8 4 1 5 2 4 0 4 2 2 8 7 1 8 2
2 0 9 1 8 9 4 4 8 1 4 8 8 7 9 2 5 0 8 9 3 3 0 1 2
8 5 2 8 1 2 1 7 7 1 4 7 8 1 4 2 7 3 7 4 0 0 1 2 9
1 2 9 9 8 4 2 5 3 2 7 4 3 2 3 3 8 5 3 3 8 5 5 3 2
3 2 8 3 7 9 6 0 4 8 8 0 5 4 1 1 4 9 0 5 0 9 4 4 1
0 9 3 4 1 1 9 5 8 3 2 4 6 7 3 4 4 9 2 3 7 2 5 7 8
8 7 5 3 4 2 1 5 5 0 1 2 4 7 5 5 2 8 8 7 8 2 8 0 3
9 6 0 1 3 0 5 3 8 6 2 9 6 0 3 4 7 8 1 1 9 1 6 5 3

Start on any column or row and read from right to left or left to right or up and down to create random numbers of three digits to
label your sample cups
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