
�
S

   I
A BRIEF HISTORY  3

mind that similar progressive steps were occurring in the areas of the
telegraph, the telephone, power generation, the phonograph, appliances,
and so on.

There is a tendency when reading about the great scientists, inventors,
and innovators to believe that their contribution was a totally individual
effort. In many instances, this was not the case. In fact, many of the great
contributors were friends or associates who provided support and
encouragement in their efforts to investigate various theories. At the very
least, they were aware of one another’s efforts to the degree possible in
the days when a letter was often the best form of communication. In par-
ticular, note the closeness of the dates during periods of rapid develop-
ment. One contributor seemed to spur on the efforts of the others or pos-
sibly provided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or
computer engineers as we know them today. In most cases, they were
physicists, chemists, mathematicians, or even philosophers. In addition,
they were not from one or two communities of the Old World. The home
country of many of the major contributors introduced in the paragraphs
to follow is provided to show that almost every established community
had some impact on the development of the fundamental laws of electri-
cal circuits.

As you proceed through the remaining chapters of the text, you will
find that a number of the units of measurement bear the name of major
contributors in those areas—volt after Count Alessandro Volta, ampere
after André Ampère, ohm after Georg Ohm, and so forth—fitting recog-
nition for their important contributions to the birth of a major field of
study.

Time charts indicating a limited number of major developments are
provided in Fig. 1.2, primarily to identify specific periods of rapid
development and to reveal how far we have come in the last few
decades. In essence, the current state of the art is a result of efforts that
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began in earnest some 250 years ago, with progress in the last 100 years
almost exponential.

As you read through the following brief review, try to sense the
growing interest in the field and the enthusiasm and excitement that
must have accompanied each new revelation. Although you may find
some of the terms used in the review new and essentially meaningless,
the remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has been toyed with since antiq-
uity. The Greeks called the fossil resin substance so often used to
demonstrate the effects of static electricity elektron, but no extensive
study was made of the subject until William Gilbert researched the
event in 1600. In the years to follow, there was a continuing investiga-
tion of electrostatic charge by many individuals such as Otto von Guer-
icke, who developed the first machine to generate large amounts of
charge, and Stephen Gray, who was able to transmit electrical charge
over long distances on silk threads. Charles DuFay demonstrated that
charges either attract or repel each other, leading him to believe that
there were two types of charge—a theory we subscribe to today with
our defined positive and negative charges.

There are many who believe that the true beginnings of the electrical
era lie with the efforts of Pieter van Musschenbroek and Benjamin
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for
the storage of electrical charge (the first capacitor) and demonstrated
electrical shock (and therefore the power of this new form of energy).
Franklin used the Leyden jar some seven years later to establish that
lightning is simply an electrical discharge, and he expanded on a num-
ber of other important theories including the definition of the two types
of charge as positive and negative. From this point on, new discoveries
and theories seemed to occur at an increasing rate as the number of
individuals performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force
between charges is inversely related to the square of the distance
between the charges. In 1791, Luigi Galvani, professor of anatomy at
the University of Bologna, Italy, performed experiments on the effects
of electricity on animal nerves and muscles. The first voltaic cell, with
its ability to produce electricity through the chemical action of a metal
dissolving in an acid, was developed by another Italian, Alessandro
Volta, in 1799.

The fever pitch continued into the early 1800s with Hans Christian
Oersted, a Swedish professor of physics, announcing in 1820 a relation-
ship between magnetism and electricity that serves as the foundation for
the theory of electromagnetism as we know it today. In the same year, a
French physicist, André Ampère, demonstrated that there are magnetic
effects around every current-carrying conductor and that current-carry-
ing conductors can attract and repel each other just like magnets. In the
period 1826 to 1827, a German physicist, Georg Ohm, introduced an
important relationship between potential, current, and resistance which
we now refer to as Ohm’s law. In 1831, an English physicist, Michael
Faraday, demonstrated his theory of electromagnetic induction, whereby
a changing current in one coil can induce a changing current in another
coil, even though the two coils are not directly connected. Professor
Faraday also did extensive work on a storage device he called the con-
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denser, which we refer to today as a capacitor. He introduced the idea of
adding a dielectric between the plates of a capacitor to increase the stor-
age capacity (Chapter 10). James Clerk Maxwell, a Scottish professor of
natural philosophy, performed extensive mathematical analyses to
develop what are currently called Maxwell’s equations, which support
the efforts of Faraday linking electric and magnetic effects. Maxwell also
developed the electromagnetic theory of light in 1862, which, among
other things, revealed that electromagnetic waves travel through air
at the velocity of light (186,000 miles per second or 3 � 108 meters
per second). In 1888, a German physicist, Heinrich Rudolph Hertz,
through experimentation with lower-frequency electromagnetic waves
(microwaves), substantiated Maxwell’s predictions and equations. In the
mid 1800s, Professor Gustav Robert Kirchhoff introduced a series of
laws of voltages and currents that find application at every level and area
of this field (Chapters 5 and 6). In 1895, another German physicist, Wil-
helm Röntgen, discovered electromagnetic waves of high frequency,
commonly called X rays today.

By the end of the 1800s, a significant number of the fundamental
equations, laws, and relationships had been established, and various
fields of study, including electronics, power generation, and calculating
equipment, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and
is sometimes attributed to efforts by early scientists in applying poten-
tials across evacuated glass envelopes. However, many trace the begin-
ning to Thomas Edison, who added a metallic electrode to the vacuum
of the tube and discovered that a current was established between the
metal electrode and the filament when a positive voltage was applied to
the metal electrode. The phenomenon, demonstrated in 1883, was
referred to as the Edison effect. In the period to follow, the transmis-
sion of radio waves and the development of the radio received wide-
spread attention. In 1887, Heinrich Hertz, in his efforts to verify
Maxwell’s equations, transmitted radio waves for the first time in his
laboratory. In 1896, an Italian scientist, Guglielmo Marconi (often
called the father of the radio), demonstrated that telegraph signals could
be sent through the air over long distances (2.5 kilometers) using a
grounded antenna. In the same year, Aleksandr Popov sent what might
have been the first radio message some 300 yards. The message was the
name “Heinrich Hertz” in respect for Hertz’s earlier contributions. In
1901, Marconi established radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison
to develop the first diode, commonly called Fleming’s valve—actually
the first of the electronic devices. The device had a profound impact on
the design of detectors in the receiving section of radios. In 1906, Lee
De Forest added a third element to the vacuum structure and created the
first amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong
built the first regenerative circuit to improve receiver capabilities and
then used the same contribution to develop the first nonmechanical
oscillator. By 1915 radio signals were being transmitted across the
United States, and in 1918 Armstrong applied for a patent for the super-
heterodyne circuit employed in virtually every television and radio to
permit amplification at one frequency rather than at the full range of
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incoming signals. The major components of the modern-day radio were
now in place, and sales in radios grew from a few million dollars in the
early 1920s to over $1 billion by the 1930s. The 1930s were truly the
golden years of radio, with a wide range of productions for the listen-
ing audience.

Television The 1930s were also the true beginnings of the television
era, although development on the picture tube began in earlier years
with Paul Nipkow and his electrical telescope in 1884 and John Baird
and his long list of successes, including the transmission of television
pictures over telephone lines in 1927 and over radio waves in 1928, and
simultaneous transmission of pictures and sound in 1930. In 1932, NBC
installed the first commercial television antenna on top of the Empire
State Building in New York City, and RCA began regular broadcasting
in 1939. The war slowed development and sales, but in the mid 1940s
the number of sets grew from a few thousand to a few million. Color
television became popular in the early 1960s.

Computers The earliest computer system can be traced back to
Blaise Pascal in 1642 with his mechanical machine for adding and sub-
tracting numbers. In 1673 Gottfried Wilhelm von Leibniz used the
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to
add the mathematical operations of sine, cosine, logs, and several oth-
ers. In the years to follow, improvements were made, but the system
remained primarily mechanical until the 1930s when electromechanical
systems using components such as relays were introduced. It was not
until the 1940s that totally electronic systems became the new wave. It
is interesting to note that, even though IBM was formed in 1924, it did
not enter the computer industry until 1937. An entirely electronic sys-
tem known as ENIAC was dedicated at the University of Pennsylvania
in 1946. It contained 18,000 tubes and weighed 30 tons but was several
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state
era that computer systems experienced a major change in size, speed,
and capability.

The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H.
Brattain of Bell Telephone Laboratories demonstrated the point-contact
transistor (Fig. 1.3), an amplifier constructed entirely of solid-state
materials with no requirement for a vacuum, glass envelope, or heater
voltage for the filament. Although reluctant at first due to the vast
amount of material available on the design, analysis, and synthesis of
tube networks, the industry eventually accepted this new technology as
the wave of the future. In 1958 the first integrated circuit (IC) was
developed at Texas Instruments, and in 1961 the first commercial inte-
grated circuit was manufactured by the Fairchild Corporation.

It is impossible to review properly the entire history of the electri-
cal/electronics field in a few pages. The effort here, both through the
discussion and the time graphs of Fig. 1.2, was to reveal the amazing
progress of this field in the last 50 years. The growth appears to be truly
exponential since the early 1900s, raising the interesting question,
Where do we go from here? The time chart suggests that the next few

FIG. 1.3

The first transistor. (Courtesy of AT&T, Bell
Laboratories.)
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decades will probably contain many important innovative contributions
that may cause an even faster growth curve than we are now experienc-
ing.

1.3 UNITS OF MEASUREMENT

In any technical field it is naturally important to understand the basic
concepts and the impact they will have on certain parameters. However,
the application of these rules and laws will be successful only if the
mathematical operations involved are applied correctly. In particular, it
is vital that the importance of applying the proper unit of measurement
to a quantity is understood and appreciated. Students often generate a
numerical solution but decide not to apply a unit of measurement to the
result because they are somewhat unsure of which unit should be
applied. Consider, for example, the following very fundamental physics
equation:

v � velocity
d � distance (1.1)
t � time

Assume, for the moment, that the following data are obtained for a
moving object:

d � 4000 ft

t � 1 min

and v is desired in miles per hour. Often, without a second thought or
consideration, the numerical values are simply substituted into the
equation, with the result here that

As indicated above, the solution is totally incorrect. If the result is
desired in miles per hour, the unit of measurement for distance must be
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance
of ensuring that

the numerical value substituted into an equation must have the unit
of measurement specified by the equation.

The next question is normally, How do I convert the distance and
time to the proper unit of measurement? A method will be presented in
a later section of this chapter, but for now it is given that

1 mi � 5280 ft

4000 ft � 0.7576 mi

1 min � h � 0.0167 h

Substituting into Eq. (1.1), we have

v � � � 45.37 mi/h

which is significantly different from the result obtained before.
To complicate the matter further, suppose the distance is given in

kilometers, as is now the case on many road signs. First, we must real-
ize that the prefix kilo stands for a multiplier of 1000 (to be introduced

0.7576 mi
��
0.0167 h

d
�
t

1
�
60

v � 4000 mi/h 
d
t

4000 ft
1 min� �

v � �
d
t
�
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in Section 1.5), and then we must find the conversion factor between
kilometers and miles. If this conversion factor is not readily available,
we must be able to make the conversion between units using the con-
version factors between meters and feet or inches, as described in Sec-
tion 1.6.

Before substituting numerical values into an equation, try to men-
tally establish a reasonable range of solutions for comparison purposes.
For instance, if a car travels 4000 ft in 1 min, does it seem reasonable
that the speed would be 4000 mi/h? Obviously not! This self-checking
procedure is particularly important in this day of the hand-held calcula-
tor, when ridiculous results may be accepted simply because they
appear on the digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data,
then it must be applied to the numerical value.

To state that v � 45.37 without including the unit of measurement mi/h
is meaningless.

Equation (1.1) is not a difficult one. A simple algebraic manipulation
will result in the solution for any one of the three variables. However,
in light of the number of questions arising from this equation, the reader
may wonder if the difficulty associated with an equation will increase at
the same rate as the number of terms in the equation. In the broad
sense, this will not be the case. There is, of course, more room for a
mathematical error with a more complex equation, but once the proper
system of units is chosen and each term properly found in that system,
there should be very little added difficulty associated with an equation
requiring an increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be
absolutely sure of the following:

1. Each quantity has the proper unit of measurement as defined by
the equation.

2. The proper magnitude of each quantity as determined by the
defining equation is substituted.

3. Each quantity is in the same system of units (or as defined by the
equation).

4. The magnitude of the result is of a reasonable nature when
compared to the level of the substituted quantities.

5. The proper unit of measurement is applied to the result.

1.4 SYSTEMS OF UNITS

In the past, the systems of units most commonly used were the English
and metric, as outlined in Table 1.1. Note that while the English system
is based on a single standard, the metric is subdivided into two interre-
lated standards: the MKS and the CGS. Fundamental quantities of
these systems are compared in Table 1.1 along with their abbreviations.
The MKS and CGS systems draw their names from the units of mea-
surement used with each system; the MKS system uses Meters, Kilo-
grams, and Seconds, while the CGS system uses Centimeters, Grams,
and Seconds.

Understandably, the use of more than one system of units in a world
that finds itself continually shrinking in size, due to advanced technical
developments in communications and transportation, would introduce
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unnecessary complications to the basic understanding of any technical
data. The need for a standard set of units to be adopted by all nations
has become increasingly obvious. The International Bureau of Weights
and Measures located at Sèvres, France, has been the host for the Gen-
eral Conference of Weights and Measures, attended by representatives
from all nations of the world. In 1960, the General Conference adopted
a system called Le Système International d’Unités (International Sys-
tem of Units), which has the international abbreviation SI. Since then,
it has been adopted by the Institute of Electrical and Electronic Engi-
neers, Inc. (IEEE) in 1965 and by the United States of America Stan-
dards Institute in 1967 as a standard for all scientific and engineering
literature.

For comparison, the SI units of measurement and their abbreviations
appear in Table 1.1. These abbreviations are those usually applied to
each unit of measurement, and they were carefully chosen to be the
most effective. Therefore, it is important that they be used whenever
applicable to ensure universal understanding. Note the similarities of
the SI system to the MKS system. This text will employ, whenever pos-
sible and practical, all of the major units and abbreviations of the SI
system in an effort to support the need for a universal system. Those
readers requiring additional information on the SI system should con-
tact the information office of the American Society for Engineering
Education (ASEE).*

*American Society for Engineering Education (ASEE), 1818 N Street N.W., Suite 600,
Washington, D.C. 20036-2479; (202) 331-3500; http://www.asee.org/.

�� °C � 32�9
�
5

TABLE 1.1

Comparison of the English and metric systems of units.

English Metric

MKS CGS SI

Length: Meter (m) Centimeter (cm) Meter (m)
Yard (yd) (39.37 in.) (2.54 cm � 1 in.)
(0.914 m) (100 cm)

Mass:
Slug Kilogram (kg) Gram (g) Kilogram (kg)
(14.6 kg) (1000 g)

Force:
Pound (lb) Newton (N) Dyne Newton (N)
(4.45 N) (100,000 dynes)

Temperature:
Fahrenheit (°F) Celsius or Centigrade (°C) Kelvin (K)

Centigrade (°C) K � 273.15 � °C

�� (°F � 32)�
Energy:
Foot-pound (ft-lb) Newton-meter (N•m) Dyne-centimeter or erg Joule (J)
(1.356 joules) or joule (J) (1 joule � 107 ergs)

(0.7376 ft-lb)
Time:

Second (s) Second (s) Second (s) Second (s)

5
�
9
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Figure 1.4 should help the reader develop some feeling for the rela-
tive magnitudes of the units of measurement of each system of units.
Note in the figure the relatively small magnitude of the units of mea-
surement for the CGS system.

A standard exists for each unit of measurement of each system. The
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the
distance between the equator and either pole at sea level, a length pre-
served on a platinum-iridium bar at the International Bureau of Weights
and Measures at Sèvres, France.

The meter is now defined with reference to the speed of light in a
vacuum, which is 299,792,458 m/s.

The kilogram is defined as a mass equal to 1000 times the mass of
one cubic centimeter of pure water at 4°C.

This standard is preserved in the form of a platinum-iridium cylinder in
Sèvres.

FIG. 1.4

Comparison of units of the various systems of units.
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The second was originally defined as 1/86,400 of the mean solar
day. However, since Earth’s rotation is slowing down by almost 1 sec-
ond every 10 years,

the second was redefined in 1967 as 9,192,631,770 periods of the
electromagnetic radiation emitted by a particular transition of cesium
atom.

1.5 SIGNIFICANT FIGURES, ACCURACY,
AND ROUNDING OFF

This section will emphasize the importance of being aware of the
source of a piece of data, how a number appears, and how it should be
treated. Too often we write numbers in various forms with little concern
for the format used, the number of digits that should be included, and
the unit of measurement to be applied.

For instance, measurements of 22.1� and 22.10� imply different lev-
els of accuracy. The first suggests that the measurement was made by
an instrument accurate only to the tenths place; the latter was obtained
with instrumentation capable of reading to the hundredths place. The
use of zeros in a number, therefore, must be treated with care and the
implications must be understood.

In general, there are two types of numbers, exact and approximate.
Exact numbers are precise to the exact number of digits presented, just as
we know that there are 12 apples in a dozen and not 12.1. Throughout the
text the numbers that appear in the descriptions, diagrams, and examples
are considered exact, so that a battery of 100 V can be written as 100.0 V,
100.00 V, and so on, since it is 100 V at any level of precision. The addi-
tional zeros were not included for purposes of clarity. However, in the
laboratory environment, where measurements are continually being
taken and the level of accuracy can vary from one instrument to another,
it is important to understand how to work with the results. Any reading
obtained in the laboratory should be considered approximate. The analog
scales with their pointers may be difficult to read, and even though the
digital meter provides only specific digits on its display, it is limited to
the number of digits it can provide, leaving us to wonder about the less
significant digits not appearing on the display.

The precision of a reading can be determined by the number of sig-
nificant figures (digits) present. Significant digits are those integers (0
to 9) that can be assumed to be accurate for the measurement being
made. The result is that all nonzero numbers are considered significant,
with zeros being significant in only some cases. For instance, the zeros
in 1005 are considered significant because they define the size of the
number and are surrounded by nonzero digits. However, for a number
such as 0.064, the two zeros are not considered significant because they
are used only to define the location of the decimal point and not the
accuracy of the reading. For the number 0.4020, the zero to the left of
the decimal point is not significant, but the other two are because they
define the magnitude of the number and the fourth-place accuracy of
the reading.

When adding approximate numbers, it is important to be sure that
the accuracy of the readings is consistent throughout. To add a quantity
accurate only to the tenths place to a number accurate to the thousandths
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place will result in a total having accuracy only to the tenths place. One
cannot expect the reading with the higher level of accuracy to improve
the reading with only tenths-place accuracy.

In the addition or subtraction of approximate numbers, the entry 
with the lowest level of accuracy determines the format of the
solution.

For the multiplication and division of approximate numbers, the
result has the same number of significant figures as the number with
the least number of significant figures.

For approximate numbers (and exact, for that matter) there is often a
need to round off the result; that is, you must decide on the appropriate
level of accuracy and alter the result accordingly. The accepted proce-
dure is simply to note the digit following the last to appear in the
rounded-off form, and add a 1 to the last digit if it is greater than or
equal to 5, and leave it alone if it is less than 5. For example, 3.186 �
3.19 � 3.2, depending on the level of precision desired. The symbol �
appearing means approximately equal to.

EXAMPLE 1.1 Perform the indicated operations with the following
approximate numbers and round off to the appropriate level of accu-
racy.
a. 532.6 � 4.02 � 0.036 � 536.656 � 536.7 (as determined by 532.6)
b. 0.04 � 0.003 � 0.0064 � 0.0494 � 0.05 (as determined by 0.04)
c. 4.632 � 2.4 � 11.1168 � 11 (as determined by the two significant

digits of 2.4)
d. 3.051 � 802 � 2446.902 � 2450 (as determined by the three sig-

nificant digits of 802)
e. 1402/6.4 � 219.0625 � 220 (as determined by the two significant

digits of 6.4)
f. 0.0046/0.05 � 0.0920 � 0.09 (as determined by the one significant

digit of 0.05)

1.6 POWERS OF TEN

It should be apparent from the relative magnitude of the various units of
measurement that very large and very small numbers will frequently be
encountered in the sciences. To ease the difficulty of mathematical
operations with numbers of such varying size, powers of ten are usually
employed. This notation takes full advantage of the mathematical prop-
erties of powers of ten. The notation used to represent numbers that are
integer powers of ten is as follows:

1 � 100 1/10 � 0.1 � 10�1

10 � 101 1/100 � 0.01 � 10�2

100 � 102 1/1000 � 0.001 � 10�3

1000 � 103 1/10,000 � 0.0001 � 10�4

In particular, note that 100 � 1, and, in fact, any quantity to the zero
power is 1 (x0 � 1, 10000 � 1, and so on). Also, note that the numbers
in the list that are greater than 1 are associated with positive powers of
ten, and numbers in the list that are less than 1 are associated with neg-
ative powers of ten.
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A quick method of determining the proper power of ten is to place a
caret mark to the right of the numeral 1 wherever it may occur; then
count from this point to the number of places to the right or left before
arriving at the decimal point. Moving to the right indicates a positive
power of ten, whereas moving to the left indicates a negative power. For
example,

Some important mathematical equations and relationships pertaining
to powers of ten are listed below, along with a few examples. In each
case, n and m can be any positive or negative real number.

(1.2)

Equation (1.2) clearly reveals that shifting a power of ten from the
denominator to the numerator, or the reverse, requires simply changing
the sign of the power.

EXAMPLE 1.2

a. � � 10�3

b. � � 10�5

The product of powers of ten:

(1.3)

EXAMPLE 1.3

a. (1000)(10,000) � (103)(104) � 10(3�4) � 107

b. (0.00001)(100) � (10�5)(102) � 10(�5�2) � 10�3

The division of powers of ten:

(1.4)

EXAMPLE 1.4

a. � � 10(5�2) � 103

b. � � 10(3�(�4)) � 10(3�4) � 107

Note the use of parentheses in part (b) to ensure that the proper sign is
established between operators.

103

�
10�4

1000
�
0.0001

105

�
102

100,000
�

100

�
1
1
0
0

m

n

� � 10(n�m)

(10n)(10m) � 10(n�m)

1
�
10�5

1
�
0.00001

1
�
10�3

1
�
1000

�
1
1
0n� � 10�n �

10
1
�n� � 10n

10,000.0 � 1 0 , 0 0 0 . � 10�4

0.00001 � 0 . 0 0 0 0 1 � 10�5

1 2 3 4

123445
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The power of powers of ten:

(1.5)

EXAMPLE 1.5

a. (100)4 � (102)4 � 10(2)(4) � 108

b. (1000)�2 � (103)�2 � 10(3)(�2) � 10�6

c. (0.01)�3 � (10�2)�3 � 10(�2)(�3) � 106

Basic Arithmetic Operations

Let us now examine the use of powers of ten to perform some basic
arithmetic operations using numbers that are not just powers of ten.
The number 5000 can be written as 5 � 1000 � 5 � 103, and the
number 0.0004 can be written as 4 � 0.0001 � 4 � 10�4. Of course,
105 can also be written as 1 � 105 if it clarifies the operation to be
performed.

Addition and Subtraction To perform addition or subtraction
using powers of ten, the power of ten must be the same for each term;
that is,

(1.6)

Equation (1.6) covers all possibilities, but students often prefer to
remember a verbal description of how to perform the operation.

Equation (1.6) states

when adding or subtracting numbers in a powers-of-ten format, be
sure that the power of ten is the same for each number. Then separate
the multipliers, perform the required operation, and apply the same
power of ten to the result.

EXAMPLE 1.6

a. 6300 � 75,000 � (6.3)(1000) � (75)(1000)
� 6.3 � 103 � 75 � 103

� (6.3 � 75) � 103

� 81.3 � 103

b. 0.00096 � 0.000086 � (96)(0.00001) � (8.6)(0.00001)
� 96 � 10�5 � 8.6 � 10�5

� (96 � 8.6) � 10�5

� 87.4 � 10�5

Multiplication In general,

(1.7)(A � 10n)(B � 10m) � (A)(B) � 10n�m

A � 10n � B � 10n � (A � B) � 10n

(10n)m � 10(nm)
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revealing that the operations with the powers of ten can be separated
from the operation with the multipliers.

Equation (1.7) states

when multiplying numbers in the powers-of-ten format, first find the
product of the multipliers and then determine the power of ten for the
result by adding the power-of-ten exponents.

EXAMPLE 1.7

a. (0.0002)(0.000007) � [(2)(0.0001)][(7)(0.000001)]
� (2 � 10�4)(7 � 10�6)
� (2)(7) � (10�4)(10�6)
� 14 � 10�10

b. (340,000)(0.00061) � (3.4 � 105)(61 � 10�5)
� (3.4)(61) � (105)(10�5)
� 207.4 � 100

� 207.4

Division In general,

(1.8)

revealing again that the operations with the powers of ten can be sepa-
rated from the same operation with the multipliers.

Equation (1.8) states

when dividing numbers in the powers-of-ten format, first find the
result of dividing the multipliers. Then determine the associated
power for the result by subtracting the power of ten of the
denominator from the power of ten of the numerator.

EXAMPLE 1.8

a. � � � � � � �
� 23.5 � 10�2

b. � � � � � � �
� 5.31 � 1012

Powers In general,

(1.9)

which again permits the separation of the operation with the powers of
ten from the multipliers.

Equation (1.9) states

when finding the power of a number in the power-of-ten format, first
separate the multiplier from the power of ten and determine each
separately. Determine the power-of-ten component by multiplying the
power of ten by the power to be determined.

(A � 10n)m � Am � 10nm

104

�
10�8

69
�
13

69 � 104

��
13 � 10�8

690,000
��
0.00000013

10�5

�
10�3

47
�
2

47 � 10�5

��
2 � 10�3

0.00047
�

0.002

�
B
A

�

�

1
1
0
0

m

n

� � �
A
B

� � 10n�m
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EXAMPLE 1.9

a. (0.00003)3 � (3 � 10�5)3 � (3)3 � (10�5)3

� 27 � 10�15

b. (90,800,000)2 � (9.08 � 107)2 � (9.08)2 � (107)2

� 82.4464 � 1014

In particular, remember that the following operations are not the
same. One is the product of two numbers in the powers-of-ten format,
while the other is a number in the powers-of-ten format taken to a
power. As noted below, the results of each are quite different:

(103)(103) � (103)3

(103)(103) � 106 � 1,000,000

(103)3 � (103)(103)(103) � 109 � 1,000,000,000

Fixed-Point, Floating-Point, Scientific,
and Engineering Notation

There are, in general, four ways in which numbers appear when using a
computer or calculator. If powers of ten are not employed, they are
written in the fixed-point or floating-point notation. The fixed-point
format requires that the decimal point appear in the same place each
time. In the floating-point format, the decimal point will appear in a
location defined by the number to be displayed. Most computers and
calculators permit a choice of fixed- or floating-point notation. In the
fixed format, the user can choose the level of precision for the output as
tenths place, hundredths place, thousandths place, and so on. Every out-
put will then fix the decimal point to one location, such as the follow-
ing examples using thousandths place accuracy:

� 0.333 � 0.063 � 1150.000

If left in the floating-point format, the results will appear as follows
for the above operations:

� 0.333333333333 � 0.0625 � 1150

Powers of ten will creep into the fixed- or floating-point notation if the
number is too small or too large to be displayed properly.

Scientific (also called standard) notation and engineering notation
make use of powers of ten with restrictions on the mantissa (multiplier)
or scale factor (power of the power of ten). Scientific notation requires
that the decimal point appear directly after the first digit greater than or
equal to 1 but less than 10. A power of ten will then appear with the
number (usually following the power notation E), even if it has to be to
the zero power. A few examples:

� 3.33333333333E�1 � 6.25E�2 � 1.15E3

Within the scientific notation, the fixed- or floating-point format can
be chosen. In the above examples, floating was employed. If fixed is
chosen and set at the thousandths-point accuracy, the following will
result for the above operations:

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3
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� 3.333E�1 � 6.250E�2 � 1.150E3

The last format to be introduced is engineering notation, which
specifies that all powers of ten must be multiples of 3, and the mantissa
must be greater than or equal to 1 but less than 1000. This restriction on
the powers of ten is due to the fact that specific powers of ten have been
assigned prefixes that will be introduced in the next few paragraphs.
Using engineering notation in the floating-point mode will result in the
following for the above operations:

� 333.333333333E�3 � 62.5E�3 � 1.15E3

Using engineering notation with three-place accuracy will result in
the following:

� 333.333E�3 � 62.500E�3 � 1.150E3

Prefixes

Specific powers of ten in engineering notation have been assigned pre-
fixes and symbols, as appearing in Table 1.2. They permit easy recog-
nition of the power of ten and an improved channel of communication
between technologists.

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

TABLE 1.2

Multiplication Factors SI Prefix SI Symbol

1 000 000 000 000 � 1012 tera T
1 000 000 000 � 109 giga G

1 000 000 � 106 mega M
1 000 � 103 kilo k
0.001 � 10�3 milli m

0.000 001 � 10�6 micro m

0.000 000 001 � 10�9 nano n
0.000 000 000 001 � 10�12 pico p

EXAMPLE 1.10

a. 1,000,000 ohms � 1 � 106 ohms
� 1 megohm (M	)

b. 100,000 meters � 100 � 103 meters
� 100 kilometers (km)

c. 0.0001 second � 0.1 � 10�3 second
� 0.1 millisecond (ms)

d. 0.000001 farad � 1 � 10�6 farad
� 1 microfarad (mF)

Here are a few examples with numbers that are not strictly powers
of ten.
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EXAMPLE 1.11

a. 41,200 m is equivalent to 41.2 � 103 m � 41.2 kilometers � 41.2 km.
b. 0.00956 J is equivalent to 9.56 � 10�3 J � 9.56 millijoules � 9.56 mJ.
c. 0.000768 s is equivalent to 768 � 10�6 s � 768 microseconds �

768 ms.

d. � � � � � � � m
103

�
10�2

8.4
�
6

8.4 � 103 m
��

6 � 10�2
8400 m
�

0.06
� 1.4 � 105 m � 140 � 103 m � 140 kilometers � 140 km

e. (0.0003)4 s � (3 � 10�4)4 s � 81 � 10�16 s
� 0.0081 � 10�12 s � 0.008 picosecond � 0.0081 ps

1.7 CONVERSION BETWEEN 
LEVELS OF POWERS OF TEN

It is often necessary to convert from one power of ten to another. For
instance, if a meter measures kilohertz (kHz), it may be necessary to find
the corresponding level in megahertz (MHz), or if time is measured in
milliseconds (ms), it may be necessary to find the corresponding time in 
microseconds (ms) for a graphical plot. The process is not a difficult one
if we simply keep in mind that an increase or a decrease in the power of
ten must be associated with the opposite effect on the multiplying factor.
The procedure is best described by a few examples.

EXAMPLE 1.12

a. Convert 20 kHz to megahertz.
b. Convert 0.01 ms to microseconds.
c. Convert 0.002 km to millimeters.

Solutions:

a. In the power-of-ten format:

20 kHz � 20 � 103 Hz

The conversion requires that we find the multiplying factor to appear
in the space below:

Since the power of ten will be increased by a factor of three, the
multiplying factor must be decreased by moving the decimal point
three places to the left, as shown below:

and 20 � 103 Hz � 0.02 � 106 Hz � 0.02 MHz

b. In the power-of-ten format:

0.01 ms � 0.01 � 10�3 s

and 0.01 � 10�3 s � � 10�6 s

Reduce by 3

Increase by 3

020. � 0.02
3

20 � 103 Hz 7 � 106 Hz

Increase by 3

Decrease by 3
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Since the power of ten will be reduced by a factor of three, the
multiplying factor must be increased by moving the decimal point
three places to the right, as follows:

and 0.01 � 10�3 s � 10 � 10�6 s � 10 ms

There is a tendency when comparing �3 to �6 to think that the
power of ten has increased, but keep in mind when making your
judgment about increasing or decreasing the magnitude of the multi-
plier that 10�6 is a great deal smaller than 10�3.

c.

In this example we have to be very careful because the difference
between �3 and �3 is a factor of 6, requiring that the multiplying
factor be modified as follows:

and 0.002 � 103 m � 2000 � 10�3 m � 2000 mm

1.8 CONVERSION WITHIN AND 
BETWEEN SYSTEMS OF UNITS

The conversion within and between systems of units is a process that
cannot be avoided in the study of any technical field. It is an operation,
however, that is performed incorrectly so often that this section was
included to provide one approach that, if applied properly, will lead to
the correct result.

There is more than one method of performing the conversion
process. In fact, some people prefer to determine mentally whether the
conversion factor is multiplied or divided. This approach is acceptable
for some elementary conversions, but it is risky with more complex
operations.

The procedure to be described here is best introduced by examining
a relatively simple problem such as converting inches to meters. Specif-
ically, let us convert 48 in. (4 ft) to meters.

If we multiply the 48 in. by a factor of 1, the magnitude of the quan-
tity remains the same:

48 in. � 48 in.(1) (1.10)

Let us now look at the conversion factor, which is the following for this
example:

1 m � 39.37 in.

Dividing both sides of the conversion factor by 39.37 in. will result in
the following format:

� (1)
1 m

��
39.37 in.

0.002000 � 2000
6

0.002 � 103 m 7 � 10�3 m

Reduce by 6

Increase by 6

0.010 � 10
3
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Note that the end result is that the ratio 1 m/39.37 in. equals 1, as it
should since they are equal quantities. If we now substitute this factor
(1) into Eq. (1.10), we obtain

48 in.(1) � 48 in.� �
which results in the cancellation of inches as a unit of measure and
leaves meters as the unit of measure. In addition, since the 39.37 is in
the denominator, it must be divided into the 48 to complete the opera-
tion:

m � 1.219 m

Let us now review the method, which has the following steps:

1. Set up the conversion factor to form a numerical value of (1) with
the unit of measurement to be removed from the original quantity
in the denominator.

2. Perform the required mathematics to obtain the proper magnitude
for the remaining unit of measurement.

EXAMPLE 1.13

a. Convert 6.8 min to seconds.
b. Convert 0.24 m to centimeters.

Solutions:

a. The conversion factor is

1 min � 60 s

Since the minute is to be removed as the unit of measurement, it
must appear in the denominator of the (1) factor, as follows:

Step 1: � � � (1)

Step 2: 6.8 min(1) � 6.8 min� � � (6.8)(60) s

� 408 s

b. The conversion factor is

1 m � 100 cm

Since the meter is to be removed as the unit of measurement, it must
appear in the denominator of the (1) factor as follows:

Step 1: � � � 1

Step 2: 0.24 m(1) � 0.24 m� � � (0.24)(100) cm

� 24 cm

The products (1)(1) and (1)(1)(1) are still 1. Using this fact, we can
perform a series of conversions in the same operation.

100 cm
�

1 m

100 cm
�

1 m

60 s
�
1 min

60 s
�
1 min

48
�
39.37

1 m
��
39.37 in. 
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EXAMPLE 1.14

a. Determine the number of minutes in half a day.
b. Convert 2.2 yards to meters.

Solutions:

a. Working our way through from days to hours to minutes, always
ensuring that the unit of measurement to be removed is in the
denominator, will result in the following sequence:

0.5 day� �� � � (0.5)(24)(60) min

� 720 min

b. Working our way through from yards to feet to inches to meters will
result in the following:

2.2 yards� �� �� � � m

� 2.012 m

The following examples are variations of the above in practical situ-
ations.

EXAMPLE 1.15

a. In Europe and Canada, and many other locations throughout the
world, the speed limit is posted in kilometers per hour. How fast in
miles per hour is 100 km/h?

b. Determine the speed in miles per hour of a competitor who can run
a 4-min mile. 

Solutions:

a. � �(1)(1)(1)(1)

� � �� �� �� �� �
�

� 62.14 mi/h

Many travelers use 0.6 as a conversion factor to simplify the math
involved; that is,

(100 km/h)(0.6) � 60 mi/h

and (60 km/h)(0.6) � 36 mi/h

b. Inverting the factor 4 min/1 mi to 1 mi/4 min, we can proceed as follows:

� �� � � mi/h � 15 mi/h

1.9 SYMBOLS

Throughout the text, various symbols will be employed that the reader
may not have had occasion to use. Some are defined in Table 1.3, and
others will be defined in the text as the need arises.

60
�

4
60 min
�

h
1 mi
�
4 min

mi
�

h
(100)(1000)(39.37)
���

(12)(5280)

1 mi
�
5280 ft

1 ft
�
12 in.

39.37 in.
��

1 m
1000 m
�

1 km
100 km
�

h

100 km
�

h

(2.2)(3)(12)
��

39.37
1 m

��
39.37 in.

12 in.
�

1 ft
3 ft

�
1 yard

60 min
�

1 h
24 h
�
1 day

TABLE 1.3

Symbol Meaning

� Not equal to 
6.12 � 6.13

> Greater than 
4.78 > 4.20

k Much greater than 
840 k 16

< Less than 
430 < 540

K Much less than 
0.002 K 46

≥ Greater than or equal to
x ≥ y is satisfied for y � 3 
and x > 3 or x � 3

≤ Less than or equal to
x ≤ y is satisfied for y � 3 
and x < 3 or x � 3

� Approximately equal to
3.14159 � 3.14

Σ Sum of 
Σ (4 � 6 � 8)� 18

| | Absolute magnitude of 
|a| � 4, where a � �4 or �4

∴ Therefore
x � �4� ∴ x � �2

� By definition
Establishes a relationship be-
tween two or more quantities
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1.10 CONVERSION TABLES

Conversion tables such as those appearing in Appendix B can be very
useful when time does not permit the application of methods described
in this chapter. However, even though such tables appear easy to use,
frequent errors occur because the operations appearing at the head of
the table are not performed properly. In any case, when using such
tables, try to establish mentally some order of magnitude for the quan-
tity to be determined compared to the magnitude of the quantity in its
original set of units. This simple operation should prevent several
impossible results that may occur if the conversion operation is improp-
erly applied.

For example, consider the following from such a conversion table:

A conversion of 2.5 mi to meters would require that we multiply 2.5 by
the conversion factor; that is,

2.5 mi(1.609 � 103) � 4.0225 � 103 m

A conversion from 4000 m to miles would require a division process:

� 2486.02 � 10�3 � 2.48602 mi

In each of the above, there should have been little difficulty realizing
that 2.5 mi would convert to a few thousand meters and 4000 m would
be only a few miles. As indicated above, this kind of anticipatory think-
ing will eliminate the possibility of ridiculous conversion results.

1.11 CALCULATORS

In some texts, the calculator is not discussed in detail. Instead, stu-
dents are left with the general exercise of choosing an appropriate cal-
culator and learning to use it properly on their own. However, some
discussion about the use of the calculator must be included to elimi-
nate some of the impossible results obtained (and often strongly
defended by the user—because the calculator says so) through a cor-
rect understanding of the process by which a calculator performs the
various tasks. Time and space do not permit a detailed explanation of
all the possible operations, but it is assumed that the following discus-
sion will enlighten the user to the fact that it is important to under-
stand the manner in which a calculator proceeds with a calculation and
not to expect the unit to accept data in any form and always generate
the correct answer.

When choosing a calculator (scientific for our use), be absolutely
sure that it has the ability to operate on complex numbers (polar and
rectangular) which will be described in detail in Chapter 13. For now
simply look up the terms in the index of the operator’s manual, and be
sure that the terms appear and that the basic operations with them are
discussed. Next, be aware that some calculators perform the operations
with a minimum number of steps while others can require a downright
lengthy or complex series of steps. Speak to your instructor if unsure
about your purchase. For this text, the TI-86 of Fig. 1.5 was chosen
because of its treatment of complex numbers.

4000 m
��
1.609 � 103

Multiply by
��
1.609 � 103

To
�
Meters

To convert from
��

Miles

FIG. 1.5

Texas Instruments TI-86 calculator. (Courtesy
of Texas Instruments, Inc.)
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Initial Settings

Format and accuracy are the first two settings that must be made on any
scientific calculator. For most calculators the choices of formats are
Normal, Scientific, and Engineering. For the TI-86 calculator, pressing
the 2nd function (yellow) key followed by the key will pro-
vide a list of options for the initial settings of the calculator. For calcu-
lators without a choice, consult the operator’s manual for the
manner in which the format and accuracy level are set.

Examples of each are shown below:

Normal: 1/3 � 0.33
Scientific: 1/3 � 3.33E�1
Engineering: 1/3 � 333.33E�3

Note that the Normal format simply places the decimal point in the
most logical location. The Scientific ensures that the number preceding
the decimal point is a single digit followed by the required power of
ten. The Engineering format will always ensure that the power of ten is
a multiple of 3 (whether it be positive, negative, or zero).

In the above examples the accuracy was hundredths place. To set this
accuracy for the TI-86 calculator, return to the selection and
choose 2 to represent two-place accuracy or hundredths place.

Initially you will probably be most comfortable with the Normal
mode with hundredths-place accuracy. However, as you begin to analyze
networks, you may find the Engineering mode more appropriate since
you will be working with component levels and results that have powers
of ten that have been assigned abbreviations and names. Then again, the
Scientific mode may the best choice for a particular analysis. In any
event, take the time now to become familiar with the differences between
the various modes, and learn how to set them on your calculator.

Order of Operations

Although being able to set the format and accuracy is important, these
features are not the source of the impossible results that often arise
because of improper use of the calculator. Improper results occur pri-
marily because users fail to realize that no matter how simple or com-
plex an equation, the calculator will perform the required operations in
a specific order.

For instance, the operation

�
3 �

8
1

�

is often entered as

� �
8
3

� � 1 � 2.67 � 1 � 3.67

which is totally incorrect (2 is the answer).
The user must be aware that the calculator will not perform the addi-

tion first and then the division. In fact, addition and subtraction are the
last operations to be performed in any equation. It is therefore very
important that the reader carefully study and thoroughly understand the
next few paragraphs in order to use the calculator properly.

1. The first operations to be performed by a calculator can be set
using parentheses ( ). It does not matter which operations are within

8 3
 � 1

MODE

MODE

MODE



the parentheses. The parentheses simply dictate that this part of the
equation is to be determined first. There is no limit to the number of
parentheses in each equation—all operations within parentheses will be
performed first. For instance, for the example above, if parentheses are
added as shown below, the addition will be performed first and the cor-
rect answer obtained:

�
(3 �

8
1)

� � � �
8
4

� � 2

2. Next, powers and roots are performed, such as x2, �x�, and so on.
3. Negation (applying a negative sign to a quantity) and single-key

operations such as sin, tan�1, and so on, are performed.
4. Multiplication and division are then performed.
5. Addition and subtraction are performed last.

It may take a few moments and some repetition to remember the
order, but at least you are now aware that there is an order to the oper-
ations and are aware that ignoring them can result in meaningless
results.

EXAMPLE 1.16

a. Determine

��
9
3

��
b. Find

�
3 �

4
9

�

c. Determine

�
1
4

� � �
1
6

� � �
2
3

�

Solutions:

a. The following calculator operations will result in an incorrect
answer of 1 because the square-root operation will be performed
before the division.

� �
�

3

9�
� � �

3
3

� � 1

However, recognizing that we must first divide 9 by 3, we can use
parentheses as follows to define this operation as the first to be per-
formed, and the correct answer will be obtained:

� ����9
3

���� � �3� � 1.67

b. If the problem is entered as it appears, the incorrect answer of 5.25
will result.

� 3 � �
9
4

� � 5.25

Using brackets to ensure that the addition takes place before the divi-
sion will result in the correct answer as shown below:

� �
(3 �

4
9)

� � �
1
4
2
� � 343 
�( )9

493 
�

9 3
√ ( )

9 
√ 3

3
 �( )18
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18. Perform the following operations and express your
answer as a power of ten:

a. b.

c. d.

19. Perform the following operations and express your
answer as a power of ten:
a. (100)3 b. (0.0001)1/2

c. (10,000)8 d. (0.00000010)9

20. Perform the following operations and express your
answer as a power of ten:
a. (2.2 � 103)3

b. (0.0006 � 102)4

c. (0.004)(6 � 102)2

d. ((2 � 10�3)(0.8 � 104)(0.003 � 105))3

21. Perform the following operations and express your
answer in scientific notation:

a. (�0.001)2 b.

c. d.

e. *f.

*22. Perform the following operations and express your
answer in engineering notation:

a. b. [(40,000)2][(20)�3]

c. d.

e.

f. [(0.000016)1/2][(100,000)5][0.02]

g. (a challenge)

SECTION 1.7 Conversion between Levels 

of Powers of Ten

23. Fill in the blanks of the following conversions:
a. 6 � 103 � ___ � 106

b. 4 � 10�4 � ___ � 10�6

c. 50 � 105 � ___ � 103 � ___ � 106

� ___ � 109

d. 30 � 10�8 � ___ � 10�3 � ___ � 10�6

� ___ � 10�9

24. Perform the following conversions:
a. 2000 ms to milliseconds
b. 0.04 ms to microseconds
c. 0.06 mF to nanofarads
d. 8400 ps to microseconds
e. 0.006 km to millimeters
f. 260 � 103 mm to kilometers

[(0.003)3][(0.00007)2][(800)2]
����

[(100)(0.0009)]1/2

[(4000)2][300]
��

0.02

(0.000027)1/3

��
210,000

(60,000)2

��
(0.02)2

(300)2(100)
��

104

[(100)(0.01)]�3

��
[(100)2][0.001]

(0.0001)3(100)
��

1,000,000

(102)(10,000)
��

0.001
(0.001)2(100)
��

10,000

(100)(10�4)
��

10

78 � 109

��
4 � 10�6

0.000215
��

0.00005

0.00408
�

60,000
2000
�
0.00008
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respect to length, mass, force, and temperature? If so,
explain.

7. Which of the four systems of units appearing in Table 1.1
has the smallest units for length, mass, and force? When
would this system be used most effectively?

*8. Which system of Table 1.1 is closest in definition to the
SI system? How are the two systems different? Why do
you think the units of measurement for the SI system
were chosen as listed in Table 1.1? Give the best reasons
you can without referencing additional literature.

9. What is room temperature (68°F) in the MKS, CGS, and
SI systems?

10. How many foot-pounds of energy are associated with
1000 J?

11. How many centimeters are there in 1⁄2 yd?

SECTION 1.6 Powers of Ten

12. Express the following numbers as powers of ten:
a. 10,000 b. 0.0001
c. 1000 d. 1,000,000
e. 0.0000001 f. 0.00001

13. Using only those powers of ten listed in Table 1.2,
express the following numbers in what seems to you the
most logical form for future calculations:
a. 15,000 b. 0.03000
c. 7,400,000 d. 0.0000068
e. 0.00040200 f. 0.0000000002

14. Perform the following operations and express your
answer as a power of ten:

a. 4200 � 6,800,000
b. 9 � 104 � 3.6 � 103

c. 0.5 � 10�3 � 6 � 10�5

d. 1.2 � 103 � 50,000 � 10�3 � 0.006 � 105

15. Perform the following operations and express your
answer as a power of ten:
a. (100)(100) b. (0.01)(1000)
c. (103)(106) d. (1000)(0.00001)
e. (10�6)(10,000,000) f. (10,000)(10�8)(1035)

16. Perform the following operations and express your
answer as a power of ten:
a. (50,000)(0.0003)
b. 2200 � 0.08
c. (0.000082)(0.00007)
d. (30 � 10�4)(0.0002)(7 � 108)

17. Perform the following operations and express your
answer as a power of ten:

a. b.

c. d.

e. f.
(100)1/2

�
0.01

1038

��
0.000100

0.0000001
��

100
10,000
�
0.00001

0.01
�
100

100
�
1000

�
S
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SECTION 1.8 Conversion within and between

Systems of Units

For Problems 25 to 27, convert the following:

25. a. 1.5 min to seconds
b. 0.04 h to seconds
c. 0.05 s to microseconds
d. 0.16 m to millimeters
e. 0.00000012 s to nanoseconds
f. 3,620,000 s to days
g. 1020 mm to meters

26. a. 0.1 mF (microfarad) to picofarads
b. 0.467 km to meters
c. 63.9 mm to centimeters
d. 69 cm to kilometers
e. 3.2 h to milliseconds
f. 0.016 mm to micrometers
g. 60 sq cm (cm2) to square meters (m2)

*27. a. 100 in. to meters
b. 4 ft to meters
c. 6 lb to newtons
d. 60,000 dyn to pounds
e. 150,000 cm to feet
f. 0.002 mi to meters (5280 ft � 1 mi)
g. 7800 m to yards

28. What is a mile in feet, yards, meters, and kilometers?

29. Calculate the speed of light in miles per hour using the
defined speed of Section 1.4.

30. Find the velocity in miles per hour of a mass that travels
50 ft in 20 s.

31. How long in seconds will it take a car traveling at 100
mi/h to travel the length of a football field (100 yd)?

32. Convert 6 mi/h to meters per second.

33. If an athlete can row at a rate of 50 m/min, how many days
would it take to cross the Atlantic (�3000 mi)?

34. How long would it take a runner to complete a 10-km race
if a pace of 6.5 min/mi were maintained?

35. Quarters are about 1 in. in diameter. How many would be
required to stretch from one end of a football field to the
other (100 yd)?

36. Compare the total time in hours to cross the United States
(�3000 mi) at an average speed of 55 mi/h versus an
average speed of 65 mi/h. What is your reaction to the total
time required versus the safety factor?

*37. Find the distance in meters that a mass traveling at 600
cm/s will cover in 0.016 h.

*38. Each spring there is a race up 86 floors of the 102-story
Empire State Building in New York City. If you were
able to climb 2 steps/second, how long would it take you
to reach the 86th floor if each floor is 14 ft. high and each
step is about 9 in.?

*39. The record for the race in Problem 38 is 10 minutes, 47
seconds. What was the racer’s speed in min/mi for the
race?

*40. If the race of Problem 38 were a horizontal distance, how
long would it take a runner who can run 5-minute miles
to cover the distance? Compare this with the record speed
of Problem 39. Gravity is certainly a factor to be reck-
oned with!

SECTION 1.10 Conversion Tables

41. Using Appendix B, determine the number of
a. Btu in 5 J of energy.
b. cubic meters in 24 oz of a liquid.
c. seconds in 1.4 days.
d. pints in 1 m3 of a liquid.

SECTION 1.11 Calculators

Perform the following operations using a calculator:

42. 6(4 � 8)

43. �3�2��� 4�2�

44. tan�1 �
4
3

�

45. ��
6�2

4��

0�0
1�0

��

SECTION 1.12 Computer Analysis

46. Investigate the availability of computer courses and
computer time in your curriculum. Which languages are
commonly used, and which software packages are pop-
ular?

47. Develop a list of five popular computer languages with a
few characteristics of each. Why do you think some lan-
guages are better for the analysis of electric circuits than
others?

GLOSSARY

C�� A computer language having an efficient communica-
tion link between the user and the machine language of the
central processing unit (CPU) of a computer.

CGS system The system of units employing the Centimeter,
Gram, and Second as its fundamental units of measure.

Difference engine One of the first mechanical calculators.
Edison effect Establishing a flow of charge between two ele-

ments in an evacuated tube.

Electromagnetism The relationship between magnetic and
electrical effects.

Engineering notation A method of notation that specifies
that all powers of ten used to define a number be multiples
of 3 with a mantissa greater than or equal to 1 but less than
1000.

ENIAC The first totally electronic computer.
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MKS system The system of units employing the Meter, Kilo-
gram, and Second as its fundamental units of measure.

Newton (N) A unit of measurement for force in the SI and
MKS systems. Equal to 100,000 dynes in the CGS system.

Pound (lb) A unit of measurement for force in the English
system. Equal to 4.45 newtons in the SI or MKS system.

Program A sequential list of commands, instructions, etc., to
perform a specified task using a computer.

PSpice A software package designed to analyze various dc,
ac, and transient electrical and electronic systems.

Scientific notation A method for describing very large and
very small numbers through the use of powers of ten, which
requires that the multiplier be a number between 1 and 10.

Second (s) A unit of measurement for time in the SI, MKS,
English, and CGS systems.

SI system The system of units adopted by the IEEE in 1965
and the USASI in 1967 as the International System of Units
(Système International d’Unités).

Slug A unit of measure for mass in the English system.
Equal to 14.6 kilograms in the SI or MKS system.

Software package A computer program designed to perform
specific analysis and design operations or generate results
in a particular format.

Static electricity Stationary charge in a state of equilibrium.
Transistor The first semiconductor amplifier.
Voltaic cell A storage device that converts chemical to elec-

trical energy.
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Fixed-point notation Notation using a decimal point in a
particular location to define the magnitude of a number.

Fleming’s valve The first of the electronic devices, the
diode.

Floating-point notation Notation that allows the magnitude
of a number to define where the decimal point should be
placed.

Integrated circuit (IC) A subminiature structure containing
a vast number of electronic devices designed to perform a
particular set of functions.

Joule (J) A unit of measurement for energy in the SI or MKS
system. Equal to 0.7378 foot-pound in the English system
and 107 ergs in the CGS system.

Kelvin (K) A unit of measurement for temperature in the SI
system. Equal to 273.15 � °C in the MKS and CGS sys-
tems.

Kilogram (kg) A unit of measure for mass in the SI and
MKS systems. Equal to 1000 grams in the CGS system.

Language A communication link between user and com-
puter to define the operations to be performed and the
results to be displayed or printed.

Leyden jar One of the first charge-storage devices.
Menu A computer-generated list of choices for the user to

determine the next operation to be performed.
Meter (m) A unit of measure for length in the SI and MKS

systems. Equal to 1.094 yards in the English system and
100 centimeters in the CGS system.

�
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Current and Voltage

2.1 ATOMS AND THEIR STRUCTURE

A basic understanding of the fundamental concepts of current and volt-
age requires a degree of familiarity with the atom and its structure. The
simplest of all atoms is the hydrogen atom, made up of two basic parti-
cles, the proton and the electron, in the relative positions shown in Fig.
2.1(a). The nucleus of the hydrogen atom is the proton, a positively
charged particle. The orbiting electron carries a negative charge that is
equal in magnitude to the positive charge of the proton. In all other ele-
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Electrons
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(b) Helium atom

(a) Hydrogen atom

FIG. 2.1

The hydrogen and helium atoms.
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FIG. 2.2

Shells and subshells of the atomic structure.
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ments, the nucleus also contains neutrons, which are slightly heavier
than protons and have no electrical charge. The helium atom, for exam-
ple, has two neutrons in addition to two electrons and two protons, as
shown in Fig. 2.1(b). In all neutral atoms the number of electrons is
equal to the number of protons. The mass of the electron is 9.11 �
10�28 g, and that of the proton and neutron is 1.672 � 10�24 g. The
mass of the proton (or neutron) is therefore approximately 1836 times
that of the electron. The radii of the proton, neutron, and electron are all
of the order of magnitude of 2 � 10�15 m.

For the hydrogen atom, the radius of the smallest orbit followed by
the electron is about 5 � 10�11 m. The radius of this orbit is approxi-
mately 25,000 times that of the radius of the electron, proton, or neu-
tron. This is approximately equivalent to a sphere the size of a dime
revolving about another sphere of the same size more than a quarter of
a mile away.

Different atoms will have various numbers of electrons in the con-
centric shells about the nucleus. The first shell, which is closest to the
nucleus, can contain only two electrons. If an atom should have three
electrons, the third must go to the next shell. The second shell can con-
tain a maximum of eight electrons; the third, 18; and the fourth, 32; as
determined by the equation 2n2, where n is the shell number. These
shells are usually denoted by a number (n � 1, 2, 3, . . .) or letter 
(n � k, l, m, . . .).

Each shell is then broken down into subshells, where the first sub-
shell can contain a maximum of two electrons; the second subshell, six
electrons; the third, 10 electrons; and the fourth, 14; as shown in Fig.
2.2. The subshells are usually denoted by the letters s, p, d, and f, in that
order, outward from the nucleus.
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It has been determined by experimentation that unlike charges
attract, and like charges repel. The force of attraction or repulsion
between two charged bodies Q1 and Q2 can be determined by
Coulomb’s law:

(newtons, N) (2.1)

where F is in newtons, k � a constant � 9.0 � 109 N⋅m2/C2, Q1 and Q2

are the charges in coulombs (to be introduced in Section 2.2), and r is

F (attraction or repulsion) � �
kQ

r
1
2

Q2
�



French (Angoulème, 
Paris)

(1736–1806)

Scientist and 

Inventor

Military Engineer, 
West Indies

Courtesy of the 
Smithsonian Institution

Photo No. 52,597

Attended the engineering school at Mezieres, the
first such school of its kind. Formulated Coulomb’s
law, which defines the force between two electrical
charges and is, in fact, one of the principal forces in
atomic reactions. Performed extensive research on
the friction encountered in machinery and windmills
and the elasticity of metal and silk fibers.
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FIG. 2.4

The copper atom.

2.2 CURRENT

Consider a short length of copper wire cut with an imaginary perpen-
dicular plane, producing the circular cross section shown in Fig. 2.5.
At room temperature with no external forces applied, there exists
within the copper wire the random motion of free electrons created by

the distance in meters between the two charges. In particular, note the
squared r term in the denominator, resulting in rapidly decreasing lev-
els of F for increasing values of r. (See Fig. 2.3.)

In the atom, therefore, electrons will repel each other, and protons
and electrons will attract each other. Since the nucleus consists of many
positive charges (protons), a strong attractive force exists for the elec-
trons in orbits close to the nucleus [note the effects of a large charge Q
and a small distance r in Eq. (2.1)]. As the distance between the nucleus
and the orbital electrons increases, the binding force diminishes until it
reaches its lowest level at the outermost subshell (largest r). Due to the
weaker binding forces, less energy must be expended to remove an
electron from an outer subshell than from an inner subshell. Also, it is
generally true that electrons are more readily removed from atoms hav-
ing outer subshells that are incomplete and, in addition, possess few
electrons. These properties of the atom that permit the removal of elec-
trons under certain conditions are essential if motion of charge is to be
created. Without this motion, this text could venture no further—our
basic quantities rely on it.

Copper is the most commonly used metal in the electrical/electron-
ics industry. An examination of its atomic structure will help identify
why it has such widespread applications. The copper atom (Fig. 2.4)
has one more electron than needed to complete the first three shells.
This incomplete outermost subshell, possessing only one electron, and
the distance between this electron and the nucleus reveal that the
twenty-ninth electron is loosely bound to the copper atom. If this
twenty-ninth electron gains sufficient energy from the surrounding
medium to leave its parent atom, it is called a free electron. In one
cubic inch of copper at room temperature, there are approximately
1.4 � 10�24 free electrons. Other metals that exhibit the same proper-
ties as copper, but to a different degree, are silver, gold, aluminum, and
tungsten. Additional discussion of conductors and their characteristics
can be found in Section 3.2.

FIG. 2.3

Charles Augustin de Coulomb.
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the thermal energy that the electrons gain from the surrounding
medium. When atoms lose their free electrons, they acquire a net pos-
itive charge and are referred to as positive ions. The free electrons are
able to move within these positive ions and leave the general area of
the parent atom, while the positive ions only oscillate in a mean fixed
position. For this reason,

the free electron is the charge carrier in a copper wire or any other
solid conductor of electricity.

An array of positive ions and free electrons is depicted in Fig. 2.6.
Within this array, the free electrons find themselves continually gaining
or losing energy by virtue of their changing direction and velocity.
Some of the factors responsible for this random motion include (1) the
collisions with positive ions and other electrons, (2) the attractive forces
for the positive ions, and (3) the force of repulsion that exists between
electrons. This random motion of free electrons is such that over a
period of time, the number of electrons moving to the right across the
circular cross section of Fig. 2.5 is exactly equal to the number passing
over to the left.

With no external forces applied, the net flow of charge in a conductor
in any one direction is zero.

Let us now connect copper wire between two battery terminals and
a light bulb, as shown in Fig. 2.7, to create the simplest of electric cir-
cuits. The battery, at the expense of chemical energy, places a net posi-
tive charge at one terminal and a net negative charge on the other. The
instant the final connection is made, the free electrons (of negative
charge) will drift toward the positive terminal, while the positive ions
left behind in the copper wire will simply oscillate in a mean fixed posi-
tion. The negative terminal is a “supply” of electrons to be drawn from
when the electrons of the copper wire drift toward the positive terminal.
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FIG. 2.6

Random motion of free electrons in an atomic
structure.
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Basic electric circuit.
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FIG. 2.5

Random motion of electrons in a copper wire
with no external “pressure” (voltage) applied.



French (Lyon, Paris)
(1775–1836)

Mathematician and 

Physicist

Professor of 

Mathematics,

École
Polytechnique in
Paris

Courtesy of the 
Smithsonian Institution

Photo No. 76,524

On September 18, 1820, introduced a new field of
study, electrodynamics, devoted to the effect of elec-
tricity in motion, including the interaction between
currents in adjoining conductors and the interplay of
the surrounding magnetic fields. Constructed the first
solenoid and demonstrated how it could behave like
a magnet (the first electromagnet). Suggested the
name galvanometer for an instrument designed to
measure current levels.
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The chemical activity of the battery will absorb the electrons at the pos-
itive terminal and will maintain a steady supply of electrons at the neg-
ative terminal. The flow of charge (electrons) through the bulb will heat
up the filament of the bulb through friction to the point that it will glow
red hot and emit the desired light.

If 6.242 � 1018 electrons drift at uniform velocity through the imag-
inary circular cross section of Fig. 2.7 in 1 second, the flow of charge,
or current, is said to be 1 ampere (A) in honor of André Marie Ampère
(Fig. 2.8). The discussion of Chapter 1 clearly reveals that this is an
enormous number of electrons passing through the surface in 1 second.
The current associated with only a few electrons per second would be
inconsequential and of little practical value. To establish numerical val-
ues that permit immediate comparisons between levels, a coulomb (C)
of charge was defined as the total charge associated with 6.242 � 1018

electrons. The charge associated with one electron can then be deter-
mined from

Charge/electron � Qe � � 1.6 � 10�19 C

The current in amperes can now be calculated using the following
equation:

I � amperes (A)
Q � coulombs (C) (2.2)
t � seconds (s)

The capital letter I was chosen from the French word for current: inten-
sité. The SI abbreviation for each quantity in Eq. (2.2) is provided to the
right of the equation. The equation clearly reveals that for equal time
intervals, the more charge that flows through the wire, the heavier the
current.

Through algebraic manipulations, the other two quantities can be
determined as follows:

(coulombs, C) (2.3)

and (seconds, s) (2.4)

EXAMPLE 2.1 The charge flowing through the imaginary surface of
Fig. 2.7 is 0.16 C every 64 ms. Determine the current in amperes.

Solution: Eq. (2.2):

I � � � � 2.50 A

EXAMPLE 2.2 Determine the time required for 4 � 1016 electrons to
pass through the imaginary surface of Fig. 2.7 if the current is 5 mA.

Solution: Determine Q:

4 � 1016 electrons � � � 0.641 � 10�2 C

� 0.00641 C � 6.41 mC

1 C
���
6.242 � 1018 electrons

160 � 10�3 C
��

64 � 10�3 s
0.16 C

��
64 � 10�3 s

Q
�
t

t � �
Q
I
�

Q � It

I � �
Q
t
�

1 C
��
6.242 � 1018
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FIG. 2.8

André Marie Ampère.



Calculate t [Eq. (2.4)]:

t � � � 1.282 s

A second glance at Fig. 2.7 will reveal that two directions of charge
flow have been indicated. One is called conventional flow, and the other
is called electron flow. This text will deal only with conventional flow
for a variety of reasons, including the fact that it is the most widely
used at educational institutions and in industry, it is employed in the
design of all electronic device symbols, and it is the popular choice for
all major computer software packages. The flow controversy is a result
of an assumption made at the time electricity was discovered that the
positive charge was the moving particle in metallic conductors. Be
assured that the choice of conventional flow will not create great diffi-
culty and confusion in the chapters to follow. Once the direction of I is
established, the issue is dropped and the analysis can continue without
confusion.

Safety Considerations

It is important to realize that even small levels of current through the
human body can cause serious, dangerous side effects. Experimental
results reveal that the human body begins to react to currents of only a
few milliamperes. Although most individuals can withstand currents up
to perhaps 10 mA for very short periods of time without serious side
effects, any current over 10 mA should be considered dangerous. In
fact, currents of 50 mA can cause severe shock, and currents of over
100 mA can be fatal. In most cases the skin resistance of the body when
dry is sufficiently high to limit the current through the body to relatively
safe levels for voltage levels typically found in the home. However, be
aware that when the skin is wet due to perspiration, bathing, etc., or
when the skin barrier is broken due to an injury, the skin resistance
drops dramatically, and current levels could rise to dangerous levels for
the same voltage shock. In general, therefore, simply remember that
water and electricity don’t mix. Granted, there are safety devices in the
home today [such as the ground fault current interrupt (GFCI) breaker
to be introduced in Chapter 4] that are designed specifically for use in
wet areas such as the bathroom and kitchen, but accidents happen. Treat
electricity with respect—not fear.

2.3 VOLTAGE

The flow of charge described in the previous section is established by
an external “pressure” derived from the energy that a mass has by virtue
of its position: potential energy.

Energy, by definition, is the capacity to do work. If a mass (m) is
raised to some height (h) above a reference plane, it has a measure of
potential energy expressed in joules (J) that is determined by

(joules, J) (2.5)

where g is the gravitational acceleration (9.754 m/s2). This mass now
has the “potential” to do work such as crush an object placed on the ref-

W (potential energy) � mgh

6.41 � 10�3 C
��

5 � 10�3 A
Q

�
I
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erence plane. If the weight is raised further, it has an increased measure
of potential energy and can do additional work. There is an obvious dif-
ference in potential between the two heights above the reference plane.

In the battery of Fig. 2.7, the internal chemical action will establish
(through an expenditure of energy) an accumulation of negative charges
(electrons) on one terminal (the negative terminal) and positive charges
(positive ions) on the other (the positive terminal). A “positioning” of
the charges has been established that will result in a potential differ-
ence between the terminals. If a conductor is connected between the
terminals of the battery, the electrons at the negative terminal have suf-
ficient potential energy to overcome collisions with other particles in
the conductor and the repulsion from similar charges to reach the posi-
tive terminal to which they are attracted.

Charge can be raised to a higher potential level through the expendi-
ture of energy from an external source, or it can lose potential energy as
it travels through an electrical system. In any case, by definition:

A potential difference of 1 volt (V) exists between two points if 1 joule
(J) of energy is exchanged in moving 1 coulomb (C) of charge
between the two points.

The unit of measurement volt was chosen to honor Alessandro Volta
(Fig. 2.9).

Pictorially, if one joule of energy (1 J) is required to move the one
coulomb (1 C) of charge of Fig. 2.10 from position x to position y, the
potential difference or voltage between the two points is one volt (1 V).
If the energy required to move the 1 C of charge increases to 12 J due
to additional opposing forces, then the potential difference will increase
to 12 V. Voltage is therefore an indication of how much energy is
involved in moving a charge between two points in an electrical system.
Conversely, the higher the voltage rating of an energy source such as a
battery, the more energy will be available to move charge through the
system. Note in the above discussion that two points are always
involved when talking about voltage or potential difference. In the
future, therefore, it is very important to keep in mind that

a potential difference or voltage is always measured between two
points in the system. Changing either point may change the potential
difference between the two points under investigation.

In general, the potential difference between two points is deter-
mined by

(volts) (2.6)

Through algebraic manipulations, we have

(joules) (2.7)

and (coulombs) (2.8)Q � �
W
V
�

W � QV

V � �
W
Q
�
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Vxy = 1 volt

1 C

W = 1 J

x y

FIG. 2.10

Defining the unit of measurement for voltage.

FIG. 2.9

Count Alessandro Volta.

Italian (Como, Pavia)
(1745–1827)

Physicist

Professor of Physics,

Pavia, Italy

Courtesy of the 
Smithsonian Institution

Photo No. 55,393

Began electrical experiments at the age of 18 work-
ing with other European investigators. Major contri-
bution was the development of an electrical energy
source from chemical action in 1800. For the first
time, electrical energy was available on a continu-
ous basis and could be used for practical purposes.
Developed the first condenser known today as the
capacitor. Was invited to Paris to demonstrate the
voltaic cell to Napoleon. The International Electri-
cal Congress meeting in Paris in 1881 honored his
efforts by choosing the volt as the unit of measure
for electromotive force.



EXAMPLE 2.3 Find the potential difference between two points in an
electrical system if 60 J of energy are expended by a charge of 20 C
between these two points.

Solution: Eq. (2.6):

V � � � 3 V

EXAMPLE 2.4 Determine the energy expended moving a charge of
50 mC through a potential difference of 6 V.

Solution: Eq. (2.7):

W � QV � (50 � 10�6 C)(6 V) � 300 � 10�6 J � 300 mJ

Notation plays a very important role in the analysis of electrical and
electronic systems. To distinguish between sources of voltage (batteries
and the like) and losses in potential across dissipative elements, the fol-
lowing notation will be used:

E for voltage sources (volts)
V for voltage drops (volts)

An occasional source of confusion is the terminology applied to this
subject matter. Terms commonly encountered include potential, poten-
tial difference, voltage, voltage difference (drop or rise), and electro-
motive force. As noted in the description above, some are used inter-
changeably. The following definitions are provided as an aid in
understanding the meaning of each term:

Potential: The voltage at a point with respect to another point in the
electrical system. Typically the reference point is ground, which is at
zero potential.

Potential difference: The algebraic difference in potential (or voltage)
between two points of a network.

Voltage: When isolated, like potential, the voltage at a point with
respect to some reference such as ground (0 V).

Voltage difference: The algebraic difference in voltage (or potential)
between two points of the system. A voltage drop or rise is as the
terminology would suggest.

Electromotive force (emf): The force that establishes the flow of
charge (or current) in a system due to the application of a difference
in potential. This term is not applied that often in today’s literature
but is associated primarily with sources of energy.

In summary, the applied potential difference (in volts) of a voltage
source in an electric circuit is the “pressure” to set the system in motion
and “cause” the flow of charge or current through the electrical system.
A mechanical analogy of the applied voltage is the pressure applied to
the water in a main. The resulting flow of water through the system is
likened to the flow of charge through an electric circuit. Without the
applied pressure from the spigot, the water will simply sit in the hose,
just as the electrons of a copper wire do not have a general direction
without an applied voltage.

60 J
�
20 C

W
�
Q
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2.4 FIXED (dc) SUPPLIES

The terminology dc employed in the heading of this section is an abbre-
viation for direct current, which encompasses the various electrical sys-
tems in which there is a unidirectional (“one direction”) flow of charge.
A great deal more will be said about this terminology in the chapters to
follow. For now, we will consider only those supplies that provide a
fixed voltage or current.

dc Voltage Sources

Since the dc voltage source is the more familiar of the two types of sup-
plies, it will be examined first. The symbol used for all dc voltage sup-
plies in this text appears in Fig. 2.11. The relative lengths of the bars
indicate the terminals they represent.

Dc voltage sources can be divided into three broad categories: 
(1) batteries (chemical action), (2) generators (electromechanical), and
(3) power supplies (rectification).

Batteries

General Information For the layperson, the battery is the most com-
mon of the dc sources. By definition, a battery (derived from the
expression “battery of cells”) consists of a combination of two or more
similar cells, a cell being the fundamental source of electrical energy
developed through the conversion of chemical or solar energy. All cells
can be divided into the primary or secondary types. The secondary is
rechargeable, whereas the primary is not. That is, the chemical reaction
of the secondary cell can be reversed to restore its capacity. The two
most common rechargeable batteries are the lead-acid unit (used pri-
marily in automobiles) and the nickel-cadmium battery (used in calcu-
lators, tools, photoflash units, shavers, and so on). The obvious advan-
tage of the rechargeable unit is the reduced costs associated with not
having to continually replace discharged primary cells.

All the cells appearing in this chapter except the solar cell, which
absorbs energy from incident light in the form of photons, establish a
potential difference at the expense of chemical energy. In addition, each
has a positive and a negative electrode and an electrolyte to complete
the circuit between electrodes within the battery. The electrolyte is the
contact element and the source of ions for conduction between the ter-
minals.

Alkaline and Lithium-Iodine Primary Cells The popular alkaline
primary battery employs a powdered zinc anode (�); a potassium
(alkali metal) hydroxide electrolyte; and a manganese dioxide, carbon
cathode (�) as shown in Fig. 2.12(a). In particular, note in Fig. 2.12(b)
that the larger the cylindrical unit, the higher the current capacity. The
lantern is designed primarily for long-term use. Figure 2.13 shows two
lithium-iodine primary units with an area of application and a rating to
be introduced later in this section.

Lead-Acid Secondary Cell For the secondary lead-acid unit appear-
ing in Fig. 2.14, the electrolyte is sulfuric acid, and the electrodes are
spongy lead (Pb) and lead peroxide (PbO2). When a load is applied to
the battery terminals, there is a transfer of electrons from the spongy
lead electrode to the lead peroxide electrode through the load. This
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Symbol for a dc voltage source.



transfer of electrons will continue until the battery is completely dis-
charged. The discharge time is determined by how diluted the acid has
become and how heavy the coating of lead sulfate is on each plate. The
state of discharge of a lead storage cell can be determined by measur-
ing the specific gravity of the electrolyte with a hydrometer. The spe-
cific gravity of a substance is defined to be the ratio of the weight of a
given volume of the substance to the weight of an equal volume of
water at 4°C. For fully charged batteries, the specific gravity should be
somewhere between 1.28 and 1.30. When the specific gravity drops to
about 1.1, the battery should be recharged.

Since the lead storage cell is a secondary cell, it can be recharged at
any point during the discharge phase simply by applying an external dc
current source across the cell that will pass current through the cell in
a direction opposite to that in which the cell supplied current to the
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1.5 V
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cover —
plated steel

Can — steel

Metallized
plastic film
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Anode —
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Current
collector —
brass

Seal — nylon

Inner cell
cover —
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cover —
plated steel

Electrolyte —
potassium
hydroxide

Cathode —
manganese
dioxide,
carbon

Separator —
non-woven
fabric

Metal
washer

FIG. 2.12

(a) Cutaway of cylindrical Energizer® alkaline cell; (b) Eveready® Energizer 
primary cells. (Courtesy of Eveready Battery Company, Inc.)

FIG. 2.13

Lithium-iodine primary cells. (Courtesy of Catalyst Research Corp.)
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load. This will remove the lead sulfate from the plates and restore the
concentration of sulfuric acid.

The output of a lead storage cell over most of the discharge phase is
about 2.1 V. In the commercial lead storage batteries used in the auto-
mobile, 12.6 V can be produced by six cells in series, as shown in Fig.
2.14. In general, lead-acid storage batteries are used in situations where
a high current is required for relatively short periods of time. At one
time all lead-acid batteries were vented. Gases created during the dis-
charge cycle could escape, and the vent plugs provided access to
replace the water or electrolyte and to check the acid level with a
hydrometer. The use of a grid made from a wrought lead–calcium alloy
strip rather than the lead-antimony cast grid commonly used has
resulted in maintenance-free batteries such as that appearing in Fig.
2.14. The lead-antimony structure was susceptible to corrosion, over-
charge, gasing, water usage, and self-discharge. Improved design with
the lead-calcium grid has either eliminated or substantially reduced
most of these problems.

It would seem that with all the years of technology surrounding bat-
teries, smaller, more powerful units would now be available. However,
when it comes to the electric car, which is slowly gaining interest and
popularity throughout the world, the lead-acid battery is still the pri-
mary source of power. A “station car,” manufactured in Norway and
used on a test basis in San Francisco for typical commuter runs, has a
total weight of 1650 pounds, with 550 pounds (a third of its weight) for
the lead-acid rechargeable batteries. Although the station car will travel
at speeds of 55 mph, its range is limited to 65 miles on a charge. It
would appear that long-distance travel with significantly reduced
weight factors for the batteries will depend on a new, innovative
approach to battery design.

Nickel-Cadmium Secondary-Cell The nickel-cadmium battery is a
rechargeable battery that has been receiving enormous interest and
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FIG. 2.14

Maintenance-free 12-V (actually 12.6-V) lead-acid battery. (Courtesy of Delco-
Remy, a division of General Motors Corp.)



development in recent years. For applications such as flashlights,
shavers, portable televisions, power drills, and so on, the nickel-
cadmium (Ni-Cad) battery of Fig. 2.15 is the secondary battery of
choice because the current levels are lower and the period of continu-
ous drain is usually longer. A typical nickel-cadmium battery can sur-
vive over 1000 charge/discharge cycles over a period of time that can
last for years.

It is important to recognize that when an appliance or a system calls
for a Ni-Cad battery, a primary cell should not be used. The appliance
or system may have an internal charging network that would be dys-
functional with a primary cell. In addition, be aware that all Ni-Cad bat-
teries are about 1.2 V per cell, while the most common primary cells are
typically 1.5 V per cell. There is some ambiguity about how often a
secondary cell should be recharged. For the vast majority of situations,
the battery can be used until there is some indication that the energy
level is low, such as a dimming light from a flashlight, less power from
a drill, or a blinking light if one is provided with the equipment. Keep
in mind that secondary cells do have some “memory.” If they are
recharged continuously after being used for a short period of time, they
may begin to believe they are short-term units and actually fail to hold
the charge for the rated period of time. In any event, always try to avoid
a “hard” discharge, which results when every bit of energy is drained
from a cell. Too many hard discharge cycles will reduce the cycle life
of the battery. Finally, be aware that the charging mechanism for
nickel-cadmium cells is quite different from that for lead-acid batter-
ies. The nickel-cadmium battery is charged by a constant current
source, with the terminal voltage staying pretty steady through the
entire charging cycle. The lead-acid battery is charged by a constant
voltage source, permitting the current to vary as determined by the state
of the battery. The capacity of the Ni-Cad battery increases almost lin-
early throughout most of the charging cycle. One may find that Ni-Cad
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FIG. 2.15

Rechargeable nickel-cadmium batteries. (Courtesy of Eveready Batteries.)
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batteries are relatively warm when charging. The lower the capacity
level of the battery when charging, the higher the temperature of the
cell. As the battery approaches rated capacity, the temperature of the
cell approaches room temperature.

Nickel-Hydrogen and Nickel–Metal Hydride Secondary Cells
Two other types of secondary cell include the nickel-hydrogen and
nickel–metal hydride cells. The nickel-hydrogen cell is currently lim-
ited primarily to space vehicle applications where high-energy-density
batteries are required that are rugged and reliable and can withstand a
high number of charge/discharge cycles over a relatively long period of
time. The nickel–metal hydride cell is actually a hybrid of the nickel-
cadmium and nickel-hydrogen cells, combining the positive character-
istics of each to create a product with a high power level in a small
package that has a long cycle life. Although relatively expensive, this
hybrid is a valid option for applications such as portable computers, as
shown in Fig. 2.16.

Solar Cell A high-density, 40-W solar cell appears in Fig. 2.17 with
some of its associated data and areas of application. Since the maxi-
mum available wattage in an average bright sunlit day is 100 mW/cm2,
and since conversion efficiencies are currently between 10% and 14%,
the maximum available power per square centimeter from most com-
mercial units is between 10 mW and 14 mW. For a square meter, how-
ever, the return would be 100 W to 140 W. A more detailed description
of the solar cell will appear in your electronics courses. For now it is
important to realize that a fixed illumination of the solar cell will pro-
vide a fairly steady dc voltage for driving various loads, from watches
to automobiles.

Ampere-Hour Rating Batteries have a capacity rating given in
ampere-hours (Ah) or milliampere-hours (mAh). Some of these ratings
are included in the above figures. A battery with an ampere-hour rat-
ing of 100 will theoretically provide a steady current of 1 A for 100 h,
2 A for 50 h, 10 A for 10 h, and so on, as determined by the following
equation:

Life (hours) � (2.9)

Two factors that affect this rating, however, are the temperature and
the rate of discharge. The disc-type Eveready® BH 500 cell appearing
in Fig. 2.15 has the terminal characteristics appearing in Fig. 2.18. Fig-
ure 2.18 reveals that

the capacity of a dc battery decreases with an increase in the current
demand

and

the capacity of a dc battery decreases at relatively (compared to room
temperature) low and high temperatures.

For the 1-V unit of Fig. 2.18(a), the rating is just above 500 mAh at a
discharge current of 100 mA, but it drops to about 300 mAh at about 1 A.
For a unit that is less than 11⁄2 in. in diameter and less than 1⁄2 in. in
thickness, however, these are excellent terminal characteristics. Figure

ampere-hour rating (Ah)
���

amperes drawn (A)
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10.8 V, 2.9 Ah,
600 mA (monochrome display),

900 mA (color display)
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FIG. 2.16

Nickel–metal hydride (Ni-MH) battery for the
IBM lap-top computer.

FIG. 2.17

Solar module. (Courtesy of Motorola
Semiconductor Products.)

40-W, high-density solar module
100-mm � 100-mm (4� � 4�) square cells are 
used to provide maximum power in a minimum of
space. The 33 series cell module provides a strong
12-V battery charging current for a wide range of
temperatures (�40°C to 60°C)



2.18(b) reveals that the maximum mAh rating (at a current drain of 50
mA) occurs at about 75°F (�24°C), or just above average room tem-
perature. Note that the curve drops to the right and left of this maxi-
mum value. We are all aware of the reduced “strength” of a battery at
low temperatures. Note that it has dropped to almost 300 mAh at
about �8°F.

Another curve of interest appears in Fig. 2.19. It provides the
expected cell voltage at a particular drain over a period of hours of use.
It is noteworthy that the loss in hours between 50 mA and 100 mA is
much greater than between 100 mA and 150 mA, even though the
increase in current is the same between levels. In general,

the terminal voltage of a dc battery decreases with the length of the
discharge time at a particular drain current.
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Eveready® BH 500 cell characteristics: (a) capacity versus discharge 
current; (b) capacity versus temperature. (Courtesy of Eveready Batteries.)
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Eveready® BH 500 cell discharge curves. (Courtesy of Eveready Batteries.)
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EXAMPLE 2.5

a. Determine the capacity in milliampere-hours and life in minutes for
the 0.9-V BH 500 cell of Fig. 2.18(a) if the discharge current is 
600 mA.

b. At what temperature will the mAh rating of the cell of Fig. 2.18(b)
be 90% of its maximum value if the discharge current is 50 mA?

Solutions:

a. From Fig. 2.18(a), the capacity at 600 mA is about 450 mAh. Thus,
from Eq. (2.9),

Life � � 0.75 h � 45 min

b. From Fig. 2.18(b), the maximum is approximately 520 mAh. The
90% level is therefore 468 mAh, which occurs just above freezing,
or 1°C, and at the higher temperature of 45°C.

Generators The dc generator is quite different, both in construc-
tion (Fig. 2.20) and in mode of operation, from the battery. When the
shaft of the generator is rotating at the nameplate speed due to the
applied torque of some external source of mechanical power, a voltage
of rated value will appear across the external terminals. The terminal
voltage and power-handling capabilities of the dc generator are typi-
cally higher than those of most batteries, and its lifetime is determined
only by its construction. Commercially used dc generators are typically
of the 120-V or 240-V variety. As pointed out earlier in this section, for
the purposes of this text, no distinction will be made between the sym-
bols for a battery and a generator.

Power Supplies The dc supply encountered most frequently in the
laboratory employs the rectification and filtering processes as its means
toward obtaining a steady dc voltage. Both processes will be covered in
detail in your basic electronics courses. In total, a time-varying voltage
(such as ac voltage available from a home outlet) is converted to one of a
fixed magnitude. A dc laboratory supply of this type appears in Fig. 2.21.

Most dc laboratory supplies have a regulated, adjustable voltage out-
put with three available terminals, as indicated in Figs. 2.21 and 2.22(a).
The symbol for ground or zero potential (the reference) is also shown in
Fig. 2.22(a). If 10 V above ground potential are required, then the con-
nections are made as shown in Fig. 2.22(b). If 15 V below ground
potential are required, then the connections are made as shown in Fig.
2.22(c). If connections are as shown in Fig. 2.22(d), we say we have a
“floating” voltage of 5 V since the reference level is not included. Sel-
dom is the configuration of Fig. 2.22(d) employed since it fails to pro-
tect the operator by providing a direct low-resistance path to ground and
to establish a common ground for the system. In any case, the positive
and negative terminals must be part of any circuit configuration.

dc Current Sources

The wide variety of types of, and applications for, the dc voltage source
has resulted in its becoming a rather familiar device, the characteristics
of which are understood, at least basically, by the layperson. For exam-
ple, it is common knowledge that a 12-V car battery has a terminal volt-

450 mAh
��

600 mA
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FIG. 2.20

dc generator.

FIG. 2.21

dc laboratory supply. (Courtesy of Leader
Instruments Corporation.)



age (at least approximately) of 12 V, even though the current drain by
the automobile may vary under different operating conditions. In other
words, a dc voltage source will provide ideally a fixed terminal voltage,
even though the current demand from the electrical/electronic system
may vary, as depicted in Fig. 2.23(a). A dc current source is the dual
of the voltage source; that is,

the current source will supply, ideally, a fixed current to an
electrical/electronic system, even though there may be variations in
the terminal voltage as determined by the system,

as depicted in Fig. 2.23(b). Do not become alarmed if the concept of a
current source is strange and somewhat confusing at this point. It will
be covered in great detail in later chapters. Also, additional exposure
will be provided in basic electronics courses.

2.5 CONDUCTORS AND INSULATORS

Different wires placed across the same two battery terminals will allow
different amounts of charge to flow between the terminals. Many fac-
tors, such as the density, mobility, and stability characteristics of a mate-
rial, account for these variations in charge flow. In general, however,

conductors are those materials that permit a generous flow of
electrons with very little external force (voltage) applied.

In addition,

good conductors typically have only one electron in the valence (most
distant from the nucleus) ring.

Since copper is used most frequently, it serves as the standard of
comparison for the relative conductivity in Table 2.1. Note that alu-
minum, which has seen some commercial use, has only 61% of the con-
ductivity level of copper, but keep in mind that this must be weighed
against the cost and weight factors.

Insulators are those materials that have very few free electrons and
require a large applied potential (voltage) to establish a measurable
current level.
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Terminal characteristics: (a) ideal voltage
source; (b) ideal current source.
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A common use of insulating material is for covering current-carrying
wire, which, if uninsulated, could cause dangerous side effects. Power-
line repair people wear rubber gloves and stand on rubber mats as safety
measures when working on high-voltage transmission lines. A number
of different types of insulators and their applications appear in Fig. 2.24.
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TABLE 2.1

Relative conductivity of various materials.

Metal Relative Conductivity (%)

Silver 105
Copper 100
Gold 70.5
Aluminum 61
Tungsten 31.2
Nickel 22.1
Iron 14
Constantan 3.52
Nichrome 1.73
Calorite 1.44

It must be pointed out, however, that even the best insulator will
break down (permit charge to flow through it) if a sufficiently large
potential is applied across it. The breakdown strengths of some com-
mon insulators are listed in Table 2.2. According to this table, for insu-

(a) (b) (c)

FIG. 2.24

Insulators: (a) insulated thru-panel bushings; (b) antenna strain insulators; 
(c) porcelain stand-off insulators. (Courtesy of Herman H. Smith, Inc.)

TABLE 2.2

Breakdown strength of some common insulators.

Average
Breakdown

Material Strength (kV/cm)

Air 30
Porcelain 70
Oils 140
Bakelite 150
Rubber 270
Paper (paraffin-coated) 500
Teflon 600
Glass 900
Mica 2000
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9. If 465 C of charge pass through a wire in 2.5 min, find
the current in amperes.

10. If a current of 40 A exists for 1 min, how many coulombs
of charge have passed through the wire?

11. How many coulombs of charge pass through a lamp in 
2 min if the current is constant at 750 mA?

12. If the current in a conductor is constant at 2 mA, how
much time is required for 4600 � 10�6 C to pass through
the conductor?

13. If 21.847 � 10�18 electrons pass through a wire in 7 s,
find the current.

14. How many electrons pass through a conductor in 1 min if
the current is 1 A?

15. Will a fuse rated at 1 A “blow” if 86 C pass through it in
1.2 min?

*16. If 0.784 � 10�18 electrons pass through a wire in 643
ms, find the current.

*17. Which would you prefer?
a. A penny for every electron that passes through a wire

in 0.01 ms at a current of 2mA, or
b. A dollar for every electron that passes through a wire

in 1.5 ns if the current is 100 mA.

SECTION 2.3 Voltage

18. What is the voltage between two points if 96 mJ of
energy are required to move 50 � 1018 electrons between
the two points?

19. If the potential difference between two points is 42 V,
how much work is required to bring 6 C from one point
to the other?

20. Find the charge Q that requires 96 J of energy to be
moved through a potential difference of 16 V.

21. How much charge passes through a battery of 22.5 V if
the energy expended is 90 J?

22. If a conductor with a current of 200 mA passing through
it converts 40 J of electrical energy into heat in 30 s, what
is the potential drop across the conductor?

*23. Charge is flowing through a conductor at the rate of
420 C/min. If 742 J of electrical energy are converted to
heat in 30 s, what is the potential drop across the con-
ductor?

*24. The potential difference between two points in an electric
circuit is 24 V. If 0.4 J of energy were dissipated in a
period of 5 ms, what would the current be between the
two points?

SECTION 2.4 Fixed (dc) Supplies

25. What current will a battery with an Ah rating of 200 the-
oretically provide for 40 h?

26. What is the Ah rating of a battery that can provide 0.8 A
for 76 h?

27. For how many hours will a battery with an Ah rating of
32 theoretically provide a current of 1.28 A?

PROBLEMS

SECTION 2.1 Atoms and Their Structure

1. The numbers of orbiting electrons in aluminum and silver
are 13 and 47, respectively. Draw the electronic configu-
ration, including all the shells and subshells, and discuss
briefly why each is a good conductor.

2. Find the force of attraction between a proton and an elec-
tron separated by a distance equal to the radius of the
smallest orbit followed by an electron (5 � 10�11 m) in a
hydrogen atom.

3. Find the force of attraction in newtons between the
charges Q1 and Q2 in Fig. 2.34 when
a. r � 1 m b. r � 3 m
c. r � 10 m
(Note how quickly the force drops with an increase in r.)

FIG. 2.34

Problem 3.

*4. Find the force of repulsion in newtons between Q1 and
Q2 in Fig. 2.35 when
a. r � 1 mi b. r � 0.01 m
c. r � 1/16 in.

FIG. 2.35

Problem 4.

*5. Plot the force of attraction (in newtons) versus separation
(in meters) for two charges of 2 mC and �4 mC. Set r to
0.5 m and 1 m, followed by 1-m intervals to 10 m. Com-
ment on the shape of the curve. Is it linear or nonlinear?
What does it tell you about the force of attraction
between charges as they are separated? What does it tell
you about any function plotted against a squared term in
the denominator?

6. Determine the distance between two charges of 20 mC if
the force between the two charges is 3.6 � 104 N.

*7. Two charged bodies, Q1 and Q2, when separated by a 
distance of 2 m, experience a force of repulsion equal to
1.8 N.
a. What will the force of repulsion be when they are 

10 m apart?
b. If the ratio Q1/Q2 � 1/2, find Q1 and Q2 (r � 10 m).

SECTION 2.2 Current

8. Find the current in amperes if 650 C of charge pass
through a wire in 50 s.

Q1 r Q2

8   C� 40   C�
++

Q1 r Q2

–
1   C� 2   C�

+
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28. Find the mAh rating of the Eveready® BH 500 battery at
100°F and 0°C at a discharge current of 50 mA using Fig.
2.18(b).

29. Find the mAh rating of the 1.0-V Eveready® BH 500 
battery if the current drain is 550 mA using Fig. 2.18(a).
How long will it supply this current?

30. For how long can 50 mA be drawn from the battery of
Fig. 2.19 before its terminal voltage drops below 1 V?
Determine the number of hours at a drain current of
150 mA, and compare the ratio of drain current to the
resulting ratio of hours of availability.

31. A standard 12-V car battery has an ampere-hour rating 
of 40 Ah, whereas a heavy-duty battery has a rating of 
60 Ah. How would you compare the energy levels of
each and the available current for starting purposes?

*32. Using the relevant equations of the past few sections,
determine the available energy (in joules) from the
Eveready battery of Fig. 2.15(b).

*33. A portable television using a 12-V, 3-Ah rechargeable
battery can operate for a period of about 5.5 h. What is
the average current drawn during this period? What is the
energy expended by the battery in joules?

34. Discuss briefly the difference among the three types of dc
voltage supplies (batteries, rectification, and generators).

35. Compare the characteristics of a dc current source with
those of a dc voltage source. How are they similar and
how are they different?

SECTION 2.5 Conductors and Insulators

36. Discuss two properties of the atomic structure of copper
that make it a good conductor.

37. Name two materials not listed in Table 2.1 that are good
conductors of electricity.

38. Explain the terms insulator and breakdown strength.

39. List three uses of insulators not mentioned in Section 2.5.

SECTION 2.6 Semiconductors

40. What is a semiconductor? How does it compare with a
conductor and an insulator?

41. Consult a semiconductor electronics text and note the
extensive use of germanium and silicon semiconductor
materials. Review the characteristics of each material.

SECTION 2.7 Ammeters and Voltmeters

42. What are the significant differences in the way ammeters
and voltmeters are connected?

43. If an ammeter reads 2.5 A for a period of 4 min, deter-
mine the charge that has passed through the meter.

44. Between two points in an electric circuit, a voltmeter
reads 12.5 V for a period of 20 s. If the current measured
by an ammeter is 10 mA, determine the energy expended
and the charge that flowed between the two points.

GLOSSARY

Ammeter An instrument designed to read the current
through elements in series with the meter.

Ampere (A) The SI unit of measurement applied to the flow
of charge through a conductor.

Ampere-hour rating (Ah) The rating applied to a source of
energy that will reveal how long a particular level of current
can be drawn from that source.

Cell A fundamental source of electrical energy developed
through the conversion of chemical or solar energy.

Conductors Materials that permit a generous flow of elec-
trons with very little voltage applied.

Copper A material possessing physical properties that make
it particularly useful as a conductor of electricity.

Coulomb (C) The fundamental SI unit of measure for
charge. It is equal to the charge carried by 6.242 � 1018

electrons.
Coulomb’s law An equation defining the force of attraction

or repulsion between two charges.
dc current source A source that will provide a fixed current

level even though the load to which it is applied may cause
its terminal voltage to change.

dc generator A source of dc voltage available through the
turning of the shaft of the device by some external means.

Direct current Current having a single direction (unidirec-
tional) and a fixed magnitude over time.

Electrolytes The contact element and the source of ions
between the electrodes of the battery.

Electron The particle with negative polarity that orbits the
nucleus of an atom.

Free electron An electron unassociated with any particular
atom, relatively free to move through a crystal lattice struc-
ture under the influence of external forces.

Insulators Materials in which a very high voltage must be
applied to produce any measurable current flow.

Neutron The particle having no electrical charge, found in
the nucleus of the atom.

Nucleus The structural center of an atom that contains both
protons and neutrons.

Positive ion An atom having a net positive charge due to the
loss of one of its negatively charged electrons.

Potential difference The algebraic difference in potential (or
voltage) between two points in an electrical system.

Potential energy The energy that a mass possesses by virtue
of its position.

Primary cell Sources of voltage that cannot be recharged.
Proton The particle of positive polarity found in the nucleus

of an atom.
Rectification The process by which an ac signal is converted

to one that has an average dc level.
Secondary cell Sources of voltage that can be recharged.
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Semiconductor A material having a conductance value
between that of an insulator and that of a conductor. Of sig-
nificant importance in the manufacture of semiconductor
electronic devices.

Solar cell Sources of voltage available through the conver-
sion of light energy (photons) into electrical energy.

Specific gravity The ratio of the weight of a given volume of
a substance to the weight of an equal volume of water at
4°C.

Volt (V) The unit of measurement applied to the difference
in potential between two points. If one joule of energy is
required to move one coulomb of charge between two
points, the difference in potential is said to be one volt.

Voltmeter An instrument designed to read the voltage across
an element or between any two points in a network.



3.1 INTRODUCTION

The flow of charge through any material encounters an opposing force
similar in many respects to mechanical friction. This opposition, due to
the collisions between electrons and between electrons and other atoms
in the material, which converts electrical energy into another form of
energy such as heat, is called the resistance of the material. The unit of
measurement of resistance is the ohm, for which the symbol is �, the
capital Greek letter omega. The circuit symbol for resistance appears in
Fig. 3.1 with the graphic abbreviation for resistance (R).

3
Resistance

R

G

FIG. 3.1

Resistance symbol and notation.

R

The resistance of any material with a uniform cross-sectional area is
determined by the following four factors:

1. Material
2. Length
3. Cross-sectional area
4. Temperature

The chosen material, with its unique molecular structure, will react dif-
ferentially to pressures to establish current through its core. Conductors
that permit a generous flow of charge with little external pressure will
have low resistance levels, while insulators will have high resistance
characteristics.

As one might expect, the longer the path the charge must pass
through, the higher the resistance level, whereas the larger the area (and
therefore available room), the lower the resistance. Resistance is thus
directly proportional to length and inversely proportional to area.
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As the temperature of most conductors increases, the increased
motion of the particles within the molecular structure makes it increas-
ingly difficult for the “free” carriers to pass through, and the resistance
level increases.

At a fixed temperature of 20°C (room temperature), the resistance is
related to the other three factors by

(ohms, �) (3.1)

where r (Greek letter rho) is a characteristic of the material called the
resistivity, l is the length of the sample, and A is the cross-sectional
area of the sample.

The units of measurement substituted into Eq. (3.1) are related to the
application. For circular wires, units of measurement are usually defined
as in Section 3.2. For most other applications involving important areas
such as integrated circuits, the units are as defined in Section 3.4.

3.2 RESISTANCE: CIRCULAR WIRES

For a circular wire, the quantities appearing in Eq. (3.1) are defined by
Fig. 3.2. For two wires of the same physical size at the same tempera-
ture, as shown in Fig. 3.3(a),

the higher the resistivity, the more the resistance.

As indicated in Fig. 3.3(b),

the longer the length of a conductor, the more the resistance.

Figure 3.3(c) reveals for remaining similar determining variables that

the smaller the area of a conductor, the more the resistance.

Finally, Figure 3.3(d) states that for metallic wires of identical con-
struction and material,

the higher the temperature of a conductor, the more the resistance.

For circular wires, the quantities of Eq. (3.1) have the following
units:

r: CM-ohms/ft at T � 20°C
l: feet
A: circular mils (CM)

R � r�
A
l
�

60  RESISTANCE

l

T  (°C)
A

FIG. 3.2

Factors affecting the resistance of a
conductor.

R 1 Copper

R 2 Iron

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

l2  >  l1
(b)

A2  <  A1

(c)

T2  >  T1

(d)

 2  >    1
(a)

FIG. 3.3

Cases in which R2 > R1. For each case, all remaining parameters that control
the resistance level are the same.
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Note that the area of the conductor is measured in circular mils (CM)
and not in square meters, inches, and so on, as determined by the equation

r � radius
d � diameter

(3.2)

The mil is a unit of measurement for length and is related to the inch by

1 mil � in.

or 1000 mils � 1 in.

By definition,

a wire with a diameter of 1 mil has an area of 1 circular mil (CM), as
shown in Fig. 3.4.

One square mil was superimposed on the 1-CM area of Fig. 3.4 to
clearly show that the square mil has a larger surface area than the cir-
cular mil.

Applying the above definition to a wire having a diameter of 1 mil,
and applying Eq. (3.2), we have

Therefore,

1 CM � sq mils (3.3a)

or 1 sq mil � CM (3.3b)

Dividing Eq. (3.3b) through will result in

1 sq mil � CM � 1.273 CM

which certainly agrees with the pictorial representation of Fig. 3.4. For
a wire with a diameter of N mils (where N can be any positive number),

A � � sq mils

Substituting the fact that 4/p CM � 1 sq mil, we have

A � (sq mils) � � �� CM� � N2 CM

Since d � N, the area in circular mils is simply equal to the diame-
ter in mils square; that is,

(3.4)

Verification that an area can simply be the diameter squared is provided
in part by Fig. 3.5 for diameters of 2 and 3 mils. Although some areas
are not circular, they have the same area as 1 circular mil.

ACM � (dmils)
2

4
�p

pN2

�
4

pN2

�
4

pN2

�
4

pd2

�
4

4
�p

4
�p

p
�
4

A � pd2

4
p

4
� �

p

4
(1 mil)2 sq mils � 1 CM

by definition

1
�
1000

Area (circle) � pr2 � �
p

4
d2

�
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FIG. 3.4

Defining the circular mil (CM).

1 mil

1 circular mil (CM)1 square mil

A = (2 mils)2 = 4 CM

1 2
3

4
3

A = (3 mils)2 = 9 CM

21

4

5

7 8

6 9

d = 2 mils d = 3 mils

FIG. 3.5

Verification of Eq. (3.4): ACM � (dmils)
2.
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In the future, therefore, to find the area in circular mils, the diameter
must first be converted to mils. Since 1 mil � 0.001 in., if the diameter
is given in inches, simply move the decimal point three places to the
right. For example,

If the diameter is in fractional form, first convert it to decimal form and
then proceed as above. For example,

in. � 0.125 in. � 125 mils

The constant r (resistivity) is different for every material. Its value
is the resistance of a length of wire 1 ft by 1 mil in diameter, measured
at 20°C (Fig. 3.6). The unit of measurement for r can be determined
from Eq. (3.1) by first solving for r and then substituting the units of
the other quantities. That is,

r �

and Units of r � �
CM

ft
• �
�

The resistivity r is also measured in ohms per mil-foot, as deter-
mined by Fig. 3.6, or ohm-meters in the SI system of units. Some typi-
cal values of r are provided in Table 3.1.

EXAMPLE 3.1 What is the resistance of a 100-ft length of copper
wire with a diameter of 0.020 in. at 20°C?

Solution:

r � 10.37 0.020 in. � 20 mils

ACM � (dmils)
2 � (20 mils)2 � 400 CM

R � r �

R � 2.59 �

EXAMPLE 3.2 An undetermined number of feet of wire have been
used from the carton of Fig. 3.7. Find the length of the remaining cop-
per wire if it has a diameter of 1/16 in. and a resistance of 0.5 �.

Solution:

r � 10.37 CM ⋅� /ft in. � 0.0625 in. � 62.5 mils

ACM � (dmils)
2 � (62.5 mils)2 � 3906.25 CM

R � r ⇒ l � � �

l � 188.34 ft

1953.125
�

10.37
(0.5 �)(3906.25 CM)
���

10.37 �
CM

ft
⋅�
�

RA
�
r

l
�
A

1
�
16

(10.37 CM ⋅� /ft)(100 ft)
���

400 CM
l

�
A

CM ⋅�
�

ft

AR
�

l

1
�
8

0.02 in. � 0.020 mils � 20 mils
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TABLE 3.1

Resistivity (r) of various materials.

Material r @ 20°C

Silver 9.9
Copper 10.37
Gold 14.7
Aluminum 17.0
Tungsten 33.0
Nickel 47.0
Iron 74.0
Constantan 295.0
Nichrome 600.0
Calorite 720.0
Carbon 21,000.0

1 mil

1 ft

FIG. 3.6

Defining the constant r (resistivity).

Aklae dry;ketlk sga thrjdrhert dftght
tew tij mwet trju  ryrt wtyuhw
rotjuiks reyt jkur  weryty sdfgsg
wer ijerw ryrt wtyuhw dfjghfgklil
reyhery etyikerwyh y dfjghfgjhkil
rotjuiks reyt jkur  weryty rstulpio
wer ijerw ryrt wtyuhw tdhyhgkrdr

Aklae dry;ke
tew tij mwet t
rotjuiks reyt jk

wer ijerw ryrt wty
reyhery etyikerw
rotjuiks reyt jk
wer ijerw ry

Aklae dry;k

tew tij mwet tr

rotjuiks reyt jkur

wer ijerw ryrt

reyhery etyiker

rotjuiks re

FIG. 3.7

Example 3.2.
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EXAMPLE 3.3 What is the resistance of a copper bus-bar, as used in
the power distribution panel of a high-rise office building, with the
dimensions indicated in Fig. 3.8?

Solution:

5.0 in. � 5000 mils

in. � 500 mils

ACM A � (5000 mils)(500 mils) � 2.5 � 106 sq mils

� 2.5 � 106 sq mils� �
A � 3.185 � 106 CM

R � r � �

R � 9.768 � 10�6 �
(quite small, 0.000009768 �)

We will find in the chapters to follow that the less the resistance of a
conductor, the lower the losses in conduction from the source to the
load. Similarly, since resistivity is a major factor in determining the
resistance of a conductor, the lower the resistivity, the lower the resis-
tance for the same size conductor. Table 3.1 would suggest therefore
that silver, copper, gold, and aluminum would be the best conductors
and the most common. In general, there are other factors, however, such
as malleability (ability of a material to be shaped), ductility (ability of
a material to be drawn into long, thin wires), temperature sensitivity,
resistance to abuse, and, of course, cost, that must all be weighed when
choosing a conductor for a particular application.

In general, copper is the most widely used material because it is
quite malleable, ductile, and available; has good thermal characteristics;
and is less expensive than silver or gold. It is certainly not cheap, how-
ever. Wiring is removed quickly from buildings to be torn down, for
example, to extract the copper. At one time aluminum was introduced
for general wiring because it is cheaper than copper, but its thermal
characteristics created some difficulties. It was found that the heating
due to current flow and the cooling that occurred when the circuit was
turned off resulted in expansion and contraction of the aluminum wire
to the point where connections could eventually work themselves loose
and dangerous side effects could result. Aluminum is still used today,
however, in areas such as integrated circuit manufacturing and in situa-
tions where the connections can be made secure. Silver and gold are, of
course, much more expensive than copper or aluminum, but there are
places where the cost is justified. Silver has excellent plating character-
istics for surface preparations, and gold is used quite extensively in
integrated circuits. Tungsten has a resistivity three times that of copper,
but there are occasions when its physical characteristics (durability,
hardness) are the overriding considerations.

3.3 WIRE TABLES

The wire table was designed primarily to standardize the size of wire
produced by manufacturers throughout the United States. As a result,

31.110
��
3.185 � 106

(10.37 CM ⋅� /ft)(3 ft)
���

3.185 � 106 CM
l

�
A

4/p CM
�
1 sq mil

1
�
2
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3 ft

5 in.

1 2 in./

FIG. 3.8

Example 3.3.
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TABLE 3.2

American Wire Gage (AWG) sizes.

Maximum
Allowable
Current

�/1000 ft for RHW
AWG # Area (CM) at 20°C Insulation (A)*

(4/0) 0000 211,600 0.0490 230
(3/0) 000 167,810 0.0618 200
(2/0) 00 133,080 0.0780 175
(1/0) 0 105,530 0.0983 150

1 83,694 0.1240 130
2 66,373 0.1563 115
3 52,634 0.1970 100
4 41,742 0.2485 85
5 33,102 0.3133 —
6 26,250 0.3951 65
7 20,816 0.4982 —
8 16,509 0.6282 50
9 13,094 0.7921 —

10 10,381 0.9989 30
11 8,234.0 1.260 —
12 6,529.0 1.588 20
13 5,178.4 2.003 —
14 4,106.8 2.525 15
15 3,256.7 3.184
16 2,582.9 4.016
17 2,048.2 5.064
18 1,624.3 6.385
19 1,288.1 8.051
20 1,021.5 10.15
21 810.10 12.80
22 642.40 16.14
23 509.45 20.36
24 404.01 25.67
25 320.40 32.37
26 254.10 40.81
27 201.50 51.47
28 159.79 64.90
29 126.72 81.83
30 100.50 103.2
31 79.70 130.1
32 63.21 164.1
33 50.13 206.9
34 39.75 260.9
35 31.52 329.0
36 25.00 414.8
37 19.83 523.1
38 15.72 659.6
39 12.47 831.8
40 9.89 1049.0

*Not more than three conductors in raceway, cable, or direct burial.

Source: Reprinted by permission from NFPA No. SPP-6C, National Electrical Code®, copyright ©
1996, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the
complete and official position of the NFPA on the referenced subject which is represented only by
the standard in its entirety. National Electrical Code is a registered trademark of the National Fire
Protection Association, Inc., Quincy, MA for a triennial electrical publication. The term National
Electrical Code, as used herein, means the triennial publication constituting the National Electrical
Code and is used with permission of the National Fire Protection Association.

ff
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the manufacturer has a larger market and the consumer knows that stan-
dard wire sizes will always be available. The table was designed to
assist the user in every way possible; it usually includes data such as the
cross-sectional area in circular mils, diameter in mils, ohms per 1000
feet at 20°C, and weight per 1000 feet.

The American Wire Gage (AWG) sizes are given in Table 3.2 for
solid round copper wire. A column indicating the maximum allowable
current in amperes, as determined by the National Fire Protection Asso-
ciation, has also been included.

The chosen sizes have an interesting relationship: For every drop in
3 gage numbers, the area is doubled; and for every drop in 10 gage
numbers, the area increases by a factor of 10.

Examining Eq. (3.1), we note also that doubling the area cuts the
resistance in half, and increasing the area by a factor of 10 decreases
the resistance of 1/10 the original, everything else kept constant.

The actual sizes of the gage wires listed in Table 3.2 are shown in
Fig. 3.9 with a few of their areas of application. A few examples using
Table 3.2 follow.

EXAMPLE 3.4 Find the resistance of 650 ft of #8 copper wire (T �
20°C).

Solution: For #8 copper wire (solid), �/1000 ft at 20°C �
0.6282 �, and

650 ft� � � 0.408 �

EXAMPLE 3.5 What is the diameter, in inches, of a #12 copper wire?

Solution: For #12 copper wire (solid), A � 6529.9 CM, and

dmils � �A�CM� � �6�5�2�9�.9� C�M� � 80.81 mils

d � 0.0808 in. (or close to 1/12 in.)

EXAMPLE 3.6 For the system of Fig. 3.10, the total resistance of
each power line cannot exceed 0.025 �, and the maximum current to be
drawn by the load is 95 A. What gage wire should be used?

Solution:

R � r ⇒ A � r � � 41,480 CM

Using the wire table, we choose the wire with the next largest area,
which is #4, to satisfy the resistance requirement. We note, however,
that 95 A must flow through the line. This specification requires that 
#3 wire be used since the #4 wire can carry a maximum current of only
85 A.

3.4 RESISTANCE: METRIC UNITS

The design of resistive elements for various areas of application,
including thin-film resistors and integrated circuits, uses metric units
for the quantities of Eq. (3.1). In SI units, the resistivity would be mea-
sured in ohm-meters, the area in square meters, and the length in

(10.37 CM ⋅� /ft)(100 ft)
���

0.025 �
l

�
R

l
�
A

0.6282 �
��

1000 ft

D  =  0.365 in.  ≅   1/3 in.

00

Power distribution

Stranded
for increased
flexibility

D  =  0.081 in.  ≅   1/12 in. D  =  0.064 in.  ≅   1/16 in.

12 14

Lighting, outlets,
general home use

D  =  0.032 in.  ≅   1/32 in. D  =  0.025 in.  =  1/40 in.

20 22

Radio, television

D  =  0.013 in.  ≅   1/75 in.

28

Telephone, instruments

FIG. 3.9

Popular wire sizes and some of their areas of
application.

FIG. 3.10

Example 3.6.

Solid round copper wire

Input

100 ft

Load
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meters. However, the meter is generally too large a unit of measure for
most applications, and so the centimeter is usually employed. The
resulting dimensions for Eq. (3.1) are therefore

The units for r can be derived from

r � � � � ⋅cm

The resistivity of a material is actually the resistance of a sample
such as that appearing in Fig. 3.11. Table 3.3 provides a list of values of
r in ohm-centimeters. Note that the area now is expressed in square
centimeters, which can be determined using the basic equation A �
pd 2/4, eliminating the need to work with circular mils, the special unit
of measure associated with circular wires.

EXAMPLE 3.7 Determine the resistance of 100 ft of #28 copper tele-
phone wire if the diameter is 0.0126 in.

Solution: Unit conversions:

l � 100 ft� �� � � 3048 cm
2.54 cm
�

1 in.
12 in.
�

1 ft

� ⋅cm2

�
cm

RA
�

l

r: ohm-centimeters
l: centimeters
A: square centimeters
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TABLE 3.3

Resistivity (r) of various materials in 
ohm-centimeters.

Silver 1.645 � 10�6

Copper 1.723 � 10�6

Gold 2.443 � 10�6

Aluminum 2.825 � 10�6

Tungsten 5.485 � 10�6

Nickel 7.811 � 10�6

Iron 12.299 � 10�6

Tantalum 15.54 � 10�6

Nichrome 99.72 � 10�6

Tin oxide 250 � 10�6

Carbon 3500 � 10�6

A  =  1 cm2

l  =  1 cm

FIG. 3.11

Defining r in ohm-centimeters.

0.6 cm

dρ
0.3 cm

FIG. 3.12

Thin-film resistor (note Fig. 3.22).

d � 0.0126 in.� � � 0.032 cm

Therefore,

A � � � 8.04 � 10�4 cm2

R � r � � 6.5 �

Using the units for circular wires and Table 3.2 for the area of a #28
wire, we find

R � r � � 6.5 �

EXAMPLE 3.8 Determine the resistance of the thin-film resistor of
Fig. 3.12 if the sheet resistance Rs (defined by Rs � r/d ) is 100 �.

Solution: For deposited materials of the same thickness, the sheet
resistance factor is usually employed in the design of thin-film resistors.

Equation (3.1) can be written

R � r � r � � �� � � Rs

where l is the length of the sample and w is the width. Substituting into
the above equation yields

R � Rs � � 200 �

as one might expect since l � 2w.

(100 �)(0.6 cm)
��

0.3 cm
l

�
w

l
�
w

l
�
w

r
�
d

l
�
dw

l
�
A

(10.37 CM ⋅� /ft)(100 ft)
���

159.79 CM
l

�
A

(1.723 � 10�6 � ⋅cm)(3048 cm)
����

8.04 � 10�4 cm2
l

�
A

(3.1416)(0.032 cm)2

���
4

pd2

�
4

2.54 cm
�

1 in.
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The conversion factor between resistivity in circular mil-ohms per
foot and ohm-centimeters is the following:

For example, for copper, r � 10.37 CM ⋅� /ft:

r (� ⋅cm) � 1.662 � 10�7(10.37 CM ⋅� /ft)
� 1.723 � 10�6 � ⋅cm

as indicated in Table 3.3.
The resistivity in IC design is typically in ohm-centimeter units,

although tables often provide r in ohm-meters or microhm-centimeters.
Using the conversion technique of Chapter 1, we find that the conver-
sion factor between ohm-centimeters and ohm-meters is the following:

1.723 � 10�6 � ⋅cm� � � [1.723 � 10�6] � ⋅m

or the value in ohm-meters is 1/100 the value in ohm-centimeters, and

Similarly:

For comparison purposes, typical values of r in ohm-centimeters for
conductors, semiconductors, and insulators are provided in Table 3.4.

r (m� ⋅cm) � (106) � (value in � ⋅cm)

r (� ⋅m) � ��
1
1
00
�� � (value in � ⋅cm)

1
�
100

1 m
�
100 cm

r (� ⋅cm) � (1.662 � 10�7) � (value in CM ⋅� /ft)
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TABLE 3.4

Comparing levels of r in � ⋅cm.

Conductor Semiconductor Insulator

Copper 1.723 � 10�6 Ge 50 In general: 1015

Si 200 � 103

GaAs 70 � 106

In particular, note the power-of-ten difference between conductors
and insulators (1021)—a difference of huge proportions. There is a sig-
nificant difference in levels of r for the list of semiconductors, but the
power-of-ten difference between the conductor and insulator levels is at
least 106 for each of the semiconductors listed.

3.5 TEMPERATURE EFFECTS

Temperature has a significant effect on the resistance of conductors,
semiconductors, and insulators.

Conductors

Conductors have a generous number of free electrons, and any intro-
duction of thermal energy will have little impact on the total number of
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free carriers. In fact, the thermal energy will only increase the intensity
of the random motion of the particles within the material and make it
increasingly difficult for a general drift of electrons in any one direction
to be established. The result is that

for good conductors, an increase in temperature will result in an
increase in the resistance level. Consequently, conductors have a
positive temperature coefficient.

The plot of Fig. 3.13(a) has a positive temperature coefficient.
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Semiconductors

In semiconductors an increase in temperature will impart a measure of
thermal energy to the system that will result in an increase in the num-
ber of free carriers in the material for conduction. The result is that

for semiconductor materials, an increase in temperature will result in
a decrease in the resistance level. Consequently, semiconductors have
negative temperature coefficients.

The thermistor and photoconductive cell of Sections 3.10 and 3.11
of this chapter are excellent examples of semiconductor devices with
negative temperature coefficients. The plot of Fig. 3.13(b) has a nega-
tive temperature coefficient.

Insulators

As with semiconductors, an increase in temperature will result in a
decrease in the resistance of an insulator. The result is a negative
temperature coefficient.

Inferred Absolute Temperature

Figure 3.14 reveals that for copper (and most other metallic conduc-
tors), the resistance increases almost linearly (in a straight-line relation-
ship) with an increase in temperature. Since temperature can have such
a pronounced effect on the resistance of a conductor, it is important that
we have some method of determining the resistance at any temperature
within operating limits. An equation for this purpose can be obtained by
approximating the curve of Fig. 3.14 by the straight dashed line that
intersects the temperature scale at �234.5°C. Although the actual curve
extends to absolute zero (�273.15°C, or 0 K), the straight-line approx-
imation is quite accurate for the normal operating temperature range. At
two different temperatures, T1 and T2, the resistance of copper is R1 and
R2, as indicated on the curve. Using a property of similar triangles, we
may develop a mathematical relationship between these values of resis-

FIG. 3.13

(a) Positive temperature coefficient—conductors; (b) negative temperature
coefficient—semiconductors.

(a)

Temperature

R

0

+ Temperature
coefficient

(b)

Temperature

R

0

– Temperature
coefficient
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tances at different temperatures. Let x equal the distance from
�234.5°C to T1 and y the distance from �234.5°C to T2, as shown in
Fig. 3.14. From similar triangles,

�

or (3.5)

The temperature of �234.5°C is called the inferred absolute temper-
ature of copper. For different conducting materials, the intersection of
the straight-line approximation will occur at different temperatures. A
few typical values are listed in Table 3.5.

The minus sign does not appear with the inferred absolute tempera-
ture on either side of Eq. (3.5) because x and y are the distances from
�234.5°C to T1 and T2, respectively, and therefore are simply magni-
tudes. For T1 and T2 less than zero, x and y are less than �234.5°C, and
the distances are the differences between the inferred absolute temper-
ature and the temperature of interest.

Equation (3.5) can easily be adapted to any material by inserting
the proper inferred absolute temperature. It may therefore be written
as follows:

(3.6)

where |T1| indicates that the inferred absolute temperature of the mate-
rial involved is inserted as a positive value in the equation. In general,
therefore, associate the sign only with T1 and T2.

EXAMPLE 3.9 If the resistance of a copper wire is 50 � at 20°C,
what is its resistance at 100°C (boiling point of water)?

Solution: Eq. (3.5):

�

R2 � � 65.72 �
(50 �)(334.5°C)
��

254.5°C

234.5°C � 100°C
��

R2

234.5°C � 20°C
��

50 �

�
|T1|

R
�

1

T1� � �
|T1|

R
�

2

T2�

�
234.5

R1

� T1� � �
234.

R
5

2

� T2�

y
�
R2

x
�
R1
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R1

T1 T2 °C0°C–234.5°C–273.15°C

Absolute zero x

Inferred absolute zero

R2
R

y

FIG. 3.14

Effect of temperature on the resistance of copper.

TABLE 3.5

Inferred absolute temperatures (Ti).

Material °C

Silver �243
Copper �234.5
Gold �274
Aluminum �236
Tungsten �204
Nickel �147
Iron �162
Nichrome �2,250
Constantan �125,000
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EXAMPLE 3.10 If the resistance of a copper wire at freezing (0°C) is
30 �, what is its resistance at �40°C?

Solution: Eq. (3.5):

�

R2 � � 24.88 �

EXAMPLE 3.11 If the resistance of an aluminum wire at room tem-
perature (20°C) is 100 m� (measured by a milliohmmeter), at what
temperature will its resistance increase to 120 m�?

Solution: Eq. (3.5):

�

and T2 � 120 m�� � � 236°C

T2 � 71.2°C

Temperature Coefficient of Resistance

There is a second popular equation for calculating the resistance of a
conductor at different temperatures. Defining

(�/°C/�) (3.7)

as the temperature coefficient of resistance at a temperature of 20°C,
and R20 as the resistance of the sample at 20°C, the resistance R1 at a
temperature T1 is determined by

(3.8)

The values of a20 for different materials have been evaluated, and a few
are listed in Table 3.6.

Equation (3.8) can be written in the following form:

a20 � �

from which the units of �/°C/� for a20 are defined.
Since DR/DT is the slope of the curve of Fig. 3.14, we can conclude

that

the higher the temperature coefficient of resistance for a material, the
more sensitive the resistance level to changes in temperature.

Referring to Table 3.5, we find that copper is more sensitive to tem-
perature variations than is silver, gold, or aluminum, although the dif-
ferences are quite small. The slope defined by a20 for constantan is so
small that the curve is almost horizontal.

—
D

D

R

T
—

—
R20

��T
R

1

1

�

�

2
R
0°

20

C
��

—––
R20

R1 � R20[1 � a20(T1 � 20°C)]

a20 � �|T1| �
1

20°C
�

256°C
�
100 m�

236°C � T2��
120 m�

236°C � 20°C
��

100 m�

(30 �)(194.5°C)
��

234.5°C

234.5°C � 40°C
��

R2

234.5°C � 0
��

30 �
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TABLE 3.6

Temperature coefficient of resistance for 
various conductors at 20°C.

Temperature
Material Coefficient (a20)

Silver 0.0038
Copper 0.00393
Gold 0.0034
Aluminum 0.00391
Tungsten 0.005
Nickel 0.006
Iron 0.0055
Constantan 0.000008
Nichrome 0.00044
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Since R20 of Eq. (3.8) is the resistance of the conductor at 20°C and
T1 � 20°C is the change in temperature from 20°C, Equation (3.8) can
be written in the following form:

(3.9)

providing an equation for resistance in terms of all the controlling pa-
rameters.

PPM/°C

For resistors, as for conductors, resistance changes with a change in
temperature. The specification is normally provided in parts per million
per degree Celsius (PPM/°C), providing an immediate indication of the
sensitivity level of the resistor to temperature. For resistors, a 5000-PPM
level is considered high, whereas 20 PPM is quite low. A 1000-PPM/°C
characteristic reveals that a 1° change in temperature will result in a
change in resistance equal to 1000 PPM, or 1000/1,000,000 � 1/1000 of
its nameplate value—not a significant change for most applications.
However, a 10° change would result in a change equal to 1/100 (1%) of
its nameplate value, which is becoming significant. The concern, there-
fore, lies not only with the PPM level but with the range of expected
temperature variation.

In equation form, the change in resistance is given by

(3.10)

where Rnominal is the nameplate value of the resistor at room tempera-
ture and DT is the change in temperature from the reference level of
20°C.

EXAMPLE 3.12 For a 1-k� carbon composition resistor with a PPM
of 2500, determine the resistance at 60°C.

Solution:

DR � (2500)(60°C � 20°C)

� 100 �

and R � Rnominal � DR � 1000 � � 100 �

� 1100 �

3.6 SUPERCONDUCTORS

There is no question that the field of electricity/electronics is one of the
most exciting of the 20th century. Even though new developments appear
almost weekly from extensive research and development activities, every
once in a while there is some very special step forward that has the whole
field at the edge of its seat waiting to see what might develop in the near
future. Such a level of excitement and interest surrounds the research

1000 �
�

106

DR � �
Rn

1
o

0
m

6
inal

�(PPM)(DT )

R � r�
A
l
�[1 � a20 DT ]
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drive to develop a room-temperature superconductor—an advance that
will rival the introduction of semiconductor devices such as the transis-
tor (to replace tubes), wireless communication, or the electric light. The
implications of such a development are so far-reaching that it is difficult
to forecast the vast impact it will have on the entire field.

The intensity of the research effort throughout the world today to
develop a room-temperature superconductor is described by some
researchers as “unbelievable, contagious, exciting, and demanding” but
an adventure in which they treasure the opportunity to be involved.
Progress in the field since 1986 suggests that the use of superconductiv-
ity in commercial applications will grow quite rapidly in the next few
decades. It is indeed an exciting era full of growing anticipation! Why
this interest in superconductors? What are they all about? In a nutshell,

superconductors are conductors of electric charge that, for all
practical purposes, have zero resistance.

In a conventional conductor, electrons travel at average speeds in the
neighborhood of 1000 mi/s (they can cross the United States in about 
3 seconds), even though Einstein’s theory of relativity suggests that the
maximum speed of information transmission is the speed of light, or
186,000 mi/s. The relatively slow speed of conventional conduction is
due to collisions with other atoms in the material, repulsive forces
between electrons (like charges repel), thermal agitation that results in
indirect paths due to the increased motion of the neighboring atoms,
impurities in the conductor, and so on. In the superconductive state,
there is a pairing of electrons, denoted by the Cooper effect, in which
electrons travel in pairs and help each other maintain a significantly
higher velocity through the medium. In some ways this is like “draft-
ing” by competitive cyclists or runners. There is an oscillation of energy
between partners or even “new” partners (as the need arises) to ensure
passage through the conductor at the highest possible velocity with the
least total expenditure of energy.

Even though the concept of superconductivity first surfaced in 1911,
it was not until 1986 that the possibility of superconductivity at room
temperature became a renewed goal of the research community. For
some 74 years superconductivity could be established only at temper-
atures colder than 23 K. (Kelvin temperature is universally accepted as
the unit of measurement for temperature for superconductive effects.
Recall that K � 273.15° � °C, so a temperature of 23 K is �250°C,
or �418°F.) In 1986, however, physicists Alex Muller and George
Bednorz of the IBM Zurich Research Center found a ceramic mate-
rial, lanthanum barium copper oxide, that exhibited superconductivity
at 30 K. Although it would not appear to be a significant step for-
ward, it introduced a new direction to the research effort and spurred
others to improve on the new standard. In October 1987 both scientists
received the Nobel prize for their contribution to an important area of
development.

In just a few short months, Professors Paul Chu of the University of
Houston and Man Kven Wu of the University of Alabama raised the
temperature to 95 K using a superconductor of yttrium barium copper
oxide. The result was a level of excitement in the scientific community
that brought research in the area to a new level of effort and investment.
The major impact of such a discovery was that liquid nitrogen (boiling
point of 77 K) could now be used to bring the material down to the
required temperature rather than liquid helium, which boils at 4 K. The
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result is a tremendous saving in the cooling expense since liquid helium
is at least ten times more expensive than liquid nitrogen. Pursuing the
same direction, some success has been achieved at 125 K and 162 K
using a thallium compound (unfortunately, however, thallium is a very
poisonous substance). 

Figure 3.15 clearly reveals that there was little change in the temper-
ature for superconductors until the discovery of 1986. The curve then
takes a sharp curve upward, suggesting that room-temperature supercon-
ductors may become available in a few short years. However, unless
there is a significant breakthrough in the near future, this goal no longer
seems feasible. The effort continues and is receiving an increasing level
of financing and worldwide attention. Now, increasing numbers of cor-
porations are trying to capitalize on the success already attained, as will
be discussed later in this section.
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The fact that ceramics have provided the recent breakthrough in
superconductivity is probably a surprise when you consider that they
are also an important class of insulators. However, the ceramics that
exhibit the characteristics of superconductivity are compounds that
include copper, oxygen, and rare earth elements such as yttrium, lan-
thanum, and thallium. There are also indicators that the current com-
pounds may be limited to a maximum temperature of 200 K (about 
100 K short of room temperature), leaving the door wide open to inno-
vative approaches to compound selection. The temperature at which a
superconductor reverts back to the characteristics of a conventional
conductor is called the critical temperature, denoted by Tc. Note in Fig.
3.16 that the resistivity level changes abruptly at Tc. The sharpness of
the transition region is a function of the purity of the sample. Long list-
ings of critical temperatures for a variety of tested compounds can be
found in reference materials providing tables of a wide variety to sup-
port research in physics, chemistry, geology, and related fields. Two
such publications include the CRC (The Chemical Rubber Co.) Hand-
book of Tables for Applied Engineering Science and the CRC Hand-
book of Chemistry and Physics.

FIG. 3.15

Rising temperatures of superconductors.
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Superconductor
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Resistivityρ

Conventional conductor
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Even though ceramic compounds have established higher transition
temperatures, there is concern about their brittleness and current density
limitations. In the area of integrated circuit manufacturing, current den-
sity levels must equal or exceed 1 MA/cm2, or 1 million amperes
through a cross-sectional area about one-half the size of a dime.
Recently IBM attained a level of 4 MA/cm2 at 77 K, permitting the use
of superconductors in the design of some new-generation, high-speed
computers.

Although room-temperature success has not been attained, there are
numerous applications for some of the superconductors developed thus
far. It is simply a matter of balancing the additional cost against the
results obtained or deciding whether any results at all can be obtained
without the use of this zero-resistance state. Some research efforts
require high-energy accelerators or strong magnets attainable only with
superconductive materials. Superconductivity is currently applied in the
design of 300-mi/h Meglev trains (trains that ride on a cushion of air
established by opposite magnetic poles), in powerful motors and gener-
ators, in nuclear magnetic resonance imaging systems to obtain cross-
sectional images of the brain (and other parts of the body), in the design
of computers with operating speeds four times that of conventional sys-
tems, and in improved power distribution systems.

The range of future uses for superconductors is a function of how
much success physicists have in raising the operating temperature and
how well they can utilize the successes obtained thus far. However, it
would appear that it is only a matter of time (the eternal optimist)
before magnetically levitated trains increase in number, improved med-
ical diagnostic equipment is available, computers operate at much
higher speeds, high-efficiency power and storage systems are available,
and transmission systems operate at very high efficiency levels due to
this area of developing interest. Only time will reveal the impact that
this new direction will have on the quality of life.

3.7 TYPES OF RESISTORS

Fixed Resistors

Resistors are made in many forms, but all belong in either of two
groups: fixed or variable. The most common of the low-wattage, fixed-

FIG. 3.16

Defining the critical temperature Tc.
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type resistors is the molded carbon composition resistor. The basic con-
struction is shown in Fig. 3.17.

The relative sizes of all fixed and variable resistors change with the
wattage (power) rating, increasing in size for increased wattage ratings
in order to withstand the higher currents and dissipation losses. The rel-
ative sizes of the molded composition resistors for different wattage rat-
ings are shown in Fig. 3.18. Resistors of this type are readily available
in values ranging from 2.7 � to 22 M�.

The temperature-versus-resistance curves for a 10,000-� and 0.5-
M� composition-type resistor are shown in Fig. 3.19. Note the small
percent resistance change in the normal temperature operating range.
Several other types of fixed resistors using high-resistance wire or metal
films are shown in Fig. 3.20.

The miniaturization of parts—used quite extensively in computers—
requires that resistances of different values be placed in very small
packages. Some examples appear in Fig. 3.21.

For use with printed circuit boards, fixed resistor networks in a vari-
ety of configurations are available in miniature packages, such as those
shown in Fig. 3.22. The figure includes a photograph of three different
casings and the internal resistor configuration for the single in-line
structure to the right.

Variable Resistors

Variable resistors, as the name implies, have a terminal resistance that
can be varied by turning a dial, knob, screw, or whatever seems appro-
priate for the application. They can have two or three terminals, but
most have three terminals. If the two- or three-terminal device is used
as a variable resistor, it is usually referred to as a rheostat. If the three-
terminal device is used for controlling potential levels, it is then com-
monly called a potentiometer. Even though a three-terminal device can
be used as a rheostat or potentiometer (depending on how it is con-
nected), it is typically called a potentiometer when listed in trade mag-
azines or requested for a particular application.

Leads

Color bands
Insulation
material

Resistance material
(Carbon composition)

ACTUAL SIZE

2 W

1 W

1 2 W/

1 4 W/

1 8 W/

FIG. 3.17

Fixed composition resistor.

FIG. 3.18

Fixed composition resistors of different
wattage ratings.

FIG. 3.19

Curves showing percentage temporary resistance changes from �20°C values.
(Courtesy of Allen-Bradley Co.)
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The symbol for a three-terminal potentiometer appears in Fig.
3.23(a). When used as a variable resistor (or rheostat), it can be hooked
up in one of two ways, as shown in Fig. 3.23(b) and (c). In Fig.
3.23(b), points a and b are hooked up to the circuit, and the remaining
terminal is left hanging. The resistance introduced is determined by
that portion of the resistive element between points a and b. In Fig.
3.23(c), the resistance is again between points a and b, but now the
remaining resistance is “shorted-out” (effect removed) by the connec-
tion from b to c. The universally accepted symbol for a rheostat appears
in Fig. 3.23(d).

Most potentiometers have three terminals in the relative positions
shown in Fig. 3.24. The knob, dial, or screw in the center of the hous-
ing controls the motion of a contact that can move along the resistive
element connected between the outer two terminals. The contact is con-
nected to the center terminal, establishing a resistance from movable
contact to each outer terminal.
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FIG. 3.20

Fixed resistors. [Parts (a) and (c) courtesy of Ohmite Manufacturing Co. Part
(b) courtesy of Philips Components Inc.]

FIG. 3.21

Miniature fixed resistors. [Part (a) courtesy of Ohmite Manufacturing Co. Parts
(b) and (c) courtesy of Dale Electronics, Inc.]

FIG. 3.22

Thick-film resistor networks. (Courtesy of
Dale Electronics, Inc.)



FIG. 3.24

Molded composition–type potentiometer.
(Courtesy of Allen-Bradley Co.)
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The resistance between the outside terminals a and c of Fig. 3.25(a)
(and Fig. 3.24) is always fixed at the full rated value of the
potentiometer, regardless of the position of the wiper arm b.

In other words, the resistance between terminals a and c of Fig. 3.25(a)
for a 1-M� potentiometer will always be 1 M�, no matter how we turn
the control element and move the contact. In Fig. 3.25(a) the center
contact is not part of the network configuration.

The resistance between the wiper arm and either outside terminal can
be varied from a minimum of 0 � to a maximum value equal to the
full rated value of the potentiometer.

In Fig. 3.25(b) the wiper arm has been placed 1/4 of the way down
from point a to point c. The resulting resistance between points a and
b will therefore be 1/4 of the total, or 250 k� (for a 1-M� poten-
tiometer), and the resistance between b and c will be 3/4 of the total, or
750 k�.

The sum of the resistances between the wiper arm and each outside
terminal will equal the full rated resistance of the potentiometer.

This was demonstrated by Fig. 3.25(b), where 250 k� � 750 k� �
1 M�. Specifically:

(3.11)Rac � Rab � Rbc

FIG. 3.23

Potentiometer: (a) symbol; (b) and (c) rheostat connections; (d) rheostat
symbol.

(a)

a

c

R b

(b)

R
a c

b
Rab

(d)

R

(c)

R
a

b, c

Rab

FIG. 3.25

Terminal resistance of a potentiometer: (a) between outside terminals; 
(b) among all three terminals.
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Therefore, as the resistance from the wiper arm to one outside con-
tact increases, the resistance between the wiper arm and the other out-
side terminal must decrease accordingly. For example, if Rab of a 1-k�
potentiometer is 200 �, then the resistance Rbc must be 800 �. If Rab is
further decreased to 50 �, then Rbc must increase to 950 �, and so on.

The molded carbon composition potentiometer is typically applied
in networks with smaller power demands, and it ranges in size from
20 � to 22 M� (maximum values). Other commercially available
potentiometers appear in Fig. 3.26.

a

R

+

–

–
+

Vab
b

c

Vbc

FIG. 3.27

Potentiometer control of voltage levels.

When the device is used as a potentiometer, the connections are as
shown in Fig. 3.27. It can be used to control the level of Vab, Vbc, or
both, depending on the application. Additional discussion of the
potentiometer in a loaded situation can be found in the chapters that
follow.

3.8 COLOR CODING AND 
STANDARD RESISTOR VALUES

A wide variety of resistors, fixed or variable, are large enough to have
their resistance in ohms printed on the casing. Some, however, are too
small to have numbers printed on them, so a system of color coding is
used. For the fixed molded composition resistor, four or five color
bands are printed on one end of the outer casing, as shown in Fig. 3.28.
Each color has the numerical value indicated in Table 3.7. The color
bands are always read from the end that has the band closest to it, as
shown in Fig. 3.28. The first and second bands represent the first and
second digits, respectively. The third band determines the power-of-ten
multiplier for the first two digits (actually the number of zeros that fol-
low the second digit) or a multiplying factor if gold or silver. The fourth
band is the manufacturer’s tolerance, which is an indication of the pre-
cision by which the resistor was made. If the fourth band is omitted, the
tolerance is assumed to be �20%. The fifth band is a reliability factor,
which gives the percentage of failure per 1000 hours of use. For instance,

FIG. 3.26

Potentiometers: (a) 4-mm (	5/32�) trimmer (courtesy of Bourns, Inc.); 
(b) conductive plastic and cermet element (courtesy of Clarostat Mfg. Co.).

(a) (b)

1 2 3 4 5

FIG. 3.28

Color coding of fixed molded composition
resistor.
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a 1% failure rate would reveal that one out of every 100 (or 10 out of
every 1000) will fail to fall within the tolerance range after 1000 hours
of use.

EXAMPLE 3.13 Find the range in which a resistor having the follow-
ing color bands must exist to satisfy the manufacturer’s tolerance:

a. 1st band 2nd band 3rd band 4th band 5th band

Gray Red Black Gold Brown
8 2 0 �5% 1%

b. 1st band 2nd band 3rd band 4th band 5th band

Orange White Gold Silver No color
3 9 0.1 �10%

Solutions:

a. 82 � � 5% (1% reliability)

Since 5% of 82 � 4.10, the resistor should be within the range 82 �
� 4.10 �, or between 77.90 and 86.10 �.

b. 3.9 � � 10% � 3.9 � 0.39 �

The resistor should lie somewhere between 3.51 and 4.29 �.

One might expect that resistors would be available for a full range of
values such as 10 �, 20 �, 30 �, 40 �, 50 �, and so on. However, this
is not the case with some typical commercial values, such as 27 �,
56 �, and 68 �. This may seem somewhat strange and out of place.
There is a reason for the chosen values, which is best demonstrated by
examining the list of standard values of commercially available resis-
tors in Table 3.8. The values in boldface blue are available with 5%,
10%, and 20% tolerances, making them the most common of the com-
mercial variety. The values in boldface black are typically available
with 5% and 10% tolerances, and those in normal print are available
only in the 5% variety. If we separate the values available into tolerance
levels, we have Table 3.9, which clearly reveals how few are available
up to 100 � with 20% tolerances.

An examination of the impact of the tolerance level will now help
explain the choice of numbers for the commercial values. Take the
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TABLE 3.7

Resistor color coding.

Bands 1–3* Band 3 Band 4 Band 5

0 Black 0.1 Gold multiplying 5% Gold 1% Brown
1 Brown 0.01 Silver
 factors 10% Silver 0.1% Red
2 Red 20% No band 0.01% Orange
3 Orange 0.001% Yellow
4 Yellow
5 Green
6 Blue
7 Violet
8 Gray
9 White

*With the exception that black is not a valid color for the first band.
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TABLE 3.8

Standard values of commercially available resistors.

Ohms Kilohms Megohms
(�) (k�) (M�)

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1

TABLE 3.9

Standard values and their tolerances.

�5% �10% �20%

10 10 10
11
12 12
13
15 15 15
16
18 18
20
22 22 22
24
27 27
30
33 33 33
36
39 39
43
47 47 47
51
56 56
62
68 68 68
75
82 82
91

sequence 47 �–68 �–100 �, which are all available with 20% toler-
ances. In Fig. 3.29(a), the tolerance band for each has been determined
and plotted on a single axis. Take note that, with this tolerance (which
is all that the manufacturer will guarantee), the full range of resistor
values is available from 37.6 � to 120 �. In other words, the manufac-
turer is guaranteeing the full range, using the tolerances to fill in the

37.6 � 56.4 � 80 � 120 �

47 � 68 � 100 �

54.4 � 81.6 �

(a)

50.4 � 61.6 �

90 � 110 �

47 � 68 � 100 �

90.2 �73.8 �

(b)

± 10%100 �± 10%47 �

42.3 � 51.7 �

56 � 82 �

61.2 � 74.8 �

± 10%82 �

± 10%56 �

± 20%68 �

± 20%100 �± 20%47 �

± 20%68 �

FIG. 3.29

Guaranteeing the full range of resistor values for the given tolerance: (a) 20%;
(b) 10%.
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gaps. Dropping to the 10% level introduces the 56-� and 82-� resistors
to fill in the gaps, as shown in Fig. 3.29(b). Dropping to the 5% level
would require additional resistor values to fill in the gaps. In total,
therefore, the resistor values were chosen to ensure that the full range
was covered, as determined by the tolerances employed. Of course, if a
specific value is desired but is not one of the standard values, combina-
tions of standard values will often result in a total resistance very close
to the desired level. If this approach is still not satisfactory, a poten-
tiometer can be set to the exact value and then inserted in the network.

Throughout the text you will find that many of the resistor values
are not standard values. This was done to reduce the mathematical
complexity, which might deter from or cloud the procedure or analy-
sis technique being introduced. In the problem sections, however, stan-
dard values are frequently employed to ensure that the reader starts to
become familiar with the commercial values available.

3.9 CONDUCTANCE

By finding the reciprocal of the resistance of a material, we have a
measure of how well the material will conduct electricity. The quantity
is called conductance, has the symbol G, and is measured in siemens
(S) (note Fig. 3.30). In equation form, conductance is

(siemens, S) (3.12)

A resistance of 1 M� is equivalent to a conductance of 10�6 S, and
a resistance of 10 � is equivalent to a conductance of 10�1 S. The
larger the conductance, therefore, the less the resistance and the greater
the conductivity.

In equation form, the conductance is determined by

(S) (3.13)

indicating that increasing the area or decreasing either the length or the
resistivity will increase the conductance.

EXAMPLE 3.14 What is the relative increase or decrease in conduc-
tivity of a conductor if the area is reduced by 30% and the length is
increased by 40%? The resistivity is fixed.

Solution: Eq. (3.11):
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FIG. 3.30

Werner von Siemens.

German (Lenthe,
Berlin)

(1816–92)

Electrical Engineer 

Telegraph 

Manufacturer,

Siemens & Halske 
AG

Bettman Archives
Photo Number 336.19

Developed an electroplating process during a brief
stay in prison for acting as a second in a duel
between fellow officers of the Prussian army.
Inspired by the electronic telegraph invented by Sir
Charles Wheatstone in 1817, he improved on the
design and proceeded to lay cable with the help of
his brother Carl across the Mediterranean and from
Europe to India. His inventions included the first
self-excited generator, which depended on the resid-
ual magnetism of its electronmagnet rather than an
inefficient permanent magnet. In 1888 he was raised
to the rank of nobility with the addition of von to his
name. The current firm of Siemens AG has manu-
facturing outlets in some 35 countries with sales
offices in some 125 countries.
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3.10 OHMMETERS

The ohmmeter is an instrument used to perform the following tasks
and several other useful functions:

1. Measure the resistance of individual or combined elements
2. Detect open-circuit (high-resistance) and short-circuit (low-resis-

tance) situations
3. Check continuity of network connections and identify wires of a

multilead cable
4. Test some semiconductor (electronic) devices

For most applications, the ohmmeters used most frequently are the
ohmmeter section of a VOM or DMM. The details of the internal cir-
cuitry and the method of using the meter will be left primarily for a
laboratory exercise. In general, however, the resistance of a resistor
can be measured by simply connecting the two leads of the meter
across the resistor, as shown in Fig. 3.31. There is no need to be
concerned about which lead goes on which end; the result will be the
same in either case since resistors offer the same resistance to the
flow of charge (current) in either direction. If the VOM is employed,
a switch must be set to the proper resistance range, and a nonlinear
scale (usually the top scale of the meter) must be properly read to
obtain the resistance value. The DMM also requires choosing the
best scale setting for the resistance to be measured, but the result
appears as a numerical display, with the proper placement of the dec-
imal point as determined by the chosen scale. When measuring the
resistance of a single resistor, it is usually best to remove the resis-
tor from the network before making the measurement. If this is diffi-
cult or impossible, at least one end of the resistor must not be con-
nected to the network, or the reading may include the effects of the
other elements of the system.

If the two leads of the meter are touching in the ohmmeter mode, the
resulting resistance is zero. A connection can be checked as shown in
Fig. 3.32 by simply hooking up the meter to either side of the connec-
tion. If the resistance is zero, the connection is secure. If it is other than
zero, the connection could be weak, and, if it is infinite, there is no con-
nection at all.

If one wire of a harness is known, a second can be found as shown
in Fig. 3.33. Simply connect the end of the known lead to the end of
any other lead. When the ohmmeter indicates zero ohms (or very low
resistance), the second lead has been identified. The above procedure
can also be used to determine the first known lead by simply connect-
ing the meter to any wire at one end and then touching all the leads at
the other end until a zero-ohm indication is obtained.

82  RESISTANCE

�

FIG. 3.31

Measuring the resistance of a single element.

�

FIG. 3.32

Checking the continuity of a connection.

�

FIG. 3.33

Identifying the leads of a multilead cable.
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Preliminary measurements of the condition of some electronic
devices such as the diode and transistor can be made using the ohmmeter.
The meter can also be used to identify the terminals of such devices.

One important note about the use of any ohmmeter:

Never hook up an ohmmeter to a live circuit!

The reading will be meaningless and you may damage the instrument.
The ohmmeter section of any meter is designed to pass a small sensing
current through the resistance to be measured. A large external current
could damage the movement and would certainly throw off the calibra-
tion of the instrument. In addition,

never store a VOM or a DMM in the resistance mode.

The two leads of the meter could touch and the small sensing current
could drain the internal battery. VOMs should be stored with the selec-
tor switch on the highest voltage range, and the selector switch of
DMMs should be in the off position.

3.11 THERMISTORS

The thermistor is a two-terminal semiconductor device whose resis-
tance, as the name suggests, is temperature sensitive. A representative
characteristic appears in Fig. 3.34 with the graphic symbol for the
device. Note the nonlinearity of the curve and the drop in resistance
from about 5000 � to 100 � for an increase in temperature from 20°C
to 100°C. The decrease in resistance with an increase in temperature
indicates a negative temperature coefficient.

The temperature of the device can be changed internally or exter-
nally. An increase in current through the device will raise its tempera-
ture, causing a drop in its terminal resistance. Any externally applied
heat source will result in an increase in its body temperature and a drop
in resistance. This type of action (internal or external) lends itself well
to control mechanisms. Many different types of thermistors are shown
in Fig. 3.35. Materials employed in the manufacture of thermistors
include oxides of cobalt, nickel, strontium, and manganese.

Temperature (°C)
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FIG. 3.34

Thermistor: (a) characteristics; (b) symbol.

FIG. 3.35

NTC (negative temperature coefficient) and PTC (positive temperature
coefficient) thermistors. (Courtesy of Siemens Components, Inc.)
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12. Determine the increase in resistance of a copper conduc-
tor if the area is reduced by a factor of 4 and the length
is doubled. The original resistance was 0.2 �. The tem-
perature remains fixed.
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FIG. 3.46

Problem 11.

4 ft

1 2 in./

3 in.

10. A wire 1000 ft long has a resistance of 0.5 k� and an area
of 94 CM. Of what material is the wire made (T � 20°C)?

*11. a. What is the resistance of a copper bus-bar with the
dimensions shown (T � 20°C) in Fig. 3.46?

b. Repeat (a) for aluminum and compare the results.
c. Without working out the numerical solution, deter-

mine whether the resistance of the bar (aluminum or
copper) will increase or decrease with an increase in
length. Explain your answer.

d. Repeat (c) for an increase in cross-sectional area.

equation for the resistance R is defined in terms of the variables, and the
result is obtained. The true value of developing in the above sequence
is the fact that you can place the program in memory and, when the
need arises, call it up and change a variable or two—the result will
appear immediately. There is no need to reenter all the definitions—just
change the numerical value.

In the chapters to follow, Mathcad will appear at every opportunity
to demonstrate its ability to perform calculations in a quick, effective
manner. You will probably want to learn more about this time-saving
and accuracy-checking option.

PROBLEMS

SECTION 3.2 Resistance: Circular Wires

1. Convert the following to mils:
a. 0.5 in. b. 0.01 in.
c. 0.004 in. d. 1 in.
e. 0.02 ft f. 0.01 cm

2. Calculate the area in circular mils (CM) of wires having
the following diameters:
a. 0.050 in. b. 0.016 in.
c. 0.30 in. d. 0.1 cm
e. 0.003 ft f. 0.0042 m

3. The area in circular mils is
a. 1600 CM b. 900 CM
c. 40,000 CM d. 625 CM
e. 7.75 CM f. 81 CM
What is the diameter of each wire in inches?

4. What is the resistance of a copper wire 200 ft long and
0.01 in. in diameter (T � 20°C)?

5. Find the resistance of a silver wire 50 yd long and 0.0045
in. in diameter (T � 20°C).

6. a. What is the area in circular mils of an aluminum con-
ductor that is 80 ft long with a resistance of 2.5 �?

b. What is its diameter in inches?

7. A 2.2-� resistor is to be made of nichrome wire. If the
available wire is 1/32 in. in diameter, how much wire is
required?

8. a. What is the area in circular mils of a copper wire that
has a resistance of 2.5 � and is 300 ft long (T �
20°C)?

b. Without working out the numerical solution, deter-
mine whether the area of an aluminum wire will be
smaller or larger than that of the copper wire. Explain.

c. Repeat (b) for a silver wire.

9. In Fig. 3.45, three conductors of different materials are
presented.
a. Without working out the numerical solution, deter-

mine which section would appear to have the most
resistance. Explain.

b. Find the resistance of each section and compare with
the result of (a) (T � 20°C).

Aluminum:
l  =  50 ft,
d  =  50 mils

Copper:  l  =  10 ft, d  =  10 mils

Silver:  l  =  1 ft, d  =  1 mil

FIG. 3.45

Problem 9.
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c. Use the equation r2 � kr1 to determine the conver-
sion factor k if r1 is the solution of part (a) and r2 the
solution of part (b).

E

d = 30 ft

Load

Solid round copper wire

FIG. 3.47

Problem 16.

FIG. 3.48

Problem 22.

R
1 inch

= 1 m�

1000 ft.

*13. What is the new resistance level of a copper wire if the
length is changed from 200 ft to 100 yd, the area is
changed from 40,000 CM to 0.04 in.2, and the original
resistance was 800 m�?

SECTION 3.3 Wire Tables

14. a. Using Table 3.2, find the resistance of 450 ft of #11
and #14 AWG wires.

b. Compare the resistances of the two wires.
c. Compare the areas of the two wires.

15. a. Using Table 3.2, find the resistance of 1800 ft of #8
and #18 AWG wires.

b. Compare the resistances of the two wires.
c. Compare the areas of the two wires.

16. a. For the system of Fig. 3.47, the resistance of each line
cannot exceed 0.006 �, and the maximum current
drawn by the load is 110 A. What gage wire should be
used?

b. Repeat (a) for a maximum resistance of 0.003 �,
d � 30 ft, and a maximum current of 110 A.

*17. a. From Table 3.2, determine the maximum permissible
current density (A/CM) for an AWG #0000 wire.

b. Convert the result of (a) to A/in.2.
c. Using the result of (b), determine the cross-sectional

area required to carry a current of 5000 A.

SECTION 3.4 Resistance: Metric Units

18. Using metric units, determine the length of a copper
wire that has a resistance of 0.2 � and a diameter of
1/10 in.

19. Repeat Problem 11 using metric units; that is, convert the
given dimensions to metric units before determining the
resistance.

20. If the sheet resistance of a tin oxide sample is 100 �,
what is the thickness of the oxide layer?

21. Determine the width of a carbon resistor having a sheet
resistance of 150 � if the length is 1/2 in. and the resis-
tance is 500 �.

*22. Derive the conversion factor between r (CM ⋅� /ft) and r
(� ⋅cm) by
a. Solving for r for the wire of Fig. 3.48 in CM ⋅� /ft.
b. Solving for r for the same wire of Fig. 3.48 in � ⋅cm

by making the necessary conversions.

SECTION 3.5 Temperature Effects

23. The resistance of a copper wire is 2 � at 10°C. What is
its resistance at 60°C?

24. The resistance of an aluminum bus-bar is 0.02 � at 0°C.
What is its resistance at 100°C?

25. The resistance of a copper wire is 4 � at 70°F. What is
its resistance at 32°F?

26. The resistance of a copper wire is 0.76 � at 30°C. What
is its resistance at �40°C?

27. If the resistance of a silver wire is 0.04 � at �30°C,
what is its resistance at 0°C?

*28. a. The resistance of a copper wire is 0.002 � at room
temperature (68°F). What is its resistance at 32°F
(freezing) and 212°F (boiling)?

b. For (a), determine the change in resistance for each
10° change in temperature between room temperature
and 212°F.

29. a. The resistance of a copper wire is 0.92 � at 4°C. At
what temperature (°C) will it be 1.06 �?

b. At what temperature will it be 0.15 �?

*30. a. If the resistance of a 1000-ft length of copper wire is
10 � at room temperature (20°C), what will its resis-
tance be at 50 K (Kelvin units) using Eq. (3.6)?

b. Repeat part (a) for a temperature of 38.65 K. Com-
ment on the results obtained by reviewing the curve
of Fig. 3.14.

c. What is the temperature of absolute zero in Fahren-
heit units?

31. a. Verify the value of a20 for copper in Table 3.6 by substi-
tuting the inferred absolute temperature into Eq. (3.7).

b. Using Eq. (3.8) find the temperature at which the
resistance of a copper conductor will increase to 1 �
from a level of 0.8 � at 20°C.

32. Using Eq. (3.8), find the resistance of a copper wire at
16°C if its resistance at 20°C is 0.4 �.

*33. Determine the resistance of a 1000-ft coil of #12 copper
wire sitting in the desert at a temperature of 115°F.

34. A 22-� wire-wound resistor is rated at �200 PPM for a
temperature range of �10°C to �75°C. Determine its
resistance at 65°C.

35. Determine the PPM rating of the 10-k� carbon composi-
tion resistor of Fig. 3.19 using the resistance level deter-
mined at 90°C.



48. Is there an overlap in coverage between 20% resistors?
That is, determine the tolerance range for a 10-� 20%
resistor and a 15-� 20% resistor, and note whether their
tolerance ranges overlap.

49. Repeat Problem 48 for 10% resistors of the same value.

SECTION 3.9 Conductance

50. Find the conductance of each of the following resis-
tances:
a. 0.086 � b. 4 k�
c. 2.2 M�
Compare the three results.

51. Find the conductance of 1000 ft of #18 AWG wire made of
a. copper
b. aluminum
c. iron

*52. The conductance of a wire is 100 S. If the area of the
wire is increased by 2/3 and the length is reduced by the
same amount, find the new conductance of the wire if the
temperature remains fixed.

SECTION 3.10 Ohmmeters

53. How would you check the status of a fuse with an ohm-
meter?

54. How would you determine the on and off states of a
switch using an ohmmeter?

55. How would you use an ohmmeter to check the status of a
light bulb?

SECTION 3.11 Thermistors

*56. a. Find the resistance of the thermistor having the char-
acteristics of Fig. 3.34 at �50°C, 50°C, and 200°C.
Note that it is a log scale. If necessary, consult a ref-
erence with an expanded log scale.

b. Does the thermistor have a positive or a negative tem-
perature coefficient?

c. Is the coefficient a fixed value for the range �100°C
to 400°C? Why?

d. What is the approximate rate of change of r with tem-
perature at 100°C?

SECTION 3.12 Photoconductive Cell

*57. a. Using the characteristics of Fig. 3.36, determine the
resistance of the photoconductive cell at 10 and 100
foot-candles of illuminaton. As in Problem 56, note
that it is a log scale.

b. Does the cell have a positive or a negative illumina-
tion coefficient?

c. Is the coefficient a fixed value for the range 0.1 to
1000 foot-candles? Why?

d. What is the approximate rate of change of R with illu-
mination at 10 foot-candles?
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SECTION 3.6 Superconductors

36. Visit your local library and find a table listing the critical
temperatures for a variety of materials. List at least five
materials with the critical temperatures that are not men-
tioned in this text. Choose a few materials that have rela-
tively high critical temperatures.

37. Find at least one article on the application of supercon-
ductivity in the commercial sector, and write a short sum-
mary, including all interesting facts and figures.

*38. Using the required 1-MA/cm2 density level for IC manu-
facturing, determine what the resulting current would be
through a #12 house wire. Compare the result obtained
with the allowable limit of Table 3.2.

*39. Research the SQUID magnetic field detector and review
its basic mode of operation and an application or two.

SECTION 3.7 Types of Resistors

40. a. What is the approximate increase in size from a 1-W
to a 2-W carbon resistor?

b. What is the approximate increase in size from a 
1/2-W to a 2-W carbon resistor?

c. In general, can we conclude that for the same type of
resistor, an increase in wattage rating requires an
increase in size (volume)? Is it almost a linear rela-
tionship? That is, does twice the wattage require an
increase in size of 2�1?

41. If the 10-k� resistor of Fig. 3.19 is exactly 10 k� at
room temperature, what is its approximate resistance at
�30°C and 100°C (boiling)?

42. Repeat Problem 41 at a temperature of 120°F.

43. If the resistance between the outside terminals of a linear
potentiometer is 10 k�, what is its resistance between the
wiper (movable) arm and an outside terminal if the resis-
tance between the wiper arm and the other outside termi-
nal is 3.5 k�?

44. If the wiper arm of a linear potentiometer is one-quarter
the way around the contact surface, what is the resistance
between the wiper arm and each terminal if the total
resistance is 25 k�?

*45. Show the connections required to establish 4 k� between
the wiper arm and one outside terminal of a 10-k� poten-
tiometer while having only zero ohms between the other
outside terminal and the wiper arm.

SECTION 3.8 Color Coding and 

Standard Resistor Values

46. Find the range in which a resistor having the following
color bands must exist to satisfy the manufacturer’s toler-
ance:

1st band 2nd band 3rd band 4th band

a. green blue orange gold
b. red red brown silver
c. brown black black —

47. Find the color code for the following 10% resistors:
a. 220 � b. 4700 �
c. 68 k� d. 9.1 M�
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SECTION 3.13 Varistors

58. a. Referring to Fig. 3.38(a), find the terminal voltage of
the device at 0.5 mA, 1 mA, 3 mA, and 5 mA.

b. What is the total change in voltage for the indicated
range of current levels?

c. Compare the ratio of maximum to minimum current
levels above to the corresponding ratio of voltage 
levels.

GLOSSARY

Absolute zero The temperature at which all molecular
motion ceases; �273.15°C.

Circular mil (CM) The cross-sectional area of a wire having
a diameter of one mil.

Color coding A technique employing bands of color to indi-
cate the resistance levels and tolerance of resistors.

Conductance (G) An indication of the relative ease with
which current can be established in a material. It is meas-
ured in siemens (S).

Cooper effect The “pairing” of electrons as they travel
through a medium.

Ductility The property of a material that allows it to be
drawn into long, thin wires.

Inferred absolute temperature The temperature through
which a straight-line approximation for the actual resis-
tance-versus-temperature curve will intersect the tempera-
ture axis.

Malleability The property of a material that allows it to be
worked into many different shapes.

Negative temperature coefficient of resistance The value
revealing that the resistance of a material will decrease with
an increase in temperature.

Ohm (�) The unit of measurement applied to resistance.
Ohmmeter An instrument for measuring resistance levels.
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SECTION 3.15 Mathcad

59. Verify the results of Example 3.3 using Mathcad.

60. Verify the results of Example 3.11 using Mathcad.

Photoconductive cell A two-terminal semiconductor device
whose terminal resistance is determined by the intensity of
the incident light on its exposed surface.

Positive temperature coefficient of resistance The value
revealing that the resistance of a material will increase with
an increase in temperature.

Potentiometer A three-terminal device through which poten-
tial levels can be varied in a linear or nonlinear manner.

PPM/°C Temperature sensitivity of a resistor in parts per
million per degree Celsius.

Resistance A measure of the opposition to the flow of charge
through a material.

Resistivity (r) A constant of proportionality between the
resistance of a material and its physical dimensions.

Rheostat An element whose terminal resistance can be var-
ied in a linear or nonlinear manner.

Sheet resistance Defined by r/d for thin-film and integrated
circuit design.

Superconductor Conductors of electric charge that have for
all practical purposes zero ohms.

Thermistor A two-terminal semiconductor device whose
resistance is temperature sensitive.

Varistor A voltage-dependent, nonlinear resistor used to
suppress high-voltage transients.





Ohm’s Law, Power,
and Energy

4.1 OHM’S LAW

Consider the following relationship:

(4.1)

Every conversion of energy from one form to another can be related to
this equation. In electric circuits, the effect we are trying to establish is
the flow of charge, or current. The potential difference, or voltage,
between two points is the cause (“pressure”), and the opposition is the
resistance encountered.

An excellent analogy for the simplest of electrical circuits is the
water in a hose connected to a pressure valve. Think of the electrons in
the copper wire as the water in the hose, the pressure valve as the
applied voltage, and the size of the hose as the factor that determines
the resistance. If the pressure valve is closed, the water simply sits in
the hose without motion, much like the electrons in a conductor with-
out an applied voltage. When we open the pressure valve, water will
flow through the hose much like the electrons in a copper wire when the
voltage is applied. In other words, the absence of the “pressure” in one
case and the voltage in the other will simply result in a system without
motion or reaction. The rate at which the water will flow in the hose is
a function of the size of the hose. A hose with a very small diameter
will limit the rate at which water can flow through the hose, just as a
copper wire with a small diameter will have a high resistance and will
limit the current.

In summary, therefore, the absence of an applied “pressure” such as
voltage in an electric circuit will result in no reaction in the system and
no current in the electric circuit. Current is a reaction to the applied
voltage and not the factor that gets the system in motion. To continue
with the analogy, the more the pressure at the spigot, the more the rate
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of water flow through the hose, just as applying a higher voltage to the
same circuit will result in a higher current.

Substituting the terms introduced above into Eq. (4.1) results in

Current �

and (amperes, A) (4.2)

Equation (4.2) is known as Ohm’s law in honor of Georg Simon Ohm
(Fig. 4.1). The law clearly reveals that for a fixed resistance, the greater
the voltage (or pressure) across a resistor, the more the current, and the
more the resistance for the same voltage, the less the current. In other
words, the current is proportional to the applied voltage and inversely
proportional to the resistance.

By simple mathematical manipulations, the voltage and resistance
can be found in terms of the other two quantities:

(volts, V) (4.3)

and (ohms, �) (4.4)

The three quantities of Eqs. (4.2) through (4.4) are defined by the
simple circuit of Fig. 4.2. The current I of Eq. (4.2) results from apply-
ing a dc supply of E volts across a network having a resistance R. Equa-
tion (4.3) determines the voltage E required to establish a current I
through a network with a total resistance R, and Equation (4.4) provides
the resistance of a network that results in a current I due to an
impressed voltage E.

Note in Fig. 4.2 that the voltage source “pressures” current in a
direction that passes from the negative to the positive terminal of the
battery. This will always be the case for single-source circuits. The effect
of more than one source in the network will be examined in the chap-
ters to follow. The symbol for the voltage of the battery (a source of
electrical energy) is the uppercase letter E, whereas the loss in potential
energy across the resistor is given the symbol V. The polarity of the
voltage drop across the resistor is as defined by the applied source
because the two terminals of the battery are connected directly across
the resistive element.

EXAMPLE 4.1 Determine the current resulting from the application
of a 9-V battery across a network with a resistance of 2.2 �.

Solution: Eq. (4.2):

I � � � 4.09 A

EXAMPLE 4.2 Calculate the resistance of a 60-W bulb if a current of
500 mA results from an applied voltage of 120 V.

9 V
�
2.2 �

E
�
R

R � �
E
I
�

E � IR

I � �
E
R

�

potential difference
���

resistance

V
I R

I

R V
++

–
E

+

–

FIG. 4.2

Basic circuit.

German (Erlangen, 
Cologne)

(1789–1854)

Physicist and 

Mathematician 

Professor of Physics,

University of 
Cologne 

Courtesy of the 
Smithsonian Institution

Photo No. 51,145

In 1827, developed one of the most important laws
of electric circuits: Ohm’s law. When the law was
first introduced, the supporting documentation was
considered lacking and foolish, causing him to lose
his teaching position and search for a living doing
odd jobs and some tutoring. It took some 22 years
for his work to be recognized as a major contribu-
tion to the field. He was then awarded a chair at the
University of Munich and received the Copley
Medal of the Royal Society in 1841. His research
also extended into the areas of molecular physics,
acoustics, and telegraphic communication.

FIG. 4.1

Georg Simon Ohm.



V

RI

+ –

(a)

V

RI

– +

(b)

FIG. 4.3

Defining polarities.
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Solution: Eq. (4.4):

R � � � 240 �

For an isolated resistive element, the polarity of the voltage drop is
as shown in Fig. 4.3(a) for the indicated current direction. A reversal in
current will reverse the polarity, as shown in Fig. 4.3(b). In general, the
flow of charge is from a high (�) to a low (�) potential. Polarities as
established by current direction will become increasingly important in
the analysis to follow.

EXAMPLE 4.3 Calculate the current through the 2-k� resistor of Fig.
4.4 if the voltage drop across it is 16 V.

Solution:

I � � � 8 mA

EXAMPLE 4.4 Calculate the voltage that must be applied across the
soldering iron of Fig. 4.5 to establish a current of 1.5 A through the iron
if its internal resistance is 80 �.

Solution:

E � IR � (1.5 A)(80 �) � 120 V

In a number of the examples in this chapter, such as Example 4.4
above, the voltage applied is actually that obtained from an ac outlet in
the home, office, or laboratory. This approach was used to provide an
opportunity for the student to relate to real-world situations as soon as
possible and to demonstrate that a number of the equations derived in
this chapter are applicable to ac networks also. Chapter 13 will provide
a direct relationship between ac and dc voltages that permits the math-
ematical substitutions used in this chapter. In other words, don’t be con-
cerned about the fact that some of the voltages and currents appearing
in the examples of this chapter are actually ac voltages, because the
equations for dc networks have exactly the same format, and all the
solutions will be correct.

4.2 PLOTTING OHM’S LAW

Graphs, characteristics, plots, and the like, play an important role in
every technical field as a mode through which the broad picture of the
behavior or response of a system can be conveniently displayed. It is
therefore critical to develop the skills necessary both to read data and to
plot them in such a manner that they can be interpreted easily.

For most sets of characteristics of electronic devices, the current is rep-
resented by the vertical axis (ordinate), and the voltage by the horizontal
axis (abscissa), as shown in Fig. 4.6. First note that the vertical axis is in

16 V
��
2 � 103 �

V
�
R

120 V
��
500 � 10�3 A

E
�
I

V
I R

16 V

2 k�I

+ –

FIG. 4.4

Example 4.3.

E

+

–

R 80 �

I  =  1.5 A

E

+

–

FIG. 4.5

Example 4.4.

FIG. 4.6

Plotting Ohm’s law.
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amperes and the horizontal axis is in volts. For some plots, I may be in mil-
liamperes (mA), microamperes (mA), or whatever is appropriate for the
range of interest. The same is true for the levels of voltage on the horizon-
tal axis. Note also that the chosen parameters require that the spacing
between numerical values of the vertical axis be different from that of the
horizontal axis. The linear (straight-line) graph reveals that the resistance
is not changing with current or voltage level; rather, it is a fixed quantity
throughout. The current direction and the voltage polarity appearing at the
top of Fig. 4.6 are the defined direction and polarity for the provided plot.
If the current direction is opposite to the defined direction, the region
below the horizontal axis is the region of interest for the current I. If the
voltage polarity is opposite to that defined, the region to the left of the cur-
rent axis is the region of interest. For the standard fixed resistor, the first
quadrant, or region, of Fig. 4.6 is the only region of interest. However, you
will encounter many devices in your electronics courses that will use the
other quadrants of a graph.

Once a graph such as Fig. 4.6 is developed, the current or voltage at any
level can be found from the other quantity by simply using the resulting
plot. For instance, at V � 25 V, if a vertical line is drawn on Fig. 4.6 to the
curve as shown, the resulting current can be found by drawing a horizon-
tal line over to the current axis, where a result of 5A is obtained. Similarly,
at V � 10 V, a vertical line to the plot and a horizontal line to the current
axis will result in a current of 2 A, as determined by Ohm’s law.

If the resistance of a plot is unknown, it can be determined at any
point on the plot since a straight line indicates a fixed resistance. At any
point on the plot, find the resulting current and voltage, and simply sub-
stitute into the following equation:

(4.5)

To test Eq. (4.5), consider a point on the plot where V � 20 V and 
I � 4 A. The resulting resistance is Rdc � V/I � 20 V/4 A � 5 �. For
comparison purposes, a 1-� and 10-� resistor were plotted on the
graph of Fig. 4.7. Note that the less the resistance, the steeper the slope
(closer to the vertical axis) of the curve.

If we write Ohm’s law in the following manner and relate it to the
basic straight-line equation  

we find that the slope is equal to 1 divided by the resistance value, as
indicated by the following:

(4.6)

where D signifies a small, finite change in the variable.
Equation (4.6) clearly reveals that the greater the resistance, the less

the slope. If written in the following form, Equation (4.6) can be used
to determine the resistance from the linear curve:

m � slope � �
D

D

y

x
� � �

D

D

V

I
� � �

R

1
�

I � 
R 
1  • E � 0

�y m x � b•

Rdc � �
V
I
�

V
I R

FIG. 4.7

Demonstrating on an I-V plot that the less the
resistance, the steeper is the slope.
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V
I R

0

1

2
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4

5

I (amperes)

V (volts)5 10 15 20 25

Resulting ∆I = 4 A – 3 A
= 1 A

Chosen ∆V  =  20 V – 15 V  =  5 V

30

6

∆V
∆ I

5 V
1 A

=  5 ΩR  = =

FIG. 4.8

Applying Eq. (4.6).

(ohms) (4.7)

The equation states that by choosing a particular DV (or DI), one can
obtain the corresponding DI (or DV, respectively) from the graph, as
shown in Fig. 4.8, and then determine the resistance. It the plot is a
straight line, Equation (4.7) will provide the same result no matter
where the equation is applied. However, if the plot curves at all, the
resistance will change.

R � �
D

D

V
I

�

0

1

2

3

4

5

I (mA)

V (V)2 4 6 8 10

∆I   =  1 mA

∆V  =  2 V

FIG. 4.9

Example 4.5.

EXAMPLE 4.5 Determine the resistance associated with the curve of
Fig. 4.9 using Eqs. (4.5) and (4.7), and compare results.

Solution: At V � 6 V, I � 3 mA, and

Rdc � � � 2 k�

For the interval between 6 V and 8 V,

R � � � 2 k�

The results are equivalent.

Before leaving the subject, let us first investigate the characteristics
of a very important semiconductor device called the diode, which will
be examined in detail in basic electronics courses. This device will ide-
ally act like a low-resistance path to current in one direction and a high-
resistance path to current in the reverse direction, much like a switch
that will pass current in only one direction. A typical set of characteris-
tics appears in Fig. 4.10. Without any mathematical calculations, the
closeness of the characteristic to the voltage axis for negative values of
applied voltage indicates that this is the low-conductance (high resis-
tance, switch opened) region. Note that this region extends to approxi-
mately 0.7 V positive. However, for values of applied voltage greater
than 0.7 V, the vertical rise in the characteristics indicates a high-
conductivity (low resistance, switch closed) region. Application of
Ohm’s law will now verify the above conclusions.

2 V
�
1 mA

DV
�
D I

6 V
�
3 mA

V
�
I
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V

I R

At V � �1 V,

Rdiode � � �

� 20 �
(a relatively low value for most applications)

At V � �1 V,

Rdiode � �

� 1 M�

(which is often represented by an open-circuit equivalent)

4.3 POWER

Power is an indication of how much work (the conversion of energy
from one form to another) can be done in a specified amount of time,
that is, a rate of doing work. For instance, a large motor has more
power than a small motor because it can convert more electrical energy
into mechanical energy in the same period of time. Since converted
energy is measured in joules (J) and time in seconds (s), power is mea-
sured in joules/second (J/s). The electrical unit of measurement for
power is the watt (W), defined by

(4.8)

In equation form, power is determined by

(watts, W, or joules/second, J/s) (4.9)

with the energy W measured in joules and the time t in seconds.
Throughout the text, the abbreviation for energy (W) can be distin-

guished from that for the watt (W) by the fact that one is in italics while
the other is in roman. In fact, all variables in the dc section appear in
italics while the units appear in roman.

P � �
W
t
�

1 watt (W) � 1 joule/second (J/s)

1 V
�
1 mA

V
�
I

1 V
��
50 � 10�3 A

1 V
�
50 mA

V
�
I

FIG. 4.10

Semiconductor diode characteristic.
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The unit of measurement, the watt, is derived from the surname of
James Watt (Fig. 4.11), who was instrumental in establishing the stan-
dards for power measurements. He introduced the horsepower (hp) as
a measure of the average power of a strong dray horse over a full work-
ing day. It is approximately 50% more than can be expected from the
average horse. The horsepower and watt are related in the following
manner:

The power delivered to, or absorbed by, an electrical device or system
can be found in terms of the current and voltage by first substituting Eq.
(2.7) into Eq. (4.9):

P � � � V 

But I �

so that (watts) (4.10)

By direct substitution of Ohm’s law, the equation for power can be
obtained in two other forms:

P � VI � V� �

and (watts) (4.11)

or P � VI � (IR)I

and (watts) (4.12)

The result is that the power absorbed by the resistor of Fig. 4.12 can
be found directly depending on the information available. In other
words, if the current and resistance are known, it pays to use Eq. (4.12)
directly, and if V and I are known, use of Eq. (4.10) is appropriate. It
saves having to apply Ohm’s law before determining the power.

Power can be delivered or absorbed as defined by the polarity of the
voltage and the direction of the current. For all dc voltage sources,
power is being delivered by the source if the current has the direction
appearing in Fig. 4.13(a). Note that the current has the same direction
as established by the source in a single-source network. If the current
direction and polarity are as shown in Fig. 4.13(b) due to a multisource
network, the battery is absorbing power much as when a battery is
being charged.

For resistive elements, all the power delivered is dissipated in the
form of heat because the voltage polarity is defined by the current direc-
tion (and vice versa), and current will always enter the terminal of
higher potential corresponding with the absorbing state of Fig. 4.13(b).
A reversal of the current direction in Fig. 4.12 will also reverse the
polarity of the voltage across the resistor and match the conditions of
Fig. 4.13(b).

P � I2R

P � �
V
R

2

�

V
�
R

P � VI

Q
�
t

Q
�
t

QV
�

t

W
�
t

1 horsepower � 746 watts

V
I R

V

R

+ –I

P

FIG. 4.12

Defining the power to a resistive element.

E
+–

I

(a)

E
+ –

I

(b)

FIG. 4.13

Battery power: (a) supplied; (b) absorbed.
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In 1757, at the age of 21, used his innovative talents
to design mathematical instruments such as the
quadrant, compass, and various scales. In 1765, in-
troduced the use of a separate condenser to increase
the efficiency of steam engines. In the years to fol-
low he received a number of important patents on
improved engine design, including a rotary motion
for the steam engine (versus the reciprocating action)
and a double-action engine, in which the piston
pulled as well as pushed in its cyclic motion. Intro-
duced the term horsepower as the average power
of a strong dray (small cart) horse over a full work-
ing day.

FIG. 4.11

James Watt.
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The magnitude of the power delivered or absorbed by a battery is
given by

(watts) (4.13)

with E the battery terminal voltage and I the current through the source.

EXAMPLE 4.6 Find the power delivered to the dc motor of Fig. 4.14.

Solution:

P � VI � (120 V)(5 A) � 600 W � 0.6 kW

EXAMPLE 4.7 What is the power dissipated by a 5-� resistor if the
current is 4 A?

Solution:

P � I2R � (4 A)2(5 �) � 80 W

EXAMPLE 4.8 The I-V characteristics of a light bulb are provided in
Fig. 4.15. Note the nonlinearity of the curve, indicating a wide range in
resistance of the bulb with applied voltage as defined by the discussion
of Section 4.2. If the rated voltage is 120 V, find the wattage rating of
the bulb. Also calculate the resistance of the bulb under rated condi-
tions.

Solution: At 120 V,

I � 0.625 A

and P � VI � (120 V)(0.625 A) � 75 W

At 120 V,

R � � � 192 �

Sometimes the power is given and the current or voltage must be
determined. Through algebraic manipulations, an equation for each
variable is derived as follows:

P � I2R ⇒ I2 �

and I � ��
P
R

�� (amperes) (4.14)

P � ⇒ V2 � PR

and (volts) (4.15)

EXAMPLE 4.9 Determine the current through a 5-k� resistor when
the power dissipated by the element is 20 mW.

V � �P�R�

V2

�
R

P
�
R

120 V
�
0.625 A

V
�
I

P � EI

V
I R

5 A

120 V
+

–

Electrical
power
applied

Mechanical
horsepower
developed

FIG. 4.14

Example 4.6.

625

0 120 V (V)

higher R

I (mA)

lower R

FIG. 4.15

The nonlinear I-V characteristics of a 75-W
light bulb.



EFFICIENCY  105

Solution: Eq. (4.14):

I � ��
P
R

�� � �� � �4� �� 1�0���6� � 2 � 10�3 A

� 2 mA

4.4 WATTMETERS

As one might expect, there are instruments that can measure the power
delivered by a source and to a dissipative element. One such instrument,
the wattmeter, appears in Fig. 4.16. Since power is a function of both
the current and the voltage levels, four terminals must be connected as
shown in Fig. 4.17 to measure the power to the resistor R.

20 � 10�3 W
��

5 � 103 �

V
I R

FIG. 4.16

Wattmeter. (Courtesy of Electrical Instrument 
Service, Inc.)

(a)
Wattmeter

R
+

–
V

CC

+–
+–

I

PC +

–

(b)

W
+–

+–

VR

I

FIG. 4.17

Wattmeter connections.

If the current coils (CC) and potential coils (PC) of the wattmeter are
connected as shown in Fig. 4.17, there will be an up-scale reading on
the wattmeter. A reversal of either coil will result in a below-zero indi-
cation. Three voltage terminals may be available on the voltage side to
permit a choice of voltage levels. On most wattmeters, the current ter-
minals are physically larger than the voltage terminals to provide safety
and to ensure a solid connection.

4.5 EFFICIENCY

A flowchart for the energy levels associated with any system that con-
verts energy from one form to another is provided in Fig. 4.18. Take
particular note of the fact that the output energy level must always be
less than the applied energy due to losses and storage within the system.
The best one can hope for is that Wo and Wi are relatively close in mag-
nitude.

Conservation of energy requires that

Energy input � energy output � energy lost or stored in the system

Dividing both sides of the relationship by t gives

� �
Wlost or stored by the system
���

t

Wout
�

t

Win
�

t
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Since P � W/t, we have the following:

(W) (4.16)

The efficiency (h) of the system is then determined by the following
equation:

Efficiency �

and (decimal number) (4.17)

where h (lowercase Greek letter eta) is a decimal number. Expressed as
a percentage,

(percent) (4.18)

In terms of the input and output energy, the efficiency in percent is
given by

(percent) (4.19)

The maximum possible efficiency is 100%, which occurs when Po �
Pi, or when the power lost or stored in the system is zero. Obviously,
the greater the internal losses of the system in generating the necessary
output power or energy, the lower the net efficiency.

EXAMPLE 4.10 A 2-hp motor operates at an efficiency of 75%. What
is the power input in watts? If the applied voltage is 220 V, what is the
input current?

Solution:

h% � � 100%

0.75 �
(2 hp)(746 W/hp)
��

Pi

Po
�
Pi

h% � �
W

W
o

i
� � 100%

h% � �
P

P
o

i
� � 100%

h � �
P

P
o

i
�

power output
��
power input

Pi � Po � Plost or stored

V
I R

Energy input
Wi

Energy output
Wo

System

Energy
stored

Energy
lost

Wlost or stored

FIG. 4.18

Energy flow through a system.



EFFICIENCY  107

and Pi � � 1989.33 W

Pi � EI or I � � � 9.04 A

EXAMPLE 4.11 What is the output in horsepower of a motor with an
efficiency of 80% and an input current of 8 A at 120 V?

Solution:

h% � � 100%

0.80 �

and Po � (0.80)(120 V)(8 A) � 768 W

with 768 W� � � 1.029 hp

EXAMPLE 4.12 If h � 0.85, determine the output energy level if the
applied energy is 50 J.

Solution:

h � ⇒ Wo � hWi

� (0.85)(50 J)
� 42.5 J

The very basic components of a generating (voltage) system are
depicted in Fig. 4.19. The source of mechanical power is a structure
such as a paddlewheel that is turned by water rushing over the dam. The
gear train will then ensure that the rotating member of the generator is
turning at rated speed. The output voltage must then be fed through a
transmission system to the load. For each component of the system, an

Wo
�
Wi

1 hp
�
746 W

Po
��
(120 V)(8 A)

Po
�
Pi

1989.33 W
��

220 V

Pi
�
E

1492 W
�

0.75

V
I R

Generator

Load
Transmission system

Po2
Pi3

Po3

Pi2
Po1

Pi1

Gear train

  3η RL

FIG. 4.19

Basic components of a generating system.
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input and output power have been indicated. The efficiency of each sys-
tem is given by

h1 � h2 � h3 �

If we form the product of these three efficiencies,

h1 ⋅ h2 ⋅ h3 � ⋅ ⋅

and substitute the fact that Pi2
� Po1

and Pi3
� Po2

, we find that the
quantities indicated above will cancel, resulting in Po3

/Pi1
, which is a

measure of the efficiency of the entire system. In general, for the repre-
sentative cascaded system of Fig. 4.20,

(4.20)htotal � h1 ⋅ h2 ⋅ h3 ⋅ ⋅ ⋅ hn

Po3�
Pi3

Po2�
Pi2

Po1�
Pi1

Po3�
Pi3

Po2�
Pi2

Po1�
Pi1

V
I R

ηnηη3ηη2ηη1η

FIG. 4.20

Cascaded system.

EXAMPLE 4.13 Find the overall efficiency of the system of Fig. 4.19
if h1 � 90%, h2 � 85%, and h3 � 95%.

Solution:

hT � h1 ⋅ h2 ⋅ h3 � (0.90)(0.85)(0.95) � 0.727, or 72.7%

EXAMPLE 4.14 If the efficiency h1 drops to 40%, find the new overall
efficiency and compare the result with that obtained in Example 4.13.

Solution:

hT � h1 ⋅ h2 ⋅ h3 � (0.40)(0.85)(0.95) � 0.323, or 32.3%

Certainly 32.3% is noticeably less than 72.7%. The total efficiency of a
cascaded system is therefore determined primarily by the lowest effi-
ciency (weakest link) and is less than (or equal to if the remaining effi-
ciencies are 100%) the least efficient link of the system.

4.6 ENERGY

For power, which is the rate of doing work, to produce an energy con-
version of any form, it must be used over a period of time. For example,
a motor may have the horsepower to run a heavy load, but unless the
motor is used over a period of time, there will be no energy conversion.
In addition, the longer the motor is used to drive the load, the greater
will be the energy expended.

The energy (W) lost or gained by any system is therefore determined
by

(wattseconds, Ws, or joules) (4.21)W � Pt
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Since power is measured in watts (or joules per second) and time in
seconds, the unit of energy is the wattsecond or joule (note Fig. 4.21)
as indicated above. The wattsecond, however, is too small a quantity for
most practical purposes, so the watthour (Wh) and kilowatthour (kWh)
were defined, as follows:

(4.22)

Energy (kWh) � (4.23)

Note that the energy in kilowatthours is simply the energy in watthours
divided by 1000. To develop some sense for the kilowatthour energy
level, consider that 1 kWh is the energy dissipated by a 100-W bulb in
10 h.

The kilowatthour meter is an instrument for measuring the energy
supplied to the residential or commercial user of electricity. It is normally
connected directly to the lines at a point just prior to entering the power
distribution panel of the building. A typical set of dials is shown in Fig.
4.22(a) with a photograph of an analog kilowatthour meter. As indicated,
each power of ten below a dial is in kilowatthours. The more rapidly the
aluminum disc rotates, the greater the energy demand. The dials are con-
nected through a set of gears to the rotation of this disc. A solid-state dig-
ital meter with an extended range of capabilities appears in Fig. 4.22(b).

power (W) � time (h)
���

1000

Energy (Wh) � power (W) � time (h)

V
I R

FIG. 4.22

Kilowatthour meters: (a) analog; (b) digital. (Courtesy of ABB Electric 
Metering Systems.)

EXAMPLE 4.15 For the dial positions of Fig. 4.22(a), calculate the
electricity bill if the previous reading was 4650 kWh and the average
cost is 9¢ per kilowatthour.

Solution:

5360 kWh � 4650 kWh � 710 kWh used

710 kWh� � � $63.90
9¢

�
kWh

British (Salford, 
Manchester)

(1818–89)

Physicist 

Honorary Doctorates 

from the 

Universities of 

Dublin and Oxford

Bettmann Archive Photo
Number 076800P

Contributed to the important fundamental law of
conservation of energy by establishing that various
forms of energy, whether electrical, mechanical, or
heat, are in the same family and can be exchanged
from one form to another. In 1841 introduced
Joule’s law, which stated that the heat developed by
electric current in a wire is proportional to the prod-
uct of the current squared and the resistance of the
wire (I2R). He further determined that the heat emit-
ted was equivalent to the power absorbed and there-
fore heat is a form of energy.

FIG. 4.21

James Prescott Joule.
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EXAMPLE 4.16 How much energy (in kilowatthours) is required to
light a 60-W bulb continuously for 1 year (365 days)?

Solution:

W � � �

� 525.60 kWh

EXAMPLE 4.17 How long can a 205-W television set be on before
using more than 4 kWh of energy?

Solution:

W � ⇒ t (hours) �

� � 19.51 h

EXAMPLE 4.18 What is the cost of using a 5-hp motor for 2 h if the
rate is 9¢ per kilowatthour?

Solution:

W (kilowatthours) � � � 7.46 kWh

Cost � (7.46 kWh)(9¢/kWh) � 67.14¢

EXAMPLE 4.19 What is the total cost of using all of the following at
9¢ per kilowatthour?

A 1200-W toaster for 30 min
Six 50-W bulbs for 4 h
A 400-W washing machine for 45 min
A 4800-W electric clothes dryer for 20 min

Solution:

W

� 

� �

W �3.7 kWh

Cost � (3.7 kWh)(9¢/kWh) � 33.3¢

The chart in Fig. 4.23 shows the average cost per kilowatthour com-
pared to the kilowatthours used per customer. Note that the cost today is
above the level of 1926 and the average customer uses more than 20 times
as much electrical energy in a year. Keep in mind that the chart of Fig. 4.23
is the average cost across the nation. Some states have average rates close
to 5¢ per kilowatthour, whereas others approach 12¢ per kilowatthour.

Table 4.1 lists some common household appliances with their typi-
cal wattage ratings. It might prove interesting for the reader to calculate
the cost of operating some of these appliances over a period of time
using the chart in Fig. 4.23 to find the cost per kilowatthour.

3700 Wh
�

1000
600 Wh � 1200 Wh � 300 Wh � 1600 Wh
�����

1000

(1200 W)(�
1
2

� h) � (6)(50 W)(4 h) � (400 W)(�
3
4

� h) � (4800 W)(�
1
3

� h)
�������

1000

(5 hp � 746 W/hp)(2 h)
���

1000
Pt

�
1000

(4 kWh)(1000)
��

205 W

(W)(1000)
��

P
Pt

�
1000

525,600 Wh
��

1000
(60 W)(24 h/day)(365 days)
���

1000
Pt

�
1000

V
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RESIDENTIAL SERVICE
Total electric utility industry
(including Alaska and Hawaii since 1960)
Average use per customer
and average revenue per kWh
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FIG. 4.23

Cost per kWh and average kWh per customer versus time. (Courtesy of Edison
Electric Institute.)

TABLE 4.1

Typical wattage ratings of some common household items.

Appliance Wattage Rating Appliance Wattage Rating

Air conditioner 860 Lap-top computer:
Blow dryer 1,300 Sleep � 1 W (Typically 0.3 W to 0.5 W)
Cassette player/recorder 5 Normal 10–20 W
Cellular phone: High 25–35 W
Standby � 35 mW Microwave oven 1,200
Talk � 4.3 W Pager 1–2 mW

Clock 2 Phonograph 75
Clothes dryer (electric) 4,800 Projector 1,200
Coffee maker 900 Radio 70
Dishwasher 1,200 Range (self-cleaning) 12,200
Fan: Refrigerator (automatic defrost) 1,800
Portable 90 Shaver 15
Window 200 Stereo equipment 110

Heater 1,322 Sun lamp 280
Heating equipment: Toaster 1,200
Furnace fan 320 Trash compactor 400
Oil-burner motor 230 TV (color) 200

Iron, dry or steam 1,100 Videocassette recorder 110
Washing machine 500
Water heater 4,500

Courtesy of General Electric Co.
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PROBLEMS

SECTION 4.1 Ohm’s Law

1. What is the potential drop across a 6-� resistor if the cur-
rent through it is 2.5 A?

2. What is the current through a 72-� resistor if the voltage
drop across it is 12 V?

3. How much resistance is required to limit the current to
1.5 mA if the potential drop across the resistor is 6 V?

4. At starting, what is the current drain on a 12-V car bat-
tery if the resistance of the starting motor is 0.056 �?

5. If the current through a 0.02-M� resistor is 3.6 mA, what
is the voltage drop across the resistor?

6. If a voltmeter has an internal resistance of 15 k�, find the
current through the meter when it reads 62 V.

7. If a refrigerator draws 2.2 A at 120 V, what is its resis-
tance?

8. If a clock has an internal resistance of 7.5 k�, find the
current through the clock if it is plugged into a 120-V
outlet.

9. A washing machine is rated at 4.2 A at 120 V. What is its
internal resistance?

10. If a soldering iron draws 0.76 A at 120 V, what is its
resistance?

11. The input current to a transistor is 20 mA. If the applied
(input) voltage is 24 mV, determine the input resistance
of the transistor.

12. The internal resistance of a dc generator is 0.5 �. Deter-
mine the loss in terminal voltage across this internal
resistance if the current is 15 A.

*13. a. If an electric heater draws 9.5 A when connected to a
120-V supply, what is the internal resistance of the
heater?

b. Using the basic relationships of Chapter 2, how much
energy is converted in 1 h?

SECTION 4.2 Plotting Ohm’s Law

14. Plot the linear curves of a 100-� and a 0.5-� resistor on
the graph of Fig. 4.6. If necessary, reproduce the graph.

15. Sketch the characteristics of a device that has an internal
resistance of 20 � from 0 to 10 V and an internal resis-

V
I R

on the meter as shown in Fig. 4.31. Note that both are providing the
expected results.

Now for one of the most important things to learn about applying
EWB:

Always stop or end the simulation (clicking on 0 or choosing OFF)
before making any changes in the network. When the simulation is
initiated, it will stay in that mode until turned off. 

There was obviouly a great deal of material to learn in this first exer-
cise using Electronics Workbench. Be assured, however, that as we con-
tinue with more examples, you will find the procedure quite straight-
forward and actually enjoyable to apply.

tance of 2 � for higher voltages. Use the axes of Fig. 4.6.
If necessary, reproduce the graph.

16. Plot the linear curves of a 2-k� and a 50-k� resistor on
the graph of Fig. 4.6. Use a horizontal scale that extends
from 0 to 20 V and a vertical axis scaled off in milli-
amperes. If necessary, reproduce the graph.

17. What is the change in voltage across a 2-k� resistor
established by a change in current of 400 mA through the
resistor?

*18. a. Using the axes of Fig. 4.10, sketch the characteristics
of a device that has an internal resistance of 500 �
from 0 to 1 V and 50 � between 1 V and 2 V. Its resis-
tance then changes to �20 � for higher voltages. The
result is a set of characteristics very similar to those of
an electronic device called a tunnel diode.

b. Using the above characteristics, determine the result-
ing current at voltages of 0.7 V, 1.5 V, and 2.5 V.

SECTION 4.3 Power

19. If 420 J of energy are absorbed by a resistor in 7 min,
what is the power to the resistor?

20. The power to a device is 40 joules per second (J/s). How
long will it take to deliver 640 J?

21. a. How many joules of energy does a 2-W nightlight dis-
sipate in 8 h?

b. How many kilowatthours does it dissipate?

22. A resistor of 10 � has charge flowing through it at the
rate of 300 coulombs per minute (C/min). How much
power is dissipated?

23. How long must a steady current of 2 A exist in a resistor
that has 3 V across it to dissipate 12 J of energy?

24. What is the power delivered by a 6-V battery if the
charge flows at the rate of 48 C/min?

25. The current through a 4-� resistor is 7 mA. What is the
power delivered to the resistor?

26. The voltage drop across a 3-� resistor is 9 mV. What is
the power input to the resistor?

27. If the power input to a 4-� resistor is 64 W, what is the
current through the resistor?

28. A 1/2-W resistor has a resistance of 1000 �. What is the
maximum current that it can safely handle?
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29. A 2.2-k� resistor in a stereo system dissipates 42 mW of
power. What is the voltage across the resistor?

30. A dc battery can deliver 45 mA at 9 V. What is the power
rating?

31. What are the “hot” resistance level and current rating of
a 120-V, 100-W bulb?

32. What are the internal resistance and voltage rating of a
450-W automatic washer that draws 3.75 A?

33. A calculator with an internal 3-V battery draws 0.4 mW
when fully functional.
a. What is the current demand from the supply?
b. If the calculator is rated to operate 500 h on the same

battery, what is the ampere-hour rating of the battery?

34. A 20-k� resistor has a rating of 100 W. What are the
maximum current and the maximum voltage that can be
applied to the resistor?

*35. a. Plot power versus current for a 100-� resistor. Use a
power scale from 0 to 1 W and a current scale from 0
to 100 mA with divisions of 0.1 W and 10 mA,
respectively.

b. Is the curve linear or nonlinear?
c. Using the resulting plot, determine the current at a

power level of 500 mW.

*36. A small, portable black-and-white television draws 0.455A
at 9V.
a. What is the power rating of the television?
b. What is the internal resistance of the television?
c. What is the energy converted in 6 h of typical battery

life?

*37. a. If a home is supplied with a 120-V, 100-A service,
find the maximum power capability.

b. Can the homeowner safely operate the following
loads at the same time?
5-hp motor
3000-W clothes dryer
2400-W electric range
1000-W steam iron

SECTION 4.5 Efficiency

38. What is the efficiency of a motor that has an output of 
0.5 hp with an input of 450 W?

39. The motor of a power saw is rated 68.5% efficient. If 1.8 hp
are required to cut a particular piece of lumber, what is the
current drawn from a 120-V supply?

40. What is the efficiency of a dryer motor that delivers 1 hp
when the input current and voltage are 4 A and 220 V,
respectively?

41. A stereo system draws 2.4 A at 120 V. The audio output
power is 50 W.
a. How much power is lost in the form of heat in the sys-

tem?
b. What is the efficiency of the system?

42. If an electric motor having an efficiency of 87% and
operating off a 220-V line delivers 3.6 hp, what input
current does the motor draw?

43. A motor is rated to deliver 2 hp.
a. If it runs on 110 V and is 90% efficient, how many

watts does it draw from the power line?
b. What is the input current?
c. What is the input current if the motor is only 70%

efficient?

44. An electric motor used in an elevator system has an effi-
ciency of 90%. If the input voltage is 220 V, what is the
input current when the motor is delivering 15 hp?

45. A 2-hp motor drives a sanding belt. If the efficiency of
the motor is 87% and that of the sanding belt 75% due to
slippage, what is the overall efficiency of the system?

46. If two systems in cascade each have an efficiency of 80%
and the input energy is 60 J, what is the output energy?

47. The overall efficiency of two systems in cascade is 72%.
If the efficiency of one is 0.9, what is the efficiency in
percent of the other?

*48. If the total input and output power of two systems in cas-
cade are 400 W and 128 W, respectively, what is the effi-
ciency of each system if one has twice the efficiency of
the other?

49. a. What is the total efficiency of three systems in cas-
cade with efficiencies of 98%, 87%, and 21%?

b. If the system with the least efficiency (21%) were
removed and replaced by one with an efficiency of
90%, what would be the percentage increase in total
efficiency?

50. a. Perform the following conversions:
1 Wh to joules
1 kWh to joules

b. Based on the results of part (a), discuss when it is
more appropriate to use one unit versus the other.

SECTION 4.6 Energy

51. A 10-� resistor is connected across a 15-V battery.
a. How many joules of energy will it dissipate in 1 min?
b. If the resistor is left connected for 2 min instead of 

1 min, will the energy used increase? Will the power
dissipation level increase?

52. How much energy in kilowatthours is required to keep a
230-W oil-burner motor running 12 h a week for 5
months? (Use 41⁄3 weeks � 1 month.)

53. How long can a 1500-W heater be on before using more
than 10 kWh of energy?

54. How much does it cost to use a 30-W radio for 3 h at 9¢
per kilowatthour?

55. a. In 10 h an electrical system converts 500 kWh of elec-
trical energy into heat. What is the power level of the
system?

b. If the applied voltage is 208 V, what is the current
drawn from the supply?

c. If the efficiency of the system is 82%, how much
energy is lost or stored in 10 h?

56. a. At 9¢ per kilowatthour, how long can one play a
250-W color television for $1?
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GLOSSARY

Circuit breaker A two-terminal device designed to ensure
that current levels do not exceed safe levels. If “tripped,” it
can be reset with a switch or a reset button.

Diode A semiconductor device whose behavior is much like
that of a simple switch; that is, it will pass current ideally in
only one direction when operating within specified limits.

Efficiency (h) A ratio of output to input power that provides
immediate information about the energy-converting charac-
teristics of a system.

Energy (W) A quantity whose change in state is deter-
mined by the product of the rate of conversion (P) and
the period involved (t). It is measured in joules (J) or
wattseconds (Ws).

Fuse A two-terminal device whose sole purpose is to ensure
that current levels in a circuit do not exceed safe levels.

V
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b. For $1, how long can one use a 4.8-kW dryer?
c. Compare the results of parts (a) and (b), and comment

on the effect of the wattage level on the relative cost
of using an appliance.

57. What is the total cost of using the following at 9¢ per
kilowatthour?
860-W air conditioner for 24 h
4800-W clothes dryer for 30 min
400-W washing machine for 1 h
1200-W dishwasher for 45 min

*58. What is the total cost of using the following at 9¢ per
kilowatthour?
110-W stereo set for 4 h
1200-W projector for 20 min
60-W tape recorder for 1.5 h
150-W color television set for 3 h 45 min

SECTION 4.9 Computer Analysis

PSpice or Electronics Workbench

59. Repeat the analysis of the circuit of Fig. 4.29 with E �
400 mV and R � 0.04 M�.

60. Repeat the analysis of the circuit of Fig. 4.29, but reverse
the polarity of the battery and use E � 0.02 V and R �
240 �.

Programming Language (C��, QBASIC, Pascal, etc.)

61. Write a program to calculate the cost of using five differ-
ent appliances for varying lengths of time if the cost is 9¢
per kilowatthour.

62. Request I, R, and t and determine V, P, and W. Print out
the results with the proper units.

Horsepower (hp) Equivalent to 746 watts in the electrical
system.

Kilowatthour meter An instrument for measuring kilo-
watthours of energy supplied to a residential or commercial
user of electricity.

Ohm’s law An equation that establishes a relationship
among the current, voltage, and resistance of an electrical
system.

Power An indication of how much work can be done in a
specified amount of time; a rate of doing work. It is mea-
sured in joules/second (J/s) or watts (W).

Wattmeter An instrument capable of measuring the power
delivered to an element by sensing both the voltage across
the element and the current through the element.





5.1 INTRODUCTION

Two types of current are readily available to the consumer today. One is
direct current (dc), in which ideally the flow of charge (current) does
not change in magnitude (or direction) with time. The other is sinu-
soidal alternating current (ac), in which the flow of charge is continu-
ally changing in magnitude (and direction) with time. The next few
chapters are an introduction to circuit analysis purely from a dc
approach. The methods and concepts will be discussed in detail for
direct current; when possible, a short discussion will suffice to cover
any variations we might encounter when we consider ac in the later
chapters.

The battery of Fig. 5.1, by virtue of the potential difference between
its terminals, has the ability to cause (or “pressure”) charge to flow
through the simple circuit. The positive terminal attracts the electrons
through the wire at the same rate at which electrons are supplied by the
negative terminal. As long as the battery is connected in the circuit and
maintains its terminal characteristics, the current (dc) through the cir-
cuit will not change in magnitude or direction.

S

Battery

+

–
E (volts)

Iconventional

Ielectron

I  = V
R

E
R

= —
+

–
R V

—

FIG. 5.1

Introducing the basic components of an electric circuit.

If we consider the wire to be an ideal conductor (that is, having no
opposition to flow), the potential difference V across the resistor will
equal the applied voltage of the battery: V (volts) � E (volts).

5
Series Circuits

S



The current is limited only by the resistor R. The higher the resis-
tance, the less the current, and conversely, as determined by Ohm’s law.

By convention (as discussed in Chapter 2), the direction of conven-
tional current flow Iconventional as shown in Fig. 5.1 is opposite to that of
electron flow (Ielectron). Also, the uniform flow of charge dictates that the
direct current I be the same everywhere in the circuit. By following the
direction of conventional flow, we notice that there is a rise in potential
across the battery (� to �), and a drop in potential across the resistor (�
to �). For single-voltage-source dc circuits, conventional flow always
passes from a low potential to a high potential when passing through a
voltage source, as shown in Fig. 5.2. However, conventional flow always
passes from a high to a low potential when passing through a resistor for
any number of voltage sources in the same circuit, as shown in Fig. 5.3.

The circuit of Fig. 5.1 is the simplest possible configuration. This
chapter and the chapters to follow will add elements to the system in a
very specific manner to introduce a range of concepts that will form a
major part of the foundation required to analyze the most complex sys-
tem. Be aware that the laws, rules, and so on, introduced in Chapters 5
and 6 will be used throughout your studies of electrical, electronic, or
computer systems. They will not be dropped for a more advanced set as
you progress to more sophisticated material. It is therefore critical that
the concepts be understood thoroughly and that the various procedures
and methods be applied with confidence.

5.2 SERIES CIRCUITS

A circuit consists of any number of elements joined at terminal points,
providing at least one closed path through which charge can flow. The
circuit of Fig. 5.4(a) has three elements joined at three terminal points
(a, b, and c) to provide a closed path for the current I.

Two elements are in series if

1. They have only one terminal in common (i.e., one lead of one is
connected to only one lead of the other).

2. The common point between the two elements is not connected to
another current-carrying element.

In Fig. 5.4(a), the resistors R1 and R2 are in series because they have
only point b in common. The other ends of the resistors are connected
elsewhere in the circuit. For the same reason, the battery E and resistor
R1 are in series (terminal a in common), and the resistor R2 and the bat-
tery E are in series (terminal c in common). Since all the elements are
in series, the network is called a series circuit. Two common examples
of series connections include the tying of small pieces of rope together
to form a longer rope and the connecting of pipes to get water from one
point to another.

If the circuit of Fig. 5.4(a) is modified such that a current-carrying
resistor R3 is introduced, as shown in Fig. 5.4(b), the resistors R1 and R2

are no longer in series due to a violation of number 2 of the above def-
inition of series elements.

The current is the same through series elements.

For the circuit of Fig. 5.4(a), therefore, the current I through each resis-
tor is the same as that through the battery. The fact that the current is
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For all one-voltage-
source dc circuits

E +–I

FIG. 5.2

Defining the direction of conventional flow for
single-source dc circuits.

I
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For any combination of voltage
sources in the same dc circuit

FIG. 5.3

Defining the polarity resulting from a
conventional current I through a resistive

element.
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(b) R1 and R2 are not in series
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FIG. 5.4

(a) Series circuit; (b) situation in which R1

and R2 are not in series.



the same through series elements is often used as a path to determine
whether two elements are in series or to confirm a conclusion.

A branch of a circuit is any portion of the circuit that has one or
more elements in series. In Fig. 5.4(a), the resistor R1 forms one branch
of the circuit, the resistor R2 another, and the battery E a third.

The total resistance of a series circuit is the sum of the resistance
levels.

In Fig. 5.4(a), for example, the total resistance (RT) is equal to R1 � R2.
Note that the total resistance is actually the resistance “seen” by the bat-
tery as it “looks” into the series combination of elements as shown in
Fig. 5.5.

In general, to find the total resistance of N resistors in series, the fol-
lowing equation is applied:

(ohms, �) (5.1)

Once the total resistance is known, the circuit of Fig. 5.4(a) can be
redrawn as shown in Fig. 5.6, clearly revealing that the only resistance
the source “sees” is the total resistance. It is totally unaware of how the
elements are connected to establish RT. Once RT is known, the current
drawn from the source can be determined using Ohm’s law, as follows:

(amperes, A) (5.2)

Since E is fixed, the magnitude of the source current will be totally
dependent on the magnitude of RT. A larger RT will result in a relatively
small value of Is, while lesser values of RT will result in increased cur-
rent levels.

The fact that the current is the same through each element of Fig.
5.4(a) permits a direct calculation of the voltage across each resistor
using Ohm’s law; that is,

(volts, V) (5.3)

The power delivered to each resistor can then be determined using
any one of three equations as listed below for R1:

(watts, W) (5.4)

The power delivered by the source is

(watts, W) (5.5)

The total power delivered to a resistive circuit is equal to the total
power dissipated by the resistive elements.

That is,

(5.6)Pdel � P1 � P2 � P3 � . . . � PN

Pdel � EI

P1 � V1I1 � I 2
1 R1 � �

V

R1

2
1

�

V1 � IR1, V2 � IR2, V3 � IR3, . . . , VN � IRN

Is � �
R
E

T
�

RT � R1 � R2 � R3 � . . . � RN
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R2

R1

FIG. 5.5

Resistance “seen” by source.

E

Is

Is

+

–

RT

RT  =  R1  +  R2

Circuit equivalent

FIG. 5.6

Replacing the series resistors R1 and R2 of
Fig. 5.5 with the total resistance.



EXAMPLE 5.1

a. Find the total resistance for the series circuit of Fig. 5.7.
b. Calculate the source current Is.
c. Determine the voltages V1, V2, and V3.
d. Calculate the power dissipated by R1, R2, and R3.
e. Determine the power delivered by the source, and compare it to the

sum of the power levels of part (d).

Solutions:

a. RT � R1 � R2 � R3 � 2 � � 1 � � 5 � � 8 �

b. Is � �
R
E

T
� � � 2.5 A

c. V1 � IR1 � (2.5 A)(2 �) � 5 V
V2 � IR2 � (2.5 A)(1 �) � 2.5 V
V3 � IR3 � (2.5 A)(5 �) � 12.5 V

d. P1 � V1I1 � (5 V)(2.5 A) � 12.5 W
P2 � I2

2R2 � (2.5 A)2(1 �) � 6.25 W
P3 � V2

3 /R3 � (12.5 V)2/5 � � 31.25 W

e. Pdel � EI � (20 V)(2.5 A) � 50 W
Pdel � P1 � P2 � P3

50 W � 12.5 W � 6.25 W � 31.25 W
50 W � 50 W (checks)

To find the total resistance of N resistors of the same value in series,
simply multiply the value of one of the resistors by the number in
series; that is,

(5.7)

EXAMPLE 5.2 Determine RT, I, and V2 for the circuit of Fig. 5.8.

Solution: Note the current direction as established by the battery
and the polarity of the voltage drops across R2 as determined by the cur-
rent direction. Since R1 � R3 � R4,

RT � NR1 � R2 � (3)(7 �) � 4 � � 21 � � 4 � � 25 �

I � � � 2 A

V2 � IR2 � (2 A)(4 �) � 8 V

Examples 5.1 and 5.2 are straightforward substitution-type problems
that are relatively easy to solve with some practice. Example 5.3, how-
ever, is evidence of another type of problem that requires a firm grasp
of the fundamental equations and an ability to identify which equation
to use first. The best preparation for this type of exercise is simply to
work through as many problems of this kind as possible.

EXAMPLE 5.3 Given RT and I, calculate R1 and E for the circuit of
Fig. 5.9.

50 V
�
25 �

E
�
RT

RT � NR

20 V
�
8 �
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FIG. 5.8

Example 5.2.
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Example 5.3.

FIG. 5.7

Example 5.1.
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+
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–
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+
E
–

I
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Solution:

RT � R1 � R2 � R3

12 k� � R1 � 4 k� � 6 k�

R1 � 12 k� � 10 k� � 2 k�

E � IRT � (6 � 10�3 A)(12 � 103 �) � 72 V

5.3 VOLTAGE SOURCES IN SERIES

Voltage sources can be connected in series, as shown in Fig. 5.10, to
increase or decrease the total voltage applied to a system. The net volt-
age is determined simply by summing the sources with the same polar-
ity and subtracting the total of the sources with the opposite “pressure.”
The net polarity is the polarity of the larger sum.

In Fig. 5.10(a), for example, the sources are all “pressuring” current
to the right, so the net voltage is

ET � E1 � E2 � E3 � 10 V � 6 V � 2 V � 18 V

as shown in the figure. In Fig. 5.10(b), however, the greater “pressure”
is to the left, with a net voltage of

ET � E2 � E3 � E1 � 9 V � 3 V � 4 V � 8 V

and the polarity shown in the figure.

5.4 KIRCHHOFF’S VOLTAGE LAW

Note Fig. 5.11.

Kirchhoff’s voltage law (KVL) states that the algebraic sum of the
potential rises and drops around a closed loop (or path) is zero.

A closed loop is any continuous path that leaves a point in one
direction and returns to that same point from another direction without
leaving the circuit. In Fig. 5.12, by following the current, we can trace
a continuous path that leaves point a through R1 and returns through E
without leaving the circuit. Therefore, abcda is a closed loop. For us
to be able to apply Kirchhoff’s voltage law, the summation of poten-
tial rises and drops must be made in one direction around the closed
loop.

For uniformity, the clockwise (CW) direction will be used through-
out the text for all applications of Kirchhoff’s voltage law. Be aware,
however, that the same result will be obtained if the counterclockwise
(CCW) direction is chosen and the law applied correctly.

A plus sign is assigned to a potential rise (� to �), and a minus sign
to a potential drop (� to �). If we follow the current in Fig. 5.12 from
point a, we first encounter a potential drop V1 (� to �) across R1 and
then another potential drop V2 across R2. Continuing through the volt-
age source, we have a potential rise E (� to �) before returning 
to point a. In symbolic form, where Σ represents summation, the
closed loop, and V the potential drops and rises, we have

(Kirchhoff’s voltage law
V � 0

in symbolic form)
(5.8)�
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FIG. 5.10

Reducing series dc voltage sources to a 
single source.

FIG. 5.12

Applying Kirchhoff’s voltage law to a series 
dc circuit.
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Heidelberg
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1847. Did extensive research with German chemist
Robert Bunsen (developed the Bunsen burner), re-
sulting in the discovery of the important elements of
cesium and rubidium.

FIG. 5.11

Gustav Robert Kirchhoff.



which for the circuit of Fig. 5.12 yields (clockwise direction, following
the current I and starting at point d):

�E � V1 � V2 � 0

or E � V1 � V2

revealing that

the applied voltage of a series circuit equals the sum of the voltage
drops across the series elements.

Kirchhoff’s voltage law can also be stated in the following form:

Vrises � Vdrops (5.9)

which in words states that the sum of the rises around a closed loop
must equal the sum of the drops in potential. The text will emphasize
the use of Eq. (5.8), however.

If the loop were taken in the counterclockwise direction starting at
point a, the following would result:

V � 0

�E � V2 � V1 � 0

or, as before, E � V1 � V2

The application of Kirchhoff’s voltage law need not follow a path that
includes current-carrying elements.

For example, in Fig. 5.13 there is a difference in potential between
points a and b, even though the two points are not connected by a cur-
rent-carrying element. Application of Kirchhoff’s voltage law around
the closed loop will result in a difference in potential of 4 V between
the two points. That is, using the clockwise direction:

�12 V � Vx � 8 V � 0

and Vx � 4 V

EXAMPLE 5.4 Determine the unknown voltages for the networks of
Fig. 5.14.

�

��
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FIG. 5.13

Demonstration that a voltage can exist be-
tween two points not connected by a current-

carrying conductor.

Vx

12 V 8 V

+ –
a b

(b)

32 V

R1

E

+  12 V  –

R3 14 V

R2

+  6 V  –

+

–

+

–

Vx

(a)

R1

E1

+  V1  –
R2

+  4.2 V  –

9 VE216 V

FIG. 5.14

Example 5.4.

Solution: When applying Kirchhoff’s voltage law, be sure to con-
centrate on the polarities of the voltage rise or drop rather than on the



type of element. In other words, do not treat a voltage drop across a
resistive element differently from a voltage drop across a source. If the
polarity dictates that a drop has occurred, that is the important fact
when applying the law. In Fig. 5.14(a), for instance, if we choose the
clockwise direction, we will find that there is a drop across the resistors
R1 and R2 and a drop across the source E2. All will therefore have a
minus sign when Kirchhoff’s voltage law is applied.

Application of Kirchhoff’s voltage law to the circuit of Fig. 5.14(a)
in the clockwise direction will result in

�E1 � V1 � V2 � E2 � 0

and V1 � E1 � V2 � E2 � 16 V � 4.2 V � 9 V
� 2.8 V

The result clearly indicates that there was no need to know the values
of the resistors or the current to determine the unknown voltage. Suffi-
cient information was carried by the other voltage levels to permit a
determination of the unknown.

In Fig. 5.14(b) the unknown voltage is not across a current-carrying
element. However, as indicated in the paragraphs above, Kirchhoff’s
voltage law is not limited to current-carrying elements. In this case
there are two possible paths for finding the unknown. Using the clock-
wise path, including the voltage source E, will result in

�E � V1 � Vx � 0

and Vx � E � V1 � 32 V � 12 V
� 20 V

Using the clockwise direction for the other loop involving R2 and R3

will result in

�Vx � V2 � V3 � 0

and Vx � V2 � V3 � 6 V � 14 V
� 20 V

matching the result above.

EXAMPLE 5.5 Find V1 and V2 for the network of Fig. 5.15.

Solution: For path 1, starting at point a in a clockwise direction:

�25 V � V1 � 15 V � 0

and V1 � 40 V

For path 2, starting at point a in a clockwise direction:

�V2 � 20 V � 0

and V2 � �20 V

The minus sign simply indicates that the actual polarities of the poten-
tial difference are opposite the assumed polarity indicated in Fig. 5.15.

The next example will emphasize the fact that when we are applying
Kirchhoff’s voltage law, it is the polarities of the voltage rise or drop
that are the important parameters, and not the type of element involved.
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25 V 15 V

+ –

+
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20 V

2

1

a

V2

V1

FIG. 5.15

Example 5.5.



EXAMPLE 5.6 Using Kirchhoff’s voltage law, determine the unknown
voltages for the network of Fig. 5.16.
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Solution: Note in each circuit that there are various polarities across
the unknown elements since they can contain any mixture of compo-
nents. Applying Kirchhoff’s voltage law to the network of Fig. 5.16(a)
in the clockwise direction will result in

60 V � 40 V � Vx � 30 V � 0

and Vx � 60 V � 30 V � 40 V � 90 V � 40 V
� 50 V

In Fig. 5.16(b) the polarity of the unknown voltage is not provided.
In such cases, make an assumption about the polarity, and apply Kirch-
hoff’s voltage law as before. If the result has a plus sign, the assumed
polarity was correct. If it has a minus sign, the magnitude is correct, but
the assumed polarity has to be reversed. In this case if we assume a to
be positive and b to be negative, an application of Kirchhoff’s voltage
law in the clockwise direction will result in

�6 V � 14 V � Vx � 2 V � 0

and Vx � �20 V � 2 V
� �18 V

Since the result is negative, we know that a should be negative and b
should be positive, but the magnitude of 18 V is correct.

EXAMPLE 5.7 For the circuit of Fig. 5.17:
a. Find RT.
b. Find I.
c. Find V1 and V2.
d. Find the power to the 4-� and 6-� resistors.
e. Find the power delivered by the battery, and compare it to that dissi-

pated by the 4-� and 6-� resistors combined.
f. Verify Kirchhoff’s voltage law (clockwise direction).

Solutions:

a. RT � R1 � R2 � 4 � � 6 � � 10 �

b. I � � � 2 A
20 V
�
10 �

E
�
RT

FIG. 5.17

Example 5.7.
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Example 5.6.
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c. V1 � IR1 � (2 A)(4 �) � 8 V
V2 � IR2 � (2 A)(6 �) � 12 V

d. P4� � � � � 16 W

P6� � I2R2 � (2 A)2(6 �) � (4)(6) � 24 W

e. PE � EI � (20 V)(2 A) � 40 W
PE � P4� � P6�

40 W � 16 W � 24 W
40 W � 40 W (checks)

f. V � �E � V1 � V2 � 0
E � V1 � V2

20 V � 8 V � 12 V
20 V � 20 V (checks)

EXAMPLE 5.8 For the circuit of Fig. 5.18:
a. Determine V2 using Kirchhoff’s voltage law.
b. Determine I.
c. Find R1 and R3.

Solutions:

a. Kirchhoff’s voltage law (clockwise direction):

�E � V3 � V2 � V1 � 0

or E � V1 � V2 � V3

and V2 � E � V1 � V3 � 54 V � 18 V � 15 V � 21 V

b. I � � � 3 A

c. R1 � � � 6 �

R3 � � � 5 �

5.5 INTERCHANGING SERIES ELEMENTS

The elements of a series circuit can be interchanged without affecting
the total resistance, current, or power to each element. For instance, the
network of Fig. 5.19 can be redrawn as shown in Fig. 5.20 without
affecting I or V2. The total resistance RT is 35 � in both cases, and I �
70 V/35 � � 2 A. The voltage V2 � IR2 � (2 A)(5 �) � 10 V for both
configurations.

EXAMPLE 5.9 Determine I and the voltage across the 7-� resistor for
the network of Fig. 5.21.

Solution: The network is redrawn in Fig. 5.22.

RT � (2)(4 �) � 7 � � 15 �

I � � � 2.5 A

V7� � IR � (2.5 A)(7 �) � 17.5 V

37.5 V
�
15 �

E
�
RT

15 V
�
3 A

V3
�
I

18 V
�
3 A

V1
�
I

21 V
�
7 �

V2
�
R2

�

64
�
4

(8 V)2

�
4

V2
1�

R1
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FIG. 5.19

Series dc circuit with elements to be inter-
changed.

FIG. 5.20

Circuit of Fig. 5.19 with R2 and R3

interchanged.
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Example 5.9.



5.6 VOLTAGE DIVIDER RULE

In a series circuit,

the voltage across the resistive elements will divide as the magnitude
of the resistance levels.

For example, the voltages across the resistive elements of Fig. 5.23
are provided. The largest resistor of 6 � captures the bulk of the applied
voltage, while the smallest resistor R3 has the least. Note in addition
that, since the resistance level of R1 is 6 times that of R3, the voltage
across R1 is 6 times that of R3. The fact that the resistance level of R2 is
3 times that of R1 results in three times the voltage across R2. Finally,
since R1 is twice R2, the voltage across R1 is twice that of R2. In gen-
eral, therefore, the voltage across series resistors will have the same
ratio as their resistance levels.

It is particularly interesting to note that, if the resistance levels of all
the resistors of Fig. 5.23 are increased by the same amount, as shown in
Fig. 5.24, the voltage levels will all remain the same. In other words,
even though the resistance levels were increased by a factor of 1 mil-
lion, the voltage ratios remain the same. Clearly, therefore, it is the ratio
of resistor values that counts when it comes to voltage division and not
the relative magnitude of all the resistors. The current level of the net-
work will be severely affected by the change in resistance level from
Fig. 5.23 to Fig. 5.24, but the voltage levels will remain the same.

Based on the above, a first glance at the series network of Fig. 5.25
should suggest that the major part of the applied voltage will appear
across the 1-M� resistor and very little across the 100-� resistor. In
fact, 1 M� � (1000)1 k� � (10,000)100 �, revealing that V1 �
1000V2 � 10,000V3.

Solving for the current and then the three voltage levels will result in

I � �
R
E

T
� � � 99.89 mA

and

V1 � IR1 � (99.89 mA)(1 M�) � 99.89 V

V2 � IR2 � (99.89 mA)(1 k�) � 99.89 mV � 0.09989 V

V3 � IR3 � (99.89 mA)(100 �) � 9.989 mV � 0.009989 V

clearly substantiating the above conclusions. For the future, therefore,
use this approach to estimate the share of the input voltage across series
elements to act as a check against the actual calculations or to simply
obtain an estimate with a minimum of effort.

100 V
��
1,001,100 �
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–
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FIG. 5.22

Redrawing the circuit of Fig. 5.21.
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–
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+
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FIG. 5.23

Revealing how the voltage will divide across 
series resistive elements.
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FIG. 5.24

The ratio of the resistive values determines the 
voltage division of a series dc circuit.
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The largest of the series resistive elements will 
capture the major share of the applied

voltage.



In the above discussion the current was determined before the volt-
ages of the network were determined. There is, however, a method
referred to as the voltage divider rule (VDR) that permits determining
the voltage levels without first finding the current. The rule can be
derived by analyzing the network of Fig. 5.26.

RT � R1 � R2

and I � �
R
E

T
�

Applying Ohm’s law:

V1 � IR1 � ��
R
E

T
��R1 � �

R
R
1

T

E
�

with V2 � IR2 � ��
R
E

T
��R2 � �

R
R
2

T

E
�

Note that the format for V1 and V2 is

(voltage divider rule) (5.10)

where Vx is the voltage across Rx, E is the impressed voltage across the
series elements, and RT is the total resistance of the series circuit.

In words, the voltage divider rule states that

the voltage across a resistor in a series circuit is equal to the value of
that resistor times the total impressed voltage across the series
elements divided by the total resistance of the series elements.

EXAMPLE 5.10 Determine the voltage V1 for the network of Fig.
5.27.

Solution: Eq. (5.10):

V1 � �
R
R
1

T

E
� � � � � 16 V

EXAMPLE 5.11 Using the voltage divider rule, determine the voltages
V1 and V3 for the series circuit of Fig. 5.28.

Solution:

V1 � �
R
R
1

T

E
� � �

� � � 6 V

V3 � �
R
R
3

T

E
� � �

� � 24 V

The rule can be extended to the voltage across two or more series
elements if the resistance in the numerator of Eq. (5.10) is expanded to

360 V
�

15

(8 � 103 �)(45 V)
��

15 � 103 �

(8 k�)(45 V)
��

15 k�

90 V
�

15
(2 � 103 �)(45 V)
��

15 � 103 �

(2 k�)(45 V)
��

15 k�

(2 k�)(45 V)
���
2 k� � 5 k� � 8 k�

1280 V
�

80
(20 �)(64 V)
��
20 � � 60 �

R1E�
R1 � R2

Vx � �
R

R
x

T

E
�
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Developing the voltage divider rule.

V2

+

–

E

R2

V1

+

–

R1

I

RT

64 V

R2

60 �

R1

20 �

E

+  V1  –

FIG. 5.27

Example 5.10.
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FIG. 5.28

Example 5.11.



include the total resistance of the series elements that the voltage is to
be found across (R′); that is,

(volts) (5.11)

EXAMPLE 5.12 Determine the voltage V′ in Fig. 5.28 across resistors
R1 and R2.

Solution:

V′ � � � � 21 V

There is also no need for the voltage E in the equation to be the
source voltage of the network. For example, if V is the total voltage
across a number of series elements such as those shown in Fig. 5.29,
then

V2� � � � 6 V
54 V
�

9
(2 �)(27 V)

��
4 � � 2 � � 3 �

(7 k�)(45 V)
��

15 k�

(2 k� � 5 k�)(45 V)
���

15 k�

R′E
�
RT

V′ � �
R
R
′
T

E
�
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4 � 2 � 3 �

+  V2�  –

V  =  27  V+ –

FIG. 5.29

The total voltage across series elements need not be an independent voltage
source.

EXAMPLE 5.13 Design the voltage divider of Fig. 5.30 such that 
VR1

� 4VR2
.

Solution: The total resistance is defined by

RT � �
E
I
� � � 5 k�

Since VR1
� 4VR2

,

R1 � 4R2

Thus RT � R1 � R2 � 4R2 � R2 � 5R2

and 5R2 � 5 k�
R2 � 1 k�

and R1 � 4R2 � 4 k�

5.7 NOTATION

Notation will play an increasingly important role in the analysis to fol-
low. It is important, therefore, that we begin to examine the notation
used throughout the industry.

20 V
�
4 mA

20 VE

R2

VR1
R1

VR2

+

–

+

–

4 mA

FIG. 5.30

Example 5.13.



Voltage Sources and Ground

Except for a few special cases, electrical and electronic systems are
grounded for reference and safety purposes. The symbol for the ground
connection appears in Fig. 5.31 with its defined potential level—zero
volts. None of the circuits discussed thus far have contained the ground
connection. If Fig. 5.4(a) were redrawn with a grounded supply, it
might appear as shown in Fig. 5.32(a), (b), or (c). In any case, it is
understood that the negative terminal of the battery and the bottom of
the resistor R2 are at ground potential. Although Figure 5.32(c) shows
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0 V

FIG. 5.31

Ground potential.

(a)

R1

R2E

a

(c)

R2

E

R1

b

(b)

R2

E

R1

FIG. 5.32

Three ways to sketch the same series dc circuit.

no connection between the two grounds, it is recognized that such a
connection exists for the continuous flow of charge. If E � 12 V, then
point a is 12 V positive with respect to ground potential, and 12 V exist
across the series combination of resistors R1 and R2. If a voltmeter
placed from point b to ground reads 4 V, then the voltage across R2 is 
4 V, with the higher potential at point b.

On large schematics where space is at a premium and clarity is
important, voltage sources may be indicated as shown in Figs. 5.33(a)
and 5.34(a) rather than as illustrated in Figs. 5.33(b) and 5.34(b). In
addition, potential levels may be indicated as in Fig. 5.35, to permit a
rapid check of the potential levels at various points in a network with
respect to ground to ensure that the system is operating properly.

+

–

+ 12 V

R2

R1

R2

R1

12 V

(a) (b)

FIG. 5.33

Replacing the special notation for a dc
voltage source with the standard symbol.

– 5 V

R2 R2

R1

+

–
5 V

(a) (b)

R1

FIG. 5.34

Replacing the notation for a negative dc supply with the standard notation.

FIG. 5.35

The expected voltage level at a particular 
point in a network of the system is functioning 

properly.

Double-Subscript Notation

The fact that voltage is an across variable and exists between two
points has resulted in a double-subscript notation that defines the first

R1

R2

R3

25 V



Va

4 �10 V 4 VE =  10 V

6 �+ +

––

Vb

a b

subscript as the higher potential. In Fig. 5.36(a), the two points that
define the voltage across the resistor R are denoted by a and b. Since a
is the first subscript for Vab, point a must have a higher potential than
point b if Vab is to have a positive value. If, in fact, point b is at a higher
potential than point a, Vab will have a negative value, as indicated in
Fig. 5.36(b).
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+

a

Vab

(Vab  =  +)
R

–

b

(a)

I

+

a

Vab

(Vab  =  –)
R

–

b

(b)

I

In summary:

The double-subscript notation Vab specifies point a as the higher
potential. If this is not the case, a negative sign must be associated
with the magnitude of Vab.

In other words,

the voltage Vab is the voltage at point a with respect to (w.r.t.) point b.

Single-Subscript Notation

If point b of the notation Vab is specified as ground potential (zero
volts), then a single-subscript notation can be employed that provides
the voltage at a point with respect to ground.

In Fig. 5.37, Va is the voltage from point a to ground. In this case it
is obviously 10 V since it is right across the source voltage E. The volt-
age Vb is the voltage from point b to ground. Because it is directly
across the 4-� resistor, Vb � 4 V.

In summary:

The single-subscript notation Va specifies the voltage at point a with
respect to ground (zero volts). If the voltage is less than zero volts, a
negative sign must be associated with the magnitude of Va.

General Comments

A particularly useful relationship can now be established that will have
extensive applications in the analysis of electronic circuits. For the
above notational standards, the following relationship exists:

(5.12)

In other words, if the voltage at points a and b is known with respect
to ground, then the voltage Vab can be determined using Eq. (5.12). In
Fig. 5.37, for example,

Vab � Va � Vb � 10 V � 4 V
� 6 V

Vab � Va � Vb

FIG. 5.36

Defining the sign for double-subscript notation.

FIG. 5.37

Defining the use of single-subscript notation 
for voltage levels.



EXAMPLE 5.14 Find the voltage Vab for the conditions of Fig. 5.38.

Solution: Applying Eq. (5.12):

Vab � Va � Vb � 16 V � 20 V
� �4 V

Note the negative sign to reflect the fact that point b is at a higher
potential than point a.

EXAMPLE 5.15 Find the voltage Va for the configuration of Fig. 5.39.

Solution: Applying Eq. (5.12):

Vab � Va � Vb

and Va � Vab � Vb � 5 V � 4 V
� 9 V

EXAMPLE 5.16 Find the voltage Vab for the configuration of Fig.
5.40.

Solution: Applying Eq. (5.12):

Vab � Va � Vb � 20 V � (�15 V) � 20 V � 15 V
� 35 V

Note in Example 5.16 the care that must be taken with the signs
when applying the equation. The voltage is dropping from a high level
of �20 V to a negative voltage of �15 V. As shown in Fig. 5.41, this
represents a drop in voltage of 35 V. In some ways it’s like going from
a positive checking balance of $20 to owing $15; the total expenditure
is $35.

EXAMPLE 5.17 Find the voltages Vb, Vc, and Vac for the network of
Fig. 5.42.

NOTATION  143S

a bR

Va  =  +16 V Vb  =  +20 V

FIG. 5.38

Example 5.14.

Va

a bR

Vab  =  +5 V Vb  =  4 V

FIG. 5.39

Example 5.15.

R Vab10 k�

+

–

Va  =  +20 V

Vb  =  –15 V

FIG. 5.40

Example 5.16.

FIG. 5.41

The impact of positive and negative voltages 
on the total voltage drop.

V

Gnd (0 V)

Va  =  20 V

Vb  =  –15 V

Vab  =  35 V

FIG. 5.42

Example 5.17.

E2
a

b
+ –

+–

+

–

+ –

20 V

Vb

c

4 V

E1  =  10 V

FIG. 5.43

Determining Vb using the defined 
voltage levels.

V

4 V
6 V

10 V

Gnd (0 V)
Solution: Starting at ground potential (zero volts), we proceed
through a rise of 10 V to reach point a and then pass through a drop in
potential of 4 V to point b. The result is that the meter will read

Vb � �10 V � 4 V � 6 V

as clearly demonstrated by Fig. 5.43.



If we then proceed to point c, there is an additional drop of 20 V,
resulting in

Vc � Vb � 20 V � 6 V � 20 V � �14 V

as shown in Fig. 5.44.
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V

–4 V

+10 V

Gnd (0 V)

a

b

–20 V

c

Vc  =   –14 V

Vac  =   +24 V

The voltage Vac can be obtained using Eq. (5.12) or by simply refer-
ring to Fig. 5.44:

Vac � Va � Vc � 10 V � (�14 V)
� 24 V

EXAMPLE 5.18 Determine Vab, Vcb, and Vc for the network of Fig.
5.45.

Solution: There are two ways to approach this problem. The first is
to sketch the diagram of Fig. 5.46 and note that there is a 54-V drop
across the series resistors R1 and R2. The current can then be deter-
mined using Ohm’s law and the voltage levels as follows:

I � � 1.2 A

Vab � IR2 � (1.2 A)(25 �) � 30 V

Vcb � �IR1 � �(1.2 A)(20 �) � �24 V

Vc � E1 � �19 V

The other approach is to redraw the network as shown in Fig. 5.47
to clearly establish the aiding effect of E1 and E2 and then solve the
resulting series circuit.

I � �
E1

R

�

T

E2
� � � � 1.2 A

and Vab � 30 V Vcb � �24 V Vc � �19 V

54 V
�
45 �

19 V � 35 V
��

45 �

54 V
�
45 �

FIG. 5.44

Review of the potential levels for the circuit of Fig. 5.42.

Vab25 �

+

–

E2 = +35 V

R2

–

+

a

b

Vcb R1 20 �

E1 = –19 V

c

FIG. 5.45

Example 5.18.

+35 V

54 V

–19 V

Gnd (0 V)

V

FIG. 5.46

Determining the total voltage drop across the 
resistive elements of Fig. 5.45.

+

a

b

c

25 �R2

R1 20 �

–

+

–
E1 19 V

E2 35 V

I

–

+ –

+

FIG. 5.47

Redrawing the circuit of Fig. 5.45 using 
standard dc voltage supply symbols.



EXAMPLE 5.19 Using the voltage divider rule, determine the volt-
ages V1 and V2 of Fig. 5.48.

Solution: Redrawing the network with the standard battery symbol
will result in the network of Fig. 5.49. Applying the voltage divider
rule,

V1 � � � 16 V

V2 � � � 8 V

EXAMPLE 5.20 For the network of Fig. 5.50:

(2 �)(24 V)
��
4 � � 2 �

R2E
�
R1 � R2

(4 �)(24 V)
��
4 � � 2 �

R1E
�
R1 � R2
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V2

4 �R1V1

R2 2 �

+

–
V2

+

–

E  =  +24 V

FIG. 5.48

Example 5.19.

R1 4 � V1

+

–

R2 2 � V2

+

–

+

–
24 VE

FIG. 5.49

Circuit of Fig. 5.48 redrawn.

3 �

5 �E 10 V

Vab

R1 R2

Vb R3

a b

c

+ –

2 � +

–

a. Calculate Vab.
b. Determine Vb.
c. Calculate Vc.

Solutions:

a. Voltage divider rule:

Vab � �
R
R
1

T

E
� � � �2 V

b. Voltage divider rule:

Vb � VR2
� VR3

� �
(R2 �

RT

R3)E� � � 8 V

or Vb � Va � Vab � E � Vab � 10 V � 2 V � 8 V

c. Vc � ground potential � 0 V

5.8 INTERNAL RESISTANCE 
OF VOLTAGE SOURCES

Every source of voltage, whether a generator, battery, or laboratory sup-
ply as shown in Fig. 5.51(a), will have some internal resistance. The
equivalent circuit of any source of voltage will therefore appear as
shown in Fig. 5.51(b). In this section, we will examine the effect of the
internal resistance on the output voltage so that any unexpected changes
in terminal characteristics can be explained.

In all the circuit analyses to this point, the ideal voltage source (no
internal resistance) was used [see Fig. 5.52(a)]. The ideal voltage
source has no internal resistance and an output voltage of E volts with
no load or full load. In the practical case [Fig. 5.52(b)], where we con-

(3 � � 5 �)(10 V)
��

10 �

(2 �)(10 V)
��
2 � � 3 � � 5 �

FIG. 5.50

Example 5.20.



sider the effects of the internal resistance, the output voltage will be E
volts only when no-load (IL � 0) conditions exist. When a load is con-
nected [Fig. 5.52(c)], the output voltage of the voltage source will
decrease due to the voltage drop across the internal resistance.

By applying Kirchhoff’s voltage law around the indicated loop of
Fig. 5.52(c), we obtain

E � ILRint � VL � 0

or, since E � VNL

we have VNL � ILRint � VL � 0

and (5.13)

If the value of Rint is not available, it can be found by first solving for
Rint in the equation just derived for VL; that is,

Rint � �
VNL

I
�

L

VL� � �
V
I
N

L

L� � �
IL

I
R

L

L�

and (5.14)

A plot of the output voltage versus current appears in Fig. 5.53 for
the dc generator having the circuit representation of Fig. 5.51(b). Note
that any increase in load demand, starting at any level, causes an addi-
tional drop in terminal voltage due to the increasing loss in potential
across the internal resistance. At maximum current, denoted by IFL, the

Rint � �
V

I
N

L

L
� � RL

VL � VNL � ILRint
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POWER SUPPLY

(a) (b)

E– +

Rint

E

+

–

E +
–

E +
–

FIG. 5.51

(a) Sources of dc voltage; (b) equivalent circuit.

Rint

+

E

(c)

VL

–

IL IL

RL–

+

+ –
Rint

+

E

(b)

VNL  =  E

–

IL  =  0
RL

+

–

E
E

(a)

FIG. 5.52

Voltage source: (a) ideal, Rint � 0 �; (b) determining VNL; (c) determining Rint .
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voltage across the internal resistance is Vint � IFLRint � (10 A)(2 �) �
20 V, and the terminal voltage has dropped to 100 V—a significant dif-
ference when you can ideally expect a 120-V generator to provide the
full 120 V if you stay below the listed full-load current. Eventually, if
the load current were permitted to increase without limit, the voltage
across the internal resistance would equal the supply voltage, and the
terminal voltage would be zero. The larger the internal resistance, the
steeper is the slope of the characteristics of Fig. 5.53. In fact, for any
chosen interval of voltage or current, the magnitude of the internal
resistance is given by

(5.15)

For the chosen interval of 5–7 A (DIL � 2 A) on Fig. 5.53, DVL is
4 V, and Rint � DVL ⁄DIL � 4 V⁄ 2 A � 2 � .

A direct consequence of the loss in output voltage is a loss in power
delivered to the load. Multiplying both sides of Eq. (5.13) by the cur-
rent IL in the circuit, we obtain

(5.16)

EXAMPLE 5.21 Before a load is applied, the terminal voltage of the
power supply of Fig. 5.54(a) is set to 40 V. When a load of 500 � is
attached, as shown in Fig. 5.54(b), the terminal voltage drops to 38.5 V.
What happened to the remainder of the no-load voltage, and what is the
internal resistance of the source?

Solution: The difference of 40 V � 38.5 V � 1.5 V now appears
across the internal resistance of the source. The load current is 
38.5 V/0.5 k� � 77 mA. Applying Eq. (5.14),

Rint � �
V
I
N

L

L� � RL � � 0.5 k�

� 519.48 � � 500 � � 19.48 �

40 V
�
77 mA

ILVL � ILVNL � I2
LRint

Power Power output Power loss in
to load by battery the form of heat

Rint � �
D

D

V
IL

L�

VL

0

120 V

100 V
∆VL

1 2 3 4 5 6 7 8 9 10
IFL

I (A)

∆IL

FIG. 5.53

VL versus IL for a dc generator with Rint � 2 �.

FIG. 5.54

Example 5.21.

POWER SUPPLY POWER SUPPLY

RL 500 �  36 V

IL +

–

– +
40 V

(no load)

(b)(a)



EXAMPLE 5.22 The battery of Fig. 5.55 has an internal resistance of
2 �. Find the voltage VL and the power lost to the internal resistance if
the applied load is a 13-� resistor.

Solution:

IL � �
2 �

3
�

0 V
13 �
� � � 2 A

VL � VNL � ILRint � 30 V � (2 A)(2 �) � 26 V

Plost � I2
LRint � (2 A)2(2 �) � (4)(2) � 8 W

Procedures for measuring Rint will be described in Section 5.10.

5.9 VOLTAGE REGULATION

For any supply, ideal conditions dictate that for the range of load
demand (IL), the terminal voltage remain fixed in magnitude. In other
words, if a supply is set for 12 V, it is desirable that it maintain this ter-
minal voltage, even though the current demand on the supply may vary.
A measure of how close a supply will come to ideal conditions is given
by the voltage regulation characteristic. By definition, the voltage reg-
ulation (VR) of a supply between the limits of full-load and no-load
conditions (Fig. 5.56) is given by the following:

(5.17)

For ideal conditions, VFL � VNL and VR% � 0. Therefore, the
smaller the voltage regulation, the less the variation in terminal voltage
with change in load.

It can be shown with a short derivation that the voltage regulation is
also given by

(5.18)

In other words, the smaller the internal resistance for the same load, the
smaller the regulation and the more ideal the output.

EXAMPLE 5.23 Calculate the voltage regulation of a supply having
the characteristics of Fig. 5.53.

Solution:

VR% � �
VNL

V
�

FL

VFL� � 100% � � 100%

� � 100% � 20%
20
�
100

120 V � 100 V
��

100 V

VR% � �
R

R
i

L

nt
� � 100%

Voltage regulation (VR)% � �
VNL

V

�

FL

VFL
� � 100%

30 V
�
15 �
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Rint  =  2 Ω +

–

VL 13 ΩE  =  30 V
(VNL)

FIG. 5.55

Example 5.22.

Ideal characteristic

VL

VNL
VFL

0 IFL IL

FIG. 5.56

Defining voltage regulation.



EXAMPLE 5.24 Determine the voltage regulation of the supply of
Fig. 5.54.

Solution:

VR% � �
R
R

i

L

nt� � 100% � � 100% � 3.9%

5.10 MEASUREMENT TECHNIQUES

In Chapter 2, it was noted that ammeters are inserted in the branch in
which the current is to be measured. We now realize that such a condi-
tion specifies that

ammeters are placed in series with the branch in which the current is
to be measured

as shown in Fig. 5.57.
If the ammeter is to have minimal impact on the behavior of the net-

work, its resistance should be very small (ideally zero ohms) compared
to the other series elements of the branch such as the resistor R of Fig.
5.57. If the meter resistance approaches or exceeds 10% of R, it will
naturally have a significant impact on the current level it is measuring.
It is also noteworthy that the resistances of the separate current scales
of the same meter are usually not the same. In fact, the meter resistance
normally increases with decreasing current levels. However, for the
majority of situations one can simply assume that the internal ammeter
resistance is small enough compared to the other circuit elements that it
can be ignored.

For an up-scale (analog meter) or positive (digital meter) reading, an
ammeter must be connected with current entering the positive terminal
of the meter and leaving the negative terminal, as shown in Fig. 5.58.
Since most meters employ a red lead for the positive terminal and a
black lead for the negative, simply ensure that current enters the red
lead and leaves the black one.

Voltmeters are always hooked up across the element for which the
voltage is to be determined.

An up-scale or positive reading on a voltmeter is obtained by being sure
that the positive terminal (red lead) is connected to the point of higher
potential and the negative terminal (black lead) is connected to the
lower potential, as shown in Fig. 5.59.

19.48 �
�
500 �
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R

–+I

I

Rm

FIG. 5.57

Series connection of an ammeter.

+ –

I

R+ –

Red lead Black lead

I

FIG. 5.58

Connecting an ammeter for an up-scale 
(positive) reading.

+ –

R

+ –

Red lead Black lead

V

VRI

+ –

+

Red lead V

E
–

Black lead

FIG. 5.59

Hooking up a voltmeter to obtain an up-scale (positive) reading.

For the double-subscript notation, always hook up the red lead to the
first subscript and the black lead to the second; that is, to measure the
voltage Vab in Fig. 5.60, connect the red lead to point a and the black



lead to point b. For single-subscript notation, hook up the red lead to the
point of interest and the black lead to ground, as shown in Fig. 5.60 for
Va and Vb.
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+ –

+ –

Red lead Black lead

R2I

E R3

+

–+ –

+ –
R1

a b

+ –

Black lead

Red lead

Red lead

Black lead

VbVa

Vab

The internal resistance of a supply cannot be measured with an ohm-
meter due to the voltage present. However, the no-load voltage can be
measured by simply hooking up the voltmeter as shown in Fig. 5.61(a).
Do not be concerned about the apparent path for current that the meter
seems to provide by completing the circuit. The internal resistance of
the meter is usually sufficiently high to ensure that the resulting current
is so small that it can be ignored. (Voltmeter loading effects will be dis-
cussed in detail in Section 6.9.) An ammeter could then be placed
directly across the supply, as shown in Fig. 5.61(b), to measure the
short-circuit current ISC and Rint as determined by Ohm’s law: Rint �
ENL /ISC. However, since the internal resistance of the supply may be
very low, performing the measurement could result in high current lev-
els that could damage the meter and supply and possibly cause danger-
ous side effects. The setup of Fig. 5.61(b) is therefore not suggested. A
better approach would be to apply a resistive load that will result in a
supply current of about half the maximum rated value and measure the
terminal voltage. Then use Eq. (5.14).

FIG. 5.60

Measuring voltages with double- and single-subscript notation.

(b)

E

+ –
Rint

I

Isc

Not recommended !!

E

+ –

+ –

Rint
V

+

–

VNL = E

0 V

+

–

(a)

FIG. 5.61

(a) Measuring the no-load voltage E; (b) measuring the short-circuit current.
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R

10 � 12 �

(a)

RT  =  30 �
I

30 V

50 � 60 �

(c)

RT  =  220 �

I

120 V

R1

10 �R2  =  R1

12.6 k� R

(b)

RT  =  60 k�

I

60 V

45 k� 0.4 k�

0.2 M�

(d)

RT  =  1.6 M�

50 V

E

100 k�

R

56 k�

I

PROBLEMS

SECTION 5.2 Series Circuits

1. Find the total resistance and current I for each circuit of
Fig. 5.71.

2. For the circuits of Fig. 5.72, the total resistance is speci-
fied. Find the unknown resistances and the current I for
each circuit.

FIG. 5.72

Problem 2.

2 �

RT

6 � 12 �I

15 �I

E  =  60 V

E  =  35 V 25 � 25 �10 �

25 � 10 �

200 k�

RT

1 M�

0.1 M�

E

I

10 V 330 k�

1.2 k�

RT

3 k� 1.3 k�

I

E  =  120 V 4.5 k�

2.2 k�

(b)

(d)

(a)

(c)

RT

FIG. 5.71

Problems 1 and 36.
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(a)

I  =  4 mA

60 �

E

1.2 k�

2.74 k�

(b)

I  =  250 mA

8.2 �

E

1.2 �

2.7 �

4.7 �

FIG. 5.73

Problem 3.

FIG. 5.75

Problem 5.

FIG. 5.74

Problem 4.

2 �E

5 �

R

I

(a)

12 V

+

–RT  =  16 �

2.2 k�3.3 k�

RI

(b)

P  =  79.2 mW

–  9 V  +

E

*4. For each network of Fig. 5.74, determine the current I,
the source voltage E, the unknown resistance, and the
voltage across each element.

SECTION 5.3 Voltage Sources in Series

5. Determine the current I and its direction for each network
of Fig. 5.75. Before solving for I, redraw each network
with a single voltage source.

3. Find the applied voltage E necessary to develop the cur-
rent specified in each network of Fig. 5.73.

4.7 �

(a)

16 V

8 V

5.6 �

I

1.2 �

4.7 �

(b)

18 V

4 V

10 V
5.6 �

I

4 V
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FIG. 5.76

Problem 6.

E 5 k�

P  =  100 mW

RI  =  5 mA

20 V
+ –

(a)

+–

16 V 2 k�

+

–

+– +–
6 V 12 V

8 V
–

+

+–
E

(b)

R

–

10 V

2 V

3 V

V ab

b a

+

–

+

–

+ –

60 V

20 V

10 V
b

+

–

+

– +

R

a
V ab

Open
circuit

(a) (b)

FIG. 5.77

Problem 7.

6 V

10 V
V2 –

+
+

–
V1

+ –

+

–

(a)

24 V

10 V 6 V

2.2 k�V1 R1

+

–

(b)

V2+ –

R2  =  5.6 k�

FIG. 5.78

Problem 8.

*6. Find the unknown voltage source and resistor for the net-
works of Fig. 5.76. Also indicate the direction of the
resulting current.

SECTION 5.4 Kirchhoff’s Voltage Law

7. Find Vab with polarity for the circuits of Fig. 5.77. Each
box can contain a load or a power supply, or a combina-
tion of both.

8. Although the networks of Fig. 5.78 are not simply series
circuits, determine the unknown voltages using Kirch-
hoff’s voltage law.
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0.56 k�

9 V

27 V

2.2 k�

I5 V

V1+ –

1.2 k�

FIG. 5.79

Problem 9.

120 V

1 k�

I V2+ –

2 k�

V3+ –

3 k�

V1+ –

RT

FIG. 5.80

Problem 10.

9. Determine the current I and the voltage V1 for the net-
work of Fig. 5.79.

10. For the circuit of Fig. 5.80:
a. Find the total resistance, current, and unknown volt-

age drops.
b. Verify Kirchhoff’s voltage law around the closed

loop.
c. Find the power dissipated by each resistor, and note

whether the power delivered is equal to the power dis-
sipated.

d. If the resistors are available with wattage ratings of
1/2, 1, and 2 W, what minimum wattage rating can be
used for each resistor in this circuit?

11. Repeat Problem 10 for the circuit of Fig. 5.81.

*12. Find the unknown quantities in the circuits of Fig. 5.82
using the information provided.

13. Eight holiday lights are connected in series as shown in
Fig. 5.83.
a. If the set is connected to a 120-V source, what is the

current through the bulbs if each bulb has an internal
resistance of 28�

1
8

� �?
b. Determine the power delivered to each bulb.
c. Calculate the voltage drop across each bulb.
d. If one bulb burns out (that is, the filament opens),

what is the effect on the remaining bulbs?

+

22 �
RT

I

V1
–

10 �

5.6 �

33 �

+V4– +V3–

+
V2

–
6 V

FIG. 5.81

Problem 11.

FIG. 5.83

Problem 13.

20 � R

I

1 �

120 V

2.2 �

E

4.7 �

6.8 �
+
V2

–

2 � P  =  21 W
1 A +

V3
–

RE

P  =  4 WI

E

RT  =  16 �

P  =  8 W

R1 R2

1 �

(a) (b)

(c) (d)

I

+  V  – +  80 V  – –  8 V  + –  V1  +

+  V1  – +  V2  –

FIG. 5.82

Problem 12.
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R = ?E

R1

2 �

24 V

24 W

4 �

R2

FIG. 5.84

Problem 14.

FIG. 5.85

Problems 15 and 37.

50 �

a

b

25 �

100 V

(a)

Vab

2 k�

a

b

4 k�

40 V

(c)

Vab

3 k�

1 k�

a

b

2.5 �

0.36 V

(d)

0.6 �

1.5 �

0.5 � 0.9 �

Vab

80 V

(b)

6 �

20 � 4 �

Vab

10 � a b

*14. For the conditions specified in Fig. 5.84, determine the
unknown resistance.

2 k�

20 V

(a)

4 V

6 k�

R

+

–

R

200 V

(b)

3 �

+

–

6 �V  =  140 V

FIG. 5.86

Problem 16.

SECTION 5.6 Voltage Divider Rule

15. Using the voltage divider rule, find Vab (with polarity) for
the circuits of Fig. 5.85.

16. Find the unknown resistance using the voltage divider
rule and the information provided for the circuits of Fig.
5.86.
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R1 10 �

R2 30 �

R3 V3

+

–

V2

+

–

4 V

+

–

I

40 V

FIG. 5.87

Problem 17.

17. Referring to Fig. 5.87:
a. Determine V2 by simply noting that R2 � 3R1.
b. Calculate V3.
c. Noting the magnitude of V3 compared to V2 or V1,

determine R3 by inspection.
d. Calculate the source current I.
e. Calculate the resistance R3 using Ohm’s law, and

compare it to the result of part (c).

18. Given the information appearing in Fig. 5.88, find the
level of resistance for R1 and R3.

19. a. Design a voltage divider circuit that will permit the
use of an 8-V, 50-mA bulb in an automobile with a
12-V electrical system.

b. What is the minimum wattage rating of the chosen
resistor if 1⁄4-W, 1⁄2-W and 1-W resistors are available?

20. Determine the values of R1, R2, R3, and R4 for the voltage
divider of Fig. 5.89 if the source current is 16 mA.

21. Design the voltage divider of Fig. 5.90 such that VR1
�

(1/5)VR2
if I � 4 mA.

22. Find the voltage across each resistor of Fig. 5.91 if R1 �
2R3 and R2 � 7R3.

23. a. Design the circuit of Fig. 5.92 such that VR2
� 3VR1

and VR3
� 4VR2

.

b. If the current I is reduced to 10 mA, what are the new
values of R1, R2, and R3? How do they compare to the
results of part (a)?

FIG. 5.88

Problem 18.

R1

+12 V

R2 8 �

R3

+4 V

–4 V

–8 V

R1

R2

+48 V

R3

R4

+12 V

–20 V

16 mA

100 VE

FIG. 5.89

Problem 20.

FIG. 5.90

Problem 21.

R1 R2I

–+ 72 V

FIG. 5.91

Problem 22.

R2 V2

+

–

R3 V3

+

–

R1 V1

+

–

60 V

FIG. 5.92

Problem 23.

R1 R2

R3

+
64 VE

–

I = 10 mA



166  SERIES CIRCUITS S

SECTION 5.7 Notation

24. Determine the voltages Va, Vb, and Vab for the networks
of Fig. 5.93.

FIG. 5.93

Problem 24.

(a)

8 V

VbVa

12 V

(b)

4 V

VbVa

6 V20 V

(c)

Vb+ 10 V

3 V 8 V

Va

21 V

25. Determine the current I (with direction) and the voltage V
(with polarity) for the networks of Fig. 5.94.

FIG. 5.94

Problem 25.

I

6 � 3 � V

120 V 60 V

I

30 �

–10 V

–70 V

20 �

10 �

V
(a) (b)

26. Determine the voltages Va and V1 for the networks of
Fig. 5.95.

V120 �
V1

2.2 k�

(a)

Va
8 V

(b)

+ 12 V
10 V

Va+ –

3.3 k�

– 8 V
10 � +

–
16 V

FIG. 5.95

Problem 26.

*27. For the network of Fig. 5.96, determine the voltages:
a. Va, Vb, Vc, Vd, Ve

b. Vab, Vdc, Vcb

c. Vac, Vdb

FIG. 5.96

Problem 27.

4 k�

b
47 V2 k�

20 V

a
3 k�

c d

e
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*29. For the integrated circuit of Fig. 5.98, determine V0, V4,
V7, V10, V23, V30, V67, V56, and I (magnitude and direc-
tion).

FIG. 5.98

Problem 29.

6 mA

2  k�

4 �

–8 V

–2 V

20 V

1
2

4
3 65

7
0

–2 V

4 V

I

*28. For the network of Fig. 5.97, determine the voltages:
a. Va, Vb, Vc, Vd

b. Vab, Vcb, Vcd

c. Vad, Vca 4 k�

2 k�a
b

c

6 k�

44 V

20 V

d

FIG. 5.97

Problem 28.

*30. For the integrated circuit of Fig. 5.99, determine V0, V03,
V2, V23, V12, and Ii.

3 k�
E

2 mA

3

21

0

20 V

Ii

1 k�5 mA

10 mA

FIG. 5.99

Problem 30.

VL 3.3 �

+

–

Rint  =  0.05 �

E  =  12 V

FIG. 5.100

Problems 32 and 35.

SECTION 5.8 Internal Resistance of Voltage Sources

31. Find the internal resistance of a battery that has a no-load
output voltage of 60 V and that supplies a current of 2 A
to a load of 28 �.

32. Find the voltage VL and the power loss in the internal
resistance for the configuration of Fig. 5.100.

33. Find the internal resistance of a battery that has a no-load
output voltage of 6 V and supplies a current of 10 mA to
a load of 1/2 k�.

SECTION 5.9 Voltage Regulation

34. Determine the voltage regulation for the battery of Prob-
lem 31.

35. Calculate the voltage regulation for the supply of Fig.
5.100.
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SECTION 5.12 Computer Analysis

PSpice or Electronics Workbench

36. Using schematics, determine the current I and the voltage
across each resistor for the network of Fig. 5.71(a).

37. Using schematics, determine the voltage Vab for the net-
work of Fig. 5.85(d).

Programming Language (C��, QBASIC, Pascal, etc.)

38. Write a program to determine the total resistance of any
number of resistors in series.

39. Write a program that will apply the voltage divider rule
to either resistor of a series circuit with a single source
and two series resistors.

40. Write a program to tabulate the current and power to the
resistor RL of the network of Fig. 5.101 for a range of
values for RL from 1 � to 20 �. Print out the value of RL

that results in maximum power to RL.
FIG. 5.101

Problem 40.

12 V

8 �

I PL

RL

GLOSSARY

Branch The portion of a circuit consisting of one or more
elements in series.

Circuit A combination of a number of elements joined at ter-
minal points providing at least one closed path through
which charge can flow.

Closed loop Any continuous connection of branches that
allows tracing of a path that leaves a point in one direction
and returns to that same point from another direction with-
out leaving the circuit.

Conventional current flow A defined direction for the flow
of charge in an electrical system that is opposite to that of
the motion of electrons.

Electron flow The flow of charge in an electrical system hav-
ing the same direction as the motion of electrons.

Internal resistance The inherent resistance found internal to
any source of energy.

Kirchhoff’s voltage law (KVL) The algebraic sum of the
potential rises and drops around a closed loop (or path) is
zero.

Series circuit A circuit configuration in which the elements
have only one point in common and each terminal is not
connected to a third, current-carrying element.

Voltage divider rule (VDR) A method by which a voltage in
a series circuit can be determined without first calculating
the current in the circuit.

Voltage regulation (VR) A value, given as a percent, that
provides an indication of the change in terminal voltage of
a supply with a change in load demand.



Parallel Circuits

6.1 INTRODUCTION

Two network configurations, series and parallel, form the framework
for some of the most complex network structures. A clear understand-
ing of each will pay enormous dividends as more complex methods and
networks are examined. The series connection was discussed in detail
in the last chapter. We will now examine the parallel circuit and all the
methods and laws associated with this important configuration.

6.2 PARALLEL ELEMENTS

Two elements, branches, or networks are in parallel if they have two
points in common.

In Fig. 6.1, for example, elements 1 and 2 have terminals a and b in
common; they are therefore in parallel.

b

1

a

2

FIG. 6.1

Parallel elements.

In Fig. 6.2, all the elements are in parallel because they satisfy the
above criterion. Three configurations are provided to demonstrate how
the parallel networks can be drawn. Do not let the squaring of the con-

6 P
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nection at the top and bottom of Fig. 6.2(a) and (b) cloud the fact that
all the elements are connected to one terminal point at the top and bot-
tom, as shown in Fig. 6.2(c).

In Fig. 6.3, elements 1 and 2 are in parallel because they have ter-
minals a and b in common. The parallel combination of 1 and 2 is then
in series with element 3 due to the common terminal point b.

In Fig. 6.4, elements 1 and 2 are in series due to the common point
a, but the series combination of 1 and 2 is in parallel with element 3 as
defined by the common terminal connections at b and c.

In Figs. 6.1 through 6.4, the numbered boxes were used as a general
symbol representing single resistive elements, or batteries, or complex
network configurations.

Common examples of parallel elements include the rungs of a lad-
der, the tying of more than one rope between two points to increase the
strength of the connection, and the use of pipes between two points to
split the water between the two points at a ratio determined by the area
of the pipes.

6.3 TOTAL CONDUCTANCE AND RESISTANCE

Recall that for series resistors, the total resistance is the sum of the
resistor values.

For parallel elements, the total conductance is the sum of the
individual conductances.

That is, for the parallel network of Fig. 6.5, we write

(6.1)

Since increasing levels of conductance will establish higher current
levels, the more terms appearing in Eq. (6.1), the higher the input cur-

GT � G1 � G2 � G3 � . . .� GN

P

a

b

(a)

a

b

(b)

1 2 3 1 2 31 2 3

a

b
(c)

FIG. 6.2

Different ways in which three parallel elements may appear.

a b 3

2

1

FIG. 6.3

Network in which 1 and 2 are in parallel and
3 is in series with the parallel combination of

1 and 2.

a

b

1

2

3

c

FIG. 6.4

Network in which 1 and 2 are in series and 3
is in parallel with the series combination of 

1 and 2.

G1 G2 G3 GN
GT

FIG. 6.5

Determining the total conductance of parallel conductances.
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rent level. In other words, as the number of resistors in parallel
increases, the input current level will increase for the same applied volt-
age—the opposite effect of increasing the number of resistors in series.

Substituting resistor values for the network of Fig. 6.5 will result in
the network of Fig. 6.6. Since G � 1/R, the total resistance for the net-
work can be determined by direct substitution into Eq. (6.1):

P

R1
RT R2 R3

FIG. 6.6

Determining the total resistance of parallel resistors.

(6.2)

Note that the equation is for 1 divided by the total resistance rather than
the total resistance. Once the sum of the terms to the right of the equals
sign has been determined, it will then be necessary to divide the result
into 1 to determine the total resistance. The following examples will
demonstrate the additional calculations introduced by the inverse rela-
tionship.

EXAMPLE 6.1 Determine the total conductance and resistance for the
parallel network of Fig. 6.7.

Solution:

GT � G1 � G2 � � � 0.333 S � 0.167 S � 0.5 S

and RT � �
G
1

T
� � � 2 �

EXAMPLE 6.2 Determine the effect on the total conductance and
resistance of the network of Fig. 6.7 if another resistor of 10 � were
added in parallel with the other elements.

Solution:

GT � 0.5 S � � 0.5 S � 0.1 S � 0.6 S

RT � �
G
1

T
� � � 1.667 �

Note, as mentioned above, that adding additional terms increases the
conductance level and decreases the resistance level.

1
�
0.6 S

1
�
10 �

1
�
0.5 S

1
�
6 �

1
�
3 �

�
R
1

T
� � �

R
1

1
� � �

R
1

2
� � �

R
1

3
� � . . .� �

R
1

N
�

R1

RT

R2 6 Ω
GT

3 Ω

FIG. 6.7

Example 6.1.
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Solution:

�
R
1

T
� � � �

� � � � 0.5 S � 0.25 S � 0.2 S

� 0.95 S

and RT � � 1.053 �

The above examples demonstrate an interesting and useful (for
checking purposes) characteristic of parallel resistors:

The total resistance of parallel resistors is always less than the value
of the smallest resistor.

In addition, the wider the spread in numerical value between two paral-
lel resistors, the closer the total resistance will be to the smaller resis-
tor. For instance, the total resistance of 3 � in parallel with 6 � is 2 �,
as demonstrated in Example 6.1. However, the total resistance of 3 � in
parallel with 60 � is 2.85 �, which is much closer to the value of the
smaller resistor.

For equal resistors in parallel, the equation becomes significantly
easier to apply. For N equal resistors in parallel, Equation (6.2) becomes

�
R
1

T
� � �

R
1

� � �
R
1

� � �
R
1

� � . . . � �
R
1

�

N

� N� �

and (6.3)

In other words, the total resistance of N parallel resistors of equal value
is the resistance of one resistor divided by the number (N) of parallel
elements.

For conductance levels, we have

(6.4)GT � NG

RT � �
N
R

�

1
�
R

1
�
0.95 S

1
�
5 �

1
�
4 �

1
�
2 �

1
�
R3

1
�
R2

1
�
R1

P

R1

RT

R3 5 Ω2 ΩR2

RT
R3  =  5 Ω

4 ΩR1  =  2 Ω R2 4 Ω=

FIG. 6.8

Example 6.3.

EXAMPLE 6.3 Determine the total resistance for the network of 
Fig. 6.8.
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EXAMPLE 6.4

a. Find the total resistance of the network of Fig. 6.9.
b. Calculate the total resistance for the network of Fig. 6.10.

Solutions:

a. Figure 6.9 is redrawn in Fig. 6.11:

P

R1 12 �RT R2 12 � R3 12 �

FIG. 6.9

Example 6.4: three parallel resistors 
of equal value.

R1 2 � R2 R3 R42 � 2 � 2 �

RT

FIG. 6.10

Example 6.4: four parallel resistors 
of equal value.

R1 12 � R2 R312 � 12 �RT

FIG. 6.11

Redrawing the network of Fig. 6.9.

R1 2 � R2 R3 R42 � 2 � 2 �RT

FIG. 6.12

Redrawing the network of Fig. 6.10.

RT � � � 4 �

b. Figure 6.10 is redrawn in Fig. 6.12:

RT � � � 0.5 �

In the vast majority of situations, only two or three parallel resistive
elements need to be combined. With this in mind, the following equa-
tions were developed to reduce the effects of the inverse relationship
when determining RT.

For two parallel resistors, we write

� �

Multiplying the top and bottom of each term of the right side of the
equation by the other resistor will result in

� � � � � � � �

�

and (6.5)

In words,

the total resistance of two parallel resistors is the product of the two
divided by their sum.

For three parallel resistors, the equation for RT becomes

RT � (6.6a)

requiring that we be careful with all the divisions into 1.

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

RT � �
R1

R

�
1R2

R2
�

R2 � R1
��

R1R2

R1
�
R1R2

R2
�
R1R2

1
�
R2

R1
�
R1

1
�
R1

R2
�
R2

1
�
RT

1
�
R2

1
�
R1

1
�
RT

2 �
�

4
R
�
N

12 �
�

3

R
�
N
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Equation (6.6a) can also be expanded into the form of Eq. (6.5),
resulting in Eq. (6.6b):

RT � (6.6b)

with the denominator showing all the possible product combinations
of the resistors taken two at a time. An alternative to either form of Eq.
(6.6) is to simply apply Eq. (6.5) twice, as will be demonstrated in
Example 6.6.

EXAMPLE 6.5 Repeat Example 6.1 using Eq. (6.5).

Solution:

RT � � � � 2 �

EXAMPLE 6.6 Repeat Example 6.3 using Eq. (6.6a).

Solution:

RT �

� � �
0.5 � 0

1
.25 � 0.2
�

� � 1.053 �

Applying Eq. (6.5) twice yields

R ′T � 2 � �� 4 � � � �
4
�
3

(2 �)(4 �)
��
2 � � 4 �

1
�
0.95

1
���

�
2

1
�
� � �

4
1
�
� � �

5
1
�
�

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

18 �
�

9
(3 �)(6 �)
��
3 � � 6 �

R1R2
�
R1 � R2

R1R2R3
���
R1R2 � R1R3 � R2R3

P

RT � R ′T �� 5 � � � 1.053 �

Recall that series elements can be interchanged without affecting the
magnitude of the total resistance or current. In parallel networks,

parallel elements can be interchanged without changing the total
resistance or input current.

Note in the next example how redrawing the network can often clarify
which operations and equations should be applied.

EXAMPLE 6.7 Calculate the total resistance of the parallel network of
Fig. 6.13.

��
4
3

� ���5 ��
��

�
4
3

� � � 5 �
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R ′T � �
N
R

� � � 2 �

R″T � �
R2

R
�
2R4

R4
� � � � 8 �

and RT � R′T �� R″T

� � � � 1.6 �

The preceding examples show direct substitution, in which once the
proper equation is defined, it is only a matter of plugging in the num-
bers and performing the required algebraic maneuvers. The next two
examples have a design orientation, where specific network parameters
are defined and the circuit elements must be determined.

EXAMPLE 6.8 Determine the value of R2 in Fig. 6.15 to establish a
total resistance of 9 k�.

Solution:

RT �

RT (R1 � R2) � R1R2

RT R1 � RT R2 � R1R2

RT R1 � R1R2 � RT R2

RT R1 � (R1 � RT)R2

and (6.7)R2 � �
R1

RT

�

R

R
1

T
�

R1R2
�
R1 � R2

16 �
�

10

(2 �)(8 �)
��
2 � � 8 �

R′TR″T
��
R′T � R″T

In parallel with

648 �
�

81

(9 �)(72 �)
��
9 � � 72 �

6 �
�

3

P

RT

R1 6 � R2 9 � R3 6 � R4 72 � R5 6 �

FIG. 6.13

Example 6.7.

RT R1 6 � R3 6 � R5 6 � R2 72 �R49 �

R′T R″T

FIG. 6.14

Network of Fig. 6.13 redrawn.

R2R1 12 k�
RT  =  9 k�

FIG. 6.15

Example 6.8.

Solution: The network is redrawn in Fig. 6.14:
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Substituting values:

R2 �

� � 36 k�

EXAMPLE 6.9 Determine the values of R1, R2, and R3 in Fig. 6.16 if
R2 � 2R1 and R3 � 2R2 and the total resistance is 16 k�.

Solution:

�
R
1

T
� � � �

� � �

since R3 � 2R2 � 2(2R1) � 4R1

and � � � � � � �

� 1.75� �
with R1 � 1.75(16 k�) � 28 k�

Recall for series circuits that the total resistance will always increase
as additional elements are added in series.

For parallel resistors, the total resistance will always decrease as
additional elements are added in parallel.

The next example demonstrates this unique characteristic of parallel
resistors.

EXAMPLE 6.10

a. Determine the total resistance of the network of Fig. 6.17.
b. What is the effect on the total resistance of the network of Fig. 6.17

if an additional resistor of the same value is added, as shown in Fig.
6.18?

c. What is the effect on the total resistance of the network of Fig. 6.17
if a very large resistance is added in parallel, as shown in Fig. 6.19?

d. What is the effect on the total resistance of the network of Fig. 6.17
if a very small resistance is added in parallel, as shown in Fig. 6.20?

Solutions:

a. RT � 30 � � 30 � � � 15 �

b. RT � 30 � � 30 � � 30 � � � 10 � � 15 �

RT decreased

c. RT � 30 � � 30 � � 1 k� � 15 � � 1 k�

� � 14.778 � � 15 �

Small decrease in RT

(15 �)(1000 �)
��
15 � � 1000 �

30 �
�

3

30 �
�

2

1
�
R1

1
�
16 k�

1
�
R1

1
�
4

1
�
R1

1
�
2

1
�
R1

1
�
16 k�

1
�
4R1

1
�
2R1

1
�
R1

1
�
16 k�

1
�
R3

1
�
R2

1
�
R1

108 k�
�

3

(9 k�)(12 k�)
��
12 k� � 9 k�

P

R1 30 � R2RT 30 �

FIG. 6.17

Example 6.10: two equal, parallel resistors.

R2RT 30 �R1 30 � R3 30 �

FIG. 6.18

Adding a third parallel resistor of equal value
to the network of Fig. 6.17.

R2RT 30 �R1 30 � R3 1 k�

FIG. 6.19

Adding a much larger parallel resistor to the
network of Fig. 6.17.

R2RT 30 �R1 30 � R3 0.1 �

FIG. 6.20

Adding a much smaller parallel resistor to the 
network of Fig. 6.17.

R3RT  =  16 k�
R2R1

FIG. 6.16

Example 6.9.
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d. RT � 30 � � 30 � � 0.1 � � 15 � � 0.1 �

� � 0.099 � � 15 �

Significant decrease in RT

In each case the total resistance of the network decreased with the
increase of an additional parallel resistive element, no matter how large
or small. Note also that the total resistance is also smaller than that of
the smallest parallel element.

6.4 PARALLEL CIRCUITS

The network of Fig. 6.21 is the simplest of parallel circuits. All the ele-
ments have terminals a and b in common. The total resistance is deter-
mined by RT � R1R2 /(R1 � R2), and the source current by Is � E/RT.
Throughout the text, the subscript s will be used to denote a property of
the source. Since the terminals of the battery are connected directly
across the resistors R1 and R2, the following should be obvious:

The voltage across parallel elements is the same.

Using this fact will result in

V1 � V2 � E

and I1 � �

with I2 � �

If we take the equation for the total resistance and multiply both
sides by the applied voltage, we obtain

E� � � E� � �
and � �

Substituting the Ohm’s law relationships appearing above, we find that
the source current

Is � I1 � I2

permitting the following conclusion:

For single-source parallel networks, the source current (Is ) is equal
to the sum of the individual branch currents.

The power dissipated by the resistors and delivered by the source
can be determined from

P1 � V1I1 � I2
1R1 �

P2 � V2I2 � I2
2R2 �

Ps � EIs � I2
sRT �

E2

�
RT

V 2
2

�
R2

V 2
1

�
R1

E
�
R2

E
�
R1

E
�
RT

1
�
R2

1
�
R1

1
�
RT

E
�
R2

V2
�
R2

E
�
R1

V1
�
R1

(15 �)(0.1 �)
��
15 � � 0.1 �

P

R1

–

 +

V1E V2 R2

I2I1

RT

Is

a

b

–

 +

FIG. 6.21

Parallel network.
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EXAMPLE 6.11 For the parallel network of Fig. 6.22:

a. Calculate RT.
b. Determine Is.
c. Calculate I1 and I2, and demonstrate that Is � I1 � I2.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the

total power dissipated by the resistive elements.

Solutions:

a. RT � � � � 6 �

b. Is � � � 4.5 A

c. I1 � � � � 3 A

I2 � � � � 1.5 A

Is � I1 � I2

4.5 A � 3 A � 1.5 A

4.5 A � 4.5 A (checks)

d. P1 � V1I1 � EI1 � (27 V)(3 A) � 81 W
P2 � V2I2 � EI2 � (27 V)(1.5 A) � 40.5 W

e. Ps � EIs � (27 V)(4.5 A) � 121.5 W
� P1 � P2 � 81 W � 40.5 W � 121.5 W

EXAMPLE 6.12 Given the information provided in Fig. 6.23:

27 V
�
18 �

E
�
R2

V2
�
R2

27 V
�
9 �

E
�
R1

V1
�
R1

27 V
�
6 �

E
�
RT

162 �
�

27
(9 �)(18 �)
��
9 � � 18 �

R1R2
�
R1 � R2

P

I2

R3R1 R210 � 20 �E
 –

 +

Is

RT  =  4 � I1  =  4 A

FIG. 6.23

Example 6.12.

a. Determine R3.
b. Calculate E.
c. Find Is.
d. Find I2.
e. Determine P2.

Solutions:

a. � � �

� � �
1

�
R3

1
�
20 �

1
�
10 �

1
�
4 �

1
�
R3

1
�
R2

1
�
R1

1
�
RT

R1 V1E R2

I2I1

RT

Is

–

 +

9 � V218 �

–

 +

27 V

FIG. 6.22

Example 6.11.
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0.25 S � 0.1 S � 0.05 S �

0.25 S � 0.15 S �

� 0.1 S

R3 � � 10 �

b. E � V1 � I1R1 � (4 A)(10 �) � 40 V

c. Is � � � 10 A

d. I2 � � � � 2 A

e. P2 � I2
2R2 � (2 A)2(20 �) � 80 W

Mathcad Solution: This example provides an excellent opportunity
to practice our skills using Mathcad. As shown in Fig. 6.24, the known
parameters and quantities of the network are entered first, followed by
an equation for the unknown resistor R3. Note that after the first divi-
sion operator was selected, a left bracket was established (to be fol-
lowed eventually by a right enclosure bracket) to tell the computer that
the mathematical operations in the denominator must be carried out first
before the division into 1. In addition, each individual division into 1 is
separated by brackets to ensure that the division operation is performed
before each quantity is added to the neighboring factor. Finally, keep in
mind that the Mathcad bracket must encompass each individual expres-
sion of the denominator before you place the right bracket in place.

40 V
�
20 �

E
�
R2

V2
�
R2

40 V
�
4 �

E
�
RT

1
�
0.1 S

1
�
R3

1
�
R3

1
�
R3

P

FIG. 6.24

Using Mathcad to confirm the results of Example 6.12.
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In each case, the quantity of interest was entered below the defining
equation to obtain the numerical result by selecting an equal sign. As
expected, all the results match the longhand solution.

6.5 KIRCHHOFF’S CURRENT LAW

Kirchhoff’s voltage law provides an important relationship among volt-
age levels around any closed loop of a network. We now consider
Kirchhoff’s current law (KCL), which provides an equally important
relationship among current levels at any junction.

Kirchhoff’s current law (KCL) states that the algebraic sum of the
currents entering and leaving an area, system, or junction is zero.

In other words,

the sum of the currents entering an area, system, or junction must
equal the sum of the currents leaving the area, system, or junction.

In equation form:

(6.8)

In Fig. 6.25, for instance, the shaded area can enclose an entire sys-
tem, a complex network, or simply a junction of two or more paths. In
each case the current entering must equal that leaving, as witnessed by
the fact that

I1 � I4 � I2 � I3

4 A � 8 A � 2 A � 10 A
12 A � 12 A

The most common application of the law will be at the junction of
two or more paths of current flow, as shown in Fig. 6.26. For some stu-
dents it is difficult initially to determine whether a current is entering or
leaving a junction. One approach that may help is to picture yourself as
standing on the junction and treating the path currents as arrows. If the
arrow appears to be heading toward you, as is the case for I1 in Fig.
6.26, then it is entering the junction. If you see the tail of the arrow
(from the junction) as it travels down its path away from you, it is leav-
ing the junction, as is the case for I2 and I3 in Fig. 6.26.

Applying Kirchhoff’s current law to the junction of Fig. 6.26:

Σ Ientering � Σ Ileaving

6 A � 2 A � 4 A
6 A � 6 A (checks)

In the next two examples, unknown currents can be determined by
applying Kirchhoff’s current law. Simply remember to place all cur-
rent levels entering a junction to the left of the equals sign and the
sum of all currents leaving a junction to the right of the equals sign.
The water-in-the-pipe analogy is an excellent one for supporting and
clarifying the preceding law. Quite obviously, the sum total of the
water entering a junction must equal the total of the water leaving the
exit pipes.

In technology the term node is commonly used to refer to a junction
of two or more branches. Therefore, this term will be used frequently in
the analyses that follow.

Σ Ientering � Σ Ileaving

P

System,
complex
network,
junction

I2

I3

I4

I1
4 A 2 A

10 A

8 A

FIG. 6.25

Introducing Kirchhoff’s current law.

I1 = 6 A

I3 = 4 A

I2 = 2 A

FIG. 6.26

Demonstrating Kirchhoff’s current law.
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EXAMPLE 6.13 Determine the currents I3 and I4 of Fig. 6.27 using
Kirchhoff’s current law.

Solution: We must first work with junction a since the only un-
known is I3. At junction b there are two unknowns, and both cannot be
determined from one application of the law.

P

I3

I5 = 1 A

I4

b

I1 = 2 A

I2 = 3 A

a

FIG. 6.27

Example 6.13.

R1 R3

R2 R4
R5

I2  =  4 A

I  =  5 A
I5

a

I1 I3

I4

b

d

c

FIG. 6.28

Example 6.14.

At a:

Σ Ientering � Σ Ileaving

I1 � I2 � I3

2 A � 3 A � I3

I3 � 5 A

At b:

Σ Ientering � Σ Ileaving

I3 � I5 � I4

5 A � 1 A � I4

I4 � 6 A

EXAMPLE 6.14 Determine I1, I3, I4, and I5 for the network of Fig.
6.28.

Solution: At a:

Σ Ientering � Σ Ileaving

I � I1 � I2

5 A � I1 � 4 A

Subtracting 4 A from both sides gives

5 A � 4 A � I1 � 4 A � 4 A
I1 � 5 A � 4 A � 1 A
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At b:

Σ Ientering � Σ Ileaving

I1 � I3 � 1 A

as it should, since R1 and R3 are in series and the current is the same in
series elements.

At c:

I2 � I4 � 4 A

for the same reasons given for junction b.
At d:

Σ Ientering � Σ Ileaving

I3 � I4 � I5

1 A � 4 A � I5

I5 � 5 A

If we enclose the entire network, we find that the current entering is
I � 5 A; the net current leaving from the far right is I5 � 5 A. The two
must be equal since the net current entering any system must equal that
leaving.

EXAMPLE 6.15 Determine the currents I3 and I5 of Fig. 6.29 through
applications of Kirchhoff’s current law.

Solution: Note that since node b has two unknown quantities and
node a has only one, we must first apply Kirchhoff’s current law to
node a. The result can then be applied to node b.

For node a,

I1 � I2 � I3

4 A � 3 A � I3

and I3 � 7 A

For node b,

I3 � I4 � I5

7 A � 1 A � I5

and I5 � 7 A � 1 A � 6 A

EXAMPLE 6.16 Find the magnitude and direction of the currents I3,
I4, I6, and I7 for the network of Fig. 6.30. Even though the elements are
not in series or parallel, Kirchhoff’s current law can be applied to deter-
mine all the unknown currents.

Solution: Considering the overall system, we know that the current
entering must equal that leaving. Therefore,

I7 � I1 � 10 A

Since 10 A are entering node a and 12 A are leaving, I3 must be sup-
plying current to the node. 

Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

10 A � I3 � 12 A

and I3 � 12 A � 10 A � 2 A

At node b, since 12 A are entering and 8 A are leaving, I4 must be
leaving. Therefore,

P

b

I2 = 3 A

I4 = 1 A

I5

a

I1 = 4 A

I3

FIG. 6.29

Example 6.15.

I2 = 12 A

I1 = 10 A

I5 = 8 A

I3 I6

I7d

c

a

b

I4

FIG. 6.30

Example 6.16.
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I2 � I4 � I5

12 A � I4 � 8 A

and I4 � 12 A � 8 A � 4 A

At node c, I3 is leaving at 2 A and I4 is entering at 4 A, requiring that
I6 be leaving. Applying Kirchhoff’s current law at node c,

I4 � I3 � I6

4 A � 2 A � I6

and I6 � 4 A � 2 A � 2 A

As a check at node d,

I5 � I6 � I7

8 A � 2 A � 10 A
10 A � 10 A (checks)

Looking back at Example 6.11, we find that the current entering the
top node is 4.5 A and the current leaving the node is I1 � I2 � 3 A �
1.5 A � 4.5 A. For Example 6.12, we have

Is � I1 � I2 � I3

10 A � 4 A � 2 A � I3

and I3 � 10 A � 6 A � 4 A

The application of Kirchhoff’s current law is not limited to networks
where all the internal connections are known or visible. For instance, all
the currents of the integrated circuit of Fig. 6.31 are known except I1.
By treating the system as a single node, we can apply Kirchhoff’s cur-
rent law using the following values to ensure an accurate listing of all
known quantities:

Ii Io

10 mA 5 mA
4 mA 4 mA
8 mA 2 mA

22 mA 6 mA
17 mA

Noting the total input current versus that leaving clearly reveals that I1

is a current of 22 mA � 17 mA � 5 mA leaving the system.

6.6 CURRENT DIVIDER RULE

As the name suggests, the current divider rule (CDR) will determine
how the current entering a set of parallel branches will split between the
elements.

For two parallel elements of equal value, the current will divide
equally.

For parallel elements with different values, the smaller the resistance,
the greater the share of input current.

For parallel elements of different values, the current will split with a
ratio equal to the inverse of their resistor values.

For example, if one of two parallel resistors is twice the other, then
the current through the larger resistor will be half the other.

P

5 mA 10 mA

4 mA

4 mA

8 mA2 mA

6 mA

I1

20 V

IC

FIG. 6.31

Integrated circuit.
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In Fig. 6.32, since I1 is 1 mA and R1 is six times R3, the current
through R3 must be 6 mA (without making any other calculations
including the total current or the actual resistance levels). For R2 the
current must be 2 mA since R1 is twice R2. The total current must then
be the sum of I1, I2, and I3, or 9 mA. In total, therefore, knowing only
the current through R1, we were able to find all the other currents of the
configuration without knowing anything more about the network.

P

For networks in which only the resistor values are given along with the
input current, the current divider rule should be applied to determine the
various branch currents. It can be derived using the network of Fig. 6.33.

1 mA

R1 6 � R2 3 � R3 1 �

IT = 9 mA

I3 must be 6 mA (      = 6)R1

R3

I2 must be 2 mA (      = 2)R1

R2
I1 =

FIG. 6.32

Demonstrating how current will divide between unequal resistors.

V R1 R2 R3 RNRT

I

I1 I2 I3 IN

+

–

FIG. 6.33

Deriving the current divider rule.

The input current I equals V/RT, where RT is the total resistance of the
parallel branches. Substituting V � IxRx into the above equation, where Ix

refers to the current through a parallel branch of resistance Rx, we have

I � �

and (6.9)

which is the general form for the current divider rule. In words, the cur-
rent through any parallel branch is equal to the product of the total
resistance of the parallel branches and the input current divided by the
resistance of the branch through which the current is to be determined.

For the current I1,

I1 � I

and for I2,

I2 � I

and so on.

RT
�
R2

RT
�
R1

Ix � �
R

R
T

x
�I

IxRx
�
RT

V
�
RT
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For the particular case of two parallel resistors, as shown in Fig.
6.34,

RT �

and I1 � I � I

and (6.10)

Similarly for I2,

(6.11)

In words, for two parallel branches, the current through either branch is
equal to the product of the other parallel resistor and the input current
divided by the sum (not the total parallel resistance) of the two parallel
resistances.

EXAMPLE 6.17 Determine the current I2 for the network of Fig. 6.35
using the current divider rule.

Solution:

I2 � � � �
1
4
2
�(6 A) � �

1
3

�(6 A)

� 2 A

EXAMPLE 6.18 Find the current I1 for the network of Fig. 6.36.

(4 k�)(6 A)
��
4 k� � 8 k�

R1Is
��
R1 � R2

I1

R2I

R1 � R2
�

I2

R1I

R1 � R2
�

Note difference in subscripts.

R1R2
�
—
R1

R
�

1

R2—
RT
�
R1

R1R2
�
R1 � R2

P

R1 R2

I2

Is  =  6 A

Is  =  6 A

4 k� 8 k�

FIG. 6.35

Example 6.17.

R1 R2

RT

I  =  42 mA

I1

R36 � 24 � 48 �

FIG. 6.36

Example 6.18

Solution: There are two options for solving this problem. The first is
to use Eq. (6.9) as follows:

� � � � 0.1667 S � 0.0417 S � 0.0208 S

� 0.2292 S

1
�
48 �

1
�
24 �

1
�
6 �

1
�
RT

R1 R2

I

I1 I2

FIG. 6.34

Developing an equation for current division 
between two parallel resistors.
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and RT � � 4.363 �

with I1 � I � (42 mA) � 30.54 mA

The second option is to apply Eq. (6.10) once after combining R2

and R3 as follows:

24 � � 48 � � � 16 �

and I1 � � 30.54 mA

Both options generated the same answer, leaving you with a choice
for future calculations involving more than two parallel resistors.

EXAMPLE 6.19 Determine the magnitude of the currents I1, I2, and I3

for the network of Fig. 6.37.

16 �(42 mA)
��
16 � � 6 �

(24 �)(48 �)
��
24 � � 48 �

4.363 �
�

6 �

RT
�
R1

1
�
0.2292 S

P

Solution: By Eq. (6.10), the current divider rule,

I1 � �
R1

R
�
2 I

R2
� � � 8 A

Applying Kirchhoff’s current law,

I � I1 � I2

and I2 � I � I1 � 12 A � 8 A � 4 A

or, using the current divider rule again,

I2 � �
R1

R
�

1I
R2

� � � 4 A

The total current entering the parallel branches must equal that leaving.
Therefore,

I3 � I � 12 A

or I3 � I1 � I2 � 8 A � 4 A � 12 A

EXAMPLE 6.20 Determine the resistance R1 to effect the division of
current in Fig. 6.38.

Solution: Applying the current divider rule,

I1 � �
R1

R
�
2 I

R2
�

(2 �)(12 A)
��
2 � � 4 �

(4 �)(12 A)
��
2 � � 4 �

R1

2 �

4 �

I3

R2

I1

I2

I  =  12 A

FIG. 6.37

Example 6.19.

R1

R2

7 �

I = 27 mA

I1 = 21 mA

FIG. 6.38

Example 6.20.
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and (R1 � R2)I1 � R2 I
R1I1 � R2 I1 � R2 I

R1I1 � R2 I � R2 I1

R1 � �
R2(I

I
�

1

I1)�

Substituting values:

R1 �

� 7 ���
2
6
1
�� � � 2 �

An alternative approach is

I2 � I � I1 (Kirchhoff’s current law)
� 27 mA � 21 mA � 6 mA

V2 � I2R2 � (6 mA)(7 �) � 42 mV

V1 � I1R1 � V2 � 42 mV

and R1 � � � 2 �

From the examples just described, note the following:

Current seeks the path of least resistance.

That is,

1. More current passes through the smaller of two parallel resistors.
2. The current entering any number of parallel resistors divides into

these resistors as the inverse ratio of their ohmic values. This rela-
tionship is depicted in Fig. 6.39.

42 mV
�
21 mA

V1�
I1

42 �
�

21

7 �(27 mA � 21 mA)
���

21 mA

P

I1

4 � 4 �

I

I1

I

2I1

1 � 2 �

I

I1

I

3I1

2 � 6 �

I

I1

I

6I1

1 � 3 �

I

2I1

I

6 �

I1

I1  =
I
9

I1  =
I
4

I1  =
I
3

I1  =
I
2

FIG. 6.39

Current division through parallel branches.

6.7 VOLTAGE SOURCES IN PARALLEL

Voltage sources are placed in parallel as shown in Fig. 6.40 only if they
have the same voltage rating. The primary reason for placing two or
more batteries in parallel of the same terminal voltage would be to
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increase the current rating (and, therefore, the power rating) of the
source. As shown in Fig. 6.40, the current rating of the combination is
determined by Is � I1 � I2 at the same terminal voltage. The resulting
power rating is twice that available with one supply.

If two batteries of different terminal voltages were placed in parallel,
both would be left ineffective or damaged because the terminal voltage
of the larger battery would try to drop rapidly to that of the lower
supply. Consider two lead-acid car batteries of different terminal
voltage placed in parallel, as shown in Fig. 6.41.

The relatively small internal resistances of the batteries are the only
current-limiting elements of the resulting series circuit. The current is

I � � � � 120 A

which far exceeds the continuous drain rating of the larger supply,
resulting in a rapid discharge of E1 and a destructive impact on the
smaller supply.

6.8 OPEN AND SHORT CIRCUITS

Open circuits and short circuits can often cause more confusion and dif-
ficulty in the analysis of a system than standard series or parallel con-
figurations. This will become more obvious in the chapters to follow
when we apply some of the methods and theorems.

An open circuit is simply two isolated terminals not connected by
an element of any kind, as shown in Fig. 6.42(a). Since a path for con-
duction does not exist, the current associated with an open circuit must
always be zero. The voltage across the open circuit, however, can be
any value, as determined by the system it is connected to. In summary,
therefore,

an open circuit can have a potential difference (voltage) across its
terminals, but the current is always zero amperes.

6 V
�
0.05 �

12 V � 6 V
��
0.03 � � 0.02 �

E1 � E2
��
Rint1 � Rint2

I1

12 VE1 E2 E12 V 12 V

I2
Is Is  =  I1  +  I2

FIG. 6.40

Parallel voltage sources.

E1 E2

Rint1
Rint2

I

0.02 �0.03 �

6 V12 V

FIG. 6.41

Parallel batteries of different terminal 
voltages.

V

I = 0 A

+

–
V = 0 V

Short circuit

+

–

Open circuit

I

(a) (b)

FIG. 6.42

Two special network configurations.–

+

I  =  0  A
a

b

 –

+
E Vopen circuit  =  E volts

FIG. 6.43

Demonstrating the characteristics of an 
open circuit.

In Fig. 6.43, an open circuit exists between terminals a and b.As shown
in the figure, the voltage across the open-circuit terminals is the supply
voltage, but the current is zero due to the absence of a complete circuit.
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A short circuit is a very low resistance, direct connection between
two terminals of a network, as shown in Fig. 6.42(b). The current
through the short circuit can be any value, as determined by the system
it is connected to, but the voltage across the short circuit will always be
zero volts because the resistance of the short circuit is assumed to be
essentially zero ohms and V � IR � I(0 �) � 0 V.

In summary, therefore,

a short circuit can carry a current of a level determined by the
external circuit, but the potential difference (voltage) across its
terminals is always zero volts.

In Fig. 6.44(a), the current through the 2-� resistor is 5 A. If a short
circuit should develop across the 2-� resistor, the total resistance of the
parallel combination of the 2-� resistor and the short (of essentially zero

ohms) will be 2 � �� 0 � � � 0 �, and the current will rise to

very high levels, as determined by Ohm’s law:

I � � ∞ A
10 V
�
0 �

E
�
R

(2 �)(0 �)
��
2 � � 0 �

P

I  =  5 A

–

+
E 2 �R10 V

10-A fuse

–

+
E R10 V

RT
IR  =  0 A

I

Vshort circuit  =  0 V

–

“Shorted out” Short circuit

(a) (b)

+

FIG. 6.44

Demonstrating the effect of a short circuit on current levels.

R1

2 kΩ

R2

4 kΩ+

–

20 VE

a

b

+

–

Vab

I

FIG. 6.45

Example 6.21.

The effect of the 2-� resistor has effectively been “shorted out” by
the low-resistance connection. The maximum current is now limited
only by the circuit breaker or fuse in series with the source.

For the layperson, the terminology short circuit or open circuit is
usually associated with dire situations such as power loss, smoke, or
fire. However, in network analysis both can play an integral role in
determining specific parameters about a system. Most often, however, if
a short-circuit condition is to be established, it is accomplished with a
jumper—a lead of negligible resistance to be connected between the
points of interest. Establishing an open circuit simply requires making
sure that the terminals of interest are isolated from each other.

EXAMPLE 6.21 Determine the voltage Vab for the network of Fig.
6.45.

Solution: The open circuit requires that I be zero amperes. The volt-
age drop across both resistors is therefore zero volts since V � IR �
(0)R � 0 V. Applying Kirchhoff’s voltage law around the closed loop,

Vab � E � 20 V
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EXAMPLE 6.22 Determine the voltages Vab and Vcd for the network
of Fig. 6.46.

Solution: The current through the system is zero amperes due to the
open circuit, resulting in a 0-V drop across each resistor. Both resistors
can therefore be replaced by short circuits, as shown in Fig. 6.47. The
voltage Vab is then directly across the 10-V battery, and

Vab � E1 � 10 V

The voltage Vcd requires an application of Kirchhoff’s voltage law:

�E1 � E2 � Vcd � 0

or Vcd � E1 � E2 � 10 V � 30 V � �20 V

The negative sign in the solution simply indicates that the actual volt-
age Vcd has the opposite polarity of that appearing in Fig. 6.46.

EXAMPLE 6.23 Determine the unknown voltage and current for each
network of Fig. 6.48.

P

R1

10 Ω

R2

50 Ω

+

–

10 V

c

d

+

–

VcdE1

a

b

E2
+ –

+

–

Vab

30 V

FIG. 6.46

Example 6.22.

+

–

10 V

c

d

+

–

VcdE1

a

b

E2+ –

+

–

Vab

30 V

FIG. 6.47

Circuit of Fig. 6.46 redrawn.

(b)

22 V

R1

1.2 k�

E

I

+  V  –R2

8.2 k�

(a)

R1 6 �

IT = 12 mA

+

V

–

I

R2 12 �

FIG. 6.48

Example 6.23.

(b)

22 V

R1

E

I = 0 A

+  22 V  –R2

(a)

R1 6 �

I = 0 A

R2 12 �

I = 0 A 12 mA
+

V = 0 V

–

FIG. 6.49

Solutions to Example 6.23.

Solution: For the network of Fig. 6.48(a), the current IT will take the
path of least resistance, and, since the short-circuit condition at the end
of the network is the least-resistance path, all the current will pass
through the short circuit. This conclusion can be verified using Eq.
(6.9). The voltage across the network is the same as that across the
short circuit and will be zero volts, as shown in Fig. 6.49(a).

For the network of Fig. 6.48(b), the open-circuit condition requires
that the current be zero amperes. The voltage drops across the resistors
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must therefore be zero volts, as determined by Ohm’s law [VR � IR �
(0)R � 0 V], with the resistors simply acting as a connection from the
supply to the open circuit. The result is that the open-circuit voltage
will be E � 22 V, as shown in Fig. 6.49(b).

EXAMPLE 6.24 Calculate the current I and the voltage V for the net-
work of Fig. 6.50.

Solution: The 10-k� resistor has been effectively shorted out by the
jumper, resulting in the equivalent network of Fig. 6.51. Using Ohm’s
law,

I � � � 3.6 mA

and V � E � 18 V

EXAMPLE 6.25 Determine V and I for the network of Fig. 6.52 if the
resistor R2 is shorted out.

Solution: The redrawn network appears in Fig. 6.53. The current
through the 3-� resistor is zero due to the open circuit, causing all the
current I to pass through the jumper. Since V3Q � IR � (0)R � 0 V, the
voltage V is directly across the short, and

V � 0 V

with I � � � 3 A

6.9 VOLTMETERS: LOADING EFFECT

In Chapters 2 and 5, it was noted that voltmeters are always placed
across an element to measure the potential difference. We now realize
that this connection is synonymous with placing the voltmeter in paral-
lel with the element. The insertion of a meter in parallel with a resistor
results in a combination of parallel resistors as shown in Fig. 6.54.
Since the resistance of two parallel branches is always less than the
smaller parallel resistance, the resistance of the voltmeter should be as
large as possible (ideally infinite). In Fig. 6.54, a DMM with an inter-
nal resistance of 11 M� is measuring the voltage across a 10-k� resis-
tor. The total resistance of the combination is

RT � 10 k� �� 11 M� � � 9.99 k�

and we find that the network is essentially undisturbed. However, if we
use a VOM with an internal resistance of 50 k� on the 2.5-V scale, the
parallel resistance is

RT � 10 k� �� 50 k� � � 8.33 k�

and the behavior of the network will be altered somewhat since the 
10-k� resistor will now appear to be 8.33 k� to the rest of the network.

The loading of a network by the insertion of meters is not to be taken
lightly, especially in research efforts where accuracy is a primary con-
sideration. It is good practice always to check the meter resistance level

(104 �)(50 � 103 �)
���
104 � � (50 � 103 �)

(104 �)(11 � 106 �)
���
104 � � (11 � 106 �)

6 V
�
2 �

E
�
R1

18 V
�
5 k�

E
�
R1

P

 –

 +

R1

+  V  –

E 18 V

5 k�

I

FIG. 6.51

Network of Fig. 6.50 redrawn.

R1

2 Ω

R3

3 Ω
+

–

6 VE

+

–

V

I

R2 10 �

FIG. 6.52

Example 6.25.

 –

 +

E 6 V

R1

2 �

R3

3 �

I –

+

V

FIG. 6.53

Network of Fig. 6.52 with R2 replaced by 
a jumper.

FIG. 6.54

Voltmeter loading.

I

+ –

11 M�

DMM

10 k�

 –

 +

R1 R2

+  V  –

E 18 V

5 k� 10 k�

I

FIG. 6.50

Example 6.24.
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against the resistive elements of the network before making measure-
ments. A factor of 10 between resistance levels will usually provide
fairly accurate meter readings for a wide range of applications.

Most DMMs have internal resistance levels in excess of 10 M� on
all voltage scales, while the internal resistance of VOMs is sensitive to
the chosen scale. To determine the resistance of each scale setting of a
VOM in the voltmeter mode, simply multiply the maximum voltage of
the scale setting by the ohm/volt (�/V) rating of the meter, normally
found at the bottom of the face of the meter.

For a typical ohm/volt rating of 20,000, the 2.5-V scale would have
an internal resistance of

(2.5 V)(20,000 �/V) � 50 k�

whereas for the 100-V scale, it would be

(100 V)(20,000 �/V) � 2 M�

and for the 250-V scale,

(250 V)(20,000 �/V) � 5 M�

EXAMPLE 6.26 For the relatively simple network of Fig. 6.55:
a. What is the open-circuit voltage Vab?
b. What will a DMM indicate if it has an internal resistance of 11 M�?

Compare your answer to the results of part (a).
c. Repeat part (b) for a VOM with an �/V rating of 20,000 on the 

100-V scale.

Solutions:

a. Vab � 20 V
b. The meter will complete the circuit as shown in Fig. 6.56. Using the

voltage divider rule,

Vab � � 18.33 V

c. For the VOM, the internal resistance of the meter is

Rm � 100 V(20,000 �/V) � 2 M�

and Vab � � 13.33 V

revealing the need to consider carefully the internal resistance of the
meter in some instances.

Measurement Techniques

For components in series, the placement of ammeters and voltmeters
was quite straightforward if a few simple rules were followed. For par-
allel circuits, however, some of the measurements can require a little
extra care. For any configuration keep in mind that all voltage measure-
ments can be made without disturbing the network at all. For ammeters,
however, the branch in which the current is to be measured must be
opened and the meter inserted.

Since the voltage is the same across parallel elements, only one volt-
meter will be required as shown in Fig. 6.57. It is a two-point measure-
ment, with the negative or black lead connected to the point of lower
potential and the positive or red lead to the point of higher potential to

2 M�(20 V)
��
2 M� � 1 M�

11 M�(20 V)
��
11 M� � 1 M�

P

Vab

+

–

R

1 M�

+

–
E 20 V

a

b

FIG. 6.55

Example 6.26.

20 V

+

–

Vab 11 M� V

R

1 M�

E

a

b

FIG. 6.56

Applying a DMM to the circuit of Fig. 6.55.
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This time, rather than using meters to make the measurements, we
will use indicators. The Indicators key pad is the tenth down on the left
toolbar. It has the appearance of an LCD display with the number 8.
Once it has been selected, eight possible indicators will appear. For this
example, the A indicator, representing an ammeter, will be used since
we are interested only in the curent levels. When A has been selected,
a Component Browser will appear with four choices under the Com-
ponent Name List; each option refers to a position for the ammeter.
The H means “horizontal” as shown in the picture window when the
dialog box is first opened. The HR means “horizontal,” but with the
polarity reversed. The V is for a vertical configuration with the positive
sign at the top, and the VR is the vertical position with the positive sign
at the bottom. Simply select the one you want followed by an OK, and
your choice will appear in that position on the screen. Click it into posi-
tion, and you can return for the next indicator. Once all the elements are
in place and their values set, simulation can be initiated with the
sequence Simulate-Run. The results shown in Fig. 6.66 will appear.

Note that all the results appear with the indicator boxes. All are pos-
itive results because the ammeters were all entered with a configuration
that would result in conventional current entering the positive current.
Also note that as was true for inserting the meters, the indicators are
placed in series with the branch in which the current is to be measured.

PROBLEMS

SECTION 6.2 Parallel Elements

1. For each configuration of Fig. 6.67, determine which ele-
ments are in series and which are in parallel.

(a) (b) (c)

432

1

2

1 3
4

3

2
1

FIG. 6.67

Problem 1.

FIG. 6.68

Problem 2.

R2E

R1

R5 R7

R4 R6

R3

2. For the network of Fig. 6.68:
a. Which elements are in parallel?
b. Which elements are in series?
c. Which branches are in parallel?
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SECTION 6.3 Total Conductance and Resistance

3. Find the total conductance and resistance for the net-
works of Fig. 6.69.

FIG. 6.69

Problem 3.

(Standard values)

RT
9.1 � 9.1 � 2.2 � 9.1 � 2.2 � 4.7 �

GT

(f)

RT 4 � 8 � 4 �

(d)

8 �

RT 3 k� 2 k� 6 k�

GT

(b)

RT
10 � 2 k� 40 k�

GT

(e)

(Standard
values)

RT 3.3 k� 5.6 k�

GT

(c)

RT 9 � 18 �

GT

(a)

GT

4. The total conductance of each network of Fig. 6.70 is
specified. Find the value in ohms of the unknown resis-
tances.

FIG. 6.70

Problem 4.

(a) (b)

4 � R 6 �
GT  =  0.55 S

5 k� R8 k�
GT  =  0.45 mS

5. The total resistance of each circuit of Fig. 6.71 is
specified. Find the value in ohms of the unknown
resistances.

FIG. 6.71

Problem 5.

(a) (b)

18 � R 18 �
RT  =  6 �

9 �   =  R1 18 �
RT  =  4 �

R1  R2
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*6. Determine the unknown resistors of Fig. 6.72 given the
fact that R2 � 5R1 and R3 � (1/2)R1.

*7. Determine R1 for the network of Fig. 6.73.

FIG. 6.72

Problem 6.

R1

R2

R3

RT  =  20  �

FIG. 6.73

Problem 7.

R1

24 �

RT  =  10 � 120 �

24 �

SECTION 6.4 Parallel Circuits

8. For the network of Fig. 6.74:
a. Find the total conductance and resistance.
b. Determine Is and the current through each parallel

branch.
c. Verify that the source current equals the sum of the

parallel branch currents.
d. Find the power dissipated by each resistor, and note

whether the power delivered is equal to the power dis-
sipated.

e. If the resistors are available with wattage ratings of
1/2, 1, 2, and 50 W, what is the minimum wattage rat-
ing for each resistor?

9. Repeat Problem 8 for the network of Fig. 6.75.

FIG. 6.74

Problem 8.

R1E R2

I2I1Is

48 V 8 k� 24 k�

RT, GT

R1 R2

I2I1Is

0.9 V 3 � 6 �

RT

GT

I3

R3 1.5 �

FIG. 6.75

Problem 9.

FIG. 6.76

Problem 10.

R1 R2

I2I1Is

2.2 k� 4.7 k�

RT, GT

I3

R3 6.8 k�E 12 V

10. Repeat Problem 8 for the network of Fig. 6.76 con-
structed of standard resistor values.
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FIG. 6.77

Problem 11.

FIG. 6.78

Problems 12 and 37.

Washer
400-W

TV
360-W

Ten 60-W
bulbs in parallel

breaker

Circuit
(20 A)

120 V

11. Eight holiday lights are connected in parallel as shown in
Fig. 6.77.
a. If the set is connected to a 120-V source, what is the

current through each bulb if each bulb has an internal
resistance of 1.8 k�?

b. Determine the total resistance of the network.
c. Find the power delivered to each bulb.
d.. If one bulb burns out (that is, the filament opens),

what is the effect on the remaining bulbs?
e. Compare the parallel arrangement of Fig. 6.77 to the

series arrangement of Fig. 5.87. What are the relative
advantages and disadvantages of the parallel system
compared to the series arrangement?

12. A portion of a residential service to a home is depicted in
Fig. 6.78.
a. Determine the current through each parallel branch of

the network.
b. Calculate the current drawn from the 120-V source.

Will the 20-A circuit breaker trip?
c. What is the total resistance of the network?
d. Determine the power supplied by the 120-V source.

How does it compare to the total power of the load?

FIG. 6.79

Problem 13.

I1

1 k�

Is

5 �

20 �30 V

(a) (b)

I1

10 k� 10 k�

Is

–8 V

13. Determine the currents I1 and Is for the networks of Fig.
6.79.
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FIG. 6.80

Problem 14.

12 VE R1 R2 6 �

6 A

FIG. 6.81

Problem 15.

10 �

5 �

20 �

60 V

14. Using the information provided, determine the resistance
R1 for the network of Fig. 6.80.

*15. Determine the power delivered by the dc battery in Fig.
6.81.

I1

8 �

12 �

24 V

4 �

I2

P4�

–8 V

FIG. 6.82

Problem 16.

*16. For the network of Fig. 6.82:
a. Find the current I1.
b. Calculate the power dissipated by the 4-� resistor.
c. Find the current I2.

*17. For the network of Fig. 6.83:
a. Find the current I.
b. Determine the voltage V.
c. Calculate the source current Is.

FIG. 6.83

Problem 17.

Is

10 k� 4 k�

+8 V

+24 V

I

2 k� V

–

+
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*19. Using Kirchhoff’s current law, determine the unknown
currents for the networks of Fig. 6.85.

20. Using the information provided in Fig. 6.86, find the
branch resistors R1 and R3, the total resistance RT, and the
voltage source E.

FIG. 6.84

Problems 18 and 38.

R1
9 A

I1

12 A

4 A

4 A

6 A

3 A

R2I2

I3

(a)

R1

I1

20 A 8 A5 A

R2

I2

9 A

4 A

R3 I3

I4

(b)

FIG. 6.85

Problem 19.

I2 2 mAI2

5 mA

4 mA

8 mA

I3

1.5 mA

I1

(a)

I3

I4

I1

0.5 mA

6mA

(b)

FIG. 6.86

Problem 20.

E R1 R34 k�

9 mA

R2

5 mA 2 mA

RT

SECTION 6.5 Kirchhoff’s Current Law

18. Find all unknown currents and their directions in the cir-
cuits of Fig. 6.84.
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*21. Find the unknown quantities for the circuits of Fig. 6.87
using the information provided.

SECTION 6.6 Current Divider Rule

22. Using the information provided in Fig. 6.88, determine the
current through each branch using simply the ratio of par-
allel resistor values. Then determine the total current IT.

23. Using the current divider rule, find the unknown currents
for the networks of Fig. 6.89.

FIG. 6.87

Problem 21.

R110 V

1 k�

R2

I  =  3 A 2 A

(a)

64 V R

Is  =  100 mA I1

(c)

4 k�

I3

I

30 �E R2

P  =  30 W I1

(d)

R3  =  R2

I3

PR2
2 A

6 �E

RT

I

(b)

R

I32 A I2

9 �

P  =  12 W

FIG. 6.88

Problem 22.

4 �

I1 = 6 A

I2 12 �

2 �

40 �

I3

I4

ITIT

FIG. 6.89

Problem 23.

I1

6 �

3 �

3 �

12 A

I2

(a)

6 A

8 � 8 � 6 � 6 � 6 �

I3

I1 I2

I4

(b)

2 �

1 �500 mA

I2

I3

I1

I4

(c)

4 �

I4

12 �

18 �

I3

I1  =  4 A

I2

(d)
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*24. Parts (a), (b), and (c) of this problem should be done by
inspection—that is, mentally. The intent is to obtain a
solution without a lengthy series of calculations. For the
network of Fig. 6.90:
a. What is the approximate value of I1 considering the

magnitude of the parallel elements?
b. What are the ratios I1/I2 and I3 /I4?
c. What are the ratios I2 /I3 and I1/I4?
d. Calculate the current I1, and compare it to the result of

part (a).
e. Determine the current I4 and calculate the ratio I1/I4.

How does the ratio compare to the result of part (c)?

25. Find the unknown quantities using the information pro-
vided for the networks of Fig. 6.91.

*26. For the network of Fig. 6.92, calculate the resistor R that
will ensure the current I1 � 3I2.

*27. Design the network of Fig. 6.93 such that I2 � 4I1 and 
I3 � 3I2.

FIG. 6.90

Problem 24.

100 k�

1 k�
I  =  10 A

I4

10 �

1 �

I3

I2

I1

6 �

2 �

I

I1

I21 A

(a)

9 �

I3

9 �

R

2 mA

I1

I2

I  =  6 mA

(b)

FIG. 6.91

Problem 25.

FIG. 6.92

Problem 26.

R

2.2 k�

I1

I2

60 mA

FIG. 6.93

Problem 27.

R1 R2 R3E 24 V

I1 I2 I3

68 mA

FIG. 6.94

Problem 28.

I1

8 � 56 �12 V12 V

I2

8 �R 16 V16 V

I
5 A

5 A

FIG. 6.95

Problem 29.

SECTION 6.7 Voltage Sources in Parallel

28. Assuming identical supplies, determine the currents I1

and I2 for the network of Fig. 6.94.

29. Assuming identical supplies, determine the current I and
resistance R for the parallel network of Fig. 6.95.
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SECTION 6.8 Open and Short Circuits

30. For the network of Fig. 6.96:
a. Determine Is and VL.
b. Determine Is if RL is shorted out.
c. Determine VL if RL is replaced by an open circuit.

FIG. 6.96

Problem 30.

10 k�12 V

Is

E RL VL

+

–

100 �

31. For the network of Fig. 6.97:
a. Determine the open-circuit voltage VL.
b. If the 2.2-k� resistor is short circuited, what is the

new value of VL?
c. Determine VL if the 4.7-k� resistor is replaced by an

open circuit.

FIG. 6.97

Problem 31.

4.7 k�9 V VL

+

–

2.2 k� 3.3 k�

*32. For the network of Fig. 6.98, determine
a. the short-circuit currents I1 and I2.
b. the voltages V1 and V2.
c. the source current Is.

FIG. 6.98

Problem 32.

20 V

+

–

V2

4 �

Is

I1 6 �

10 �

I2

+

–

V1

5 �

SECTION 6.9 Voltmeters: Loading Effect

33. For the network of Fig. 6.99:
a. Determine the voltage V2.
b. Determine the reading of a DMM having an internal

resistance of 11 M� when used to measure V2.
c. Repeat part (b) with a VOM having an ohm/volt rat-

ing of 20,000 using the 10-V scale. Compare the
results of parts (b) and (c). Explain any difference.

d. Repeat part (c) with R1 � 100 k� and R2 � 200 k�.
e. Based on the above, can you make any general con-

clusions about the use of a voltmeter?

SECTION 6.10 Troubleshooting Techniques

34. Based on the measurements of Fig. 6.100, determine
whether the network is operating correctly. If not, try to
determine why.

FIG. 6.99

Problems 33 and 40.

20 k�6 V V2

+

–

10 k�

R2

R1

FIG. 6.100

Problem 34.

3 k� 4 k�6 V 6 k�E

I

V 6 V

3.5 mA
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35. Referring to the network of Fig. 6.101, is Va � 8.8 V the
correct reading for the given configuration? If not, which
element has been connected incorrectly in the network?

a1 k� 4 k�

12 V 4 V

Va  =  8.8 V

FIG. 6.101

Problem 35.

36. a. The voltage Va for the network of Fig. 6.102 is �1 V.
If it suddenly jumped to 20 V, what could have hap-
pened to the circuit structure? Localize the problem
area.

b. If the voltage Va is 6 V rather than �1 V, try to explain
what is wrong about the network construction.

SECTION 6.12 Computer Analysis

PSpice or Electronics Workbench

37. Using schematics, determine all the currents for the net-
work of Fig. 6.78.

38. Using schematics, determine the unknown quantities for
the network of Fig. 6.84.

Programming Language (C��, QBASIC, Pascal, etc.)

39. Write a program to determine the total resistance and
conductance of any number of elements in parallel.

40. Write a program that will tabulate the voltage V2 of Fig.
6.99 measured by a VOM with an internal resistance of
200 k� as R2 varies from 10 k� to 200 k� in increments
of 10 k�.

FIG. 6.102

Problem 36.

3 k�

4 k�

+20 V

1 k�

–4 V

a Va  =  –1 V

GLOSSARY

Current divider rule (CDR) A method by which the current
through parallel elements can be determined without first
finding the voltage across those parallel elements.

Kirchhoff’s current law (KCL) The algebraic sum of the
currents entering and leaving a node is zero.

Node A junction of two or more branches.
Ohm/volt (�/V) rating A rating used to determine both the

current sensitivity of the movement and the internal resis-
tance of the meter.

Open circuit The absence of a direct connection between
two points in a network.

Parallel circuit A circuit configuration in which the ele-
ments have two points in common.

Short circuit A direct connection of low resistive value that
can significantly alter the behavior of an element or system.
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7.1 SERIES-PARALLEL NETWORKS

A firm understanding of the basic principles associated with series and
parallel circuits is a sufficient background to begin an investigation of
any single-source dc network having a combination of series and paral-
lel elements or branches. Multisource networks are considered in detail
in Chapters 8 and 9. In general,

series-parallel networks are networks that contain both series and
parallel circuit configurations.

One can become proficient in the analysis of series-parallel networks
only through exposure, practice, and experience. In time the path to the
desired unknown becomes more obvious as one recalls similar configu-
rations and the frustration resulting from choosing the wrong approach.
There are a few steps that can be helpful in getting started on the first
few exercises, although the value of each will become apparent only
with experience.

General Approach

1. Take a moment to study the problem “in total” and make a brief
mental sketch of the overall approach you plan to use. The result
may be time- and energy-saving shortcuts.

2. Next examine each region of the network independently before
tying them together in series-parallel combinations. This will
usually simplify the network and possibly reveal a direct ap-
proach toward obtaining one or more desired unknowns. It also
eliminates many of the errors that might result due to the lack of
a systematic approach.

3. Redraw the network as often as possible with the reduced
branches and undisturbed unknown quantities to maintain clarity
and provide the reduced networks for the trip back to unknown
quantities from the source.

Series-Parallel Networks

S   P   P
S
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4. When you have a solution, check that it is reasonable by consid-
ering the magnitudes of the energy source and the elements in the
network. If it does not seem reasonable, either solve the circuit
using another approach or check over your work very carefully.

Reduce and Return Approach

For many single-source, series-parallel networks, the analysis is one
that works back to the source, determines the source current, and then
finds its way to the desired unknown. In Fig. 7.1(a), for instance, the
voltage V4 is desired. The absence of a single series or parallel path to
V4 from the source immediately reveals that the methods introduced in
the last two chapters cannot be applied here. First, series and parallel
elements must be combined to establish the reduced circuit of Fig.
7.1(b). Then series elements are combined to form the simplest of con-
figurations in Fig. 7.1(c). The source current can now be determined
using Ohm’s law, and we can proceed back through the network as
shown in Fig. 7.1(d). The voltage V2 can be determined and then the
original network can be redrawn, as shown in Fig. 7.1(e). Since V2 is
now known, the voltage divider rule can be used to find the desired
voltage V4. Because of the similarities between the networks of Figs.
7.1(a) and 7.1(e), and between 7.1(b) and 7.1(d), the networks drawn
during the reduction phase are often used for the return path. 

Although all the details of the analysis were not described above, the
general procedure for a number of series-parallel network problems
employs the procedure described above: Work back for Is and then fol-
low the return path for the specific unknown. Not every problem will
follow this path; some will have simpler, more direct solutions. How-
ever, the reduce and return approach will handle one type of problem
that does surface over and over again.

Block Diagram Approach

The block diagram approach will be employed throughout to emphasize
the fact that combinations of elements, not simply single resistive ele-
ments, can be in series or parallel. The approach will also reveal the
number of seemingly different networks that have the same basic struc-
ture and therefore can involve similar analysis techniques.

Initially, there will be some concern about identifying series and par-
allel elements and branches and choosing the best procedure to follow
toward a solution. However, as you progress through the examples and
try a few problems, a common path toward most solutions will surface
that can actually make the analysis of such systems an interesting,
enjoyable experience.

In Fig. 7.2, blocks B and C are in parallel (points b and c in com-
mon), and the voltage source E is in series with block A (point a in
common). The parallel combination of B and C is also in series with A
and the voltage source E due to the common points b and c, respec-
tively.

To ensure that the analysis to follow is as clear and uncluttered as
possible, the following notation will be used for series and parallel
combinations of elements. For series resistors R1 and R2, a comma will
be inserted between their subscript notations, as shown here:

R1,2 � R1 � R2

S    P    P

S

(e)

R4

R1 +

–

R3

R2E
Is

V4 =
R4V2

R4 + V3

(d)

R1 +

–
E

Is

RT′

(c)

RTE
Is

(b)

RT′
R1

E
Is

(a)

R4

R1 +

–

R3
R2E

Is V4

Is =
E
RT

V2

+
V1 –

+

–
V2

FIG. 7.1

Introducing the reduce and return approach.

–

+

A

C

a b

c

E B

FIG. 7.2

Introducing the block diagram approach.
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For parallel resistors R1 and R2, the parallel symbol will be inserted
between their subscript notations, as follows:

R1��2 � R1 �� R2 �

EXAMPLE 7.1 If each block of Fig. 7.2 were a single resistive ele-
ment, the network of Fig. 7.3 might result.

The parallel combination of RB and RC results in

RB��C � RB �� RC � � 4 k�

The equivalent resistance RB��C is then in series with RA, and the total
resistance “seen” by the source is

RT � RA � RB��C
� 2 k� � 4 k� � 6 k�

The result is an equivalent network, as shown in Fig. 7.4, permitting
the determination of the source current Is.

Is � � � 9 mA

and, since the source and RA are in series,

IA � Is � 9 mA

We can then use the equivalent network of Fig. 7.5 to determine IB

and IC using the current divider rule:

IB � � Is � (9 mA) � 3 mA

IC � � Is � (9 mA) � 6 mA

or, applying Kirchhoff’s current law,

IC � Is � IB � 9 mA � 3 mA � 6 mA

Note that in this solution, we worked back to the source to obtain the
source current or total current supplied by the source. The remaining
unknowns were then determined by working back through the network
to find the other unknowns.

EXAMPLE 7.2 It is also possible that the blocks A, B, and C of Fig.
7.2 contain the elements and configurations of Fig. 7.6. Working with
each region:

A: RA � 4 �

B: RB � R2 �� R3 � R2��3 � �
N
R
� � � 2 �

C: RC � R4 � R5 � R4,5 � 0.5 � � 1.5 � � 2 �

Blocks B and C are still in parallel, and

RB��C � �
N
R
� � � 1 �

2 �
�

2

4 �
�

2

2
�
3

12
�
18

12 k�(Is)
��
12 k� � 6 k�

1
�
3

6
�
18

6 k�(Is)
��
6 k� � 12 k�

54 V
�
6 k�

E
�
RT

(12 k�)(6 k�)
��
12 k� � 6 k�

R1R2
�
R1 � R2

S    P    P

S

A

B C

b

c

2 k�
RT

54 V

a

Is

12 k� 6 k�RB�C

IB IC

FIG. 7.3

Example 7.1.

6 k�54 VE RT

IA

Is

FIG. 7.4

Reduced equivalent of Fig. 7.3.

IA

12 k� 6 k�

IB IC

FIG. 7.5

Determining IB and IC for the network of 
Fig. 7.3.
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with

RT � RA � RB��C
(Note the similarity between this equation

� 4 � � 1 � � 5 �
and that obtained for Example 7.1.)

and Is � �
R
E

T
� � � 2 A

We can find the currents IA, IB, and IC using the reduction of the net-
work of Fig. 7.6 (recall Step 3) as found in Fig. 7.7. Note that IA, IB, and
IC are the same in Figs. 7.6 and 7.7 and therefore also appear in Fig.
7.7. In other words, the currents IA, IB, and IC of Fig. 7.7 will have the
same magnitude as the same currents of Fig. 7.6.

IA � Is � 2 A

and IB � IC � � � � 1 A

Returning to the network of Fig. 7.6, we have

IR2
� IR3

� � 0.5 A

The voltages VA, VB, and VC from either figure are

VA � IARA � (2 A)(4 �) � 8 V

VB � IBRB � (1 A)(2 �) � 2 V

VC � VB � 2 V

Applying Kirchhoff’s voltage law for the loop indicated in Fig. 7.7,
we obtain

Σ V � E � VA � VB � 0

E � VA � VB � 8 V � 2 V
or 10 V � 10 V (checks)

EXAMPLE 7.3 Another possible variation of Fig. 7.2 appears in Fig.
7.8.

RA � R1��2 � � � 3.6 �
54 �
�

15
(9 �)(6 �)
��
9 � � 6 �

IB
�

2

2 A
�

2

Is
�
2

IA
�

2

10 V
�

5 �

S    P    P

S

E R2 4 �4 � R3

B

R1

4 �

A

C

0.5 �R4

1.5 �R5

10 V

RT
Is

a
IA

IB IC

b

c

FIG. 7.6

Example 7.2.

VBRB  =  2 �

+  VA  –

RA  =  4 �

10 V
+

–
VC

+

–
2 �RC

IB IC

IA

Is

FIG. 7.7

Reduced equivalent of Fig. 7.6.
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RB � R3 � R4��5 � 4 � � � 4 � � 2 � � 6 �

RC � 3 �

The network of Fig. 7.8 can then be redrawn in reduced form, as shown
in Fig. 7.9. Note the similarities between this circuit and the circuits of
Figs. 7.3 and 7.7.

RT � RA � RB��C � 3.6 � �

� 3.6 � � 2 � � 5.6 �

Is � �
R
E

T
� � � 3 A

IA � Is � 3 A

Applying the current divider rule yields

IB � �
RC

R

�
CIA

RB
� � � � 1 A

By Kirchhoff’s current law,
IC � IA � IB � 3 A � 1 A � 2 A

By Ohm’s law,

VA � IARA � (3 A)(3.6 �) � 10.8 V

VB � IBRB � VC � IC RC � (2 A)(3 �) � 6 V

Returning to the original network (Fig. 7.8) and applying the current
divider rule,

I1 � � � � 1.2 A

By Kirchhoff’s current law,

I2 � IA � I1 � 3 A � 1.2 A � 1.8 A

Figures 7.3, 7.6, and 7.8 are only a few of the infinite variety of con-
figurations that the network can assume starting with the basic arrange-
ment of Fig. 7.2. They were included in our discussion to emphasize the

18 A
�

15
(6 �)(3 A)
��
6 � � 9 �

R2IA
��
R2 � R1

9 A
�

9
(3 �)(3 A)
��
3 � � 6 �

16.8 V
�

5.6 �

(6 �)(3 �)
��
6 � � 3 �

(6 �)(3 �)
��
6 � � 3 �

S    P    P

S

FIG. 7.8

Example 7.3.

R1

9 �
R2

6 � I2

I1

A

R4 6 � R5 3 �

R3 4 �

B

R6 3 �

C

IA

E 16.8 V

a

IB IC

b

c

RB 6 �

RA

3.6 �

RC 3 �E 16.8 V
RT

+  VA  –

Is

IA

IB

VB

+

–

IC

VC

+

–

FIG. 7.9

Reduced equivalent of Fig. 7.8.
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importance of considering each region of the network independently
before finding the solution for the network as a whole.

The blocks of Fig. 7.2 can be arranged in a variety of ways. In fact,
there is no limit on the number of series-parallel configurations that can
appear within a given network. In reverse, the block diagram approach can
be used effectively to reduce the apparent complexity of a system by iden-
tifying the major series and parallel components of the network. This
approach will be demonstrated in the next few examples.

7.2 DESCRIPTIVE EXAMPLES

EXAMPLE 7.4 Find the current I4 and the voltage V2 for the network
of Fig. 7.10.

Solution: In this case, particular unknowns are requested instead of
a complete solution. It would, therefore, be a waste of time to find all
the currents and voltages of the network. The method employed should
concentrate on obtaining only the unknowns requested. With the block
diagram approach, the network has the basic structure of Fig. 7.11,
clearly indicating that the three branches are in parallel and the voltage
across A and B is the supply voltage. The current I4 is now immediately
obvious as simply the supply voltage divided by the resultant resistance
for B. If desired, block A could be broken down further, as shown in
Fig. 7.12, to identify C and D as series elements, with the voltage V2

capable of being determined using the voltage divider rule once the
resistance of C and D is reduced to a single value. This is an example
of how a mental sketch of the approach might be made before applying
laws, rules, and so on, to avoid dead ends and growing frustration.

Applying Ohm’s law,

I4 � �
R
E

B
� � � � 1.5 A

Combining the resistors R2 and R3 of Fig. 7.10 will result in

RD � R2 �� R3 � 3 � �� 6 � � � � 2 �

and, applying the voltage divider rule,

V2 � �
RD

R

�
DE

RC
� � � � 4 V

EXAMPLE 7.5 Find the indicated currents and voltages for the net-
work of Fig. 7.13.

Solution: Again, only specific unknowns are requested. When the
network is redrawn, it will be particularly important to note which
unknowns are preserved and which will have to be determined using the
original configuration. The block diagram of the network may appear as
shown in Fig. 7.14, clearly revealing that A and B are in series. Note in
this form the number of unknowns that have been preserved. The volt-
age V1 will be the same across the three parallel branches of Fig. 7.13,
and V5 will be the same across R4 and R5. The unknown currents I2 and
I4 are lost since they represent the currents through only one of the par-
allel branches. However, once V1 and V5 are known, the required cur-
rents can be found using Ohm’s law.

24 V
�

6
(2 �)(12 V)
��
2 � � 4 �

18 �
�

9
(3 �)(6 �)
��
3 � � 6 �

12 V
�

8 �
E

�
R4

S    P    P

S

+

R1 4 � I4

R4 8 �R3 6 �R2 3 �
E

–
12 V

V2

+

–

FIG. 7.10

Example 7.4.

A BE

I4

FIG. 7.11

Block diagram of Fig. 7.10.

–

E

+

–

V2

+

C

D

FIG. 7.12

Alternative block diagram for the first 
parallel branch of Fig. 7.10.
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R1��2 � � � 3 �

RA � R1��2��3 � � � 1.2 �

RB � R4��5 � � � 4.8 �

The reduced form of Fig. 7.13 will then appear as shown in Fig. 7.15, and

RT � R1��2��3 � R4��5 � 1.2 � � 4.8 � � 6 �

Is � �
R
E

T
� � � 4 A

with V1 � IsR1��2��3 � (4 A)(1.2 �) � 4.8 V

V5 � IsR4��5 � (4 A)(4.8 �) � 19.2 V

Applying Ohm’s law,

I4 � � � 2.4 A

I2 � � � � 0.8 A

The next example demonstrates that unknown voltages do not have
to be across elements but can exist between any two points in a net-
work. In addition, the importance of redrawing the network in a more
familiar form is clearly revealed by the analysis to follow.

EXAMPLE 7.6

a. Find the voltages V1, V3, and Vab for the network of Fig. 7.16.
b. Calculate the source current Is.

Solutions: This is one of those situations where it might be best to
redraw the network before beginning the analysis. Since combining
both sources will not affect the unknowns, the network is redrawn as
shown in Fig. 7.17, establishing a parallel network with the total source
voltage across each parallel branch. The net source voltage is the dif-
ference between the two with the polarity of the larger.

4.8 V
�

6 �

V1
�
R2

V2
�
R2

19.2 V
�

8 �

V5
�
R4

24 V
�

6 �

96 �
�

20
(8 �)(12 �)
��
8 � � 12 �

6 �
�

5
(3 �)(2 �)
��
3 � � 2 �

6 �
�

2
R

�
N

S    P    P

S

R1

6 �

R3

2 �

+  V1  –

R4 8 � R5 12 � V5

+

–

I4

R2

6 �

I2

RT

Is

E 24 V

FIG. 7.13

Example 7.5.

+ –V1

Is

RTE V5

Is

+

–

A

B

FIG. 7.14

Block diagram for Fig. 7.13.

+ –V1

Is

RT

E V5

+

–

4.8 �

1.2 �

R1�2�3

R4�524 V

FIG. 7.15

Reduced form of Fig. 7.13.
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a. Note the similarities with Fig. 7.12, permitting the use of the voltage
divider rule to determine V1 and V3:

V1 � � � � 7.5 V

V3 � � � � 9 V

The open-circuit voltage Vab is determined by applying Kirchhoff’s
voltage law around the indicated loop of Fig. 7.17 in the clockwise
direction starting at terminal a.

�V1 � V3 � Vab � 0

and Vab � V3 � V1 � 9 V � 7.5 V � 1.5 V

b. By Ohm’s law,

I1 � � � 1.5 A

I3 � � � 1.5 A

Applying Kirchhoff’s current law,

Is � I1 � I3 � 1.5 A � 1.5 A � 3 A

EXAMPLE 7.7 For the network of Fig. 7.18, determine the voltages V1

and V2 and the current I.

Solution: It would indeed be difficult to analyze the network in the
form of Fig. 7.18 with the symbolic notation for the sources and the ref-
erence or ground connection in the upper left-hand corner of the dia-
gram. However, when the network is redrawn as shown in Fig. 7.19, the
unknowns and the relationship between branches become significantly
clearer. Note the common connection of the grounds and the replacing
of the terminal notation by actual supplies.

It is now obvious that

V2 � �E1 � �6 V

The minus sign simply indicates that the chosen polarity for V2 in Fig.
7.18 is opposite to that of the actual voltage. Applying Kirchhoff’s volt-
age law to the loop indicated, we obtain

�E1 � V1 � E2 � 0

9 V
�
6 �

V3
�
R3

7.5 V
�

5 �

V1
�
R1

72 V
�

8
(6 �)(12 V)
��
6 � � 2 �

R3E
��
R3 � R4

60 V
�

8
(5 �)(12 V)
��
5 � � 3 �

R1E
��
R1 � R2

S    P    P

S

Is

E1

–

+

b6 �

6 V

R3

E218 V

2 �

R4

5 �

R1

3 �

R2a

V3+ –

V1+ –+

–

+

–

Vab

FIG. 7.16

Example 7.6.

a

R3 6 �

R4 2 �

R1 5 �

R2 3 �

12 VE
+

–

V1

+

–

Is

V3

+

–

I1 I3

b
Vab+ –

FIG. 7.17

Network of Fig. 7.16 redrawn.

–
V1

+

–
V2

+

R1 6 �

R4 6 �

R3

7 �

R2 5 �

a E1  =   – 6  V

E2 + 18 V

I

FIG. 7.18

Example 7.7.
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and V1 � E2 � E1 � 18 V � 6 V � 24 V

Applying Kirchhoff’s current law to node a yields

I � I1 � I2 � I3

� � �

� � �

� 4 A � 1 A � 0.5 A

I � 5.5 A

The next example is clear evidence of the fact that techniques
learned in the current chapters will have far-reaching applications and
will not be dropped for improved methods. Even though the transistor
has not been introduced in this text, the dc levels of a transistor network
can be examined using the basic rules and laws introduced in the early
chapters of this text.

EXAMPLE 7.8 For the transistor configuration of Fig. 7.20, in which
VB and VBE have been provided:
a. Determine the voltage VE and the current IE.
b. Calculate V1.
c. Determine VBC using the fact that the approximation IC � IE is often

applied to transistor networks.
d. Calculate VCE using the information obtained in parts (a) through (c).

Solutions:

a. From Fig. 7.20, we find

V2 � VB � 2 V

Writing Kirchhoff’s voltage law around the lower loop yields

V2 � VBE � VE� 0

or VE � V2 � VBE � 2 V � 0.7 V � 1.3 V

and IE � �
V

R
E

E
� � � 1.3 mA

b. Applying Kirchhoff’s voltage law to the input side (left-hand region
of the network) will result in

V2 � V1 � VCC � 0

1.3 V
�
1000 �

6 V
�
12 �

6 V
�
6 �

24 V
�

6 �

E1
��
R2 � R3

E1
�
R4

V1
�
R1

S    P    P

S

a

V1
+

–

I2

R1 6 �

R4 6 �

R3 7 �

6 VE1
+

–

18 VE2

+

–
I

R2 5 �

I3

+

I1–

V2

FIG. 7.19

Network of Fig. 7.18 redrawn.

RE 1 k�

B

+

IE

E

C

VBE = 0.7 V –

VCC  =  22 V

–

VCE

–

+

IC

RC 10 k�
R1 40 k�

R2 4 k�V2

–

+

V1

–

+

VBC

+

VB = 2 V

VE

FIG. 7.20

Example 7.8.
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and V1 � VCC � V2

but V2 � VB

and V1 � VCC � V2 � 22 V � 2 V � 20 V

c. Redrawing the section of the network of immediate interest will
result in Fig. 7.21, where Kirchhoff’s voltage law yields

VC � VRC
� VCC � 0

and VC � VCC � VRC
� VCC � ICRC

but IC � IE

and VC � VCC � IERC � 22 V � (1.3 mA)(10 k�)
� 9 V

Then VBC � VB � VC

� 2 V � 9 V
� �7 V

d. VCE � VC � VE

� 9 V � 1.3 V
� 7.7 V

EXAMPLE 7.9 Calculate the indicated currents and voltage of Fig.
7.22.

S    P    P

S

RC 10 k�

VC

+

–

C

VRC

+

–

IC

VCC  =  22 V

FIG. 7.21

Determining VC for the network of Fig. 7.20.

R2 8 k�

R1

4 k�
+

R4 24 k�

R3

12 k�

R5

12 k�

I5

Is

a
R6

12 k�
R7

9 k�

R8

3 k�
R9

6 k�

–
V7

b

72 VE

FIG. 7.22

Example 7.9.

Solution: Redrawing the network after combining series elements
yields Fig. 7.23, and

Is

+

–

I6I5

R1,2,3
24 k�

R4
24 k�

V7 9 k�
R7 R8,9 9 k�

R6 12 k�

72 VE

R5 12 k�

I6I5

FIG. 7.23

Network of Fig. 7.22 redrawn.
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I5 � � � � 3 mA

with

V7 � � � � 19.6 V

I6 � � � 4.35 mA

and Is � I5 � I6 � 3 mA � 4.35 mA � 7.35 mA

Since the potential difference between points a and b of Fig. 7.22 is
fixed at E volts, the circuit to the right or left is unaffected if the net-
work is reconstructed as shown in Fig. 7.24.

19.6 V
�
4.5 k�

V7
�
R7�(8,9)

324 V
�

16.5
(4.5 k�)(72 V)
��
4.5 k� � 12 k�

R7�(8,9)E
��
R7�(8,9) � R6

72 V
�
24 k�

72 V
��
12 k� � 12 k�

E
��
R(1,2,3)�4 � R5

S    P    P

S

R2 8 k�

R1

4 k�

+
R4 24 k�

R3

12 k�

R5

12 k�

I6

R6

12 k�

R7

9 k� R8

3 k�

R9

6 k�

–
V7

72 VE

I6I5

I5

72 VE

FIG. 7.24

An alternative approach to Example 7.9.

We can find each quantity required, except Is, by analyzing each cir-
cuit independently. To find Is, we must find the source current for each
circuit and add it as in the above solution; that is, Is � I5 � I6.

EXAMPLE 7.10 This example demonstrates the power of Kirchhoff’s
voltage law by determining the voltages V1, V2, and V3 for the network
of Fig. 7.25. For path 1 of Fig. 7.26,

E1 � V1 � E3 � 0

and V1 � E1 � E3 � 20 V � 8 V � 12 V

For path 2,

E2 � V1 � V2 � 0

and V2 � E2 � V1 � 5 V � 12 V � �7 V

indicating that V2 has a magnitude of 7 V but a polarity opposite to that
appearing in Fig. 7.25. For path 3,

V3 � V2 � E3 � 0

and V3 � E3 � V2 � 8 V � (�7 V) � 8 V � 7 V � 15 V

Note that the polarity of V2 was maintained as originally assumed,
requiring that �7 V be substituted for V2.

7.3 LADDER NETWORKS

A three-section ladder network appears in Fig. 7.27. The reason for
the terminology is quite obvious for the repetitive structure. Basically
two approaches are used to solve networks of this type.

20 V

R1
+

E1
–

5 V

E2
+

–

8 V

E3
+

–

V1

+

–

V3

+

–

R3

R2

V2 +–

FIG. 7.25

Example 7.10.

20 V

R1+
E1

–

5 V

E2
+

–

8 V

E3 +
–

V1
+

–

V3

+

–

R3
R2

V2 +–

1

2

3

FIG. 7.26

Defining the paths for Kirchhoff’s voltage law.
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Method 1

Calculate the total resistance and resulting source current, and then
work back through the ladder until the desired current or voltage is
obtained. This method is now employed to determine V6 in Fig. 7.27.

S    P    P

S

V6

+

–

RT

I6

R6 2 �240 VE R4 6 �R2 6 �
+

–

R1

5 �

R3

4 �

R5

1 �

Is

FIG. 7.27

Ladder network.

R2 6 �

R1

5 �

RT
R4 6 �

R3

4 �

3 �
(  =  1 �  +  2 �)

(3 �)(6 �)

3 �  +  6 �
=  2 �

R2 6 �

R1

5 �

RT
6 � (  =  4 �  +  2 �)

6 �

2
=  3 �

FIG. 7.28

Working back to the source to determine RT for the network of Fig. 7.27.

3 �
RT

Is R1

5 �

FIG. 7.29

Calculating RT and Is .

Combining parallel and series elements as shown in Fig. 7.28 will
result in the reduced network of Fig. 7.29, and

RT � 5 � � 3 � � 8 �

Is � �
R
E

T
� � � 30 A

Working our way back to I6 (Fig. 7.30), we find that

I1 � Is

and I3 � � � 15 A

and, finally (Fig. 7.31),

30 A
�

2

Is
�
2

240 V
�

8 �

E

I1

6 �6 �

R1

5 �

R2

Is I3

240 V

+

–

FIG. 7.30

Working back toward I6.

FIG. 7.31

Calculating I6.

I1

6 �R2

Is

+

–

R3

4 �

R1

5 �

E 240 V 3 �

I3 I4 I6

6 �R4 R5,6V4

+

–
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I6 � � (15 A) � 10 A

and V6 � I6R6 � (10 A)(2 �) � 20 V

Method 2

Assign a letter symbol to the last branch current and work back through
the network to the source, maintaining this assigned current or other
current of interest. The desired current can then be found directly. This
method can best be described through the analysis of the same network
considered above in Fig. 7.27, redrawn in Fig. 7.32.

6
�
9

(6 �)I3��
6 � � 3 �

S    P    P

S

R1

5 �

V1+ –
I1

V2  R2 6 �
+

–

I2 I3

R3

4 �

V3+ –

R4 6 �
+

–

I4 I5

R5

1 �

V5+ –

V4240 VE

Is

R6 2 �

I6

+

–
V6

FIG. 7.32

An alternative approach for ladder networks.

The assigned notation for the current through the final branch is I6:

I6 � � �

or V4 � (3 �)I6

so that I4 � � � 0.5I6

and I3 � I4 � I6 � 0.5I6 � I6 � 1.5I6

V3 � I3R3 � (1.5I6)(4 �) � (6 �)I6

Also, V2 � V3 � V4 � (6 �)I6 � (3 �)I6 � (9 �)I6

so that I2 � � � 1.5I6

and Is � I2 � I3 � 1.5I6 � 1.5I6 � 3I6

with V1 � I1R1 � IsR1 � (5 �)Is

so that E � V1 � V2 � (5 �)Is � (9 �)I6

� (5 �)(3I6) � (9 �)I6 � (24 �)I6

and I6 � � � 10 A

with V6 � I6R6 � (10 A)(2 �) � 20 V

as was obtained using method 1.

Mathcad

Mathcad will now be used to analyze the ladder network of Fig. 7.27
using method 1. It will provide an excellent opportunity to practice the
basic maneuvers introduced in earlier chapters.

First, as shown in Fig. 7.33, all the parameters of the network must
be defined. Then the same sequence is followed as included in the text

240 V
�

24 �
E

�
24 �

(9 �)I6
�
6 �

V2
�
R2

(3 �)I6
�
6 �

V4
�
R4

V4
�
3 �

V4
��
1 � � 2 �

V4
��
R5 � R6
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material. For Mathcad, however, we must be sure that the defining
sequence for each new variable flows from left to right, as shown in Fig.
7.33, until R10 is defined. We are then ready to write the equation for the
total resistance and display the result. All the remaining parameters are
then defined and displayed as shown. The results are an exact match
with the longhand solution.

The wonderful thing about Mathcad is that this sequence can be put
in memory and called for as the need arises for different networks. Sim-
ply redefine the parameters of the network, and all the new values for
the important parameters of the network will be displayed immediately.

S    P    P

S

E 20 �

30 �

10 �

a

b

c

0 V

60 V

100 V

120 V

120 V

FIG. 7.34

Voltage divider supply.

7.4 VOLTAGE DIVIDER SUPPLY 
(UNLOADED AND LOADED)

The term loaded appearing in the title of this section refers to the appli-
cation of an element, network, or system to a supply that will draw cur-
rent from the supply. As pointed out in Section 5.8, the application of a
load can affect the terminal voltage of the supply.

Through a voltage divider network such as the one in Fig. 7.34, a
number of terminal voltages can be made available from a single supply.
The voltage levels shown (with respect to ground) are determined by a
direct application of the voltage divider rule. Figure 7.34 reflects a no-
load situation due to the absence of any current-drawing elements con-
nected between terminals a, b, or c and ground.

The larger the resistance level of the applied loads compared to the
resistance level of the voltage divider network, the closer the resulting
terminal voltage to the no-load levels. In other words, the lower the
current demand from a supply, the closer the terminal characteristics
are to the no-load levels.

FIG. 7.33

Using Mathcad to analyze the ladder network of Fig. 7.27.
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To demonstrate the validity of the above statement, let us consider
the network of Fig. 7.34 with resistive loads that are the average value
of the resistive elements of the voltage divider network, as shown in
Fig. 7.35.

S    P    P

S

FIG. 7.35

Voltage divider supply with loads equal to the average value of the resistive 
elements that make up the supply.

R2 20 �

R1 10 �

E 120 V

R3 30 � RL3
20 �

RL2
20 �

RL1
20 �

Vc

Vb

Va  =  120 V

0 V

Voltage-divider supply

The voltage Va is unaffected by the load RL1
since the load is in par-

allel with the supply voltage E. The result is Va � 120 V, which is the
same as the no-load level. To determine Vb, we must first note that R3

and RL3
are in parallel and R′3 � R3 �� RL3

� 30 � �� 20 � � 12 �. The
parallel combination R′2 � (R2 � R′3) �� RL2

� (20 � � 12 �) �� 20 �
� 32 � �� 20 � � 12.31 �. Applying the voltage divider rule gives

Vb � � 66.21 V

versus 100 V under no-load conditions.
The voltage Vc is

Vc � � 24.83 V

versus 60 V under no-load conditions.
The effect of load resistors close in value to the resistor employed in

the voltage divider network is, therefore, to decrease significantly some
of the terminal voltages.

If the load resistors are changed to the 1-k� level, the terminal volt-
ages will all be relatively close to the no-load values. The analysis is
similar to the above, with the following results:

Va � 120 V Vb � 98.88 V Vc � 58.63 V

If we compare current drains established by the applied loads, we
find for the network of Fig. 7.35 that

IL 2
� �

V

R

L

L

2

2

� � � 3.31 A

and for the 1-k� level,

IL 2
� � 98.88 mA < 0.1 A

98.88 V
�

1 k�

66.21 V
�

20 �

(12 �)(66.21 V)
��

12 � � 20 �

(12.31 �)(120 V)
��
12.31 � � 10 �
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As noted above in the highlighted statement, the more the current
drain, the greater the change in terminal voltage with the application of
the load. This is certainly verified by the fact that IL 2

is about 33.5 times
larger with the 20-� loads.

The next example is a design exercise. The voltage and current rat-
ings of each load are provided, along with the terminal ratings of the
supply. The required voltage divider resistors must be found.

EXAMPLE 7.11 Determine R1, R2, and R3 for the voltage divider sup-
ply of Fig. 7.36. Can 2-W resistors be used in the design?

S    P    P

S

R2

–12 V

R1

b

R3

a

RL2
E 72 V

20 mA

10 mA

20 V

RL1
60 V

+

–
+

–

Is  =  50 mA

FIG. 7.36

Example 7.11.

Solution: R3:

R3 � �
V

IR

R

3

3� � �
V

I

R

s

3� � �
5

1

0

2

m

V

A
� � 240 �

PR3
� (IR3

)2R3 � (50 mA)2 240 � � 0.6 W < 2 W

R1: Applying Kirchhoff’s current law to node a:

Is � IR1
� IL1

� 0

and IR1
� Is � IL1

� 50 mA � 20 mA

� 30 mA

R1 � �
V

IR

R

1

1� � �
VL1

I

�

R1

VL2� � �
60 V

30

�

mA

20 V
� �

� 1.33 k�

PR1
� (IR1

)2R1 � (30 mA)2 1.33 k� � 1.197 W < 2 W

R2: Applying Kirchhoff’s current law at node b:

IR1
� IR2

� IL2
� 0

and IR2
� IR1

� IL2
� 30 mA � 10 mA

� 20 mA

R2 � � � 1 k�

PR2
� (IR2

)2R2 � (20 mA)2 1 k� � 0.4 W < 2 W

Since PR1
, PR2

, and PR3
are less than 2 W, 2-W resistors can be used for

the design.

20 V
�
20 mA

VR2
�
IR2

40 V
�
30 mA
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7.5 POTENTIOMETER LOADING

For the unloaded potentiometer of Fig. 7.37, the output voltage is deter-
mined by the voltage divider rule, with RT in the figure representing the
total resistance of the potentiometer. Too often it is assumed that the
voltage across a load connected to the wiper arm is determined solely
by the potentiometer, and the effect of the load can be ignored. This is
definitely not the case, as is demonstrated in the next few paragraphs.

When a load is applied as shown in Fig. 7.38, the output voltage VL is
now a function of the magnitude of the load applied since R1 is not as
shown in Fig. 7.37 but is instead the parallel combination of R1 and RL.

The output voltage is now

VL � with R′ � R1 �� RL (7.1)

If it is desired to have good control of the output voltage VL through
the controlling dial, knob, screw, or whatever, it is advisable to choose
a load or potentiometer that satisfies the following relationship:

(7.2)

For example, if we disregard Eq. (7.2) and choose a 1-M� poten-
tiometer with a 100-� load and set the wiper arm to 1/10 the total resis-
tance, as shown in Fig. 7.39, then

R′ � 100 k� �� 100 � � 99.9 �

and VL � � 0.001 V � 1 mV

which is extremely small compared to the expected level of 1 V.
In fact, if we move the wiper arm to the midpoint,

R′ � 500 k� �� 100 � � 99.98 �

and VL � � 0.002 V � 2 mV

which is negligible compared to the expected level of 5 V. Even at 
R1 � 900 k�, VL is simply 0.01 V, or 1/1000 of the available voltage.

Using the reverse situation of RT � 100 � and RL � 1 M� and the
wiper arm at the 1/10 position, as in Fig. 7.40, we find

R′ � 10 � � 1 M� � 10 �

and VL � � 1 V

as desired.
For the lower limit (worst-case design) of RL � RT � 100 �, as de-

fined by Eq. (7.2) and the halfway position of Fig. 7.38,

R′ � 50 � �� 100 � � 33.33 �

and VL � � 4 V

It may not be the ideal level of 5 V, but at least 40% of the voltage
E has been achieved at the halfway position rather than the 0.02%
obtained with RL � 100 � and RT � 1 M�.

In general, therefore, try to establish a situation for potentiometer
control in which Equation (7.2) is satisfied to the highest degree possible.

33.33 �(10 V)
��
33.33 � � 50 �

10 �(10 V)
��
10 � � 90 �

(99.98 �)(10 V)
��
99.98 � � 500 k�

99.9 �(10 V)
��
99.9 � � 900 k�

RL ≥ RT

R′E
�
R′ � R2

S    P    P

S

R1

E

R2

RT

VL

+

–
=

R1E
R1  +  R2

FIG. 7.37

Unloaded potentiometer.

R1

E

R2

VL

+

–

R'  =  R1 � RL

RL

RT

FIG. 7.38

Loaded potentiometer.

E

VL

+

–

10 V

1 M�  Pot.

900 k�

100 k�

100 �

FIG. 7.39

RT > RL.

E

VL

+

–

10 V

100 �  Pot.

90 �

10 �

1 M�

FIG. 7.40

RL > RT.
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Someone might suggest that we make RT as small as possible to
bring the percent result as close to the ideal as possible. Keep in mind,
however, that the potentiometer has a power rating, and for networks
such as Fig. 7.40, Pmax � E2/RT � (10 V)2/100 � � 1 W. If RT is re-
duced to 10 �, Pmax � (10 V)2/10 � � 10 W, which would require a
much larger unit.

EXAMPLE 7.12 Find the voltages V1 and V2 for the loaded poten-
tiometer of Fig. 7.41.

Solution:

Ideal (no load): V1 � � 48 V

V2 � � 72 V

Loaded: R′ � 4 k� �� 12 k� � 3 k�

R″ � 6 k� �� 30 k� � 5 k�

V1 � � 45 V

V2 � � 75 V

The ideal and loaded voltage levels are so close that the design can
be considered a good one for the applied loads. A slight variation in the
position of the wiper arm will establish the ideal voltage levels across
the two loads.

7.6 AMMETER, VOLTMETER, AND
OHMMETER DESIGN

Now that the fundamentals of series, parallel, and series-parallel net-
works have been introduced, we are prepared to investigate the funda-
mental design of an ammeter, voltmeter, and ohmmeter. Our design of
each will employ the d’Arsonval analog movement of Fig. 7.42. The
movement consists basically of an iron-core coil mounted on bearings
between a permanent magnet. The helical springs limit the turning
motion of the coil and provide a path for the current to reach the coil.
When a current is passed through the movable coil, the fluxes of the
coil and permanent magnet will interact to develop a torque on the coil
that will cause it to rotate on its bearings. The movement is adjusted to
indicate zero deflection on a meter scale when the current through the
coil is zero. The direction of current through the coil will then deter-
mine whether the pointer will display an up-scale or below-zero indica-
tion. For this reason, ammeters and voltmeters have an assigned polar-
ity on their terminals to ensure an up-scale reading.

D’Arsonval movements are usually rated by current and resistance.
The specifications of a typical movement might be 1 mA, 50 �. The 
1 mA is the current sensitivity (CS) of the movement, which is the cur-
rent required for a full-scale deflection. It will be denoted by the sym-
bol ICS. The 50 � represents the internal resistance (Rm) of the move-
ment. A common notation for the movement and its specifications is
provided in Fig. 7.43.

5 k�(120 V)
��

8 k�

3 k�(120 V)
��

8 k�

6 k�(120 V)
��

10 k�

4 k�(120 V)
��

10 k�

S    P    P

S

FIG. 7.42

d’Arsonval analog movement. (Courtesy of 
Weston Instruments, Inc.)

FIG. 7.43

Movement notation.

E

V1

+

–

120 V

10 k�  Pot.

6 k�

4 k�

12 k�

V2

+

–
30 k�

FIG. 7.41

Example 7.12.
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Rotary switch

Imax  =  1 A 0.05 � I
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0.005 �
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I + –

AMMETER, VOLTMETER, AND OHMMETER DESIGN  231

The Ammeter

The maximum current that the d’Arsonval movement can read indepen-
dently is equal to the current sensitivity of the movement. However,
higher currents can be measured if additional circuitry is introduced.
This additional circuitry, as shown in Fig. 7.44, results in the basic con-
struction of an ammeter.

S    P    P

S

Rshunt

1 mA, 50 �

b

d

a

c
Imax  = 1 A

Is

Im

Ammeter

FIG. 7.44

Basic ammeter.

FIG. 7.45

Multirange ammeter.

The resistance Rshunt is chosen for the ammeter of Fig. 7.44 to allow
1 mA to flow through the movement when a maximum current of 1 A
enters the ammeter. If less than 1 A should flow through the ammeter,
the movement will have less than 1 mA flowing through it and will
indicate less than full-scale deflection.

Since the voltage across parallel elements must be the same, the
potential drop across a-b in Fig. 7.44 must equal that across c-d; that is,

(1 mA)(50 �) � RshuntIs

Also, Is must equal 1 A � 1 mA � 999 mA if the current is to be limited
to 1 mA through the movement (Kirchhoff’s current law). Therefore,

(1 mA)(50 �) � Rshunt(999 mA)

Rshunt �

� 0.05 �

In general,

(7.3)

One method of constructing a multirange ammeter is shown in Fig.
7.45, where the rotary switch determines the Rshunt to be used for the

Rshunt � �
Ima

R

x

m

�

ICS

ICS
�

(1 mA)(50 �)
��

999 mA
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maximum current indicated on the face of the meter. Most meters
employ the same scale for various values of maximum current. If you
read 375 on the 0–5 mA scale with the switch on the 5 setting, the cur-
rent is 3.75 mA; on the 50 setting, the current is 37.5 mA; and so on.

The Voltmeter

A variation in the additional circuitry will permit the use of the d’Ar-
sonval movement in the design of a voltmeter. The 1-mA, 50-� move-
ment can also be rated as a 50-mV (1 mA � 50 �), 50-� movement,
indicating that the maximum voltage that the movement can measure
independently is 50 mV. The millivolt rating is sometimes referred to as
the voltage sensitivity (VS). The basic construction of the voltmeter is
shown in Fig. 7.46.

The Rseries is adjusted to limit the current through the movement to
1 mA when the maximum voltage is applied across the voltmeter. A
lesser voltage would simply reduce the current in the circuit and
thereby the deflection of the movement.

Applying Kirchhoff’s voltage law around the closed loop of Fig.
7.46, we obtain

[10 V � (1 mA)(Rseries)] � 50 mV � 0

or Rseries � � 9950 �

In general,

(7.4)

One method of constructing a multirange voltmeter is shown in
Fig. 7.47. If the rotary switch is at 10 V, Rseries � 9.950 k�; at 50 V,
Rseries � 40 k� � 9.950 k� � 49.950 k�; and at 100 V, Rseries �
50 k� � 40 k� � 9.950 k� � 99.950 k�.

The Ohmmeter

In general, ohmmeters are designed to measure resistance in the low,
mid-, or high range. The most common is the series ohmmeter, de-
signed to read resistance levels in the midrange. It employs the series
configuration of Fig. 7.48. The design is quite different from that of the

Rseries � �
Vmax

IC

�

S

VVS
�

10 V � (50 mV)
��

1 mA

S    P    P

S

1 mA, 50 �

Rs

Zero-adjust

Im

E

Runknown

FIG. 7.48

Series ohmmeter.

V  =  10  V (maximum)

Im  =  1 mA

1 mA, 50 �

Rseries

50 mV+ –

+ –

FIG. 7.46

Basic voltmeter.

40 k�

50 k�

External terminals

100 V

50 V

10 V
Rotary
switch

9.95 k�
Im  =  1 mA

1 mA, 50 �

–+

FIG. 7.47

Multirange voltmeter.
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ammeter or voltmeter because it will show a full-scale deflection for
zero ohms and no deflection for infinite resistance.

To determine the series resistance Rs, the external terminals are
shorted (a direct connection of zero ohms between the two) to simulate
zero ohms, and the zero-adjust is set to half its maximum value. The
resistance Rs is then adjusted to allow a current equal to the current sen-
sitivity of the movement (1 mA) to flow in the circuit. The zero-adjust
is set to half its value so that any variation in the components of the
meter that may produce a current more or less than the current sensitiv-
ity can be compensated for. The current Im is

Im (full scale) � ICS � (7.5)

and (7.6)

If an unknown resistance is then placed between the external terminals,
the current will be reduced, causing a deflection less than full scale. If
the terminals are left open, simulating infinite resistance, the pointer
will not deflect since the current through the circuit is zero.

An instrument designed to read very low values of resistance appears
in Fig. 7.49. Because of its low-range capability, the network design
must be a great deal more sophisticated than described above. It
employs electronic components that eliminate the inaccuracies intro-
duced by lead and contact resistances. It is similar to the above system
in the sense that it is completely portable and does require a dc battery
to establish measurement conditions. Special leads are employed to
limit any introduced resistance levels. The maximum scale setting can
be set as low as 0.00352 (3.52 m�).

Rs � �
I
E

CS
� � Rm � �

zero-
2
adjust
�

E
———
Rs � Rm � �

zero-
2
adjust
�

S    P    P

S

FIG. 7.49

Milliohmmeter. (Courtesy of Keithley Instruments, Inc.)

FIG. 7.50

Megohmmeter. (Courtesy of AEMC Corp.)

The megohmmeter (often called a megger) is an instrument for
measuring very high resistance values. Its primary function is to test the
insulation found in power transmission systems, electrical machinery,
transformers, and so on. To measure the high-resistance values, a high
dc voltage is established by a hand-driven generator. If the shaft is
rotated above some set value, the output of the generator will be fixed
at one selectable voltage, typically 250 V, 500 V, or 1000 V. A photo-
graph of a commercially available tester is shown in Fig. 7.50. For this
instrument, the range is zero to 5000 M�.
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PROBLEMS

SECTION 7.2 Descriptive Examples

1. Which elements of the networks in Fig. 7.64 are in series
or parallel? In other words, which elements of the given
networks have the same current (series) or voltage (paral-
lel)? Restrict your decision to single elements, and do not
include combined elements.

(d)

E

R4

R1 R2

R3

R5

R7

R6

(a)

R1

E R4

R2

R3

(b)

E R2 R3

R1 R4

(c)

R1
R2 R3

R4R5

E

FIG. 7.64

Problem 1.

FIG. 7.63

C�� response to an analysis of the ladder network of Fig. 7.60 without the
elements R5 and R6.
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2. Determine RT for the networks of Fig. 7.65.

R1

R2

I1

I2

+  V1  –

R3

R4

I4

I5

+  V2  –

I3I

RT

E

+

–

I6

FIG. 7.66

Problem 3.

3. For the network of Fig. 7.66:
a. Does I � I3 � I6? Explain.
b. If I � 5 A and I1 � 2 A, find I2.
c. Does I1 � I2 � I4 � I5? Explain.
d. If V1 � 6 V and E � 10 V, find V2.
e. If R1 � 3 �, R2 � 2 �, R3 � 4 �, and R4 � 1 �,

what is RT?
f. If the resistors have the values given in part (e) and 

E � 10 V, what is the value of I in amperes?
g. Using values given in parts (e) and (f), find the power

delivered by the battery E and dissipated by the resis-
tors R1 and R2.

4. For the network of Fig. 7.67:
a. Calculate RT.
b. Determine I and I1.
c. Find V3.

5. For the network of Fig. 7.68:
a. Determine RT.
b. Find Is, I1, and I2.
c. Calculate Va.

R3

12 �

R1
I1

RT

6 �

R2

64 VE

I

12 � V3

+

–

FIG. 7.67

Problem 4.
FIG. 7.68

Problem 5.

R1 10 � R2 15 �E
36 V

Is
I1 I2

R3 10 �

R4 2 �

Va

RT

FIG. 7.65

Problem 2.

(a) (b)

(c) (d)

4 �

4 �

RT

4 �

4 �

RT

4 �

4 �

4 �

4 �

RT

4 �

4 � 4 �

4 �

4 �

RT

4 �

4 �
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FIG. 7.69

Problem 6.

I1

16 �

25 �

5 �+ 20 V

I2

– 7 V

6. Determine the currents I1 and I2 for the network of Fig.
7.69.

R2 2 �

R3 10 �

R1 4 �

+24 V

I

I2

I3

I1

–8 V

FIG. 7.70

Problem 7.

7. a. Find the magnitude and direction of the currents I, I1,
I2, and I3 for the network of Fig. 7.70.

b. Indicate their direction on Fig. 7.70.

*8. For the network of Fig. 7.71:
a. Determine the currents Is, I1, I3, and I4.
b. Calculate Va and Vbc.

FIG. 7.71

Problem 8.

R1 10 � R3 5 �20 V

R4

14 � R5

6 �

Va

c b

I4

I3

I1 Is

20 �

R2

9. For the network of Fig. 7.72:
a. Determine the current I1.
b. Calculate the currents I2 and I3.
c. Determine the voltage levels Va and Vb.

FIG. 7.72

Problem 9.

R3 6 �R5 6 �

R4 3 �

R2 3 �

R1 3 �

I1

I2

I3

Va

Vb

E 20 V
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*11. For the series-parallel network of Fig. 7.74:
a. Find the current I.
b. Find the currents I3 and I9.
c. Find the current I8.
d. Find the voltage Vab.

10. For the network of Fig. 7.73:
a. Find the currents I and I6.
b. Find the voltages V1 and V5.
c. Find the power delivered to the 6-k� resistor.

FIG. 7.73

Problem 10.

R1
12 k�

R4

9 k�

R2
12 k�

R3 3 k�V1

+

–

R5

6 k�

+  V5  –
R6 10.4 k�E  =  28 V

I I6

FIG. 7.74

Problem 11.

R6

6 �

R1 10 �

I

R7

6 �

R2

5 � I3

80 V

R5R4  =  4 � 8 � R8 2 �

R9 4 �

I9

I8

b

a

Vab

R3 8 �

*12. Determine the dc levels for the transistor network of Fig.
7.75 using the fact that VBE � 0.7 V, VE � 2 V, and IC �
IE. That is:
a. Determine IE and IC.
b. Calculate IB.
c. Determine VB and VC.
d. Find VCE and VBC.

FIG. 7.75

Problem 12.

RE 1 k�

RC 2.2 k�RB 220 k�

IE

IC

IB

VCC  =  8 V

C VC

E  VE  =  2 V

BVB

+

–
VBE

+
VBC

–

VCE

+

–
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*13. The network of Fig. 7.76 is the basic biasing arrangement
for the field-effect transistor (FET), a device of increas-
ing importance in electronic design. (Biasing simply
means the application of dc levels to establish a particu-
lar set of operating conditions.) Even though you may be
unfamiliar with the FET, you can perform the following
analysis using only the basic laws introduced in this
chapter and the information provided on the diagram.
a. Determine the voltages VG and VS.
b. Find the currents I1, I2, ID, and IS.
c. Determine VDS.
d. Calculate VDG.

FIG. 7.76

Problem 13.

RS 1.5 k�

R2 270 k�

I2 IG

G

+

IS

VS
S

D

VGS –

VG

R1 2 M�

I1 ID

RD 2.5 k�

VDD  =  16 V

VGS  =  –1.75 V
IG  =  0 A
ID  =  IS

*14. For the network of Fig. 7.77:
a. Determine RT.
b. Calculate Va.
c. Find V1.
d. Calculate V2.
e. Determine I (with direction).

15. For the network of Fig. 7.78:
a. Determine the current I.
b. Find V.

FIG. 7.77

Problem 14.

V2

400 �

400 �

E 32 V

220 �

100 �

600 �

+

–

V1

+

–

Va
I

220 �

*16. Determine the current I and the voltages Va, Vb, and Vab

for the network of Fig. 7.79.

FIG. 7.78

Problem 15.

R1 5 �

R2 7 �

R3 8 �

I

V1  =  +9 V

V2  =  –19 V

V

+

–

FIG. 7.79

Problem 16.

4 k�

24 V 0.5 k�R4

I

R1
Vb

2 k�R2

Va

E

1 k�

R3

1.5 k�

R5
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17. For the configuration of Fig. 7.80:
a. Find the currents I2, I6, and I8.
b. Find the voltages V4 and V8.

R2 30 �

R1

10 �

100 VE

R3

10 �I2

R4

6 �

R5

6 �

R6

6 �

R7

3 �

R8 10 �

I8

V8

+

–

I6

+  V4  –

FIG. 7.80

Problem 17.

18. Determine the voltage V and the current I for the network
of Fig. 7.81.

FIG. 7.81

Problem 18.

V

8 �

+

–

8 �
8 �30 V

I

6 �

6 �

*19. For the network of Fig. 7.82:
a. Determine RT by combining resistive elements.
b. Find V1 and V4.
c. Calculate I3 (with direction).
d. Determine Is by finding the current through each ele-

ment and then applying Kirchhoff’s current law. Then
calculate RT from RT � E/Is, and compare the answer
with the solution of part (a).

FIG. 7.82

Problem 19.

R1

16 �

R2

8 �

R4

32 �

R5

16 �

R3

4 �

32 V

E
RT

Is

I3

+  V4  –

+  V1  –

20. For the network of Fig. 7.83:
a. Determine the voltage Vab. (Hint: Just use Kirchhoff’s

voltage law.)
b. Calculate the current I.

FIG. 7.83

Problem 20.

5 �6 V

+

–

20 V3 �

2 �
a b

I
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*21. For the network of Fig. 7.84:
a. Determine the current I.
b. Calculate the open-circuit voltage V.

*22. For the network of Fig. 7.85, find the resistance R3 if the
current through it is 2 A.

V

8 �
I

3 � 6 �

18 V

20 V+

–

FIG. 7.84

Problem 21. FIG. 7.85

Problem 22.

R2 20 � R3

2 A

R1 12 �

120 V

*23. If all the resistors of the cube in Fig. 7.86 are 10 �, what
is the total resistance? (Hint: Make some basic assump-
tions about current division through the cube.)

*24. Given the voltmeter reading V � 27 V in Fig. 7.87:
a. Is the network operating properly?
b. If not, what could be the cause of the incorrect read-

ing?

FIG. 7.86

Problem 23.

RT

FIG. 7.87

Problem 24.

E 36 k�

12 k�

6 k�

6 k�

45 V

=  27 VV

SECTION 7.3 Ladder Networks

25. For the ladder network of Fig. 7.88:
a. Find the current I.
b. Find the current I7.
c. Determine the voltages V3, V5, and V7.
d. Calculate the power delivered to R7, and compare it to

the power delivered by the 240-V supply.

FIG. 7.88

Problem 25.

R3 4 �

R4

2 �

R5 6 � R7 2 �V7

+

–
V5

+

–
V3

+

–

R6

1 �

R1

3 �

R2

5 �

240 V

I

I7
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26. For the ladder network of Fig. 7.89:
a. Determine RT.
b. Calculate I.
c. Find I8.

FIG. 7.89

Problem 26.

R2 2 �

R3

4 �

R4 2 � R7 2 �

R6

4 �

R1

4 �

2 V

RT

R5

1 �

I

I8

R8

1 �

FIG. 7.90

Problem 27.

4 �

12 �

E

12 �

7 � 2 �

24 V

2 �

24 �

10 �

P

*28. For the multiple ladder configuration of Fig. 7.91:
a. Determine I.
b. Calculate I4.
c. Find I6.
d. Find I10.

SECTION 7.4 Voltage Divider Supply 

(Unloaded and Loaded)

29. Given the voltage divider supply of Fig. 7.92:
a. Determine the supply voltage E.
b. Find the load resistors RL2

and RL3
.

c. Determine the voltage divider resistors R1, R2, and R3.

FIG. 7.91

Problem 28.

R9 12 �

R8

12 �

R7

3 � I

R2 6 �

R4 10 �

R6 4 �

R5  =  6 �

R3  =  1 �

R1 3 �

12 V
E

I4

I6

R10

1 �
R11 2 �

R12 2 �
I10

R2

48 V

1.6 k�

R1

R3 RL3

RL2

RL1

E

Is = 72 mA

24 V
8 mA

12 mA

40 mA

FIG. 7.92

Problem 29.

*27. Determine the power delivered to the 10-� load of Fig.
7.90.
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*30. Determine the voltage divider supply resistors for the
configuration of Fig. 7.93. Also determine the required
wattage rating for each resistor, and compare their levels.

FIG. 7.93

Problem 30.

R3180 V

20 mA

40 mA

R2

R1

R4

R5

RL3
36 V

RL2
40 V

RL1
100 V

+

–

10 mA

+120 V

+

–

+

–

4 mA

–60 V

SECTION 7.5 Potentiometer Loading

*31. For the system of Fig. 7.94:
a. At first exposure, does the design appear to be a good

one?
b. In the absence of the 10-k� load, what are the values

of R1 and R2 to establish 3 V across R2?
c. Determine the values of R1 and R2 when the load is

applied, and compare them to the results of part (b).

FIG. 7.94

Problem 31.

10 k�

R1
E

R2 +

–
RL

12 V

1 k�  Pot.

3 V

10 k�

E

+

–
Vab

40 V

100 �  Pot.

1 k�

+

–
Vbc

b

c

a

20 �

FIG. 7.95

Problem 32.

*32. For the potentiometer of Fig. 7.95:
a. What are the voltages Vab and Vbc with no load

applied?
b. What are the voltages Vab and Vbc with the indicated

loads applied?
c. What is the power dissipated by the potentiometer

under the loaded conditions of Fig. 7.95?
d. What is the power dissipated by the potentiometer with

no loads applied? Compare it to the results of part (c).

SECTION 7.6 Ammeter, Voltmeter, and

Ohmmeter Design

33. A d’Arsonval movement is rated 1 mA, 100 �.
a. What is the current sensitivity?
b. Design a 20-A ammeter using the above movement.

Show the circuit and component values.
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34. Using a 50-mA, 1000-� d’Arsonval movement, design
a multirange milliammeter having scales of 25 mA, 50
mA, and 100 mA. Show the circuit and component
values.

35. A d’Arsonval movement is rated 50 mA, 1000 �.
a. Design a 15-V dc voltmeter. Show the circuit and

component values.
b. What is the ohm/volt rating of the voltmeter?

36. Using a 1-mA, 100-� d’Arsonval movement, design a
multirange voltmeter having scales of 5 V, 50 V, and 500
V. Show the circuit and component values.

37. A digital meter has an internal resistance of 10 M� on its
0.5-V range. If you had to build a voltmeter with a d’Ar-
sonval movement, what current sensitivity would you
need if the meter were to have the same internal resis-
tance on the same voltage scale?

*38. a. Design a series ohmmeter using a 100-mA, 1000-�
movement; a zero-adjust with a maximum value of 
2 k�; a battery of 3 V; and a series resistor whose
value is to be determined.

b. Find the resistance required for full-scale, 3/4-scale,
1/2-scale, and 1/4-scale deflection.

c. Using the results of part (b), draw the scale to be used
with the ohmmeter.

39. Describe the basic construction and operation of the
megohmmeter.

*40. Determine the reading of the ohmmeter for the configu-
ration of Fig. 7.96.

FIG. 7.96

Problem 40.

R2 12 �

R1

12 �

R3

12 �

�

(a)

R1

18 �

�

R2

18 �

R3

18 �

(b)

SECTION 7.9 Computer Analysis

PSpice or Electronics Workbench

41. Using schematics, determine V1, V3, Vab, and Is for the
network of Fig. 7.16.

42. Using schematics, determine Is, I5, and V7 for the net-
work of Fig. 7.22.
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Programming Language (C��, QBASIC, Pascal, etc.)

43. Write a program that will find the complete solution for
the network of Fig. 7.6. That is, given all the parameters
of the network, calculate the current, voltage, and power
to each element.

Series ohmmeter A resistance-measuring instrument in
which the movement is placed in series with the unknown
resistance.

Series-parallel network A network consisting of a combina-
tion of both series and parallel branches.

Transistor A three-terminal semiconductor electronic device
that can be used for amplification and switching purposes.

44. Write a program to find all the quantities of Example 7.8
given the network parameters.

GLOSSARY

d’Arsonval movement An iron-core coil mounted on bear-
ings between a permanent magnet. A pointer connected to
the movable core indicates the strength of the current pass-
ing through the coil.

Ladder network A network that consists of a cascaded set
of series-parallel combinations and has the appearance of a
ladder.

Megohmmeter An instrument for measuring very high resis-
tance levels, such as in the megohm range.



8.1 INTRODUCTION

The circuits described in the previous chapters had only one source or
two or more sources in series or parallel present. The step-by-step pro-
cedure outlined in those chapters cannot be applied if the sources are
not in series or parallel. There will be an interaction of sources that will
not permit the reduction technique used in Chapter 7 to find quantities
such as the total resistance and source current.

Methods of analysis have been developed that allow us to approach,
in a systematic manner, a network with any number of sources in any
arrangement. Fortunately, these methods can also be applied to networks
with only one source. The methods to be discussed in detail in this chap-
ter include branch-current analysis, mesh analysis, and nodal analy-
sis. Each can be applied to the same network. The “best” method cannot
be defined by a set of rules but can be determined only by acquiring a
firm understanding of the relative advantages of each. All the methods
can be applied to linear bilateral networks. The term linear indicates that
the characteristics of the network elements (such as the resistors) are
independent of the voltage across or current through them. The second
term, bilateral, refers to the fact that there is no change in the behavior or
characteristics of an element if the current through or voltage across the
element is reversed. Of the three methods listed above, the branch-
current method is the only one not restricted to bilateral devices. Before
discussing the methods in detail, we shall consider the current source
and conversions between voltage and current sources. At the end of the
chapter we shall consider bridge networks and D-Y andY-D conversions.
Chapter 9 will present the important theorems of network analysis that
can also be employed to solve networks with more than one source.

8.2 CURRENT SOURCES

The concept of the current source was introduced in Section 2.4 with
the photograph of a commercially available unit. We must now investi-

Methods of Analysis and
Selected Topics (dc)

N
A8
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gate its characteristics in greater detail so that we can properly deter-
mine its effect on the networks to be examined in this chapter.

The current source is often referred to as the dual of the voltage
source. A battery supplies a fixed voltage, and the source current can
vary; but the current source supplies a fixed current to the branch in
which it is located, while its terminal voltage may vary as determined
by the network to which it is applied. Note from the above that duality
simply implies an interchange of current and voltage to distinguish the
characteristics of one source from the other.

The interest in the current source is due primarily to semiconductor
devices such as the transistor. In the basic electronics courses, you will
find that the transistor is a current-controlled device. In the physical
model (equivalent circuit) of a transistor used in the analysis of transistor
networks, there appears a current source as indicated in Fig. 8.1. The sym-
bol for a current source appears in Fig. 8.1(a). The direction of the arrow
within the circle indicates the direction in which current is being supplied.

NA

For further comparison, the terminal characteristics of an ideal dc
voltage and current source are presented in Fig. 8.2, ideal implying per-
fect sources, or no internal losses sensitive to the demand from the
applied load. Note that for the voltage source, the terminal voltage is
fixed at E volts independent of the direction of the current I. The direc-
tion and magnitude of I will be determined by the network to which the
supply is connected.

FIG. 8.1

Current source within the transistor equivalent circuit.

(a) Transistor symbol (b) Transistor equivalent circuit

Current source

βre

C

E

B Ib

βIbB

C

E

=

FIG. 8.2

Comparing the characteristics of an ideal voltage and current source.

Voltage

E
I

E

0 I

(a)

Current

Vs

I

I

0

(b)

Vs

(+) –

(–) +

I

The characteristics of the ideal current source, shown in Fig. 8.2(b),
reveal that the magnitude of the supply current is independent of the
polarity of the voltage across the source. The polarity and magnitude of
the source voltage Vs will be determined by the network to which the
source is connected.

For all one-voltage-source networks the current will have the direc-
tion indicated to the right of the battery in Fig. 8.2(a). For all single-
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current-source networks, it will have the polarity indicated to the right
of the current source in Fig. 8.2(b).

In review:

A current source determines the current in the branch in which it is
located

and

the magnitude and polarity of the voltage across a current source are
a function of the network to which it is applied.

EXAMPLE 8.1 Find the source voltage Vs and the current I1 for the
circuit of Fig. 8.3.

Solution:

I1 � I � 10 mA

Vs � V1 � I1R1 � (10 mA)(20 k�) � 200 V

EXAMPLE 8.2 Find the voltage Vs and the currents I1 and I2 for the
network of Fig. 8.4.

Solution:

Vs � E � 12 V

I2 � �
V
R

R� � �
E
R

� � � 3 A

Applying Kirchhoff’s current law:

I � I1 � I2

and I1 � I � I2 � 7 A � 3 A � 4 A

EXAMPLE 8.3 Determine the current I1 and the voltage Vs for the net-
work of Fig. 8.5.

Solution: Using the current divider rule:

I1 � � � 2 A

The voltage V1 is

V1 � I1R1 � (2 A)(2 �) � 4 V

and, applying Kirchhoff’s voltage law,

�Vs � V1 � 20 V � 0

and Vs � V1 � 20 V � 4 V � 20 V
� 24 V

Note the polarity of Vs as determined by the multisource network.

8.3 SOURCE CONVERSIONS

The current source described in the previous section is called an ideal
source due to the absence of any internal resistance. In reality, all

(1 �)(6 A)
��
1 � � 2 �

R2I
�
R2 � R1

12 V
�
4 �

NA

–
I  =  10 mA

+
R1 20 k�

I1

Vs

–

+
V1

FIG. 8.3

Example 8.1.

E R12 V 4 �

I1

Vs 7 A

+

–
I

I2

FIG. 8.4

Example 8.2.

+  20 V
2 �

R1

6 A

–

+

Vs

R2

1 �

+  V1  –

I

I1

FIG. 8.5

Example 8.3.
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sources—whether they are voltage or current—have some internal resis-
tance in the relative positions shown in Figs. 8.6 and 8.7. For the voltage
source, if Rs � 0 � or is so small compared to any series resistor that it
can be ignored, then we have an “ideal” voltage source. For the current
source, if Rs � ∞ � or is large enough compared to other parallel ele-
ments that it can be ignored, then we have an “ideal” current source.

If the internal resistance is included with either source, then that
source can be converted to the other type using the procedure to be
described in this section. Since it is often advantageous to make such a
maneuver, this entire section is devoted to being sure that the steps are
understood. It is important to realize, however, as we proceed through
this section, that

source conversions are equivalent only at their external terminals.

The internal characteristics of each are quite different.
We want the equivalence to ensure that the applied load of Figs. 8.6

and 8.7 will receive the same current, voltage, and power from each
source and in effect not know, or care, which source is present.

In Fig. 8.6 if we solve for the load current IL, we obtain

IL � �
Rs �

E
RL

� (8.1)

If we multiply this by a factor of 1, which we can choose to be Rs /Rs,
we obtain

IL � �
Rs

(1
�

)E
RL

� � �
(
R
R

s

s

�

/Rs

R
)E

L
� � �

R
R

s

s

(
�

E/R
R

s

L

)
� � �

Rs

R
�

s I
RL

� (8.2)

If we define I � E/Rs, Equation (8.2) is the same as that obtained by
applying the current divider rule to the network of Fig. 8.7. The result
is an equivalence between the networks of Figs. 8.6 and 8.7 that simply
requires that I � E/Rs and the series resistor Rs of Fig. 8.6 be placed in
parallel, as in Fig. 8.7. The validity of this is demonstrated in Example
8.4 of this section.

For clarity, the equivalent sources, as far as terminals a and b are con-
cerned, are repeated in Fig. 8.8 with the equations for converting in
either direction. Note, as just indicated, that the resistor Rs is the same in
each source; only its position changes. The current of the current source
or the voltage of the voltage source is determined using Ohm’s law and
the parameters of the other configuration. It was pointed out in some
detail in Chapter 6 that every source of voltage has some internal series
resistance. For the current source, some internal parallel resistance will
always exist in the practical world. However, in many cases, it is an

NA

Rs

RL

IL

E

Rs
RL

IL

E RsI  =

FIG. 8.6

Practical voltage source.

FIG. 8.7

Practical current source.

a

b

a

b

E  =  IRs

Rs

Rs

I  = E
Rs

FIG. 8.8

Source conversion.
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excellent approximation to drop the internal resistance of a source due to
the magnitude of the elements of the network to which it is applied. For
this reason, in the analyses to follow, voltage sources may appear with-
out a series resistor, and current sources may appear without a parallel
resistance. Realize, however, that for us to perform a conversion from
one type of source to another, a voltage source must have a resistor in
series with it, and a current source must have a resistor in parallel.

EXAMPLE 8.4

a. Convert the voltage source of Fig. 8.9(a) to a current source, and cal-
culate the current through the 4-� load for each source.

b. Replace the 4-� load with a 1-k� load, and calculate the current IL

for the voltage source.
c. Repeat the calculation of part (b) assuming that the voltage source is

ideal (Rs � 0 �) because RL is so much larger than Rs. Is this one of
those situations where assuming that the source is ideal is an appro-
priate approximation?

Solutions:

a. See Fig. 8.9.

Fig. 8.9(a): IL � �
Rs �

E
RL

� � �
2 �

6
�

V
4 �

� � 1 A

Fig. 8.9(b): IL � �
Rs

R
�

s I
RL

� � �
2
(2

�

�

�

)(3
4
A
�

)
� � 1 A

b. IL � �
Rs �

E
RL

� � � 5.99 mA

c. IL � �
R
E

L
� � � 6 mA � 5.99 mA

Yes, RL k Rs (voltage source).

EXAMPLE 8.5

a. Convert the current source of Fig. 8.10(a) to a voltage source, and
find the load current for each source.

b. Replace the 6-k� load with a 10-� load, and calculate the current IL

for the current source.
c. Repeat the calculation of part (b) assuming that the current source is

ideal (Rs � ∞ �) because RL is so much smaller than Rs. Is this one
of those situations where assuming that the source is ideal is an
appropriate approximation?

6 V
�
1 k�

6 V
��
2 � � 1 k�

NA

(a)

Rs

RL

2 �

–

+
6 V

4 �

IL

E

a

b

(b)

Rs RL2 � 4 �

IL

a

b

I  = =  3 AE
Rs

3 A

FIG. 8.9

Example 8.4.

FIG. 8.10

Example 8.5.

(b)

Rs

RL

3 k�

–

+

6 k�

IL
E  =  IRs  =  27 V

a

b

(a)

Rs RL3 k� 6 k�

IL

a

b

9 mA I

9 mA
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Solutions:

a. See Fig. 8.10.

Fig. 8.10(a): IL � �
Rs

R
�

s I
RL

� � � 3 mA

Fig. 8.10(b): IL � �
Rs �

E
RL

� � � � 3 mA

b. IL � �
Rs

R
�

s I
RL

� � � 8.97 mA

c. IL � I � 9 mA � 8.97 mA

Yes, Rs k RL (current source).

8.4 CURRENT SOURCES IN PARALLEL

If two or more current sources are in parallel, they may all be replaced
by one current source having the magnitude and direction of the resul-
tant, which can be found by summing the currents in one direction and
subtracting the sum of the currents in the opposite direction. The new
parallel resistance is determined by methods described in the discussion
of parallel resistors in Chapter 5. Consider the following examples. 

EXAMPLE 8.6 Reduce the parallel current sources of Figs. 8.11 and
8.12 to a single current source.

(3 k�)(9 mA)
��
3 k� � 10 �

27 V
�
9 k�

27 V
��
3 k� � 6 k�

(3 k�)(9 mA)
��
3 k� � 6 k�

NA

FIG. 8.11

Example 8.6.

FIG. 8.12

Example 8.6.

Is  =  10 A  –  6 A  =  4 A
Rs  =  3 �  �  6 �  =  2 �

6 A
R1 3 �

10 A
R2 6 �

4 A
R3 2 �Is

3 A R1 4 � Rs 4 �Is7 A 4 A 8 A

Is  =  7 A  +  4 A  –  3 A  =  8 A
Rs  =  R1  =  4 �

Solution: Note the solution in each figure.
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EXAMPLE 8.7 Reduce the network of Fig. 8.13 to a single current
source, and calculate the current through RL.

Solution: In this example, the voltage source will first be converted
to a current source as shown in Fig. 8.14. Combining current sources,

NA

I2 6 A 24 �R2 RL 14 �

IL

R1 8 �

E1 32 V

FIG. 8.13

Example 8.7.I1 4 A 8 �R1 24 �R2I2 6 A RL 14 �

IL

I1  =
E1
R1

=
32 V
8 �

= 4 A

Is � I1 � I2 � 4 A � 6 A � 10 A

and Rs � R1 � R2 � 8 � � 24 � � 6 �

Applying the current divider rule to the resulting network of Fig. 8.15,

IL � �
Rs

R
�
s Is

RL
� � � � 3 A

EXAMPLE 8.8 Determine the current I2 in the network of Fig. 8.16.

Solution: Although it might appear that the network cannot be
solved using methods introduced thus far, one source conversion as
shown in Fig. 8.17 will result in a simple series circuit:

Es � I1R1 � (4 A)(3 �) � 12 V

and Rs � R1 � 3 �

and I2 � � � � 3.4 A

8.5 CURRENT SOURCES IN SERIES

The current through any branch of a network can be only single-valued.
For the situation indicated at point a in Fig. 8.18, we find by application
of Kirchhoff’s current law that the current leaving that point is greater
than that entering—an impossible situation. Therefore,

current sources of different current ratings are not connected in
series,

just as voltage sources of different voltage ratings are not connected in
parallel.

8.6 BRANCH-CURRENT ANALYSIS

We will now consider the first in a series of methods for solving net-
works with two or more sources. Once the branch-current method is

17 V
�
5 �

12 V � 5 V
��
3 � � 2 �

Es � E2
�
Rs � R2

60 A
�

20

(6 �)(10 A)
��
6 � � 14 �

FIG. 8.14

Network of Fig. 8.13 following the conversion of the voltage source to a current
source.

Is 10 A 6 �Rs RL 14 �

IL

Is

FIG. 8.15

Network of Fig. 8.14 reduced to its simplest 
form.

I1 4 A 3 �R1 R2 2 �

I2

5 V
a

b

E2

–+

FIG. 8.16

Example 8.8.

E23 �
–+

Rs

Es 12 V

2 �R2

5 V

I2+

–

a

b

FIG. 8.17

Network of Fig. 8.16 following the conversion 
of the current source to a voltage source.

a6 A 7 A

No!

FIG. 8.18

Invalid situation.



(a) (b)

1 2 1 2 3 1 2

3 1 2

3
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mastered, there is no linear dc network for which a solution cannot be
found. Keep in mind that networks with two isolated voltage sources
cannot be solved using the approach of Chapter 7. For additional evi-
dence of this fact, try solving for the unknown elements of Example 8.9
using the methods introduced in Chapter 7. The network of Fig. 8.21
can be solved using the source conversions described in the last section,
but the method to be described in this section has applications far
beyond the configuration of this network. The most direct introduction
to a method of this type is to list the series of steps required for its
application. There are four steps, as indicated below. Before continuing,
understand that this method will produce the current through each
branch of the network, the branch current. Once this is known, all other
quantities, such as voltage or power, can be determined.

1. Assign a distinct current of arbitrary direction to each branch of
the network.

2. Indicate the polarities for each resistor as determined by the
assumed current direction.

3. Apply Kirchhoff’s voltage law around each closed, independent
loop of the network.

The best way to determine how many times Kirchhoff’s voltage law
will have to be applied is to determine the number of “windows” in the
network. The network of Example 8.9 has a definite similarity to the
two-window configuration of Fig. 8.19(a). The result is a need to apply
Kirchhoff’s voltage law twice. For networks with three windows, as
shown in Fig. 8.19(b), three applications of Kirchhoff’s voltage law are
required, and so on.

NA

4. Apply Kirchhoff’s current law at the minimum number of nodes
that will include all the branch currents of the network.

The minimum number is one less than the number of independent
nodes of the network. For the purposes of this analysis, a node is a
junction of two or more branches, where a branch is any combination

FIG. 8.19

Determining the number of independent closed loops.

(4 nodes)

2

3

4

1
4 – 1  =  3 eq.

(4 nodes)

2 3 4

1
4 – 1  =  3 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

FIG. 8.20

Determining the number of applications of Kirchhoff’s current law required.
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4 �

6 V

I1

E2

–

+

1 �

2 VE1

–

+

2 �R1

I2

I3

bd

a

c

R2

R3

FIG. 8.21

Example 8.9.Defined
by I1 I2

4 �

6 V

–

a

+

21

I1

E2

–

+

–

+1 �

2 VE1

–

+

–

+2 �

I3

Defined
by I2

Fixed
polarity

Fixed
polarity

Defined by I3

FIG. 8.22

Inserting the polarities across the resistive elements as defined by the chosen
branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop (1
and 2) in the clockwise direction:

and

of series elements. Figure 8.20 defines the number of applications of
Kirchhoff’s current law for each configuration of Fig. 8.19.

5. Solve the resulting simultaneous linear equations for assumed
branch currents.

It is assumed that the use of the determinants method to solve for the
currents I1, I2, and I3 is understood and is a part of the student’s mathe-
matical background. If not, a detailed explanation of the procedure is
provided in Appendix C. Calculators and computer software packages
such as Mathcad can find the solutions quickly and accurately.

EXAMPLE 8.9 Apply the branch-current method to the network of
Fig. 8.21.

Solution 1:

Step 1: Since there are three distinct branches (cda, cba, ca), three cur-
rents of arbitrary directions (I1, I2, I3) are chosen, as indicated in Fig.
8.21. The current directions for I1 and I2 were chosen to match the
“pressure” applied by sources E1 and E2, respectively. Since both I1 and
I2 enter node a, I3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed
current directions, as indicated in Fig. 8.22.

loop 1:  V � �E1 � VR1 � VR3 � 0

Rise in potential

Drop in potential

loop 2:  V � �VR3 � VR2 
� E2  � 0

Rise in potential

Drop in potential

loop 1:  V � �2 V �  2 � I1 �  4 � I3 � 0 

loop 2:  V �  4 � I3 �  1 � I2 � 6 V � 0 

Battery
potential

Voltage drop
across 2-�

resistor

Voltage drop
across 4-�

resistor

�

�

�

�
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Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node),

I1 � I2 � I3

Step 5: There are three equations and three unknowns (units removed
for clarity):

2 � 2 I1 � 4I3 � 0 Rewritten: 2 I1 � 0 � 4 I3 � 2
4I3 � 1 I2 � 6 � 0 0 � I2 � 4 I3 � 6

I1 � I2 � I3 I1 � I2 � I3 � 0

Using third-order determinants (Appendix C), we have

Mathcad Solution: Once you understand the procedure for enter-
ing the parameters, you can use Mathcad to solve determinants such as

2        0        4       
6        1        4       

2        0        4       
0        1        4       

0        1                   �1

1        1                   �1

2        2              4
0        6              4

2        0              2
0        1              6
1        1              0

1        0     �1

I1 �

I2 �

I3 �

D �

� �1 A

� 2 A

� 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

NA

FIG. 8.23

Using Mathcad to verify the numerical calculations of Example 8.9.
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appearing in Solution 1 in a very short time frame. The numerator is
defined by n in the same manner described for earlier exercises. Then
the sequence View-Toolbars-Matrix is applied to obtain the Matrix
toolbar appearing in Fig. 8.23. Selecting the top left option called
Matrix will result in the Insert Matrix dialog box in which 3 � 3 is
selected. The 3 � 3 matrix will appear with a bracket to signal which
parameter should be entered. Enter that parameter, and then use the left
click of the mouse to select the next parameter you want to enter. When
you have finished, move on to define the denominator d in the same
manner. Then define the current of interest, select Determinant from
the Matrix toolbar, and insert the numerator variable n. Follow with a
division sign, and enter the Determinant of the denominator as shown
in Fig. 8.23. Retype I1 and select the equal sign; the correct result of
�1 will appear.

Once you have mastered the rather simple and direct process just
described, the availability of Mathcad as a checking tool or solving
mechanism will be deeply appreciated.

Solution 2: Instead of using third-order determinants as in Solution
1, we could reduce the three equations to two by substituting the third
equation in the first and second equations:

or �6 I1 � 4 I2 � �2
�4 I1 � 5 I2 � �6

Multiplying through by �1 in the top equation yields

6 I1 � 4 I2 � �2
4 I1 � 5 I2 � �6

and using determinants,

�2 4�
�6 5� 10 � 24 �14

I1 � ––––––– � –––––––– � ––––  � �1A
�6 4� 30 � 16 14
�4 5�

Using the TI-86 calculator:

CALC. 8.1

Note the det (determinant) obtained from a Math listing under a
MATRX menu and the fact that each determinant must be determined
individually. The first set of brackets within the overall determinant
brackets of the first determinant defines the first row of the determinant,
while the second set of brackets within the same determinant defines
the second row. A comma separates the entries for each row. Obviously,
the time to learn how to enter the parameters is minimal when you con-
sider the savings in time and the accuracy obtained.

2 � 2I1 � 4  I1 � I2  � 0 2 � 2I1 � 4I1 � 4I2  � 0

4  I1 � I2  � I2 � 6 � 0 4I1 � 4I2 � I2 � 6 � 0  

I3

I3

NA

det[[2,4][6,5]]/det[[6,4][4,5]] ENTER �1
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�6 2 �
�4 6 � 36 � 8 28

I2 � ––––––– � ––––––– � –– � 2 A
14 14 14

I3 � I1 � I2 � �1 � 2 � 1 A

It is now important that the impact of the results obtained be under-
stood. The currents I1, I2, and I3 are the actual currents in the branches
in which they were defined. A negative sign in the solution simply
reveals that the actual current has the opposite direction than initially
defined—the magnitude is correct. Once the actual current directions
and their magnitudes are inserted in the original network, the various
voltages and power levels can be determined. For this example, the
actual current directions and their magnitudes have been entered on the
original network in Fig. 8.24. Note that the current through the series
elements R1 and E1 is 1 A; the current through R3, 1 A; and the current
through the series elements R2 and E2, 2 A. Due to the minus sign in the
solution, the direction of I1 is opposite to that shown in Fig. 8.21. The
voltage across any resistor can now be found using Ohm’s law, and the
power delivered by either source or to any one of the three resistors can
be found using the appropriate power equation.

NA

Applying Kirchhoff’s voltage law around the loop indicated in Fig.
8.24,

V � �(4 �)I3 � (1 �)I2 � 6 V � 0

or (4 �)I3 � (1 �)I2 � 6 V

and (4 �)(1 A) � (1 �)(2 A) � 6 V
4 V � 2 V � 6 V

6 V � 6 V (checks)

EXAMPLE 8.10 Apply branch-current analysis to the network of Fig.
8.25.

Solution: Again, the current directions were chosen to match the
“pressure” of each battery. The polarities are then added and Kirch-
hoff’s voltage law is applied around each closed loop in the clockwise
direction. The result is as follows:

loop 1: �15 V � (4 �)I1 � (10 �)I3 � 20 V � 0

loop 2: �20 V � (10 �)I3 � (5 �)I2 � 40 V � 0

�

4 �

6 V

–

+

I1  =  1 A

E2

–

+
–

+1 �

2 VE1

–

+

–

+

2 �

R3

R1 R2

I2  =  2 A

I3  =  1 A

FIG. 8.24

Reviewing the results of the analysis of the network of Fig. 8.21.
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Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

Substituting the third equation into the other two yields (with units
removed for clarity)

15 � 4 I1 � 10 I3 � 20 � 0 � Substituting for I2 (since it occurs

20 � 10 I3 � 5(I1 � I3) � 40 � 0 only once in the two equations)

or �4 I1 � 10 I3 � 5
�5 I1 � 15 I3 � �60

Multiplying the lower equation by �1, we have

�4 I1 � 10 I3 � 5
5 I1 � 15 I3 � 60

� 5 10�
� 60 15� 75 � 600 �525

I1 � –––––––– � ––––––––– � ––––– � 4.773 A
��4 10� �60 � 50 �110
� 5 15�

��4 5�
� 5 60� �240 � 25 �265

I3 � –––––––– � –––––––—–– � ––—– � 2.409 A
�110 �110 �110

I2 � I1 � I3 � 4.773 � 2.409 � 7.182 A

revealing that the assumed directions were the actual directions, with I2

equal to the sum of I1 and I3.

8.7 MESH ANALYSIS (GENERAL APPROACH)

The second method of analysis to be described is called mesh analysis.
The term mesh is derived from the similarities in appearance between the
closed loops of a network and a wire mesh fence. Although this
approach is on a more sophisticated plane than the branch-current
method, it incorporates many of the ideas just developed. Of the two
methods, mesh analysis is the one more frequently applied today.
Branch-current analysis is introduced as a stepping stone to mesh
analysis because branch currents are initially more “real” to the student
than the mesh (loop) currents employed in mesh analysis. Essentially,

NA

I1

5 �R1

I2

I3

a

R2R3 10 �

+

–+

–
4 �

40 VE2
+

–
15 VE1 –

+
20 VE3 –

+

21

–

+

FIG. 8.25

Example 8.10.
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the mesh-analysis approach simply eliminates the need to substitute the
results of Kirchhoff’s current law into the equations derived from
Kirchhoff’s voltage law. It is now accomplished in the initial writing of
the equations. The systematic approach outlined below should be fol-
lowed when applying this method.

1. Assign a distinct current in the clockwise direction to each
independent, closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop current.
In fact, any direction can be chosen for each loop current with no
loss in accuracy, as long as the remaining steps are followed
properly. However, by choosing the clockwise direction as a
standard, we can develop a shorthand method (Section 8.8) for
writing the required equations that will save time and possibly
prevent some common errors.

This first step is accomplished most effectively by placing a loop
current within each “window” of the network, as demonstrated in the
previous section, to ensure that they are all independent. A variety of
other loop currents can be assigned. In each case, however, be sure that
the information carried by any one loop equation is not included in a
combination of the other network equations. This is the crux of the ter-
minology: independent. No matter how you choose your loop currents,
the number of loop currents required is always equal to the number of
windows of a planar (no-crossovers) network. On occasion a network
may appear to be nonplanar. However, a redrawing of the network may
reveal that it is, in fact, planar. Such may be the case in one or two
problems at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of
a loop current is clear. For the network of Fig. 8.26, the loop current I1

is the branch current of the branch containing the 2-� resistor and 2-V
battery. The current through the 4-� resistor is not I1, however, since
there is also a loop current I2 through it. Since they have opposite direc-
tions, I4� equals the difference between the two, I1 � I2 or I2 � I1,
depending on which you choose to be the defining direction. In other
words, a loop current is a branch current only when it is the only loop
current assigned to that branch.

2. Indicate the polarities within each loop for each resistor as
determined by the assumed direction of loop current for that loop.
Note the requirement that the polarities be placed within each
loop. This requires, as shown in Fig. 8.26, that the 4-� resistor
have two sets of polarities across it.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was chosen to
establish uniformity and prepare us for the method to be
introduced in the next section.
a. If a resistor has two or more assumed currents through it,

the total current through the resistor is the assumed current
of the loop in which Kirchhoff’s voltage law is being applied,
plus the assumed currents of the other loops passing through
in the same direction, minus the assumed currents through in
the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of
the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed
loop currents.

NA

FIG. 8.26

Defining the mesh currents for a “two-
window” network.

I1

1 �R1

I2

R2

+

–+

–
2 �

6 V E2

+

–2 VE1 –

+

21 R3 4 �

+

–

–

+

I3
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EXAMPLE 8.11 Consider the same basic network as in Example 8.9
of the preceding section, now appearing in Fig. 8.26.

Solution:

Step 1: Two loop currents (I1 and I2) are assigned in the clockwise
direction in the windows of the network. A third loop (I3) could have
been included around the entire network, but the information carried by
this loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed
current directions. Note that for this case, the polarities across the 4-�
resistor are the opposite for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each loop in the
clockwise direction. Keep in mind as this step is performed that the law
is concerned only with the magnitude and polarity of the voltages
around the closed loop and not with whether a voltage rise or drop is
due to a battery or a resistive element. The voltage across each resistor
is determined by V � IR, and for a resistor with more than one current
through it, the current is the loop current of the loop being examined
plus or minus the other loop currents as determined by their directions.
If clockwise applications of Kirchhoff’s voltage law are always chosen,
the other loop currents will always be subtracted from the loop current
of the loop being analyzed.

loop 1: �E1 � V1 � V3 � 0 (clockwise starting at point a)

loop 2: �V3 � V2 � E2 � 0 (clockwise starting at point b)

�(4 �)(I2 � I1) � (1 �)I2 � 6 V � 0

Step 4: The equations are then rewritten as follows (without units for
clarity):

loop 1: �2 � 2I1 � 4I1 � 4I2 � 0
loop 2: �4I2 � 4I1 � 1I2 � 6 � 0

and loop 1: �2 � 6I1 � 4I2 � 0
loop 2: �5I2 � 4I1 � 6 � 0

or loop 1: �6I1 � 4I2 � �2
loop 2: �4I1 � 5I2 � �6

Applying determinants will result in

I1 � �1 A and I2 � �2 A

The minus signs indicate that the currents have a direction opposite to
that indicated by the assumed loop current.

The actual current through the 2-V source and 2-� resistor is there-
fore 1 A in the other direction, and the current through the 6-V source
and 1-� resistor is 2 A in the opposite direction indicated on the circuit.
The current through the 4-� resistor is determined by the following
equation from the original network:

�2 V �  2 �  I1 �  4 �   I1 � I2   � 0 

Total current
through

4-� resistor

Voltage drop across
4-� resistor

Subtracted since I
2
 is

opposite in direction to I
1
.

NA
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loop 1: I4� � I1 � I2 � �1 A � (�2 A) � �1 A � 2 A
� 1 A (in the direction of I1)

The outer loop (I3) and one inner loop (either I1 or I2) would also
have produced the correct results. This approach, however, will often
lead to errors since the loop equations may be more difficult to write.
The best method of picking these loop currents is to use the window
approach.

EXAMPLE 8.12 Find the current through each branch of the network
of Fig. 8.27.

Solution:

Steps 1 and 2 are as indicated in the circuit. Note that the polarities of
the 6-� resistor are different for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each closed loop in
the clockwise direction:

loop 1: �E1 � V1 � V2 � E2 � 0 (clockwise starting at point a)

�5 V � (1 �)I1 � (6 �)(I1 � I2) � 10 V � 0

I2 flows through the 6-Q resistor
in the direction opposite to I1.

loop 2: E2 � V2 � V3 � 0 (clockwise starting at point b)

�10 V � (6 �)(I2 � I1) � (2 �)I2 � 0

The equations are rewritten as

5 � I1 � 6I1 � 6I2 � 10 � 0�� 7I1 � 6I2 � 5
10 � 6I2 � 6I1 � 2I2 � 0 � 6I1 � 8I2 � �10

Step 4: � 5 6 �
��10 �8� �40 � 60 20

I1 � –––––––––– � ––––––––– � ––– � 1 A
� �7 6� 56 � 36 20
� 6 �8�

��7 5�
� 6 �10� 70 � 30 40

I2 � –––––––––– � ––––––– � –– � 2 A
20 20 20

Since I1 and I2 are positive and flow in opposite directions through
the 6-� resistor and 10-V source, the total current in this branch is
equal to the difference of the two currents in the direction of the
larger:

I2 > I1 (2 A > 1 A)

Therefore,

IR2
� I2 � I1 � 2 A � 1 A � 1 A in the direction of I2

It is sometimes impractical to draw all the branches of a circuit at
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of
analysis does not change with this change in configuration.

NA

R1 R2 6 �
+

–
1 �

5 VE1 –

+
10 VE2 –

+

21

+

–

a

2 �

I2

+

–

–

+

b
I1

R3

FIG. 8.27

Example 8.12.
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�6 �10�
�4 �1� �6 � 40 34

I2 � ––––––– � –––––––– � –––– � �0.773 A
�44 �44 �44

The current in the 4-� resistor and 4-V source for loop 1 is

I1 � I2 � �2.182 A � (�0.773 A)
� �2.182 A � 0.773 A
� �1.409 A

revealing that it is 1.409 A in a direction opposite (due to the minus
sign) to I1 in loop 1.

Supermesh Currents

On occasion there will be current sources in the network to which mesh
analysis is to be applied. In such cases one can convert the current
source to a voltage source (if a parallel resistor is present) and proceed
as before or utilize a supermesh current and proceed as follows.

Start as before and assign a mesh current to each independent loop,
including the current sources, as if they were resistors or voltage
sources. Then mentally (redraw the network if necessary) remove the
current sources (replace with open-circuit equivalents), and apply

NA

a

R1 = 2 �

2 �
+

–

E2 4 V

R3 = 6 �
–

+

E1 = 6 V
+

– +
–

b
I1 I2

E3 = 3 V
1 2

R2 4 �

+

–

–

+

FIG. 8.28

Example 8.13.

det[[�10,�4][�1,�10]]/det[[6,�4][4,�10]] ENTER �2.182

CALC. 8.2

EXAMPLE 8.13 Find the branch currents of the network of Fig. 8.28.

Solution:

Steps 1 and 2 are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

loop 1: �E1 �I1R1 � E2 � V2 � 0 (clockwise from point a)

�6 V � (2 �)I1 � 4 V � (4 �)(I1 � I2) � 0

loop 2: �V2 � E2 � V3 � E3 � 0 (clockwise from point b)

�(4 �)(I2 � I1) � 4 V � (6 �)(I2) � 3 V � 0

which are rewritten as

�10 � 4I1 � 2I1 � 4I2 � 0� �6I1 � 4I2 � �10
� 1 � 4I1 � 4I2 � 6I2 � 0 �4I1 � 10I2 � �1

or, by multiplying the top equation by �1, we obtain

6I1 � 4I2 � �10
4I1 � 10I2 � �1

Step 4: ��10 �4�
�  �1 �10� 100 � 4 96I1 � ––––––––––– � ––––––––– � –––– � �2.182 A
� 6 �4� �60 � 16 �44
� 4 �10�

Using the TI-86 calculator:
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Kirchhoff’s voltage law to all the remaining independent paths of the
network using the mesh currents just defined. Any resulting path,
including two or more mesh currents, is said to be the path of a super-
mesh current. Then relate the chosen mesh currents of the network to
the independent current sources of the network, and solve for the mesh
currents. The next example will clarify the definition of a supermesh
current and the procedure.

EXAMPLE 8.14 Using mesh analysis, determine the currents of the
network of Fig. 8.29.

NA

Solution: First, the mesh currents for the network are defined, as
shown in Fig. 8.30. Then the current source is mentally removed, as
shown in Fig. 8.31, and Kirchhoff’s voltage law is applied to the result-
ing network. The single path now including the effects of two mesh cur-
rents is referred to as the path of a supermesh current.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

FIG. 8.29

Example 8.14.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

I1 I2

a

FIG. 8.30

Defining the mesh currents for the network of Fig. 8.29.

E1 20 V

E2 12 VI1 I2

+ – + –

+

–

R2

4 �

R3

2 �
R1 6 �

Supermesh
current

FIG. 8.31

Defining the supermesh current.

Applying Kirchhoff’s law:

20 V � I1(6 �) � I1(4 �) � I2(2 �) � 12 V � 0

or 10I1 � 2I2 � 32
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Node a is then used to relate the mesh currents and the current
source using Kirchhoff’s current law:

I1 � I � I2

The result is two equations and two unknowns:

10I1 � 2I2 � 32
I1 � I2 � 4

Applying determinants:

�32 2 �
� 4 �1� (32)(�1) � (2)(4) 40

I1 � –––––––– � ––––––––––––––– � ––– � 3.33 A
�10 2 � (10)(�1) � (2)(1) 12
� 1 �1�

and I2 � I1 � I � 3.33 A � 4 A � �0.67 A

In the above analysis, it might appear that when the current source
was removed, I1 � I2. However, the supermesh approach requires that
we stick with the original definition of each mesh current and not alter
those definitions when current sources are removed.

EXAMPLE 8.15 Using mesh analysis, determine the currents for the
network of Fig. 8.32.

NA

I1 I3I22 � 8 �

6 �

6 A 8 A

FIG. 8.33

Defining the mesh currents for the network of Fig. 8.32.

Supermesh
current

I1 I3I22 � 8 �

6 �
+ –

+

–

–

+

FIG. 8.34

Defining the supermesh current for the
network of Fig. 8.32.

2 � 8 �

6 �

6 A 8 A

FIG. 8.32

Example 8.15.

Solution: The mesh currents are defined in Fig. 8.33. The current
sources are removed, and the single supermesh path is defined in Fig.
8.34.

Applying Kirchhoff’s voltage law around the supermesh path:

�V2� � V6� � V8� � 0
�(I2 � I1)2 � � I2(6 �) � (I2 � I3)8 � � 0
�2I2 � 2I1 � 6I2 � 8I2 � 8I3 � 0

2I1 � 16I2 � 8I3 � 0
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Introducing the relationship between the mesh currents and the cur-
rent sources:

I1 � 6 A

I3 � 8 A

results in the following solutions:

2I1 � 16I2 � 8I3 � 0

2(6 A) � 16I2 � 8(8 A) � 0

and I2 � � 4.75 A

Then I2� � I1 � I2 � 6 A � 4.75 A � 1.25 A

and I8� � I3 � I2 � 8 A � 4.75 A � 3.25 A

Again, note that you must stick with your original definitions of the
various mesh currents when applying Kirchhoff’s voltage law around
the resulting supermesh paths.

8.8 MESH ANALYSIS (FORMAT APPROACH)

Now that the basis for the mesh-analysis approach has been established,
we will now examine a technique for writing the mesh equations more
rapidly and usually with fewer errors. As an aid in introducing the pro-
cedure, the network of Example 8.12 (Fig. 8.27) has been redrawn in
Fig. 8.35 with the assigned loop currents. (Note that each loop current
has a clockwise direction.)

The equations obtained are

�7I1 � 6I2 � 5
6I1 � 8I2 � �10

which can also be written as

7I1 � 6I2 � �5
8I2 � 6I1 � 10

and expanded as

Col. 1 Col. 2 Col. 3

(1 � 6)I1 � 6I2 � (5 � 10)
(2 � 6)I2 � 6I1 � 10

Note in the above equations that column 1 is composed of a loop
current times the sum of the resistors through which that loop current
passes. Column 2 is the product of the resistors common to another
loop current times that other loop current. Note that in each equation,
this column is subtracted from column 1. Column 3 is the algebraic
sum of the voltage sources through which the loop current of interest
passes. A source is assigned a positive sign if the loop current passes
from the negative to the positive terminal, and a negative value is
assigned if the polarities are reversed. The comments above are correct
only for a standard direction of loop current in each window, the one
chosen being the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis:

76 A
�

16

I1 I2

21 2 �R3

+

–

–
R1

+
1 � R2 6 �

+

–

–

+

5 VE1 –

+
10 VE2 –

+

FIG. 8.35

Network of Fig. 8.27 redrawn with assigned
loop currents.
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1. Assign a loop current to each independent, closed loop (as in the
previous section) in a clockwise direction.

2. The number of required equations is equal to the number of
chosen independent, closed loops. Column 1 of each equation is
formed by summing the resistance values of those resistors
through which the loop current of interest passes and multiplying
the result by that loop current.

3. We must now consider the mutual terms, which, as noted in the
examples above, are always subtracted from the first column. A
mutual term is simply any resistive element having an additional
loop current passing through it. It is possible to have more than one
mutual term if the loop current of interest has an element in common
with more than one other loop current. This will be demonstrated in
an example to follow. Each term is the product of the mutual resistor
and the other loop current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of
the voltage sources through which the loop current of interest
passes. Positive signs are assigned to those sources of voltage
having a polarity such that the loop current passes from the
negative to the positive terminal. A negative sign is assigned to
those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop
currents.

Before considering a few examples, be aware that since the column
to the right of the equals sign is the algebraic sum of the voltage sources
in that loop, the format approach can be applied only to networks in
which all current sources have been converted to their equivalent volt-
age source.

EXAMPLE 8.16 Write the mesh equations for the network of Fig.
8.36, and find the current through the 7-� resistor.

Solution:

Step 1: As indicated in Fig. 8.36, each assigned loop current has a
clockwise direction.

Steps 2 to 4:

I1: (8 � � 6 � � 2 �)I1 � (2 �)I2 � 4 V
I2: (7 � � 2 �)I2 � (2 �)I1 � �9 V

and 16I1 � 2I2 � 4
9I2 � 2I1 � �9

which, for determinants, are

16I1 � 2I2 � 4
�2I1 � 9I2 � �9

� 16 4�
��2 �9� �144 � 8 �136

and I2 � I7� � ––––––––– � ––––––––– � –––––
� 16 �2� 144 � 4 140
��2 9�

� �0.971 A

NA

I1 I2

21

4 V
–+

6 �

–+

–

+
8 � 7 �

+

–
2 �

+

–

–

+

9 V
+–

FIG. 8.36

Example 8.16.
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Solution:

Step 1: Each window is assigned a loop current in the clockwise direc-
tion:

Summing terms yields

2I1 � I2 � 0 � �2
6I2 � I1 � 3I3 � 4
7I3 � 3I2 � 0 � 2

which are rewritten for determinants as

Note that the coefficients of the a and b diagonals are equal. This
symmetry about the c-axis will always be true for equations written
using the format approach. It is a check on whether the equations were
obtained correctly.

We will now consider a network with only one source of voltage to
point out that mesh analysis can be used to advantage in other than multi-
source networks.

   2I1   �     I2    �   0         � �2

       0      �     3I2 �     7I3     � 2

     �I1   �      6I2  �     3I3     � 4

c b a

b

a

1 � � 1 �  I1 �  1 �  I2 � 0 � 2 V � 4 V 

3 � � 4 �  I3 �  3 �  I2 � 0 � 2 V
1 � � 2 � � 3 �  I2 �   1 �  I1 �   3 �  I3 � 4 V    

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

NA

I1 I2

21

1 �

+

–

–

+

4 V
–

+

–

+

+

–

–
2 V

+

+

–
1 �

+
2 V

–

–

+
4 �

3 � 3

2 �+ –

I3

FIG. 8.37

Example 8.17.

EXAMPLE 8.17 Write the mesh equations for the network of Fig.
8.37.



MESH ANALYSIS (FORMAT APPROACH)  277

Solution 1:

I1: (8 � � 3 �)I1 � (8 �)I3 � (3 �)I2 � 15 V
I2: (3 � � 5 � � 2 �)I2 � (3 �)I1 � (5 �)I3 � 0
I3: (8 � � 10 � � 5 �)I3 � (8 �)I1 � (5 �)I2 � 0

11I1 � 8I3 � 3I2 � 15
10I2 � 3I1 � 5I3 � 0
23I3 � 8I1 � 5I2 � 0

or 11I1 � 3I2 � 8I3 � 15
�3I1 � 10I2 � 5I3 � 0
�8I1 � 5I2 � 23I3 � 0

� 11 �3 15�
��3 10 0�
��8 �5 0�

and I3 � I10� � ––––––––––––– � 1.220 A
� 11 �3 �8�
��3 10 �5�
��8 �5 23�

Mathcad Solution: For this example, rather than take the time to
develop the determinant form for each variable, we will apply Mathcad
directly to the resulting equations. As shown in Fig. 8.39, a Guess value
for each variable must first be defined. Such guessing helps the com-
puter begin its iteration process as it searches for the solution. By pro-
viding a rough estimate of 1, the computer recognizes that the result
will probably be a number with a magnitude less than 100 rather than
have to worry about solutions that extend into the thousands or tens of
thousands—the search has been narrowed considerably.

Next, as shown, the word Given must be entered to tell the computer
that the defining equations will follow. Finally, each equation must be
carefully entered and set equal to the constant on the right using the
Ctrl� operation.

The results are then obtained with the Find(I1,I2,I3) expression and
an equal sign. As shown, the results are available with an acceptable
degree of accuracy even though entering the equations and performing
the analysis took only a minute or two (with practice).

NA

I1 I2

21 2 �

+

–
3 �

+

–

–

+

–+
+–

+

–
15 V

–+
+–

10 �

–+

3
I3

I10� = I3

8 � 5 �

FIG. 8.38

Example 8.18.

EXAMPLE 8.18 Find the current through the 10-� resistor of the net-
work of Fig. 8.38.
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det[[11,�3,15][�3,10,0][�8,�5,0]]/det[[11,�3,�8][�3,10,�5][�8,�5,23]] ENTER 1.220

CALC. 8.3

Solution 2: Using the TI-86 calculator:

FIG. 8.39

Using Mathcad to verify the numerical calculations of Example 8.18.

This display certainly requires some care in entering the correct
sequence of brackets in the required format, but it is still a rather neat,
compact format.

8.9 NODAL ANALYSIS (GENERAL APPROACH)

Recall from the development of loop analysis that the general network
equations were obtained by applying Kirchhoff’s voltage law around
each closed loop. We will now employ Kirchhoff’s current law to
develop a method referred to as nodal analysis.

A node is defined as a junction of two or more branches. If we now
define one node of any network as a reference (that is, a point of zero
potential or ground), the remaining nodes of the network will all have a
fixed potential relative to this reference. For a network of N nodes,
therefore, there will exist (N �1) nodes with a fixed potential relative to
the assigned reference node. Equations relating these nodal voltages can
be written by applying Kirchhoff’s current law at each of the (N �1)
nodes. To obtain the complete solution of a network, these nodal volt-
ages are then evaluated in the same manner in which loop currents were
found in loop analysis.
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The nodal analysis method is applied as follows:

1. Determine the number of nodes within the network.
2. Pick a reference node, and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.
3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each
application of Kirchhoff’s current law. In other words, for each
node, don’t be influenced by the direction that an unknown
current for another node may have had. Each node is to be treated
as a separate entity, independent of the application of Kirchhoff’s
current law to the other nodes.

4. Solve the resulting equations for the nodal voltages.

A few examples will clarify the procedure defined by step 3. It will
initially take some practice writing the equations for Kirchhoff’s cur-
rent law correctly, but in time the advantage of assuming that all the
currents leave a node rather than identifying a specific direction for
each branch will become obvious. (The same type of advantage is asso-
ciated with assuming that all the mesh currents are clockwise when
applying mesh analysis.)

EXAMPLE 8.19 Apply nodal analysis to the network of Fig. 8.40.

Solution:

Steps 1 and 2: The network has two nodes, as shown in Fig. 8.41. The
lower node is defined as the reference node at ground potential (zero
volts), and the other node as V1, the voltage from node 1 to ground.

Step 3: I1 and I2 are defined as leaving the node in Fig. 8.42, and Kirch-
hoff’s current law is applied as follows:

I � I1 � I2

The current I2 is related to the nodal voltage V1 by Ohm’s law:

I2 � �

The current I1 is also determined by Ohm’s law as follows:

I1 �

with VR1
� V1 � E

Substituting into the Kirchhoff’s current law equation:

I � �

and rearranging, we have

I � � � � V1� � � �

or V1� � � � � I
E
�
R1

1
�
R2

1
�
R1

E
�
R1

1
�
R2

1
�
R1

V1
�
R2

E
�
R1

V1
�
R1

V1
�
R2

V1 � E
�

R1

VR1�
R1

V1
�
R2

VR2�
R2

I 1 A12 �R2

R1 6 �

E 24 V
–

+

FIG. 8.40

Example 8.19.

I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

FIG. 8.41

Network of Fig. 8.40 with assigned nodes.

+

–
I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

I1

–

+

I2

FIG. 8.42

Applying Kirchhoff’s current law to the 
node V1.
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Substituting numerical values, we obtain

V1� � � � � 1 A � 4 A � 1 A
24 V
�
6 �

1
�
12 �

1
�
6 �

NA

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

FIG. 8.43

Example 8.20.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+

–

V2V1

FIG. 8.44

Defining the nodes for the network of Fig. 8.43.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+ –

+

–

V2V1

I1

I2

FIG. 8.45

Applying Kirchhoff’s current law to node V1.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+–

+

–

V2V1

I3

I2

FIG. 8.46

Applying Kirchhoff’s current law to node V2.

V1� � � 5 A

V1 � 20 V

The currents I1 and I2 can then be determined using the preceding equa-
tions:

I1 � � �

� �0.667 A

The minus sign indicates simply that the current I1 has a direction oppo-
site to that appearing in Fig. 8.42.

I2 � � � 1.667 A

EXAMPLE 8.20 Apply nodal analysis to the network of Fig. 8.43.

Solution 1:

Steps 1 and 2: The network has three nodes, as defined in Fig. 8.44,
with the bottom node again defined as the reference node (at ground
potential, or zero volts), and the other nodes as V1 and V2.

Step 3: For node V1 the currents are defined as shown in Fig. 8.45, and
Kirchhoff’s current law is applied:

0 � I1 � I2 � I

with I1 �

and I2 � �

so that � � I � 0

or � � � � I � 0

and V1� � � � V2� � � �I �

Substituting values:

V1� � � � V2� � � �2 A � � 6 A

For node V2 the currents are defined as shown in Fig. 8.46, and
Kirchhoff’s current law is applied:

I � I2 � I3

with I � �
V2
�
R3

V2 � V1
�

R2

64 V
�
8 �

1
�
4 �

1
�
4 �

1
�
8 �

E
�
R1

1
�
R2

1
�
R2

1
�
R1

V2
�
R2

V1
�
R2

E
�
R1

V1
�
R1

V1 � V2
�

R2

V1 � E
�

R1

V1 � V2
�

R2

VR2�
R2

V1 � E
�

R1

20 V
�
12 �

V1
�
R2

�4 V
�

6 �

20 V � 24 V
��

6 �

V1 � E
�

R1

1
�
4 �



NODAL ANALYSIS (GENERAL APPROACH)  281

or I � � �

and V2� � � � V1� � � I

Substituting values:

V2� � � � V1� � � 2 A

Step 4: The result is two equations and two unknowns:

V1� � � � V2� � � 6 A

�V1� � � V2� � � � 2 A

which become

0.375V1 � 0.25V2 � 6
�0.25V1 � 0.35V2 � 2

Using determinants,

V1 � 37.818 V

V2 � 32.727 V

Since E is greater than V1, the current I1 flows from ground to V1 and is
equal to

IR1
� � � 3.273 A

The positive value for V2 results in a current IR3
from node V2 to ground

equal to

IR3
� � � � 3.273 A

Since V1 is greater than V2, the current IR2
flows from V1 to V2 and is

equal to

IR2
� � � 1.273 A

Mathcad Solution: For this example, we will use Mathcad to work
directly with the Kirchhoff’s current law equations rather than taking
the mathematical process down the line to more familiar forms. Simply
define everything correctly, provide the Guess values, and insert Given
where required. The process should be quite straightforward.

Note in Fig. 8.47 that the first equation comes from the fact that 
I1 � I2 � I � 0 while the second equation comes from I2 � I3 � I. Pay
particular attention to the fact that the first equation is defined by 
Fig. 8.45 and the second by Fig. 8.46 because the direction of I2 is dif-
ferent for each.

The results of V1 � 37.82 V and V2 � 32.73 V confirm the theoret-
ical solution.

37.818 V � 32.727 V
���

4 �

V1 � V2
�

R2

32.727 V
�

10 �

V2
�
R3

VR3�
R3

64 V � 37.818 V
��

8 �

E � V1
�

R1

1
�
10 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
8 �

1
�
4 �

1
�
10 �

1
�
4 �

1
�
R2

1
�
R3

1
�
R2

V2
�
R3

V1
�
R2

V2
�
R2

NA
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EXAMPLE 8.21 Determine the nodal voltages for the network of Fig.
8.48.

NA

4 A 2 �R1 R2 6 �

R3

2 A

12 �

FIG. 8.48

Example 8.21.

4 A
R1 2 A

2 �

I3

Reference

V1 V2

R2 6 �

R3  =  12 �

I1

FIG. 8.49

Defining the nodes and applying Kirchhoff’s current law to the node V1.

Solution:

Steps 1 and 2: As indicated in Fig. 8.49.

FIG. 8.47

Using Mathcad to verify the mathematical calculations of Example 8.20.
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4 A R1 2 A2 �

I3

Reference

V1 V2

R2
6 �

R3  =  12 �

I2

FIG. 8.50

Applying Kirchhoff’s current law to the node V2.

Step 3: Included in Fig. 8.49 for the node V1. Applying Kirchhoff’s
current law:

4 A � I1 � I3

and 4 A � � � �

Expanding and rearranging:

V1� � � � V2� � � 4 A

For node V2 the currents are defined as in Fig. 8.50.

1
�
12 �

1
�
12 �

1
�
2 �

V1 � V2
�

12 �

V1
�
2 �

V1 � V2
�

R3

V1
�
R1

Applying Kirchhoff’s current law:

0 � I3 � I2 � 2 A

and � � 2 A � 0 � � 2 A � 0

Expanding and rearranging:

V2� � � � V1� � � �2 A

resulting in two equations and two unknowns (numbered for later refer-
ence):

V1� � � � V2� � � �4 A

V2� � � � V1� � � �2 A

(8.3)

producing

V1 � V2 � �4 7V1 � V2 � 48

� V1 � V2 � �2 �1V1 � 3V2 � �24

��48 �1�
��24 �3�

and V1 � –––––––––– � � �6 V
��7 �1�
��1 03�

��7 48�
��1 �24�

V2 � –––––––––– � � �6 V
20

�120
�

20

120
�
20

3
�
12

1
�
12

1
�
12

7
�
12

1
�
12 �

1
�
6 �

1
�
12 �

1
�
12 �

1
�
12 �

1
�
2 �

1
�
12 �

1
�
6 �

1
�
12 �

V2
�
6 �

V2 � V1
�

12 �

V2
�
R2

V2 � V1
�

R3
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Since V1 is greater than V2, the current through R3 passes from V1 to V2.
Its value is

IR3
� � � � 1 A

The fact that V1 is positive results in a current IR1
from V1 to ground

equal to

IR1
� � � � 3 A

Finally, since V2 is negative, the current IR2
flows from ground to V2 and

is equal to

IR2
� � � � 1 A

Supernode

On occasion there will be independent voltage sources in the network to
which nodal analysis is to be applied. In such cases we can convert the
voltage source to a current source (if a series resistor is present) and pro-
ceed as before, or we can introduce the concept of a supernode and pro-
ceed as follows.

Start as before and assign a nodal voltage to each independent node of
the network, including each independent voltage source as if it were a
resistor or current source. Then mentally replace the independent voltage
sources with short-circuit equivalents, and apply Kirchhoff’s current law
to the defined nodes of the network. Any node including the effect of ele-
ments tied only to other nodes is referred to as a supernode (since it has
an additional number of terms). Finally, relate the defined nodes to the
independent voltage sources of the network, and solve for the nodal volt-
ages. The next example will clarify the definition of supernode.

EXAMPLE 8.22 Determine the nodal voltages V1 and V2 of Fig. 8.51
using the concept of a supernode.

6 V
�
6 �

V2
�
R2

VR2�
R2

6 V
�
2 �

V1
�
R1

VR1�
R1

12 V
�
12 �

6 V � (�6 V)
��

12 �

V1 � V2
�

R3

NA

R1 4 �

R3

10 �
E

12 V

R2 2 �6 A 4 A

V2V1

FIG. 8.51

Example 8.22.

Solution: Replacing the independent voltage source of 12 V with a
short-circuit equivalent will result in the network of Fig. 8.52. Even
though the mental application of a short-circuit equivalent is discussed
above, it would be wise in the early stage of development to redraw the
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R1 4 �

R3

10 �

R2 2 �6 A 4 A

V2V1

I1 I2

I3 I3
Supernode

FIG. 8.52

Defining the supernode for the network of Fig. 8.51.

network as shown in Fig. 8.52. The result is a single supernode for which
Kirchhoff’s current law must be applied. Be sure to leave the other defined
nodes in place and use them to define the currents from that region of the
network. In particular, note that the current I3 will leave the supernode at
V1 and then enter the same supernode at V2. It must therefore appear twice
when applying Kirchhoff’s current law, as shown below:

Σ Ii � Σ Io

6 A � I3 � I1 � I2 � 4 A � I3

or I1 � I2 � 6 A � 4 A � 2 A

Then � � 2 A

and � � 2 A

Relating the defined nodal voltages to the independent voltage source,
we have

V1 � V2 � E � 12 V

which results in two equations and two unknowns:

0.25V1 � 0.5V2 � 2
V1 � 1V2 � 12

Substituting:

V1 � V2 � 12

0.25(V2 � 12) � 0.5V2 � 2

and 0.75V2 � 2 � 3 � �1

so that V2 � � �1.333 V

and V1 � V2 � 12 V � �1.333 V � 12 V � �10.667 V

The current of the network can then be determined as follows:

I1 � � � 2.667 A

I2 � � � 0.667 A

I3 � � � � 1.2 A
12 V
�
10 �

10.667 V � (�1.333 V)
���

10 �

V1 � V2
�

10 �

1.333 V
�

2 �

V2
�
R2

10.667 V
�

4 �

V
�
R1

�1
�
0.75

V2
�
2 �

V1
�
4 �

V2
�
R2

V1
�
R1
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A careful examination of the network at the beginning of the analy-
sis would have revealed that the voltage across the resistor R3 must be
12 V and I3 must be equal to 1.2 A.

8.10 NODAL ANALYSIS (FORMAT APPROACH)

A close examination of Eq. (8.3) appearing in Example 8.21 reveals
that the subscripted voltage at the node in which Kirchhoff’s current
law is applied is multiplied by the sum of the conductances attached to
that node. Note also that the other nodal voltages within the same equa-
tion are multiplied by the negative of the conductance between the two
nodes. The current sources are represented to the right of the equals
sign with a positive sign if they supply current to the node and with a
negative sign if they draw current from the node.

These conclusions can be expanded to include networks with any
number of nodes. This will allow us to write nodal equations rapidly
and in a form that is convenient for the use of determinants. A major
requirement, however, is that all voltage sources must first be converted
to current sources before the procedure is applied. Note the parallelism
between the following four steps of application and those required for
mesh analysis in Section 8.8:

1. Choose a reference node and assign a subscripted voltage label to
the (N � 1) remaining nodes of the network.

2. The number of equations required for a complete solution is equal
to the number of subscripted voltages (N � 1). Column 1 of each
equation is formed by summing the conductances tied to the node of
interest and multiplying the result by that subscripted nodal voltage.

3. We must now consider the mutual terms that, as noted in the
preceding example, are always subtracted from the first column.
It is possible to have more than one mutual term if the nodal
voltage of current interest has an element in common with more
than one other nodal voltage. This will be demonstrated in an
example to follow. Each mutual term is the product of the mutual
conductance and the other nodal voltage tied to that conductance.

4. The column to the right of the equality sign is the algebraic sum of
the current sources tied to the node of interest. A current source is
assigned a positive sign if it supplies current to a node and a
negative sign if it draws current from the node.

5. Solve the resulting simultaneous equations for the desired
voltages.

Let us now consider a few examples.
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Steps 2 to 4:

and V1 � V2 � �2

� V1 � V2 � 3
7

�
12

1
�
3

1
�
3

1
�
2

V2: V2 V1
1

4 �
1

3 �
1

3 �
� � � �3 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

V1: V1 V2
1

6 �
1

3 �
1

3 �
� � � �2 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance

NA

2 A 6 �R1 R2 4 �

R3

3 A

3 �

I2I1

FIG. 8.53

Example 8.23.

Reference

R1 6 �

R3

3 �

I2 3 A R2 4 �I1 2 A

V1 V2

FIG. 8.54

Defining the nodes for the network of Fig. 8.53.

EXAMPLE 8.23 Write the nodal equations for the network of Fig.
8.53.

Solution:

Step 1: The figure is redrawn with assigned subscripted voltages in Fig.
8.54.
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EXAMPLE 8.24 Find the voltage across the 3-� resistor of Fig. 8.55
by nodal analysis.

NA

2 �

V3�8 V
–

+

6 � 10 �

4 � 3 � 1 V–

+

–

+

FIG. 8.55

Example 8.24.

FIG. 8.56

Defining the nodes for the network of Fig. 8.55.

V3�2 �

V1

4 A

–

+
4 � 3 �

10 �
0.1 A

V2

Reference

6 �

� � � �V1 � � �V2 � �4 A
1

�
6 �

1
�
6 �

1
�
4 �

1
�
2 �









� � � �V2 � � �V1 � �0.1 A

V1 � V2 � 4

� V1 � V2 � �0.1

resulting in

11V1 � 2V2 � �48
�5V1 � 18V2 � �3

and

� 11 48�
��5 �3� �33 � 240 207

V2 � V3� � ––––––––– � –––––––––– � –––– � 1.101 V
� 11 �2� 198 � 10 188
��5 18�

As demonstrated for mesh analysis, nodal analysis can also be a very
useful technique for solving networks with only one source.

3
�
5

1
�
6

1
�
6

11
�
12

1
�
6 �

1
�
6 �

1
�
3 �

1
�
10 �

Solution: Converting sources and choosing nodes (Fig. 8.56), we
have
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EXAMPLE 8.25 Using nodal analysis, determine the potential across
the 4-� resistor in Fig. 8.57.

Solution 1: The reference and four subscripted voltage levels were
chosen as shown in Fig. 8.58. A moment of reflection should reveal that
for any difference in potential between V1 and V3, the current through
and the potential drop across each 5-� resistor will be the same. There-
fore, V4 is simply a midvoltage level between V1 and V3 and is known
if V1 and V3 are available. We will therefore not include it in a nodal
voltage and will redraw the network as shown in Fig. 8.59. Understand,
however, that V4 can be included if desired, although four nodal volt-
ages will result rather than the three to be obtained in the solution of
this problem.

V1: � � � �V1 � � �V2 � � �V3 � 0
1

�
10 �

1
�
2 �

1
�
10 �

1
�
2 �

1
�
2 �

NA

2 �

3 A

2 �

4 �2 �

5 � 5 �

FIG. 8.57

Example 8.25.

2 �

3 A

2 �

4 �2 �

5 � 5 �

V1

V4

V3V2

(0 V)

FIG. 8.58

Defining the nodes for the network of Fig.
8.57.

2 �

3 A

2 �

4 �2 �

V1

10 �

(0 V)

V2 V3

FIG. 8.59

Reducing the number of nodes for the network
of Fig. 8.57 by combining the two 5-�

resistors.

V2: � � �V2 � � �V1 � � �V3 � 3 A
1

�
2 �

1
�
2 �

1
�
2 �

1
�
2 �

V3: � � � �V3 � � �V2 � � �V1 � 0

which are rewritten as

1.1V1 � 0.5V2 � 0.1V3 � 0
V2 � 0.5V1 � 0.5V3 � 3

0.85V3 � 0.5V2 � 0.1V1 � 0

For determinants,

Before continuing, note the symmetry about the major diagonal in
the equation above. Recall a similar result for mesh analysis. Exam-
ples 8.23 and 8.24 also exhibit this property in the resulting equations.
Keep this thought in mind as a check on future applications of nodal
analysis.

��1.1 �0.5 0 �
��0.5 �1 3 �
��0.1 �0.5 0 �

V3 � V4� � ––––––––––––––––––– � 4.645 V
��1.1 �0.5 �0.1 �
��0.5 �1 �0.5 �
��0.1 �0.5 �0.85�

Mathcad Solution: By now the sequence of steps necessary to
solve a series of equations using Mathcad should be quite familiar and
less threatening than the first encounter. For this example, all the param-
eters were entered in the three simultaneous equations, avoiding the

1.1V1 � 0.5V2 � 0.1V3 � 0

�0.1V1 � 0.5V2 � 0.85V3 � 0

�0.5V1 � 1V2 � 0.5V3 � 3

c b a

b

a

1
�
10 �

1
�
2 �

1
�
4 �

1
�
2 �

1
�
10 �
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need to define each parameter of the network. Simply provide a Guess
at the three nodal voltages, apply the word Given, and enter the three
equations properly as shown in Fig. 8.60. It does take some practice to
ensure that the bracket is moved to the proper location before making
an entry, but this is simply part of the rules set up to maintain control of
the operations to be performed. Finally, request the desired nodal volt-
ages using the correct format. The numerical results will appear, again
confirming our theoretical solutions.

NA

3 � 4 � 1 �

9 �

240 V 6 � 6 � 2 �–

+

FIG. 8.61

Example 8.26.

FIG. 8.60

Using Mathcad to verify the mathematical calculations of Example 8.25.

The next example has only one source applied to a ladder network.

EXAMPLE 8.26 Write the nodal equations and find the voltage across
the 2-� resistor for the network of Fig. 8.61.
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V1: � � � �V1 � � �V2 � 0 � 20 V
1

�
4 �

1
�
4 �

1
�
6 �

1
�
12 �

NA

FIG. 8.62

Converting the voltage source to a current source and defining the nodes for the
network of Fig. 8.61.

12 �

V1

2 �20 A 6 � 6 �

(0 V)

1 �4 �

V2 V3

Solution: The nodal voltages are chosen as shown in Fig. 8.62.

V2: � � � �V2 � � �V1 � � �V3 � 0
1

�
1 �

1
�
4 �

1
�
1 �

1
�
6 �

1
�
4 �

V3: � � �V3 � � �V2 � 0 � 0

and

0.5V1 � 0.25V2 � 0 � 20

�0.25V1 � V2 � 1V3 � 0

0 � 1V2 � 1.5V3 � 0

Note the symmetry present about the major axis. Application of
determinants reveals that

V3 � V2� � 10.667 V

8.11 BRIDGE NETWORKS

This section introduces the bridge network, a configuration that has a
multitude of applications. In the chapters to follow, it will be employed
in both dc and ac meters. In the electronics courses it will be encoun-
tered early in the discussion of rectifying circuits employed in convert-
ing a varying signal to one of a steady nature (such as dc). A number of
other areas of application also require some knowledge of ac networks;
these areas will be discussed later.

The bridge network may appear in one of the three forms as indi-
cated in Fig. 8.63. The network of Fig. 8.63(c) is also called a symmet-
rical lattice network if R2 � R3 and R1 � R4. Figure 8.63(c) is an excel-
lent example of how a planar network can be made to appear nonplanar.
For the purposes of investigation, let us examine the network of Fig.
8.64 using mesh and nodal analysis.

17
�
12

1
�
1 �

1
�
2 �

1
�
1 �



292  METHODS OF ANALYSIS AND SELECTED TOPICS (dc)

Mesh analysis (Fig. 8.65) yields

(3 � � 4 � � 2 �)I1 � (4 �)I2 � (2 �)I3 � 20 V
(4 � � 5 � � 2 �)I2 � (4 �)I1 � (5 �)I3 � 0
(2 � � 5 � � 1 �)I3 � (2 �)I1 � (5 �)I2 � 0

and 009I1 � 4I2 � 2I3 � 20
�4I1 � 11I2 � 5I3 � 0
�2I1 � 5I2 � 8I3 � 0

with the result that

I1 � 4 A

I2 � 2.667 A

I3 � 2.667 A

The net current through the 5-� resistor is

I5� � I2 � I3 � 2.667 A � 2.667 A � 0 A

Nodal analysis (Fig. 8.66) yields

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

NA

(b)

R2R1

R3 R4

R5

R1 R2

R5

R3 R4

(a) (c)

R2

R1

R3

R4

R5

FIG. 8.63

Various formats for a bridge network.

FIG. 8.64

Standard bridge configuration.

Rs 3 � R2

2 �

R3

2 �
5 �

R5

1 �

R4

4 �

R1

E 20 V

Rs 3 � R2
2 �

R3 1 �

R1

E 20 V

I1

4 �
R5 I2

I35 �
2 � R4

FIG. 8.65

Assigning the mesh currents to the network of 
Fig. 8.64.

R1

R2R5

R3

R4

2 �

3 �I Rs

V2

V1

V3

4 �

5 �
2 �

1 �

20
3 A

(0 V)

FIG. 8.66

Defining the nodal voltages for the network of 
Fig. 8.64.

det[[20/3,�1/4,�1/2][0,(1/4�1/2�1/5),�1/5][0,�1/5,(1/5�1/2�1/1)]] ENTER 10.5

CALC. 8.4

� � � �V2 � � �V1 � � �V3 � 0
1

�
5 �

1
�
4 �

1
�
5 �

1
�
2 �

1
�
4 �

� � � �V3 � � �V1 � � �V2 � 0

and

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

1
�
5 �

1
�
2 �

1
�
1 �

1
�
2 �

1
�
5 �

�� �V1 � � � � �V2 � � �V3 � 0
1

�
5 �

1
�
5 �

1
�
2 �

1
�
4 �

1
�
4 �

�� �V1 � � �V2 � � � � �V3 � 0

Note the symmetry of the solution.
With the TI-86 calculator, the top part of the determinant is determined

by the following (take note of the calculations within parentheses):

1
�
1 �

1
�
2 �

1
�
5 �

1
�
5 �

1
�
2 �
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with the bottom of the determinant determined by:

det[[(1/3�1/4�1/2),�1/4,�1/2][�1/4,(1/4�1/2�1/5),�1/5][�1/2,�1/5,(1/5�1/2�1/1)]] ENTER 1.312

CALC. 8.5

Finally, 10.5/1.312 ENTER 8

CALC. 8.6

and V1 � 8 V

Similarly, V2 � 2.667 V and V3 � 2.667 V

and the voltage across the 5-� resistor is

V5� � V2 � V3 � 2.667 V � 2.667 V � 0 V

Since V5� � 0 V, we can insert a short in place of the bridge arm with-
out affecting the network behavior. (Certainly V � IR � I·(0) �
0 V.) In Fig. 8.67, a short circuit has replaced the resistor R5, and the volt-
age across R4 is to be determined. The network is redrawn in Fig. 8.68, and

V1� � (voltage divider rule)

� � 

� � � 2.667 V

as obtained earlier.
We found through mesh analysis that I5� � 0 A, which has as its

equivalent an open circuit as shown in Fig. 8.69(a). (Certainly I �
V/R � 0/(∞ �) � 0 A.) The voltage across the resistor R4 will again
be determined and compared with the result above.

The network is redrawn after combining series elements, as shown in
Fig. 8.69(b), and

V3� � � � 8 V

and V1� � � � 2.667 V

as above.
The condition V5� � 0 V or I5� � 0 A exists only for a particular

relationship between the resistors of the network. Let us now derive this
relationship using the network of Fig. 8.70, in which it is indicated that
I � 0 A and V � 0 V. Note that resistor Rs of the network of Fig. 8.69
will not appear in the following analysis.

The bridge network is said to be balanced when the condition of
I � 0 A or V � 0 V exists.

If V � 0 V (short circuit between a and b), then

V1 � V2

8 V
�

3
1 �(8 V)
��
1 � � 2 �

2 �(20 V)
��
2 � � 3 �

(6 � � 3 �)(20 V)
��
6 � � 3 � � 3 �

40 V
�

15
2(20 V)

��
2 � 4 � 9

�
2
3

�(20 V)
��
�
2
3

� � �
4
3

� � �
9
3

�

�
2
3

�(20 V)
��
�
2
3

� � �
8
6

� � 3

(2 � � 1 �)20 V
����
(2 � � 1 �) � (4 � � 2 �) � 3 �

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

V  =  0

Rs 3 �

20 V

–

+
V1�

FIG. 8.67

Substituting the short-circuit equivalent for
the balance arm of a balanced bridge.

R1 2 �

–

+

4 � R2

R3 1 �2 � R4

Rs 3 �

E 20 V V1�–

+

FIG. 8.68

Redrawing the network of Fig. 8.67.
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and I1R1 � I2 R2

or I1 �

In addition, when V � 0 V,

V3 � V4

and I3 R3 � I4 R4

If we set I � 0 A, then I3 � I1 and I4 � I2, with the result that the
above equation becomes

I1R3 � I2 R4

Substituting for I1 from above yields

� �R3 � I2 R4

or, rearranging, we have

(8.4)

This conclusion states that if the ratio of R1 to R3 is equal to that of
R2 to R4, the bridge will be balanced, and I � 0 A or V � 0 V. A method
of memorizing this form is indicated in Fig. 8.71.

For the example above, R1 � 4 �, R2 � 2 �, R3 � 2 �, R4 � 1 �,
and

� � � 2

The emphasis in this section has been on the balanced situation.
Understand that if the ratio is not satisfied, there will be a potential drop
across the balance arm and a current through it. The methods just
described (mesh and nodal analysis) will yield any and all potentials or
currents desired, just as they did for the balanced situation.

8.12 Y-D (T-p) AND D-Y (p-T) CONVERSIONS

Circuit configurations are often encountered in which the resistors do
not appear to be in series or parallel. Under these conditions, it may be
necessary to convert the circuit from one form to another to solve for

2 �
�
1 �

4 �
�
2 �

R2
�
R4

R1
�
R3

�
R

R
1

3
� � �

R

R
2

4
�

I2 R2
�

R1

I2 R2
�

R1

NA

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

Rs 3 �

20 V
–

+

–

+

I  =  0

(a)

V1�

6 �

3 �Rs

3 �

E 20 V
–

+

(b)

FIG. 8.69

Substituting the open-circuit equivalent for the balance arm of a balanced 
bridge.

R1

R3E

V  =  0
Rs

–

+
I  =  0

R4
V4

I4

I1V1–
+ I2

V2
–

+
R2

V3 –

+

I3

–+

FIG. 8.70

Establishing the balance criteria for a bridge 
network.

R1

R3

R2

R4

R1

R3

R2

R4
=

FIG. 8.71

A visual approach to remembering the
balance condition.
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any unknown quantities if mesh or nodal analysis is not applied. Two
circuit configurations that often account for these difficulties are the
wye (Y) and delta (�) configurations, depicted in Fig. 8.72(a). They
are also referred to as the tee (T) and pi (�), respectively, as indicated
in Fig. 8.72(b). Note that the pi is actually an inverted delta.

RB

RC

RA

“ ”

R1 R2

R3

“ ”

RB RA

RC

“ ”

(a) (b)

R1 R2

R3

“ ”

FIG. 8.72

The Y (T) and D (p) configurations.

The purpose of this section is to develop the equations for convert-
ing from D to Y, or vice versa. This type of conversion will normally
lead to a network that can be solved using techniques such as those
described in Chapter 7. In other words, in Fig. 8.73, with terminals a,
b, and c held fast, if the wye (Y) configuration were desired instead of
the inverted delta (D) configuration, all that would be necessary is a
direct application of the equations to be derived. The phrase instead of
is emphasized to ensure that it is understood that only one of these con-
figurations is to appear at one time between the indicated terminals.

It is our purpose (referring to Fig. 8.73) to find some expression for
R1, R2, and R3 in terms of RA, RB, and RC, and vice versa, that will
ensure that the resistance between any two terminals of the Y configu-
ration will be the same with the D configuration inserted in place of the
Y configuration (and vice versa). If the two circuits are to be equivalent,
the total resistance between any two terminals must be the same. Con-
sider terminals a-c in the D-Y configurations of Fig. 8.74.

a

RARB
R3

R2R1

RC
b

c

“ ”

FIG. 8.73

Introducing the concept of D-Y or Y-D
conversions.

R1 R2

R3

a b

c

Ra-c RB RA

RC

a b

c

Ra-c

RB RA

RC

a

b

c

Ra-c

External to path
of measurement

FIG. 8.74

Finding the resistance Ra-c for the Y and D configurations.
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Let us first assume that we want to convert the D (RA, RB, RC) to the Y
(R1, R2, R3). This requires that we have a relationship for R1, R2, and R3

in terms of RA, RB, and RC. If the resistance is to be the same between ter-
minals a-c for both the D and the Y, the following must be true:

Ra-c (Y) � Ra-c (D)

so that (8.5a)

Using the same approach for a-b and b-c, we obtain the following rela-
tionships:

(8.5b)

and (8.5c)

Subtracting Eq. (8.5a) from Eq. (8.5b), we have

(R1 � R2) � (R1 � R3) � � � � � �

so that (8.5d)

Subtracting Eq. (8.5d) from Eq. (8.5c) yields

(R2 � R3) � (R2 � R3) � � � � � �
so that 2R3 ��

RA �

2R
R
B

B

R
�
A

RC
�

resulting in the following expression for R3 in terms of RA, RB, and RC:

(8.6a)

Following the same procedure for R1 and R2, we have

(8.6b)

and (8.6c)

Note that each resistor of the Y is equal to the product of the resistors
in the two closest branches of the D divided by the sum of the resistors
in the D.

R2 � �
RA �

R

R
A R

B

C

� RC
�

R1 � �
RA �

R

R
B R

B

C

� RC
�

R3 � �
RA �

R

R
A

B

RB

� RC
�

RA RC � RB RA
��
RA � RB � RC

RA RB � RA RC
��
RA � RB � RC

R2 � R3 � �
R

R

A

A R

�
C

R

�

B

R

�
B R

R
A

C
�

RB RA � RB RC
��
RA � RB � RC

RC RB � RC RA
��
RA � RB � RC

Rb-c � R2 � R3 � �
RA

RA

�

(R

(
B

RB

�

�

RC

R

)

C)
�

Ra-b � R1 � R2 � �
RC

RC

�

(R

(
A

RA

�

�

RB

R

)

B)
�

Ra-c � R1 � R3 � �
RB

R

�
B(R

(
A

RA

�

�

RC

R

)

C)
�

NA
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To obtain the relationships necessary to convert from a Y to a D, first
divide Eq. (8.6a) by Eq. (8.6b):

� � �
R
R

C

A�

or RA �

Then divide Eq. (8.6a) by Eq. (8.6c):

� � �
R
R

C

B�

or RB �

Substituting for RA and RB in Eq. (8.6c) yields

R2 �

�

Placing these over a common denominator, we obtain

R2 �

�

and RC � (8.7a)

We follow the same procedure for RB and RA:

RA � (8.7b)

and RB � (8.7c)

Note that the value of each resistor of the D is equal to the sum of the
possible product combinations of the resistances of the Y divided by
the resistance of the Y farthest from the resistor to be determined.

Let us consider what would occur if all the values of a D or Y
were the same. If RA � RB � RC, Equation (8.6a) would become
(using RA only) the following:

R3 � �
RA �

R
R
AR

B

B

� RC
� � �

RA �

R
R
AR

A

A

� RA
� � �

3
R
R

2
A

A
� �

and, following the same procedure,

R1 � R2 �
RA
�
3

RA
�
3

RA
�
3

R1R2 � R1R3 � R2R3
���

R2

R1R2 � R1R3 � R2R3
���

R1

R1R2 � R1R3 � R2R3
���

R3

R2R3RC
���
R1R2 � R1R3 � R2R3

(R3RC /R1)
����
(R1R2 � R1R3 � R2R3)/(R1R2)

(R3 /R1)RC
���
(R3 /R2) � (R3 /R1) � 1

(RC R3 /R1)RC
����
(R3 RC /R2) � (RC R3 /R1) � RC

R3 RC
�

R2

(RARB)/(RA � RB � RC)
���
(RARC)/(RA � RB � RC)

R3
�
R2

RC R3
�

R1

(RA RB) /(RA � RB � RC)
���
(RB RC) /(RA � RB � RC)

R3
�
R1

NA
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In general, therefore,

(8.8a)

or (8.8b)

which indicates that for a Y of three equal resistors, the value of each
resistor of the D is equal to three times the value of any resistor of the
Y. If only two elements of a Y or a D are the same, the corresponding
D or Y of each will also have two equal elements. The converting of
equations will be left as an exercise for the reader.

The Y and the D will often appear as shown in Fig. 8.75. They are
then referred to as a tee (T) and a pi (�) network, respectively. The
equations used to convert from one form to the other are exactly the
same as those developed for the Y and D transformation.

RD � 3RY

RY � �
R

3
D
�

NA

(a)

R1

1

2

3

4

R2

R3

“ ” “ ” “ ”

RC

1

2

3

4

RB RA

“ ”

(b)

FIG. 8.75

The relationship between the Y and T configurations and the D and p
configurations.

EXAMPLE 8.27 Convert the D of Fig. 8.76 to a Y.

RB

RA

RCa
b

c

a

b

c

20 �
30 �

10 �

FIG. 8.76

Example 8.27.

R3 10 �

R1

31/3 � R2

5 �

a
ba

b

c
c

FIG. 8.77

The Y equivalent for the D of Fig. 8.76.



Solution:

R1 � � � � 3 �

R2 � � � � 5 �

R3 � � � � 10 �

The equivalent network is shown in Fig. 8.77 (page 298).

EXAMPLE 8.28 Convert the Y of Fig. 8.78 to a D.

Solution:

RA �

�

� �

RA � 180 �

However, the three resistors for the Y are equal, permitting the use of
Eq. (8.8) and yielding

RD � 3RY � 3(60 �) � 180 �

and RB � RC � 180 �

The equivalent network is shown in Fig. 8.79.

EXAMPLE 8.29 Find the total resistance of the network of Fig. 8.80,
where RA � 3 �, RB � 3 �, and RC � 6 �.

Solution:

Two resistors of the D were equal;
therefore, two resistors of the Y will
be equal.

R1 � � � � 1.5 �

R2 � � � � 1.5 �

R3 � � � � 0.75 �

Replacing the D by the Y, as shown in Fig. 8.81, yields

RT � 0.75 � �

� 0.75 � �

� 0.75 � � 2.139 �

RT � 2.889 �

(5.5 �)(3.5 �)
��
5.5 � � 3.5 �

(4 � � 1.5 �)(2 � � 1.5 �)
����
(4 � � 1.5 �) � (2 � � 1.5 �)

9 �
�
12

(3 �)(3 �)
��

12 �

RARB��
RA � RB � RC

18 �
�

12

(3 �)(6 �)
��

12 �

RARC��
RA � RB � RC

18 �
�

12

(3 �)(6 �)
��
3 � � 3 � � 6 �

RBRC��
RA � RB � RC

10,800 �
��

60
3600 � � 3600 � � 3600 �
���

60

(60 �)(60 �) � (60 �)(60 �) � (60 �)(60 �)
�����

60 �

R1R2 � R1R3 � R2R3
���

R1

600 �
�

60

(20 �)(30 �)
��

60 �

RARB��
RA � RB � RC

300 �
�

60

(30 �)(10 �)
��

60 �
RARC��

RA � RB � RC

1
�
3

200 �
�

60

(20 �)(10 �)
���
30 � � 20 � � 10 �

RB RC��
RA � RB � RC

←−
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R3 60 �

R1

60 � R2

60 �

a
ba

b

c
c

FIG. 8.78

Example 8.28.

RC

RB

180 � RA

a
ba

b

c
c

180 �

180 �

FIG. 8.79

The D equivalent for the Y of Fig. 8.78.

RB

3 �
RA

3 �

ba

c

4 � 2 �

6 � “    ”RT

RC

FIG. 8.80

Example 8.29.

RT

0.75 �

R1

ba

c

4 � 2 �

1.5 � 1.5 �

R3

R2

FIG. 8.81

Substituting the Y equivalent for the bottom D
of Fig. 8.80.

← 
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EXAMPLE 8.30 Find the total resistance of the network of Fig. 8.82.

Solutions: Since all the resistors of the D or Y are the same, Equa-
tions (8.8a) and (8.8b) can be used to convert either form to the other.
a. Converting the D to a Y. Note: When this is done, the resulting d ′ of

the new Y will be the same as the point d shown in the original fig-
ure, only because both systems are “balanced.” That is, the resis-
tance in each branch of each system has the same value:

RY � � � 2 � (Fig. 8.83)
6 �
�

3

RD
�
3

NA

FIG. 8.82

Example 8.30.

RT

6 �

a

bc

9 �
6
�

9 � 9 �

6 �

d

d*

2 �

2 � 2 �

a

bc

6 �

a

bc

6 �

6 �

FIG. 8.83

Converting the D configuration of Fig. 8.82 to a Y configuration.

RT

9 �

a

2 �

d, d�

c b

9 � 9 �

2 �2 �

FIG. 8.84

Substituting the Y configuration for the con-
verted D into the network of Fig. 8.82.

RT
6 �

a

bc

27 �
6 �

6 �

27 �
27 �

FIG. 8.85

Substituting the converted Y configuration into
the network of Fig. 8.82.

The network then appears as shown in Fig. 8.84.

RT � 2� � � 3.2727 �

b. Converting the Y to a D:

RD � 3RY � (3)(9 �) � 27 � (Fig. 8.85)

R′T � � � 4.9091 �

RT � � �

� � 3.2727 �

which checks with the previous solution.

2(4.9091 �)
��

3

2R′T�
3

R′T2R′T�
3R′T

R′T (R′T � R′T)
��
R′T � (R′T � R′T)

162 �
�

33
(6 �)(27 �)
��
6 � � 27 �

(2 �)(9 �)
��
2 � � 9 �
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R1

E VabI 6 A

3 �

a

b

+

–
10 V

FIG. 8.93

Problem 1.

Rs 10 k�

2 �

4 AI 6 � V
+

–

(a)

2 �

4 AI 6 � V
+

–

(b)

FIG. 8.94

Problem 2.

2. a. Determine V for the current source of Fig. 8.94(a)
with an internal resistance of 10 k�.

b. The source of part (a) is approximated by an ideal cur-
rent source in Fig. 8.94(b) since the source resistance
is much larger than the applied load. Determine the
resulting voltage V for Fig. 8.94(b), and compare it to
that obtained in part (a). Is the use of the ideal current
source a good approximation?

PROBLEMS

SECTION 8.2 Current Sources

1. Find the voltage Vab (with polarity) across the ideal cur-
rent source of Fig. 8.93.

3. For the network of Fig. 8.95:
a. Find the currents I1 and Is.
b. Find the voltages Vs and V3.

4. Find the voltage V3 and the current I2 for the network of
Fig. 8.96.

FIG. 8.95

Problem 3.

R1 2 �

6 �

4 A

I 2 � V3

+

–

R2

R3E 24 VVs

+

–

I1 Is

FIG. 8.96

Problem 4.

R1 6 �

0.6 A

I

16 � V3

+

–
R3

I2

R2 24 �

8 �R4



SECTION 8.3 Source Conversions

5. Convert the voltage sources of Fig. 8.97 to current
sources.
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E 18 V

(a)

Rs

6 �

E 9 V

(b)

Rs

2.2 k�

FIG. 8.97

Problem 5.

6. Convert the current sources of Fig. 8.98 to voltage
sources.

Rs3 �

1.5 A

(a)

Rs

4.7 k�

6 mA

(b)

II

FIG. 8.98

Problem 6.

FIG. 8.99

Problem 7.

Rs 4 �
12 A

I RL 2 �

FIG. 8.100

Problem 8.

R1

10 �

R2

6.8 �

R3 39 �E 12 V

I1

Vab

a

b

I  =  2 A

7. For the network of Fig. 8.99:
a. Find the current through the 2-� resistor.
b. Convert the current source and 4-� resistor to a volt-

age source, and again solve for the current in the 2-�
resistor. Compare the results.

8. For the configuration of Fig. 8.100:
a. Convert the current source and 6.8-� resistor to a

voltage source.
b. Find the magnitude and direction of the current I1.
c. Find the voltage Vab and the polarity of points a and b.
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SECTION 8.4 Current Sources in Parallel

9. Find the voltage V2 and the current I1 for the network of
Fig. 8.101.

10. a. Convert the voltage sources of Fig. 8.102 to current
sources.

b. Find the voltage Vab and the polarity of points a and b.
c. Find the magnitude and direction of the current I.

FIG. 8.101

Problem 9.

7 A

I1

V2R1 4 � R2 6 � 3 A

+

–

FIG. 8.102

Problem 10.

R1 3 �

E1 9 V

R2 2 �

E2 20 V

R3 6 � R412 �

I

b

a

Vab

FIG. 8.103

Problem 11.

V2

R1 6.8 k� 12 V

+ –
R2

2.2 k�

I2

3 mA

8 mA

V1

+

–

FIG. 8.104

Problems 12, 17, 25, and 54.

R3 8 � 6 V

R2

2 �

E2

R1

4 �

4 V E1

R2 3 �

10 VE1

R1 4 �

12 VE2

R3 12 �

(a) (b)

11. For the network of Fig. 8.103:
a. Convert the voltage source to a current source.
b. Reduce the network to a single current source, and

determine the voltage V1.
c. Using the results of part (b), determine V2.
d. Calculate the current I2.

SECTION 8.6 Branch-Current Analysis

12. Using branch-current analysis, find the magnitude and
direction of the current through each resistor for the net-
works of Fig. 8.104.
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*13. Using branch-current analysis, find the current through
each resistor for the networks of Fig. 8.105. The resistors
are all standard values.

*14. For the networks of Fig. 8.106, determine the current I2

using branch-current analysis, and then find the voltage
Vab.

FIG. 8.105

Problems 13, 18, and 26.

R1 5.6 k�

30 V

R2

3.3 k�

E2

10 VE1

9 V

E1

6 V

E2

(I) (II)

20 VE3

R3 2.2 k� R2

8.2 k�

R3 9.1 k�

R4

1.1 k�

R1

1.2 k�

FIG. 8.106

Problems 14, 19, and 27.

R12 � R3 3 �

R2

5 �

25 V E1 E3 60 V

6 V

E4

E2

I2

Vab

20 V

a

b

R1 3 �

R2

4 �

3 A

6 V

E2

E3I2

Vab

4 V

a

R4 6 �

R3 8 �

I1

b

(I) (II)

*15. For the network of Fig. 8.107:
a. Write the equations necessary to solve for the branch

currents.
b. By substitution of Kirchhoff’s current law, reduce the

set to three equations.
c. Rewrite the equations in a format that can be solved

using third-order determinants.
d. Solve for the branch current through the resistor R3.

FIG. 8.107

Problems 15, 20, and 28.

I3

E2 6 VE1 10 V R4 5 �R2 1 �

R1

2 �

R3

4 �

R5

3 �
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IE

VCC 20 V

RB

270 k�

RC

2.2 k�

RE 510 �

IC

8 V

E

C

0.7 V

B

+

–

+ –

–

+

–
VCC 20 V

+

IB

*16. For the transistor configuration of Fig. 8.108:
a. Solve for the currents IB, IC, and IE using the fact that

VBE � 0.7 V and VCE � 8 V.
b. Find the voltages VB, VC, and VE with respect to

ground.
c. What is the ratio of output current IC to input current

IB? [Note: In transistor analysis this ratio is referred to
as the dc beta of the transistor (bdc).]

SECTION 8.7 Mesh Analysis (General Approach)

17. Find the current through each resistor for the networks of
Fig. 8.104.

18. Find the current through each resistor for the networks of
Fig. 8.105.

19. Find the mesh currents and the voltage Vab for each net-
work of Fig. 8.106. Use clockwise mesh currents.

20. a. Find the current I3 for the network of Fig. 8.107 using
mesh analysis.

b. Based on the results of part (a), how would you com-
pare the application of mesh analysis to the branch-
current method?

*21. Using mesh analysis, determine the current through the
5-� resistor for each network of Fig. 8.109. Then deter-
mine the voltage Va.

FIG. 8.108

Problem 16.

FIG. 8.109

Problems 21 and 29.

R1  =  4 � 3 �

6 �

R3  =  5 �

R5

R2  =  2 �

E2 16 V
12 V

E1

R4

Va

R1

1 �

5 �

R5

3 �

R2
15 V

E1
R4

V
a

R3

6 V
E2

1 �

E3

4 V

(a) (b)

10 �
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*23. Write the mesh equations for each of the networks of Fig.
8.111, and, using determinants, solve for the loop cur-
rents in each network.

R2 3.3 k�

E2 3 V

R5 6.8 k�

E1 18 V

R1 9.1 k�

7.5 k�

R4

R3 2.2 k�

(I) (II)

R5

4 �

R4

4 �

E1

16 V
4 �

R1
7 �

R6

E2

12 V

3 �

R2R3

E3

15 V

10 �

FIG. 8.110

Problems 22, 30, and 34.

R1

2 �

1 �

R3

8 �

9 V

6 V

E2

R4

(b)

4 �

6 V

E1

R2

6.8 k� 2.7 k�

4.7 k�

6 V

1.1 k�
22 k�

8.2 k�2.2 k�

5 V1.2 k�

(a)

FIG. 8.111

Problems 23, 31, and 55.

*24. Using the supermesh approach, find the current through
each element of the networks of Fig. 8.112.

FIG. 8.112

Problem 24.

(b)

1 �

6 �

20 V

3 A
4 �

8 �

8 A

(a)

4 �

24 V

6 �

10 �

6 A
12 V

*22. Write the mesh equations for each of the networks of Fig.
8.110, and, using determinants, solve for the loop cur-
rents in each network. Use clockwise mesh currents.
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SECTION 8.8 Mesh Analysis (Format Approach)

25. Using the format approach, write the mesh equations for
the networks of Fig. 8.104. Is symmetry present? Using
determinants, solve for the mesh currents.

26. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.105.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

27. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.106.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

28. Using mesh analysis, determine the current I3 for the net-
work of Fig. 8.107, and compare your answer to the solu-
tion of Problem 15.

29. Using mesh analysis, determine I5� and Va for the net-
work of Fig. 8.109(b).

30. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.110.

31. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.111.

SECTION 8.9 Nodal Analysis (General Approach)

32. Write the nodal equations for the networks of Fig. 8.113,
and, using determinants, solve for the nodal voltages. Is
symmetry present?

FIG. 8.113

Problems 32 and 38.

R2 4 �

R4

2 �

3 A

I2R3
5 �

R1
2 �

5 A
I1

(a)

R4
5 �

I2

R3
20 �R1 2 �

4 A
I1

(b)

R2

4 �

2 A
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34. a. Write the nodal equations for the networks of Fig.
8.110.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.

*35. For the networks of Fig. 8.115, write the nodal equations
and solve for the nodal voltages.

R28 �

R3

4 �

4 A I2
R4 6 �R13 �

5 A I1

(I)

E

12 V

R2
4 �

I26 AI1

(II)

R4

2 �

R1 5 � 7 A

R3

3 �

R5 8 �

FIG. 8.114

Problems 33 and 39.

I1
15 V 3 AE1

(I)

R1 3 �

R24 �

R5
6 �

R3 7 �
R4

5 �

6 �
R6

2 A

I1

(II)

R1 9 �

R6

20 �

R4

20 �

R5

20 �

R3 18 �
R24 �

E116 V

FIG. 8.115

Problems 35 and 40.

36. a. Determine the nodal voltages for the networks of Fig.
8.116.

b. Find the voltage across each current source.

(I) (II)

4 �6 �

2 A

5 A

2 �

5 �

2 �
5 A

9 �

20 V

2 �

2 �

4 �
2 �

7 �

FIG. 8.116

Problems 36 and 41.

33. a. Write the nodal equations for the networks of Fig.
8.114.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.
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40 �3 A

16 V

4 A

10 �

6 �2 A 12 �

(I) (II)

4 �

24 V

20 �

FIG. 8.117

Problems 37 and 56.

Rs 6 �
R5

5 �

R1

5 �

10 �

R3

R4

R2

5 �

20 �
6 VE

FIG. 8.118

Problems 42 and 43.

Rs 2 k�

R5

36 k�

R1

33 k�

R4

R2

56 k�

5.6 k�
24 VE

R3

3.3 k�

FIG. 8.119

Problems 44 and 45.

*37. Using the supernode approach, determine the nodal volt-
ages for the networks of Fig. 8.117.

SECTION 8.10 Nodal Analysis (Format Approach)

38. Using the format approach, write the nodal equations for
the networks of Fig. 8.113. Is symmetry present? Using
determinants, solve for the nodal voltages.

39. a. Write the nodal equations for the networks of Fig.
8.114.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

40. a. Write the nodal equations for the networks of Fig.
8.115.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

41. Determine the nodal voltages for the networks of Fig.
8.116. Then determine the voltage across each current
source.

SECTION 8.11 Bridge Networks

42. For the bridge network of Fig. 8.118:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

43. For the network of Fig. 8.118:
a. Write the nodal equations using the format approach.
b. Determine the voltage across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

44. For the bridge of Fig. 8.119:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?
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45. For the bridge network of Fig. 8.119:
a. Write the nodal equations using the format approach.
b. Determine the current across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

46. Write the nodal equations for the bridge configuration of
Fig. 8.120. Use the format approach.

SECTION 8.12 Y-D (T-p) and D-Y (p-T) Conversions

48. Using a D-Y or Y-D conversion, find the current I in each
of the networks of Fig. 8.122.

*47. Determine the current through the source resistor Rs of
each network of Fig. 8.121 using either mesh or nodal
analysis. Discuss why you chose one method over the
other.

FIG. 8.120

Problem 46.

9 V
R1

100 k�

R4

100 k�

R2

200 k�

1 k�

R34 mA

Rs 1 k�I

200 k�

FIG. 8.121

Problem 47.

20 �
10 �

R2

R5
2 A

Rs
R4

(b)

20 �
R1

R3

20 �

10 �
10 �I

R1 2 k�

E

(a)

Rs 1 k� 2 k� R2

10 V R3 2 k� 2 k�R4

R5

2 k�

FIG. 8.122

Problem 48.

20 V

I
2 �

4 �

1 �

(a)

2 �

3 �

8 V

I

4.7 k�

6.8 k�

(b)

1.1 k�

6.8 k� 6.8 k�
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*50. Determine the current I for the network of Fig. 8.124.

*51. a. Replace the T configuration of Fig. 8.125 (composed
of 6-k� resistors) with a p configuration.

b. Solve for the source current Is1.

5 A

I

3 k�

3 k� 6 k�

3 k�2 k�

3 k�

3 k�

FIG. 8.124

Problem 50.

*52. a. Replace the p configuration of Fig. 8.126 (composed
of 3-k� resistors) with a T configuration.

b. Solve for the source current Is.

E1 10 V
+

–
E2 5 V

+

–R3 6 k�

R2

6 k�

R1

6 k�Is1

FIG. 8.125

Problem 51.

E 20 V
R5

Rs 1 k�

Is

R4 3 k�

R3

3 k�

R1 2 k� R2 2 k�

3 k�

FIG. 8.126

Problem 52.

*49. Repeat Problem 48 for the networks of Fig. 8.123.

(a) (b)

400 V

I

4 k�
42 V

I

4 k�

6 k�

4 k�

18 �

6 � 6 �

6 �
18 �18 �

FIG. 8.123

Problem 49.
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RT

9 � 9 �

9 �

9 �
9 �

9 �9 �

9 �

a b

c
d

h g

fe

FIG. 8.127

Problem 53.

*53. Using Y-D or D-Y conversions, determine the total resis-
tance of the network of Fig. 8.127.

SECTION 8.14 Computer Analysis

PSpice or Electronics Workbench

54. Using schematics, find the current through each element
of Fig. 8.104.

*55. Using schematics, find the mesh currents for the network
of Fig. 8.111(a).

*56. Using schematics, determine the nodal voltages for the
network of Fig. 8.117(II).

Programming Language (C��, QBASIC, Pascal, etc.)

57. Given two simultaneous equations, write a program to
solve for the unknown variables.

*58. Using mesh analysis and determinants, write a program
to solve for both mesh currents of the network of Fig.
8.26 (for any component values).

*59. Using nodal analysis and determinants, write a program
to solve for the nodal voltages of the network of Fig. 8.44
(for any component values).

GLOSSARY

Branch-current method A technique for determining the
branch currents of a multiloop network.

Bridge network A network configuration typically having a
diamond appearance in which no two elements are in series
or parallel.

Current sources Sources that supply a fixed current to a net-
work and have a terminal voltage dependent on the network
to which they are applied.

Delta (D), pi (p) configuration A network structure that
consists of three branches and has the appearance of the
Greek letter delta (D) or pi (p).

Determinants method A mathematical technique for finding
the unknown variables of two or more simultaneous linear
equations.

Mesh analysis A technique for determining the mesh (loop)
currents of a network that results in a reduced set of equa-
tions compared to the branch-current method.

Mesh (loop) current A labeled current assigned to each dis-
tinct closed loop of a network that can, individually or in
combination with other mesh currents, define all of the
branch currents of a network.

Nodal analysis A technique for determining the nodal volt-
ages of a network.

Node A junction of two or more branches in a network.
Wye (Y), tee (T) configuration A network structure that

consists of three branches and has the appearance of the
capital letter Y or T.
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Cycle A portion of a waveform contained in one period of time.
Effective value The equivalent dc value of any alternating

voltage or current.
Electrodynamometer meters Instruments that can measure

both ac and dc quantities without a change in internal cir-
cuitry.

Frequency ( f ) The number of cycles of a periodic waveform
that occur in 1 second.

Frequency counter An instrument that will provide a digital
display of the frequency or period of a periodic time-vary-
ing signal.

Instantaneous value The magnitude of a waveform at any
instant of time, denoted by lowercase letters.

Oscilloscope An instrument that will display, through the use
of a cathode-ray tube, the characteristics of a time-varying
signal.

Peak amplitude The maximum value of a waveform as mea-
sured from its average, or mean, value, denoted by upper-
case letters.

Peak-to-peak value The magnitude of the total swing of
a signal from positive to negative peaks. The sum of the
absolute values of the positive and negative peak values.

Peak value The maximum value of a waveform, denoted by
uppercase letters.

Period (T ) The time interval between successive repetitions
of a periodic waveform.

Periodic waveform A waveform that continually repeats
itself after a defined time interval.

Phase relationship An indication of which of two wave-
forms leads or lags the other, and by how many degrees or
radians.

Radian (rad) A unit of measure used to define a particular
segment of a circle. One radian is approximately equal to
57.3°; 2p rad are equal to 360°.

Root-mean-square (rms) value The root-mean-square or
effective value of a waveform.

Sinusoidal ac waveform An alternating waveform of unique
characteristics that oscillates with equal amplitude above
and below a given axis.

VOM A multimeter with the capability to measure resistance
and both ac and dc levels of current and voltage.

Waveform The path traced by a quantity, plotted as a func-
tion of some variable such as position, time, degrees, tem-
perature, and so on.
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