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Medical Statistics at a Glance is directed at undergraduate medical 
students, medical researchers, postgraduates in the biomedical 
disciplines and at pharmaceutical industry personnel. All of these 
individuals will, at some time in their professional lives, be faced with 
quantitative results (their own or those of others) which will need to be 
critically evaluated and interpreted, and some, of course, will have to 
pass that dreaded statistics exam! A proper understanding of statistical 
concepts and methodology is invaluable for these needs. Much as we 
should like to fire the reader with an enthusiasm for the subject of 
statistics, we are pragmatic. Our aim in this new edition, as it was in the 
earlier editions, is to provide the student and the researcher, as well as 
the clinician encountering statistical concepts in the medical literature, 
with a book which is sound, easy to read, comprehensive, relevant, and 
of useful practical application.

We believe Medical Statistics at a Glance will be particularly helpful 
as an adjunct to statistics lectures and as a reference guide. The structure 
of this third edition is the same as that of the first two editions. In line 
with other books in the At a Glance series, we lead the reader through a 
number of self-contained two-, three- or occasionally four-page 
chapters, each covering a different aspect of medical statistics. We have 
learned from our own teaching experiences and have taken account of 
the difficulties that our students have encountered when studying 
medical statistics. For this reason, we have chosen to limit the theoretical 
content of the book to a level that is sufficient for understanding the 
procedures involved, yet which does not overshadow the practicalities 
of their execution.

Medical statistics is a wide-ranging subject covering a large number 
of topics. We have provided a basic introduction to the underlying 
concepts of medical statistics and a guide to the most commonly used 
statistical procedures. Epidemiology is closely allied to medical 
statistics. Hence some of the main issues in epidemiology, relating to 
study design and interpretation, are discussed. Also included are 
chapters which the reader may find useful only occasionally, but which 
are, nevertheless, fun damental to many areas of medical research; for 
example, evidence-based medicine, systematic reviews and meta-
analysis, survival analysis, Bayesian methods and the development of 
prognostic scores. We have explained the principles underlying these 
topics so that the reader will be able to understand and interpret the 
results from them when they are presented in the literature.

The chapter titles of this third edition are identical to those of  
the second edition, apart from Chapter 34 (now called ‘Bias and 
confounding’ instead of ‘Issues in statistical modelling’); in addition, we 
have added a new chapter (Chapter 46 – ‘Deve loping prognostic scores’). 
Some of the first 45 chapters remain unaltered in this new edition and 
some have relatively minor changes which accommodate recent 
advances, cross-referencing or re-organization of the new material. We 
have expanded many chapters; for example, we have included a section 
on multiple comparisons (Chapter 12), provided more information on 
different study designs, including multicentre studies (Chapter 12) and 
sequential trials (Chapter 14), emphasized the importance of study 
management (Chapters 15 and 16), devoted greater space to receiver 
operating characteristic (ROC) curves (Chapters 30, 38 and 46), supplied 
more details of how to check the assumptions underlying a logistic 
regression analysis (Chapter 30) and explored further some of the 
different methods to remove confounding in observational studies 

(Chapter 34). We have also reorganized some of the material. The brief 
introduction to bias in Chapter 12 in the second edition has been  
omitted from that chapter in the third edition and moved to Chapter 34, 
which covers this topic in greater depth. A discussion of ‘interaction’ is 
currently in Chapter 33 and the section on prognostic indices is now 
much expanded and contained in the new Chapter 46.

New to this third edition is a set of learning objectives for each 
chapter, all of which are displayed together at the beginning of the book. 
Each set provides a framework for evaluating understanding and 
progress. If you are able to complete all the bulleted tasks in a chapter 
satisfactorily, you will have mastered the concepts in that chapter.

As in previous editions, the description of most of the statistical 
techniques is accompanied by an example illustrating its use. We have 
generally obtained the data for these examples from collaborative 
studies in which we or colleagues have been involved; in some instances, 
we have used real data from published papers. Where possible, we have 
used the same data set in more than one chapter to reflect the reality of 
data analysis, which is rarely restricted to a single technique or approach. 
Although we believe that formulae should be provided and the logic of 
the approach explained as an aid to understanding, we have avoided 
showing the details of complex calculations – most readers will have 
access to computers and are unlikely to perform any but the simplest 
calculations by hand.

We consider that it is particularly important for the reader to be able 
to interpret output from a computer package. We have therefore chosen, 
where applicable, to show results using extracts from computer output. 
In some instances, where we believe individuals may have difficulty 
with its interpretation, we have included (Appendix C) and annotated 
the complete computer output from an analysis of a data set. There are 
many statistical packages in common use; to give the reader an 
indication of how output can vary, we have not restricted the output to a 
particular package and have, instead, used three well-known ones – 
SAS, SPSS and Stata.

There is extensive cross-referencing throughout the text to help the 
reader link the various procedures. A basic set of statis tical tables is 
contained in Appendix A. Neave, H.R. (1995) Elemementary Statistical 
Tables, Routledge: London, and Diem, K. (1970) Documenta Geigy 
Scientific Tables, 7th edition, Blackwell Publishing: Oxford, amongst 
others, provide fuller versions if the reader requires more precise results 
for hand calculations. The glossary of terms in Appendix D provides 
readily accessible explanations of commonly used terminology.

We know that one of the greatest difficulties facing non-statisticians 
is choosing the appropriate technique. We have therefore produced two 
flow charts which can be used both to aid the decision as to what method 
to use in a given situation and to locate a particular technique in the 
book easily. These flow charts are displayed prominently on the inside 
back cover for easy access.

The reader may find it helpful to assess his/her progress in  
self-directed learning by attempting the interactive exercises on our 
website (www.medstatsaag.com). This website also contains a full set 
of references (some of which are linked directly to Medline) to 
supplement the references quoted in the text and provide useful 
background information for the examples. For those readers who wish 
to gain a greater insight into particular areas of medical statistics, we 
can recommend the following books:
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• Altman, D.G. (1991) Practical Statistics for Medical Research. 
London: Chapman and Hall/CRC.
• Armitage, P., Berry, G. and Matthews, J.F.N. (2001) Statistical 
Methods in Medical Research. 4th edition. Oxford: Blackwell Science.
• Kirkwood, B.R. and Sterne, J.A.C. (2003) Essential Medical 
Statistics. 2nd Edn. Oxford: Blackwell Publishing.
• Pocock, S.J. (1983) Clinical Trials: A Practical Approach. Chichester: 
Wiley.

We are extremely grateful to Mark Gilthorpe and Jonathan Sterne who 
made invaluable comments and suggestions on aspects of the second 
edition, and to Richard Morris, Fiona Lampe, Shak Hajat and Abul 

Basar for their counsel on the first edition. We wish to thank everyone 
who has helped us by providing data for the examples. Naturally, we 
take full responsibility for any errors that remain in the text or examples. 
We should also like to thank Mike, Gerald, Nina, Andrew and Karen 
who tolerated, with equanimity, our preoccupation with the first two 
editions and lived with us through the trials and tribulations of this third 
edition.

Aviva Petrie
Caroline Sabin

London
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tical procedures to real-life research
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statistical knowledge together with your analytical and interpretational 
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8  Learning objectives

By the end of the relevant chapter you should be able to:

1  Types of data
• Distinguish between a sample and a population
• Distinguish between categorical and numerical data
• Describe different types of categorical and numerical data
• Explain the meaning of the terms: variable, percentage, ratio,  
quotient, rate, score
• Explain what is meant by censored data

2  Data entry
• Describe different formats for entering data on to a computer
• Outline the principles of questionnaire design
• Distinguish between single-coded and multi-coded variables
• Describe how to code missing values

3  Error checking and outliers
• Describe how to check for errors in data
• Outline the methods of dealing with missing data
• Define an outlier
• Explain how to check for and handle outliers

4  Displaying data diagrammatically
• Explain what is meant by a frequency distribution
• Describe the shape of a frequency distribution
• Describe the following diagrams: (segmented) bar or column chart, 
pie chart, histogram, dot plot, stem-and-leaf plot, box-and-whisker plot, 
scatter diagram
• Explain how to identify outliers from a diagram in various situations
• Describe the situations when it is appropriate to use connecting lines 
in a diagram

5  Describing data: the ‘average’
• Explain what is meant by an average
• Describe the appropriate use of each of the following types of average: 
arithmetic mean, mode, median, geometric mean, weighted mean
• Explain how to calculate each type of average
• List the advantages and disadvantages of each type of average

6  Describing data: the ‘spread’
• Define the following terms: percentile, decile, quartile, median, and 
explain their inter-relationship
• Explain what is meant by a reference interval/range, also called the 
normal range
• Define the following measures of spread: range, interdecile range, 
variance, standard deviation (SD), coefficient of variation
• List the advantages and disadvantages of the various measures of 
spread
• Distinguish between intra- and inter-subject variation

7  Theoretical distributions: the Normal distribution
• Define the terms: probability, conditional probability
• Distinguish between the subjective, frequentist and a priori 
approaches to calculating a probability
• Define the addition and multiplication rules of probability

• Define the terms: random variable, probability distribution, parameter, 
statistic, probability density function
• Distinguish between a discrete and continuous probability distribution 
and list the properties of each
• List the properties of the Normal and the Standard Normal 
distributions
• Define a Standardized Normal Deviate (SND)

8  Theoretical distributions: other distributions
• List the important properties of the t-, Chi-squared, F- and Lognormal 
distributions
• Explain when each of these distributions is particularly useful
• List the important properties of the Binomial and Poisson 
distributions
• Explain when the Binomial and Poisson distributions are each 
particularly useful

9  Transformations
• Describe situations in which transforming data may be useful
• Explain how to transform a data set
• Explain when to apply and what is achieved by the logarithmic, 
square root, reciprocal, square and logit transformations
• Describe how to interpret summary measures derived from log 
transformed data after they have been back-transformed to the original 
scale

10  Sampling and sampling distributions
• Explain what is meant by statistical inference and sampling error
• Explain how to obtain a representative sample
• Distinguish between point and interval estimates of a parameter
• List the properties of the sampling distribution of the mean
• List the properties of the sampling distribution of the proportion
• Explain what is meant by a standard error
• State the relationship between the standard error of the mean (SEM) 
and the standard deviation (SD)
• Distinguish between the uses of the SEM and the SD

11  Confidence intervals
• Interpret a confidence interval (CI)
• Calculate a confidence interval for a mean
• Calculate a confidence interval for a proportion
• Explain the term ‘degrees of freedom’
• Explain what is meant by bootstrapping and jackknifing

12  Study design I
• Distinguish between experimental and observational studies, and 
between cross-sectional and longitudinal studies
• Explain what is meant by the unit of observation
• Explain the terms: control group, epidemiological study, cluster 
randomized trial, ecological study, multicentre study, survey, census
• List the criteria for assessing causality in observational studies
• Describe the time course of cross-sectional, repeated cross-sectional, 
cohort, case–control and experimental studies
• List the typical uses of these various types of study
• Distinguish between prevalence and incidence

Learning objectives
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13  Study design II
• Describe how to increase the precision of an estimate
• Explain the principles of blocking (stratification)
• Distinguish between parallel and cross-over designs
• Describe the features of a factorial experiment
• Explain what is meant by an interaction between factors
• Explain the following terms: study endpoint, surrogate marker,  
composite endpoint

14  Clinical trials
• Define ‘clinical trial’ and distinguish between Phase I/II and Phase III 
clinical trials
• Explain the importance of a control treatment and distinguish between 
positive and negative controls
• Explain what is meant by a placebo
• Distinguish between primary and secondary endpoints
• Explain why it is important to randomly allocate individuals to  
treatment groups and describe different forms of randomization
• Explain why it is important to incorporate blinding (masking)
• Distinguish between double- and single-blind trials
• Discuss the ethical issues arising from a randomized controlled trial 
(RCT)
• Explain the principles of a sequential trial
• Distinguish between on-treatment analysis and analysis by intention-
to-treat (ITT)
• Describe the contents of a protocol
• Apply the CONSORT Statement guidelines

15  Cohort studies
• Describe the aspects of a cohort study
• Distinguish between fixed and dynamic cohorts
• Explain the terms: historical cohort, risk factor, healthy entrant effect, 
clinical cohort
• List the advantages and disadvantages of a cohort study
• Describe the important aspects of cohort study management
• Calculate and interpret a relative risk

16  Case–control studies
• Describe the features of a case–control study
• Distinguish between incident and prevalent cases
• Describe how controls may be selected for a case–control  
study
• Explain how to analyse an unmatched case–control study by 
calculating and interpreting an odds ratio
• Describe the features of a matched case–control study
• Distinguish between frequency matching and pairwise matching
• Explain when an odds ratio can be used as an estimate of the relative 
risk
• List the advantages and disadvantages of a case–control study

17  Hypothesis testing
• Define the terms: null hypothesis, alternative hypothesis, one- and 
two-tailed test, test statistic, P-value, significance level
• List the five steps in hypothesis testing
• Explain how to use the P-value to make a decision about rejecting or 
not rejecting the null hypothesis
• Explain what is meant by a non-parametric (distribution-free) test 
and explain when such a test should be used
• Explain how a confidence interval can be used to test a hypothesis

• Distinguish between superiority, equivalence and non- 
inferiority studies
• Describe the approach used in equivalence and non-inferiority tests

18  Errors in hypothesis testing
• Explain what is meant by an effect of interest
• Distinguish between Type I and Type II errors
• State the relationship between the Type II error and power
• List the factors that affect the power of a test and describe their effects 
on power
• Explain why it is inappropriate to perform many hypothesis tests in a 
study
• Describe different situations which involve multiple comparisons 
within a data set and explain how the difficulties associated with 
multiple comparisons may be resolved in each situation
• Explain what is achieved by a post hoc test
• Outline the Bonferroni approach to multiple hypothesis testing

19  Numerical data: a single group
• Explain the rationale of the one-sample t-test
• Explain how to perform the one-sample t-test
• State the assumption underlying the test and explain how to proceed 
if it is not satisfied
• Explain how to use an appropriate confidence interval to test a 
hypothesis about the mean
• Explain the rationale of the sign test
• Explain how to perform the sign test

20  Numerical data: two related groups
• Describe different circumstances in which two groups of data are 
related
• Explain the rationale of the paired t-test
• Explain how to perform the paired t-test
• State the assumption underlying the test and explain how to proceed 
if it is not satisfied
• Explain the rationale of the Wilcoxon signed ranks test
• Explain how to perform the Wilcoxon signed ranks test

21  Numerical data: two unrelated groups
• Explain the rationale of the unpaired (two-sample) t-test
• Explain how to perform the unpaired t-test
• List the assumptions underlying this test and explain how to check 
them and proceed if they are not satisfied
• Use an appropriate confidence interval to test a hypothesis about the 
difference between two means
• Explain the rationale of the Wilcoxon rank sum test
• Explain how to perform the Wilcoxon rank sum test
• Explain the relationship between the Wilcoxon rank sum test and the 
Mann–Whitney U test

22  Numerical data: more than two groups
• Explain the rationale of the one-way analysis of variance  
(ANOVA)
• Explain how to perform a one-way ANOVA
• Explain why a post hoc comparison method should be used if a one-
way ANOVA produces a significant result and name some different post 
hoc methods
• List the assumptions underlying the one-way ANOVA and explain 
how to check them and proceed if they are not satisfied
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• Explain the rationale of the Kruskal–Wallis test
• Explain how to perform the Kruskal–Wallis test

23  Categorical data: a single proportion
• Explain the rationale of a test, based on the Normal distribution, 
which can be used to investigate whether a proportion takes a particular 
value.
• Explain how to perform this test
• Explain why a continuity correction should be used in this test
• Explain how the sign test can be used to test a hypothesis about a 
proportion
• Explain how to perform the sign test to test a hypothesis about a 
proportion

24  Categorical data: two proportions
• Explain the terms: contingency table, cell frequency, marginal total, 
overall total, observed frequency, expected frequency
• Explain the rationale of the Chi-squared test to compare proportions 
in two unrelated groups
• Explain how to perform the Chi-squared test to compare two 
independent proportions
• Calculate the confidence interval for the difference in the proportions 
in two unrelated groups and use it to compare them
• State the assumption underlying the Chi-squared test to compare 
proportions and explain how to proceed if this assumption is not 
satisfied
• Describe the circumstances under which Simpson’s paradox may 
occur and explain what can be done to avoid it
• Explain the rationale of McNemar’s test to compare the proportions 
in two related groups
• Explain how to perform McNemar’s test
• Calculate the confidence interval for the difference in two proportions 
in paired groups and use the confidence interval to compare them

25  Categorical data: more than two categories
• Describe an r × c contingency table
• Explain the rationale of the Chi-squared test to assess the association 
between one variable with r categories and another variable with c 
categories
• Explain how to perform the Chi-squared test to assess the association 
between two variables using data displayed in an r × c contingency 
table
• State the assumption underlying this Chi-squared test and explain 
how to proceed if this assumption is not satisfied
• Explain the rationale of the Chi-squared test for trend in a 2 × k 
contingency table
• Explain how to perform the Chi-squared test for trend in a 2 × k 
contingency table

26  Correlation
• Describe a scatter diagram
• Define and calculate the Pearson correlation coefficient and list its 
properties
• Explain when it is inappropriate to calculate the Pearson correlation 
coefficient if investigating the relationship between two variables
• Explain how to test the null hypothesis that the true Pearson  
correlation coefficient is zero
• Calculate the 95% confidence interval for the Pearson correlation 
coefficient

• Describe the use of the square of the Pearson correlation coefficient
• Explain when and how to calculate the Spearman rank correlation 
coefficient
• List the properties of the Spearman rank correlation coefficient

27  The theory of linear regression
• Explain the terms commonly used in regression analysis: dependent 
variable, explanatory variable, regression coefficient, intercept, 
gradient, residual
• Define the simple (univariable) regression line and interpret its 
coefficients
• Explain the principles of the method of least squares
• List the assumptions underlying a simple linear regression  
analysis
• Describe the features of an analysis of variance (ANOVA) table 
produced by a linear regression analysis
• Explain how to use the ANOVA table to assess how well the regression 
line fits the data (goodness of fit) and test the null hypothesis that the 
true slope of the regression line is zero.
• Explain what is meant by regression to the mean

28  Performing a linear regression analysis
• Explain how to use residuals to check the assumptions underlying a 
linear regression analysis
• Explain how to proceed in a regression analysis if one or more of the 
assumptions are not satisfied
• Define the terms ‘outlier’ and ‘influential point’ and explain how to 
deal with each of them
• Explain how to assess the goodness of fit of a regression model
• Calculate the 95% confidence interval for the slope of a regression 
line
• Describe two methods for testing the null hypothesis that the true 
slope is zero
• Explain how to use the regression line for prediction
• Explain how to (1) centre and (2) scale an explanatory variable in a 
regression analysis
• Explain what is achieved by centring and scaling.

29  Multiple linear regression
• Explain the terms: covariate, partial regression coefficient, 
collinearity
• Define the multiple (multivariable) linear regression equation and 
interpret its coefficients
• Give three reasons for performing a multiple regression analysis
• Explain how to create dummy variables to allow nominal and ordinal 
categorical explanatory variables with more than two categories of 
response to be incorporated in the model
• Explain what is meant by the reference category when fitting models 
that include categorical explanatory variables
• Describe how multiple regression analysis can be used as a form of 
analysis of covariance
• Give a rule of thumb for deciding on the maximum number of 
explanatory variables in a multiple regression equation
• Use computer output from a regression analysis to assess the goodness 
of fit of the model, and test the null hypotheses that all the partial 
regression coefficients are zero and that each partial regression 
coefficient is zero
• Explain the relevance of residuals, leverage and Cook’s distance in 
identifying outliers and influential points
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30  Binary outcomes and logistic regression
• Explain why multiple linear regression analysis cannot be used for a 
binary outcome variable
• Define the logit of a proportion
• Define the multiple logistic regression equation
• Interpret the exponential of a logistic regression coefficient
• Calculate, from a logistic regression equation, the probability that a 
particular individual will have the outcome of interest
• Describe two ways of assessing whether a logistic regression 
coefficient is statistically significant
• Describe various ways of testing the overall model fit, assessing 
predictive efficiency and investigating the underlying assumptions of a 
logistic regression analysis
• Explain when the odds ratio is greater than and when it is less than the 
relative risk
• Explain the use of the following types of logistic regression: 
multinomial, ordinal, conditional

31  Rates and Poisson regression
• Define a rate and describe its features
• Distinguish between a rate and a risk, and between an incidence rate 
and a mortality rate
• Define a relative rate and explain when it is preferred to a relative 
risk
• Explain when it is appropriate to use Poisson regression
• Define the Poisson regression equation and interpret the exponential 
of a Poisson regression coefficient
• Calculate, from the Poisson regression equation, the event rate for a 
particular individual
• Explain the use of an offset in a Poisson regression analysis
• Explain how to perform a Poisson regression analysis with  
(1) grouped data and (2) variables that change over time
• Explain the meaning and the consequences of extra-Poisson 
dispersion
• Explain how to identify extra-Poisson dispersion in a Poisson 
regression analysis

32  Generalized linear models
• Define the equation of the generalized linear model (GLM)
• Explain the terms ‘link function’ and ‘identity link’
• Specify the link functions for the logistic and Poisson regression models
• Explain the term ‘likelihood’ and the process of maximum likelihood 
estimation (MLE)
• Explain the terms: saturated model, likelihood ratio
• Explain how the likelihood ratio statistic (LRS), i.e. the deviance or  
-2log likelihood, can be used to:

 assess the adequacy of fit of a model
 compare two models when one is nested within the other
 assess whether all the parameters associated with the covariates 
of a model are zero (i.e. the model Chi-square)

33  Explanatory variables in statistical models
• Explain how to test the significance of a nominal explanatory  
variable in a statistical model when the variable has more than two 
categories
• Describe two ways of incorporating an ordinal explanatory variable 
into a model when the variable has more than two categories, and:

 state the advantages and disadvantages of each approach
 explain how each approach can be used to test for a linear trend

• Explain how to check the linearity assumption in multiple, Poisson 
and logistic regression analyses
• Describe three ways of dealing with non-linearity in a regression 
model
• Explain why a model should not be over-fitted and how to avoid it
• Explain when it is appropriate to use automatic selection procedures 
to select the optimal explanatory variables
• Describe the principles underlying various automatic selection 
procedures
• Explain why automatic selection procedures should be used with 
caution
• Explain the meaning of interaction and collinearity
• Explain how to test for an interaction in a regression analysis
• Explain how to detect collinearity

34  Bias and confounding
• Explain what is meant by bias
• Explain what is meant by selection bias, information bias, funding 
bias and publication bias
• Describe different forms of bias which comprise either selection bias 
or information bias
• Explain what is meant by the ecological fallacy
• Explain what is meant by confounding and what steps may be taken 
to deal with confounding at the design stage of a study
• Describe various methods of dealing with confounding at the  
analysis stage of a study
• Explain the meaning of a propensity score
• Discuss the advantages and disadvantages of the various methods of 
dealing with confounding at the analysis stage
• Explain why confounding is a particular issue in a non-randomized 
study
• Explain the following terms: causal pathway, intermediate variable, 
time-varying confounding

35  Checking assumptions
• Name two tests and describe two diagrams that can be used to assess 
whether data are Normally distributed
• Explain the terms homogeneity and heterogeneity of variance
• Name two tests that can be used to assess the equality of two or more 
variances
• Explain how to perform the variance ratio F-test to compare two 
variances
• Explain how to proceed if the assumptions under a proposed analysis 
are not satisfied
• Explain what is meant by a robust analysis
• Explain what is meant by a sensitivity analysis
• Provide examples of different sensitivity analyses

36  Sample size calculations
• Explain why it is necessary to choose an optimal sample size for a 
proposed study
• Specify the quantities that affect sample size and describe their effects 
on it
• Name five approaches to calculating the optimal sample size of a 
study
• Explain how information from an internal pilot study may be used to 
revise calculations of the optimal sample size
• Explain how to use Altman’s nomogram to determine the optimal sample 
size for a proposed t-test (unpaired and paired) and Chi-squared test
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• Explain how to use Lehr’s formula for sample size calculations for 
the comparison of two means and of two proportions in independent 
groups
• Write an appropriate power statement
• Explain how to adjust the sample size for losses to follow-up and/or 
if groups of different sizes are required
• Explain how to increase the power of a study for a fixed sample  
size

37  Presenting results
• Explain how to report numerical results
• Describe the important features of good tables and diagrams
• Explain how to report the results of a hypothesis test
• Explain how to report the results of a regression analysis
• Indicate how complex statistical analyses should be reported
• Locate and follow the guidelines for reporting different types of 
study

38  Diagnostic tools
• Distinguish between a diagnostic test and a screening test and explain 
when each is appropriate
• Define ‘reference range’ and explain how it is used
• Describe two ways in which a reference range can be calculated
• Define the terms: true positive, false positive, true negative, false 
negative
• Estimate (with a 95% confidence interval) and interpret each of the 
following: prevalence, sensitivity, specificity, positive predictive value, 
negative predictive value
• Construct a receiver operating characteristic (ROC) curve
• Explain how the ROC curve can be used to choose an optimal cut-off 
for a diagnostic test
• Explain how the area under the ROC curve can be used to assess the 
ability of a diagnostic test to discriminate between individuals with and 
without a disease and to compare two diagnostic tests
• Calculate and interpret the likelihood ratio for a positive and for a 
negative test result if the sensitivity and specificity of the test are 
known.

39  Assessing agreement
• Distinguish between measurement variability and measurement 
error
• Distinguish between systematic and random error
• Distinguish between reproducibility and repeatability
• Calculate and interpret Cohen’s kappa for assessing the agreement 
between paired categorical responses
• Explain what a weighted kappa is and when it can be determined
• Explain how to test for a systematic effect when comparing pairs of 
numerical responses
• Explain how to perform a Bland and Altman analysis to assess the 
agreement between paired numerical responses and interpret the limits 
of agreement
• Explain how to calculate and interpret the British Standards Institution 
reproducibility/repeatability coefficient
• Explain how to calculate and interpret the intraclass correlation  
coefficient and Lin’s concordance correlation coefficient in a method 
comparison study
• Explain why it is inappropriate to calculate the Pearson correlation 
coefficient to assess the agreement between paired numerical 
responses

40  Evidence-based medicine
• Define evidence-based medicine (EBM)
• Describe the hierarchy of evidence associated with various study 
designs
• List the six steps involved in performing EBM to assess the efficacy 
of a new treatment, and describe the important features of each step
• Explain the term number needed to treat (NNT)
• Explain how to calculate the NNT
• Explain how to assess the effect of interest if the main outcome 
variable is binary
• Explain how to assess the effect of interest if the main outcome 
variable is numerical
• Explain how to decide whether the results of an investigation are 
important

41  Methods for clustered data
• Describe, with examples, clustered data in a two-level structure
• Describe how such data may be displayed graphically
• Describe the effect of ignoring repeated measures in a statistical 
analysis
• Explain how summary measures may be used to compare groups of 
repeated measures data
• Name two other methods which are appropriate for comparing groups 
of repeated measures data
• Explain why a series of two-sample t-tests is inappropriate for 
analysing such data

42  Regression methods for clustered data
• Outline the following approaches to analysing clustered data in a two-
level structure: aggregate level analysis, analysis using robust standard 
errors, random effects (hierarchical, multilevel, mixed, cluster-specific, 
cross-sectional) model, generalized estimating equations (GEE)
• List the advantages and disadvantages of each approach
• Distinguish between a random intercepts and a random slopes  
random effects model
• Explain how to calculate and interpret the intraclass correlation 
coefficient (ICC) to assess the effect of clustering in a random effects 
model
• Explain how to use the likelihood ratio test to assess the effect of 
clustering

43  Systematic reviews and meta-analysis
• Define a systematic review and explain what it achieves
• Describe the Cochrane Collaboration
• Define a meta-analysis and list its advantages and disadvantages
• List the four steps involved in performing a meta-analysis
• Distinguish between statistical and clinical heterogeneity
• Explain how to test for statistical homogeneity
• Explain how to estimate the average effect of interest in a meta-
analysis if there is evidence of statistical heterogeneity
• Explain the terms: fixed effects meta-analysis, random effects meta-
analysis, meta-regression
• Distinguish between a forest plot and a funnel plot
• Describe ways of performing a sensitivity analysis after performing a 
meta-analysis

44  Survival analysis
• Explain why it is necessary to use special methods for analysing 
survival data
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• Distinguish between the terms ‘right-censored data’ and ‘left-
censored data’
• Describe a survival curve
• Distinguish between the Kaplan–Meier method and lifetable 
approaches to calculating survival probabilities
• Explain what the log-rank test is used for in survival analysis
• Explain the principles of the Cox proportional hazards regression 
model
• Explain how to obtain a hazard ratio (relative hazard) from a Cox 
proportional hazards regression model and interpret it
• List other regression models that may also be used to describe  
survival data
• Explain the problems associated with informative censoring and 
competing risks

45  Bayesian methods
• Explain what is meant by the frequentist approach to probability
• Explain the shortcomings of the frequentist approach to probability
• Explain the principles of Bayesian analysis
• List the disadvantages of the Bayesian approach
• Explain the terms: conditional probability, prior probability, posterior 
probability, likelihood ratio
• Express Bayes theorem in terms of odds

• Explain how to use Fagan’s nomogram to interpret a diagnostic test 
result in a Bayesian framework

46  Developing prognostic scores
• Define the term ‘prognostic score’
• Distinguish between a prognostic index and a risk score
• Outline different ways of deriving a prognostic score
• List the desirable features of a good prognostic score
• Explain what is meant by assessing overall score accuracy
• Describe how a classification table and the mean Briar score can be 
used to assess overall score accuracy
• Explain what is meant by assessing the ability of a prognostic score 
to discriminate between those that do and do not experience the event
• Describe how classifying individuals by their score, drawing an ROC 
curve and calculating Harrell’s c statistic can each be used to assess the 
ability of a prognostic score to discriminate between those that do and 
do not experience the event
• Explain what is meant by correct calibration of a prognostic score
• Describe how the Hosmer–Lemeshow goodness of fit test can be 
used to assess whether a prognostic score is correctly calibrated
• Explain what is meant by transportability of a prognostic score
• Describe various methods of internal and external validation of a 
prognostic score



Data and statistics
The purpose of most studies is to collect data to obtain information 
about a particular area of research. Our data comprise observations on 
one or more variables; any quantity that varies is termed a variable. For 
example, we may collect basic clinical and demographic information 
on patients with a particular illness. The variables of interest may 
include the sex, age and height of the patients.

Our data are usually obtained from a sample of individuals which 
represents the population of interest. Our aim is to condense these data 
in a meaningful way and extract useful information from them. Statistics 
encompasses the methods of collecting, summarizing, analysing and 
drawing conclusions from the data: we use statistical techniques to 
achieve our aim.

Data may take many different forms. We need to know what form 
every variable takes before we can make a decision regarding the  
most appropriate statistical methods to use. Each variable and the  
resulting data will be one of two types: categorical or numerical 
(Fig. 1.1).

Categorical (qualitative) data
These occur when each individual can only belong to one of a number 
of distinct categories of the variable.
• Nominal data – the categories are not ordered but simply have 
names. Examples include blood group (A, B, AB and O) and marital 
status (married/widowed/single, etc.). In this case, there is no reason to 
suspect that being married is any better (or worse) than being single!
• Ordinal data – the categories are ordered in some way. Examples 
include disease staging systems (advanced, moderate, mild, none) and 
degree of pain (severe, moderate, mild, none).

A categorical variable is binary or dichotomous when there are only 
two possible categories. Examples include ‘Yes/No’, ‘Dead/Alive’ or 
‘Patient has disease/Patient does not have disease’.

Numerical (quantitative) data
These occur when the variable takes some numerical value. We can 
subdivide numerical data into two types.
• Discrete data – occur when the variable can only take certain whole 
numerical values. These are often counts of numbers of events, such as 
the number of visits to a GP in a particular year or the number of episodes 
of illness in an individual over the last five years.
• Continuous data – occur when there is no limitation on the values 
that the variable can take, e.g. weight or height, other than that which 
restricts us when we make the measurement.

Distinguishing between data types
We often use very different statistical methods depending on whether 
the data are categorical or numerical. Although the distinction between 
categorical and numerical data is usually clear, in some situations it may 
become blurred. For example, when we have a variable with a large 
number of ordered cate gories (e.g. a pain scale with seven categories), 
it may be difficult to distinguish it from a discrete numerical variable. 
The dis tinction between discrete and continuous numerical data may be 
even less clear, although in general this will have little impact on the 
results of most analyses. Age is an example of a variable that is often 
treated as discrete even though it is truly continuous. We usually refer to 
‘age at last birthday’ rather than ‘age’, and therefore, a woman who 
reports being 30 may have just had her 30th birthday, or may be just 
about to have her 31st birthday.

Do not be tempted to record numerical data as categorical at the 
outset (e.g. by recording only the range within which each patient’s age 
falls rather than his/her actual age) as important information is often 
lost. It is simple to convert numerical data to categorical data once they 
have been collected.

Derived data
We may encounter a number of other types of data in the medical field. 
These include:
• Percentages – These may arise when considering improvements in 
patients following treatment, e.g. a patient’s lung function (forced 
expiratory volume in 1 second, FEV1) may increase by 24% following 
treatment with a new drug. In this case, it is the level of improvement, 
rather than the absolute value, which is of interest.
• Ratios or quotients – Occasionally you may encounter the ratio or 
quotient of two variables. For example, body mass index (BMI), calculated 
as an individual’s weight (kg) divided by her/his height squared (m2), is 
often used to assess whether s/he is over- or underweight.
• Rates – Disease rates, in which the number of disease events occurring 
among individuals in a study is divided by the total number of years of 
follow-up of all individuals in that study (Chapter 31), are common in 
epidemiological studies (Chapter 12).
• Scores – We sometimes use an arbitrary value, such as a score, when 
we cannot measure a quantity. For example, a series of responses to 
questions on quality of life may be summed to give some overall quality 
of life score on each individual.

Types of data1

Figure 1.1 Diagram showing the different types of variable.
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All these variables can be treated as numerical variables for most 
analyses. Where the variable is derived using more than one value (e.g. 
the numerator and denominator of a percentage), it is important to 
record all of the values used. For example, a 10% improvement in a 
marker following treatment may have different clinical relevance 
depending on the level of the marker before treatment.

Censored data
We may come across censored data in situations illustrated by the 
following examples.
• If we measure laboratory values using a tool that can only detect 
levels above a certain cut-off value, then any values below this cut-off 

will not be detected, i.e. they are censored. For example, when measuring 
virus levels, those below the limit of detectability will often be reported 
as ‘undetectable’ or ‘unquantifiable’ even though there may be some 
virus in the sample. In this situation, if the lower cut-off of a tool is x, 
say, the results may be reported as ‘<x’. Similarly, some tools may only 
be able to reliably quantify levels below a certain cut-off value, say y; 
any measurements above that value will also be censored and the test 
result may be reported as ‘>y’.
• We may encounter censored data when following patients in a trial in 
which, for example, some patients withdraw from the trial before the 
trial has ended. This type of data is discussed in more detail in Chapter 
44.



When you carry out any study you will almost always need to enter the 
data into a computer package. Computers are invaluable for improving 
the accuracy and speed of data collection and analysis, making it easy 
to check for errors, produce graphical summaries of the data and 
generate new variables. It is worth spending some time planning data 
entry – this may save con siderable effort at later stages.

Formats for data entry
There are a number of ways in which data can be entered and stored on 
a computer. Most statistical packages allow you to enter data directly. 
However, the limitation of this approach is that often you cannot move 
the data to another package. A simple alternative is to store the data in 
either a spreadsheet or database package. Unfortunately, their statistical 
procedures are often limited, and it will usually be necessary to output 
the data into a specialist statistical package to carry out analyses.

A more flexible approach is to have your data available as an ASCII 
or text file. Once in an ASCII format, the data can be read by most 
packages. ASCII format simply consists of rows of text that you can 
view on a computer screen. Usually, each variable in the file is separated 
from the next by some delimiter, often a space or a comma. This is 
known as free format.

The simplest way of entering data in ASCII format is to type the data 
directly in this format using either a word processing or editing package. 
Alternatively, data stored in spreadsheet packages can be saved in ASCII 
format. Using either approach, it is customary for each row of data to 
correspond to a different individual in the study, and each column to 
correspond to a different variable, although it may be necessary to go on 
to subsequent rows if data from a large number of variables are collected 
on each individual.

Planning data entry
When collecting data in a study you will often need to use a form or 
questionnaire for recording the data. If these forms are designed carefully, 
they can reduce the amount of work that has to be done when entering the 
data. Generally, these forms/questionnaires include a series of boxes in 
which the data are recorded – it is usual to have a separate box for each 
possible digit of the response.

Categorical data
Some statistical packages have problems dealing with non-numerical 
data. Therefore, you may need to assign numerical codes to categorical 
data before entering the data into the computer. For example, you may 
choose to assign the codes of 1, 2, 3 and 4 to categories of ‘no pain’, 
‘mild pain’, ‘moderate pain’ and ‘severe pain’, respectively. These 
codes can be added to the forms when collecting the data. For binary 
data, e.g. yes/no answers, it is often convenient to assign the codes 1 
(e.g. for ‘yes’) and 0 (for ‘no’).
• Single-coded variables – there is only one possible answer to a 
question, e.g. ‘is the patient dead?’. It is not possible to answer both 
‘yes’ and ‘no’ to this question.

• Multi-coded variables – more than one answer is possible for 
each respondent. For example, ‘what symptoms has this patient  
experienced?’. In this case, an individual may have experienced  
any of a number of symptoms. There are two ways to deal with this  
type of data depending upon which of the two following situations 
applies.

 There are only a few possible symptoms, and individuals may 
have experienced many of them. A number of different binary 
variables can be created which correspond to whether the patient has 
answered yes or no to the presence of each possible symptom. For 
example, ‘did the patient have a cough?’, ‘did the patient have a sore 
throat?’
 There are a very large number of possible symptoms but each 
patient is expected to suffer from only a few of them. 
A number of different nominal variables can be created; each 
successive variable allows you to name a symptom suffered by the 
patient. For example, ‘what was the first symptom the patient 
suffered?’, ‘what was the second symptom?’. You will need to decide 
in advance the maximum number of symptoms you think a patient is 
likely to have suffered.

Numerical data
Numerical data should be entered with the same precision as they are 
measured, and the unit of measurement should be consistent for all 
observations on a variable. For example, weight should be recorded in 
kilograms or in pounds, but not both interchangeably.

Multiple forms per patient
Sometimes, information is collected on the same patient on more than 
one occasion. It is important that there is some unique identifier (e.g. a 
serial number) relating to the individual that will enable you to link all 
of the data from an individual in the study.

Problems with dates and times
Dates and times should be entered in a consistent manner, e.g. either as 
day/month/year or month/day/year, but not interchangeably. It is 
important to find out what format the statistical package can read.

Coding missing values
You should consider what you will do with missing values before you 
enter the data. In most cases you will need to use some symbol to 
represent a missing value. Statistical packages deal with missing values 
in different ways. Some use special char acters (e.g. a full stop or 
asterisk) to indicate missing values, whereas others require you to 
define your own code for a missing value (commonly used values are 9, 
999 or −99). The value that is chosen should be one that is not possible 
for that variable. For example, when entering a categorical variable 
with four categories (coded 1, 2, 3 and 4), you may choose the value 9 
to represent missing values. However, if the variable is ‘age of child’ 
then a different code should be chosen. Missing data are discussed in 
more detail in Chapter 3.

Data entry2
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Patient
number

Bleeding
deficiency

Sex of
baby

Gestational
age (weeks)

Inhaled
gas

IM
Pethidine

IV
Pethidine

Epidural Apgar
score

kg lb oz Date of
birth

Mother’s
age
(years) at
birth of
child

Blood
group

Frequency
of bleeding
gums

Weight of babyInterventions required during pregnancy

Nominal
variables
-no ordering to
categories

Discrete
variable
-can only
take certain
values in a
range

Multicoded variable
-used to create four
separate binary
variables

Error on questionnaire
–some completed in kg,
others in lb/oz.

DATE

Continuous
variable Nominal Ordinal

1=More than once a day
2=Once a day
3=Once a week
4=Once a month
5=Less frequently
6=Never

1=O+ve
2=O–ve
3=A+ve
4=A–ve
5=B+ve
6=B–ve
7=AB+ve
8=AB–ve

0=No
1=Yes

1=Male
2=Female
3=Abortion
4=Still pregnant

1=Haemophilia A
2=Haemophilia B
3=Von Willebrand's disease
4=FXI deficiency

Figure 2.1 Portion of a spreadsheet showing data collected on a sample of 64 women with inherited bleeding disorders.

Example

As part of a study on the effect of inherited bleeding disorders on 
pregnancy and childbirth, data were collected on a sample of 64 
women registered at a single haemophilia centre in London. The 
women were asked questions relating to their bleeding disorder and 
their first pregnancy (or their current pregnancy if they were pregnant 
for the first time on the date of interview). Fig. 2.1 shows the data from 
a small selection of the women after the data have been entered onto a 

spreadsheet, but before they have been checked for errors. The coding 
schemes for the categorical variables are shown at the bottom of  
Fig. 2.1. Each row of the spreadsheet represents a separate individual 
in the study; each column represents a different variable. Where the 
woman is still pregnant, the age of the woman at the time of birth has 
been calculated from the estimated date of the baby’s delivery. Data 
relating to the live births are shown in Chapter 37.

Data kindly provided by Dr R.A. Kadir, University Department of Obstetrics and Gynaecology, and Professor C.A. Lee, Haemophilia Centre and Haemostasis 
Unit, Royal Free Hospital, London.



In any study there is always the potential for errors to occur in a data set, 
either at the outset when taking measurements, or when collecting, 
transcribing and entering the data into a computer. It is hard to eliminate 
all of these errors. However, you can reduce the number of typing and 
transcribing errors by checking the data carefully once they have been 
entered. Simply scanning the data by eye will often identify values that 
are obviously wrong. In this chapter we suggest a number of other 
approaches that you can use when checking data.

Typing errors
Typing mistakes are the most frequent source of errors when entering 
data. If the amount of data is small, then you can check the typed data 
set against the original forms/questionnaires to see whether there are 
any typing mistakes. However, this is time-consuming if the amount of 
data is large. It is possible to type the data in twice and compare the two 
data sets using a computer program. Any differences between the two 
data sets will reveal typing mistakes. Although this approach does not 
rule out the possibility that the same error has been incorrectly entered 
on both occasions, or that the value on the form/questionnaire is 
incorrect, it does at least minimize the number of errors. The disadvantage 
of this method is that it takes twice as long to enter the data, which may 
have major cost or time implications.

Error checking
• Categorical data – It is relatively easy to check categorical data, as 
the responses for each variable can only take one of a number of limited 
values. Therefore, values that are not allowable must be errors.
• Numerical data – Numerical data are often difficult to check but are 
prone to errors. For example, it is simple to transpose digits or to 
misplace a decimal point when entering numerical data. Numerical data 
can be range checked – that is, upper and lower limits can be specified 
for each variable. If a value lies outside this range then it is flagged up 
for further investigation.
• Dates – It is often difficult to check the accuracy of dates, although 
sometimes you may know that dates must fall within certain time 
periods. Dates can be checked to make sure that they are valid. For 
example, 30th February must be incorrect, as must any day of the month 
greater than 31, and any month greater than 12. Certain logical checks 
can also be applied. For example, a patient’s date of birth should 
correspond to his/her age, and patients should usually have been born 
before entering the study (at least in most studies). In addition, patients 
who have died should not appear for subsequent follow-up visits!

With all error checks, a value should only be corrected if there is 
evidence that a mistake has been made. You should not change values 
simply because they look unusual.

Handling missing data
There is always a chance that some data will be missing. If a very large 
proportion of the data is missing, then the results are unlikely to be 
reliable. The reasons why data are missing should always be investigated 
– if missing data tend to cluster on a particular variable and/or in a 
particular subgroup of individuals, then it may indicate that the variable 
is not applicable or has never been measured for that group of individuals. 
If this is the case, it may be necessary to exclude that variable or group 
of individuals from the analysis. We may encounter particular problems 

when the chance that data are missing is strongly related to the variable 
of greatest interest in our study (e.g. the outcome in a regression analysis 
– Chapter 27). In this situation, our results may be severely biased 
(Chapter 34). For example, suppose we are interested in a measurement 
which reflects the health status of patients and this information is 
missing for some patients because they were not well enough to attend 
their clinic appointments: we are likely to get an overly optimistic 
overall view of the patients’ health if we take no account of the missing 
data in the analysis. It may be possible to reduce this bias by using 
appropriate statistical methods1 or by estimating the missing data in 
some way2, but a preferable option is to minimize the amount of 
missing data at the outset.

Outliers
What are outliers?
Outliers are observations that are distinct from the main body of the 
data, and are incompatible with the rest of the data. These values may be 
genuine observations from individuals with very extreme levels of the 
variable. However, they may also result from typing errors or the 
incorrect choice of units, and so any suspicious values should be 
checked. It is important to detect whether there are outliers in the data 
set, as they may have a considerable impact on the results from some 
types of analyses (Chapter 29).

For example, a woman who is 7 feet tall would probably appear as an 
outlier in most data sets. However, although this value is clearly very high, 
compared with the usual heights of women, it may be genuine and the 
woman may simply be very tall. In this case, you should investigate this 
value further, possibly checking other variables such as her age and weight, 
before making any decisions about the validity of the result. The value 
should only be changed if there really is evidence that it is incorrect.

Checking for outliers
A simple approach is to print the data and visually check them by eye. 
This is suitable if the number of observations is not too large and if the 
potential outlier is much lower or higher than the rest of the data. Range 
checking should also identify possible outliers. Alternatively, the data 
can be plotted in some way (Chapter 4) – outliers can be clearly identified 
on histograms and scatter plots (see also Chapter 29 for a discussion of 
outliers in regression analysis).

Handling outliers
It is important not to remove an individual from an analysis simply 
because his/her values are higher or lower than might be expected. 
However, the inclusion of outliers may affect the results when some 
statistical techniques are used. A simple approach is to repeat the analysis 
both including and excluding the value – this is a type of sensitivity 
analysis (Chapter 35). If the results are similar, then the outlier does not 
have a great influence on the result. However, if the results change 
drastically, it is important to use appropriate methods that are not affected 
by outliers to analyse the data. These include the use of transformations 
(Chapter 9) and non-parametric tests (Chapter 17).

Error checking and outliers3

1 Laird, N.M. (1988) Missing data in longitudinal studies. Statistics in Medicine, 
7, 305–315.
2 Engels, J.M. and Diehr, P. (2003) Imputation of missing longitudinal data: a 
comparison of methods. Journal of Clinical Epidemiology, 56, 968–976.
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Example

Digits transposed?
Should be 41?

Is this correct?
Too young to have a
child!

Typing mistake?
Should be 17/06/47?

?

Is this genuine?

Typing mistake?
Should be 3?

Unlikely to be correct

Missing values coded 
with a '.'

Have values been entered incorrectly with a 
column missed out? If so,  all values from 41 
onwards should be moved one column to the right

47
33
34
43
23
49
51
20
64
27
38
50
54
7
9
17
53
56
58
14

3
3
3
3
3
3
3
2
4
3
3
3
4
1
1
1
3
4
4
1

3

1
1
2
3
3

41

1
2
2
1
1
2
4
2
2
1
1

.
41
39
41
.
.
.
0
.

14
38
40
41
40
38
.

40
40
40
38

.
0
1
1
0
.
.
1
1
1
1
0
0
0
0
.
0
0
0
0

.
1
0
1
0
.
.
0
1
0
0
0
1
0
1
.
0
0
1
0

.
0
0
0
0
.
.
0
0
0
0
0
0
0
0
.
1
0
0
0

.
1
0
0
0
.
.
.
0
0
0
0
0
1
0
.
0
0
1
1

.

.

.

.
10/1-10/

.

.

.

.
ok

9/1-9/5
.
.
.
.
.
.
.
.
.

.

.

.

.
11.19

.

.
7
.

.

.

.

.

.

.

.
3.5
.
.

.
6
7
8
.
.
.
12
.
8
6
5
7
6
5
.
8
.
8
7

.
13
14
0
.
.
.

15/08/96
.
8
10
11
4
5
4
.
7
0
0
12

08/08/74
11/08/52
04/02/53
26/02/54
29/12/65
09/08/57
21/06/51

25.61
10/11/51
02/12/71
12/11/61
06/02/68
17/10/59
17/12/65
12/12/96
15/05/71
07/03/41
16/11/57
17/063/47
04/05/61

.
27.26
22.12
27.51
36.58

.

.
3

24.61
22.45
31.60
18.75
24.62
20.35
28.49
26.81
31.04
37.86
22.32
19.12

3
1
1
3
1
1
3
3
3
1
1
1
3
2
3
1
1
3
3
4
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Figure 3.1 Checking for errors in a data set.

After entering the data described in Chapter 2, the data set is checked 
for errors. Some of the inconsistencies highlighted are simple data 
entry errors. For example, the code of ‘41’ in the ‘Sex of baby’ column 
is incorrect as a result of the sex information being missing for patient 
20; the rest of the data for patient 20 had been entered in the incorrect 
columns. Others (e.g. unusual values in the gestational age and weight 

columns) are likely to be errors, but the notes should be checked 
before any decision is made, as these may reflect genuine outliers. In 
this case, the gestational age of patient number 27 was 41 weeks, and 
it was decided that a weight of 11.19 kg was incorrect. As it was not 
possible to find the correct weight for this baby, the value was entered 
as missing.



One of the first things that you may wish to do when you have entered 
your data into a computer is to summarize them in some way so that you 
can get a ‘feel’ for the data. This can be done by producing diagrams, 
tables or summary statistics (Chapters 5 and 6). Diagrams are often 
powerful tools for conveying information about the data, for providing 
simple summary pictures, and for spotting outliers and trends before 
any formal analyses are performed.

One variable
Frequency distributions
An empirical frequency distribution of a variable relates each possible 
observation, class of observations (i.e. range of values) or category, as 
appropriate, to its observed frequency of occurrence. If we replace 
each frequency by a relative frequency (the percentage of the total 
frequency), we can compare frequency distributions in two or more 
groups of individuals.

Displaying frequency distributions
Once the frequencies (or relative frequencies) have been obtained for 

categorical or some discrete numerical data, these can be displayed 
visually.
• Bar or column chart – a separate horizontal or vertical bar is drawn 
for each category, its length being proportional to the frequency in that 
category. The bars are separated by small gaps to indicate that the data 
are categorical or discrete (Fig. 4.1a).
• Pie chart – a circular ‘pie’ is split into sectors, one for each category, 
so that the area of each sector is proportional to the frequency in that 
category (Fig. 4.1b).

It is often more difficult to display continuous numerical data, as the 
data may need to be summarized before being drawn. Commonly used 
diagrams include the following:
• Histogram – this is similar to a bar chart, but there should be no gaps 
between the bars as the data are continuous (Fig. 4.1d). The width of 
each bar of the histogram relates to a range of values for the variable. 
For example, the baby’s weight (Fig. 4.1d) may be categorized into 
1.75–1.99 kg, 2.00–2.24 kg, …, 4.25–4.49 kg. The area of the bar is 
proportional to the frequency in that range. Therefore, if one of the 
groups covers a wider range than the others, its base will be wider and 

Displaying data diagrammatically4

Figure 4.1 A selection of diagrammatic output which may be produced when summarizing the obstetric data in women with bleeding disorders (Chapter 
2). (a) Bar chart showing the percentage of women in the study who required pain relief from any of the listed interventions during labour. (b) Pie chart 
showing the percentage of women in the study with each bleeding disorder. (c) Segmented column chart showing the frequency with which women with 
different bleeding disorders experience bleeding gums. (d) Histogram showing the weight of the baby at birth. (e) Dot plot showing the mother’s age at 
the time of the baby’s birth, with the median age marked as a horizontal line. (f) Scatter diagram showing the relationship between the mother’s age at 
delivery (on the horizontal or x-axis) and the weight of the baby (on the vertical or y-axis).
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Figure 4.2 Stem-and-leaf plot showing the FEV1 (litres) in children 
receiving inhaled beclomethasone dipropionate or placebo (Chapter 21).
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The ‘shape’ of the frequency distribution
The choice of the most appropriate statistical method will often depend 
on the shape of the distribution. The distribution of the data is usually 
unimodal in that it has a single ‘peak’. Sometimes the distribution is 
bimodal (two peaks) or uniform (each value is equally likely and there 
are no peaks). When the distribution is unimodal, the main aim is to see 
where the majority of the data values lie, relative to the maximum and 
minimum values. In particular, it is important to assess whether the 
distribution is:
• symmetrical – centred around some mid-point, with one side being a 
mirror-image of the other (Fig. 5.1);
• skewed to the right (positively skewed) – a long tail to the right with 
one or a few high values. Such data are common in medical research 
(Fig. 5.2);
• skewed to the left (negatively skewed) – a long tail to the left with 
one or a few low values (Fig. 4.1d).

Two variables
If one variable is categorical, then separate diagrams showing the 
distribution of the second variable can be drawn for each of the 
categories. Other plots suitable for such data include clustered or 
segmented bar or column charts (Fig. 4.1c).

If both of the variables are numerical or ordinal, then the relationship 
between the two can be illustrated using a scatter diagram (Fig. 4.1f). 
This plots one variable against the other in a two-way diagram. One 
variable is usually termed the x variable and is represented on the 
horizontal axis. The second variable, known as the y variable, is plotted 
on the vertical axis.

Identifying outliers using  
graphical methods
We can often use single-variable data displays to identify outliers. For 
example, a very long tail on one side of a histogram may indicate  
an outlying value. However, outliers may sometimes only become 
apparent when considering the relationship between two variables. For 
example, a weight of 55 kg would not be unusual for a woman who was 
1.6 m tall, but would be unusually low if the woman’s height was 
1.9 m.

The use of connecting lines in diagrams
The use of connecting lines in diagrams may be misleading. Connecting 
lines suggest that the values on the x-axis are ordered in some way – this 
might be the case if, for example, the x-axis reflects some measure of 
time or dose. Where this is not the case, the points should not be joined 
with a line. Conversely, if there is a dependency between different 
points (e.g. because they relate to results from the same individual at 
two different time points, such as before and after treatment), it is 
helpful to connect the relevant points by a straight line (Fig. 20.1) and 
important information may be lost if these lines are omitted.

height shorter to compensate. Usually, between five and 20 groups are 
chosen; the ranges should be narrow enough to illustrate patterns in the 
data, but should not be so narrow that they are the raw data. The 
histogram should be labelled carefully to make it clear where the 
boundaries lie.
• Dot plot – each observation is represented by one dot on a horizontal 
(or vertical) line (Fig. 4.1e). This type of plot is very simple to draw, but 
can be cumbersome with large data sets. Often a summary measure of 
the data, such as the mean or median (Chapter 5), is shown on the 
diagram. This plot may also be used for discrete data.
• Stem-and-leaf plot – This is a mixture of a diagram and a table; it 
looks similar to a histogram turned on its side, and is effectively the data 
values written in increasing order of size. It is usually drawn with a 
vertical stem, consisting of the first few digits of the values, arranged in 
order. Protruding from this stem are the leaves – i.e. the final digit of 
each of the ordered values, which are written horizontally (Fig. 4.2) in 
increasing numerical order.
• Box plot (often called a box-and-whisker plot) – This is a vertical or 
horizontal rectangle, with the ends of the rectangle corresponding to the 
upper and lower quartiles of the data values (Chapter 6). A line drawn 
through the rectangle corresponds to the median value (Chapter 5). 
Whiskers, starting at the ends of the rectangle, usually indicate minimum 
and maximum values but sometimes relate to particular percentiles, e.g. 
the 5th and 95th percentiles (Fig. 6.1). Outliers may be marked.



Summarizing data
It is very difficult to have any ‘feeling’ for a set of numerical 
measurements unless we can summarize the data in a meaningful way. 
A diagram (Chapter 4) is often a useful starting point. We can also 
condense the information by providing measures that describe the 
important characteristics of the data. In particular, if we have some 
perception of what constitutes a representative value, and if we know 
how widely scattered the observations are around it, then we can 
formulate an image of the data. The average is a general term for a 
measure of location; it describes a typical measurement. We devote this 
chapter to averages, the most common being the mean and median 
(Table 5.1). We introduce measures that describe the scatter or spread 
of the observations in Chapter 6.

The arithmetic mean
The arithmetic mean, often simply called the mean, of a set of values 
is calculated by adding up all the values and dividing this sum by the 
number of values in the set.

It is useful to be able to summarize this verbal description by an 
algebraic formula. Using mathematical notation, we write our set of n 
observations of a variable, x, as x1, x2, x3, …, xn. For example, x might 
represent an individual’s height (cm), so that x1 represents the height of 
the first individual, and xi the height of the ith individual, etc. We can 
write the formula for the arithmetic mean of the observations, written x̄ 
and pronounced ‘x bar’, as

x
x x x x

n
n=

+ + + +1 2 3 . . .

Using mathematical notation, we can shorten this to

x

x

n

i

i

n

= =
∑

1

where Σ (the Greek uppercase ‘sigma’) means ‘the sum 
of’, and the sub- and superscripts on the Σ indicate that we sum the 
values from i = 1 to i = n. This is often further abbreviated to

x
x

n
x

x

n

i
= =∑ ∑

or to

The median
If we arrange our data in order of magnitude, starting with the smallest 
value and ending with the largest value, then the median is the middle 
value of this ordered set. The median divides the ordered values into 
two halves, with an equal number of values both above and below it.

It is easy to calculate the median if the number of observations, n, is 
odd. It is the (n + 1)/2th observation in the ordered set. So, for example, 
if n = 11, then the median is the (11 + 1)/2 = 12/2 = 6th observation in 
the ordered set. If n is even then, strictly, there is no median. However, 

we usually calculate it as the arithmetic mean of the two middle 
observations in the ordered set [i.e. the n/2th and the (n/2 + 1)th]. So, 
for example, if n = 20, the median is the arithmetic mean of the 
20/2 = 10th and the (20/2 + 1) = (10 + 1) = 11th observations in the 
ordered set.

The median is similar to the mean if the data are symmetrical (Fig. 
5.1), less than the mean if the data are skewed to the right (Fig. 5.2), and 
greater than the mean if the data are skewed to the left (Fig. 4.1d).

The mode
The mode is the value that occurs most frequently in a data set; if the 
data are continuous, we usually group the data and calculate the modal 
group. Some data sets do not have a mode because each value only 
occurs once. Sometimes, there is more than one mode; this is when two 
or more values occur the same number of times, and the frequency of 
occurrence of each of these values is greater than that of any other value. 
We rarely use the mode as a summary measure.

The geometric mean
The arithmetic mean is an inappropriate summary measure of location 
if our data are skewed. If the data are skewed to the right, we can produce 
a distribution that is more symmetrical if we take the logarithm (typically 
to base 10 or to base e) of each value of the variable in this data set 
(Chapter 9). The arithmetic mean of the log values is a measure of 
location for the transformed data. To obtain a measure that has the same 
units as the original observations, we have to back-transform (i.e. take 
the antilog of) the mean of the log data; we call this the geometric 
mean. Provided the distribution of the log data is approximately 
symmetrical, the geometric mean is similar to the median and less than 
the mean of the raw data (Fig. 5.2).

The weighted mean
We use a weighted mean when certain values of the variable of interest, 
x, are more important than others. We attach a weight, wi, to each of the 
values, xi, in our sample, to reflect this importance. If the values x1, x2, 
x3, …, xn have corresponding weights w1, w2, w3, …, wn, the weighted 
arithmetic mean is

w x w x w x

w w w

w x

w
n n

n

i i

i

1 1 2 2

1 2

+ + +
+ + +

= ∑
∑

. . .

. . .

For example, suppose we are interested in determining the average 
length of stay of hospitalized patients in a district, and we know the 
average discharge time for patients in every hospital. To take account of 
the amount of information provided, one approach might be to take 
each weight as the number of patients in the associated hospital.

The weighted mean and the arithmetic mean are identical if each 
weight is equal to one.

Describing data: the ‘average’5
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Figure 5.2 The mean, median and geometric mean triglyceride level in a 
sample of 232 men who developed heart disease (Chapter 19). As the 
distribution of triglyceride levels is skewed to the right, the mean gives a 
higher ‘average’ than either the median or geometric mean.
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Table 5.1 Advantages and disadvantages of averages.

Type of average Advantages Disadvantages

Mean • Uses all the data values
• Algebraically defined 

and so mathematically 
manageable

• Known sampling 
distribution (Chapter 9)

• Distorted by outliers
• Distorted by skewed 

data

Median • Not distorted by 
outliers

• Not distorted by 
skewed data

• Ignores most of the 
information

• Not algebraically 
defined

• Complicated sampling 
distribution

Mode • Easily determined for 
categorical data

• Ignores most of the 
information

• Not algebraically 
defined

• Unknown sampling 
distribution

Geometric mean • Before back-
transformation, it has 
the same advantages as 
the mean

• Appropriate for right-
skewed data

• Only appropriate if the 
log transformation 
produces a symmetrical 
distribution

Weighted mean • Same advantages as the 
mean

• Ascribes relative 
importance to each 
observation

• Algebraically defined

• Weights must be known 
or estimated

Figure 5.1 The mean, median and geometric mean age of the women in 
the study described in Chapter 2 at the time of the baby’s birth. As the 
distribution of age appears reasonably symmetrical, the three measures of 
the ‘average’ all give similar values, as indicated by the dotted lines.
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Summarizing data
If we are able to provide two summary measures of a continuous 
variable, one that gives an indication of the ‘average’ value and the 
other that describes the ‘spread’ of the observations, then we have 
condensed the data in a meaningful way. We explained how to choose 
an appropriate average in Chapter 5. We devote this chapter to a 
discussion of the most common measures of spread (dispersion or 
variability) which are compared in Table 6.1.

The range
The range is the difference between the largest and smallest observations 
in the data set; you may find these two values quoted instead of their 
difference. Note that the range provides a misleading measure of spread 
if there are outliers (Chapter 3).

Ranges derived from percentiles
What are percentiles?
Suppose we arrange our data in order of magnitude, starting with the 
smallest value of the variable, x, and ending with the largest value. The 
value of x that has 1% of the observations in the ordered set lying 
below it (and 99% of the observations lying above it) is called the 1st 
percentile. The value of x that has 2% of the observations lying below 
it is called the 2nd percentile, and so on. The values of x that divide the 
ordered set into 10 equally sized groups, that is the 10th, 20th, 30th, …, 
90th percentiles, are called deciles. The values of x that divide the 
ordered set into four equally sized groups, that is the 25th, 50th and 75th 
percentiles, are called quartiles. The 50th percentile is the median 
(Chapter 5).

Using percentiles
We can obtain a measure of spread that is not influenced by outliers by 
excluding the extreme values in the data set, and then determining the 

range of the remaining observations. The interquartile range is the 
difference between the 1st and the 3rd quartiles, i.e. between the 25th 
and 75th percentiles (Fig. 6.1). It contains the central 50% of the 
observations in the ordered set, with 25% of the observations lying 
below its lower limit, and 25% of them lying above its upper limit. The 
interdecile range contains the central 80% of the observations, i.e. 
those lying between the 10th and 90th percentiles. Often we use the 
range that contains the central 95% of the observations, i.e. it excludes 
2.5% of the observations above its upper limit and 2.5% below its lower 
limit (Fig. 6.1). We may use this interval, provided it is calculated from 
enough values of the variable in healthy individuals, to diagnose 
disease. It is then called the reference interval, reference range or 
normal range (see Chapter 38).

The variance
One way of measuring the spread of the data is to determine the extent 
to which each observation deviates from the arithmetic mean. Clearly, 
the larger the deviations, the greater the variability of the observations. 
However, we cannot use the mean of these deviations as a measure of 
spread because the positive differences exactly cancel out the negative 
differences. We overcome this problem by squaring each deviation, and 
finding the mean of these squared deviations (Fig. 6.2); we call this the 
variance. If we have a sample of n observations, x1, x2, x3, …, xn, whose 
mean is x̄ = Σxi/n, we calculate the variance, usually denoted by s2, of 
these observations as

s
x x

n

i2

2

1
=

−( )

−
∑

We can see that this is not quite the same as the arithmetic mean of the 
squared deviations because we have divided by n − 1 instead of n. The 
reason for this is that we almost always rely on sample data in our 

Describing data: the ‘spread’6

Figure 6.1 A box-and-whisker plot of the baby’s weight at birth (Chapter 
2). This figure illustrates the median, the interquartile range, the range that 
contains the central 95% of the observations and the maximum and 
minimum values.
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Figure 6.2 Diagram showing the spread of selected values of the mother’s 
age at the time of baby’s birth (Chapter 2) around the mean value. The 
variance is calculated by adding up the squared distances between each 
point and the mean, and dividing by (n − 1).
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Table 6.1 Advantages and disadvantages of measures of spread.

Measure of 
spread Advantages Disadvantages

Range • Easily determined • Uses only two observations
• Distorted by outliers
• Tends to increase with 

increasing sample size

Ranges based 
on 
percentiles

• Usually unaffected 
by outliers

• Independent of 
sample size

• Appropriate for 
skewed data

• Clumsy to calculate
• Cannot be calculated for small 

samples
• Uses only two observations
• Not algebraically defined

Variance • Uses every 
observation

• Algebraically 
defined

• Units of measurement are the 
square of the units of the raw 
data

• Sensitive to outliers
• Inappropriate for skewed data

Standard 
deviation

• Same advantages as 
the variance

• Units of 
measurement are 
the same as those of 
the raw data

• Easily interpreted

• Sensitive to outliers
• Inappropriate for skewed data

investigations (Chapter 10). It can be shown theoretically that we obtain 
a better sample estimate of the population variance if we divide by 
(n − 1).

The units of the variance are the square of the units of the original 
observations, e.g. if the variable is weight measured in kg, the units of 
the variance are kg2.

The standard deviation
The standard deviation is the square root of the variance. In a sample 
of n observations, it is

s
x x

n

i
=

−( )

−
∑ 2

1

We can think of the standard deviation as a sort of average of the 
deviations of the observations from the mean. It is evaluated in the same 
units as the raw data.

If we divide the standard deviation by the mean and express this  
quotient as a percentage, we obtain the coefficient of variation. It 
is a measure of spread that is independent of the unit of measurement, 
but it has theoretical disadvantages and thus is not favoured by 
statisticians.

Variation within- and between-subjects
If we take repeated measurements of a continuous variable on an 
individual, then we expect to observe some variation (intra- or within-
subject variability) in the responses on that individual. This may be 
because a given individual does not always respond in exactly the same 
way and/or because of measurement error (Chapter 39). However, the 
variation within an individual is usually less than the variation obtained 
when we take a single measurement on every individual in a group 

(inter- or between-subject variability). For example, a 17-year-old 
boy has a lung vital capacity that ranges between 3.60 and 3.87 litres 
when the measurement is repeated 10 times; the values for single  
measurements on 10 boys of the same age lie between 2.98 and 4.33 
litres. These concepts are important in study design (Chapter 13).



In Chapter 4 we showed how to create an empirical frequency 
distribution of the observed data. This contrasts with a theoretical 
probability distribution which is described by a mathema tical model. 
When our empirical distribution approximates a particular probability 
distribution, we can use our theoretical knowledge of that distribution 
to answer questions about the data. This often requires the evaluation of 
probabilities.

Understanding probability
Probability measures uncertainty; it lies at the heart of statistical theory. 
A probability measures the chance of a given event occurring. It is a 
number that takes a value from zero to one. If it is equal to zero, then the 
event cannot occur. If it is equal to one, then the event must occur. The 
probability of the complementary event (the event not occurring) is 
one minus the probability of the event occurring. We discuss conditional 
probability, the probability of an event, given that another event has 
occurred, in Chapter 45.

We can calculate a probability using various approaches.
• Subjective – our personal degree of belief that the event will occur 
(e.g. that the world will come to an end in the year 2050).
• Frequentist – the proportion of times the event would occur if we 
were to repeat the experiment a large number of times (e.g. the number 
of times we would get a ‘head’ if we tossed a fair coin 1000 times).
• A priori – this requires knowledge of the theoretical model, called 
the probability distribution, which describes the probabilities of all 
possible outcomes of the ‘experiment’. For example, genetic  
theory allows us to describe the probability distribution for eye  
colour in a baby born to a blue-eyed woman and brown-eyed man by 
specifying all possible genotypes of eye colour in the baby and their 
probabilities.

The rules of probability
We can use the rules of probability to add and multiply probabilities.
• The addition rule – if two events, A and B, are mutually exclusive 
(i.e. each event precludes the other), then the probability that either one 
or the other occurs is equal to the sum of their probabilities.

Prob A B Prob A Prob Bor( ) = ( ) + ( )

For example, if the probabilities that an adult patient in a particular 
dental practice has no missing teeth, some missing teeth or is edentulous 
(i.e. has no teeth) are 0.67, 0.24 and 0.09, respectively, then the 
probability that a patient has some teeth is 0.67 + 0.24 = 0.91.
• The multiplication rule – if two events, A and B, are independent 
(i.e. the occurrence of one event is not contingent on the other), then the 
probability that both events occur is equal to the product of the 
probability of each:

Prob A  B Prob A Prob Band( ) = ( ) × ( )

For example, if two unrelated patients are waiting in the dentist’s 
surgery, the probability that both of them have no missing teeth is 
0.67 × 0.67 = 0.45.

Probability distributions: the theory
A random variable is a quantity that can take any one of a set of 
mutually exclusive values with a given probability. A probability 
distribution shows the probabilities of all possible values of the random 
variable. It is a theoretical distribution that is expressed mathematically, 
and has a mean and variance that are analogous to those of an empirical 
distribution. Each probability distribution is defined by certain 
parameters which are summary measures (e.g. mean, variance) 
characterizing that distribution (i.e. knowledge of them allows the 
distribution to be fully described). These parameters are estimated in 
the sample by relevant statistics. Depending on whether the random 
variable is discrete or continuous, the probability distribution can be 
either discrete or continuous.
• Discrete (e.g. Binomial and Poisson) – we can derive probabilities 
corresponding to every possible value of the random variable. The sum 
of all such probabilities is one.
• Continuous (e.g. Normal, Chi-squared, t and F) – we can only derive 
the probability of the random variable, x, taking values in certain ranges 
(because there are infinitely many values of x). If the horizontal axis 
represents the values of x, we can draw a curve from the equation of the 
distribution (the probability density function); it resembles an 
empirical relative frequency distribution (Chapter 4). The total area 
under the curve is one; this area represents the probability of all possible 
events. The probability that x lies between two limits is equal to the area 
under the curve between these values (Fig. 7.1). For convenience, tables 
have been produced to enable us to evaluate probabilities of interest for 
commonly used continuous probability distributions (Appendix A). 
These are particularly useful in the context of confidence intervals 
(Chapter 11) and hypothesis testing (Chapter 17).

Theoretical distributions:  
the Normal distribution7

Figure 7.1 The probability density function, pdf, of x.
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Figure 7.2 The probability density function of 
the Normal distribution of the variable x. 
(a) Symmetrical about mean μ: variance = σ2. 
(b) Effect of changing mean (μ2 > μ1). (c) Effect 
of changing variance (σ1

2 < σ2
2).
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Figure 7.3 Areas (percentages of total probability) under the curve for 
(a) Normal distribution of x, with mean μ and variance σ2, and 
(b) Standard Normal distribution of z.
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The Normal (Gaussian) distribution
One of the most important distributions in statistics is the Normal 
distribution. Its probability density function (Fig. 7.2) is:
• completely described by two parameters, the mean (μ) and the 
variance (σ2);
• bell-shaped (unimodal);
• symmetrical about its mean;
• shifted to the right if the mean is increased and to the left if the mean 
is decreased (assuming constant variance);
• flattened as the variance is increased but becomes more peaked as the 
variance is decreased (for a fixed mean).

Additional properties are that:
• the mean and median of a Normal distribution are equal;
• the probability (Fig. 7.3a) that a Normally distributed random 
variable, x, with mean, μ, and standard deviation, σ, lies between

µ σ µ σ−( ) +( )and is 0 68.

µ σ µ σ−( ) +( )1 96 1 96 0 95. . .and is

µ σ µ σ−( ) +( )2 58 2 58 0 99. . .and is

These intervals may be used to define reference intervals (Chapters 
6 and 38).

We show how to assess Normality in Chapter 35.

The Standard Normal distribution
There are infinitely many Normal distributions depending on the values 
of μ and σ. The Standard Normal distribution (Fig. 7.3b) is a particular 
Normal distribution for which probabilities have been tabulated 
(Appendices A1 and A4).
• The Standard Normal distribution has a mean of zero and a variance 
of one.
• If the random variable x has a Normal distribution with mean μ and 
variance σ2, then the Standardized Normal Deviate (SND), 

z
x

=
− µ
σ

, is a random variable that has a Standard Normal

distribution.



Some words of comfort
Do not worry if you find the theory underlying probability distributions 
complex. Our experience demonstrates that you want to know only 
when and how to use these distributions. We have therefore outlined the 
essentials and omitted the equations that define the probability 
distributions. You will find that you only need to be familiar with the 
basic ideas, the terminology and, perhaps (although infrequently in this 
computer age), know how to refer to the tables.

More continuous probability distributions
These distributions are based on continuous random variables. Often it 
is not a measurable variable that follows such a distribution but a 
statistic derived from the variable. The total area under the probability 
density function represents the probability of all possible outcomes, and 
is equal to one (Chapter 7). We discussed the Normal distribution in 
Chapter 7; other common distributions are described in this chapter.

The t-distribution (Appendix A2, Fig. 8.1)
• Derived by W.S. Gossett, who published under the pseudonym 
‘Student’; it is often called Student’s t-distribution.
• The parameter that characterizes the t-distribution is the degrees of 
freedom (df), so we can draw the probability density function if we 
know the equation of the t-distribution and its degrees of freedom. We 
discuss degrees of freedom in Chapter 11; note that they are often 
closely affiliated to sample size.
• Its shape is similar to that of the Standard Normal distribution, but it 
is more spread out, with longer tails. Its shape approaches Normality as 
the degrees of freedom increase.
• It is particularly useful for calculating confidence intervals for and 
testing hypotheses about one or two means (Chapters 19–21).

The Chi-squared (c2) distribution (Appendix A3, 
Fig. 8.2)
• It is a right-skewed distribution taking positive values.
• It is characterized by its degrees of freedom (Chapter 11).

• Its shape depends on the degrees of freedom; it becomes more  
symmetrical and approaches Normality as the degrees of freedom 
increases.
• It is particularly useful for analysing categorical data (Chapters 
23–25).

The F-distribution (Appendix A5)
• It is skewed to the right.
• It is defined by a ratio. The distribution of a ratio of two estimated 
variances calculated from Normal data approximates the 
F-distribution.
• The two parameters which characterize it are the degrees of freedom 
(Chapter 11) of the numerator and the denominator of the ratio.
• The F-distribution is particularly useful for comparing two variances 
(Chapter 35), and more than two means using the analysis of variance 
(ANOVA) (Chapter 22).

The Lognormal distribution
• It is the probability distribution of a random variable whose log (e.g. 
to base 10 or e) follows the Normal distribution.
• It is highly skewed to the right (Fig. 8.3a).
• If, when we take logs of our raw data that are skewed to the right, we 
produce an empirical distribution that is nearly Normal (Fig. 8.3b), our 
data approximate the Lognormal distribution.
• Many variables in medicine follow a Lognormal distribution. We can 
use the properties of the Normal distribution (Chapter 7) to make 
inferences about these variables after transforming the data by taking 
logs.
• If a data set has a Lognormal distribution, we can use the geometric 
mean (Chapter 5) as a summary measure of location.

Theoretical distributions: other distributions8

Figure 8.1 t-distributions with degrees of freedom (df) = 1, 5, 50 and 500.
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Figure 8.2 Chi-squared distributions with degrees of freedom (df) = 1, 2, 
5 and 10.
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Figure 8.3 (a) The Lognormal distribution of 
triglyceride levels (mmol/L) in 232 men who 
developed heart disease (Chapter 19). (b) The 
approximately Normal distribution of  
log10 (triglyceride level) in log10 (mmol/L).
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Figure 8.4 Binomial distribution showing the number of successes, r, when the probability of success is π = 0.20 for sample sizes (a) n = 5, 
(b) n = 10 and (c) n = 50. (N.B. in Chapter 23, the observed seroprevalence of HHV-8 was p = 0.185 ≈ 0.2, and the sample size was 271: 
the proportion was assumed to follow a Normal distribution.)
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Discrete probability distributions
The random variable that defines the probability distribution is discrete. 
The sum of the probabilities of all possible mutually exclusive events is 
one.

The Binomial distribution
• Suppose, in a given situation, there are only two outcomes, ‘success’ 
and ‘failure’. For example, we may be interested in whether a woman 
conceives (a success) or does not conceive (a failure) after in vitro 
fertilization (IVF). If we look at n = 100 unrelated women undergoing 
IVF (each with the same probability of conceiving), the Binomial random 
variable is the observed number of conceptions (successes). Often this 
concept is explained in terms of n independent repetitions of a trial (e.g. 
100 tosses of a coin) in which the outcome is either success (e.g. head) or 
failure.
• The two parameters that describe the Binomial distribution are  
n, the number of individuals in the sample (or repetitions of a trial) 
and π, the true probability of success for each individual (or in each 
trial).
• Its mean (the value for the random variable that we expect if we look 
at n individuals, or repeat the trial n times) is nπ. Its variance is 
nπ(1 − π).

• When n is small, the distribution is skewed to the right if π < 0.5 and 
to the left if π > 0.5. The distribution becomes more symmetrical as the 
sample size increases (Fig. 8.4) and approximates the Normal 
distribution if both nπ and n(1 − π) are greater than 5.
• We can use the properties of the Binomial distribution when making 
inferences about proportions. In particular, we often use the Normal 
approximation to the Binomial distribution when analysing 
proportions.

The Poisson distribution
• The Poisson random variable is the count of the number of events 
that occur independently and randomly in time or space at some average 
rate, μ. For example, the number of hospital admissions per day typically 
follows the Poisson distribution. We can use our knowledge of the 
Poisson distribution to calculate the probability of a certain number of 
admissions on any particular day.
• The parameter that describes the Poisson distribution is the mean, i.e. 
the average rate, μ.
• The mean equals the variance in the Poisson distribution.
• It is a right skewed distribution if the mean is small, but becomes 
more symmetrical as the mean increases, when it approximates a 
Normal distribution.



Why transform?
The observations in our investigation may not comply with the 
requirements of the intended statistical analysis (Chapter 35).
• A variable may not be Normally distributed, a distributional 
requirement for many different analyses.
• The spread of the observations in each of a number of groups may be 
different (constant variance is an assumption about a parameter in the 
comparison of means using the unpaired t-test and analysis of variance 
– Chapters 21 and 22).
• Two variables may not be linearly related (linearity is an assumption 
in many regression analyses – Chapters 27–33 and 42).

It is often helpful to transform our data to satisfy the assumptions 
underlying the proposed statistical techniques.

How do we transform?
We convert our raw data into transformed data by taking the same 
mathematical transformation of each observation. Suppose we have n 
observations (y1, y2, …, yn) on a variable, y, and we decide that the log 
transformation is suitable. We take the log of each observation to 
produce (log y1, log y2, …, log yn). If we call the transformed variable z, 
then zi = log yi for each i (i = 1, 2, …, n), and our transformed data may 
be written (z1, z2, …, zn).

We check that the transformation has achieved its purpose of  
producing a data set that satisfies the assumptions of the planned  
statistical analysis (e.g. by plotting a histogram of the transformed data 
– see Chapter 35), and proceed to analyse the transformed data (z1, z2, 
…, zn). We often back-transform any summary measures (such as 
the mean) to the original scale of measurement; we then rely on the 
conclusions we draw from hypothesis tests (Chapter 17) on the 
transformed data.

Typical transformations
The logarithmic transformation, z = log y
When log transforming data, we can choose to take logs either to base 
10 (log10 y, the ‘common’ log) or to base e (loge y or ln y, the ‘natural’ or 
Naperian log), or to any other base, but must be consistent for a particular 
variable in a data set. Note that we cannot take the log of a negative 

number or of zero. The back-transformation of a log is called the antilog; 
the antilog of a Naperian log is the exponential, e.
• If y is skewed to the right, z = log y is often approximately Normally 
distributed (Fig. 9.1a). Then y has a Lognormal distribution (Chapter 
8).
• If there is an exponential relationship between y and another variable, 
x, so that the resulting curve bends upward when y (on the vertical axis) 
is plotted against x (on the horizontal axis), then the relationship between 
z = log y and x is approximately linear (Fig. 9.1b).
• Suppose we have different groups of observations, each comprising 
measurements of a continuous variable, y. We may find that the groups 
that have the higher values of y also have larger variances. In particular, 
if the coefficient of variation (the standard deviation divided by the 
mean) of y is constant for all the groups, the log transformation, z = 
log y, produces groups that have similar variances (Fig. 9.1c).

In medicine, the log transformation is frequently used because many 
variables have right-skewed distributions and because the results have 
a logical interpretation. For example, if the raw data are log transformed, 
then the difference in two means on the log scale is equal to the ratio of 
the two means on the original scale; or, if we take a log10 transformation 
of an explanatory variable in regression analysis (Chapter 29), a unit 
increase in the variable on the log scale represents a 10-fold increase in 
the variable on the original scale. Note that a log transformation of the 
outcome variable in a regression analysis allows for back-transformation 
of the regression coefficients, but the effect is multiplicative rather than 
additive on the original scale (see Chapters 30 and 31).

The square root transformation, z y==
This transformation has properties that are similar to those of the log 
transformation, although the results after they have been back-
transformed are more complicated to interpret. In addition to its 
Normalizing and linearizing abilities, it is effective at stabilizing 
variance if the variance increases with increasing values of y, i.e. if the 
variance divided by the mean is constant. We often apply the square root 
transformation if y is the count of a rare event occurring in time or space, 
i.e. it is a Poisson variable (Chapter 8). Remember, we cannot take the 
square root of a negative number.

Transformations9

Figure 9.1 The effects of the logarithmic 
transformation: (a) Normalizing, (b) linearizing, 
(c) variance stabilizing.(a) )c()b(
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The reciprocal transformation, z = 1/y
We often apply the reciprocal transformation to survival times unless 
we are using special techniques for survival analysis (Chapter 41). The 
reciprocal transformation has properties that are similar to those of the 
log transformation. In addition to its Normalizing and linearizing 
abilities, it is more effective at stabilizing variance than the log 
transformation if the variance increases very markedly with increasing 
values of y, i.e. if the variance divided by the (mean)4 is constant. Note 
that we cannot take the reciprocal of zero.

The square transformation, z = y2

The square transformation achieves the reverse of the log 
transformation.
• If y is skewed to the left, the distribution of z = y2 is often 
approximately Normal (Fig. 9.2a).
• If the relationship between two variables, x and y, is such that a line 
curving downward is produced when we plot y against x, then the 
relationship between z = y2 and x is approximately linear (Fig. 9.2b).
• If the variance of a continuous variable, y, tends to decrease as the 
value of y increases, then the square transformation, z = y2, stabilizes 
the variance (Fig. 9.2c).

The logit (logistic) transformation,
 
z

p
p

==
--

ln
1

This is the transformation we apply most often to each proportion, p, in 
a set of proportions. We cannot take the logit transformation if either 
p = 0 or p = 1 because the corresponding logit values are −∞ and +∞. 
One solution is to take p as 1/(2n) instead of 0, and as {1 − 1/(2n)} 
instead of 1, where n is the sample size.

It linearizes a sigmoid curve (Fig. 9.3). See Chapter 30 for the use of 
the logit transformation in regression analysis.

Figure 9.2 The effect of the square 
transformation: (a) Normalizing, (b) linearizing, 
(c) variance stabilizing.
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Figure 9.3 The effect of the logit transformation on a sigmoid curve.
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Why do we sample?
In statistics, a population represents the entire group of individuals in 
whom we are interested. Generally it is costly and labour-intensive to 
study the entire population and, in some cases, may be impossible 
because the population may be hypothetical (e.g. patients who may 
receive a treatment in the future). Therefore we collect data on a sample 
of individuals who we believe are representative of this population 
(i.e. they have similar characteristics to the individuals in the population), 
and use them to draw conclusions (i.e. make inferences) about the 
population.

When we take a sample of the population, we have to recognize 
that the information in the sample may not fully reflect what is true 
in the population. We have introduced sampling error by studying 
only some of the population. In this chapter we show how to use  
theoretical probability distributions (Chapters 7 and 8) to quantify 
this error.

Obtaining a representative sample
Ideally, we aim for a  random sample. A list of all individuals from the 
population is drawn up (the sampling frame), and individuals are 
selected randomly from this list, i.e. every possible sample of a given 
size in the population has an equal probability of being chosen. 
Sometimes, we may have difficulty in constructing this list or the costs 
involved may be prohibitive, and then we take a convenience sample. 
For example, when studying patients with a particular clinical condition, 
we may choose a single hospital, and investigate some or all of the 
patients with the condition in that hospital. Very occasionally, non-
random schemes, such as quota sampling or  systematic sampling, 
may be used. Although the statistical tests described in this book assume 
that individuals are selected for the sample randomly, the methods are 
generally reasonable as long as the sample is representative of the 
population.

Point estimates
We are often interested in the value of a parameter in the population 
(Chapter 7), such as a mean or a proportion. Parameters are usually 
denoted by letters of the Greek alphabet. For example, we usually 
refer to the population mean as μ and the population standard deviation 
as σ. We estimate the value of the parameter using the data collected 
from the sample. This estimate is referred to as the sample statistic 
and is a point estimate of the parameter (i.e. it takes a single value) as 
opposed to an interval estimate (Chapter 11) which takes a range of 
values.

Sampling variation
If we were to take repeated samples of the same size from a population, 
it is unlikely that the estimates of the population parameter would  
be exactly the same in each sample. However, our estimates should  
all be close to the true value of the parameter in the population, and  
the estimates themselves should be similar to each other. By quantifying 
the variability of these estimates, we obtain information on the  
precision of our estimate and can thereby assess the sampling error.  
In reality, we usually only take one sample from the population. 
However, we still make use of our knowledge of the theoretical 

distribution of sample estimates to draw inferences about the population 
parameter.

Sampling distribution of the mean
Suppose we are interested in estimating the population mean; we could 
take many repeated samples of size n from the population, and estimate 
the mean in each sample. A histogram of the estimates of these means 
would show their distribution (Fig. 10.1); this is the sampling 
distribution of the mean. We can show that:
• If the sample size is reasonably large, the estimates of the mean follow 
a Normal distribution, whatever the distribution of the original data in 
the population (this comes from a theorem known as the Central Limit 
Theorem).
• If the sample size is small, the estimates of the mean follow a Normal 
distribution provided the data in the population follow a Normal 
distribution.
• The mean of the estimates is an unbiased estimate of the true mean in 
the population, i.e. the mean of the estimates equals the true population 
mean.
• The variability of the distribution is measured by the standard  
deviation of the estimates; this is known as the standard error 
of the mean (often denoted by SEM). If we know the population 
standard deviation (σ), then the standard error of the mean is given 
by

SEM = σ n

When we only have one sample, as is customary, our best estimate of 
the population mean is the sample mean, and because we rarely know 
the standard deviation in the population, we estimate the standard error 
of the mean by

SEM = s n

where s is the standard deviation of the observations in the sample 
(Chapter 6). The SEM provides a measure of the precision of our 
estimate.

Interpreting standard errors
• A large standard error indicates that the estimate is imprecise.
• A small standard error indicates that the estimate is precise.

The standard error is reduced, i.e. we obtain a more precise estimate, 
if:

• the size of the sample is increased (Fig. 10.1);
• the data are less variable.

SD or SEM?
Although these two parameters seem to be similar, they are used for 
different purposes. The standard deviation describes the variation in the 
data values and should be quoted if you wish to illustrate variability in 
the data. In contrast, the standard error describes the precision of the 
sample mean, and should be quoted if you are interested in the mean of 
a set of data values.

Sampling and sampling distributions10
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Sampling distribution of the proportion
We may be interested in the proportion of individuals in a population 
who possess some characteristic. Having taken a sample of size n from 
the population, our best estimate, p, of the population proportion, π, is 
given by:

p r n=

where r is the number of individuals in the sample with the 
characteristic. If we were to take repeated samples of size n from 
our population and plot the estimates of the proportion as a histogram, 

Example

Figure 10.1 (a) Theoretical Normal distribution of log10 (triglyceride levels) in log10 (mmol/litre) with mean = 0.31log10 (mmol/litre) and standard 
deviation = 0.24log10 (mmol/litre), and the observed distributions of the means of 100 random samples of size (b) 10, (c) 20 and (d) 50 taken from this 
theoretical distribution.

Pr
ob

ab
ili

ty
de

ns
ity

fu
nc

tio
n

goL)a( 10 (triglyceride)
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

50

40

30

20

10
0

Fr
eq

ue
nc

y

(b) Log10 (triglyceride)

Fr
eq

ue
nc

y

goL)c( 10 (triglyceride)

Fr
eq

ue
nc

y

(d) Log10 (triglyceride)

Samples of size 50Samples of size 20

Samples of size 10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

1.75

1.40

1.05

0.70

0.35
0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

50

40

30

20

10
0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

50

40

30

20

10
0

the resulting sampling distribution of the proportion would 
approximate a Normal distribution with mean value π. The standard 
deviation of this distribution of estimated proportions is the standard 
error of the proportion. When we take only a single sample, it is 
estimated by:

SE p
p p

n
( ) = −( )1

This provides a measure of the precision of our estimate of π ; a small 
standard error indicates a precise estimate.



Once we have taken a sample from our population, we obtain a point 
estimate (Chapter 10) of the parameter of interest, and calculate its  
standard error to indicate the precision of the estimate. However, to 
most people the standard error is not, by itself, particularly useful. It is 
more helpful to incorporate this measure of precision into an interval 
estimate for the population parameter. We do this by making use of our 
knowledge of the theoretical probability distribution of the sample 
statistic to calculate a confidence interval for the parameter. Generally 
the confidence interval extends either side of the estimate by some 
multiple of the standard error; the two values (the confidence limits) 
which define the interval are generally separated by a comma, a dash or 
the word ‘to’ and are contained in brackets.

Confidence interval for the mean
Using the Normal distribution
In Chapter 10 we stated that the sample mean follows a Normal 
distribution if the sample size is large. Therefore we can make use of the 
properties of the Normal distribution when considering the sample 
mean. In particular, 95% of the distribution of sample means lies within 
1.96 standard deviations (SD) of the population mean. We call this SD 
the standard error of the mean (SEM), and when we have a single 
sample, the 95% confidence interval (CI) for the mean is:

(Sample mean − (1.96 × SEM) to Sample mean + (1.96 × SEM))

If we were to repeat the experiment many times, the range of values 
determined in this way would contain the true population mean on 95% 
of occasions. This range is known as the 95% confidence interval for the 
mean. We usually interpret this confidence interval as the range of values 
within which we are 95% confident that the true population mean lies. 
Although not strictly correct (the population mean is a fixed value and 
therefore cannot have a probability attached to it), we will interpret the 
confidence interval in this way as it is conceptually easier to understand.

Using the t-distribution
Strictly, we should only use the Normal distribution in the calculation if 
we know the value of the variance, σ2, in the population. Furthermore, 
if the sample size is small, the sample mean only follows a Normal 
distribution if the underlying population data are Normally distributed. 
Where the data are not Normally distributed, and/or we do not know the 
population variance but estimate it by s2, the sample mean follows a 
t-distribution (Chapter 8). We calculate the 95% confidence interval 
for the mean as

(Sample mean − (t0.05 × SEM) to Sample mean + (t0.05 × SEM))

i.e. it is
 
Sample mean ± ×t

s

n
0 05.

where t0.05 is the percentage point (percentile) of the t-distribution 
with (n − 1) degrees of freedom which gives a two-tailed probability 
(Chapter 17) of 0.05 (Appendix A2). This generally provides a slightly 
wider confidence interval than that using the Normal distribution to 
allow for the extra uncertainty that we have introduced by estimating 
the population standard deviation and/or because of the small sample 
size. When the sample size is large, the difference between the two 
distributions is negligible. Therefore, we always use the t-distribution 

when calculating a confidence interval for the mean even if the sample 
size is large.

By convention we usually quote 95% confidence intervals. We could 
calculate other confidence intervals, e.g. a 99% confidence interval for 
the mean. Instead of multiplying the standard error by the tabulated 
value of the t-distribution corresponding to a two-tailed probability of 
0.05, we multiply it by that corresponding to a two-tailed probability of 
0.01. The 99% confidence interval is wider than a 95% confidence 
interval, to reflect our increased confidence that the range includes the 
true population mean.

Confidence interval for the proportion
The sampling distribution of a proportion follows a Binomial  
distribution (Chapter 8). However, if the sample size, n, is reasonably 
large, then the sampling distribution of the proportion is approximately 
Normal with mean π. We estimate π by the proportion in the 
sample, p = r/n (where r is the number of individuals in the sample 
with the characteristic of interest), and its standard error is

estimated by
 

p p

n

1−( )
 
(Chapter 10).

The 95% confidence interval for the proportion is estimated by

p p p

n
p p p

n
− × −( )





+ × −( )











1 96 1 1 96 1. .to

If the sample size is small (usually when np or n(1 − p) is less than 5) 
then we have to use the Binomial distribution to calculate exact 
confidence intervals1. Note that if p is expressed as a percentage, we 
replace (1 − p) by (100 − p).

Interpretation of confidence intervals
When interpreting a confidence interval we are interested in a number 
of issues.
• How wide is it? A wide interval indicates that the estimate is imprecise; 
a narrow one indicates a precise estimate. The width of the confidence 
interval depends on the size of the standard error, which in turn depends 
on the sample size and, when considering a numerical variable, the 
variability of the data. Therefore, small studies on variable data give 
wider confidence intervals than larger studies on less variable data.
• What clinical implications can be derived from it? The upper and 
lower limits provide a way of assessing whether the results are clinically 
important (see Example).
• Does it include any values of particular interest? We can check 
whether a hypothesized value for the population parameter falls within 
the confidence interval. If so, then our results are consistent with this 
hypothesized value. If not, then it is unlikely (for a 95% confidence 
interval, the chance is at most 5%) that the parameter has this value.

Degrees of freedom
You will come across the term ‘degrees of freedom’ in statistics. In 
general they can be calculated as the sample size minus the number of 
constraints in a particular calculation; these constraints may be the 

Confidence intervals11

1 Diem, K. (1970) Documenta Geigy Scientific Tables. 7th edition. Oxford: 
Blackwell Publishing.
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parameters that have to be estimated. As a simple illustration, consider 
a set of three numbers which add up to a particular total (T). Two of the 
numbers are ‘free’ to take any value but the remaining number is fixed 
by the constraint imposed by T. Therefore the numbers have two degrees 
of freedom. Similarly, the degrees of freedom of the sample variance, 

s
x x

n
2

2

1
=

−( )

−
∑

 
(Chapter 6), are the sample size minus one, because we

 
have to calculate the sample mean (x̄), an estimate of the population 
mean, in order to evaluate s2.

Bootstrapping and jackknifing
Bootstrapping is a computer-intensive simulation process which we 
can use to derive a confidence interval for a parameter if we do not want 
to make assumptions about the sampling distribution of its estimate 
(e.g. the Normal distribution for the sample mean). From the original 
sample, we create a large number of random samples (usually at least 

1000), each of the same size as the original sample, by sampling with 
replacement, i.e. by allowing an individual who has been selected to be 
‘replaced’ so that, potentially, this individual can be included more than 
once in a given sample. Every sample provides an estimate of the 
parameter, and we use the variability of the distribution of these 
estimates to obtain a confidence interval for the parameter, for example, 
by considering relevant percentiles (e.g. the 2.5th and 97.5th percentiles 
to provide a 95% confidence interval).

Jackknifing is a similar technique to bootstrapping. However, rather 
than creating random samples of the original sample, we remove one 
observation from the original sample of size n and then compute the 
estimated parameter on the remaining (n − 1) observations. This process 
is repeated, removing each observation in turn, giving us n estimates of 
the parameter. As with bootstrapping, we use the variability of the 
estimates to obtain the confidence interval. 

Bootstrapping and jackknifing may both be used when generating 
and validating prognostic scores (Chapter 46).

Example

Confidence interval for the mean
We are interested in determining the mean age at first birth in  
women who have bleeding disorders. In a sample of 49 such women 
who had given birth by the end of 1997 (Chapter 2):

Mean age at birth of child, x̄ = 27.01 years
Standard deviation, s = 5.1282 years

Standard error,
 
SEM years= =

5 1282

49
0 7326

.
.

The variable is approximately Normally distributed but, because 
the population variance is unknown, we use the t-distribution to 
calculate the confidence interval. The 95% confidence interval for the 
mean is:

27.01 ± (2.011 × 0.7326) = (25.54, 28.48) years

where 2.011 is the percentage point of the t-distribution with 
(49 − 1) = 48 degrees of freedom giving a two-tailed probability of 
0.05 (Appendix A2).

We are 95% certain that the true mean age at first birth in women with 
bleeding disorders in the population lies between 25.54 and 28.48 years. 
This range is fairly narrow, reflecting a precise estimate. In the general 
population, the mean age at first birth in 1997 was 26.8 years. As 26.8 
falls into our confidence interval, there is no evidence that women with 
bleeding disorders tend to give birth at an older age than other women.

Note that the 99% confidence interval (25.05, 28.97 years) is 
slightly wider than the 95% confidence interval, reflecting our 
increased confidence that the population mean lies in the interval.

Confidence interval for the proportion
Of the 64 women included in the study, 27 (42.2%) reported that they 
experienced bleeding gums at least once a week. This is a relatively 
high percentage, and may provide a way of identifying undiagnosed 
women with bleeding disorders in the general population. We calculate 
a 95% confidence interval for the proportion with bleeding gums in 
the population.

Sample proportion = 27/64 = 0.422

Standard error of proportion =
0 422 1 0 422

64
0 0617

. .
.

−( )
=

95 0 422 1 96 0 0617

0 301 0 543

% confidence interval = ± ×( )
= ( )

. . .

. , .

We are 95% certain that the true percentage of women with bleeding 
disorders in the population who experience bleeding gums this 
frequently lies between 30.1% and 54.3%. This is a fairly wide 
confidence interval, suggesting poor precision; a larger sample size 
would enable us to obtain a more precise estimate. However, the upper 
and lower limits of this confidence interval both indicate that a 
substantial percentage of these women are likely to experience 
bleeding gums. We would need to obtain an estimate of the frequency 
of this complaint in the general population before drawing any 
conclusions about its value for identifying undiagnosed women with 
bleeding disorders.



Study design is vitally important as poorly designed studies may give 
misleading results. Large amounts of data from a poor study will not 
compensate for problems in its design. In this chapter and in Chapter 13 
we discuss some of the main aspects of study design. In Chapters 14–16 
we discuss specific types of study: clinical trials, cohort studies and 
case–control studies.

The aims of any study should be clearly stated at the outset. We may 
wish to estimate a parameter in the population such as the risk of some 
event (Chapter 15), to consider associations between a particular 
aetiological factor and an outcome of interest, or to evaluate the effect 
of an intervention such as a new treatment. There may be a number of 
possible designs for any such study. The ultimate choice of design will 
depend not only on the aims but also on the resources available and 
ethical considerations (see Table 12.1).

Experimental or observational studies
• Experimental studies involve the investigator intervening in some 
way to affect the outcome. The clinical trial (Chapter 14) is an example 
of an experimental study in which the investigator introduces some 
form of treatment. Other examples include animal studies or laboratory 
studies that are carried out under experimental conditions. Experimental 
studies provide the most convincing evidence for any hypothesis as it is 
generally possible to control for factors that may affect the outcome 
(see also Chapter 40). However, these studies are not always feasible or, 
if they involve humans or animals, may be unethical.

• Observational studies, e.g. cohort (Chapter 15) or case–control 
(Chapter 16) studies, are those in which the investigator does nothing to 
affect the outcome but simply observes what happens. These studies 
may provide poorer information than experimental studies because it is 
often impossible to control for all factors that affect the outcome. 
However, in some situations, they may be the only types of study that 
are helpful or possible. Epidemiological studies, which assess the 
relationship between factors of interest and disease in the population, 
are observational.

Defining the unit of observation
The unit of observation is the ‘individual’ or smallest group of 
‘individuals’ which can be regarded as independent for the purposes of 
analysis, i.e. its response of interest is unaffected by those of the other 
units of observation. In medical studies, whether experimental or 
observational, investigators are usually interested in the outcomes of an  
individual person. For example, in a clinical trial (Chapter 14), the unit 
of observation is usually the individual patient as his/her response to 
treatment is believed not to be affected by the responses to treatment 
experienced by other patients in the trial. However, for some studies,  
it may be appropriate to consider different units of observation. For 
example:
• In dental studies, the unit of observation may be the patient’s mouth 
rather than an individual tooth, as the teeth within a patient’s mouth are 
not independent of each other.

Study design I12

Table 12.1 Study designs.

Type of study Timing Form
Action  
in past time

Action in present  
time (starting point)

Action in  
future time Typical uses

Cross-sectional Cross- 
sectional

Observational Collect
all

information

• Prevalence estimates
• Reference ranges and diagnostic 

tests
• Current health status of a group

Repeated  
cross-sectional

Cross- 
sectional

Observational
Collect

all
information

Collect
all

information

Collect
all

information

• Changes over time

Cohort  
(Chapter 15)

Longitudinal 
(prospective)

Observational Define cohort
and

assess risk factors
Observe

outcomesfollow

• Prognosis and natural history 
(what will happen to someone 
with disease)

• Aetiology

Case–control 
(Chapter 16)

Longitudinal 
(retrospective)

Observational Assess
risk

factors

Define cases 
and controls

(i.e. outcome)
trace

• Aetiology (particularly for  
rare diseases)

Experiment Longitudinal 
(prospective)

Experimental Apply
intervention

Observe
outcomesfollow

• Clinical trial to assess therapy 
(Chapter 14)

• Trial to assess preventative 
measure, e.g. large-scale vaccine 
trial

• Laboratory experiment
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• In some experimental studies, particularly laboratory studies, it may 
be necessary to pool material from different individuals (e.g. mice). It is 
then impossible to assess each individual separately and the pooled 
material (e.g. that in the well of a tissue culture plate) becomes the unit 
of observation.
• A cluster randomized trial (Chapter 14) is an example of an 
experimental study where the unit of observation is a group of 
individuals, such as all the children in a class.
• An ecological study is a particular type of epidemiological study in 
which the unit of observation is a community or group of individuals 
rather than the individual. For example, we may compare national 
mortality rates from breast cancer across a number of different countries 
to see whether mortality rates appear to be higher in some countries than 
others, or whether mortality rates are correlated with other national 
characteristics. While any associations identified in this way may 
provide interesting hypotheses for further research, care should always 
be taken when interpreting the results from such studies owing to the 
potential for bias (see the ecological fallacy in Chapter 34).

Multicentre studies
A multicentre study, which may be experimental or observational, 
enrols a number of individuals from each of two or more centres (e.g. 
hospital clinic, general practice, etc.). While these centres may be of a 
different type and/or size, the same study protocol will be used in all 
centres. If management practices vary across centres, it is likely that the 
outcomes experienced by two individuals within the same centre will 
be more similar than those experienced by two individuals in different 
centres. The analysis of a multicentre study, which is usually performed 
in a single coordinating centre, should always take account of any centre 
‘effects’, either through an analysis suitable for clustered data (Chapter 
42), or by adjustment for the centre in a multivariable regression 
analysis (Chapter 33).

Assessing causality
In medical research we are generally interested in whether exposure to 
a factor causes an effect (e.g. whether smoking causes lung cancer). 
Although the most convincing evidence for the causal role of a factor in 
disease usually comes from randomized controlled trials (Chapter 14), 
information from observational studies may be used provided a number 
of criteria are met. The most well-known criteria for assessing causation 
were proposed by Hill1.
1 The cause must precede the effect.
2 The association should be plausible, i.e. the results should be 
biologically sensible.
3 There should be consistent results from a number of studies;
4 The association between the cause and the effect should be strong.
5 There should be a dose–response relationship with the effect, i.e. 
higher levels of the effect should lead to more severe disease or more 
rapid disease onset.
6 Removing the factor of interest should reduce the risk of disease.

Cross-sectional or longitudinal studies
• A cross-sectional study is carried out at a single point in time. A 
survey is a type of cross-sectional study where, usually, the aim is to 
describe individuals’ beliefs in or attitudes towards a particular issue in 
a large sample of the population. A census is a particular type of survey 
in which the entire target population is investigated. In a medical setting, 
a cross-sectional study is particularly suitable for estimating the point 
prevalence of a condition in the population.

Point prevalence
Number with the disease at a single time p

=
ooint

Total number studied at the same time point 

As we do not know when the events occurred prior to the study, we can 
only say that there is an association between the factor of interest and 
disease, and not that the factor is likely to have caused disease (i.e. we 
have not demonstrated that Hill’s criterion 1 has been satisfied). 
Furthermore, we cannot estimate the incidence of the disease, i.e. the 
rate of new events in a particular period (Chapter 31). In addition, 
because cross-sectional studies are only carried out at one point in time, 
we cannot consider trends over time. However, these studies are 
generally quick and cheap to perform.
• A repeated cross-sectional study may be carried out at different time 
points to assess trends over time. However, as this study is likely to include 
different groups of individuals at each time point, it can be difficult to 
assess whether apparent changes over time simply reflect differences in 
the groups of individuals studied.
• A longitudinal study follows a sample of individuals over time. 
This type of study is usually prospective in that individuals are 
followed forward from some point in time (Chapter 15). Sometimes a 
retrospective study, in which individuals are selected and factors that 
have occurred in their past are identified (Chapter 16), are also perceived 
as longitudinal. Longitudinal studies generally take longer to carry out 
than cross-sectional studies, thus requiring more resources, and, if they 
rely on patient memory or medical records, may be subject to bias 
(Chapter 34).

Experimental studies are generally prospective as they consider  
the impact of an intervention on an outcome that will happen in  
the future. However, observational studies may be either prospective or 
retrospective.

Controls
The use of a comparison group, or control group, is important when 
designing a study and interpreting any research findings. For example, 
when assessing the causal role of a particular factor for a disease, the 
risk of disease should be considered both in those who are exposed and 
in those who are unexposed to the factor of interest (Chapters 15 and 
16). See also ‘Treatment comparisons’ in Chapter 14.

Bias
When there is a systematic difference between the results from a study 
and the true state of affairs, bias is said to have occurred. Bias and 
methods to reduce its impact are described in detail in Chapter 34.

1 Hill, A.B. (1965) The environment and disease: association or causation? 
Proceedings of the Royal Society of Medicine, 58, 295.



Variation
Variation in data may be caused by biological factors (e.g. sex, age) or 
measurement ‘errors’ (e.g. observer variation), or it may be 
unexplainable random variation (see also Chapter 39). We measure 
the impact of variation in the data on the estimation of a population 
parameter by using the standard error (Chapter 10). When the 
measurement of a variable is subject to considerable variation, estimates 
relating to that variable will be imprecise, with large standard errors. 
Clearly, it is desirable to reduce the impact of variation as far as possible, 
and thereby increase the precision of our estimates. There are various 
ways in which we can do this, as described in this chapter.

Replication
Our estimates are more precise if we take replicates (e.g. two or three 
measurements of a given variable for every individual on each occasion). 
However, as replicate measurements are not independent, we must take 
care when analysing these data. A simple approach is to use the mean of 
each set of replicates in the analysis in place of the original measurements. 
Alternatively, we can use methods that specifically deal with replicated 
measurements (see Chapters 41 and 42).

Sample size
The choice of an appropriate size for a study is a crucial aspect of study 
design. With an increased sample size, the standard error of an estimate 
will be reduced, leading to increased precision and study power (Chapter 
18). Sample size calculations (Chapter 36) should be carried out before 
starting the study.

In any type of study, it is important that the sample size included in 
the final study analysis is as close as possible to the planned sample size 
to ensure that the study is sufficiently powered (Chapter 18). This means 
that response rates should be as high as possible in cross-sectional 
studies and surveys. In clinical trials and cohort studies, attempts should 
be made to minimize any loss-to-follow-up; this will also help attenuate 
any biases (Chapter 34) that may be introduced if non-responders or 
cohort drop-outs differ in any respect to responders or those remaining 
in the trial or cohort.

Particular study designs
Modifications of simple study designs can lead to more precise 
estimates. Essentially, we are comparing the effect of one or more 
‘treatments’ on experimental units. The experimental unit (i.e. the 
unit of observation in an experiment – see Chapter 12) is the ‘individual’ 
or the smallest group of ‘individuals’ whose response of interest is not 
affected by that of any other units, such as an individual patient, volume 
of blood or skin patch. If experimental units are assigned randomly (i.e. 
by chance) to treatments (Chapter 14) and there are no other refinements 
to the design, we have a complete randomized design. Although this 
design is straightforward to analyse, it is inefficient if there is substantial 
variation between the experimental units. In this situation, we can 
incorporate blocking and/or use a cross-over design to reduce the 
impact of this variation.

Blocking (stratification)
It is often possible to group experimental units that share similar 
characteristics into a homogeneous block or stratum (e.g. the blocks 

may represent different age groups). The variation between units in a 
block is less than that between units in different blocks. The individuals 
within each block are randomly assigned to treatments; we compare 
treatments within each block rather than making an overall comparison 
between the individuals in different blocks. We can therefore assess the 
effects of treatment more precisely than if there was no blocking.

Parallel and cross-over designs (Fig. 13.1)
Generally, we make comparisons between individuals in different 
groups. For example, most clinical trials (Chapter 14) are parallel 
trials, in which each patient receives one of the two (or occasionally 
more) treatments that are being compared, i.e. they result in between-
individual comparisons.

Because there is usually less variation in a measurement within an 
individual than between different individuals (Chapter 6), in some 
situations it may be preferable to consider using each individual as his/
her own control. These within-individual comparisons provide more 
precise comparisons than those from between-individual designs, and 
fewer individuals are required for the study to achieve the same level of 
precision. In a clinical trial setting, the cross-over design1 is an example 
of a within-individual comparison; if there are two treatments, each 
individual gets both treatments, one after the other in a random order to 
eliminate any effect of calendar time. The treatment periods are separated 
by a washout period, which allows any residual effects (carry-over) of 
the previous treatment to dissipate. We analyse the difference in the 
responses on the two treatments for each individual. This design can 
only be used when the treatment temporarily alleviates symptoms rather 
than provides a cure, and the response time is not prolonged.

Factorial experiments
When we are interested in more than one factor, separate studies that 
assess the effect of varying one factor at a time may be inefficient and 
costly. Factorial designs allow the simultaneous analysis of any number 
of factors of interest. The simplest design, a 2 × 2 factorial experiment, 
considers two factors (e.g. two different treatments), each at two levels 
(e.g. either active or inactive treatment). As an example, consider the US 
Physicians’ Health study2, designed to assess the importance of aspirin 
and beta carotene in preventing heart disease and cancer. A 2 × 2 factorial 
design was used, with the two factors being the different compounds and 
the two levels of each indicating whether the physician received the active 
compound or its placebo (see Chapter 14). Table 13.1 shows the possible 
treatment combinations.

Study design II13

1 Senn, S. (2003) Cross-over Trials in Clinical Research. 2nd edition. 
Chichester: Wiley.
2 Steering Committee of the Physicians’ Health Study Research Group. (1989) 
Final report of the aspirin component of the on-going Physicians’ Health Study. 
New England Journal of Medicine, 321, 129–135.

Table 13.1 Active treatment combinations.
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We assess the effect of the level of beta carotene by comparing 
patients in the left-hand column with those in the right-hand column. 
Similarly, we assess the effect of the level of aspirin by comparing 
patients in the top row with those in the bottom row. In addition, we can 
test whether the two factors are interactive, i.e. when the effect of beta 
carotene is different for the two levels of aspirin. If the effects differ, we 
then say that there is an interaction between the two factors (Chapter 
33). In this example, an interaction would suggest that the combination 
of aspirin and beta carotene together is more (or less) effective than 
would be expected by simply adding the separate effects of each drug. 
This design, therefore, provides additional information to two separate 
studies and is a more efficient use of resources, requiring a smaller 
sample size to obtain estimates with a given degree of precision.

Choosing an appropriate study endpoint
A study endpoint, which must be specified before the data are collected, 
is a clearly defined outcome for an individual. It should relate to the  

relevant hypothesis under study and have clinical/biological relevance. 
Study endpoints may be clinical (e.g. death, onset of fever) or may be 
based on surrogate markers (e.g. the presence of the tumour marker 
CA125 for ovarian cancer, meas urement of HIV viral load for AIDS). 
Surrogate marker endpoints are often biomarkers that are used as a 
substitute for a clinical endpoint when it is difficult, expensive or time-
consuming to measure the clinical endpoint. Occasionally, a composite 
endpoint may be defined – this usually requires the participant to 
experience one of a number of possible endpoints. For example, a 
cardiovascular endpoint may be defined if any of the following events 
occur: a myocardial infarction, death due to cardiovascular disease or 
stroke. However, analyses involving composite endpoints may be difficult 
to interpret, particularly if the components of the endpoint are associated 
with different prognoses, and care should be taken when choosing and 
analysing this type of endpoint.

Further issues surrounding the choice of an appropriate study 
endpoint for a clinical trial are described in Chapter 14.

Figure 13.1 (a) Parallel, and (b) cross-over designs.
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A clinical trial1 is any form of planned experimental study designed, in 
general, to evaluate the effect of a new treatment on a clinical outcome 
in humans. Clinical trials may either be pre-clinical studies, small 
clinical studies to investigate effect and safety (Phase I/II trials) or full 
evaluations of the new treatment (Phase III trials). In this chapter we 
discuss the main aspects of Phase III trials, all of which should be 
reported in any publication (see the CONSORT2 Statement checklist in 
Table 14.1, and Figs 14.1 and 14.2).

Treatment comparisons
Clinical trials are prospective studies in that we are interested in measuring 
the impact of a treatment given now on a future possible outcome. In 
general, clinical trials evaluate new interventions (e.g. type or dose of 
drug, or surgical procedure). Throughout this chapter we assume, for 
simplicity, that only one new treatment is being evaluated in a trial.

An important feature of a clinical trial is that it should be comparative 
(Chapter 12). Without a control treatment, it is impossible to be sure 
that any response is due solely to the effect of the treatment, and the 
importance of the new treatment can be overstated. The control may be 
the standard treatment (a positive control) or, if one does not exist, it 
may be a negative control, which can be a placebo (a treatment which 
looks and tastes like the new drug but which does not contain any active 
compound) or the absence of treatment if ethical considerations 
permit.

Primary and secondary endpoints
When choosing the endpoint at the planning stage of a study (Chapter 
13), we must decide which outcome most accurately reflects the benefit 
of the new therapy. This is known as the primary endpoint of the study 
and usually relates to treatment efficacy. Secondary endpoints, which 
often relate to toxicity, are of interest and should also be considered at 
the outset. Generally, all these endpoints are analysed at the end of the 
study. However, we may wish to carry out some pre-planned interim 
analyses (for example, to ensure that no major toxicities have occurred 
requiring the trial to be stopped). Care should be taken when comparing 
treatments at these times owing to the problems of multiple hypothesis 
testing (Chapter 18). An independent Data Safety and Monitoring 
Committee (DSMC) often takes responsibility for the interpretation of 
interim analyses, the results of which should generally be treated 
confidentially and not circulated to other trial investigators unless the 
trial is stopped.

Subgroup analyses
There is often a temptation to assess the effect of a new treatment in 
various subgroups of patients in the trial (e.g. in men and women 
separately; in older and younger individuals). Owing to the problems 
with multiple hypothesis testing and reduced study power (Chapter 18), 
these should be avoided unless they are pre-planned, the study sample 
size has been calculated accordingly, and appropriate statistical methods 
have been used for analysis.

Treatment allocation
Once a patient has been formally entered into a clinical trial, she or he 
is allocated to a treatment group. In general, patients are allocated in a 
random manner (i.e. based on chance), using a process known as 
random allocation or randomization. This is often performed using a 
computer-generated list of random numbers or by using a table of 
random numbers (Appendix A12). For example, to allocate patients to 
two treatments, we might follow a sequence of random numbers and 
allocate the patient to treatment A if the number is even (treating zero as 
even) and to treatment B if it is odd. This process promotes similarity 
between the treatment groups in terms of baseline characteristics at 
entry to the trial (i.e. it avoids allocation bias and, consequently, 
confounding (Chapter 34)), maximizing the efficiency of the trial. If a 
baseline characteristic is not evenly distributed in the treatment groups 
(evaluated by examining the appropriate summary measures, e.g. the 
means and standard deviations), the discrepancy must be due to chance 
if randomization has been used. Therefore, it is inappropriate to perform 
a formal statistical hypothesis test (such as the t-test, Chapter 21) to 
compare the parameters of any baseline characteristic in the treatment 
groups because the hypothesis test assesses whether the difference 
between the groups is due to chance.

Trials in which patients are randomized to receive either the new 
treatment or a control treatment are known as randomized controlled 
trials (often referred to as RCTs), and are regarded as optimal. 
Systematic allocation, whereby patients are allocated to treatment 
groups systematically rather than randomly, possibly by day of visit or 
date of birth, should be avoided where possible; the clinician may be 
able to determine the proposed treatment for a particular patient before 
he or she is entered into the trial, and this may influence his/her decision 
as to whether to include a patient in the trial.

Refinements of simple randomization include:
• Stratified randomization, which controls for the effects of important 
factors (e.g. age, sex) by helping to ensure that each factor is equally 
distributed across treatment groups. The patients are stratified by one or 
more of these factors and a separate randomization list is used in each 
stratum.
• Blocked or restricted randomization, which ensures roughly 
equal-sized treatment groups at the end of patient recruitment. This is 
achieved by choosing relatively small block sizes (e.g. 6 or 9) that are 
multiples of the number of treatments, and allocating equal numbers of 
patients to the different treatments in each block, using some modified 
form of randomization.
• Cluster randomization, whereby we randomly allocate a group or 
cluster of individuals, rather than each individual, to a treatment. This 
may be necessary when it is infeasible to randomize individuals 
separately within each cluster (e.g. fluoride in drinking water) or when 
the response to treatment of one individual may affect that of other 
individuals in the same cluster. For example, suppose we wish to 
evaluate the effects of a GP-led health education programme to improve 
the diet and lifestyle of people at high risk of heart disease. To achieve 
this, we could compare relevant outcomes (e.g. the average change in 
weight and blood pressure at the end of one year) in individuals who are 
randomized either to receive the programme (the new ‘treatment’) or 
not to receive the programme (the control ‘treatment’). Unfortunately, 
it may be difficult in this situation to randomize individual patients to 

Clinical trials14

1 Pocock, S.J. (1983) Clinical Trials: A Practical Approach. Chichester: Wiley.
2 Moher, D., Schulz, K.F. and Altman, D.G. (2001) The CONSORT Statement: 
revised recommendations for improving the quality of reports of parallel-group 
randomised trials. Lancet, 357, 1191–1194.
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Table 14.1 Checklist of items from the CONSORT Statement (Consolidation of Standards for Reporting Trials) to include when reporting a randomized 
trial.

PAPER SECTION and 
topic Item Description

Reported on 
page no.

TITLE & ABSTRACT 1 How participants were allocated to interventions (e.g., ‘random allocation’, ‘randomized’, or 
‘randomly assigned’).

INTRODUCTION
Background 2 Scientific background and explanation of rationale.

METHODS
Participants 3 Eligibility criteria for participants and the settings and locations where the data were collected.

Interventions 4 Precise details of the interventions intended for each group and how and when they were actually 
administered.

Objectives 5 Specific objectives and hypotheses.

Outcomes 6 Clearly defined primary and secondary outcome measures and, when applicable, any methods 
used to enhance the quality of measurements (e.g., multiple observations, training of assessors).

Sample size 7 How sample size was determined and, when applicable, explanation of any interim analyses and 
stopping rules.

Randomization –  
Sequence generation

8 Method used to generate the random allocation sequence, including details of any restriction (e.g., 
blocking, stratification).

Randomization –  
Allocation concealment

9 Method used to implement the random allocation sequence (e.g., numbered containers or central 
telephone), clarifying whether the sequence was concealed until interventions were assigned.

Randomization 
– Implementation

10 Who generated the allocation sequence, who enrolled participants, and who assigned participants 
to their groups.

Blinding (masking) 11 Whether or not participants, those administering the interventions, and those assessing the 
outcomes were blinded to group assignment. If done, how the success of blinding was evaluated.

Statistical methods 12 Statistical methods used to compare groups for primary outcome(s); Methods for additional 
analyses, such as subgroup analyses and adjusted analyses.

RESULTS
Participant flow 13 Flow of participants through each stage (a diagram is strongly recommended; see Fig. 14.1). 

Specifically, for each group report the numbers of participants randomly assigned, receiving 
intended treatment, completing the study protocol, and analyzed for the primary outcome. 
Describe protocol deviations from study as planned, together with reasons.

Recruitment 14 Dates defining the periods of recruitment and follow-up.

Baseline data 15 Baseline demographic and clinical characteristics of each group.

Numbers analyzed 16 Number of participants (denominator) in each group included in each analysis and whether the 
analysis was by ‘intention-to-treat’. State the results in absolute numbers when feasible (e.g., 
10/20, not 50%).

Outcomes and  
estimation

17 For each primary and secondary outcome, a summary of results for each group, and the estimated 
effect size and its precision (e.g., 95% confidence interval).

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including subgroup analyses and 
adjusted analyses, indicating those pre-specified and those exploratory.

Adverse events 19 All important adverse events or side effects in each intervention group.

DISCUSSION
Interpretation 20 Interpretation of the results, taking into account study hypotheses, sources of potential bias or 

imprecision and the dangers associated with multiplicity of analyses and outcomes.

Generalizability 21 Generalizability (external validity) of the trial findings.

Overall evidence 22 General interpretation of the results in the context of current evidence.



Figure 14.1 The CONSORT Statement’s trial profile of a randomized 
controlled trial’s progress.
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Figure 14.2 Trial profile example (adapted from the trial described in 
Chapter 40 with permission).

6446 women gave birth at Hinchingbrooke
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   discharge home not available
   (1 supine; 2 upright)
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716 analysed

4934 did not take part

3958 ineligible

976 declined

1512 randomly allocated management

the two ‘treatments’ as it may be impractical for a doctor to switch 
randomly between the type of care that he/she provides in the same 
clinic. Furthermore, even if individual randomization were feasible, 
there is likely to be dissemination of the information about the 
programme to those individuals who were randomized not to receive it, 
and responses will not be independent of each other in the two treatment 
groups. Thus all patients, even the controls, may benefit from the 
programme and any comparison of outcomes between those on and not 
on the programme is likely to be diluted. In these instances, it is usually 
the doctor who is randomized to the treatment group rather than the 
individual patients in his/her care. We should take care when planning 
the sample size, because the unit of investigation (Chapter 12) is the 
group and not the individual in the group, and when analysing the data 
in these cluster randomized studies (see also Chapters 36, 41 and 42)3.

Sequential trials
Most clinical trials have sample sizes that are predetermined at the 
outset (Chapter 36), i.e. they are fixed-size designs. A sequential design 
may be used occasionally when the time interval between a treatment 
and an outcome is expected to be short. In the simple situation where we 
are comparing two treatments (e.g. a novel and a control treatment), 

individuals are randomized to treatment in ‘pairs’, one to each of the 
treatments. Once the treatment outcomes of both members of the pair 
are known, all the data currently available are analysed. A formal 
statistical rule is then used to determine whether the trial should stop (if 
there is a clear difference between the treatments or it becomes clear 
that a difference between them will not be detected) or whether another 
pair of individuals should be recruited and randomized. The main 
benefit of this type of design is that, when there is a large treatment 
effect, the trial will require fewer patients than a standard fixed-size 
parallel design (Chapter 13). However, mainly because of the 
requirement for the time interval between the treatment and outcome to  
be short, and other practical difficulties, these designs are used 
infrequently.

Blinding or masking
There may be assessment bias when patients and/or clinicians are aware 
of the treatment allocation, particularly if the response is subjective. An 
awareness of the treatment allocation may influence the recording of 
signs of improvement or adverse events. Therefore, where possible, all 
participants (clinicians, patients, assessors) in a trial should be blinded 
or masked to the treatment allocation and to the randomization list. A 
trial in which the patient, the treatment team and the assessor are unaware 
of the treatment allocation is a double-blind trial. Trials in which it is 
impossible to blind the patient may be single-blind providing the 
clinician and/or assessor is blind to the treatment allocation.

3 Kerry, S.M. and Bland, J.M. (1998) Sample size in cluster randomisation. 
British Medical Journal, 316, 549.
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Patient issues
As clinical trials involve humans, patient issues are of importance. In 
particular, any clinical trial must be passed by an ethics committee who 
judge that the trial does not contravene the Declaration of Helsinki. 
Informed patient consent must be obtained from each patient (or from 
the legal guardian or parent if the patient is a minor) before she or he is 
entered into a trial.

The protocol
Before any clinical trial is carried out, a written description of all aspects 
of the trial, known as the protocol, should be prepared. This includes 
information on the aims and objectives of the trial, along with a 
definition of which patients are to be recruited (inclusion and 
exclusion criteria), treatment schedules, data collection and analysis, 
contingency plans should problems arise, and study personnel. It is 

important to recruit enough patients into a trial so that the chance of 
correctly detecting a true treatment effect is sufficiently high. Therefore, 
before carrying out any clinical trial, the optimal trial size should be 
calculated (Chapter 36).

Protocol deviations are patients who enter the trial but do not fulfil 
the protocol criteria, e.g. patients who were incorrectly recruited into or 
who withdrew from the study, and patients who switched treatments. To 
avoid bias, the study should be analysed on an intention-to-treat (ITT) 
basis, in which all patients on whom we have information are analysed 
in the groups to which they were originally allocated, irrespective of 
whether they followed the treatment regime. Where possible, attempts 
should be made to collect information on patients who withdraw from 
the trial. On-treatment analyses, in which patients are only included 
in the analysis if they complete a full course of treatment, are 
not recommended as they often lead to biased treatment comparisons.



A cohort study takes a group of individuals and usually follows them 
forward in time, the aim being to study whether exposure to a particular 
aetiological factor will affect the incidence of a disease outcome in the 
future (Fig. 15.1). If so, the factor is generally known as a risk factor 
for the disease outcome. For example, a number of cohort studies have 
investigated the relationship between dietary factors and cancer. 
Although most cohort studies are prospective, historical cohorts are 
occasionally used: these are identified retrospectively and relevant 
information relating to outcomes and exposures of interest up to the 
present day ascertained using medical records and memory. However, 
while these studies are often quicker and cheaper to perform than 
prospective cohort studies, the quality of historical studies may be poor 
as the information collected may be unreliable.

Cohort studies can either be fixed or dynamic. If individuals leave a 
fixed cohort, they are not replaced. In dynamic cohorts, individuals 
may drop out of the cohort, and new individuals may join as they 
become eligible.

Selection of cohorts
The cohort should be representative of the population to which the 
results will be generalized. It is often advantageous if the individuals 
can be recruited from a similar source, such as a particular occupational 
group (e.g. civil servants, medical practitioners), as information on 
mortality and morbidity can be easily obtained from records held at the 
place of work, and individuals can be re-contacted when necessary. 
However, such a cohort may not be truly representative of the general 
population, and may be healthier. Cohorts can also be recruited from GP 
lists, ensuring that a group of individuals with different health states is 
included in the study. However, these patients tend to be of similar 
social backgrounds because they live in the same area.

When trying to assess the aetiological effect of a risk factor, 
individuals recruited to cohorts should be disease-free at the start of the 

study. This is to ensure that any exposure to the risk factor occurs before 
the outcome, thus enabling a causal role for the factor to be postulated. 
Because individuals are disease-free at the start of the study, we often 
see a healthy entrant effect. Mortality rates in the first period of the 
study are then often lower than would be expected in the general 
population. This will be apparent when mortality rates start to increase 
suddenly a few years into the study.

Follow-up of individuals
When following individuals over time, there is always the problem that 
they may be lost to follow-up. Individuals may move without leaving 
a forwarding address, or they may decide that they wish to leave  
the study. The benefits of a cohort study are reduced if a large number  
of individuals is lost to follow-up. We should thus find ways to minimize 
these drop-outs, e.g. by maintaining regular contact with the 
individuals.

Information on outcomes and exposures
It is important to obtain full and accurate information on disease 
outcomes, e.g. mortality and illness from different causes. This may 
entail searching through disease registries, mortality statistics, and GP 
and hospital records.

Exposure to the risks of interest may change over the study period. 
For example, when assessing the relationship between alcohol 
consumption and heart disease, an individual’s typical alcohol 
consumption is likely to change over time. Therefore it is important to 
re-interview individuals in the study on repeated occasions to study 
changes in exposure over time.

Analysis of cohort studies
Table 15.1 shows observed frequencies. Because patients are followed 
longitudinally over time, it is possible to estimate the risk of developing 

Cohort studies15

Figure 15.1 Diagrammatic representation of a 
cohort study (frequencies in parentheses, see 
Table 15.1).
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the disease in the population, by calculating the risk in the sample 
studied.

Estimated risk of disease

Number developing disease over s
=

ttudy period

Total number in the cohort
=

+a b

n

The risk of disease in the individuals exposed and unexposed to the 
factor of interest in the population can be estimated in the same way.
Estimated risk of disease in the exposed group,

riskexp = +( )a a c

Estimated risk of disease in the unexposed group:

riskunexp = +( )b b d

Then,

 

estimated relative risk =

=
+( )
+( )

risk

riskunexp

exp

a a c

b b d

The relative risk (RR) indicates the increased (or decreased) risk of 
disease associated with exposure to the factor of interest. A relative risk 
of one indicates that the risk is the same in the exposed and unexposed 
groups. A relative risk greater than one indicates that there is an increased 
risk in the exposed group compared with the unexposed group; a relative 
risk less than one indicates a reduction in the risk of disease in the 
exposed group. For example, a relative risk of 2 would indicate that 
individuals in the exposed group had twice the risk of disease of those 
in the unexposed group.

A relative risk should always be interpreted alongside the underlying 
risk of the disease. Even a large relative risk may have limited clinical 
implications when the underlying risk of disease is very small.

A confidence interval for the relative risk should be calculated, and 
we can use it or determine a test statistic to test the null hypothesis that 
the true RR = 1. These calculations are easily performed on a computer 
and therefore we omit details.

Advantages of cohort studies
• The time sequence of events can be assessed.
• They can provide information on a wide range of disease outcomes.
• The incidence/risk of disease can be measured directly.
• Very detailed information on exposure to a wide range of factors can 
be collected.
• They can be used to study exposure to factors that are rare.
• Exposure can be measured at a number of time points in each study, 
so that changes in exposure over time can be studied.
• There is reduced recall and selection bias compared with case–
control studies (Chapter 16).

Disadvantages of cohort studies
• In general, a cohort study follows individuals for long periods of 
time, and it is therefore costly to perform.

• Where the outcome of interest is rare, a very large sample size is 
required.
• As follow-up increases, there is often increased loss of patients as 
they migrate or leave the study, leading to biased results.
• As a consequence of the long time-scale, it is often difficult to 
maintain consistency of measurements and outcomes over time. 
Furthermore, individuals may modify their behaviour after an initial 
interview.
• It is possible that disease outcomes and their probabilities, or the 
aetiology of disease itself, may change over time.

Study management
Although cohort studies are usually less regulated than clinical trials 
(Chapter 14), it is still helpful to prepare a study protocol at the outset  
of any cohort study. It is important to pay particular attention to the 
following aspects of study management when preparing this document.
• The outcome of interest: specify the outcome (e.g. obesity) 
and provide an unambiguous definition of it (e.g. body mass 
index > 30 kg/m2). How will it be ascertained (e.g. through direct 
contact with patients, through access to hospital records or through 
linkage with national registries)?
• The exposures of interest: specify which exposure variables will be 
considered and give unambiguous definitions of them. How will the 
exposures be ascertained?
• Monitoring of participants: how will participants be monitored (e.g. 
by direct face-to-face visits, through postal questionnaires, through  
access to hospital records)? How frequently will participants be followed 
up? What information will be collected at each time point? Will any 
biological samples (e.g. blood, urine, biopsy samples) be collected?
• The size of cohort and length of follow-up: how frequently is the 
outcome likely to occur in those with and without the exposures of 
interest? How ‘big’ should the study be to ensure that the study is 
sufficiently large to demonstrate associations of interest? Note that in a 
cohort setting, the power of a study (Chapters 18 and 36) is largely 
determined by the number of events that occur; this can be increased 
either by increasing the size of the cohort or by lengthening the period 
of follow-up.
• The definition and ascertainment of any potential confounders 
(Chapter 34) and/or effect modifiers: specify which other important 
variables should be investigated and provide an unambiguous  
definition for each.
• The plans for statistical analysis: when is it anticipated that the 
statistical analysis of the cohort will be undertaken (e.g. after five 
years)?
• The steps taken to reduce bias (Chapter 34): what steps will be 
taken to minimize drop-out from the cohort? What steps will be taken to 
ensure that the definition and ascertainment of outcomes, exposures and 
other key variables do not change over time?
• The plans for quality control: describe any statistical analyses that 
will be conducted at interim time points (Chapter 18) to ensure that:

 loss-to-follow-up is not substantial;
 the way in which exposures, outcomes and other key data are 
measured or ascertained has not changed over time; and
 outcomes are occurring at the rate expected at the outset such that 
the study is ‘on target’ for the planned analyses.

• The need for ethics committee approval and/or patient consent: 
will these be required? If patient consent is required, how will this be 
collected?

Table 15.1 Observed frequencies (see Fig. 15.1)

Exposed to factor

Yes No Total

Disease of interest
 Yes a b a + b
 No c d c + d
Total a + c b + d n = a + b + c + d



Clinical cohorts
Sometimes we select a cohort of patients with the same clinical 
condition attending one or more hospitals and follow them (either as 
inpatients or outpatients) to see how many patients experience a 
resolution (in the case of a positive outcome of the condition) or some 
indication of disease progression such as death or relapse. The 
information we collect on each patient is usually that which is collected 
as part of routine clinical care. The aims of clinical cohorts (sometimes 
called disease registers or observational databases) may include 
describing the outcomes of individuals with the condition and assessing 

the effects of different approaches to treatment (e.g. different drugs or 
different treatment modalities). In contrast to randomized controlled 
trials (Chapter 14), which often include a highly selective sample of 
individuals who are willing to participate in the trial, clinical cohorts 
often include all patients with the condition at the hospitals in the 
study. Thus, outcomes from these cohorts are thought to more 
accurately reflect the outcomes that would be seen in clinical practice. 
However, as allocation to treatment in these studies is not randomized 
(Chapter 14), clinical cohorts are particularly prone to confounding 
bias (Chapter 34).

Example

The British Regional Heart Study1 is a large cohort study of 7735 men 
aged 40–59 years randomly selected from general practices in 24 
British towns, with the aim of identifying risk factors for ischaemic 
heart disease. At recruitment to the study, the men were asked about a 
number of demographic and lifestyle factors, including information 
on cigarette smoking habits. Of the 7718 men who provided 
information on smoking status, 5899 (76.4%) had smoked at some 
stage during their lives (including those who were current smokers 
and those who were ex-smokers). Over the subsequent 10 years, 650 
of these 7718 men (8.4%) had a myocardial infarction (MI). The 
results, displayed in the table, show the number (and percentage) of 
smokers and non-smokers who developed and did not develop an MI 
over the 10 year period.

The estimated relative risk =
( )
( )

=
563 5899

87 1819
2 00. .

It can be shown that the 95% confidence interval for the true  
relative risk is (1.60, 2.49).

We can interpret the relative risk to mean that a middle-aged man 
who has ever smoked is twice as likely to suffer an MI over the next 
10 year period as a man who has never smoked. Alternatively, the risk 
of suffering an MI for a man who has ever smoked is 100% greater 
than that of a man who has never smoked.

Smoking status at 
baseline

MI in subsequent 10 years

Yes No Total

Ever smoked 563 (9.5%) 5336 (90.5%) 5899
Never smoked 87 (4.8%) 1732 (95.2%) 1819
Total 650 (8.4%) 7068 (91.6%) 7718

1 Data kindly provided by Dr F.C. Lampe, Ms M. Walker and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University 
College Medical School, London, UK.
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A case–control study compares the characteristics of a group of patients 
with a particular disease outcome (the cases) to a group of individuals 
without a disease outcome (the controls), to see whether exposure to 
any factor occurred more or less frequently in the cases than the controls 
(Fig. 16.1). Such retrospective studies do not provide information on 
the prevalence or incidence of disease but may give clues as to which 
factors elevate or reduce the risk of disease.

Selection of cases
The eligibility criteria for cases should be precise and unambiguous  
(e.g. diabetes mellitus [World Health Organization criteria]: single 
fasting glucose concentration ≥7 mmol/litre or venous plasma 
glucose measured 2 hours after ingestion of 75 g oral glucose load 
≥11 mmol/litre). In particular, it is important to define whether incident 
cases (patients who are recruited at the time of diagnosis) or prevalent 
cases (patients who were already diagnosed before entering the study) 
should be recruited. Prevalent cases may have had time to reflect on 
their history of exposure to known risk factors, especially if the disease 
is a well-publicized one such as cancer, and may have altered their 
behaviour after diagnosis. It is important to identify as many cases as 
possible so that the results carry more weight and the conclusions can 
be generalized to future populations. To this end, it may be necessary to 
access hospital lists and disease registries, and to include cases who 
died during the time period when cases and controls were recruited, 
because their exclusion may lead to a biased sample of cases.

Selection of controls
As with cases, the eligibility criteria for controls should also be precise 
and unambiguous. Controls should be screened at entry to the study to 
ensure that they do not have the disease of interest. Where possible, 
controls should be selected from the same source as cases. Controls are 
often selected from hospitals. However, as risk factors related to one 
disease outcome may also be related to other disease outcomes, the 
selection of hospital-based controls may over-select individuals who 
have been exposed to the risk factor of interest, and may, therefore, not 
always be appropriate. It is often acceptable to select controls from the 
general population, although they may not be as motivated to take part 
in such a study, and response rates may therefore be poorer in controls 
than cases. The use of neighbourhood controls may ensure that  
cases and controls are from similar social backgrounds. Of note, it is 
important to avoid the temptation to relax the criteria for eligibility  
of controls part-way through a study simply to speed up the process of 
recruitment.

Although most case–control studies include only a single control for 
each case (often referred to as a 1:1 case–control study), it is possible to 
include multiple controls for each case (a 1 : n case–control study). 
Increased numbers of controls per case will provide the study with 
greater power (Chapter 18), although any such gains in power are likely 
to be fairly small beyond four controls per case1. Where a greater 
number of individuals are eligible to be selected as controls than is 

required, it is important to document how the controls should be selected 
(e.g. by random selection from all eligible individuals).

Identification of risk factors
As in any epidemiological study, the potential risk factors should be 
defined before conducting the study. The definition of these factors of 
interest should be clear and unambiguous (e.g. in a case–control study 
for the development of diabetes mellitus, where ‘exercise’ is the factor 
of interest, there should be a clear explanation of how exercise is to be 
measured and categorized). A pilot study may help to ensure that the 
definition will be feasible given the need to rely on retrospectively 
collected data and/or memory. Other factors which may have an impact 
on the outcome (i.e. case–control status), either as confounders (Chapter 
34) and/or effect modifiers, should also be listed and defined.

Matching
Many case–control studies are matched in order to select cases and 
controls who are as similar as possible. We may have frequency 
matching on a group basis (i.e. the average value of each of the relevant 
potential risk factors of the whole group of cases should be similar to 
that of the whole group of controls) or we may have pairwise matching 
on an individual basis (i.e. each case is matched individually to a control 
who has similar potential risk factors). In general, when performing 
individual matching, it is useful to sex-match individuals (i.e. if the case 
is male, the control should also be male), and, sometimes, patients will 
be age-matched. However, it is important not to match on the basis of 
the risk factor of interest, or on any factor that falls on the causal pathway 
of the disease (Chapter 34), as this will remove the ability of the study 
to assess any relationship between the risk factor and the disease. 
Furthermore, it is important not to match on too many factors, as this 
may restrict the availability of suitable controls. Unfortunately, 
matching does mean that the effect on disease of the variables that have 
been used for matching cannot be studied.

Case–control studies16

Figure 16.1 Diagrammatic representation of a case–control study.

Disease-free

Disease-free
(controls)

Exposed to factor
(c)

Exposed to factor
(a )

Unexposed to factor
(b )

Unexposed to factor
(d )

Diseased
(cases)

Sa
m

pl
e

Di
se

as
ed

Po
pu

la
tio

n

Past time Present time

Starting point

Trace

1 Grimes, D.A. and Schulz, K.F. (2005) Compared to what? Finding controls for 
case–control studies. Lancet, 365, 1429–33.

MC
Q

29
31
32
33

4
27

SQ



Analysis of unmatched or group-matched 
case–control studies
Table 16.1 shows observed frequencies. Because patients are selected on 
the basis of their disease status, it is not possible to estimate the absolute 
risk of disease. We can calculate the odds ratio, which is given by:

Odds ratio
Odds of being a case in exposed group

Odds of bei
=

nng a case in unexposed group

where, for example, the odds of being a case in the exposed group is 
equal to

probability of being a case in the exposed group

probabilityy of not being a case in the exposed group

The odds of being a case in the exposed and unexposed samples are

odds oddsunexpexp = +( )
+( )

= = +( )
+( )

=

a

a c
c

a c

a

c

b

b d
d

b d

b

d

and therefore the
 
estimated odds ratio = =

×
×

a c

b d

a d

b c

When a disease is rare, the odds ratio is an estimate of the relative 
risk, and is interpreted in a similar way, i.e. it gives an indication of the 
increased (or decreased) odds associated with exposure to the factor of 
interest. An odds ratio of one indicates that the odds is the same in the 
exposed and unexposed groups; an odds ratio greater than one indicates 
that the odds of disease is greater in the exposed group than in the 
unexposed group, etc. Confidence intervals and hypothesis tests can 
also be generated for the odds ratio.

Analysis of individually matched case–
control studies
Where possible, the analysis of individually matched case–control 
studies should allow for the fact that cases and controls are linked to 
each other as a result of the matching. Further details of methods of 
analysis for matched studies can be found in Chapter 30 (see  
Conditional logistic regression) and in Breslow and Day2.

Advantages of case–control studies
• They are generally relatively quick, cheap and easy to perform.
• They are particularly suitable for rare diseases.
• A wide range of risk factors can be investigated in each study.
• There is no loss to follow-up.

Disadvantages of case–control studies
• Recall bias, when cases have a differential ability to remember 
certain details about their histories, is a potential problem. For example, 
a lung cancer patient may well remember the occasional period when 
she or he smoked, whereas a control may not remember a similar period. 
When preparing the protocol for a case–control study, it is important to 
describe any attempts that will be made to reduce the possibility of 
recall bias by ensuring that exposure data are collected in an identical 
manner from cases and controls.
• If the onset of disease preceded exposure to the risk factor, causation 
cannot be inferred.
• Case–control studies are not suitable when exposures to the risk 
factor are rare.

Table 16.1 Observed frequencies (see Fig. 16.1).

Exposed to factor

Yes No Total

Disease status
 Case a b a + b
 Control c d c + d
Total a + c b + d n = a + b + c + d

2 Breslow, N.E. and Day, N.E. (1980) Statistical Methods in Cancer Research. 
Volume I – The Analysis of Case–Control Studies. Lyon: International Agency 
for Cancer Research.
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Example
A total of 1327 women aged 50–81 years with hip fractures, who lived 
in a largely urban area in Sweden, were investigated in this unmatched 
case–control study. They were compared with 3262 controls within 
the same age range randomly selected from the national register. 
Interest was centred on determining whether women currently taking 
postmenopausal hormone replacement therapy (HRT) were less likely 
to have hip fractures than those not taking it. The results in Table 16.2 
show the number of women who were current users of HRT and those 
who had never used or formerly used HRT in the case and control 
groups.

The observed odds ratio = (40 × 3023)/(239 × 1287) = 0.39.
It can be shown that the 95% confidence interval for the odds ratio 

is (0.28, 0.56).

Thus the odds of a hip fracture in a postmenopausal woman in this 
age range in Sweden who was a current user of HRT was 39% of that 
of a woman who had never used or formerly used HRT, i.e. being a 
current user of HRT reduced the odds of hip fracture by 61%.

Table 16.2 Observed frequencies in the hip fracture study.

Current user of 
HRT

Never used 
HRT/former 
user of HRT Total

With hip fracture (cases) 40 1287 1327
Without hip fracture 
(controls)

239 3023 3262

Total 279 4310 4589

Data extracted from Michaelsson, K., Baron, J.A., Farahmand, B.Y., et al. (1998) Hormone replacement therapy and risk of hip fracture: population based case–
control study. British Medical Journal, 316, 1858–1863.



We often gather sample data in order to assess how much evidence there 
is against a specific hypothesis about the population. When performing 
descriptive analyses (Chapters 4–6) we may see trends that appear to 
support or refute this hypothesis. However, we do not know if these 
trends reflect real associations or are simply a result of random 
fluctuations caused by the variability present in any data set. We use a 
process known as hypothesis testing (or significance testing) to 
quantify our belief against a particular hypothesis.

This chapter describes the format of hypothesis testing in general; 
details of specific hypothesis tests are given in subsequent chapters. For 
easy reference, each hypothesis test is contained in a similarly formatted 
box.

Obtaining the test statistic
After collecting the data, we substitute values from our sample into a 
formula, specific to the test we are using, to determine a value for the 
test statistic. This reflects the amount of evidence in the data against 
the null hypothesis – usually, the larger the value, ignoring its sign, the 
greater the evidence.

Obtaining the P-value
All test statistics follow known theoretical probability distributions 
(Chapters 7 and 8). We relate the value of the test statistic obtained from 
the sample to the known distribution to obtain the P-value, the area in 
both (or occasionally one) tails of the probability distribution. Most 
computer packages provide the two-tailed P-value automatically. The 
P-value is the probability of obtaining our results, or something 
more extreme, if the null hypothesis is true. The null hypothesis 
relates to the population of interest, rather than the sample. Therefore, 
the null hypothesis is either true or false and we cannot interpret the 
P-value as the probability that the null hypothesis is true.

Using the P-value
We must make a decision about how much evidence we require to 
enable us to decide to reject the null hypothesis in favour of the 
alternative. The smaller the P-value, the greater the evidence against the 
null hypothesis.
• Conventionally, we consider that if the P-value is less than 0.05, there 
is sufficient evidence to reject the null hypothesis, as there is only a 
small chance of the results occurring if the null hypothesis were true. 
We then reject the null hypothesis and say that the results are significant 
at the 5% level (Fig. 17.1).
• In contrast, if the P-value is equal to or greater than 0.05, we usually 
conclude that there is insufficient evidence to reject the null hypothesis. 
We do not reject the null hypothesis, and we say that the results are not 
significant at the 5% level (Fig. 17.1). This does not mean that the 
null hypothesis is true; simply that we do not have enough evidence to 
reject it.

Hypothesis testing17

Hypothesis testing – a general overview

We define five stages when carrying out a hypothesis test:
1 Define the null and alternative hypotheses under study.
2 Collect relevant data from a sample of individuals.
3 Calculate the value of the test statistic specific to the null 

hypothesis.
4 Compare the value of the test statistic to values from a known 

probability distribution.
5 Interpret the P-value and results.

Defining the null and alternative 
hypotheses
We usually test the null hypothesis (H0) which assumes no effect (e.g. 
the difference in means equals zero) in the population. For example, if 
we are interested in comparing smoking rates in men and women in the 
population, the null hypothesis would be:

H0: smoking rates are the same in men and women in the population

We then define the alternative hypothesis (H1) which holds if the 
null hypothesis is not true. The alternative hypothesis relates more 
directly to the theory we wish to investigate. So, in the example, we 
might have:

H1: smoking rates are different in men and women in the population.

We have not specified any direction for the difference in smoking 
rates, i.e. we have not stated whether men have higher or lower rates 
than women in the population. This leads to what is known as a  
two-tailed test because we allow for either eventuality, and is 
recommended as we are rarely certain, in advance, of the direction of 
any difference, if one exists. In some, very rare, circumstances, we may 
carry out a one-tailed test in which a direction of effect is specified in 
H1. This might apply if we are considering a disease from which all 
untreated individuals die (a new drug cannot make things worse) or if 
we are conducting a trial of equivalence or non-inferiority (see last 
section in this chapter).

Figure 17.1 Probability distribution of the test statistic showing a two-
tailed probability, P = 0.05.
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The choice of 5% is arbitrary. On 5% of occasions we will incorrectly 
reject the null hypothesis when it is true. In situations in which the 
clinical implications of incorrectly rejecting the null hypothesis are 
severe, we may require stronger evidence before rejecting the null 
hypothesis (e.g. we may decide to reject the null hypothesis if the  
P-value is less than 0.01 or 0.001). The selected cut-off for the 
P-value (e.g. 0.05 or 0.01) is called the significance level of the test; it 
must be chosen before the data are collected.

Quoting a result only as significant at a certain cut-off level (e.g. 
stating only that P < 0.05) can be misleading. For example, if P = 0.04 
we would reject H0; however, if P = 0.06 we would not reject it. Are 
these really different? Therefore, we recommend quoting the exact  
P-value, often obtained from the computer output.

Non-parametric tests
Hypothesis tests which are based on knowledge of the probability 
distributions that the data follow are known as parametric tests. Often 
data do not conform to the assumptions that underlie these methods 
(Chapter 35). In these instances we can use non-parametric tests 
(sometimes referred to as distribution-free tests or rank methods). 
These tests generally replace the data with their ranks (i.e. the numbers 
1, 2, 3, etc., describing their position in the ordered data set) and  
make no assumptions about the probability distribution that the data 
follow.

Non-parametric tests are particularly useful when the sample size  
is small (so that it is impossible to assess the distribution of the  
data), and/or when the data are measured on a categorical scale. 
However, non-parametric tests are generally wasteful of information; 
consequently they have less power (Chapter 18) to detect a real effect 
than the equivalent parametric test if all the assumptions underlying  
the parametric test are satisfied. Furthermore, they are primarily 
significance tests that often do not provide estimates of the effects of 
interest; they lead to decisions rather than an appreciation or 
understanding of the data.

Which test?
Deciding which statistical test to use depends on the design of the  
study, the type of variable and the distribution that the data being  
studied follow. The flow chart on the inside back cover will aid your 
decision.

Hypothesis tests versus confidence 
intervals
Confidence intervals (Chapter 11) and hypothesis tests are closely 
linked. The primary aim of a hypothesis test is to make a decision and 
provide an exact P-value. A confidence interval quantifies the effect of 
interest (e.g. the difference in means) and enables us to assess the 
clinical implications of the results. However, because it provides a 
range of plausible values for the true effect, it can also be used to make 
a decision although an exact P-value is not provided. For example, if 
the hypothesized value for the effect (e.g. zero) lies outside the 95% 
confidence interval then we believe the hypothesized value is 
implausible and would reject H0. In this instance, we know that the 
P-value is less than 0.05 but do not know its exact value.

Equivalence and non-inferiority trials
In most randomized controlled trials (Chapter 14) of two or more 
different treatment strategies, we are usually interested in demonstrating 
the superiority of at least one treatment over the other(s). However, in 
some situations we may believe that a new treatment (e.g. drug) may be 
no more effective clinically than an existing treatment but will have 
other important benefits, perhaps in terms of reduced side effects, pill 
burden or costs. Then, we may wish to show simply that the efficacy of 
the new treatment is similar to (in an equivalence trial) or not 
substantially worse than (in a non-inferiority trial) that of the existing 
treatment. A bioequivalence trial is a particular type of randomized 
trial in which we are interested in showing that the rate and extent of 
absorption of a new formulation of a drug is the same as that of an old 
formulation, when the two drugs are given at the same dose.

When carrying out an equivalence or non-inferiority trial, the 
hypothesis testing procedure used in the usual superiority trial, testing 
the null hypothesis that the two treatments are the same, is irrelevant. 
This is because (i) a non-significant result does not imply non-inferiority 
or equivalence, and (ii) even if a statistically significant effect is 
detected, it may be clinically unimportant. Instead, we essentially 
reverse the null and alternative hypotheses in an equivalence trial, so 
that the null hypothesis expresses a difference and the alternative 
hypothesis expresses equivalence.

Rather than calculating test statistics, we generally approach the 
problem of assessing equivalence and non-inferiority1 by determining 
whether the confidence interval for the effect of interest (e.g. the 
difference in means between two treatment groups) lies wholly or partly 
within a predefined equivalence range (i.e. the range of values, 
determined by clinical experts, that corresponds to an effect of no 
clinical importance). If the whole of the confidence interval for the 
effect of interest lies within the equivalence range, then we conclude 
that the two treatments are equivalent; in this situation, even if the upper 
and lower limits of the confidence interval suggest there is benefit of 
one treatment over the other, it is unlikely to have any clinical 
importance. In a non-inferiority trial, we want to show that the new 
treatment is not substantially worse than the standard one. (If the new 
treatment turns out to be better than the standard, this would be an added 
bonus!) In this situation, if the lower limit of the appropriate confidence 
interval does not fall below the lower limit of the equivalence range, we 
conclude that the new treatment is not inferior.

Unless otherwise specified, the hypothesis tests in subsequent 
chapters are tests of superiority. Note that the methods for determining 
sample size described in Chapter 36 do not apply to equivalence or non-
inferiority trials. The sample size required for an equivalence or non-
inferiority trial2 is generally greater than that of the comparable 
superiority trial if all factors that affect sample size (e.g. significance 
level, power) are the same.

1 John, B., Jarvis, P., Lewis, J.A. and Ebbutt, A.F. (1996) Trials to assess 
equivalence: the importance of rigorous methods. British Medical Journal, 313, 
36–39.
2 Julious, S.A. (2004) Tutorial in biostatistics: sample sizes for clinical trials 
with Normal data. Statistics in Medicine, 23, 1921–1986.



Making a decision
Most hypothesis tests in medical statistics compare groups of people 
who are exposed to a variety of experiences. We may, for example, be 
interested in comparing the effectiveness of two forms of treatment for 
reducing 5 year mortality from breast cancer. For a given outcome (e.g. 
death), we call the comparison of interest (e.g. the difference in 5 year 
mortality rates) the effect of interest or, if relevant, the treatment effect. 
We express the null hypothesis in terms of no effect (e.g. the 5 year 
mortality from breast cancer is the same in two treatment groups); the 
two-sided alternative hypothesis is that the effect is not zero. We 
perform a hypothesis test that enables us to decide whether we have 
enough evidence to reject the null hypothesis (Chapter 17). We can 
make one of two decisions; either we reject the null hypothesis, or we 
do not reject it.

Making the wrong decision
Although we hope we will draw the correct conclusion about the null 
hypothesis, we have to recognize that, because we only have a sample 
of information, we may make the wrong decision when we reject/do not 
reject the null hypothesis. The possible mistakes we can make are 
shown in Table 18.1.
• Type I error:  we reject the null hypothesis when it is true, and 
conclude that there is an effect when, in reality, there is none. The 
maximum chance (probability) of making a Type I error is denoted by α 
(alpha). This is the significance level of the test (Chapter 17); we reject 
the null hypothesis if our P-value is less than the significance level, i.e. 
if P < α.

We must decide on the value of α before we collect our data. We 
usually assign a conventional value of 0.05 to it, although we might 
choose a more restrictive value such as 0.01 (if we are particularly 
concerned about the consequences of incorrectly rejecting the null 
hypothesis) or a less restrictive value such as 0.10 (if we do not want to 
miss a real effect). Our chance of making a Type I error will never 
exceed our chosen significance level, say α = 0.05, because we will 
only reject the null hypothesis if P < 0.05. If we find that P ≥ 0.05, we 
will not reject the null hypothesis, and, consequently, not make a Type I 
error.
• Type II error: we do not reject the null hypothesis when it is 
false, and conclude that there is no evidence of an effect when one 
really exists. The chance of making a Type II error is denoted by β 
(beta); its complement, (1 − β), is the power of the test. The power, 
therefore, is the probability of rejecting the null hypothesis when it 
is false; i.e. it is the chance (usually expressed as a percentage) of 
detecting, as statistically significant, a real treatment effect of a 
given size.

Ideally, we should like the power of our test to be 100%; we must 
recognize, however, that this is impossible because there is always a 
chance, albeit slim, that we could make a Type II error. Fortunately, 
however, we know which factors affect power, and thus we can control 
the power of a test by giving consideration to them.

Power and related factors
It is essential that we know the power of a proposed test at the planning 
stage of our investigation. Clearly, we should only embark on a study if 
we believe that it has a ‘good’ chance of detecting a clinically relevant 
effect, if one exists (by ‘good’ we mean that the power should be at least 
80%). It is ethically irresponsible, and wasteful of time and resources, 
to undertake a clinical trial that has, say, only a 40% chance of detecting 
a real treatment effect.

A number of factors have a direct bearing on power for a given  
test.
• The sample size: power increases with increasing sample size. 
This means that a large sample has a greater ability than a small 
sample to detect a clinically important effect if it exists. When the 
sample size is very small, the test may have an inadequate power 
to detect a particular effect. We explain how to choose sample size, 
with power considerations, in Chapter 36. The methods can also be 
used to evaluate the power of the test for a specified sample  
size.
• The variability of the observations: power increases as the 
variability of the observations decreases (Fig. 18.1).
• The effect of interest: the power of the test is greater for larger effects. 
A hypothesis test thus has a greater chance of detecting a large real 
effect than a small one.
• The significance level: the power is greater if the significance level is 
larger (this is equivalent to the probability of the Type I error (α) 
increasing as the probability of the Type II error (β) decreases). So, we 
are more likely to detect a real effect if we decide at the planning stage 
that we will regard our P-value as significant if it is less than 0.05 rather 
than less than 0.01. We can see this relationship between power and the 
significance level in Fig. 18.2.

Note that an inspection of the confidence interval (Chapter 11)  
for the effect of interest gives an indication of whether the power of the 
test was adequate. A wide confidence interval results from a small 
sample and/or data with substantial variability, and is a suggestion of 
low power.

Multiple hypothesis testing
The problem
Often, we want to carry out a number of significance tests on a data set. 
Unfortunately, the Type I error rate increases dramatically as the number 
of comparisons made increases, leading to spurious conclusions. In 
particular, if the significance level for a test is 0.05, the test has a 5% 
chance of erroneously rejecting the null hypothesis. However, if we 
perform 20 such tests, the probability that at least one of them will give 
a false positive result is 64%. In the situation where some of our multiple 
comparison findings are significant, a problem arises in that we cannot 
identify which, if any, are falsely positive.

Errors in hypothesis testing18

Table 18.1 The consequences of hypothesis testing.

Reject H0 Do not reject H0

H0 true Type I error No error
H0 false No error Type II error
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Figure 18.1 Power curves showing the relationship between power and 
the sample size in each of two groups for the comparison of two means 
using the unpaired t-test (Chapter 21). Each power curve relates to a two-
sided test for which the significance level is 0.05, and the effect of interest 
(e.g. the difference between the treatment means) is 2.5. The assumed 
equal standard deviation of the measurements in the two groups is 
different for each power curve (see Example 1, Chapter 36).
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Examples
Situations which involve multiple comparisons within a data set 
include:
• Subgroup analyses – these should be avoided as spurious results 
may arise because:

 the power of the treatment comparison within a subgroup may be 
low (due to a small sample size) so that a real treatment effect is not 
detected as statistically significant;
 often, the subgroups are not identified for biological or clinical 
reasons at the design stage of the study but are selected only after the 
data have been analysed; or
 in a randomized clinical trial, bias may occur because the 
individuals have not been randomized to the different treatments 
within a subgroup (Chapter 14 and 34).

• Multiple comparisons for a single outcome variable –  typical 
examples include making all pairwise comparisons between:

 three or more treatment groups (such as A vs B, A vs C and B vs C 
for treatment groups A, B and C); or
 three or more time points when each individual has the response 
variable measured at multiple time points.

• Multiple outcome variables – when different endpoints can be used 
to evaluate a treatment effect (Chapter 14).
• Interim analyses – when treatment comparisons are made at 
predetermined intermediate stages of a study (Chapter 14).
• Data dredging – to make comparisons and look for relationships in 
a ‘fishing expedition’, with no specification of the relationships of 
specific interest a priori.

Solutions
Ideally we should only perform a small number of tests, chosen to relate 
to the primary aims of the study and specified at the design stage of the 
study. We may also consider the following (as relevant):
• Use a method to adjust (i.e. increase) the P-value obtained from each 
test to take account of the number of tests performed and then relate this 
adjusted P-value to the conventional cut-off for significance of 0.05 

(Chapter 22). For example, the simple Bonferroni approach (often 
regarded as rather conservative) multiplies each P-value by the number 
of tests carried out. Note that the value of performing this type of 
adjustment for multiple testing remains a subject of debate for cohort 
studies.
• Use a more stringent significance level for each test (e.g. 0.01 instead 
of the conventional 0.05).
• Only perform a subgroup analysis if the test for an interaction 
(Chapters 13 and 33) between the treatment and the factor defining the 
subgroups (e.g. sex) produces a significant result. Previously planned 
subgroup analysis may be a prerequisite to ensure that these tests are 
suitably powered (Chapter 18).
• Undertake multiple pairwise treatment comparisons only if the 
overall treatment effect is significant (e.g. in an analysis of variance) 
and then adjust the P-values by using a post hoc multiple comparison 
method, limiting the procedure to those comparisons that are of interest 
(Chapter 22).
• Use special methods for clustered data if each individual has repeated 
measurements, such as at multiple time points (Chapters 41 and 42).
• If there are multiple outcomes, combine them, appropriately, into a 
single composite endpoint (Chapter 13) or perform a multivariate 
analysis1 in which we consider simultaneously the effects of one or 
more explanatory variables on more than one outcome variable.
• Choose a lower significance level (the significance level for each 
repeated test is called the nominal significance level) for interim 
analyses in a trial to ensure that the required overall significance level 
(typically 0.05) is maintained2.

Figure 18.2 Power curves showing the relationship between power and 
the sample size in each of two groups for the comparison of two 
proportions using the Chi-squared test (Chapter 24). Curves are drawn 
when the effect of interest (e.g. the difference in the proportions with the 
characteristic of interest in the two treatment groups) is either 0.25 (e.g. 
0.65 − 0.40) or 0.10 (e.g. 0.50 − 0.40); the significance level of the two-
sided test is either 0.05 or 0.01 (see Example 2, Chapter 36).
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1 Tabachnick, B.G. and Fidell, L.S. (2006) Using Multivariate Statistics. 5th 
edition. Boston: Allyn & Bacon.
2 Pocock, S.J. (1983) Clinical Trials: A Practical Approach. Chichester: John 
Wiley & Sons.



The problem
We have a sample from a single group of individuals and one numerical 
or ordinal variable of interest. We are interested in whether the average 
of this variable takes a particular value. For example, we may have a 
sample of patients with a specific medical condition. We have been 
monitoring triglyceride levels in the blood of healthy individuals and 
know that they have a geometric mean of 1.74 mmol/litre. We wish to 
know whether the average level in the population from which our 
patients come is the same as this value.

The one-sample t-test
Assumptions
In the population of interest, the variable is Normally distributed with  
a given (usually unknown) variance. In addition, we have taken  
a reasonable sample size so that we can check the assumption of 
Normality (Chapter 35).

Rationale
We are interested in whether the mean, μ, of the variable in the population 
of interest differs from some hypothesized value, μ1. We use a test 
statistic that is based on the difference between the sample mean, x̄, and 
μ1. Assuming that we do not know the population variance, then this test 
statistic, often referred to as t, follows the t-distribution. If we do know 
the population variance, or the sample size is very large, then an 
alternative test (often called a z-test), based on the Normal distribution, 
may be used. However, in these situations, results from both tests are 
virtually identical.

Additional notation
Our sample is of size n and the estimated standard deviation is s.

Numerical data: a single group19

1 Define the null and alternative hypotheses under study
H0: the mean in the population, μ, equals μ1

H1: the mean in the population does not equal μ1.
2 Collect relevant data from a sample of individuals

Interpretation and use of the confidence interval
The 95% confidence interval provides a range of values in which we are 
95% certain that the true population mean lies. If the 95% confidence 
interval does not include the hypothesized value for the mean, μ1, we 
reject the null hypothesis at the 5% level. If, however, the confidence 
interval includes μ1, then we fail to reject the null hypothesis at that 
level.

If the assumptions are not satisfied
We may be concerned that the variable does not follow a Normal 
distribution in the population. Whereas the t-test is relatively robust 
(Chapter 35) to some degree of non-Normality, extreme skewness may 
be a concern. We can either transform the data, so that the variable is 
Normally distributed (Chapter 9), or use a non-parametric test such as 
the sign test or Wilcoxon signed ranks test (Chapter 20).

3 Calculate the value of the test statistic specific to H0

t
x

s n
=

−( )µ1

which follows the t-distribution with (n − 1) degrees of freedom.

4 Compare the value of the test statistic to values from a known 
probability distribution
Refer t to Appendix A2.

5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the true 
mean in the population (Chapter 11).
The 95% confidence interval is given by

x t s n± × ( )0 05.

where t0.05 is the percentage point of the t-distribution with (n − 1) 
degrees of freedom which gives a two-tailed probability of 0.05.
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1 Define the null and alternative hypotheses under study
H0: the median in the population equals λ
H1: the median in the population does not equal λ.

2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0

Ignore all values that are equal to λ, leaving n′ values. Count the 
values that are greater than λ. Similarly, count the values that are less 
than λ. (In practice this will often involve calculating the difference 
between each value in the sample and λ, and noting its sign.) Consider 
r, the smaller of these two counts.
• If n′ ≤ 10, the test statistic is r

• If n′ > 10, calculate

 

z
r

n

n
=

− ′ −

′
2

1
2

2
where n′/2 is the number of values above (or below) the median that 
we would expect if the null hypothesis were true. The vertical bars 

indicate that we take the absolute (i.e. the positive) value of the 
number inside the bars. The distribution of z is approximately Normal. 
The subtraction of ½ in the formula for z is a continuity correction, 
which we have to include to allow for the fact that we are relating  
a discrete value (r) to a continuous distribution (the Normal 
distribution).
4 Compare the value of the test statistic to values from a known 
probability distribution

• If n′ ≤ 10, refer r to Appendix A6
• If n′ > 10, refer z to Appendix A1.

5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the 
median – some statistical packages provide this automatically; if not, 
we can rank the values in order of size and refer to Appendix A7 to 
identify the ranks of the values that are to be used to define the limits 
of the confidence interval. In general, confidence intervals for the 
median will be wider than those for the mean.

Example
There is some evidence that high blood triglyceride levels are 
associated with heart disease. As part of a large cohort study on heart 
disease, triglyceride levels were available in 232 men who developed 
heart disease over the 5 years after recruitment. We are interested in 
whether the average triglyceride level in the population of men from 
which this sample is chosen is the same as that in the general 
population. A one-sample t-test was performed to investigate this. 

Triglyceride levels are skewed to the right (Fig. 8.3a) but log 
triglyceride levels are approximately Normally distributed (Fig. 
8.3b), so we performed our analysis on the log values. In the men in 
the general population, previous studies have shown that the mean of 
the log values equals 0.24log10 (mmol/litre), equivalent to a geometric 
mean of 1.74 mmol/litre.

1 H0: the mean log10 (triglyceride level) in the population of men 
who develop heart disease equals 0.24log10(mmol/litre)

H1: the mean log10 (triglyceride level) in the population of men 
who develop heart disease does not equal 0.24log10(mmol/litre).
2 Sample size, n = 232
Mean of log values, x̄ = 0.31log10 (mmol/litre)
Standard deviation of log values, s = 0.23log10(mmol/litre).

3 Test statistic,
 
t =

−
=

0 31 0 24

0 23 232
4 64

. .

.
.

4 We refer t to Appendix A2 with 231 degrees of freedom: 
P < 0.001.

5 There is strong evidence to reject the null hypothesis that the 
geometric mean triglyceride level in the population of men who 
develop heart disease equals 1.74 mmol/litre. The geometric mean 
triglyceride level in the population of men who develop heart  
disease is estimated as antilog10 (0.31) = 100.31, which equals 
2.04 mmol/litre. The 95% confidence interval for the geometric 
mean triglyceride level ranges from 1.90 to 2.19 mmol/litre (i.e. 
antilog10 0 31 1 96 0 23 232. . .± × ). Therefore, in this population 
of patients, the geometric mean triglyceride level is significantly 
higher than that in the general population.

continued

The sign test
Rationale
The sign test is a simple test based on the median of the distribution.  
We have some hypothesized value, λ, for the median in the population. 
If our sample comes from this population, then approximately half of 
the values in our sample should be greater than λ and half should be 
less than λ (after excluding any values which equal λ). The sign test 

considers the number of values in our sample that are greater (or less) 
than λ.

The sign test is a simple test; we can use a more powerful test, the 
Wilcoxon signed ranks test (Chapter 20), which takes into account the 
ranks of the data as well as their signs when carrying out such an 
analysis.



Data kindly provided by Dr F.C. Lampe, Ms M. Walker and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University 
College Medical School, London, UK.

We can use the sign test to carry out a similar analysis on 
the untransformed triglyceride levels as this does not make any 

distributional assumptions. We assume that the median and geometric 
mean triglyceride level in the male population are similar.

1 H0: the median triglyceride level in the population of men who 
develop heart disease equals 1.74 mmol/litre.

H1: the median triglyceride level in the population of men who 
develop heart disease does not equal 1.74 mmol/litre.
2 In this data set, the median value equals 1.94 mmol/litre.
3 We investigate the differences between each value and 1.74. 
There are 231 non-zero differences, of which 135 are positive and 
96 are negative. Therefore, r = 96. As the number of non-zero 
differences is greater than 10, we calculate

z =
− −

=
96

231
2

1
2

231
2

2 50.

 

4 We refer z to Appendix A1: P = 0.012.
5 There is evidence to reject the null hypothesis that the median 
triglyceride level in the population of men who develop heart  
disease equals 1.74 mmol/litre. Therefore, in this population of 
patients, the median triglyceride level is significantly higher than 
that in the general population. The formula in Appendix A7  
indicates that the 95% confidence interval for the population median 
is given by the 101st and 132nd ranked values; these are 1.77 and 
2.16 mmol/litre.
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The problem
We have two samples that are related to each other and one numerical or 
ordinal variable of interest.
• The variable may be measured on each individual in two  
circumstances. For example, in a cross-over trial (Chapter 13), each 
patient has two measurements on the variable, one while taking active 
treatment and one while taking placebo.
• The individuals in each sample may be different, but are linked to 
each other in some way. For example, patients in one group may be 
individually matched to patients in the other group in a case–control 
study (Chapter 16).

Such data are known as paired data. It is important to take account of 
the dependence between the two samples when analysing the data, 
otherwise the advantages of pairing (Chapter 13) are lost. We do this by 
considering the difference between the values for each pair, thereby 
reducing our two samples to a single sample of differences.

The paired t-test
Assumption
In the population of interest, the individual differences are Normally 
distributed with a given (usually unknown) variance. We have a 
reasonable sample size so that we can check the assumption of 
Normality.

Rationale
If the two sets of measurements were the same, then we would expect 
the mean of the differences between each pair of measurements to be 
zero in the population of interest. Therefore, our test statistic simplifies 
to a one-sample t-test (Chapter 19) on the differences, where the 
hypothesized value for the mean difference in the population is zero.

Additional notation
Because of the paired nature of the data, our two samples must be of the 
same size, n. We have n differences: their sample mean is d  and 
estimated standard deviation sd.

If the assumption is not satisfied
If the differences do not follow a Normal distribution, the assumption 
underlying the t-test is not satisfied. We can either transform the data 
(Chapter 9) or use a non-parametric test such as the sign test (Chapter 
19) or Wilcoxon signed ranks test to assess whether the differences are 
centred around zero.

The Wilcoxon signed ranks test
Rationale
In Chapter 19 we explained how to use the sign test on a single sample 
of numerical measurements to test the null hypothesis that the population 
median equals a particular value. We can also use the sign test when we 
have paired observations, the pair representing matched individuals 
(e.g. in a case–control study, Chapter 16) or measurements made on the 
same individual in different circumstances (as in a cross-over trial of 
two treatments, A and B, Chapter 13). For each pair, we evaluate the 
difference in the measurements. The sign test can be used to assess 
whether the median difference in the population equals zero by 
considering the differences in the sample and observing how many are 
greater (or less) than zero. However, the sign test does not incorporate 
information on the sizes of these differences.

The Wilcoxon signed ranks test takes account not only of the signs 
of the differences but also their magnitude, and therefore is a more 
powerful test (Chapter 18). The individual difference is calculated for 
each pair of results. Ignoring zero differences, these are then classed as 
being either positive or negative. In addition, the differences are placed 
in order of size, ignoring their signs, and are ranked accordingly. The 
smallest difference thus gets the value 1, the second smallest gets the 
value 2, etc., up to the largest difference, which is assigned the value n′, 
if there are n′ non-zero differences. If two or more of the differences are 
the same, they each receive the mean of the ranks these values would 
have received if they had not been tied. Under the null hypothesis of no 
difference, the sums of the ranks relating to the positive and negative 
differences should be the same (see following box).

Numerical data: two related groups20

1 Define the null and alternative hypotheses under study
H0: the mean difference in the population equals zero
H1: the mean difference in the population does not equal zero.

2 Collect relevant data from two related samples
3 Calculate the value of the test statistic specific to H0

t
d

d

d

s n
=

−( )
( ) =

0

SE d

which follows the t-distribution with (n − 1) degrees of freedom.

4 Compare the value of the test statistic to values from a known 
probability distribution
Refer t to Appendix A2.
5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the true 
mean difference in the population. The 95% confidence interval is 
given by

d t s n± × ( )0 05. d

where t0.05 is the percentage point of the t-distribution with (n − 1) 
degrees of freedom which gives a two-tailed prob ability of 0.05.
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Wilcoxon signed ranks test
1 Define the null and alternative hypotheses under study

H0: the median difference in the population equals zero
H1: the median difference in the population does not equal zero.

2 Collect relevant data from two related samples
3 Calculate the value of the test statistic specific to H0
Calculate the difference for each pair of results. Ignoring their signs, 
rank all n′ non-zero differences, assigning the value 1 to the smallest 
difference and the value n′ to the largest. Sum the ranks of the positive 
(T+) and negative differences (T−).

• If n′ ≤ 25, the test statistic, T, takes the value T+ or T−, whichever 
is smaller
• If n′ > 25, calculate the test statistic z, where

z
T

n n

n n n
=

− ′ ′ +( )
−

′ ′ +( ) ′ +( )

1
4

1
2

1 2 1
24

z follows a Normal distribution (its value has to be adjusted if there are 
many tied values1).
4 Compare the value of the test statistic to values from a known 
probability distribution

• If n′ ≤ 25, refer T to Appendix A8
• If n′ > 25, refer z to Appendix A1.

5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the 
median difference (Chapter 19) using all n differences in the sample.

1 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for the Behavioural Sciences. 2nd edition. New York: McGraw-Hill.

Example
Ninety-six new recruits, all men aged between 16 and 20 years, had 
their teeth examined when they enlisted in the Royal Air Force. After 
receiving the necessary treatment to make their teeth dentally fit, they 
were examined one year later. A complete mouth, excluding wisdom 
teeth, has 28 teeth and, in this study, every tooth had four sites of 
periodontal interest; each recruit had a minimum of 84 and a maximum 
of 112 measurable sites on each occasion. It was of interest to examine 
the effect of treatment on pocket depth, a measure of gum disease 

(greater pocket depth indicates worse disease). Pocket depth was 
evaluated for each recruit as the mean pocket depth over the measurable 
sites in his mouth; this variable is referred to as average pocket depth.

As the difference in average pocket depth was approximately  
Normally distributed in this sample of recruits, a paired t-test was 
performed to determine whether the average pocket depth was the 
same before and after treatment. Full computer output is shown in 
Appendix C.

1 H0: the mean difference in a man’s average pocket depth before 
and after treatment in the population of recruits equals zero

H1: the mean difference in a man’s average pocket depth before 
and after treatment in the population of recruits does not equal 
zero.
2 Sample size, n = 96. Mean difference of average pocket 
depth, d = 0.1486 mm. Standard deviation of differences, 
sd = 0.5601 mm.

3 Test statistic,
 
t = =

0 1486

0 5601 96
2 60

.

.
.

4 We refer t to Appendix A2 with (96 − 1) = 95 degrees of freedom: 
0.01 < P < 0.05 (computer output gives P = 0.011).

5 We have evidence to reject the null hypothesis, and can infer 
that a recruit’s average pocket depth tended to be reduced after  
treatment. The 95% confidence interval for the true mean  
difference in average pocket depth is 0.035 to 0.262 mm (i.e. 
0 1486 1 95 0 5601 96. . .± × ). Of course, we have to be careful here 
if we want to conclude that it is the treatment that has reduced 
average pocket depth, as we have no control group of recruits who 
did not receive treatment. The improvement may be a consequence 
of time or a change in dental hygiene habits, and may not be due to 
the treatment received.

continued
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1 H0: the median of the differences (before and after treatment) in 
the percentages of sites with loss of attachment equals zero in the 
population of recruits

H1: the median of the differences in the percentages of sites with 
loss of attachment does not equal zero in the population.
2 The percentages of measurable sites with loss of attachment, 
before and after treatment, for each recruit are shown in  
Table 20.1.
3 There is one zero difference; of the remaining n′ = 13 differences, 
three are positive and 10 are negative. The sum of the ranks of the 
positive differences, T+ = 3 + 5 + 13 = 21.
4 As n′ < 25, we refer T+ to Appendix A8: P > 0.05 (computer 
output gives P = 0.09).

5 There is insufficient evidence to reject the null hypothesis of no 
change in the percentage of sites with loss of attachment. The 
median difference in the percentage of sites with loss of attachment 
is −3.1% (i.e. the mean of −2.5% and −3.6%), a negative median 
difference indicating that, on average, the percentage of sites with 
loss of attachment is greater after treatment, although this difference 
is not statistically significant. Appendix A7 shows that the 
approximate 95% confidence interval for the median difference in 
the population is given by the 3rd and the 12th ranked differences 
(including the zero difference); these are −12.8% and 0.9%. 
Although the result of the test is not significant, the lower limit 
indicates that the percentage of sites with loss of attachment could 
be as much as 12.8% more after the recruit received treatment!
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Figure 20.1 Change in percentage of sites with loss of attachment in 14 recruits before and after treatment.

Duffy, S. (1997) Results of a Three Year Longitudinal Study of Early Periodontitis in a Group of British Male Adolescents. MSc Dissertation, University of 
London, Eastman Dental Institute for Oral Health Care Sciences.

The data in Table 20.1 show the percentage of measurable  
sites for which there was loss of attachment at each assessment in each 
of 14 of these recruits who were sent to a particular air force base. 
Figure 20.1 shows the linked pairs of results. Loss of attachment is an 
indication of gum disease that may be more advanced than that 

assessed by pocket depth. As the differences in the percentages were 
not Normally distributed, we performed a Wilcoxon signed ranks 
test to investigate whether treatment had any effect on loss of 
attachment.

Table 20.1 Percentage of sites with loss of attachment in 14 recruits before and after treatment.

Recruit 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Before (%) 65.5 75.0 87.2 97.1 100.0 92.6 82.3 90.0 93.0 100.0 91.7 97.7 79.0 95.4
After (%) 100.0 10.0 100.0 97.1 99.1 100.0 91.6 94.6 95.5 97.3 92.3 98.0 100.0 99.0
Difference (%) −34.5 65.0 −12.8 0.0 0.9 −7.4 −9.3 −4.6 −2.5 2.7 −0.6 −0.3 −21.0 −3.6
Rank 12 13 10 – 3 8 9 7 4 5 2 1 11 6



The problem
We have samples from two independent (unrelated) groups of 
individuals and one numerical or ordinal variable of interest. We are 
interested in whether the mean or distribution of the variable is the same 
in the two groups. For example, we may wish to compare the weights in 
two groups of children, each child being randomly allocated to receive 
either a dietary supplement or placebo.

The unpaired (two-sample) t-test
Assumptions
In the population, the variable is Normally distributed in each group and 
the variances of the two groups are the same. In addition, we have 
reasonable sample sizes so that we can check the assumptions of 
Normality and equal variances.

Rationale
We consider the difference in the means of the two groups. Under  
the null hypothesis that the population means in the two groups are  
the same, this difference will equal zero. Therefore, we use a test  
statistic that is based on the difference in the two sample means, and on 
the value of the difference in population means under the null hypothesis 
(i.e. zero). This test statistic, often referred to as t, follows the 
t-distribution.

Notation
Our two samples are of size n1 and n2. Their means are x1  and 
x2; their standard deviations are s1 and s2.

Interpretation of the confidence interval
The upper and lower limits of the confidence interval can be used to 
assess whether the difference between the two mean values is clinically 
important. For example, if the upper and/or lower limit is close to zero, 
this indicates that the true difference may be very small and clinically 
meaningless, even if the test is statistically significant.

If the assumptions are not satisfied
When the sample sizes are reasonably large, the t-test is fairly robust 
(Chapter 35) to departures from Normality. However, it is less robust to 
unequal variances. There is a modification of the unpaired t-test that 
allows for unequal variances, and results from it are often provided in 
computer output. However, if there are concerns that the assumptions 
are not satisfied, then the data can either be transformed (Chapter 9) to 
achieve approximate Normality and/or equal variances, or a non- 
parametric test such as the Wilcoxon rank sum test can be used.

The Wilcoxon rank sum (two-sample) test
Rationale
The Wilcoxon rank sum test makes no distributional assumptions and 
is the non-parametric equivalent to the unpaired t-test. The test is based 
on the sum of the ranks of the values in each of the two groups; these 
should be comparable after allowing for differences in sample size if the 
groups have similar distributions. An equivalent test, known as the 
Mann–Whitney U test, gives identical results although it is slightly 
more complicated to carry out by hand.

Numerical data: two unrelated groups21

4 Compare the value of the test statistic to values from a known 
probability distribution
Refer t to Appendix A2. When the sample sizes in the two groups are 
large, the t-distribution approximates a Normal distribution, and 
then we reject the null hypothesis at the 5% level if the absolute 
value (i.e. ignoring the sign) of t is greater than 1.96.
5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the 
difference in the two means. The 95% confidence interval, assuming 
equal variances, is given by

x x t x x1 2 0 05 1 2−( ) ± × −( ). SE

where t0.05 is the percentage point of the t-distribution with 
(n1 + n2 − 2) degrees of freedom which gives a two-tailed probability 
of 0.05.

1 Define the null and alternative hypotheses under study
H0: the population means in the two groups are equal
H1: the population means in the two groups are not equal.

2 Collect relevant data from two samples of individuals
3 Calculate the value of the test statistic specific to H0
If s is an estimate of the pooled standard deviation of the two 
groups,

s
n s n s

n n
=

−( ) + −( )
+ −

1 1
2

2 2
2

1 2

1 1

2

then the test statistic is given by t, where

t
x x

x x

x x

s
n n

=
−( ) −

−( )
=

−( )

+

1 2

1 2

1 2

1 2

0

1 1SE

which follows the t-distribution with (n1 + n2 − 2) degrees of 
freedom.
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1 Define the null and alternative hypotheses under study
H0: the two groups have the same distribution in the population
H1: the two groups have different distributions in the population.

2 Collect relevant data from two samples of individuals
3 Calculate the value of the test statistic specific to H0
All observations are ranked as if they were from a single sample. Tied 
observations are given the mean of the ranks the values would have 
received if they had not been tied. The sum of the ranks, T, is then 
calculated in the group with the smaller sample size.

• If the sample size in each group is 15 or less, T is the test 
statistic
• If at least one of the groups has a sample size of more than 15, 
calculate the test statistic

z
T T

T

=
−( )µ
σ

which follows a Normal distribution, 

where

µ σ µT T T
n n n

n=
+ +( )

=S S L
L

1

2
6

and nS and nL are the sample sizes of the smaller and larger groups, 
respectively. z must be adjusted if there are many tied values1.
4 Compare the value of the test statistic to values from a known 
probability distribution

• If the sample size in each group is 15 or less, refer T to Appendix 
A9
• If at least one of the groups has a sample size of more than 15, 
refer z to Appendix A1.

5 Interpret the P-value and results
Interpret the P-value and obtain a confidence interval for the 
difference in the two medians. This is time-consuming to calculate by 
hand so details have not been included; some statistical packages  
will provide the confidence interval. If this confidence interval is not 
included in the package, a confidence interval for the median in each 
of the two groups can be quoted.

1 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for the Behavioural Sciences. 2nd edition. New York: McGraw-Hill.

Example 1

In order to determine the effect of regular prophylactic inhaled 
corticosteroids on wheezing episodes associated with viral infection 
in school-age children, a randomized double-blind controlled trial 
was carried out comparing inhaled beclomethasone dipropionate with 
placebo. In this investigation, the primary endpoint was the mean 

forced expiratory volume (FEV1) over a 6 month period. After 
checking the assumptions of Normality and constant variance (see 
Fig. 4.2), we performed an unpaired t-test to compare the means in 
the two groups. Full computer output is shown in Appendix C.

1 H0: the mean FEV1 in the population of school-age children is the 
same in the two treatment groups

H1: the mean FEV1 in the population of school-age children is 
not the same in the two treatment groups.
2 Treated group: sample size, n1 = 50; mean, x1 1 64= .  litres, 
standard deviation, s1 = 0.29 litres. 

Placebo group: sample size, n2 = 48; mean, x2 1 54= .  litres; 
standard deviation, s2 = 0.25 litres.
3 Pooled standard deviation,

s =
×( ) + ×( )

+ −( )
=

49 0 29 47 0 25

50 48 2
0 2670

2 2. .
.  litres.

Test statistic, t =
−

× +
=

1 64 1 54

0 2670
1

50
1
48

1 9145
. .

.

.

4 We refer t to Appendix A2 with 50 + 48 − 2 = 96 degrees of 
freedom. Because Appendix A2 is restricted to certain degrees of 
freedom, we have to interpolate (estimate the required value that 
lies between two known values). We therefore interpolate between 
the values relating to 50 and 100 degrees of freedom. Hence, 
P > 0.05 (computer output gives P = 0.06).
5 We have insufficient evidence to reject the null hypothesis 
at the 5% level. However, as the P-value is only just greater 
than 0.05, there may be an indication that the two population  
means are different. The estimated difference between the two 
means is 1.64 − 1.54 = 0.10 litres. The 95% confidence interval for 
the true difference in the two means ranges from −0.007 to 0.207 
litres

= ± × × +











0 10 1 99 0 2670
1

50

1

48
. . . .

Data kindly provided by Dr I. Doull, Cystic Fibrosis/Respiratory Unit, Department of Child Health, University Hospital of Wales, Cardiff, UK, and  
Dr F.C. Lampe, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK.



Example 2

In order to study whether the mechanisms involved in fatal soybean 
asthma are different from those of normal fatal asthma, the number of 
CD3+ T cells in the submucosa, a measure of the body’s immune 
system, was compared in seven cases of fatal soybean dust-induced 

asthma and 10 fatal asthma cases. Because of the small sample sizes 
and obviously skewed data, we performed a Wilcoxon rank sum test 
to compare the distributions.

1 H0: the distributions of CD3+ T-cell numbers in the two groups in 
the population are the same

H1: the distributions of CD3+ T-cell numbers in the two groups in 
the population are not the same.
2 Soybean group: sample size, nS = 7, CD3+ T-cell levels 
(cells/mm2) were 34.45, 0.00, 1.36, 0.00, 1.43, 0.00, 4.01

Asthma group: sample size, nL = 10, CD3+ T-cell levels 
(cells/mm2) were 74.17, 13.75, 37.50, 1225.51, 99.99, 3.76, 58.33, 
73.63, 4.32, 154.86.

The ranked data are shown in Table 21.1.
3 Sum of the ranks in the soybean group = 2 + 2 + 2 + 4 + 
5 + 7 + 10 = 32

Sum of the ranks in the asthma group = 6 + 8 + 9 + 11 + 12 +  
13 + 14 + 15 + 16 + 17 = 121.

4 Because there are 10 or fewer values in each group, we obtain the 
P-value from Appendix A9: P < 0.01 (computer output gives 
P = 0.002).
5 There is evidence to reject the null hypothesis that the distributions 
of CD3+ T-cell levels are the same in the two groups. The median 
numbers of CD3+ T cells in the soybean and fatal asthma groups  
are 1.36 (95% confidence interval 0 to 34.45) and (58.33 +  
73.63)/2 = 65.98 (95% CI 4.32 to 154.86) cells/mm2, respectively. 
We thus believe that CD3+ T cells tend to be reduced in fatal soybean 
asthma, suggesting a different mechanism from that described for 
most asthma deaths.

Table 21.1 CD3+ T-cell levels (cells/mm2) and their ranks in two groups of fatal asthmatic cases.

Soybean 0.00 0.00 0.00 1.36 1.43 4.01 34.45
Normal 3.76 4.32 13.75 37.50 58.33 73.63 74.17 99.99 154.86 1225.51
Rank 2 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Data kindly provided by Dr M. Synek, Coldeast Hospital, Sarisbury, and Dr F.C. Lampe, Department of Primary Care and Population Sciences, Royal Free and 
University College Medical School, London UK.
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The problem
We have samples from a number of independent groups. We have a 
single numerical or ordinal variable and are interested in whether the 
average value of the variable varies in the different groups, e.g. whether 
the average platelet count varies in groups of women with different 
ethnic backgrounds. Although we could perform tests to compare the 
averages in each pair of groups, the high Type I error rate, resulting 
from the large number of comparisons, means that we may draw 
incorrect conclusions (Chapter 18). Therefore, we carry out a single 
global test to determine whether the averages differ in any groups.

One-way analysis of variance
Assumptions
The groups are defined by the levels of a single factor (e.g. different 
ethnic backgrounds). In the population of interest, the variable is 
Normally distributed in each group and the variance in every group is 
the same. We have a reasonable sample size so that we can check these 
assumptions.

Rationale
The one-way analysis of variance separates the total variability in the 
data into that which can be attributed to differences between the 
individuals from the different groups (the between-group variation) 
and to the random variation between the individuals within each group 
(the within-group variation, sometimes called unexplained or 
residual variation). These components of variation are measured using 
variances, hence the name analysis of variance (ANOVA). Under the 
null hypothesis that the group means are the same, the between-group 
variance will be similar to the within-group variance. If, however, there 
are differences between the groups, then the between-group variance 
will be larger than the within-group variance. The test is based on the 
ratio of these two variances.

Notation
We have k independent samples, each derived from a different group. 
The sample sizes, means and standard deviations in each group are  
ni, xi  and si, respectively (i = 1, 2, … , k). The total sample size is 
n = n1 + n2 + … + nk.

Although the two tests appear to be different, the unpaired t-test and 
ANOVA give equivalent results when there are only two groups of 
individuals.

If the assumptions are not satisfied
Although ANOVA is relatively robust (Chapter 35) to moderate 
departures from Normality, it is not robust to unequal variances. 
Therefore, before carrying out the analysis, we check for Normality, 
and test whether the variances are similar in the groups either by 
‘eyeballing’ them, or by using Levene’s test or Bartlett’s test (Chapter 
35). If the assumptions are not satisfied, we can either transform the data 
(Chapter 9) or use the non-parametric equivalent of one-way ANOVA, 
the Kruskal–Wallis test.

Numerical data: more than two groups22

1 Define the null and alternative hypotheses under study
H0: all group means in the population are equal
H1: at least one group mean in the population differs from the 

others.
2 Collect relevant data from samples of individuals

3 Calculate the value of the test statistic specific to H0
The test statistic for ANOVA is a ratio, F, of the between-group 
variance to the within-group variance. This F-statistic follows the 
F-distribution (Chapter 8) with (k − 1, n − k) degrees of freedom in 
the numerator and denominator, respectively.

The calculations involved in ANOVA are complex and are not 
shown here. Most computer packages will output the values directly 
in an ANOVA table, which usually includes the F-ratio and P-value 
(see Example 1).
4 Compare the value of the test statistic to values from a known 
probability distribution
Refer the F-ratio to Appendix A5. Because the between-group 
variation is greater than or equal to the within-group variation, we 
look at the one-sided P-values.
5 Interpret the P-value and results
If we obtain a significant result at this initial stage, we may consider 
performing specific pairwise post hoc comparisons. We can use one 
of a number of special tests devised for this purpose (e.g. Duncan’s, 
Scheffé’s) or we can use the unpaired t-test (Chapter 21) adjusted 
for multiple hypothesis testing (Chapter 18). We can also calculate 
a confidence interval for each individual group mean (Chapter 11). 
Note that we use a pooled estimate of the variance of the values from 
all groups when calculating confidence intervals and performing 
t-tests. Most packages refer to this estimate of the variance as the 
residual variance or residual mean square; it is found in the 
ANOVA table.
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Example 1

3 The following ANOVA table is extracted from the computer output:

4 The ANOVA table gives P = 0.70. (We could have referred F to 
Appendix A5 with (3, 146) degrees of freedom to determine the 
P-value.)

5 There is insufficient evidence to reject the null hypothesis that the 
mean levels in the four groups in the population are the same.

Data kindly provided by Dr R.A. Kadir, University Department of Obstetrics and Gynaecology, and Professor C.A. Lee, Haemophilia Centre and Haemostasis 
Unit, Royal Free Hospital, London, UK.

The Kruskal–Wallis test
Rationale
This non-parametric test is an extension of the Wilcoxon rank sum test 
(Chapter 21). Under the null hypothesis of no differences in the 
distributions between the groups, the sums of the ranks in each of the k 
groups should be comparable after allowing for any differences in 
sample size.

1 Siegel, S. and Castellan, N.J. (1988) Nonparametric Statistics for the 
Behavioural Sciences. 2nd edition. New York: McGraw-Hill.
2 Mickey, R.M., Dunn, O.J. and Clark, V.A. (2004) Applied Statistics: 
Analysis of Variance and Regression. 3rd edition. Chichester: Wiley.

1 Define the null and alternative hypotheses under study
H0: each group has the same distribution of values in the 

population
H1: at least one group does not have the same distribution of 

values in the population.
2 Collect relevant data from samples of individuals
3 Calculate the value of the test statistic specific to H0
Rank all n values and calculate the sum of the ranks in each of the 
groups: these sums are R1, … Rk. The test statistic (which should be 
modified if there are many tied values1) is given by

H
n n

R

n
ni

i

=
+( )

− +( )∑12

1
3 1

2

which follows a Chi-squared distribution with (k − 1) df.

A total of 150 women of different ethnic backgrounds were included 
in a cross-sectional study of factors related to blood clotting. We 
compared mean platelet levels in the four groups using a one-way 

ANOVA. It was reasonable to assume Normality and constant 
variance, as shown in the computer output (Appendix C).

Group Sample size, n (%) Mean (×109), x
Standard  
deviation (×109), s

95% CI for mean (using pooled 
standard deviation – see point 3)

Caucasian 90 (60.0) 268.1 77.08 252.7 to 283.5
Afro-Caribbean 21 (14.0) 254.3 67.50 220.9 to 287.7
Mediterranean 19 (12.7) 281.1 71.09 245.7 to 316.5
Other 20 (13.3) 273.3 63.42 238.9 to 307.7

1 H0: there are no differences in the mean platelet levels in the four 
groups in the population

H1: at least one group mean platelet level differs from the others 
in the population.

2 The following table summarizes the data in each group.

We use one-way ANOVA or its non-parametric equivalent when the 
groups relate to a single factor and are independent. We can use other 
forms of ANOVA when the study design is more complex2.

4 Compare the value of the test statistic to values from a known 
probability distribution
Refer H to Appendix A3.
5 Interpret the P-value and results
Interpret the P-value and, if significant, perform two-sample non-
parametric tests between pairs of groups, adjusting for multiple 
testing. Calculate a confidence interval for the median in each group.

continued

Source Sum of squares df Mean square F-ratio P-value

Between ethnic group 7711.967 3 2570.656 0.477 0.6990
Within ethnic group 787289.533 146 5392.394

Pooled standard deviation = 5392 394 10 73 43 109 9. .× = × .
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Example 2

Quality-of-life scores, measured using the SF-36 questionnaire, 
were obtained in three groups of individuals: those with severe 
haemophilia, those with mild/moderate haemophilia, and normal 
controls. Each group comprised a sample of 20 individuals. Scores 
on the physical functioning scale (PFS), which can take values from 
0 to 100, were compared in the three groups. As visual inspection of 
Fig. 22.1 showed that the data were not Normally distributed, we 
performed a Kruskal–Wallis test.

1 H0: each group has the same distribution of PFS scores in the 
population

H1: at least one of the groups has a different distribution of PFS 
scores in the population.
2 The data are shown in Fig. 22.1.
3 Sum of ranks in severe haemophilia group = 372

Sum of ranks in mild/moderate haemophilia group = 599
Sum of ranks in normal control group = 859.

H =
+( )

+ +



 − +( ) =

12

60 60 1

372

20

599

20

859

20
3 60 1 19 47

2 2 2

.

4 We refer H to Appendix A3: P < 0.001.
5 There is substantial evidence to reject the null hypothesis that the 
distribution of PFS scores is the same in the three groups. Pairwise 
comparisons were carried out using Wilcoxon rank sum tests, 
adjusting the P-values for the number of tests performed using the 
Bonferroni correction (Chapter 18). The individuals with severe and 
mild/moderate haemophilia both had significantly lower PFS scores 
than the controls (P = 0.0003 and P = 0.03, respectively) but the 
distributions of the scores in the haemophilia groups were not 
significantly different from each other (P = 0.09).

Data kindly provided by Dr A. Miners, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK, 
and Dr C. Jenkinson, Health Services Research Unit, University of Oxford, Oxford, UK.

Figure 22.1 Dot plot showing physical functioning scores (from the SF-
36 questionnaire) in individuals with severe and mild/moderate 
haemophilia and in normal controls. The horizontal bars are the medians.
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The problem
We have a single sample of n individuals; each individual either 
‘possesses’ a characteristic of interest (e.g. is male, is pregnant, has 
died) or does not possess that characteristic (e.g. is female, is not 
pregnant, is still alive). A useful summary of the data is provided by the 
proportion of individuals with the characteristic. We are interested in 
determining whether the true proportion in the population of interest 
takes a particular value.

The test of a single proportion
Assumptions
Our sample of individuals is selected from the population of  
interest. Each individual either has or does not have the particular 
characteristic.

Notation
r individuals in our sample of size n have the characteristic. The 
estimated proportion with the characteristic is p = r/n. The proportion 
of individuals with the characteristic in the population is π. We are 
interested in determining whether π takes a particular value, π1.

Rationale
The number of individuals with the characteristic follows the  
Binomial distribution (Chapter 8), but this can be approximated by  
the Normal distribution, providing np and n(1 − p) are each greater 
than 5.

Then p is approximately Normally distributed with:
an estimated mean = p and 

an estimated standard deviation =
p p

n

1−( )
.

Therefore, our test statistic, which is based on p, also follows the 
Normal distribution.

Categorical data: a single proportion23

1 Define the null and alternative hypotheses under study
H0: the population proportion, π, is equal to a particular value, 

π1

H1: the population proportion, π, is not equal to π1.
2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0

z
p

n

n

=
− −

−( )

π

π π

1

1 1

1
2

1

which follows a Normal distribution.
The 1/2n in the numerator is a continuity correction: it is 

included to make an allowance for the fact that we are approximating 
the discrete Binomial distribution by the continuous Normal 
distribution.
4 Compare the value of the test statistic to values from a known 
probability distribution
Refer z to Appendix A1.
5 Interpret the P-value and results

Interpret the P-value and calculate a confidence interval for the 
true population proportion, π. The 95% confidence interval for π is 
approximated by

p
p p

n
±

−( )
1 96

1
.

We can use this confidence interval to assess the clinical or biological 
importance of the results. A wide confidence interval is an indication 
that our estimate has poor precision.

MC
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The sign test applied to a proportion
Rationale
The sign test (Chapter 19) may be used if the response of interest can be 
expressed as a preference (e.g. in a cross-over trial, patients may have 
a preference for either treatment A or treatment B). If there is no 

Example 1

Human herpes-virus 8 (HHV-8) has been linked to Kaposi’s sarcoma, 
primary effusion lymphoma and certain types of multicentric 
Castleman’s disease. It has been suggested that HHV-8 can be 
transmitted sexually. In order to assess the relationship between  
sexual behaviour and HHV-8 infection, the prevalence of antibodies 

to HHV-8 was determined in a group of 271 homosexual/bisexual 
men attending a London sexually transmitted disease clinic. In the 
blood donor population in the UK, the seroprevalence of HHV-8 has 
been documented to be 2.7%. Initially, the seroprevalence from this 
study was compared to 2.7% using a single proportion test.

1 H0: the seroprevalence of HHV-8 in the population of homosexual/
bisexual men equals 2.7%

H1: the seroprevalence of HHV-8 in the population of homosexual/
bisexual men does not equal 2.7%.
2 Sample size, n = 271; number who are seropositive to HHV-8, 
r = 50
Seroprevalence, p = 50/271 = 0.185 (i.e. 18.5%).

3 Test statistic is z =
− −

×
−( )

=
0 185 0 027

1
2 271

0 027 1 0 027
271

15 86
. .

. .
.

4 We refer z to Appendix A1: P < 0.0001.
5 There is substantial evidence that the seroprevalence of HHV-8 in 
homosexual/bisexual men attending sexually transmitted disease 
clinics in the UK is higher than that in the blood donor population. 
The 95% confidence interval for the seroprevalence of HHV-8 in  
the population of homosexual/bisexual men is 13.9% to 23.1%, 
calculated as

0 185 1 96
0 185 1 0 185

271
100. .

. .
%.± ×

× −( )







×

Data kindly provided by Dr N.A. Smith, Dr D. Barlow and Dr B.S. Peters, Department of Genitourinary Medicine, Guy’s and St Thomas’ NHS Trust, London, 
and Dr J. Best, Department of Virology, Guy’s, King’s College and St Thomas’ School of Medicine, King’s College, London, UK.

1 Define the null and alternative hypotheses under study
H0: the proportion, π, of preferences for A in the population is equal 

to ½
H1: the proportion of preferences for A in the population is not 

equal to ½.
2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0
Ignore any individuals who have no preference and reduce the sample 
size from n to n′ accordingly. Then p = r/n′, where r is the number of 
preferences for A.
• If n′ ≤ 10, count r, the number of preferences for A
• If n′ > 10, calculate the test statistic

′ =
− −

′
−( )
′

z
p

n

n

1
2

1
2

0 5 1 0 5. .

z′ follows the Normal distribution. Note that this formula is based on 
the test statistic, z, used in the previous box to test the null hypothesis 
that the population proportion equals π1; here we replace n by n′, and 
π1 by ½.
4 Compare the value of the test statistic to values from a known 
probability distribution
• If n′ ≤ 10, refer r to Appendix A6
• If n′ > 10, refer z′ to Appendix A1.
5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for the 
proportion of preferences for A (sample size = n) or for the proportion 
of preferences for A in those with a preference (sample size = n).

preference overall, then we would expect the proportion preferring A, 
say, to equal ½. We use the sign test to assess whether this is so.

Although this formulation of the problem and its test statistic appear 
to be different from those of Chapter 19, both approaches to the sign test 
produce the same result.



Example 2

In a double-blind cross-over study, 36 adults with perennial allergic 
rhinitis were treated with subcutaneous injections of either inhalant 
allergens or placebo, each treatment being given daily for a defined 
period. The patients were asked whether they preferred the active 

drug or the placebo. The sign test was performed to investigate 
whether the proportion preferring the active preparation was the same 
as that preferring the placebo.

1 H0: the proportion preferring the active preparation in the 
population equals 0.5

H1: the proportion preferring the active preparation in the 
population does not equal 0.5.
2 Of the 36 adults, 27 expressed a preference; 21 preferred the 
active preparation. Of those with a preference, the proportion 
preferring the active preparation, p = 21/27 = 0.778.

3 Test statistic is ′ =
− −

×
−( )

=z
0 778 0 5

1
2 27

0 5 1 0 5
27

2 697
. .

. .
.

4 We refer z′ to Appendix A1: P = 0.007
5 There is substantial evidence to reject the null hypothesis that 
there is no preference for either one of the two preparations in the 
population. The 95% confidence interval for the true proportion is 
estimated as 0.62 to 0.94, i.e. it is

0 778 1 96
0 778 1 0 778

27
. .

. .
.± ×

× −( )

Therefore, at the very least, we believe that almost two-thirds  
of individuals with a preference in the population prefer the active 
preparation.

Data adapted from Radcliffe, M.J., Lampe, F.C. and Brostoff, J. (1996) Allergen-specific low-dose immunotherapy in perennial allergic rhinitis: a double-blind 
placebo-controlled crossover study. Journal of Investigational Allergology and Clinical Immunology, 6, 242–247.
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The problems
•	 We	have	 two	 independent	groups	of	 individuals	 (e.g.	homosexual	
men	 with	 and	 without	 a	 history	 of	 gonorrhoea).	 We	 want	 to	 know	
whether	 the	 proportions	 of	 individuals	 with	 a	 characteristic	 (e.g.	
infected	with	human	herpesvirus-8,	HHV-8)	are	the	same	in	the	two	
groups.
•	 We	have	 two	 related	groups,	 e.g.	 individuals	may	be	matched,	or	
measured	 twice	 in	 different	 circumstances	 (say,	 before	 and	 after	
treatment).	 We	 want	 to	 know	 whether	 the	 proportions	 with	 a	
characteristic	(e.g.	raised	test	result)	are	the	same	in	the	two	groups.

Independent groups: the Chi-squared test
Terminology
The	data	are	obtained,	initially,	as	frequencies,	i.e.	the	numbers	with	
and	 without	 the	 characteristic	 in	 each	 sample.	A	 table	 in	 which	 the	
entries	are	frequencies	is	called	a	contingency table;	when	this	table	
has	 two	rows	and	 two	columns	 it	 is	called	a	2	×	2	 table.	Table	24.1	
shows	the	observed	frequencies	in	the	four	cells	corresponding	to	each	
row/column	combination,	the	four	marginal totals	(the	frequency	in	a	
specific	row	or	column,	e.g.	a	+	b),	and	the	overall total,	n.	We	can	
calculate	(see	Rationale	below)	the	frequency	that	we	would	expect	in	
each	 of	 the	 four	 cells	 of	 the	 table	 if	 H0	 were	 true	 (the	 expected 
frequencies).

Assumptions
We	have	samples	of	sizes	n1	and	n2	from	two	independent	groups	of	
individuals.	We	are	interested	in	whether	the	proportions	of	individuals	
who	possess	 the	characteristic	are	 the	same	in	the	two	groups.	Each	
individual	is	represented	only	once	in	the	study.	The	rows	(and	columns)	
of	the	table	are	mutually exclusive,	implying	that	each	individual	can	
belong	 in	 only	 one	 row	 and	 only	 one	 column.	 The	 usual,	 albeit	
conservative,	approach	requires	that	the	expected	frequency	in	each	of	
the	four	cells	is	at	least	five.

Rationale
If	the	proportions	with	the	characteristic	in	the	two	groups	are	equal,	we	
can	estimate	the	overall	proportion	of	individuals	with	the	characteristic	
by	p	=	(a	+	b)/n;	we	expect	n1	×	p	of	them	to	be	in	Group	1	and	n2	×	p	
to	 be	 in	 Group	 2.	 We	 evaluate	 expected	 numbers	 without	 the	
characteristic	 similarly.	 Therefore,	 each expected frequency is the 
product of the two relevant marginal totals divided by the overall  
total.	 A	 large	 discrepancy	 between	 the	 observed	 (O)	 and	 the	
corresponding	 expected	 (E)	 frequencies	 is	 an	 indication	 that	 the	
proportions	 in	 the	 two	 groups	 differ.	 The	 test	 statistic	 is	 based	 on		
this	discrepancy.

Categorical data: two proportions24

Table 24.1	 Observed	frequencies.

Characteristic Group	1 Group	2 Total

Present a b a	+	b
Absent c d c	+	d
Total n1	=	a	+	c n2	=	b	+	d n	=	a	+	b	+	c	+	d
Proportion	with	

characteristic
p

a

n
1

1

= p
b

n
2

2

= p
a b

n
=

+

1	 Define the null and alternative hypotheses under study
H0:	 the	 proportions	 of	 individuals	 with	 the	 characteristic	 are	

equal	in	the	two	groups	in	the	population
H1:	these	population	proportions	are	not	equal.

2	 Collect relevant data from samples of individuals
3	 Calculate the value of the test statistic specific to H0

χ 2

21
2=

− −( )
∑

O E

E

where	 O	 and	 E	 are	 the	 observed	 and	 expected	 frequencies,	
respectively,	in	each	of	the	four	cells	of	the	table.	The	vertical	lines	
around	O	−	E	indicate	that	we	ignore	its	sign.	The	½	in	the	numerator	
is	the	continuity	correction	(Chapter	19).	The	test	statistic	follows	
the	Chi-squared	distribution	with	1	degree	of	freedom.
4	 Compare the value of the test statistic to values from a known 
probability distribution
Refer	χ2	to	Appendix	A3.
5	 Interpret the P-value and results
Interpret	the	P-value	and	calculate	the	confidence	interval	for	the	
difference	in	the	true	population	proportions.	The	95%	confidence	
interval	is	approximated	by

p p
p p

n

p p

n
1 2

1 1

1

2 2

2

1 96
1 1

−( ) ±
−( )

+
−( )

.

1	Fleiss,	J.L.,	Levin,	B.	and	Paik,	M.C.	(2003)	Statistical Methods for Rates and 
Proportions.	3rd	edition.	New	York:	John	Wiley	&	Sons.

If the assumptions are not satisfied
If	E	<	5	in	any	one	cell,	we	use	Fisher’s exact test	to	obtain	a	P-value	
that	does	not	rely	on	the	approximation	to	the	Chi-squared	distribution.	
This	is	best	left	to	a	computer	program	as	the	calculations	are	tedious	to	
perform	by	hand.

Combining 2 ¥ 2 tables
We	 should	 never	 combine	 contingency	 tables	 from	 separate	 studies	
(e.g.	from	different	subgroups	of	the	population,	such	as	males/females,	
or	from	different	populations,	such	as	from	the	UK	and	USA)	simply	by	
adding	the	frequencies	in	the	analogous	cells	of	the	two	or	more	tables.	
If	we	were	to	do	so	and	perform	a	Chi-squared	test	on	the	pooled	data,	
this	might	lead	to	Simpson’s (reverse) paradox	when	the	direction	of	
an	association	is	reversed	if	data	from	subgroups	are	combined	into	a	
single	group.	For	example,	from	the	analysis	of	two	2	×	2	tables,	we	
may	find	that	untreated	males	and	untreated	females	each	have	a	lower	
recovery	rate	than	their	treated	counterparts,	but	when	we	analyse	the	
combined	2	×	2	table	for	the	whole	group,	there	is	a	higher	recovery	
rate	 for	 untreated	 patients	 compared	 with	 those	 on	 treatment.	 This	
paradox	generally	occurs	because	of	an	inappropriate	weighting	of	the	
different	subgroups	when	the	data	are	pooled.	There	are	a	number	of	
correct	approaches	to	an	analysis	of	such	data,	e.g.	the	Mantel–Haenszel	
procedure1,	logistic	regression	(Chapter	30)	and	meta-analysis	(Chapter	
43).

MC
Q

44
46
47
48
49

3
8

11
21

SQ



Table 24.2	 Observed	frequencies	of	pairs	in	which	the	characteristic	is	
present	or	absent.

Circumstance	2

Circumstance	1

Present Absent Total	no.	of	pairs

Present w x w	+	x
Absent y z y	+	z
Total w	+	y x	+	z m	=	w	+	x	+	y	+	z

1	 Define the null and alternative hypotheses under study
H0:	 the	 proportions	 with	 the	 characteristic	 are	 equal	 in	 the	 two	

groups	in	the	population
H1:	these	population	proportions	are	not	equal.

2	 Collect relevant data from two samples
3	 Calculate the value of the test statistic specific to H0

χ 2
21

=
− −( )

+
x y

x y

which	follows	the	Chi-squared	distribution	with	1	degree	of	freedom.	
The	1	in	the	numerator	is	a	continuity	correction	(Chapter	19).

4	 Compare the value of the test statistic to values from a known 
probability distribution
Refer	χ2	to	Appendix	A3.
5	 Interpret the P-value and results
Interpret	 the	 P-value	 and	 calculate	 the	 confidence	 interval	 for	 the	
difference	in	the	true	population	proportions.	The	approximate	95%	
confidence	interval	is

x y

m m
x y

x y

m

−
± + −

−( )1 96 2.

Related groups: McNemar’s test
Assumptions
The	two	groups	are	related	or	dependent,	e.g.	each	individual	may	be	
measured	in	two	different	circumstances.	Every	individual	is	classified	
according	to	whether	the	characteristic	is	present	in	both	circumstances,	
one	circumstance	only,	or	in	neither	(Table	24.2).

Rationale
The	 observed	 proportions	 with	 the	 characteristic	 in	 the	 two		
circumstances	are	(w	+	y)/m	and	(w	+	x)/m.	They	will	differ	if	x	and	y	
differ.	Therefore,	 to	compare	 the	proportions	with	 the	characteristic,		
we	 ignore	 those	 individuals	 who	 agree	 in	 the	 two	 circumstances,		
and	concentrate	on	the	discordant	pairs,	x	and	y.

Example 1

In	order	 to	 assess	 the	 relationship	between	 sexual	 risk	 factors	 and	
HHV-8	infection	(study	described	in	Chapter	23),	the	prevalence	of	
seropositivity	to	HHV-8	was	compared	in	homosexual/bisexual	men	

who	had	a	previous	history	of	gonorrhoea	and	in	those	who	had	not	
previously	 had	 gonorrhoea,	 using	 the	 Chi-squared test.	A	 typical	
computer	output	is	shown	in	Appendix	C.

1	 H0:	the	seroprevalence	of	HHV-8	is	the	same	in	those	with	and	
without	a	history	of	gonorrhoea	in	the	population

H1:	the	seroprevalence	is	not	the	same	in	the	two	groups	in	the	
population.
2	 The	 observed	 frequencies	 are	 shown	 in	 the	 following	
contingency	table:	14/43	(32.6%)	and	36/228	(15.8%)	of	those	with	
and	without	a	previous	history	of	gonorrhoea	are	seropositive	for	
HHV-8,	respectively.
3	 The	 expected	 frequencies	 are	 shown	 in	 the	 four	 cells	 of	 the	
contingency	table.

The	test	statistic	is

χ2
1

2
2 1

2
2

1
2

2

14 7 93

7 93

36 42 07

42 07

29 35 07

=
− −( )

+
− −( )




+
− −( )

.

.

.

.

.

335 07

192 185 93

185 93
5 70

1
2

2

.

.

.
.+

− −( ) 



=

4	 We	 refer	 χ2	 to	 Appendix	 A3	 with	 1	 degree	 of	 freedom:	
0.01	<	P	<	0.05	(computer	output	gives	P	=	0.017).
5	 There	is	evidence	of	a	real	difference	in	 the	seroprevalence	in	
the	 two	groups	 in	 the	population.	We	estimate	 this	difference	 as	
32.6%	−	15.8%	=	16.8%.	The	95%	confidence	interval	for	the	true	
difference	in	the	two	percentages	is	2.0%	to	31.6%

i.e.	16 8 1 96 32 6 67 4 43 15 8 84 2 228. . . . . .± × ×( ) + ×( ) .

HHV-8

Previous	history	of	gonorrhoea

Total	observed

Yes No

Observed Expected Observed Expected

Seropositive 14 (43	×	50/271)	=	7.93 36 (228	×	50/271)	=	42.07 50
Seronegative 29 (43	×	221/271)	=	35.07 192 (228	×	221/271)	=	185.93 221
Total 43 228 271
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Example 2

In	order	 to	 compare	 two	methods	of	 establishing	 the	 cavity	 status	
(present	or	absent)	of	teeth,	a	dentist	assessed	the	condition	of	100	first	
permanent	 molar	 teeth	 that	 had	 either	 tiny	 or	 no	 cavities	 using		
radiographic	 techniques.	 These	 results	 were	 compared	 with	 those	

1	 H0:	the	two	methods	of	assessment	identify	the	same	percentage	
of	teeth	with	cavities	in	the	population
H1:	these	percentages	are	not	equal.
2	 The	frequencies	for	the	matched	pairs	are	displayed	in	the	table:

Diagnosis	on	section

Radiographic	diagnosis

Cavities	absent Cavities	present Total

Cavities	absent 45 4 49
Cavities	present 17 34 51

Total 62 38 100

3	 Test	statistic,	χ 2
217 4 1

17 4
6 86=

− −( )
+

= .

4	 We	 refer	 χ2	 to	 Appendix	 A3	 with	 1	 degree	 of	 freedom:	
0.001	<	P	<	0.01	(computer	output	gives	P	=	0.009).
5	 There	is	substantial	evidence	to	reject	the	null	hypothesis	that	the	
same	percentage	of	teeth	are	detected	as	having	cavities	using	the	
two	methods	of	assessment.	The	radiographic	method	has	a	tendency	
to	fail	to	detect	cavities.	We	estimate	the	difference	in	percentages		
of	 teeth	 detected	 as	 having	 cavities	 as	 51%	−	38%	=	13%.	 An	
approximate	 confidence	 interval	 for	 the	 true	 difference	 in	 the	
percentages	is	given	by	4.4%	to	21.6%

i.e.	
17 4

100

1 96

100
17 4

17 4

100
100

2−
± × +( ) −

−( )










×

.
%.

Adapted	from	Ketley,	C.E.	and	Holt,	R.D.	(1993)	Visual	and	radiographic	diagnosis	of	occlusal	caries	in	first	permanent	molars	and	in	second	primary	molars.	
British Dental Journal,	174,	364–370.

obtained	using	the	more	objective	approach	of	visually	assessing	a	
section	of	each	 tooth.	The	percentages	of	 teeth	detected	as	having	
cavities	 by	 the	 two	 methods	 of	 assessment	 were	 compared	 using	
McNemar’s test.



Chi-squared test: large contingency 
tables
The problem
Individuals can be classified by two factors. For example, one factor 
may represent disease severity (mild, moderate, severe) and the other 
factor may represent blood group (A, B, O, AB). We are interested in 
whether the two factors are associated. Are individuals of a particular 
blood group likely to be more severely ill?

Assumptions
The data may be presented in an r × c contingency table with 
r rows and c columns (Table 25.1). The entries in the table are 
frequencies; each cell contains the number of individuals in a particular 
row and a particular column. Every individual is represented once, and 
can only belong in one row and in one column, i.e. the categories of 
each factor are mutually exclusive. At least 80% of the expected 
frequencies are greater than or equal to 5.

Rationale
The null hypothesis is that there is no association between the two 
factors. Note that if there are only two rows and two columns, then this 
test of no association is the same as that of two proportions (Chapter 
24). We calculate the frequency that we expect in each cell of the 
contingency table if the null hypothesis is true. As explained in Chapter 
24, the expected frequency in a particular cell is the product of the 
relevant row total and relevant column total, divided by the overall 
total. We calculate a test statistic that focuses on the discrepancy 
between the observed and expected frequencies in every cell of the 

Categorical data: more than two categories25

Table 25.1 Observed frequencies in an r × c table.

Row 
categories

Col 1 Col 2 Col 3 … Col c Total

Row 1 f11 f12 f13 … f1c R1
Row 2 f21 f22 f23 … f2c R2
Row 3 f31 f32 f33 … f3c R3
… … … … … … …
… … … … … … …
Row r fr1 fr2 fr3 … frc Rr
Total C1 C2 C3 … Cc n

1 Define the null and alternative hypotheses under study
H0: there is no association between the categories of one factor 

and the categories of the other factor in the population
H1: the two factors are associated in the population.

2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0

χ 2
2

=
−( )∑ O E

E

where O and E are the observed and expected frequencies in each 
cell of the table. The test statistic follows the Chi-squared distribution 
with degrees of freedom equal to (r − 1) × (c − 1).

Because the approximation to the Chi-squared distribution is 
reasonable if the degrees of freedom are greater than one, we do not 
need to include a continuity correction (as we did in Chapter 24).
4 Compare the value of the test statistic to values from a known 
probability distribution
Refer χ2 to Appendix A3.
5 Interpret the P-value and results

table. If the overall discrepancy is large, then it is unlikely the null 
hypothesis is true.

If the assumptions are not satisfied
If more than 20% of the expected frequencies are less than 5, we try to 
combine, appropriately (i.e. so that it makes scientific sense), two or 
more rows and/or two or more columns of the contingency table. We 
then recalculate the expected frequencies of this reduced table, and 
carry on reducing the table, if necessary, to ensure that the E ≥ 5 
condition is satisfied. If we have reduced our table to a 2 × 2 table so 
that it can be reduced no further and we still have small expected 
frequencies, we use Fisher’s exact test (Chapter 24) to evaluate the 
exact P-value. Some computer packages will compute Fisher’s exact 
P-values for larger contingency tables.

Chi-squared test for trend
The problem
Sometimes we investigate relationships in categorical data when one of 
the two factors has only two categories (e.g. the presence or absence of 
a characteristic) and the second factor can be categorized into k, say, 
mutually exclusive categories that are ordered in some sense. For 
example, one factor might be whether or not an individual responds to 
treatment, and the ordered categories of the other factor may represent 
four different age (in years) categories 65–69, 70–74, 75–79 and ≥80. 
We can then assess whether there is a trend in the proportions with the 
characteristic over the categories of the second factor. For example, we 
may wish to know whether the proportion responding to treatment tends 
to increase (say) with increasing age.

Table 25.2 Observed frequencies and assigned scores in a 2 × k table.

Characteristic Col 1 Col 2 Col 3 … Col k Total

Present f11 f12 f13 … f1k R1
Absent f21 f22 f23 … f2k R2
Total C1 C2 C3 … Ck n
Score w1 w2 w3 … wk
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1 Define the null and alternative hypotheses under study
H0: there is no trend in the proportions with the characteristic in the 

population
H1: there is a trend in the proportions in the population.

2 Collect relevant data from a sample of individuals
We estimate the proportion with the characteristic in each of the k 
categories. We assign a score to each of the column categories (Table 
25.2). Typically, these are the successive values, 1, 2, 3, … , k, but, 
depending on how we have classified the column factor, they could be 
numbers that in some way suggest the relative values of the ordered 
categories (e.g. the mid-point of the age range defining each category) 
or the trend we wish to investigate (e.g. linear or quadratic). The use 
of any equally spaced numbers (e.g. 1, 2, 3, … , k) allows us to 
investigate a linear trend.

3 Calculate the value of the test statistic specific to H0

χ 2
1 1

2

1 1 2
2

1

=
−( )

−( ) − ( )





∑∑
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n
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C w n
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n

i i
i i

i i
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using the notation of Table 25.2, and where the sums extend over all 
the k categories. The test statistic follows the Chi-squared distribution 
with 1 degree of freedom.
4 Compare the value of the test statistic to values from a known 
probability distribution
Refer χ2 to Appendix A3.
5 Interpret the P-value and results
Interpret the P-value and calculate a confidence interval for each of 
the k proportions (Chapter 11).

Note: an alternative approach to testing for a linear trend in proportions is to perform a logistic regression analysis (Chapters 30 and 33).

Example

A cross-sectional survey was carried out among schoolchildren  
aged 13–14 years living in southern Brazil, with the objective of 
investigating the relationship between body mass index (BMI, equal 
to the child’s weight divided by his/her height2, kg/m2) and the 
prevalence of a number of asthma-related symptoms. A total of 4010 
children (1933 males and 2077 females) were grouped into four BMI  

categories, defined by the percentiles of BMI (underweight (BMI  
< 5th percentile), normal weight (5th ≤ BMI < 85th), overweight 
(85th ≤ BMI < 95th) and obese (BMI ≥ 95th)) at the time of 
interview. We used the Chi-squared test to determine whether the 
prevalence of wheezing after exercise (an asthma-related symptom) 
differed in the four BMI groups.

1 H0: there is no association between BMI and wheezing after 
exercise in the population of 13- and 14-year-old schoolchildren.

H1: there is an association between BMI and wheezing after 
exercise in the population of 13- and 14-year-old schoolchildren.
2 The observed frequencies (%) and expected frequencies are 
shown in the following contingency table.
3 Test statistic is 

χ2
2 223 32 0

32 0

197 208 6

208 6
7 27=

−( )
+ …+

−( )





=
.
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4 We refer χ2 to Appendix A3 with 3 degrees of freedom: 
0.05 < P < 0.10 (computer output gives P = 0.06).
5 There is insufficient evidence to reject the null hypothesis of no 
association between BMI and wheezing after exercise in the 
population of 13- and 14-year-old teenagers. The estimated 
percentages (95% confidence intervals) with wheezing after  
exercise for the four successive BMI groups, starting with the 
underweight, are: 14% (9%, 19%), 19% (18%, 20%), 21% (17%, 
25%) and 24% (19%, 29%).

Wheezing after exercise

BMI group

Underweight Normal Overweight Obese Total

Yes
 Observed 23 (13.8%) 598 (18.9%) 86 (20.7%) 61 (23.6%) 768
 Expected 32.0 606.9 79.7 49.4
No
 Observed 144 (86.2%) 2571 (81.1%) 330 (79.3%) 197 (76.4%) 3242
 Expected 135.0 2562.1 336.3 208.6

Total 167 3169 416 258 4010

continued



As the four BMI groups in this study are ordered, it is also possible to 
analyse these data using a Chi-squared test for trend, which takes 
into account the ordering of the groups. We may obtain a significant 

result from this test, even though the general test of association gave a 
non-significant result. We assign the scores of 1, 2, 3 and 4 to each of 
the four BMI groups, respectively, and test for a linear trend.

1 H0: there is no linear association between BMI and wheezing 
after exercise in the 13- and 14-year-old population

H1: there is a linear association between BMI and wheezing after 
exercise in the 13- and 14-year-old population.
2 The data are displayed in the previous table. We assign scores of 
1, 2, 3 and 4 to the four BMI groups, respectively.
3 Test statistic is χ2.

2

1 23 4 61 768
1 167
4010

4 258
4010χ =
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4 We refer χ2 to Appendix A3 with 1 degree of freedom: 
0.01 < P < 0.05 (computer output gives P = 0.011).
5 There is evidence to reject the null hypothesis of no linear 
association between BMI and wheezing after exercise in the 
percentage of 13- and 14-year-old schoolchildren. We can therefore 
infer that the percentages of 13- and 14-year-old schoolchildren 
with wheezing after exercise in southern Brazil increases 
significantly with increasing BMI. The estimated percentages  
(95% confidence interval) are 13.8% (8.6% to 19.0%), 18.9% 
(17.5% to 20.3%), 20.7% (16.8% to 24.6%) and 23.6% (18.4% to 
28.8%) in the underweight, normal, overweight and obese 
schoolchildren, respectively.

Adapted from: Cassol, V., Rizzato, T., Teche, S.P., et al. (2005) [Prevalence and severity of asthma among adolescents and their relationship with the body mass 
index]. Jornal de Pediatria (Rio J), 81, 305–9.
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Introduction
Correlation analysis is concerned with measuring the degree of 
association between two variables, x and y. Initially, we assume that 
both x and y are numerical, e.g. height and weight.

Suppose we have a pair of values, (x, y), measured on each of the 
n individuals in our sample. We can mark the point corresponding to 
each individual’s pair of values on a two-dimensional scatter 
diagram (Chapter 4). Conventionally, we put the x variable on the 
horizontal axis, and the y variable on the vertical axis in this diagram. 
By plotting the points for all n individuals, we obtain a scatter of 
points that may suggest a relationship between the two variables.

Pearson correlation coefficient
We say that we have a linear relationship between x and y if a 
straight line drawn through the midst of the points provides the most 
appropriate approximation to the observed relationship. We measure 
how close the observations are to the straight line that best describes 
their linear relationship by calculating the Pearson product 
moment correlation coefficient, usually simply called the 
correlation coefficient. Its true value in the population, ρ (the 
Greek letter rho), is estimated in the sample by r, where

r
x x y y

x x y y
=

−( ) −( )

−( ) −( )

∑
∑∑ 2 2

which is usually obtained from computer output.

Properties
• r ranges from −1 to +1.
• Its sign indicates whether, in general, one variable increases as 
the other variable increases (positive r) or whether one variable 
decreases as the other increases (negative r) (see Fig. 26.1).
• Its magnitude indicates how close the points are to the straight 
line. In particular if r = +1 or −1, then there is perfect correlation 
with all the points lying on the line (this is most unusual, in practice); 
if r = 0, then there is no linear correlation (although there may be a 
non-linear relationship). The closer r is to the extremes, the greater 
the degree of linear association (Fig. 26.1).
• It is dimensionless, i.e. it has no units of measurement.
• Its value is valid only within the range of values of x and y in the 
sample. Its absolute value (ignoring sign) tends to increase as the 
range of values of x and/or y increases. Therefore, restricting the 
sample by imposing an upper or lower limit on the range of values 
of x or y or adding individuals to the sample who have values of x or 
y that are more extreme than those in the original sample will affect 
the magnitude of the correlation coefficient; furthermore, correlation 
coefficients should not be compared in populations which have a 
different range of values of x or of y.
• x and y can be interchanged without affecting the value of r.
• A correlation between x and y does not necessarily imply a ‘cause 
and effect’ relationship.
• r2 represents the proportion of the variability of y that can be 
attributed to its linear relationship with x (Chapter 28).

Correlation26

Figure 26.1 Five diagrams indicating values of r in different situations.
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Figure 26.2 Diagrams showing when it is inappropriate to calculate 
the correlation coefficient. (a) Relationship not linear, r = 0. (b) In 
the presence of outlier(s). (c) Data comprise subgroups.
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1 Define the null and alternative hypotheses under study
H0: ρ = 0
H1: ρ ≠ 0

2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0
Calculate r.

• If n ≤ 150, r is the test statistic

• If n > 150, calculate T r
n

r
=

−( )
−( )

2

1 2

which follows a t-distribution with n − 2 degrees of freedom.
4 Compare the value of the test statistic to values from a 
known probability distribution

• If n ≤ 150, refer r to Appendix A10
• If n > 150, refer T to Appendix A2.

5 Interpret the P-value and results
Calculate a confidence interval for ρ. Provided both variables 
are approximately Normally distributed, the approximate 95% 
confidence interval for ρ is
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Note that, if the sample size is large, H0 may be rejected even if 
r is quite close to zero. Alternatively, even if r is large, H0 may 
not be rejected if the sample size is small. For this reason, it is 
particularly helpful to calculate r2, the proportion of the total 
variance of one variable explained by its linear relationship with 
the other. For example, if r = 0.40 then P < 0.05 for a sample 
size of 25, but the relationship is only explaining 16% 
(= 0.402 × 100) of the variability of one variable.

When not to calculate r
It may be misleading to calculate r when:
• there is a non-linear relationship between the two variables (Fig. 
26.2a), e.g. a quadratic relationship (Chapter 33);
• the data include more than one observation on each individual;
• one or more outliers are present (Fig. 26.2b);
• the data comprise subgroups of individuals for which the mean 
levels of the observations on at least one of the variables are  
different (Fig. 26.2c).

Hypothesis test for the Pearson correlation 
coefficient
We want to know whether there is any linear correlation between 
two numerical variables. Our sample consists of n independent pairs 
of values of x and y. We assume that at least one of the two variables 
is Normally distributed.

Spearman’s rank correlation coefficient
We calculate Spearman’s rank correlation coefficient, a non-
parametric equivalent to Pearson’s correlation coefficient, if one or 
more of the following points is true:
• at least one of the variables, x or y, is measured on an ordinal 
scale;
• neither x nor y is Normally distributed;
• the sample size is small;
• we require a measure of the association between two variables 
when their relationship is non-linear.

Calculation
To estimate the population value of Spearman’s rank correlation 
coefficient, ρs, by its sample value, rs:
1 Arrange the values of x in increasing order, starting with the 
smallest value, and assign successive ranks (the numbers 1, 2, 3, …, n) 
to them. Tied values receive the mean of the ranks these values 
would have received had there been no ties.
2 Assign ranks to the values of y in a similar manner.
3 rs is the Pearson correlation coefficient between the ranks of x 
and y.

Properties and hypothesis tests
These are the same as for Pearson’s correlation coefficient, replacing 
r by rs, except that:
• rs provides a measure of association (not necessarily linear) 
between x and y;
• when testing the null hypothesis that ρs = 0, refer to Appendix 
A11 if the sample size is less than or equal to 10;
• we do not calculate rs

2 (it does not represent the proportion of the 
total variation in one variable that can be attributed to its linear 
relationship with the other).
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Example
As part of a study to investigate the factors associated with changes 
in blood pressure in children, information was collected on 
demographic and lifestyle factors, and clinical and anthropometric 
measures in 4245 children aged from 5 to 7 years. The relationship 
between height (cm) and systolic blood pressure (SBP, measured in 

mmHg) in a sample of 100 of these children is shown in the scatter 
diagram in Fig. 28.1; there is a tendency for taller children in the 
sample to have higher blood pressures. Pearson’s correlation 
coefficient between these two variables was investigated. Appendix 
C contains a computer output from the analysis.

1 H0: the population value of the Pearson correlation coefficient, 
ρ, is zero

H1: the population value of the Pearson correlation coefficient 
is not zero.
2 We can show (Fig. 37.1) that the sample values of both height 
and SBP are approximately Normally distributed.
3 We calculate r as 0.33. This is the test statistic since n ≤ 150.
4 We refer r to Appendix A10 with a sample size of 100: 
P < 0.001.
5 There is strong evidence to reject the null hypothesis; we 
conclude that there is a linear relationship between SBP and 
height in the population of such children. However, r2 
= 0.33 × 0.33 = 0.11. Therefore, despite the highly significant 
result, the relationship between height and SBP explains only a 
small percentage, 11%, of the variation in SBP.

In order to determine the 95% confidence interval for the true 
correlation coefficient, we calculate

z = ( ) =0 5
1 33

0 67
0 3428. ln

.

.
.

z1 0 3428
1 96

9 849
0 1438= − =.

.

.
.

z2 0 3428
1 96

9 849
0 5418= + =.

.

.
.

Thus the confidence interval ranges from 

e

e
to

e

e
, i.e

2 0 1438

2 0 1438

2 0 5418

2 0 5418

1

1

1

1

×

×

×

×

−( )
+( )

−( )
+( )

.

.

.

.
.. from to

0 33

2 33

1 96

3 96

.

.

.

.
.

We are thus 95% certain that ρ lies between 0.14 and 0.49.

As we might expect, given that each variable is Normally 
distributed, Spearman’s rank correlation coefficient between 

these variables gave a comparable estimate of 0.32. To test H0: 
ρs = 0, we refer this value to Appendix A10 and again find P < 0.001.

Data kindly provided by Ms O. Papacosta and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University College Medical 
School, London, UK.



What is linear regression?
To investigate the relationship between two numerical variables, x and 
y, we measure the values of x and y on each of the n individuals in our 
sample. We plot the points on a scatter diagram (Chapters 4 and 26), 
and say that we have a linear relationship if the data approximate a 
straight line. If we believe y is dependent on x, with a change in y being 
attributed to a change in x, rather than the other way round, we can 
determine the linear regression line (the regression of y on x) that best 
describes the straight line relationship between the two variables. In 
general, we describe the regression as univariable because we are 
concerned with only one x variable in the analysis; this contrasts with 
multivariable regression which involves two or more x’s (see Chapters 
29–31).

The regression line
The mathematical equation which estimates the simple linear 
regression line is:

Y = a + bx

• x is called the independent, predictor or explanatory variable;
• for a given value of x, Y is the value of y (called the dependent, 
outcome or response variable) which lies on the estimated line. It is an 
estimate of the value we expect for y (i.e. its mean) if we know the value 
of x, and is called the fitted value of y;
• a is the intercept of the estimated line; it is the value of Y when x = 0 
(Fig. 27.1);
• b is the slope or gradient of the estimated line; it represents the 
amount by which Y increases on average if we increase x by one unit 
(Fig. 27.1).

a and b are called the regression coefficients of the estimated line, 
although this term is often reserved only for b. We show how to evaluate 
these coefficients in Chapter 28. Simple linear regression can be 
extended to include more than one explanatory variable; in this case, it 
is known as multivariable or multiple linear regression (Chapter 
29).

Method of least squares
We perform regression analysis using a sample of observations. a and b 
are the sample estimates of the true parameters, α and β, which define 

the linear regression line in the population. a and b are determined by 
the method of least squares (often called ordinary least squares, OLS) 
in such a way that the ‘fit’ of the line Y = a + bx to the points in the 
scatter diagram is optimal. We assess this by considering the residuals 
(the vertical distance of each point from the line, i.e. residual = 
observed y − fitted Y (Fig. 27.2). The line of best fit is chosen so that 
the sum of the squared residuals is a minimum.

Assumptions
1 There is a linear relationship between x and y.
2 The observations in the sample are independent. The observations 
are independent if there is no more than one pair of observations on each 
individual.
3 For each value of x, there is a distribution of values of y in the 
population; this distribution is Normal. The mean of this distribution 
of y values lies on the true regression line (Fig. 27.3).
4 The variability of the distribution of the y values in the population 
is the same for all values of x, i.e. the variance, σ2, is constant 
(Fig. 27.3).
5 The x variable can be measured without error. Note that we do not 
make any assumptions about the distribution of the x variable.

Many of the assumptions which underlie regression analysis relate to 
the distribution of the y population for a specified value of x, but they 
may be framed in terms of the residuals. It is easier to check the 
assumptions (Chapter 28) by studying the residuals rather than the 
values of y.

The theory of linear regression27

Figure 27.1 Estimated linear regression line showing the intercept, a, and 
the slope, b (the mean increase in Y for a unit increase in x).
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Figure 27.2 Estimated linear regression line showing the residual (vertical 
dotted line) for each point.
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Analysis of variance table
Description
Usually the computer output in a regression analysis contains an 
analysis of variance table (Table 28.1). In analysis of variance 
(Chapter 22), the total variation of the variable of interest, in this case 
‘y’, is partitioned into its two component parts. Because of the 
linear relationship of y on x, we expect y to vary as x varies; we call 
this the variation which is due to or explained by the regression 
(sometimes called simply the model or the regression variation). The 
remaining variability is called the residual error or unexplained 
variation (sometimes called simply the residual or error variation). 
The residual variation should be as small as possible; if so, most of the 
variation in y will be explained by the regression, and the points will lie 
close to or on the line; i.e. the line is a good fit.

Purposes
The analysis of variance table enables us to do the following.
1 Assess how well the line fits the data points. From the information 
provided in the table, we can calculate the proportion of the total 
variation in y that is explained by the regression. This proportion, 
usually expressed as a percentage and denoted by R2 (in simple linear 
regression it is r2, the square of the correlation coefficient; Chapter 26), 
allows us to assess subjectively the goodness of fit of the regression 
equation.
2 Test the null hypothesis that the true slope of the line, β, is zero; a 
significant result indicates that there is evidence of a linear relationship 
between x and y.

3 Obtain an estimate of the residual variance. We need this for testing 
hypotheses about the slope or the intercept, and for calculating 
confidence intervals for these parameters and for predicted values of y.

We provide details of the more common procedures in Chapter 28, 
both in the main body of the text and in the Example.

Regression to the mean
The statistical use of the word ‘regression’ derives from a phenomenon 
known as regression to the mean, attributed to Sir Francis Galton in 
1889. He demonstrated that although tall fathers tend to have tall sons, 
the average height of the sons is less than that of their tall fathers. The 
average height of the sons has ‘regressed’ or ‘gone back’ towards the 
mean height of all the fathers in the population. So, on average, tall 
fathers have shorter (but still tall) sons and short fathers have taller (but 
still short) sons.

We observe regression to the mean in screening (Chapter 38) and in 
clinical trials (Chapter 14), when a subgroup of patients may be 
selected for treatment because their levels of a certain variable, say 
cholesterol, are extremely high (or low). If the meas urement is repeated 
some time later, the average value for the second reading for the 
subgroup is usually less than that of the first reading, tending towards 
(i.e. regressing to) the average of the age- and sex-matched population, 
irrespective of any treatment they may have received. Patients recruited 
into a clinical trial on the basis of a high cholesterol level on their first 
examination are thus likely to show a drop in cholesterol levels on 
average at their second examination, even if they remain untreated 
during this period.



The linear regression line
After selecting a sample of size n from our population and drawing a 
scatter diagram to confirm that the data approximate a straight line, we 
estimate the regression of y on x as:

Y = a + bx

where Y is the estimated fitted or predicted value of y, a is the estimated 
intercept and b is the estimated slope that represents the average change 
in Y for a unit change in x (Chapter 27).

Drawing the line
To draw the line Y = a + bx on the scatter diagram, we choose 
three values of x (i.e. x1, x2 and x3) along its range. We substitute x1 
in the equation to obtain the corresponding value of Y, namely 
Y1 = a + bx1; Y1 is our estimated fitted value for x1 which corresponds 
to the observed value, y1. We repeat the procedure for x2 and x3 to 
obtain the corresponding values of Y2 and Y3. We plot these points 
on the scatter diagram and join them to produce a straight line.

Checking the assumptions
For each observed value of x, the residual is the observed y minus the 
corresponding fitted Y. Each residual may be either positive or negative. 
We can use the residuals to check the following assumptions underlying 
linear regression.
1 There is a linear relationship between x and y: Either plot y against 
x (the data should approximate a straight line) or plot the residuals 
against x (we should observe a random scatter of points rather than any 
systematic pattern).
2 The observations are independent: the observations are 
independent if there is no more than one pair of observations on  
each individual.
3 The residuals are Normally distributed with a mean of zero: 
Draw a histogram, stem-and-leaf plot, box-and-whisker plot (Chapter 
4) or Normal plot (Chapter 35) of the residuals and ‘eyeball’ the  
result.
4 The residuals have the same variability (constant variance) for 
all the fitted values of y: Plot the residuals against the fitted values, Y, 
of y; we should observe a random scatter of points. If the scatter of 
residuals progressively increases or decreases as Y increases, then this 
assumption is not satisfied.
5 The x variable can be measured without error.

Failure to satisfy the assumptions
If the linearity, Normality and/or constant variance assumptions are in 
doubt, we may be able to transform x or y (Chapter 9) and calculate a 
new regression line for which these assumptions are satisfied. It is not 
always possible to find a satisfactory transformation. The linearity and 
independence assumptions are the most important. If you are dubious 
about the Normality and/or constant variance assumptions, you may 
proceed, but the P-values in your hypothesis tests, and the estimates of 

the standard errors, may be affected. Note that the x variable is rarely 
measured without any error; provided the error is small, this is usually 
acceptable because the effect on the conclusions is minimal.

Outliers and influential points
• An influential observation will, if omitted, alter one or both of the 
parameter estimates (i.e. the slope and/or the intercept) in the model. 
Formal methods of detection are discussed briefly in Chapter 29. If 
these methods are not available, you may have to rely on intuition.
• An outlier (an observation that is inconsistent with most of the values 
in the data set (Chapter 3)) may or may not be an influential point, and 
can often be detected by looking at the scatter diagram or the residual 
plots (see also Chapter 29).

For both outliers and influential points, we fit the model with and 
without the suspect individual’s data and note the effect on the 
estimate(s). Do not discard outliers or influential points routinely 
because their omission may affect the conclusions. Always investigate 
the reasons for their presence and report them.

Assessing goodness of fit
We can judge how well the line fits the data by calculating R2 (usually 
expressed as a percentage), which is equal to the square of the correlation 
coefficient (Chapters 26 and 27). This represents the percentage of the 
variability of y that can be explained by its relationship with x. Its 
complement, (100 − R2), represents the percentage of the variation in y 
that is unexplained by the relationship. There is no formal test to assess 
R2; we have to rely on subjective judgement to evaluate the fit of the 
regression line.

Investigating the slope
If the slope of the line is zero, there is no linear relationship between x 
and y: changing x has no effect on y. There are two approaches, with 
identical results, to testing the null hypothesis that the true slope, β, 
is zero.
• Examine the F-ratio (equal to the ratio of the ‘explained’ to the 
‘unexplained’ mean squares) in the analysis of variance table. It follows 
the F-distribution and has (1, n − 2) degrees of freedom in the numerator 
and denominator, respectively.

• Calculate the test statistic =
( )

b

bSE
 which follows the 

t-distribution on n − 2 degrees of freedom, where SE(b) is the standard 
error of b.

In either case, a significant result, usually if P < 0.05, leads to 
rejection of the null hypothesis.

We calculate the 95% confidence interval for β as b ± t0.05 × SE(b), 
where t0.05 is the percentage point of the t-distribution with n − 2 degrees 
of freedom which gives a two-tailed probability of 0.05. This interval 
contains the true slope with 95% certainty. For large samples, say 
n ≥ 100, we can approximate t0.05 by 1.96.

Regression analysis is rarely performed by hand; computer output 
from most statistical packages will provide all of this information.

Performing a linear regression analysis28
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Useful formulae for hand calculations

x x n y y n= =∑ ∑and
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b
x x y y
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Using the line for prediction
We can use the regression line for predicting values of y for specific 
values of x within the observed range (never extrapolate beyond these 
limits). We predict the mean value of y for individuals who have a 
certain value of x by substituting that value of x into the equation of the 
line. So, if x = x0, we predict y as Y0 = a + bx0. We use this estimated 
predicted value, and its standard error, to evaluate the confidence 
interval for the true mean value of y in the population. Repeating this 
procedure for various values of x allows us to construct confidence 
limits for the line. This is a band or region that contains the true line 
with, say, 95% certainty. Similarly, we can calculate a wider region 
within which we expect most (usually 95%) of the observations to lie.

Improving the interpretation of  
the model
In some situations the interpretation of the parameters in a regression 
model may be improved by centring or scaling (or rescaling) an 
explanatory variable, i.e. by subtraction of or division by a suitable 
constant.
• Centring: We generally choose to centre an explanatory variable 
when the intercept of the model does not provide a predicted value of 
the dependent variable for a meaningful individual (for example, when 
systolic blood pressure (SBP) in mm Hg is regressed on height in cm as 
in the example, the intercept represents the mean SBP when the height 
of a child is zero). We centre an explanatory variable by subtracting a 
fixed number from the value of the explanatory variable for each 
individual in the sample. This fixed number might be, for example, the 
lowest value of the explanatory variable observed in the sample; the 
intercept of the revised model then represents the predicted value of  
the outcome variable at this lowest value of the explanatory variable. 
Often, however, we centre by subtracting the sample mean of the 
explanatory variable from each value; the intercept of a regression 
model with the explanatory variable centred in this way is equal to  
the predicted or mean value of the outcome variable when the 
explanatory variable takes its mean value.
• Scaling: We may scale an explanatory variable if the interpretation of 
the coefficient for that variable does not reflect a clinically meaningful 
change in the measurement (e.g. if height were measured in mm rather 
than cm in the example, the regression coefficient would be a very small 
number representing the average change in SBP for a mm change in 
height). In this situation, a more meaningful regression coefficient is 
obtained by scaling the explanatory variable by dividing it by a suitable 
constant (e.g height/10, so the rescaled variable is now measuring cm).

Note that centring only affects the intercept but does not affect the 
estimated regression coefficient for the explanatory variable; in contrast, 
scaling affects the estimated regression coefficient for the explanatory 
variable but not the intercept. Neither centring nor scaling affects the 
significance of the regression coefficient or the fit of the model.



Example

The relationship between height (measured in cm) and systolic 
blood pressure (SBP, measured in mm Hg) in the 100 children 
described in Chapter 26 is shown in Fig. 28.1. We performed a 
simple linear regression analysis of SBP (the dependent variable) 
on height (the explanatory variable). Assumptions underlying this 
analysis are verified in Figs 28.2 to 28.4. A typical full computer 
output is shown in Appendix C. There is a significant linear 
relationship between height and SBP, as can be seen by the 
significant F-ratio in the analysis of variance table (Table 28.1). 
The R2 of the model is 10.9% = 100 × (962.714)/(8808.306), the 
sum of squares due to regression expressed as a percentage of the 
total sum of squares (it is also equal to the square of the correlation 
coefficient which is estimated as 0.33066 (Chapter 26 and Appendix 
C)). Thus the regression line is a poor fit since only approximately 
one tenth of the variability in the SBP can be explained by the 
model; that is, by differences in the heights of the children.

The parameter estimate for ‘Intercept’ corresponds to a, and 
that for ‘Height’ corresponds to b (the slope of the regression line). 
So, the equation of the estimated regression line is:

SBP = 46.28 + 0.48 × height

In this example, the intercept is of no interest in its own right (it relates 
to the predicted blood pressure for a child who has a height of zero 
centimetres – a nonsensical value and, in any case, clearly out of the 
range of values seen in the study). However, we can interpret the slope 
coefficient; in these children, SBP is predicted to increase by 
0.48 mm Hg, on average, for each centimetre increase in height.

P = 0.0008 (Table 28.2) for the hypothesis test for height (i.e. 
H0: true slope equals zero) is identical to that obtained from the 
analysis of variance table (Table 28.1), as expected.

Since the sample size is large (it is 100), we can approximate 
t0.05 by 1.96 and calculate the 95% confidence interval for the true 
slope as:

b ± 1.96 × SE(b) = 0.48 ± (1.96 × 0.14)

Therefore, the 95% confidence interval for the slope ranges from 0.21 
to 0.75 mm Hg per cm increase in height. This confidence interval 
does not include zero, confirming the finding that the slope is 
significantly different from zero.

We can use the regression equation to predict the SBP we 
expect a child of a given height to have. For example, a child 
who is 115 cm tall has an estimated predicted SBP of 46.28 +  
(0.48 × 115) = 101.48 mm Hg; a child who is 130 cm tall has an 
estimated predicted SBP of 46.28 + (0.48 × 130) = 108.68 mm Hg.

continued

Table 28.1 Analysis of variance table. 

Source Sum of squares df Mean square F-ratio P-value

Due to regression 962.714 1 962.714 12.030 0.0008
Residual error 7842.592 98 80.026
Total 8805.306 99

Note: the estimated residual variance is 80.026 mm Hg, the residual mean square.

Table 28.2 Parameter estimates.

Variable
Parameter 
estimate

Standard 
error

Test 
statistic P-value

Intercept 46.2817 16.7845 2.7574 0.0070
Height 0.4842 0.1396 3.4684 0.0008
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Figure 28.1 Scatter plot showing the relationship between systolic blood 
pressure (SBP) and height. The estimated regression line, SBP = 46.28 +
 0.48 × height, is marked on the scatter plot.
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Figure 28.2 No relationship is apparent between the residuals and 
height, indicating that a linear relationship between height and systolic 
blood pressure is appropriate.
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Figure 28.4 There is no tendency for the residuals to increase or 
decrease systematically with the fitted values. Hence the constant 
variance assumption is satisfied.
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Figure 28.3 The distribution of the residuals is approximately Normal.



What is it?
We may be interested in the effect of several explanatory variables,  
x1, x2, …, xk, on a response variable, y. If we believe that these x’s may 
be inter-related, we should not look, in isolation, at the effect on y of 
changing the value of a single x, but should simultaneously take into 
account the values of the other x’s. For example, as there is a strong 
relationship between a child’s height and weight, we may want to know 
whether the relationship between height and systolic blood pressure 
(Chapter 28) is changed when we take the child’s weight into account. 
Multiple linear regression allows us to investigate the joint effect of 
these explanatory variables on y; it is an example of a multivariable 
analysis where we relate a single outcome variable to two or more 
explanatory variables simultaneously. Note that, although the 
explanatory variables are sometimes called independent variables, this 
is a misnomer because they may be related.

We take a sample of n individuals, and measure the value of each of 
the variables on every individual. The multiple linear regression 
equation which estimates the relationships in the population is:

Y = a + b1x1 + b2x2 + … + bkxk

• xi is the ith explanatory variable or covariate (i = 1, 2, 3, …, k);
• Y is the estimated predicted, expected, mean or fitted value of y, which 
corresponds to a particular set of values of x1, x2, …, xk;
• a is a constant term, the estimated intercept; it is the value of Y when 
all the x’s are zero;
• b1, b2, …, bk are the estimated partial regression coefficients; b1 
represents the amount by which Y increases on average if we increase 
x1 by one unit but keep all the other x’s constant (i.e. adjust or control 
for them). If there is a relationship between x1 and the other x’s, b1 
differs from the estimate of the regression coefficient obtained by 
regressing y on only x1, because the latter approach does not adjust for 
the other variables. b1 represents the effect of x1 on y that is 
independent of the other x’s.

Multiple linear regression analyses are invariably performed on the 
computer, and so we omit the formulae for these estimated parameters.

Why do it?
We perform a multiple regression analysis to be able to:
• identify explanatory variables that are associated with the dependent 
variable in order to promote understanding of the underlying process;
• determine the extent to which one or more of the explanatory  
variables is/are linearly related to the dependent variable, after  
adjusting for other variables that may be related to it; and,
• possibly, predict the value of the dependent variable as accurately as 
possible from the explanatory variables.

Assumptions
The assumptions in multiple linear regression are the same (if we 
replace ‘x’ by ‘each of the ‘x’s’) as those in simple linear regression 

(Chapter 27), and they are checked in the same way. Failure to satisfy 
the linearity or independence assumptions is particularly important. We 
can transform (Chapter 9) the y variable and/or some or all of the x 
variables if the assumptions are in doubt, and then repeat the analysis 
(including checking the assumptions) on the transformed data.

Categorical explanatory variables
We can perform a multiple linear regression analysis using categorical 
explanatory variables. In particular, if we have a binary variable, x1 
(e.g. male = 0, female = 1), and we increase x1 by one unit, we are 
‘changing’ from males to females. b1 thus represents the difference in 
the estimated mean values of y between females and males, after 
adjusting for the other x’s.

If we have a nominal explanatory variable (Chapter 1) that has more 
than two categories of response, we have to create a number of dummy 
or indicator variables1. In general, for a nominal variable with k 
categories, we create k − 1 binary dummy variables. We choose one of 
the categories to represent our reference category, and each dummy 
variable allows us to compare one of the remaining k − 1 categories of 
the variable with the reference category. For example, we may be 
interested in comparing mean systolic blood pressure levels in 
individuals living in four countries in Europe (the Netherlands, UK, 
Spain and France). Suppose we choose our reference category to be the 
Netherlands. We generate one binary variable to identify those living in 
the UK; this variable takes the value 1 if the individual lives in the UK 
and 0 otherwise. We then generate binary variables to identify those 
living in Spain and France in a similar way. By default, those living in 
the Netherlands can then be identified since these individuals will have 
the value 0 for each of the three binary variables. In a multiple linear 
regression analysis, the regression coefficient for each of the other three 
countries represents the amount by which Y (systolic blood pressure) 
differs, on average, among those living in the relevant country compared 
with those living in the Netherlands. The intercept provides an estimate 
of the mean systolic blood pressure for those living in the Netherlands 
(when all of the other explanatory variables take the value zero). Some 
computer packages will create dummy variables automatically once it 
is specified that the variable is categorical.

If we have an ordinal explanatory variable and its three or more 
categories can be assigned values on a meaningful linear scale (e.g. 
social classes 1–5), then we can either use these values directly in the 
multiple linear regression equation (see also Chapter 33), or generate a 
series of dummy variables as for a nominal variable (but this does not 
make use of the ordering of the categories).

Multiple linear regression29

1Armitage, P., Berry, G. and Matthews, J.N.S. (2001) Statistical Methods in 
Medical Research. 4th edition. Oxford: Blackwell Science.
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Analysis of covariance
An extension of analysis of variance (ANOVA, Chapter 22) is the 
analysis of covariance, in which we compare the response of interest 
between groups of individuals (e.g. two or more treatment groups) 
when other variables measured on each individual are taken into 
account. Such data can be analysed using multiple linear regression 
techniques by creating one or more dummy binary variables to 
differentiate between the groups. So, if we wish to compare the mean 
values of y in two treatment groups, while controlling for the effect of 
variables x2, x3, …, xk (e.g. age, weight, etc.), we create a binary variable, 
x1, to represent ‘treatment’ (e.g. x1 = 0 for treatment A, x1 = 1 for 
treatment B). In the multiple linear regression equation, b1 is the 
estimated difference in the mean responses on y between treatments B 
and A, adjusting for the other x’s.

Analysis of covariance is the preferred analysis for a randomized 
controlled trial comparing treatments when each individual in the 
study has a baseline and post-treatment follow-up meas urement. In 
this instance, the response variable, y, is the follow-up measurement 
and two of the explanatory variables in the regression model are a 
binary variable representing treatment, x1, and the individual’s baseline 
level at the start of the study, x2. This approach is generally better (i.e. 
has a greater power – see Chapter 36) than using either the change 
from baseline or the percentage change from baseline as the response 
variable.

Choice of explanatory variables
As a rule of thumb, we should not perform a multiple linear regression 
analysis if the number of variables is greater than the number of 
individuals divided by 10. Most computer packages have automatic 
procedures for selecting variables, e.g. stepwise selection (Chapter 33). 
These are particularly useful when many of the explanatory variables 
are related. A particular problem arises when collinearity is present, 
i.e. when pairs of explanatory variables are extremely highly correlated 
(Chapter 33).

Analysis
Most computer output contains the following items.
1 An assessment of goodness of fit

The adjusted R2 represents the proportion (often expressed as a 
percentage) of the variability of y which can be explained by its relationship 
with the x’s. R2 is adjusted so that models with different numbers of 
explanatory variables can be compared. If it has a low value (judged 
subjectively), the model is a poor fit. Goodness of fit is particularly 
important when we use the multiple linear regression equation for 
prediction.

2 The F-test in the ANOVA table
This tests the null hypothesis that all the partial regression coefficients 

in the population, β1, β2, …, βk, are zero. A significant result indicates 
that there is a linear relationship between y and at least one of the x’s.
3 The t-test of each partial regression coefficient, βi (i = 1, 2, …, k)

Each t-test relates to one explanatory variable, and is relevant if we 
want to determine whether that explanatory variable affects the response 
variable, while controlling for the effects of the other covariates. To test 

H0: βi = 0, we calculate the test statistic = ( )
b

b
i

iSE
, which follows the

t-distribution with (n − number of explanatory variables − 1) degrees 
of freedom. Computer output includes the values of each bi, SE(bi) 
and the related test statistic with its P-value. Sometimes the 95% 
confidence interval for βi is included; if not, it can be calculated as 
bi ± t0.05 × SE(bi).

Outliers and influential points
As discussed briefly in Chapter 28, an outlier (an observation that is 
inconsistent with most of the values in the data set (Chapter 3)) may or 
may not be influential (i.e. affect the parameter estimate(s) of the model 
if omitted). An outlier and/or influential observation may have one or 
both of the following:
• A large residual (a residual is the difference between the observed 
and predicted values of the outcome variable, y, for that individual’s 
value(s) of the explanatory variable(s)).
• High leverage when the individual’s value of x (or set of x’s) is a long 
way from the mean value of x (or set of x’s). High leverage values may 
be taken as those greater than 2(k + 1)/n where k is the number of 
explanatory variables in the model and n is the number of individuals in 
the study.

We can determine suspect influential observations by, for example:
• investigating those individuals having large residuals, high leverage 
and/or values of Cook’s distance (an overall measure of influence 
incorporating both residual and leverage values) greater than one or 
very extreme relative to the others, or
• examining special diagnostic plots in which influential points may 
become apparent.

All influential points and outliers should be investigated thoroughly 
and checked for measurement and transcription errors.

Various methods are available for investigating model sensitivity – 
the extent to which estimates are affected by subsets of the data. 
Typically, we might fit the model with and without an influential point 
to assess the effect on the regression coefficients. However, we are 
rarely justified in removing influential observations or outliers from the 
data set providing the final model.



Example
In Chapter 28 we studied the relationship between systolic blood 
pressure (SBP) and height in 100 children. It is known that height 
and weight are positively correlated. We therefore performed a 
multiple linear regression analysis to investigate the effects of 
height (cm), weight (kg) and sex (0 = boy, 1 = girl) on SBP 
(mm Hg) in these children. Assumptions underlying this analysis 
are verified in Figs 29.1 to 29.4.

A typical output from a computer analysis of these data is  
contained in Appendix C. The analysis of variance table indicates  

that at least one of the explanatory variables is related to systolic  
blood pressure (F = 14.95 with 3 and 96 degrees of freedom in the 
numerator and denominator, respectively, P = 0.0001). The adjusted 
R2 value of 0.2972 indicates that 29.7% of the variability in SBP can 
be explained by the model – that is, by differences in the height, weight 
and sex of the children. Thus this provides a much better fit to the data 
than the simple linear regression in Chapter 28 in which R2 = 0.11. 
Typical computer output contains the information in the following 
table about the explanatory variables in the model:

Variable
Parameter 
estimate

Standard 
error

95% CI for 
parameter

Test 
statistic P-value

Intercept 79.4395 17.1182 (45.89 to 112.99) 4.6406 0.0001
Height −0.0310 0.1717 (−0.37 to 0.31) −0.1807 0.8570
Weight 1.1795 0.2614 (0.67 to 1.69) 4.5123 0.0001
Sex 4.2295 1.6105 (1.07 to 7.39) 2.6261 0.0101

continued

The multiple linear regression equation is estimated by:

SBP = 79.44 − (0.03 × height) + (1.18 × weight) + (4.23 × sex)

The relationship between weight and systolic blood pressure is 
highly significant (P < 0.0001), with a 1 kg increase in weight being 
associated with a mean increase of 1.18 mm Hg in SBP, after adjusting 
for height and sex. However, after adjusting for the weight and sex of 
the child, the relationship between height and SBP becomes non-
significant (P = 0.86). This suggests that the significant relationship 
between height and SBP in the simple regression analysis reflects the 
fact that taller children tend to be heavier than shorter children. There 
is a significant relationship (P = 0.01) between sex and SBP; SBP in 
girls tends to be 4.23 mm Hg higher, on average, than that in boys, 

even after taking account of possible differences in height and weight. 
Hence, both weight and sex are independent predictors of a child’s 
SBP.

We can calculate the SBPs we would expect for children of given 
heights and weights. If the first child mentioned in Chapter 28 who is 
115 cm tall is a girl and weighs 37 kg, she now has an estimated 
predicted SBP of 79.44 − (0.03 × 115) + (1.18 × 37) + (4.23 × 1) = 
123.88 mm Hg (higher than the 101.48 mm Hg predicted in  
Chapter 28); if the second child who is 130 cm tall is a boy and  
weighs 30 kg, he now has an estimated predicted SBP of 79.44 − 
(0.03 × 130) + (1.18 × 30) + (4.23 × 0) = 110.94 mm Hg (higher than 
the 108.68 mm Hg predicted in Chapter 28).
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Figure 29.4 The distribution of the residuals is similar in boys and girls, 
suggesting that the model fits equally well in the two groups.
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Figure 29.3 As with the univariable model, there is no tendency for the 
residuals to increase or decrease systematically with fitted values. Hence 
the constant variance assumption is satisfied.
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Figure 29.1 There is no systematic pattern to the residuals when plotted 
against weight. (Note that, similarly to Fig. 28.2, a plot of the residuals 
from this model against height also shows no systematic pattern.)

Figure 29.2 The distribution of the residuals is approximately Normal 
and the variance is slightly less than that from the simple regression 
model (Chapter 28), reflecting the improved fit of the multiple linear 
regression model over the simple model.



Introduction
Logistic regression is very similar to linear regression; we use it when 
we have a binary outcome of interest (e.g. the presence/absence of a 
symptom, or an individual who does/does not have a disease) and a 
number of explanatory variables. We perform a logistic regression 
analysis in order to do one or more of the following:
• Determine which explanatory variables influence the outcome.
• Evaluate the probability that an individual with a particular covariate 
pattern (i.e. a unique combination of values for the explanatory 
variables) will have the outcome of interest.
• Use this probability to assign the individual to an outcome group that 
reflects the individual’s risk of the outcome (we usually use a cut-off of 
0.5 for the probability for this purpose but we may choose a different 
cut-off if this better discriminates between the outcomes).
• Analyse an unmatched case–control study (Chapter 16) when the two 
outcomes are ‘case’ and ‘control’.

Reasoning
We start by creating a binary variable to represent the two outcomes 
(e.g. ‘has disease’ = 1, ‘does not have disease’ = 0). However, we 
cannot use this as the dependent variable in a linear regression analysis 
since the Normality assumption is violated, and we cannot interpret 
predicted values that are not equal to zero or one. So, instead, we take 
the probability, p, that an individual is classified into the highest coded 
category (i.e., has disease) as the dependent variable, and, to overcome 
mathematical difficulties, use the logistic or logit transformation 
(Chapter 9) of it in the regression equation. The logit of this probability 
is the natural logarithm (i.e. to base e) of the odds of ‘disease’, i.e.

logit p
p

p
( ) =

−
ln

1

The logistic regression equation
An iterative process, called maximum likelihood (Chapter 32), rather 
than ordinary least squares regression (so we cannot use linear regression 
software), produces, from the sample data, an estimated logistic 
regression equation of the form

logit p a b x b x b xk k( ) = + + + +1 1 2 2 . . .

where:
• xi is the ith explanatory variable (i = 1, 2, 3, …, k);
• p is the estimated value of the true probability that an individual with 
a particular set of values for x1, …, xk has the disease. p corresponds to 
the proportion with the disease; it has an underlying Binomial 
distribution (Chapter 8);
• a is the estimated constant term;
• b1, b2, …, bk are the estimated logistic regression coefficients.

The exponential of a particular coefficient, for example, eb1 , is an 
estimate of the odds ratio (Chapter 16). For a particular value of x1, it is 
the estimated odds of disease for (x1 + 1) relative to the estimated odds 
of disease for x1, while adjusting for all other x’s in the equation (it is 
therefore often referred to as an adjusted odds ratio). If the odds ratio 
is equal to one (unity), then these two odds are the same, i.e. increasing 
the value of x1 has no impact on the odds of disease. A value of the odds 
ratio above one indicates an increased odds of having the disease, and a 

value below one indicates a decreased odds of having the disease, as x1 
increases by one unit. When the disease is rare, the odds ratio can be 
interpreted as a relative risk.

We can manipulate the logistic regression equation to estimate the 
probability that an individual has the disease. For each individual, with 
a set of covariate values for x1, …, xk, we calculate

z a b x b x b xk k= + + + +1 1 2 2 . . .

Then, the probability that the individual has the disease is estimated as

p
e

e

z

z
=

+1

Generating a series of plots of these probabilities against the values of 
each of a number of covariates is often useful as an aid to interpreting 
the findings.

As the logistic regression model is fitted on a log scale, the effects of 
the xi’s are multiplicative on the odds of disease. This means that their 
combined effect is the product of their separate effects. Suppose, for 
example, x1 and x2 are two binary variables (each coded as 0 or 1) with 
estimated logistic coefficients b1 and b2, respectively, so that the 
corresponding estimated odds of disease for category 1 compared with 
category 0 for each variable is OR1

1= eb  and OR2
2= eb . To obtain the 

estimated odds of disease for an individual who has x1 = 1 and x2 = 1, 
compared with an individual who has x1 = 0 and x2 = 0, we multiply 
OR1 by OR2 (see Example). This concept is extended for numerical 
explanatory variables. The multiplicative effect on the odds scale is 
unlike the situation in linear regression where the effects of the xi’s on 
the dependent variable are additive.

Note that some statistical packages will, by default, model the 
probability that p = 0 (does not have disease) rather than p = 1. This will 
lead to the estimates from the logistic regression model being inverted 
(i.e. the estimate provided will be 1/OR). If this is the case, it is usually 
straightforward to modify these settings to ensure that the correct 
estimates are displayed.

The explanatory variables
Computer output for a logistic regression analysis generally includes, for 
each explanatory variable, the estimated logistic regression coefficient 
with standard error, the estimated odds ratio (i.e. the exponential of the 
coefficient) and a confidence interval for its true value. We can determine 
whether each variable is related to the outcome of interest (e.g. disease) 
by testing the null hypothesis that the relevant logistic regression 
coefficient is zero, which is equivalent to testing the hypothesis that the 
odds ratio of ‘disease’ associated with this variable is unity. This is usually 
achieved by performing one of the following tests.
• The Wald test: the test statistic, which follows the Standard Normal 
distribution, is equal to the estimated logistic regression coefficient 
divided by its standard error. Its square approximates the Chi-squared 
distribution with 1 df.
• The likelihood ratio test (Chapter 32): the test statistic is the 
deviance (also referred to as the likelihood ratio statistic (LRS) or 
−2log likelihood) for the full model minus the deviance for the full 
model excluding the relevant explanatory variable – this test statistic 
follows a Chi-squared distribution with one degree of freedom.
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These tests give similar results if the sample size is large. Although 
the Wald test is less powerful (Chapter 18) and may produce biased 
results if there are insufficient data for each value of the explanatory 
variable, it is usually preferred because it is generally included in the 
computer output (which is not usually the case for the likelihood ratio 
test).

As in multiple linear regression, automatic selection procedures 
(Chapter 33) can be used to select the best combination of explanatory 
variables. As a rule of thumb, we should not perform a multiple logistic 
regression analysis if the number of responses in each of the two 
outcome categories (e.g. has disease/does not have disease) is fewer 
than 10 times the number of explanatory variables1.

Assessing the adequacy of the model
Usually, interest is centred on examining the explanatory variables 
and their effect on the outcome. This information is routinely 
available in all advanced statistical computer packages. However, 
there are inconsistencies between the packages in the way in which 
the adequacy of the model is assessed, and in the way it is described. 
The following provides an indication of what your computer output 
may contain (in one guise or another) for a logistic model with k 
covariates and a sample size of n (full details may be obtained from 
more advanced texts2 and examples are also shown in Appendix 
C).

Evaluating the model and its fit
• The value of the deviance (or LRS or −2log likelihood): on its own 
(i.e. without subtracting the deviance from that of an alternative model), 
this compares the likelihood of the model with k covariates to that of a 
saturated (i.e. a perfectly fitting) model. This test statistic approximately 
follows a Chi-squared distribution with (n − k − 1) degrees of freedom: 
a significant result suggests the model does not fit the data well. Thus 
the deviance is a measure of poorness of fit.
• The model Chi-square, the Chi-square for covariates or G: this 
tests the null hypothesis that all k regression coefficients in the model 
are zero by subtracting the deviance of the model from that of the null 
model which contains no explanatory variables (Chapter 32). G 
approximately follows a Chi-squared distribution with k degrees of 
freedom; a significant result suggests that at least one covariate is 
significantly associated with the dependent variable.
• The Hosmer–Lemeshow test (recommended only if n is large, say > 
400) assesses goodness of fit: see Chapter 46.

Indices of goodness of fit, such as RL
2 and the Pseudo R2, similar to R2 

in linear regression (Chapter 27), may also be determined although they 
are more difficult to interpret in logistic regression analysis.

Assessing predictive efficiency
• A 2 × 2 classification table: this illustrates the ability of the model to 
correctly discriminate between those who do and do not have the 
outcome of interest (e.g. disease): the rows often represent the  
predicted outcomes from the model (where an individual is predicted  
to have or not have the disease according to whether his/her predicted 

probability is greater or less than the (usual) cut-off of 0.5) and the 
columns represent the observed outcomes. The entries in all cells of the 
table are frequencies. If the logistic model is able to classify patients 
perfectly (i.e. there is no misclassification of patients), the only cells of 
the table that contain non-zero entries are those lying on the diagonal 
and the overall percent correct is 100%. Note that it is possible to have 
a high percent correctly predicted (say 70%) when, at its most  
extreme, 100% of the individuals are predicted to belong to the more 
frequently occurring outcome group (e.g. diseased) and 0% to the  
other group. Terms associated with the classification table are as  
follows (Chapter 38):

 Sensitivity: the percent correctly predicted to have the disease
 Specificity: the percent correctly predicted to be disease-free
 False positive rate: the percent incorrectly predicted to have the 
disease
 False negative rate: the percent incorrectly predicted to be 
disease-free.

• A histogram: this illustrates the observed outcomes (e.g. disease or 
no disease) of patients according to their predicted probability (p) of 
belonging to the outcome category of interest, e.g. has disease. The 
horizontal axis, with a scale from 0 to 1, represents the predicted 
probability that an individual has the disease. The column (or bar) for a 
particular predicted probability comprises 1’s and/or 0’s, each entry 
representing the observed outcome for one individual (the codes 1 and 
0 indicate whether the individual does or does not have the disease, 
respectively). A good model will separate the symbols into two groups 
with little or no overlap – i.e. most or all of the 0’s will lie on the far left 
of the histogram and most or all of the 1’s will lie on the far right. Any 
1’s on the left of the histogram (where p < 0.5) or 0’s on the right (where 
p > 0.5) will indicate individuals who have been misclassified.
• A receiver operating characteristic (ROC) curve: this plots the 
sensitivity of the model against 1 minus the specificity (Chapter 38) for 
different cut-offs of the predicted probability, p. Lowering the cut-off 
increases the sensitivity and raising the cut-off increases the specificity 
of the model. The closer the curve is to the upper left corner of the 
diagram, the better the predictive ability of the model. The greater the 
area under the curve (upper limit = 1), the better the model is at 
discriminating between outcomes. 

Investigating the assumptions
We explain how to assess the linearity assumption in Chapter 33.

A logistic regression coefficient with a large standard error may 
indicate:
• collinearity (Chapter 33): the explanatory variables are highly 
correlated, or
• a zero cell count: this occurs when all of the individuals within a 
particular category for a qualitative explanatory variable have the same 
outcome (e.g. all have the disease), so that none of them has the other 
outcome (disease-free). In this situation, we should consider combining 
categories if the covariate has more than two categories or, if this is not 
possible, removing the covariate from the model. Similar procedures 
should be adopted when the data are ‘sparse’ (e.g. when the expected 
frequency is <5) in any category.

Deviance divided by the degrees of freedom (df = n − k − 1) is a 
ratio that has an expected value of 1 when the residual variance 
corresponds to that expected under a Binomial model. There is extra-
Binomial variation indicating overdispersion if the ratio is substantially 
greater than 1 (the regression coefficients have standard errors which 
are underestimated, perhaps because of lack of independence – Chapters 

1 Peduzzi, P., Concato, J., Kemper, E., Holford, T.R. and Feinstein, A.R. (1996) 
A simulation study of the number of events per variable in logistic regression 
analysis. Journal of Clinical Epidemiology, 49, 1373–1379.
2 Menard S. (2002) Applied Logistic Regression Analysis. 2nd edition. Sage Uni-
versity Paper Series on Quantitative Applications in the Social Sciences, Series 
no. 07-106. Thousand Oaks, California: Sage University Press.



41 and 42) and underdispersion if the ratio is substantially less than 1 
(see also Chapters 31 and 42).

Logistic regression diagnostics
Outliers and influential points in logistic regression are usually 
identified by constructing appropriate diagrams and looking for points 
in them which appear to lie apart from the main body of the data. Note 
that a ‘point’ in these circumstances relates to individuals with the 
same covariate pattern, not to a particular individual as in multiple 
regression (Chapter 29). For example, outliers may be detected by 
plotting the logistic residual (e.g. the Pearson or deviance residual) 
against the predicted probability, and influential points may be detected 
by plotting an influence statistic (e.g. the change in the deviance 
attributable to deleting an individual from the analysis) against the 
predicted probability2.

Comparing the odds ratio and the relative 
risk
Although the odds ratio is often taken as an estimate of the relative risk, 
it will only give a similar value if the outcome is rare. Where the outcome 
is not rare, the odds ratio will be greater than the relative risk if the 
relative risk is greater than one, and it will be less than the relative risk 
otherwise. Although the odds ratio is less easily interpreted than the 
relative risk, it does have attractive statistical properties and thus is 
usually preferred (and must be used in a case–control study when the 
relative risk cannot be estimated directly (Chapter 16)).

Multinomial and ordinal  
logistic regression
Multinomial (also called polychotomous) and ordinal logistic 
regression are extensions of logistic regression; we use them when we 
have a categorical dependent variable with more than two categories. 
When the dependent variable is nominal (Chapter 1) (e.g. the patient 

has one of three back disorders: lumbar disc hernia, chronic low-back 
pain, or acute low-back pain) we use multinomial logistic regression. 
When the dependent variable is ordinal or ranked (e.g. mild, moderate 
or severe pain) we use ordinal logistic regression. These methods are 
complex and so you should refer to more advanced texts3 and/or seek 
specialist advice if you want to use them. As a simple alternative, we 
can combine the categories in some appropriate way to create a new 
binary outcome variable, and then perform the usual two-category 
logistic regression analysis (recognizing that this approach may be 
wasteful of information). The decision on how to combine the categories 
should be made in advance, before looking at the data, in order to avoid 
bias.

Conditional logistic regression
We can use conditional logistic regression when we have matched 
individuals (as in a matched case–control study (Chapter 16)) and we 
wish to adjust for possible confounding factors. Analysis of a matched 
case–control study using ordinary logistic regression or the methods 
described in Chapter 16 is inefficient, may produce biased results and 
lacks power because neither acknowledges that cases and controls are 
linked to each other. Conditional logistic regression allows us to 
compare cases with controls in the same matched ‘set’ (i.e. each pair in 
the case of one-to-one matching). In this situation, the ‘outcome’  
is defined by the patient being a case (usually coded 1) or a control 
(usually coded 0). While advanced statistical packages may sometimes 
allow us to perform conditional logistic regression directly, it may be 
necessary to use the Cox proportional hazards regression model 
(Chapter 44).

 

Example

In a study of the relationship between human herpes-virus type 8 
(HHV-8) infection (described in Chapter 23) and sexual behaviour, 
271 homosexual/bisexual men were asked questions relating to 
their past histories of a number of sexually transmitted diseases 
(gonorrhoea, syphilis, herpes simplex type 2 (HSV-2) and HIV). In 
Chapter 24 we showed that men who had a history of gonorrhoea 
had a higher seroprevalence of HHV-8 than those without a  
previous history of gonorrhoea. A multivariable logistic regression 
analysis was performed to investigate whether this effect was 
simply a reflection of the relationships between HHV-8 and the 

other infections and/or the man’s age. The explanatory variables 
were the presence of each of the four infections, each coded  
as ‘0’ if the patient had no history of the particular infection or  
‘1’ if he had a history of that infection, and the patient’s age in 
years.

A typical computer output is displayed in Appendix C. It shows that 
the Chi-square for covariates equals 24.60 on 5 degrees of freedom 
(P = 0.0002), indicating that at least one of the covariates is 
significantly associated with HHV-8 serostatus. The following table 
summarizes the information about each variable in the model.

Variable
Parameter 
estimate

Standard 
error

Wald test 
statistic P-value

Estimated 
odds ratio

95% CI for 
odds ratio

Intercept −2.2242 0.6512 −3.416 0.0006 – –
Gonorrhoea 0.5093 0.4363 1.167 0.2431 1.664 (0.71–3.91)
Syphilis 1.1924 0.7111 1.677 0.0935 3.295 (0.82–13.28)
HSV-2 positivity 0.7910 0.3871 2.043 0.0410 2.206 (1.03–4.71)
HIV 1.6357 0.6028 2.713 0.0067 5.133 (1.57–16.73)
Age 0.0062 0.0204 0.302 0.7628 1.006 (0.97–1.05)

continued

3 Ananth, C.V. and Kleinbaum, D.G. (1997) Regression methods for ordinal 
responses: a review of methods and applications. International Journal of Epi-
demiology, 27, 1323–1333.
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These results indicate that HSV-2 positivity (P = 0.04) and HIV 
status (P = 0.007) are independently associated with HHV-8 
infection; individuals who are HSV-2 seropositive have 2.21 times  
(= exp[0.7910]) the odds of being HHV-8 seropositive as those who are 
HSV-2 seronegative, after adjusting for the other infections. In other 
words, the odds of HHV-8 seropositivity in these individuals is  
increased by 121%. The upper limit of the confidence interval for this 
odds ratio shows that this increased odds could be as much as 371%. 
HSV-2 infection is a well-documented marker of sexual activity. Thus, 
rather than HSV-2 being a cause of HHV-8 infection, the association 
may be a reflection of the sexual activity of the individual.

Furthermore, the multiplicative effect of the model suggests that a 
man who is both HSV-2 and HIV seropositive is estimated to have 
2.206 × 5.133 = 11.3 times the odds of HHV-8 infection compared 
with a man who is seronegative for both, after adjusting for the other 
infections.

In addition, there is a tendency for a history of syphilis to be 
associated with HHV-8 serostatus. Although this is marginally non-
significant (P = 0.09), we should note that the confidence interval 
does include values for the odds ratio as high as 13.28. In contrast, 
there is no indication of an independent relationship between a history 

of gonorrhoea and HHV-8 seropositivity, suggesting that this variable 
appeared, by the univariable Chi-squared test (Chapter 24), to be 
associated with HHV-8 serostatus because of the fact that many men 
who had a history of one of the other sexually transmitted diseases in 
the past also had a history of gonorrhoea. There is no significant 
relationship between HHV-8 seropositivity and age; the odds ratio 
indicates that the estimated odds of HHV-8 seropositivity increases by 
0.6% for each additional year of age.

The probability that a 51-year-old man has HHV-8 infection if 
he has gonorrhoea and is HSV-2 positive (but does not have 
syphilis and is not HIV positive) is estimated as 0.35, i.e. it  
is exp[−0.6077]/[1 + exp(−0.6077)] where −0.6077 = −2.2242 + 
0.5093 + 0.7910 + (0.0062 × 51).

The area under the ROC curve shown in Appendix C is 0.6868, 
indicating that the model fits moderately well and has reasonably 
good discriminatory ability. Two different cut-offs for the predictive 
probability are chosen by examining the ROC curve. It can be seen 
from the relevant 2 × 2 classification tables in the appendix that a cut-
off of 0.5 leads to very poor sensitivity (19.15%) and extremely high 
specificity (97.65%) whereas a cut-off of 0.2 increases the sensitivity 
to 51.06% but lowers the specificity to 79.81%.



Rates
In any longitudinal study (Chapter 12) investigating the occurrence of 
an event (such as death), we should take into account the fact that 
individuals are usually followed for different lengths of time. This 
may be because some individuals drop out of the study or because 
individuals are entered into the study at different times, and therefore 
follow-up times from different people may vary at the close of the 
study. As those with a longer follow-up time are more likely to 
experience the event than those with shorter follow-up, we consider 
the rate at which the event occurs per person per period of time. Often 
the unit which represents a convenient period of time is a year (but it 
could be a minute, day, week, etc.). Then the event rate per person per 
year (i.e. per person-year of follow-up) is estimated by

Rate = Number of events occurring

Total number of years of folllow-up for all individuals

Number of events occurring

Per
=

sson-years of follow-up

Each individual’s length of follow-up is usually defined as the time 
from when he or she enters the study until the time when the event 
occurs or the study draws to a close if the event does not occur. The total 
follow-up time is the sum of all the individuals’ follow-up times.

The rate is called an incidence rate when the event is a new case (e.g. 
of disease) or the mortality rate when the event is death. When the rate 
is very small, it is often multiplied by a convenience factor such as 1000 
and re-expressed as the rate per 1000 person-years of follow-up.

Features of the rate
• When calculating the rate, we do not distinguish between  
person-years of follow-up that occur in the same individual and those 
that occur in different individuals. For example, the person-years of 
follow-up contributed by 10 individuals, each of whom is followed for 
1 year, will be the same as that contributed by 1 person followed for 10 
years.
• Whether we also include multiple events from each individual (i.e. 
when the event occurs on more than one occasion) depends on the 
hypothesis of interest. If we are only interested in first events, then 
follow-up must cease at the point at which an individual experiences 
his or her first event as the individual is no longer at risk of a first 
event after this time. Where multiple events from the same individual 
are included in the calcu lation of the rate, we have a special form of 
clustered data (Chapter 41), and appropriate statistical methods must 
be used (Chapters 41 and 42).
• A rate cannot be calculated in a cross-sectional study (Chapter 12) 
since this type of study does not involve time.

Comparing the rate and the risk
The risk of an event (Chapter 15) is simply the total number of events 
divided by the number of individuals included in the study at the start of 
the investigation, with no allowance for the length of follow-up. As a 
result, the risk of the event will be greater when individuals are followed 
for longer, since they will have more opportunity to experience the 

event. In contrast, the rate of the event should remain relatively stable 
in these circumstances, as the rate takes account of the duration of 
follow-up.

Relative rates
We may be interested in comparing the rate of disease in a group of 
individuals exposed to some factor of interest (Rateexposed) with that in 
a group of individuals not exposed to the factor (Rateunexposed).

Relative rate
Rate

Rate
exposed

unexposed

=

The relative rate (or rate ratio, sometimes referred to as the incidence 
rate ratio) is interpreted in a similar way to the relative risk (Chapter 
15) and to the odds ratio (Chapters 16 and 30); a relative rate of 1 
(unity) indicates that the rate of disease is the same in the two groups, a 
relative rate greater than 1 indicates that the rate is higher in those 
exposed to the factor than in those who are unexposed, and a relative 
rate less than one indicates that the rate is lower in the group exposed to 
the factor.

Although the relative rate is often taken as an estimate of the relative 
risk, the relative rate and the relative risk will only be similar if the event 
(e.g. disease) is rare. When the event is not rare and individuals are 
followed for varying lengths of time, the rate, and therefore the relative 
rate, will not be affected by the different follow-up times. This is not the 
case for the relative risk as the risk, and thus the relative risk, will change 
as individuals are followed for longer periods. Hence, the relative rate 
is always preferred when follow-up times vary between individuals in 
the study.

Poisson regression
What is it?
The Poisson distribution (named after a French mathematician) is a 
probability distribution (Chapter 8) of the count of the number of rare 
events that occur randomly over an interval of time (or space) at a 
constant average rate. This forms the basis of Poisson regression, which 
is used to analyse the rate of some event (e.g. disease) when individuals 
have different follow-up times. This contrasts with logistic regression 
(Chapter 30) which is concerned only with whether or not the event 
occurs and is used to estimate odds ratios. In Poisson regression, we 
assume that the rate of the event among individuals with the same 
explanatory variables (e.g. age and sex) is constant over the whole study 
period. We generally want to know which explanatory variables 
influence the rate at which the event occurs, and may wish to compare 
this rate in different exposure groups and/or predict the rate for groups 
of individuals with particular characteristics.

The equation and its interpretation
The Poisson regression model takes a very similar form to the logistic 
regression model (Chapter 30), each having a (usually) linear combination 
of explanatory variables on the right-hand side of the equation. Poisson 
regression analysis also mirrors logistic regression analysis in that we 
transform the outcome variable in order to overcome mathematical 
difficulties. We use the natural log transformation (ln) of the rate and an 
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iterative process (maximum likelihood, Chapter 32) to produce  
an estimated regression equation from the sample data of the form

ln . . .r a b x b x b xk k( ) = + + + +1 1 2 2

where:
• xi is the ith explanatory variable (i = 1, 2, 3, …, k);
• r is the estimated value of the mean or expected rate for an individual 
with a particular set of values for x1, …, xk;
• a is the estimated constant term providing an estimate of the log rate 
when all xi’s in the equation take the value zero (the log of the baseline 
rate);
• b1, b2, …, bk are the estimated Poisson regression coefficients.

The exponential of a particular coefficient, for example, eb1, is the 
estimated relative rate associated with the relevant variable. For a 
particular value of x1, it is the estimated rate of disease for (x1 + 1) 
relative to the estimated rate of disease for x1, while adjusting for all 
other xi’s in the equation. If the relative rate is equal to one (unity), then 
the event rates are the same when x1 increases by one unit. A value of the 
relative rate above one indicates an increased event rate, and a value 
below one indicates a decreased event rate, as x1 increases by one unit.

As with logistic regression, Poisson regression models are fitted on 
the log scale. Thus, the effects of the xi’s are multiplicative on the rate of 
disease.

We can manipulate the Poisson regression equation to estimate  
the event rate for an individual with a particular combination of  
values of x1, …, xk. For each set of covariate values for x1, …, xk, we 
calculate

z a b x b x b xk k= + + + +1 1 2 2 . . .

Then, the event rate for that individual is estimated as ez.

Use of an offset
Although we model the rate at which the event occurs (i.e. the number 
of events divided by the person-years of follow-up), most statistical 
packages require the number of events occurring to be specified as the 
dependent variable rather than the rate itself. The log of each individual’s 
person-years of follow-up is then included as an offset in the model. 
Assuming that we are only interested in including a single event per 
person, the number of events occurring in each individual will either 
take the value 0 (if the event did not occur) or 1 (if the event did occur). 
This provides a slightly different formulation of the model which allows 
the estimates to be generated in a less computationally intensive way. 
The results from the model, however, are exactly the same as they 
would be if the rate were modelled.

Entering data for groups
Note that when all of the explanatory variables are categorical, we can 
simplify the data entry process by making use of the fact that the 
calculation of the rate does not distinguish between person-years of 
follow-up that occur in the same individual and those that occur in 
different individuals. For example, we may be interested in the effect of 
only two explanatory variables, sex (male or female) and age (<16, 
16–20 and 21–25 years), on the rate of some event. Between them, these 
two variables define six groups (i.e. males aged < 16 years, females 
aged < 16 years, …, females aged 21–25 years). We can simplify the 
entry of these data by determining the total number of events for all 
individuals within the same sex/age group and the total person-years of 
follow-up for these individuals. The estimated rate in each group is then 
calculated as the total number of events divided by the person-years of 

follow-up in that group. Using this approach, rather than entering data for 
the n individuals one by one, we enter the data for each of the six groups, 
and do so by creating a model in which the explanatory variables are the 
binary and dummy variables (Chapter 29) for sex and age. Note that when 
entering data in this way, it is not possible to accommodate numerical 
covariates to define the groups or include an additional covariate in the 
model that takes different values for the individuals in a group.

Incorporating variables that change over time
By splitting the follow-up period into shorter intervals, it is possible to 
incorporate variables that change over time into the model. For 
example, we may be interested in relating the smoking history of 
middle-aged men to the rate at which they experience lung cancer. Over 
a long follow-up period, many of these men may give up smoking and 
their rates of lung cancer may be lowered as a result. Thus, categorizing 
men according to their smoking status at the start of the study may give 
a poor representation of the impact of smoking status on lung cancer. 
Instead, we split each man’s follow-up into short time intervals in such 
a way that his smoking status remains constant in each interval. We then 
perform a Poisson regression analysis, treating the relevant information 
in each short time interval for each man (i.e. the occurrence/non-
occurrence of the event, his follow-up time and smoking status) as if it 
came from a different man.

Computer output
Comprehensive computer output for a Poisson regression analysis 
includes, for each explanatory variable, the estimated Poisson regression 
coefficient with standard error, the estimated relative rate (i.e. the 
exponential of the coefficient) with a confidence interval for its true 
value, and a Wald test statistic (testing the null hypothesis that the 
regression coefficient is zero or, equivalently, that the relative rate of 
‘disease’ associated with this variable is unity) and associated P-value. 
As with the output from logistic regression (Chapter 30), we can assess 
the adequacy of the model using −2log likelihood (LRS or deviance) 
and the model Chi-square or the Chi-square for covariates (see also 
Chapter 32).

Extra-Poisson variation
One concern when fitting a Poisson regression model is the possibility 
of extra-Poisson variation, which usually implies overdispersion. This 
occurs when the residual variance is greater than would be expected 
from a Poisson model, perhaps because an outlier is present (Chapter 
3), because an important explanatory variable has not been included in 
the model, or because the data are clustered (Chapters 41 and 42) and 
the clustering has not adequately been taken into account. Then the 
standard errors are usually underestimated and, consequently, the 
confidence intervals for the parameters are too narrow and the P-values 
too small. A way to investigate the possibility of extra-Poisson variation 
is to divide −2log likelihood (LRS or deviance) by the degrees of 
freedom, n − k − 1, where n is the number of individuals in the data set 
and k is the number of explanatory variables in the model. This quotient 
should be approximately equal to 1 if there is no extra-Poisson 
variation; values substantially above 1 may indicate overdispersion. If 
there is overdispersion, then it is possible to use the scale parameter 
(which is usually assumed to equal 1 when there is no extra-Poisson 
variation) to fit a Poisson regression model that is appropriate for 
overdispersed data. Alternatively, it may be advisable to fit a regression 
model based on the negative Binomial distribution (another type of 
probability distribution that can be used for counts) instead of the 



Poisson distribution. Underdispersion, where the residual variance is 
less than would be expected from a Poisson model and where the ratio 
of −2log likelihood to n − k − 1 is substantially less than 1, may also 
occur (e.g. if high counts cannot be recorded accurately). 
Underdispersion and overdispersion may also be a concern when 
performing logistic regression (Chapter 30), when they are referred to 
as extra-Binomial variation.

Alternative to Poisson analysis
When a group of individuals is followed from a natural ‘starting point’ 
(e.g. an operation) until the time that the person develops an endpoint of 
interest, we may use an alternative approach known as survival 
analysis, which, in contrast to Poisson regression, does not assume that 
the ‘hazard’ (the rate of the event in a small interval) is constant over 
time. This approach is described in detail in Chapter 44.

Individuals with HIV infection treated with highly active antiretroviral 
therapy (HAART) usually experience a decline in HIV viral load to 
levels below the limit of detection of the assay (an initial response). 
However, some of these individuals may experience virological 
failure after this stage; this occurs when an individual’s viral load 
becomes detectable again while on therapy. Identification of factors 
that are associated with an increased rate of virological failure may 
allow steps to be taken to prevent this occurring. As patients are 
followed for different lengths of time, a Poisson regression analysis 
is appropriate.

516 patients who experienced an initial response to therapy were 
identified and followed until the time of virological failure, or until 
their last date of follow-up if their viral load remained suppressed at 
this time. Follow-up started on the first date that their viral load 
became undetectable. The explanatory variable of primary interest 
was the duration of time on treatment since an initial response but this 
was a variable whose values were constantly changing for each patient 
during the study period. Therefore, to investigate whether the 
virological failure rate did change over time, the duration of time on 
treatment since an initial response was split into three time intervals: 
<1, 1–2 and >2 years (this created 988 sets of observations), with the 
broad assumption that the virological failure rate was approximately 
constant within each period. Failure rates in the three time periods 
were then compared. The data (the length of follow-up in that interval, 
whether or not virological failure was experienced in that interval, and 
relevant explanatory variables) were entered on to a spreadsheet for 
each patient in every interval in which he or she was followed up. The 
explanatory variables considered included demographics, the stage of 
disease at the time of starting therapy, the year of starting HAART and 
whether or not the patient had received treatment in the past.

In order to limit the number of covariates in the multi variable 
Poisson regression model, a separate univariable Poisson regression 
model for each covariate was used to identify the covariates associated 
with virological failure (see Chapter 33).

Over a total follow-up of 718 person-years, 61 patients experienced 

virological failure, an unadjusted event rate of 8.50 per 100 person-
years (95% confidence interval: 6.61, 10.92). Unadjusted virological 
failure rates were 8.13 (6.31, 10.95) in the first year after initial 
response to therapy, 12.22 (7.33, 17.12) in the second year and 3.99 
(1.30, 9.31) in later years. Results from a Poisson regression model 
that incorporated only two dummy variables (Chapter 29) to reflect 
the categories of 1–2 and >2 years, each compared with <1 year, since 
an initial response to therapy, suggested that time since initial 
virological response was significantly associated with virological 
failure (P = 0.04). In addition, the patient’s sex (P = 0.03), his or her 
baseline CD8 count (P = 0.01) and treatment status at the time of 
starting the current regimen (previously received treatment, never 
received treatment, P = 0.008) were all significantly associated with 
virological failure in univariable Poisson models. Thus, a multivariable 
Poisson regression analysis was performed to assess the relationship 
between virological failure and duration of time on therapy, after 
adjusting for these other variables. The results are summarized in 
Table 31.1; full computer output is shown in Appendix C.

The results from this multivariable model suggested that there was 
a trend towards a higher virological failure rate in the period 1–2 years 
after initial response compared with that seen in the first year 
(virological failure rate was increased by 53% in the period 1–2 years), 
but a lower rate after the second year (failure rate was reduced by 44% 
in this period compared with that seen in the first year after initial 
response), although neither of these effects was statistically significant. 
After adjusting for all other variables in the model, patients who were 
receiving their first treatment had an estimated virological failure rate 
that was 44% lower than that of patients who had previously received 
treatment, the estimated virological failure rate in men was 39% less 
than that seen in women (this was not statistically significant), and the 
estimated virological failure rate was reduced by 5% if the CD8  
count at baseline was 100 cells/mm3 higher.

See also the Examples in Chapters 32 and 33 for additional  
analyses relating to this Poisson model, including assessments of 
overdispersion, goodness of fit and linearity of the covariates.

Example

continued
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Table 31.1 Results from multivariable Poisson regression analysis of factors associated with virological failure.

Variable* Parameter estimate Standard error
Estimated 
relative rate

95% confidence interval 
for relative rate Wald P-value†

Time since initial response to  
therapy (years)

<1 reference – 1 – –
1–2 0.4256 0.2702 1.53 0.90–2.60 0.12
>2 −0.5835 0.4825 0.56 0.22–1.44 0.23

Treatment status
Previously received treatment (0) reference – 1 –

Never received treatment (1) −0.5871 0.2587 0.56 0.33–0.92 0.02

Sex
Female (0) reference – 1 –

Male (1) −0.4868 0.2664 0.61 0.36–1.04 0.07

CD8 count (per 100 cells/mm3) −0.0558 0.0267 0.95 0.90–1.00 0.04

* Codes for binary variables (sex and treatment status) are shown in parentheses. Time since initial response to therapy was included by incorporating 
dummy variables to reflect the periods 1–2 years and >2 years after initial response.
† An alternative method of assessing the significance of categorical variables with more than two categories is described in Chapters 32 and 33.

Adapted from work carried out by Ms Colette Smith, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, 
London, UK.



Statistical modelling includes the use of simple and multi ple linear 
regression (Chapters 27–29), logistic regression (Chapter 30), Poisson 
regression (Chapter 31) and some methods that deal with survival data 
(Chapter 44). All these methods rely on generating a mathematical 
model that best describes the relationship between an outcome and one 
or more explanatory variables. Generation of such a model allows us  
to determine the extent to which each explanatory variable is related to 
the outcome after adjusting for all other explanatory variables in the 
model and, if desired, to predict the value of the outcome from these 
explanatory variables.

The generalized linear model (GLM) can be expressed in the form

g Y a b x b x b xk k( ) = + + + +1 1 2 2 . . .

where:
• Y is the estimated value of the predicted, mean or expected value of 
the dependent variable which follows a known probability distribution 
(e.g. Normal, Binomial, Poisson);
• g(Y), called the link function, is a transformation of Y which produces 
a linear relationship with x1, …, xk, the predictor or explanatory 
variables;
• b1, …, bk are estimated regression coefficients that relate to these 
explanatory variables; and
• a is a constant term.

Each of the regression models described in earlier chapters can be 
expressed as a particular type of GLM (see Table 32.1). The link 
function is the logit of the proportion (i.e. the loge of the odds) in 
logistic regression and the loge of the rate in Poisson regression. No 
transformation of the dependent variable is required in simple and 
multiple linear regression; the link function is then referred to as the 
identity link. Once we have specified which type of regression we 
wish to perform, most statistical packages incorporate the link function 
into the calculations automatically without any need for further 
specification.

Which type of model do we choose?
The choice of an appropriate statistical model will depend on the 
outcome of interest (see Table 32.1). For example, if our dependent 
variable is a continuous numerical variable, we may use simple or 
multiple linear regression to identify factors associated with this 
variable. If we have a binary outcome (e.g. patient died or did not die) 

and all patients are followed for the same amount of time, then a logistic 
regression model would be the appropriate choice.

Note that we may be able to choose a different type of model by 
modifying the format of our dependent variable. In particular, if we have 
a continuous numerical outcome but one or more of the assumptions of 
linear regression are not met, we may choose to categorize our outcome 
variable into two groups to generate a new binary outcome variable. For 
example, if our dependent variable is systolic blood pressure (a continuous 
numerical variable) after a 6-month period of anti-hypertensive therapy, 
we may choose to dichotomize the systolic blood pressure as high or low 
using a particular cut-off, and then use logistic regression to identify 
factors associated with this binary outcome. While dichotomizing the 
dependent variable in this way may simplify the fitting and interpretation 
of the statistical model, some information about the dependent variable 
will usually be discarded. Thus the advantages and disadvantages of this 
approach should always be considered carefully.

Likelihood and maximum  
likelihood estimation
When fitting a GLM, we generally use the concept of likelihood to 
estimate the parameters of the model. For any GLM characterized by a 
known probability distribution, a set of explanatory variables and some 
potential values for each of their regression coefficients, the likelihood 
of the model (L) is the probability that we would have obtained the 
observed results had the regression coefficients taken those values. We 
estimate the coefficients of the model by selecting the values for the 
regression coefficients that maximize L (i.e. they are those values that 
are most likely to have produced our observed results); the process is 
maximum likelihood estimation (MLE) and the estimates are 
maximum likelihood estimates. MLE is an iterative process and thus 
specialized computer software is required. One exception to MLE is in 
the case of simple and multiple linear regression models (with the 
identity link function) where we usually estimate the parameters using 
the method of least squares (the estimates are often referred to as 
ordinary least squares (OLS) estimates (Chapter 27)); the OLS and 
MLE estimates are identical in this situation.

Assessing adequacy of fit
Although MLE maximizes L for a given set of explanatory variables, 
we can always improve L further by including additional explanatory 

Generalized linear models32

Table 32.1 Choice of appropriate types of GLM for use with different types of outcome.

Type of outcome Type of GLM commonly used See Chapter

Continuous numerical Simple or multiple linear 28, 29
Binary

Incidence of disease in longitudinal study  
(patients followed for equal periods of time)

Logistic 30

Binary outcome in cross-sectional study Logistic 30
Unmatched case–control study Logistic 30

Matched case–control study Conditional logistic 30
Categorical outcome with more than two categories Multinomial or ordinal logistic regression 30
Event rate or count Poisson 31
Time to event* Exponential, Weibull or Gompertz models 44

* Time to event data may also be analysed using a Cox proportional hazards regression model (Chapter 44).
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variables. At its most extreme, a saturated model is one that includes a 
separate variable for each observation (i.e. individual) in the data set. 
While such a model would explain the data perfectly, it is of limited use 
in practice as the prediction of future observations from this model is 
likely to be poor. The saturated model does, however, allow us to 
calculate the value of L that would be obtained if we could model the 
data perfectly. Comparison of this value of L with the value obtained 
after fitting our simpler model with fewer variables provides a way of 
assessing the adequacy of the fit of our model. We consider the 
likelihood ratio, the ratio of the value of L obtained from the saturated 
model to that obtained from the fitted model, in order to compare these 
two models. More specifically, we calculate the likelihood ratio 
statistic (LRS) as

LRS saturated

fitted

saturated

= − ×
( )
( )

= − × ( ) −

2

2

log

log

log log

L

L

L L ffitted( )[ ].

The LRS, often referred to as −2log likelihood (see Chapters 30 and 31) 
or as the deviance, approximately follows a Chi-squared distribution 
with degrees of freedom equal to the difference in the number of 
parameters fitted in the two models (i.e. n − k − 1, where n is the number 
of observations in the data set and k is the number of parameters, apart 
from the intercept, in the simpler model). The null hypothesis is that the 
extra parameters in the larger saturated model are all zero; a high value 
of the LRS will give a significant result indicating that the goodness of 
fit of the model is poor.

The LRS can also be used in other situations. In particular, the LRS 
can be used to compare two models, neither of which is saturated, when 
one model is nested within another (i.e. the larger model includes all of 
the explanatory variables that are included in the smaller model, in 
addition to extra variables). In this situation, the test statistic is the 
difference between the value of the LRS from the model which includes 
the extra variables and that from the model which excludes these extra 
variables. The test statistic follows a Chi-squared distribution with 
degrees of freedom equal to the number of additional parameters 
included in the larger model, and is used to test the null hypothesis that 
the extra parameters in the larger model are all zero. The LRS can also 
be used to test the null hypothesis that all the parameters associated with 
the covariates of a model are zero by comparing the LRS of the model 
which includes the covariates with that of the model which excludes 
them. This is often referred to as the model Chi-square or the Chi-
square for covariates (see Chapters 30 and 31).

Regression diagnostics
When performing any form of regression analysis, it is important to 
consider a series of regression diagnostics. These allow us to examine 
our fitted regression model and look for flaws that may affect our 
parameter estimates and their standard errors. In particular, we must 
consider whether the assumptions underlying the model are violated 
and whether our results are heavily affected by influential observations 
(Chapter 28).

In the Example in Chapter 31, we used Wald tests to identify individual 
factors associated with virological rebound in a group of 516  
HIV-positive patients (with 988 sets of observations) who had been 
treated with highly active antiretroviral therapy (HAART). In 
particular, we were interested in whether the rate of virological  
failure increased over time, after controlling for other potentially 
confounding variables that were related to virological failure. Although 
the outcome of primary interest was binary (patient experienced 
virological failure, patient did not experience virological failure), a 
Poisson regression model rather than a logistic model was chosen as 
individual patients were followed for different lengths of time. Thus, 
the outcome variable for the analysis performed was an event rate. In 
this chapter, P-values for the variables have been calculated using 
likelihood ratio statistics. In particular, to calculate the single 
P-value associated with both dummy variables representing the 
time since initial response to therapy, two models were fitted. The  
first included the variables relating to treatment status (previously 
received treatment, never received treatment), sex and baseline CD8 
count (Model 1); the second included these variables as well as the 
two time dummy variables (Model 2). The difference between the 

values obtained for −2log likelihood (i.e. the LRS or deviance) from 
each of the models was then considered (Table 32.2). A full computer 
output is shown in Appendix C.

The inclusion of the two dummy variables was associated with a 
reduction in the value of −2log likelihood of 5.53 (= 393.12 − 387.59). 
This test statistic follows the Chi-squared distribution with 2 degrees 
of freedom (as 2 additional parameters were included in the larger 
model); the P-value associated with this test statistic was 0.06 indicating 
that the relationship between virological failure and time since initial 
response is marginally non-significant. The value of −2log likelihood 
for Model 2 also allowed us to assess the adequacy of fit of this  
model by comparing its value of −2log likelihood to a Chi-squared 
distribution with 982 degrees of freedom. The P-value obtained for 
this comparison was >0.99, suggesting that the goodness of fit of the 
model is acceptable. However, it should be noted that after including 
these five variables in the model, there was some evidence of 
underdispersion, as the ratio of −2log likelihood to its degrees of 
freedom was 0.39, which is substantially less than 1, suggesting that 
the amount of residual variation was less than would be expected from 
a Poisson model (see Chapter 31).

Example

Table 32.2 −2log likelihood values, degrees of freedom and number of parameters fitted in models that exclude and include the time since initial 
response to therapy.

Model Variables included −2log likelihood
Degrees of freedom  
for the model

Number of parameters fitted in the 
model, including the intercept

1 Treatment status, sex and baseline CD8 count 393.12 984 4

2 Treatment status, sex, baseline CD8 count and 2 dummy 
variables for time since initial response to therapy

387.59 982 6



Whichever type of statistical model we choose, we have to make 
decisions about which explanatory variables to include in the model 
and the most appropriate way in which they should be incorporated. 
These decisions will depend on the type of explanatory variable (either 
nominal categorical, ordinal categorical or numerical) and the 
relationship between these variables and the dependent variable.

Nominal explanatory variables
It is usually necessary to create dummy or indicator variables (Chapter 
29) to investigate the effect of a nominal categorical explanatory 
variable in a regression analysis. Note that when assessing the adequacy 
of fit of a model that includes a nominal variable with more than two 
categories, or when assessing the significance of that variable, it is 
important to include all of the dummy variables in the model at the 
same time; if we do not do this (i.e. if we only include one of the dummy 
variables for a particular level of the categorical variable), then we 
would only partially assess the impact of that variable on the outcome. 
For this reason, it is preferable to judge the significance of the variable 
using the likelihood ratio test statistic (LRS – Chapter 32), rather than 
by considering individual P-values for each of the dummy variables.

Ordinal explanatory variables
In the situation where we have an ordinal variable with more than two 
categories, we may take one of two approaches.
• Treat the categorical variable as a continuous numerical meas urement 
by allocating a numerical value to each category of the variable. This 
approach makes full use of the ordering of the categories but it usually 
assumes a linear relationship (when the numerical values are equally 
spaced) between the explanatory variable and the dependent variable 
(or a transformation of it) and this should be validated.
• Treat the categorical variable as a nominal explanatory variable and 
create a series of dummy or indicator variables for it (Chapter 29). This 
approach does not take account of the ordering of the categories and is 
therefore wasteful of information. However, it does not assume a linear 
relationship with the dependent variable and so may be preferred.

The difference in the values of the LRS from these two models 
provides a test statistic for a test of linear trend (i.e. an assessment of 
whether the model assuming a linear relationship gives a better fitting 
model than one for which no linear relationship is assumed). This test 
statistic follows a Chi-squared distribution with degrees of freedom 
equal to the difference in the number of parameters in the two models; 
a significant result suggests non-linearity. See also Chapter 25 for a test 
of a linear trend in proportions.

Numerical explanatory variables
When we include a numerical explanatory variable in the model, the 
estimate of its regression coefficient provides an indication of the 
impact of a one-unit increase in the explanatory variable on the outcome. 
Thus, for simple and multiple linear regression, the relationship between 
each explanatory variable and the dependent variable is assumed to be 
linear. For Poisson and logistic regression, the parameter estimate 
provides a measure of the impact of a one-unit increase in the explanatory 
variable on the loge of the dependent variable (i.e. the model assumes an 
exponential relationship with the actual rate or odds). It is important to 

check the appropriateness of the assumption of linearity (see next 
section) before including numerical explanatory variables in regression 
models.

Assessing the assumption of linearity
To check the linearity assumption in a simple or multiple linear 
regression model, we plot the numerical dependent variable, y, against 
the numerical explanatory variable, x, or plot the residuals of the model 
against x (Chapter 28). The raw data should approximate a straight line 
and there should be no discernible pattern in the residuals. We may 
assess the assumption of linearity in logistic regression (Chapter 30) or 
Poisson regression (Chapter 31) by categorizing individuals into a small 
number (5–10) of equally sized subgroups according to their values of 
x. In Poisson regression, we calculate the log (to any base) of the rate of 
the outcome in each subgroup and plot this against the mid-point of the 
range of values for x for the corresponding subgroup (see Fig. 33.1). 
For logistic regression, we similarly calculate the log odds for each  
subgroup and plot this against the mid-point. In each case, if the 
assumption of linearity is reasonable, we would expect to see a similarly 
sized step-wise increase (or decrease) in the log of the rate or odds when 
moving between adjacent categories of x. Another approach to checking 
for linearity in a regression model is to give consideration to higher 
order models (see polynomial regression in the next section).

Dealing with non-linearity
If non-linearity is detected in any of these plots, there are a number of 
approaches that can be taken.
• Replace x by a set of dummy variables created by categorizing the 
individuals into three or four subgroups according to the magnitude of 
x (often defined using the tertiles or quartiles of the distribution). This 
set of dummy variables can be incorporated into the multivariable 
regression model as categorical explanatory variables (see Example).
• Transform the x variable in some way (e.g. by taking a logarithmic or 
square root transformation of x; Chapter 9) so that the resulting 
relationship between the transformed value of x and the dependent 

Explanatory variables in statistical models33

Figure 33.1 Plot of the log10(rate) according to the baseline CD8 count 
and the time since initial response to HAART. Neither variable exhibits 
linearity.
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variable (or its loge for Poisson or its logit for logistic regression) is 
linear.
• Find some algebraic description that approximates the non-linear 
relationship using higher orders of x (e.g. a quadratic or cubic 
relationship). This is known as polynomial regression. We just 
introduce terms that represent the relevant higher orders of x into the 
equation. So, for example, if we have a cubic relationship, our estimated 
multiple linear regression equation is Y = a + b1x + b2x2 + b3x3. We fit 
this model, and proceed with the analysis in exactly the same way as if the 
quadratic and cubic terms represented different variables (x2 and x3, say) 
in a multiple regression analysis. For example, we may fit a quadratic 
model that comprises the explanatory ‘variables’ height and height2. We 
can test for linearity by comparing the LRS in the linear and quadratic 
models (Chapter 32), or by testing the coefficient of the quadratic term.

Selecting explanatory variables
Even if not saturated (Chapter 32), there is always the danger of over-
fitting models by including a very large number of explanatory 
variables; this may lead to spurious results that are inconsistent with 
expectations, especially if the variables are highly correlated. For a 
multiple linear regression model, a usual rule of thumb is to ensure that 
there are at least 10 times as many individuals as explanatory variables. 
For logistic and Poisson regression, there should be at least 10 times as 
many responses or events in each of the two outcome categories as 
explanatory variables.

Often, we have a large number of explanatory variables that we 
believe may be related to the dependent variable. For example, many 
factors may appear to be related to systolic blood pressure, including 
age, dietary and other lifestyle factors. We should only include 
explanatory variables in a model if there is reason to suppose, from a 
biological or clinical standpoint, that they are related to the dependent 
variable. We can eliminate some variables by performing a univariable 
analysis (perhaps with a less stringent significance level of 0.10 rather 
than the more conventional 0.05) for each explanatory variable to 
assess whether it is likely to be related to the dependent variable, e.g. if 
we have a numerical dependent variable, we may perform a simple 
regression analysis if the explanatory variable is numerical or an 
unpaired t-test if it is binary. We then consider only those explanatory 
variables that were significant at this first stage for our multivariable 
model (see the Example in Chapter 31).

Automatic selection procedures
When we have a large number of potential explanatory variables and 
are particularly interested in using the model for prediction, rather than 
in gaining insight into whether an explanatory variable influences the 
outcome or in estimating its effect, computer-intensive automatic 
selection procedures provide a means of identifying the optimal model 
by selecting some of these variables.
• All subsets – every combination of explanatory variables is 
considered; that which provides the best fit, as described by the model 
R2 (Chapter 27) or LRS (Chapter 32), is selected.
• Backward selection – all possible variables are included; those that 
are judged by the model to be least important (where this decision is 
based on the change in R2 or the LRS) are progressively removed 
until none of the remaining variables can be removed without 
significantly affecting the fit of the model.
• Forward selection – variables that contribute most to the fit of the 
model (based on the change in R2 or the LRS) are progressively added 
until no further variable significantly improves the fit of the model.

•  Stepwise selection – a combination of forward and backward 
selection that starts by progressing forward and then, at the end of each 
‘step’, checks backward to ensure that all of the included variables are 
still required.

Disadvantages
Although these procedures remove much of the manual aspect of model 
selection, they have some disadvantages.
• It is possible that two or more models will fit the data equally well, or 
that changes in the data set will produce different models.
• Because of the multiple testing that occurs when repeatedly comparing 
one model to another within an automatic selection procedure, the Type 
I error rate (Chapter 18) is particularly high. Thus, some significant 
findings may arise by chance. This problem may be alleviated by 
choosing a more stringent significance level (say 0.01 rather than 
0.05).
• If the model is refitted to the data set using the m, say, variables 
remaining in the final automatic selection model, its estimated 
parameters may differ from those of the automatic selection model. 
This is because the automatic selection procedure uses in its analysis 
only those individuals who have complete information on all the 
explanatory variables, but the sample size may be greater when 
individuals are included if they have no missing values only for the 
relevant m variables.
• The resulting models, although mathematically justifiable, may 
not be sensible. In particular, when including a series of dummy 
variables to represent a single categorical variable (Chapter 29), 
automatic models may include only some of the dummy 
variables, leading to problems in interpretation.

Therefore, a combination of these procedures and common sense 
should be applied when selecting the best-fitting model. Models that are 
generated using automatic selection procedures should be validated on 
other external data sets where possible (see Chapter 46).

Interaction
What is it?
Statistical interaction (also known as effect modification, Chapter 
13) between two explanatory variables in a regression analysis occurs 
where the relationship between one of the explanatory variables and 
the dependent variable is not the same for different levels of the other 
explanatory variables, i.e. the two explanatory variables do not act 
independently on the dependent variable. For example, suppose that 
we want to assess the association between an individual’s body weight 
(the explanatory variable) and the amount of a particular drug in his 
or her blood (the dependent variable). If we believe that this association 
is different for men and women in the study, we may wish to 
investigate whether there is an interaction between body weight and 
sex. If statistical testing reveals that there is evidence of a significant 
interaction, we may be advised to describe the association between 
body weight and the amount of the drug in the blood separately in 
men and women.

Testing for interaction
Testing for statistical interaction in a regression model is usually 
straightforward and many statistical packages allow you to request the 
inclusion of interaction terms. If the package does not provide this 
facility then an interaction term may be created manually by including 
the product of the relevant variables as an additional explanatory 



variable. Thus, to obtain the value of the variable which represents the 
interaction between two variables (both binary, both numerical or one 
binary and one numerical), we multiply the individual’s values of these 
two variables. If both variables are numerical, interpretation may be 
easier if we create an interaction term from the two binary variables 
obtained by dichotomizing each numerical variable. If one of the two 
variables is categorical with more than two categories, we create a 
series of dummy variables from it (Chapter 29) and use each of them, 
together with the second binary or numerical variable of interest, to 
generate a series of interaction terms. This procedure can be extended if 
both variables are categorical and each has more than two categories.

Interaction terms should only be included in the regression model after 
the main effects (the effects of the variables without any interaction) 
have been included. Note that statistical tests of interaction are usually  
of low power (Chapter 18). This is of particular concern when both 
explanatory variables are categorical and few events occur in the 
subgroups formed by combining each level of one variable with every 
level of the other, or if these subgroups include very few individuals.

Collinearity
When two explanatory variables are highly correlated, it may be difficult 
to evaluate their individual effects in a multivariable regression model. 

As a consequence, while each variable may be significantly associated 
with the dependent variable in a univariable model (i.e. when there is a 
single explanatory variable), neither may be significantly associated 
with it when both explanatory variables are included in a multivariable 
model. This collinearity (also called multi-collinearity) can be 
detected by examining the correlation coefficients between  
each pair of explanatory variables (commonly displayed in a correlation 
matrix and of particular concern if the coefficient, ignoring  
its sign, is greater than 0.8) or by visual impression of the standard 
errors of the regression coefficients in the multivariable model  
(these will be substantially larger than those in the separate  
univariable models if collinearity is present). The easiest solution,  
if collinearity is detected between two variables, is to include only  
one of the variables in the model. In situations where many of the 
variables are highly correlated, it may be necessary to seek statistical 
advice.

Confounding
When two explanatory variables are both related to the outcome and to 
each other so that it is difficult to assess the independent effect of each 
one on the outcome, we say that the explanatory variables are 
confounded. We discuss confounding in detail in Chapter 34.

In Chapters 31 and 32 we studied the factors associated with virological 
failure in HIV-positive patients receiving highly active antiretroviral 
therapy (HAART). In this multivariable Poisson regression analysis, 
the individual’s CD8 count at baseline was included as a continuous 
explanatory variable (it was divided by 100 so that each unit increase 
in the scaled variable reflected a 100 cell/mm3 increase in the CD8 
count); the results indicated that a higher baseline CD8 count was 
associated with a significantly reduced rate of virological failure. In 
order to assess the validity of the linearity assumption associated 
with this variable, five groups were defined on the basis of the quintiles 
of the CD8 distribution, and the failure rate was calculated in each of 
the five groups. A plot of the log10(rate) in each of these groups 
revealed that the relationship was not linear as there was no stepwise 
progression (Fig. 33.1). In particular, while the log10(rate) was broadly 
similar in the four lowest groups, no events occurred at all in the 
highest group (>1495 cells/mm3), giving a value of minus infinity for 
the log10(rate). For this reason, the two upper groups were combined 
for the subsequent analysis. Furthermore, it was noted that a substantial 
number of patients had to be excluded from this analysis as there was 
no record of their CD8 counts at baseline.

Thus, because of the lack of linearity between the log of the 

virological failure rate and the actual CD8 count, the continuous 
explanatory variable representing the CD8 count in the Poisson 
regression model was replaced by a series of four dummy variables 
(see Chapter 29). Individuals with baseline CD8 counts in the range 
825 < CD8 < 1100 cells/mm3 were treated as the reference group for 
these indicator variables. Each of three dummy variables provided a 
comparison of one of the remaining CD8 groups with the reference 
group, and the fourth dummy provided a comparison of those with 
missing CD8 counts with the reference group. The results are 
summarized in Table 33.1; a full computer output is shown in 
Appendix C. A comparison of the value for −2log likelihood (i.e. the 
LRS or deviance) from the model that included the four dummy 
variables for the CD8 count (387.15) with that from the model that 
included the same variables apart from these dummy variables 
(392.50) gave a P-value of 0.25 (test statistic of 5.35 on 4 degrees of 
freedom). Thus, after incorporating it in this way, the CD8 count no 
longer had a statistically significant relationship with virological 
failure in contrast to the model which, inappropriately, incorporated 
the CD8 count as a continuous explanatory variable. The relationships 
between virological failure and treatment status, sex and time since 
initial response to therapy, however, remained similar.

Example

continued
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Table 33.1 Results from multivariable Poisson regression analysis of factors associated with virological failure, after including the CD8 count as a 
categorical variable in the model.

Variable*

Parameter 
estimate

Standard 
error

Estimated 
relative rate

95% confidence interval 
for relative rate P-value†

Time since initial response to therapy  
(years)

<1 reference – 1 –
1–2 0.4550 0.2715 1.58 0.93–2.68
>2 −0.5386 0.4849 0.58 0.23–1.51 0.06

Treatment status
Previously received treatment (0) reference – 1 –

Never received treatment (1) −0.5580 0.2600 0.57 0.34–0.95 0.03

Sex
Female (0) reference – 1 –

Male (1) −0.4970 0.2675 0.61 0.36–1.03 0.07

CD8 count (cells/mm3)
<625 −0.2150 0.6221 0.81 0.24–2.73

≥625, <825 −0.3646 0.7648 0.63 0.16–3.11
≥825, <1100 reference – 1 –

≥1100 −0.3270 1.1595 0.78 0.07–7.00
Missing −0.8264 0.6057 0.44 0.13–1.43 0.25

* Codes for binary variables (sex and treatment status) are shown in parentheses. Time since initial response to therapy was included by incorporating two 
dummy variables to reflect the periods 1–2 years and >2 years after initial response. The baseline CD8 count was incorporated as described in the text.
† P-values were obtained using LRS (see Chapter 32); where dummy variables were used to incorporate more than two categories of the variable, the P-
value reflects the combined effect of these dummies.



In many cases, despite all of our efforts to design a robust study and 
perform appropriate statistical analyses, the results from our study may 
not accurately reflect the true situation. This may be due to the presence 
of bias which can be introduced at any stage of the study, perhaps 
resulting from a failure to take account of important exposure 
(explanatory) variables.

Bias
What is it?
Bias is said to have occurred when there is a systematic difference 
between the results from a study and the true state of affairs. Bias may 
be introduced at all stages of the research process, from study design, 
through to analysis and publication. Bias can create a spurious 
association (i.e. overestimation of an effect) or mask a real one 
(underestimation of an effect). While appropriate statistical methods 
can reduce the effect of bias, they may not be able to eliminate it entirely. 
It is thus preferable to design a study so that bias is minimized (e.g. by 
taking steps to reduce recall bias in a case–control study, or by attempting 
to minimize loss-to-follow-up in a longitudinal study). It should be 
noted that increasing the sample size does not reduce bias – if anything, 
increasing the sample size might actually increase the impact of bias.

We have already described the biases that are most commonly 
encountered in clinical trials (Chapter 14), case–control studies (Chapter 
15) and cohort studies (Chapter 16). However, there are many forms of 
bias1 which may broadly be categorized as forms of either selection or 
information bias. A third type of bias, caused by confounding, is 
discussed in the next section. Even if obvious sources of bias have been 
addressed, funding bias, whereby there is a tendency to report findings 
in the direction favoured by the funding body (such as a pharmaceutical 
company), and publication bias, whereby there is a tendency to publish 
only those papers that report positive or topical results, may mean that 
the results from publicly available studies are still misleading.

Selection bias
Selection bias occurs when patients included in the study are not 
representative of the population to which the results will be applied,  
e.g. patients who agree to participate in a study may differ from those 
who do not agree to participate (this form of bias is a particular problem 
in retrospective studies when patients who have died are not included in 
the study). Selection bias includes the following:
• Ascertainment bias may occur when the sample included in a study 
is not randomly selected from the population and differs in some 
important respects from that population, e.g. when doctors interested in 
the genetics of a particular medical condition collect information on the 
patients in their clinic, rather than using a random sample from the 
population.
• Attrition bias arises when those who are lost to follow-up in a 
longitudinal study (Chapter 12) differ in a systematic way from those 
who are not lost to follow-up.
• The healthy entrant effect occurs where mortality and morbidity 
rates are lower in the initial stages of a longitudinal study than in 

the general population because the indivi duals included in the study 
are disease-free at its outset (Chapter 15).
• Response bias is caused by differences in characteristics between 
those who choose or volunteer to participate in a study and those who 
do not.
• Survivorship bias occurs when survival is compared in patients who 
do or who do not receive a particular intervention where this intervention 
only became available at some point after the start of the study so that 
patients have to survive long enough to be eligible to receive the 
intervention.

Information bias
Information bias occurs during data collection when measurements  
on exposure and/or disease outcome are incorrectly recorded in a 
systematic manner. Information bias includes the following:
• Central tendency bias often arises when using a Likert scale 
(comprising a small number of graded alternative responses such as very 
poor, poor, no opinion, good, excellent) where responders tend to move 
towards the mid-point of the scale (usually ‘no opinion’ or ‘just right’).
• Lead-time bias occurs particularly in studies assessing changes in 
survival over time where the development of more accurate diagnostic 
procedures may mean that patients entered later into the study are 
diagnosed at an earlier stage in their disease, resulting in an apparent 
increase in survival from the time of diagnosis.
• Measurement bias arises when a systematic error is introduced by 
an inaccurate measurement tool (e.g. a set of poorly calibrated scales); 
it may also be introduced by digit preference or rounding error.
• Misclassification bias occurs when we incorrectly classify a 
categorical exposure and/or outcome variable. This may dilute or 
exaggerate the effect of interest, depending on whether the 
misclassification occurs equally in all groups or varies according to 
exposure group.
• Observer bias occurs when one observer tends to under-report (or 
over-report) a particular variable; also called assessment bias.
• Regression dilution bias may occur when fitting a regression model 
to describe the association between an outcome variable and one or 
more exposure variable(s). If there is substantial measurement error 
(Chapter 39) around one of the exposure variables, the associated 
regression parameter from the model may be attenuated.
• Reporting bias occurs when participants give answers in the direction 
they perceive are of interest to the researcher or under-report socially 
unacceptable or embarrassing behaviours or disorders (e.g. alcohol 
consumption or sexually transmitted disease).

Regression to the mean occurs where measurements that follow 
particularly low measurements tend to be higher than those recorded 
previously, and those that follow particularly high measurements tend 
to be lower (Chapter 27).

The ecological fallacy results in a bias which sometimes occurs 
when we reach conclusions based solely on aggregate statistics for 
groups within a population. We believe mistakenly that an association 
that we observe between variables at an aggregate level reflects the 
corresponding association at an individual level in the same population. 
This is particularly relevant when we do not have the necessary 
information about a variable at the patient level but only at the study 
level (e.g. in a meta-analysis, Chapter 43), and is common in ecological 

Bias and confounding34

1 Delgado-Rodriguez, M. and Llorca, J. (2004) Bias. Journal of Epidemiology 
and Community Health, 58, 635–641.
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studies where we note associations between the level of disease in a 
population (often an entire country) which are not apparent when we 
consider the association at the individual level. For example, living in 
a more deprived area has been shown2 to be associated with an increased 
likelihood of being diagnosed with Stage III or IV breast cancer, but 
since the study used an area-based measure of low socioeconomic 
background, these results cannot be extended to individual women 
living in the area. The ecological fallacy is particularly true in meta-
regression (Chapter 43).

Confounding
What is it?
Confounding occurs when we find a spurious association between a 
potential risk factor and a disease outcome or miss a real association 
between them because we have failed to adjust for any confounding 
variables. A confounding variable or confounder is an exposure 
variable that is related to both the outcome variable (e.g. disease) and to 
one or more of the other exposure variables. For example, we may be 
interested in studying the effect of smoking status on the incidence of 
coronary heart disease (CHD) in a cohort of middle-aged men. However, 
we know that alcohol consumption is associated with the development 
of CHD, and that alcohol consumption and smoking are also related to 
each other (i.e. men who consume alcohol are more likely to smoke than 
men who do not consume alcohol). Thus, in this study, unless we adjust 
for it, the effect of alcohol consumption may confound an apparent 
relationship between smoking and the incidence of CHD. Any analysis 
that considers the effect of an exposure variable on the outcome but 
does not take into account the confounder may misrepresent the true 
role of the exposure variable. Failure to adjust for confounding factors 
in a regression analysis will lead to biased estimates of the parameters 
of the model.

We should be aware that Simpson’s paradox (Chapter 24) may arise 
when the effect of confounding is very strong.

Dealing with confounding
Confounding may be dealt with at the design stage of an experimental 
study (e.g. by matching or randomization) or at the analysis stage of an 
observational study in one of a number of ways. A brief description of 
each approach follows and their advantages and disadvantages are 
summarized in Table 34.1.
• Create subgroups by stratifying the data set by the levels of the 
confounding variable (e.g. create two subgroups, drinkers and non-
drinkers) and then perform an analysis separately in each subgroup. 
While this approach is simple and has much to recommend it when 
there are few confounders,

 the subgroups may be small, and thus the analyses will have 
reduced power to detect a significant effect,
 spurious significant results may arise because of multiple testing 
(Chapter 18) if a hypothesis test is performed in each subgroup, and
 it may be difficult to combine the separate estimates of the effect of 
interest for each subgroup (although this is sometimes achieved by 
the Mantel–Haenszel method3).

• Identify pairs of individuals, one of whom falls into each category of 
the exposure variable (e.g. a smoker and a non-smoker), who are 
matched on the basis of all confounding variables. By performing an 
appropriate paired analysis (e.g. McNemar’s test or a paired t-test) of 
the association between the exposure variable and the dependent 
variable, the effects of any potential confounding variables will be 
removed. However, if there are many confounders, it may be difficult 
to identify sufficient pairs of matched individuals to ensure an 
adequately powered analysis.
• Adjust for each confounding variable by including it as an explanatory 
variable in a multivariable regression model, e.g. multiple linear 
(Chapter 29), logistic (Chapter 30) or Poisson (Chapter 31) regression 
models. This approach, which is particularly useful when there are 
many confounders in the study, provides an estimate of the relationship 
between the explanatory and dependent variables that cannot be 
explained by the relationship between the dependent variable and the 
confounding variables. In order to obtain meaningful results, however, 
there must be reasonable overlap between the distributions of the 
confounding variables in the groups defined by the exposure variable 
(i.e. smokers and non-smokers should have fairly similar demographic 
profiles if these comprise the confounding variables).
• Use a propensity score approach. This method is most useful when 
the exposure variable of interest (smoking status) has two levels 
(categories) and is specified at the start of the study, and where there are 
many potential confounders. A score is calculated for each individual, 
often using a logistic regression model (Chapter 30) that describes his/
her propensity (or probability) to fall into one particular category of the 
exposure variable as opposed to the other (i.e. to be a smoker or a non-
smoker). This propensity score is generated using the data on all 
variables that may be associated with smoking, some of which may also 
be associated with the outcome and will therefore be confounders  
(e.g. alcohol status). We then use this propensity score in one of the 
following ways:

 Adjust for this propensity score, rather than the variables used to 
generate the score (including the confounders), in a multivariable 
regression analysis that aims to investigate the association between 
the exposure variable (smoking) and the dependent variable (CHD). 
As well as distributional advantages, this approach has the advantage 
of reducing the number of covariates in the model.
 Use the propensity score as a stratification variable, with the effect 
of the exposure variable on which it was based (smoking) estimated 
separately for those in different propensity score strata (often using  
a multivariable regression analysis) – the argument being that 
individuals in the same propensity score stratum should have similar 
levels of the potential confounding variables. We can use Mantel–
Haenszel methods to obtain a combined estimate of the effect of 
interest from the different strata.
 Identify pairs of individuals, one of whom falls into each category 
of the exposure variable (e.g. a smoker and a non-smoker) but who 
are matched on the basis of the propensity scores (i.e. the likelihood 
of being a smoker is similar in the two members of a pair, even 
though one of them is not a smoker). As when matching on the 
confounding variables, this matched analysis of the association 
between the exposure variable and the dependent variable will 
remove the effects of any potential confounding variables without 
the need to adjust for these variables in the analysis. The disadvantage 
of this approach is that some individuals may have to be excluded 
from the analysis if a suitable matched pair cannot be identified, 
although matching on the propensity scores should result in 

2Downing, A., Prakash, K., Gilthorpe, M.S., Mikeljevic, J.S. and Forman, D. 
(2007) Socioeconomic background in relation to stage at diagnosis, treatment 
and survival in women with breast cancer. British Journal of Cancer, 96, 
836–840.
3Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions. 2nd edition. 
New York: Wiley.



exclusion of a smaller number of individuals than a similar analysis 
that matches on the confounding variables.

Note that neither a multivariable regression model nor a propensity 
score approach can remove the effects of unmeasured or unknown 
confounders.

Confounding in non-randomized studies
Confounding is a particular concern in cohort studies (Chapter 15) 
when risk factors are not distributed randomly in the population. In 
particular, when we are interested in the effect of a specific intervention 
(e.g. a treatment) on an outcome in a cohort study, we have to be 
aware that individuals may be selected for this intervention on the 
basis of disease history or demographic or lifestyle factors, some of 
which may also be related to the outcome. If the characteristics of 
patients receiving this intervention differ from those of patients 
receiving other types of interventions, then allocation or channelling 
bias has occurred. Suppose, for example, we are interested in 

comparing the effect of treatment on the incidence of cardiovascular 
disease in a cohort of middle-aged men, when the men are receiving 
either statins or fibrates at the time of cohort enrolment. The choice of 
whether a man receives a statin or a fibrate will be based on a number 
of factors (e.g. their lipid measurements), many of which will also be 
associated with the development of cardiovascular disease. While 
multivariable regression models and/or propensity score methods 
(using the choice of treatment as the exposure variable of interest for 
which a propensity score is determined) can be used to adjust for  
any differences in the distribution of the factors in the different 
treatment groups, this is only possible if the study investigators are 
aware of the confounding factors and have recorded them in the data 
set. Randomized controlled trials (Chapter 14) rarely suffer from 
confounding as patients are randomly allocated to treatment groups 
and therefore all covariates, both confounders and other explanatory 
variables, should be evenly distributed in the different treatment 
groups.

Table 34.1 Advantages and disadvantages of various methods to remove confounding during the analytical stage of a study.

Method Advantages Disadvantages

Stratification by 
confounding variable

• Simple to visualize findings and interpret results
• Straightforward
• Provides a means of checking that there is 

sufficient overlap in the confounders between the 
different exposure groups

• Results are not affected by any assumptions about 
the form of the relationship between the 
confounder and the outcome (e.g. linearity)

• Only suitable if there are a small number of confounders
• May result in very small strata and hence a low power within 

specific strata (Chapter 18)
• Multiple testing may lead to spurious significant findings (Chapter 

18)
• May be difficult to provide a single estimate of the treatment effect

Direct matching on 
confounders

• Intuitively simple and simple to interpret findings
• Can deal with more than one confounder
• Results are not affected by any assumptions about 

the form of the relationship between the 
confounder and the outcome (e.g. linearity)

• May not be possible to find a match for each patient; exclusion of 
unmatched patients from the analysis may result in loss of power

• Cannot estimate the effects of the confounders on the outcome
• May be computationally difficult to match patients if there are 

many confounders

Statistical adjustment in 
multivariable regression 
model

• Suitable if there are many confounders, provided 
the sample size is adequate

• Can estimate the effects of the confounders on the 
outcome

• Computationally straightforward

• If there are a large number of confounders, study power may be 
reduced

• Only provides meaningful results if the groups defined by the 
exposure variable are reasonably well balanced in terms of the 
confounders

• Can only adjust for confounders for which data have been 
collected

Calculation of propensity 
scores

• Relatively easy to calculate when the exposure 
variable has two levels

• Even if there is insufficient overlap of specific 
confounders across exposure groups, the 
distribution of propensity scores should be similar 
across the groups

• Difficult to calculate when the exposure variable has more than 
two levels

• Only suitable when the exposure variable does not change over 
time

• Most efficient when the sample size is large

Use of propensity scores
• Statistical 

adjustment for 
propensity score in 
multivariable 
regression model

• Stratification by 
propensity score

• Matching on 
propensity score

• Reduces the number of covariates in the model 

• Removes the effect of potential confounding 
variables in each stratum

• Removes the effect of potential confounding 
variables without the need to adjust for them in 
the analysis

• If confounders are also included in the model (i.e. there is interest 
in their associations with the outcome), there may be collinearity 
(Chapter 33) between them and the propensity score

• May be difficult to combine estimates from the different 
propensity score strata

• May be difficult to match patients
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The causal pathway and confounding
The causal pathway is the chain of events or factors leading in 
sequence to an outcome when the effect of any step in the sequence 
is caused by the event at the previous step(s). The causal pathway is 
particularly useful in helping us consider opportunities for disease 
prevention and is sometimes represented by a path diagram on 
which the causal relationship is shown by arrows (e.g. multiple 
birth → preterm delivery → neonatal cerebral damage in cerebral 
palsy). Where a variable (B) is known to lie on the causal pathway 
between an exposure (A) and the outcome of interest (C), it is 
known as an intermediate variable and it should not be treated as a 
confounder.

Consider the situation where we are conducting a randomized 
placebo-controlled trial of the effect of a new cholesterol-lowering drug 
on the incidence of CHD (the outcome, C) and our exposure variable 
(A) is a binary variable that indicates whether or not each individual is 
receiving the new drug. An elevated cholesterol is one of the known risk 
factors for CHD, and we expect levels to decline in treated individuals 
but remain unchanged or increase in untreated individuals. Although 
we may adjust for any discrepancies between the cholesterol levels of 
patients in the two treatment groups at the start of the trial (although this 
should not be necessary if randomization has been successful), we 
should be careful about adjusting for any changes in cholesterol (B) that 
occur during the trial period. If we were to do so, the observed treatment 
effect would only estimate any residual benefit that remains after effects 
on cholesterol have been removed; it would not estimate the total benefit 
of the new drug. Indeed, if the drug acts solely through changes in 
cholesterol, it is likely that there will be no residual effects – this does 
not mean that the drug does not work, simply that it does not have any 
effects over and above those it has on cholesterol.

Time-varying confounding
A particular problem arises if a variable is both a potential confounder 
for an exposure of interest and also lies on the causal pathway between 
that exposure and the study outcome. Where the exposure itself may 
change over time, the confounder is known as a time-varying 
confounder. Suppose, for example, that we wish to use data from a 
cohort study to describe the effect of antiretroviral treatment on survival 
in individuals infected with HIV. HIV acts by gradually depressing an 
individual’s immune system; this is measured through the CD4 cell 
count, which will decline over time in an HIV-positive person. 
Currently, antiretroviral treatment in the developed world is generally 
offered to an HIV-positive individual whose CD4 cell count has already 
fallen to a low level (usually below 350 cells/mm3). However, once 
treatment is initiated, most individuals will experience a rapid increase 
in their CD4 cell count and this increase is associated with prolonged 
survival. In this situation, the CD4 count (which may be measured 
regularly over the period of infection) is a time-varying confounder, as 
it is both a predictor of the initiation of treatment and it lies on the 
causal pathway between initiation of antiretroviral treatment and death. 
In such circumstances, the usual approach to analysing the data using 
standard regression models with time-dependent covariates (Chapter 
31) will not provide a meaningful estimate of the effect of treatment. 
Complex analytical methods (causal modelling, marginal structural 
models, G-estimation) provide a more appropriate estimate of this 
treatment effect4 but they should only be used in discussion with a 
statistician.

4Hernán, M.A. and Robins, J.M. (2006) Estimating causal effects from epidemi-
ological data. Journal of Epidemiology and Community Health, 60, 578–586.



Why bother?
Computer analysis of data offers the opportunity of handling large data 
sets that might otherwise be beyond our capabilities. However, do not 
be tempted to ‘have a go’ at statistical analyses simply because they are 
available on the computer. The validity of the conclusions drawn relies 
on the appropriate analysis being conducted in any given circumstance, 
and a requirement that the underlying assumptions inherent in the 
proposed statistical analysis are satisfied.

Are the data Normally distributed?
Many analyses make assumptions about the underlying distribution of 
the data. The following procedures verify approximate Normality, the 
most common of the distributional assumptions.
• We produce a dot plot (for small samples) or a histogram, stem-and-
leaf plot (Fig. 4.2) or box plot (Fig. 6.1) to show the empirical frequency 
distribution of the data (Chapter 4). We conclude that the distribution is 
approximately Normal if it is bell-shaped and symmetrical. The median 
in a box plot should cut the rectangle defining the first and third quartiles 
in half, and the two whiskers should be of equal length if the data are 
Normally distributed.
• Alternatively, we can produce a Normal plot (preferably on the 
computer) which plots the Standard Normal deviate for the cumulative 
distribution against the sample values. Lack of Normality is indicated 
by the resulting plot producing a curve that deviates from a straight line 
(Fig. 35.1).

Although both approaches are subjective, the Normal plot is more 
effective for smaller samples. The Kolmogorov–Smirnov and 
Shapiro–Wilk tests, both performed on the computer, can be used to 
assess Normality more objectively.

Are two or more variances equal?
We explained how to use the t-test (Chapter 21) to compare two means 
and ANOVA (Chapter 22) to compare more than two means. Underlying 
these analyses is the assumption that the variability of the observations 
in each group is the same, i.e. we require equal variances, described as 
homogeneity of variance or homoscedasticity. We have heterogeneity 
of variance if the variances are unequal.
• We can use Levene’s test, using a computer program, to test for 
homogeneity of variance in two or more groups. The null hypothesis is 
that all the variances are equal. Levene’s test has the advantage that it is 
not strongly dependent on the assumption of Normality. Bartlett’s test 
can also be used to compare more than two variances, but it is non-
robust to departures from Normality.
• We can use the F-test (variance-ratio test) described in the following 
box to compare two variances, provided the data in each group are 
approximately Normally distributed (the test is non-robust to a violation 
of this assumption). The two estimated variances are s1

2 and s2
2, calculated 

from n1 and n2 observations, respectively. By convention, we choose s1
2 

to be the larger of the two variances, if they differ.
• We also assume homogeneity of variance of the residuals in simple 
and multiple regression (Chapters 28 and 29) and in random effects 
models (Chapter 42). We explained how to check this assumption in 
Chapters 28 and 29.

Checking assumptions35

Figure 35.1 (a) Normal plot of untransformed triglyceride levels 
described in Chapter 19. These are skewed and the resulting Normal plot 
shows a distinct curve. (b) Normal plot of log10 (triglyceride levels). The 
approximately straight line indicates that the log transformation has been 
successful at removing the skewness in the data.

0 2 4 6 8
Triglyceride (mmol/L)

10

St
an

da
rd

No
rm

al
de

vi
at

e

3

2

1

0

–1

–2

–3

–3

(a)

–0.6 –0.4 –0.2 0 0.2
Log10 (Triglyceride)

0.4
(b)

0.6 0.8 1

St
an

da
rd

No
rm

al
de

vi
at

e 3

2

1

0

–1

–2

1 Define the null and alternative hypotheses under study
H0: the two population variances are equal
H1: the two population variances are unequal.

2 Collect relevant data from a sample of individuals
3 Calculate the value of the test statistic specific to H0

F s s= 1
2

2
2

which follows an F-distribution with n1 − 1 df in the numerator, and 
n2 − 1 df in the denominator. Since s s1

2
2
2≥ , the F-ratio ≥1. This 

allows us to use the tables of the F-distribution which are tabulated 
only for values ≥1.
4 Compare the value of the test statistic to values from a known 
probability distribution
Refer F to Appendix A5. Our two-sided alternative hypothesis leads 
to a two-tailed test.
5 Interpret the P-value and results
Note that we are rarely interested in the variances per se, so we do 
not usually calculate confidence intervals for them.
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Are variables linearly related?
Most of the techniques which we discussed in Chapters 26–31 and 
describe in Chapter 42 assume that there is a linear (straight line) 
relationship between two variables. We explained how to check for 
linearity and how to deal with non-linearity in regression analysis in 
Chapters 28 and 29 (for simple and multiple regression) and in Chapter 
33 (for other GLMs, e.g. logistic and Poisson).

What if the assumptions are not satisfied?
We have various options.
• Proceed as planned, recognizing that this may result in a non-robust 
analysis. Be aware of the implications if you do this. Do not be fooled 
into an inappropriate analysis just because others, in similar 
circumstances, have done one in the past!
• Take an appropriate transformation of the raw data so that the 
transformed data satisfy the assumptions of the proposed analysis 
(Chapter 9). In regression analysis, this usually means transforming an 
x variable although other approaches are possible (see Chapter 32);
• If feasible, perform a non-parametric test (Chapter 17) that does not 
make any assumptions about the distribution of the data (e.g. Normality). 
You may also come across the term non-parametric regression 
analysis1; its purpose is to estimate the functional form (rather than the 
parameters) of the relationship between a response variable and one or 
more explanatory variables. Using non-parametric regression, we relax 
the linearity assumption of the model and fit a smooth curve to the data 
so that we can visualize trends without specifying a parametric model.

Sensitivity analysis
An analysis is robust if it is not very sensitive to a departure from its 
assumptions, i.e. the P-value and power (Chapter 18) and, if relevant, 
parameter estimates are not appreciably affected by violations of the 
assumptions. Thus, the conclusions drawn from the study are likely to 

be correct even though the assumptions are violated. However, a non-
robust analysis could result in misleading conclusions being drawn. 
After any analysis, it is thus always wise to consider performing one or 
more sensitivity analyses to investigate the robustness of the findings. 
To do this, we use a slightly different approach to analyzing the data 
(e.g. by omitting data, varying the assumptions or using a different 
method of analysis) and measure the impact of any changes on our 
estimates and conclusions. Note that sensitivity analyses should always 
be described as such when presenting results – it is inappropriate, for 
example, to perform multiple different statistical tests which essentially 
investigate the same or similar hypotheses and display all their results 
without identifying which was the primary analysis and which were 
sensitivity analyses. Furthermore, if sensitivity analyses are to be 
presented, it is inappropriate to show only the most favourable results 
(i.e. those that most strongly support the primary aims). The following 
are examples of different sensitivity analyses:
• Rather than assuming a linear relationship between the dependent 
variable and a continuous explanatory variable in a regression analysis 
(Chapter 29), we re-fit the regression model after creating a new nominal 
explanatory variable based on categories of the original explanatory 
variable (Chapter 33). If there are two categories of interest then we 
have one binary nominal variable but if there are more than two 
categories we would create dummy binary variables (Chapter 29).
• Having performed a parametric analysis of the data (e.g. an unpaired 
t-test), we repeat the analysis using a non-parametric approach (e.g. the 
Mann–Whitney U test).
• After identifying influential points (Chapter 29) in a multiple 
regression analysis, we re-fit the model excluding these points.
• Having performed a meta-analysis (Chapter 43) using the data from 
all studies, we repeat it but exclude poorer quality studies.
• We undertake both a fixed and a random effects meta-analysis to 
assess how robust the results are to the method used.
• We assess the effect of the approach taken to deal with any missing 
data (Chapter 3) by repeating the analysis after using a different 
approach.

1Eubank, R.L. (1999) Nonparametric Regression and Spline Smoothing. New 
York: Marcel Dekker.

In the example in Chapter 21, 98 school-age children were 
randomly assigned to receive either inhaled beclomethasone 
dipropionate or a placebo to determine their effects on wheezing. 
We used the unpaired t-test to compare the mean forced expiratory 
volume (FEV1) in each group over the 6 months, but need 

assurance that the underlying assumptions (Normality and constant 
variance) are satisfied. The stem-and-leaf plot in Fig. 4.2 shows 
that the data in each group are approximately Normally distributed. 
We performed the F-test to investigate the assumption of equal 
variances.

Example

1 H0: the variance of FEV1 measurements in the population of 
school-age children is the same in the two groups

H1: the variance of FEV1 measurements in the population of 
school-age children is not the same in two groups.
2 Treated group: sample size, n1 = 50, standard deviation, s1 = 0.29 
litres

Placebo group: sample size, n2 = 48, standard deviation, s2 = 0.25 
litres.

3 The test statistic F
s
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follows an F-distribution with 50 − 1 = 49 and 48 − 1 = 47 df in the 
numerator and denominator, respectively.

4 We refer F = 1.35 to Appendix A5 for a two-sided test at the 5% 
level of significance. Because Appendix A5 is restricted to entries of 
25 and infinity df in the numerator, and 30 and 50 df in the 
denominator, we have to interpolate (Chapter 21). The required 
tabulated value at the 5% level of significance lies between 1.57 and 
2.12; thus P > 0.05 because 1.35 is less than the minimum of these 
values (computer output gives P = 0.31).
5 There is insufficient evidence to reject the null hypothesis that 
the variances are equal. It is reasonable to use the unpaired t-test, 
which assumes Normality and homogeneity of variance, to compare 
the mean FEV1 in the two groups.



The importance of sample size
If the number of patients in our study is small, we may have inadequate 
power (Chapter 18) to detect an important existing effect, and we shall 
have wasted all our resources. On the other hand, if the sample size is 
unduly large, the study may be unnecessarily time-consuming, 
expensive and unethical, depriving some of the patients of the superior 
treatment. We therefore have to choose the optimal sample size which 
strikes a balance between the implications of making a Type I or Type II 
error (Chapter 18). Unfortunately, in order to calculate the sample size 
required, we have to have some idea of the results we expect in the 
study.

Requirements
We shall explain how to calculate the optimal sample size in simple 
situations; often more complex designs can be simplified for the purpose 
of calculating the sample size. If our investigation involves a number of 
tests, we concentrate on the most important or evaluate the sample size 
required for each and choose the largest.

Our focus is the calculation of the optimal sample size in relation to a 
proposed hypothesis test. However, it is possible to base the sample size 
calculation on other aspects of the study, such as on the precision of an 
estimate or on the width of a confidence interval (the process usually 
adopted in equivalence and non-inferiority studies, Chapter 17).

To calculate the optimal sample size for a test, we need to specify the 
following quantities at the design stage of the investigation.
• Power (Chapter 18) – the chance of detecting, as statistically 
significant, a specified effect if it exists. We usually choose a power of 
at least 80%.
• Significance level, α (Chapter 17) – the cut-off level below which we 
will reject the null hypothesis, i.e. it is the maximum probability of 
incorrectly concluding that there is an effect. We usually fix this as 0.05 
or, occasionally, as 0.01, and reject the null hypothesis if the P-value is 
less than this value.
• Variability of the observations, e.g. the standard deviation, if we 
have a numerical variable.
• Smallest effect of interest – the magnitude of the effect that is 
clinically important and which we do not want to overlook. This is often 
a difference (e.g. difference in means or proportions). Sometimes it is 
expressed as a multiple of the standard deviation of the observations 
(the standardized difference).

It is relatively simple to choose the power and significance level of 
the test that suit the requirements of our study. The choice is usually 
governed by the implications of a Type I and a Type II error, but may be 
specified by the regulatory bodies in some drug licensing studies. Given 
a particular clinical scenario, it is possible to specify the effect we regard 
as clinically important. The real difficulty lies in providing an estimate 
of the variation in a numerical variable before we have collected the 
data. We may be able to obtain this information from published studies 
with similar outcomes or we may need to carry out a pilot study. 
Although a pilot study is usually a distinct preliminary investigation, 
we may incorporate the data gathered in the pilot study into the main 
study using an internal pilot study1, provided all details of it are 

documented in the protocol. We determine the optimal sample size on 
the best, although perhaps limited, information available at the design 
stage of the study. We then use the relevant information from a pilot 
study (the size of which is pre-specified, may be relatively large and is 
usually determined through practical considerations) to revise our 
estimated sample size for the main study. (Note: the calculation must be 
based on the originally defined smallest effect of interest, not on the 
effect observed in the pilot study, and the revised sample size estimate 
utilized only if it exceeds the original estimate.) In such situations, the 
information gathered in the internal pilot study may be used in the final 
analysis of the data.

Methodology
We can calculate sample size in a number of ways, each of which 
requires essentially the same information (described in Requirements) 
in order to proceed:
• General formulae2 – these can be complex but may be necessary in 
some situations (e.g. to retain power in a cluster randomized trial  
(Chapters 14 and 41), we multiply the sample size that would be required 
if we were carrying out individual randomization by the design effect 
equal to [1 + (m − 1)ρ], where m is the average cluster size and ρ is the 
intraclass correlation coefficient (Chapter 42)).
• Quick formulae – these exist for particular power values and 
significance levels for some hypothesis tests (e.g., Lehr’s formulae3, 
see next page).
• Special tables2 – these exist for different situations (e.g. for t-tests, 
Chi-squared tests, tests of the correlation coefficient, comparing two 
survival curves, and equivalence studies).
• Altman’s nomogram – this is an easy-to-use diagram which 
is appropriate for various tests. Details are given in the next  
section.
• Computer software – this has the advantage that results can be 
presented graphically or in tables to show the effect of changing the 
factors (e.g. power, size of effect) on the required sample size.

Altman’s nomogram
Notation
We show in Table 36.1 the notation for using Altman’s nomogram 
(Appendix B) to estimate the sample size of two equally sized groups of 
observations for three frequently used hypothesis tests of means and 
proportions.

Method
For each test, we calculate the standardized difference and join its  
value on the left-hand axis of the nomogram to the power we have  
specified on the right-hand vertical axis. The required sample size is 
indicated at the point at which the resulting line and sample size axis 
meet.

Note that we can also use the nomogram to evaluate the power of a 
hypothesis test for a given sample size. Occasionally, this is useful if we 

Sample size calculations36

1Birkett, M.A. and Day, S.J. (1994) Internal pilot studies for estimating sample 
size. Statistics in Medicine, 13, 2455–2463.

2Machin, D., Campbell, M.J., Fayers, P.M. and Pinol, A.P.Y. (1997) Sample Size 
Tables for Clinical Studies. 2nd edition. Oxford: Blackwell.
3Lehr, R. (1992) Sixteen S-squared over D-squared: a relation for crude sample 
size estimates. Statistics in Medicine, 11, 1099–1102.
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wish to know, retrospectively, whether we can attribute lack of 
significance in a hypothesis test to an inadequately sized sample. In 
such post hoc power calculations, the clinically important treatment 
difference must be that which was decided a priori; it is not the observed 
treatment effect. Remember, also, that a wide confidence interval for 
the effect of interest indicates an imprecise estimate, often due to an 
insufficiently sized study (Chapter 11).

Quick formulae
For the unpaired t-test and Chi-squared test, we can use Lehr’s formula3 
for calculating the sample size for a power of 80% and a two-sided 
significance level of 0.05. The required sample size in each group is

16
2Standardized difference( )

If the standardized difference is small, this formula overestimates the 
sample size. Note that a numerator of 21 (instead of 16) relates to a 
power of 90%.

Power statement
It is often essential and always useful to include a power statement 
in a study protocol or in the methods section of a paper (see 
CONSORT Statement, Chapter 14) to show that careful thought 
has been given to sample size at the design stage of the 

investigation. A typical statement might be ‘84 patients in each 
group were required for the unpaired t-test to have a 90% chance 
of detecting a difference in means of 2.5 days (SD = 5 days) at the 
5% level of significance’ (see Example 1).

Adjustments
We may wish to adjust the sample size:
• to allow for losses to follow-up by recruiting more patients into the 
study at the outset. If we believe that the drop-out rate will be r%, 
then the adjusted sample size is obtained by multiplying the 
unadjusted sample size by 100/(100 − r).
• to have independent groups of different sizes. This may be desirable 
when one group is restricted in size, perhaps because the disease is rare 
in a case–control study (Chapter 16) or because the novel drug treatment 
is in short supply. Note, however, that the imbalance in numbers usually 
results in a larger overall sample size when compared with a balanced 
design if a similar level of power is to be maintained. If the ratio of the 
sample sizes in the two groups is k (e.g. k = 3 if we require one group to 
be three times the size of the other), then the adjusted overall sample 
size is

′ = +( ) ( )N N k k1 42

where N is the unadjusted overall sample size calculated for equally 
sized groups. Then N′/(1 + k) of these patients will be in the smaller 
group and the remaining patients will be in the larger group.

Table 36.1 Information for using Altman’s nomogram

Hypothesis test
Standardized 
difference

Explanation of N in 
nomogram Terminology

Unpaired t-test (Chapter 21) δ
σ

N/2 observations in 
each group

δ: the smallest difference in means which is clinically important.
σ: the assumed equal standard deviation of the observations in each of the two 

groups. You can estimate it using results from a similar study conducted 
previously or from published information. Alternatively, you could perform 
a pilot study to estimate it. Another approach is to express δ as a multiple of 
the standard deviation (e.g., the ability to detect a difference of two 
standard deviations).

Paired t-test (Chapter 20) 2δ
σ d

N pairs of observations δ: the smallest mean difference which is clinically important.
σd: the standard deviation of the differences in response, usually estimated 

from a pilot study.

Chi-squared test (Chapter 24)
p p

p p
1 2

1

−
−( )

N/2 observations in 
each group 

p1– p2: the smallest difference in the proportions of ‘success’ in the two groups 
that is clinically important. One of these proportions is often known, 
and the relevant difference evaluated by considering what value the 
other proportion must take in order to constitute a noteworthy change.

p
p p= +1 2

2



Example 1

Comparing means in independent groups using the unpaired t-test

Objective – to examine the effectiveness of aciclovir suspension 
(15 mg/kg) for treating 1- to 7-year-old children with herpetic 
gingivostomatitis lasting less than 72 hours.
Design – randomized double-blind placebo-controlled trial with 
‘treatment’ administered five times a day for 7 days.
Main outcome measure for the determination of sample size – 
duration of oral lesions.
Sample size question – how many children are required in order to 
have a 90% power of detecting a 2.5 day difference in mean duration 
of oral lesions between the two groups at the 5% level of significance? 
The authors assume that the standard deviation of duration of oral 
lesions is approximately 5 days.
Using the nomogram:
δ = 2.5 days and σ = 5 days. Thus the standardized difference

equals 
δ
σ

= =2 5

5
0 50

.
. .

The line connecting a standardized difference of 0.50 and a power 
of 90% cuts the sample size axis at approximately 160. Therefore 

about 80 children are required in each group. (Note: (i) if δ were 
increased to 3 days, then the standardized difference equals 0.6 
and the required sample size would decrease to approximately 118 
in total, i.e. 59 in each group, and (ii) if, using the original 
specification, the investigators wanted twice as many children on 
aciclovir treatment as on placebo (i.e., k = 2), then the adjusted 
sample size would be

′ = +( ) ( ) = +( ) ×( ) =N N k k1 4 160 1 2 4 2 1802 2 ,

with 180/3 = 60 children on placebo and the remaining 120  
children on aciclovir.) Fig. 18.1 shows power curves for this 
example.
Quick formula:
If the power is 90%, then the required sample size in each group is

21 21

0 50
842 2standardized difference( )

=
( )

=
.

.

Amir, J., Harel, L., Smettana, Z. and Varsano, I. (1997) Treatment of herpes simplex gingivostomatitis with aciclovir in children: a randomized double-blind 
placebo controlled study. British Medical Journal, 314, 1800–1803.

Increasing the power for a fixed  
sample size
If we regard the significance level and important treatment difference 
defined by a particular variable as fixed (we can rarely justify increasing 
either of them) and assume that our test is two-tailed (a one-tailed test 
has greater power but is usually inappropriate (Chapter 17)), we can 
increase the power for a fixed sample size in a number of ways. For 
example we might:
• use a more informative response variable (e.g. a numerical variable 
such as systolic blood pressure instead of the binary responses 
normal/hypertensive);

• perform a different form of analysis (e.g. parametric instead of 
non-parametric);
• reduce the random variation when collecting the data (e.g. by 
standardizing conditions or training observers (Chapter 39));
• modify the original study design in such a way that the variability in 
measurements is reduced (e.g. by incorporating stratification or using 
matched pairs instead of two independent groups (Chapter 13)).
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Example 2

Comparing two proportions in independent groups using the Chi-squared test

Objective – to compare the effectiveness of corticosteroid injections 
with physiotherapy for the treatment of painful stiff shoulder.
Design – randomized controlled trial (RCT) in which patients are 
randomly allocated to 6 weeks of treatment, these comprising either 
a maximum of three injections or twelve 30-minute sessions of 
physiotherapy for each patient.
Main outcome measure for determining sample size – treatment 
is regarded as a success after 7 weeks if the patient rates him/herself 
as having made a complete recovery or as having much improvement 
(on a six-point Likert scale).
Sample size question – how many patients are required in order to 
have an 80% power of detecting a clinically important difference in 
success rates of 25% between the two groups at the 5% level of 
significance? The authors assume a success rate of 40% in the group 
having the least successful treatment.
Using the nomogram:

p p p1
0 40 0 65

2
0 525= 0.40 and = 0.65, so 2 = + =. .
.

Therefore, the standardized difference

= −
−( )

=
×

=p p

p p
1 2

1

0 25

0 525 0 475
0 50

.

. .
.

The line connecting a standardized difference of 0.50 and a power 
of 80% cuts the sample size axis at 120. Hence approximately 60 
patients are required in each group. (Note: (i) if the power were 
increased to 85%, then the required sample size would increase 
to approximately 140 in total, i.e. 70 patients would be required 
in each group, and (ii) if the drop-out rate was expected to be 
around 20%, the adjusted overall sample size (with a power of 
80%) would be 120 × 100/(100 − 20) = 150, with 75 patients in 
each group.) Fig. 18.2 shows power curves for this example.
Quick formula:
If the power is 80%, then the required sample size in each group is

16 16

0 50
642 2standardized difference( )

=
( )

=
.

.

van der Windt, D.A.W.M., Koes, B.W., Devillé, W., de Jong, B.A. and Bouter, M. (1998) Effectiveness of corticosteroid injections with physiotherapy for 
treatment of painful shoulder in primary care: randomised trial. British Medical Journal, 317, 1292–1296.



Introduction
An essential facet of statistics is the ability to summarize the important 
features of the analysis. We must know what to include and how to 
display our results in a manner that enables others to obtain relevant and 
important information easily and draw correct conclusions. This chapter 
describes the key features of presentation.

Numerical results
• Give figures only to the degree of accuracy that is appropriate (as a 
guideline, one significant figure more than the raw data). If analysing 
the data by hand, only round up or down at the end of the calculations.
• Give the number of items on which any summary measure (e.g. a 
percentage) is based.
• Describe any outliers and explain how they are handled (Chapter 3).
• Include the units of measurement.
• When interest is focused on a parameter (e.g. the mean, regression 
coefficient), always indicate the precision of its estimate. We recommend 
using a confidence interval for this but the standard error is also 
acceptable. Avoid using the ± symbol, as in mean ± SEM (Chapter 10), 
because by adding and subtracting the SEM, we create a 67% confidence 
interval that can be misleading for those used to 95% confidence 
intervals. It is better to show the standard error in brackets after the 
parameter estimate, e.g. mean = 16.6 g (SEM 0.5 g).
• When interest is focused on the distribution of observations, always 
indicate a measure of the ‘spread’ of the data. The range of values that 
excludes outliers (typically, the range of values containing the central 
95% of the observations (Chapter 6)) is a useful descriptor. If the data 
are Normally distributed, this range is approximated by the sample 
mean ±1.96 × standard deviation (Chapter 7). The mean and the 
standard deviation can be quoted instead, e.g. mean = 35.9 mm (SD 
2.8 mm), but this leaves the reader to evaluate the range.

Tables
• Do not give too much information in a table.
• Include a concise, informative and unambiguous title.
• Label each row and column.
• Remember that it is easier to scan information down columns rather 
than across rows.

Diagrams
• Keep a diagram simple and avoid unnecessary frills (e.g. making a 
pie chart three-dimensional).
• Include a concise, informative and unambiguous title.
• Label all axes, segments and bars, and explain the meaning of 
symbols.
• Avoid distorting results by exaggerating the scale on an axis.
• Indicate where two or more observations lie in the same position on a 
scatter diagram, e.g. by using a different symbol.
• Ensure that all the relevant information is contained in the diagram 
(e.g. link paired observations).

Presenting results in a paper
When presenting results in a paper, we should ensure that the paper 
contains enough information for the reader to understand what has 

been done. He or she should be able to reproduce the results, given the 
appropriate computer package and data. All aspects of the design of 
the study and the statistical methodology must be fully described. 
Guidelines for the presentation of study results are now available for 
many types of study design, including randomized trials (the 
CONSORT Statement, see also Chapter 14), observational studies (the 
STROBE Statement) and meta-analyses (the QUOROM Statement). 
In 2008, the EQUATOR (Enhancing the Quality and Transparency of 
Health Research) Network was initiated with the objectives of 
providing resources and training for the reporting of health research  
as well as assistance in the development, dissemination, and 
implementation of reporting guidelines. Its website (www.equator-
network.org) provides links to all relevant guidelines.

Results of a hypothesis test
• Include a relevant diagram, if appropriate.
• Indicate the hypotheses of interest.
• Name the test and state whether it is one- or two-tailed.
• Justify the assumptions (if any) underlying the test (e.g. Normality, 
constant variance (Chapter 35)), and describe any transformations 
(Chapter 9) required to meet these assumptions (e.g. taking logarithms).
• Specify the observed value of the test statistic, its distribution (and 
degrees of freedom, if relevant) and, if possible, the exact P-value (e.g. 
P = 0.03) rather than an interval estimate of it (e.g. 0.01 < P < 0.05) or 
a star system (e.g. *, **, *** for increasing levels of significance). Avoid 
writing ‘n.s.’ when P > 0.05; an exact P-value is preferable even when 
the result is non-significant.
• Include an estimate of the relevant effect of interest (e.g. the difference 
in means for the two-sample t-test, or the mean difference for the paired 
t-test) with a confidence interval (preferably) or standard error.
• Draw conclusions from the results (e.g. reject the null hypothesis), 
interpret any confidence intervals and explain their implications.

Results of a regression analysis
Here we include simple (Chapters 27 and 28) and multiple linear 
regression (Chapter 29), logistic regression (Chapter 30), Poisson 
regression (Chapter 31), proportional hazards regression (Chapter 44) 
and regression methods for clustered data (Chapter 42). Full details of 
these analyses are explained in the associated chapters.
• Include relevant diagrams (e.g. a scatter plot with the fitted line for 
simple regression).
• Clearly state which is the dependent variable and which is (are) the 
explanatory variable(s).
• Justify underlying assumptions and explain the results of regression 
diagnostics, if appropriate.
• Describe any transformations, and explain their purpose.
• Where appropriate, describe the possible numerical values taken by 
any categorical variable (e.g. male = 0, female = 1), how dummy 
variables were created (Chapter 29), and the units of numerical 
variables.
• Give an indication of the goodness of fit of the model (e.g. quote R2 
(Chapter 29) or LRS (Chapter 32)).
• If appropriate (e.g. in multiple regression), give the results of the 
overall F-test from the ANOVA table.

Presenting results37
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Example

• Provide estimates of all the coefficients in the model (including those 
which are not significant, if applicable) together with the confidence 
intervals for the coefficients or standard errors of their estimates. In 
logistic regression (Chapter 30), Poisson regression (Chapter 31) and 
proportional hazards regression (Chapter 44), convert the coefficients 
to estimated odds ratios, relative rates or relative hazards (with 
confidence intervals). Interpret the relevant coefficients.
• Show the results of the hypothesis tests on the coefficients (i.e. 
include the test statistics and the P-values). Draw appropriate 
conclusions from these tests.

Complex analyses
There are no simple rules for the presentation of the more complex 
forms of statistical analysis. Be sure to describe the design of the study 
fully (e.g. the factors in the analysis of variance and whether there is a 
hierarchical arrangement), and include a validation of underlying 
assumptions, relevant descriptive statistics (with confidence intervals), 
test statistics and P-values. A brief description of what the analysis is 
doing helps the uninitiated; this should be accompanied by a reference 
for further details. Specify which computer package has been used.

Table 34.1: Information relating to first births in women with bleeding disorders †,
stratified by bleeding disorder

Total Haem A Haem B vWD FXI
deficiency

Number of women with live births 48 14 5 19 10

Mother’s age at birth of baby (years)

Bleeding disorder

Median
range

27.0
(16.7–37.9)

24.9
(16.7–33.0)

28.5
(25.6–34.9)

27.5
(18.8–36.6)

27.1
(22.3–37.9)

Gestational age of baby (weeks)

Median
(range)

40
(37–42)

39
(38–42)

40
(39–41)

40
(38–42)

40.5
(37–42)

Weight of baby   (kg)

Median
(range)

3.64
(1.96–4.46)

3.62
(1.96–4.46)

3.78
(3.15–3.94)

3.64
(2.01–4.35)

3.62
(2.90–3.84)

Sex of baby*
Boy
Girl

Not stated

20 (41.7%)
20 (41.7%)
 8 (16.7%)

8 (57.1%)
4 (28.6%)
2 (14.3%)

0 (–)
2 (40.0%)
3 (60.0%)

8 (42.1%)
10 (52.6%)

1 (5.3%)

4 (40.0%)
4 (40.0%)
2 (20.0%)

Interventions received during labour*

Inhaled gas
Intramuscular pethidine

Intravenous pethidine
Epidural

25 (52.1%)
22 (45.8%)

2 (4.2%)
10 (20.8%)

6 (42.9%)
9 (64.3%)
0 (0.0%)
3 (21.4%)

2 (40.0%)
1 (20.0%)
0 (0.0%)
2 (40.0%)

11 (57.9%)
  4 (21.1%)
  1 (5.3%)
  4 (21.1%)

6 (60.0%)
8 (80.0%)
1 (10.0%)
1 (10.0%)

*Entries are frequencies (%)
†The study is described in Chapter 2
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Figure 37.1 Histograms showing the distribution of (a) systolic blood pressure and (b) height in a sample of 100 children (Chapter 26).
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An individual’s state of health is often characterized by a number of 
numerical or categorical measures. In this context, an appropriate 
reference interval (Chapters 6 and 7) and/or diagnostic test may be 
used:
• by the clinician, together with a clinical examination, to diagnose or 
exclude a particular disorder in his or her patient;
• as a screening device to ascertain which individuals in an apparently 
healthy population are likely to have (or sometimes, not have) the 
disease of interest. Individuals flagged in this way will then usually  
be subjected to more rigorous investigations in order to have their 
diagnosis confirmed. It is only sensible to screen for a disease if there 
are adequate facilities for treating the disease at the pre-symptomatic 
stages, this treatment being less costly and/or more effective than  
when given at a later stage (or, occasionally, if it is believed that 
individuals who are diagnosed with the disease will modify their 
behaviour to prevent the disease spreading).

A diagnostic test may also be used:
• as one of an array of routine tests (e.g. blood tests) which may 
identify a disorder unrelated to the condition under investigation;
• as a staging test (e.g. for cancer);
• as a monitoring test to track a patient’s progress over time (e.g. blood 
pressure).

This chapter describes some of the methods that are used to develop 
these diagnostic tools for clinical use and explains how to interpret their 
results.

Reference intervals
A reference interval (often referred to as a normal range) for a single 
numerical variable, calculated from a very large sample, provides a 
range of values that are typically seen in healthy individuals. If an 
individual’s value is above the upper limit, or below the lower limit, we 
consider it to be unusually high (or low) relative to healthy 
individuals.

Calculating reference intervals
Two approaches can be taken.
• We make the assumption that the data are Normally distributed. 
Approximately 95% of the data values lie within 1.96 standard 
deviations of the mean (Chapter 7). We use our data to calculate these 
two limits (mean ± 1.96 × standard deviation).
• An alternative approach, which does not make any assumptions about 
the distribution of the measurement, is to use a central range which 
encompasses 95% of the data values (Chapter 6). We put our values in 
order of magnitude and use the 2.5th and 97.5th percentiles as our 
limits.

The effect of other factors on reference intervals
Sometimes the values of a numerical variable depend on other factors, 
such as age or sex. It is important to interpret a particular value only 
after considering these other factors. For example, we generate  
reference intervals for systolic blood pressure separately for men and 
women.

Diagnostic tests
The gold standard test that provides a definitive diagnosis of a 
particular condition may sometimes be impractical or not routinely 
available. We would like a simple test, depending on the presence or 
absence of some marker, which provides a reasonable guide to whether 
or not the patient has the condition.

To evaluate a diagnostic test, we apply this test to a group of 
individuals whose true disease status is known from the gold standard 
test. We can draw up the 2 × 2 table of frequencies (Table 38.1):

Diagnostic tools38

Table 38.1 Table of frequencies.

Test result

Gold standard test

Disease No disease Total

Positive a b a + b
Negative c d c + d

Total a + c b + d n = a + b + c + d

Of the n individuals studied, a + c individuals have the disease. The 
prevalence (Chapter 12) of the disease in this sample is

a c

n

+( )

Of the a + c individuals who have the disease, a have positive 
test results (true positives) and c have negative test results (false 
negatives). Of the b + d individuals who do not have the disease, d 
have negative test results (true negatives) and b have positive test 
results (false positives).

Assessing the effectiveness of the test: sensitivity and 
specificity
Sensitivity = proportion of individuals with the disease who are 

correctly identified by the test

=
+( )
a

a c

Specificity = proportion of individuals without the disease who are 
correctly identified by the test

=
+( )
d

b d

These are usually expressed as percentages. As with all estimates, we 
should calculate confidence intervals for these measures (Chapter 11).

We would like our test to have a sensitivity and specificity that are 
both as close to 1 (or 100%) as possible. However, in practice, we may 
gain sensitivity at the expense of specificity, and vice versa. Whether we 
aim for a high sensitivity or high specificity depends on the condition 
we are trying to detect, along with the implications for the patient and/or 
the population of either a false negative or false positive test result. For 
conditions that are easily treatable, we prefer a high sensitivity; for 
those that are serious and untreatable, we prefer a high specificity in 
order to avoid making a false positive diagnosis. It is important that, 
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before screening is undertaken, subjects should understand the 
implications of a positive diagnosis, as well as having an appreciation 
of the false positive and false negative rates of the test.

Using the test result for diagnosis:  
predictive values
Positive predictive value = proportion of individuals with a positive 

test result who have the disease

=
+( )
a

a b

Negative predictive value = proportion of individuals with a negative 
test result who do not have the disease, 
and is calculated as

=
+( )
d

c d

We calculate confidence intervals for these predictive values, often 
expressed as percentages, using the methods described in Chapter 11.

The sensitivity and specificity quantify the diagnostic ability of the 
test but it is the predictive values that indicate how likely it is that the 
individual has or does not have the disease, given his or her test result. 
Predictive values are dependent on the prevalence of the disease in the 
population being studied. In populations where the disease is common, 
the positive predictive value of a given test will be much higher than in 
populations where the disease is rare. The converse is true for negative 
predictive values. Therefore, predictive values can rarely be generalized 
beyond the study.

The use of a cut-off value
Sometimes we wish to make a diagnosis on the basis of a numerical or 
ordinal measurement. Often there is no threshold above (or below) 
which disease definitely occurs. In these situations, we need to define a 
cut-off value ourselves above (or below) which we believe an individual 
has a very high chance of having the disease.

A useful approach is to use the upper (or lower) limit of the reference 
interval. We can evaluate this cut-off value by calculating its associated 
sensitivity, specificity and predictive values. If we choose a different 
cut-off, these values may change as we become more or less stringent. 
We choose the cut-off to optimize these measures as desired.

The receiver operating characteristic (ROC) curve
This provides a way of assessing whether a particular type of test 
provides useful information, and can be used to compare two different 
tests, and to select an optimal cut-off value for a test.

To draw the receiver operating characteristic (ROC) curve for 
a given test, we consider all cut-off points that give a unique pair 
of values for sensitivity and specificity, and plot the sensitivity 
against one minus the specificity (thus comparing the probabilities 
of a positive test result in those with and without disease) and 
connect these points by lines (Fig. 38.1).

The ROC curve for a test that has some use will lie to the left of 
the diagonal (i.e. the 45 ° line) of the graph. Depending on the 
implications of false positive and false negative results, and the 
prevalence of the condition, we can choose the optimal cut-off for a 
test from this graph. The overall accuracy of two or more tests for the 
same condition can be compared by considering the area under each 
curve (sometimes referred to as AUROC); this area can be calculated 
manually or is given by the c statistic. c can be interpreted as the 
probability that a randomly chosen subject from the disease group 
has a higher predicted probability of having the disease than a 
randomly chosen subject from the disease-free group. The test with 
the greater area (i.e. the higher c statistic) is better at discriminating 
between disease outcomes. A test which is perfect at discriminating 
between the disease outcomes has c = 1 and a non-discriminating test 
which performs no better than chance has c = 0.5.

We also discuss the area under the ROC curve in Chapter 46 in the 
context of prognostic scores.

Is a test useful?
The likelihood ratio (LR) for a positive test result is the ratio of the 
chance of a positive result if the patient has the disease to the chance of 
a positive result if he or she does not have the disease (see also Chapter 
32). For example, a LR of 2 for a positive result indicates that a positive 
result is twice as likely to occur in an individual with disease than in one 
without it.

It can be shown that

LR for a positive result =
−( )
sensitivity

specificity1

A likelihood ratio can also be generated for a negative test result and is 
most easily calculated as (1 - sensitivity)/specificity. A high likelihood 
ratio for a positive test result (e.g. >10) suggests that the test is useful 
and provides evidence to support the diagnosis. Similarly, a likelihood 
ratio close to zero (e.g. <0.01) for a negative result allows us to rule out 
the diagnosis. We discuss the LR in the context of diagnostic tests in a 
Bayesian framework in Chapter 45.

116 Medical Statistics at a Glance, Eight Edition. Aviva Petrie and Caroline Sabin. © 2009 Aviva Petrie and Caroline Sabin. Published 2009 by John Wiley & 

Sons, Ltd.



Diagnostic tools    Additional chapters    117

Cytomegalovirus (CMV) is a common viral infection to which 
approximately 50% of individuals are exposed during childhood. 
Although infection with the virus does not usually lead to any major 
problems, individuals who have been infected with CMV in the past 
may suffer serious disease after certain transplant procedures, such as 
bone marrow transplantation, if their virus is either reactivated or if 
they are re-infected by their donors. It is thought that the amount of 
detectable virus in their blood after transplantation (the viral load) 
may predict which individuals will get severe disease. In order to 
study this hypothesis, CMV viral load was measured in a group of 49 
bone marrow transplant recipients. Fifteen of the 49 patients developed 
severe disease during follow-up. Viral load values in all patients 
ranged from 2.7log10 genomes/ml to 6.0log10 genomes/ml. As a 
starting point, a value in excess of 4.5log10 genomes/ml was considered 
an indication of the possible future development of disease. The table 
of frequencies shows the results obtained; the box contains calculations 
of estimates of measures of interest.

Example

 

Viral load  
(log10 genomes/ml)

Severe disease

Yes No Total

>4.5 7 6 13
≤4.5 8 28 36

Total 15 34 49

Prevalence = (15/49) × 100% = 31% (95% CI 18% to 45%)

Sensitivity = (7/15) × 100% = 47% (95% CI 22% to 72%)

Specificity = (28/34) × 100% = 82% (95% CI 69% to 95%)

Positive predictive value = (7/13) × 100% = 54% 
(95% CI 27% to 81%)

Negative predictive value = (28/36) × 100% = 78% 
(95% CI 65% to 92%)

Likelihood ratio for positive result = 0.47/(1 - 0.82) = 2.6 
(95% CI 1.1 to 6.5, obtained from computer output)

Likelihood ratio for negative result = (1 - 0.47)/(0.82) = 0.7 
(95% CI 0.4 to 1.1, obtained from computer output)

Therefore, for this cut-off value, we have a relatively high 
specificity and a moderate sensitivity. The LR for a positive test  
result of 2.6 indicates that this test could be useful, in that a viral load 
>4.5log10 genomes/ml is more than twice as likely in an individual 
with severe disease than in one without severe disease. However, in 
order to investigate other cut-off values, a ROC curve was plotted 
(Fig. 38.1). The plotted line falls just to the left of the diagonal of the 
graph. The area under the ROC curve is 0.783, indicating that this  
test is reasonably accurate at discriminating between those who do 
and those who do not have severe disease. For this example, the most 
useful cut-off value (5.0log10 genomes/ml) is that which gives the 
highest LR (equal to 13.3): then the sensitivity is 40% and the 
specificity is 97%. Thus, if we were to use the test with this higher 
cut-off, a positive test result would indicate that the individual would 
be very likely to develop severe disease.

Figure 38.1 Receiver operating characteristic (ROC) curve, highlighting 
the results from two possible cut-off values, the optimal one and that 
used in the diagnostic test.
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Data kindly provided by Prof. V.C. Emery and Dr D. Gor, Department of Virology, Royal Free and University College Medical School, London, UK.



Measurement variability and error
A biological variable measured on each of a number of individuals 
will always exhibit a certain amount of variability. The measurements 
are likely to vary between individuals (inter-individual variation) as 
well as within the same individual (intra-individual variation) if the 
measurement on that individual is repeated, either immediately or 
some time later. Much of this variability arises because of differences 
in associated factors, e.g. genetic, environmental or lifestyle factors. 
For example, blood pressure measurements may vary between 
individuals if these individuals differ in terms of their sex, age, 
weight or smoking status and within an individual at different times 
of the day. We refer to this type of variability as measurement 
variability. We define measurement error as that which arises 
when there is a difference between the observed (or ‘measured’) 
values and true values of a variable (note that although we refer to 
the ‘true’ measurement here, it is rarely possible to obtain this value). 
Measurement error may be:
• Systematic – the observed values tend to be too high (or too low) 
because of some known or unknown extraneous factor affecting the 
measurements in the same way (e.g. an observer overestimating the 
values). Systematic errors lead to biased estimates, raising concerns 
about validity, and should be reduced as far as possible by, for example, 
standardizing conditions, training observers and/or calibrating the 
instrument (i.e. verification by comparison with a known standard).
• Random – the observed values are sometimes greater and sometimes 
less than the true values but they tend to balance out on average. For 
example, random errors may occur because of a lack of sensitivity of 
the measuring instrument. Random error is governed by chance 
although the degree of error may be affected by external factors (e.g. the 
pH in fresh blood samples may exhibit greater random error when these 
samples are at room temperature rather than on ice).

Both measurement variability and error are important when assessing 
a measurement technique. Although the description of error in this 
section has focused on laboratory measurements, the same concepts 
apply even if we are interested in other forms of measurement, such as 
an individual’s state of health on a particular day, as assessed by a 
questionnaire.

Reliability
There are many occasions on which we wish to compare results which 
should concur. In particular, we may want to assess and, if possible, 
quantify the following two types of agreement or reliability:
• Reproducibility (method/observer agreement).  Do two techniques 
used to measure a particular variable, in otherwise identical 
circumstances, produce the same result? Do two or more observers 
using the same method of measurement obtain the same results?
• Repeatability.  Does a single observer obtain the same results when 
she or he takes repeated measurements in identical circumstances?

Reproducibility and repeatability can be approached in the same 
way. In each case, the method of analysis depends on whether the 
variable is categorical (e.g. poor/average/good) or numerical (e.g. 
systolic blood pressure). For simplicity, we shall restrict the problem to 
that of comparing only paired results (e.g. two methods/two observers/
duplicate measurements).

Categorical variables
Suppose two observers assess the same patients for disease severity 
using a categorical scale of measurement, and we wish to evaluate the 
extent to which they agree. We present the results in a two-way 
contingency table of frequencies with the rows and columns indicating 
the categories of response for each observer. Table 39.1 is an example 
showing the results of two observers’ assessments of the condition of 
tooth surfaces. The frequencies with which the observers agree are 
shown along the diagonal of the table. We calculate the corresponding 
frequencies which would be expected if the categorizations were made 
at random, in the same way as we calculated expected frequencies in the 
Chi-squared test of association (Chapter 24), i.e. each expected 
frequency is the product of the relevant row and column totals divided 
by the overall total. Then we measure agreement by

Cohen’s kappa, 

d d

d
κ =

−( )
−( )

O E

E
m m

m
1

which represents the chance corrected proportional agreement, where:
• m = total observed frequency (e.g. total number of patients)
• Od = sum of observed frequencies along the diagonal
• Ed = sum of expected frequencies along the diagonal
• 1 in the denominator represents maximum agreement.

κ = 1 implies perfect agreement and κ = 0 suggests that the 
agreement is no better than that which would be obtained by chance. 
There are no objective criteria for judging intermediate values. However, 
kappa is often judged as providing agreement1 which is:
• poor if κ < 0.00
• slight if 0.00 ≤ κ ≤ 0.20
• fair if 0.21 ≤ κ ≤ 0.40
• moderate if 0.41 ≤ κ ≤ 0.60
• substantial if 0.61 ≤ κ ≤ 0.80
• almost perfect if κ > 0.80.

Although it is possible to estimate a standard error and confidence 
interval2 for kappa, we do not usually test the hypothesis that kappa is 
zero since this is not really pertinent or realistic in a reliability study.

Note that kappa is dependent both on the number of categories (i.e.  
its value is greater if there are fewer categories) and the prevalence of  
the condition, so care must be taken when comparing kappas from  
different studies. For ordinal data, we can also calculate a weighted 
kappa3 which takes into account the extent to which the observers 
disagree (the non-diagonal frequencies) as well as the frequencies of 
agreement (along the diagonal). The weighted kappa is very similar to the 
intraclass correlation coefficient (see next section and Chapter 42).

Numerical variables
Suppose an observer takes duplicate measurements of a numerical 
variable on n individuals (just replace the word ‘repeatability’ by 

Assessing agreement39

1Landis, J.R. and Koch, G.G. (1977) The measurement of observer agreement 
for categorical data. Biometrics, 33, 159–174.
2Altman, D.G. (1991) Medical Statistics for Medical Research. London: 
Chapman and Hall/CRC.
3Cohen, J. (1968). Weighted Kappa: nominal scale agreement with provision for 
scale disagreement or partial credit. Psychological Bulletin, 70, 213–220.
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‘reproducibility’ if considering the similar problem of method 
agreement, but remember to assess the repeatability of each method 
before carrying out the method agreement study).

Is there a systematic effect?
If we calculate the difference between each pair of measurements and 
find that the average difference is zero (this is usually assessed by the 
paired t-test but we might use the sign test or signed ranks test (Chapters 
19 and 20)), then we can infer that there is no systematic difference 
between the pairs of results, i.e on average, the duplicate readings 
agree. If one set of readings represents the true values, as is likely in a 
method comparison study, this means that there is no bias.

Measures of repeatability and the Bland and Altman 
diagram
The estimated standard deviation of the differences (sd) provides a 
measure of agreement for an individual. However, it is more usual to 
calculate the British Standards Institution repeatability 
coefficient = 2sd. This is the maximum difference which is likely to 
occur between two measurements. Assuming a Normal distribution of 
differences, we expect approximately 95% of the differences in the 
population to lie between d sd± 2  where d  is the mean of the observed 
differences. The upper and lower limits of this interval are called the 
limits of agreement; from them, we can decide (subjectively) whether 
the agreement between pairs of readings in a given situation is 
acceptable. The limits are usually indicated on a Bland and Altman 
diagram which is obtained by calculating the mean of and the difference 
between each pair of readings, and plotting the n differences against 
their corresponding means4 (Fig. 39.1). The diagram can also be used to 
detect outliers (Chapter 3).

It makes no sense to calculate a single measure of repeatability if the 
extent to which the observations in a pair disagree depends on the 
magnitude of the measurement. We can check this using the Bland and 
Altman diagram (Fig 39.1). If we observe a random scatter of points 
(evenly distributed above and below zero if there is no systematic 
difference between the pairs), then a single measure of repeatability is 
acceptable. If, however, we observe a funnel effect, with the variation  
in the differences being greater (say) for larger mean values, then we 
must reassess the problem. We may be able to find an appropriate 
transformation of the raw data (Chapter 9) so that, when we repeat the 
process on the transformed observations, the required condition is 
satisfied.

Indices of reliability
Intraclass correlation coefficient
An index of reliability commonly used to measure repeatability and 
reproducibility is the intraclass correlation coefficient (ICC, Chapter 
42), which takes a value from zero (no agreement) to 1 (perfect 
agreement). When measuring the agreement between pairs of 
observations, the ICC is the proportion of the variability in the 
observations which is due to the differences between pairs, i.e. it is the 
between-pair variance expressed as a proportion of the total variance of 
the observations.

When there is no evidence of a systematic difference between the 
pairs, we may calculate the ICC as the Pearson correlation coefficient 
(Chapter 26) between the 2n pairs of observations obtained by including 

each pair twice, once when its values are as observed and once when 
they are interchanged (see Example 2).

If we wish to take the systematic difference between the observations 
in a pair into account, we estimate the ICC as
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where we determine the difference between and the sum of the 
observations in each of the n pairs and:
• sa

2 is the estimated variance of the n sums
• sd

2 is the estimated variance of the n differences
• d  is the estimated mean of the differences (an estimate of the 
systematic difference).

We usually carry out a reliability study as part of a larger investigative 
study. The sample used for the reliability study should be a reflection of 
that used for the investigative study. We should not compare values of 
the ICC in different data sets as the ICC is influenced by features of the 
data, such as its variability (the ICC will be greater if the observations 
are more variable). Note that the ICC is not related to the actual scale of 
measurement nor to the size of error which is clinically acceptable.

Lin’s concordance correlation coefficient
It is inappropriate to calculate the Pearson correlation coefficient 
(Chapter 26) between the n pairs of readings (e.g. from the first and 
second occasions or from two methods/observers) as a measure of 
reliability. We are not really interested in whether the points in the 
scatter diagram (e.g. of the results from the first occasion plotted against 
those from the second occasion) lie on a straight line; we want to know 
whether they conform to the line of equality (i.e. the 45 ° line through 
the origin when the two scales are the same). This will not be established 
by testing the null hypothesis that the true Pearson correlation coefficient 
is zero. It would, in any case, be very surprising if the pairs of 
measurements were not related, given the nature of the investigation. 
Instead, we may calculate Lin’s concordance correlation coefficient5 
as an index of reliability which is almost identical to the ICC. Lin’s 
coefficient modifies the Pearson correlation coefficient which assesses 
the closeness of the data about the line of best fit (Chapters 28 and 29) 
in the scatter plot by taking into account how far the line of best fit is 
from the 45 ° line through the origin. The maximum value of Lin’s 
coefficient is one, achieved when there is perfect concordance, with all 
the points lying on the 45 ° line drawn through the origin. The coefficient 
can be calculated as

r
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where r is the estimated Pearson correlation coefficient (Chapter 26) 
between the n pairs of results (xi, yi), and x  and y  are the sample means 
of x and y, respectively.
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4Bland, J.M. and Altman, D.G. (1986). Statistical methods for assessing 
agreement between two pairs of clinical measurement. Lancet, I, 307–310.

5Lin L.I.-K. (1989) A concordance correlation coefficient to evaluate 
reproducibility. Biometrics, 45, 255–268.



More complex situations
Sometimes you may come across more complex problems when 
assessing agreement. For example, there may be more than two 
replicates, or more than two observers, or each of a number of 

observers may have replicate observations. You can find details of the 
analysis of such problems in Streiner and Norman6.

Assessing agreement – categorical variable
Two observers, an experienced dentist and a dental student, 
assessed the condition of 2104 tooth surfaces in school-aged 
children. Every surface was coded as ‘0’ (sound), ‘1’ (with at 
least one ‘small’ cavity), ‘2’ (with at least one ‘big’ cavity) or ‘3’ 
(with at least one filling, with or without cavities) by each 
individual. The observed frequencies are shown in Table 39.1. 
The bold figures along the diagonal show the observed frequencies 
of agreement; the corresponding expected frequencies are in 
brackets. We calculated Cohen’s kappa to assess the agreement 
between the two observers.

We estimate Cohen’s kappa as

κ =

+ + +( ) − + + +( )
− +
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Since κ = 0.73 (95% CI 0.69 to 0.78, from computer output) there 
appears to be substantial agreement between the student and the 
experienced dentist in the coding of the children’s tooth surfaces.

Example 1

Table 39.1 Observed (and expected) frequencies of tooth surface 
assessment.

Code

Dental student

0 1 2 3 Total

Dentist 0 1785 
(1602.1)

46 0 7 1838

1 46 154 
(21.3)

18 5 223

2 0 0 20 
(0.5)

0 25

3 3 1 0 14 
(0.2)

18

Total 1834 201 43 26 2104

Data kindly provided by Dr R.D. Holt, Eastman Dental Institute, University College London, London, UK.

Assessing agreement – numerical variables
The Rosenberg self-esteem index is used to judge a patient’s evaluation 
of his or her own self-esteem. The maximum value of the index (an 
indication of high self-esteem) for a person is 50, comprising the sum of 
the individual values from ten questions, each scored from 0 to 5. Part 
of a study which examined the effectiveness of a particular type of 
surgery for facial deformity examined the change in a patient’s 
psychological profile by comparing the values of the Rosenberg  
index in the patient before and after surgery. The investigators were 
concerned about the extent to which the Rosenberg score would be 
reliable for a set of patients, and decided to assess the repeatability of  
the measure on the first 25 patients requesting treatment for facial 
deformity. They obtained a value for the Rosenberg index when the 
patient initially presented at the clinic and then asked the patient for a 
second assessment 4 weeks later. The results are shown in Table 39.2.

The differences (first value − second value) can be shown to be 
approximately Normally distributed; they have a mean, d = 0 56. , and 
standard deviation, sd = 1.83. The test statistic for the paired t-test is 
equal to 1.53 (degrees of freedom = 24), giving P = 0.14. This non-
significant result indicates that there is no evidence of any systematic 
difference between the results on the two occasions.

Example 2

Table 39.2 The pre-treatment values (1st and 2nd) of the Rosenberg 
index obtained on 25 patients.

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

30 27 41 39 37 39 43 43 21 20
39 41 41 41 42 42 40 39 41 39
50 49 50 49 46 44 31 30 29 28
45 42 38 40 49 48 45 46 26 27
25 28 41 39 21 23 46 42 32 30

continued

6Streiner, D.R. and Norman, G.L. (2003) Health Measurement Scales: a Practi-
cal Guide to Their Development and Use. 3rd edition. Oxford: Oxford Univer-
sity Press.
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The British Standards Institution repeatability coefficient is 
2sd = 2 × 1.83 = 3.7. Approximately 95% of the differences in the 
population of such patients would be expected to lie between d sd± 2 , 
i.e. between −3.1 and 4.3. These limits are indicated in Fig. 39.1, 
which shows that the differences are randomly scattered around a 
mean of approximately zero.

The index of reliability is estimated as
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Since the systematic difference is negligible, this value for the ICC is 
the same as the one we get by calculating the Pearson correlation 
coefficient for the 50 pairs of results obtained by using each pair of 
results twice, once with the order reversed. As an illustration of the 
technique, consider the first five pairs of pre-treatment values:  
(30, 27), (39, 41), (50, 49), (45, 42) and (25, 28). If we reverse the 
order of each pair, we obtain a second set of five pairs: (27, 30), (41, 
39), (49, 50), (42, 45) and (28, 25). By repeating this process for the 
remaining 20 pairs, we obtain a total of 50 pairs, which we use to 
calculate the correlation coefficient, an estimate of the ICC. This 
estimate is also the same as the estimate of Lin’s concordance 
correlation coefficient, which is calculated as
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Cunningham, S.J., Hunt, N.P. and Feinnman, C. (1996) Perceptions of outcome following orthognathic surgery British Journal of Oral and Maxillofacial 
Surgery, 34, 210–213.

Figure 39.1 Difference between first and second Rosenberg self-esteem 
values plotted against their mean for 25 patients.

Since the maximum likely difference between repeated measurements 
is around 3.7, and since virtually all (i.e. 98%) of the variability in the 
results can be attributed to differences between patients, the 
investigators felt that the Rosenberg index was reliable, and used it to 
evaluate the patients’ perceptions of the effectiveness of the facial 
surgery.



Straus et al.1 describe evidence-based medicine (EBM) as ‘the 
conscientious, explicit and judicious use of current best evidence in 
making decisions about the care of individual patients’. To practice 
EBM, you must be able to locate the research relevant to the care of 
your patients, and judge its quality. Only then can you think about 
applying the findings in clinical practice.

In order to assess the strength of the findings about any particular topic, 
it is important to recognize that different study designs provide varying 
levels of evidence relating to the answers obtained from the question 
posed. These levels may be specified in the following hierarchy  
(starting with the strongest and leading to the weakest evidence): 
systematic review or meta-analysis of an RCT → RCT → cohort 
study → case–control study → cross-sectional survey → case reports → 
expert opinion → anecdotal information. Note that the hierarchy is not 
set in stone, as its arrangement depends partly on the problem at hand and 
partly on the quality of the individual studies themselves. For example, 
we would choose to perform an RCT to investigate a novel treatment;  
if, on the other hand, we wish to identify risk factors for a disease  
outcome, an RCT would not necessarily be appropriate and a cohort or 
case–control study would provide stronger evidence.

Straus et al. suggest the following approach to EBM. For convenience, 
we have phrased the third and fourth points below in terms of clinical 
trials (Chapter 14) and observational studies (Chapters 15 and 16), but 
they can be modified to suit other forms of investigations (e.g. diagnostic 
tests, Chapter 38).

1  Formulate the problem
You must decide what is of interest to you – how you define the patient 
population, which intervention (e.g. treatment) or comparison is  
relevant, and what outcome you are looking at (e.g. reduced mortality).

2  Locate the relevant  
information (e.g. on diagnosis, prognosis 
or therapy)
Often the relevant information will be found in published papers, but 
you should also consider other possibilities, such as conference 
abstracts. You must know what databases (e.g. Medline) and other 
sources of evidence are available, how they are organized, which search 
terms to use, and how to operate the searching software.

3  Critically appraise the methods in order 
to assess the validity (closeness to the 
truth) of the evidence
The following questions should be asked.
• Have all important outcomes been considered?
• Was the study conducted using an appropriate spectrum of 
patients?
• Do the results make biological sense?
• Was the study designed to eliminate bias (Chapter 34)? For example, 
in a clinical trial, was the study controlled, was randomization used in 

the assignment of patients, was the assessment of response ‘blind’, 
were any patients lost to follow-up, were the groups treated in a similar 
fashion aside from the fact that they received different treatments, and 
was an ‘intention-to-treat’ (ITT) analysis performed (Chapter 14)?
• Are the statistical methods appropriate (e.g. have underlying 
assumptions been verified, have dependencies in the data such as  
pairing been taken into account in the analysis)?

4  Extract the most useful results and 
determine whether they are important
Extracting the most useful results
You should ask the following questions:
(a) What is the main outcome variable (i.e. that which relates to the 
major objective)?
(b) How large is the effect of interest, expressed in terms of the main 
outcome variable? If this variable is:
• Binary (e.g. died/survived)

(i) What are the rates/risks/odds of occurrence of this event (e.g. 
death) in the (two) comparison groups?
(ii) The effect of interest may be the difference in rates or risks (the 
absolute reduction) or a ratio (the relative rate or risk or odds ratio) – 
what is its magnitude?

• Numerical (e.g. systolic blood pressure)
(i) What is the mean (or median) value of the variable in each of the 
comparison groups?
(ii) What is the effect of interest, i.e. the difference in means 
(medians)?

(c) How precise is the effect of interest? Ideally, the research being 
scrutinized should include the confidence interval for the true effect (a 
wide confidence interval is an indication of poor precision). Is this 
confidence interval quoted? If not, is sufficient information (e.g. the 
standard error of the effect of interest) provided so that the confidence 
interval can be determined?

Deciding whether the results are important
• Consider the confidence interval for the effect of interest 
(e.g. the difference in treatment means):

(i) Would you regard the observed effect to be clinically important 
(irrespective of whether or not the result of the relevant hypothesis 
test is statistically significant) if the lower limit of the confidence 
interval represented the true value of the effect?
(ii) Would you regard the observed effect to be clinically important 
if the upper limit of the confidence interval represented the true value 
of the effect?
(iii) Are your answers to the above two points sufficiently similar to 
declare the results of the study unambiguous and important?

• To assess therapy in a randomized controlled trial, evaluate the 
number of patients you need to treat (NNT) with the experimental 
treatment rather than the control treatment in order to prevent one of 
them developing the ‘bad’ outcome (such as postpartum haemorrhage, 
see Example). The NNT can be determined in various ways depending 
on the information available. It is, for example, the reciprocal of the 
difference in the proportions of individuals with the bad outcome in the 
control and experimental groups (see Example).

Evidence-based medicine40

1Straus, S.E., Richardson, W.S., Glasziou, P. and Haynes, R.B. (2005) 
Evidence-based Medicine: How to Practice and Teach EBM. 3rd edition. 
London: Churchill-Livingstone.

MC
Q

75

29

SQ

122  Medical Statistics at a Glance, Eight Edition. Aviva Petrie and Caroline Sabin. © 2009 Aviva Petrie and Caroline Sabin. Published 2009 by John Wiley & 

Sons, Ltd.



Evidence-based medicine  Additional chapters  123

5  Apply the results in clinical practice
If the results are to help you in caring for your patients, you must ensure 
that:
• your patient is similar to those on whom the results were obtained;
• the results can be applied to your patient;
• all clinically important outcomes have been considered;
• the likely benefits are worth the potential harms and costs.

6  Evaluate your performance
Self-evaluation involves questioning your abilities to complete tasks 1 
to 5 successfully. Are you then able to integrate the critical appraisal 
into clinical practice, and have you audited your performance? You 
should also ask yourself whether you have learnt from past experience 
so that you are now more efficient and are finding the whole process of 
EBM easier.

Example

Objective   To test the hypothesis that active management (prophylactic oxytocic within 2
minutes of baby’s birth, immediate cutting and clamping of the cord, delivery of placenta
by controlled cord traction of maternal effort) of the third stage of labour lowers the risk
of primary postpartum haemorrhage (PPH) compared with expectant management (no
maternal effort), in a setting where both managements are commonly practised, and that
this effect is not mediated by maternal posture.

Subjects  1512 women judged to be at low risk of PPH (blood loss > 500 ml) were
randomly assigned to active or expectant management.  Exclusion criteria were placenta
praevia, previous PPH, antepartum haemorrhage after 20 weeks’ gestation, anaemia,
non-cephalic presentation, multiple pregnancy, intrauterine death, epidural anaesthesia,
parity greater than five, uterine fibroid, oxytocin infusion, anticoagulant therapy, intended
operative/instrumental delivery, duration of pregnancy less than 32 weeks.  Trial profile
shown in Chapter 14.

Design  A randomized controlled parallel group trial in which women either received
active or expectant management.  Women were also randomly assigned upright or supine
posture.  The treatment allocation could not be concealed because active and expectant
management require different actions on the part of both midwife and mother.  The
technicians who did the antenatal and postnatal blood tests were unaware of the
allocation.

Findings  Analyses were by intention-to-treat.  The risk of PPH was significantly lower
with active than with expectant management (51 [6.8%] of 748 vs 126 [16.8%] of 764;
relative risk 2.42 [95% Cl 1.78–3.30] , P < 0.0001).  Posture had no effect on this risk
(upright 92 [12%] of 755 vs supine 85 [11%] of 757).  Objective measures of blood loss
confirmed the results.  There was more vomiting in the active group but no other important
differences were detected.

Interpretation  Active management of the third stage reduces the risk of PPH, whatever
the woman’s posture, even when midwives are familiar with both approaches.  It is
recommended that clinical guidelines in hospital setting advocate active management
(with oxytocin alone).  However, decisions about individual care should take into account
the weights placed by pregnant women and their caregivers on blood loss compared with
an intervention-free third stage.

Primary aim
specified

Spectrum of
patients

Avoids bias

Avoids bias

Technicians
blind

Magnitude of
main effect of
interest

Questions the
importance of the
findings as they
relate to the
individual

Precision of main
effect of interest
– risk of PPH is at
least 1.8 and could
be 3.3 times
greater with
expectant
management

From these proportions
with PPH (i.e. 0.068
and 0.168)
NNT = 1/(0.168 – 0.068)
        = 10
i.e. need to treat 10
women with active
management to prevent
one suffering a PPH

Main outcome
variable

Midwife and
mother not
blinded

Adapted from Rogers, J., Wood, J., McCandlish, R., Ayers, S., Truesdale, A. and Elbourne, D. (1998) Active versus expectant management of third stage of 
labour: the Hinchingbrooke randomised controlled trial. Lancet, 351, 693–699, with permission from Elsevier.



Clustered data conform to a hierarchical or nested structure in which, in 
its simplest form (the univariable two-level structure), the value of a 
single response variable is measured on a number of level 1 units 
contained in different groups or clusters (level 2 units). For example, the 
level 1 and level 2 units, respectively, may be teeth in a mouth, knees in 
a patient, patients in a hospital, clinics in a region, children in a class, 
successive visit times for a patient (i.e. longitudinal data, Fig. 41.1), etc. 
The statistical analysis of such repeated measures data should take 
into account the fact that the observations in a cluster tend to be 
correlated, i.e. they are not independent. Failure to acknowledge this 
usually results in underestimation of the standard errors of the estimates 
of interest and, consequently, confidence intervals that are too narrow 
and P-values that are too small, leading to increased Type I error rates.

For the purposes of illustration, we shall assume, in this chapter, that 
we have longitudinal data and our repeated measures data comprise 
each patient’s values of the variable at different time points, i.e. the 
patient is the cluster. We summarize the data by describing the patterns 
in individual patients, and, if relevant, assess whether these patterns 
differ between two or more groups of patients.

Displaying the data
A plot of the measurement against time for each patient in the study 
provides a visual impression of the pattern over time. When we are 
studying only a small group of patients, it may be possible to show all 
the individual plots in one diagram. However, when we are studying 
large groups this becomes difficult, and we may illustrate just a selection 
of ‘representative’ individual plots (Fig. 41.3), perhaps in a grid for 
each treatment group. Note that the average pattern generated by 
plotting the means over all patients at each time point may be very 
different from the patterns seen in individual patients.

Comparing groups:  
inappropriate analyses
It is inappropriate to use all the values in a group to fit a single linear 
regression line (Chapters 27 and 28) or to perform a one-way analysis 
of variance (ANOVA, Chapter 22) to compare groups because these 
methods do not take account of the repeated measurements on the same 
patient. Furthermore, it is also incorrect to compare the means in the 
groups at each time point separately using unpaired t-tests (Chapter 21) 
or one-way ANOVA for a number of reasons:
• The measurements in a patient from one time point to the next are not 
independent, so interpretation of the results is difficult. For example, if 

a comparison is significant at one time point, then it is likely to be 
significant at other time points, irrespective of any changes in the values 
in the interim period.
• The large number of tests carried out implies that we are likely to 
obtain significant results purely by chance (Chapter 18).
• We lose information about within-patient changes.

Comparing groups: appropriate analyses
Using summary measures
We can base our analysis on a summary measure that captures the 
important aspects of the data, and calculate this summary measure for 
each patient. Typical summary measures are:
• change from baseline at a pre-determined time point;
• maximum (peak) or minimum (nadir) value reached;
• time to reach the maximum (or minimum) value;
• time to reach some other pre-specified value;
• average value (e.g. mean);
• area under the curve (AUC, Fig. 41.2);
• slope or intercept of the patient’s regression line (describing the 
relationship between the measurement and time).

If the parameter (e.g. the mean or slope) is estimated more precisely 
in some patients than others (perhaps because there are more observations 
for these patients), we should take account of this in the analysis by 
giving more weight to those measures which are estimated more 
precisely.

The choice of summary measure depends on the main question 
of interest and should be made in advance of collecting the data. 
For example, if we are considering drug concentrations following 
treatment with two therapies, we may consider time to maximum 
drug concentration (Cmax) or AUC. However, if we are interested in 
antibody titres following vaccination, then we may be interested in 
the time it takes the antibody titre to drop below a particular 
protective level.

We compare the values of the summary measure in the different 
groups using standard hypothesis tests, such as the Wilcoxon rank sum 
(Chapter 21) or Kruskal–Wallis tests (Chapter 22). Because we have 
reduced a number of dependent measurements on each individual to a 
single quantity, the values included in the analysis are now 
independent.

While analyses based on summary measures are simple to perform, it 
may be difficult to find a suitable measure that adequately describes the 
data, and we may need to use two or more summary measures. In 
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Figure 41.1 Diagrammatic representation of a 
two-level hierarchical structure for longitudinal 
data.
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addition, these approaches suffer from the disadvantage that they do not 
use all data values fully.

Repeated measures ANOVA
We can perform a particular type of ANOVA (Chapter 22), called 
repeated measures ANOVA, in which the different time points are 
considered as the levels of one factor in the analysis and the grouping 
variable is a second factor in the analysis. We can regard the repeated 
measures ANOVA as an extension of the paired t-test when we have 
more than two related observations. If the repeated measures ANOVA 
produces significant differences between the groups, then paired  
t-tests, which take account of the dependence in the data and have 
P-values adjusted for multiple testing (Chapter 18), can be performed 
to identify at what time points these differences become apparent1.

However, repeated measures ANOVA has several disadvantages:
• It is often difficult to perform.
• The results may be difficult to interpret.
• It generally assumes that values are measured at regular time intervals 
and that there are no missing data, i.e. the design of the study is assumed 
to be balanced. In reality, values are rarely measured at all time points 
because patients often miss appointments or come at different times to 
those planned.

Regression methods
Various regression methods, such as those which provide parameter 
estimates with robust standard errors or use generalized estimating 
equations (GEE) or random effects models, may be used to analyse 
clustered data (see Chapter 42).

Caution
We must take care to avoid the ecological fallacy when inter preting the 
results of studies which involve clustered data (see Chapter 34).

Figure 41.2 Calculation of the AUC for a single 
student. The total area under the line can be divided 
into a number of rectangles and triangles (marked 
a to j). The area of each can easily be calculated. 
Total AUC = Area (a) + Area (b) + … + Area (j).
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1Mickey, R.M., Dunn, O.J. and Clark, V.A. (2004) Applied Statistics: Analysis of 
Variance and Regression. 3rd edition. Chichester: Wiley.
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Data were kindly provided by Dr R. Morris, Department of Primary Care and Population Sciences, and were collected as part of a student practical class 
organized by Dr T.J. Allen, Department of Pharmacology, Royal Free and University College Medical School, London, UK.

As part of a practical class designed to assess the effects of two inhaled 
bronchodilator drugs, fenoterol hydrobromide and ipratropium 
bromide, 99 medical students were randomized to receive one of these 
drugs (n = 33 for each drug) or placebo (n = 33). Each student inhaled 
four times in quick succession. Tremor was assessed by measuring  
the total time (in seconds) taken to thread five sewing needles mounted 
on a cork; measurements were made at baseline before inhalation  
and at 5, 15, 30, 45 and 60 minutes afterwards. The measurements of 
a representative sample of the students in each treatment group are 
shown in Fig. 41.3.

It was decided to compare the values in the three groups using the 
‘area under the curve’ (AUC) as a summary measure. The calculation 
of AUC for one student is illustrated in Fig. 41.2.

The median (range) AUC was 1552.5 (417.5–3875), 1215 (457.5–
2500) and 1130 (547.5–2625) seconds2 in those receiving fenoterol 
hydrobromide, ipratropium bromide and placebo, respectively. The 
values in the three groups were compared using the Kruskal–Wallis 
test, which gave P = 0.008. There was thus strong evidence that the 
distribution of AUC measures was not the same in all three groups. 
Non-parametric post hoc comparisons, adjusted for multiple testing, 
indicated that values were significantly greater in the group receiving 
fenoterol hydrobromide, confirming pharmacological knowledge that 
this drug, as a β2-adrenoceptor agonist, induces tremor by the 
stimulation of β2-adrenoceptors in skeletal muscle.

Example

Figure 41.3 Time taken to thread five sewing needles for three representative students in each treatment group.
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Various regression methods can be used for the analysis of the two-
level hierarchical structure described in Chapter 41, in which each 
cluster (level 2 unit) contains a number of individual level 1 units. 
For example, in a study of rheumatoid arthritis, we may measure the 
flexion angle on both the left and right knees (level 1) of every patient 
(level 2). Alternatively, we may have a longitudinal data set with a 
measurement (e.g. total cholesterol) observed at successive times 
(level 1) on each patient (level 2). The main advantages and 
disadvantages of each method are summarized in Table 42.1. Most of 
these methods are unreliable unless there are sufficient clusters, and 
they can be complicated to perform and interpret correctly; we 
therefore suggest you consult a specialist statistician for advice.

Aggregate level analysis
A very simple approach is to aggregate the data and perform an 
analysis using an appropriate numerical summary measure (e.g. 
the mean) for each cluster (e.g. the patient) (Chapter 41). The 
choice of this summary measure will depend on features of the data 
and on the hypotheses being studied. We perform an ordinary least 
squares (OLS) multiple regression analysis using the cluster as the 
unit of investigation and the summary measure as the outcome 
variable. If each cluster has been allocated a particular treatment 
(in the knee example, the patient may be randomly allocated one of 
two treatments – an exercise regimen or no exercise), then, together 
with other cluster level covariates (e.g. sex, age), we can incorporate 
‘treatment’ in the regression model as a dummy variable using 
codes such as 0 and 1 (or as a series of dummy variables if we 
have more than two treatments (Chapter 29)).

Robust standard errors
If the clustering is ignored in the regression analysis of a two-level 
structure, an important assumption underlying the linear regression 
model – that of independence between the observations (see 
Chapters 27 and 28) – is violated. As a consequence, the standard 
errors of the parameter estimates are likely to be too small and, 
hence, results may be spuriously significant.

To overcome this problem, we may determine robust standard 
errors of the parameter estimates, basing our calculation of them on 
the variability in the data (evaluated by appropriate residuals) rather 
than on that assumed by the regression model. In a multiple regression 
analysis with robust standard errors, the estimates of the regression 
coefficients are the same as in OLS linear regression but the standard 
errors are more robust to violations of the underlying assumptions, 
our particular concern being lack of independence when we have 
clustered data.

Random effects models
Random effects models1 are also known as (for example) 
hierarchical, multilevel, mixed or cluster-specific models, and as 

cross-sectional time series, panel or repeated measures models 
when the data are longitudinal. They can be fitted using various 
comprehensive statistical computer packages, such as SAS and Stata, 
or specialist software such as MLwiN (www.cmm.bristol.ac.uk), all of 
which use a version of maximum likelihood estimation. The estimate  
of the effect for each cluster is derived using both the individual  
cluster information as well as that of the other clusters so that it  
benefits from the ‘shared’ information. In particular, shrinkage 
estimates are commonly determined whereby, using an appropriate 
shrinkage factor, each cluster’s estimate of the effect of interest is 
‘shrunk’ towards the estimated overall mean. The amount of shrinkage 
depends on the cluster size (smaller clusters have greater shrinkage) 
and on the variation in the data (shrinkage is greater for the estimates 
when the variation within clusters is large when compared to that 
between clusters).

A random effects model regards the clusters as a sample from a  
real or hypothetical population of clusters. The individual clusters  
are not of primary interest; they are assumed to be broadly similar  
with differences between them attributed to random variation or to 
other ‘fixed’ factors such as sex, age, etc. The two-level random  
effects model differs from the model which takes no account of  
clustering in that, although both incorporate random or unexplained 
error due to the variation between level 1 units (the within-cluster 
variance, σ2), the random effects model also includes random 
error which is due to the variation between clusters, σ c

2 . The variance 
of an individual observation in this random effects model  
is therefore the sum of the two components of variance, i.e. it is  
σ σ2 2+ c .

Particular models
When the outcome variable, y, is numerical and there is a single 
explanatory variable, x, of interest, the simple random intercepts 
linear two-level model assumes that there is a linear relationship 
between y and x in each cluster, with all the cluster regression lines 
having a common slope, β, but different intercepts (Fig. 42.1a). The 
mean regression line has a slope equal to β and an intercept equal to α, 
which is the mean intercept averaged over all the clusters. The random 
error (residual) for each cluster is the amount by which the intercept for 
that cluster regression line differs, in the vertical direction, from the 
overall mean intercept, α (Fig. 42.1a). The cluster residuals are assumed 
to follow a Normal distribution with zero mean and variance = cσ 2. 
Within each cluster, the residuals for the level 1 units are assumed  
to follow a Normal distribution with zero mean and the same variance, 
σ2. If the cluster sizes are similar, a simple approach to checking 
for Normality and constant variance of the residuals for both the level  
1 units and clusters is to look for Normality in a histogram of the  
residuals, and to plot the residuals against the predicted values (see 
Chapter 28).

This model can be modified in a number of ways (see also 
Table 42.1), e.g. by allowing the slope, β, to vary randomly between 
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1Goldstein, H. (2003) Multilevel Statistical Models. 3rd edition. Kendall Library 
of Statistics 3. London: Arnold.
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clusters. The model is then called a random slopes model, in which 
case the cluster-specific regression lines are not parallel to the mean 
regression line (Fig. 42.1b). See also meta-regression in Chapter 43.

Assessing the clustering effect
The effect of clustering can be assessed by:
• Calculating the intraclass correlation coefficient (ICC, sometimes 
denoted by ρ – see also Chapter 39), which, in the two-level structure, 
represents the correlation between two randomly chosen level 1 units 
in one randomly chosen cluster.

ICC c

c

=
+

σ
σ σ

2

2 2

The ICC expresses the variation between the clusters as a proportion of 
the total variation; it is often presented as a percentage. ICC = 1 when 
there is no variation within the clusters and all the variation is attributed 
to differences between clusters; ICC = 0 when there is no variation 
between the clusters. We can use the ICC to make a subjective decision 
about the importance of clustering.
• Comparing two models where one model is the full random effects 
model and the other is a regression model with the same explanatory 
variable(s) but which does not take clustering into account. The relevant 
likelihood ratio test has a test statistic equal to the difference in the 
likelihood ratio statistics of the two models (see Chapter 32) and it 
follows the Chi-squared distribution with 1 degree of freedom.

Generalized estimating equations (GEE)
In the GEE approach2 to estimation, we adjust both the param eter 
estimates of a generalized linear model (GLM) and their standard errors 
to take into account the clustering of the data in a two-level structure. 
We make distributional assumptions about the dependent variable but, 
in contrast to the random effects model, do not assume that the between-
cluster residuals are Normally distributed. We regard the clustering as a 
nuisance rather than of intrinsic interest, and proceed by postulating a 
‘working’ structure for the correlation between the observations within 
each cluster. This does not have to be correct since, provided there are 
enough clusters, the robust standard errors and parameter estimates will 
be acceptable. However, we will obtain better parameter estimates if the 
structure is plausible. We commonly adopt an exchangeable correlation 
structure which assumes that exchanging two level 1 units within a 
cluster will not affect the estimation.

The GEE approach is sometimes called population-averaged 
(referring to the population of clusters) or marginal because the 
parameter estimates represent the effects averaged across the clusters 
(even though all level 1 unit information is included in the analysis). 
The GEE approach is often preferred to the more complex random 
effects model analysis for logistic (Chapter 30) and, sometimes, Poisson 
(Chapter 31) regression, even though the exchangeable correlation 
structure is known to be incorrect in these situations.

Table 42.1 Main advantages and disadvantages of regression methods for analysing clustered data.

Method Advantages Disadvantages

Aggregate level 
analysis

• Simple
• Easy to perform with basic software

• Does not allow for effects of covariates for level 1 
units

• Ignores differences in cluster sizes and in precision 
of the estimate of each cluster summary measure

• May not be able to find an appropriate summary 
measure

Robust standard 
errors that allow 
for clustering

• Relatively simple
• Can include covariates which vary for level 1 units
• Adjusts standard errors, confidence intervals and P-values to take account 

of clustering
• Allows for different numbers of level 1 units per cluster

• Unreliable unless number of clusters large, say >30
• Does not adjust parameter estimates for clustering

Random effects 
model

• Explicitly allows for clustering by including both inter- and intra-cluster 
variation in model

• Cluster estimates benefit from shared information from all clusters
• Adjusts parameter estimates, standard errors, confidence intervals and P-

values to take account of clustering
• Can include covariates which vary for level 1 units
• Allows for different numbers of level 1 units per cluster
• Can extend hierarchy from two levels to multilevels
• Can accommodate various forms of a generalized linear model (GLM), e.g. 

Poisson

• Unreliable unless there are sufficient clusters
• Parameter estimates often biased
• Complex modelling skills required for extended 

models
• Estimation and interpretation of random effects 

logistic model not straightforward

Generalized 
estimating 
equations (GEE)

• Relatively simple
• No distributional assumptions of random effects (due to clusters) required
• Can include covariates which vary for level 1 units
• Allows for different numbers of level 1 units per cluster
• Adjusts parameter estimates, standard errors, confidence intervals and P-

values to take account of clustering

• Unreliable unless number of clusters large, say >30
• Treats clustering as a nuisance of no intrinsic 

interest*

• Requires specification of working correlation 
structure*

• Parameter estimates are cluster averages and do not 
relate to individuals in population*

* These points may sometimes be regarded as advantages, depending on the question of interest.

2Liang, K.-Y. and Zeger, S.L. (1986) Longitudinal data analysis using 
generalized linear models. Biometrika, 73, 13–22.
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Figure 42.1 Two-level random effects linear regression models with a single covariate, x.

(a) (b)
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and slope = b
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(a) Random intercepts model The bold line represents the mean
regression line for all the clusters and each of the lighter lines
represents the regression line for a different cluster. The intercept
of the i th cluster-specific regression line differs from that of the
mean line by a residual = a i – a, where these residuals are
Normally distributed with zero mean and variance, sc

2. Every line
has a slope = b.

(b) Random slopes model The bold line represents the mean regression
line for all the clusters and each of the lighter lines represents the regression
line for a different cluster. The intercept of the i th cluster-specific
regression line differs from that of the mean line by a residual = ai – a,
and the slope of the i th specific regression line differs from that of the mean
line by a residual = b i – b , where the residuals are Normally distributed with 
zero mean and variances sc

2 and sd
2, respectively.

Data relating to periodontal disease were obtained on 96 white male 
trainee engineers aged between 16 and 20 entering the apprentice 
training school at Royal Air Force Halton, England (see also Chapter 
20). Each of the possible 28 teeth (excluding wisdom teeth) in every 
trainee’s mouth was examined at four sites (the mesiobuccal, 
mesiolingual, distobuccal and distolingual). To simplify the analysis, 
we have considered a subset of the data, namely, only (1) the 
mesiobuccal site in each tooth; this leads to a two-level structure of 
teeth within subjects (each subject corresponds to a cluster), and  
(2) two variables of interest; loss of attachment (LOA, measured in 
mm) between the tooth and the jawbone evaluated at the mesiobuccal 
site, and the current cigarette smoking status of the trainee (yes = 1, 
no = 0). We wish to assess whether smoking is a risk factor for gum 
disease (where greater loss of attachment indicates worse disease).

Table 42.2 shows extracts of the results from various regression 
analyses in which the outcome variable is loss of attachment (mm) 
and the covariate is smoking. Full computer output is given in 
Appendix C. The estimates of the regression coefficients for 
smoking and/or their standard errors vary according to the type of 

analysis performed. The two OLS analyses have identical estimated 
regression coefficients (which are larger than those of the other 
three analyses) but their standard errors are different. The standard 
error of the estimated regression coefficient in the OLS analysis 
which ignores clustering is substantially smaller than the standard 
errors in the other four analyses, i.e. ignoring clustering results in 
an underestimation of the standard error of the regression coefficient 
and, consequently, a confidence interval that is too narrow and a 
P-value that is too small. The intra-cluster correlation coefficient 
from the random effects model is estimated as 0.224. Thus 
approximately 22% of the variation in loss of attachment, after 
taking account of smoking, was between trainees rather than within 
trainees.

In this particular example, we conclude from all five analyses that 
smoking is not significantly associated with loss of attachment. This 
lack of significance for smoking is an unexpected finding and may be 
explained by the fact that these trainees were very young and so the 
smokers amongst them would not have smoked for a long period.

Example

Data kindly provided by Dr Gareth Griffiths, Department of Periodontology, UCL Eastman Dental Institute, UK.

Table 42.2 Summary of results of regression analyses in which LOA (mm) is the outcome variable.

Analysis
Estimated coefficient 
(smoking)

Standard 
error (SE)

95% CI for 
coefficient

Test 
statistic* P-value

OLS regression ignoring clustering −0.0105 0.0235 −0.057 to 0.036 t = −0.45 0.655
OLS regression with robust SEs −0.0105 0.0526 −0.115 to 0.094 t = −0.20 0.842
Aggregate analysis (OLS regression 

on group means)
−0.0046 0.0612 −0.126 to 0.117 t = −0.07 0.941

Random effects model −0.0053 0.0607 −0.124 to 0.114 z = −0.09 0.930
GEE with robust SEs and 

exchangeable correlation structure
−0.0053 0.0527 −0.108 to 0.098 z = −0.10 0.920

* t = test statistic following t-distribution; z = Wald test statistic following Standard Normal distribution.
OLS = ordinary least squares.



The systematic review
What is it?
A systematic review1 is a formalized and stringent process of combining 
the information from all relevant studies (both published and 
unpublished) of the same health condition; these studies are usually 
clinical trials (Chapter 14) of the same or similar treatments but may  
be observational studies (Chapters 15 and 16). A systematic review is  
an integral part of evidence-based medicine (EBM; Chapter 40) 
which applies the results of the best available evidence, together with 
clinical expertise, to the care of patients. So important is its role in  
EBM that it has become the focus of an international network of 
clinicians, methodologists and consumers who have formed the 
Cochrane Collaboration. This has produced the Cochrane Library 
containing regularly updated evidence-based healthcare databases 
including the Cochrane Database of Systematic Reviews; full access  
to these reviews requires subscription but the abstracts are freely 
available on the internet (www.cochrane.org/reviews).

What does it achieve?
• Refinement and reduction – large quantities of information are 
refined and reduced to a manageable size.
• Efficiency – the systematic review is usually quicker and less costly 
to perform than a new study. It may prevent others embarking on 
unnecessary studies, and can shorten the time lag between medical 
developments and their implementation.
• Generalizability and consistency – results can often be generalized 
to a wider patient population in a broader setting than would be possible 
from a single study. Consistencies in the results from different studies 
can be assessed, and any inconsistencies determined.
• Reliability – the systematic review aims to reduce errors, and so 
tends to improve the reliability and accuracy of recommendations when 
compared with haphazard reviews or single studies.
• Power and precision – the quantitative systematic review (see meta-
analysis below) has greater power (Chapter 18) to detect effects of 
interest and provides more precise estimates of them than a single 
study.

Meta-analysis
What is it?
A meta-analysis or overview is a particular type of systematic review 
that focuses on the numerical results. The main aim of a meta- 
analysis is to combine the results from several independent studies to 
produce, if appropriate, an estimate of the overall or average effect of 
interest (e.g. the relative risk, RR; Chapter 15). The direction and 
magnitude of this average effect, together with a consideration of the 
associated confidence interval and hypothesis test result, may be  
used to make decisions about the therapy under investigation, the 
management of patients and/or the role of the factor of interest, as 
appropriate.

Statistical approach
1 Decide on the effect of interest and, if the raw data are available, 
evaluate it for each study. However, in practice, we may have to 
extract these effects from published results. If the outcome in a clinical 
trial comparing two treatments is:

• numerical, the effect may be the difference in treatment means. A 
zero difference implies no treatment effect;
• binary (e.g. died/survived), we consider the risks, say, of the 
outcome (e.g. death) in the treatment groups. The effect may be the 
difference in risks or their ratio, the RR. If the difference in risks 
equals zero or RR = 1, then there is no treatment effect.

2 Check for statistical homogeneity and obtain an estimate of 
statistical heterogeneity – we have statistical heterogeneity when 
there is genuine variation between the effects of interest from the 
different studies.

• We can perform a hypothesis test of homogeneity to investigate 
whether the variation in the individual effects is compatible with 
chance alone. However, this test has low power (Chapter 18) to detect 
heterogeneity if there are few studies in the meta-analysis and may, 
conversely, give a highly significant result if it comprises many large 
studies, even when the heterogeneity is unlikely to affect the 
conclusions.
• An index, I2, which does not depend on the number of studies, the 
type of outcome data or the choice of treatment effect (e.g. RR), can 
be used to quantify the impact of heterogeneity and assess 
inconsistency2 (see Example). I2 represents the percentage of the 
total variation across studies due to heterogeneity; it takes values 
from 0% to 100%, with a value of 0% indicating no observed 
heterogeneity. If there is evidence of statistical heterogeneity, we 
should proceed cautiously, investigate the reasons for its presence 
and modify our approach accordingly (see Point 3).

3 Estimate the average effect of interest (with a confidence 
interval), and perform the appropriate hypothesis test on the 
effect (e.g. that the true RR = 1).The average estimate is usually a 
weighted mean (Chapter 5) of the estimated effects from all the 
studies, where the weight for each study is the inverse of the variance 
of the estimate. If there is no evidence of statistical heterogeneity, we 
generally perform a fixed effects meta-analysis which assumes the 
true treatment effect is the same in every study and any observed 
variation in the estimates from different studies is solely due to 
sampling error. In this case, the within-study variability is the only 
component of the variance of the average effect of interest. If there is 
evidence of statistical heterogeneity, it may not be sensible to provide 
an average effect of interest. However, if one is required, there are 
various approaches to obtaining it:

• Perform a random effects meta-analysis. This assumes that the 
separate studies represent a random sample from a population of 
studies which has a mean treatment effect about which the individual 
study effects vary. The variance of the average effect of interest 
incorporates both within- and between-study variability and therefore 
the standard error of the estimate is greater, the confidence interval 
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1Egger, M., Davey Smith, G. and Altman, D. (2001) Systematic Reviews in 
Health Care: Meta-analysis in Context. 2nd edition of Systematic Reviews. 
London: BMJ Books.

2Higgins, P.T., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring 
inconsistency in meta-analysis. British Medical Journal, 237, 557–560.
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for the true average effect wider and its P-value larger (i.e. it is less 
likely to be statistically significant) than the comparable quantities 
obtained from a fixed effects meta-analysis.
• Stratify the studies into subgroups of those with similar 
characteristics and perform a separate (usually fixed effects) meta-
analysis in each stratum.
• Perform a meta-regression3 which aims to estimate the effect of 
interest, after adjusting for differences between studies, and to 
determine which covariates account for the heterogeneity. The 
dependent variable is the estimated effect of interest for a study (e.g. 
the RR) and the explanatory variables are one or more study-level 
characteristics (e.g. the average age of the population, the average 
duration of treatment, whether the hospital is in an urban or rural 
setting). The most usual form of meta-regression is a random effects 
meta-regression which takes account of the between-study variability 
by including it as a component of error in the model (this is a form of 
random effects model – see Chapter 42). Unfortunately, because the 
‘sample size’ for the meta-regression is the number of studies (rather 
than the number of patients in each study), many analyses are 
insufficiently powered to detect important effects. Furthermore, it 
may be impossible to separate the effects of different covariates if 
collinearity is present (Chapter 34), as is often the case, resulting in 
misleading conclusions. We should also be aware of the ecological 
fallacy (Chapter 34) which may lead us to believe mistakenly that an 
association that we observe between variables at an aggregate level 
reflects the corresponding association at an individual level in the 
same population.

4 Interpret the results and present the findings. It is helpful to 
summarize the results from each trial (e.g. the sample size, baseline 
characteristics, effect of interest such as the RR, and related confidence 
interval, CI) in a table (see Example). The most common graphical 
display is a forest plot (Fig. 43.1) in which the estimated effect (with 
CI) for each trial and their average are marked along the length of a 
vertical line which represents ‘no treatment effect’ (e.g. this line 
corresponds to the value ‘one’ if the effect is a RR). The plotting  
symbol for the estimated effect for each study is often a box which has 
an area proportional to the size of that study. Initially, we examine 
whether the estimated effects from the different studies are on the same 
side of the line. Then we can use the CIs to judge whether the results are 
compatible (if the CIs overlap), to determine whether incompatible 
results can be explained by small sample sizes (if CIs are wide) and to 
assess the significance of the individual and overall effects (by observing 
whether the vertical line crosses some or all of the CIs).

Advantages and disadvantages
As a meta-analysis is a particular form of systematic review, it offers all 
the advantages of the latter (see ‘What does it achieve?’). In particular, 
a meta-analysis, because of its inflated sample size, is able to detect 

treatment effects with greater power and estimate these effects with 
greater precision than any single study. Its advantages, together with 
the introduction of meta-analysis software, have led meta-analyses to 
proliferate. However, improper use can lead to erroneous conclusions 
regarding treatment efficacy. The following principal problems should 
be thoroughly investigated and resolved before a meta-analysis is 
performed.
• Publication bias – the tendency to include in the analysis only the 
results from published papers; these favour statistically significant 
findings. We may be able to decide whether publication bias is an issue 
by drawing a funnel plot, a scatter diagram which usually has some 
measure of study size on the vertical axis and the treatment effect (e.g. 
odds ratio) on the horizontal axis. In the absence of publication bias, the 
scatter of points (each point representing one study) in the funnel plot 
will be substantial at the bottom where the study size is small, and will 
narrow (in the shape of a funnel) towards the top where the study size is 
large. If publication bias is present, the funnel plot will probably be 
skewed and asymmetrical, with a gap towards the bottom left hand 
corner where both the treatment effect and study size are small (i.e. 
when the study has low power to detect a small effect).
• Clinical heterogeneity – in which differences in the patient 
population, outcome measures, definition of variables, and/or duration 
of follow-up of the studies included in the analysis create problems of 
non-compatibility.
• Quality differences – the design and conduct of the studies may vary 
in their quality. Although giving more weight to the better studies is one 
solution to this dilemma, any weighting system can be criticized on the 
grounds that it is arbitrary.
• Dependence – the results from studies included in the analysis may 
not be independent, e.g. when results from a study are published on 
more than one occasion.

Sensitivity analysis
Sensitivity analysis in a meta-analysis assesses the robustness (Chapter 
35) of the common estimate. As in regression analysis, it is important to 
determine whether any particular study in a meta-analysis strongly 
influences the average measure of the effect of interest. This may be 
achieved by deleting each of the k studies in turn, using a meta-analysis 
to estimate the effect of interest from the remaining k − 1 studies, and 
plotting these estimates with their confidence intervals in an influence 
plot. This is similar to a forest plot but the different studies on the 
vertical axis are replaced by the revised meta-analyses, one for each 
study omitted. Any estimate which appears on visual inspection to 
differ substantially from the others may be flagged as an influential 
study. An alternative approach to assessing the impact of each study is 
to perform a cumulative meta-analysis in which we add the studies 
one by one in a specified order (usually according to date of publication) 
and perform a separate meta-analysis on the accumulated studies after 
each addition. We generally present the results in a cumulative meta-
analysis diagram which looks similar to a forest plot but each of the 
time-ordered entries on it indicates the overall average estimated effect 
of interest at the relevant point in time rather than the estimated effect 
from a single study. An examination of this diagram can help determine 
whether the pooled estimate has been robust over time.

3Morton, S.C., Adams, J.L., Suttorp, M.J. and Shekelle, P.G. (2004) Meta-
Regression Approaches: What, Why, When, and How? Technical Review 8 
(Prepared by Southern California–RAND Evidence-based Practice Center, 
under Contract No 290-97-0001). AHRQ Publication No. 04-0033. Rockville, 
MD: Agency for Healthcare Research and Quality.
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A patient with severe angina will often be eligible for either 
percutaneous transluminal coronary angioplasty (PTCA) or coronary 
artery bypass graft (CABG) surgery. Results from eight published 
randomized trials were combined in a collaborative meta-analysis of 
3371 patients (1661 CABG, 1710 PTCA) with a mean follow-up of 
2.7 years. The main features of the trials are shown in Table 43.1. 
Results for the composite endpoint of cardiac death plus non-fatal 
myocardial infarction (MI) in the first year of follow-up are shown in 
Fig. 43.1. The estimated relative risks (RR) are for the PTCA group 
compared with the CABG group. The figure uses a logarithmic scale 
for the RR to achieve symmetrical confidence intervals (CI). Although 
the individual estimates of relative risk vary quite considerably, from 
reductions in risk to quite large increases in risk, all the confidence 

intervals overlap to some extent. A more formal assessment of 
heterogeneity is provided by Cochran’s Chi-squared test for 
homogeneity, which gives a non-significant result (test statistic 
Q = 10.8, degrees of freedom df = 8 − 1 = 7, P = 0.15). However, 
I2 = 100 × (Q − df)/Q = 100 × (10.8 − 7) / 10.8 = 35%, which suggests 
moderate inconsistency across the studies and advocates a cautious 
approach to interpreting the combined estimate of RR for all trials. 
Using a fixed effects meta analysis, we estimate this relative risk  
as 1.04 (95% CI 0.83 to 1.31), indicating that there was no evidence  
of a real overall difference between the two revascularization 
strategies. It may be of interest to note that, during early follow-up, the 
prevalence of angina was higher in PTCA patients than in CABG 
patients.

Figure 43.1 Forest plot of relative risk (RR) with 95% confidence interval of cardiac death or myocardial infarction (MI) for PTCA group compared 
with CABG group in first year since randomization.

Adapted from Pocock, S.J., Henderson, R.A., Rickards, A.F., et al. (1995) A meta-analysis of randomised trials comparing coronary angioplasty with bypass 
surgery. Lancet, 346, 1184–1189, with permission from Elsevier.

Table 43.1 Characteristics of eight randomized trials comparing percutaneous transluminal coronary angioplasty with coronary artery bypass graft.

Country
Principal 
investigator Single- or multi-vessel

Number of 
patients

Follow-up 
(years)CABG PTCA

Coronary Angioplasty Bypass Revascularisation 
Investigation (CABRI)

Europe A.F. Rickards Multi 513 541 1

Randomised Intervention on Treatment of Angina Trial 
(RITA)

UK J.R. Hampton Single (n = 456) 
Multi (n = 555)

501 510 4.7

Emory Angioplasty versus Surgery Trial (EAST) USA S.B. King Multi 194 198 3+
German Angioplasty Bypass Surgery Investigation 

(GABI)
Germany C.W. Hamm Multi 177 182 1

The Toulouse Trial (Toulouse) France J. Puel Multi 76 76 2.8
Medicine Angioplasty or Surgery study (MASS) Brazil W. Hueb Single 70 72 3.2
The Lausanne trial (Lausanne) Switzerland J.-J. Goy Single 66 68 3.2
Argentine Trial of PTCA versus CABG (ERACI) Argentina A. Rodriguez Multi 64 63 3.8
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Survival data are concerned with the time it takes an individual to  
reach an endpoint of interest (often, but not always, death) and are 
characterized by the following two features.
• It is the length of time for the patient to reach the endpoint, rather 
than whether or not she or he reaches the endpoint, that is of primary 
importance. For example, we may be interested in length of survival in 
patients admitted with cirrhosis.
• Data may often be censored (see below).

Standard methods of analysis, such as logistic regression or a 
comparison of the mean time to reach the endpoint in patients with and 
without a new treatment, can give misleading results because of the 
censored data. Therefore, a number of statistical techniques, known as 
survival methods1, have been developed to deal with these situations.

Censored data
Survival times are calculated from some baseline date that reflects a 
natural ‘starting point’ for the study (e.g. time of surgery or diagnosis of 
a condition) until the time that a patient reaches the endpoint of interest. 
Often, however, we may not know when the patient reached the 
endpoint, only that she or he remained free of the endpoint while in the 
study. For example, patients in a trial of a new drug for HIV infection 
may remain AIDS-free when they leave the study. This may either be 
because the trial ended while they were still AIDS-free, because these 
individuals withdrew from the trial early before developing AIDS, or 

because they died of non-AIDS causes before the end of follow-up. 
Such data are described as right-censored. These patients were known 
not to have reached the endpoint when they were last under follow-up, 
and this information should be incorporated into the analysis.

Where follow-up does not begin until after the baseline date, survival 
times can also be left-censored.

Displaying survival data
A separate horizontal line can be drawn for each patient, its length 
indicating the survival time. Lines are drawn from left to right, and 
patients who reach the endpoint and those who are censored can be 
distinguished by the use of different symbols at the end of the line  
(Fig. 44.1). However, these plots do not summarize the data and it is 
difficult to get a feel for the survival experience overall.

A survival curve, usually calculated by the Kaplan–Meier method, 
displays the cumulative probability (the survival probability) of an 
individual remaining free of the endpoint at any time after baseline (Fig. 
44.2). The survival probability will only change when an endpoint 
occurs, and thus the resulting ‘curve’ is drawn as a series of steps, 
starting at a survival probability of 1 (or 100%) at baseline (time 0) and 
dropping towards 0 as time increases. We may also display the 
cumulative incidence of the endpoint; this is calculated as (1 − survival 
probability) at each time point and the resulting curve is the inverse of 
the survival curve (i.e. it starts at a survival probability of 0 and moves 
up towards 1 as time increases). Although the information contained in 
both displays is the same, the cumulative incidence curve is generally 
preferred to the cumulative survival curve when the endpoint is rare 
(and so the survival probability remains high throughout the study) as 
this allows maximum detail to be shown without a break in the scale. An 
alternative method of calculating survival probabilities, using a lifetable 
approach, can be used when the time to reach the endpoint is only 
known to within a particular time interval (e.g. within a year). The 
survival probabilities using either the Kaplan–Meier or lifetable 
approaches may be obtained easily from most statistical packages.

Survival analysis44

1Collett, D. (2003) Modelling Survival Data in Medical Research. 2nd edition. 
London: Chapman and Hall/CRC.

Figure 44.1 Survival experience of 105 patients following admission with 
cirrhosis. Filled blank circles indicate patients who died, open circles 
indicate those who remained alive at the end of follow-up.
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Figure 44.2 Kaplan–Meier curves showing the survival probability, 
expressed as a percentage, following admission for cirrhosis, stratified by 
baseline HVPG measurement (see Example).
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Summarizing survival
We often summarize survival by quoting survival probabilities (with 
confidence intervals) at certain time points on the curve, for example, 
the 5-year survival rates in patients after treatment for breast cancer. 
Alternatively, the median time to reach the endpoint (the time at which 
50% of the individuals have progressed) can be quoted.

Comparing survival
We may wish to assess the impact of a number of factors of interest on 
survival, e.g. treatment, disease severity. Survival curves can be plotted 
separately for subgroups of patients; they provide a means of assessing 
visually whether different groups of patients reach the endpoint at 
different rates (Fig. 44.2). We can test formally whether there are any 
significant differences in progression rates between the different groups 
by, for example, using the log-rank test or regression models.

The log-rank test
This non-parametric test addresses the null hypothesis that there are no 
differences in survival times in the groups being studied, and compares 
events occurring at all time points on the survival curve. We cannot 
assess the independent roles of more than one factor on the time to the 
endpoint using the log-rank test.

Regression models
We can generate a regression model to quantify the relationships 
between one or more factors of interest and survival. At any point in 
time, t, an individual, i, has an instantaneous risk of reaching the 
endpoint, often known as the hazard or λi(t), given that she or he has 
not reached it up to that point in time. For example, if death is the 
endpoint, the hazard is the risk of dying at time t. This instantaneous 
hazard is usually very small and is of limited interest. However, we may 
want to know whether there are any systematic differences between the 
hazards, over all time points, of individuals with different characteristics. 
For example, is the hazard generally reduced in individuals treated with 
a new therapy compared with those treated with a placebo, when we 
take into account other factors, such as age or disease severity?

We can use the Cox proportional hazards model to test the 
independent effects of a number of explanatory variables (factors) on 
the hazard. It is of the form

λ λ β β βi k kt t x x x( ) = ( ) + + +{ }0 1 1 2 2exp . . .

where λi(t) is the hazard for individual i at time t, λ0(t) is an arbitrary 
baseline hazard (in which we are not interested), x1, …, xk are explanatory 
variables in the model and β1, …, βk are the corresponding coefficients. 
We obtain estimates, b1, …, bk, of these parameters using a form of 
maximum likelihood known as partial likelihood. The exponential of 
these values (i.e. exp{ } = e1b b1 ) are the estimated relative hazards or 
hazard ratios. For a particular value of x1, the hazard ratio is the 
estimated hazard of disease for (x1 + 1) relative to the estimated hazard 
of disease for x1, while adjusting for all other x’s in the equation. The 
relative hazard is interpreted in a similar manner to the odds ratio in 
logistic regression (Chapter 30) or the relative rate in Poisson regression 
(Chapter 31); therefore values above one indicate a raised hazard, 
values below one indicate a decreased hazard and values equal to one 
indicate that there is no increased or decreased hazard of the endpoint. 
A confidence interval can be calculated for the relative hazard and a 
significance test performed to assess its departure from one.

The relative hazard is assumed to be constant over time in this model 
(i.e. the hazards for the groups to be compared are assumed to be 

proportional). It is important to check this assumption1: we can, for 
example;
• use graphical methods – the simplest approach is to check that the 
two or more curves corresponding to the categories of a single covariate 
in a Kaplan–Meier survival plot move apart progressively over time. 
Alternatively, a plot of ln[−ln(survival probability)] versus ln(time) for 
each category of the covariate (sometimes referred to as a log log plot, 
and available in most statistical packages) should exhibit roughly 
parallel lines. In particular, lines that cross indicate a serious deviation 
from proportional hazards;
• incorporate an interaction between the covariate and ln(time) in the 
model and ensure that it is non-significant;
• perform a formal test, such as the global Chi-squared test  
based on Schoenfeld residuals, usually available in statistical 
packages.

If the proportional hazards assumption is violated, it may be possible 
to split the follow-up time into two or more intervals over which the 
hazards are known to be proportional. We can then perform a separate 
Cox regression analysis in each interval and report the results from 
each.

Other models can be used to describe survival data, e.g. the 
Exponential, Weibull or Gompertz models, each of which assumes a 
specific probability distribution for the hazard function. Frailty models 
are used when the observations on survival are not independent (i.e. 
there is correlation within clusters, such as within geographical areas 
because of shared environmental factors). However, all these models 
are beyond the scope of this book1.

Problems encountered in  
survival analysis
Informative censoring
In any survival analysis we make the assumption that the probability that 
an individual’s follow-up is censored is independent of (i.e. unrelated to) 
the probability that the individual will develop the outcome of interest 
(e.g. death). For example, an individual’s follow-up may be censored 
because she or he moved from the area and was lost to follow-up; at the 
time of censoring, this person has the same chance of developing the 
outcome of interest as individuals who had been followed for the same 
period of time but whose follow-up was not censored. Where this 
assumption is violated, we say that we have informative censoring (and 
we must accommodate this in our statistical analysis). For example, in a 
study of the survival of patients with acute liver failure, patients who 
undergo liver transplantation may be withdrawn from the study early 
and their follow-up censored. As these individuals are likely to have a 
different prognosis to those who did not undergo transplantation, their 
follow-up will have been informatively censored. Administrative 
censoring, whereby patient follow-up is censored simply because the 
study ends on a particular date, is generally non-informative.

Competing risks
Occasionally, a study may have a number of different outcomes of 
interest. If the development of one or more of these outcomes precludes 
the development (or measurement) of any of the others, the outcomes 
are termed competing risks. For example, individuals with HIV 
infection are diagnosed as having AIDS once they experience any one 
of a list of clinical events (including Pneumocystis carinii pneumonia, 
Kaposi’s sarcoma and cytomegalovirus retinitis). If we are interested in 
assessing the risk factors for a specific clinical condition (e.g. Kaposi’s 
sarcoma) as an AIDS-defining event (the outcome of interest) then the 
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development of any of the other listed conditions will act as a competing 
risk (i.e. once the patient has developed one of the other conditions, she 
or he will be diagnosed with AIDS and a subsequent development of 
Kaposi’s sarcoma will no longer be AIDS-defining). An analysis of the 

risk factors associated with Kaposi’s sarcoma as a first AIDS-defining 
event may reach different conclusions from an analysis of the risk 
factors for Kaposi’s sarcoma whether it occurs as a first or subsequent 
event.

Height of portal pressure (HVPG) is known to be associated with the 
severity of alcoholic cirrhosis but is rarely used as a predictor of 
survival in patients with cirrhosis. In order to assess the clinical value 
of this measurement, 105 patients admitted to hospital with cirrhosis 
and undergoing hepatic venography were followed for a median of 
566 days. The experience of these patients is illustrated in Fig. 44.1. 
Over the follow-up period, 33 patients died. Kaplan–Meier curves 
showing the cumulative survival percentage at any time point after 
baseline are displayed separately for individuals in whom HVPG was 
less than 16 mmHg (a value previously suggested to provide prognostic 
significance) and for those in whom HVPG was 16 mmHg or greater 
(Fig. 44.2).

The computer output for the log-rank test contained the following 
information:

Example

 

Test Chi-square df P-value

Log-rank 5.2995 1 0.0213

A Cox proportional hazards regression model was used to 
investigate whether this relationship could be explained by differences 
in any known prognostic or demographic factors at baseline. Twenty 
variables were considered for inclusion in the model, including 
demographic, clinical and laboratory markers. Graphical methods 
suggested that the proportional hazards assumption was reasonable 
for these variables. A stepwise selection procedure (Chapter 33) was 
used to select the final optimal model, and the results are shown in 
Table 44.1.

The results in Table 44.1 indicate that raised HVPG remains 
independently associated with shorter survival after adjusting for 
other factors known to be associated with a poorer outcome. In 
particular, individuals with HVPG of 16 mmHg or higher had 2.46 
(=exp{0.90}) times the hazard of death compared with those with 
lower levels (P = 0.04) after adjusting for other factors. In other 
words, the hazard of death is increased by 146% in these individuals. 
In addition, increased prothrombin time (hazard increases by 5% per 
additional second), increased bilirubin level (hazard increases by 5% 
per 10 additional mmol/litre), the presence of ascites (hazard increases 
by 126% for a one level increase) and previous long-term endoscopic 
treatment (hazard increases by 246%) were all independently and 
significantly associated with outcome.

Thus there is a significant difference (P = 0.02) between survival 
times in the two groups. By 3 years after admission, 73.1% of those 
with a low HVPG measurement remained alive, compared with 49.6% 
of those with a higher measurement (Fig. 44.2).

Data kindly provided by Dr D. Patch and Prof. A.K. Burroughs, Liver Unit, Royal Free Hospital, London, UK.

Table 44.1 Results of Cox proportional hazards regression analysis.

Variable (and coding) df
Parameter 
estimate

Standard 
error P-value

Estimated 
relative hazard

95% CI for 
relative hazard

HVPG* (0 = <16, 1 = ≥16 mmHg) 1 0.90 0.44 0.04 2.46 (1.03–5.85)
Prothrombin time (seconds) 1 0.05 0.01 0.0002 1.05 (1.02–1.07)
Bilirubin (10 mmol/litre) 1 0.05 0.02 0.04 1.05 (1.00–1.10)
Ascites (0 = none, 1 = mild, 2 = moderate/severe) 1 0.82 0.18 0.0001 2.26 (1.58–3.24)
Previous long-term endoscopic treatment (0 = no, 1 = yes) 1 1.24 0.41 0.003 3.46 (1.54–7.76)

HVPG* = Height of portal pressure.



The frequentist approach
The hypothesis tests described in this book are based on the 
frequentist approach to probability (Chapter 7) and inference that 
considers the number of times an event would occur if we were to 
repeat the experiment a large number of times. This approach is 
sometimes criticized for the following reasons.
• It uses only information obtained from the current study, and does not 
incorporate into the inferential process any other information we might 
have about the effect of interest, e.g. a clinician’s views about the relative 
effectiveness of two therapies before a clinical trial is undertaken.
• It does not directly address the issues of greatest interest. In a drug 
comparison, we are usually really interested in knowing whether one 
drug is more effective than the other. However, the frequentist 
approach tests the hypothesis that the two drugs are equally effective. 
Although we conclude that one drug is superior to the other if the P-
value is small, this probability (i.e. the P-value) describes the chance 
of getting the observed results if the drugs are equally effective, 
rather than the chance that one drug is more effective than the other 
(our real interest).
• It tends to over-emphasize the role of hypothesis testing and whether 
or not a result is significant, rather than the implications of the results.

The Bayesian approach
An alternative, Bayesian1, approach to inference reflects an 
individual’s personal degree of belief in a hypothesis, possibly 
based on information already available. Individuals usually differ in 
their degrees of belief in a hypothesis; in addition, these beliefs 
may change as new information becomes available. The Bayesian 
approach calculates the probability that a hypothesis is true (our 
focus of interest) by updating prior opinions about the hypothesis 
as new data become available.

Conditional probability
A particular type of probability, known as conditional probability, is 
fundamental to Bayesian analyses. This is the probability of an event, 
given that another event has already occurred. As an illustration, 
consider an example. The incidence of haemophilia A in the general 
population is approximately 1 in 10 000 male births. However, if we 
know that a woman is a carrier for haemophilia, this incidence increases 
to around 1 in 2 male births. Therefore, the probability that a male child 
has haemophilia, given that his mother is a carrier, is very different to 
the unconditional probability that he has haemophilia if his mother’s 
carrier status is unknown.

Bayes theorem
Suppose we are investigating a hypothesis (e.g. that a treatment effect 
equals some value). Bayes theorem converts a prior probability, 
describing an individual’s belief in the hypothesis before the study is 
carried out, into a posterior probability, describing his/her belief 
afterwards. The posterior probability is, in fact, the conditional 

probability of the hypothesis, given the results from the study. Bayes 
theorem states that the posterior probability is proportional to the 
prior probability multiplied by a value, the likelihood of the observed 
results which describes the plausibility of the observed results if the 
hypothesis is true (Chapter 32).

Diagnostic tests in a Bayesian framework
Almost all clinicians intuitively use a Bayesian approach in their 
reasoning when making a diagnosis. They build a picture of the 
patient based on clinical history and/or the presence of symptoms 
and signs. From this, they decide on the most likely diagnosis, 
having eliminated other diagnoses on the presumption that they are 
unlikely to be true, given what they know about the patient. They 
may subsequently confirm or amend this diagnosis in the light of 
new evidence, e.g. if the patient responds to treatment or a new 
symptom develops.

Bayesian methods45

1Freedman, L. (1996) Bayesian statistical methods. A natural way to assess 
clinical evidence. British Medical Journal, 313, 569–570.

Figure 45.1 Fagan’s nomogram for interpreting a diagnostic test result. 
Adapted from Sackett, D.L., Richardson, W.S., Rosenberg, W. and 
Haynes, R.B. (1997) Evidence-based Medicine: How to Practice and 
Teach EBM. Churchill-Livingstone, London, with permission.
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When an individual attends a clinic, the clinician usually has some 
idea of the probability that the individual has the disease – the prior or 
pre-test probability. If nothing else is known about the patient, this is 
simply the prevalence (Chapters 12 and 38) of the disease in the 
population. We can use Bayes theorem to change the prior probability 
into a posterior probability. This is most easily achieved if we 
incorporate the likelihood ratio (Chapter 32), based on information 
obtained from the most recent investigation (e.g. a diagnostic test 
result), into Bayes theorem. The likelihood ratio of a positive test result 
is the chance of a positive test result if the patient has disease, divided 
by that if he or she is disease-free. We discussed the likelihood ratio in 
this context in Chapter 38 and showed that it could be used to indicate 
the usefulness of a diagnostic test. We now use it to express Bayes 
theorem in terms of odds (Chapter 16):

Posterior odds of disease prior odds likelihood ratio

of a 

= ×
ppositive test result

where

Prior odds
prior probability

prior probability
=

−( )1

The posterior odds is simple to calculate but, for easier interpretation, 
we convert the odds back into a probability using the relationship

Posterior probability
posterior odds

posterior odds
=

+( )1

This posterior or post-test probability is the probability that the 
patient has the disease, given a positive test result. It is similar to the 
positive predictive value (PPV, Chapter 38) but the clinician will not 

In the example in Chapter 38 we showed that in bone marrow 
transplant recipients a viral load above 5log10 genomes/ml gave the 
optimal sensitivity and specificity of a test to predict the development 
of severe clinical disease. The likelihood ratio for a positive test for 
this cut-off value was 13.3.

If we believe that the prevalence of severe disease as a result of 
cytomegalovirus (CMV) infection after bone marrow transplantation 
is approximately 33%, the prior probability of severe disease in these 
patients equals 0.33.
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Therefore, if the individual has a CMV viral load above 5log10 
genomes/ml, and we assume that the pre-test probability of severe 
disease is 0.33 (i.e. 33%), then we believe that the individual has an 
87% chance of developing severe disease. This can also be estimated 
directly from Fagan’s nomogram (Fig. 45.1) by connecting the pre-
test probability of 33% to a likelihood ratio of 13.3 and extending the 
line to cut the post-test probability axis. In contrast, if we believe that 
the probability that an individual will get severe disease is only 0.2 
(i.e. pre-test probability equals 20%), then the post-test probability 
will equal 77%.

In both cases, the post-test probability is much higher than the 
pre-test probability, indicating the usefulness of a positive test 
result. Furthermore, both results indicate that the patient is at high 
risk of developing severe disease after transplantation and that it 
may be sensible to start anti-CMV therapy. Therefore, despite 
having very different prior probabilities, the general conclusion 
remains the same in each case.

Example

be able to determine the PPV unless he or she has access to the test 
results from a sample of patients, each of whom has a definitive 
diagnosis from a gold standard test (see Table 38.1). Furthermore, 
the main factor that affects the PPV is the prevalence, and there may 
be reasons why an individual’s underlying risk of disease is known 
to be higher or lower than the overall population prevalence. Thus, 
in this situation, even if the clinician could calculate the PPV, it may 
not give a reasonable indication of his or her belief, after the test 
result is known, that the patient has the disease. Therefore, it is 
preferable to calculate the post-test probability in this situation.

A simpler way to calculate the post-test probability is to use Fagan’s 
nomogram (see Fig. 45.1); by connecting the pre-test probability 
(expressed as a percentage) to the likelihood ratio and extending the 
line, we can evaluate the post-test probability.

Disadvantages of Bayesian methods
As part of any Bayesian analysis, it is necessary to specify the prior 
probability of the hypothesis (e.g. the pre-test probability that a patient 
has disease). Because of the subjective nature of these priors, individual 
researchers and clinicians may choose different values for them. For 
this reason, Bayesian methods are often criticized as being arbitrary. 
Where the most recent evidence from the study (i.e. the likelihood) is 
very strong, however, the influence of the prior information is minimized 
(at its extreme, the results will be completely uninfluenced by the prior 
information).

The calculations involved in many Bayesian analyses are 
complex, usually requiring sophisticated statistical packages that 
are highly computer intensive. Therefore, despite being intuitively 
appealing, Bayesian methods have not been used widely. However, 
the availability of powerful personal computers means that their 
use is becoming more common.



Why do we do it?
Given a large number of demographic or clinical features of an 
individual, we may want to predict whether that individual is likely 
to experience an event of interest. This event may either reflect a 
positive outcome for the individual (e.g. a good response to treatment, 
a cure) or a negative outcome (e.g. disease, death). We generate a 
prognostic score (often referred to as a prognostic index or, when 
predicting a negative outcome, a risk score) for each individual that 
provides a graded measure of the likelihood that the individual will 
experience the event.
• At its simplest, if considering an event with well-established risk 
factors (e.g. cardiovascular disease), a score can be generated by 
counting the number of risk factors possessed by each individual (e.g. 
male sex, older age, current smoker, family history of cardiovascular 
disease, diabetes mellitus, dyslipidaemia, hypertension) – this score 
should provide a crude indication of an individual’s risk of the event 
(with a higher number indicating a higher risk of cardiovascular 
disease). However, this approach assumes that each factor contributes 
equally to the chance of experiencing the event.
• A preferred alternative is to use a formal statistical analysis (often 
a logistic regression (Chapter 30) or a similar method known as 
discriminant analysis) which identifies factors that are significantly 
associated with the event and provides an assessment of the relative 
importance of each of these factors in determining the chance of 
experiencing the event. The prognostic score can then be calculated 
for an individual, using the coefficients from the model to provide a 
weighted sum of its components (i.e. z in Chapter 30). Although the 
range of values of this score depends on how the score is derived, a 
higher score generally indicates a greater chance of experiencing the 
event.

Sometimes patients are categorized by their scores, e.g. into those at 
low, moderate or high risk of experiencing the event. Alternatively, if a 
logistic regression has been performed, we can use the generated score 
for an individual to obtain a direct estimate of his or her predicted 
probability of the event (Chapter 30); as this is a probability, it takes a 
value from 0 to 1.

However, when using a regression model to generate a prognostic 
score, a model that explains a large proportion of the variability in the 
data may not necessarily be good at predicting which patients will 
develop the event. Furthermore, any score, even if based on known risk 
factors for the event, may provide misleading information on an 
individual’s prognosis. Therefore, once we have derived a predictive 
score based on a model, we should assess the validity of that score.

Assessing the performance of  
a prognostic score
In order to demonstrate that our score will be useful, we should assess its 
performance by investigating whether it is accurate, able to discriminate 
between those who do and do not experience the event, correctly 
calibrated and transportable to other populations; we describe each of 
these qualities in the sections which follow (where we assume that a 
higher score indicates a greater chance of experiencing the event). In 
addition to good performance, a score should also demonstrate clinical 
value, i.e. it should lead to an improvement in the clinical management 
of patients. In other words, the score should provide prognostic 

information and demonstrate better performance than existing risk 
scores or the raw data. For example, a score based on a patient’s age, sex 
and blood pressure must demonstrate that it leads to clinical decisions 
that are different to (and more effective than) those that would have been 
made based on knowledge of these factors on their own.

1  How accurate is the score?
We wish to describe the extent to which the score is able to predict the 
event correctly.
• We produce a classification table (Chapter 30 and Appendix C) 
showing the number of individuals in whom we correctly and incorrectly 
predict the event (similar to the table in Chapter 38) and calculate 
relevant measures such as:

 the sensitivity and specificity;
 the total accuracy of the score. This is equal to the number of 
individuals correctly predicted to experience or not experience the 
event, divided by the total number of individuals – the closer the 
value is to one, the better the accuracy (a perfect score would correctly 
predict 100% of individuals).

• When we have used logistic regression to generate the score, we can 
calculate the mean Brier score for all n individuals in the sample. The 
Brier score for the ith individual is the squared difference between the 
predicted probability of that individual experiencing the event (Pi) and 
his or her observed outcome (Xi = 1 or 0 if he or she did or did not 
experience the event, respectively); the mean Brier score is Σ(Pi − Xi)2/n. 
It gives an indication of model accuracy, taking a value from 0 (able to 
predict the event perfectly) to 0.25 (of no value). The mean Brier score 
is closely related to the model R2 (Chapter 27).

2  How well can the score discriminate between those 
who do and do not experience the event?
We wish to assess the ability of the score to rank individuals according 
to their chance of experiencing the event.
• We categorize individuals according to their scores (e.g. into 5–10 
equally sized groups determined by the relevant percentiles) and 
consider the event rates in each category (see Example). We should 
observe a trend towards increased event rates in those with higher 
scores.
• We draw a receiver operating characteristic (ROC) curve, which 
is a plot of the sensitivity of the score against (1 − specificity). The 
curve for a score that has good discriminative ability lies in the upper 
left-hand quadrant of the plot and that for a score that is no better than 
chance at discriminating will lie along the 45° diagonal (Fig. 38.1, see 
also Chapters 30 and 38). The area under the ROC curve (sometimes 
referred to as AUROC) gives an indication of the ability of the score to 
discriminate between those who do and do not experience the event. If 
we randomly select two individuals from our sample, one of whom 
experiences the event and one of whom does not, AUROC gives the 
probability that the individual with the event has a higher score than the 
individual without the event; AUROC will equal 1 for a score which 
discriminates perfectly, but will equal 0.5 for a score that performs no 
better than chance.
• We calculate Harrell’s c statistic, which is a measure of 
discrimination that is equivalent to AUROC. We select all ‘pairs’ of 
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individuals in the sample with discordant events (i.e. we match every 
individual who experiences the event to every individual who does 
not experience the event) – the number of such pairs is our denominator 
– and calculate the percentage of these pairs in whom the predicted 
score is higher in the individuals with the event. Where the predicted 
score in the two individuals is equal, the numerator is increased by 
0.5. The c statistic depends on the distribution of the score and/or 
predicted probabilities – if the sample is relatively homogeneous (i.e. 
the scores or predicted probabilities are all fairly similar to each 
other), then c will be close to 0.5.

3  Is the score correctly calibrated?
Where we have used logistic regression to generate the predicted 
probabilities of the event, we may wish to know whether there is good 
agreement between these predicted probabilities and the observed 
probabilities (either 0 or 1) of the event occurring. It is possible for a 
prognostic score to discriminate well between individuals who do and 
do not experience the event (i.e. scores may be higher in those who 
experience the event) while still providing a poor estimate of the risk of 
the event occurring. This may occur when a prognostic score is applied 
in a different population to the one from which it was originally  
derived (e.g. when applying a cardiovascular risk score derived from  
a population in northern Europe to a population in southern Europe  
where the underlying risk of cardiovascular disease is much lower). 
This is of importance if clinical decisions are based on the predicted 
probability of the event, as poor calibration may result in patients 
receiving inappropriate care.

To determine model calibration we calculate the Hosmer–
Lemeshow goodness of fit statistic which assesses the agreement 
between the observed event probabilities and those predicted by the 
score. Individuals in the sample are stratified into g groups (we usually 
take g = 10 and base the groups on the deciles of the distribution of 
predicted probabilities from the score; other classifications, e.g. using 
8 groups, may result in different conclusions being drawn). The 
expected frequency of the event in each group is the sum of the 
predicted probabilities of the event for the individuals in that group. 
This is compared with the observed frequency of those with the event 
in the corresponding group by calculating a test statistic which follows 
a Chi-squared distribution with (g − 2) degrees of freedom (Chapter 
8). A P-value < 0.05 suggests that the model is not well calibrated.

4  Is the score transportable or generalizable?
We wish to know whether the score will work well in populations 
that are different from the one from which it was derived. Any 
prognostic score will always perform well on the data set that was 
used to derive the score and estimates of model performance (i.e. 

measures of accuracy, discrimination and calibration) from this 
data set (internal validation) will be overly optimistic. Thus, we 
generally require validation on at least one independent data set 
(external validation) to give a true assessment of the performance 
of the score; good performance on this independent data set 
provides evidence that the score is transportable or generalizable.

Where external validation is impractical, a number of alternative 
methods of internal validation may be used:
• We separate the data into two subsamples – the training sample, 
used to derive the score, and the validation sample, used to 
validate the score. Generally, the training sample is larger than the 
validation sample (e.g. the training sample may contain 70% of 
the individuals in the original sample).
• We perform cross-validation where we partition the data set into 
subsets; we derive the risk score on a single subset initially and then 
validate it on the remaining subsets. When performing k-fold cross-
validation, we split the data set into k subsets; we derive the score 
using one of the subsets and validate it on the remaining (k − 1) 
subsets. After repeating this process for each of the k subsets, 
we average the resulting risk score estimates and measures of  
model performance (e.g. AUROC) over all the subsets. Leave-one-
out cross-validation (analogous to jackknifing – Chapter 11) is 
similar, but we remove each individual from the data set one at a 
time, and develop and validate the score on the remaining (n − 1) 
individuals in the sample. Again, we then average the estimates from 
the subsets.
• We can use bootstrapping (Chapter 11) to estimate the prognostic 
score and assess its performance.
• When the score is derived from a multicentre study (Chapter 12), we 
can perform an internal–external cross-validation which excludes a 
different centre from the data set for each analysis. Although the 
participating studies in a multicentre study generally follow the same 
study protocol, this approach will provide some evidence of model 
transportability as the centres are often in different settings.

Developing prognostic indices and risk 
scores for other types of data
While many of the methods that we have described are most 
suitable for a binary outcome, using logistic regression or 
discriminant analysis to estimate the model and produce a risk 
score, it is possible to generate prognostic scores based on other 
types of data (e.g. survival data with censoring (Chapter 44), 
Poisson regression models (Chapter 31)). Many of the tests have 
been modified to deal with these other types of data although some 
tests (e.g. the Hosmer–Lemeshow test) are inappropriate when 
using different models.



Given the short supply of donor organs for liver transplantation, there 
is a need to allocate organs to individuals on the transplant waiting list 
in a fair and transparent manner that optimizes the outcomes of those 
who receive a transplant. One way to achieve this is through the 
development of a validated score that indicates an individual’s short-
term (i.e. 3-month) risk of mortality following transplant based on 
donor and recipient characteristics. This score can then be used to 
identify the most suitable recipient on the waiting list when a donor 
organ becomes available. In order to generate such a score, information 
on both donor and recipient characteristics at the time of transplant 
was obtained for 31 094 individuals who had received a first liver 
transplantation in one of 23 European countries from 1988 to 2003.

21 605 individuals from the data set were selected at random for 
inclusion into the training set, of whom 2540 (12%) had died by 3 
months. A logistic regression model was used to identify factors 
associated with 3-month mortality and the coefficients from this 
model were used to generate a prognostic score for each individual, 
which could then be used to estimate an individual’s probability of 
dying in the first 3 months after transplant (Chapter 30).

The final model used to generate the score (see Burroughs et al.1) 
included nine covariates: year of transplant (1988–1991, 1992–1995, 
1996–1999 or 2000–2003); cause of liver failure (acute liver failure, 
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Table 46.1 Estimates of model accuracy, discrimination and calibration from the training and validation samples.

Training sample Validation sample

Sample size 21605 9489
Number of deaths observed 2540 1138
Score range −4.13 to 1.34 −4.06 to 0.87
3-month predicted mortality probability; range 1.6% to 79.3% 1.7% to 70.5%
Model accuracy (using a cut-off of −2.1)
 Total model accuracy 64.4% 64.5%
 Sensitivity 62.5% 60.0%
 Specificity 64.7% 65.1%
Mean Brier score 0.1 0.1
Harrell’s c statistic 0.691 0.688
Hosmer–Lemeshow P-value 0.95 0.83

Figure 46.1 ROC curve for the predicted score (based on the training 
sample) with the 45° line (dashed line) indicating a score that would be 
no better than chance.
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hepatocellular carcinoma, alcoholic cirrhosis, hepatitis C virus 
cirrhosis, primary biliary cirrhosis or other); age of donor 
(categorized as ≤40, 41–60 or >60 years); donor–recipient blood 
group status (identical, compatible or incompatible); hepatitis B 
surface antigen positivity of recipient; whether the patient had 
received a split or reduced organ graft; the patient’s health status 
(classified using the United Network of Organ Sharing (UNOS) 
score with values ranging from 1 (patient in intensive care) to 4 
(patient at home with normal function)) at the time of surgery; the 
total ischaemia time (categorized as ≤13 or >13 hours); and the 
experience of the centre where the surgery was performed, based  
on the number of transplants performed at that centre in the year of 
the transplant (categorized as ≤36, 37–69 or ≥70 transplants).

We show measures of accuracy, discrimination and calibration of 
the score for the training sample in Table 46.1. Overall, the score 
ranged from −4.13 (corresponding to a 3-month mortality probability 
of 1.6%) to 1.34 (79.3%). Using a ROC curve (Fig. 46.1), a cut-off  
of −2.1 was identified as an optimal threshold for the score, with 
individuals who had scores that were higher than this being predicted 
to die within 3 months of transplant. Using this cut-off, the model 
correctly predicted the outcomes of 64.4% of patients in the training 
sample; the sensitivity and specificity of the score were 62.5% and 
64.7%, respectively. The mean Brier score of the model was 0.1, 
indicating reasonable model accuracy. Harrell’s c statistic and the 
P-value from the Hosmer–Lemeshow test suggested a reasonable 
ability of the score to discriminate between those who died and  
those who remained alive at 3 months and good calibration (i.e. no 
evidence of lack of fit).

1Burroughs, A.K., Sabin, C.A., Rolles, K., et al. (2006) 3-month and 12-month 
mortality after first liver transplant in adults in Europe: predictive models for 
outcome. Lancet, 367, 225–232.
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Figure 46.2 3-month mortality rate stratified into ten groups according to 
the deciles of the prognostic score (validation sample).
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The estimated score derived using this final model was then 
validated in the remaining 9489 individuals in the data set (the 
validation sample), of whom 12% had died by 3 months. When these 
patients were grouped into ten equally sized groups on the basis of 
their ordered scores (Fig. 46.2), the mortality rate increased as the 
score increased, confirming that in the validation sample the score 
was able to discriminate between those who died within 3 months  
and those who remained alive. Estimates of the score accuracy, 
discrimination and calibration from the validation sample (Table 
46.1) all confirmed that the score is transportable and could be a 
valuable tool for assessing short-term prognosis among individuals 
undergoing liver transplant.
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This appendix contains statistical tables discussed in the text. We have 
provided only limited P-values because data are usually analysed using 
a computer, and P-values are included in its output. Other texts, such as 
that by Fisher and Yates1, contain more comprehensive tables. You can 
also obtain the P-value directly from some computer packages, given a 
value of the test statistic. Empty cells in a table are an indication that 
values do not exist.

Table A1 contains the probability in the two tails of the distribution of 
a variable, z, which follows the Standard Normal distribution. The P-
values in Table A1 relate to the absolute values of z, so if z is negative, 
we ignore its sign. For example, if a test statistic that follows the 
Standard Normal distribution has the value 1.1, P = 0.271.

Table A2 and Table A3 contain the probability in the two tails of a 
distribution of a variable that follows the t-distribution (Table A2) or 
the Chi-squared distribution (Table A3) with given degrees of freedom 
(df). To use Table A2 or Table A3, if the absolute value of the test 
statistic (with given df) lies between the tabulated values in two columns, 
then the two-tailed P-value lies between the P-values specified at the 
top of these columns. If the test statistic is to the right of the final column, 
then P < 0.001; if it is to the left of the second column, then P > 0.10. 
For example, (i) Table A2: if the test statistic is 2.62 with df = 17, then 
0.01 < P < 0.05; (ii) Table A3: if the test statistic is 2.62 with df = 17, 
then P < 0.001.

Table A4 contains often used P-values and their corresponding values 
for z, a variable with a Standard Normal distribution. This table may be 
used to obtain multipliers for the calculation of confidence intervals 
(CI) for Normally distributed variables. For example, for a 95% 
confidence interval, the multiplier is 1.96.

Table A5 contains P-values for a variable that follows the F-distribution 
with specified degrees of freedom in the numerator and denominator. 
When comparing variances (Chapter 35), we usually use a two-tailed 
P-value. For the analysis of variance (Chapter 22), we use a one-tailed 
P-value. For given degrees of freedom in the numerator and denominator, 
the test is significant at the level of P quoted in the table if the test 
statistic is greater than the tabulated value. For example, if the test 
statistic is 2.99 with df  = 5 in the numerator and df  = 15 in the 
denominator, then P < 0.05 for a one-tailed test.

Table A6 contains two-tailed P-values of the sign test of r responses of 
a particular type out of a total of n′ responses. For a one-sample test, r 
equals the number of values above (or below) the median (Chapter 19). 

For a paired test, r equals the number of positive (or negative) differences 
(Chapter 20) or the number of preferences for a particular treatment 
(Chapter 23). n′ equals the number of values not equal to the median, 
non-zero differences or actual preferences, as relevant. For example, if 
we observed three positive differences out of eight non-zero differences, 
then P = 0.726.

Table A7 contains the ranks of the values which determine the upper 
and lower limits of the approximate 90%, 95% and 99% confidence 
intervals (CI) for the median. For example, if the sample size is 23, then 
the limits of the 95% confidence interval are defined by the 7th and 17th 
ordered values.

For sample sizes greater than 50, find the observations that correspond 
to the ranks (to the nearest integer) equal to: (i) n z n2 2− ; and 
(ii) 1 2 2+ +n z n ; where n is the sample size and z = 1.64 for a 90% 
CI, z = 1.96 for a 95% CI, and z = 2.58 for a 99% CI (the values of z 
being obtained from the Standard Normal distribution, Table A4). 
These observations define (i) the lower, and (ii) the upper confidence 
limits for the median.

Table A8 contains the range of values for the sum of the ranks (T+ or T−) 
which determines significance in the Wilcoxon signed ranks test 
(Chapter 20). If the sum of the ranks of the positive (T+) or negative (T−) 
differences, out of n′ non-zero differences, is equal to or outside the 
tabulated limits, the test is significant at the P-value quoted. For example, 
if there are 16 non-zero differences and T+ = 21, then 0.01 < P < 0.05.

Table A9 contains the range of values for the sum of the ranks (T) 
which determines significance for the Wilcoxon rank sum test (Chapter 
21) at (a) the 5% level and (b) the 1% level. Suppose we have two 
samples of sizes nS and nL, where nS ≤ nL. If the sum of the ranks of the 
group with the smaller sample size, nS, is equal to or outside the tabulated 
limits, the test is significant at (a) the 5% level or (b) the 1% level. For 
example, if nS = 6 and nL = 8, and the sum of the ranks in the group of 
six observations equals 39, then P > 0.05.

Table A10 and Table A11 contain two-tailed P-values for Pearson’s 
(Table A10) and Spearman’s (Table A11) correlation coefficients when 
testing the null hypothesis that the relevant correlation coefficient is 
zero (Chapter 26). Significance is achieved, for a given sample size, at 
the stated P-value if the absolute value (i.e. ignoring its sign) of the 
sample value of the correlation coefficient exceeds the tabulated value. 
For example, if the sample size equals 24 and Pearson’s r = 0.58, then 
0.001 < P < 0.01. If the sample size equals 7 and Spearman’s rs = −0.63, 
then P > 0.05.

Table A12 contains the digits 0–9 arranged in random order.

Statistical tablesAppendix A:

1Fisher, R.A. and Yates, F. (1963) Statistical Tables for Biological, Agricultural 
and Medical Research. 6th edition. Edinburgh: Oliver and Boyd.
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Table A1 Standard 
Normal distribution.

z
2-tailed 
P-value

0.0 1.000
0.1 0.920
0.2 0.841
0.3 0.764
0.4 0.689
0.5 0.617
0.6 0.549
0.7 0.484
0.8 0.424
0.9 0.368

1.0 0.317
1.1 0.271
1.2 0.230
1.3 0.194
1.4 0.162
1.5 0.134
1.6 0.110
1.7 0.089
1.8 0.072
1.9 0.057

2.0 0.046
2.1 0.036
2.2 0.028
2.3 0.021
2.4 0.016
2.5 0.012
2.6 0.009
2.7 0.007
2.8 0.005
2.9 0.004
3.0 0.003
3.1 0.002
3.2 0.001
3.3 0.001
3.4 0.001
3.5 0.000

Derived using Micro-
soft Excel Version 5.0.

Table A3 Chi-squared distribution.

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827
2 4.605 5.991 9.210 13.815
3 6.251 7.815 11.345 16.266
4 7.779 9.488 13.277 18.466
5 9.236 11.070 15.086 20.515
6 10.645 12.592 16.812 22.457
7 12.017 14.067 18.475 24.321
8 13.362 15.507 20.090 26.124
9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264
12 18.549 21.026 26.217 32.909
13 19.812 22.362 27.688 34.527
14 21.064 23.685 29.141 36.124
15 22.307 24.996 30.578 37.698
16 23.542 26.296 32.000 39.252
17 24.769 27.587 33.409 40.791
18 25.989 28.869 34.805 42.312
19 27.204 30.144 36.191 43.819
20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796
22 30.813 33.924 40.289 48.268
23 32.007 35.172 41.638 49.728
24 33.196 36.415 42.980 51.179
25 34.382 37.652 44.314 52.619
26 35.563 38.885 45.642 54.051
27 36.741 40.113 46.963 55.475
28 37.916 41.337 48.278 56.892
29 39.087 42.557 49.588 58.301
30 40.256 43.773 50.892 59.702
40 51.805 55.758 63.691 73.403
50 63.167 67.505 76.154 86.660
60 74.397 79.082 88.379 99.608
70 85.527 90.531 100.43 112.32
80 96.578 101.88 112.33 124.84
90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

Derived using Microsoft Excel Version 5.0.

Table A2 t-distribution.

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 6.314 12.706 63.656 636.58
2 2.920 4.303 9.925 31.600
3 2.353 3.182 5.841 12.924
4 2.132 2.776 4.604 8.610
5 2.015 2.571 4.032 6.869
6 1.943 2.447 3.707 5.959
7 1.895 2.365 3.499 5.408
8 1.860 2.306 3.355 5.041
9 1.833 2.262 3.250 4.781

10 1.812 2.228 3.169 4.587

11 1.796 2.201 3.106 4.437
12 1.782 2.179 3.055 4.318
13 1.771 2.160 3.012 4.221
14 1.761 2.145 2.977 4.140
15 1.753 2.131 2.947 4.073
16 1.746 2.120 2.921 4.015
17 1.740 2.110 2.898 3.965
18 1.734 2.101 2.878 3.922
19 1.729 2.093 2.861 3.883
20 1.725 2.086 2.845 3.850

21 1.721 2.080 2.831 3.819
22 1.717 2.074 2.819 3.792
23 1.714 2.069 2.807 3.768
24 1.711 2.064 2.797 3.745
25 1.708 2.060 2.787 3.725
26 1.706 2.056 2.779 3.707
27 1.703 2.052 2.771 3.689
28 1.701 2.048 2.763 3.674
29 1.699 2.045 2.756 3.660
30 1.697 2.042 2.750 3.646
40 1.684 2.021 2.704 3.551
50 1.676 2.009 2.678 3.496

100 1.660 1.984 2.626 3.390
200 1.653 1.972 2.601 3.340

5000 1.645 1.960 2.577 3.293

Derived using Microsoft Excel Version 5.0.
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Table A4 Standard Normal distribution.

Two-tailed P-value

0.50 0.10 0.05 0.01 0.001

Relevant CI 50% 90% 95% 99% 99.9%
z (i.e. CI multiplier) 0.67 1.64 1.96 2.58 3.29

Derived using Microsoft Excel Version 5.0.

Table A5 The F-distribution.

df of 
denominator

2-tailed
P-value

1-tailed
P-value

Degrees of freedom (df) of the numerator

1 2 3 4 5 6 7 8 9 10 15 25 500

1 0.05 0.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.6 963.3 968.6 984.9 998.1 1017.0
1 0.10 0.05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 245.9 249.3 254.1
2 0.05 0.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.46 39.50
2 0.10 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.46 19.49
3 0.05 0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.25 14.12 13.91
3 0.10 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.63 8.53
4 0.05 0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.50 8.27
4 0.10 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.77 5.64
5 0.05 0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.27 6.03
5 0.10 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.52 4.37

6 0.05 0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.11 4.86
6 0.10 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.83 3.68
7 0.05 0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.40 4.16
7 0.10 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.40 3.24
8 0.05 0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 3.94 3.68
8 0.10 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.11 2.94
9 0.05 0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.60 3.35
9 0.10 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.89 2.72

10 0.05 0.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.35 3.09
10 0.10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.73 2.55

15 0.05 0.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.69 2.41
15 0.10 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.28 2.08
20 0.05 0.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.40 2.10
20 0.10 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.07 1.86
30 0.05 0.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.12 1.81
30 0.10 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.88 1.64
50 0.05 0.025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.11 1.92 1.57
50 0.10 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.73 1.46

100 0.05 0.025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 1.97 1.77 1.38
100 0.10 0.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.62 1.31

1000 0.05 0.025 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.85 1.64 1.16
1000 0.10 0.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.68 1.52 1.13

Derived using Microsoft Excel Version 5.0.

Table A6 Sign test.

n′

r = number of ‘positive differences’ (see explanation)

0 1 2 3 4 5

4 0.125 0.624 1.000
5 0.062 0.376 1.000
6 0.032 0.218 0.688 1.000
7 0.016 0.124 0.454 1.000
8 0.008 0.070 0.290 0.726 1.000
9 0.004 0.040 0.180 0.508 1.000

10 0.001 0.022 0.110 0.344 0.754 1.000

Derived using Microsoft Excel Version 5.0.
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Table A7 Ranks for confidence intervals for the median.

Sample size

Approximate

90% CI 95% CI 99% CI

6 1,6 1,6 —
7 1,7 1,7 —
8 2,7 1,8 —
9 2,8 2,8 1,9

10 2,9 2,9 1,10

11 3,9 2,10 1,11
12 3,10 3,10 2,11
13 4,10 3,11 2,12
14 4,11 3,12 2,13
15 4,12 4,12 3,13
16 5,12 4,13 3,14
17 5,13 4,14 3,15
18 6,13 5,14 4,15
19 6,14 5,15 4,16
20 6,15 6,15 4,17

21 7,15 6,16 5,17
22 7,16 6,17 5,18
23 8,16 7,17 5,19
24 8,17 7,18 6,19
25 8,18 8,18 6,20
26 9,18 8,19 6,21
27 9,19 8,20 7,21
28 10,19 9,20 7,22
29 10,20 9,21 8,22
30 11,20 10,21 8,23

31 11,21 10,22 8,24
32 11,22 10,23 9,24
33 12,22 11,23 9,25
34 12,23 11,24 9,26
35 13,23 12,24 10,26
36 13,24 12,25 10,27
37 14,24 13,25 11,27
38 14,25 13,26 11,28
39 14,26 13,27 11,29
40 15,26 14,27 12,29

41 15,27 14,28 12,30
42 16,27 15,28 13,30
43 16,28 15,29 13,31
44 17,28 15,30 13,32
45 17,29 16,30 14,32
46 17,30 16,31 14,33
47 18,30 17,31 15,33
48 18,31 17,32 15,34
49 19,31 18,32 15,35
50 19,32 18,33 16,35

Derived using Microsoft Excel Version 5.0.

Table A8 Wilcoxon signed ranks test.

n′

Two-tailed P-value

0.05 0.01 0.001

6 0–21 — —
7 2–26 — —
8 3–33 0–36 —
9 5–40 1–44 —

10 8–47 3–52 —

11 10–56 5–61 0–66
12 13–65 7–71 1–77
13 17–74 9–82 2–89
14 21–84 12–93 4–101
15 25–95 15–105 6–114
16 29–107 19–117 9–127
17 34–119 23–130 11–142
18 40–131 27–144 14–157
19 46–144 32–158 18–172
20 52–158 37–173 21–189

21 58–173 42–189 26–205
22 66–187 48–205 30–223
23 73–203 54–222 35–241
24 81–219 61–239 40–260
25 89–236 68–257 45–280

Adapted with permission from Altman, D.G. (1991) Practical Statistics for 
Medical Research. Copyright CRC Press, Boca Raton.



146  Appendix  Appendix A: Statistical tables

Table A9(a) Wilcoxon rank sum test for a two-tailed P = 0.05.

nL nS (the number of observations in the smaller sample)

4 5 6 7 8 9 10 11 12 13 14 15

4 10–26 16–34 23–43 31–53 40–64 49–77 60–90 72–104 85–119 99–135 114–152 130–170
5 11–29 17–38 24–48 33–58 42–70 52–83 63–97 75–112 89–127 103–144 118–162 134–181
6 12–32 18–42 26–52 34–64 44–76 55–89 66–104 79–119 92–136 107–153 122–172 139–191
7 13–35 20–45 27–57 36–69 46–82 57–96 69–111 82–127 96–144 111–162 127–181 144–201
8 14–38 21–49 29–61 38–74 49–87 60–102 72–118 85–135 100–152 115–171 131–191 149–211
9 14–42 22–53 31–65 40–79 51–93 62–109 75–125 89–142 104–160 119–180 136–200 154–221

10 15–45 23–57 32–70 42–84 53–99 65–115 78–132 92–150 107–169 124–188 141–209 159–231

11 16–48 24–61 34–74 44–89 55–105 68–121 81–139 96–157 111–177 128–197 145–219 164–241
12 17–51 26–64 35–79 46–94 58–110 71–127 84–146 99–165 115–185 132–206 150–228 169–251
13 18–54 27–68 37–83 48–99 60–116 73–134 88–152 103–172 119–193 136–215 155–237 174–261
14 19–57 28–72 38–88 50–104 62–122 76–140 91–159 106–180 123–201 141–223 160–246 179–271
15 20–60 29–76 40–92 52–109 65–127 79–146 94–166 110–187 127–209 145–232 164–256 184–281

Table A9(b) Wilcoxon rank sum test for a two-tailed P = 0.01.

nL

nS (the number of observations in the smaller sample)

4 5 6 7 8 9 10 11 12 13 14 15

4 — — 21–45 28–56 37–67 46–80 57–93 68–108 81–123 94–140 109–157 125–175
5 — 15–40 22–50 29–62 38–74 48–87 59–101 71–116 84–132 98–149 112–168 128–187
6 10–34 16–44 23–55 31–67 40–80 50–94 61–109 73–125 87–141 101–159 116–178 132–198
7 10–38 16–49 24–60 32–73 42–86 52–101 64–116 76–133 90–150 104–169 120–188 136–209
8 11–48 17–53 25–65 34–78 43–93 54–108 66–124 79–141 93–159 108–178 123–199 140–220
9 11–45 18–57 26–70 35–84 45–99 56–115 68–132 82–149 96–168 111–188 127–209 144–231

10 12–48 19–61 27–75 37–89 47–105 58–122 71–139 84–158 99–177 115–197 131–219 149–241

11 12–52 20–65 28–80 38–95 49–111 61–128 73–147 87–166 102–186 118–207 135–229 153–252
12 13–55 21–69 30–84 40–100 51–117 63–135 76–154 90–174 105–195 122–216 139–239 157–263
13 13–59 22–73 31–89 41–106 53–123 65–142 79–161 93–182 109–203 125–226 143–249 162–273
14 14–62 22–78 32–94 43–111 54–130 67–149 81–169 96–190 112–212 129–235 147–259 166–284
15 15–65 23–82 33–99 44–117 56–136 69–156 84–176 99–198 115–221 133–244 151–269 171–294

Extracted with permission from Diem, K. (1970) Documenta Geigy Scientific Tables, 7th edn, Blackwell Publishing, Oxford.
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Table A10 Pearson’s correlation coefficient.

Sample size

Two-tailed P-value

0.05 0.01 0.001

5 0.878 0.959 0.991
6 0.811 0.917 0.974
7 0.755 0.875 0.951
8 0.707 0.834 0.925
9 0.666 0.798 0.898

10 0.632 0.765 0.872

11 0.602 0.735 0.847
12 0.576 0.708 0.823
13 0.553 0.684 0.801
14 0.532 0.661 0.780
15 0.514 0.641 0.760
16 0.497 0.623 0.742
17 0.482 0.606 0.725
18 0.468 0.590 0.708
19 0.456 0.575 0.693
20 0.444 0.561 0.679

21 0.433 0.549 0.665
22 0.423 0.537 0.652
23 0.413 0.526 0.640
24 0.404 0.515 0.629
25 0.396 0.505 0.618
26 0.388 0.496 0.607
27 0.381 0.487 0.597
28 0.374 0.479 0.588
29 0.367 0.471 0.579
30 0.361 0.463 0.570

35 0.334 0.430 0.532
40 0.312 0.403 0.501
45 0.294 0.380 0.474
50 0.279 0.361 0.451
55 0.266 0.345 0.432
60 0.254 0.330 0.414
70 0.235 0.306 0.385
80 0.220 0.286 0.361
90 0.207 0.270 0.341

100 0.197 0.257 0.324
150 0.160 0.210 0.266

Extracted with permission from Diem, K. (1970) Documenta  Geigy 
Scientific Tables, 7th edn, Blackwell Publishing, Oxford.

Table A11 Spearman’s correlation coefficient.

Sample size

Two tailed P-value

0.05 0.01 0.001

5 1.000
6 0.886 1.000
7 0.786 0.929 1.000
8 0.738 0.881 0.976
9 0.700 0.833 0.933

10 0.648 0.794 0.903

Adapted from Siegel, S. & Castellan, N.J. (1988) Nonparametric 
Statistics for the Behavioural Sciences, 2nd edn, McGraw-Hill, New York, 
and used with permission of McGraw-Hill Companies.
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Table A12 Random numbers.

3 4 8 1 4 6 8 0 2 0 2 8 9 9 8 5 1 6 8 7 4 0 0 8 8 3 5 4 5 8 2 4 7 0 8 0 1 8 1 5 5 3 7 7 6
9 9 1 0 6 5 0 8 9 9 0 7 3 9 4 9 1 0 7 1 2 2 4 1 1 6 1 6 4 3 6 4 4 3 5 6 2 5 5 2 6 4 3 1 6
4 7 1 8 5 3 1 7 8 2 4 8 8 9 4 6 8 7 9 0 5 1 8 5 2 3 6 9 1 8 0 5 7 3 7 9 0 6 5 3 6 1 1 2 3
8 1 3 5 4 5 7 2 9 6 3 9 3 2 9 5 2 2 6 3 4 3 1 9 4 5 1 6 2 4 4 2 4 2 9 6 1 3 6 7 4 1 2 0 7
8 3 4 6 7 8 5 6 2 2 9 5 7 7 8 0 5 3 4 7 0 0 4 4 5 5 1 3 3 4 2 9 4 4 5 9 9 1 7 6 3 0 0 9 1

2 7 9 2 4 3 4 1 6 7 5 7 0 6 0 5 7 5 3 5 3 2 2 7 8 1 6 9 4 9 0 4 9 6 0 0 4 1 1 6 9 1 4 6 7
5 8 3 1 9 8 8 1 6 4 9 4 1 3 0 0 7 7 4 3 1 6 9 1 7 1 5 6 8 1 9 3 5 7 2 9 9 7 5 3 4 9 1 1 7
4 9 7 3 2 6 6 7 0 2 7 2 4 2 5 9 9 1 1 7 4 9 2 9 8 8 7 2 6 5 1 4 1 9 5 8 3 3 9 1 1 9 7 9 4
6 9 5 9 4 2 6 7 4 9 6 8 7 4 3 3 9 1 3 9 4 4 4 9 5 1 1 9 4 4 1 2 9 7 0 5 6 5 2 3 6 2 4 1 1
3 0 0 7 4 9 7 5 1 7 9 7 4 5 0 5 4 2 5 1 5 1 7 7 7 2 1 0 7 3 0 3 9 0 9 2 6 5 1 9 3 9 5 7 8

8 1 1 4 7 5 7 5 0 8 9 3 4 7 9 8 7 8 2 6 2 8 9 6 5 7 4 4 7 4 9 7 4 6 8 8 0 1 4 9 1 7 8 3 4
7 4 6 8 9 2 8 9 3 3 5 9 8 1 9 9 3 0 5 2 6 1 3 2 5 8 3 1 4 5 4 4 6 8 4 7 2 9 5 8 9 1 8 2 4
1 4 8 0 2 2 5 9 8 2 4 8 0 2 4 1 5 4 6 1 3 7 5 7 0 4 4 6 8 5 4 7 3 8 6 0 9 5 0 4 7 7 8 3 1
6 8 5 0 1 3 4 1 9 4 8 5 3 5 5 3 8 4 1 1 4 6 5 5 9 4 1 6 9 4 9 9 6 7 8 8 8 2 6 8 8 6 6 7 4
4 8 7 3 4 9 2 6 7 1 8 5 2 5 2 8 5 9 8 5 3 4 2 2 8 9 1 2 8 9 5 6 3 3 1 1 4 6 8 3 3 6 4 9 3

8 4 1 0 2 8 1 6 9 9 9 7 3 5 2 5 4 5 0 9 9 3 1 9 6 5 1 2 0 4 4 3 3 5 1 1 1 8 1 8 4 1 1 7 9
2 8 4 3 2 3 2 8 7 3 8 3 8 3 4 0 9 8 6 2 1 2 7 2 0 6 4 5 6 9 4 2 2 1 8 2 6 7 2 6 8 0 8 6 6
9 1 4 5 8 8 2 5 2 4 7 5 5 2 3 0 1 2 7 6 1 9 5 9 1 4 7 4 7 3 9 0 2 5 1 9 9 1 0 3 7 2 9 4 7
4 5 4 3 5 3 0 3 8 9 6 9 7 3 2 8 1 9 6 2 3 0 2 4 3 9 6 1 9 9 3 3 5 4 6 3 9 6 7 2 8 3 7 6 0
2 3 5 5 7 7 8 4 3 7 4 4 9 5 7 9 8 7 2 8 6 5 6 7 4 3 4 7 0 1 8 3 3 9 8 5 4 1 0 2 6 5 8 4 5

3 0 3 9 5 9 1 8 5 0 5 2 0 0 4 0 4 8 4 4 2 8 8 4 8 1 9 7 2 8 9 6 5 7 1 1 3 3 1 7 7 0 8 5 9
6 9 9 9 1 1 2 7 5 5 9 7 9 1 6 5 7 6 3 9 4 3 4 4 5 9 0 4 6 3 8 5 5 5 6 3 5 4 6 9 1 9 7 4 9
3 2 9 8 0 4 3 6 0 8 2 0 5 9 2 7 2 5 2 7 6 3 5 8 3 4 6 4 4 3 5 3 9 2 9 8 7 2 1 9 5 5 1 9 8
5 9 7 7 6 3 7 0 3 5 5 3 7 6 5 5 5 1 9 6 6 8 6 5 9 7 1 4 2 9 2 5 2 2 5 9 1 9 4 2 5 1 1 3 2
7 3 7 1 4 7 9 8 6 8 2 3 8 8 0 9 2 2 5 4 7 2 9 8 4 0 7 7 9 2 8 1 3 0 6 2 4 2 7 7 8 2 3 6 6

6 1 5 4 7 1 6 5 7 5 6 8 5 2 0 5 9 8 6 9 6 7 2 9 9 7 3 5 6 5 7 7 3 1 6 9 6 6 8 2 1 8 0 3 1
8 7 7 3 7 0 1 0 5 8 7 6 0 1 2 7 6 2 4 7 7 5 6 1 6 5 1 3 3 5 7 0 3 6 4 7 8 9 4 2 4 0 5 6 4
9 8 6 6 9 0 8 3 3 4 4 0 5 2 0 7 8 3 8 9 5 6 4 9 8 7 4 3 3 6 0 2 4 3 4 4 8 5 9 9 6 7 5 7 9
8 1 5 3 5 4 6 6 9 0 9 2 8 1 4 4 4 4 5 6 2 9 2 2 7 4 8 1 2 2 3 0 5 2 2 1 3 8 5 2 4 8 4 3 6
0 5 9 7 5 4 7 1 1 0 3 2 7 3 3 4 6 9 2 9 9 8 2 6 1 5 2 1 9 3 8 3 2 1 5 5 3 1 9 2 8 3 1 0 9

Derived using Microsoft Excel Version 5.0.
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Extracted from: Altman, D.G. (1982) How large a sample? In: Gore, S.M. and Altman, D.G., editors. Statistics in Practice. London: BMA. With 
permission from Blackwell Publishing Ltd.

Altman’s nomogram for sample size Appendix B:
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Typical computer outputAppendix C:
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-------------------------------------------------------------------------- 

    hhv8 | Odds Ratio   Std. Err.    z     P>|z|    [95% Conf. Interval] 
---------+---------------------------------------------------------------- 

---------+---------------------------------------------------------------- 

gonorrho |    1.66417   .7261137   1.167   0.243    .7076193   3.913772 
syphilis |   3.295118   2.343062   1.677   0.094    .8177235   13.27808 
    hsv2 |    2.20561   .8538167   2.043   0.041    1.032806   4.710191 
     hiv |   5.132889   3.094181   2.713   0.007    1.574871   16.72934 
     age |    1.00618   .0205413   0.302   0.763    .9667145   1.047257 

. lroc 

Logistic model for hhv8 

number of observations =      260 
area under ROC curve   =   0.6868 

Analysis of HHV-8 data described in Topics 23, 24 and 30, generated by Stata 

. list  hhv8 gonorrho syphilis hsv2 hiv age in 1/10 

hhv8 gonorrho syphilis hsv2 hiv age
 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.

negative
negative
negative
negative
negative
negative
negative
negative
negative
negative

history
history
history
history
history
nohistory
history
history
history
history

0
0
0
0
0
0
0
0
1
0

0
0
0
1
0
0
1
0
0
0

0
0
0
0
0
0
0
0
0
0

28
40
26
42
30
33
27
32
35
35

. tabulate hhv8 gonorrho, chi2 row col 

gonorrhoe 

hhv8

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

no histor history Total
-----------------------------------------------------

-----------------------------------------------------

-----------------------------------------------------

negative 192  29 221
 86.88 13.12 100.00
 84.21 67.44  81.55

positive 36  14  50
 72.00 28.00 100.00
 15.79 32.56  18.45

Total 228  43 271
 84.13 15.87 100.00
100.00 100.00 100.00

          Pearson chi2(1) =   6.7609   Pr = 0.009 

. logit  hhv8 gonorrho syphilis hsv2 hiv age, or tab 

Iteration 0:  Log Likelihood =-122.86506 
Iteration 1:  Log Likelihood =-111.87072 
Iteration 2:  Log Likelihood =-110.58712 
Iteration 3:  Log Likelihood =-110.56596 
Iteration 4:  Log Likelihood =-110.56595 

Logit Estimates chi2(5)       =  24.60 
Number of obs =    260 

Prob > chi2   = 0.0002 
Pseudo R2     = 0.1001 Log Likelihood = -110.56595

------------------------------------------------------------------------- 
    hhv8 |      Coef.   Std. Err.   z     P>|z|     [95% Conf. Interval] 
---------+--------------------------------------------------------------- 
gonorrho |   .5093263   .4363219   1.167   0.243    -.345849   1.364502 
syphilis |   1.192442   .7110707   1.677   0.094    -.201231   2.586115 
    hsv2 |   .7910041   .3871114   2.043   0.041    .0322798   1.549728 
     hiv |   1.635669   .6028147   2.713   0.007    .4541736   2.817164 
     age |   .0061609   .0204152   0.302   0.763   -.0338521    .046174 
constant |  -2.224164   .6511603  -3.416   0.001   -3.500415  -.9479135 

Print out of data
from first 10 men

CI’s
exclude 1

Significant findings, P < 0.05

Topic 24

Results
from
multiple
logistic
regression
Topic 30

Contingency table

Row marginal total

Observed frequency

Column marginal total

Overall total

Chi-square for 
covariates
and its P-value

P-value

Wald
test
statistic

Number of men with complete
information on all variables

Chi-squared test results

Row %

Start of
logistic
regression
output

Deviance = –2 log likelihood
               = 221.13

Deviance

No evidence of
extra-Binomial
variation

221.13
=

= 0.87

df 260–6

Column %
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1.00

1.00

0.75

0.75

0.50

0.50

1 - Specificity

Area under ROC curve = 0.6868

0.25

0.25

0.00

0.00

Cut-off for
predicted
probability
is 0.2

S
en

si
ti

vit
y

ROC curve

Cut-off for
predicted
probability
is 0.5

ROC curve
with two
cut-offs
Topic 30

. estat classification, cutoff (0.5) 

              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |         9             5  |         14 
     -     |        38           208  |        246 
-----------+--------------------------+----------- 
   Total   |        47           213  |        260 

Classified + if predicted Pr(D) >= .5 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   19.15% 
Specificity                     Pr( -|~D)   97.65% 
Positive predictive value       Pr( D| +)   64.29% 
Negative predictive value       Pr(~D| -)   84.55% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    2.35% 
False - rate for true D         Pr( -| D)   80.85% 
False + rate for classified +   Pr(~D| +)   35.71% 
False - rate for classified -   Pr( D| -)   15.45% 
-------------------------------------------------- 
Correctly classified                        83.46% 

. estat classification, cutoff (0.2) 

               -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |        24            43  |         67 
     -     |        23           170  |        193 
-----------+--------------------------+----------- 
   Total   |        47           213  |        260 

Classified + if predicted Pr(D) >= .2 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   51.06% 
Specificity                     Pr( -|~D)   79.81% 
Positive predictive value       Pr( D| +)   35.82% 
Negative predictive value       Pr(~D| -)   88.08% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)   20.19% 
False - rate for true D         Pr( -| D)   48.94% 
False + rate for classified +   Pr(~D| +)   64.18% 
False - rate for classified -   Pr( D| -)   11.92% 
-------------------------------------------------- 
Correctly classified                        74.62% 
-------------------------------------------------- 

Poor sensitivity
Good specificity

Lower cut-off

Sensitivity increased
Specificity decreased

Total correctly classified decreased

Assessing
predictive
efficiency,
cut-off 0.5
Topic 30

Assessing
predictive
efficiency,
cut-off 0.2
Topic 30
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Analysis of virological failure data described in Chapters 31-33, generated by SAS 

 OBS  PATIENT  PERIOD EVENT PDAYS SEX   BASECD8  TRTSTATUS 

1  1 1 0 365.25   0  665  1 
2  1 2 0  48.75   0  665  1 
3  2 1 0 365.25   1 2053  1 
4  2 2 0 365.25   1 2053  1 
5  2 3 0 592.50   1 2053  1 
7  4 1 0  30.00   0  327  1 
8  5 1 0 365.25   1  931  1 
9  5 2 0 365.25   1  931  1 
10 5 3  0 732.50 1  931 1 
13 6 1 0 166.00   1 1754  1 
14 7 1 0  84.00   1  665  1 
15 8 1 0 365.25   1  297  1 
16 8 2 0  152.75 1  297  1 
17 9 1 0 142.00   1  455  1 
18 10 1 0 230.00   0  736  1 

 The GENMOD Procedure 
 Model Information

 Data Set  WORK.APPENDIX_POISSON
 Distribution   Poisson 
 Link Function Log 
 Dependent Variable  EVENT 
 Offset Variable  LTIME = Log (PDAYS)
 Observations Used 988 

 Criteria For Assessing Goodness Of Fit 
Criterion  DF  Value   Value/DF

5993.0  3021.393 489ecnaiveD
Scaled Deviance 984  393.1203  0.3995
Pearson Chi-Square  984  7574.2725 7.6974 
Scaled Pearson X2 984 7574.2725   7.6974

 1065.752- doohilekiL goL

Analysis Of Parameter Estimates 

 Standard  Wald 95% Chi-
Parameter DF  Estimate Error   Confidence Limits   Square Pr > ChiSq 

Intercept  1 -1.1698  0.3228 -1.8024 -0.5372  13.14  0.0003
TRTSTATUS  1 -0.6096  0.2583 -1.1159 -0.1033 5.57 0.0183
BASECD8_100  1 -0.0587  0.0268 -0.1112 -0.0063 4.82 0.0281 
SEX   1 -0.4923  0.2660 -1.0136  0.0290 3.43 0.0642
Scale  0  1.0000  0.0000  1.0000  1.0000

LR Statistics For Type 3 Analysis
Chi-

Source  DF Square Pr > ChiSq

TRTSTATUS 1 5.40 0.0201
BASECD8_100  1  5.46  0.0194
SEX  1  3.27 0.0707 

Print out 
of data from
first 10 patients
(each patient
has a row of
data for each
time period)

Model 1
excluding 2 
dummy
variables
for time
since initial
response.
Chapter 32

Baseline CD8 count
divided by 100

Scale parameter
used to adjust for
extra-Poisson
dispersion

Time since initial response
(<1 yr = 1,  1 – 2 yrs = 2, >2 yrs = 3)

Virological failure
(No = 0, Yes = 1)

Length of follow-up (days) Female = 0
Male = 1

Treatment status
(Previously 

received treatment = 0,
No previous treatment = 1)

Wald test
statistics

P-value for significance
of each variable in model



 Standard  Wald 95% Chi-
Parameter DF Estimate  Error Confidence Limits Square Pr > ChiSq

Intercept 1 -1.2855  0.3400 -1.9518 -0.6192  14.30  0.0002
TRTSTATUS 1 -0.5871  0.2587 -1.0942 -0.0800 5.15 0.0233
BASECD8_100  1 -0.0558  0.0267 -0.1083 -0.0034 4.36 0.0369
SEX 1 -0.4868  0.2664 -1.0089  0.0353 3.34 0.0676 
PERIOD 1 0 0.0000 0.0000 0.0000 0.0000 .  . 
PERIOD 2 1 0.4256 0.2702 -0.1039  0.9552 2.48 0.1152
PERIOD 3 1 -0.5835  0.4825 -1.5292  0.3622 1.46 0.2265
Scale  0 1.0000 0.0000 1.0000 1.0000 

LR Statistics For Type 3 Analysis
Chi- 

Source  DF Square Pr > ChiSq

TRTSTATUS  1  5.00  0.0253
BASECD8_100  1 4.91  0.0267
SEX  1  3.19  0.0742
PERIOD 2 5.53 0.0630

Model Information 
 Data Set  WORK.APPENDIX_POISSON
 Distribution   Poisson 
 Link Function Log 
 Dependent Variable  EVENT 
Offset Variable  LTIME 

 Observations Used 988 

Class Level Information 
Class Levels Values 
PERIOD  3 1 2 3 

 Criteria For Assessing Goodness Of Fit 

Criterion  DF  Value Value/DF

3993.0  1005.293 389ecnaiveD
Scaled Deviance 983 392.5001 0.3993 
Pearson Chi-Square  983  5580.2152 5.6767 
Scaled Pearson X2 983 5580.2152  5.6767

 1052.752- doohilekiL goL

Analysis Of Parameter Estimates 

 Standard  Wald 95% Chi-
Parameter DF Estimate  Error Confidence Limits Square Pr > ChiSq

Intercept 1 -1.7549  0.2713 -2.2866 -1.2232  41.85  <.0001
TRTSTATUS 1 -0.6290  0.2577 -1.1340 -0.1240 5.96 0.0146
SEX 1 -0.5444  0.2649 -1.0637 -0.0252 4.22 0.0399
PERIOD 1 0 0.0000 0.0000 0.0000 0.0000 .  . 
PERIOD 2 1 0.4191 0.2701 -0.1103  0.9485 2.41 0.1207
PERIOD 3 1 -0.6481  0.4814 -1.5918  0.2955 1.81 0.1782
Scale  0 1.0000 0.0000 1.0000 1.0000 

LR Statistics For Type 3 Analysis
Chi- 

Source  DF Square Pr > ChiSq

TRTSTATUS 1 5.77 0.0163
SEX  1  4.00  0.0455
PERIOD  2  6.08  0.0478

Estimates of model parameters
shown in Table 31.1.—Relative
rates obtained by antilogging estimates CI for model coefficients

Model
excluding 
baseline 
CD8 count.
Chapter 33

Zeros in this row indicate 
that Period 1 is reference 
category

Test statistic 
= difference in 
deviances of 2 models 
= 393.1203  – 387.5904

Degrees of freedom = 
difference in number 
of parameters in Models 
1 and 2

P-value for test
of difference in deviancies
from models with and 
without dummy variables 
for time since initial 
response

 Model Information
 Data Set  WORK.APPENDIX_POISSON
 Distribution   Poisson 
 Link Function Log 
Dependent Variable EVENT 
 Offset Variable  LTIME 
 Observations Used 988 

Class Level Information 

Class Levels Values 
PERIOD3 3 1 2 3 

 Criteria For Assessing Goodness Of Fit 
Criterion  DF  Value Value/DF

7493.0  4095.783 289ecnaiveD
Scaled Deviance 982   387.5904 0.3947
Pearson Chi-Square  982  5890.6342 5.9986 
Scaled Pearson X2 982 5890.6342  5.9986

 2597.452- doohilekiL goL

Analysis Of Parameter Estimates 

Model 2
including
2 dummy
variables
for time since
initial
response 
and CD8
count as a
numerical
variable.
Chapters 31
and 32

LRS or deviance gives
P > 0.99
for
evaluating
goodness
of fit

Degrees of freedom

This is
substantially
<1, indicating
underdispersion
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 Criteria For Assessing Goodness Of Fit 
Criterion  DF  Value  Value/DF 

5593.0  8541.783 979ecnaiveD
Scaled Deviance 979  387.1458  0.3955
Pearson Chi-Square  979  5852.1596 5.9777 
Scaled Pearson X2  979  5852.1596 5.9777 

 9275.452- doohilekiL goL

Analysis Of Parameter Estimates 

 Standard  Wald 95% Chi-
Parameter DF Estimate  Error Confidence Limits Square  Pr > ChiSq

Intercept 1 -1.2451  0.6116 -2.4439 -0.0463 4.14 0.0418
TRTSTATUS 1 -0.5580  0.2600 -1.0677 -0.0483 4.60 0.0319
SEX 1 -0.4971  0.2675 -1.0214  0.0272 3.45 0.0631
PERIOD 1 0 0.0000 0.0000 0.0000 0.0000 .  . 
PERIOD 2 1 0.4550 0.2715 -0.0771  0.9871 2.81 0.0937
PERIOD 3 1 -0.5386  0.4849 -1.4890  0.4119 1.23 0.2667
CD8GRP 1 1 -0.2150  0.6221 -1.4343  1.0044 0.12 0.7297
CD8GRP 2 1 -0.3646  0.7648 -1.8636  1.1345 0.23 0.6336
CD8GRP 3 0 0.0000 0.0000 0.0000 0.0000 .  . 
CD8GRP 4  1 -0.3270  1.1595 -2.5996  1.9455 0.08 0.7779
CD8GRP 5 1 -0.8264  0.6057 -2.0136  0.3608 1.86 0.1725
Scale  0 1.0000 0.0000 1.0000 1.0000 

LR Statistics For Type 3 Analysis 
Chi- 

Source  DF Square Pr > ChiSq

TRTSTATUS 1 4.48 0.0342
SEX 1 3.30 0.0695
PERIOD  2 5.54  0.0628
CD8GRP 4 5.35 0.2528

Parameter estimates
for dummy variables 
for baseline CD8 count 
where category 3 (≥825, <1100)
is reference category

Number of
additional 
variables in 
larger model

Test statistic 
= 392.5001  – 387.1458

P-value for
test of significance 
of baseline CD8 count 
when incorporated 
as a categorical 
variable

Model including
baseline CD8 
count as a 
series of 
dummy variables. 
Chapter 33

 Model Information
 Data Set  WORK.APPENDIX_POISSON
 Distribution   Poisson 
 Link Function  Log 
 Dependent Variable  EVENT 
 Offset Variable  LTIME 
 Observations Used 988 

Class Level Information 
 Class   Levels  Values

PERIOD 3  1 2 3 
CD8GRP 5  1 2 3 4 5 
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Analysis of periodontal data used in Chapter 42, generated by Stata

. regress loa smoke

      Source |       SS       df       MS              Number of obs =    2545
-------------+------------------------------           F(  1,  2543) =    0.20
       Model |  .056714546     1  .056714546           Prob > F      =  0.6549
    Residual |  721.589651  2543   .28375527           R-squared     =  0.0001
-------------+------------------------------           Adj R-squared = -0.0003
       Total |  721.646365  2544  .283666024           Root MSE      =  .53269

------------------------------------------------------------------------------
         loa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       smoke |  -.0105165   .0235231    -0.45   0.655    -.0566429    .0356099
       _cons |    1.01473    .012442    81.56   0.000     .9903324    1.039127
------------------------------------------------------------------------------

. regress loa smoke, robust

Regression with robust standard errors                 Number of obs =    2545
                                                       F(  1,    96) =    0.04
                                                       Prob > F      =  0.8419
                                                       R-squared     =  0.0001
Number of clusters (subj) = 97                         Root MSE      =  .53269

------------------------------------------------------------------------------
             |               Robust
         loa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       smoke |  -.0105165   .0525946    -0.20   0.842     -.114916    .0938831
       _cons |    1.01473   .0352714    28.77   0.000     .9447168    1.084743
------------------------------------------------------------------------------

. xtreg loa smoke, be

Between regression (regression on group means)  Number of obs      =      2545
Group variable (i): subj                        Number of groups   =        97

R-sq:  within  = 0.0000                         Obs per group: min =        21
       between = 0.0001                                        avg =      26.2
       overall = 0.0001                                        max =        28

                                                F(1,95)            =      0.01
sd(u_i + avg(e_i.))=  .2705189                  Prob > F           =    0.9409

------------------------------------------------------------------------------
         loa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       smoke |   -.004559   .0612848    -0.07   0.941    -.1262246    .1171066
       _cons |   1.013717   .0323332    31.35   0.000     .9495273    1.077906
------------------------------------------------------------------------------

OLS 
regression 
ignoring 
clustering

OLS 
regression 
with robust 
standard errors 
adjusted for 
clustering

Aggregate
analysis
(OLS regression 
on group
means)

Test statistic and P-value 
to test significance of 
coefficient(s) in model

P-value for smoking

Robust SE 
is larger than when
clustering 
ignored 
so P-value is 
larger

Subject identified 
as group (cluster)

P-value for 
significance of 
smoking coefficient

Constant term
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GEE population-averaged model                   Number of obs      =      2545
Group variable:                       subj      Number of groups   =        97
Link:                             identity      Obs per group: min =        21
Family:                           Gaussian                     avg =      26.2 
Correlation:                  exchangeable                     max =        28
                                                Wald chi2(1)       =      0.01
Scale parameter:                  .2835381      Prob > chi2        =    0.9198

                             (standard errors adjusted for clustering on subj)
------------------------------------------------------------------------------
             |             Semi-robust
         loa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       smoke |  -.0053018   .0526501    -0.10   0.920    -.1084941    .0978905
       _cons |   1.013841   .0347063    29.21   0.000     .9458185    1.081865
------------------------------------------------------------------------------

. xtreg loa smoke, mle

Fitting constant-only model:
Iteration 0:   log likelihood = -1785.7026
Iteration 1:   log likelihood = -1785.7004

Fitting full model:
Iteration 0:   log likelihood = -1785.7027
Iteration 1:   log likelihood = -1785.6966
Iteration 2:   log likelihood = -1785.6966

Random-effects ML regression                    Number of obs      =      2545
Group variable (i): subj                        Number of groups   =        97

Random effects u_i ~ Gaussian                   Obs per group: min =        21
                                                               avg =      26.2
                                                               max =        28

                                                LR chi2(1)         =      0.01
Log likelihood  = -1785.6966                    Prob > chi2        =    0.9302

------------------------------------------------------------------------------
         loa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       smoke |  -.0053168   .0607203    -0.09   0.930    -.1243265    .1136928
       _cons |   1.013844    .032046    31.64   0.000      .951035    1.076653
-------------+----------------------------------------------------------------
    /sigma_u |   .2519226   .0204583    12.31   0.000     .2118251    .2920201
    /sigma_e |   .4684954   .0066952    69.98   0.000     .4553731    .4816176
-------------+----------------------------------------------------------------
         rho |   .2242953   .0288039                      .1719879    .2846119
------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01)=  443.21 Prob>=chibar2 = 0.000

GEE with 
robust 
standard 
errors and 
exchangeable 
correlation 
structure

Random
effects
model

Correlation structure 
identified as 
exchangeable

Model Chi-square to test 
significance of coefficient 
in model

P-value
for model 
Chi-square

Wald test statistic

final 
iteration 
provides 
stable 
estimates

difference =  –0.0038 so 
– 2 log likelihood ratio 
= 2 ¥ 0.0038 
= 0.0076 
– 0.01

LRS =  –2 log likelihood ratio

Degrees of
 freedom

P-value

intracluster 
correlation 
coefficient

0.25192262

0.25192262 + 0.46849542
=

sc
s

. iis subj

. xtreg loa smoke, pa robust corr(exchangeable)

Iteration 1: tolerance = .00516018
Iteration 2: tolerance = 2.204e-07 
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2 × 2 table: A contingency table of frequencies with two rows and two 
columns

−2log likelihood: See likelihood ratio statistic
Accuracy: Refers to the way in which an observed value of a quantity 

agrees with the true value
Adjusted odds ratio: The odds ratio for a factor (explanatory variable) 

in a multivariable logistic regression model which is controlled for 
the effects of other covariates

Administrative  censoring: Follow-up is censored because of 
administrative reasons (e.g. the study ends on a particular date) and is 
generally non-informative

All subsets model selection: See automatic model selection
Allocation bias: A systematic distortion of the data resulting from the 

way in which individuals are assigned to treatment groups. Sometimes 
called channelling bias

Alternative hypothesis: The hypothesis about the effect of interest that 
disagrees with the null hypothesis and is true if the null hypothesis is 
false

Altman’s  nomogram: A diagram that relates the sample size of a 
statistical test to the power, significance level and standardized 
difference

Analysis of covariance: A special form of analysis of variance that 
compares values of a dependent variable between groups of  
individuals after adjusting for the effect of one or more explanatory 
variables

Analysis  of  variance  (ANOVA): A general term for analyses that 
compare means of groups of observations by splitting the total 
variance of a variable into its component parts, each attributed to a 
particular factor

ANOVA: See analysis of variance
Arithmetic mean: A measure of location obtained by dividing the sum 

of the observations by the number of observations. Often called the 
mean

Ascertainment bias: May occur when the sample included in a study is 
not randomly selected from the population and differs in some 
important respects from that population

ASCII or text file format: A data file in plain text format that can be 
read/imported by most software packages. The data values in each 
row are typically delimited by spaces or commas

Assessment bias: See observer bias
Attrition bias: When those who are lost to follow-up in a longitudinal 

study differ in a systematic way from those who are not lost to 
follow-up

AUROC: Area under a ROC curve
Automatic  model  selection: A method of selecting explanatory 

variables to be included in a mathematical model, e.g. forward, 
backward, stepwise, all subsets

Average: A general term for a measure of location
Backward selection: See automatic model selection
Bar or column chart: A diagram that illustrates the distribution of a 

categorical or discrete variable by showing a separate horizontal or 
vertical bar for each ‘category’, its length being proportional to the 
(relative) frequency in that ‘category’

Bartlett’s test: Used to compare variances

Bayes  theorem: The posterior probability of an event/hypothesis 
is proportional to the product of its prior probability and the 
likelihood

Bayesian approach to inference: Uses not only current information 
(e.g. from a trial) but also an individual’s previous belief (often 
subjective) about a hypothesis to evaluate the posterior belief in the 
hypothesis

Bias: A systematic difference between the results obtained from a study 
and the true state of affairs

Bimodal distribution: Data whose distribution has two ‘peaks’
Binary variable: A categorical variable with two categories. Also called 

a dichotomous variable
Binomial distribution: A discrete probability distribution of a binary 

random variable; useful for inferences about proportions
Bioequivalence  trial: A type of trial in which we are interested in 

showing that the rate and extent of absorption of a new formulation of 
a drug is the same as that of an old formulation, when the drugs are 
given at the same dose

Blinding: When the patients, clinicians and the assessors of response to 
treatment in a clinical trial are unaware of the treatment allocation 
(double-blind), or when the patient is aware of the treatment received 
but the assessor of response is not (single-blind). Also called 
masking

Block: A homogeneous group of experimental units that share similar 
characteristics. Sometimes called a stratum

Bonferroni  correction  (adjustment): A post hoc adjustment to the 
P-value to take account of the number of tests performed in multiple 
hypothesis testing

Bootstrapping: A simulation process used to derive a confidence 
interval for a parameter. It involves estimating the parameter from 
each of many random samples of size n obtained by sampling with 
replacement from the original sample of size n; the confidence 
interval is derived by considering the variability of the distribution  
of these estimates

Box (box-and-whisker) plot: A diagram illustrating the distribution of 
a variable; it indicates the median, upper and lower quartiles, and, 
often, the maximum and minimum values

Brier score: Measures the squared difference between an individual’s 
predicted probability of an event and his/her observed outcome.  
The mean Brier score is used to assess the accuracy of a prognostic 
score

British Standards Institution repeatability coefficient: The maximum 
difference that is likely to occur between two repeated 
measurements

c statistic: Measures the area under a ROC curve and may be used to 
assess the ability of a prognostic score or diagnostic test to discriminate 
between those with and without a particular condition; can be used to 
compare two or more such scores or tests. c = 1 when the discriminatory 
ability is perfect and c = 0.5 when the procedure performs no better 
than chance. See also Harrell’s c statistic

Carry-over effect: The residual effect of the previous treatment in a 
cross-over trial

Case: An individual with the disease under investigation in a case–
control study

Glossary of termsAppendix D:
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Case–control study: Groups of individuals with the disease (the cases) 
and without the disease (the controls) are identified, and exposures to 
risk factors in these groups are compared

Categorical (qualitative) variable: Each individual belongs to one of a 
number of distinct categories of the variable

Causal  modelling: Statistical methods that describe and test the 
underlying causal relationships between an exposure of interest and 
an outcome

Causal pathway: The chain of events or factors leading in sequence to 
an outcome, when the effect of any step in the sequence is dependent 
on the event in the previous step(s)

Cell of a contingency table: The designation of a particular row and a 
particular column of the table

Censored data: Occur in survival analysis because there is incomplete 
information on outcome. See right- and left-censored data

Census: A cross-sectional study which collects information from every 
individual in a population

Central  tendency  bias: Responders tend to move towards the 
mid-point of the scale of measurement

Centring: A process used to improve the interpretation of the 
parameters in a regression model; achieved by subtracting a constant 
(often the sample mean of the explanatory variable) from the value of 
the explanatory variable for each individual

Channelling bias: See allocation bias
Chi-squared (χ2) distribution: A right-skewed continuous distribution 

characterized by its degrees of freedom; useful for analysing 
categorical data

Chi-squared test: Used on frequency data, it tests the null hypothesis 
that there is no association between the factors that define a 
contingency table. Also used to test differences in proportions

CI: See confidence interval
Clinical cohort: A group of patients with the same clinical condition 

whose outcomes are observed over time
Clinical  heterogeneity: Exists when the trials included in a 

meta-analysis have differences in the patient population, definition  
of variables, etc., which create problems of non-compatibility

Clinical trial: Any form of planned experiment on humans that is used 
to evaluate a new ‘treatment’ on a clinical outcome

Cluster  randomization: Groups of individuals, rather than 
separate individuals, are randomly (by chance) allocated to 
treatments

Cluster randomized trial: Each group or cluster of individuals, rather 
than each individual, is randomly (using a method based on chance) 
allocated to a treatment

Cochrane  Collaboration: An international network of clinicians, 
methodologists and consumers who continually update systematic 
reviews and make them available to others

Coefficient of variation: The standard deviation divided by the mean 
(often expressed as a percentage)

Cohen’s  kappa  (κ): A measure of agreement between two sets of 
categorical measurements on the same individuals. If κ = 1, then 
there is perfect agreement; if κ = 0, then there is no better than chance 
agreement

Cohort  study: A group of individuals, all without the outcome of 
interest (e.g. disease), is followed (usually prospectively) to study the 
effect on future outcomes of exposure to a risk factor

Collinearity: Pairs of explanatory variables in a regression analysis are 
very highly correlated, i.e. with correlation coefficients very close to 
±1

Competing risks: The development of one or more of the outcomes of 
interest precludes the development (or measurement) of any of the 
others

Complete randomized design: Experimental units assigned randomly 
to treatment groups

Composite endpoint An outcome that is considered to have occurred if 
any of several different events is observed

Conditional  logistic  regression: A form of logistic regression used 
when individuals in a study are matched

Conditional probability: The probability of an event, given that another 
event has occurred

Confidence interval (CI) for a parameter: The range of values within 
which we are (usually) 95% confident that the true population 
parameter lies. Strictly, after repeated sampling, 95% of confidence 
limits so determined will contain the parameter

Confidence  limits: The upper and lower values of a confidence 
interval

Confounding: When one or more explanatory variables are related to 
the outcome and each other so that it is difficult to assess the 
independent effect of each one on the outcome variable

CONSORT Statement: Facilitates critical appraisal and interpretation 
of RCTs by providing guidance, in the form of a checklist and 
flowchart, to authors about how to report their trials

Contingency table: A (usually) two-way table in which the entries are 
frequencies

Continuity correction: A correction applied to a test statistic to adjust 
for the approximation of a discrete distribution by a con tinuous 
distribution

Continuous probability distribution: The random variable defining 
the distribution is continuous

Continuous  variable: A numerical variable in which there is no 
limitation on the values that the variable can take other than that 
restricted by the degree of accuracy of the measuring technique

Control: An individual without the disease under investigation in a case–
control study, or not receiving the new treatment in a clinical trial

Control group: A term used in comparative studies, e.g. clinical trials, 
to denote a comparison group. See also positive and negative controls

Convenience  sample: A group of individuals believed to be 
representative of the population from which it is selected, but chosen 
because it is close at hand rather than being randomly selected

Correlation coefficient (Pearson’s): A quantitative measure, ranging 
from −1 to +1, of the extent to which points in a scatter diagram 
conform to a straight line. See also Spearman’s rank correlation 
coefficient

Covariate: See explanatory variable
Covariate  pattern: A particular set of values for the explanatory 

variables in a regression model held by one or more individuals in the 
study

Cox  proportional  hazards  regression  model: See proportional 
hazards regression model

Cross-over design: Each individual receives more than one treatment 
under investigation, one after the other in random order

Cross-sectional study: Carried out at a single point in time
Cross-sectional time series model: See panel model
Cross-validation: We partition the data set into subsets, derive the 

measure of interest or model on a single subset initially and then 
validate it on the remaining subsets

Cumulative frequency: The number of individuals who have values 
below and including the specified value of a variable
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Cumulative  meta-analysis: The studies are added one by one in a 
specified order (usually according to date of publication) and a 
separate meta-analysis is performed on the accumulated studies after 
each addition

Data: Observations on one or more variables
Data dredging: The results of a study are analysed in many different 

ways, with a view to obtaining a significant finding, without prior 
specification of the hypothesis of interest

Deciles: Those values that divide the ordered observations into 10 
equal parts

Degrees of  freedom (df ) of a statistic: The sample size minus the 
number of parameters that have to be estimated to calculate the 
statistic; they indicate the extent to which the observations are ‘free’ 
to vary

Dependent variable: A variable (usually denoted by y) that is predicted 
by the explanatory variable in regression analysis. Also called the 
response or outcome variable

Deviance: See likelihood ratio statistic
df: See degrees of freedom
Diagnostic  test: Used to aid or make a diagnosis of a particular 

condition
Dichotomous variable: See Binary Variable
Discrete probability distribution: The random variable defining the 

distribution takes discrete values
Discrete  variable: A numerical variable that can only take integer 

values
Discriminant analysis: A method, similar to logistic regression, which 

can be used to identify factors that are significantly associated with a 
binary response

Disease register: See clinical cohort
Distribution-free tests: See non-parametric tests
Dot  plot: A diagram in which each observation on a variable is 

represented by one dot on a horizontal (or vertical) line
Double-blind: See blinding
Dummy  variables: The k − 1 binary variables that are created from 

a nominal or ordinal categorical variable with k > 2 categories, 
affording a comparison of each of the k − 1 categories with a 
reference category in a regression analysis. Also called indicator 
variables

Ecological fallacy: We believe mistakenly that an association that we 
observe between variables at the group or aggregate level (e.g. region) 
reflects the corresponding association at an individual level (the 
individuals in the regions) in the same population

Ecological study: A particular type of epidemiological study in which 
the unit of observation is a community or group of individuals rather 
than the individual

Effect modifier: See interaction
Effect of interest: The value of the response variable that reflects the 

comparison of interest, e.g. the difference in means
Empirical distribution: The observed distribution of a variable
Endpoint: A clearly defined outcome for an individual; it must be 

specified before the data are collected
Epidemiological  studies: Observational studies that assess the 

relationship between risk factors and disease
EQUATOR Network: Initiated to provide resource and training for the 

reporting of health research and assistance in the development, 
dissemination and implementation of reporting guidelines

Equivalence  trial: Used to show that two treatments are clinically 
equivalent

Error: The difference between the observed and true value. Measurement 
error has random (due to chance) and possibly systematic  
(non-random) components; sampling error arises because only a 
sample of the population is investigated

Error variation: See residual variation
Estimate: A quantity obtained from a sample that is used to represent a 

population parameter
Evidence-based medicine (EBM): The use of current best evidence in 

making decisions about the care of individual patients
Exchangeable model: Assumes the estimation procedure is not affected 

if two observations within a cluster are interchanged
Expected  frequency: The frequency that is expected under the null 

hypothesis
Experimental study: The investigator intervenes in some way to affect 

the outcome
Experimental  unit: The smallest group of individuals who can be 

regarded as independent for analysis purposes
Explanatory  variable: A variable (usually denoted by x) that is 

used to predict the dependent variable in a regression analysis.  
Also called the independent, exposure or predictor variable or a 
covariate

Exposure variable: See explanatory variable
External validation: A substantiation of the findings (e.g. a prognostic 

index) obtained from one data set using at least one other independent 
data set

Extra-Binomial variation: The variation in the data, after adjusting for 
covariates, is greater (overdispersion) or less (underdispersion) than 
that expected in a Binomial model

Extra-Poisson variation: Occurs when the residual variance is greater 
(overdispersion) or less (underdispersion) than that expected in a 
Poisson model

Factorial experiment: Allows the simultaneous analysis of a number of 
factors of interest

Fagan’s nomogram: A diagram relating the pre-test probability of a 
diagnostic test result to the likelihood and the post-test probability. It 
is usually used to convert the former into the latter

False negative: An individual who has the disease but is diagnosed as 
disease-free

False positive: An individual who is free of the disease but is diagnosed 
as having the disease

F-distribution: A right-skewed continuous distribution characterized 
by the degrees of freedom of the numerator and denominator of the 
ratio that defines it; useful for comparing two variances, and more 
than two means using the analysis of variance

Fisher’s exact test: A test that evaluates exact probabilities (i.e. does 
not rely on approximations to the Chi-squared distribution) in a 
contingency table (usually a 2 × 2 table), used when the expected 
frequencies are small

Fitted value: The predicted value of the response variable in a regression 
analysis corresponding to the particular value(s) of the explanatory 
variable(s)

Fixed  effect: One where the levels of the factor make up the 
entire population of interest (e.g. the factor ‘treatment’ whose  
levels are drug, surgery and radiotherapy). It contrasts with a  
random effect where the levels represent a sample from the  
population (e.g. the factor ‘patient’ whose levels are the 20 patients in 
a RCT)

Fixed effect model: Contains only fixed effects; used in a meta-analysis 
when there is no evidence of statistical heterogeneity



166  Appendix    Appendix D: Glossary of terms

Follow-up: The time that an individual is in a study, from entry until she 
or he experiences the outcome (e.g. develops the disease) or leaves 
the study or until the conclusion of the study

Forest  plot: A diagram used in a meta-analysis showing the 
estimated effect in each trial and their average (with confidence 
intervals)

Forward selection: See automatic model selection
Frailty model: Used in survival analysis when there are random effects 

(clustered data)
Free-format data: Each variable in the computer file is separated from 

the next by some delimiter, often a space or comma
Frequency: The number of times an event occurs
Frequency  distribution: Shows the frequency of occurrence of 

each possible observation, class of observations, or category, as 
appropriate

Frequency  matching: The individuals in two or more comparative 
groups are matched on a group basis so that the average value of each 
of the relevant potential risk factors of each group is similar to that in 
every other group. Also called group matching

Frequentist probability: Proportion of times an event would occur if 
we were to repeat the experiment a large number of times

F-test: See variance ratio test
Funding bias: A tendency to report findings in the direction favoured 

by the funding body
Gaussian distribution: See Normal distribution
GEE: See generalized estimating equation
Generalizability: See transportability
Generalized  estimating  equation  (GEE): Used in a two-level 

hierarchical structure to estimate parameters and their standard errors 
to take into account the clustering of the data without referring to a 
parametric model for the random effects; sometimes referred to as 
population-averaged or marginal models

Generalized  linear  model  (GLM): A regression model which is 
expressed in a general form via a link function which relates the mean 
value of the dependent variable (with a known probability distribution 
such as Normal, Binomial or Poisson) to a linear function of 
covariates

Geometric mean: A measure of location for data whose distribution is 
skewed to the right; it is the antilog of the arithmetic mean of the log 
data

G-estimation: A form of causal modelling that is used to adjust for 
time-varying confounding

GLM: See generalized linear model
Gold  standard  test: Provides a definitive diagnosis of a particular 

condition
Goodness of fit: A measure of the extent to which the values obtained 

from a model agree with the observed data
Group matching: See frequency matching
Harrell’s c statistic: A measure of discrimination equivalent to the area 

under the ROC curve
Hazard: The instantaneous risk of reaching the endpoint in survival 

analysis
Hazard ratio: See relative hazard
Healthy  entrant  effect: By choosing disease-free individuals to 

participate in a study, the response of interest (typically mortality) is 
lower in the first period of the study than would be expected in the 
general population

Heterogeneity of variance: Unequal variances
Hierarchical model: See multilevel model

Histogram: A diagram that illustrates the (relative) frequency 
distribution of a continuous variable by using connected bars. The 
bar’s area is proportional to the (relative) frequency in the range 
specified by the boundaries of the bar

Historical controls: Individuals who are not assigned to a treatment 
group at the start of the study but who received treatment some time 
in the past and are used as a comparison group

Homoscedasticity: Equal variances; also described as homogeneity of 
variance

Hosmer–Lemeshow goodness of fit statistic: Assesses the agreement 
between the observed event probabilities and those predicted by a 
logistic model or prognostic score

Hypothesis test: The process of using a sample to assess how much 
evidence there is against a null hypothesis about the population. Also 
called a significance test

I 2: An index which can be used to quantify the impact of statistical 
heterogeneity between the studies in a meta-analysis

ICC: See intraclass correlation coefficient
Incidence: The number of new cases of a disease in a defined period 

divided by the number of individuals susceptible at the start or mid-
point of the period

Incidence  rate: The number of new cases of a disease in a defined 
period divided by the person-years of follow-up of individuals 
susceptible at the start of the period

Incidence rate ratio (IRR): A relative rate defined as the ratio of two 
incidence rates

Incident cases: Patients who have just been diagnosed
Independent samples: Every unit in each sample is unrelated to the 

units in the other samples
Independent variable: See explanatory variable
Indicator variables: See dummy variables
Inference: The process of drawing conclusions about the population 

using sample data
Influence plot: In meta-analysis it is used to assess the influence of each 

of k studies: every one of the k studies is deleted in turn, a meta-
analysis is used to estimate the effect of interest from the remaining 
k − 1 studies, and these estimates, with confidence intervals, are 
drawn in a diagram similar to a forest plot

Influential point: An observation which, if omitted from a regression 
analysis, will lead to a change in one or more of the parameter 
estimates of the model

Information bias: Occurs during data collection when measurements 
on exposure and/or disease outcome are incorrectly recorded in a 
systematic manner

Informative censoring: The probability that an individual will develop 
the outcome of interest if he or she has survived to a particular time is 
different in an individual whose follow-up is censored at that time 
(e.g. if he or she is withdrawn from the study because of a deterioration 
in his or her condition) from an individual who remains under 
follow-up

Intention-to-treat (ITT) analysis: All patients in the clinical trial are 
analyzed in the groups to which they were originally assigned

Interaction: Occurs between two explanatory variables in a 
regression analysis when the effect of one of the variables on the 
dependent variable varies according to the level of the other. In 
the context of ANOVA, an interaction exists between two factors 
when the difference between the levels of one factor is different 
for two or more levels of the second factor. Also called effect 
modification
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Intercept: The value of the dependent variable in a regression equation 
when the value(s) of the explanatory variable(s) is (are) zero

Interdecile  range: The difference between the 10th and 90th 
percentiles; it contains the central 80% of the ordered observations

Interim  analyses: Pre-planned analyses at intermediate stages of a 
study

Intermediate variable: A variable which lies on the causal pathway 
between the explanatory variable and the outcome of interest

Internal  pilot  study: A small-scale preliminary investigation whose 
data are included in the main study results; usually used to evaluate 
the variability of observations which then enables the initial overall 
sample size estimate to be revised

Internal–external cross-validation: Used in a multicentre study where 
we exclude a different centre from the data set for each analysis, and 
develop and validate the measure of interest on the remaining 
centres

Internal validation: A substantiation of the findings (e.g. the value of a 
prognostic index) using the data set from which they were derived

Interpolate: Estimate the required value that lies between two known 
values

Interquartile  range: The difference between the 25th and 75th 
percentiles; it contains the central 50% of the ordered observations

Interval  estimate: A range of values within which we believe the 
population parameter lies.

Intraclass  correlation  coefficient  (ICC): In a two-level structure, it 
expresses the variation between clusters as a proportion of the total 
variation; it represents the correlation between any two randomly 
chosen level 1 units in one randomly chosen cluster

IRR: See incidence rate ratio
ITT: See intention-to-treat analysis
Jackknifing: A method of estimating parameters and confidence 

intervals; each of n individuals is successively removed from the 
sample, the parameters are estimated from the remaining n − 1 
individuals, and finally the estimates of each parameter are averaged

Kaplan–Meier plot: A survival curve in which the survival probability 
(or 1 − survival probability) is plotted against the time from baseline. 
It is used when exact times to reach the endpoint are known

k-fold cross-validation: We split the data set into k subsets, derive the 
measure of interest or model on one of the subsets, validate it on the 
remaining k − 1 subsets, repeating the procedure for each subset

Kolmogorov–Smirnov  test: Determines whether data are Normally 
distributed

Kruskal–Wallis  test: A non-parametric alternative to the one-way 
ANOVA; used to compare the distributions of more than two 
independent groups of observations

Lead-time  bias: Occurs particularly in studies assessing changes in 
survival over time where the development of more accurate diagnostic 
procedures may mean that patients entered later into the study are 
diagnosed at an earlier stage in their disease, resulting in an apparent 
increase in survival from the time of diagnosis

Leave-one-out cross-validation: We remove each individual from the 
data set one at a time, and develop and validate the measure of interest 
on the remaining n − 1 individuals in the sample

Left-censored data: Come from patients in whom follow-up did not 
begin until after the baseline date

Lehr’s  formulae: Can be used to calculate the optimal sample sizes 
required for some hypothesis tests when the power is specified as 
80% or 90% and the significance level as 0.05

Level: A particular category of a qualitative variable or factor

Level 2 unit: The ‘individual’ at the second lowest level in a hierarchical 
structure; each level 2 unit (e.g. ward) comprises a cluster of level 1 
units (e.g. patients)

Level  1  unit: The ‘individual’ at the lowest level of a hierarchical 
structure; individual level 1 units (e.g. patients) are nested within a 
level 2 unit (e.g. ward)

Level  of  evidence: A measure of the strength of findings from any 
particular study design; studies are often ranked in terms of the levels 
of evidence they provide, starting with the strongest and leading to 
the weakest evidence

Levene’s test: Tests the null hypothesis that two or more variances are 
equal

Leverage: A measure of the extent to which the value of the explanatory 
variable(s) for an individual differs from the mean of the explanatory 
variable(s) in a regression analysis

Lifetable approach to survival analysis: A way of determining survival 
probabilities when the time to reach the endpoint is only known to 
within a particular time interval

Likelihood: The probability of the data, given the model. In the context 
of a diagnostic test, it describes the plausibility of the observed test 
result if the disease is present (or absent)

Likelihood ratio (LR): A ratio of two likelihoods; for diagnostic tests, 
the LR is the ratio of the chances of getting a particular test result in 
those having and not having the disease

Likelihood ratio statistic (LRS): Equal to −2 times the ratio of the log 
likelihood of a saturated model to that of the model of interest. It is 
used to assess adequacy of fit and may be called the deviance or, 
commonly, −2log likelihood. The difference in the LRS in two nested 
models can be used to compare the models

Likelihood ratio test: Uses the likelihood ratio statistic to compare the 
fit of two regression models or to test the significance of one or a set 
of parameters in a regression model

Likert scale: A scale with a small number of graded responses, such as 
very poor, poor, no opinion, good, excellent

Limits of agreement: In an assessment of repeatability, it is the range 
of values between which we expect 95% of the differences between 
repeated measurements in the population to lie

Lin’s concordance correlation coefficient: A measure of agreement 
between pairs of observations measured on the same scale. It modifies 
the Pearson correlation coefficient that assesses the tightness of the 
data about the line of best fit (precision) when one member of the pair 
of observations is plotted against the other using the same scale. It 
includes a bias correction factor that measures how far the line of best 
fit is from the 45 ° line through the origin (accuracy)

Linear regression line: The straight line that is defined by an algebraic 
expression linking two variables

Linear relationship: Implies a straight-line relationship between two 
variables

Link function: In a generalized linear model, it is a transformation of 
the mean value of the dependent variable which is modelled as a 
linear combination of the covariates

Logistic regression: A form of generalized linear model used to relate 
one or more explanatory variables to the logit of the expected 
proportion of individuals with a particular outcome when the response 
is binary

Logistic regression coefficient: The partial regression coefficient in a 
logistic regression equation

Logit (logistic) transformation: A transformation applied to a proportion 
or probability, p, such that logit(p) = ln[p/(1 − p)] = ln(odds)
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Lognormal distribution: A right-skewed probability distribution of a 
random variable whose logarithm follows the Normal distribution

Log-rank test: A non-parametric approach to comparing two survival 
curves

Longitudinal study: Follows individuals over a period of time
LRS: See likelihood ratio statistic
Main outcome variable: That which relates to the major objective of 

the study
Mann–Whitney U test: See Wilcoxon rank sum test
Marginal model: See generalized estimating equation
Marginal structural model: A form of causal modelling designed to 

adjust for time-dependent confounding in observational studies
Marginal total in a contingency table: The sum of the frequencies in a 

given row (or column) of the table
Masking: See blinding
Matching: A process of creating (usually) pairs of individuals who are 

similar with respect to variables that may influence the response of 
interest

Maximum  likelihood  estimation  (MLE): An iterative process of 
estimation of a parameter which maximizes the likelihood

McNemar’s test: Compares proportions in two related groups using a 
Chi-squared test statistic

Mean: See arithmetic mean
Measurement bias: A systematic error is introduced by an inaccurate 

measurement tool
Median: A measure of location that is the middle value of the ordered 

observations
Meta-analysis  (overview): A quantitative systematic review that 

combines the results of relevant studies to produce, and investigate, 
an estimate of the overall effect of interest

Meta-regression: An extension of meta-analysis that can be used to 
investigate heterogeneity of effects across studies. The estimated  
effect of interest (e.g. the relative risk) at the study level is regressed  
on one or more study-level characteristics (the explanatory variables)

Method of least squares: A method of estimating the parameters in a 
regression analysis, based on minimizing the sum of the squared 
residuals. Also called ordinary least squares (OLS)

Misclassification  bias: Occurs when we incorrectly classify a 
categorical exposure and/or outcome variable

Mixed model: A multilevel model where some of the parameters in the 
model have random effects and others have fixed effects. See also 
random effects model and multilevel model

MLE: See maximum likelihood estimation
Mode: The value of a single variable that occurs most frequently in a 

data set
Model: Describes, in algebraic terms, the relationship between two or 

more variables
Model  Chi-squared  test: Usually refers to a hypothesis test in a 

regression analysis that tests the null hypothesis that all the  
parameters associated with the covariates are zero; it is based on  
the difference in two likelihood ratio statistics

Model sensitivity: The extent to which estimates in a regression model 
are affected by one or more individuals in the data set or mis-
specification of the model

Mortality rate: The death rate
Multicentre study: A study conducted concurrently in more than one 

centre (e.g. hospital), each following the same protocol
Multilevel model: Used for the analysis of hierarchical data in which 

level 1 units (e.g. patients) are nested within level 2 units (e.g. wards) 

which may be nested within level 3 units (e.g. hospitals), etc. Also 
called a hierarchical model. See also mixed model and random effects 
model

Multinomial  logistic  regression: A form of logistic regression used 
when the nominal outcome variable has more than two categories. 
Also called polychotomous logistic regression

Multiple linear regression: A linear regression model in which there is 
a single numerical dependent variable and two or more explanatory 
variables. Also called multivariable linear regression

Multivariable  regression  model: Any regression model that has a 
single outcome variable and two or more explanatory variables

Multivariate  analysis: Two or more outcomes of interest (response 
variables) are investigated simultaneously, e.g. multivariate ANOVA, 
cluster analysis, factor analysis

Multivariate regression model: Has two or more outcome variables 
and two or more explanatory variables

Mutually exclusive categories: Each individual can belong to only one 
category

Negative controls: Those patients in a comparative study (usually a 
RCT) who do not receive active treatment

Negative  predictive  value: The proportion of individuals with a 
negative test result who do not have the disease

Nested  models: Two regression models, the larger of which 
includes the covariates in the smaller model, plus additional 
covariate(s)

NNT: See number of patients needed to treat
Nominal significance level: The significance level chosen for each of 

a number of repeated hypothesis tests so that the overall significance 
level is kept at some specified value, typically 0.05

Nominal  variable: A categorical variable whose categories have no 
natural ordering

Non-inferiority  trial: Used to demonstrate that a given treatment is 
clinically not inferior to another

Non-parametric tests: Hypothesis tests that do not make assumptions 
about the distribution of the data. Sometimes called distribution-free 
tests or rank methods

Normal (Gaussian) distribution: A continuous probability distribution 
that is bell-shaped and symmetrical; its parameters are the mean and 
variance

Normal plot: A diagram for assessing, visually, the Normality of data; 
an appropriate straight line on the Normal plot implies Normality

Normal range: See reference interval
Null  hypothesis,  H0: The statement that assumes no effect in the 

population
Number of patients needed to treat (NNT): The number of patients we 

need to treat with the experimental rather than the control treatment 
to prevent one of them developing the ‘bad’ outcome

Numerical (quantitative) variable: A variable that takes either discrete 
or continuous values

Observational  study: The investigator does nothing to affect the 
outcome

Observer bias: One observer tends to under-report (or over-report) a 
particular variable. Also called assessment bias

Odds: The ratio of the probabilities of two complementary events, 
typically the probability of having a disease divided by the probability 
of not having the disease

Odds ratio: The ratio of two odds (e.g. the odds of disease in individuals 
exposed and unexposed to a factor). Sometimes taken as an estimate 
of the relative risk in a case–control study
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Offset: An explanatory variable whose regression coefficient is fixed at 
unity in a generalized linear model. It is the log of the total person-
years (or months/days, etc.) of follow-up in a Poisson model when 
the dependent variable is defined as the number of events occurring 
instead of a rate

OLS: Ordinary least squares. See method of least squares
One-sample t-test: Investigates whether the mean of a variable differs 

from some hypothesized value
One-tailed test: The alternative hypothesis specifies the direction of the 

effect of interest
One-way analysis of variance: A particular form of ANOVA used to 

compare the means of more than two independent groups of 
observations

On-treatment analysis: Patients in a clinical trial are only included in 
the analysis if they complete a full course of the treatment to which 
they were (randomly) assigned

Ordinal logistic regression: A form of logistic regression used when 
the ordinal outcome variable has more than two ordered categories

Ordinal variable: A categorical variable whose categories are ordered 
in some way

Ordinary least squares (OLS): See method of least squares
Outlier: An observation that is distinct from the main body of the data 

and is incompatible with the rest of the data
Overdispersion: Occurs when the residual variance is greater than 

that expected by the defined regression model (e.g. Binomial or 
Poisson)

Over-fitted model: A model containing too many variables, e.g. more 
than 1/10th of the number of individuals in a multiple linear regression 
model

Overview: See meta-analysis
Paired observations: Relate to responses from matched individuals or 

the same individual in two different circumstances
Paired  t-test: Tests the null hypothesis that the mean of a set of 

differences of paired observations is equal to zero
Pairwise matching: The individuals in two or more comparative groups 

are matched on an individual basis, e.g. in a case–control study, each 
case is matched individually to a control who has similar potential 
risk factors

Panel model: Regression model used when each individual has repeated 
measurements over time. Also called cross-sectional time series 
model

Parallel  trial: Each patient receives only one treatment when two or 
more treatments are being compared

Parameter: A summary measure (e.g. the mean, proportion) that 
characterizes a probability distribution. Its value relates to the 
population

Parametric  test: Hypothesis test that makes certain distributional 
assumptions about the data

Partial  regression  coefficients: The parameters, other than the 
intercept, which describe a multivariable regression model

Pearson’s correlation coefficient: See correlation coefficient
Percentage  point: The percentile of a distribution; it indicates the 

proportion of the distribution that lies to its right (i.e. in the right-hand 
tail), to its left (i.e. in the left-hand tail), or in both the right- and left-
hand tails

Percentiles: Those values that divide the ordered observations into 100 
equal parts

Person-years  of  follow-up: The sum, over all individuals, of the 
number of years that each individual is followed-up in a study.

Pie chart: A diagram showing the frequency distribution of a categorical 
or discrete variable. A circular ‘pie’ is split into sectors, one for each 
‘category’; the area of each sector is proportional to the frequency in 
that category

Pilot study: Small-scale preliminary investigation
Placebo: An inert ‘treatment’, identical in appearance to the active 

treatment, that is compared with the active treatment in a negatively 
controlled clinical trial to assess the therapeutic effect of the active 
treatment by separating from it the effect of receiving treatment; also 
used to accommodate blinding

Point estimate: A single value, obtained from a sample, which estimates 
a population parameter

Point  prevalence: The number of individuals with a disease (or 
percentage of those susceptible) at a particular point in time

Poisson distribution: A discrete probability distribution of a random 
variable representing the number of events occurring randomly and 
independently at a fixed average rate

Poisson regression model: A form of generalized linear model used 
to relate one or more explanatory variables to the log of the expected 
rate of an event (e.g. of disease) when the follow-up of the individuals 
varies but the rate is assumed constant over the study period.

Polynomial regression: A non-linear (e.g. quadratic, cubic, quartic) 
relationship between a dependent variable and one or more 
explanatory variables

Population: The entire group of individuals in whom we are interested
Population-averaged model: See genereralized estimating equation
Positive controls: Those patients in a comparative study (usually a 

RCT) who receive some form of active treatment as a basis of 
comparison for the novel treatment

Positive predictive value: The proportion of individuals with a positive 
diagnostic test result who have the disease

Post hoc comparison adjustments: Are made to adjust the P-values 
when multiple comparisons are performed, e.g. Bonferroni

Posterior probability: An individual’s belief, based on prior belief and 
new information (e.g. a test result), that an event will occur

Post-test  probability: The posterior probability, determined from 
previous information and the diagnostic test result, that an individual 
has a disease

Power: The probability of rejecting the null hypothesis when it is 
false

Precision: A measure of sampling error. Refers to how well repeated 
observations agree with one another

Predictor variable: See explanatory variable
Pre-test probability: The prior probability, evaluated before a diagnostic 

test result is available, that an individual has a disease
Prevalence: The number (proportion) of individuals with a disease at a 

given point in time (point prevalence) or within a defined interval 
(period prevalence)

Prevalent cases: Patients who have the disease at a given point in time 
or within a defined interval but who were diagnosed at a previous 
time.

Primary endpoint: The outcome that most accurately reflects the benefit 
of a new therapy in a clinical trial

Prior  probability: An individual’s belief, based on subjective views 
and/or retrospective observations, that an event will occur

Probability: Measures the chance of an event occurring. It ranges from 
0 to 1. See also conditional, prior and posterior probability

Probability density function: The equation that defines a probability 
distribution



170  Appendix    Appendix D: Glossary of terms

Probability distribution: A theoretical distribution that is described by 
a mathematical model. It shows the probabilities of all possible values 
of a random variable

Prognostic index: See prognostic score
Prognostic score: A graded measure of the likelihood that an individual 

will experience an event. Also called a risk score or prognostic index
Propensity score methods: Used to remove the effects of confounding 

in an observational study. Particularly useful when there are many 
potential confounders

Proportion: The ratio of the number of events of interest to the total 
number in the sample or population

Proportional hazards assumption: The requirement in a proportional 
hazards regression model that the relative hazard is constant over 
time

Proportional  hazards  regression  model  (Cox): Used in survival 
analysis to study the simultaneous effect of a number of explanatory 
variables on survival

Prospective study: Individuals are followed forward from some point 
in time

Protocol: A full written description of all aspects of a clinical trial
Protocol deviations: The patients who enter a clinical trial but do not 

fulfil the protocol criteria
Pseudo R2: A logistic regression measure, taking a value from 0 to 1, 

which is similar to R2 used in multiple regression analysis but 
it cannot be interpreted in exactly the same way. It is better suited  
to comparing models than for assessing the goodness of fit of a 
model

Publication bias: A tendency for journals to publish only papers that 
contain statistically significant results

P-value: The probability of obtaining our results, or something more 
extreme, if the null hypothesis is true

Qualitative variable: See categorical variable
Quantitative variable: See numerical variable
Quartiles: Those values that divide the ordered observations into four 

equal parts
QUOROM Statement: Facilitates critical appraisal and interpretation of 

meta-analyses by providing guidance to authors about how to report 
their studies

Quota  sampling: Non-random sampling in which the investigator 
chooses sample members to fulfil a specified ‘quota’

R2: The proportion of the total variation in the dependent variable in a 
simple or multiple regression analysis that is explained by the model. 
It is a subjective measure of goodness of fit

RL
2 : An index of goodness of fit of a logistic regression model

Random effect: The effect of a factor whose levels are assumed to 
represent a random sample from the population

Random effects model: A model, used for the analysis of hierarchical 
data, containing at least one random effect in addition to the residual. 
For example, in a two-level structure, level 1 units are nested within 
level 2 units (clusters), and the model includes a random effect term 
which varies randomly between clusters to allow for the clustering. 
See also mixed model and multilevel model

Random error: The differences between the corresponding observed 
(or measured) and true values of a variable are due to chance

Random intercepts model: A random effects hierarchical model which 
assumes, for the two-level structure, that the linear relationship 
between the mean value of the dependent variable and a single 
covariate for every level 2 unit has the same slope for all level 2 units 
and an intercept that varies randomly about the mean intercept

Random  sampling: Every possible sample of a given size in the 
population has an equal probability of being chosen

Random slopes model: A random effects hierarchical model which 
assumes, for the two-level structure, that the linear relationship 
between the mean value of the dependent variable and a single 
covariate for each level 2 unit has a slope that varies randomly about 
the mean slope and an intercept that varies randomly about the mean 
intercept

Random variable: A quantity that can take any one of a set of mutually 
exclusive values with a given probability

Random variation: Variability that cannot be attributed to any explained 
sources

Randomization: Patients are allocated to treatment groups in a random 
(based on chance) manner. May be stratified (controlling for the 
effect of important factors) or blocked (ensuring approximately 
equally sized treatment groups)

Randomized  controlled  trial  (RCT): A comparative clinical trial in 
which there is random allocation of patients to treatments

Range: The difference between the smallest and largest observations
Rank  correlation  coefficient: See Spearman’s rank correlation 

coefficient
Rank methods: See non-parametric tests
Rate: The number of events occurring expressed as a proportion of the 

total follow-up time of all individuals in the study
RCT: See randomized controlled trial
Recall bias: A systematic distortion of the data resulting from the way 

in which individuals remember past events
Receiver operating characteristic (ROC) curve: A two-way plot of the 

sensitivity against one minus the specificity for different cut-off 
values for a continuous variable. It affords an assessment of the ability 
of a prognostic score or diagnostic test to discriminate between those 
with and without a particular condition; may be used to select the 
optimal cut-off value or to compare procedures. See also c statistic or 
Harrell’s c statistic

Reference interval: The range of values (usually the central 95%) of a 
variable that are typically seen in healthy individuals. Also called the 
normal or reference range

Regression  coefficients: The parameters (i.e. the slope 
and intercept in simple regression) that describe a regression 
equation

Regression dilution bias: May occur when fitting a regression model 
to describe the association between an outcome variable and one or 
more exposure variable(s) if there is substantial measurement error 
around one of these exposure variables

Regression to the mean: A phenomenon whereby a subset of extreme 
results is followed by results that are less extreme on average e.g. tall 
fathers having shorter (but still tall) sons

Relative  frequency: The frequency expressed as a percentage or 
proportion of the total frequency

Relative hazard: The ratio of two hazards, interpreted in a similar way 
to the relative risk. Also called the hazard ratio

Relative rate: The ratio of two rates (often the rate of disease in those 
exposed to a factor divided by the disease rate in those unexposed to 
the factor)

Relative risk (RR): The ratio of two risks, usually the risk of a disease 
in a group of individuals exposed to some factor divided by the risk in 
unexposed individuals

Reliability: A general term which encompasses repeatability, 
reproducibility and agreement
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Repeatability: The extent to which repeated measurements by the same 
observer in identical conditions agree

Repeated measures: The variable of interest is measured on the same 
individual in more than one set of circumstances (e.g. on different 
occasions)

Repeated measures ANOVA: A special form of analysis of variance 
used when a numerical variable is measured in each member of a 
group of individuals more than once (e.g. on different occasions)

Replication: The individual has more than one measurement of the 
variable on a given occasion

Reporting  bias: When participants give answers in the direction 
they perceive are of interest to the researcher or under-report 
socially unacceptable or embarrassing behaviours or disorders

Reproducibility: The extent to which the same results can be obtained 
in different circumstances, e.g. by two methods of measurement, or 
by two observers

Rescaling: See scaling
Residual: The difference between the observed and fitted values of the 

dependent variable in a regression analysis
Residual variation: The variance of a variable that remains after the 

variability attributable to factors of interest has been removed. It is 
the variance unexplained by the model, and is the residual mean 
square in an ANOVA table. Also called the error variation or 
unexplained variation

Response bias: Caused by differences in characteristics between those 
who choose or volunteer to participate in a study and those who do 
not

Response variable: See dependent variable
Retrospective studies: Individuals are selected and factors that have 

occurred in their past are studied
Right-censored  data: Come from patients who were known not to 

have reached the endpoint of interest when they were last under 
follow-up

Risk  factor: A determinant that affects the incidence of a particular 
outcome, e.g. a disease

Risk of disease: The probability of developing the disease in the stated 
time period; it is estimated by the number of new cases of disease in 
the period divided by the number of individuals disease-free at the 
start of the period

Risk score: See prognostic score
Robust: A test is robust to violations of its assumptions if its P-value 

and power and, if relevant, parameter estimates are not appreciably 
affected by the violations

Robust standard error: Based on the variability in the data rather than 
on that assumed by the regression model: more robust to violations of 
the underlying assumptions of the regression model than estimates 
from OLS

ROC: See receiver operating characteristic curve
RR: See relative risk
Sample: A subgroup of the population
Sampling distribution of  the mean: The distribution of the sample 

means obtained after taking repeated samples of a fixed size from the 
population

Sampling  distribution  of  the  proportion: The distribution of the 
sample proportions obtained after taking repeated samples of a fixed 
size from the population

Sampling error: The difference, attributed to taking only a sample of 
values, between a population parameter and its sample estimate

Sampling frame: A list of all the individuals in the population

Saturated model: One in which the number of variables equals or is 
greater than the number of individuals

Scale  parameter: A measure of overdispersion or underdispersion 
in Poisson (and, sometimes, Binomial) regression. It is equal to the 
one when there is no extra-Poisson dispersion and is used to correct 
for over or under Poisson dispersion if substantially dif ferent from 
one

Scaling: A process used to improve the interpretation of the para meters 
in a regression model; achieved by dividing the explanatory variable 
by a relevant constant. Also called rescaling

Scatter  diagram: A two-dimensional plot of one variable against 
another, with each pair of observations marked by a point

Screening: A process to ascertain which individuals in an apparently 
healthy population are likely to have (or, sometimes, not have) the 
disease of interest

SD: See standard deviation
Secondary endpoints: The outcomes in a clinical trial that are not of 

primary importance
Selection bias: A systematic distortion of the data resulting from the 

fact that individuals included in the study are not representative of the 
population from which they were selected

SEM: See standard error of the mean
Sensitivity: The proportion of individuals with the disease who are 

correctly diagnosed by the test
Sensitivity analysis: Used to assess how robust or sensitive the results 

of a study or meta-analysis are to the methods and assumptions of the 
analysis and/or to the data values

Sequential trial: The patients enter the trial serially in time, and the 
cumulative data are analysed as they become available by performing 
repeated significance tests. A decision is made after each test on 
whether to continue sampling or stop the trial by rejecting or not 
rejecting the null hypothesis

Shapiro–Wilk  test: Determines whether data are Normally 
distributed

Shrinkage: A process used in estimation of parameters in a random 
effects model to bring each cluster’s estimate of the effect of interest 
closer to the mean effect from all the clusters

Sign test: A non-parametric test that investigates whether differences 
tend to be positive (or negative); whether observations tend to be 
greater (or less) than the median; whether the proportion of 
observations with a characteristic is greater (or less) than one half

Significance  level: The probability, chosen at the outset of an 
investigation, which will lead us to reject the null hypothesis if our  
P-value lies below it. It is often chosen as 0.05

Significance test: See hypothesis test
Simple  linear  regression: The straight-line relationship between a 

single dependent variable and a single explanatory variable. Also 
called univariable linear regression

Simpson’s  (reverse)  paradox: Occurs when the direction of a 
comparison or an association is reversed when data from a single 
group is split into subgroups

Single-blind: See blinding
Skewed distribution: The distribution of the data is asymmetrical; it 

has a long tail to the right with a few high values (positively skewed) 
or a long tail to the left with a few low values (negatively skewed)

Slope: The gradient of the regression line, showing the mean change 
in the dependent variable for a unit change in the explanatory 
variable

SND: See Standardized Normal Deviate
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Spearman’s rank correlation coefficient: A non-parametric alternative 
to the Pearson correlation coefficient; it provides a measure of 
association between two variables

Specificity: The proportion of individuals without the disease who are 
correctly identified by a diagnostic test

Standard deviation (SD): A measure of spread equal to the square root 
of the variance

Standard  error  of  the  mean  (SEM): A measure of precision of the 
sample mean. It is the standard deviation of the sampling distribution 
of the mean

Standard error of the proportion: A measure of precision of the sample 
proportion. It is the standard deviation of the sampling distribution of 
the proportion

Standard Normal distribution: A particular Normal distribution with a 
mean of zero and a variance of one

Standardized  difference: A ratio, used in Altman’s nomogram and 
Lehr’s formulae, which expresses the clinically important treatment 
difference as a multiple of the standard deviation

Standardized  Normal  Deviate  (SND): A random variable whose 
distribution is Normal with zero mean and unit variance

Statistic: The sample estimate of a population parameter
Statistical heterogeneity: Is present in a meta-analysis when there is 

considerable variation between the separate estimates of the effect of 
interest

Statistically significant: The result of a hypothesis test is statistically 
significant at a particular level (say 1%) if we have sufficient evidence 
to reject the null hypothesis at that level (i.e. when P < 0.01)

Statistics: Encompasses the methods of collecting, summarizing, 
analysing and drawing conclusions from data

Stem-and-leaf plot: A mixture of a diagram and a table used to illustrate 
the distribution of data. It is similar to a histogram, and is effectively 
the data values displayed in increasing order of size

Stepwise selection: See automatic model selection
Stratification: Creation of strata where each stratum comprises a group 

of homogeneous experimental units that share similar characteristics; 
also called blocking

Stratum: A subgroup of individuals; usually, the individuals within a 
stratum share similar characteristics. Sometimes called a block

STROBE Statement: Facilitates critical appraisal and interpretation of 
observational studies by providing guidance, in the form of a 
checklist, to authors about how to report their studies

Student’s t-distribution: See t-distribution
Subgroup  analyses: The data are analysed separately in defined 

subsets (e.g. sex) which are components of the whole study  
group

Subjective probability: Personal degree of belief that an event will 
occur

Superiority trial: Used to demonstrate that two or more treatments are 
clinically different

Surrogate  endpoint: An outcome measure that is highly correlated 
with the endpoint of interest but which can be measured more easily, 
quickly or cheaply than that endpoint

Survey: A cross-sectional study which collects detailed information 
(e.g. opinions, demographic and lifestyle data) from a sample of 
individuals

Survival analysis: Examines the time taken for an individual to reach 
an endpoint of interest (e.g. death) when some data are censored

Survivorship bias: Occurs when survival is compared in patients who 
do or who do not receive a particular intervention where this 

intervention only becomes available at some point after the start of 
the study so that patients have to survive long enough to be  
eligible to receive the intervention

Symmetrical  distribution: The data are centred around some mid-
point, and the shape of the distribution to the left of the mid-point is a 
mirror image of that to the right of it

Systematic  allocation: Patients in a clinical trial are allocated 
treatments in a systematized, non-random manner

Systematic error: There is a tendency for the observed (or measured) 
value to be greater (or less) than the true value of a variable, leading 
to bias

Systematic review: A formalized and stringent approach to combining 
the results from all relevant studies of similar investigations of the 
same health condition

Systematic  sampling: The sample is selected from the population 
using some systematic method rather than that based on chance

t-distribution: Also called Student’s t-distribution. A continuous 
distribution, whose shape is similar to the Normal distribution, 
characterized by its degrees of freedom. It is particularly useful for 
inferences about the mean

Test  statistic: A quantity, derived from sample data, used to test a 
statistical hypothesis; its value is compared with a known probability 
distribution to obtain a P-value

Time-dependent  variable: An explanatory variable in a regression 
analysis (e.g. in Poisson regression or Cox survival analysis) that 
takes different values for a given individual at various times in the 
study

Time-varying confounder: A variable that is both a potential confounder 
for a time-varying exposure variable and also lies on the causal 
pathway between that exposure and the outcome

Training sample: The first sample used to generate the model (e.g. in 
logistic regression or discriminant analysis). The results are 
authenticated by a second (validation) sample

Transformed  data: Obtained by taking the same mathematical 
transformation (e.g. log) of each observation

Transportability: The extent to which a model or prognostic score 
works in populations other than that used to derive it. Also called 
generalizability

Treatment effect: The effect of interest (e.g. the difference between 
means or the relative risk) that affords a treatment comparison

Trend: Values of the variable show a tendency to increase or decrease 
progressively over time

Two-sample t-test: See unpaired t-test
Two-tailed test: The direction of the effect of interest is not specified in 

the alternative hypothesis
Type I error: Rejection of the null hypothesis when it is true
Type II error: Non-rejection of the null hypothesis when it is false
Unbiased: Free from bias
Underdispersion: Occurs when the residual variance is less than 

that expected by the defined regression model (e.g. Binomial or 
Poisson)

Unexplained variation: See residual variation
Uniform distribution: Has no ‘peaks’ because each value is equally 

likely
Unimodal distribution: Has a single ‘peak’
Unit of observation: The ‘individual’ or smallest group of ‘individuals’ 

which can be regarded as independent for the purposes of analysis, 
i.e. its response of interest is unaffected by those of the other units of 
observation
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Univariable  regression  model: Has one outcome variable and one 
explanatory variable. Also called simple linear regression

Unpaired (two-sample) t-test: Tests the null hypothesis that two means 
from independent groups are equal

Validation sample: A second sample, used to authenticate the results 
from the training sample

Validity: Closeness to the truth
Variable: Any quantity that varies
Variance: A measure of spread equal to the square of the standard 

deviation
Variance ratio (F-) test: Used to compare two variances by comparing 

their ratio to the F-distribution
Wald test statistic: Used to test the significance of a parameter in a 

regression model; it follows the Standard Normal distribution and its 
square follows the Chi-squared distribution

Washout period: The interval between the end of one treatment period 
and the start of the second treatment period in a cross-over trial. It 
allows the residual effects of the first treatment to dissipate

Weighted kappa: A refinement of Cohen’s kappa, measuring agreement, 
which takes into account the extent to which two sets of paired ordinal 
categorical measurements disagree

Weighted mean: A modification of the arithmetic mean, obtained by 
attaching weights to each value of the variable in the data set

Wilcoxon  rank  sum  (two-sample)  test: A non-parametric test 
comparing the distributions of two independent groups of 
observations. It produces the same P-value as the Mann–Whitney U 
test

Wilcoxon signed ranks test: A non-parametric test comparing paired 
observations
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Chapter
Multiple-choice  
question(s)

Structured  
question(s)

 1. Types of data 1, 2, 16 1
 2. Data entry 1, 3, 4 1
 3. Error checking and outliers 5, 6 1, 28
 4. Displaying data 

diagrammatically
7, 8, 9, 37, 50 1, 9

 5. Describing data: the ‘average’ 1, 10, 11, 12, 13, 
19, 39

2, 3, 4, 9

 6. Describing data: the ‘spread’ 10, 12, 13, 19 2, 3, 4, 16
 7. Theoretical distributions: the 

Normal distribution
8, 14, 16, 19, 44 –

 8. Theoretical distributions: 
other distributions

15, 44 –

 9. Transformations 11, 16, 17, 61 3
10. Sampling and sampling 

distributions
18, 19 –

11. Confidence intervals 19, 20, 21, 34, 45 2
12. Study design I 22, 23, 27, 31, 

32, 33, 39
–

13. Study design II 24, 25, 26, 29, 60 –
14. Clinical trials 24, 25, 27, 28 5
15. Cohort studies 20, 22, 29, 30, 

31, 48
16

16. Case–control studies 29, 31, 32, 33 4, 27
17. Hypothesis testing 16, 24 3
18. Errors in hypothesis testing 35, 36 6, 28, 29
19. Numerical data: a single group 37, 38, 40 –
20. Numerical data: two related 

groups
35, 39, 40, 41, 42 7, 8

21. Numerical data: two 
unrelated groups

40, 41, 42 3, 9, 21, 22

22. Numerical data: more than 
two groups

43 10

23. Categorical data: a single 
proportion

44, 45 –

Chapter numbers with relevant  
multiple-choice questions and structured questions 
from Medical Statistics at a Glance Workbook

Appendix E:

Chapter
Multiple-choice  
question(s)

Structured  
question(s)

24. Categorical data: two 
proportions

44, 46, 47, 48, 49 3, 8, 11, 21

25. Categorical data: more than 
two categories

48, 49 8, 12

26. Correlation 50, 51, 74 3, 13, 26
27. The theory of linear 

regression
52 13

28. Performing a linear 
regression analysis

53, 54 13, 16

29. Multiple linear regression 33, 55, 56, 57, 81 14
30. Binary outcomes and logistic 

regression
33, 46, 57, 58 4, 12, 15

31. Rates and Poisson regression 59, 60, 61, 62, 63 16, 17, 18, 29
32. Generalized linear models 64 –
33. Explanatory variables in 

statistical models
26, 60, 61, 65 14, 16, 17, 18, 

28
34. Bias and confounding 57, 60, 62, 66 4, 8, 9, 10, 12, 

17, 18, 19, 
20, 28, 29

35. Checking assumptions 67, 69 21
36. Sample size calculations 68, 69 6, 22
37. Presenting results 70 –
38. Diagnostic tools 71, 72 23, 24
39. Assessing agreement 73, 74 25, 26
40. Evidence - based medicine 75 29
41. Methods for clustered data 76, 77 20
42. Regression models for 

clustered data
78 18, 20

43. Systematic reviews and 
meta-analysis

79, 80 27

44. Survival analysis 81, 82 15, 28, 29
45. Bayesian methods 83 –
46. Developing prognostic  

scores
84, 85 24
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Index

bar charts  20
clustered  21
segmented  20, 21

Bartlett’s test  106
one-way ANOVA  64

Bayes theorem  136–7
Bayesian methods  136

diagnostic tests  136–7
disadvantages  137

beta (b)  52, 80
between-subject/group variabilities  25, 63, 118
bias  37, 102

cohort studies  45
confounding see confounding
evidence-based medicine  122
information  102–3
missing data  18
on-treatment analyses  43
selection  102

bimodal distributions  21
binary (dichotomous) variables  14, 122

explanatory  78, 85, 98–101
in logistic regression  88–90
in meta-analysis  130
in multiple regression  84

binary outcomes and logistic regression  88
Binomial distribution  29

confidence interval for the proportion  34
Normal approximation  28
single proportion test  66

bioequivalence trials  51
Bland and Altman diagram  119
blinding/masking

clinical trials  42
evidence-based medicine  122

blocked randomization  40
blocking  38
Bonferroni correction  53
bootstrapping  35

prognostic scores  139
box (box-and-whisker) plot  21, 24
Brier score  138
British Standards Institution repeatability coefficient  

119

calibration, prognostic scores  139
carry-over effects  38
case–control studies  36, 47

advantages  48
analysis  48
cases, selection of  47
controls, selection of  47
disadvantages  48
matched  47–8
risk factors, identification of  47
unmatched  48

cases  47
incident  47
prevalent  47

categorical data (variables)  14, 66–8
coding  16, 17

categorical (qualitative) data  14
agreement, assessing  118, 120

data entry  16
diagrammatic display  20
error checking  18
logistic regression  90
more than two categories  72–4
multiple linear regression  84

causal modelling  105
causal pathway and confounding  105
causality, assessing  37
causality, in observational studies  36
censored data  15, 133

left-  133
right-  133
survival analysis  133, 134

censuses  37
Central Limit Theorem  32
central tendency bias  102
centring, linear regression  81
channelling bias  104
checking assumptions see assumptions, checking
Chi-square for covariates see model Chi-square test
Chi-squared (c2) distribution  28, 143
Chi-squared (c2) test

in 2 × 2 tables  69
for covariates (model Chi-square)  88, 97
independent groups  69
in r × c table  72
for trend in proportions  72–3, 74
for two proportions

independent data  69
paired data  57, 70–1

CI see confidence intervals
classification table  89
clinical cohorts  46
clinical heterogeneity  131
clinical trials  36, 40–3

avoiding bias in  37
blinding/masking  42
CONSORT Statement  40, 41–2
cross-over design  38, 39
endpoints, primary and secondary  40
ethical issues  40
evidence-based medicine  122
inclusion/exclusion criteria  41
informed consent  40
intention-to-treat analysis  42, 122
patient issues  43
phase I/II/III  46
placebo in  40
protocol  41–2, 43
sequential  42
size  42
subgroup analyses  40
treatment allocation  40–2
treatment comparisons  40

cluster randomization
clinical trials  40–2
observation, unit of  37

cluster-specific models  127
clustered bar charts  21
clustered data  124

appropriate analyses  124–5
displaying  124

-2log likelihood see likelihood ratio statistic
a priori approach to probability  26
addition rule  26
adequacy of fit  97, 98, 167
adjusted odds ratio  88
adjusted R2  84
administrative censoring  134
aggregate level analysis, clustered data  127,  

128
agreement

limits of  119
agreement, assessing

categorical variables  118, 120
measurement variability and error  118
numerical variables  118–21
reliability  118

allocation
bias  42, 104
clinical trials  40
random see randomization
systematic  40
treatment  40

alpha (a)  52, 108
alternative hypothesis, defining the  50
Altman’s nomogram  108–9, 149
analysis of covariance  84–5
analysis of variance (ANOVA)  63

F-ratio  80
Kruskal-Wallis test  64
one-way see one-way analysis of 

variance
repeated measures  125
table  78–9

ANOVA see analysis of variance
antilog  30
area under the curve (AUC)  26, 27, 125
arithmetic mean  22, 23

see also mean
ascertainment bias  102
ASCII files  16
assessment bias  102

clinical trials  42
association

in contingency table  72, 73–4
in correlation  75

assumptions, checking
linearity  107
Normal distribution  106
reasons for  106
sensitivity analysis  107
variances, equality of  106
when assumptions are not satisfied  107

attrition bias  102
automatic selection procedures  99
average  22

arithmetic mean  22, 23
geometric mean  22, 23
median  22, 23
mode  22, 23
weighted mean  22, 23

back-transformations  30
backwards selection  99
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inappropriate analyses  124
rates  92
regression methods  127–9

Cochran’s Chi-squared test for homogeneity   
132

Cochrane Collaboration  130
coding

data  16, 17
missing values  16, 17

coefficient
correlation see correlation coefficient
intraclass correlation  118, 128
logistic regression  87
partial  84
regression  78
repeatability/reproducibility  118, 120
of variation  25

Cohen’s kappa  118
weighted  118

cohort studies  36, 44–6
advantages  45
analysis of  44–5
clinical cohorts  46
confounding  104
disadvantages  45
dynamic  44
fixed  44
follow-up of individuals  44
historical  44
management of study  45–6
outcomes and exposures, information on  44
selection of cohorts  44

collinearity
logistic regression  89
multiple linear regression  85

column charts see bar charts
competing risks  134–5
complementary events  26
complete randomized studies  38
composite endpoints  39
computer output  150–62
computer packages, data entry  16–17
conditional logistic regression  90
conditional probability  26, 136
confidence intervals (CI)  34, 35, 122

95%  80
for correlation coefficient  75, 76
for difference in two means  60, 62
for difference in two medians  61
for difference in two proportions

independent groups  69, 70
paired groups  70, 71

interpretation of  34–5, 54, 60, 122
for mean  34, 35
for mean difference  57–58, 59
for median  145
for median difference  57, 58–9
in meta-analysis  130–1, 132
multiplier for calculation of  142, 143
for proportion  34–5
for regression coefficient  80
for relative risk  45, 46
for slope of regression line  80, 81
versus hypothesis testing  51

confidence limits  34
confounding  103

and causal pathway  104–5
clinical trials  40

cohort studies  45
dealing with  103–4
in non-randomized studies  104
time-varying  105

connecting lines in diagrams, use of  21
consent, informed

clinical trials  43
cohort studies  46

CONSORT Statement  40, 41–2, 112
contingency tables

2 × 2  69
2 × k  72
r × c  72

continuity correction
sign test  55
single proportion test  66

continuous data  14
diagrammatic display  20–1

continuous probability distributions  26–7, 28
controls  37, 47

clinical trials  40
see also case–control studies

convenience factor  92
convenience sample  32
Cook’s distance  84
correlation  75–7

linear  75–6
correlation coefficient

assumptions  75
confidence interval for  76, 77
hypothesis test of  76, 77
intraclass  118, 128
misuse of  76
non-parametric  76
Pearson  75, 77, 147
Spearman’s rank  76, 77, 147
square of (r2)  75

counts  29
covariance, analysis of  85
covariate, multiple linear regression  84
Cox proportional hazards regression model  90, 134, 

135
critical appraisal  122
cross-over studies  38, 39
cross-sectional studies  36, 37

repeated  36, 37
cross-sectional time series models, clustered data  

127
cross-validation  139
c statistic  116, 117
cumulative meta-analyses  131
cut-off values  116

data
categorical see categorical (qualitative) data
censored  15
clustered  92, 124–6, 127–9
coding  16, 17
derived  14–15
describing  22–5
diagrammatic display see diagrammatic display 

of data
distinguishing between types  14
dredging  53
error checking  18–19
graphical display  20–21, 124
missing  16, 18
numerical see numerical (quantitative) data

paired  57
range checking  18
and statistics  14
summarizing  22, 24
transformation  30–1
see also specific types

data entry  16
Data Safety and Monitoring Committee (DSMC)  40
dates

data entry problems  16
error checking  18

deciles  24
decision making in hypothesis testing  52
Declaration of Helsinki  43
degrees of freedom (df)  34–5

Chi-squared distribution  28
F-distribution  28
t-distribution  28

delimiters  16
dependent (outcome, response) variables  78

binary  105
categorical  90

derived data  14–15
design see study designs
deviance see likelihood ratio statistic
df see degrees of freedom
diagnostic tests  115–16, 136–7

in Bayesian framework  136–7
diagrammatic display of data  20

clustered data  124
connecting lines  21
one variable  20–1
outliers, identifying  21
two variables  21

diagrammatic display of results  112
dichotomous variables  14
discrete data  14
discrete probability distributions  26, 28–9
discriminant analysis  138
disease register  46
dispersion see spread
distribution

bimodal  20
continuous probability  28
discrete probability  29
empirical frequency  20
frequency  20, 21
probability  26
sampling  32–3
skewed  20
Standard Normal  27
symmetrical  20
theoretical  26–9
uniform  20
unimodal  20
see also specific types

distribution-free tests see non-parametric tests
dot plots  20, 21
double-blind trials  42
dummy (indicator) variables

multiple linear regression  84
sensitivity analysis  107

Duncan’s test  63
dynamic cohort studies  44

ecological fallacy  102–3
clustered data  125
meta-regression  103, 131
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ecological studies  37, 102–3
effect (of interest)  52

in evidence-based medicine  122
in meta-analysis  130–1
importance of  122
power of test and  52
in sample size calculation  108

effect modifiers  45
efficacy  40
empirical frequency distributions  20, 26

displaying  20–1
endpoints of studies

choosing  39
clinical trials  40
primary  40
secondary  40

epidemiological studies  36
EQUATOR Network  112
equivalence range  51
equivalence trials  51
error

residual  78
Type I  52
Type II  52
typing  18
variation  53

estimated relative risk  45
ethical issues

clinical trials  43
cohort studies  46
power of a test  52

ethics committees
clinical trials  43
cohort studies  46

even numbers  22
evidence, levels of  122
evidence-based medicine (EBM)  122

approach  122–3
systematic reviews  130

exclusion criteria, clinical trials  43
expected frequency  69
experimental studies  36, 37
experimental units  38
explanatory (independent, predictor) variables   

78, 85, 98–101
in logistic regression  88–89
in multiple regression  84–5
nominal  84, 99
numerical  103
ordinal  98

Exponential model, survival analysis   
134

exposure variable  45, 102–5
external validation  139
extra-Binomial variation  89–90, 94
extra-Poisson variation  93–4

factorial experiments  38–9
Fagan’s nomogram  136, 137
false negative rate  89
false positive rate  89
F-distribution  28

one-way ANOVA  63
statistical table  142, 144

Fisher’s exact test  69, 72
fitted value  70
fixed cohort studies  44
fixed effect model  130

follow-up
cohort studies  44, 45
loss to see loss to follow-up
person-years of  92

forest plots  131
forms  16

multiple  16
forwards selection  98
frailty models  134
F-ratio  80
free format  16
frequency  20, 69, 72

displaying  20–1
observed and expected  69
shape  21
table of  115

frequency matching, case–control studies   
47

frequentist approach to probability  26, 136
F-test see variance-ratio test
funding bias  102
funnel plots  131

G see model Chi-square test
Galton, Sir Francis  79
Gaussian distribution see Normal distribution
generalized estimating equations (GEE)  128

example  129
generalized linear models (GLMs)  96

adequacy of fit, assessing  96–7
likelihood and maximum likelihood  

estimation  96
regression diagnostics  97
types  96

geometric mean  22, 23
G-estimation  105
gold standard tests  115
Gompertz model  134
goodness of fit

linear regression  79, 80
logistic regression  89
multiple linear regression  85

Gossett, W. S. (‘Student’)  28
gradient, of regression line  78
graphical display

of data see diagrammatic display of data
of results  112

Harrell’s c statistic  138–9
hazard  134
hazard ratios  134
healthy entrant effect  102

cohort studies  44
Helsinki, Declaration of  43
heterogeneity

clinical  131
statistical  130
of variance  106, 130

hierarchical models, clustered data  127
histograms  20–1

logistic regression  89
historical cohorts  44
homogeneity, of variance  130
homoscedasticity  106
Hosmer–Lemeshow test  139

logistic regression  89
prognostic score  139

hypothesis, null and alternative  50

hypothesis testing  50–1
categorical data  66
consequences of  52
for correlation coefficient  75–6
errors in  52–3
likelihood ratio  88
meta-analysis  130
more than two categories  72
more than two means  63
multiple  53
non-parametric  51
presenting results  112
in regression  80–1
single mean  54–5
single proportion  66
two means

related groups  57–59
unrelated groups  60–2

two proportions
independent groups  69
related groups  69–70

two variances  105, 106
versus confidence intervals  52
Wald  88

I2  130
identity link, generalized linear models  96
inappropriate analyses  124
incidence rate  92
incidence rate ratio see relative rates
incident cases  47
inclusion criteria, clinical trials  43
independent variables see explanatory variables
indicator (dummy) variables

multiple linear regression  84
sensitivity analysis  107

inferences  32
influence plots  131
influential observations

linear regression  80
logistic regression  90
multiple linear regression  85, 107

information bias  102–3
informative censoring  134
informed consent

clinical trials  43
cohort studies  46

intention-to-treat (ITT) analyses
clinical trials  43
evidence-based medicine  122

interaction  38, 99–100
interdecile range  24
interim analyses

clinical trials  40
hypothesis testing  53

intermediate variables and confounding  105
internal–external cross-validation  139
internal pilot studies  108
internal validation  139
interpolation, unpaired t-test  61
interquartile range  24
inter-subject/group variation  25, 63, 118
interval estimates  32, 34
intraclass correlation coefficient (ICC)  118, 119

clustered data  128, 129
intra-subject/group variation  25, 63, 118

jackknifing  35
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Kaplan–Meier curves  133
Kappa k

Cohen’s  118, 120
weighted  118

k-fold cross-validation  139
Kolmogorov–Smirnov test  106
Kruskal–Wallis test  64

clustered data  124, 126

lead-time bias  102
least squares see method of least squares
leave-one-out cross-validation  139
left-censored data  133
Lehr’s formula  109
Levene’s test  106

one-way ANOVA  63
leverage  85
lifetable approach, survival analysis  133
likelihood  96

-2log  89, 97
Bayes theorem  136

likelihood ratio (LR)  97
Bayes theorem  137
diagnostic tests  116, 117

likelihood ratio statistic (LRS)  97
logistic regression  88, 89
Poisson regression  93

likelihood ratio test
clustered data  128
logistic regression  88–9

Likert scales, central tendency bias  102
limits of agreement  119
Lin’s concordance correlation coefficient  119
linear regression  78

ANOVA table  78–9
assumptions  78, 79, 80
and clustered data  124
goodness of fit, assessing  80
improving the interpretation of the model  81
method of least squares  78
multiple  84–7
multivariable  84
outliers and influential points  80
regression line  78, 80–1
regression to the mean  79
simple  78, 82
theory  78

linearity
checking assumptions  107
transformations  30, 31

link function, generalized linear models  96
location, measures of  22
log log plots  134
logarithmic transformation  30
logistic regression  88

adequacy of model, assessing  89–90
conditional  90
diagnostics  90
equation  88
explanatory variables  88–9
multinomial (polycotomous)  90
odds ratio and relative risk, comparing  90
ordinal  90
prognostic scores  138

logit (logistic) transformation  31
Lognormal distribution  28, 29

transformations  30
log-rank test  134

longitudinal studies  36, 37
clustered data  127

loss to follow-up
bias  102
cohort studies  44, 45
sample size adjustment  109

Mann–Whitney U test  60
Mantel–Haenszel procedure  69, 103
marginal structural models  105
marginal total  69
masking see blinding/masking
matching

case–control studies  47–8, 90
conditional logistic regression  90
confounders  103, 104

mathematical models  96
maximum likelihood estimation (MLE)  96

clustered data  127
McNemar’s test  70

confounding  103
mean  23

confidence interval for difference in two  60, 62
difference  57, 60, 62
weighted  22, 23

mean Briar score  138
mean square  63
measurement bias  102
measurement error  118
measurement variability  118
measures

of location  22–23
of spread  24–25

median  22, 23, 24
difference between two  57–8, 61
ranks for confidence intervals for the  142, 145
survival time  133
test for a single  54–6

Medline  122
meta-analysis  130

advantages and disadvantages  131
sensitivity analysis  107, 131
statistical approach  130–1

meta-regression  131
ecological fallacy  103, 131

method agreement  119
method of least squares (ordinary least squares, 

OLS)  96
clustered data  127, 129
linear regression  78

misclassification bias  102
missing data  16, 18
missing values

coding  16, 19
handling  18, 19

mixed models, clustered data  127
mode  22, 23
model Chi-square test  97

logistic regression  89
Poisson regression  93

models
Cox proportional hazards regression  90, 134, 135
Exponential  134
fixed effect  130
generalized linear  96–7
Gompertz  134
hierarchical  127
logistic regression  88

multi-level  78, 84–6
multivariable  94
over-fitted  99
Poisson regression  93–4, 134
random effects  128
random intercepts  129
random slopes  128
regression  134
statistical  88–9, 96, 102–4
univariable  99
Weibull  134

mortality rates  92
multicentre studies  37
multi-coded variables  16
multi-collinearity  100
multilevel models, clustered data  127
multiple forms per patient  16
multiple hypothesis testing  53
multiple linear regression  84

analysis  85
analysis of covariance  84–5
assumptions  84
categorical explanatory variables  84
explanatory variables, choice of  85
outliers and influential points  85, 107

multiplication rule  26
multivariable regression

confounding  103, 104
see also logistic regression; multiple linear 

regression; Poisson regression
multivariate analysis  84

hypothesis testing  53
mutually exclusive (categories)  69

negative controls  40
negative predictive value  116
negatively skewed distributions (NPV)  21

square transformation  31
nested models  97
nominal data  14

multinomial logistic regression  90
multiple linear regression  84

nominal significance level  53
non-inferiority trials  51
non-parametric (distribution-free, rank) tests  51, 107

for more than two independent groups  64
for single median  54–6
for Spearman correlation coefficient  76
for two independent groups  61–2
for two paired groups  57–8

Normal (Gaussian) distribution  27, 28
approximation to Binomial distribution  28, 66
approximation to Poisson distribution  29
in calculation of confidence interval  34

Normal plot  106
normal range see reference intervals
null hypothesis, defining the  50
number of patients needed to treat (NNT)  122
numerical (quantitative) data  14

agreement, assessing  118–21
data entry  16
diagrammatic display  20–1
error checking  18
more than two groups  63–5
single group  54–6
two related groups  57–9
two unrelated groups  60–2

numerical results, presenting  112
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observation  14
defining the unit of  36–7

observational databases  46
observational studies  36, 37
observed frequency  69
observer bias  102
odds (of disease)

adjusted  88
case–control studies  48
logistic regression  88, 90
posterior  137
prior  137

offsets, Poisson regression  93
one-sample t-test  54
one-tailed tests  50
one-way analysis of variance  63–4

and clustered data  124
on-treatment analyses, clinical trials  43
ordinal data  14

multiple linear regression  84
ordinal logistic regression  90

ordinal logistic regression  90
ordinary least squares (OLS) see method of least 

squares
outliers  18

checking for  18
handling  18
identifying using graphical methods  21
linear regression  80
logistic regression  90
multiple linear regression  85

overdispersion
logistic regression  89
Poisson regression  93–4

over-fitted models  99
overview see meta-analysis

paired data  57
categorical  69, 70
numerical  57–8

paired t-test  57
Altman’s nomogram  109
confounding  103
repeated measures ANOVA  125

pairwise matching  47
panel models, clustered data  127
parallel studies  38, 39
parameters

point estimates  32
probability distributions  26

parametric tests  51
partial likelihood, survival analysis  134
partial regression coefficients  84
Pearson’s correlation coefficient  75–6

intraclass correlation coefficient  119
statistical table  142, 147

percentages  14
percentiles  24

ranges derived from  24–5
pie charts  20
pilot studies  108
placebos  14
point estimates  32
point prevalence  37
Poisson distribution  29, 92

transformations  30
Poisson regression  92

coefficients  93

computer output  93
equation  92–3
extra-Poisson variation  93–4
groups, entering data for  93
offset, use of an  93
variables that change over time  93

polychotomous linear regression  90
polynomial regression  99
population  14, 32
positive controls  40
positive predictive value (PPV)  116, 137
positively skewed distributions  21

logarithmic transformation  30
posterior odds  136, 137
post-hoc comparisons  63
post-test probability  137
power  52–3

curves  52–3
sample size  52, 53, 108, 109–10
statement  109

precision  32–3, 112, 122
in systematic reviews  130–1

predictive efficiency, indices of  89
predictive values

negative  116
positive  116

predictor variables see explanatory variables
preferences, analysing  66
pre-test probability  137
prevalence  115, 137
prevalent cases  47
primary endpoint of trial  40
prior odds  137
prior (pretest) probability, Bayes theorem  136,  

137
probability  26

addition rule  26
a priori  26
Bayesian approach  136, 137
complementary  26
conditional  26, 136
discrete  26, 29
frequentist  26, 136
multiplication rule  26
posterior (post-test)  136, 137
prior (pre-test)  136, 137
subjective  26
survival  133

probability density function  26
Normal distribution  26–7

probability distributions  26–9
continuous  26–7, 28
discrete  28–9
theory  26

prognostic index  138
prognostic scores  139

developing  139
performance assessment  138–9
reasons for  138

propensity score approach, confounding  103–4
proportion(s)

confidence interval for difference in two   
69–71

logit transformation of  31
sampling distribution  32–3
sign test for  66–7
standard error of  33
test for single  66–8

test for trend in  72–4
test for two

independent groups  69
related groups  70–1

proportional hazards regression model (Cox)  134, 
135

prospective studies
cohort studies  44
longitudinal studies  36, 37

protocol  42–3
deviations  43

protocols, clinical trials  43
publication bias  102

meta-analysis  131
P-value  50–1

explanation  50–1
obtaining the  50
post-hoc adjustment of  53
using the  50–1

qualitative data see categorical (qualitative) data
quality, of studies in meta-analysis  131
quantitative data see numerical (quantitative) data
quartiles  24
questionnaires  16
quick formulae in sample size estimation  108
QUORUM Statement  112
quota sampling  32
quotients  14

r2  75
R2  79, 85

adjusted  85
linear regression  79, 80

r × c contingency table  72
random effects

meta-analysis  130–1
meta-regression  131
models, clustered data  127–8, 129

random intercepts linear two-level model  127, 129
random measurement error  118
random numbers table  142, 148
random samples  32
random slopes model  128, 129
random variables  26
random variation  38
randomization  122

blocked  40
cluster  40
stratified  40

randomization, clinical trials  40–2
randomized controlled trials (RCTs)  40

and confounding  104
evidence-based medicine  122

randomized studies, complete  38
range  24, 25

checking  18
derived from percentiles  24–5
interdecile  24
interquartile  24
normal see reference intervals
presenting results  112
reference (normal)  24, 26–7, 115

rank correlation coefficient see Spearman’s rank 
correlation coefficient

rank (non-parametric) tests  51, 107
ranks for confidence interval for the median  142, 145
rate ratio see relative rates
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rates  14, 92
features  92
relative  92
and risk, comparison between  92

ratio  14
F-ratio  80
hazard  134
incidence rate  92
likelihood  96, 116, 137
odds  48, 88, 92
rate  92

recall bias
case–control studies  48
cohort studies  45

receiver operating characteristic (ROC) curve  116
area under the (AUROC)  116, 138
logistic regression  89
prognostic scores  138, 140

reciprocal transformation  31
reference categories  84
reference intervals (normal range)  24, 115

calculation  115
Normal distribution  27

reference range  24
regression

clustered data  127–9
Cox  90, 134, 135
diagnostics  90, 97
dilution bias  102
linear see linear regression
logistic  88–90, 156
methods  125
models, survival data  133
Poisson  92–5
polynomial  99
presenting results in  112–13
simple  78, 80–82
to mean  79

regression coefficients  78
linear  78
logistic  88
partial  84
Poisson  93

regression line  78
goodness of fit  78, 79, 80
prediction from  80–82

relative frequency distributions  20
displaying  20–1

relative hazards  134
relative rates  92

Poisson regression  93
relative risk (RR)  45

cohort studies  45
in meta-analysis  45
logistic regression  88, 90
odds ratio as estimate of  88

reliability  118
indices of  119, 121

repeatability  118–19
repeated cross-sectional studies  36, 37
repeated measures

analysis of variance  125
data  124
models, clustered data  127

replication  38
reporting bias  102
reproducibility  118–19
rescaling, linear regression  81

residual error  78
residual variance/residual mean square  63, 79
residual variation  80
residuals  78

linear regression  78, 80
multiple linear regression  85

response bias  102
response rates  38
response variables see dependent variables
restricted/blocked randomization  40
results, presenting  112–13
retrospective studies

cohort studies  44
longitudinal studies  36, 37

right-censored data  133
risk factors

case–control studies  47
cohort studies  44–5

risk scores see prognostic scores
risks, competing  134–5
robust analysis  107
robust standard errors, clustered data  127, 128
robustness  107

one-sample t-test  54
one-way ANOVA  64

ROC curves see receiver operating characteristic 
curves

sample  14, 32
convenience  32
random  32
representative  32
statistic  32
training  139, 140
validation  139, 140
size  38, 52, 106–10

sample size
Altman’s nomogram  108–9, 110, 111, 149
bias  102
calculations  108–11
importance  108
power of a test  52, 53, 108, 109–10
quick formulae  109
requirements  108
study design  38

sample statistic  32
sampling

error  32
distribution  33
frame  32
point estimates  32
quota  32
reasons for  32
standard deviation vs standard error of the mean  

32
standard errors  32
systematic  32
variation  32

sampling distribution
of the mean  32
of the proportion  33

saturated models  97
scale parameter, Poisson regression  93
scaling, linear regression  81
scatter diagrams  20, 21

correlation analysis  75
linear regression  78, 80

Scheffe’s test  63

scores  14
screening  79
SD see standard deviation
SE see standard error
secondary endpoints of trials  40
segmented bar charts  20, 21
selection bias  102

cohort studies  45
sensitivity analysis  107

logistic regression  89
meta-analysis  131
multiple linear regression  84
outliers  18

sensitivity of a test  115–16
sequential trials  42
Shapiro–Wilk test  106
shrinkage estimates  127
sign test  55

paired data  57–58
for a proportion  66–7

significance level  51
multiple hypothesis testing  53
and power  52–3
and sample size  108

significance testing see hypothesis testing
significant result  50
Simpson’s (reverse) paradox  69

confounding  103
single-blind trials  42
single-coded variables  16
single proportion test  66
skewed to the left distributions  21

square transformation  31
skewed to the right distributions  21

logarithmic transformation  30
software, data entry  16–17
Spearman’s rank correlation coefficient  76

statistical table  142, 147
specificity  115–16, 117

logistic regression  89
spread  24

range  24–5
standard deviation  25
variation within- and between-subjects  25

square root transformation  30
square transformation  31
standard deviation (SD)  25, 32

SD vs SEM  32
standard error

of the mean (SEM)  32, 112
presenting results  112
of the proportion  33
robust  127, 128, 129

Standard Normal distribution  27
statistical tables  142, 143, 144

standardized difference  108
Standardized Normal Deviate (SND)  27
statistic

sample  32
test  50

statistical heterogeneity  130
statistical homogeneity  130
statistical packages, data entry  16–17
statistical tables  142–8
statistics  14

probability distributions  26
stem-and-leaf plots  21
stepwise selection  99
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stratification  38
stratified randomization  40

STROBE Statement  112
Student’s t-distribution see t-distribution
study designs  36, 38

bias  37
blocking (stratification)  38
causality, assessing  37
controls  37
cross-over  38, 39
cross-sectional studies  37
endpoints, choosing  39
experimental studies  36
factorial experiments  38–9
longitudinal studies  37
multicentre studies  37
observational studies  36
parallel  38, 39
replication  38
sample size  38
unit of observation, defining the  36–7
variation  38

subgroups
clinical trials  40
confounding  103, 104
hypothesis testing  53

subjective approach to probability  26
summary measures  124–5

aggregate level analysis  127
of location  22–3
of spread  24–5

surrogate marker endpoints  39
surveys  37
survival analysis  94, 133

censored data  133
comparing survival data  134
Cox proportional hazards regression  134
displaying survival data  133
Kaplan-Meier log-rank test  134
problems  134–5
summarizing survival data  134

survival curves  133
survival probability  133
survivorship bias  102
symmetrical distributions  21
systematic allocation, clinical trials  40
systematic measurement error  118
systematic reviews  130

meta-analysis  130–2
systematic sampling  32

tables
2 × 2 table  69
contingency of frequencies  115
presenting results as  112
statistical  142–8

t-distribution  28
confidence interval for the mean  34
statistical table  142, 143

test statistic, obtaining the  50
text files  16
text format  16
times, data entry problems  16
time-varying confounding  105
training sample  139
transformations

method  30
reasons for  30, 107
typical  30–1

treatment allocation  40–2
treatment effect  52
trend, Chi-squared test for  72–3
trial size  43
trials see clinical trials
true negatives  115
true positives  115
t-test  34

one-sample  54
for partial regression coefficients  84
paired  57
unpaired (two-sample)  60, 109

two-level structure, clustered data  124, 127
two-sample t-test

see unpaired t-tests and Wilcoxon rank sum test
two-tailed tests  50
Type I errors  52

clustered data  124
sample size  108

Type II errors  52
sample size  108

typing errors  18, 19

unbiased estimate  32
underdispersion

likelihood ratio statistic  97
logistic regression  90
Poisson regression  94

uniform distributions  21
unimodal distributions  21
unit, experimental  38
unpaired t-test, see two-sample t-test

validation, prognostic scores  139
validation sample  139
variability

between-subject  109
sample size calculation and  109
within-subject  24

variables  14
random  26, 38–9

variance  24–5
Binomial  29
heterogeneity of  106, 130
homogeneity of  106, 130
Poisson  29
residual  63, 79
stabilizing  30, 31
testing for equality of two  64, 106, 107,  

153
variance-ratio test (F-test)  106

multiple linear regression  85
variation  38

between-group  63
between-subject  24
coefficient of  24
explained  80
extra-Poisson  93–4
over time  93
random  38
unexplained (residual)  80
within-group  63
within-subject  25

Wald test  88
logistic regression  88, 89
Poisson regression  93

washout period  38
Weibull model  134
weighted kappa  118
weighted mean  22, 23
Wilcoxon rank sum (two-sample) test   

60–1
statistical tables  142, 146

Wilcoxon signed ranks test  55, 57–8
statistical table  142, 145

within-subject/group variation  25, 63, 118

zero cell count, logistic regression  89
z-test  54
z-value  55, 56, 142
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